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ABSTRACT

We are gradually becoming more dependent on various distributed systems, e.g., smart

home management systems, bank management, traffic monitoring, etc. Some run on data-

centers while others run on edge devices, e.g., smart home applications. In all these envi-

ronments, efficiently maintaining consistency across such a large number of components is a

hard challenge.

Consistency ensures a coherent view across the disparate components of a distributed

system. An inconsistent view might lead to various issues that directly impact user expe-

rience. For example, in a database management system, an inconsistent view of a primary

replica might make the system slow, or show stale data to users. If a bank account has

two primary-replicas, each of them might show their own version of the account balance –

this leads to incorrect banking transactions. Similarly, in a smart home, failing to isolate

concurrent routines (sequence of commands) might end the home in a state not consistent

with the user’s expectation. E.g., the outcome of two concurrent routines R1 = {Turn all

light ON} and R2 = {Turn all light OFF} might end up in a state where some of the lights

are ON while others are OFF.

Addressing this requires the disparate components of a distributed system to have coordi-

nation. Such coordination includes maintaining a consistent view of the failed nodes, leader

election, consistent primary replica selection, coherence in smart home’s current state, etc.

Orchestrators are dedicated entities that use specialized protocols (e.g., Chubby, ZooKeeper

etc.) to help coordinate the components.

Distributed systems can use i) generic external orchestrators such as Zookeeper, Chubby

etc., or 2) build their own internal orchestrator. Unlike external orchestrators, internal

orchestrators avoid external dependencies and are flexible and modifiable, e.g., making it

relatively easier to provide complex consistency guarantees and providing consistent and

reliable distributed data-structures.

In this thesis we present new internal orchestrators for maintaining consistency in both

edge-based and cloud-based distributed systems. This thesis has the following contributions:

for edge-based distributed systems, we develop a smart home orchestrator called SafeHome

that offers a congruent end state by guaranteeing stronger properties, e.g., Isolation, Atom-

icity, Safety. This is an improvement over the best-effort philosophy used in today’s smart

homes which leads to incongruent states. Second, For cloud-based distributed systems, we

reveal and analyze Service Fabric’s consistent and scalable failure detector, which is the
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heart of its internal orchestration mechanisms. Third, we present a new way to decentral-

ize Service Fabric’s arbitration technique and design a consistent failure detector on top of

it, which offers identical consistency guaranties as Service Fabric’s centralized scheme. We

also provide formal proof of correctness and time-bound for both central and distributed

arbitrator schemes.

iii



I dedicate my dissertation to my parents, sisters, and my beloved wife. Their eternal love,

trust, and support kept me motivated throughout the long journey.

I would also like to dedicate my dissertation to the countless doctors, health workers, and

volunteers who are selflessly working and risking their lives to control the global pandemic

of the coronavirus. They are the real heroes!

iv



ACKNOWLEDGMENTS

Fast and foremost, I would like to express my deepest gratitude to my advisor Professor

Indranil Gupta for his invaluable guidance, support, and encouragement throughout the

entire journey. I am also indebted to my previous advisor Professor Nitin Vaidya. Their

constant supervision helped me to keep myself on the right track. They trusted me and gave

me the freedom to explore my own research path, which helped a lot to grow myself as a

confident and independent researcher.

I would like to sincerely thank the rest of my committee members, Professor Klara Nahrst-

edt, Professor Nikita Borisov, and Dr. Nitin Agrawal, for their invaluable feedback that

played a big part in shaping my work in its current form.

I would also like to express my sincere gratitude to my current and former colleagues in

the Computer Science Department with whom I spent several wonderful graduate years. In

particular, I am grateful to Shadi Abdollahian Noghabi, Muntasir Raihan Rahman, Imranul

Hoque, Anupam Das, Mainak Ghosh, Beomyeol Jeon, Le Xu, Rui Yang, Faria Kalim, Faraz

Faghri, Sandeep Dasgupta, Güliz Seray Tuncay, Nirupam Roy, and Sanorita Dey. I am

forever indebted to them for their help, guidance, and support.

I wish to show my gratitude to the excellent mentors whom I met during my internship

at Huawei and Microsoft Azure. In particular, George Calcev, Lin Cai, Anmol Ahuja,

Rishi Sinha, Mohammad Tanviruzzaman, Preetha Subbarayalu, Mert Coskun, and Gopal

Kakivaya.

The current and former members of the Bangladeshi community here at University of

Illinois at Urbana-Champaign have been a source of great joy, encouragement, and mental

support for me. I am especially grateful to Mazhar Islam, Tanzila Alam, Reaz Mohiud-

din, Tuba Yasmin, Ahsanur Rahman, Dulchi Fatema, Sajjadur Rahman, Saraf Tarannum,

Priyanka Sarker, Anupam Aich, Tanvir Amin, Himel Dev, Songjukta Datta, Ahmed Khur-

shid, Ibtesam Nazim Ahmed, Abul Hassan Samee, Tanjida Kabir Choity, Mehedi Bakht,

Shakil Bin Kashem, Nusrat Jahan Kazi, Kibria Roman, Nargis Akhter Shimu, Shahneela

Chowdhury, Dr. Taher Saif, Nadeem Ahmed, Shahana Begum, Mohammad Sharif Ullah,

and Rani Rahman.

Finally, I could not complete this difficult journey without the unconditional love and

support of my family. I am indebted to my lovely and caring wife, Syeda Persia Aziz. She is

one of the main reasons for my survival of the long Ph.D. journey. She was beside me during

the entire time and guided me as a trusted friend. She kept me motivated when things were

v



not going well. I am forever grateful for the inspiration my father Shegufta Bakht Mahmud

has been– he is why I pursued the Ph.D. The endless effort and care of my mother Selina

Akter helped me to become who I am. My elder sister Srabantee Shegufta and my younger

sister Haimantee Shegufta are the most wonderful and supporting siblings one can ask for.

I am also indebted to my father-in-law Syed Mahmudul Aziz, mother-in-law Afroza Rupa

and brother-in-law Syed Arman for trusting me and encouraging me throughout the entire

journey.

vi



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 SafeHome: Introducing Safety Schemes and Visibility Models for Smart Homes 3
1.2 Microsoft Service Fabric– In Search of an Internal Orchestrator . . . . . . . . 6
1.3 Decentralizing Service Fabric’s Centralized Arbitrator Based Failure Detector 8
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

CHAPTER 2 HOME, SAFEHOME: SMART HOME RELIABILITY WITH VIS-
IBILITY AND ATOMICITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Visibility and Atomicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Failure Handling and Visibility Models . . . . . . . . . . . . . . . . . . . . . 20
2.4 Eventual Visibility: SafeHome Design . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Scheduling Policies for Eventual Visibility . . . . . . . . . . . . . . . . . . . 28
2.6 SafeHome Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

CHAPTER 3 SERVICE FABRIC: A DISTRIBUTED PLATFORM FOR BUILD-
ING MICROSERVICES IN THE CLOUD . . . . . . . . . . . . . . . . . . . . . . 46
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Microservice Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

CHAPTER 4 A NEW FULLY-DISTRIBUTED ARBITRATION-BASED MEM-
BERSHIP PROTOCOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Background and System Model . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 Distributed Arbitrator-Based Consistent Failure Detector . . . . . . . . . . . 80
4.4 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

vii



CHAPTER 5 LESSONS LEARNT . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.1 Service Fabric and the Distributed Arbitration Scheme . . . . . . . . . . . . 96
5.2 Lessons Learnt: SafeHome . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

CHAPTER 6 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . 101
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

viii



CHAPTER 1: INTRODUCTION

Distributed systems are the key to build highly scalable, widely available, fault-tolerant

applications, e.g., stock management, flight tracking, smart home management, etc. These

applications are quite diverse. For example, some services run on local edge nodes (e.g.

various Internet of Things deployments, Smart Homes, etc.), whereas some services, e.g.,

Amazon Web Service (AWS), Microsoft Azure etc. span across globally-deployed datacen-

ters.

For instance, in clouds, AWS is a broadly adopted platform, run across globally deployed

data centers while offering over 175 fully-featured services and serving over millions of cus-

tomers. Microsoft Service Fabric [1] is a widely adopted cloud-based microservice [2] orches-

trator that hosts Azure SQL DB [3], Cosmos DB [4], Skype [5] and many others. Today,

Azure SQL DB itself hosts 1.82 Million DBs containing 3.48PB of data and runs on over

100K machines across multiple geo-distributed datacenters. The smart home market is also

expected to grow from $27B to $150B by 2024 [6, 7]. Today’s smart home contains a wide di-

versity of devices–there are roughly 1, 500 IoT vendors [8], and the average home will contain

over 50 smart devices by 2023 [9]. Smart devices cover all aspects of the home, from safety

(fire alarms, sensors, cameras), to doors+windows (e.g., automated shades), home+kitchen

gadgets, HVAC+thermostats, lighting, garden sprinkler systems, home security, and others.

There are a plethora of smart home management apps [10, 11, 12, 13, 14, 15, 16, 17] to

manage such a diverse set of devices.

Consistency is an essential element for coordinating both these classes of distributed sys-

tems. This means ensuring a coherent view of various properties (e.g., failed member, an

elected leader, primary replica, etc.) across the group members. In the case of a microservice

orchestrator (e.g., Service Fabric [1]), once a leader crashes, failing to maintain a consistent

view of the new leader might mislead the existing microservices where some microservices

might communicate with the old leader whereas others proceed with the new leader. Such a

split-brain problem [18] hurts the performance and correctness of the system: e.g., in case of

a database management system, multiple leaders can simultaneously elect different replicas

as the primary replica for the same set of keys. In case of a bank account, such multiple

primary-replicas might represent their own version of the account balance – which might

cause incorrect transaction that negatively impacts user’s expectation.

Similarly, in a smart home, the current best-effort approach used to handle concurrent

Routines (a sequence of commands) might leave the smart home in an incongruent state. For

example, if two routines R1 = {Light-1:ON, Light-2:ON, Light-3:ON } and R2 = {Light-1:OFF,
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Light-2:OFF, Light-3:OFF } run simultaneously, the outcome might be an incongruent state:

some of these three lights are ON, while others remain OFF. This might not be consistent

with user’s expectation (either all lights ON or all OFF). Therefore, these distributed systems

need to guarantee consistency in order to ensure correctness, performance and seamless user

experience. In this thesis we present new internal orchestrators for maintaining consistency

in such distributed systems.

(a) (b)

Figure 1.1: (a) External orchestrator based approach. (b) Internal orchestrator based ap-
proach. The boxes represent the layers of a distributed systems. The built-in orchestrator
ensures the lowermost layers consistency (Consistency0). The nth layer uses (n−1)th layer’s
consistency guaranties to form its own consistency properties.

Orchestrators are dedicated entities that use specialized protocols to help coordinating

the disparate components of a distributed system. Despite being a conceptually centralized

entity, orchestrators are typically deployed on multiple coordinating nodes to ensure fault

tolerance. Distributed systems can use i) generic external orchestrators such as Zookeeper,

Chubby etc., or 2) build their own internal orchestrator.

Such generic external orchestrators are deployed and maintained separately. They are

attractive since the disparate components of a distributed system use well-defined APIs to

communicate and sync with the orchestrators. These generic orchestrators are widely used

and well tested.

Unlike external orchestrators, internal orchestrators are an inherent part of the distributed

system that avoid external dependencies and provide the abstraction of an inherently con-

sistent system (Fig. 1.1b). They are more flexible and modifiable than their external coun-

terpart, which makes it relatively easier to provide complex consistency guarantees and to

build consistent and reliable distributed data-structures (such as a distributed dictionary,

queue, etc. [19]).

We focus on internal orchestrators in this thesis. The rest of this chapter describes our

proposed internal orchestration approaches applicable to both cloud-based and edge-based
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distributed systems (Table 1.1).

System Scale Consistency mechanism

SafeHome [20] (Chap. 2) Edge, home deployment Ensures a safe and congruent end state of smart-
devices using a consistent orchestrator.

Service Fabric (SF) [1]
(Chap. 3)

Global, across multiple
datacenters

Unveil, and analyze the internal orchestrator
that relies on a consistent failure detector.

Distributed Arbitrator
based Failure Detector [21]
(Chap. 4)

Global, across multiple
datacenters

Completely decentralize SF’s internal orchestra-
tor.

Table 1.1: Proposed consistency mechanisms across different type of distributed systems.

1.1 SAFEHOME: INTRODUCING SAFETY SCHEMES AND VISIBILITY MODELS
FOR SMART HOMES

Current smart homes support a broad spectrum of home automation. They offer both local

and remote controllability of smart devices. Users control a smart device using commands

(e.g., turn ON a light). Routines, consists of a sequence of commands [22, 23, 24, 25], add a

new dimension towards the home automation.

Routines, which are becoming an essential part of modern smart homes, are needed for

both convenience (e.g., turn ON group of Living Room lights, then switch on entertainment

system), and for correct operation (e.g., close window, then turn ON AC, then set to 70◦).

However, today’s best-effort way of executing routines can lead to incongruent states in the

smart home and has been documented as the cause of many smart home incidents [26, 27,

28, 29, 24].

The following simple scenarios illustrate how concurrent routines running in a best-effort

method may end-up in an incongruent state:

First, consider a “movie-time” routine R0={TV: ON; Sound System: ON; Living-room

Light: OFF }. During the execution, if at least one of the commands fails, the end-state

of the smart home might vary from user’s expectation. Either all or no commands of the

routine should be executed. In other words atomicity of the routine is not being ensured.

Second, consider two routines – R1 that turns ON all lights in the living room, and R2

that turns OFF all lights in the living room. Today if two different users run R1 and R2

concurrently, the outcome could be an incongruent end-state, with some lights on and some

lights off. In other words, isolation semantics among concurrent routines are not being

specified or enforced cleanly.

Third, consider a “prepare-food” routine – R3={Exhaust Fan: ON ; Stove: ON } where

the user expects the exhaust fan to be turned ON as long as the oven is running. If the
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exhaust-fan fails during the operation, the current best-effort approach does not offer any

preventive mechanism. Sometimes this might lead to a safety hazard. In other words, the

current best-effort approach does not verify inter-device dependencies.

The lack of atomicity, isolation, and safety that are inherent parts of today’s best-effort

strategy makes this approach inadequate to serve the demands of today’s modern smart

homes. Lacking these properties might leave the smart-home in an incongruent state, which

might cause user inconvenience. Even worse, this might lead to safety hazards. Therefore,

today’s smart homes require a mechanism to handle concurrent routines safely.

Routines are akin to Transactions in the database world. Therefore, incorporating the

existing well-studied transaction management systems is the first remedy that should natu-

rally come into one’s mind. However, Routines’ discrete execution strategy separates them

from that of Transaction.

SafeHome is best seen as the first step towards a grand challenge. A true OS for smart

homes requires tackling myriad problems well beyond what SafeHome currently does. These

include support for: users to inject signals/interrupts/exceptions, safety property specifica-

tion and satisfaction, leveraging programming language and verification techniques, and in

general full ACID-like properties [30]. SafeHome is an important building block over which

(we believe) these other important problems can then be addressed.

1.1.1 Problem Statement and Challenges

This thesis focuses on providing atomicity, isolation, and safety for smart

homes that are running concurrent routines across disparate smart devices.

Providing such guarantees across concurrent routines face unique challenges not found in

other domains that ensure similar guarantees. First, every action of a routine is immediately

visible to the human user(s). This requires us to clearly reason about visibility models for

concurrent routines in a smart home. Visibility models provide notions of serial equiva-

lence (i.e., serializability) of routines. A smart home needs to optimize user-facing metrics

especially latency to start the routine, and then latency to execute it.

Second, in a smart home, device crashes and restarts are the norm – any device can fail

at any time, and possibly recover later. These failure/recovery events may occur during a

command, or before a command starts, or after a command has completed. Thus, in a smart

home, reasoning about device failure/restart events that occur alongside concurrent routines,

is a new challenge.

Third, long-running routines are common in smart homes, e.g., a routine containing a

command to preheat an oven to 400◦F ), or to run north garden sprinklers for 15 minutes.
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Long-running routines may hog devices, preventing other routines from starting or making

progress. This creates a need for correct and efficient resource sharing techniques which

reduce latency, without violating visibility properties.

1.1.2 Contributions

In this thesis we argue that, to ensure a congruent state, smart homes should provide

the two fundamental properties used in database systems: i) Atomicity: once a routine

has started, either all its commands have the desired effect on the smart home (i.e., routine

completes), or the system aborts the routine, resulting in a rollback of its commands. ii)

Isolation: effect of the concurrent execution of a set of routines is identical to an equivalent

world where the same routines all executed serially, in some order. Additionally, it should

monitor device-dependencies to ensure safety. We propose new visibility models that trade

off responsiveness vs. temporary congruence of smart home state. We also propose a new

way to reason about failures by serializing failure events and restart events into the serially-

equivalent order of routines. Our scheme introduces a new pre/post lease based locking

mechanism that enhance the concurrency without affecting the correctness. We also develop

SafeHome, a smart-home orchestrator ( 2K lines of Java code) that runs on raspberry-Pi

and integrate popular TP-Link devices [31].

1.1.3 Key Techniques

Figure 1.2: SafeHome [20] goals.

SafeHome [20] proposes a set of visibility models that provide different level of Isolation,

guarantees Atomicity and ensures safe routine execution (Fig. 1.2). SafeHome is: i) the first

implementation of relaxed visibility models for smart homes running concurrent routines,

and ii) the first system that reasons about failures alongside concurrent routines. This work

is currently under submission.
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In our framework called SafeHome (Fig. 1.2), we introduce a new Lineage Table data-

structure that applies an unique safe lock-leasing technique among the conflicting devices

and thus maximizes concurrency while also maintains the atomicity and isolates the final

outcomes (as per different visibility model requirements).

1.2 MICROSOFT SERVICE FABRIC– IN SEARCH OF AN INTERNAL
ORCHESTRATOR

In this work, we reveal Microsoft Service Fabric’s (SF) [1] internal orchestration strategy

that ensures SF’s inherent consistency guarantees (e.g., failure detection, leader election, pri-

mary replica selection etc.). Existing microservice frameworks (e.g., Akka [32], Bluemix [33],

Nirmata [34] etc.) rely on external orchestrators. SF is the only microservice framework

that supports state-full microservice. This uniqueness stems from its internal orchestra-

tor that maintains an inherently consistent framework. It is easier to build and maintain

consistent and reliable distributed data-structures (such as a distributed dictionary, queue,

etc. [19]) on top of such consistent framework. Such data-structures are key to building

stateful microservices.

A consistent failure detector is the core of SF’s internal orchestration technique. SF

runs across geo-distributed datacenters and consists of thousands of nodes. Therefore, the

orchestrator used in SF requires a failure detector that is both consistent and scalable to

geo-distributed datacenters. Such a failure detector is crucial to achieving Service Fabric’s

claimed guarantees efficiently.

1.2.1 Problem Statement and Challenges

This thesis reveals and analyzes Service Fabric, and in particular its consistent

and scalable failure detector, which ensures a time-bounded consistency.

Service Fabric uses the consistent failure detector to develop a consistent membership

protocol. This protocol ensures a timing guarantee: if node P fails, all of its existing group

members consistently mark P as failed within a given time bound. Therefore, after waiting

for that time-span, the resource and responsibilities hosted on P can be safely moved to

other healthy nodes.

Building a consistent while efficient and scalable failure detector is a non-trivial task.

Current failure detectors mostly sit in two extreme endpoints of the consistency-scalability

spectrum. One end consists of the Gossip-style failure detection services [35] such as

SWIM/Serf [36, 37], those are highly scalable, but weakly consistent and thus not the best
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choice for applications that require a higher form of guaranties (such as transaction). The

other end consists of protocols that provide stronger consistent membership like virtual

synchrony [38, 39]. However, these protocols do not scale to datacenters.

Another popular approach of maintaining a consistent view (e.g. consistent failure de-

tection, leader election, primary replica selection, etc.) is to offload such jobs to external

services, e.g. Zookeeper [40]. However, as explained earlier, such external services act as an

additional layer, which increases the latency and might create a central point of failure.

To ensure efficiency, the internal orchestrator used in Service Fabric needs a consistent

failure detector that sits around the middle of the consistency-scalability spectrum: provides

strong consistency while also scalable to datacenters.

1.2.2 Contributions

In this thesis we reveal the internal orchestrator used in Microsoft Service Fabric (SF) [1].

SF relies on ground-up consistency, a new approach to ensure consistency that stems from

the novel and unique consistent failure detector. This failure detector is both consistent and

scalable to geo-distributed datacenter. SF has been in service for over 15 years and supports

major Microsoft systems such as Azure hosts SQL DB [3], Cosmos DB [4], Skype [5] and

many others. We are the first to explore and measure SF’s unique internal orchestrator

based approach and reveal it to the outside world. This work has been published in EuroSys

2018.

1.2.3 Key Techniques

One prevalent philosophy for building consistent and fault-tolerant applications is to de-

velop them atop inconsistent components (Callas [41], Yesquel [42], Tapir [43] etc.). Popular

systems such as Akka [32], HBase [44], Kafka [45], Kubernetes [46] etc. often outsource their

consistency needs to external modules (e.g. Chubby [47], Zookeeper [40] etc., Fig. 1.3a).

However, Service Fabric follows a different technique where SF’s lower most layer forms

an internal orchestrator that relies on a unique consistent failure detector. This failure

detector relies on a novel Arbitrator Group based approach. In SF, the inherent consistency

stems from this internal orchestrator, and is propagated to the upper layers (Fig. 1.3b).

Therefore, instead of outsourcing, SF’s well designed and consistent layers internally solve

hard distributed computing problems related to failure detection, consistency, leader election,

failover, manageability etc.
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(a) (b)

Figure 1.3: Different approaches of building consistent applications: a) Outsource consis-
tency module to external orchestrators (e.g. Zookeeper [40]) etc. b) Build an internal
orchestrator at the lower most layer and develop application on top of it (e.g. Service Fab-
ric [1]).

1.3 DECENTRALIZING SERVICE FABRIC’S CENTRALIZED ARBITRATOR
BASED FAILURE DETECTOR

This section briefly describes our work on decentralizing SF’s centralize arbitration scheme.

(a) (b)

Figure 1.4: (a) Service Fabric’s fixed centralized arbitrator group based Consistent Failure
Detector. The arbitrator nodes A1 to A(2a+1) forms the arbitrator group. (b) Introducing
decentralized dynamic arbitration. each node Nn also acts as an arbitrator node An.

Service Fabric’s unique consistent failure detector (the core of the internal orchestrator)

relies on a fixed set of special nodes (called the arbitrator group, Fig. 1.4a). This centralized

arbitrator group can become the single point of failure. Besides, this unique group might

become a bottle-neck as it has to monitor and orchestrate the entire system. To avoid the
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dependency upon SF’s centralized arbitrator group, the responsibilities assigned to it need

to be distributed across the ring members (Fig. 1.4b).

1.3.1 Problem Statement and Challenges

In this thesis, we decentralize Service Fabric’s centralized arbitrator scheme

while ensuring similar consistency properties. We also propose a coherent node

join protocol for the new scheme. We present theoretical analyses for both

central and distributed arbitrator schemes.

Efficiently decentralizing such arbitrator group while still ensuring the same consistency

guarantee is a challenge. Such distribution requires each pair of neighbouring nodes (P, Q)

to form their own arbitrator sets (APQ and AQP , respectively). Without loss of generality,

if node P suspects node Q as failed, it consults with the arbitrator group APQ. To en-

sure correctness, this two distributed arbitrator groups APQ and AQP must be consistent.

Maintaining consistency across such symmetric arbitrator group is a challenge. Also, in this

approach, the arbitrator group consists of neighboring nodes, which requires a new node

join/leave protocol that maintains the arbitrator consistency.

1.3.2 Contributions

We devise a novel approach (called Fully Decentralized Arbitrator Based Failure Detec-

tor, Fig. 1.4b) that does not rely on the fixed arbitrator group but still provides the same

consistency-guaranties. In the same work, we also provide the formal proof of correctness

for both Service Fabric’s Fixed Arbitrator based failure detector and our proposed Dynamic

Arbitrator based failure detector. We have also designed an efficient node join protocol that

works coherently with our Dynamic Arbitrator based failure detector scheme.

Besides showing the empirical analysis, we also provide formal proof of correctness and

time-bound of both the Service Fabric’s centralized fixed arbitrator based failure detector

and our proposed decentralized dynamic arbitrator based failure detector. This work has

been published in InfoCom 2020.

1.3.3 Key Techniques

• Introducing Dynamic Distributed Arbitrator Group: In this approach, nodes are ar-

ranged in a virtual ring. Instead of relying on a centralized arbitrator group, each

neighbouring pair of nodes form their own local arbitrator group. Such pair of nodes
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need to maintain a consistent view of the arbitrator groups. Our proposed novel arbitra-

tor hand-off strategy dynamically updates the arbitrator group while also guarantees

the consistent view.

• An efficient node join protocol: We also propose an efficient node-join mechanism that

complies with the dynamic arbitrator group.

