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ABSTRACT

This dissertation consists of three chapters on the New Zealand housing market. The first

chapter, titled “Salience of Hazard Disclosure and House Prices: Evidence from Christchurch,

New Zealand,” addresses the impacts of providing precise salient earthquake hazard infor-

mation on property values. Taking advantage of the land liquefaction zoning, known as

the Technical Category (TC) zoning, following the 2010-2011 earthquake sequence (EQS)

in Christchurch, I estimate the impacts of precise salient earthquake hazard information

on property values. Using the property transaction data from 2000 to 2008 in the City of

Christchurch, I first verify that the inherent liquefaction hazard was not capitalized before

the 2010-2011 EQS. Next, exploring the property transaction data that spans 7 years before

and after the TC zoning from 2005 to 2018, I find that the EQS prepared the market for

a price change to liquefaction hazard. The area-wide TC zoning clarified the relative lique-

faction hazard risks and reinforced the price change. Over the 7 years after zoning, average

property values declined significantly by 20% in TC3 (high liquefaction risk areas), and 7%

in TC2 (medium liquefaction risk areas). Pricing of housing is also found to incorporate the

TC information quickly. Moreover, property values increased with distance to residential

red zones (areas where liquefaction damage was beyond economical repair) the most in TC3

after the EQS.

The second chapter, titled “Is There a Slope Discount?” is joint work with Geoffrey

Hewings. This chapter attends to the construction of more reliable quality-adjusted land

price indices and focuses on the physical attributes of land that intrinsically confine land

use and possibly affect land values, land slope. In particular, we investigate if there is a
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slope discount to land price and address the role of land slope in forming more reliable

constant quality land price indices and aggregate house price indices. We find while land

slope discounts the unit land price, it has a small effect on quality-adjusted land price indices

in selected neighborhoods in Auckland, New Zealand, where sloped terrain is common.

The third chapter titled “Does Proximity to School Still Matter Once Access to Your

Preferred School Zone Has Already Been Secured?” is joint work with Sandy Dall’erba. This

chapter develops the existing literature on proximity to school further by assessing the role

of proximity to school on housing prices once access to the preferred school has been secured.

We relax the assumption of uniform marginal effects of proximity to school and exploit the

power of the quantile regression approach to test whether proximity is valued the same at

the higher and lower end of the housing market. Using property transaction data from four

school enrollment zones in Auckland, New Zealand, we find that in the most sought-after

school zones, house prices increase with proximity to school but decrease above 3.664 km.

Moreover, we find that the nonlinear effects are most prominent at the lower quantile of the

sales price distribution. In the other two school zones, proximity to school reduces house

prices. These results demonstrate that distance to school still matters within each school

enrollment zone.
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Chapter 1

Salience of Hazard Disclosure and House
Prices: Evidence from Christchurch, New
Zealand

1.1 Introduction
Continued research on natural disaster and its impacts on economics and human environ-

ments is critical as natural hazards occur not only more frequently but also at unprecedented

scales and cause enormous loss globally in recent decades. According to Lloyds City Risk In-

dex, measured by percent of annual GDP at risk, natural catastrophe and climate change are

the most significant threats to the world economy, placing 0.47% of the world GDP at risk

per annum. Among the natural catastrophe and climate category, floods and earthquakes

are the two major threats that led to 0.12% and 0.10% global GDP at risk per year.

New Zealand is ranked the second in the world for expected losses, as a percentage of

GDP, that could occur from a natural hazard in any given year (Lloyds Global Underinsur-

ance report 2018).1 The estimated annual losses amount to 0.66% of New Zealand’s GDP.

Researchers in New Zealand and around the world have long recommended disclosure of the

hazardousness of locations through maps and land use policies to increase public awareness

of the potential for natural hazards when households decide on residential locations (Montz,

1993).

The empirical studies regarding impacts of hazard disclosure (earthquakes and volcanic

1 This report is available at Lloyd’s Risk Report.
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eruptions) on property values from different parts of the world have appeared to generate a

consensus that there are adverse short-term effects but no long-term effects of hazard disclo-

sure and occurrence of the event itself on property values (Palm, 1981; Montz, 1987, 1993;

MacDonald et al., 1987; Montz and Tobin, 1988; Tobin and Montz, 1988, 1994; Bernknopf

et al., 1990; Lambley and Cordery, 1991; Beron et al., 1997; Naoi et al., 2009). However, con-

cerning flood hazards, the empirical results are inconclusive in that the impacts on property

values depend on whether the location of the floodplain is inland or coastal.2 As pointed out

by Palm (1981), hazard disclosure through zone maps was found to be not very effective,

for hazard zone maps are often not at a scale at which the location of individual properties

could be located. Even more critically, sometimes, the zones themselves do not encompass

areas most susceptible to hazard-associated damages.

Sitting on the boundary of the world’s two colossal tectonic plates, New Zealand is

highly prone to earthquakes. While earthquakes can help to create the spectacular land-

scape through mountain building and erosion, they also generate hazards to the built envi-

ronment mainly through ground shaking, fault rupture, subsidence, landslides, and ground

deformation of soil due to liquefaction.3

As an important seismic hazard, liquefaction has produced significant damage to the

natural and built environments in past earthquakes (e.g., the historical earthquakes of

Northridge in 1994, Kobe in 1995, Loma Prieta, San Francisco, in 1989 and the recent

earthquakes of Chili in 2010, Christchurch, New Zealand, in 2010 – 2011, Japan in 2011),

2 Literature on flood risk discourse includes but not limited to Troy and Romm (2004); Daniel et al.
(2009); Bin and Landry (2013). Please see Beltrán et al. (2018) for a meta-analysis.

3 See GNS Science: Earthquake Hazards or Pacific Northwest Seismic Network: Earthquake Hazards
Overview.
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and it has proved to be one of the most costly phenomena. Although liquefaction has been

recognized as a significant engineering issue and widely studied by environmental and en-

gineering society since the 1960s, few studies have looked at how aware the society is and

how responsive the market is to liquefaction hazard. According to seismic data, seismic

liquefaction and its damage to foundations and upper structures since the beginning of this

century were more frequent than before in many places around the world (Huang and Xiong,

2017). Therefore, understanding how the property market responds to this hazard is impor-

tant because knowledge about people’s reactions (and resulting decisions) to a hazard has

implications for the design of urban resilience to disasters and limit losses.

The fundamental hypothesis of hazard literature is that the impact of natural hazards and

succeeding policy intervention on the human environment (such as development and land use)

will be reflected in values and spatial locations of residential properties (Montz and Tobin,

1988). In this paper, I utilize the 2010-2011 sequence of earthquakes in Canterbury and

the subsequent residential land zoning in terms of future liquefaction performance, outlined

by the three-level Technical Categories (TCs), to analyze whether the negative impacts of

the earthquake and the liquefaction hazard zoning are manifested in the property values.

Moreover, the analysis will be extended to explore how long the adverse effects last and

how long it takes the property values to recover to the pre-earthquake price levels. First,

using monthly transaction data from 2000 to 2008 for the City of Christchurch and the 2002

and 2005 liquefaction hazard maps from the multi-stage liquefaction study in Christchurch,

I verify that the long-recognized liquefaction hazard was not capitalized before the 2010-

2011 earthquake sequence. Then, using monthly transaction data from 2005 to 2018 in the
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City of Christchurch, I adopt a standard hedonic model with both difference-in-difference

(DID) and event study designs and find that the market had gained some knowledge on

the severity of liquefaction hazard through the earthquake sequence. After the liquefaction-

hazard-based TCs were announced, average property values declined significantly by about

22% in TC3, the most liquefaction-prone TC, while property values declined by 7% in

TC2, the second most liquefaction-prone TC. The price difference between TC3 and TC2

is still as significant as about 10% seven years (in 2018) after TC announcement. These

findings are validated using both the spatial conditionally parametric–semiparametric and

the boundary discontinuity models and are robust to alternative specifications for earthquake

impact period and falsification tests. Moreover, I find that the liquefaction hazard also led

to price discounts to proximity to the residential red zones (severely liquefied residential

areas); this proximity penalty is the largest in TC3.

The primary contributions of this paper, in comparison to previous studies, are as follows.

First, while previous studies on disclosure of earthquake hazard through zone maps focus

on the impacts of existing zone maps, this paper illustrates the impacts of an earthquake-

induced hazard map disclosed immediately after significant earthquakes. Second, previous

studies mainly use DID techniques to evaluate the impacts of change in risk perceptions

after earthquakes on property prices. This paper provides a research design that enables

studying the earthquake-induced hazard zoning directly instead of changes in risk perception

or classification, as well as acknowledges the possible change in price structure induced by

hazard-triggering earthquakes. Moreover, this paper provides evidence on the salience of

hazard information, given the sharpen attention to liquefaction hazard after the 2010-2011
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Canterbury earthquake sequence.

The remainder of the paper is organized as follows. Section 1.2 describes the 2010-

2011 Canterbury Earthquake sequence. Section 1.3 reviews the related literature. Section

1.4 proposes the hypotheses and theoretical framework. Section 1.5 presents the data set.

Section 1.6 presents and discusses main results as well as robustness analysis. Section 1.7

concludes.

1.2 2010-2011 Canterbury Earthquake Sequence
Earthquakes are not uncommon in Christchurch and surrounding Canterbury region but

were never as frequent or of magnitude as those experienced before the series of 2010-2011

in Canterbury and Christchurch. Four major shocks and more than 10,000 aftershocks were

recorded in Christchurch and the surrounding areas between September 2010 and December

2011. The sequence of events was as follows:

• At 4:35 am (New Zealand Standard Time, NZST) on 4 September 2010, Canterbury

New Zealand was struck by a moment magnitude MW 7.1 earthquake at a shallow

depth of 10 km (6.2 miles). The epicenter was located about 9 km (5.6 miles) south-

east of the town of Darfield, which is 40 km (25 miles) west of Christchurch, New

Zealand’s second-largest city. This earthquake did not cause any fatality. However, it

generated devastating damage to houses, triggered widespread liquefaction, and caused

disruption to water power and sewerage infrastructure.

• At 12:51 pm (NZST) on 22 February 2011, the city of Christchurch was devastated by

an MW 6.3 earthquake (aftershock) that was centered only 10 km (6 miles) south-east

of central Christchurch at a depth of 5 km (3 miles). It caused extensive and recurrent
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liquefaction, severely damaged the land, shattered buildings, and killed 185 people.

• At 2:20 pm (NZST) on Monday 13 June 2011, a significant MW 6.4 aftershock was

felt in Christchurch, with an epicenter 10 km (6 miles) south-east of Christchurch at

a depth of 6 km (3.7 miles), following an MW 5.6 aftershock east of Christchurch at a

depth of 9 km (5.6 miles) at 1 pm. They both caused further liquefaction and damage

to buildings and land.

• At 1:58 pm (NZST) on 23 December 2011, an MW 5.8 aftershock struck offshore from

Christchurch at a depth of 7 km (4 miles), followed by an MW 5.3 aftershock at 2:06

pm and an MW 6.0 aftershock at 3:18 pm.

The land damage due to the soil liquefaction in some residential areas in the greater Christchurch

area as a result of the long-lasting 2010-2011 earthquake sequence was severe. To lead and

coordinate the recovery and rebuild from these disastrous earthquake events, the Canter-

bury Earthquake Recovery Authority (CERA) was established in March 2011. On 23 June

2011, every residential property in Christchurch was zoned into four colored categories: red,

orange, green, and white, as shown in Figure 1.1. In the residential red zone, the land was

severely damaged beyond economical repair. Initially, 5,100 properties were identified in the

residential red zone. Land needing further evaluation was categorized as orange. At first,

10,500 properties were in the orange zone and waiting for assessment. In the green zone,

the land was suitable for the repairing and rebuilding of residential properties. Port Hills

and the central city of Christchurch were categorized as the white zone. A case study by

EQ Recovering Learning in 2016 reported that by October 2012, all properties in residen-

tial areas of greater Christchurch, apart from the central city, had been zoned either red or
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green. About 180,000 properties out of 190,000 properties assessed in greater Christchurch

were zoned green. These property owners could proceed with insurance claims relating to

land damage and the repair or rebuilding of their properties.4

Based on the expected liquefaction performance in future significant earthquakes, the

residential green zone was further divided into three Technical Categories (TCs) that served

as guides to site investigation and the appropriate foundation required for each property. The

”Residential Foundation Technical Categories” map, shown in Figure 1.2, was first published

by the Ministry of Business, Innovation and Employment (MBIE) on 28 October 2011. The

public was informed on the same day the website on which land’s technical category could

be easily found by searching property address.

TCs were established using the information, including observed land and property dam-

age resulted from the 2010-2011 earthquake sequence, groundwater information, and soil

conditions best known at the time. The land is classified as TC1 (gray) if future land damage

from liquefaction is unlikely so that it is appropriate to use standard residential foundation

assessment and construction. TC2 (yellow) indicates that minor to moderate liquefaction

damage to the land is possible in future large earthquakes so that it may require shallow

ground investigations for repairing or replacing foundations. TC3 (blue) signifies that mod-

erate to severe liquefaction damage to the land is possible in future large earthquakes so

that it may require geotechnical engineering assessment to select the proper foundation for

repairing or rebuilding.5

As a consequence of the 2010-2011 earthquake sequence, approximately 60,000 residential

4 See Land Zoning Policy and the Residential Red Zone: Responding to land damage and risk to life
(2016).

5 Information is accessed at Christchurch City Council: Technical categories information.
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buildings in Christchurch were affected by liquefaction, among which about 20,000 were

severely affected by liquefaction, and around 8,000 out the 20,000 were in the residential

red zone where damage was beyond economical repair (Cubrinovski, 2013). Housing supply

statistics from Christchurch City Council show that 20,100 new residential buildings were

built between 2011 and 2018, among which 13,600 were net new residential buildings and

6,500 were replacement houses; the majority of new house construction (an annual average

of 64%) took place in greenfield areas6 of the city.

As of 2016, the estimated construction cost of rebuild by the Reserve Bank of New

Zealand (RBNZ) amounted to NZ$40 billion (in 2015 New Zealand dollars), and the rate

of rebuild was estimated to cost approximately the equivalent of 1.5% of potential GDP

per year with the rebuild expected to extend beyond 2020.7 In addition, the exceptionally

high level of earthquake insurance coverage (more than 90% of residential homes in New

Zealand have earthquake insurance) made the Canterbury earthquake sequence one of the

most heavily insured earthquake events in history.

The 2010-2011 Canterbury earthquake sequence and the resulted area-wide liquefaction

hazard zoning provide a unique opportunity to evaluate hazard disclosure and salience of

hazard information, targeting an area-wide specific earthquake hazard as opposed to an

area-wide overall seismic risk or a specific hazard disclosure in a narrower area. First, the

2010-2011 Canterbury earthquake sequence brought sharp attention to liquefaction hazard

and significantly increased public understanding of liquefaction. In addition, the liquefaction

6 Definition of Greenfield area by Christchurch City Council: area of previously undeveloped land used for
agriculture, landscape design, or left vacant, which has been identified as being suitable for development;
generally located on the outskirts of an urban area.

7 See RBNZ: Bulletin Vol.79, No.3 (Feb 2016).
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hazard assessment was performed on an area-wide basis covering all flat residential land.

Moreover, the result of the liquefaction hazard assessment (three-level TC land zoning) was

disclosed at the most sensitive time, only a few months after the long-lasting earthquake

sequence and easily accessible at the property level. As a result, the information on land

hazard zoning disclosed is well-understood by the general public. However, the closely time-

spaced earthquakes and the resulted liquefaction hazard zoning pose a challenge for the

identification of the causal effect of liquefaction hazard zoning for that the establishment of

TC is endogenous to observed liquefaction damage triggered by the earthquake sequence.

The market may respond to the observed cumulative liquefaction damage even in the absence

of the subsequent hazard classification. I overcome the identification challenge by controlling

for the long-run heterogeneous earthquake effects.

1.3 Literature Review
This paper contributes to the literature on the capitalization of seismic risk through the

hazard zone map disclosure. Brookshire et al. (1985) examine the effects of disclosure of a risk

hazard map (in a Special Studies Zone, SSZ, or not) in California on single-family housing

prices. They find that disclosure of the earthquake hazard zones has a significantly negative

impact on prices (in 1978). More recently, Singh (2019) studies the impacts of disclosure of

earthquake fault maps in California, revision of the maps over time in particular, on property

values in the City of Los Angeles. She uses the DID framework and finds that house prices

increase by 1.8% per mile increase in distance from the fault zone. She also finds suggestive

evidence that compared to Whites Blacks and Hispanics are less willing to trade consumption

for lower earthquake risk. This paper contributes to this strand of literature by studying
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the long-run and dynamic impacts of an earthquake-induced area-wide hazard zoning by

implementing a quasi-experimental research design to identify the causal effect of hazard

zoning. The area-wide hazard zoning covering all flat residential land in Christchurch allows

studying market response to hazard disclosure at a broader scale instead of the response

concentrated inside/outside or around the boundaries of the hazard zones (e.g., fault zone).

This paper also speaks to the literature by studying a specific earthquake risk on property

values. There have been relatively few studies on the impacts of different types of earthquake

risks on housing and land prices despite the obvious relevance to effective disaster prevention

policies. Nakagawa et al. (2007, 2009) address the effect of earthquake risk on land price and

housing rents using the index of earthquake risk in terms of potential damage to buildings

due to initial earthquake shocks compiled for the entire metropolitan area by the Tokyo

Metropolitan Government (Bureau of Urban Development, 1998), respectively. They show

that land prices and housing rents were lower in high earthquake risk areas. They also show

that the rents of houses built before 1981 - the amendment year of the Building Standard

Law - are marked down more substantially than for houses built after 1981 in high-risk areas.

Hidano et al. (2015) adopt a spatial two-dimensional regression discontinuity (RD) design to

study the impact of information on seismic hazard risk on Tokyo’s property market. They

demonstrate that price premium in low-risk zones varies by the type of seismic hazard risk

(the integrated seismic hazard risk, IR, and the risk of building collapse, BCR). Moreover,

they show that the prices of newly constructed apartments are not significantly affected

by the information on seismic hazard risk. Although the seismic hazard index in Japan,

such as the ones used by the Japanese studies above, is more comprehensive by including
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several types of indices, it makes the identification of the impact of a particular hazard index

difficult for the likely correlation between indices. The 2010-2011 liquefaction triggering

earthquake sequence and the subsequent liquefaction hazard land zoning in Christchurch,

on the contrary, provides a unique setting that enables the study of market response to a

specific seismic hazard.

This paper also contributes to a large body of earthquake event studies on risk percep-

tions, risk salience, and housing values. Beron et al. (1997) analyze the impact of 1989 Loma

Prieta Earthquakes on residential housing prices in the San Francisco Bay area using the

expected loss from earthquakes as a measure of perception of risk in addition to SSZ in the

hedonic price model. Moreover, soil type indices, susceptibility to ground shaking indices,

and SSZ are used to predict the expected loss from earthquakes. Their results indicate that

the hazard indices have significantly positive impacts on expected loss, hence significant

negative impacts on housing prices before and after the 1989 earthquakes. Their results also

point to a downward adjustment of perception of risk in the period after the Loma Prieta

earthquake. Naoi et al. (2009) use nationwide data from Japan from 2004 to 2007 to ana-

lyze the hedonic price of perception of earthquake risk (probability seismic hazard) and the

change in its effects before and after large earthquakes. They find that the price discounts

in earthquake-prone areas become more significant after the actual earthquake events than

before. The authors also find insignificant price discounts from locating in earthquake-prone

areas before massive quakes, suggesting that earthquake risk was either unaware or under-

estimated before large quakes. In this paper, I also find that the liquefaction hazard in

Christchurch was not taken into account before the 2010-2011 earthquake sequence, even
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with the existence of liquefaction hazard maps from a multi-stage liquefaction study.

Closely related to this paper, Logan (2017) uses a DID framework to examine the change

in risk perception related to liquefaction on price differentials in the housing market between

February 2007 and October 2012. He controls for the short-run earthquake effects (Sep 2010

and Feb 2011 quakes) and finds that after the 22 February 2011 Canterbury earthquake there

was a price premium of 15.1, 18.8 and 16.1% to live in no risk, low risk and medium risk land,

respectively, compared to high risk zoned land. Since the two earthquakes occurred only six

months apart, assuming the impact of the first earthquake disappeared by the time of the

second is likely to lead to an overestimate of the second earthquake impact. He uses the

pre-earthquake liquefaction hazard map as the base for risk perception while comparing it to

the post-earthquake TC map. Contrarily, I find that the hazard information provided in the

pre-existing 2002 and 2005 liquefaction hazard maps was not accounted for in the property

market before the 2010-2011 earthquake sequence. Hence, I estimate the impact of the

post-earthquake liquefaction hazard zoning directly, controlling for the long-run earthquake

impacts of the three liquefaction triggering quakes before hazard zoning.

For risk salience, Keskin and Watkins (2017) use a multi-level approach that allows

for spatial submarkets within an event study framework to model changes in the pattern

of house prices in Istanbul before (in 2007) and after (in 2012) the earthquake activity

in Eastern Turkey in 2011. They find that the 2011 earthquake in the Van region had

differential effects on the perceived risk of damage, which in turn form heterogeneous price

discounts in 5 submarkets from the most expensive areas (submarket 1) to the cheapest

areas (submarket 5). They show that submarkets at the cheaper end of the market have
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more significant price discounts. Fekrazad (2019) studies the house price in California from

1997 - 2016 to worldwide earthquake occurrences within the 20 years and finds short-living

(one month) negative impacts of high causality earthquakes outside of California on house

value index and median listing price in zip codes with high seismic activity. Timar et al.

(2018) compare property prices before and after the 2010-2011 Canterbury and Christchurch

earthquakes in two urban areas (one high, one low seismicity) outside of the Canterbury

region to estimate changes in price premium to soil liquefaction potential, the previously

largely ignored earthquake hazard. The only price discount they find is to liquefaction

risk in the high seismic area, which disappeared within four years after the Canterbury

earthquakes. For Christchurch, I find that the price discount due to liquefaction zoning

in the most hazard-prone zone (TC3) is still as significant as 20% compared to the least

hazard-prone zone (TC1), and 10% compared to the medium hazard-prone zone (TC2) in

2018, which is more than seven years after the land zoning and the earthquake sequence.

There are two more event studies of the 2010-2011 Canterbury earthquake sequence on

housing sales patterns. Staer and LaCour-Little (2016) estimate a simple hedonic price

model with time dummies to study the house sales prices before and after the 2010-2011

Canterbury and Christchurch earthquakes. They use monthly transaction data from 2010

to 2012 in Christchurch and show increasing use of auction and rapid increase in house

prices post-earthquakes. They utilize the delineation of Technical Categories (TCs) in their

robustness check but do not obtain consistent estimates. They do not differentiate the impact

of a supply contraction from demand effect as the result of risk assessment but mainly focus

on the increased use of auction post-earthquake that leads to high prices. They mention that
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the price increase post-earthquake is likely due to supply contraction and increased demand

from displaced families and a net influx of workers to help rebuild the city. Bond and Dermisi

(2017) examine sales price patterns before and after the 2010 September and 2011 February

Canterbury and Christchurch earthquakes, from September 2008 to June 2012, using average

trend analysis, GIS hot-spot analysis, and multiple hedonic regressions. They find that on

average sales price increased in TC1 and TC2 (relatively lower liquefaction potential areas)

in post-quake periods compared to TC3. However, they find prices in one of the TC1, and

one of the TC2 decreased relative to TC3 post the 2011 earthquake. They estimate four

hedonic regression (before Sep 2010 earthquake, after Sep 2010 earthquake, before Feb 2011

earthquake, and after Feb 2011 earthquake) for the overall area (controlling for TCs) and

for each TC. In this paper, I use a quasi-experimental design to estimate a single hedonic

model that accounts for not only earthquake-induced differential liquefaction effects but also

the liquefaction land zoning effects.

In summary, the existing earthquake hazard literature finds that hazard disclosure in

terms of earthquake or fault zone leads to price discounts in or close to the delineated zones;

disclosure of hazard risks in terms of types of earthquake hazard leads to price discounts

in more riskier areas. In addition, the actual earthquake event is found to change the risk

or damage perception and increase the price discount in risk-prone areas in the earthquake

region and found to have short-run price discounts in high seismic activity areas outside of

the region struck by earthquakes.

The next section proposes the hypotheses and the theoretical framework in detail.
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1.4 Hypotheses and Theoretical Framework
It is important to investigate how the local property market responds to hazard informa-

tion before and after catastrophic events to find the efficacy of the hazard information for

future policy designs. Moreover, in a country with a high level of earthquake insurance like

New Zealand, knowing how the property market responds to earthquake-induced area-wide

hazard assessment is essential for insurance design to mitigate the risk and cost of future

earthquakes.

Unlike Logan (2017), which studies the change in risk perception to land liquefaction

hazard defined as change from the pre-earthquake liquefaction classification to the post-

earthquake TCs, the principal objective of the paper is to investigate the direct impact of

TCs on property values. The first hypothesis to test is that the liquefaction hazard was not

capitalized into property values before the 2010-2011 earthquake sequence. Although the

liquefaction hazard was highlighted during the 2010-2011 earthquake sequence, earthquake-

induced liquefaction and lateral spreading have long been recognized as potential hazards

for some areas of Christchurch. As pointed out by Logan (2017), the pre-purchase Land

Information Memorandum (LIM) well documented the liquefaction risk before the 2010-2011

earthquakes. A LIM is a comprehensive Council report that sets out all property information

and any known hazards, including liquefaction risk, for the property whose records are kept

by the Council. Moreover, Environment Canterbury (ECan) published liquefaction hazard

maps for Christchurch in a five-stage study undertaken by Beca Carter Hollings & Ferner Ltd

from 2001 to 2005. However, individuals were not required to request LIM before purchase,

nor could they easily tell how susceptible their land was to liquefaction hazard from the
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liquefaction maps. Besides, since the 1990s, the government-owned Earthquake Commission

(EQC) has been automatically providing equal amount of capped natural disaster insurance

(EQCover) for all residential properties in New Zealand that have fire insurance from private

insurance companies irrespective of its location, risk and size, with a capped NZ$100,000

(US$67,060) to building damage and a capped NZ$20,000 (US$13,412) to contents damage.

Under this scheme, property owners pay a flat rate of 5 cents per NZ$100 (about an annual

cost of NZ$69, including GST). Any over-cap coverage can be purchased from the private

sector. According to Nguyen and Noy (2019), fire insurance is required for home loans

so that more than 90% of residential properties in New Zealand are covered. Hence, I

hypothesize that the liquefaction hazard was not taken into account for housing purchases

and not capitalized into property prices in Christchurch before the 2010-2011 earthquake

sequence. I will test this hypothesis using the liquefaction hazard maps from stage II (2002)

and stage IV (2005) studies.