1.4 THESIS ORGANIZATION

The rest of the thesis is organized as follows. Chap. 2 introduces safety schemes and

visibility models for smart homes. Chap. 3 describes the design details of Service Fabric,

where we mainly focus on its centralized arbitration based unique consistent failure detec-

tion scheme. Chap. 4 sketches the totally distributed arbitrator based failure detector, an

improvement over the Service Fabric’s centralized arbitration based failure detector. Chap. 5

shares the lesson learned throughout the three projects. Finally, we conclude by presenting

our future directions in Chap. 6.
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CHAPTER 2: HOME, SAFEHOME: SMART HOME RELIABILITY WITH
VISIBILITY AND ATOMICITY

Smart environments (homes, factories, hospitals, buildings) contain an increasing num-

ber of IoT devices, making them complex to manage. Today, in smart homes where users

or triggers initiate routines (i.e., a sequence of commands), concurrent routines and device

failures can cause incongruent outcomes. We describe SafeHome, a system that provides no-

tions of atomicity and serial equivalence for smart homes. Due to the human-facing nature

of smart homes, SafeHome offers a spectrum of visibility models which trade off between

responsiveness vs. incongruence of the smart home state. We implemented SafeHome and

performed workload-driven experiments. We find that a weak visibility model, called even-

tual visibility, is almost as fast as today’s status quo (up to 23% slower) and yet guarantees

serially-equivalent end states.

This chapter is organized as follows: Sec. 2.1 introduces and motivates the problem,

Sec. 2.2 describes different visibility models, Sec. 2.3 introduces failure handling across dif-

ferent visibility models, Sec. 2.4 unwraps the Eventual Visibility model, Sec. 2.5 explores

different scheduling policies for the Eventual Visibility model, Sec. 2.6 describes the im-

plementation of SafeHome, Sec. 2.7 evaluates the SafeHome framework with a number of

experimental results, Sec. 2.8 analyze the state-of-art related works and finally Sec. 2.9

concludes the project.

2.1 INTRODUCTION

The disruptive smart home market is projected to grow from $27B to $150B by 2024 [6, 7].

There is a wide diversity of devices—roughly 1,500 IoT vendors today [8], with the average

home expected to contain over 50 smart devices by 2023 [9]. Smart devices cover all aspects

of the home, from safety (fire alarms, sensors, cameras), to doors+windows (e.g., automated

shades), home+kitchen gadgets, HVAC+thermostats, lighting, garden sprinkler systems,

home security, and others. As the devices in the home increase in number and complexity,

the chances of interactions leading to undesirable outcomes become greater. This diversity

and scale is even vaster in other smart environments such as smart buildings, smart factories

(e.g., Industry 4.0 [48]), and smart hospitals [49].

Past computing eras—1970s’ mainframes, 1990s’ clusters, and 2000s’ clouds—were suc-

cessful because of good management systems [50]. What is desperately needed are systems

that allow a group of users to manage their smart home as a single entity rather than a

collection of individual devices [51]. Today, most users (whether in a smart home or a smart
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factory) control a device using commands, e.g., turn ON a light. Further, major smart home

controllers have started to provide users the ability to create routines. A routine is a se-

quence of commands [22, 23, 24, 25]. Routines are useful for both: a) convenience, e.g., turn

ON a group of Living Room lights, then switch on the entertainment system, and b) correct

operation, e.g., CLOSE window, then turn ON AC.

Motivating Examples: Today’s best-effort way of executing routines can lead to incon-

gruent states in the smart home, and has been documented as the cause of many smart

home incidents [26, 27, 28, 29, 24] 1.

Figure 2.1: Concurrency causes Incongruent End-state in a real smart home deploy-
ment. Two routines R1 (turn ON all lights) and R2 (turn OFF all lights) executed on a varying
number of devices (x axis), with routine R2 starting a little after R1 (different lines). Y axis shows
fraction of end states that are not serialized (i.e., all OFF, or all ON). Experiments with TP-Link
smart devices [52].

First, consider a routine involving the AC and a smart window [53, 54]: Rcooling = {CLOSE
window; switch ON AC}. During the execution of this routine, if either the window or the AC

fails, the end-state of the smart home will not be what the user desired—either leaving the

window open and AC on (wasting energy), or the window closed and AC off (overheating the

home). Another example is a shipping warehouse wherein a robot’s routine needs to retrieve

an item, package it, and attach an address label—all these actions are essential to ship the

item correctly. In all these cases, lack of atomicity in the routine’s execution violates the

expected outcome.

Our next example deals with concurrent routines. Consider a timed routine Rtrash that ex-

ecutes every Monday night at 11 pm and takes several minutes to run: Rtrash={OPEN garage;

MOVE trash can out to driveway (a robotic trash can like SmartCan [55]); CLOSE garage}.
One day the user goes to bed around 11 pm, when she initiates a routine: Rgoodnight={switch

1While security issues also abound, we believe such correctness violations are very common and under-
reported as a pain point.
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OFF all outside lights; LOCK outside doors; CLOSE garage}. Today’s state of the art has no

isolation between the two routines, which could result in Rgoodnight shutting the garage (its

last command) while Rtrash is either executing its first command (open garage), or its sec-

ond command (moving trash can outside). In both cases, Rtrash’s execution is incorrect, and

equipment may be damaged (garage or trash can). Concurrency even among short routines

could result in such incongruences—Figure 2.1 shows such an experiment. The plot shows

that two routines simultaneously touching only a few devices cause incongruent outcomes

if they start close to each other. In all these cases, isolation semantics among concurrent

routines were not being specified cleanly or enforced.

Challenges: This discussion points to the need for a smart home to autonomically provide

two critical properties: i) Atomicity and ii) Isolation/Serializability. Atomicity ensures that

all the commands in a routine have an effect on the environment, or none of its commands

do (e.g., if the window is not closed, the AC should not be turned on). Serializability says

that the effect of a concurrent set of routines is equivalent to executing them one by one,

in some sequential order, e.g., when Rtrash and Rgoodnight complete successfully, doors are

locked, garage is closed, lights are off, trash can is in the driveway, and no equipment is

damaged.

Specifying and satisfying these two properties in smart homes needs us to tackle certain

unique challenges. The first challenge comes from the human-facing nature of the environ-

ment. Every action of a routine may be immediately visible to one or more human users—we

use the word “visible” to capture any action that could be sensed by any human user any-

where in the smart home. This requires us to clearly specify and reason about visibility

models for concurrent routines. Visibility models provide notions of serial equivalence (i.e.,

serializability) of routines in a smart home.

Second, a smart home needs to optimize user-facing metrics—latency to start the routine,

and also latency to execute it. This motivates us to explore a new spectrum of visibility

models which trade off the amount of incongruence the user sees during execution vs. the

user-perceived latency, all while guaranteeing serial-equivalence of the overall execution. Our

visibility models are a counterpart to the rich legacy of weak consistency models that have

been explored in mobile systems like Coda [56], databases like Bayou [57] and NoSQL [58],

and shared memory multiprocessors [59].

Third, in a smart home, device crashes and restarts are the norms—any device can fail at

any time, and possibly recover later. These failure/recovery events may occur during a com-

mand, before a command starts, or after a command has completed. Thus, reasoning about

device failure/restart events while ensuring atomicity+visibility models is a new challenge.
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Today’s failure handling is either silent or places the burden of resolution on the user.

Fourth, long-running (or just long) routines are common in smart homes. A long routine

is one that contains at least one long command. A long command exclusively needs to con-

trol a device for an extended period, without interruption. Examples include a command to

preheat an oven to 400◦F , or to run north garden sprinklers for 15 minutes. Long commands

cannot be treated merely as two short commands, as this would still allow the device to be

interrupted by a concurrent routine in the interim, violating isolation. Long commands

need to be treated as first-class commands.

Prior Work: These challenges have been addressed only piecemeal in literature. Some

systems [60, 61] use priority-based approaches to address concurrent device access. Oth-

ers [62] propose mechanisms to handle failures. A few systems [63, 64, 65] formally verify

procedures. Transactuation [24] and APEX [66] discuss atomicity and isolation, but their

concrete techniques deal with routine dependencies and do not consider users’ experience—

nevertheless, their mechanisms can be used orthogonally with SafeHome. None of the above

address atomicity, failures, and visibility together.

The reader may also notice parallels between our work and the ACID properties (Atomic-

ity, Consistency, Isolation, and Durability) provided by transactional databases [67]. While

other systems like TinyDB [68] have drawn parallels between networks of sensors and

databases (DBs), the techniques for providing ACID in databases do not translate easily

to smart homes. The primary reasons are: i) our need to optimize latency (DBs optimize

throughput); ii) device failure (DB objects are replicated, but devices are not, by default);

and iii) the presence of long-running routines.

Contributions: We present SafeHome, a management system that provides atomicity and

isolation among concurrent routines in a smart environment. For concreteness, we focus the

design of SafeHome on smart homes (however, our evaluations look at broader scenarios).

SafeHome is intended to run at an edge device in the smart home, e.g., a home hub or an

enhanced access point. SafeHome does not require additional logic on devices; instead, it

works directly with the APIs which devices naturally provide (commands are API calls).

SafeHome can thus work in a smart home containing devices from multiple vendors.

The primary contributions of this paper are:

• A new spectrum of Visibility Models trading off responsiveness vs. temporary congru-

ence of smart home state.

• Design and implementation of the SafeHome system.
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• A new way to reason about failures by serializing failure events and restart events into

the serially-equivalent order of routines.

• New lock leasing techniques to increase concurrency among routines, while guarantee-

ing isolation.

• Workload-driven experiments to evaluate new visibility models and characterize trade-

offs.

SafeHome is best seen as the first step towards a grand challenge. A true OS for smart

homes requires tackling myriad problems well beyond what SafeHome currently does. These

include support for: users to inject signals/interrupts/exceptions, safety property specifica-

tion and satisfaction, leveraging programming language and verification techniques, and in

general full ACID-like properties [30]. SafeHome is an important building block over which

(we believe) these other important problems can then be addressed.

Assumptions:

SafeHome relies on the following assumptions:

• In SafeHome, commands are the indivisible executable entities. Commands are of two

types: 1) short command– changes the state of a smart-device (e.g. TV: Turn ON) or

2) long command– changes the state of a smart-device and holds that state for a pre-

defined amount of time (e.g. Water-Sprinkler: Turn ON for TL = 15 minutes).

A routine consists of long command is referred to as a long-running routine.

• The long-running command duration TL is specified while designing the routine. For

the same smart-device, different routines might have different values of TL (e.g., a

good morning routine might define “Speaker: play classical music for TL = 15

minutes” while a good night routine might define “Speaker: play rain sound for

TL = 2 hours”

• Command types and durations are known a priori.

• Routine consists of a set of commands which are executed sequentially.

• Routines are fixed when specified, and cannot be changed once submitted.

• Multiple routines cannot share devices (e.g. in R1 a security camera is video footage

while in R2 another process is reading that footage in real time).

15



• Routines can be triggered by either user or automated event (light-sensor, motion

sensor, etc.).

• Neither current smart homes, nor SafeHome supports interrupt, interception or pauses

of routines. However, it has been considered as a part of the future work.

• Failures (and recoveries) of a device can occur at any time.

• The current version of SafeHome considers the fail-recovery model. Besides, this ver-

sion does not handle byzantine failure.

2.2 VISIBILITY AND ATOMICITY

We first define SafeHome’s two key properties–Visibility and Atomicity–and then expand

on each.

• SafeHome-Visibility/Serializability: For simplicity, in this initial part of the dis-

cussion we ignore failures, i.e., we assume devices are always up and responsive.

SafeHome-Visibility/Serializability means the effect of the concurrent execution of a

set of routines, is identical to an equivalent world where the same routines all executed

serially, in some order. The interpretation of effect determines different flavors of vis-

ibility, e.g., identicality at every point of time, or in the end-state (after all routines

complete), or at critical points in the execution. These choices determine the spectrum

of visibility/serializability models that we will discuss soon.

• SafeHome-Atomicity: After a routine has started, either all its commands have the

desired effect on the smart home (i.e., routine completes), or the system aborts the

routine, resulting in a rollback of its commands, and gives the user feedback.

2.2.1 New Visibility Models in SafeHome

SafeHome presents to the user family a choice in how the effects of concurrent routines are

visible. We use the term “visibility” to capture all senses via which a human user, anywhere

in the environment, may experience immediate activity of a device, i.e., sight sound, smell,

touch, and taste. Visibility models that are more strict run routines sequentially, and thus

may suffer from longer end-to-end latencies between initiating a routine and its completion

(henceforth we refer to this simply as latency). Models with weaker visibility offer shorter
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latencies, but need careful design to ensure the end state of the smart home is congruent

(correct).

Today’s default approach is to execute routines’ commands as they arrive, as quickly as

possible, without paying attention to serialization or visibility. We call this status quo model

as the Weak Visibility (WV) model, and its incongruent end states worsen quickly with scale

and concurrency (see Fig. 2.1). We introduce three new visibility models.

1. Global Strict Visibility (GSV): In this strong visibility model, the smart home exe-

cutes at most one routine at any time. In our SafeHome-Visibility definition (Sec. 2.2), the

effect for GSV is “at every point of time”, i.e., every individual action on every device. Con-

sider a 2-family home where one user starts a routine Rdishwash ={dishwasher:ON; (run

dishwasher for 40 mins); dishwasher:OFF;}, and another user simultaneously starts

a second routine Rdryer= {dryer:ON; (run dryer for 20 mins); dryer:OFF;} . If the

home has low amperage, switching on both dishwasher and dryer simultaneously may cause

an outage (even though these 2 routines touch disjoint devices). If the home chooses GSV,

then the execution of Rdishwash and Rdryer are serialized, allowing at most one to execute at

any point of time. Because routines need to wait until the smart home is “free”, GSV results

in very long latencies to start routines. A long-running routine also starves other routines.

2. Partitioned Strict Visibility (PSV): PSV is a weakened version of GSV that allows

concurrent execution of non-conflicting routines, but limits conflicting routines to execute

serially. For instance, for our earlier (GSV) example of Rdishwash and Rdryer started simulta-

neously, if the home has no amperage restrictions, the users should choose PSV–this allows

the two routines to run concurrently, and the end state of the home is (serially-)equivalent

to the end state if the routines were instead to have been run sequentially (i.e., dishes are

washed, clothes are dried). However if the two routines were to touch conflicting devices,

PSV would execute them serially.

3. Eventual Visibility (EV): This is our most relaxed visibility model which specifies

that only when all the routines have finished (completed/aborted), the end state of the smart

home’s devices is identical to that obtained if all routines were to have been serially executed

in some sequential (total) order. In the definition of SafeHome-Visibility, the effect for EV

is the end-state of the smart home after all the routines are finished.

EV is intended for the relatively-common scenarios where the desired final outcome (of

routines) is more important to the users than the ephemerally-visible intermediate states.

Unlike GSV, the EV model allows conflicting routines (touching conflicting devices) to exe-

cute concurrently–and thus reduces the latencies of both starting and running routines.
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Consider the two users in a home simultaneously initiating the routine Rbreakfast = R={
coffee:ON; /*make coffee for 4 mins*/; coffee:OFF; (wait for user to take coffee);

pancake:ON; /*make pancakes for 5 mins*/; pancake:OFF; (wait for user to take

pancake) } . Both GSV and PSV would serially execute these routines. EV would be able

to pipeline them, overlapping the pancake command of one routine with the coffee command

of the other routine. EV only cares that at the end both users have their respective coffees

and pancakes.

Figure 2.2: Example routine execution in different visibility models: a) GSV b) PSV,
c) EV. RrCc represents the cth command of the rth routine. In EV, red boxes show a pair of
incongruent commands and the blue box shows the total number of temporary incongruencies.

Common Example: 3 Visibility Models: Fig. 2.2 shows an example with 5 concurrent

routines, executed for our three visibility models. This is the outcome of a real run of

SafeHome running on a Raspberry Pi, over 5 devices connected via TP-Link HS-105 smart-

plugs [69]. The routines are:

R1: makeCoffee(Espresso); makePancake(Vanilla);

R2: makeCoffee(Americano); makePancake(Strawberry);

R3: makePancake(Regular);

R4: startRoomba(Living room); startMopping(Living room);

R5: startMopping(Kitchen);

GSV takes the longest execution time of 8 time units as it serializes execution. PSV

reduces execution time to 5 time units by parallelizing unrelated commands, e.g., R1’s coffee

command and R4’s Roomba command at time t = 0. EV is the fastest, finishing all routines

by 3 time units. Average latencies (wait to start, wait to finish) are also fastest in EV,

then PSV, then GSV. EV does exhibit “temporary incongruence”—shown are the number

of devices whose intermediate state is not serially equivalent. EV guarantees a temporary

incongruence of zero when the last routine finishes.
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Table 2.1 contrasts the properties of the four visibility models. Table 2.2 summarizes

examples discussed so far.

GSV PSV EV WV
Concurrency At most one

routine
Non-conflicting routines con-
current

Any routines concur-
rent

Any routines concurrent

End State Serializable Serializable Serializable Arbitrary
Wait Time High High for conflicting routines,

low for non-conflicting routines
Low for all routines
(modulo conflicts)

Low for all routines

User
Visibility

Smart home
congruent at
all times

Smart home congruent at end,
and at start/complete points of
routines

Smart home congruent
at end

Smart may be incongru-
ent at any time and at
end (Fig. 2.1)

Table 2.1: Spectrum of Visibility Models in SafeHome.

2.2.2 SafeHome-Atomicity

To remind the reader:

SafeHome-Atomicity: After a routine has started, either all its commands have the desired

effect on the smart home (i.e., routine completes), or the system aborts the routine, resulting

in a rollback of its commands, and gives the user feedback.

Due to the physical effects of smart home routines, we discuss three subtleties that are

essential.

First, we allow the user to tag some commands as best-effort, i.e., optional—the routine

is allowed complete successfully even if any best-effort commands fail. Other commands,

tagged as must, are required for routine completion—if any must commands fail, the routine

must abort. This tagging acknowledges the fact that users don’t consider all commands

within a routine to be equally important. A “leave-home-for-work” may contain commands

that lock the door (must commands) and that turn off lights (best-effort commands)–even

if the lights are unresponsive, the doors must still lock. The user receives feedback about

failed such commands, and she may choose to initiate another routine to switch off lights.

Second, aborting a routine requires undoing past-executed commands. Many commands

can be rolled back cleanly, e.g., command turn Light-3 ON can be undone by SafeHome

issuing a command setting Light-3 to OFF. A small fraction of commands are impossible to

physically undo, e.g., run north sprinklers for 15 mins, or blare a test alarm. For

such commands, we undo by restoring the device to its state before the aborted routine (e.g.,

set the sprinkler/alarm state to OFF).

Finally, we note that when a routine aborts, SafeHome provides feedback to the user

(including logs), and the user is free to either re-initiate the routine or ignore it.
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2.3 FAILURE HANDLING AND VISIBILITY MODELS

Smart home devices could fail or become unresponsive, and then later restart. SafeHome

needs to reason cleanly about failures or restarts that occur during the execution of concur-

rent routines 2. We only consider fail-stop and fail-recovery models of failures of devices in

the smart home 3.

Because device failure events and restart events are visible to human users, our visibility

models need to be amended. Consider a device D which routine R touches via one or more

commands. D might fail during a command from R, or after its last command from R, or

before its first command from R, or in between two commands from R. A naive approach

may be to abort routine R in all these cases. However, for some relaxed visibility models

like Eventual Visibility, if the failure event occurred anytime after completing the device’s

last command from R, then the event could be serialized to occur after the routine R in

the serially-equivalent order (likewise for a failure/restart before the first command to that

device from R, which can be serialized to occur before R).

Thus a key realization in SafeHome is that we need to serialize failure events and restart

events alongside routines themselves. We can now restate the SafeHome-Atomicity property

from Sec. 2.2, to account for failures and restarts:

• SafeHome-Visibility/Serializability (with Failures and Restarts): The effect

of the concurrent execution of a set of routines, occurring along with concurrent device

failure events and device restart events, is identical to an equivalent world where the

same routines, device failure events, and device restart events, all occur sequentially,

in some order 4.

First, we define the failure/restart event to be the event when the edge device (running

SafeHome) detects the failure/restart (this may be different from the actual time of fail-

ure/restart). Second, unlike routines–which may or may not appear in the final serialized

order (if completed or aborted respectively)–failure events and restart events must appear

in the final serialized order. Hence we reason explicitly about failure serialization for each

of our visibility models from Sec. 2.2.1. Fig. 2.3 shows examples.

2Unlike transactional databases, where objects are always available due to replication, smart home devices
have no replicas.

3Byzantine failures are beyond our scope.
4This idea has analogues to distributed systems abstractions such as view/virtual synchrony, wherein

failures and multicasts are totally ordered [38, 70, 71]. Of course those are not applicable to the smart home.
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Figure 2.3: Failure Serialization: 6 cases, and their handling in Visibility Models. X
- execute routine, X - abort routine. At F[A] /Re[A] the edge device detects the failure/restart
(resp.) of device A.

1. Failure Serialization in Weak Visibility: Today’s Weak Visibility has no failure

serialization. Routines affected by failures/restarts complete and cause incongruent end-

states.

2. Failure Serialization in Global Strict Visibility: Because GSV intends to present

the picture of a single serialized home to the user, if any device failure event or restart

event were to occur while a routine is executing (between its start and finish), the routine

must be aborted. There are two sub-flavors herein: (A) Basic GSV or Loose GSV (GSV):

Routine aborts only if it contains at least one command that touches failed/restarted device;

(B) Strong GSV (S-GSV): Routine aborts even if it does not have a command that touches

failed/restarted device. A routine R on living room shades can complete, if master bathroom

shades fail, in GSV but not S-GSV. In S-GSV, the final serialization order contains the

failure/restart event but not the aborted routine R. In GSV, the final serialization order

contains both R (which completes) and the failure/restart event, in arbitrary order.

3. Failure Serialization in Eventual Visibility: For a given set of routines (and con-

current failure events and restart events), the eventual (final) state of the actual execution

is equivalent to the end state of a world wherein the final successful routines, failure device

events, and failure restart events, all occurred in some serial order.

Consider routine R, and the failure event (and potential restart event) of one device D.

Four cases arise:

• If D is not touched by R, then D’s failure event and/or restart event can be arbitrarily

ordered w.r.t. R.
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• If D’s failure and restart events both occur before R first touches the device, then the

failure and restart events are serialized before R.

• If D’s failure event occurs after the last touch of D by R, then D’s failure event (and

eventual restart event) are serialized after R.

• In all other cases, routine R aborts due to D’s failure. R does not appear in the final

serialized order.

These are applicable to each concurrent routine accessing D.

4. Failure Serialization in Partitioned Strict Visibility: This is a modified version of

EV where we change condition 3 (from 1-4 in EV above) to the following:

3*. If D’s failure event occurs after the last touch of D by R, and has recovered when R

reaches its finish point, then D’s failure event and restart event are serialized right after R.

Examples: Table 2.2 summarizes several scenarios, and how SafeHome’s features help and

behave in each scenario.

2.4 EVENTUAL VISIBILITY: SAFEHOME DESIGN

In order to maintain correctness for Eventual Visibility (i.e., serial-equivalence), SafeHome

requires routines to lock devices before accessing them. Because long routines can hold

locks and block short routines, we introduce lock leasing across routines (Sec. 2.4.1). This

information is stored in the Locking Data-structure (Sec. 2.4.2). The lineage table ensures

invariants required to guarantee Eventual Visibility (Sec. 2.4.3).

2.4.1 Locks and Leasing

SafeHome prefers Pessimistic Concurrency Control (PCC): SafeHome adopts pes-

simistic concurrency control among routines, via (virtual) locking of devices. Abort and

undo of routines are disruptive to the human experience, causing (at routine commit point)

rollbacks of device states across the smart home. Our goal is to minimize abort/undo only to

situations with device failures, and avoid aborts because routines touch conflicting devices.

Hence we eschew optimistic concurrency control approaches and use locking 5.

SafeHome uses virtual locking wherein each device has a virtual lock (maintained at the

edge device running SafeHome), which must be acquired by a routine before it can execute

5For the limited scenarios where routines are known to be conflict-free, optimistic approaches may be
worth exploring in future work.
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Example Routines Scenario and Possible Behavior SafeHome
Feature

“cooling”={window:CLOSE; AC:ON;} If executed partially, can leave window open and AC on
(wasting energy) or the window closed and AC off (over-
heating home).

Atomicity

“make coffee”
{coffee:ON; /*make coffee for 4

mins*/ ; coffee:OFF;}

Coffee maker should not be interrupted by another routine.
E.g, user-1 invokes make coffee, and in the middle, user-2
independently invokes make coffee.

Long Running
routines, Mutually
Exclusive access
to devices routines

R1={dishwasher:ON; (run

dishwasher for 60 mins);

dishwasher:OFF;}
R2={dryer:ON; (run dryer for 80

mins); dryer:OFF;}

If home has low amperage, simultaneously running two
power-hungry devices may cause outage (GSV).

Global Strict Visi-
bility (GSV)

R1= {coffee:ON; /*make coffee

for 4 mins*/; coffee:OFF;}
R2={lights:ON, fan:ON}

Two routines touching disjoint devices should not block
each other (PSV).

Partitioned Strict
Visibility (PSV),
closest to [24]

“breakfast”= R={coffee:ON; /*make

coffee for 4 mins*/; coffee:OFF,

pancake:ON; /*make pancakes for

5 mins*/; pancake:OFF;}

Two users can invoke this same routine simultaneously. The
two routines can be pipelined thus allowing some concur-
rency without affecting correctness (EV). (Both GSV and
PSV would have serialized them.)