Acknowledging the first hypothesis that the property market did not account for the

liquefaction hazard before 2010, I propose the main hypothesis that as the salience of liq-

uefaction hazard and damage was heightened by the earthquake sequence the market took

TCs instead of the change in hazard classifications into consideration. TCs outline the risk

and damage from future liquefaction using land and property damages accrued from the

2010-2011 earthquake sequence, and the public can easily find out the TC of any property

by searching the property’s address on the provided website. Although potential sellers are

not responsible for disclosing information on TC to potential buyers, government agencies,

including EQC, urge the public to perform due diligence before selling or buying. The
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2010-2011 earthquake sequence not only put liquefaction in the public spotlight but also

required insurance and lending industries to review their policies. The EQC increased its

flat-rate levy from 5 to 10 cents per NZ$100 (an annual cost of NZ$207 including GST)

on February 1, 2012, and furtherer increased the rate to 20 cents per NZ$100 (an annual

cost of NZ$276 including GST) on November 1, 2017. Starting from July 1, 2019, the EQC

increased its coverage for building damage from NZ$100,000 to NZ$150,000 and withdrew

contents coverage. The EQC pricing is still not risk-based; yet, many private insurance com-

panies have been moving towards more risk-based pricing. Besides, according to Advanced

Mortgage Solutions, although lenders are asking for the EQC documents regarding prop-

erty’s earthquake-damage assessment and the repair status for all properties purchased in

Christchurch regardless of TC, more information is required for lending in TC3 properties.

Hence, it is reasonable that the public would consider TCs instead of the change of hazard

classification for house purchases after the 2011-2011 earthquake sequence.

The hazard literature has suggested a decrease in utility from a particular land parcel on

which damages accrued from the natural hazard. How liquefaction hazard affects property

prices can be illustrated through a simple expected utility model.

Following Brookshire et al. (1985), I assume that individuals account for the relative

liquefaction hazard that classified as l and maximize expected utility from house consump-

tion over two states, earthquake state with probability π, and no earthquake state with

probability 1−π:

V = πUe[W − p(a, l)− l]+ (1−π)Une[W − p(a, l)] (1.1)

V is the expected utility; U is the continuous and twice differentiable utility that depends
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on the wealth level W and the price of house p(a, l). The price of house depends on a vector

of the structural and location attributes a and the land liquefaction hazard attribute l.

p(a, l) is also twice continuously differentiable. In the earthquake state, earthquake-induced

liquefaction also causes an actual loss l. The subscripts e and ne stand for earthquake and

no earthquake states. U is also assumed to decrease with liquefaction hazard. Although

the Loma Prieta earthquake revealed that 1−π changed over time, simplifying it as time-

independent would not change the sign of prediction below.

The utility-maximizing choice of hazard attribute l is then characterized by:

U ′e
U ′ne

=−
(1−π)p′l
π(1l + p′l)

(1.2)

p′l =−
πU ′e

πU ′e +(1−π)U ′ne
< 0 (1.3)

Equations (1.2) and (1.3) imply that the ratio of the marginal utilities of the earthquake

and no earthquake states is equal to the ratio of marginal prices of the liquefaction hazard

weighted by the probability of the two states. Further, the liquefaction hazard (as shown in

equation 1.3) is negatively priced (i.e., as the level of liquefaction hazard increases, the price

decreases). Therefore, I expect that as individuals gained information on the area-wide liq-

uefaction hazard assessment when TCs were announced, utility from the more hazard-prone

land (TC3 and TC2) would decrease and be manifested in depressed property values. Since

TC3 is the most hazard-prone zone, property values in TC3 are expected to decrease more

significantly. In TC1, where liquefaction hazard is unlikely, l in equation (1.1) approaches

to 0 so that characterized in equation (1.3) also approaches 0. Hence, TC1 would be used

as the reference category in the empirical analysis.
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Left out of the above framework is the change in housing demand and supply over time

as the result of the 2010-2011 earthquake sequence in Christchurch. The estimated loss of

residential housing stock in Christchurch was around 5% (8,000 houses); to put this into

perspective, there had been about 2,000 new residential buildings added to Christchurch’s

housing stock every year since 2003 to 2007 and a loss of 8,000 houses amounted to 4 years

of the city’s housing supply. The 2018 Stats NZ report showed that in the two years since

June 2010, Christchurch’s population had declined by about 20,000 people (5% of its usual

population). Housing supply statistics from Christchurch City Council show that 20,100

new residential buildings were built between 2011 and 2018, among which 13,600 were net

new residential buildings and 6,500 were replacement houses; the majority of new house

construction (an annual average of 64%) took place in greenfield areas of the city. The

statistics also show that the construction boom took off in 2013, with more than 3,000

new houses built every year since 2014; the current housing stock is higher than the pre-

earthquake level. Also, according to Stats NZ’s 2018 report, Christchurch’s population

returned to the pre-earthquake level in 2017. Altogether, there was evidence that housing

pressure increased in Christchurch post-earthquakes at least until 2012.

1.5 Data

1.5.1 Housing Sales Data

Monthly unit record sales data used in this paper were obtained from Quotable Value

Limited (QV) powered by CoreLogic NZ Ltd, which is responsible for conducting prop-

erty market valuations in New Zealand. Purchased monthly data encompasses the City of
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Christchurch and covers the period from January 2000 to December 2018.

Basic QV data includes selling price, sales date, property address, floor area, land area,

and various structural characteristics, along with the view and hazard information (e.g.,

inside/outside historical flood zone8 and distance to the Christchurch coast). The analysis is

targeted to all types of houses but not apartments. In total, there are 250,726 observations.

Dropping observations with incomplete information on selling price, land or floor areas,

structural characteristics, view, earthquake, flood and tsunami hazards, and observations

with construction period longer than the selling year results in 117,154 transactions from

59,281 unique properties. An examination of the data reveals that sales price, land area, floor

area, number of bedrooms, number of bathrooms, and number of carparks are all skewed

to the right. Hence, each year, the outliers are dropped using the following process. First,

the bottom 1% and the top 3% of sales prices were dropped. Then, the bottom and top

1% of the land was trimmed, followed by dropping the bottom and top 1% of floor areas.

A further filtering step was taken to drop observations with the number of bathrooms, the

number of bedrooms, and the number of carparks that are in the top 1%, respectively. At

the end of the trimming process, the sample reduces to 107,486 observations from 55,046

unique properties.

1.5.2 MBIE Technical Categories

In addition to the property hazard information provided in the QV dataset, MBIE tech-

nical categories (TCs) for foundation systems supplied by CERA are also used. To assign

the technical category (TC) to each of the 55,046 unique properties, the following procedures

8 99.82% of the observations are inside the historical flood zone in the final analytical sample. Hence,
flood zone hazard is neither reported in the summary statistics nor used in the empirical analysis.
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are taken.

Land Information New Zealand (LINZ) is the government department responsible for

managing land titles, geodetic and cadastral survey systems, topographic, and information

as well as Crown property. LINZ’s Address Information Management System (AIMS) con-

tains information on address position, address ID, parcel ID, and components of each address

such as address number, street number and road name that can be combined into single full

addresses and linked to the housing address in the QV. At the end of this step, 54,635 unique

properties (106,760 observations) have their address positions found in AIMS. Then, the rest

of the 411 unique properties (726 observations) have their addresses geocoded in R and over-

laid to the map of New Zealand Primary Land Parcels downloaded using LINZ Data service.

The geocoded addresses that fall on a road had their positions hand-corrected. Next, all

the addresses are overlaid to the MBIE Technical Categories Land Zoning map that assigns

the flat residential land (CERA Green Zone) one of the three TCs (TC1, TC2, and TC3)

on an area-wide basis. The MBIE TC map is accessed from ArcGIS online. In total, there

are 8,852 unique properties (17,251 observations) in TC1 (gray), 27,774 unique properties

(55,575 observations) in TC2 (yellow) and 9,300 unique properties (18,922 observations) in

TC3 (blue). There are four additional zones provided in the MBIE map: residential red

zone, urban nonresidential, rural and unmapped, and Port Hills and Banks Peninsula. 19

unique properties (28 observations) are in the residential red zone. 2,265 unique proper-

ties (4,025 observations) are in the urban nonresidential areas, and 2,070 unique properties

(3,535 observations) are in the rural and unmapped areas. 98% of the transactions in the

urban nonresidential and rural unmapped areas occurred after the 2010 September earth-
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quake. 4,763 unique properties (8,147 observations) are in Port Hills and Bank Peninsula,

where land is significantly elevated due to the hilly and mountainous features. Hence, to

complete, the 9,098 unique properties (15,707 observations) that fall outside of the three

technical categories and 19 unique properties (28 observations) that fall in residential red

zone are dropped. The final sample contains 91,748 observations from 2000 to 2018.

A set of geographical distances is also calculated for each property. Distance from the

Central Business District (CBD) is measured as straight-line kilometers (km) from a house

to the boundary of the Cathedral Square census area unit.9 Distance from each of the four

types of parks (regional, botanical, community, and sports park) is kilometers from a house

to the boundaries of the nearest park of each type. Distances from hospitals are kilometers

from a house to the nearest public hospital and the nearest private hospital. Distance from

the water is kilometers from a house to the boundary of the nearest water body (i.e., lagoon,

lake, pond, reservoir, and river). Finally, the distance from the boundary of the nearest

residential red zone is also computed for each house.

Summary statistics for the final analytical sample of 91,748 observations are shown in

Table 1.1. The mean selling price from 2000 to 2018 is NZ$331,438, with an average floor

area of 154.37 m2 and a mean land area of 667.68 m2. Houses sold in the 19 years are most

likely to have been built in the 2000s (20%), 1960s (16%), 1950s (13%), and 1920s and 1970s

(10% each). 89% of the properties have the typical design and an average to good quality

of the era of construction.10

9 Definition of Area Unit by Statistics New Zealand: area units are aggregations of the smallest census
geographic area, meshblocks, in New Zealand. The median size of area units is 2,000 people, while
three-quarters of area units have a population between 100 and 4,000.

10 The purchased data provides a three-level quality code of the building: 1) Superior design and first-class
quality of fixtures; 2) The design is typical of its era, and the quality of the fixtures is average to good;
3) The design is below the level generally expected for the era, or the level of fixtures is barely adequate
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On average, houses are 4.6 km from the CBD, 7.08 km from the Christchurch coast, 3.84

km, and 5.05 km from the nearest public and private hospital, respectively, 1.40 km from the

nearest water body, and 3.83 km from the nearest residential red zone. The mean distances

from the nearest regional, botanic, community, and sports parks are about 2.48 km, 1.80

km, 0.21 km, and 0.40 km, respectively. Finally, 19%, 61%, and 21% of the observations are

in TC1, TC2, and TC3, respectively.

1.6 Empirical Models and Results

1.6.1 Liquefaction Hazard Before 2010-2011 Earthquake

Sequence

A possible concern is that the liquefaction hazard was captured in the property market

even before its massive manifestation in the 2010-2011 earthquakes. After all, the 2001-2005

Christchurch multi-stage liquefaction study was conducted to evaluate the long-recognized

potential liquefaction hazard. If this were the case, the market would have updated its

perception of the hazard when TCs were announced, and it would have been the changes

in risk classification rather than TCs that mattered. Hence, I start by testing the first

hypothesis on market response to the liquefaction hazard before the 2010-2011 earthquake

sequence using the 2002 and 2005 hazard maps from the 2001–2005 five-stage study. The

2002 and 2005 liquefaction hazard maps can be found in the ECan report of the same year.

The ECan provided the shapefile of the 2005 hazard map; the 2002 hazard map was first

digitized from the 2002 stage II report, and then geo-referenced and converted to a shapefile

and possibly of below-average quality.
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in ArcGIS.

The 2002 liquefaction hazard map is shown in Figure 1.3, which covers a smaller area

than the TC map in Figure 1.2. It provides three risk classes: high, moderate, and low. The

straight-line distance from the boundary of the nearest risk class was calculated for each

house. If a house falls in a risk class, its distance to that risk class would be 0; a house is

then assigned the risk class into which it falls.

To verify whether the potential liquefaction hazard presented by the 2002 study map was

priced in the property market, I run the following hedonic model for the period 2000 to 2005

that covers three years before and after the study:

log(Pigt) =
3

∑
g=2

δg ∗Riskg + γ ∗ post2002+
3

∑
g=2

λg ∗ (Riskg× post2002)

+X ′igt ∗α +Z′igt ∗β +ρt +φs +µau + εigt (1.4)

i = 1, · · · ,N, εi ∼ N(0,σ2
i )

The dependent variable log(Pigt) is the log of the selling price of house i in group g in year

t. The independent variables to test are the risk classes (Riskg) post-2002, whose effects are

measured by λg. I control for property characteristics (Xigt), proximities to amenities (Zigt , I

allow for nonlinearity), year fixed effects (ρt), seasonal fixed effects (φs) and area unit fixed

effects (µau). Estimates in Appendix Table A.1 suggest that property values did not respond

to the 2002 liquefaction hazard classes.

Figures 1.4a and 1.4b present the liquefaction hazard maps based on the summer and

winter groundwater levels, respectively, from the 2005 study. Both maps provide more risk

classes than the 2002 hazard map. Again, the straight-line distance from the boundary of
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the nearest risk class was created for each house in both summer and winter schemes, and

distance to a risk class would be 0 if a house falls in the area of that risk class. I also create a

joint map by combining the summer and winter maps in the way that each site was assigned

the risker class of the two, as shown in Figure 1.4c, with each house is then assigned the risk

class into which it falls.

To verify whether the potential liquefaction hazard assessed and updated in the 2005

study was capitalized in the property market, I run the following hedonic model for the

period 2003 to 2008 that covers three years before and after the study:

log(Pigt) =
6

∑
g=2

δg ∗Riskg + γ ∗ post2005+
6

∑
g=2

λg ∗ (Riskg× post2005)

+X ′igt ∗α +Z′igt ∗β +ρt +φs +µau + εigt (1.5)

i = 1, · · · ,N, εi ∼ N(0,σ2
i )

The independent variables to test are the risk classes from 2005 study (Riskg) post-2005, the

effects of which are measured by λg. Estimates in Appendix Table A.2 suggest that property

values did not respond to the 2005 liquefaction hazard classifications in a meaningful way.

Altogether, the results of these two pre-earthquake tests suggest that liquefaction hazard

was not previously capitalized in the property market, indicating that the public either was

not aware of the hazard or did not care about the hazard.

1.6.2 Long-run Impacts of TCs - Baseline DID Models

The main objective of this paper is to identify the impact of the assessed liquefaction haz-

ard classified by land’s Technical Categories (TCs) on property prices. The pre-earthquake

tests show that property prices did not differ by potential liquefaction hazard before the
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2010-2011 earthquake sequence, suggesting the absence of pre-existing risk perception to liq-

uefaction hazard. Once liquefaction caused wide-spread damage and gained sharp attention

during the earthquake sequence, it is reasonable to assume the market responded to the TCs

that was announced immediately after the earthquake sequence instead of the change in risk

compared to the pre-existing classification.

Hereafter, transactions from 2005 to 2018 are used to examine the effects of TC zoning.

It spans seven years before and after the TC announcement. In Figure 1.5, the three TCs

exhibit similar pre-trends before TC announcement, suggesting that DID can be used to

provide causal estimates of the impact of TC zoning.

TCs were established mainly using information (including land and property damages

and liquefactions) collected after the 2010-2011 earthquakes. Hence, a possible concern is

that it is likely that the property market responds to the occurrence of severe earthquakes

rather than the delineated land technical categories. To overcome the problem, timings of

the three significant quakes that led to hazard assessment are also controlled for in addition

to the timing of the TC announcement in the hedonic model below:

log(Pigt) =
3

∑
g=2

δg ∗TCg +
4

∑
e=1

γe ∗ poste +
3

∑
g=2

4

∑
e=1

λg,e ∗ (TCg× poste)

+X ′igt ∗α +Z′igt ∗β +ρt +φs +µau + εigt (1.6)

i = 1, · · · ,N, εi ∼ N(0,σ2
i )

poste is an indicator for the transaction being occurred after event e. Four events included

in this specification are earthquakes on September 4, 2010, February 22, 2011, and June 13,

2011, and the announcement of TCs on October 28, 2011.
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Event Impact Period Indicator

EQ1 [Sep 04, 2010, -] post1 = 1

EQ2 [Feb 22, 2011, -] post2 = 1

EQ3 [Jun 13, 2011, -] post3 = 1

TC [Oct 28, 2011, -] post4 = 1

With this specification, the impact of each earthquake is assumed to be constant and

long-lasting to overcome the concern of delayed earthquake effects; the cumulative impacts

of successive quakes are the sums of the individual impacts. The coefficients of interest are

λg,e, which are the coefficients on indicators for TCg interacted with poste. As before, I

control for property characteristics (Xigt), proximities to amenities (Zigt), year fixed effects

(ρt), seasonal fixed effects (φs), and area unit fixed effects (µau). I also estimate the above

model with distance to the nearest residential red zone (area with significant and extensive

liquefaction damage and not habitable in the near future) and its interactions with TCg and

post4. Properties in the residential red zones were demolished over the years. Up to 2018,

some parts of the red zones were reverted to swampland, and others became vacant land with

unruly vegetation. Interacting TC with distance to the red zone allows for heterogeneous

effects of TC zoning to the possible loss of amenity in red zones or the high liquefaction risk

potential being closer to the red zones.

Column (1) of Table 1.2 presents the baseline specification denoted by equation (1.6).

Estimates show that the 2010 September earthquake and the devastating 2011 February

earthquake, the first two in the sequence, caused area-wide adverse effects on property

values, though not statistically significant. The succeeding significant aftershock in June

2011 depressed prices in TC3 by 8.1% compare to TC1 and TC2. This suggests that as
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massive liquefaction was observed after the three liquefaction triggering quakes, the market

had obtained some knowledge to distinguish the severity of liquefaction hazard of at least

some places later zoned as TC3; yet, at this stage, the market had not enough information

to assess the risk in the rest of the city. Once the TCs were established and announced on

October 28, 2011, it clarified the hazard information to the public which was not apparent

before and reduced prices in TC2 and TC3 by 7.4% and 21.8% compared to TC1 respectively,

suggesting that the informative TCs not only introduced price discounts in TC2 but also

enhanced price discount in TC3. Being classified TC3 caused prices to decrease by 14.4%

(t =−4.15) compared to TC2; this confirms the hypothesis that as the earthquake sequence

heightened the salience of liquefaction hazard and the resulted TC zoning, house prices

in TC3, the most hazard-prone area, decreased significantly. Caution must be taken to

interpret the results. The most liquefaction hazard-prone area, TC3, may have also suffered

most from property loss that could result in a contraction in house supply. However, supply

contraction, ceteris paribus, would result in an increase in price. That is, if the counteractive

supply factor is present in TC3, the estimated 21.8% decrease in price in TC3 would be

an underestimate of the average impact of hazard zoning in TC3. Additionally, with this

empirical specification, the effect of each earthquake never goes away; hence, for this reason,

the estimated average impacts of TC zoning are also underestimated.

In column (2), I include distance to the boundary of the nearest residential red zone

(the extensively and severely liquefied area that are not habitable in the near future) and

its interaction terms with TCs after TC zoning, which increased the R-squared slightly

from 61.2 to 61.6 percent. After including these additional distances to red zone controls,
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the impacts of the earthquakes were not affected. However, the differences across TCs

before the first earthquake disappeared, suggesting that distance to residential red zones is

an important determinant of the spatial equilibrium. The 2010 September and the 2011

February earthquakes still appeared to have no significant effects, while the June aftershock

depressed property prices in TC3 by 8.8%. Once the TCs were introduced, property prices

dropped by 3.9% (not statistically significant) and 20.8% in TC2 and TC3, respectively,

comparing to TC1. Being classified TC3 caused prices to decrease by 16.9% (t = −4.66)

compared to TC2. These results verify that the repeated liquefaction that occurred in

the earthquake sequence changed the price structure slightly, and the area-wide TC zoning

helped the market to reinforce the structure of change to the levels of liquefaction hazard.

Regarding distance to the residential red zones, estimation results in column (2) show that

property values increased with distance to the residential red areas most in TC3 after the

earthquake sequence. This suggests that not only the effects of TC zoning are not fixed in

space, but also the change in the price structure also occurred due to the loss of amenity in

red zones or higher risk perceived be closer to red zones.

Altogether, estimation results in columns (1) and (2) of Table 1.2 provide evidence that

the market had acquired some knowledge on the severity of liquefaction hazard in at least

some areas later classified as TC3 by the third quake and the earthquake sequence had

triggered a structural change to the hazard. After the levels of hazard were clarified on

an area-wide scale as TCs, it reinforced the structural change; property values in the most

hazard-prone TC (TC3) dropped the most. Moreover, price discounts also occurred in terms

of proximity to the residential red zones. Furthermore, the price impact of TC zoning is not
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fixed in space; houses closer to residential red zones are penalized more within each TC; this

proximity penalty is the largest in TC3.11

1.6.3 Dynamic Effects of TCs - Event Study

The hazard zoning is time-invariant, yet the effects of the zoning might change over time.

Hence, this section presents an event study analysis that examines the dynamic effects of

liquefaction hazard zoning by comparing houses in TC2 and TC3 to houses in TC1. The

following regression is estimated, where r indexes the year relative to the TC announcement

date:

log(Pigt) =
3

∑
g=2

δg ∗TCg +
7

∑
r=−7

γr +
3

∑
g=2

7

∑
r=−7

λg,r

+X ′igt ∗α +Z′igt ∗β +ρt +φs +µau + εigt (1.7)

i = 1, · · · ,N, εi ∼ N(0,σ2
i )

In the above equation, TCg is an indicator for being in technical category g, γr represents

coefficients on indicators for year relative to TC announcement date, and λg,r are the coef-

ficients on indicators for the interactions between technical category g and relative year r.

TCs were announced on October 28, 2011; hence, r =−1 corresponds to October 28, 2010 -

October 27, 2011, and so forth (Appendix Table A.3). In total, the analytical data covering

2005 to 2018 ranges from -7 years to 7 years to the introduction of TCs. In the analysis, two

years before the TC announcement (r =−2: Oct 28, 2009 – Oct 27, 2010) is set as the refer-

ence time to avoid the potential negative impacts caused by the 2010 September earthquake.

Although the first earthquake struck on Sep 4, 2010, Oct 28, 2009 - Oct 27, 2010 still largely

11 A discussion of structural and amenity controls is presented in Appendix section A.3.
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represents the time immediately before the earthquake sequence and property price in this

period is arguably the pre-earthquake price. Again, I control for property characteristics

(Xigt), proximities to amenities (Zigt), year fixed effects (ρt), seasonal fixed effects (φs), and

area unit fixed effects (µau). I also estimate the above model with distance to the nearest

residential red zone and its interactions with TCg and γr.

Figure 1.6a plots the estimated dynamic impacts of TCs (λg.r) without controlling for

distance to the red zones, while column (1) of Table 1.3 reports the estimates. Within the

year TC was announced, relative sales price in TC3 decreased by 15.9%; up to the third

year, the price level in TC3 had dropped by 38.3% relative to TC1. By the end of 2018,

the price discount due to TC zoning is still as substantial as 20.7% in TC3 compared to

TC1 and TC2. On the other hand, zoning introduced a milder effect, about -6%, in TC2

since the second year of zoning; the effect due to zoning almost disappeared by the end of

2018. Dynamic TC effects with distance to the red zones are plotted in Figure 1.6b, which

are in similar magnitudes to results in Figure 1.6a. Corresponding estimates are presented

in column (2) of Table 1.3. Structural change in distance to the red zone can be seen in

Figure 1.6c. This proximity penalty is the largest in TC3; at its most significant, the price

penalty in TC3 is about 5.8% per kilometer closer to the residential red zone. Results in this

section not only confirm a long-lasting change in area-wide price structure due to hazard

classification but also show that the effects of hazard zoning get muted three years after

zoning. Even with the zoning effects getting smaller over time, it took seven years for the

price differential between TC2 and TC1 to disappear. Moreover, the average price in TC3

was still about 20% lower compared to TC1 seven years after zoning.
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1.6.4 Robustness Analysis

In this section, I test the robustness of the impacts of the liquefaction hazard zoning to

various specification changes.

1.6.4.1 Falsified Technical Categories and Zoning Dates

First, I perform two placebo tests by re-estimating the baseline model with falsified tech-

nical categories and falsified zoning date, respectively. The 2005 liquefaction hazard classes

are used as the base to form the “falsified” TCs. First, the six liquefaction hazard classes

are grouped into three classes as follows: high and high-uncertain are grouped as “high”,

moderate and moderated-uncertain are grouped as “moderate”, low and low-uncertain are

grouped as “low”. Next, each property is assigned one of the three risk classes it falls in. The

2005 liquefaction hazard map barely encompass TC1, and 92% of properties in TC3 are in

the moderate and high classes. Hence, I created the three “falsified” TCs (high, moderate,

low) only using properties in TC2. In the end, 23.15% of observations are in the “low”

class, 31.36% are in the “moderate” class, and 45.49% are in the “high” class. Evidence that

prices differed by the “falsified” TCs after the actual TC announcement date would indicate

that the market responded to the change in risk classification instead of the real TCs as the

“falsified” TCs are all created from TC2 and invalidate my main results. Placebo test two

excludes transactions after September 2010. In the pre-earthquake period January 2005 to

August 2010, the “falsified” TC announcement date was set in the middle, on October 1,

2007. Placebo test two is also tested using transactions between 2005 and 2007, with June

1, 2006, being the “falsified” TC announcement date, to avoid the possible confounding ef-

fects caused by the global financial crisis. Evidence that relative prices changed after the
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“falsified” zoning date would indicate that the design of TCs might be correlated to some

unobserved factors that also affect underlying price formation over time. Results of placebo

test one, presented in panel A of Table 1.4, show that neither the earthquakes nor the fal-

sified TCs had significantly differential effects on relative prices, which confirms that the

market responded to the actual TCs instead of the change in the hazard categories. Results

of placebo test two, shown in panel B of Table 1.4, suggest that price differentials among

TCs after the TC delineation were not driven by the unobserved differences in underlying

price formation across the TCs.

1.6.4.2 Spatial Conditionally Parametric - Semiparametric Models

Spatial data, especially spatial housing data, is well acknowledged to display spatial

heterogeneity usually. The standard parametric hedonic regression denoted in equation

(1.6) employs area unit fixed effects to control for spatial variation in housing prices. A

drawback of the standard hedonic approach is that housing prices would change discretely

over space. Moreover, the standard hedonic price function is likely to be subject to model

misspecification, even if polynomial terms of land and floor areas and distances to amenities

are used in equation (1.6). To allow property prices to vary smoothly over space, I use the

combination of conditionally parametric regression (CPAR) model proposed by McMillen

(1996) and semiparametric (SemiP) model by Robinson (1988).

The general CPAR model has the following form:

yi = α(longitudei, latitudei)+β (longitudei, latitudei)
′Xi + εi

where the location of house i denoted by its geographical coordinates longitude and lati-

tude enters fully nonparametrically, and the vector of Xi enters conditionally parametrically.
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With CPAR, at any given pair of longitude and latitude, the model is the standard linear

regression, yet coefficients of X vary with longitude and latitude. A kernel weight function,

including only geographical coordinates, defines distances between houses and assigns higher

weights to nearby houses.