Eventual Visibility
(EV)

“leave home”
={lights:OFF (Best-Effort);

door:LOCK;}

Requiring all commands to finish too stringent, so only sec-
ond command is Must (required). If light unresponsive,
door must lock, otherwise routine aborts.

Must and Best-
Effort commands

‘‘manufacturing pipeline’’ with

k stages and {R1, R2, ..., Rk}
routines

If any stage fails, entire pipeline must stop immediately. Strong GSV seri-
alization (S-GSV)

F
ailu

re
S

erialization

“cooling”={window:CLOSE; AC:ON;} If anytime during the routine (from start to finish), the AC
fails or window fails, the routine is aborted.

Loose GSV serial-
ization (GSV)

“cooling”={window:CLOSE; AC:ON;} If window fails after its command and remains failed at
finish point of routine, routine is aborted.

PSV serialization

“cooling”={window:CLOSE; AC:ON;} If window fails after it is closed (but before AC is accessed),
routine completes successfully–window failure can be seri-
alized after routine.

EV serialization

Table 2.2: Example scenarios in a smart home, and SafeHome’s corresponding
features.

any command on that device. A routine’s lock acquisition and release do not require device

access, and are not blocked by device failure/restart.

In order to prevent a routine from aborting midway because it is unable to acquire a lock,

SafeHome uses early lock acquisition—a routine acquires, at its start point, the locks of all

the devices it wishes to touch. If any of these acquisitions fails, the routine releases all its

locks immediately and retries lock acquisition. Otherwise, acquired locks are released (by

default) only when the routine finishes.

Leasing of Locks: To minimize chances of a routine being unable to start because of

locks held by other routines, SafeHome allows routines to lease locks to each other. Two

cases arise: 1) routine R1 holds the lock of device D for an extended period before R1’s first

access of D, and 2) R1 holds the lock of device D for an extended period after R1’s last

access of D. Both cases prevent a concurrent routine R2, which also wishes to access D,
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from starting.

SafeHome allows a routine Rsrc(= R1) holding a lock (on device D) to lease the lock to

another routine Rdst(= R2). When Rdst is done with its last command on D, the lock is

returned back to Rsrc, which can then normally use it and release it. We support two types

of lock leasing:

• Pre-Lease: Rsrc has started but has not yet accessed D. A lease at this point to

Rdst is called a pre-lease, and places Rdst ahead of Rsrc in the serialization order. After

Rdst’s last access of D, it returns the lock to Rsrc. If Rsrc reaches its first access of D

before the lock is returned to it, Rsrc waits. After the lease ends, Rsrc can use the lock

normally.

• Post-Lease: Rsrc is done accessing device D, but the routine itself has not finished

yet. A lease at this point to Rdst is called a post-lease, and places Rdst after Rsrc in

the serialization order. If Rsrc finishes before Rdst, the lock ownership is permanently

transferred to Rdst. Otherwise, Rdst returns the lock when it finishes.

A prospective pre/post-lease is disallowed if a previous action (e.g., another lease) has

already determined a serialization order between Rsrc and Rdst that would be contradicted

by this prospective lease. In such cases Rdst needs to wait until Rsrc’s normal lock release.

Further, a post-lease is not allowed if at least one device D is written by Rsrc and then

read by Rdst. This prevents SafeHome from suffering dirty reads from aborted routines. We

prevent scenarios like this–Rsrc switches on a light, and Rdst has a conditional clause based

on that light’s status, but Rsrc subsequently aborts. Cascading aborts are handled in [24],

whose techniques can be used orthogonally with ours.

To prevent starvation, i.e., from Rsrc waiting indefinitely for the returned lock, leased

locks are revoked after a timeout. The timeout is calculated based on the estimated time

between Rdst’s first and last actions on D, multiplied by a leniency factor (we use 1.1×).

Lock revocation before Rdst’s last access of D causes Rdst to abort.

2.4.2 Locking Data-structure

SafeHome maintains, at the edge device (e.g., Home Hub or smart access point), a virtual

locking table data-structure (Fig. 2.4). It contains:

• Wait Queue: Queue of routines initiated but not started. When a routine is added, it

is assigned an incremented routine ID.
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Figure 2.4: SafeHome’s Architecture for Eventual Visibility.

• Serialization Order: Maintains the current serialization order of routines, failure events,

and restart events. For completed routines (shaded green), the order is finalized. All

other orders are tentative and may change, e.g., based on lock leases. Failure and

restart events may be moved flexibly among unfinished routines.

• Lineage Table: Detailed in Section 2.4.3, this maintains, for each device, a lineage: the

planned transition order of that device’s lock.

• Scheduler: Decides when routines from Wait Queue are started, acquires locks, and

maintains serialization order.

• Committed States: For each device, keeps its last committed state, i.e., the effect of

the last successfully routine. This may be different from device’s actual state, and is

needed to ensure serialization and rollbacks under aborts.

2.4.3 Lineage Table

The lineage of a device represents a temporal plan of when the device will be acquired by

concerned routines. The lineage of a device starts with its latest committed state, followed

by a sequence of lock-access entries (Fig. 2.5)–these are “stretched” horizontally. A width of

a lock-access entry represents how long that routine will acquire that lock. Each lock-access

entry for device D consists of: i. A routine ID, ii. Lock status (Released, Acquired,

Scheduled) iii. Desired device state by the command (e.g., ON/OFF) and iv. Times: a start

time (Tstart(Ri)), and duration (τRi
(D)) of the lock-access.

In the example of Fig. 2.5, a Scheduled [S] status indicates that the routine is scheduled

to access the lock. An Acquired [A] status shows it is holding and using the lock. A
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Figure 2.5: Sample Lineage Table, with 6 routines. Some fields are omitted for
simplicity.

Released [R] status means the routine has released the lock.

The duration field, τRi
(D), is set either based on known time to run a long command

(e.g., run sprinkler for 15 mins), or an estimate of the command execution time. Our

implementation uses a fixed τRi
(D) = τtimeout for all short commands (100ms based on our

experience). τRi
(D) is also used to determine the revocation timeout for leased locks, along

with a multiplicative leniency factor (1.1 in our implementation).

To maintain serializability, four key invariants are assured:

Invariant 2.1 (Future Mutual Exclusion: Lock-accesses in a device’s lineage list

do not overlap in time). No device is planned to be locked by multiple routines. Gaps in

its lineage list indicate times the device is free.

Invariant 2.2 (Present Mutual Exclusion: At most one Acquired lock-access exists

in each lineage list). No device is locked currently by multiple routines.

Invariant 2.3 (Lock-access [R]−→[A]−→[S]). In each lineage list, all Released lock-

access entries occur to the left of (i.e., before) any Acquired entries, which in turn appear

to the left of any Scheduled entries.

Invariant 2.4 (Consistent “serialize-before” ordering among lineages). Given two

routines Ri, Rj, if there is at least one device D such that: lock-accessD(Ri) occurs to the

left of lock-accessD(Rj) in D’s lineage list, then for every other device D′ touched by both

Ri, Rj, it is true that: lock-accessD′(Ri) occurs to the left of lock-accessD′(Rj). Hence Ri is

serialized-before Rj.

Transition of Lock-accesses: The status of lock-accesses changes upon certain events.

First, when a routine’s last access to a device ends, the Acquired lock-access ends, and

transitions to Released. The next Scheduled lock-access turns to Acquired: i) either
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immediately (if no gap exists, e.g., R4 after R5 releases C in Fig. 2.5), or ii) after the gap

has passed, e.g., R4 after R1 releases D in Fig. 2.5.

Second, when scheduling a new routine R (from the wait queue), a Scheduled lock-access

entry is added to all device lineages that R needs (e.g., R6 in Fig. 2.5 adds lock-accesses for

B and C). Third, when a routine finishes (completes/aborts), all its lock-access entries are

removed, releasing said locks. If the routine completed successfully, committed states are

updated. For an abort, device states are rolled back.

Figure 2.6: Lineage table with Lock Leasing. a) Lineage before leasing with only Rsrc, b)
Pre-lease to Rdst that only accesses device B, and c) Post-lease to Rdst that only accesses device A.

Leasing of Locks: Consider a pre-lease from Rsrc to Rdst (Fig. 2.6(b)). First, a new

Acquired lock-access for Rdst is placed before (to the left of) the lock-access of Rsrc in the

lineage table. Second, the lock-access of Rsrc is changed to “Leased (Rdst)” status.

Figure 2.6(c) shows a post-lease: a new Acquired lock-access of Rdst is placed after (to

the right of) the lock-access of Rsrc and the lock-access of Rsrc changes to Released.

Aborts and Rollbacks: For an aborted routine Ri, we roll back states of only those devices

D in whose lineage Ri appeared. For a device D, there are two cases:

• Device D was last Acquired by routine Rj (6= Ri): We remove Ri’s lock-access from

D’s lineage. This captures two possibilities: a) Ri never executed actions on D (e.g.,

Fig. 2.5: device C when aborting R4), or b) Ri leased D to another routine Rj, and

since Ri is aborting, Rj’s effect will be the latest (e.g., Fig. 2.5: device A when aborting

R1).

• Device D was last Acquired by routine Ri (e.g. device C when aborting R5 in Fig. 2.5):

We: 1) remove the Ri’s lock-access from D’s lineage, and 2) issue a command to set

D’s status to Ri’s immediately left/previous lock-access entry in the lineage (if none

exist, use Committed State), unless the device is already in this desired state.
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(a) Before commit (b) After R3 commits

Figure 2.7: Commit with compaction.

Committing (Successfully Completing) a routine: When a routine reaches its finish

point, it commits (completes successfully) by: i) updating Committed States, and ii) remov-

ing its lock-access entries. Rj might appear after Ri in the serialization order but complete

earlier, e.g., due to lock leasing. SafeHome allows such routines to commit right away by

using commit compaction–routines later in the serialization order will overwrite effects of

earlier routines (on conflicting devices) 6. Concretely, for all common devices we remove

both Ri’s lock-access, and all lock-accesses before it (Fig. 2.7).

Figure 2.8: Inferring the current device status. The dashed boxes point to the current device
status in three different scenarios.

Current Device Status: A device’s current status is needed at several points, e.g., abort.

Due to uncompleted routines, the actual status may differ from the committed state. The

lineage table suffices to estimate a device’s current state (without querying the device).

Fig. 2.8 shows the three different cases. (a) If an Acquired lock-access entry exists, use it

(e.g., R3 in Fig. 2.8(a) with D = 25 ). (b) Otherwise, if lock-accesses exist with lock status

Released, use the right-most entry (e.g., R2 in Fig. 2.8(b) with D = 15). (c) Otherwise, use

the Committed State entry (e.g., committed state D = 10 in Fig. 2.8(c)).

2.5 SCHEDULING POLICIES FOR EVENTUAL VISIBILITY

We now discuss how, for EV, SafeHome’s Scheduler (Fig. 2.4) decides where a routine

fits into the (eventual) serialization order. The Scheduler is a pluggable component, with

6Similar to “last writer wins” in NoSQL DBs [58].
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minimal requirements that it satisfies all invariants from Sec. 2.4.3. We designed and imple-

mented three scheduling policies.

2.5.1 First Come First Serve (FCFS) Scheduling

Routines are serialized based on their arrival time, i.e., routine ID. When the scheduler

schedules a routine R, it adds lock-access entries for all of R’s commands to the end of the

corresponding lineages. Post-leases are allowed in FCFS. However pre-leases are inapplicable

because they would violate the FCFS serialization order (Section 2.4.1).

FCFS is attractive if a user expects routines to execute in the order they were initiated.

However, this serialization inflexibility results in long lag to start the routine. In contrast,

there are many scenarios where users are willing to accept a completion order different from

arrival, e.g., user submits a batch of routines, multiple users submit routines, etc.

2.5.2 Just-in-Time (JiT) scheduling

Just-in-Time (JiT) scheduling is a greedy approach where a routine is started (moved

from wait queue to lineage) at the earliest time when it is eligible to start.

This eligibility test for a routine R checks if it will be able to acquire all its locks. That

is, for each device accessed by R, the device is now either: a) “Released”, or b) it is both

“Acquired” and a pre-lease or post-lease can be availed by R. The eligibility test is performed

for all routines in the wait queue. The eligibility test is triggered: (i) whenever a new routine

arrives (eligibility test only for that routine), or (ii) whenever a lock-access, for some device

D, is released by some executing routine. In case (ii) we minimize overhead of traversing the

wait queue by running the eligibility test only on those waiting routines desiring to access

device D.

JiT could cause starvation, e.g., a routine RAB = {A = ON ;B = 5; } could be indefinitely

starved by periodic invocations of two routines RA = {A = OFF ; } and RB = {B = 10; }.
We mitigate starvation by using a TTL (time-to-live) for each routine in the wait-queue

(initialized to 5 in SafeHome). The Routine R’s TTL is decremented whenever a routine

with a higher ID, and accessing a common device with R, is scheduled from the wait queue

instead of R. When its TTL reaches 0, R must be scheduled earlier than higher ID routines.

If multiple routines with TTL=0 exist, they are scheduled starting from the head of the

queue.
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2.5.3 Timeline Scheduling

It may be possible to start some routines even earlier than their eligibility test being

satisfied. The Timeline Scheduling policy uses estimates of lock-access durations (τR), and

attempts to place waiting routines into the gaps in the lineage table’s timeline (using lock

acquisitions, pre-leases, and post-leases). It finds the earliest possible schedule leveraging

existing gaps so as: a) not to violate past/existing serialization order decisions, and b)

does not prolong already-running routines beyond an acceptable threshold. This search is

triggered for all waiting routines, upon every routine arrival or finish.

Algorithm 2.1 Timeline scheduling of routine R

1: function Schedule(R, index, startTime, preSet, postSet)
2: devID = R[index].devID
3: duration = lock access(R, devID).duration
4: //return from recursion
5: if R.cmdCount < index then
6: return true
7: end if
8: //Find gap and pre- and post-set
9: gap = getGap(devID , startTime, duration)

10: curPreSet = preSet ∪ getPreSet(lineage[devID], gap.id)
11: curPostSet = postSet ∪ getPostSet(lineage[devID], gap.id)
12: if curPreSet ∩ curPostSet = ∅ then
13: //Serialization is not violated
14: canSchedule = schedule(R, index + 1, gap.startTime + duration , curPreSet, curPost-

Set)
15: if canSchedule then
16: lineage[devID].insert(R[index], gap)
17: return true
18: end if
19: end if
20: //backtrack: try next gap
21: return schedule(R, index, gap.startTime + duration , preSet, postSet)
22: end function

Algo. 2.1 shows pseudocode. The key idea is to employ a recursive back-tracking strategy

trying different gaps. We explain the algorithm by using the example in Fig. 2.9. Fig. 2.9a

depicts a lock table right before routine R3 = {C → B} arrives at time TR3, and has four

gaps in the lineage. Starting with the first device in the routine (C for R3): τR3(C) (Line 3),

the Timeline scheduler finds the first gap in C’s lineage that can fit τR3(C) (Line 9). This is

Gap 1 in Fig. 2.9a.

Next, the Timeline scheduler validates that this gap choice will not violate previously

decided serializations. For the scheduled lock-accesses of R3 so far, it builds two sets: a)
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(a) (b) (c)

Figure 2.9: Timeline Scheduler (TL) example a) before scheduling R3 b) trying a potential
(but invalid) option, c) scheduling R3 at the first possible gap.

preSet: the union of all (executing and scheduled) routines placed before R3’s lock-accesses

({R1} in Fig. 2.9b), and b) postSet: the union of all (executing and scheduled) routines placed

after R3’s lock-accesses ({R1, R2} in Fig. 2.9b). The preSet and postSet of R represent the

routines positioned before and after R, respectively, in the serialization order. The gap choice

is valid if and only if the intersection of the preSet and the postSet is empty. In this case, the

scheduler moves on to the next command of the routine. Otherwise (e.g., as in Fig. 2.9b),

the scheduler backtracks and tries the next gap (Line 21). This process then repeats.

2.5.3.1 Device State Dependencies and Safety in Timeline Scheduling

A Routine comprises a sequence of commands that collectively perform a compound task.

E.g., the routine “prepare breakfast” starts brewing coffee and prepare the pancake. How-

ever, some routines require device-state dependencies to ensure a “safe/desirable environ-

ment” for safely/correctly performing that task. For example, the routine “cook food” first

sets the exhaust fan’s state ON and only then it sets the oven’s state ON. Here the device status

oven:ON depends on the exhaust fan:ON (Ex.Fan:ON → Oven:ON). In the current SafeHome

design, such dependencies are marked by the user.

SafeHome’s in-built safety mechanism should ensure that the concurrent rou-

tine executions never violate the device dependencies.

Consider the following two concurrent routines:

R0: { Exhaust Fan : ON, Oven : ON }
R1: { Exhaust Fan : OFF, AC : ON }

R1 appears immediately after R0 starts its execution. In both R0 and R1, the status of
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respectively the Oven and the AC depends on the status of the Exhaust fan. GSV and

PSV’s inherent serializability automatically ensures the device dependencies (Fig. 2.10a).

However, TL’s pre/post lease based opportunistic scheduling (Algo. 2.1) might violate the

device dependency (Fig. 2.10b).

(a)

(b)

(c)

Figure 2.10: Execution policy of R0 and R1 in different visibility models. RrCc represents
the cth command of the rth routine. E.g., R1C1 = AC:ON. Blue arrows represent command-state
dependencies. a) GSV and PSV– inherently preserve dependencies b) TL (without safety) – the red
box shows dependency violation, c) TL (with safety)– Ex.Fan (R0C0) has dependent device (R0C1).
Therefore the safety checker stalls/rejects the lease request (green box).

For TL, SafeHome ensures the device dependencies by adding additional constraints on

the pre/post leasing scheme (Algo. 2.1). In this modified approach, a lineage table approves

pre/post lease for device D only if at that point D does not have any dependent device

(Fig. 2.10c). Therefore, safety is ensured with the cost of increased end-to-end latency.
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2.6 SAFEHOME IMPLEMENTATION

We implemented SafeHome in 1200 (core) lines of Java. SafeHome runs on an edge device,

such as a Home Hub or an enhanced/smart access point. Our edge-first approach has two

major advantages: 1) SafeHome can be run in a smart home containing devices from a diverse

set of vendors, and 2) SafeHome is autonomous, without being affected by ISP/external

network outages [72, 73] or cloud outages [74, 75, 76].

SafeHome works directly with the APIs exported by devices – commands in routines are

programmed as API calls directly to devices. SafeHome’s routine specification is compatible

with other smart home systems (Fig. 2.11). Our current implementation works for TP-Link

smart devices [31, 52], using HS110Git [77] device-driver. Other devices (e.g., Wemo [78])

can be supported via their device-drivers.

(a) JSON representation of SafeHome routine (part)

(b) G. Home routine [12] (c) TP-Link routine [79]

Figure 2.11: Defining a routine “Prepare Breakfast” Two commands: i)Turn ON Coffee
Maker and ii) Turn ON Toaster.

Figure 2.12: SafeHome Architecture

Fig. 2.12 shows our implementation architecture. When a user submits routines, they are
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stored in the Routine Bank, from where they can be invoked either by the user or triggers,

via the Routine Dispatcher. The Concurrency Controller runs the appropriate Visibility

model’s implementation. Apart from Eventual Visibility (Sec. 2.5), we also implemented

Global Strict Visibility (GSV), and Partitioned Strict Visibility (PSV), with failure/restart

serialization. Our Weak Visibility reflects today’s laissez-faire implementation.

The Failure Detector explicitly checks devices by periodically (1 sec) sending ping mes-

sages. If a device does not respond within a timeout (100 ms by default), the failure detector

marks it as failed. We also leverage implicit failure detection by using the last heard Safe-

Home TCP message as an implicit ack from the device, reducing the rate of pings.

2.7 EVALUATION

We evaluate SafeHome using both workloads based on real-world deployments, and mi-

crobenchmarks. The major questions we address include:

• Are relaxed visibility models (like Eventual Visibility) as responsive as Weak Visibility,

and as correct as Global Strict Visibility (Sec. 2.2.1)?

• What effect do failures have on correctness and user experience (Sec. 2.3)?

• Which scheduler policy (Sec. 2.5) is the best?

• What is the effect of optimizations, e.g., lock leasing, commit compaction, etc. (Sec. 2.4)?

2.7.1 Experimental Setup

Metrics: Because of the human-visible nature of SafeHome, our main evaluation metrics

are also human-visible (we also define additional metrics where applicable):

End to end latency (or Latency): This metric measures how long the human user has to

wait from initiating/submitting a routine to its successful completion.

Temporary Incongruence: This metric measures how much the human user’s actual experi-

ence differs from a world where all routines were run serially. We take worst case behavior.

Before a routine R completes, if another routine R′ changes the state of any device R mod-

ified, we say R has suffered a temporary incongruence event. The Temporary Incongruence

metric measures the fraction of routines that suffer at least one such temporary incongruence

event.

Final Incongruence: After executing a batch of routines, is the home’s state serially-equivalent?
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Parallelism level: This efficiency/utilization metric is the number of routines that are allowed

by SafeHome to execute concurrently, averaged throughout the run. To avoid domination

by durations when only 0 or 1 routines run, we only measure the metric at points when a

routine starts/ends.

Setup: Because we wish to evaluate SafeHome for a variety of scenarios, and using mul-

tiple parameters and many routines and devices, our evaluation relies on workload-driven

emulation. We use the same code from our implementation for this emulation.

2.7.2 Experiments with Real-World Benchmarks

Figure 2.13: Latency, Temporary Incongruence, and Parallelism for Three Scenar-
ios. To identify lines we show one label symbol for each (plot has many more data points).
Some GSV lines may be cut to show separation between other models.

We extracted traces from three real homes (20-30 devices, multi-user families) who were

using Google Home over 2 years. We also studied two public datasets: 1) 147 SmartThings

applications [80]; and 2) IoTBench: 35 OpenHAB applications [81]. Based on these, we cre-

ated the following three representative benchmarks. (We will make these available openly.)

Morning Scenario. This chaotic scenario has 4 family members in a 3-bed 2-bath home

concurrently initiating 29 routines over 25 minutes touching 31 devices. Each user starts

with a wake-up routine and ends with the leaving home routine. In between, routines cover

bathroom use, breakfast cook + eat, and sporadic routines, e.g., milk spillage cleanup.
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Party Scenario. Modeling a party, it includes one long routine controlling the party

atmosphere for the entire run, along with 11 other routines covering spontaneous events,

e.g., singing time, announcements, serving food/drinks, etc.

Factory Scenario. This assembly line scenario has 50 workers working at 50 linear stages.

Each stage’s worker has access to some local devices, to some devices shared with immedi-

ately preceding and succeeding stages, and to 5 global devices. Each routine by a worker

accesses devices probabilistically. Access probabilistics are 0.6 for local devices, 0.3 for

neighbor-shared devices, and 0.1 for global devices.

Results: From Fig. 2.13 (top row), in the morning scenario: 1) EV’s latency is comparable

to WV at both median and 95th percentile, and 2) PSV has 15% worse 90th percentile

latency than EV. Generally, the higher the parallelism level (last column), the lower the

latency. For instance, EV has median parallelism level 3× higher than GSV, and median

latency 16× better than GSV. Parallelism creates more temporary incongruences (middle

column of figure). This is expected for EV. Yet, EV’s (and GSV’s) end state is serially

equivalent while WV may end incongruently–this is shown in Fig 2.14. Thus EV offers

similar latencies as, but better final congruence than, WV. Only if the user cares about

temporary incongruence is PSV preferable.

Figure 2.14: Final Incongruence. Run with 9 routines, 100 runs per scenario, and checks if
final smart home state is equivalent to some serial ordering of routines (9! possibilities).

In Fig. 2.13 (middle row), the party scenario shows similar trends to the morning scenario

with one notable exception. PSV’s benefit is lower, with only 11% 90th percentile latency

reduction from GSV (vs. 77% in morning). This is due to the single long routine blocking

other routines. EV avoids this hogging because of its pre- and post-leasing.

In Fig. 2.13 (bottom row), the factory scenario shows similar trends to morning scenario,

except that: (i) EV’s median latency is 23.1% worse than WV, and (ii) the parallelism level

is higher in EV than WV. This is due to the back-to-back arrival of multiple routines. WV

executes them as-is. However, EV may delay some routines (due to device conflicts)–when

the conflict lifts, all eligible routines run simultaneously, increasing our parallelism level and

latency.
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2.7.3 Effect of Failures

Failures abort more routines in EV because it allows high concurrency, yet EV’s intrusive

effect on the user (due to aborts) is the lowest of all visibility models. Fig. 2.15a and 2.15b

measure the fraction of routines aborted due to a failure (fail-stop failures introduced at a

random point during the run). Yet Fig. 2.15c and 2.15d show that the rollback overhead of

EV is smallest among all visibility models–this is the average fraction of commands rolled

back, across aborted routines. PSV’s rollback overhead is higher than EV as it aborts more

at the routine’s finish point (when checking up/down status of devices touched). EV aborts

affected routines earlier rather than later. GSV and S-GSV have low abort rates because of

their serial execution but have higher rollback overheads than EV. Thus, even when execution

is serial, the effect of failures can be more intrusive on the human. We conclude that EV is

the least intrusive model.

(a) Must Vs Abort Rate (b) Failure Vs Abort Rate

(c) Must Vs Rollback Overhead (d) Failure Vs Rollback Overhead

Figure 2.15: Effect of Failures. Rollback Overhead = Intrusion on User. Parameters in
Table 2.3.

The plateauing in Figures 2.15a, 2.15b is due to saturation of parallelism level. The

plateauing in Figs. 2.15c, 2.15d, is due to saturation at the average abort-point of a routine–

for GSV around 50%, while S-GSV is lower at 40% since any device failure triggers the

abort.
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2.7.4 Scheduling Policies

(a) End to End Latency

(b) Temporary Incongruence (c) Parallelism Level

Figure 2.16: Scheduling Policies. Parameters in Table 2.3.

Fig. 2.16 compares FCFS, JiT, and Timeline (TL) scheduling policies (Sec. 2.5). TL has

the lowest latency–in Fig. 2.16a with ρ = 4 concurrent routines injected, TL is 2.36× and

1.33× faster than FCFS and JiT respectively. The benefit of TL over JiT is due to leasing.

The benefit of TL over FCFS is due to both opportunism and leasing. We also observed

FCFS causing starvation. TL also has higher parallelism level (Fig. 2.16c) than FCFS (2.3×
at ρ = 4) and JiT (2.0× ρ = 4).

2.7.5 Timeline-based Eventual Visibility (TL)

Fig. 2.17a and 2.17b show that disabling leasing reduces temporary incongruence but

significantly increases latency. Turning off both pre- and post-leasing increases latency (from

Both-on to Both-off) by between 3× to 5.5× (as concurrency level ρ and commands per

routine C are varied). Post-leases are more important than pre-leases: disabling the former

raises latency by 71% to 107%, while disabling the latter raises latency from 29% to 50%.

Increasing ρ, C raise latency because they saturate the lock-table.
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(a) Normalized E2E Latency (b) Temporary Incongruence (%)

(c) CDF of Stretch Factor (d) Algo. 2.1 Insertion Time

Figure 2.17: Timeline policy for EV. Parameters in Table 2.3.

TL might also “stretch” routines (Fig. 2.9c). Fig. 2.17c shows stretch factor, measured

as the between a routine’s actual start (not submission) and actual finish, divided by the

ideal (minimum) time to run the routine. With routine size, stretch factor rises at first

(at C = 2 only 5% routines have stretch > 1, vs. 25% at C = 4) but then drops (15% at

C = 8). Essentially the lock-table saturates beyond a C, creating fewer gaps and forcing EV

to append new routines to the schedule.

Fig. 2.17d shows that even when running on a Raspberry Pi 3 B+ [82], our scheduler

inserts a new routine within 0.5 ms, at 7 commands/routine or less. Overhead then rises but

stays below 3 ms. Our survey of smart home datasets [80, 81] revealed that typical routines

contain 5 or fewer commands, which means our scheduler is fast in practice.

2.7.6 Parameterized Microbenchmark Experiments

We created a parameterized microbenchmark (Table 2.3) and we explore the effect of key

parameters.

Impact of number of commands per routine (C): Fig. 2.18a, 2.18b show GSV’s latency

rises with more commands per routine. With smaller routines, PSV’s latency is close to EV
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Name default Description
R 100 Total number of routines
ρ 4 Number of concurrent routines injected
C 3 Average commands per routine (ND)
α 0.05 Zipfian coefficient of device popularity
L% 10% Percentage of long running routines
|L| 20 min. Average duration of a long running command (ND)
|S| 10 sec. Average duration of a short running command (ND)
M 100% Percentage of “Must” commands of a routine
F 0% Percentage of the failed devices

Table 2.3: Parameterized Microbenchmark: Summary of Parameters. ND = Nor-
mal distribution.

(a) End to End latency (b) Parallelism level (%)

(c) Temporary Incongruence (%) (d) Order Mismatch

Figure 2.18: Impact of Routine size (Commands/routine C).

and WV, but as routines get larger, PSV quickly approaches GSV. A similar trend occurs

with EV, but EV stays noticeably faster than GSV/PSV. Trends in parallelism level and

temporary incongruence are also consistent with this trend. Finally, EV’s peaking behavior

and eventual convergence towards GSV (Fig. 2.18c, 2.18d) occur since beyond a certain
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routine size (C=4), pre/post-leasing opportunities decrease.

Figure 2.19: Latency with varying device popularity α.

Impact of device popularity (α): We use a Zipf distribution for the probability of devices

being touched by routines. As one skews the distribution more in Fig. 2.19 (increasing α),

we notice that EV’s latency stays close to WV. More conflict makes PSV quickly become as

slow as GSV.

(a) Temporary Incongruence (b) Order Mismatch

(c) Temporary Incongruence (d) Order Mismatch

Figure 2.20: Impact of: (a, b) Duration of long routine (|L|), and (c, d) Fraction
of routines that are long (L%).

Impact of long running routines: As the long running routine length |L| rises (Fig. 2.20a),
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temporary incongruences decrease since the run is now longer, routines are spread tempo-

rally, and less likely to conflict. If there are more long running routines (L%), there is more

conflict, and this increases temporary incongruence (Fig. 2.20c). We also measure the order

mismatch, i.e., how much does the final serial equivalence order measure from the order

in which routines were submitted (we use swap distance). Longer routines cause more or-

der mismatches (Fig. 2.20b), but more long-running routines reduce the order mismatch

(Fig. 2.20d) because post-leases dominate. Overall, the order mismatch numbers stay low,

from 3%-10%.

2.7.7 Real Smart-home deployment

To understand the impacts of different visibility models, we simultaneously run five dif-

ferent routines in a real smart-home deployment. We deploy SafeHome in a Raspberry Pi

and use TP-Link smart-plugs (HS105 [69]) to mimic the real smart-devices. The following

routines are inserted simultaneously in the system:

R1: makeCoffee(Espresso), makePancake(Vanilla)

R2: makeCoffee(Americano), makePancake(Strawberry)

R3: makePancake(Regular)

R4: startRoomba(Living room), startMopping(Living room)

R5: startMopping(Kitchen)

The makeCoffee(*) and makePancake(*) commands respectively prepare different types of

coffee and pancake (based on user’s taste). StartRoomba(*) and startMopping(*) respectively

start the vacuuming and mopping process for the assigned room. To better understand and

analyze the scenarios, we assign 5 minutes for each command.

Routine execution strategies: Fig. 2.2 shows the lineage tables for different visibility

models. The execution is strictly sequential for GSV, whereas for PSV, only the cluster of

routines sharing common devices is executed sequentially. EV, due to its pre/post leases,

can afford more parallelism. Besides, it is only EV that opportunistically searches for earliest

empty slots and tries to schedule commands accordingly. Therefore, the actual execution

order might vary from the routine submission order (e.g., in EV R3 and R5 executes before

R1 and R4, respectively).

Wait times: Fig. 2.21a shows the wait time of each routine for different visibility models.

Wait time is the time span between when the routine is first submitted to SafeHome frame-

work and the moment when its execution starts. All routines in GSV face cumulatively

increasing wait times (due to the strict serializability). In PSV, only the routines sharing
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(a) (b)

Figure 2.21: (a) Wait time in different visibility models. (b) The flow of incongruency in
EV over time.

the common devices face the cumulatively increasing wait times. EV’s early slot selection

mechanisms (pre/post lease) parallelize the routines, which dramatically reduces the wait

times.

Temporary incongruence: EV’s faster execution comes with the cost of temporary in-

congruence. When R0 is executing in both GSV and PSV, none of its devices is accessed

by other routines. This gives the user an impression of exclusive use of the devices assigned

for R0 (congruent execution). However, in EV, when R0 is executing its first command

(make coffee), it pre-leases the pancake machine to R2 (since it is not in use immediately).

Here multiple routines simultaneously access the common resources, which creates the in-

congruency. However, sucn incongruencies are temporary (Fig. 2.21b) and do not violate

the correctness. The outcome becomes serializable at the end of EV’s execution.

Both our simulation-based experiments and the real-deployment based experiments exhibit

similar trends. Unlike GSV or PSV, EV parallelizes more routines which costs less wait

time. EV suffers from temporary incongruence. However, EV’s outcome becomes serializable

eventually.

2.7.7.1 Safety Overhead in EV

We perform emulator based experiments to characterize the overhead of maintaining the

device-state dependencies. The experiments use the default parameters from Table 2.3.

Additionally, in this experiment we add a pair of dependent devices in routines and vary the

percentage of such routines.

Fig. 2.22a shows that with the safety feature enabled, EV’s end to end latency almost

doubles as the percent of dependent routines increase from 50% to 100%. In this approach
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(a) (b)

Figure 2.22: Measuring the safety overhead.

the pre/post leases are rejected, which leaves EV with a relatively less optimized yet safe

scheduler.

On the other hand, while the safety feature is disabled, the scheduler accepts any pre/post

leases, which results in lower latency. The percent of dependent routines does not have any

impact on this approach, therefore the latencies remain constant for all three scenarios.

Besides, while the safety feature is disabled, as the routine dependencies increase, the safety

violation increases too (Fig. 2.22b).

This experiment shows that even in the extreme rare case where 100% of the routines are

dependent routines– TL’s overall end to end latency is almost half than that of the GSV.

2.8 RELATED WORK

Support for Routines: Routines are supported by Alexa [83], Google Home [12], and

others [84, 85, 86]. iRobot’s Imprint [25, 87] supports long-running routines, coordinating

between a vacuum [88] and a mop [89]. All these systems only support best-effort execution

(akin to WV).

Safety and Reliability: SafeHome can be used orthogonally with transactuations [24],

which provide a consistent soft-state. Transactuations maintains strict isolation by sequen-

tially executing conflicting routines, making it somewhat akin to PSV. APEX [66] automati-

cally deducts the pre-conditions of a user command and ensures its atomic execution. APEX

uses two-phase-locking [90] to maintain Isolation. Such two-phase locking causes additional

overhead. APEX’s isolation scheme is similar to PSV used in SafeHome. APEX needs to

acquire physical device-locks, whereas, in SafeHome, all locks are logical, maintained by the

SafeHome orchestrator. This means, APEX requires to implement the two-phase-locking

on the smart-device side. Therefore off-the-shelf smart-devices will not directly work with

APEX. CityGuard [91] is a safety-aware watchdog architecture developed for Smart City
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that detects and resolves conflicts.

Abstractions: IFTTT [11] represents the home as a set of simple conditional statements,

while HomeOS [60] provides a PC-like abstraction for the home where devices are analogous

to peripherals in a PC. Beam [92] optimizes resource utilization by partitioning applications

across devices. These and other abstractions for smart homes [93, 94, 95, 96, 97] do not

address failures or concurrency.

Concurrency Control: Concurrency control is well-studied in databases [98]. Smart Home

OSs like HomeOS, SIFT, and others [60, 61, 64, 65] explore different concurrency control

schemes, however, none of these explore visibility models.

Task Graph: Task Graph scheduling [99, 100, 101, 102, 103, 104, 105] is a well-studied

area that schedules dependent tasks (represented by DAGs) across available resources

(CPU/GPU/VM etc.). Here the goal is to obtain an efficient execution strategy for the set

of dependent tasks. It varies from the main purpose of SafeHome that aims to efficiently

execute routines on a routine-specific set of devices, while also ensures a serializable end-

state.

2.9 CONCLUSION

SafeHome is: i) the first implementation of relaxed visibility models for smart homes

running concurrent routines, and ii) the first system that reasons about failures alongside

concurrent routines. We find that:

(1) Eventual Visibility (EV) provides the best of both worlds, with: a) user-facing respon-

siveness (latency) only 0% − 23.1% worse than today’s Weak Visibility (WV), and b) end

state congruence identical to the strongest model Global Strict Visibility (GSV).

(2) When routines abort due to failures, EV rolls back the fewest commands among all

models.

(3) Lock leasing improves latency by 3×−5.5×.

(4) Compared to competing policies (FCFS and JiT), Timeline Scheduling improves latency

by 1.33×−2.36× and parallelism by 2.0×−2.3×.
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CHAPTER 3: SERVICE FABRIC: A DISTRIBUTED PLATFORM FOR
BUILDING MICROSERVICES IN THE CLOUD

This chapter describes the Service Fabric (SF), Microsoft’s distributed platform for build-

ing, running, and maintaining microservice applications in the cloud. SF has been running

in production for 10+ years, powering many critical services at Microsoft. We outline key

design philosophies in SF. We then adopt a bottom-up approach to describe low-level com-

ponents in its architecture, focusing on modular use and support for strong semantics like

fault-tolerance and consistency within each component of SF. This chapter also reveals the

unique ground-up consistency approach used in SF. Later, we discuss lessons learned, and

present experimental results from production data.

This Chapter is organized as follows: Sec. 3.1 introduces Service Fabric, Microsoft’s plat-

form to support microservice applications in cloud settings. Sec. 3.2 explains the concept

of the microservice based architecture and briefly covers four real microservice based ap-

plications, Sec. 3.3 and Sec. 3.4 respectively give an overview and system design of SF’s

architecture, Sec. 3.5 presents both simulation and real-deployment based experimental re-

sults to evaluate SF’s selective components. Sec. 3.6 analyze the state-of-art related works

and finally Sec. 3.7 concludes the project.

Disclaimer: Microsoft Service Fabric’s design started in the early 2000’s. It is a culmi-

nation of over a decade and a half of design and development, involving 100+ engineers.

Our collaboration with Microsoft Service Fabric team started in 2017, and is limited to

understanding, analyzing and evaluating the system. As a part of it we study the Service

Fabric’s architecture, explore different design decisions, measure the performance of several

core components and summarize our findings as the very first research paper on Microsoft

Service Fabric [1].

3.1 INTRODUCTION

Cloud applications need to operate at scale across geographical regions, and offer fast con-

tent delivery as well as high resource utilization at low cost. The monolithic design approach

for building such cloud services makes them hard to build, to update, and to scale. As a

result modern cloud applications are increasingly being built using a microservices architec-

ture. This philosophy involves building smaller and modular components (the microservices),

connected via clean APIs. The components may be written in different languages, and as

the business need evolves and grows, new components can be added and removed seamlessly,
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thus making application lifecycle management both agile and scalable.

The loose coupling inherent in a microservice-based cloud application also helps to isolate

the effect of a failure to only individual components, and enables the developer to reason

about fault-tolerance of each microservice. A monolithic cloud application may have dis-

parate parts affected by a server failure or rack outage, often in unpredictable ways, making

fault-tolerance analysis quite complex. Table 3.1 summarizes these and other advantages of

microservices.

Monolithic design Microservice-based design

Application complexity Complex Modular
Fault-tolerance Complex Modular

Agile development No Yes
Communication between components NA RPCs

Easily scalable No Yes
Easy app lifecycle management No Yes

Cloud ready No Yes

Table 3.1: Monolithic Vs. Microservice Applications.

Service Fabric (henceforth denoted as SF) enables application lifecycle management of

scalable and reliable applications composed of microservices running at very high density

on a shared pool of machines, from development to deployment to management. A stronger

consistency guarantee is required to orchestrate such a large number of loosely coupled

modules. To ensure it, Service Fabric embraces a unique ground-up approach.

Today’s SF system is a culmination of over a decade and a half of design and development.

SF’s design started in the early 2000’s, and over the last decade (since 2007), many critical

production systems inside Microsoft have been running atop SF. These include Azure SQL

DB [3], Cosmos DB [4], Skype [5], Azure Event Hub [106], Intune [107], Azure IoT [108],

Cortana [109] and others. Today, Azure SQL DB running on SF hosts 1.82 Million DBs

containing 3.48 PB of data, and runs on over 100 K machines across multiple geo-distributed

datacenters. Azure Cosmos DB runs on over 2 million cores and 100 K machines. The cloud

telemetry engine on SF processes 3 Trillion events/week. Overall, SF runs 24×7 in multiple

clusters (each with 100s to many 1000s of machines), totaling over 160 K machines with over

2.5 Million cores.

Driven by our production use cases, the architecture of SF follows five major design

principles:

• Modular and Layered Design of its individual components, with clean APIs.
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• Self-* Properties including self-healing and self-adjusting properties to enable auto-

mated failure recovery, scale out, and scale in. Self-sufficiency, meaning no external

dependencies on external systems or storage.

• Fully decentralized operation avoids single points of contention and failure, and

accommodates microservice applications from small groups to very large groups of

VMs/containers.

• Strong Consistency both within and across components, to prevent cascades of

inconsistency.

• Support for Stateful Services such as higher-level data-structures (e.g., dictionar-

ies, queues) that are reliable, persistent, efficient, and transactional.

Service Fabric is the only microservice system that meets all the above principles. Existing

systems provide varying levels of support for microservices, the most prominent being Nir-

mata [34], Akka [32], Bluemix [33], Kubernetes [46], Mesos [110], and AWS Lambda [111].

SF is more powerful: it is the only data-aware orchestration system today for stateful mi-

croservices. In particular, our need to support state and consistency in low-level architectural

components drives us to solve hard distributed computing problems related to failure detec-

tion, failover, election, consistency, scalability, and manageability. Unlike these systems, SF

has no external dependencies and is a standalone framework. Sec. 3.6 expands on further

differences between SF and related systems.

Service Fabric was built over 16 years, by many (over 100 core) engineers. It is a vast

system containing several interconnected and integrated subsystems. It is infeasible to com-

press this effort into one paper. Therefore, instead of a top-down architectural story, this

paper performs a deep dive on selected critical subsystems of SF, illustrating via a bottom-up

strategy how our principles drove the design of key low-level building blocks in SF.

The main contributions of this work are:

• We describe design goals, and SF components that: detect failures, route virtually

among nodes, elect leaders, perform failover, balance load, and manage replicas.

• We touch on higher-level abstractions for stateful services (Reliable Collections).

• We discuss lessons learnt over 10+ years.

• We present experimental results from real datasets that we collected from SF produc-

tion clusters.
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3.2 MICROSERVICE APPROACH

The concepts underlying microservices have been around for many years, from object-

oriented languages, to Service Oriented Architectures (SOA). Many companies (besides Mi-

crosoft), rely on a microservice-based approach. Netflix has used a fine-grained SOA [112]

for a long time to withstand nearly two billion edge API requests per day [113].

Figure 3.1: A Microservice-based Application. a) Each colored/tiled hexagon type represents
a microservice, and b) Its instances can be deployed flexibly across VMs.

SF provides first-class support for full Application Lifecycle Management (ALM) of cloud

applications, from development, deployment, daily management, to eventual decommission-

ing. It provides system services to deploy, upgrade, detect, and restart failed services;

discover service location; manage state; and monitor health. SF clusters are today created

in a variety of environments, in private and public clouds, and on Linux and Windows Server

containers.

If such microservices were small in number, it may be possible to have a small team of

developers managing them. In production environments, however, there are hundreds of

thousands of such microservices running in an unpredictable cloud environment [114, 115,

116, 117, 118]. SF is an automated system that provides support for the complex task of

managing these microservices.

Building cloud applications atop SF (via microservices) affords several advantages:

1. Modular Design and Development: By isolating the functionality and via clean

APIs, services have well-defined inputs and outputs, which make unit testing, load

testing, and integration testing easier.

2. Agility: Individual teams that own services can independently build, deploy, test,

and manage them based on the team’s expertise or what is most appropriate for the

problem to be solved. This makes the development process more agile and lends itself

to assigning each microservice to small nimble teams.

49



SF provides rolling upgrades, granular versioning, packaging, and deployment to achieve

faster delivery cycles, and maintain up-time during upgrades. Build and deployment

automation along with fault injection allows for continuous integration and deploy-

ment.

3. Scalability: A monolithic application can be scaled only by deploying the entire appli-

cation logic on new nodes (VMs/containers). As Fig. 3.1 shows, in SF only individual

microservices that need to scale can be added to new nodes, without impacting other

services.

This approach allows an application to scale as the number of users, devices and

content grows, by scaling the cluster on demand. Incremental deployment is done in a

controlled way: one at a time, or in groups, or all at once, depending on the deployment

stage (integration testing, canary deployments, and production deployments).

4. Resource Management: SF manages multiple applications running on shared nodes,

scaling themselves continuously, because the workloads change dynamically all the

time. The components of SF that this paper fleshes out help keep nodes’ load balanced,

route messages efficiently, detect failures quickly and without confusion, and react to

failures quickly and transparently.

5. Support for State: SF provides useful abstractions for stateful services, namely

Reliable Collections, a data-structure that is distributed, fault-tolerant, and scalable.

3.2.1 Microservice Application Model in Service Fabric

Figure 3.2: Service Fabric Application Model. An application consists of N services, each of
them with their own Code, Config. and Data.

In Service Fabric, an application is a collection of constituent microservices (stateful or

stateless), each of which performs a complete and standalone function and is composed of

code, configuration and data. This is depicted in Fig. 3.2. The code consists of the executable

binaries, the configurations consist of service settings that can be loaded at run time, and
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the data consists of arbitrary static data to be consumed by the microservice. A powerful

feature of SF is that each component in the hierarchical application model can be versioned

and upgraded independently.

3.2.2 Service Fabric and Its Goals

As mentioned earlier, Service Fabric (SF) provides first-class support for full Application

Lifecycle Management (ALM) of microservice-based cloud applications, from development

to deployment, daily management, and eventual decommissioning. The two most unique

goals of SF are:

i) Support for Strong Consistency: A guiding principle is that SF’s components

must each offer strong consistency behaviors. Consistency means different things in different

contexts: strong consistent failure detection in the membership module vs. ACID in Reliable

Collections.

We considered two prevalent philosophies for building consistent applications: build them

atop inconsistent components [43, 41, 42], or use consistent components from the ground

up. The end to end principle [119] dictates that if the performance is worth the cost for

a functionality then it can be built into the middle. Based on our use case studies we

found that a majority of teams needing SF had strong consistency requirements, e.g., Azure

SQL DB, Power BI etc., all rely on SF while executing transactions. If consistency were

instead to only be built at the application layer, each distinct application will have to

hire distributed systems developers, spend development resources, and take longer to reach

production quality.

Supporting consistency at each layer: a) allows higher layer design to focus on their

relevant notion of consistency (e.g., ACID at Reliable Collections layer), and b) allows both

weakly consistent applications (key-value stores such as Azure Cosmos DB) and strongly

consistent applications (DBs) to be built atop SF–this is easier than building consistent

applications over an inconsistent substrate. With clear responsibilities in each component, we

have found it easier to diagnose livesite issues (e.g., outages) by zeroing in on the component

that is misbehaving, and isolating failures and root causes between platform and application

layers.

ii) Support for Stateful Microservices: Besides the stateless microservices (e.g., pro-

tocol gateways, web proxies, etc.), SF supports stateful microservices that maintain a muta-

ble, authoritative state beyond the service request and its response, e.g., for user accounts,

databases, shopping carts etc. Two reasons to have stateful microservices along with state-

less ones are: a) The ability to build high-throughput, low-latency, failure-tolerant online
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transaction processing (OLTP) services by keeping code and data close on the same machine,

and b) To simplify the application design by removing the need for additional queues and

caches. For instance, SF’s stateful microservices are used by Skype to maintain important

state such as address books, chat history, etc. In SF stateful services are implemented via

Reliable Collections.

3.2.3 Use Cases: Real SF Applications

Since Service Fabric was made public in 2015 several external user organizations have

built applications atop it. In order to illustrate how global-scale applications can be built

using microservices, we briefly describe four of these use cases. Our use cases show: a)

how real microservice applications can be built using SF; b) how the microservice approach

was preferable to users than the monolithic approach; and c) how SF support for state and

consistency (in particular Reliable Collections) are invaluable to developers. (This section

can be skipped by the reader without loss in continuity.)

Tutorials are available to readers interested in learning how-to build microservice applica-

tions over Service Fabric–please see [120].

I. BMW is one of the largest luxury car companies in the world. Their in-vehicle app BMW

Connected [121] is a personal mobility companion that learns a user’s mobility patterns by

combining machine-learned driver intents, real-time telemetry from devices, and up-to-date

commute conditions such as traffic. This app relies on a cloud service that was built using

SF and today runs on Microsoft Azure, supporting 6 million vehicles worldwide.

The SF application is called BMW’s Open Mobility Cloud (OMC) [122, 123]. It needs to be

continually updated with learned behaviors and from traffic commute update streams. OMC

consists of several major subsystems. Among them, we will focus on the core component

called the Context and Profile Subsystem (C&P). C&P consists of five key SF microservices:

1. Context API Stateless Service: Non-SF components communicate with the C&P

via this service, e.g., mobile clients can create/change locations and trips.

2. Driver Actor Stateful Service: This per-driver stateful service tracks the driver’s

profile, and generates notifications such as trip start times. It receives data from five

sources: sync messages from the Context API service, a stream of current locations of

the driver (from Location Consumer service), learned destinations and predicted trips

(from MySense machine learning service), deleted anonymous user IDs (from User

Delete service), and trip time estimates (from ETA Queue service).
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3. Location Consumer Stateless Service: Each mobile client sends a stream of geo-

locations to the Microsoft Azure Event Hub, pulled by the Location Consumer service

and fed to the appropriate driver actor.