The general Semip model is similar to the CPAR in that some variables, say longitude

and latitude, are fully nonparametric; but differs from the CPAR model by constraining

other variables to be fully parametric so that they do not vary with longitude and latitude:

yi = α(longitudei, latitudei)+β
′Xi + εi

Using the combination of the CPAR model and SemiP model, I estimate the following

function:

log(Pigt) =
3

∑
g=2

δg ∗TCg +
4

∑
e=1

γe ∗ poste +
3

∑
g=2

4

∑
e=1

λg,e ∗ (TCg× poste)

+X ′igt ∗αi +Z′igt ∗βi +ρt +φs +µau + εigt (1.8)

i = 1, · · · ,N, εi ∼ N(0,σ2
i )

Coefficients with the subscript i demonstrate that they are local (i.e., specific to house i) and

vary smoothly over space. That is, property and amenity characteristics are conditionally

parametric and vary with geographical coordinates. Post-event dummies, TCs, year and,

seasonable variables enter fully parametrically to capture their average effects. As before,

I also estimate the additional effect of proximity to the nearest residential red zone, which

also enters the model fully parametrically.

The coefficients from the parametric part of the models with and without distance to the
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red zone are presented in columns (3) and (4) of Table 1.2, respectively. Both models are

estimated at the window size of 30%12 and using a tri-cubic kernel function 70
81(1− (|z|)3)3 ∗

I(|z|< 1).

Results are consistent and comparable in magnitudes with the standard hedonic results.

The market had gained some knowledge to distinguish the most hazard-prone and least

hazard-prone areas after the third quake in the sequence. Once the liquefaction hazard

zoning, TC, was announced, it clarified the area-wide liquefaction hazard to the public and

caused relative property prices to drop by 22 to 25.5% in TC3 and decrease by 8.2 to 9.1% in

TC2. Results also confirm that property values increased with distance from the residential

red zones most in TC3 and least in TC1 post-earthquakes.

As a whole, results from the spatial models affirm the results from the standard hedonic

models. The earthquake sequence prompted the market to experience a structural change

from the impacts of the wide-spread liquefaction. Although hazard zoning is due to extensive

liquefaction triggered by the long-lasting earthquake sequence, it is the hazard zoning rather

than the earthquake that clarified the hazard information across the city and underpinned

the price differences across TCs. Furthermore, distance to residential red zone plays an

important role in capturing the spatial equilibrium; a structural change in price also occurred

post-earthquakes as a function of proximity to residential red zones in each of the TC possibly

due to the loss of amenity or the perceived higher liquefaction risk closer to the red zones.

12 McMillen and Redfearn (2010) suggest using a larger window size in nonparametric estimation when
broad spatial effects such as distance from CBD are included in the model. They also show that the
standard 20% - 50% window sizes do not use much degree of freedom.
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1.6.4.3 Boundary Discontinuity

Another concern is that other structures, such as commercial buildings and schools,

are also affected by liquefaction. Some might need to reallocate. This leads to a possible

spatial change in local services. Moreover, the supply and demand for housing may change

heterogeneously by the defined zones over time. As a result, the estimated hazard zoning

effects should not be interpreted as due to TC zoning alone. To validate the main results, I

adopt the boundary discontinuity design as an additional robustness check.

With boundary discontinuity design, houses within proximity to each other but on op-

posite sides of a geographical boundary are compared. This method assumes that neigh-

borhoods change smoothly over space and requires that the boundary in question does not

coincide with any main geographical features such as school attendance zones and tax zones.

In the context of this paper, the boundaries of the TCs were the outcome of rigorous research

by the Department of Building & Housing (DBH) based on historical and post-earthquake

data, consultations with geotechnical, engineering and research groups. Hence, it is unlikely

that TCs coincide with any main geographical features. If neighborhoods change continu-

ously over space and time, by comparing houses very close to the boundaries, where there is

a discrete change in TC classification at a given point, effects due to neighborhood-specific

unobservable can be eliminated. Moreover, as Hidano et al. (2015) pointed out, the actual

hazard level is likely to change continuously rather than sharply over space so that the actual

change in hazard level should approach zero on the boundaries of hazard zones as should

the property values if the public care only about the actual hazard levels. If a significant

change in prices occurs on the boundaries after the boundaries were defined, it can only be
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that prices responded to the hazard classification.

To proceed, I first extracted the shared boundaries between TC2 and TC3 and between

TC2 and TC1 (Figure 1.7). Then, houses that are within 100m of the shared boundaries

were selected. Houses with no adjacent houses on the opposite side of the shared boundaries

were dropped. I re-estimate equations (1.6) and (1.7) for houses that are within 100m from

shared boundaries between TC2 and TC3 and houses that are within 100m from shared

boundaries between TC2 and TC1.

Figure 1.8 shows the mean log of selling prices on the opposite side of shared boundaries.

As displayed in Figure 1.8a, average prices did not change on the shared boundaries of TC2

and TC3 pre-zoning and average prices in TC3 decreased in the period after zoning relative

to TC2. On the shared borders of TC1 and TC2, shown in Figure 1.8b, zoning did not

appear to cause changes in price. The relevant descriptive statistics are shown in Appendix

Tables A.5 and A.7.13

Estimates in panel A of Table 1.5 indicate that the difference in liquefaction hazard

classification caused long-run average property prices to drop by about 9.7 - 14.5% in TC3

compared to TC2 (the differences are about 14.4 - 16.9% in columns 1 and 2 of Table 1.2

from the baseline DID models, respectively). Dynamic TC effects on the shared boundaries

of TC2 and TC3 are plotted in Figure 1.9a, while Appendix Table A.6 reports the estimates;

the hazard classification had been causing a price discount of more than 10% in TC3 relative

13 Descriptive statistics in Appendix Tables A.5 and A.7 show that the covariates are not balanced across
the shared boundaries. Although differences in some covariates are not economically significant, they
are statistically significant. Hence, to improve the balance between covariates, I also use the nearest
neighbor matching with a caliper width of 0.2 on the whole set of structural attributes used in this
paper and restricting the sample to matched houses that are in the range of the common support.
Descriptive statistics for the matched sample are presented in Appendix Tables A.9 and A.10. DID
results obtained using the matched sample are presented in Appendix Table A.11 and are very similar
to results without matching.
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to TC2 since the second year of the zoning, and the price discount was still as significant

as 10% seven years on in 2018. Figure 1.9b shows that there was an additional relative

price discount in TC3 due to proximity to the residential red zones in the first three years

post-zoning.

On the other hand, results from comparing houses within 100m of shared boundaries

between TC2 and TC1 in panel (b) of Table 1.5 show that TC classification caused prices

to decrease by about 6 - 8.8% in TC2 compared to TC1 (the differences are 3.9 - 7.4% in

columns 1 and 2 of Table 1.2, respectively); yet, the difference is statistically insignificant

(i.e., zoning did not introduce price effects on the shared borders of TC1 and TC2). Dynamic

effects plotted in Figure 1.10 (corresponding estimates are presented in Appendix Table A.8)

also confirm that there is no significant difference due to zoning on the shared borders of

TC1 and TC2. The insignificant difference between TC2 and TC1 post-zoning is also likely

to be due to the small sample size along the shared boundaries.

By and large, results in this section verify the main findings that the liquefaction hazard

zoning denoted by TCs depressed prices the most in TC3. On average, being classified in

the most hazard-prone caused property values to drop by about at least 10% compared to

being classified as the second most hazard-prone.

1.6.4.4 Alternative Earthquake Impact Period Specification

The main specification defined in equation (1.6) assumes that the impacts of earth-

quakes never go away, which could lead to an underestimation of the impacts of hazard

zoning. Hence, an alternative earthquake impact period is considered to allow the impacts

of earthquakes to be transient.
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Four event indicators are constructed from the four events as following:

Event Impact Period Indicator

EQ1 [Sep 04, 2010, Feb 22, 2011) e1 = 1

EQ2 [Feb 22, 2011, Jun 13, 2011) e2 = 1

EQ3 [Jun 13, 2011, Oct 28, 2011) e3 = 1

TC [Oct 28, 2011, -] e4 = 1

With this modification, the impact of each earthquake is very short-lived and exists only

before the occurrence of the next event. The problem with this modification is that since

the earthquakes and hazard zoning are so closely spaced in time (six months apart at most),

if the impacts of earthquakes last for more than half a year or are delayed, those impacts

will be picked up by the TCs.

Estimation results are presented in Table 1.6 and are mostly consistent with the esti-

mation results in Table 1.2 namely, that by the third quake, the market had gained some

information about the liquefaction hazard in at least some of the most hazard-prone areas;

the clarification through TCs enhanced the price discount in TC3. As expected, estimated

TC effects are more significant (about 10% larger in TC3) than the baseline estimates, con-

firming that earthquake impacts are picked up by the TCs with this alternative specification.

Hence, the TC effects in this section should be considered as the upper bound of the zoning

effects.

1.7 Conclusion
This paper contributes to the understanding of hazard zoning and salience of hazard

information. Specifically, I estimate the impacts of the earthquake-induced liquefaction

hazard zoning on house prices in Christchurch, New Zealand. The actual level of liquefaction
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hazard may vary continuously and may not always be visible on the surface even after

earthquakes. Technical Categories (TCs) provide easily accessible information regarding the

degree of liquefaction damage hazard to the public. The timings of the earthquake sequence

and the TC announcement help in estimating the average effects of hazard zoning on house

prices that would otherwise be confounded with earthquake effects.

My analysis provides robust evidence that the liquefaction hazard was not priced in

Christchurch before the 2010-2011 earthquake sequence, even though the inherent hazard

had long been recognized. This is consistent with the finding of Naoi et al. (2009) in Japan

that earthquake risk was not accounted for before massive quakes. The 2010-2011 earthquake

sequence drew sharp attention and prompted the market to undergo a structural change to

levels of liquefaction hazard; introduction of the TCs clarified levels of liquefaction hazard

on an area-wide scale and enhanced price changes to severity of liquefaction hazard. After

the introduction of TCs, property values decreased substantially in TC3 where moderate to

significant liquefaction damage is likely in future earthquakes; being classified as the most

hazard-prone (TC3) caused the long-run average price to decrease by at least 10% than

being classified as the second most hazard-prone (TC2) and by 20% than being classified as

the least hazard-prone (TC1). However, the long-run price reduction in TC2 is moderate

compared to TC1, by about 7%.

My results also show the saliency of hazard information disclosed shortly after significant

earthquakes. Price discounts in TC3 enlarged to almost 40% by the third-year post-zoning

and dwindled afterward compared to TC1; yet, seven years on, the price discount is still

as substantial as 20%. Price reduction in TC2 was relatively small by around 6% since
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the second year of zoning but almost vanished in the seventh year. Moreover, my results

show that the 2010-2011 earthquake sequence also led to a negative structural change to

proximity to residential red zones (areas that were too severely liquefied residential to be

habitable); this is likely due to either the loss of amenity in red zones or the perceived higher

risk in proximity to red zones after earthquakes. Furthermore, my results provide a new

piece of evidence to the literature by showing that with fragmented hazard zones, zoning

effects are not fixed in space; relative price decreased most for being in the most-hazard

prone zone (TC3) and being close to the inhabitable area (residential red zone) resulted

from the earthquake sequence. Additional research is required to account for the possible

spatial spillover effects across the hazard zones.

My findings for the impacts of hazard zoning in Christchurch provide valuable insights

into long-term disaster management. According to the psychological theory and evidence,

people have limited attention to the information in an information-rich environment. If

people do not pay attention to the hazard information disclosed (usually in the disaster

quiet time), hazard disclosure will be found to be ineffective. Costly natural disasters such

as hurricanes and earthquakes draw people’s attention to the hazards induced by the events

and make either the exiting hazard information (e.g., see Bin and Landry, 2013 for hurricane-

induced differential effects inside and outside the flood zones) or the disaster-induced hazard

information disclosure (e.g., earthquake-induced liquefaction zoning as shown in this paper),

more salient. My findings also provide a lower bound of price response to hazard zoning in the

global setting. New Zealand has a high level of residential earthquake insurance penetration,

more than 90%, while the residential earthquake insurance take-up rate in California is
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only around 10%. If the earthquake sequence and the resulted liquefaction zoning were in

California, the expected loss to homeowners, and the price response to hazard zoning would

have been a lot larger.
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1.8 Figures and Tables

Figure 1.1: CERA Land Information Map

Source: Canterbury Earthquake Recovery Authority (CERA) and author’s modifications

Note: This map was announced on June 23, 2011.

Red – land not recommended for continued residential development in the short term;

Orange – land needed further investigation;

Green – land suitable for repairing and rebuilding homes on;

White – Port Hills and the central city.
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Figure 1.2: MBIE Residential Foundation Technical Categories

Note: This map was published on October 28, 2011, and accessed from ArcGIS online. Source:
Canterbury Earthquake Recovery Authority (CERA) and author’s modifications

TC1 – future land damage from liquefaction is unlikely so that standard residential foun-
dation assessment and construction is appropriate;

TC2 - minor to moderate liquefaction damage to the land is possible in future large earth-
quakes so that shallow ground investigations may be required when repairing or replacing
foundations;

TC3 - moderate to severe liquefaction damage to the land is possible in future large earth-
quakes so that geotechnical engineering assessment may be required to select the appro-
priate foundation repair or rebuild;

Residential Red – land was severely damaged beyond economical repair.
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Figure 1.3: 2002 Liquefaction Hazard Map

Note: This map was digitalized from the Christchurch Liquefaction Study - Stage II ECan Report
NO. U02/2002, and geo-referenced and converted into shapefile in ArcGIS by the author.

Three liquefaction hazard classes from the 2002 study:

High - high liquefaction potential;

Moderate - moderate liquefaction potential;

Low - low liquefaction potential.
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Figure 1.4: 2005 Liquefaction Hazard Map

(a) Summer Groundwater Level (b) Winter Groundwater Level

(c) Joint

Note: This map was retrieved from the Christchurch Liquefaction Study - Stage IV (Addendum
Report) ECan Report NO. U04/25/2. The shapefiles of summer and winter maps were provided
by ECan. The summer and winter maps were combined to produce the joint map in ArcGIS by
the author.

Six liquefaction hazard classes from the 2005 study:

High - high liquefaction potential;

Moderate - moderate liquefaction potential;

Low - low liquefaction potential;

High uncertain - insufficient information available, but may have high liquefaction potential;

Moderate uncertain - insufficient information available, but may have moderate liquefaction
potential;

Low uncertain - insufficient information available, but may have low liquefaction potential.
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Figure 1.5: Mean of Log of Selling Price Relative to the TC Announcement Month

Note: This figure presents the mean of log of selling price relative to the TC announcement month
by TCs from 2005 to 2018. The three short dashed red lines indicate the months of the three
major quakes, and the long dashed red line indicates the month of the TC announcement.
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Figure 1.6: Dynamic TC Effects

(a) TC Effects: w/o Distance to Red Zone (b) TC Effects: w/ Distance to Red Zone

(c) Distance to Red Zone

Note: The blue dashed vertical line indicates the base time (Oct 28, 2009 – Oct 27, 2010): -2, two
years before the TC zoning. Panel (a) presents the estimates from the model without controlling
for the distance to the residential red zones. Panels (b) and (c) present the estimates from the
model with distance to residential red zone controls.
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Figure 1.7: Shared Boundaries

Note: This map presents the shared boundaries between TCs.
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Figure 1.8: Mean of Log of Selling Price on the Shared Boundaries

(a) TC2 vs TC3

(b) TC1 vs TC2

Note: These figures present the mean of selling price by distance to the shared boundaries of TCs.

50



Figure 1.9: Dynamic effects on the Shared Boundaries Between TC2 and TC3

(a) Dynamic Effects: TC3

(b) Dynamic Effects: TC3 ×Distance to Red Zone

Note: These figures present the dynamic effects on the shared boundaries of TC2 and TC3. The
reference TC is TC2. The blue dashed vertical line indicates the base time (Oct 28, 2009 – Oct
27, 2010): -2, two years before the TC zoning.
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Figure 1.10: Dynamic effects on the Shared Boundaries Between TC1 and TC2

(a) Dynamic Effects: TC2

(b) Dynamic Effects: TC2 ×Distance to Red Zone

Note: These figures present the dynamic effects on the shared boundaries of TC1 and TC2. The
reference TC is TC1. The blue dashed vertical line indicates the base time (Oct 28, 2009 – Oct
27, 2010): -2, two years before the TC zoning.
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Table 1.1: Summary Statistics

Mean Std. Dev. Min Max
Selling Price (NZ$) 331,438.11 168,410.37 34,300.00 1,300,000.00
Floor Area (m2) 154.37 56.29 70.00 358.00
Land Area (m2) 667.68 172.21 216.00 2001.00
Built in 1910s 0.03 0.17 0.00 1.00
Built in 1920s 0.10 0.30 0.00 1.00
Built in 1930s 0.04 0.19 0.00 1.00
Built in 1940s 0.06 0.23 0.00 1.00
Built in 1950s 0.13 0.34 0.00 1.00
Built in 1960s 0.16 0.37 0.00 1.00
Built in 1970s 0.10 0.30 0.00 1.00
Built in 1980s 0.06 0.24 0.00 1.00
Built in 1990s 0.08 0.27 0.00 1.00
Built in 2000s 0.20 0.40 0.00 1.00
Built in 2010s 0.04 0.19 0.00 1.00
Superior design and first class quality 0.07 0.25 0.00 1.00
Average design and quality 0.89 0.31 0.00 1.00
Below Average design and quality 0.04 0.20 0.00 1.00
No appreciable view 0.97 0.16 0.00 1.00
Water View 0.01 0.09 0.00 1.00
Other than water View 0.02 0.14 0.00 1.00
1 or 2 Bedrooms 0.07 0.25 0.00 1.00
3 Bedrooms 0.57 0.50 0.00 1.00
4 Bedrooms 0.32 0.47 0.00 1.00
5 Bedrooms 0.05 0.22 0.00 1.00
1 Bathrooms 0.67 0.47 0.00 1.00
2 Bathrooms 0.30 0.46 0.00 1.00
3 Bathrooms 0.03 0.18 0.00 1.00
1 Carparks 0.26 0.44 0.00 1.00
2 Carparks 0.69 0.46 0.00 1.00
3 Carparks 0.05 0.21 0.00 1.00
4 Carparks 0.01 0.09 0.00 1.00
Wall: Brick 0.34 0.47 0.00 1.00
Wall: Concrete 0.23 0.42 0.00 1.00
Wall: Roughcast 0.13 0.34 0.00 1.00
Wall: Weatherboard 0.22 0.41 0.00 1.00
Wall: Mixed Material 0.05 0.22 0.00 1.00
Wall: Other 0.03 0.18 0.00 1.00
Roof: Steel/G-Iron 0.53 0.50 0.00 1.00
Roof: Tile Profile 0.44 0.50 0.00 1.00
Roof: Other 0.02 0.15 0.00 1.00
Dist. from CBD (km) 4.60 2.28 0.00 14.49
Dist. from Christchurch Coast (km) 7.08 4.01 0.02 17.10
Dist. from the nearest Public Hospital (km) 3.84 1.92 0.17 11.95
Dist. from the nearest Private Hospital (km) 5.05 2.42 0.09 13.56
Dist. from the nearest Regional Park (km) 2.48 1.87 0.00 7.85
Dist. from the nearest Botanical Park (km) 1.80 1.50 0.00 8.04
Dist. from the nearest Community Park (km) 0.21 0.16 0.00 1.97
Dist. from the nearest Sports Park (km) 0.40 0.28 0.00 3.65
Dist. from the nearest Water Body (km) 1.40 0.77 0.01 3.63
Dist. from the nearest Residential Red Zone (km) 3.83 2.98 0.00 14.49
Elevation (m) 11.44 8.07 1.00 43.00
Technical Category 1 (gray) 0.19 0.35 0.00 1.00
Technical Category 2 (yellow) 0.61 0.49 0.00 1.00
Technical Category 3 (blue) 0.21 0.40 0.00 1.00
Number of Observations 91,748

Note: This table presents summary statistics for the City of Christchurch from year 2000 to 2018.
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Table 1.2: Long-Run Effects of Technical Categories on Log of Property Price

Baseline DID CPAR-SemiP

(1) (2) (3) (4)

Coef. Std.Err. Coef. Std.Err. Coef. Std.Err. Coef. Std.Err.

TC2 ×post1 0.001 (0.025) 0.002 (0.024) 0.011 (0.017) 0.012 (0.017)
TC3 ×post1 0.001 (0.027) 0.002 (0.027) 0.011 (0.022) 0.010 (0.022)
TC2 ×post2 0.015 (0.036) 0.016 (0.035) 0.012 (0.027) 0.015 (0.027)
TC3 ×post2 −0.019 (0.042) −0.004 (0.041) 0.001 (0.042) 0.020 (0.042)
TC2 ×post3 −0.010 (0.031) −0.012 (0.031) −0.008 (0.026) −0.010 (0.026)
TC3 ×post3 −0.081∗∗ (0.040) −0.088∗∗ (0.039) −0.106∗∗ (0.044) −0.115∗∗∗ (0.044)
TC2 ×post4 −0.074∗∗∗ (0.028) −0.039 (0.060) −0.082∗∗∗ (0.016) −0.091∗∗∗ (0.026)
TC3 ×post4 −0.218∗∗∗ (0.039) −0.208∗∗∗ (0.067) −0.220∗∗∗ (0.025) −0.255∗∗∗ (0.032)

dred (km) −0.005 (0.045) −0.062∗∗∗ (0.011)
dred ×post4 0.012∗ (0.007) 0.007∗∗∗ (0.002)
TC2 × dred −0.015 (0.040) 0.008 (0.010)
TC3 × dred −0.021 (0.040) 0.000 (0.010)
TC2 × dred ×post4 0.008 (0.009) 0.014∗∗∗ (0.003)
TC3 × dred ×post4 0.040∗∗∗ (0.010) 0.047∗∗∗ (0.004)

AdjustedR2 0.612 0.616
AIC 2272.373 1571.121

Number of Observations 62,149
Baseline Mean Log(P) 12.680
∗p < .10,∗∗p < .05,∗∗∗p < .01
Note: This table presents the long-run average effects of TC for log of property price for the City of Christchurch for the period
2005–2018. The reference group is the TC1. Columns (1) and (2): standard errors are clustered at area unit levels. Baseline DID
models are estimated with structural and amenity controls, year, seasonal and area unit fixed effects. Columns (3) and (4): geo-
graphical coordinates are used instead of area unit fixed effects. In the conditionally parametric (CPAR) and semiparametric (SeimP)
models, coefficient estimates of structural and amenity controls are allowed to vary smoothly over space, while coefficient estimates of
variables listed in this table as well as coefficient estimates of year and seasonal fixed effects are modeled to be constant over space.
Both CPAR-SemiP models are estimated at the window size of 30% and using a tri-cubic kernel function 70

81(1− (|z|)3)3 ∗ I(|z|< 1).
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Table 1.3: Dynamic Effects of the TCs

(1) (2)
Coef. Std.Err. Coef. Std.Err.

TC2 × -7 0.040 (0.060) −0.051 (0.240)
TC2 × -6 0.050 (0.032) −0.126 (0.152)
TC2 × -5 0.025 (0.020) −0.052 (0.054)
TC2 × -4 0.030∗ (0.017) 0.065 (0.040)
TC2 × -3 0.024∗ (0.015) −0.010 (0.034)
TC2 × -1 0.037∗ (0.021) 0.085 (0.063)
TC2 × 1 −0.010 (0.021) 0.011 (0.059)
TC2 × 2 −0.057∗∗∗ (0.018) −0.065 (0.050)
TC2 × 3 −0.058∗∗∗ (0.020) −0.095∗ (0.050)
TC2 × 4 −0.050∗∗ (0.019) −0.119∗∗ (0.055)
TC2 × 5 −0.040∗∗ (0.020) −0.134∗∗ (0.055)
TC2 × 6 −0.050∗∗∗ (0.018) −0.052 (0.054)
TC2 × 7 −0.014 (0.019) 0.015 (0.057)
TC3 × -7 0.059 (0.057) −0.016 (0.236)
TC3 × -6 0.075∗∗ (0.031) −0.095 (0.152)
TC3 × -5 0.007 (0.022) −0.051 (0.056)
TC3 × -4 0.007 (0.019) 0.090∗∗ (0.043)
TC3 × -3 −0.005 (0.015) −0.030 (0.035)
TC3 × -1 −0.011 (0.024) −0.002 (0.064)
TC3 × 1 −0.159∗∗∗ (0.027) −0.163∗∗ (0.066)
TC3 × 2 −0.337∗∗∗ (0.037) −0.372∗∗∗ (0.061)
TC3 × 3 −0.353∗∗∗ (0.034) −0.441∗∗∗ (0.058)
TC3 × 4 −0.330∗∗∗ (0.028) −0.378∗∗∗ (0.061)
TC3 × 5 −0.268∗∗∗ (0.028) −0.360∗∗∗ (0.060)
TC3 × 6 −0.274∗∗∗ (0.023) −0.292∗∗∗ (0.056)
TC3 × 7 −0.207∗∗∗ (0.022) −0.179∗∗∗ (0.058)
TC2 × dred × -7 0.013 (0.026)
TC2 × dred × -6 0.020 (0.019)
TC2 × dred × -5 0.008 (0.008)
TC2 × dred × -4 −0.001 (0.007)
TC2 × dred × -3 0.006 (0.006)
TC2 × dred × -1 −0.005 (0.009)
TC2 × dred × 1 0.008 (0.010)
TC2 × dred × 2 0.015 (0.009)
TC2 × dred × 3 0.020∗∗ (0.009)
TC2 × dred × 4 0.025∗∗∗ (0.009)
TC2 × dred × 5 0.023∗∗ (0.009)
TC2 × dred × 6 0.011 (0.009)
TC2 × dred × 7 0.007 (0.010)
TC3 × dred × -7 0.005 (0.026)
TC3 × dred × -6 0.015 (0.019)
TC3 × dred × -5 −0.004 (0.010)
TC3 × dred × -4 −0.023∗∗ (0.009)
TC3 × dred × -3 0.003 (0.007)
TC3 × dred × -1 0.017 (0.011)
TC3 × dred × 1 0.035∗∗∗ (0.013)
TC3 × dred × 2 0.056∗∗∗ (0.014)
TC3 × dred × 3 0.058∗∗∗ (0.014)
TC3 × dred × 4 0.041∗∗∗ (0.011)
TC3 × dred × 5 0.044∗∗∗ (0.011)
TC3 × dred × 6 0.040∗∗∗ (0.012)
TC3 × dred × 7 0.026∗∗ (0.011)
Adjusted R2 0.613 0.618
AIC 2071.156 1253.496
Number of Observations 62,149
Baseline Mean log(P) 12.78
∗p < .10,∗∗p < .05,∗∗∗p < .01
Note: This table presents the dynamic effects of TC for log of property price for
the City of Christchurch for the period 2005–2018. The reference group is TC1
and the reference transaction time is 2 years before TC announcement (Oct 28,
2009 – Oct 27, 2010). Both models include amenity controls, seasonal and area
unit fixed effects. Standard errors are clustered at area unit levels.
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Table 1.4: Placebo Tests – Falsified Technical Categories and Falsified Event Dates

Panel A: Placebo Test 1 – Falsified Technical Categories

(1) (2)

Coef. Std.Err. Coef. Std.Err.