4. Commute Service: The Commute service takes geo-location and trip start and end

points, and then communicates with an external service to generate drive time.

5. ETA Queue Stateful Service: This decouples driver actors from the Commute

server and allows asynchronous communication between the two services.

The use of SF makes BMW’s C&P Subsystem highly-available, fault-tolerant, agile, and

scalable. For instance, when the number of active vehicles increases, the Context API

service and Driver actor services are scaled out in size. When the number of moving vehicles

changes, the Location Consumer and ETA Queue stateful services can be scaled in size. The

remaining services remain untouched. SF helps to optimize resource usage so that incurred

dollar costs of using Azure are minimized.

II. Mesh Systems [124, 125] is an 11-year old company that provides IoT software and

services for enterprise IoT customers. They started out with a monolithic application that

was too complex, and were unable to accommodate the needs of their growing business. This

previous system also underutilized their cluster.

Mesh System’s SF application achieves high resource utilization, and scalability by lever-

aging Reliable Collections. One of their needs was to scale out the payload processing inde-

pendent of notifications, and it was a good match with SF’s ability to scale out individual

microservices. Their SF application also leverages local state to improve performance, e.g.,

to minimize the load on Azure SQL DB, they implemented an SQL broker that periodically

caches the most heavily-accessed metadata tables.

III. Quorum Business Solutions [126, 127] is a SCADA company that collects and

manages data from field-operations platforms on tens of thousands of wells across North

America. Their implementation on SF uses actors that reliably collect and process data

because they are stateful, a stateless gateway service for auto-scalability, and a stateful batch

aggregator service that monitors actors themselves. They implement interactions with third

parties (SQL DB, Redis) via notification and retry microservices in SF.

IV. TalkTalkTV [128, 129] is one of the largest cable TV providers in United Kingdom. It

delivers the latest TV and movie content to a million monthly users, via a variety of devices

and smart TVs. Their SF application is used to encode movie streams before delivery to

the customer, and uses stateful services, structured in a linear sequence: record encoding
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Figure 3.3: Major Subsystems of Service Fabric. NS = Naming Service, PLB = Placement
and Load Balancer.

requests, initiate encoding processes, and track these processes. A stateless gateway interacts

with clients.

3.3 SYSTEM OVERVIEW

Figure 3.4: Federation and Reliability Subsystems: Deep-Dive.

Service Fabric (SF) is composed of multiple subsystems, relying on each other modu-

larly via clean APIs and protocols. Fig. 3.3 depicts how they are stacked–upper subsystem

layers leverage lower layers. Given space constraints, this chapter largely focuses on SF’s

most unique components, shown in Fig. 3.4. These lie in two subsystems: Federation and

Reliability.

The Federation Subsystem (Sec. 3.4.1) forms the heart of SF. It solves critical distributed

systems problems like failure detection, a consistent ring with routing, and leader election.

The Transport Subsystem underneath provides secure node-to-node communication.

Built atop the Federation Subsystem is the Reliability Subsystem (Sec. 3.4.2), which pro-

vides replication and high availability. Its components are the Failover Manager (FM),

Failover Manager Master (FMM), the Placement and Load Balancer (PLB), and replication

protocols. This helps create distributed abstractions named Reliable Collections (Sec. 3.4.3).
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Other SF subsystems not detailed in this chapter include the Management Subsystem

which provides full application and cluster lifecycle management via the Cluster Manager,

Health Manager, and Image Store. The Communication Subsystem allows reliable service

discovery via the Naming Service. The Testability Subsystem contains a Fault Injection

Service. Hosting and Activation Subsystems manage other parts of the application lifecycle.

3.4 SYSTEM DESIGN

This section covers the design details of the core modules of Service Fabric. Federation

Subsystem (Sec. 3.4.1) describes the unique, consistent failure detector. Sec. 3.4.2 and 3.4.3

respectively describe the Failover Manage and Reliable Collections, that uses the lower layer’s

consistency guaranties to ensure their own form of consistency.

3.4.1 Federation Subsystem

This section describes SF’s ring, failure detection, consistent routing, and leader election.

3.4.1.1 Basic SF-Ring

Nodes in SF are organized in a virtual ring, which we call SF-Ring. This consists of a

virtual ring with 2m points (e.g., m = 128 bits). Nodes and keys are mapped on to a point

in the ring. A key is owned by the node closest to it, with ties won by the predecessor.

Each node keeps track of multiple (a given number of) its immediate successor nodes and

predecessor nodes in the ring–we call this the neighborhood set. Neighbors are used to run

SF’s membership and failure detection protocol, which we describe next.

Nodes also maintain long-distance routing partners. Sec. 3.4.1.5 will later outline these

and consistent routing.

3.4.1.2 Consistent Membership and Failure Detection

Membership and failure detection in SF relies on two key design principles:

• Strongly Consistent Membership: All nodes responsible for monitoring a node

X must agree on whether X is up or down. When used in the SF-Ring, this entails a

consistent neighborhood, i.e., all successors/predecessors in the neighborhood of a node

X agree on X’s status.
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• Decoupling Failure Detection from Failure Decision: Failure detection proto-

cols can lead to conflicting detections. To mitigate this, we decouple the decision of

which nodes are failed from the detection itself.

3.4.1.3 Lease-based Heartbeating

We first describe our heartbeating protocol in general terms, and then how it is used in

SF-Ring.

Monitors and Leases: Heartbeating is fully decentralized. Each node X is monitored by a

subset of other nodes, which we call its monitors. Node X periodically sends a lease renewal

request (LR, heartbeat message with unique sequence number) to each of its monitors.

When a monitor acknowledges (LRack), node X is said to obtain a lease, and the monitor

guarantees not to detect X as failed for the leasing period. The leasing period, labeled Tm,

is adjusted adaptively based on round trip time and some laxity, but a typical value is 30 s.

To remain healthy, node X must obtain acks (leases) from all of its monitors. This defines

strong consistency. If node X fails to renew any of its leases from its monitors, it considers

removing itself from the group. If a monitor misses a heartbeat from X, it considers marking

X as failed. In both these cases however, the final decision needs to be confirmed by the

arbitrator group (described in Sec. 3.4.1.4).

Lease renewal is critical, but packet drops may cause it to fail. To mitigate this, if node

X does not receive LRack within a timeout (based on RTT), it re-sends the lease message

LR until it receives LRack. Resends are iterative.

Symmetric Monitoring in SF-Ring: The monitors of a node are its neighborhood

(successors and predecessors in the ring). Neighborhood monitoring relationships are purely

symmetric. When two nodes X and Y are monitoring each other, their lease protocols are run

largely independently, with a few exceptions. First, if X fails to renew its own lease within

the timeout, it denies any further lease requests from Y (since X will leave the group soon

anyway). Second, if X detects Y as having failed, X stops sending lease renew requests to

Y. Such cases have the potential to create inconsistencies, however our use of the arbitrator

group (which we describe next) keeps the membership lists consistent.

3.4.1.4 Using the Arbitrator Group to Decouple Detection from Decision

Decoupling Failure Detection from Decision: Decentralized failure detection tech-

niques carry many subtleties involving timeouts, indirection, pinging, etc. Protocols exist

that give eventual liveness properties (e.g., [36, 130]), but in order to scale, they allow
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inconsistent membership lists. However, our need is to maintain a strongly consistent neigh-

borhood in the ring, and also reach decisions quickly.

To accomplish these goals, we decouple decisions on failures from the act of detection.

Failure detection is fully decentralized using Sec. 3.4.1.3’s lease-based heartbeating. For

decisions, we use a lightweight arbitrator. The arbitrator does not help in detecting failures

(as this would increase load), but only in affirming or denying decisions.

Arbitrator: The arbitrator acts as a referee for failure detections, and for detection conflicts.

For speed and fault-tolerance, the arbitrator is implemented as a decentralized group of

nodes that operate independent of each other. When any node in the system detects a

failure, before taking actions relevant to the failure, it needs to obtain confirmation from a

majority (quorum) of nodes in the arbitrator group.

Failure reporting to/from an arbitrator node works as follows. Suppose a node X detects

Y as having failed. X sends a fail(Y) message to the arbitrator. If the arbitrator already

marked X as failed, the fail(Y) message is ignored, and X is again asked to leave the group.

Otherwise, if this is the first failure report for Y, it is added to a recently-failed list at the

arbitrator. An accept(fail(Y)) message is sent back to X within a timeout based on RTT (if

this timeout elapses, X itself leaves the ring). The accept message also carries a timer value

called To, so that X can wait for To time and then take actions w.r.t. Y (e.g., reclaim Y’s

portion of the ring).

When Y next attempts to renew its lease with X (this occurs within Tm time units after X

detects it), X either denies it or does not respond. Y sends a fail(X) message to the arbitrator.

Since Y is already present in the recently-failed list at the arbitrator, Y is asked to leave the

group. (If this exchange fails, Y will leave anyway as it failed to renew its lease with X.) If on

the other hand, Y’s lease renewal failed because X was truly failed, then the arbitrator sends

an accept(fail(X)) message to Y. We set: To = Tm + laxity - (time since first detection).

If this is the first detection, To = Tm + laxity. Here, laxity is typically 30 s, generously

accounts for network latencies involved in arbitrator coordination, and independent of Tm.

As all timeouts are large (tens of seconds), loose time synchronization suffices.

In SF-Ring: Inside SF-Ring, failure detections occur in the neighborhood, to maintain

a consistent neighborhood. If node X suspects a neighbor (Y), it sends a fail(Y) to the

arbitrator, but waits for To time after receiving the accept(.) message before reclaiming the

portion of Y’s ring. Any routing requests (Sec. 3.4.1.5) received meanwhile for Y will be

queued, but processed only after the range has been inherited by Y’s neighbors.

Arbitrator State: In the arbitrator group, each arbitrator keeps relatively small informa-

tion, such as the recently-failed list containing recent failure reports and decisions. Entries in

this list time out after Tm time units. When a new arbitrator joins the group, for the first Tm
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seconds it rejects all failure requests (this is a conservative approach). After quick initializa-

tion it moves to normal operations as described earlier. This prevents: a) decisions by a new

arbitrator conflicting with those by existing arbitrators, and b) spurious nodes, i.e., failed

nodes continuing to persist in membership lists (a known issue in distributed membership

protocols [130]). This ensures that a detected node leaves before being forgotten.

Conflict Resolution: The arbitrator group helps decide on both simple and complex

conflicts. A common simple conflict is two nodes detecting each other as failed–the first

received fail(.) message (or the first one to win quorum among arbitrators) wins in this case.

An alternate variant of our arbitrator pings both such nodes and if they are healthy heals

their membership lists and allows them to stay.

Network congestion or partitions may result in multiple nodes detecting each other as

failed. In traditional DHTs like Chord [131], Pastry [132], this causes inconsistent member-

ship lists. In NoSQL systems like Cassandra [133], it can lead to inconsistency in the ring.

SF’s arbitrator group essentially automates the conflict resolution procedure.

The decoupling of detection and decision helps the arbitrators catch and nip complex

cascading detections. For instance, consider a node X that fails to renew its lease and thus

voluntarily leaves. If another node Y immediately happens to send a lease request to X

(before Y has been informed about X), Y will not receive an ack and will also leave–this

process can cascade and result in many healthy nodes leaving. SF’s arbitrators catch the first

detection, and immediately make the neighborhood consistent, thus stopping the cascade

early.

Vs. Related Work: SF’s leases are comparable to heartbeat-style failure detection

algorithms from the past (e.g., [130]). The novel idea in SF is to use lightweight arbitrator

groups to ensure membership stays consistent (in the ring neighborhood). This allows the

membership, and hence the ring, to scale to whole datacenters. Without the arbitrators,

distributed membership will have inconsistencies (e.g., gossip, SWIM/Serf [36]), or one needs

a heavyweight central group (e.g., Zookeeper [40], Chubby [47]) which has its own issues.

Stronger consistent membership like virtual synchrony [38, 39] do not scale to datacenters.

3.4.1.5 Full SF-Ring and Consistent Routing

We describe the full SF-Ring, expanding on the basic design from Sec. 3.4.1.1. SF-Ring

is a distributed hash table (DHT). It provides a seamless way of scaling from small groups

to large groups. SF-Ring was developed internally [134, 135, 136, 137] in Microsoft, in the

early 2000s, concurrent with the emergence of P2P DHTs like Pastry, Chord [132, 131], and

others [138, 139, 140, 141]. We describe our original design, and inline evolutionary changes
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that occurred over time.

SF-Ring is unique in the following five ways (I-V):

I) Routing Table entries are bidirectional and symmetric: SF-Ring maintains Routing

Partners (in Routing Tables) at exponentially increasing distances in the ring. As shown in

Fig. 3.5, routing partners are maintained both clockwise and anticlockwise. That is, the ith

clockwise routing table entry is the node whose ID is closest to the key (n + 2i)mod(2m),

while the ith anticlockwise routing table entry is the node with ID closest to (n−2i)mod(2m).

Due to the bidirectionality, most routing partners are symmetric. This speeds up both

spread of failure information and routing. P2P DHTs like Chord maintain exponentially

far routing entries, but are unidirectional and largely not symmetric. Symmetric links lead

to efficient transfer of data between nodes, fast spreading of failure information, and fast

updating of routing tables after node churn 1.

II) Routing is bidirectional: When forwarding a message for a key, a node searches its

routing table for the node whose ID is closest to the key, and forwards it. This is possible

only because the routing tables are bidirectional and symmetric. This greedy routing is

essentially a distributed version of binary search. This approach: i) allows the message to

move both clockwise and anticlockwise, always taking the fastest path, and ii) avoid routing

loops. In practice we noticed that once a message starts routing it tends to maintain its

direction (clockwise or anticlockwise), until the last few hops, when directional changes may

occur.

Compared to traditional DHTs like Chord which use clockwise routing, SF-Ring’s bidi-

rectional routing: i) routes messages faster, ii) provides more routing options when routing

table entries are stale or empty, iii) spreads routing load more uniformly across nodes, and

iv) due to the distributed binary search, avoids routing loops even under stale routing tables.

Changes to Routing over the Years: Once a building block is designed, its usage evolves

over the years based on needs. SF-Ring’s routing is no exception. Originally all messages

were routed. Today, SF-Ring routing is used for: a) discovery routing when a node starts up,

and b) routing to virtual addresses. After discovery when a source knows the destination’s

IP address, it communicates directly.

III) Routing Tables are eventually convergent: SF nodes use a chatter protocol to

continuously exchange routing table information. Due to the symmetric nature of routing

relationships, failure information propagates quickly leading to fast and eventual convergence

of affected routing table entries.

When a node joins the ring, it goes through a transitional phase during which it initializes

1Symmetry may be violated in a small fraction of cases when another node is closer to (n− 2i)mod(2m),
but our advantages still hold.
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Figure 3.5: Routing Table of node 64. The ring has 2m=8 points. Numbered dots represent
active nodes.

its routing tables, acquires tokens (described soon), but does not yet route messages. Once

it finishes transitioning it starts routing messages.

In the chatter protocol, nodes periodically send liveness messages to their routing table

partners. To efficiently use bandwidth, liveness messages also allow piggybacking of ap-

plication messages that are about to be sent to the partner. Liveness messages contain

information about the node, instance ID (distinguishes multiple rejoins by the same node),

phase (e.g., transitioning or operational), weight (reputation based on uptime, etc.), and a

freshness value (which decays with time, like in ad-hoc routing protocols [142, 143]).

The chatter protocol provides eventual consistency for the long distance neighbors (routing

partners). A key result from the SF effort is that strongly consistent applications can be

supported at scale by combining strong membership in the neighborhood (Sec. 3.4.1.2) with

weakly consistent membership across the ring. Literature often equates strongly consistent

membership with virtual synchrony [38], but this approach has scalability limits [39].

Changes to Partial Membership over the Years: SF microservices operate in a wide

range of scales, from a few nodes to many 1000s of nodes. Microservices also need to scale

out and scale in during their lifetime. To support this, today SF-Ring sets a (customizable)

upper bound on the number of entries in the routing table. If the number of nodes is

smaller than this bound, the routing tables (eventually but quickly) capture full information

about all nodes; this makes routing fast and take O(1) hops. If the number of nodes is

higher, routing tables come into effect, creating an O(log(N)) lookup cost without blowing

up memory.

This design decision allows SF-Ring to move seamlessly between partial membership and

full membership. In comparison, NoSQL ring-based DHTs like Cassandra [133] and Dy-

namo [144] rely on full O(N) membership. This makes them cumbersome at large scale

and under churn–the overhead of maintaining correct membership lists outweighs benefits
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of 1 hop routing. In Cassandra, admins need to use nodetool [145] to manually verify that

membership lists are correct. SF-Ring automates all membership management.

IV) Decoupled Mapping of Nodes and Keys: Nodes and objects (services) are mapped

onto the ring in a way that is decoupled from the ring: i) nearby nodes on the ring are selected

preferably from different failure domains (improving fault-tolerance), and ii) services are

mapped in a near-optimal and load balanced way (Sec. 3.4.2.3), and not hashed.

V) Consistent Routing Tokens: Each SF node owns a routing token, a portion of the ring

whose keys it is responsible for. The SF-Ring protocol ensures two consistency properties: i)

always safe: there is no overlap among tokens owned by nodes, and ii) eventually live: every

token range is eventually owned by at least one node. When the first SF node bootstraps,

it owns the entire token space. Thereafter, tokens are created as follows: two immediate

neighbors split the ring segment between them at exactly the half-way point.

Upon churn, a node join/leave protocol automatically transfers tokens among nodes.

NoSQL systems like Cassandra [133] also use routing tokens, but may need manual in-

volvement to ensure correctness (via nodetool). In SF-Ring, this checking is automatic and

continuous.

When a node leaves, its successor and predecessor split the range between them halfway. If

a node X’s immediate successor Y fails, then X and its new successor Z will split the ring seg-

ment halfway between X and Z. In the common case this splitting incurs no communication

between X and Z.

If all nodes satisfy token liveness and safety conditions, SF-Ring routing will eventually

succeed. If the liveness condition is not yet true (e.g., no node owns a token containing

destination ID), routing messages are queued.

Vs. Related Work: SF’s consistent ring was invented internally around 2002, concurrent

with the first DHTs like Chord [131] and Pastry [132]. While SF was being implemented,

several other DHTs came out that used bidirectional routing, e.g., Kademlia [138]. While

we could conceivably go back and try replacing SF-Ring with something like Kademlia, re-

integration is hard and SF-Ring has been running successfully in production for a decade (if

it ain’t broke, don’t fix it!).

3.4.1.6 Leader Election

SF-Ring’s leader election protocol builds atop the combination of the ring, routing, and

consistent neighborhood just described. For any key k in the SF-Ring, there is a unique

leader: the node whose token range contains k (this is unique due to the safety and liveness

of routing tokens). Any node can contact the leader by routing to key k. Leader election is
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thus implicit and entails no extra messages. In cases where a leader is needed for the entire

ring we use k = 0 (e.g., FMM in Sec. 3.4.2.1).

3.4.2 Reliability Subsystem

The Reliability Subsystem is in charge of replication, load balancing, and high availability.

Objects in SF are replicated at a primary node and multiple secondary nodes. The replication

subsystem’s Replicator component uses passive replication: clients communicate with the

primary, which multicasts updates to secondaries. The Reliability Subsystem contains three

major components: Failover Manager (FM), Naming, and Placement and Load Balancer

(PLB).

3.4.2.1 The Failover Manager (FM)

This stateful SF service maintains a global view of all replica groups. The global view

includes status of all nodes in the cluster, list of current applications and services, list of

replicas and their placement, etc.

The FM manages creation of services, upgrades, etc. It works closely with daemons on

each node called Reconfiguration Agents (RAs), which continually collect the node’s available

memory, CPU utilization, disk and network access behaviors, etc. The FM coordinates with

the Placement and Load Balancer (PLB) (Sec. 3.4.2.3). The FM periodically receives load

reports from the RAs running on each node, aggregates, and sends it to the PLB. Newly

joined nodes explicitly inform the FM, and failures are detected via the mechanisms of

Sec. 3.4.1.2 and relayed from the arbitrator to the FM as they occur. The FM’s main

actions are:

1. Create a Replica: When either: a) a replica is created for the first time, or b) a

replica goes down and FM has to re-create it. In both cases FM consults with PLB

which decides the placement for services/replicas, and FM initiates the placement.

2. Move a Replica: When an imbalance occurs, PLB calculates a replication migration

plan, and FM executes it.

3. Reconfiguration: If a primary replica goes down, the FM selects a secondary replica

and promotes it as primary. If the old primary comes up, it is marked as a secondary.
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The failure of an entire FM (replica set), though rare, still needs fast recovery. This is

handled by another stateless service called the Failover Manager Master (FMM), which

runs the same logic as the FM, except that it manages the FM instead of the microservices.

If an FM fails the FMM restarts it quickly with cached state. If the FMM itself fails,

it reconstructs its state from scratch by querying the SF-Ring. In SF-Ring, the FMM is

elected consistently using the election protocol of Sec. 3.4.1.6, i.e., as the node whose token

range contains the ID 0.

3.4.2.2 Naming and Resolution

Service Fabric’s Naming Service maps service instance names to the endpoint addresses

they listen on. All service instances in SF have unique names represented as URIs– a typical

format is SF:/MyApplication/MyService. The name of the service does not change over its

lifetime, only the endpoint address binding can change (e.g., if the service is migrated). Full

names are DNS-style hierarchical names, e.g.,

http://mycluster.eastus.cloudapp.microsoft.com:19008/MyApp/

MyService?PartitionKey=3&PartitionKind=Int64Range. This allows DNS to resolve the pre-

fix, and SF’s Naming Service to resolve the rest. The FM (Sec. 3.4.2.1) also caches name-

target mappings for fast resolution and to make fast decisions upon failures.

3.4.2.3 Placement and Load Balancer (PLB)

The Placement and Load Balancer (PLB) is a stateful SF service in charge of placing

replicas/instances (of microservices) at nodes and ensuring load balance. Unlike traditional

DHTs, where object IDs are hashed to the ring, the PLB explicitly assigns each service’s

replicas (primary and secondaries) to nodes in SF-Ring. It takes into account: i) available

resources at all nodes (e.g., memory, disk, CPU load, traffic, etc.), ii) conceptual resources

(e.g., outstanding requests at a particular service), and iii) parameters of typical requests

(e.g., request size, frequency, diurnal variation, etc.). The PLB’s continuous role is to move

sets of services from overly exhausted nodes to underutilized nodes. It also moves services

away from a node that is about to be upgraded or is overloaded due to a long workload

spike.

Large State Space: In practice the PLB needs to deal with a state space that is both

huge (hundreds of different metrics and values, conflicting requirements, etc.), and occa-

sionally quite constrained (e.g., placement of services only on certain nodes, fault-tolerance
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by avoiding replica colocation, etc.). A typical scenario involves tens of thousands of ob-

jects, replicated 3-ways, but spread over only a few hundred nodes. Worse, things change

frequently: which resources are important, how many resources a particular workload is

actually consuming, what the workload’s constraints are, which nodes are failing and join-

ing, etc., all change during the runtime of the service. This means that the decision taken

currently might not be valid in future. Therefore, it is better to continuously make small

improvements and re-evaluate them later. Quick and nimble decisions are preferable over

algorithms that try to reach an optimal state but use up a lot of resources to explore the

state space.

Simulated Annealing: In order to select a near-optimal placement of objects across nodes

given the above constraints, the PLB uses simulated annealing [146]. We initially attempted

to use LP/IP-based and genetic algorithms [147, 148, 149] but found they either took

too long to converge or gave solution which were far from optimal. We picked simulated

annealing as it bridged these worlds: it is both fast and close to optimal.

Simulated annealing calculates an energy for each state. PLB’s energy function is user-

definable but a common case is as the average standard deviation of all metrics in the cluster,

with a lower score being more desirable. The simulated annealing algorithm sets a timer

(default values later) and then explores the state space until either the timer expires or

until convergence. Each step generates a random move, considers the energy of the new

prospective state due to this move, and decides whether to jump. If the new state has lower

energy the annealing process jumps with probability 1; otherwise if the new state has d

more energy than the current and the current temperature is T , the jump happens with

probability e−
d
T . This temperature T is high in initial steps (allowing jumps away from local

minima) but falls linearly across iterations to allow convergence later.

The move chosen in each step is fine-grained. Examples include moving a secondary replica

to another node, swapping primary and secondary replica, etc. SF only considers valid moves

that satisfy constraints: i) under which the PLB operates, and ii) for fault-tolerance. For

instance, the PLB cannot create new nodes, nor can it move a primary replica to colocate

with a secondary replica of the same partition.

SF supports two modes of annealing: fast mode (10 s timer value), and a slow mode (120

s timer) that is more likely to converge to the optimal. During initial placement we run

annealing for only 0.5 s.

When the annealing ends, the energy of the system’s current state is recalculated (as it

may have changed), and the new state is initiated only if it actually improves the energy.

Moves are compacted using transitivity rules and are sent to the FM to execute.
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3.4.3 Reliable Collections

Reliable Collections provide stateful services in SF. All the use cases described in Sec. 3.2.3

directly used Reliable Collections. Internally its biggest users are Microsoft Intune and

Microsoft CRM Service..