Moderate × post1 0.001 (0.024) −0.004 (0.026)
High × post1 0.038 (0.032) 0.034 (0.033)
Moderate × post2 0.037 (0.054) 0.041 (0.055)
High × post2 0.059 (0.048) 0.054 (0.049)
Moderate × post3 −0.048 (0.072) −0.049 (0.071)
High × post3 −0.054 (0.071) −0.050 (0.071)
Moderate × post4 −0.043 (0.043) 0.057 (0.056)
High × post4 −0.080 (0.051) 0.052 (0.055)

dred (km) −0.036 (0.023)
dred × post4 0.034∗∗∗ (0.011)
Moderate × dred 0.002 (0.009)
High × dred −0.001 (0.009)
Moderate × dred × post4 −0.012 (0.011)
High × dred × post4 −0.019 (0.012)

Adjusted R2 0.618 0.622
AIC 70.318 -175.468

Sample Period 2005 - 2018
Number of Observations 24,148
Baseline Mean log(P) 12.66

Panel B: Placebo Test 2 – Falsified Zoning Date

TC2 0.118∗∗∗ (0.036) 0.146∗∗∗ (0.044)
TC3 0.158∗∗∗ (0.040) 0.198∗∗∗ (0.050)
post −0.013 (0.026) 0.013 (0.026)

TC2 × post −0.015 (0.029) −0.000 (0.032)
TC3 × post −0.035 (0.027) −0.029 (0.032)

Sample Period 2005 - Aug 2010 2005 - 2007
Falsified Date Oct 1, 2007 Jun 1, 2006

Adjusted R2 0.570 0.539
Number of Observations 29,927 18,836
Baseline Mean log(P) 12.63 12.55
∗p < .10,∗∗p < .05,∗∗∗p < .01
Note: This table presents the estimates of placebo tests. The reference groups are
“Low” and TC1 in panels A and B, respectively. All models include amenity con-
trols, year, seasonal and area unit fixed effects. Standard errors are clustered at
area unit levels.
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Table 1.5: DID: 100 Meter from the Shared Boundaries

Panel A: TC2 vs TC3

(1) (2)

Coef. Std.Err. Coef. Std.Err.

TC3 × post1 0.046 (0.030) 0.046 (0.029)
TC3 × post2 −0.028 (0.049) −0.007 (0.048)
TC3 × post3 −0.040 (0.049) −0.059 (0.048)
TC3 × post4 −0.097∗∗∗ (0.030) −0.145∗∗∗ (0.033)

dred (km) −0.041 (0.027)
dred × post4 0.016∗∗∗ (0.005)
TC3 × dred −0.009∗∗∗ (0.003)
TC3 × dred × post4 0.023∗∗∗ (0.005)

Adjusted R2 0.667 0.671
AIC 70.728 -89.019

Number of Observations 12,190
Baseline Mean log(P) 12.69

Panel B: TC1 vs TC2

TC2 × post1 −0.051 (0.075) −0.043 (0.072)
TC2 × post2 0.112 (0.083) 0.103 (0.080)
TC2 × post3 −0.005 (0.063) −0.009 (0.063)
TC2 × post4 −0.088 (0.049) −0.060 (0.209)

dred (km) −5.223 (4.677)
dred × post4 −0.030 (0.031)
TC2 × dred −0.027 (0.030)
TC2 × dred × post4 −0.004 (0.030)

Adjusted R2 0.808 0.808
AIC -848.224 -853.557

Number of Observations 701
Baseline Mean log(P) 12.79
∗p < .10,∗∗p < .05,∗∗∗p < .01
Note: This table presents the DID estimates on the shared boundaries. It cov-
ers years 2005 to 2018. The reference TC is TC2 and TC1 in panels A and B,
respectively. All models include amenity controls, year, seasonal and area unit
fixed effects. Standard errors are clustered at area unit levels.
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Table 1.6: Alternative Earthquake Impact Period

(1) (2)

Coef. Std.Err. Coef. Std.Err.

TC2 × e1 0.001 (0.025) 0.003 (0.025)
TC3 × e1 0.002 (0.027) 0.002 (0.027)
TC2 × e2 0.013 (0.049) 0.016 (0.047)
TC3 × e2 −0.019 (0.053) −0.004 (0.051)
TC2 × e3 0.007 (0.035) 0.008 (0.034)
TC3 × e3 −0.097∗∗ (0.040) −0.089∗∗ (0.040)
TC2 × e4 −0.069∗∗∗ (0.019) −0.034 (0.063)
TC3 × e4 −0.316∗∗∗ (0.025) −0.299∗∗∗ (0.064)

dred (km) −0.005 (0.045)
dred × e4 0.012∗ (0.007)
TC2 × dred −0.015 (0.040)
TC3 × dred −0.021 (0.040)
TC2 × dred × e4 0.008 (0.009)
TC3 × dred × e4 0.040∗∗∗ (0.010)

Adjusted R2 0.612 0.616
AIC 2,273.210 1,572.857

Number of Observations 62,149
Baseline Mean log(P) 12.68
∗p < .10,∗∗p < .05,∗∗∗p < .01
Note: This table presents the regression results from using alternative earth-
quake impact periods. Earthquake effects are assumed to be transient. It covers
years 2005 to 2018. The reference TC is TC1. All models include amenity con-
trols, year, seasonal and area unit fixed effects. Standard errors are clustered at
area unit levels.
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Chapter 2

Is There a Slope Discount?

2.1 Introduction
Land is one of the more critical inputs in any production function (Chakravorty, 2013).

Its use is possibly the most essential feature that determines urban structure and urban

growth and its value shapes the dynamics of the real estate markets. Bostic et al. (2007)

introduce the land leverage hypothesis that states that houses with greater land leverage -

land accounts for a large fraction of house value - experience a higher price appreciation in a

market absent any increase in construction cost. Davis et al. (2017) find much more volatile

land prices than house price patterns in the Washington DC metro area from 2000 to 2013.

In addition, they find that variations in land leverage during boom periods notably predict

variations in house prices in the bust periods.

Land values are also important from other aspects. From an individual household’s per-

spective, land value represents a large portion of an individual household’s wealth. From the

local government’s perspective, land value affects the land-use regulations (and vice versa),

hence urban structure, urban growth, and property taxes. From the national perceptive,

land value is an important part of the National Balance Sheet. Although it has such a

critical role in the economy, data on land values are often difficult to access.

Given the dearth of information on land values, land price is typically measured using one
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of the following decomposition methods in the current literature: the vacant land method,

the construction cost method and the hedonic regression methods. In the housing price

literature, it is long recognized that housing characteristics should be controlled for to have

a constant quality in the housing price index. Similarly, in the price decomposition literature,

it is well established that physical attributes of a house, especially age, cannot be ignored if

one is to obtain a constant quality price index. However, the literature on the importance

of land qualities is still quite scarce. Just like other price indices, the ideal land price index

should represent changes in prices of land that are comparable in quality over time.

In the urban development literature, the importance of geographic features such as prox-

imity to a waterbody, mountains or wetlands on urban development and housing supply

has generated a growing literature that has focused on measuring the role of amenities. For

instance, Burchfield et al. (2006) relate terrain ruggedness and access to underground water

to the density and compactness of new real estate development. Saiz (2010) shows that

residential development is considerably constrained by the presence of steep-sloped terrain

and find that most areas with inelastic housing supply are severely land-constrained by their

geography.

In this paper, an attempt will be made to fill the gap in the decomposition literature

by modeling land qualities measured by land slope, a factor that possibly discount land

price, to estimate quality adjusted land price indices. Having constant quality land price

indices, similar to having constant quality structure price indices, requires land qualities,

such as land area and location, to be constant over time. Of equal importance is the need

to take account of the physical attributes of the land itself especially land slope, for they
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impose constraints on the development and use of land. Sloping land adds complexity

to construction such as extra drainage and extra work in stepping the foundations, hence

increases the construction cost of a house. Moreover, the degree of slope of a piece of land

may limit its use and development, hence discounts the value of the land. On the other

hand, sloping land may afford better views, hence increasing property values. However, this

potential positive attribute is not addressed in this paper due to lack of data. This paper

adopts and extends the builder’s model developed by Diewert et al. (2011) by incorporating

terrain slope to the generalized builder’s model. Land parcel slopes are prepared in three

steps. First, terrain slopes are calculated from the 2013 1-meter Digital Elevation Data

(DEM) for Auckland. Mean terrain slopes are then formed for each land parcel extracted

from the map of New Zealand Primary Land Parcels. The Address Information Management

System (AIMS) from Land Information New Zealand (LINZ) is used next to link land parcels

to addresses in the monthly sales data. In the present paper within the confined study area

in Auckland with hilly features, the results reveal a slope discount on the price of land per

square meter, controlling for land size (m2), land location (in terms of school attendance

zone), floor area (m2), decade age of the house, and number of rooms. The constant quality

land price indices from the generalized builder’s model decreases moderately after controlling

for terrain slope, whereas the imputed Fisher chained house price index remained almost

unchanged. On the whole, land slope does appear to be an important hedonic characteristic

associated with land and hence house values. Yet, when land slope compositions do not

change over time, having land slope as an additional land characteristic generates minimum

effects on the estimated land price indices.
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In the rest of the paper, both the standard and generalized builder’s models are described.

Thereafter, the generalized builder’s model is extended to incorporate the terrain slopes. The

sales data are reviewed, and land slope is constructed in section 2.3. Section 2.4 presents the

exogenous information on the price of the structure prior to the estimation and discussion

of the quality-adjusted land, structural and Fisher chained house price indices. A summary

section concludes the paper.

2.2 Model
There are four primary types of methods for computing residential property price indices:

stratification, repeat-sales, appraisal-based methods and hedonic regression.1 Most recently,

Lopez and Hewings (2018) introduce a method that is a generalization of the repeat sales

(Case-Shiller) but more flexible; the idea was first suggested by McMillen (2012). The

hedonic regression method is typically the best approach for constructing a constant quality

residential property price index. A typical hedonic estimator expresses housing prices or log

of housing prices as a linear function of structure and location attributes. The commonly

used hedonic approaches for computing price indices include hedonic imputation method

and hedonic price method with time dummy variables.

For the hedonic imputation method, a hedonic regression is initially estimated for each

time period separately. For example, consider there are N0 and N1 houses with K charac-

teristics z0
i (z

0
i1,z

0
i2, · · · ,z0

ik) and z1
i (z

1
i1,z

1
i2, · · · ,z1

ik) sold in period 0 and period 1, respectively.

1 See Bailey et al. (1963); Bourassa et al. (2006); Clapp and Giaccotto (1992); De Vries et al. (2009);
Wallace and Meese (1997); Wood et al. (2005); Shiller (1991).

62



The following hedonic functions are estimated first:

p̂0
i = h0(z0

i ) = α̂
0 +

K

∑
k=1

β̂
0
k × z0

ik

p̂1
i = h1(z1

i ) = α̂
1 +

K

∑
k=1

β̂
1
k × z1

ik

where p̂t
i is the predicted selling price of house i sold in period t. Next, the change in the

quality-controlled house price between two periods is constructed as the price difference

between the observed house price in one period and the imputed price if the characteristics

from this period were evaluated at the estimated attributes prices in the earlier period. The

imputed period 1 price of period 0 housing characteristics is denoted as h1(z0
i ), and, similarly,

the imputed period 0 price of period 1 housing characteristics is denoted as h0(z1
i ). Holding

housing characteristics constant in period 0 and period 1 separately, we can construct, for

example, the following quality-adjusted imputed house price indices:

Hedonic Laspeyres Price Index =
∑

N0

i=1 h1(z0
i )

∑
N0

i=1 h0(z0
i )

Hedonic Paasche Price Index =
∑

N1

i=1 h1(z1
i )

∑
N1

i=1 h0(z1
i )

Other important imputed price indices include Fisher, Geometric-Paasche, Geometric-Laspeyres

and Törnqvist price indices (Hill and Melser, 2008).

The hedonic price method with time dummy variables, as the name suggests, expresses

house prices from the cross-sectional data that are available over time as a linear combination

of structure and location attributes (i.e., quality controlled) and a set of time dummies in a

single equation. Estimated co-effects of the time dummies are the price indices and represent
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the price differences between time t and the base year).

ln(p̂it) = α̂ +
T

∑
t=2

δ̂tDit +
K

∑
k=1

β̂kzit,k,

where Dit is a set of dummy variables that takes on the value of 1 if the house i is sold at

time t and 0 otherwise. δ̂t is interpreted as the quality-adjusted price difference between

time t and the base time. A quality-adjusted price index can also be obtained.

With the hedonic approaches, a notable problem is that there is often a high correlation

between the explanatory variables making the estimated coefficients unstable. As discussed

in OECD et al. (2013), multicollinearity is less of a concern if the purpose is to construct

the overall constant quality house price index. However, when the parameters of interest

are the coefficients of the physical attributes (e.g., number of bedrooms) and particularity

when the interest is to decompose the overall price index into the land price index and the

structure price index, multicollinearity can be a real problem.2

2.2.1 Standard Builder’s Model

The builder’s model is first discussed by Diewert (2008) and introduced by Diewert et al.

(2011) to decompose residential price indices into two sub-price indices: a quality adjusted

price index for the structure and a price index for the land on which the property is built.

The derivation originates from a cost of production approach; from a builder’s perspective,

the selling price of any property after completion is its expected cost. The total expected

cost of a property is denoted as the sum of the cost of structure and the cost of the land on

which it is built. The cost of the structure is measured as the floor area (e.g., square meter

2 See also Schwann (1998) and Diewert et al. (2011, 2015); Diewert and Shimizu (2016) for the discussion
of multicollinearity.
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m2) of the property multiplied by the unit cost of construction (e.g., construction cost per

square meter). The cost of land is measured as land area (e.g., square meter m2) multiplied

by the unit cost of land (e.g., cost per square meter). Mathematically, the basic builder’s

model has the following additive and non-linear form3:

pit = pL
t Lit + pS

t Sit + εit , (2.1)

where pit is the selling price of property i at time t; pL
t and pS

t are prices of land and structure

per square meter at time t, respectively; Lit is the area of land property i is built on at time

t; Sit is the floor area property i at time t; error terms εit are assumed to be heteroskedastic,

not serially correlated and mean independent of covariates.

In essence, the hedonic regression defined in equation (2.1) only works for newly built

properties. To acknowledge the fact that properties sold at time t include not only newly

built properties but also existing older properties, and older properties are usually worth

less than newer properties because of structure depreciation over time, equation (2.1) is

commonly modified by incorporating the age of a property into the baseline builder’s model:

pit = pL
t Lit + pS

t (1−δAit)Sit + εit , (2.2)

where Ait is the age of property i at time t; δ is the net straight-line deprecation rate as

the structures of properties age.4 Common units of measurement for Ait include year and

decade. Hence, δ can be either the annual net depreciation rate or decade net depreciation

rate.5 If properties are maintained well or renovated over time, the deterioration of aged
3 The assumption that land and structure values are additive is suggested in most of the literature

including but not limited to Bostic et al. (2007); Diewert (2008); Diewert et al. (2011, 2015); Diewert
and Shimizu (2016); De Haan and Diewert (2013) and Francke and van de Minne (2017).

4 One can also assume that deprecation rates change over time: pit = pL
t Lit + pS

t (1−δtAit)Sit + εit .
5 Reasonable annual net depreciation rates are in the 0.5 - 2% range.
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properties can be slowed down (and, in some cases, older properties may command a pre-

mium). Knight and Sirmans (1996) find that houses with maintenance levels that are lower

than average deprecate 0.9% faster per year. Harding et al. (2007) find that well maintained

houses deprecate 0.5% less per year than the average. Moreover, older structures can pro-

duce functional obstacles as suggested in Rubin (1993) and negatively affect property values.

Nevertheless, as structures age, some aspects of structures, such as design of a certain con-

struction period, may induce a positive effect on property values. This is recognized as the

vintage effect (Coulson and Lahr, 2005), which can even offset the negative effects of age.6

Coulson and McMillen (2008) extend the method proposed by McKenzie (2006) to estimate

the time, age and cohort (vintage) effects simultaneously. Their results show a U-shaped

effect of age on housing prices. On the one hand, property prices decrease significantly in the

first few years post construction while, on the other hand, very old houses have notable price

premium. More recently, Francke and van de Minne (2017) estimate all three age effects on

property structures and the time effect on land values. Since only age enters as the structure

predictor in the builder’s model, δ should be interpreted as the net effect of age on structure

of a property. (1− δAit)Sit , then, can be interpreted as older structures measured in units

of new or more recent structures. Therefore, without maintenance information, very old

structures have been excluded from the model.7

The problem with the straight-line method of modeling depreciation is that the value

of the structure can become negative if the age of the structure is large. Therefore, the

geometric method is commonly used in national accounts as an alternative to the straight-

6 For example, Meese and Wallace (1991) find that housing prices increase with age.
7 Burnett-Isaacs et al. (2017) define old houses if aged more than 60 years.
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line method to avoid this problem. The Builder’s model with geometric depreciation has the

following form:

pit = pL
t Lit + pS

t (1−δ )Ait Sit + εit , (2.3)

where δ is the net geometric deprecation rate as the structures of properties age. With geo-

metric depreciation, structures deteriorate at a constant rate over time, whereas structures

deteriorate by constant amounts with straight-line depreciation. In practice, empirical stud-

ies, such as Chinloy (1977) and Malpezzi et al. (1987), suggest that it is more appropriate

to use the geometric method for residential properties.

2.2.2 Generalization of Standard Builder’s Model

Diewert (2008) suggests that the basic hedonic decomposition can be generalized to in-

corporate more physical attributes used in standard hedonic model in the following way.

Suppose Z1, . . . ,ZM are M determinant attributes for quality of land and X1, . . . ,XH are H de-

terminant attributes for quality of structure, the generalized builder’s model with geometric

depreciation is:

pit = pL
t (1+

M

∑
m=1

λmZit,m)Lit + pS
t (1−δ )Ait (1+

H

∑
h=1

ηhXit,h)Sit + εit , (2.4)

where pL
t is the quality adjusted price for land at time t, and pS

t is the quality adjusted price

for structures at time t. In the literature, characteristics used to control for the quality of

land are the locations of the land. Location-related attributes typically include distance to

the city business center, zones (e.g. zip code or school zone), and street patterns of the land

on which a property is built, such as at the intersection of two streets or at a cul-de-sac.8

8 Recent work by Pan et al. (2018) suggests that distance from the CBD is just one of many attributes
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Characteristics that are controlled for the quality of structure consist of physical attributes

such as number of bathrooms and bedrooms.

For this paper, school zones will be incorporated into the model as one of the land

characteristics and the numbers of rooms (sum of bedroom and bathroom) will be used as

an additional structural attribute in the generalized model:

pit = pL
t (1+

Z

∑
z=1

λzZoneit,z)Lit + pS
t (1−δ )Ait (1+

R

∑
r=1

ηrRoomit,r)Sit + εit , (2.5)

In this specification, both school zones and numbers of rooms enter as dummy variables; to

avoid the dummy variable trap, one group from each is dropped.

2.2.3 Generalization of Builder’s Model with Terrain Slope

The hedonic literature is rich in adjusting for structure qualities. The need for quality

adjustment extends to land characteristics as well. Cheshire and Sheppard (1995) point out

that as land itself is a composite good, the price of land is the price of pure land together

with the prices of the bundle of neighborhood, environmental characteristics and local public

goods embodied in land.

The theory of land use has its origin in the monocentric city model developed by Alonso

et al. (1964); Mills (1967) and Muth (1969). The traditional monocentric city model treats

land as a featureless flat plain so that locations only differ by distances to the Central Busi-

ness District (CBD). Thus, the model predicts higher land prices and housing densities in

places closer to CBD. Later urban economic models extend the monocentric city model to

include environmental amenities such as open space (including but not limited to Anderson

valued by consumers and hence the land use changes in a metropolitan region nay reflect multiple
dimensions of accessibility.
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and West, 2006; Geoghegan, 2002 and Irwin, 2002) and allow for multi-centric structures (in-

cluding but not limited to Anas and Kim, 1996; McDonald and McMillen, 1990 and Wieand,

1987) to explain a more complex spatial structure. The featureless flat plain assumption in

urban economic models is relaxed in the more recent literature. For example, Keenan et al.

(2018) develop a conceptual “climate gentrification” model and find that price appreciation

is positively affected by the incremental increase in elevation in Miami-Dade County, Florida

(the “elevation hypothesis”). Ye and Becker (2017) study seventeen US cities and find high-

income households prefer to live at higher elevations. They also find the standard deviation

of elevation and relative altitude positively affect density and housing value gradients.

Instead of elevation, the focus in this paper will be on terrain slope as a site-specific land

attribute. If a site is flat,9 the topography may not influence the location and layout of

the building, but on a sloping site, the topography is likely to exert a significant influence

on the house design. Sloping sites present a number of challenges and generally require a

greater design input than flat sites. They generally require additional geodetic assessments of

slope stability and earthworks before the actual house construction stage. Depending on the

steepness of the slope, sloping sites usually have to be cut, filled and or retained to prepare

a level plinth on which concrete slab foundations and floors can be laid out.10 Building

on a sloping site may also require additional drainage and sewers. Therefore, the overall

construction costs on sloping sites are intrinsically higher than overall construction costs on

flat sites essentially attributable to the amount of cut and fill and engineered retaining walls.

These costs generally increase with the degree of slope.

9 Flat areas are never strictly horizontal. Rather there are gentle slopes which are often hardly noticeable
to the naked eye.

10 Increasingly, new houses in New Zealand today are built on a concrete slab.
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Consequently, in mountainous regions, land slopes would also generate a significant con-

tribution to the formation of the quality-adjusted land prices. Driving around Auckland, it

is apparent that land is not even. It is common to observe houses constructed along sloping

driveways. If the sample of houses sold in time period t consists of more houses built on

sloping sites compared to the sample of houses sold in previous period with similar structures

but built on flat sites, changes in topographical characteristics should not be interpreted as

changes in land prices over time. If slope has a negative effect on housing price, without

controlling for slope would result in an underestimate of the land price index for time period

t.

Acknowledging that the degree of slope places substantial limitations on the use of a

piece of land and may add considerable costs to construction due to earthworks, land slope

is modeled as a determinant of land price in addition to land size and the school zone that

represents the location and public service associated with a site:

pit =pL
t (1+

Z

∑
z=1

λzZoneit,z)(1+
S

∑
s=1

βs Slope Groupit,s)Lit

+ pS
t (1−δ )Ait (1+

R

∑
r=1

ηrRit,r)Sit + εit (2.6)

where pL
t is the constant quality land price index (i.e., the “pure” price of land per square

meter) and pS
t is the constant quality structure price index as before.

If the ideal site for residential dwellings is that which furnishes the desired degree of space

at the lowest costs, the difficulty of building on sloping land means that the price of a sloping

site may be considerably cheaper than a flat site, hence decreasing property values. On the

other hand, sloping land may provide better views, hence increasing property values. As a
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result of data limitations, neither information on the cost of slope-induced earthwork nor

information on slope-induced appreciable view is obtained. Hence, the estimated coefficient

of slope should be interpreted as the joint effect of the two opposing forces.

The following hypotheses summarize the possible effect of land slope on its hedonic price

βs.

Hypothesis 1: If the difficulty to build on sloping sites dominates the possible view

provided, a negative relationship between house price and land slope is expected.

Hypothesis 2: If the possible view provided is more important than the difficulty to

build on sloping sites, a positive relationship between house price and land slope is

expected.

Hypothesis 3: If either the difficulty to build on sloping sites is as important as the

possible view provided or land slope is not an important house price determinant, a

statistically non-significant relationship between house price and land slope is expected.

When it comes to construction of the quality-adjusted land price indices, the following cases

summarize the possible change in land price indices once land slope is controlled for.

Case 1: If slope has a negative (positive) effect on housing price, and if the sample of

houses sold in time period t consists of more houses built on sloping sites compared to

the sample of houses sold in the base period with similar structures but built on flat

sites, controlling for slope would adjust the land price index for time period t upward

(downward).
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Case 2: If slope has a negative (positive) effect on housing price, but the composition

of the houses sold, in terms of land slopes, does not differ in time period t and the base

period, controlling for slope would not affect the land price index for time period t.

Case 3: If slope has no significant effect on housing price, regardless of the composition

of the land slope over time, controlling for slope would not affect the land price index.

2.3 Data

2.3.1 Housing Sales Data

Monthly unit record sales data used in this paper were obtained from Quotable Value

Limited (QV) powered by CoreLogic NZ Ltd, which is responsible for conducting property

market valuations in New Zealand. Purchased data encompasses school zones of Auckland

Grammar School, Epsom Girl’s Grammar School, Selwyn College, and One Tree Hill College

and covers the period from January 2007 to January 2017. There are only 22 transactions

in January 2017, of which 3 were in Double Grammar zone,11 8 in Selwyn College school

zone and 11 in One Tree Hill College school zone. Therefore, they are coded as in year 2016

later to prepare for estimation.

Basic QV data includes selling prices, sales date, property address, floor area, land area,

and various structural characteristics, school zone, Meshblock12 number (New Zealand’s

counterpart to the US Census block), along with the property title information. The analysis

is targeted to all types of houses but not apartments. In total, there are 17,966 observations.

11 This zone includes Auckland Grammar School and Epsom Girl’s Grammar School and hence is referred
to as the Double Grammar zone.

12 Meshblock is the smallest geographic unit for which statistical data is reported by Statistics New
Zealand.
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Dropping observations without sales prices information result in 17,796 transactions from

13,284 unique properties. By limiting the analysis to houses built on land for residential use,

114 observations were dropped.13 13 observations (12 unique properties) that are not for res-

idential use were also dropped.14 Further restricting the data to properties that are dwelling

houses of a fully detached or semi-detached style situated on their own clearly defined piece

of land reduces the sample size to 17,477. In addition, there are many observations with

incomplete information on land and floor area. By focusing on observations with complete

information on selling price, land area, floor area and building age reduces sample size to

10,052.

An examination of the data reveals that sales price, land area, floor area, number of

bedrooms and number of bathrooms are all skewed to the right. Hence, the outliers were

dropped using the following process for each school zone in each year. First, the bottom

1% and the top 3% of sales prices were dropped. Then, the top 1% of land were trimmed,

followed by dropping the top 1% of floor areas. A further filtering step was taken to drop

observations with number of bathrooms and number of bedrooms that are in the top 1%

respectively. At the end of the trimming process, the sample is reduced to 9,209 observations.

Finally, a further 3,638 observations with construction periods before 1950s were dropped.

The final sample contains 5,657 observations for the period from 2007 to 2016.

Two land-related characteristics from QV’s dataset are used in the main analysis: land

area measured in square meters and school zone in which the land is located. Structure

characteristics used in the main analysis include building age and square meters of floor

13 0.03% (5 observations) was on industrial land, 0.61% (109 observations) was on commercial land.
14 12 observations were for commercial use, and 1 was for other use.
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area. QV’s building age variable is coded in decade-long construction periods such as 1940s

and 2010s. Following Diewert et al. (2015), age of the structure was recoded as the decade

age using the following procedure. The most recent construction period for any houses sold

in 2007 to 2009 was 2000s. Hence, the constructed decade age variable was set equal to

2000−reported building age
10 . From 2010 onwards, the newest houses sold were built in 2010s.

Hence the corresponding decade age variable was set equal to 2010−reported building age
10 . After

recoding, a house built in 2000s and sold between 2007 and 2009 has a decade age of 0;

whereas a house built in 2000s that sold in 2010s has a decade age of 1. Table 2.1 presents

descriptive statistics for the analytical sample. On average, houses transacted were built

two decades ago. The sample mean selling price is 1,164,640 NZ dollars (NZ$), with average

land and floor area about 580 m2 and 217 m2 respectively.

The correlations of the selling price with land area, floor area, decade age, and total

number of rooms are 0.3567, 0.6750, -0.1032,15 and 0.4432, respectively. The correlation

between land area and floor area is 0.2661. The correlations between of decade age with

land area and floor area are 0.4656 and -0.3890 respectively, indicating that older houses

have relatively larger land but smaller structural space. Moreover, the correlation between

floor area and number of rooms is substantial at 0.6712. All of these correlation coefficients

are statistically significant at the 0.05 level.

2.3.2 Land Slope Construction

The land slope used in this paper, as demonstrated in Figure 2.1, is created from a light

detection and ranging (LiDAR) 1-meter resolution digital elevation model (DEM) fitted to

15 Without excluding the construction period before 1950s, the correlation between selling price and decade
age is 0.1811, indicating the possible vintage effects of older structures.
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the map of New Zealand Primary Land Parcels using ArcGIS. Both maps are converted to

New Zealand Transverse Mercator 2000 (NZTM2000) projection for analysis.

The airborne Auckland LiDAR 1m DEM data was captured in 2013 for Auckland Council

by NZ Aerial Mapping & Aerial Surveying Limited. It was collected at more than 1.5

point/square meter point density. The 1m DEM data is downloaded via Land Information

New Zealand (LINZ) Data Service.16 Elevation values are in meters. In ArcGIS, the unit of

measure for the z (elevation) unit is also meter, so the z-factor of value 1 is used to calculate

the percentage values of slopes (the rate of change of elevation) in each DEM cell.17

The map of New Zealand Primary Land Parcels is also downloaded using LINZ Data

service.18 It provides information on parcel ID that is used to link parcels (sites) to addresses.

To determine the terrain slope of each land parcel, the Zonal Statistic tools in ArcGIS was

used. Each land parcel in the land parcel map is an input zone; the parcel ID is used to

define the zones. The raster created from the 1m DEM containing the slope values is then

used to calculate the mean slope for each zone (i.e. parcel). The result parcel slope map

is presented in Figure 2.1. For reference, an aerial map of the study area is also shown in

Figure 2.2. Table 2.1 shows that the average slope of the entire sample is 18.55% or 10.51°.

The slopes are then divided into six broad groups according to the slope classes from Land

Resource Information System (LRIS)19 as shown in Table 2.2 - flat to gently undulating (0

- 3°), undulating (4 - 7°), rolling (8 - 15°), strongly rolling (16 - 20°) moderately steep (21 –

16 More information about DEM can be found at: https://data.linz.govt.nz/layer/53405-

auckland-lidar-1m-dem-2013/.
17 There are two options for the units of measure for terrain slope: degree values and percentage values.

Please see Appendix B.1 for more information.
18 More information about NZ Primary Parcels can be found at: https://data.linz.govt.nz/layer/

50772-nz-primary-parcels/data/.
19 Please see Appendix B.1 for a range of slope classifications from different countries.
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35°) and steep (26 - 35°) - to be used in the main analysis.20 Table 2.3 shows that 41.7% of

the sample is in the rolling slope range. The correlations of land slope with land area, floor

area, and total number of rooms are 0.2285, 0.2148, and 0.1462, respectively.

2.3.3 Linking Parcels with Addresses

To link the computed land parcel slopes to housing addresses, the Address Component

data from LINZ’s Address Information Management System (AIMS) was used.21 AIMS

Address Component data contains information on address ID, parcel ID and components

of each address such as address number, street number and road name. Parcel ID is used

to link address data to the mean slope data. Components of each address are combined in

the order of the provided address component order22 to a single full address, which is then

linked to the housing address in the QV data.

2.3.4 Building Outlines

There are four primary types of land ownerships in New Zealand that determine the

property owner’s rights: freehold, leasehold, unit title and cross lease. 99.6% of the final

sample has freehold titles and the other 0.4% has cross lease titles. Freehold, also known as

”fee simple,” is the most common ownership type in New Zealand. With a freehold title, the

property owner owns the land and almost anything built on the land. With a cross lease title,

the property owner owns a share of the land with other cross lease holders and is provided

with the footprint of the building s/he is entitled to occupy. The difference that land titles

can make in the analysis can be presented as follows. Suppose two properties share a piece

20 Observations with slope more than 35°were also dropped from the final sample.
21 More information about AIMS Address Component data can be found at: https://data.linz.govt.

nz/table/53354-aims-address-component/data/.
22 Please see Appendix B.2 for more information on component types and orders.
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of uneven land; one is located on the more even and flat half, whereas the other is located

on the more sloped half. In this situation, using the mean slope of the land parcel would be

an overestimate of the slope for the property built on the flat side, and an underestimate

of the slope for the property built on the more sloped side. Hence, it is necessary to drill

down to estimate the slope of the portion of land that is covered by the structure. The NZ

Building Outlines accessed via LINZ Data Service contains the visible roof-line edge of a

building from aerial imagery. Slopes calculated from DEM data are then aggregated to the

building outline level. However, this building outline dataset neither contains address ID

nor similar identifiers that could be linked to the housing data. To proceed, the addresses

were geocoded in the final analytical sample and then spatially joined to the building outline

(polygon) that contains them. Thereafter, the mean slope of the building outline polygon

that contains the address is assigned as the land slope for the property.

An issue with this approach is due to possible mismatches of the building outlines and

the specific address. Manual corrections were made to reduce the number of mismatches as

much as possible. Given the amount of correction involved and the mismatches remained,

the estimation results using building outline slopes are presented in the Appendix Table

B.4. The regression results presented in the next section are robust (in terms of signs and

magnitudes of estimated coefficients and explanatory power of the model) notwithstanding

the choice of input zone (land parcels or building outlines) for slopes.
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2.4 Empirical Results

2.4.1 Exogenous Information on the Prices of Structures

The practical problem with models defined by equations (2.2) to (2.6) is that multi-

collinearity between land area and structure area results in highly unstable and unreason-

able estimates. Empirical evidence (e.g., Diewert et al., 2011, 2015; Diewert and Shimizu,

2016) suggests that an approach based on exogenous information on the price of structures

can overcome the multicollinearity between land area and structure area and produce more

reasonable and stable price dynamics for both land and structure. Such exogenous prices

are usually new construction price indices reported by a statistical agency.23 As indicated

by Rosenthal (1999), the long run equilibrium price of new structures equals current con-

struction costs.

The quarterly housing construction cost index is derived from Statistics New Zealand

(Stats NZ) building consent statistics for new homes in the Auckland region. Building

consent statistics contain information about the numbers, values and floor areas of new

homes, non-residential buildings, and alterations approved for construction.24 To construct

the quarterly housing construction cost index γt , actual values of new homes approved for

construction in quarter t in Auckland region are divided by floor areas of new homes approved

23 Models with straight-line depreciation, and with price of new structure growing proportionally to the
exogenous construction cost index at a constant rate (i.e. pt

s = θγt) were also estimated. Yet, these
models’ results were not satisfactory, which confirm the use of geometric depreciation and the use of
exogenous construction cost index directly (i.e. pt

s = γt).
24 More information about building consent can be found at: https://www.stats.govt.nz/

information-releases/building-consents-issued-may-2018.
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for construction in the same quarter in the Auckland region:

γt =
value value of new homes approved for constructiont

floor area of new homes approved for constructiont
(2.7)

Quarterly building consent statistics for new houses in Auckland region are presented in

Table 2.4. Quarterly construction indices calculated using equation (2.7) are presented in

column (3); construction cost per square meter increased by about 56.76% from 2007 to

2016. These values are not inflation-adjusted.

2.4.2 Results of Builder’s Models

Instead of estimating 40 standard builder’s models defined in equation (2.3), one for each

quarter starting from 2007 quarter 1 to 2016 quarter 4, the combined version of equation

(2.3) was estimated with 40 quarterly dummies. The combined estimation allows the com-

parison of log-likelihood values across models. The results of the combined standard model

are presented in column (1) of Table 2.5. In the combined standard model, there are 3

explanatory variables (land area, floor area, and decade house age) and 41 parameters (40

quarterly land prices and the net decade depreciation rate δ ) to be estimated. The adjusted

R-squared shows that the 3-predictor non-linear model explains 86.2% of variation in selling

prices. The estimated 40 quarterly prices of land show that the land price increased 2.40-

fold (normalized in column 2 of Table 2.6) over the 10 years, a much greater rate than the

1.57-fold (normalized in column 1 of Table 2.6) increase in construction cost index over the

same time period. The estimated net decade depreciation rate δ is 0.074 or 7.4% per decade.

This corresponds to an annual net depreciation rate of 0.74% per year, which is comparable

to the annual net depreciation rates of the standard models in Diewert and Shimizu (2016)
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and the annual net depreciation rates on single family owner-occupied dwelling in Chinloy

(1977).25

The standard and the generalized builder’s models to be estimated are all nonlinear

models that are estimated using iteration methods that require starting values for the pa-

rameters. To facilitate the convergence of the estimation algorithm for models with more

parameters, estimates from the models with fewer parameters will be used as the stating

values in the estimation of models with more parameters.

Using the estimated coefficients from the standard model as the initial values, the com-

bined version of the generalized builder’s model defined in equation (2.5) is estimated with

school zones and numbers of rooms. To avoid the dummy variable trap, Selwyn college

school zone and two-to-four-room group26 serve as the reference groups receptively. Esti-

mated results are presented in column (2) of Table 2.5. This non-linear model consists of

5 explanatory variables (land area, floor area, decade house age, school zone, number of

rooms), and 47 parameters to be estimated. The adjusted R-squared shows that the 5-

predictor model explains 93.8% of the variation in selling prices. Moreover, log-likelihood,

AIC and BIC all indicate that adding two school zones and four number of rooms category

variables as explanatory variables together results in a statistically significant improvement

in model fit compared to the standard model. After controlling for additional structural

and land characteristics, the estimated quarterly land prices point to a 2.82-fold increase

(normalized in column 3 of Table 2.6) in land prices over the 10 years, compared to 2.40 in

25 Diewert and Shimizu (2016) suggest that the annual net geometric depreciation rate is between 1% and
4%. Chinloy (1977) estimates an annual net geometric rate on single family, owner-occupied dwelling
to be 0.69 – 0.91% in London.

26 4.55% (419 observations) of the data has two or three rooms. Hence, they are re-grouped with four
rooms. The two-to-four-room group is set as the base group.
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the standard model. In addition, the estimated decade net depreciation rate now is 6.4%27.

This corresponds to a net annual depreciation rate of 0.64%. Everything else being equal,

compared to per square meter construction cost for a two-to-four-room house, it costs about

NZ$1100 more per square meter to build a five- or six-room house, and about NZ$1300

more per square meter to build a house with more than seven rooms. This is reasonable

since, with more rooms, more building materials are required, and construction time may

be extended. As a result, both the costs of material and labor will increase with number of

rooms. This model also shows that, on average, land in the One Tree Hill College school zone

is NZ$360 cheaper per square meter than in the Selwyn College zone, whereas land in the

Double Grammar zone is more expensive than in Selwyn College school zone by NZ$552 per

square meter. This is consistent with the market observation. The Double Grammar zone is

the most sought-after state school zone in Auckland, with mean property values constantly

reported to be hundreds of thousands of dollars higher than outside the enrollment zone. In

addition, the enrollments in both Auckland Grammar and Epsom’s Girl’s Grammar have

approached their maximum values, accompanied by an increase in school age residents in the

Double Grammar zone. The high demand and almost saturated supply of a place in the two

Grammar schools have combined to drive up property prices. According to the New Zealand

Herald newspaper, the research exclusively released to them by Property Economics in New

Zealand shows that the school zoning drives the development, rather than the converse.28

Hence, the estimated higher per square meter land price in Double Grammar zone can be

explained as the financial premium in the Double Grammar zone attributed to the increasing

27 Using number of bedrooms instead of number of rooms results in a net decade depreciation of 11.7%.
28 Pleaser refer to The New Zealand Herald article.
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demand and the shortage of land within the zone.

Now turning to the generalized model incorporating land slope discussed above, the

combined version of the model defined in equation (2.6) is estimated instead of estimating

40 separate models for each quarter. Estimated coefficients from the previous generalized

model were used as the starting values. Since 41.7% of the observations were in the rolling

slope range, the rolling slope category was set as the reference land slope category. Estimated

results for the 52 parameters for the 6-predictor non-linear model are presented in column

(3) of Table 2.5. The adjusted R-squared increased slightly to 0.940. Nonetheless, the

log-likelihood, AIC and BIC all indicate that adding five site-slope parameters together

does result in a statistically significant improvement in model fit compared to the previous

generalized model without terrain slopes. After controlling for the slopes of land parcels, the

estimated quarterly constant quality land indices show that land prices increased by 2.78-

fold (normalized in column 4 of Table 2.6) over the 10 years, compared to 2.82 in previous

model. Results for the decade net depreciation rate, school zones, number of rooms are

consistent with previous estimates.

With additional land-slope parameters, this model suggests the confirmation of hypoth-

esis 1 that per square meter land price decreases with land slope, indicating the difficulty

to build with sloping land dominates the possible slope-associated views in terms of pricing.

Flat to gently undulating land (0 - 3°) is on average more expensive than the rolling land (8 -

15°) by NZ$117 per square meter. The slightly positive price difference between undulating

(4 - 7°) and rolling land, and the small negative price difference between strongly rolling (16

– 20°) and rolling land are not statistically significant. In contrast, moderately steep (21
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– 25°) and steep (26 - 35°) land are cheaper by NZ$168, and NZ$268 per square meter in

comparison with that of rolling land. As discussed in previous sections, the difficulty and

complexity generated by building on land with steeper slopes is compensated by cheaper

land prices.29

2.4.3 Construction of Overall House Price Index

The above model decomposed sales price into the constant quality price of land and

constant quality price of structure. With several steps, they can be combined to generate

the overall house price index. First, utilizing the estimates from the generalized builder’s

model with land slopes, imputed constant quality amount of land (ÎLit) and imputed constant

quality amount of structure ÎSit) for each house i sold in quarter t can be constructed as

follows:

ÎLit = (1+
Z

∑
z=1

λ̂zZoneit,z)(1+
S

∑
s=1

β̂s Slope Groupit,s)Lit (2.8)

ÎSit = (1− δ̂ )Ait (1+
R

∑
r=1

η̂rRit,r)Sit (2.9)

Then the total constant quality amount of land ÎLt and total constant quality amount of

structure ÎSt in quarter t can be formed by aggregating ÎLit and ÎSit in that quarter separately.

ÎLt =
N(t)

∑
i=1

(1+
Z

∑
z=1

λ̂zZoneit,z)(1+
S

∑
s=1

β̂s Slope Groupit,s)Lit (2.10)

ÎSt =
N(t)

∑
i=1

(1− δ̂ )Ait (1+
R

∑
r=1

η̂rRit,br)Sit (2.11)

29 Estimation results using alternative land slope classification are presented in Appendix Table B.2 and
are consistent with the main results.
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To construct the overall house price index in quarter t, estimated constant quality land price

in quarter t, p̂L
t , is normalized such that land price index in quarter 1 is 1.

p̃L
t =

p̂L
t

p̂L
1

(2.12)

The total constant quality amount of land ÎLt in quart t is rescaled accordingly to maintain

the predicted constant quality of land values as follows:

ĨLt = p̂L
1 · ÎLt (2.13)

Constant quality amount of structure prices and total constant quality amount of structures

are normalized and rescaled in a similar way and presented in equations (2.14) and (2.15).

p̃S
t =

γt

γ1
(2.14)

ĨSt = γ1 · ÎSt (2.15)

The prices and quantities of aggregate constant quality of land and structures formed from

equations (2.12) - (2.15) are used to construct Fisher (1921) house price indices. The Fisher

index is chosen over Laspeyres and Paasche indices, for Laspeyres index is positively biased

while Paasche is negatively biased. A similar procedure is used to form constant quality of

land and structure indices and Fisher chained house price indices for the estimated standard

builder’s model and the generalized without land slopes.

Normalized constant quality of structure and land sub-indices from Tables 2.4 and 2.5

are presented in Table 2.6 together with the imputed Fisher chained aggregate house indices

for all three models. Overall house price indices from the traditional hedonic model with

time dummy variables and the structural and land controls (including land slope) used in
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the generalized builder’s model are presented in column (8) of Table 2.6 for comparison.30

Land and house price indices are also plotted in Figure 2.3. It appears that the standard

builder’s model (the model uses only land area, floor area and decade age) generates higher

land price indices up to the fourth quarter of 2014 compared to those of generalized models.

The generalized builder’s models show that land price decreased by about 30% at the end

of 2008 compared to 2007Q1, whereas structure construction cost increased by about 18%

at the same time. This is consistent with the literature that structure price fluctuates less

than land price and land and structure values evolve differently over time. Comparing land

prices from the two generalized models, it appears that using land slope as an additional

explanatory variable reduces the land price index in the last quarter by 4.57 percentage point

(a decrease of 1.62%) in comparison with that of the generalized model without slopes. It can

also be seen in panel (a) of Figure 2.3 that estimated land prices are almost identical in most

quarters and differ moderately in several quarters. Care must be taken to interpret these

results. Since land slope is found to discount house value (hypothesis 1), the minor changes

in land price indices after controlling for land slope suggest the occurrence of case 2 that

the slope compositions, and hence changes in land price indices, do not differ significantly

over time controlling for slope. Indeed, at the significance level of 0.1, the hypothesis that

the mean of land slope is the same for 2007Q1 and each of the subsequent quarters is only

rejected in 2009Q4 and 2014Q1, among which the largest difference in mean slope is 1.26°.

30 The traditional hedonic model estimated takes the following form:

ln(pit) = α +
T

∑
t=2

δtDit + γLln(Sit)+ γAln(Ait)+
Z

∑
z=1

λzZoneit,z +
S

∑
s=1

βsSlope Groupit,s + εit

House price indices from the hedonic regression is then constructed as the exponential of δ̂t .
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Turing to the aggregate house price indices, Table 2.6 and panel (b) of Figure 2.3 show

that on average the standard builder’s model generates larger house price indices. The differ-

ence in the Fisher chained house price index in the last quarter between the two generalized

models is 1.18 percentage point (a decrease of 0.5%). It can also be seen from panel (b)

of Figure 2.3 that estimated house price indices from the traditional time dummy hedonic

regression follow the Fisher chained house price indices from the generalized models closely

up to the first quarter of 2015.

Our results from a small neighborhood in Auckland, New Zealand, where sloped terrain

is common, show that land slope discounts (hypothesis 1) the unit land price. This result

should not be directly generalized to other locations with sloped terrain. Instead, as discussed

in section 2.3, there are two forces through which slope can affect the land price. Slope may

discount land prices due to the complexity and cost to build, but it may also increase land

prices for appreciable views. Which force dominates may depend on the local topography.

For instance, in locations where slope can provide aesthetic advantages, like a spectacular

view of lakes or mountains, it is reasonable to expect a price premium for sloping sites

(hypothesis 2). With respect to quality-adjusted land price indices, our findings suggest that

land slope has a negligible impact on quality-adjusted land price index when the composition

of the slopes of houses sold remains stable over time (case 2) in the hilly area. Again, this

should not be interpreted as land slope is of no importance for quality-adjusted land price

indices. For example, as the subdivision of hilly areas becomes a problem in Los Angeles,

there might be fewer houses built on sloping sites sold over time (case 1). Ignoring the

variation in land slope composition would lead to biased land price indices.
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2.5 Conclusion
The importance of separating structure and land has been well established but the dif-

ficulties of unbundling them remain in practice. Unlike structure, land is not reproducible;

land parcels differ not only by location and size, but also slope and other topographical

features. Hence, to form reliable constant quality land price indices requires controlling

physical attributes of land that intrinsically confine the use of land and possibly discount

land values.

This paper endeavors to demonstrate that how a land-specific topographical character-

istic - terrain slope - can be incorporated to builder’s model. The analysis reveals a slope

discount: lower per square meter price for land compensates for the difficulty and complex-

ity to build as land slope increases. Constant quality land price indices from the generalize

model decrease slightly about 4.57 percentage point (1.62% decrease) after controlling for

land slopes. This difference may not seem notably large in magnitude but recall that the

land slope compositions do not differ significantly over time, which seems to support that

the use of the builder’s model with only four explanatory variables - land area, location of

the house, floor area and house age - generates credible overall house price indices and rea-

sonable sub-price indices for land and structures. On the other hand, the moderate change

in land price indices after including land slopes may due to the choice of a small sample.

Recall that the study area only encompasses three neighboring school zones in Auckland.

In this small study area, less than 6% of the land in One Tree Hill College zone has slopes

above 15°. It is of interest to see its effect when applied to a larger spatial context with

more observations in more sloped groups and a context with the composition of land slope
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changing over time. The official magazine of the Registered Master Builders Association

(RMBA) in New Zealand, Building Today, reported in 2018 that although there continues

to be strong demand for flat land, attention is turning to sloping land.31 It might turn out

that with more and more new houses built on sloping land over time, the effect of including

land slope to construct quality adjusted land price indices may become more important.

The other limitation and possible extension come from the fact that the specification used

is restrictive. It assumes that land price differences between school zones and across land

slope classes do not change over time. On the contrary, land in the most sought-after school

zones may appreciate more than others. Similarly, prices of less sloped land may increase

faster over time than others due to scarcity especially in hilly regions. Thus, multiplicative

interactions between the two variables and time may be important. In addition, sloping land

can be subjected to higher risks of natural hazards. For example, the City of Christchurch

experienced extensive liquefaction in 2010 and 2011 as a result of a series of large-scale

earthquakes. Port Hills, the hilly part of the city, also experienced landslide and rockfalls.

Hence, accounting for the interaction between land slope and risk of natural hazards would

be an interesting topic for future research.

31 Please refer to Building Today article.
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2.6 Figures and Tables

Figure 2.1: Land Parcel Slope in Percent Rise

Note: This map is produced by the authors in ArcGIS using 1m DEM fitted to the
map of primary land parcels covering the study area.
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Figure 2.2: Aerial Imagery Reference of Study Area

Source: Land Information New Zealand access from ArcGIS
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Figure 2.3: Constant Quality Sub Price Indices and Aggregate House Price Indices

(a) Quarterly Constant Quality Sub Price Indices: 2007Q1 – 2016Q4

(b) Quarterly Aggregate House Price Indices: 2007Q1 – 2016Q4

Note: These figures present the normalized sub-price indices and aggregate house price
indices displayed in Table 2.6.

91



Table 2.1: Descriptive Statistics

Variable Mean Std. Dev. Min Max

Selling Price (,000$) 1164.64 695.15 300.00 5880.00
Decade House Age 2.37 2.19 0.00 6.00
Land Area (m2) 580.53 256.30 116.00 2048.00
Floor Area (m2) 216.65 79.61 43.00 530.00
Bathrooms 1.98 0.89 1.00 5.00
Bedrooms 3.78 0.79 1.00 6.00
Land Slope (%) 18.55 12.05 1.53 69.57

Number of Observations 5,657

Note: This table presents descriptive statistics for the selected
neighborhoods in Auckland, New Zealand, from year 2007 to 2016.
Land slope is measured in percent rise (%).
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Table 2.2: New Zealand LRIS Slope Class

Slope Class Degree° Percent Rise(%)

Flat to gently undulating 0 - 3 0 - 6.98
Undulating 4 - 7 6.99 - 14.04
Rolling 8 - 15 14.05 - 28.66
Strongly rolling 16 - 20 28.67 - 38.38
Moderately steep 21 - 25 38.39 - 48.76
Steep 26 - 35 48.77 - 72.64
Very steep 36 - 42 72.65 - 90.04
Precipitous > 42 > 90.04

Note: This table presents the LRIS slope class, accessible
at Land Resource Information Systems (LRIS) Data Dic-
tionary.
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Table 2.3: Slope Class Frequency

LRIS Slope Class Selwyn One Tree Hill Double Grammar Total

Flat to gently undulating (0 - 3°) 7.01 21.14 11.49 12.21
Undulating (4 - 7°) 22.21 37.96 21.54 26.48
Rolling (8 - 15°) 46.52 34.83 40.93 41.70
Strongly rolling (16 - 20°) 14.53 4.63 12.79 11.26
Moderately steep (21 - 25°) 6.29 1.13 8.22 5.36
Steep (26 - 35°) 3.44 0.31 5.03 2.99
Total 100 100 100 100

Number of Observations 5,657

Note: This table presents the frequency of LRIS slope class within each school enrollment
zone in the study area.
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Table 2.4: Quarterly Building Consent For New Houses - Auckland Region

Year Quarter
Value Floor Area Construction Index
NZ$ m2 NZ$/m2

(1) (2) (3)
2007 Q1 308,470,997 252,573 1,221
2007 Q2 300,770,306 239,233 1,257
2007 Q3 345,485,007 273,549 1,263
2007 Q4 351,445,145 272,177 1,291
2008 Q1 286,205,722 218,038 1,313
2008 Q2 246,163,735 180,682 1,362
2008 Q3 198,047,620 147,618 1,342
2008 Q4 174,633,586 119,527 1,461
2009 Q1 168,884,517 116,789 1,446
2009 Q2 168,796,144 112,015 1,507
2009 Q3 211,740,103 144,729 1,463
2009 Q4 265,322,840 182,055 1,457
2010 Q1 242,630,596 172,010 1,411
2010 Q2 278,702,453 200,389 1,391
2010 Q3 244,406,195 173,977 1,405
2010 Q4 219,308,410 154,478 1,420
2011 Q1 224,515,030 151,485 1,482
2011 Q2 216,079,500 146,956 1,470
2011 Q3 253,871,795 172,412 1,472
2011 Q4 289,341,990 196,760 1,471
2012 Q1 288,826,634 191,250 1,510
2012 Q2 302,402,403 195,794 1,544
2012 Q3 291,687,676 192,531 1,515
2012 Q4 374,062,098 248,169 1,507
2013 Q1 349,495,817 231,893 1,507
2013 Q2 416,242,630 263,492 1,580
2013 Q3 418,365,595 268,079 1,561
2013 Q4 424,108,493 257,157 1,649
2014 Q1 450,361,701 280,527 1,605
2014 Q2 462,789,605 275,864 1,678
2014 Q3 455,226,457 270,563 1,683
2014 Q4 498,182,013 288,158 1,729
2015 Q1 450,550,041 257,013 1,753
2015 Q2 505,478,008 291,640 1,733
2015 Q3 553,545,632 318,161 1,740
2015 Q4 611,276,364 334,010 1,830
2016 Q1 599,102,433 312,367 1,918
2016 Q2 676,609,794 364,616 1,856
2016 Q3 672,485,586 353,101 1,905
2016 Q4 575,858,608 300,845 1,914

Note: The quarterly housing construction cost index is derived
from Statistics New Zealand (Stats NZ) building consent statistics
for new homes in the Auckland region.
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Table 2.5: Builder’s Models: Estimation Results