SF’s Reliable collections include Reliable Dictionary and Reliable Queue, available as

classes in popular software programming frameworks. These data structures are:

• Available and Fault-tolerant: Via replication;

• Persisted: Via disk, to withstand server, rack, or datacenter outages;

• Efficient: Via asynchronous APIs that do not block threads on IO;

• Transactional: Via APIs with ACID semantics.

A key difference between storage systems built using SF APIs (e.g., Reliable Collections)

and other highly-available systems (such as Azure Queue Storage [150], Azure Table Stor-

age [151], and Redis [152]) is that the state is kept locally in the service instance while also

being made highly available. Therefore, the most common operations i.e., reads, are local.

Writes are relayed from primary to secondaries via passive replication, and are consid-

ered complete when a quorum of secondaries acknowledge it. Further extension points allow

an application to achieve weaker consistency by relaxing where the read can go, e.g., “al-

ways read from primary” to “read from secondary.” Our users who build latency-sensitive

applications find this particularly useful.

Applications can quickly failover from a failed node to a hot standby replica. Groups

of applications can be migrated from one node to another during maintenance such as for

patching or planned restarts.

Benefits of Reliance on Lower Layers: Reliable Collections leverage the components

described previously in this paper. Replicas are organized in an SF-Ring (Sec. 3.4.1.5),

failures are detected (Sec. 3.4.1.2), and a primary kept elected (Sec. 3.4.1.6). Periodically, as

well as when replica changes occur (node joins, failures, leaves, etc.), FM+PLB (Sec. 3.4.2)

keeps the replicas fault-tolerant and load-balanced.

SF is the only self-sufficient microservice system that can be used to build a transactional

consistent database which is reliable, available, self-*, and upgradable. The developer only

has to program with the Reliable Collections API; because lower layers assure consistency,

she does not have to reason about those. Today there are 1.82 Million such transactional

DBs over SF (100K machines).
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3.5 EVALUATION

We evaluate the most critical aspects of Service Fabric: failure detection and membership,

message delay, reconfiguration, and SF-Ring. Where available, we present results from

production data (Sections 3.5.3, 3.5.4, 3.5.5). We use simulations in cases where we need to

compare to alternative designs in a fair way (Sections 3.5.1, 3.5.6), or measure algorithmic

overhead (Sections 3.5.1, 3.5.2).

We have made Service Fabric binaries available [120]. We are looking into sharing datasets,

however we are limited by compliance reasons and proprietary issues. We are working on

open-sourcing the code for SF.

3.5.1 Benefits of the Arbitrator

Figure 3.6: Comparison: Arbitrator Vs. Arbitrator less scheme. Arbitrator handles
cascading failures and reduces the number of nodes leaving the system. M = number of monitor
per node.

To show that SF’s arbitrator mechanism (Sec. 3.4.1.4) efficiently helps maintain consistent

membership, we compare it to an arbitrator-less mechanism we designed. In the latter

approach, when a node fails to renew its lease, instead of contacting the arbitrators, it

coordinates with its neighbors and then gracefully leaves the system. Neighbors communicate

amongst each other to keep membership consistent.

Due to timeouts, both mechanisms may force good nodes to leave. Fig. 3.6 shows, for

various failure scenarios, the total number of such false positives. We observe that SF’s

original arbitrator approach incurs far fewer false positives than the arbitrator-less scheme.

In fact, the number of false positives under an arbitrator based scheme grows much slower

(with number of failure) than under the arbitrator-less scheme. This is because of cascading

failure detections (Section 3.4.1.4), while SF’s arbitrator prevents such cascades.
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Figure 3.7: Stabilization Message Count: Arbitrator Vs. Arbitrator less scheme.
Crashed Node set {1, 10, 20, 30}. M = number of monitor per node.

Fig. 3.7 shows how many messages are needed to stabilize the ring, after a failure. As we

increase the number of monitors per node (M), SF’s arbitrator’s overhead grows slower than

the arbitrator-less scheme. In fact, analytically, these overheads are linear and quadratic

respectively. When using arbitrators, a failure causes the M monitors of a failed node to

perform a request-reply to the arbitrator (2M messages). In arbitrator-less approaches, a

failure causes all M monitors to communicate with each other (2M2 messages).

3.5.2 Failure Detector Overhead

Figure 3.8: Failure Detector (FD) message overhead. Cluster messages increase linearly
with cluster size. M = number of monitors per node.

Fig. 3.8 shows the total cluster overhead of the leasing mechanism (Sec. 3.4.1.3). For

each M , cluster load scales linearly with the number of nodes (production SF uses M = 4

monitors per node). Hence SF’s leasing mechanism incurs per-node overhead that is constant

and scalable, independent of cluster size.
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3.5.3 In Production: Arbitrator Behavior

Figure 3.9: Arbitrator Call count per hour (total 9 hours of traces). Hours are rearranged
based on the churn rate.

Fig. 3.9 evaluates the load on the arbitrator group. The data is from 9 hours of a 225+

machine production cluster. Each machine hosts an expected 4 SF instances. Below, we call

each of these instances a “node”. We sort trace hours in increasing order of churn, and the

plot shows both event counts and hourly churn rate.

We explain the 4 event types. When a node A detects failure of node B and contacts

the arbitrator, there are four possible outcomes: i) Grant-Reject: both nodes A and B send

arbitration requests and only one is granted; ii) Reject-Reject: both nodes A and B send

arbitration requests, and both of them are rejected; iii) Grant-N/A: only one node in a pair

sends request and succeeds; iv) Reject-N/A: only one node in a pair sends request and is

rejected.

First we observe that a majority of hours have medium churn with between 10-15 nodes

churned per hour (Hours 2, 1, 4, 5, 8). Only 22% of hours (Hours 6, 7) have very high churn,

and another 22% have low churn (Hours 0, 3). Second, the number of duplicate messages

received at the arbitrator, and the wholesale rejections at arbitrator startup (first Tm time

units: see Sec. 3.4.1.4), are together captured by the sum of Reject-Reject and Reject-N/A

events (two topmost bar slivers). This is small at medium churn (Hours 4, 5, 8), and does not

increase much at high churn (Hours 6, 7). Hence we conclude that: i) the arbitrator’s effort

is largely focused on resolving new detection conflicts rather than re-affirming past decisions

to errant nodes; and ii) false positives due to arbitrator startup are small in number. Our

data also indicates SF nodes leave quickly after they are asked to.
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Figure 3.10: CDF of Message Delay under Churn. Normal Operation has lower churn than
with Upgrade.

1st Perc. 5th Perc. 50th Perc. 95th Perc. 99th Perc.
No Churn 1 1 1 4 24

Churn 1 1 2 14 175

Table 3.2: Tail latency: Message Delay (millisecond).

3.5.4 In Production: Message Delay Under Churn

Fig. 3.10 measures the total message delay (including routing latency) in a 24 hour trace of

205 VMs across 3 data-centers. Each VM is equipped with 24 cores, 168 GB RAM, 3× 1.81

TB HDD and 4× 445 GB SSD.

The plot shows the latency CDF for two scenarios: i) Normal Operation, prone to natural

churn, e.g., due to failures; and ii) With Upgrade, when there is higher churn due to node

upgrades, system upgrades, service upgrades, etc. Going from normal operation to upgrades,

the 80th percentile latency remains largely unaffected. Table 3.2 shows the median latency

rises only two-fold, from 1 ms to 2 ms. 95th percentile latency rises a modest 3.5×. We

conclude that SF deals with churn and upgrades in a low-overhead way.

3.5.5 In Production: Reconfiguration Time

Reconfigurations triggered by service failure, overloaded nodes, service upgrade, machine

failure, system upgrades, etc., are handled by the FM and PLB (Sections 3.4.2.1, 3.4.2.3).

Failover SwapPrimary Other
1% 20% 79%

Table 3.3: Different Reconfiguration Events. Over a 20-day trace.
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Figure 3.11: Statistics of different Reconfiguration Delays in the 20 day trace. Candle-
stick plots show the 1st and 99th percentiles, 1st, 2nd and 3rd quartiles and the average (X’s).

We collected a 20 day trace with 3 Million events from the same production cluster as

Sec. 3.5.4. Table 3.3 shows a breakdown by reconfiguration type. Only Failover and SwapPri-

mary events affect availability (total 21%). Fig. 3.11 shows that SF makes control decisions

about these two types of events quickly. The average time to perform failover is 1.9 s,

and 99th percentile is 4.8 s. While “Other” events constitute 79%, they do not affect data

availability as they deal with per-replica reconfiguration, and are quite fast.

Fig. 3.12 depicts a timeline over 6 days of these 3 event types. Large spikes are due to pre-

planned upgrades of infrastructure, application, and SF. Otherwise, we observed no fixed

or predictable patterns (e.g., periodic, diurnal). This indicates that modeling+prediction

approaches would be excessive, and instead SF’s reactive approach is preferable.

Figure 3.12: Reconfiguration Event count per hour. Started from 13th September 2017
00:00AM.

Fig. 3.13 shows the time to execute a reconfiguration. Across the week, we observe very

stable reconfiguration times. Tail latency is within 2.2 s and the average latency hovers

at around 1.0 s. This is the time to execute control actions for the reconfiguration, after

simulated annealing and in parallel with data transfer (which itself is dependent on the size of

the object). Overall, we conclude that SF reconfigures replicas very quickly and predictably.
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Figure 3.13: Statistics of Reconfiguration Delay (at placement) across six days. Can-
dlestick plots show the 1st and 99th percentiles, 1st, 2nd and 3rd quartiles and the average (X’s).

3.5.6 SF-Ring vs. Chord

Figure 3.14: SF-Ring vs. Chord: Hop Count as function of system size (log scale).
Points perturbed slightly (±0.05 on X-axis) for clarity.

We faithfully implemented a simulation of both SF-Ring and Chord [131] routing. Fig. 3.14

shows that SF-Ring messages transit 31% fewer hops in the ring than Chord. At the 1st

percentile the savings is 20% and at the 99th percentile it is 34%. The slope of the SF-Ring

and Chord lines are respectively 0.34 and 0.5. Therefore when the number of nodes doubles

Chord requires 49.27% more hops than SF-Ring.

Fig. 3.15 compares the memory cost, calculated as the number of unique routing table

entries, vs. cluster size (log scale). SF-Ring utilizes 117% higher memory than Chord. This

is the cost to achieve faster routing latency. Yet, practically speaking SF-Ring’s memory

overhead is quite small–most containers/VMs today have many GBs of memory. In compar-

ison, in an SF-Ring with 16K nodes, 99% of nodes store on average 33 routing table entries.

Conceptually, with 100 B per entry, this comes out to only 3.3 KB of total memory (SF

memory is higher in practice, but still small).

71



Figure 3.15: SF-Ring vs. Chord: Memory. Unique Routing Table Entry Count as a function
of system size (log scale).

3.6 RELATED WORK

Microservice-like Frameworks: Nirmata [34] is a microservice platform built atop Netflix

open-source components [153]: gateway service Zuul [154], registry service Eureka [155],

management service Archaius [156], and REST client Ribbon [157]. Unlike Service Fabric,

Nirmata does not have consistency and state built into the system. It also has external

dependencies. Other microservices platforms include Pivotal Application Service [158] and

Spring Cloud [159]. However, none of these support stateful services out of the box. Akka [32]

is a platform that embraces actor-based programming to build microservices. These systems

do not solve the hard problems related to state or consistency, and do not take as principled

an approach to design as SF. AWS Lambda [111] and Azure functions [160] both provide

event-driven, serverless computing platforms for running small pieces of short lived code.

SF is differentiated because it is the only data-aware orchestration system today for stateful

microservices.

SF is the only standalone microservice platform today. The systems just listed usually

require an external/remote drive for state. Akka sits atop a JVM. Spanner [161] relies

on Colossus, Paxos, and naming. In SF, beyond the OS/machine, there are no external

dependencies at the distributed systems layer.

Container Orchestrators: Container services like Kubernetes [46], Azure Container Ser-

vice [162], etc., allow code to run and be managed easily, but they are typically stateless.

SF supports state, which entails further challenges related to failover, consistency, and man-

ageability (our paper addressed these goals). Further, container systems do not provide

prescriptive guidance on writing applications; SF provides full lifecycle management.

Strong Consistency in Storage Systems: It is clear that many users and applications

prefer strong notions of consistency alongside high performance. Distributed storage sys-

tems have come full circle from relational databases to eventually consistent databases [58,

163, 164, 165, 166, 144, 167, 168, 169] to recently, high throughput transactional databases.
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After eventually consistent databases, stronger models of consistency emerged (e.g., red-

blue [170], causal+ [171], etc.). Many recent systems provide strong consistency and trans-

action support at high throughput: 1) systems layered atop unreliable replication, e.g.,

Yesquel [42], Callas [41], Tapir [43]; and 2) systems layered atop strong hardware abstrac-

tions, e.g., FaRM [172], RIFL [173], DrTM [174].

Cluster OSes: Prominent among cluster OSes that manage multi-tenancy via containers

are: Apache YARN [175] which is used underneath Hadoop [176], Mesos [110] that provides

dominant resource fairness, and Kubernetes [46].

Distributed Hash Tables and NoSQL: In the heyday of the P2P systems era, many

DHTs were invented including: i) those that used routing tables (Chord [131], Pastry [132],

Kademlia [138], Bamboo [177], etc.), and ii) those that used more memory for faster rout-

ing [141, 140]. P2P DHTs influenced the design of eventually consistent NoSQL storage sys-

tems including Dynamo [144], Riak [167], Cassandra [133], Voldemort [178], MongoDB [164],

and many others.

3.7 CONCLUSION

This chapter presents Service Fabric (SF), a distributed platform at Microsoft running

on the Azure public cloud. SF enables design and lifecycle management of microservices in

the cloud. We have described several key components of SF, showing their modular design,

self-* properties, decentralization, scalability, and especially the unique properties of the

strong consistency, and stateful support from the ground up. Experimental results from real

production traces reveal that Service Fabric: i) reconfigures quickly (within seconds); ii)

efficiently uses an arbitrator to resolve failure detection conflicts, in spite of high churn; and

iii) routes messages efficiently, quickly, and using small amounts of memory.
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CHAPTER 4: A NEW FULLY-DISTRIBUTED ARBITRATION-BASED
MEMBERSHIP PROTOCOL

Chap. 3 showed how Service Fabric embraces the unique centralized arbitrator-based mem-

bership protocol. This protocol claims to provide time bounds on how long membership lists

can stay inconsistent—this property is critical in many distributed applications which need

to take timely recovery actions. In this work, we: 1) present the first fully decentralized

and stabilizing version of membership protocols in this class; 2) formally prove properties

and claims about both our decentralized version and the original protocol, and 3) present

experimental results from both a simulation and a real cluster implementation.

This chapter is organized as follows. Sec. 4.1 Introduces and motivates the necessity

of a decentralized arbitrator based consistent membership protocol, Sec. 4.2 explains the

background and system model, Sec. 4.3 proposes the distributed arbitrator based consistent

failure detector, Sec. 4.4 performs theoretical analysis for both centralized and decentralized

arbitrator based failure detector, Sec. 4.5 presents both simulation and cluster deployment

result to measure and compare the performance of the new scheme, Sec. 4.6 analyzes the

related works and finally Sec. 4.7 concludes the chapter.

4.1 INTRODUCTION

A group membership protocol, containing a failure detector, is a critical component of

large-scale distributed systems and applications. Membership lists are used in datacenters

for various purposes including for traffic routing [179, 180, 181], for multicast [182, 183],

for replication [133], etc. These are used in distributed databases [184], publish-subscribe

systems [185, 186], peer-to-peer systems [187], online gaming [188, 189], etc.

A membership service provides, at each node (process) in the distributed system, a view

of a subset of the other nodes (processes) that are alive. We consider only fail-stop failures

(when a process crashes it stops further actions; recovering processes rejoin with a new ID).

The membership protocol automatically updates the membership list(s) upon node joins,

voluntary departures, and especially upon fail-stop failures. The failure detector component

of the membership protocol must be efficient in messages and detection time, not miss any

failures (called Completeness) [190], make few mistakes in detection (called Accuracy), and

scale with group size [36].

An additional critical requirement that we focus on is consistency. Membership protocols

in use today sit at two opposite extremes of the consistency spectrum:

74



• Weakly-consistent membership protocols provide an eventual guarantee on mem-

bership lists, with some providing a (large) time bound on convergence. Nodes may

see inconsistent views of the membership lists for very long periods of time, even under

realistic conditions like zero clock drift. Examples include SWIM [36], ring-based heart-

beating [191], gossip-style heartbeating [130, 192], etc. These are used in peer-to-peer

systems [187] and key-value/NoSQL databases [164, 193], because these applications

are themselves weakly-consistent.

• Strongly-consistent membership protocols ensure that membership lists are iden-

tical at all nodes. If the membership list delivery is totally ordered at alive nodes, this

is called virtual synchrony (or view synchrony) [38, 183, 194]. At the same time, there

are no timing guarantees on detection–alive nodes may see inconsistent views of the

membership lists for indeterminately-long periods of time, even under realistic condi-

tions like zero clock drift and reliable communication (but with unbounded latencies).

It is essential to design membership protocols which provide consistency that is a timing

guarantee for how long two nodes’ membership lists can stay mutually inconsistent w.r.t. a

membership change. This is critical in many real-world applications such as banking, stock

markets, air traffic control, vehicle routing, etc. [125, 126, 129]. In all these applications,

consistent recovery actions need to be taken in a timely manner at multiple nodes, and

concurrent incorrect actions by different alive nodes may cause significant application errors.

In Chap. 3, we unveil a new class of membership protocol which claim to provide timing

guarantees on how long membership lists stay inconsistent. First proposed as part of the

Microsoft’s Service Fabric system in Eurosys 2018 [1], these membership protocols have

provided sufficient consistency to build applications like Azure SQL DB, Azure Cosmos DB,

Microsoft Skype, Azure Event Hub, Microsoft Intune, Azure IoT Suite, Microsoft Cortana

etc.

At the same time, the consistency properties of the Service Fabric’s failure detector were

never formally proven (only hypothesized and sketched). In addition, the Service Fabric fail-

ure detector relies on a centralized component called the “arbitrator” to arbitrate conflicting

failure detection decisions.

In this paper we make the following contributions:

• We fully decentralize the arbitrator in this new class of failure detectors (Sec. 4.3).

• We propose an efficient node join mechanism to accompany the decentralized arbitrator

(Sec. 4.3.3).
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• We present theoretical analysis for our new algorithm (Sec. 4.4). Some of this analysis

also extends to the original algorithm used in the Service Fabric [1].

• We briefly present both simulation and cluster deployment results to measure and

compare the performance of our new algorithms (Sec. 4.5).

4.2 BACKGROUND AND SYSTEM MODEL

We describe the system model and give a brief overview of Service Fabric’s [1] Centralized

Membership Protocol.

System Model: We assume that clock drifts are zero, i.e., clock rates are identical. Clocks

can have skew. Messaging is reliable, timely, and ordered, e.g., via TCP. These are reasonable

assumptions in datacenters today. We consider fail-stop failures only. There might be

heterogeneity in the system, however all nodes are susceptible to failure.

Figure 4.1: Ring topology. Nodes are organized in a virtual ring. Each node maintains
neighborhood set consists of k successors and k predecessors.

Service Fabric’s Centralized Membership Protocol, using Arbitrators: Service

Fabric’s new class of membership protocols [1] separate out failure detection (i.e., the act

of finding a failure), from failure decision wherein detecting nodes start recovery actions for

the failure. Failure detection is done via a fully distributed lease-based mechanism (akin

to heartbeats). Failure decisions, on the other hand, are executed via a centralized group

of nodes called arbitrators, which act as judges to arbitrate inconsistent detections. While

centralized detection approaches like ZooKeeper [40] place the traffic of both detection and

decision on a central group of nodes, the new approach distributes heavy detection traffic

and arbitrators only handle the relatively-rare decision traffic and work.

In Service Fabric [1], nodes are organized in a virtual ring (Fig. 4.1) consisting of 2m

points. A node is mapped to a point on the ring, and so is a key (e.g., via hashing). A key

is owned by its closest node, with ties won by the predecessor.

However, the arbitrator is still centralized (at a node or at a group of nodes). This

means that if the arbitrator were to fail, or if a majority of an arbitrator group were to fail,

76



then no decisions can be made. In such circumstances, all conflicts will result in mistaken

detection+decisions and nodes being forced to leave the system.

Mechanisms Borrowed by Our Decentralized Arbitrator: Our fully-decentralized

failure detector borrows two kinds of mechanisms from the original Service Fabric detector:

leasing mechanism and failure decision. Later, Section 4.3 will build atop this to achieve the

fully decentralized detector.

While the original paper [1] only cursorily sketched the central failure detector algorithm,

here for completeness we present these important components in a formal manner. Table 4.1

presents all symbols used in this paper.

Symbol Uses

Ta Arbitration timeout interval
Tl Leasing period
Tarb (2Tl + Ta); Once an arbitrator locally logs a node as failed, after

this time units it can safely trim the log entry (Corollary 4.2)
LPQ Lease from node P to node Q
LPQ(n) nth leasing session (building block of LPQ)
LRPQ(n) nth leasing request sent from node P to node Q
LKRQCP Lock Request from a new candidate node C to the existing node

P
ACKPQ(n) Reply of LRPQ(n), sent from node Q to node P
NP Neighborhood set of node P
k Neighbor count in clockwise/counter-clockwise direction in the

ring. |NP | = 2k
APQ Node P’s view of the arbitrator group for the pair (P,Q)
Arb(P → Q) Arbitration request send from node P, suspecting node Q
Propose(ver :
P∗, Q)

Proposal message, send from node P to upgrade the arbitrator-
groupAPQ. P∗ is the proposed arbitrator-group version-number.

Table 4.1: Symbols used throughout this chapter.

1. Lease-Based Monitoring: We describe the leasing scheme in detail, and an example is

depicted in Fig. 4.2. Consider a lease LPQ between a monitor node P and its monitored node

Q. The protocol for maintaining and renewing the lease consists of consecutive, monotonically

increasing, non-overlapping leasing sessions (LPQ(∗)), each lasting for a duration of Tl time

units. Initially, at P, the status of both node Q and lease LPQ are Alive. At the beginning of

the nth leasing session LPQ(n), node P sends a Lease Request LRPQ(n) to node Q and marks

the lease session’s status as Pending. If node P receives the ack ACKPQ(n) in a timely

manner, the status of the leasing session is changed to Established.

At the end of the ongoing leasing session (Tl time units after LRPQ(n) was sent) node P
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checks the session’s status and initiates the (n+1)th leasing session only if the current status

is marked as Established. On the other hand, if the status still remains as Pending then

this is a timeout and ACKPQ(n) was not received–then node P terminates the lease LPQ and

marks STATUS(LPQ(n)) = Timeout. It also considers node Q as a Suspected node.

Figure 4.2: Lease based monitoring. Monitor node P maintains lease LPQ with its monitored
node Q.

Monitoring relationships are symmetric, stated formally as:

Rule 4.1 (Symmetric Monitoring (SM)). Neighbor nodes P and Q independently establish

leases to each other: LPQ and LQP . Without loss of generality, if LPQ(n) times out, then P

ignores all subsequent LRQP (∗) lease requests arising from Q.

2a. Failure Detection: If P’s lease request to Q times out, P detects Q as failed and

marks node Q as Suspected.

However, the lack of further knowledge makes it impossible to draw an accurate conclusion

about the suspected node’s current status. This is one of the fundamental limitations of

failure detection in asynchronous systems. Node Q could have been Suspected due to a

plethora of reasons: i) The lease-request from node P was lost; ii) The ack from node Q was

lost; iii) Slow or flaky network prevented the lease-request/ack from arriving in time; iv)

Node Q actually died; v) Nodes P and Q are partitioned out. As such, it is possible that P

and Q (and perhaps other mutual monitors) concurrently and contradictorily suspect each

other.

In order to resolve such conflicts, when a node P detects Q as Suspected, it does not take

failure recovery actions right away (e.g., reorganize the ring). Instead, P moves to a Failure

Decision mode in order to confirm Q’s failure.

2b. Failure Decision: Failure Decisions are done via a centralized group of nodes called

as arbitrator-nodes. If a failure detection of Q by P is confirmed by the arbitrator-group,
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Algorithm 4.1 Monitor-Arbitrator Protocol: Arbitrator Actions

1: Input: Arbitrator receives arb. request Arb(P → Q)
2: if arbitrator has been up for less than Tarb time units then
3: Recently-Failed ← (P ∪ Q ∪ Recently-Failed)
4: return reject
5: else if node P ∈ Recently-Failed list then
6: return reject
7: else if node Q ∈ Recently-Failed list then
8: return accept
9: else . First Come First Serve approach

10: Recently-Failed ← (Q ∪ Recently-Failed)
11: return accept
12: end if

then this implies P has permission to recover from Q’s failure: P can remove Q from its view

of the ring, claim some of Q’s keys, etc.

Rule 4.2 (Arbitration Request). If two nodes (P,Q) maintain Symmetric Monitoring and

(without loss of generality), LPQ times out, then Node P immediately sends an arbitration

request Arb(P → Q) to the arbitrator group. If it receives no response from the arbitrators

within Ta time units (Ta is a fixed parameter system-wide), P voluntarily leaves the system.