(1) (2) (3)
Standard Generalized w/o Slope Generalized w/ Slope

Coef. Std.Err. Coef. Std.Err. Coef. Std.Err.
2007Q1 0.980∗∗∗ (0.060) 0.653∗∗∗ (0.051) 0.692∗∗∗ (0.054)
2007Q2 1.104∗∗∗ (0.065) 0.687∗∗∗ (0.061) 0.748∗∗∗ (0.052)
2007Q3 1.182∗∗∗ (0.094) 0.707∗∗∗ (0.065) 0.731∗∗∗ (0.068)
2007Q4 0.987∗∗∗ (0.063) 0.625∗∗∗ (0.049) 0.643∗∗∗ (0.050)
2008Q1 1.030∗∗∗ (0.090) 0.661∗∗∗ (0.051) 0.688∗∗∗ (0.054)
2008Q2 0.931∗∗∗ (0.079) 0.546∗∗∗ (0.043) 0.579∗∗∗ (0.041)
2008Q3 1.043∗∗∗ (0.104) 0.598∗∗∗ (0.085) 0.631∗∗∗ (0.090)
2008Q4 1.057∗∗∗ (0.078) 0.495∗∗∗ (0.053) 0.526∗∗∗ (0.059)
2009Q1 0.913∗∗∗ (0.068) 0.420∗∗∗ (0.050) 0.446∗∗∗ (0.054)
2009Q2 1.040∗∗∗ (0.065) 0.480∗∗∗ (0.047) 0.501∗∗∗ (0.047)
2009Q3 0.999∗∗∗ (0.060) 0.520∗∗∗ (0.044) 0.569∗∗∗ (0.041)
2009Q4 1.082∗∗∗ (0.062) 0.590∗∗∗ (0.042) 0.637∗∗∗ (0.044)
2010Q1 0.949∗∗∗ (0.061) 0.559∗∗∗ (0.040) 0.592∗∗∗ (0.040)
2010Q2 1.140∗∗∗ (0.074) 0.680∗∗∗ (0.055) 0.716∗∗∗ (0.058)
2010Q3 1.231∗∗∗ (0.086) 0.648∗∗∗ (0.060) 0.669∗∗∗ (0.064)
2010Q4 1.056∗∗∗ (0.074) 0.594∗∗∗ (0.057) 0.625∗∗∗ (0.058)
2011Q1 1.051∗∗∗ (0.076) 0.528∗∗∗ (0.055) 0.568∗∗∗ (0.053)
2011Q2 1.175∗∗∗ (0.078) 0.684∗∗∗ (0.064) 0.713∗∗∗ (0.065)
2011Q3 1.103∗∗∗ (0.074) 0.562∗∗∗ (0.077) 0.617∗∗∗ (0.064)
2011Q4 1.117∗∗∗ (0.076) 0.654∗∗∗ (0.067) 0.689∗∗∗ (0.067)
2012Q1 1.179∗∗∗ (0.071) 0.655∗∗∗ (0.049) 0.688∗∗∗ (0.049)
2012Q2 1.128∗∗∗ (0.055) 0.616∗∗∗ (0.044) 0.660∗∗∗ (0.043)
2012Q3 1.169∗∗∗ (0.057) 0.647∗∗∗ (0.042) 0.682∗∗∗ (0.046)
2012Q4 1.359∗∗∗ (0.072) 0.813∗∗∗ (0.042) 0.847∗∗∗ (0.042)
2013Q1 1.241∗∗∗ (0.064) 0.747∗∗∗ (0.044) 0.796∗∗∗ (0.044)
2013Q2 1.536∗∗∗ (0.076) 0.910∗∗∗ (0.050) 0.953∗∗∗ (0.054)
2013Q3 1.541∗∗∗ (0.083) 0.966∗∗∗ (0.058) 1.025∗∗∗ (0.060)
2013Q4 1.504∗∗∗ (0.088) 0.908∗∗∗ (0.061) 0.982∗∗∗ (0.060)
2014Q1 1.552∗∗∗ (0.077) 0.928∗∗∗ (0.060) 0.962∗∗∗ (0.062)
2014Q2 1.769∗∗∗ (0.102) 1.138∗∗∗ (0.076) 1.174∗∗∗ (0.080)
2014Q3 1.873∗∗∗ (0.100) 1.219∗∗∗ (0.076) 1.261∗∗∗ (0.079)
2014Q4 1.886∗∗∗ (0.080) 1.164∗∗∗ (0.055) 1.218∗∗∗ (0.059)
2015Q1 2.049∗∗∗ (0.122) 1.409∗∗∗ (0.083) 1.508∗∗∗ (0.082)
2015Q2 2.000∗∗∗ (0.097) 1.403∗∗∗ (0.071) 1.471∗∗∗ (0.072)
2015Q3 2.021∗∗∗ (0.095) 1.451∗∗∗ (0.066) 1.524∗∗∗ (0.066)
2015Q4 2.041∗∗∗ (0.096) 1.338∗∗∗ (0.064) 1.423∗∗∗ (0.060)
2016Q1 2.360∗∗∗ (0.142) 1.603∗∗∗ (0.091) 1.660∗∗∗ (0.093)
2016Q2 2.203∗∗∗ (0.108) 1.536∗∗∗ (0.082) 1.637∗∗∗ (0.073)
2016Q3 2.285∗∗∗ (0.106) 1.612∗∗∗ (0.085) 1.669∗∗∗ (0.085)
2016Q4 2.350∗∗∗ (0.180) 1.842∗∗∗ (0.143) 1.922∗∗∗ (0.137)
Decade Discount Rate δ 0.074∗∗∗ (0.020) 0.064∗∗∗ (0.007) 0.066∗∗∗ (0.007)

One Tree Hill School Zone −0.360∗∗∗ (0.015) −0.398∗∗∗ (0.014)
Double Grammar Zone 0.552∗∗∗ (0.039) 0.536∗∗∗ (0.036)

5 Rooms 1.083∗∗∗ (0.041) 1.036∗∗∗ (0.042)
6 Rooms 1.092∗∗∗ (0.043) 1.061∗∗∗ (0.043)
7 Rooms 1.288∗∗∗ (0.046) 1.262∗∗∗ (0.046)
8+Rooms 1.281∗∗∗ (0.046) 1.230∗∗∗ (0.047)

Flat to gently undulating (0-3°) 0.117∗∗∗ (0.037)
Undulating (4-7°) 0.042 (0.027)
Strongly rolling (16-20°) −0.038 (0.036)
Moderately steep (21-25°) −0.168∗∗∗ (0.035)
Steep (26-35°) −0.268∗∗∗ (0.044)

Adjusted R2 0.862 0.938 0.940
Log-Likelihood -43198.376 -40949.968 -40852.527
AIC 86478.751 81993.935 81809.053
BIC 86751.018 82306.046 82154.367
Number of Observations 5,657 5,657 5,657
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
Note: This table presents estimation results for three builder’s models. Selwyn College school zone is the base school
zone. 2-to-4-room category is set as the reference room group. Rolling land (8-15°) is the base land slope class. Robust
Standard errors in parentheses.
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Table 2.6: Constant Quality Sub-Price Indices and Aggregate House Price Indices

Quarter
Structure Land Price Indices Fisher Chained House Price Indices Hedonic House

Price Indices Standard
Generalized

Standard
Generalized

Price Indicies
w/o Slope w/ Slope w/o Slope w/ Slope

(1) (2) (3) (4) (5) (6) (7) (8)

2007Q1 1 1 1 1 1 1 1 1
2007Q2 1.0295 1.1269 1.0528 1.0809 1.1004 1.0407 1.0546 1.0757
2007Q3 1.0344 1.2062 1.0835 1.0564 1.1582 1.0576 1.0456 1.0525
2007Q4 1.0573 1.0072 0.9576 0.9294 1.0233 1.0113 0.9972 1.0391
2008Q1 1.0753 1.0513 1.0137 0.9939 1.0603 1.0476 1.0381 1.0521
2008Q2 1.1155 0.9500 0.8365 0.8360 0.9970 0.9801 0.9780 0.9889
2008Q3 1.0991 1.0644 0.9171 0.9116 1.0730 1.0077 1.0041 0.9739
2008Q4 1.1966 1.0786 0.7592 0.7603 1.1135 0.9985 0.9956 0.9912
2009Q1 1.1843 0.9314 0.6442 0.6440 1.0078 0.9424 0.9381 0.9535
2009Q2 1.2342 1.0620 0.7354 0.7234 1.1136 1.0098 1.0008 1.0093
2009Q3 1.1982 1.0197 0.7963 0.8227 1.0733 1.0173 1.0266 1.0347
2009Q4 1.1933 1.1048 0.9048 0.9197 1.1323 1.0652 1.0695 1.0551
2010Q1 1.1556 0.9688 0.8571 0.8550 1.0232 1.0221 1.0179 1.0296
2010Q2 1.1392 1.1631 1.0418 1.0338 1.1598 1.1047 1.0995 1.0645
2010Q3 1.1507 1.2562 0.9924 0.9669 1.2292 1.0877 1.0735 1.0747
2010Q4 1.1630 1.0780 0.9106 0.9035 1.1049 1.055 1.0489 1.0241
2011Q1 1.2138 1.0730 0.8095 0.8212 1.1160 1.0348 1.0364 1.0034
2011Q2 1.2039 1.1997 1.0477 1.0295 1.2012 1.1340 1.1243 1.0754
2011Q3 1.2056 1.1253 0.8615 0.8918 1.1491 1.0506 1.0614 1.0877
2011Q4 1.2048 1.1397 1.0028 0.9953 1.1592 1.1172 1.1112 1.0920
2012Q1 1.2367 1.2038 1.0043 0.9935 1.2139 1.1353 1.1274 1.1388
2012Q2 1.2645 1.1517 0.9435 0.9533 1.1856 1.1227 1.1236 1.1491
2012Q3 1.2408 1.1936 0.9918 0.9853 1.2086 1.1329 1.1266 1.1869
2012Q4 1.2342 1.3874 1.2457 1.2242 1.3451 1.2482 1.2373 1.2284
2013Q1 1.2342 1.2670 1.1442 1.1500 1.2600 1.2027 1.2034 1.2492
2013Q2 1.2940 1.5681 1.3941 1.3769 1.4887 1.3464 1.3381 1.3678
2013Q3 1.2785 1.5734 1.4799 1.4810 1.4878 1.3773 1.3782 1.3842
2013Q4 1.3505 1.5351 1.3909 1.4184 1.4810 1.3745 1.3869 1.4249
2014Q1 1.3145 1.5845 1.4226 1.3903 1.5058 1.3698 1.3545 1.4449
2014Q2 1.3743 1.8057 1.7444 1.6965 1.6808 1.5538 1.5338 1.5435
2014Q3 1.3784 1.9115 1.8683 1.8212 1.7568 1.6133 1.595 1.5527
2014Q4 1.4161 1.9249 1.7844 1.7596 1.7775 1.5952 1.5863 1.6149
2015Q1 1.4357 2.0916 2.1599 2.1785 1.9017 1.7835 1.798 1.8099
2015Q2 1.4193 2.0416 2.1494 2.1248 1.8613 1.7699 1.7637 1.8664
2015Q3 1.4251 2.0628 2.2243 2.2024 1.8782 1.8085 1.8041 1.9114
2015Q4 1.4988 2.0833 2.0503 2.0566 1.9125 1.7617 1.7692 1.8847
2016Q1 1.5708 2.4089 2.4568 2.3981 2.1669 1.9936 1.9724 2.0373
2016Q2 1.5201 2.2481 2.3541 2.3655 2.0373 1.9182 1.9301 2.1294
2016Q3 1.5602 2.3325 2.4709 2.4115 2.1093 1.9953 1.9729 2.1108
2016Q4 1.5676 2.3984 2.8225 2.7768 2.1593 2.1703 2.1585 2.1618

Note: This table presents the normalized land price indices, imputed Fisher Chained house price indices for each of
the builder’s models as well as structure price indices and hedonic house price indices. Hedonic house price indices
in column (8) is calculated from the standard hedonic model with time dummy variables and the same structural
and land characteristics from the generalized builder’s model.
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Chapter 3

Does Proximity to School Still Matter Once
Access to Your Preferred School Zone Has
Already Been Secured?

3.1 Introduction
In the United States, public schools are free of tuition, but households pay indirectly for

higher quality education by bidding up house prices in better quality school districts in real

estate markets (Owusu-Edusei et al., 2007). Over the world, many countries have public

school enrollment policies that are tied to residential locations. Enrollments at elementary

or secondary schools are restricted to students living in a geographically defined area, usually

a small neighborhood near the school. As a result, households who value a school will be

willing to pay a premium to live in the enrollment area defined by that school. Nevertheless,

in some areas, the enrollment zone refers to a single school attendance boundary (e.g., School

Enrollment scheme in New Zealand), whereas in other areas it means the students living in

a specific geographic area have guaranteed enrollment at one of several schools in the zone,

not just one particular school (e.g., school district in US). The existing literature abounds

with evidence of capitalization of school quality1 and school admission2 into house prices,

typically by comparing property prices on the boundary of the attendance zone (e.g., Black,

1 Papers that study school quality include Bayer et al. (2007); Black (1999); Black and Machin (2011);
Bogart and Cromwell (1997, 2000); Downes and Zabel (2002); Ferreyra (2007); Gibbons et al. (2013);
Nguyen-Hoang and Yinger (2011), and Weimer and Wolkoff (2001).

2 Papers that evaluate school admission include Brunner et al. (2012); Epple and Romano (2003); Ferreyra
(2007); Machin and Salvanes (2016); Reback (2005); Schwartz et al. (2014), and Bonilla-Mej́ıa et al.
(2020).
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1999). Proximity to schools, however, is relatively less investigated. On the one hand,

proximity to the desired school can be seen as an amenity as it reduces travel time and

travel costs (e.g., Des Rosiers et al., 2000). On the other hand, proximity to schools imposes

adverse effects on property prices as a result of increased noise level, traffic congestion, and

crime rates (e.g., Guntermann and Colwell, 1983).

This paper utilizes the state school enrollment scheme in New Zealand which restricts

admissions to families living within a school’s delineated boundaries, and develops the ex-

isting work on proximity to schools by assessing the role of proximity to a secondary school

on housing prices once access to that school has been secured (i.e., being located in that

school’s enrollment zone). Adopting both the standard hedonic and quantile regression ap-

proaches, we find that capitalization of proximity to school is nonlinear, changes across the

price distribution, and varies by the popularity of schools. Specifically, in our four-school

sample, our results show that house prices increase with proximity to school but decrease

above 3.664 km in the most sought-after school zones. On the other hand, house prices

decrease with proximity to school in the other two school zones. Moreover, we find that the

effects of proximity to school are most prominent at the lower quantile of the sales price

distribution in the most sought-after school zone. We also find evidence that the impact of

proximity to school is larger in magnitude when measured by driving distance rather than

driving time.

The findings in this paper contribute to the body of research that studies proximity to

schools and property values (early contributions include Emerson, 1972, and Hendon, 1973).

Several studies evaluate both positive (e.g., safety and shorter travel time) and negative
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impacts (e.g., noise, traffic jam and trampled lawns) of proximity to primary schools (e.g.,

primary schools in Lubbock, Texas, studied in Guntermann and Colwell, 1983) and find that

the positive effect dominates within a closer proximity to schools (e.g., 300 to 500 meters

or 9 to 15 minutes walking distance from primary schools in Quebec found by Des Rosiers

et al., 2000). More recently, Sah et al. (20) introduce spatial heterogeneity in the effect

of proximity to schools in San Diego County and find a positive (negative) externality of

proximity to public (private) primary schools in inland areas but a negative one of both

types of schools in coastal areas. However, the authors do not pinpoint the source(s) of

this heterogeneity. Another two studies evaluate proximity to all school levels (elementary,

middle, and high schools). Owusu-Edusei et al. (2007) suggest that, in general, the house

prices in Greenville, South Carolina, are higher within closer proximity to elementary and

middle schools. High schools, on the other hand, depress nearby house prices due to more

nighttime activity and light. Huang and Hess (2018) use quantile regression and estimate

the median marginal effect of distance to schools in Oshkosh, Wisconsin, and conclude that

the median sales price decreases with distance to the nearest elementary, middle, and high

schools.

This paper extends the current literature and provides evidence on the role of proximity

to secondary schools within four state secondary school enrollment zones in Auckland, New

Zealand. We acknowledge the nonlinearity of proximity to schools and take advantage of

the quantile regression to investigate if school proximity is valued differently in different

submarkets (i.e., different points of the distribution of property price) instead of a single

expected mean estimation for each school zone.
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The rest of the paper is composed as follows: section 3.2 describes Auckland’s housing

market and the selected geographic area of our study. Section 3.3 presents the empirical

strategy, the hedonic model, and our quantile regressions. Section 3.4 describes the data

and their source. Estimation results are presented and discussed in section 3.5. The last

section summarizes the results and offers some concluding remarks.

3.2 Auckland Housing Market
The Economic Outlook (2017) of the Organization for Economic Cooperation and Devel-

opment (OECD) shows that New Zealand experienced the highest increase in the housing

price-to-income ratio index and price-to-rent ratio index since 2013 and 2011 respectively.

Indeed, Auckland’s property prices have increased by 77.5% between 2011 and 2016, and

the average house price reached 1 million New Zealand dollars (NZ$, equivalent to $USD

671,330) for the first time in 2016. Since 2012, the median housing prices in Auckland

have inflated from almost 7 times the median household income to 10 times in 2017. As

a result, Auckland is now ranked the world’s fourth least-affordable housing market with

more than one million inhabitants after Hong Kong, Sydney, and Vancouver (Demographia

International Housing Affordability Survey, 2017).

New Zealand, like many countries, has public school enrollment policies tied to residential

locations. Enrollments at state elementary or secondary schools are restricted to students

living in a geographically defined school zone. Within the context of the soaring housing

market in Auckland, there are significant neighborhoods such as the “Double Grammar Zone

(DGZ)” that have contributed significantly to the inflation of property values. The DGZ

references an overlapping area of enrollment zones of Auckland Grammar School (AGS)
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and Epsom Girl’s Grammar School (EGGS). Both schools are prestigious state secondary

schools for children aged 13 to 17 but respectively serving boys and girls only. As shown in

Figure 3.1, AGS enrollment zone (orange) and EGGS enrollment zone (pink) overlap. The

overlapped DGZ is the most sought-after, which is reflected in the mean housing price of at

least NZ$225,000, a value 12% higher than the mean housing price in the rest of Auckland.

However, it is unlikely that all the houses in DGZ enjoy the same price premium and price

appreciation.

Figure 3.1 also displays two other neighboring school enrollment zones. On the southeast-

ern and northeastern parts of the study area lie One Tree Hill College and Selwyn College

respectively. Both are state coeducational secondary schools. The enrollment zone of each

of these two schools was defined on January 1, 2015.

3.3 Hedonic Price Model
We rely on the theoretical model of Rosen (1974) to estimate the role of the property

attributes and their values. Typically, there are three categories of attributes that are eval-

uated in a hedonic model: 1) structure attributes such as floor area, lot size, number of

bedrooms, and housing age; 2) community and amenity attributes such as average neigh-

borhood income and air quality; and 3) locational attributes such as the distance from the

Central Business District and proximity to neighborhood parks. In theory, any house can be

described as a vector of attributes with values Z = Z(z1,z2, . . . ,zK). In practice, the majority

of empirical hedonic studies use the following linear model to be estimated in a single year
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or over cross-sectional data pooled over time:

logPit =
K

∑
k=1

βkzit,k +
T

∑
t=1

αtDit + εit , i = 1, . . . ,N, εit ∼N (0,σ2
ε ) (3.1)

where logPit is the logarithm of the sale price of house i at time t (t = 1, . . . ,T ); zit,k represents

observed structure, community, amenity and location attributes k of house i at time t; Dit is

a time dummy variable with value 1 if house i is sold at time t and 0 otherwise and εit is a

random error term. In this specification, the marginal effects of housing attributes (βk) are

constant over time and the quality-adjusted house price indexes can be calculated by taking

the exponent of the series of the estimated time dummy variables α̂t .

The location premium of a house is typically represented by accessibility to the central

business district (CBD, the primary employment center), schools, shopping centers, parks

and other local amenities (e.g., Basu and Thibodeau, 1998; Powe et al., 1995). For instance,

Chin and Foong (2006) find that the effect of school accessibility on property values varies

with distance to the CBD and the performance of a school. As a result, we control for

the first-order interaction of distance to school and distance to CBD. Moreover, we allow

the distance to school and the CBD to vary nonlinearly. The latter variable appears in the

hedonic models of, among others, Anderson and West (2006); Halstead et al. (1997) and

Rasmussen and Zuehlke (1990).

In addition, studies such as Bolitzer and Netusil (2000); Lutzenhiser and Netusil (2001)

and Voicu and Been (2008) have demonstrated that different open space types, such as

natural parks and specialty parks, have different degrees of impact on property values. They

also find that there is an optimal open space size that maximizes house prices. In the absence

of information about the type and amenities available at each park, we will follow Halper
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et al. (2015) by grouping parks according to their size and including the accessibility to the

nearest park of each of three categories (small, medium and large parks, as defined by each

tercile of the size distribution) in our hedonic model:

logPit = β1dschoolit +β2dschool2
it +β3dcbdit +β4dcbd2

it +β5(dschoolit×dcbdit)

+β6dshopit +β7dbeachit +β8dsmall parkit +β9dmediumparkit +β10dlargeparkit

+
K

∑
k=1

αkSit,k +
T

∑
t=1

γtDYit +
P

∑
p=1

λpDPit + εit , i = 1, . . . ,N, εit ∼N (0, σ
2
ε ) (3.2)

where dschoolit and dcbdit are the driving distances from house i at time t to the school it is

associated with and to the CBD respectively. dshopit and dbeachit are the driving distances

from each house to the nearest shopping center and the nearest beach, respectively. When it

comes to the latter, we select only beaches where swimming is safe. Sit,k is a set of observed

characteristics of the structure. They include the logarithm of the floor and land areas,

the building age, the number of bedrooms, the number of bathrooms, the number of car

parks, the types of wall construction, the types of roof, and land slope class. DYit is a year

dummy with value 1 if house i is sold at year t and 0 otherwise. DPit is a neighborhood

dummy with value 1 if house i is in Postcode zone p and 0 otherwise. Postcode zones in

New Zealand do not map precisely to standard geographic classification. In other words,

one cannot combine meshblocks, the counterpart of U.S. census blocks, to create a postcode.

The study area consists of 9 postcodes. They have an average size of 4.37 square miles.

Previous studies, including Des Rosiers et al. (2000); Nelson (1977) and Ottensmann et al.

(2008), demonstrate that models with travel time to employment centers, schools, parks, and

transportation stations perform better than simple geographic distance. We will investigate
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if travel time as the alternative measure of proximity leads to similar results.

With equation (3.2), the marginal effect of driving distance to school on log of house

price is obtained as follows:

∂ logPit

∂dschoolit
= β1 +2β2×dschoolit +β5×dcbdit (3.3)

It shows that the marginal effect of driving distance to school is a linear function of driving

distance to the school itself and driving distance to CBD. That is the marginal effect of

dschool depends on dschool and on dcbd too. Suppose dcbd = 0, each additional kilometer

driven from the school changes the price of a house by β2%. The sign of β2 determines

whether driving distance to school has an increasing or decreasing marginal effect on the

log of the sales price. Since dcbd is never 0, the effect of driving distance to school is not

constant neither; it changes depending on the driving distance to the CBD at any given

driving distance from school.

All the previous specifications assume that the enrollment zones are mutually exclusive.

When a house has access to more than one enrollment zone (DGZ in the study sample),

we then need to include the accessibility (either driving distance or driving time) to both

schools and to allow the first-order interaction between each school and the CBD3:

logPit = β1dAGSit +β2dAGS2
it +β3dEGGSit +β4dEGGS2

it

+β5(dAGSit×dcbdit)+β6(dEGGSit×dcbdit)+
13

∑
a=7

βadit,a (3.4)

+
K

∑
k=1

αkSit,k +
T

∑
t=1

γtDYit +
P

∑
p=1

λpDPit + εit , i = 1, . . .N, εit ∼N (0, σ
2
ε )

3 Interaction between the schools was considered initially; however, the empirical model performs better
without this interaction. All the results are available from the authors upon request.
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where dit,a includes the driving distances (or time) to the CBD, its square value, driving

distance (time) to the nearest shopping center, to the beach, and to the three types of parks.

As a result, in DGZ, the marginal effect of the driving distance to one of the schools, say

AGS, has the following form:

∂ logPit

∂dAGSit
= β1 +2β2×dAGSit +β5×dcbdit (3.5)

In Eqs. (3.1) to (3.5) above, the marginal effect of distance to school on the house prices

is calculated at the mean. Nevertheless, the mean may mask significant heterogeneity of

this marginal effect in price submarkets defined as different points in the price distribution

(e.g., McMillen, 2012; Liao and Wang, 2012; Zietz et al., 2008). For instance, proximity

to school could add a price premium on only a portion of the houses, such as houses in

the lower price range. Houses in the higher price range could have attractive features and

spacious designs that are more important to the households than proximity to schools. As a

result, we complement the results above with the conditional quantile regression techniques

introduced by Koenker and Hallock (2001). Quantile regression methods have been widely

used in many fields (see Fitzenberger et al., 2013, for a review) but, in economics, they have

been primarily used in labor economics (e.g., Fitzenberger et al., 2002; Koenker and Bilias,

2002) and education economics (e.g., Arias et al., 2002; Levin, 2002).

The conditional quantile regression at the qth quantile, the quantile version of equation

(3.1), can be written as:

QlogPit |zit ,dit (q) =
K

∑
k=1

βk(q)zit,k +
T

∑
t=1

αt(q)Dit + εit , i = 1, . . .N, εit ∼N (0, σ
2
ε ) (3.6)

where q ∈ (0,1) denotes a specific quantile level in sales price distribution. In this specifi-
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cation, estimated coefficients vary by quantile levels, i.e. different points of the sales price

distribution.

3.4 Data
Monthly unit transaction sales data used in this paper were obtained from Quotable Value

Limited (QV) powered by CoreLogic NZ Ltd, which is responsible for conducting property

market valuations in New Zealand. Purchased monthly data encompasses three neighboring

enrollment zones of four state secondary schools in Auckland, AGS, EGGS, Selwyn College

and One Tree College, and covers the period from January 2007 to December 2016. Basic

QV data used in this paper include the sales prices, the sales date, the property address, the

floor area, the land area, various structural characteristics (such as the number of bedrooms

and bathrooms), the school zone to which a house is associated. The analytical sample

includes all types of houses, apart from apartments. In total, there are 17,966 observations.

Dropping observations without sales prices results in 17,796 transactions from 13,284 unique

properties. In addition, we exclude 114 observations built on industrial or commercial land,

13 observations (12 unique properties) that are not for residential use. We also exclude

properties that are not fully detached or semi-detached units situated on their own clearly

defined piece of land, as well as all observations with incomplete information on land and

floor area. With all these restrictions, our sample ends up including 10,052 observations.

An examination of the data reveals that sales price, land area, and floor area are all

skewed to the right. Hence, the bottom 1% and the top 5% of the sales prices are dropped

first. Then the bottom and top 1% of each of the land and floor areas also are trimmed.

A further filtering step is taken to drop outliers that we define as houses with more than 5
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bathrooms or 5 bedrooms. In the end, the sample reduces to 9,016 observations.

Driving distance and driving time are both calculated via Google Map in R using a

pessimist traffic mode. For the driving time, we arbitrarily set the calculation to Monday,

March 11th, 2019, with a departure time of 8:00 am (schools start at 8:30 am). This

time is chosen as a default to specifically highlight the benefit of living close to a school,

i.e. avoiding the morning traffic hours when dropping off children at school. Both driving

distance and driving time will be considered because they are not always perfectly collinear.

For example, longer driving distance on a highway with high speeds may result in a shorter

driving time. Table 3.1 displays the Pearson correlation test results and associated p-value

between driving distance and driving time for each school zone. The results indicate that,

while driving distance and time to the schools of interest are very similar (correlation test

above 85%), driving distance and time to the CBD are slightly less so (correlation test is

70% and above).

The list of shopping centers is provided in Appendix Table C.1. For each house, the

driving distance and driving time to the nearest shopping center is calculated via Google

Map in R using a pessimist traffic mode.

When it comes to accessibility to the beach, we rely on Auckland City Council’s Safeswim

website (https://safeswim.org.nz) to get access to information on water quality and

swimming conditions (low, high, very high risks) at each beach. Water quality changes with

weather conditions, such as the amount of rainfall, the wind, the tide and sunlight, and the

type of beach. As a result, the suitability and safety of a beach to swimmers change with

the weather. Therefore, we excluded from our sample all the beaches that have a long-term
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water quality alert and end up with 17 beaches of which names are provided in Appendix

Table C.2. Driving distance and driving time between each house and the nearest beach is

calculated via Google Map in R using a pessimist traffic mode too.

The driving distance and driving time to the nearest park require to get the location and

size of each park from Park Extent, a database from Auckland’s City Council. Figure 3.1

maps the location of the city parks as well as the boundaries of each of the three enrollment

zones present in the study area. We assume the level of attractiveness of each park is entirely

based on its relative size. As such, we classify them into three groups based on the tercile

of the size distribution to which they belong.

Information about land slope is created from a 2013 light detection and ranging (LiDAR)

1-meter resolution digital elevation model (DEM) fitted to the map of New Zealand Primary

Land Parcels using ArcGIS. Mean slopes are then divided into six broad groups according

to the slope classes from the Land Resource Information System (LRIS): flat to gently

undulating (0 - 3°), undulating (4 - 7°), rolling (8 - 15°), strongly rolling (16 - 20°) moderately

steep (21 - 25°) and steep (26 - 35°).

Summary statistics for the final analytical sample of 8,386 observations are shown in Table

3.2. 36.64%, 36.75%, and 26.60% of our observations are from DGZ, Selwyn college, and

One Tree Hill college zones respectively. On average, houses in the DGZ are more expensive,

older, with larger floors, land areas, and closer to the CBD than elsewhere. Within each

school zone, the mean driving distance to school is about 3 km and the mean driving time to

school ranges from 5 to 7.6 minutes, which is greater than the mean distance to the nearest

school in the aforementioned papers (e.g., Des Rosiers et al., 2000, report a mean Euclidean
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distance of 696 meters to the nearest school). The nearest shopping center is between 2 - 3

km (4.7 - 6.6 mins) drive away on average. The mean driving distances (time) to the nearest

small, medium and large parks are about 0.8 km (2 mins), 1.1 km (2.6 mins), and 1.2 km

(3 mins). Houses in the Selwyn College zone are in general closer to the beach. 43% of the

sample is in the rolling slope range; hence, in the next section, the rolling slope group will

be used as the benchmark in the estimation.

While we recognize that other factors such as air quality, neighborhood income, and

crime rate are not included in this paper and may affect housing values, this information is

not available for our sample. Clark and Herrin (2000) and Chin and Foong (2006) show that

households value educational quality more than environmental and safety features. While we

do not observe the latter two variables, we make the assumption that their role is absorbed

in the neighborhood fixed effects. If it turns out that these variables change in time, then

their absence could bias our results even after controlling for neighborhood fixed effects.

3.5 Empirical Results
Equation (3.2) is estimated for Selwyn College and One Tree Hill College zones separately

while equation (3.4) is estimated for DGZ. The results are presented in columns (1) to (6)

of Tables 3.3 and 3.4. As expected, the coefficient estimates associated to the structural and

site-specific characteristics (shown in Tables 3.3) do not differ much in terms of sign and

magnitude when one moves from geographic to time distance.

Overall, land area is valued most in DGZ while floor area is valued most in the Selwyn

College zone. Across the school zones, we find that the sales price increases by about 0.3 -

0.5% for every 1% increase in square floor area, 0.2 - 0.3% for every 1% increase in square
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land area, about 1 - 2% for each additional bedroom, and about 3 - 4% for each additional

bathroom. These results are in line with the hedonic literature. However, the decade age

effect is positive and significant in DGZ, but negative elsewhere. With the highest average

age among the three zones, DGZ is the only one to benefit from this vintage effect (Meese

and Wallace, 1991; Coulson and Lahr, 2005). Our results also indicate that sales price

decreases with land slope and distance from the beach or large parks while the distance to

medium parks as well as shopping centers appreciates a house. This heterogeneity confirms

Irwin (2002); Netusil and Tyrväinen (1997), who find that open space can be positively or

negatively valued depending on sizes, uses, and maintenance levels.

When it comes to the effect of proximity to school, the results in column (1) of Table

3.4 show that, on average, the linear term of driving distances to Epsom Girl’s Grammar

(EGGS) is statistically different from zero, while the quadratic term is not. However, the

positive significant interaction of degg and dcbd suggests that the effect of the average

distance to EGGS on sales price is not the same for each distance to CBD. In other words,

everything else being equal, an additional km to EGGS increases the house value more for

houses that are located further from CBD relative to closer to CBD. As shown in equation

(3.5), marginal effect of distance to EGGS depends on the value of distance to EGGS itself

and the distance to CBD. At the average driving distances to EGGS (2.93 km), and CBD

(6.17 km), one additional km drive from EGGS decreases the house price by about 2.77%.

Giving the average sales price in DGZ of NZ$1,498,537, this marginal effect translates into

an average decrease of NZ$41,509 per additional km.

In terms of driving distance to Auckland Grammar (AGS), its quadratic term and its
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interaction with driving distance to CBD are both statistically significant; suggesting the

existence of nonlinear effect of distance to AGS. The negative interaction term shows that

there is substitutability between distance to AGS and CBD. That is, houses that are far from

CBD have quickly decreasing housing price as driving distance to AGS increases. Again,

we calculate the marginal effect of distance to AGS using equation (3.5). At the average

driving distances to AGS (3.41 km), and CBD (6.17 km), one additional km drive from

AGS decreases the house price by about 0.67%. Giving the average sales price in DGZ

of NZ$1,498,537, this marginal effect translates into an average NZ$10,040 decrease per

additional km. Figure 3.2a and Figure 3.2b show the predicted log of the sales price with

the associated 95% confidence intervals for all possible values of driving distance to AGS

and EGGS, respectively. Figure 3.2a indicates that the sales price decreases with the driving

distance to AGS until about 3.664 km from the school and increases afterward. In Figure

3.2b, the log of sales price appears to decrease with the driving distance to EGGS almost

linearly, reflecting that the quadratic term of degg is not significant.

Due to the recent increase in population, hence, in driving time, in Auckland, we investi-

gate the marginal effect of driving time as well. Estimation results are presented in column

(2) of Table 3.4. To interpret the results straightforwardly, as before, we calculate the

marginal effect of driving time to AGS and EGGS at their mean values, respectively. Based

on the average driving time to AGS (7.52 mins), EGGS (7.60 mins), and the CBD (15.50

mins), the results indicate that one more minute drive from AGS and EGGS decreases the

house price by about 2.64% and 1.61%, respectively. This corresponds to a decrease in the

mean house price of about NZ$39,535 and NZ$24,150 for each additional minute of driving
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from AGS and EGGS, correspondingly. Figure 3.2e and Figure 3.2f plot the predicted log

of sales prices with the associated 95% confidence intervals for all possible values of driving

time to AGS and EGGS, respectively, while holding other variables at their mean values.

Figure 3.2e shows that the log of sales price decreases with driving time to AGS with slightly

decreasing rate (i.e. decreasing and concave up). In Figure 3.2f, the log of sales price also

decreases with driving time to EGGS with moderately increasing rate (i.e. decreasing and

concave down).

By and large, the above findings suggest a larger price premium of proximity to AGS

in the most sought-after DGZ. This is consistent with the results in Hendon (1973) who

finds that middle-sized school with an appealing architecture adapted to the neighborhood

environment will reflect positively on the price of the nearby homes. Among the four schools

in the sample, AGS has two Category I historical places, places of special or outstanding

historical or cultural heritage significance or value as defined by Heritage New Zealand

Pouhere Taonga, an association advocating for this type of buildings. Therefore, it is likely

that higher property prices near AGZ reflect the value of having attractive historical heritages

in the neighborhood.

The price-proximity relation in Selwyn College zone is quite a contrast to that in DGZ.

The results for Selwyn College zone (Table 3.4, column 3) shows that everything else being

equal, driving distance to Selwyn College increases housing values but at a decreasing rate.

Figure 3.2c plots the predicted log of the sales price at all possible driving distances to

Selwyn College with a 95% confidence interval and indicates that it is only above 5 km from

the school that distance has a negative marginal effect on housing prices. In other words,
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proximity to Selwyn College is seen as a “nuisance”. The same pattern is also apparent with

the alternative model presented in column (4) and plotted in Figure 3.2g.

When it comes to the One Tree Hill College zone, we find that there is an initial price

premium for being close to the school (Table 3.4, column 5, and Figure 3.2d). Figure 3.2d

shows that the log of sales price decreases slightly at a decreasing rate with the driving

distance to One Tree Hill College till 2.70 km away and increases afterward. Predicted log

of sales prices from the alternative model (column 6) are plotted in Figure 3.2h, which show

that proximity to One Tree Hill negatively affects house prices within 8.1 minutes’ drive

away. Similar to Selwyn College zone, estimation results from both models suggest that

proximity to One Tree Hill College is more of a “nuisance.”

In general, our results suggest a price premium of school proximity in DGZ, whereas

a price discount in the other two school zones. A possible explanation for the positive

relationship between school proximity is that people value transport accessibility too. Traffic

jams mostly take place in DGZ. If a shorter driving time to AGS and EGGS means a lower

chance of being delayed getting to work, then it is likely that house prices decrease with

greater driving time to AGS and EGGS.

Results in Table 3.4 and plots in Figure 3.2 also indicate that the marginal effects of

proximity to school can be sensitive to the measures of proximity (driving distance or driving

time). A possible explanation is that some people care more about driving distance than

driving time and vice versa. For instance, Ottensmann et al. (2008) investigate the role

of accessibility to the CBD on property prices in Marion County, Indiana, based on three

definitions: i) geographical distance, ii) free-flow travel time, and iii) congested travel time.
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The authors find that it is only in the models based on free-flow travel time to CBD that

accessibility has a statistically significant on prices. Moreover, the travel cost literature (see,

among others, Brown Jr and Mendelsohn, 1984; Hellerstein, 1991) defines general travel

costs as the sum of time costs and distance costs, but it does not have a consensus over

the role of time costs on housing prices. In our sample, the BIC statistics (as the models

are non-nested) suggest the model with driving distance fits better than the model with

driving time in each of the school zones. However, in One Tree Hill school zone the effects

of proximity to school are statistically significant when measured by driving time but not

driving distance.

Finally, we explore further the heterogeneity present in the magnitude of the marginal

effects by re-estimating the model at the 10th, 50th, and 90th percentiles of the price distribu-

tion. Results based on defining distance as driving distance and driving time are reported in

Tables 3.5 and 3.6, respectively. Quantile estimates are also presented in Figure 3.3 for each

of the school zones. The quantile analysis plotted in Figure 3.3a reveals that the nonlinear

return of proximity to AGS measured by driving distance is most prominent at the 10th

percentile, which means that proximity to AGS increases the sales price more for houses in

the lower quantile than in the higher quantile, everything else being equal. In other words,

proximity to AGS is a much valuable attribute to houses with relatively lower sales prices.

Our results also indicate that proximity to AGS loses its appeal steadily up to 3.864 km,

3.464 km, and 3.464 km in the 10th, 50th, and 90th percentiles respectively (it was 3.664 km

in Figure 3.2a). An alternative measure of proximity, defined by driving time, affects the

rates of nonlinear returns as shown in Figure 3.3e. Yet, it is still evident in Figure 3.3e that

115



capitalization of proximity to AGS is most prominent at the lower quantile of the sales price

distribution.

Figure 3.3b shows that driving distance to EGGS has a close-to linear effect on housing

prices at any chosen quantiles. Proximity to EGGS is positively valued in the 50th and 90th

percentiles of sales price distribution. However, a flat line can almost be fit in the confidence

interval at the 10th percentile, which means that there may be no true population distance-

to-EGGS effect at the lower end of the housing market in DGZ. Switching from driving

distance to driving time does not change the results much, except that there appears to be

an initial price discount of proximity to EGGS at the 90th percentile as plotted in Figure

3.3f.

For the Selwyn College zone, our quantile plots in Figure 3.3c and Figure 3.3g reveal

that the positive marginal effects of driving distance/time increase at a decreasing rate for

all three percentiles. Therefore, everything else held constant, proximity to Selwyn College

appears to be a “nuisance.” When it comes to the One Tree Hill College zone, our results

in Figure 3.3d suggest a milder nonlinear relation beyond the 4 km driving distance at

the selected percentiles, whereas the relationship is only statistically significant in the 50th

percentile. The nonlinear effects and the negative effects of proximity to school are more

noticeable when estimated using driving time (Figure 3.3h). That is to say, school proximity

is more of a “nuisance” than a “benefit” for houses in One Tree Hill College zone.

3.6 Conclusion
While the hedonic literature has extensively focused on membership to a school zone

to justify differences in housing prices (Bayer et al., 2007; Black, 1999; Black and Machin,
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2011; Bogart and Cromwell, 1997, 2000; Downes and Zabel, 2002; Ferreyra, 2007; Gibbons

et al., 2013), the study of the role of proximity to school on a house’s price when the house

is already within the chosen school zone has been much less investigated. Yet, proximity

to such infrastructures can be both an amenity, when the building’s architecture is pleasant

and time for driving children to/from school is saved (Owusu-Edusei et al., 2007), and a

disamenity when traffic jam and noise accompany drop-offs and pickups (Emerson, 1972;

Guntermann and Colwell, 1983; Hendon, 1973; Rosiers et al., 2001; Theisen and Emblem,

2018.

Based on a sample of housing sales recorded in the most sought-after school zone in

Auckland, New Zealand, as well as in its two neighboring school zones, this paper provides

evidence that everything else held constant, belonging to a school zone is certainly not the

only feature that matters to homeowners. Indeed, our results indicate a nonlinear effect of

proximity to secondary schools, which is consistent with previous literature (Hendon, 1973;

Gibbons and Machin, 2006). Our findings indicate also that proximity to school adds a price

premium only in the most prestigious school zone (each additional km of driving distance

decreases the house price up to 2.77%.) while being perceived as a disamenity in the other

two zones.

Next, we adopt a quantile regression approach to explore further the heterogeneity present

in our results and to fill the lack of expertise on the relation between proximity to school

and housing prices across the distribution of sales prices (Huang and Hess, 2018, is the only

exception we are aware of and their results are limited to predicting the median effects).

Our results show that the positive effect of proximity to the most sought-after school is
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most prominent in the 10th percentile of the house price distribution. Within the other two

secondary school zones, we find again that proximity to school is mostly a disamenity from

the 10th to the 90th percentiles.

While we have highlighted several possible sources of amenities and disamenities that

explain our results throughout this paper, future work should focus on identifying these

attributes more clearly. For instance, if it is the architecture of a school that is seen as the

most enjoyable feature whereas poor parking and road structures are the reasons for regular

noise and traffic jams, these elements need to be understood clearly. A better design could

become a strategy to generate local spatial co-benefits and improve the urban quality of life.
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3.7 Figures and Tables

Figure 3.1: Study Area – Enrollment Zones and Parks

Note: This figure shows the locations of parks in the study area. In the Auckland region, there
are 3,051 parks in total according to Auckland Council’s Park Extent Map. Parks are divided
into three groups: the bottom third are defined as small parks, the middle third are defined as
medium parks, and the top third are defined as large parks. Figure also shows the enrollment
zones of four secondary schools in the study are. Information on school zones is from Enrollment
Scheme Master downloaded from Education Counts.
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Figure 3.2: Predicted Log of Sales Price for Driving Distance(km)/Time(mins) to School

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Note: These figures show the predicted values of log of sales price from the standard
hedonic models and its 95% confidence band for the sample values of driving distances
(km) and time (mins) in each school zone. Other variables were centered at their means
for these plots.
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Figure 3.3: Quantile Plots - Predicted Log of Sales Price for Driving Distance/Time to
Schools

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Note: These figures show the predicted values of log of sales price from the quantile hedonic
models and its 95% confidence band for the sample values of driving distances and time to the
school in each school zone separately at the 10%, 50% and 90% quantiles. Other variables were
centered at their mean values for these plots.
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Table 3.1: Pearson Product-Moment Correlations of Driving Distance and Driving Time

(a) Double Grammar Zone (N = 3,037)

Variable 1 2 3 4 5 6

1. Driving Distance to AGS −
2. Driving Time to AGS 0.870∗∗∗ −
3. Driving Distance to EGGS 0.764∗∗∗ 0.851∗∗∗ −
4. Driving Time to EGGS 0.769∗∗∗ 0.898∗∗∗ 0.940∗∗∗ −
5. Driving Distance to CBD 0.662∗∗∗ 0.467∗∗∗ 0.241∗∗∗ 0.228∗∗∗ −
6. Driving Time to CBD 0.601∗∗∗ 0.532∗∗∗ 0.332∗∗∗ 0.348∗∗∗ 0.746∗∗∗ −

(b) Selwyn College Zone (N = 3,082)

Variable 1 2 3 4

1. Driving Distance to Selwyn College −
2. Driving Time to Selwyn College 0.988∗∗∗ −
3. Driving Distance to CBD 0.179∗∗∗ 0.227∗∗∗ −
4. Driving Time to CBD -0.448∗∗∗ -0.369∗∗∗ 0.701∗∗∗ −

(c) One Tree Hill College Zone (N = 2,231)

Variable 1 2 3 4

1. Driving Distance to One Tree Hill College −
2. Driving Time to One Tree Hill College 0.943∗∗∗ −
3. Driving Distance to CBD 0.730∗∗∗ 0.663∗∗∗ −
4. Driving Time to CBD 0.844∗∗∗ 0.859∗∗∗ 0.870∗∗∗ −

Note: ∗p < .10,∗∗p < .05,∗∗∗p < .01. These tables present the Pearson Product-Moment
correlation coefficients of driving distance and driving time to school and CBD in each
of the three school enrollment zones. CBD represents Central Business District. In
panel (a), AGS represents Auckland Grammar School. EGGS represents Epsom Girl’s
Grammar School.
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Table 3.2: Summary Statistics

Double Grammar Selwyn One Tree Hill
Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

Log of Selling Price 14.22 0.40 13.86 0.42 13.45 0.38
Log of Floor Area 5.40 0.34 5.33 0.33 4.95 0.33
Log of Land Area 6.46 0.39 6.30 0.40 6.34 0.36
Decade House Age 6.35 3.75 3.30 3.00 4.58 2.98
Number of Bathrooms 2.16 0.86 1.92 0.84 1.58 0.72
Number of Bedrooms 3.92 0.78 3.78 0.75 3.37 0.72
Number of Carparks 1.77 0.94 1.46 1.09 1.21 0.75
Wall: Brick 0.07 0.25 0.09 0.29 0.19 0.40
Wall: Roughcst 0.13 0.34 0.13 0.34 0.10 0.31
Wall: Iatherboard 0.66 0.47 0.41 0.49 0.51 0.50
Wall: Mixtured Materials 0.10 0.30 0.33 0.47 0.11 0.31
Wall: Other 0.04 0.20 0.04 0.20 0.09 0.28
Roof: Steel 0.41 0.49 0.58 0.49 0.54 0.50
Roof: Tile Profile 0.00 0.05 0.00 0.00 0.00 0.00
Roof: Other 0.59 0.49 0.42 0.49 0.46 0.50
Site Slope:
Flat to gently undulating (0-3°) 0.10 0.30 0.06 0.23 0.20 0.40
Undulating (4-7°) 0.25 0.43 0.21 0.41 0.41 0.49
Rolling (8-15°) 0.43 0.50 0.50 0.50 0.34 0.47
Strongly rolling (16-20°) 0.12 0.33 0.15 0.35 0.05 0.22
Moderately steep (21-25°) 0.06 0.25 0.06 0.24 −† −†

Steep (26-35°) 0.04 0.18 0.03 0.16 −† −†

To Auckland Grammar:
Driving Distance (Km) 3.41 1.20 − − − −
Driving Time (Mins) 7.52 2.30 − − − −
To Epsom Girl’s Grammar:
Driving Distance (Km) 2.93 0.98 − − − −
Driving Time (Mins) 7.60 1.99 − − − −
To Selwyn College:
Driving Distance (Km) − − 2.87 1.39 − −
Driving Time (Mins) − − 5.16 2.33 − −
To One Tree Hill College:
Driving Distance (Km) − − − − 2.82 1.02
Driving Time (Mins) − − − − 5.78 1.80
To CBD:
Driving Distance (Km) 6.17 1.80 9.78 1.79 10.90 1.72
Driving Time (Mins) 15.50 1.83 20.67 1.94 18.33 1.78
To Nearest Shopping Center:
Driving Distance (Km) 2.31 0.73 2.03 0.97 2.72 1.06
Driving Time (Mins) 6.56 2.21 4.71 1.83 6.39 1.82
To Nearest Safeswim Beach:
Driving Distance (Km) 4.30 1.47 3.64 2.03 5.45 1.48
Driving Time (Mins) 9.15 3.54 6.94 3.43 10.93 2.73
To Nearest Small Parks:
Driving Distance (Km) 0.77 0.51 0.97 0.81 0.77 0.58
Driving Time (Mins) 2.25 1.37 2.32 1.76 1.97 1.36
To Nearest Medium Parks:
Driving Distance (Km) 0.94 0.50 1.33 1.04 1.30 1.21
Driving Time (Mins) 2.32 1.12 2.96 2.10 2.86 1.90
To Nearest Large Parks:
Driving Distance (Km) 1.10 0.62 1.17 1.01 1.51 0.96
Driving Time (Mins) 3.01 1.84 2.68 2.12 3.89 2.29
N 3,073 3,082 2,231

Note: This table presents summary statistics from year 2007 to 2016 by each school zone. † In
One Tree Hill College zone, 25 observations with moderately steep slopes and 5 with steep slopes
were dropped. Structure characteristics variables are purchased from QV.
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Table 3.3: Estimation Results: Structural Attributes

Double Grammar Selwyn College One Tree Hill College
Distance Time Distance Time Distance Time

(1) (2) (3) (4) (5) (6)
Log of Floor Area 0.465∗∗∗ 0.463∗∗∗ 0.486∗∗∗ 0.496∗∗∗ 0.320∗∗∗ 0.326∗∗∗

(0.019) (0.019) (0.020) (0.020) (0.018) (0.018)
Log of Land Area 0.314∗∗∗ 0.320∗∗∗ 0.313∗∗∗ 0.301∗∗∗ 0.226∗∗∗ 0.222∗∗∗

(0.014) (0.014) (0.015) (0.015) (0.012) (0.012)
Decade House Age 0.012∗∗∗ 0.011∗∗∗ 0.001 0.003 −0.000 0.001

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Number of Bedrooms 0.022∗∗∗ 0.020∗∗∗ 0.011 0.009 0.021∗∗∗ 0.018∗∗∗

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)
Number of Bathrooms 0.044∗∗∗ 0.047∗∗∗ 0.031∗∗∗ 0.033∗∗∗ 0.036∗∗∗ 0.037∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.007) (0.007)
Number of Carparks −0.005 −0.005 −0.011∗∗ −0.003 0.001 0.000

(0.005) (0.005) (0.004) (0.004) (0.005) (0.005)
Wall: Roughcst −0.043∗∗ −0.039∗∗ 0.004 0.005 0.007 0.005

(0.018) (0.018) (0.017) (0.018) (0.013) (0.013)
Wall: Weatherboard 0.010 0.012 0.044∗∗∗ 0.044∗∗∗ 0.035∗∗∗ 0.038∗∗∗

(0.017) (0.017) (0.014) (0.014) (0.009) (0.009)
Wall: Mixed −0.030 −0.027 0.058∗∗∗ 0.060∗∗∗ 0.003 0.013

(0.021) (0.021) (0.016) (0.016) (0.012) (0.013)
Wall: Other 0.027 0.032 0.045∗ 0.032 −0.017 −0.013

(0.026) (0.026) (0.024) (0.024) (0.013) (0.013)
Roof: Tile 0.120∗∗ 0.088

(0.058) (0.059)
Roof: Other −0.022∗∗ −0.022∗∗ 0.016∗ 0.017∗ −0.009 −0.011

(0.009) (0.009) (0.008) (0.008) (0.007) (0.007)
Flat to gently undulating (0-3°) 0.011 0.004 0.047∗∗∗ 0.058∗∗∗ −0.012 −0.016

(0.014) (0.015) (0.016) (0.016) (0.010) (0.010)
Undulating (4-7°) 0.027∗∗∗ 0.021∗∗ 0.050∗∗∗ 0.046∗∗∗ 0.000 −0.004

(0.010) (0.010) (0.010) (0.010) (0.008) (0.008)
Strongly rolling (16-20°) −0.077∗∗∗ −0.071∗∗∗ −0.057∗∗∗ −0.056∗∗∗ −0.013 −0.007

(0.014) (0.014) (0.012) (0.012) (0.015) (0.015)
Moderately steep (21-25°) −0.150∗∗∗ −0.136∗∗∗ −0.081∗∗∗ −0.080∗∗∗

(0.018) (0.018) (0.018) (0.018)
Steep (26-35°) −0.179∗∗∗ −0.167∗∗∗ −0.072∗∗∗ −0.076∗∗∗

(0.028) (0.028) (0.027) (0.026)
2008 Sale −0.035∗ −0.036∗ −0.067∗∗∗ −0.072∗∗∗ −0.068∗∗∗ −0.069∗∗∗

(0.021) (0.021) (0.022) (0.022) (0.014) (0.014)
2009 Sale −0.040∗∗ −0.041∗∗ −0.038∗∗ −0.051∗∗∗ −0.042∗∗∗ −0.043∗∗∗

(0.017) (0.018) (0.017) (0.017) (0.014) (0.014)
2010 Sale 0.027 0.031∗ −0.028 −0.043∗∗ −0.001 0.001

(0.018) (0.019) (0.019) (0.019) (0.014) (0.015)
2011 Sale 0.030 0.034∗ 0.017 −0.001 0.047∗∗∗ 0.046∗∗∗

(0.019) (0.019) (0.018) (0.018) (0.013) (0.014)
2012 Sale 0.146∗∗∗ 0.147∗∗∗ 0.095∗∗∗ 0.078∗∗∗ 0.139∗∗∗ 0.136∗∗∗

(0.017) (0.017) (0.017) (0.017) (0.014) (0.015)
2013 Sale 0.270∗∗∗ 0.267∗∗∗ 0.238∗∗∗ 0.220∗∗∗ 0.277∗∗∗ 0.276∗∗∗