Otherwise it obeys the arbitrator group’s decision. Arbitrators follow Algo. 4.1.

3. The Arbitrator-Group: The arbitrator-group acts as a referee and provides failure

decisions. Each arbitrator node maintains small state but acts independently–there is zero

sharing across arbitrator-nodes. Each arbitrator-node maintains a list, called Recently-Failed,

which contains node IDs that it has recently declared as dead. The list contains only failures

confirmed within a fixed recent time duration (Corollary 4.2).

Algo. 4.1 describes the actions taken by an arbitrator-node on receiving a suspect request

from P about Q. If this arbitrator is new (e.g., a new joiner replacing a failed arbitrator),

then it rejects all requests and marks both suspecter and suspected nodes as failed, and

responds with a reject to P (Line 4). This boostrapping rule is needed to ensure zero-sharing

across arbitrators, and avoid bad decisions by new arbitrators.

Otherwise, if the arbitrator is well-established, it checks if P was recently declared dead–

then its request is rejected and P is again asked to leave the system (Line 6). If P is

considered alive but Q was recently marked as dead, then P’s request is accepted (Line 8).

Finally (Line 9) if both P and Q were alive, then P’s request is accepted–this means that

if P and Q simultaneously suspected each other, the winner is the one among them whose

request arrives first at the arbitrator-node.
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4. Obeying the Arbitrator-Nodes’ Decisions: Once node P detects a failure of Q,

it sends arbitration requests individually to each arbitrator-node and awaits responses for

Ta time units. A request to an arbitrator-node results is one of three outcomes: accept,

reject or timeout (Algo. 4.1). After receiving all responses or after Ta time units–whichever

occurs earlier–P marks Q as failed if and only if a majority of arbitrator-nodes (quorum

in arbitrator-group) responded with an accept vote. Notice that arbitrator-nodes respond

independent of each other and do not need to coordinate among each other. Consequently,

after a wait of (2Tl + Ta) time units since P sent arbitration requests (this wait time is

calculated in Corollary 4.3), P can safely assume that the suspected node Q has left the

system. Thereafter P can take actions to recover from Q’s failure.

Otherwise, if a majority of P’s arbitration requests result in a response that is in (reject

OR timeout), then P voluntarily leaves the system. In this way, P sacrifices itself for the

consistency of the system’s failure decisions. We call such departures as forced departures,

and later our experiments will measure them. While undesirable, forced departures are a

crucial mechanism needed to maintain membership-consistency across the system.

4.3 DISTRIBUTED ARBITRATOR-BASED CONSISTENT FAILURE DETECTOR

The downsides of the consistent failure detector described in Chap. 3 arise from the use

of the central arbitrator-group. During periods marked by a large number of node failures,

arbitrator-nodes may become congested by a high volume of requests, causing timeouts

at requesting nodes. If a majority of arbitrator-nodes are slow or faulty, all suspecting

nodes will be forced to leave the group, causing massive forced departures of healthy nodes.

Additionally, failed arbitrators need to be replaced manually in the original protocol (this

is also true in Zookeeper via “rolling-restart”)—our protocol allows automated arbitrator

replacement, as they are chosen in a self-stabilizing way from alive nodes.

To address these issues, we decentralize the arbitrator-group itself. The key idea is to

eschew having a fixed set of arbitrator-nodes. Instead, we allow each pair of monitoring

nodes (P, Q) to select its own arbitrator-group. The challenge is to ensure that this is done

in a way that retains correctness of the membership. This arbitration selection mechanism is

our first contribution. Our second contribution is handling changes in the arbitrator-group

itself–because of failures or departures, the arbitrator-group’s membership cannot stay static,

and needs to be changed over time. These two contributions are then combined with the

leasing protocol (Fig. 4.2) and the Monitor-Arbitrator protocol from Algo. 4.1 to produce

our overall membership protocol.
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4.3.1 Decentralized Arbitrator Selection

Eliminating the centralized arbitrators would be straightforward had they been fully state-

less. We observe first that the only state an arbitrator-node maintains is the Recently-Failed

list (Algo. 4.1— The Arbitrator-Group).

We note that at a minimum, to maintain consistency, this Recently-Failed list needs to be

checked only upon mutually-conflicting failures. That is, only under circumstances when P

suspects Q, and Q suspects P, and thus both P and Q send arbitration requests. For all other

requests (e.g., R suspects P after P has suspected Q), the Recently-Failed list minimizes the

number of forced detections, but is not required for consistency.

Using this observation we eliminate the arbitrator-nodes as follows: we replace them with

a subgroup of nodes chosen for pairwise arbitration. That is, we use a separate arbitrator-

group for every pair of monitoring (neighbor) nodes P and Q. Later, our experiments will

show that this does not cause an increase in forced departures.

Figure 4.3: Pairwise Arbitrator Group Formation Strategy.

Fig. 4.3 depicts our pairwise arbitrator-group formation strategy via an example. The

pairwise arbitrator set APQ maintained at P for the pair (P, Q) consists of P, Q, as well as

their respective sets of neighbors (in the ring) NP , NQ. Formally:

APQ = AQP = P ∪NP ∪Q ∪NQ (4.1)

Both P and Q maintain this mutual arbitrator list, and if their mutual leases expire, they

refer to APQ and AQP respectively for the Failure Decision.

4.3.2 Dynamic Arbitrator-Groups

Maintaining Consistency Between APQ and AQP : Node P and Q must maintain

a consistent view of APQ and AQP . Otherwise, in case of failure there is the risk that P

and Q consult with two different set of arbitrator-nodes–these partially-overlapping/non-

overlapping arbitrator-groups might independently accept both P and Q’s arbitration re-

quests, causing both P and Q to stay in the system but believing each other is failed.
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At any time P’s neighborhoodNP might change toNP (ver:P1) (because of node join/leave/failure,

etc.). Therefore, to reflect the new neighborhood, APQ needs to be upgraded to a new ver-

sion, denoted as APQ(ver:P1). However, node Q might not immediately be aware of node P’s

neighborhood change. Therefore, an immediate upgrade of APQ might cause inconsistency

between APQ and AQP .

Figure 4.4: Safe and Consistent Arbitrator Group Upgrade Strategy. For simplicity all
lease requests initiated from node Q (LRQP (∗)) and their corresponding ACKs are omitted.

Safe and Consistent Arbitrator-Group Upgrade Protocol: We use a novel ap-

proach that seamlessly upgrades the pair-wise arbitrator-groups and prevents inconsistency

between them. Whenever P needs to upgrade the current arbitrator-group for Q, it follows

a two-phase protocol that leverages the current arbitrator-group APQ in order to perform a

safe and consistent upgrade. This is depicted via an example in Fig. 4.4, and we describe

the phases below.

Phase 1: Before upgrading the arbitrator-group from APQ to APQ(ver:P1), P sends an

arbitrator-group upgrade proposal Propose(ver : P1, Q) to its current arbitrator-group APQ

(Fig. 4.4:#1). The proposal contains the new arbitrator-group version-number proposed by

P (in this case P1). These arbitrator-nodes record the proposal, and respond with acks.

This results in one of three outcomes. These outcomes and P’s subsequent actions are as

follows:

1. The majority times out: Node P voluntarily leaves.

2. The majority rejects: Node P aborts the current arbitration change attempt and

retries later.

3. The majority accepts: Node P upgrades the arbitrator-group and sends an explicit

arbitrator-group upgrade confirmation messageArbUpgrd(NP (ver:P1)) to Q (Fig. 4.4:#2).
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This message contains the updated neighborhood NP (ver:P1) and the current arbitrator-

group version-number P1. Node Q uses NP (ver:P1) to upgrade AQP and attaches the

new arbitrator-group version-number along with its future arbitration requests.

Phase 2: This phase piggybacks the arbitrator-group upgrade confirmation message with

the next scheduled lease-request/ack and thus implicitly notifies Q about the arbitration-

group change (Fig. 4.4:#3). This redundant phase ensures that even if the previous explicit

arbitrator-group upgrade confirmation message was lost, the next lease-request/ack will con-

vey it. In other words, if P and Q continue to maintain successful leases into the future,

then the arbitrator-group upgrade information will be propagated to Q within 2Tl time units

after P upgrades its arbitrator-group (Theorem 4.1).

Modified Arbitration Policy: Arbitrator-nodes perform normal request processing

based on Algo. 4.1. In addition, arbitrator-group members need to deal with the arbitrator-

group upgrade proposals as follows: when an arbitrator-node receives the arbitrator-group

upgrade proposal from node P (i.e., Propose(ver : P1, Q)), it checks if it has seen any

arbitration-group upgrade proposal from Q (i.e., Propose(ver : Q∗, P )), or an arbitration

request Arb(Q → P ) from node Q since the last Tarb time units (Corollary 4.2). If any of

these is true, the arbitrator-node rejects the request. Otherwise it locally stores the current

version (P1) for APQ and replies an accept to P.

Handling the stale arbitrator-group in node Q: However, in a rare scenario Q might

detect P as failed just before receiving the arbitrator-group upgrade message. In that case Q

sends the arbitration request to the old arbitrator-group along with the old arbitrator-group

version-number. Because at least majority of the old arbitrator-group has already accepted

node P’s arbitrator-group change request, they detect and reject Q’s stale arbitration request.

Therefore, in the case of such inconsistency, Q gracefully leaves the system.

Recently-Failed List: In the decentralized version, a node C that belongs to the

arbitrator set for a pair of nodes (P, Q) still keeps a finite Recently-Failed list. This list

consists of at most two entries: whether P was previously marked as dead (and when), and

whether Q was previously marked as dead (and when). Unlike the Recently-Failed list in

the centralized protocol (Algo. 4.1) which could be arbitrarily long, our Recently-Failed lists

are limited in size to 2 entries. Further, since each node has 2k arbitrator sets and each such

set has at-worst 4k members, by symmetry each node participates in at-most 2k× 4k = 8k2

arbitrator sets.
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4.3.3 Node Join Protocol under Decentralized Arbitrators

Because we have replaced the central arbitrator with a decentralized arbitrator, we need to

design a new node join protocol to keep the required state consistent. This is is a four-phase

protocol.

Phase 1 (Neighbor Discovery): The candidate joining node (say node C) sends a

neighbor discovery request to that node Q which currently owns the key C. (The consis-

tent ring routing algorithm described in [1] can be used for this).

If Q is currently serving another node join request, it rejects node C’s request (C can

retry). Otherwise Q replies with accept–this reply also piggybacks Q’s current neighbor set

NQ.

In the case of time out or rejection, node C backs-off and retries later. Otherwise it moves

forward by using the NQ set to calculate its own potential neighborhood set NC . This is

feasible because NC is always a subset of (Q ∪NQ) (Fig. 4.5).

Figure 4.5: Calculating the potential neighborhood. The ring-member node 17 currently
holds the key 16. Neighbor count per direction, k = 2. The candidate node (node 16) gets the
key holder’s current neighborhood set N17 = {11, 13, 19, 23}. Node 16’s potential neighbourhood set
would be N16 = {11, 13, 17, 19}.

Phase 2 (Lock Request): For correctness, our protocol needs to ensure that prospective

neighbors (monitors) of the joining node are not involved in processing another node join.

Hence joining node C next sends a lock request to all of its 2k potential neighbors, NC

(Fig. 4.6). A node receiving this lock request rejects the request only if it is actively process-

ing another node join. Otherwise the lock is granted for the next (3 · Tl) time units (time to

finish Phases 2-4). If C can acquire all the locks in time, it moves to Phase 3. Otherwise, it

releases all the established locks, backs off and retries from Phase 1.

Phase 3 (Lease Invitation): Node C establishes independent leases LC∗ and sends the first

lease requests LRC∗(1) to all members ofNC . It piggybacks its current potential neighborhood

set NC (this is used by C’s neighbor P to create the mutual arbitrator list APC based on

Equation 4.1).

Once a neighbor (node P) receives the first lease request LRCP (1) it prepares the ac-

knowledgement ACKCP (1) and initiates the symmetrically-opposite lease LPC for node C.
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Figure 4.6: Node join protocol (initiated from the candidate node C). For simplicity,
Phase 1 is omitted and only one neighbor is shown.

It piggybacks both the symmetrically-opposite first lease request LRPC(1) and its current

neighbor set NP with the ack message.

Node P also records the arbitrator set for its relationship with C: APC = P ∪NP ∪C∪NC ,

and marks the arbitrator-set as dormant. Dormant means that if the lease LPC times out,

instead of involving the arbitrator group APC , node P will clean-up the lease and neither

send further lease requests to C nor response to any of C’s future lease-requests.

Upon receiving the incoming ack ACKCP (1), node C gets the new lease request from P,

LRPC(1) and P’s neighborhood set NP . At this point node C continues the Symmetric

Monitoring according to Rule 4.1. C sends back ACKPC(1) to P. Besides, C also prepares

the arbitrator set ACP = C ∪ {NC} ∪ P ∪ {NP}, and marks this as dormant.

If at least a single lease request with any of its neighbors times out, node C discards all

the established leases LC∗, backs off and retries again starting from Phase 1. If a neighbor

(say node P) has already established a lease LPC , that lease will also automatically time out

at P (since node C will not reply back eventually). At node P, the arbitrator-group APC has

still been marked as dormant. Therefore, instead of involving the arbitrator-group, Node P

merely deletes the timed-out lease LPC , i.e., it does not attempt to renew this lease in the

future. Otherwise, if C and each of its neighbors P successfully establish symmetric leases

in this 1st session LC∗(1), then C moves to Phase 4.

Phase 4 (Wrap-up): Node C sends the 2nd lease request LRC∗(2) to all of its neighbors.

Once LRCP (2) is received, the neighbor P can safely assume that C has successfully estab-

lished the Symmetric Monitoring (Rule 4.1) with the members of NC , hence safely marks

the arbitrator group APC as active. Therefore, from now on whenever the lease LPC times

out, P will consult with the APC for failure decision.

Once node C establishes the 2nd leasing session with all of its neighbors and receives all

the corresponding acks (ACKC∗(2)), it considers itself as an active ring member and marks

the corresponding arbitrator-groups (AC∗) as active. At this point, the failure detection and
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decision algorithms (Algo. 4.1) can be used between P and C.

4.4 THEORETICAL ANALYSIS

We analyze correctness of: A) our decentralized (and thus the original centralized) arbi-

trator approach, B) our node join protocol, and C) overheads.

4.4.1 Decentralized Arbitrators

We first analyze our fully-decentralized failure detector from Sec. 4.3. Unless noted oth-

erwise, our theorems below also apply to the original Service Fabric failure detector (cen-

tralized) from Sec. 4.2 and [1]. This is a side-contribution of our paper, because the original

Service Fabric paper [1] (and its based-on white papers/patents [134, 136]) did not come

associated with rigorous analysis—we thus prove their previously-held hypotheses. Our first

theorem is specific to our new decentralized arbitrator.

Theorem 4.1 (Maximum Inconsistency Interval Between Arbitrator-groups APQ and AQP

). Consider neighbors P and Q. Say P successfully upgrades the arbitrator-group APQ at

absolute time T . If the lease LPQ stays established for long enough into the future, then: Q

will reflect the upgrade by time T + 2Tl.

Proof. To upgrade the arbitrator-group APQ, node P follows a two-step process (Fig. 4.4).

Let upgrade time T occur in the mth leasing session LPQ(m). P sends an explicit confirmation

ArbUpgrd(NP (ver∗)) to node Q. However, this explicit message might get lost in the network.

Yet, because ArbUpgrd(NP (ver∗)) will be piggybacked with the next subsequent request, if

P and Q’s mutual leases stay correct for long enough into the future, this next lease request

for LPQ(m+1) will succeed and will communicate ArbUpgrd(NP (ver∗)) to Q. Hence Q will

upgrade its view of the arbitrator-group AQP . Therefore, Q knows about the upgrade by

time T + 2Tl.

The following results hold for both the new decentralized version and the centralized

version of arbitrators.

Next we analyze failure detection times. For a given node Q, define its failure detection

time (TFD) as the time between Q’s failure occurring and all of Q’s monitors suspecting Q.

Theorem 4.2 (Failure Detection Time). When a node Q fails and at least one of its monitors

is alive, then: TFD is bounded from both below and above, as: Tl ≤ TFD < 2Tl.
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Proof. A pair of ring neighbors, node Q and node P maintains the Symmetric Monitoring

(Rule 4.1). Let Q be the failing node and P be the alive monitor. Further, let Q fail during

P’s nth lease period for Q, and the failure occurs β time units after the start of that lease

period.

1. Node P initiates the nth leasing session LPQ(n) and sends the leasing request LRPQ(n).

2. Node Q receives the lease request and replies back with ACKPQ(n). After sending this

response, Q crashes.

3. Node P receives the ACKPQ(n) in time and marks the nth leasing session as established.

Once the current session completes (which takes Tl time units since the lease request),

P initiates the (n+ 1)th leasing session.

4. However, as node Q has been crashed, node P’s (n+ 1)th session with Q will timeout

after a further Tl time units.

Starting from the point when node Q crashes, the time left at the nth leasing session

LPQ(n) is (Tl − β). Node P detects the failure at the end of the (n + 1)th leasing session.

Therefore, the failure detection time TFD = (Tl − β) + Tl. But since β ∈ (0, Tl], hence we

have Tl ≤ TFD < 2Tl.

Next we analyze how long it takes for two neighbors to mutually suspect each other.

Theorem 4.3 (Symmetric Lease Timeout). The Symmetric Monitoring (Rule 4.1) between

a pair of nodes P and Q consists of two independent leases: LPQ and LQP respectively.

Without loss of generality, assume LPQ times out first. From that point onwards, if it takes

TLT time unit to time out LQP , then: Tl ≤ TLT < 2Tl.

Proof. The run consists of the following steps:

1. Node P detects the time out of LPQ at absolute time T and starts rejecting any future

lease requests from Q (Rule 4.1).

2. At Q, let LQP (m) be the ongoing leasing session that starts just before T and receives

the corresponding ACKQP (m).

3. Starting from T , the time left to finish the ongoing mth leasing session is Tb (< Tl).

4. As the mth session was a success, Q initiates the next session and sends the lease

request LRQP (m+1) to P.
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5. However, since node P is already rejecting all of node Q’s future leasing requests, this

(m + 1)th leasing session at node Q (for P) will timeout after a further Tl time units

and node Q will finally mark the lease LQP as timed out.

Therefore, starting from the moment when P first detects the lease timeout of LPQ, Q will

also detect the timeout of LQP no more than (Tb + Tl) time units. As Tb ∈ [0, Tl), hence the

lease timeout interval TLT is bounded by Tl ≤ TLT < 2Tl.

Corollary 4.1 (Mutual Arbitration Requests). Given two neighbors P and Q, if P suspects

Q and sends an arbitration request, then: within another TarbReqInt time units, Q will also

send an arbitration request suspecting P. Tl ≤ TarbReqInt < 2Tl.

As soon as the lease LPQ times out, P immediately sends an arbitration request suspecting

Q (Rule 4.2). However, according to Theorem 4.3, LQP also times out within TLT time

units and Q immediately sends an arbitration request suspecting P. The interval (TarbReqInt)

between the two arbitration requests coincides with TLT . Hence Tl ≤ TarbReqInt < 2Tl.

We now analyze how long a suspected node can survive.

Theorem 4.4 (Maximum Lifespan of a Suspected Node). Let Q be suspected by a monitor

P, and thus Q is forced to leave the system. Starting from the moment when node Q is first

suspected by node P, the suspected node can stay in the system no later than TmaxLifespan <

(2Tl + Ta) time units.

Proof. As soon as the lease LPQ times out, P suspects Q and makes an arbitration request.

Due to the First Come First Serve (FCFS) policy (Algo. 4.1), the arbitrator accepts that

request. Q may also send an arbitration request no later than 2Tl (Corollary 4.1) time units

after, and awaits the response. The arbitrator will reject the request due to FCFS. Two

cases arise:

1. If node Q successfully receives the rejection it will immediately leave the system.

2. If the arbitration request times out (after Ta time units), node Q will leave the system

(Rule 4.2).

Starting from the failure detection at node P, the suspected node (node Q) can stay in

the system for at most (TarbReqInt + Ta) time units. Therefore, the maximum possible time

that node Q can stay in the system is bounded from above as: TmaxLifespan < (2Tl + Ta).

Corollary 4.2 (Arbitrator can safely remove any entry older than Tarb = (2Tl+Ta) from the

Recently-Failed list). A pair of ring neighbors, node P and Q is maintaining the Symmetric
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Monitoring (Rule 4.1). Without loss of generality, node P suspects Q first and sends an

arbitration request.

Once node P suspects Q, starting from that time, node Q can stay in the system for at

most TmaxLifespan = 2Tl+Ta time units (Theorem 4.4). Therefore, it is guaranteed that if the

arbitrator receives P’s request at absolute time T , at T +TmaxLifespan time units node Q must

leave the system. Hence, the arbitrator can safely remove entries from the Recently-Failed

list that are older than Tarb = 2Tl + Ta.

Corollary 4.3 (Safe time to Start Failure Recovery). Given two neighbors P and Q, if P

suspects Q (failure detection) and the arbitrator agrees with it (failure decision), then: node

P should wait for (2Tl+Ta) time-span to safely declare node Q as dead, and start any recovery

actions.

As Theorem 4.4 points, if node Q is suspected by node P at time T , counting from that

time, node Q can stay in the system for at most TmaxLifespan = (2Tl + Ta) time units.

Therefore, node P should wait for at least that time units before finally considering node

Q as dead.

Finally, we can state that our protocol (as well as the centralized protocol of Sec. 4.2 and

[1]) satisfy the time-based consistency that we outlined in Sec. 4.1:

Theorem 4.5 (Time-based Consistency). The decentralized (and centralized) arbitrator-

based failure detection protocol maintains time-based consistency, as defined in Sec. 4.1.

Concretely, after a node Q fails, within another (Ta + 4Tl) time units two conditions are

true: i) Q leaves the system, and ii) all of Q’s monitors know about Q’s failure.

Proof. When Q crashes, an alive monitor node P will detect it within TFD time units where

Tl ≤ TFD < 2Tl (Theorem 4.2). However, node P has to wait for another (2Tl + Ta) time

units to safely mark node Q as dead (Theorem 4.4). Therefore, (Ta + 4Tl) after node Q’s

failure, Q has left the system and all its monitors can start recovery actions.

4.4.2 Node Join Protocol Correctness

Next we analyze the Node Join protocol of Sec. 4.3.3.

Theorem 4.6 (Correctness of Single Node Join under Failures). The Node Join Protocol

for a given joining node maintains consistent membership lists in spite of failures.

Proof. If any of the monitors of a joining node C fails at any point before the specific

instant of time that C has successfully established the second leasing session with all of its
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monitors, then C will time out in one of the above phases, and gracefully leave the system.

Subsequently, monitors will also release their locks after the 3Tl timespan. If on the other

hand, C fails after it has finished Phase 4, our normal failure detection mechanism (Sec. 4.3

combined with Sec. 4.2 ) will detect C’s failure.

Theorem 4.7 (Correctness under Multiple Node Joins). The Node Join Protocol Maintains

consistent membership lists in spite of multiple nodes joining simultaneously.

Proof. Because a joining node C first acquires locks on its potential monitors, no other joining

nodes share the same monitors (neighbors) as C. Thus, our protocol allows simultaneous

joining nodes if and only if their neighbor sets (monitor sets) are disjoint. Together with

Theorem 4.6, this maintains consistency.

Theorem 4.8 (Time-bounded Node Join). When there are no failures or dropped messages,

then: a new joining node, after Phase 1, finishes joining in another 3 · Tl time units.

Proof. Each of the remaining Phases 2-4 take Tl time units. Hence node joining finishes in

3 · Tl time units.

4.4.3 Overhead and Downsides

Leasing Message Overhead: The leasing messages comprise of both lease-requests from

any node P to Q (LRPQ(∗)) and the corresponding acks (ACKPQ(∗)). The number of leasing

messages per second, per node, is calculated as:

2× (2k)× 1

Tl
(4.2)

This equation shows that the leasing message overhead per node scales with system size.

Additionally, Tl represents a tradeoff between overhead and detection time: selecting a

smaller Tl ensures faster failure detection, but also means frequent lease renewals and more

stabilization messages.

Partitioning Behavior: Finally, in the interest of completeness of analysis, we observe

that arbitrator-based approaches cannot avoid the well-known partitioning problem inherent

to group membership systems. Both the centralized and decentralized arbitration schemes

(Sec. 4.2, 4.3) are susceptible to collapse when the network is partitioned. In the centralized

version, in the worst case, if none of the partitions has a quorum number of arbitrators, nodes

detect failures of their neighbors in the other partitions, but are unable to obtain a quorum

number of arbitrator responses, and therefore leave the system. These forced departures
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cascade, and eventually everyone leaves the system. The decentralized version also suffers

from the same forced departure + cascading failure behavior.

4.5 EVALUATION

We implemented the decentralized arbitrator-based failure detector in both: 1) a simula-

tor, and 2) a real Java implementation, which we run on the Emulab cluster [195].

4.5.1 Impact of Arbitrator Failure (Simulation)

Figure 4.7: Impact of Arbitrator Failure. X axis represents the arbitrator + regular node kill
event. Y axis shows the total number of arbitrator/regular node in the system.

Fig. 4.7 shows, via simulation, the impact of an arbitrator crash for two different systems:

CA which uses the Centralized arbitrator from Service Fabric [1], and DA which is our

scheme. The ring consists of 32 nodes, and the CA variant uses a set of 5 arbitrators. The

DA uses 6 monitors per node.

The X-axis shows crash events–at each event, 2 nodes are killed: in CA, a member-node

and an arbitrator-node; in DA, two random nodes. The Y-axis shows the active node count.

We observe that the original CA scheme is tolerant only up to 2 arbitrator failures. With

3 or more arbitrator failures, there are insufficient number of arbitrators left to make failure

decisions, and as a result all nodes voluntarily leave the system, and the ring size (system

size) drops to 0 quickly. In comparison, our DA scheme maintains a stable system size,

which drops only by the number of crashed nodes.

In summary, we conclude that the distributed arbitrator based scheme is more resilient to

arbitrator failure.

4.5.2 Failure Detection Accuracy (Emulab)

Next we measure whether failing nodes affect detection accuracy of otherwise healthy

nodes. The main concern here is detection cascades, wherein failing or leaving nodes cause
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other nodes in the neighborhood to also voluntarily leave, due to the timeouts involved in

leasing and/or arbitration. Furthermore, because our algorithm is decentralized, it is plausi-

ble to assume that such cascading failures may be exacerbated compared to the centralized

version. This experiment implicitly measures the effect of this behavior.

Figure 4.8: Failure Detection Accuracy. X axis shows the number of nodes failed simultane-
ously. Y axis shows the total active node count in the system.

We deploy a 64-member group in an EmuLab cluster with 5 d710 nodes [196]. Each node

consists of one 2.4 GHz 64-bit Quad Core Xeon processor, 8MB L3 cache, 12 GB DDR2

Ram. The 64 nodes are in a ring, with 3 successors and 3 predecessors (thus a total of 6

monitors each).

In Fig. 4.8 we progressively kill a group of randomly-selected nodes. The x-axis shows

these simultaneous failure events. Thus this plot is a timeline plot (without showing the

time). The y-axis shows the number of alive nodes left after the detections+decisions have

stabilized, after each failure event.

Fig. 4.8 shows that, at the very first event when only one node failed, the total alive

node count becomes 63. This indicates that only the failed node leaves, and there are no

additional or cascading departures. As the reader can observe, for each subsequent failure

event, the marginal reduction in system size is identical to the number of failing nodes.

In summary, this experiment validates the desirable behavior that failures are detected

accurately, and do not force further departures of nodes due to cascades.

4.5.3 Arbitrator Message Overhead (Simulation)

One of the goals of the decentralized scheme was to reduce load on the arbitrators. This is

important as it keeps arbitrators fast and responding timely, and reduces risk of arbitration

requestors timing out.

We run a simulation with a ring consists of total 1000 nodes. First we run the centralized

scheme with α = 9 arbitrator nodes. Neighbor count in each direction of the ring (clockwise

and anticlockwise) is k = 3. f = 100 randomly selected nodes were failed sequentially. The
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interval between two consecutive failures was sufficient to bring the stability back into the

system.

Each failure causes 2k arbitration requests at each of the α arbitrator nodes, creating an

overhead of (2 · k · f · α). This implies a total of 600 messages per arbitrator node.

Figure 4.9: Incoming Arbitration Requests: CDF. Our decentralized scheme distributes
arbitration requests among 1000 nodes. The maximum number of arbitration requests received by a
node is 24.

In comparison, Fig. 4.9 shows that our decentralized scheme imposes a much lower over-

head, and creates no bottlenecks. In this scheme, the arbitrator group size varies from

(2 + 2k) to (1 + 3k) (depending on how far the monitoring nodes are from each other in the

ring). The figure shows that 80% of the nodes receive fewer than 10 arbitration requests.

The average is 5.4 arbitration requests per node, and the worst case is 24.

We conclude that compared to the centralized scheme, our decentralized approach reduces

worst-case arbitration message overhead by at least two orders of magnitude.

4.5.4 Node Join Latency (Simulation)

Figure 4.10: Node Join Latency. k = neighbor count in each direction. j = total number of
nodes tried to join simultaneously. The node joining time increases if any of the k or j increases.
As the ring grows, the node joining time decreases.

We use our simulation to measure the speed of our Node Join algorithm from Sec. 4.3.3.

Fig. 4.10 shows the node join time (normalized with respect to Tl) for different ring sizes

(x-axis is logarithmic in ring size) and different values of k, and j the total number of nodes
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attempting to join simultaneously. Nodes attempt to join at random positions in the ring.

We observe that:

1. Increasing ring size reduces latency because it spreads out the joining load more. The

minimum node join time 4Tl arises from the 4-phase node join procedure.

2. Latency increases with the number of monitors (2k) (fixing ring size and j) because

joining nodes need to coordinate with more ring neighbors (Phase 2 of the node join

protocol described in Sec. 4.3.3).

3. Increasing the number of simultaneous joiners increases latency because of the locking

involved in the joining process, which causes contention and some waiting.

In summary, we conclude that node join latencies scale very well and decrease with ring

size, and are able to accommodate simultaneously joining nodes.

4.5.5 Failure Detection Time (Emulab)

Fig. 4.11 depicts the failure detection time (normalized with respect to Tl). We use the

same EmuLab deployment described above, and vary Tl from 32 ms to 1.024 s.

Figure 4.11: Failure Detection Time vs. Leasing Interval Tl. Candlestick plots show the
1st, 2nd and 3rd quartiles and the average (X’s on plot). Y-axis normalized w.r.t. Tl.

The failure detection time TFD is bounded according to our proved result in Theorem 4.2.

That is, Tl ≤ TFD < 2Tl. On average, it takes around (1.5 · Tl) time to detect a failure.

4.6 RELATED WORK

The key component of a membership protocol is the failure detector. The formal charac-

terization of the properties of failure detectors was first offered by Chandra and Toueg [190]

where they also showed that it is impossible for a failure detector algorithm to determinis-

tically achieve both completeness and accuracy over an asynchronous unreliable network.
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Chandra and Toueg’s impossibility result [190] says that one cannot design a failure

detector in an asynchronous network that both detects all failures (completeness) and makes

no mistakes (accuracy). Subsequent failure detectors [197, 198, 199, 200, 201, 202, 130]

choose to satisfy completeness because of the need for correct failure recovery, and they

attempt to optimize accuracy (reduce false positives). Reliable failure detectors include

Falcon [203] with sub-second detection times, but the paper states that this protocol does

not scale.

Virtual Synchrony and similar approaches [38, 183, 194] offer totally-ordered and consis-

tent membership view. However, members of this protocol family suffer from scalability

limitations.

Among weakly consistent protocol are gossip-style heartbeating [130, 204] and SWIM [36].

SWIM uses random pinging for failure detection, and piggybacks failure notifications atop

such pings and acks. Such probabilistic membership approaches are used in Cassandra [193],

Akka [32], ScyllaDB [205], Serf [37], Redis Cluster [152], Orleans [206], Uber’s Ringpop [207],

Netflix’s Dynomite [208], Amazon Dynamo [144], etc.

A widely used approach to achieve the consistent membership is to store the membership

list in an auxiliary service such as Chubby [47], Etcd [209], ZooKeeper [40] etc. Offloading is

attractive but increases the dependence on a small set of nodes. Under congestion or failure

of a quorum of these special nodes, the membership service is completely unavailable. In

comparison, in our system, even under an arbitrary number of failures, membership lists

remain available.

Rapid [210] is an interesting protocol that can detect partitions (i.e., cuts). We believe

Rapid can be orthogonally combined with our decentralized arbitrator-based failure detector.

4.7 CONCLUSION

In this chapter we present the design of a new fully-decentralized membership protocol

that maintains strong time-based consistency of membership lists. Where past work relied

on a central group of arbitrators to referee decisions and conflicts on failure detections,

our approach fully decentralizes this arbitrator set. Via formal analysis, we proved impor-

tant correctness and consistency properties of our scheme, and some of these results prove

previously-held hypotheses about the centralized arbitrator scheme. Via both simulation

and cluster deployment, we showed that our decentralized membership protocol: 1) mini-

mizes forced departures of healthy nodes, 2) avoids failure cascades, 3) significantly reduces

arbitration message overhead vs. centralized scheme, 4) incurs latency that decreases with

system size, and 5) detects failures quickly.
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CHAPTER 5: LESSONS LEARNT

This chapter shares the lesson learned throughout the projects.

5.1 SERVICE FABRIC AND THE DISTRIBUTED ARBITRATION SCHEME

We outline here lessons learnt by the Service Fabric (SF) team over the years. Our role

in this has been to extract some of these lessons via discussions with the SF-team members.

5.1.1 Decisions SF-team Had to Revisit

Distributed systems are more than nodes and network: Applications are processes

running on nodes and can fail in ways that do not always lead to total failure of the node.

A common occurrence is something SF-team have come to term as “Grey Node Failure”. In

these cases, the OS continued to work without the presence of a fully functional OS disk.

The absence of a functional disk renders the application unhealthy. However, the SF leasing

mechanism continues to run at high priority without any page faults since it does not depend

on disk. SF-team have since added an optional disk heartbeat in the leasing to work around

this type of issue.

Application/Platform responsibilities need to be well isolated: Early on, SF’s

customer base was large internal teams who had systems expertise in building internet-

scale services (e.g., Azure Cosmos DB). SF-team’s initial application interaction model was

designed for such teams who had close collaboration with the team. They always conformed

to the requirements of the SF APIs. One simple example was when the platform needed to

close a replica, SF would call close on the application code and wait for the replica close to

complete. This allowed the replica to perform proper clean up. The same model does not

necessarily work with a larger set of application developers who have bugs or take a long

time to cleanly shutdown. SF-team have since made changes to SF where the close of the

replica getting stuck does not cause availability loss and the system moves past it after a

configurable close timeout.

Capacity planning is the application’s responsibility (but developers need help):

At the platform level SF-team cannot completely foresee application capacity requirements

and have been frequently asked to investigate increased latency issues that arise when the

application is driving the machine beyond its capacity like IO or memory. SF-team found
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this out the hard way when some of the core Microsoft Azure services kept having issues

due to under-provisioning. Migrating to larger hardware was the only solution. SF-team

have since instituted that all applications explicitly specify their capacity requirements like

CPU, Memory, IO, etc. The system now ensures application containers run on sufficiently-

provisioned machines and enforces developer-specified limits on these containers, so that

developers gain the insight and accountability for the capacity limits they need to specify.

Different Subsystems Require Different Investments: The Federation Subsystem

was the most intellectually challenging and took up the majority of time during the overall

15+ years of development (in these early days, the SF-team was small in size). It was

very important to get this substrate right, as its correctness and consistency was critical in

order to be able to build SF’s remaining sub-systems above it. In comparison, the failover

capabilities in the Reliability subsystem required far more human-hours as they had a larger

number of moving parts, and were amenable to many more optimizations. The team was

also larger by this later stage of the SF project.

5.1.2 Decisions That Stood The Test of Time

Monitored upgrades and clean rollbacks of platform upgrades allow faster re-

leases and give customers confidence: Customers often avoid upgrading (to the latest

SF release) because of fears around consequences of bad upgrades. SF handles this via an

automatic roll-back mechanism if an upgrade starts causing health issues in the cluster.

Rollbacks might be needed because of a bug in the application where upgrade was not being

properly handled, or a bug in the platform, or a completely different environmental reason.

SF-team have worked extremely hard to ensure auto-roll-back works smoothly, and it has

given the customers immense confidence in upgrading quickly, as they know that bad up-

grades will be rolled back automatically. This also allows SF-team to quickly iterate and

ship faster. Cases where rollbacks have gotten stuck are relatively rare.

Changes to the system should be staged: SF upgrades (for code or configuration)

have always been staged. Some customers tried to work around SF staged deployments by

performing a silent configuration deployment via external configuration stores. While this

gave the perception of faster upgrades, almost all these cases eventually caused outages due

to fat fingering. Today most SF customers understand the value of orchestrated upgrades

and adhere to them.
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Health reporting leads to better lifecycle management and easier debugging:

Applications can tap into SF’s Health Store to ensure that application+platform upgrades

are proceeding without availability loss. The Health Store also allows for easier debugging

of the cluster due to metrics it collects. This service also increases customer confidence.

“Invisible” external dependencies need care: External dependencies like DNS, Ker-

beros [211], Certificate Revocation Lists, need to be clearly identified. Application developers

need to be cognizant of how failures of these dependencies affect the application. SF-team

had an incident where a customer was hosting a large SF cluster using machines with Fully-

Qualified Domain Names (FQDNs), which meant that the SF cluster needed a DNS server

for FQDN resolution. The customer did the right thing in ensuring that the DNS service

is highly available by replicating it. However, DNS replication is only eventually consistent.

This meant that occasionally the same FQDN was resolving to two different machines (IPs),

leading to availability outages in the system. To resolve this issue, the customer switched

back to directly using IP addresses instead of FQDNs.

5.2 LESSONS LEARNT: SAFEHOME

Any device with a basic set of APIs should be compatible with SafeHome: Most

of the smart-devices expose only a limited and basic set of APIs (e.g., turn on, turn off,

set brightness to x%, etc.). We might modify the device firmware and implement/expose

more APIs to facilitate seamless integration with SafeHome. For example, implementing a

two-phase locking [90] requires modifications to the smart-device. However, there are a myr-

iad number of smart-device vendors; each comes with their proprietary designs/protocols.

In SafeHome, any special API dependency requires modifying the firmware of each of these

devices– it is not a scalable and smart choice. Systems for smart homes need to be designed

in a way so that the basic set of APIs is sufficient to support any smart-device.

Smart homes need a local fallback technique and edge is the answer: Unlike

geo-distributed cloud-centric systems (e.g., Service Fabric [1]), smart homes are signifi-

cantly smaller, but a direct human-facing system. Here, any delay/disruption might di-

rectly and immediately impact the end-user. Existing smart home orchestrators, e.g.,

Google Home, Alexa, Siri, solely rely on the remote cloud that often causes service dis-

ruption [212, 26, 27, 28]. Therefore, to ensure quick response and uninterrupted service,

systems for smart-homes should be deployed at the nearest proximity. We deploy SafeHome

at the local edge to avoid strict cloud dependencies.
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Traditional transactional management systems are not sufficient: Routines used

in smart homes are akin to transactions in Database Management Systems (DBMS). One

of the main goals of SafeHome is ensuring serialized routine execution. While looking for a

solution, we explored the serialization techniques used in DBMS systems. We found a few

factors that prevented us from directly borrowing the existing serialization techniques used

in DBMS:

i) Direct human-facing nature: DBMS typically creates a snapshot of the database, uses

it to simulate concurrent transactions, and validates the transactions at the end. It is a

widely used approach that enhances parallelism. However, SafeHome’s direct human-facing

nature prevents us from adopting such techniques. For example, simulating the long-running

routine {Water Sprinkler: turn ON for 15 minutes} for 15 minutes before its actual

execution is not a reasonable choice. As a way-around, SafeHome adopts the Pessimistic

Concurrency Control [213], where the device locks are acquired beforehand.

ii) Immediately visible outcomes: in a smart home, each intermediate operation is im-

mediately visible to the user. Any unnecessary device-changes/flickering might make the

user uncomfortable. Therefore, reducing the unnecessary device state-changes is one of the

main goals of SafeHome. Traditional DBMS based approaches do not suffer such state-

changes/flickering since they simulate concurrent transactions on snapshot first and commit

only the final results.

A pure system-centric solution alone is not enough to deal with a direct human-

facing system: The current version of SafeHome is build based on pure system design and

intentionally avoids the human in the loop. Such avoidance of humans in a direct-human

facing system often fails to meet human-expectations: for example, SafeHome handles con-

currency by re-scheduling routines, which might change the routines’ final execution order

from their initial submission order. Think of three routines R1, R2, and R3 submitted

concurrently, and SafeHome serializes them as R2, R3, R1. User-A might be OK with this

ordering, whereas User-B might prefer R1 before R3. Even worse, the same user’s preference

might change over time (e.g., in morning R1 before R3, in evening R3 before R2). A pure

system-centric solution alone is not sufficient to resolve such problems, and it is necessary

to incorporate human in the loop [51].

Existing micro-service orchestration schemes (e.g., Service Fabric) are not re-

usable in smart homes:

Both cloud-centric large scale deployments and relatively smaller smart-home deployments
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are distributed systems. It might sound intuitive to re-use some of the well-established

modules (e.g., the orchestrator). However, a few fundamental differences between these two

systems limit us from re-using components.

i) It is not feasible to replicate the physical smart-device: Cloud-centric systems are de-

signed to deal with intangible objects, where replication is used for fault-tolerance. Failure of

one object can be fixed immediately by recovering it from one of its replicas. Cyber-physical

systems, e.g., smart homes lack such luxury. It might be possible to replicate the log of the

last executed command, but it is not feasible to replicate the smart-device along with its

last executed state. Therefore, once a device fails, there is no immediate recovery. To deal

with such scenarios, SafeHome classifies commands as “must” and “best-effort”. SafeHome

rolls back the entire routine only if any of its “must” command fails.

ii) Different failure-recovery characteristics: After a smart device recovers from a failure,

its current desired state may vary. For example, after a power failure, when the power comes

back: 1) a refrigerator should be in ON state, and 2) a hair-dryer should be in OFF state.

Whereas, in case of a recovered microservice, it always retains its last state. Therefore,

SafeHome orchestrators must have a context-aware failure recovery scheme.

iii) Rolling back is not always an option in smart home: Traditional DBMS systems roll-

back by setting the relevant objects’ value to their last committed state. This scheme might

be applicable for a few smart-devices: e.g., rollback TV to its previous committed state

(ON/OFF). However, such rolling back is not feasible for a large number of smart devices.

For example, it is not feasible to undo the impact of a water-sprinkler. In such cases, smart

home orchestrators should roll back the device state (e.g., turn OFF Water Sprinkler) and

notify the user about the possible consequences (e.g., the garden is wet).

Goto-Safe States and Dilemma: For a device that fails while a routine is executing a

command on it, the edge may not know what state the device restarts in. We address this

by having devices restarted in a pre-determined “goto-state”. Goto-states are convenient

but could cause “Goto dilemmas”. If a garage door opener’s goto-state is OPEN, burglars

may be let in; if it is CLOSED, it might close on a car underneath it. Both are safety

violations. How to handle these is an open question. Note that such dilemmas also occur in

other cyber-physical environments like self-driving cars [214].
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CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1 CONCLUSION

In this thesis, we presented new internal orchestrators for maintaining consistency in

different distributed systems: i) distributed systems running on local edge devices e.g., Smart

Home and ii) large scale distributed systems running on geo-distributed data-centers e.g.

Microsoft Service Fabric.

A safe and reliable smart home requires a carefully designed routine management system,

concurrency control schemes and inbuilt safety mechanism. We presented SafeHome (under

submission [20]), a internal orchestrator designed to maintain congruent smart home state.

This is the first implementation of relaxed visibility models for smart homes running con-

current routines. It is also the first system that reasons about failures alongside concurrent

routines. SafeHome incorporates a new Lineage Table data-structure that maximizes concur-

rency by applying a unique and safe lock-leasing technique among the conflicting routines.

Our work on Microsoft Service Fabric (SF) [1] revealed how SF, a distributed microservice

framework that is designed to run on geo-distributed data centers, ensures consistency across

the entire stack. To maintain consistency, it uses an internal orchestrator that relies on a

consistent failure detector. SF is widely used to run different Microsoft Azure services.

SF’s lower-most layer contains a novel consistent failure detector that provides a consistent

view of the failed node. The consistency is systematically propagated across the whole

system in a ground-up manner where each layer forms its own notion of consistency by

leveraging its lower-most layer’s consistency guarantees. The experimental results from

both simulations and real-production traces revealed that SF: i) reconfigures quickly after a

failure, ii) efficiently uses the arbitrator group to resolve failure detection conflicts and iii)

routes messages efficiently, quickly and using small amounts of memory.

In our next work [21], we decentralized Service Fabric’s internal orchestrator that main-

tains strong time-based consistency of membership lists. Via formal analysis, we proved

important correctness and consistency properties of our scheme, and some of these results

proved previously-held hypotheses about the centralized arbitrator scheme. Via both simu-

lation and cluster deployment, we showed that our decentralized membership protocol: 1)

minimizes forced departures of healthy nodes, 2) avoids failure cascades, 3) significantly re-

duces arbitration message overhead, 4) incurs latency that decreases with system size, and

5) detects failures quickly.
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6.2 FUTURE WORK

We suggest several directions for future work related to this thesis.

6.2.1 Exploring the Optimistic Concurrency Control (OCC) for Smart Home Scenario

Currently, SafeHome uses a pessimistic concurrency control to handle concurrent routines.

The lock-based Pessimistic concurrency control is inherently slower than its Optimistic coun-

terpart. However, routines’ immediately visible execution strategy forces us to adhere to

Pessimistic concurrency control.

An interesting future direction could be to search for an abstraction that directly applies

OCC over the smart home environment. Such an abstraction will bridge the gap between

current smart homes and traditional database systems. It would also open the opportunity of

directly incorporating different concurrency and isolation schemes used in today’s database

systems and apply those into the smart home arena.

6.2.2 Decentralizing the SafeHome Orchestrator

The current version of SafeHome orchestrator is designed to run on a single edge device

(e.g., Raspberry pi), which might become a single point of failure. Therefore, it is worth to

explore ways to decentralize it.

The current Centralized orchestrator (akin to the centralized arbitrator used in Service

Fabric (Chap. 3)) efficiently manages the distributed smart-devices. Distributing the cen-

tralized core will make it fault-tolerant; however, it will introduce additional challenges. For

example, to ensure consistent execution of a routine, multiple orchestrator replicas need to

communicate and sync among themselves. This will certainly cost additional latency.

6.2.3 Adding user-friendly features

Our proposed SafeHome is a vast project, and this thesis covers only the tip of the iceberg.

The main goal of this thesis is to ensure a flexible yet serializable scheduler for handling con-

current routines. Various other user-friendly features can be added to SafeHome:

Interrupt, pauses, priorities: A complete OS for smart homes should support these fea-

tures. A higher priority routine might interrupt a lower priority routine and immediately

start the high-priority task. This is similar to process preemption [215]. However, in such
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cases, the human-facing nature of SafeHome might cause additional challenges. Our current

design does not support rescheduling routines. EV only tries to schedule a new routine be-

fore existing scheduled-routines, given that there are sufficient valid slots in the lineage table.

Device permission and Security: In a smart home, users should not have equal access

to all smart-devices. For example, only parents may have access to the garage door, while

children should not. Therefore, each device needs to maintain a per-user access rule. This

is not a new field [60]. However, incorporating such concepts into the SafeHome framework

might bring up new challenges. Current SafeHome does not deal with security. However,

one future research goal might be to infuse existing security solutions [216] in SafeHome.

Enhanced Safety Feature: Current SafeHome offers basic safety features. However, there

are scopes to enhance it. While safety properties can be specified in a myriad number of

ways [65, 66], we find that a large majority of clauses can be specified using the following

grammar.

A:- if A then A else A

A:- DeviceID.StateID ==<>!= foo

A:- ALL(A), ANY(A), !A, ATLEAST(k)(A), ATMOST(k)(A), A AND A, A OR A

A future SafeHome might support such grammars where a user may define a safety prop-

erty either because it is critical to human safety, e.g.,

if (stove==ON) then (fire-alarm==HEALTHY),

or for user convenience, e.g.,

if (GarageDoor.State==OPEN) then (GarageLight.State==ON).

6.2.4 Exploring the “Human” Facing Side of SafeHome:

Unlike conventional distributed systems, smart home is a human-facing system where the

Human-Computer Interaction (HCI) plays a vital role. Our thesis explores only the “system”

side of it. For example, in the case of a routine level conflict, our system silently aborts the

appropriate routine. This approach might seem logical with respect to “machines” (e.g.,

roomba [88], other smart-devices, etc.). However, such action might not always be the best

fit for human-users. An interesting future direction might be to explore the “Human” facing

side of such systems [51].

Designing and defining routines is another topic that needs minute attention. As smart

homes grow in complexity, designing routines to control the home also becomes an increas-
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ingly complicated and error-prone activity. Humans are prone to error; therefore, such

human-facing systems should have the capability to detect errors early.

A wrong sequence of commands/routines, poorly designed routines, or ill-maintained rou-

tines (especially when adding or removing devices, which is typical in a smart home) can

put the smart home in a precarious state.

Current safety and routine checking mechanisms presented in this thesis are proof of

concepts. It is worth investing time in designing a declarative language that allows writing

the safety properties conveniently. Besides, it needs a mechanism to check for safety property

conflicts. Detecting such conflicts is not new: for example, for network verification, several

systems such as NICE [217], Anteater [218], VeriFlow [219] and others [220, 221, 222] detect

violating rules and configurations. Similarly, in the IoT space systems such as APEX[66]

and [63, 64, 65] enable user-specified conditions and dependencies and verify them. Despite

the similarities in these approaches and SafeHome’s safety properties, SafeHome is solving

a more generic problem (including failures, conflicts, and safety violations) where these

approaches can be applied to SafeHome’s safety checker engine.
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