(0.017) (0.017) (0.018) (0.018) (0.014) (0.014)
2014 Sale 0.416∗∗∗ 0.412∗∗∗ 0.356∗∗∗ 0.339∗∗∗ 0.407∗∗∗ 0.407∗∗∗

(0.017) (0.017) (0.017) (0.017) (0.014) (0.014)
2015 Sale 0.562∗∗∗ 0.564∗∗∗ 0.524∗∗∗ 0.507∗∗∗ 0.625∗∗∗ 0.625∗∗∗

(0.016) (0.016) (0.018) (0.018) (0.014) (0.014)
2016 Sale 0.651∗∗∗ 0.654∗∗∗ 0.689∗∗∗ 0.668∗∗∗ 0.730∗∗∗ 0.731∗∗∗

(0.017) (0.017) (0.018) (0.018) (0.015) (0.016)
Intercept 9.439∗∗∗ 8.560∗∗∗ 7.933∗∗∗ 8.347∗∗∗ 11.361∗∗∗ 10.910∗∗∗

(0.124) (0.310) (0.272) (0.749) (0.212) (0.697)
Postcode FE Yes Yes Yes Yes Yes Yes
Adj. R2 0.709 0.705 0.751 0.744 0.841 0.839
Num. obs. 3,073 3,073 3,082 3,082 2,231 2,231
LogLik 385.449 361.124 459.016 420.277 1055.269 1039.665
AIC -682.897 -634.248 -842.032 -764.554 -2034.538 -2003.330
BIC -417.559 -368.910 -612.765 -535.287 -1817.550 -1786.342

Note: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.
Robust Standard Errors are reported in brackets. This table presents estimation results for structural attributes and year fixed
effects from the standard henodic models. Brick wall, steel roof, rolling slope (8-15°) and year 2007 are set as reference groups.
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Table 3.4: Estimation Results: Proximity Controls

Double Grammar Selwyn College One Tree Hill College
Distance Time Distance Time Distance Time

(1) (2) (3) (4) (5) (6)
Driving Distance/Time to:
Epsom Girl’s Grammar (EGGS) −0.083∗∗ −0.095∗∗

(0.035) (0.042)
EGGS2 −0.001 −0.001

(0.004) (0.002)
Auckland Grammar (AG) 0.014 0.056

(0.027) (0.039)
AG2 0.014∗∗∗ 0.003∗∗

(0.005) (0.001)

Selwyn College (Sel) 0.055 0.049
(0.050) (0.040)

Sel2 −0.015∗∗∗ −0.003∗∗∗

(0.003) (0.001)

One Tree Hill College (One) −0.076 −0.211∗∗

(0.087) (0.093)
One2 0.010 −0.012∗∗∗

(0.010) (0.004)

CBD 0.023 0.097∗∗ 0.266∗∗∗ 0.053 −0.177∗∗∗ 0.029
(0.024) (0.042) (0.042) (0.066) (0.054) (0.101)

CBD2 0.000 −0.002 −0.017∗∗∗ −0.001 0.006 −0.006
(0.002) (0.002) (0.002) (0.002) (0.004) (0.004)

EGGS∗CBD 0.010∗∗ 0.006∗

(0.005) (0.004)
AG∗CBD −0.019∗∗∗ −0.008∗∗

(0.006) (0.003)
Sel∗CBD 0.010∗∗ 0.001

(0.004) (0.002)
One∗CBD 0.002 0.022∗∗∗

(0.012) (0.008)

Nearest Small Park 0.061∗∗∗ 0.006 −0.015∗∗ −0.014∗∗∗ −0.007 −0.007∗∗

(0.011) (0.004) (0.007) (0.003) (0.007) (0.003)
Nearest Medium Park 0.005 0.004 0.006 −0.004 0.013∗∗∗ 0.005∗∗

(0.010) (0.004) (0.008) (0.004) (0.003) (0.002)
Nearest Large Park −0.028∗∗∗ −0.006∗∗ 0.006 0.006∗∗∗ 0.006 0.006∗∗∗

(0.008) (0.003) (0.004) (0.002) (0.004) (0.002)
Nearest Shopping Center 0.029∗∗∗ 0.016∗∗∗ 0.022∗∗∗ 0.001 0.012∗ 0.004

(0.009) (0.003) (0.007) (0.004) (0.007) (0.003)
Nearest Beach −0.043∗∗∗ −0.015∗∗∗ −0.040∗∗∗ −0.012∗∗∗ −0.004 −0.001

(0.007) (0.003) (0.007) (0.003) (0.005) (0.003)

Structural Controls Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Postcode FE Yes Yes Yes Yes Yes Yes
Adj. R2 0.709 0.705 0.751 0.744 0.841 0.839
Num. obs. 3,073 3,073 3,082 3,082 2,231 2,231
LogLik 385.449 361.124 459.016 420.277 1055.269 1039.665
AIC -682.897 -634.248 -842.032 -764.554 -2034.538 -2003.330
BIC -417.559 -368.910 -612.765 -535.287 -1817.550 -1786.342

Note: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.
Robust Standard Errors are reported in brackets. This table presents estimation results for prolixity controls from the standard
henodic models. CBD represents Central Business District.
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Table 3.5: Quantile Regression Results for Driving Distance Covariates

Double Grammar Selwyn College One Tree Hill College

Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

Driving Distance to:
EGGS −0.065 −0.108∗∗ −0.090

(0.067) (0.045) (0.059)

EGGS2 −0.002 0.004 −0.006
(0.009) (0.005) (0.007)

AGS −0.044 0.034 −0.012
(0.049) (0.037) (0.051)

AGS2 0.030∗∗∗ 0.011∗ 0.004
(0.009) (0.007) (0.009)

Sel 0.058 −0.030 0.128∗

(0.078) (0.072) (0.077)

Sel2 −0.012∗∗ −0.012∗∗∗ −0.017∗∗∗

(0.005) (0.004) (0.006)

One −0.094 −0.144∗∗ −0.106
(0.113) (0.069) (0.132)

One2 −0.005 −0.007 0.016
(0.014) (0.009) (0.016)

CBD 0.066 0.001 0.017 0.255∗∗∗ 0.222∗∗∗ 0.310∗∗∗ −0.236∗∗∗ −0.161∗∗∗ −0.149
(0.045) (0.035) (0.042) (0.069) (0.052) (0.064) (0.066) (0.050) (0.095)

CBD2 0.000 0.002 −0.003 −0.015∗∗∗ −0.016∗∗∗ −0.020∗∗∗ 0.007 0.003 0.005
(0.004) (0.003) (0.005) (0.004) (0.002) (0.003) (0.005) (0.003) (0.006)

EGGS*CBD 0.012∗ 0.008 0.009
(0.007) (0.006) (0.008)

AGS*CBD −0.031∗∗∗ −0.018∗∗ −0.003
(0.009) (0.008) (0.013)

Sel*CBD 0.010 0.017∗∗∗ 0.003
(0.006) (0.006) (0.007)

One*CBD 0.013 0.017∗ −0.000
(0.017) (0.010) (0.018)

Nearest Small Park 0.048∗∗ 0.051∗∗∗ 0.052∗∗∗ −0.024∗∗ −0.009 −0.017 0.006 0.013 0.014
(0.019) (0.013) (0.015) (0.010) (0.007) (0.012) (0.011) (0.009) (0.017)

Nearest Medium Park 0.011 0.001 −0.002 0.019∗∗ 0.009 0.005 0.019∗∗∗ −0.001 −0.019∗∗

(0.020) (0.013) (0.014) (0.009) (0.009) (0.014) (0.007) (0.006) (0.009)

Nearest Large Park −0.028∗ −0.030∗∗∗ −0.014 0.017∗∗∗ 0.003 0.008 0.000 −0.001 −0.010
(0.015) (0.011) (0.011) (0.005) (0.005) (0.006) (0.011) (0.009) (0.013)

Nearest Shopping Center 0.044∗∗ 0.027∗∗∗ 0.051∗∗∗ 0.013 0.006 0.038∗∗∗ 0.007∗ 0.014∗∗∗ 0.016∗∗

(0.017) (0.010) (0.014) (0.012) (0.009) (0.010) (0.004) (0.004) (0.008)

Nearest Beach −0.047∗∗∗ −0.034∗∗∗ −0.052∗∗∗ −0.044∗∗∗ −0.038∗∗∗ −0.022∗∗∗ −0.007 0.004 −0.021∗∗∗

(0.015) (0.010) (0.011) (0.011) (0.006) (0.010) (0.005) (0.006) (0.008)

Structural Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Postcode FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Num. obs. 3,073 3,073 3,073 3,082 3,082 3,082 2,231 2,231 2,231

Note: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.
Bootstrap Standard Errors are reported in brackets. This table presents estimation results for prolixity controls (measured by driving distance) from the quantile henodic
models. AGS represents Auckland Grammar School. EGGS represents Epsom Girl’s Grammar School. Sel represents Selwyn College. One represents One Tree Hill College.
CBD represents Central Business District.
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Table 3.6: Quantile Regression Results for Driving Time Covariates

Double Grammar Selwyn College One Tree Hill College

Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

Driving Time to:
EGGS −0.157∗∗ −0.021 −0.081

(0.080) (0.057) (0.077)

EGGS2 −0.001 0.000 −0.007∗∗

(0.003) (0.003) (0.003)

AGS 0.126∗ −0.001 −0.006
(0.070) (0.048) (0.063)

AGS2 0.007∗∗ 0.004∗∗ 0.002
(0.003) (0.002) (0.002)

Sel 0.081 0.049 0.066∗

(0.065) (0.048) (0.060)

Sel2 −0.003∗ −0.004∗∗∗ −0.005∗∗∗

(0.002) (0.001) (0.002)

One −0.343∗∗∗ −0.226∗∗ −0.122
(0.120) (0.113) (0.170)

One2 −0.020∗∗∗ −0.014∗∗∗ −0.009
(0.005) (0.005) (0.008)

CBD 0.111 0.064 0.124∗ 0.188∗∗ 0.035 0.059 0.129 0.023 −0.044
(0.076) (0.054) (0.075) (0.090) (0.067) (0.098) (0.145) (0.115) (0.162)

CBD2 −0.001 0.000 −0.005∗ −0.005∗∗ −0.001 −0.001 −0.011∗∗ −0.006 −0.002
(0.003) (0.002) (0.003) (0.002) (0.002) (0.002) (0.005) (0.005) (0.006)

EGGS*CBD 0.012∗ −0.000 0.010
(0.007) (0.005) (0.007)

AGS*CBD −0.017∗∗∗ −0.005 −0.003
(0.006) (0.004) (0.005)

Sel*CBD −0.001 0.001 0.001
(0.003) (0.002) (0.002)

One*CBD 0.036∗∗∗ 0.024∗∗∗ 0.014
(0.009) (0.009) (0.014)

Nearest Small Park −0.000 0.000 0.009 −0.022∗∗ −0.012∗∗∗ −0.009∗∗ −0.002 −0.002 −0.007
(0.007) (0.004) (0.006) (0.004) (0.003) (0.005) (0.004) (0.004) (0.006)

Nearest Medium Park 0.002 0.010∗ −0.002 0.001 −0.001 −0.008 −0.002 0.003 0.010∗∗

(0.007) (0.005) (0.007) (0.005) (0.004) (0.005) (0.004) (0.003) (0.005)

Nearest Large Park −0.008 −0.010∗∗ −0.003 0.013∗∗∗ 0.005∗∗ 0.005 0.002 0.005∗∗ 0.010∗∗∗

(0.005) (0.004) (0.005) (0.002) (0.002) (0.003) (0.003) (0.002) (0.003)

Nearest Shopping Center 0.018∗∗∗ 0.014∗∗∗ 0.012∗∗∗ 0.011 −0.005 0.007 −0.004 0.005 0.010∗

(0.006) (0.004) (0.005) (0.007) (0.005) (0.006) (0.004) (0.004) (0.005)

Nearest Beach −0.012∗∗ −0.010∗∗∗ −0.015∗∗∗ −0.015∗∗∗ −0.007∗∗ −0.006 0.010∗∗∗ 0.003 −0.010∗

(0.005) (0.003) (0.005) (0.005) (0.003) (0.007) (0.003) (0.004) (0.005)

Structural Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Postcode FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Num. obs. 3,073 3,073 3,073 3,082 3,082 3,082 2,231 2,231 2,231

Note: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.
Bootstrap Standard Errors are reported in brackets. This table presents estimation results for prolixity controls (measured by driving time) from the quantile henodic mod-
els. AGS represents Auckland Grammar School. EGGS represents Epsom Girl’s Grammar School. Sel represents Selwyn College. One represents One Tree Hill College.
CBD represents Central Business District.
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Appendix A: Appendix of Chapter 1

A.1 Liquefaction Hazard in 2002 & 2005

Table A.1: Price Effects of 2002 Liquefaction Hazard Class

Coef. Std.Err.

Moderate 0.008 (0.016)
High 0.002 (0.015)
post2002 0.642∗∗∗ (0.014)
Moderate × post2002 −0.002 (0.016)
High × post2002 −0.006 (0.012)

Adjusted R2 0.694
Number of Observations 13,707

Baseline Mean Log(P) 11.90
∗p < .10,∗∗p < .05,∗∗∗p < .01
Note: This table presents the effects of liquefaction hazard classes
from the 2002 liquefaction study for log of property price for the
City of Christchurch for the period 2000 – 2005. The reference
class is the low hazard. Amenity controls, year, seasonal and area
unit fixed effects are controlled for. Standard errors are clustered
at area unit levels.
Three liquefaction hazard classes from the 2002 study were used:
“Low: low liquefaction potential”, “Moderate: moderate liquefac-
tion potential”, and “High: high liquefaction potential”.
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Table A.2: Price Effects of 2005 Liquefaction Hazard Class

Summer Winter Joint

Coef. Std.Err. Coef. Std.Err. Coef. Std.Err.

Moderate −0.052 (0.039) −0.016 (0.017) −0.043 (0.026)
High −0.032 (0.033) −0.006 (0.014) −0.040 (0.025)
Low Uncertain −0.134∗∗∗ (0.033) −0.099∗∗∗ (0.037) −0.167∗∗∗ (0.049)
Moderate Uncertain −0.024 (0.037) 0.001 (0.036) −0.113∗ (0.059)
High Uncertain −0.331∗∗∗ (0.098) −0.306∗∗∗ (0.088) −0.347∗∗∗ (0.120)

post2005 0.605∗∗∗ (0.023) 0.618∗∗∗ (0.027) 0.593∗∗∗ (0.023)
Moderate × post2005 0.034∗ (0.020) 0.016 (0.024) 0.020 (0.016)
High × post2005 0.034∗ (0.020) 0.018 (0.020) 0.024 (0.017)
Low Uncertain × post2005 0.263∗∗∗ (0.070) 0.250∗∗∗ (0.070) 0.252∗∗∗ (0.063)
Moderate Uncertain × post2005 0.141∗∗ (0.057) 0.134∗∗ (0.061) 0.184∗∗ (0.085)
High Uncertain × post2005 0.487∗∗∗ (0.121) 0.475∗∗∗ (0.113) 0.483∗∗∗ (0.140)

Number of Observations 19,165 20,390 20,585
Adjusted R2 0.625 0.632 0.636

Baseline Mean Log(P) 12.25
∗p < .10,∗∗p < .05,∗∗∗p < .01
Note: This table presents the effects of liquefaction hazard classes from the 2005 liquefaction study for log of prop-
erty price for the City of Christchurch for the period 2003 – 2008. The reference class is the low hazard. All models
include amenity controls, year, seasonal and area unit fixed effects. Standard errors are clustered at area unit levels.
Six liquefaction hazard classes from the 2005 study were used: “Low: low liquefaction potential”, “Moderate: mod-
erate liquefaction potential”, “High: high liquefaction potential”, “Low uncertain: insufficient information avail-
able, but may have low liquefaction potential”, “Moderate uncertain: insufficient information available, but may
have moderate liquefaction potential”, and “High uncertain: insufficient information available, but may have high
liquefaction potential”.
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A.2 Define Relative Year to TC
The TC zoning was announcement on October 28, 2011. Relative year to TC was con-

structed as following:

Table A.3: Year to TC Announcement

Year relative to TC Time Range Earthquake Occurrence

-7 Jan 01, 2005 – Oct 27, 2005
-6 Oct 28, 2005 – Oct 27, 2006
-5 Oct 28, 2006 – Oct 27, 2007
-4 Oct 28, 2007 – Oct 27, 2008
-3 Oct 28, 2008 – Oct 27, 2009
-2 Oct 28, 2009 – Oct 27, 2010 Sep 4, 2010 EQ
-1 Oct 28, 2010 – Oct 27, 2011 Feb 22 & Jun 13, 2011 EQs

1 Oct 28, 2011 – Oct 27, 2012
2 Oct 28, 2012 – Oct 27, 2013
3 Oct 28, 2013 – Oct 27, 2014
4 Oct 28, 2014 – Oct 27, 2015
5 Oct 28, 2015 – Oct 27, 2016
6 Oct 28, 2016 – Oct 27, 2017
7 Oct 28, 2017 – Dec 31, 2018
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A.3 Structural and Amenity Controls
This section presents a brief discussion on structural characteristics and distances to

various amenities from the two standard hedonic models. Estimates are presented in columns

(1) and (2) of Table A.4, respectively. Results show that the log of selling price increases

with floor area (Appendix Figure A.1a), decreases with the log of land area till 5.7 (298.9m2),

and increase afterward (Appendix Figure A.1b). In general, houses built in the 2000s are

valued the most. Houses built in the 1940s, 1950s, 2010s have the most significant discounts.

Houses constructed in the 1940s and 1950s were about 12% less valued than otherwise similar

houses built in the 2000s, respectively. This is because ,in response to the shortage of building

materials such as copper, steel and paint ingredients for housing construction during the war

periods, the New Zealand government introduced legislation to control the use of building

materials in the 1940s, and also caused severe setbacks to the earthquake resistant design

of timber houses.4 Private dwellings in the 1940s and 1950s adhered to the designs of state

housing (low-cost and small to today’s standards), and insulation was installed in very few

houses. Houses constructed in the 2010s also appeared to be valued less than otherwise

similar houses built in the 2000s by 13%. This is possibly due to the change in the building

code after the 2010-2011 earthquakes.

Houses with appreciable water views had price premiums as large as 8%, compared to

houses without any appreciable views. This is consistent with the analysis of (20) that find

price premiums for a water view in the three largest urban areas in New Zealand, among

which Christchurch had the highest water view premium due to limited supply. Compared

to houses with superior design and first-class quality of its era, houses with average design

and quality valued 6% less, while houses with design and quality below average are worth

about 25% less. Other structural characteristics generate standard results, with the price

increasing with the number of bedrooms, bathrooms, and carparks.

4 See Renovate.org.nz.
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Turning to amenities, property values increase with distances to the CBD (Appendix Fig-

ure A.1c); decrease with distance to the Christchurch coast till 7 km and increase afterwards

(Appendix Figure A.1d); decrease with distance to the nearest public hospital (Appendix

Figure A.1e); decrease with distance to the nearest private hospital till 6 km and increase

afterwards (Appendix Figure A.1f); and not vary significantly with distance to the nearest

water body (Appendix Figure A.1g). Sizes and distances to each of the four types of parks

are priced differently. Properties worth more being close to a large botanical garden and

being away from a small sport park.

142



Table A.4: Structural and Amenity Controls from the Baseline Models

(1) (2)
Model w/o dred Model w/ dred
Coef. Std.Err. Coef. Std.Err.

Log of floor area 0.186 (0.198) 0.178 (0.194)
Log of floor area2 0.009 (0.020) 0.010 (0.020)
Log of land area −0.805∗∗∗ (0.209) −0.818∗∗∗ (0.208)
Log of land area2 0.071∗∗∗ (0.016) 0.072∗∗∗ (0.016)
Built in the 1910s −0.076∗∗∗ (0.015) −0.081∗∗∗ (0.015)
Built in the 1920s −0.075∗∗∗ (0.012) −0.079∗∗∗ (0.012)
Built in the 1930s −0.072∗∗∗ (0.012) −0.077∗∗∗ (0.012)
Built in the 1940s −0.120∗∗∗ (0.014) −0.124∗∗∗ (0.014)
Built in the 1950s −0.124∗∗∗ (0.013) −0.127∗∗∗ (0.013)
Built in the 1960s −0.076∗∗∗ (0.012) −0.079∗∗∗ (0.013)
Built in the 1970s −0.071∗∗∗ (0.014) −0.073∗∗∗ (0.014)
Built in the 1980s −0.049∗∗∗ (0.015) −0.051∗∗∗ (0.015)
Built in the 1990s −0.003 (0.013) −0.004 (0.012)
Built in the 2010s −0.131∗∗∗ (0.023) −0.132∗∗∗ (0.023)
Typical design and average quality of its era −0.057∗∗∗ (0.008) −0.056∗∗∗ (0.008)
Below average design and quality of its era −0.251∗∗∗ (0.013) −0.249∗∗∗ (0.013)
Appreciable View: Water View 0.082∗∗∗ (0.022) 0.078∗∗∗ (0.024)
Appreciable View: Other View 0.015 (0.011) 0.016 (0.011)
3 Bedrooms 0.045∗∗∗ (0.005) 0.046∗∗∗ (0.005)
4 Bedrooms 0.061∗∗∗ (0.007) 0.062∗∗∗ (0.007)
5 Bedrooms 0.069∗∗∗ (0.010) 0.070∗∗∗ (0.010)
2 Bathrooms 0.061∗∗∗ (0.006) 0.060∗∗∗ (0.006)
3 Bathrooms 0.087∗∗∗ (0.011) 0.085∗∗∗ (0.011)
2 Carparks 0.023∗∗∗ (0.003) 0.023∗∗∗ (0.003)
3 Carparks 0.022∗∗∗ (0.006) 0.023∗∗∗ (0.006)
4 Carparks 0.037∗∗∗ (0.012) 0.040∗∗∗ (0.012)
Roof: Steel −0.009 (0.009) −0.008 (0.009)
Roof: Tile −0.003 (0.008) −0.003 (0.008)
Wall: Brick 0.010 (0.008) 0.011 (0.008)
Wall: Concrete 0.010 (0.007) 0.010 (0.007)
Wall: Roughcast 0.016∗∗ (0.008) 0.017∗∗ (0.008)
Wall: Weatherboard 0.017∗∗ (0.008) 0.018∗∗ (0.008)
Wall: Mixed −0.006 (0.009) −0.006 (0.009)
Dist. from CBD (km) 0.078∗∗ (0.034) 0.076∗∗ (0.035)
Dist. from CBD2 −0.002 (0.003) −0.002 (0.003)
Dist. from Christchurch Coast (km) −0.063∗∗∗ (0.023) −0.060∗∗ (0.023)
Dist. from Christchurch Coast2 0.004∗∗ (0.002) 0.004∗∗ (0.002)
Dist. from nearest regional park (km) 0.003 (0.016) 0.007 (0.016)
Nearest regional park size: medium −0.040 (0.035) −0.038 (0.031)
Nearest regional park size: large −0.010 (0.020) −0.006 (0.021)
Dist. from nearest regional park × medium 0.002 (0.008) 0.002 (0.007)
Dist. from nearest regional park × large −0.012 (0.008) −0.013∗ (0.008)
Dist. from nearest botanical park (km) −0.038∗∗ (0.018) −0.037∗ (0.019)
Nearest botanical park size: medium 0.007 (0.022) 0.005 (0.021)
Nearest botanical park size: large 0.057∗∗∗ (0.017) 0.055∗∗∗ (0.018)
Dist. from nearest botanical park × medium −0.014 (0.011) −0.014 (0.011)
Dist. from nearest botanical park × large −0.029∗∗∗ (0.008) −0.029∗∗∗ (0.008)
Dist. from nearest community park (km) 0.022 (0.025) 0.023 (0.025)
Nearest community park size: medium 0.005 (0.011) 0.005 (0.011)
Nearest community park size: large 0.016 (0.011) 0.016 (0.011)
Dist. from nearest community park ×medium −0.012 (0.037) −0.011 (0.035)
Dist. from nearest community park × large −0.034 (0.032) −0.035 (0.031)
Dist. from nearest sports park (km) 0.040∗ (0.021) 0.042∗ (0.022)
Nearest sports park size: medium 0.030∗ (0.017) 0.030∗ (0.017)
Nearest sports park size: large 0.032∗ (0.018) 0.032∗ (0.018)
Dist. from nearest sports park × medium −0.055∗ (0.031) −0.057∗ (0.031)
Dist. from nearest sports park × large −0.037 (0.027) −0.039 (0.027)
Dist. from nearest public hospital (km) 0.026 (0.029) 0.027 (0.030)
Dist. from nearest public hospital2 −0.007∗∗ (0.003) −0.007∗∗ (0.003)
Dist. from nearest private hospital (km) −0.151∗∗∗ (0.052) −0.140∗∗∗ (0.052)
Dist. from nearest private hospital2 0.012∗∗∗ (0.004) 0.011∗∗∗ (0.004)
Dist. from nearest water body (km) 0.047 (0.032) 0.044 (0.033)
Dist. from nearest water body2 −0.019 (0.011) −0.018 (0.012)
Elevation (m) 0.003 (0.003) 0.002 (0.003)
Constant 13.825∗∗∗ (0.765) 13.837∗∗∗ (0.840)
∗p < .10,∗∗p < .05,∗∗∗p < .01
Note: This table presents the estimates of structural and amenity controls from the baseline regres-
sions. Standard errors are clustered at area unit levels.
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Figure A.1: Effects of Selected Controls on Predicted Log of Selling Price

(a) Log of Floor Area (b) Log of Land Area

(c) Dist. from CBD (d) Dist. from Christchurch Coast

(e) Dist. from Nearest Public Hospital (f) Dist. from Nearest Private Hospital

(g) Dist. from Nearest Water body
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A.4 Effects on Shared Boundaries

Table A.5: Descriptive Statistics: Shared Boundaries of TC2 and TC3

Before Oct 28, 2011 After Oct 28, 2011

TC2 TC3 Difference TC2 TC3 Difference
Selling Price (NZ$) 352763.152 357674.424 -4911.271 455833.325 424296.888 31536.437∗∗∗
Floor Area (m2) 147.168 146.899 0.269 145.778 147.481 -1.703
Land Area (m2) 650.700 672.754 -22.054∗∗∗ 658.562 672.316 -13.754∗∗∗
Built in 1910s 0.049 0.040 0.010∗ 0.045 0.035 0.010∗
Built in 1920s 0.164 0.179 -0.015 0.153 0.172 -0.019∗
Built in 1930s 0.078 0.057 0.021∗∗∗ 0.071 0.060 0.010
Built in 1940s 0.091 0.072 0.019∗∗∗ 0.091 0.062 0.029∗∗∗
Built in 1950s 0.116 0.139 -0.022∗∗∗ 0.120 0.124 -0.004
Built in 1960s 0.137 0.158 -0.021∗∗ 0.141 0.148 -0.007
Built in 1970s 0.075 0.095 -0.020∗∗∗ 0.084 0.092 -0.008
Built in 1980s 0.052 0.040 0.012∗∗ 0.049 0.042 0.007
Built in 1990s 0.066 0.071 -0.006 0.068 0.063 0.005
Built in 2000s 0.153 0.130 0.023∗∗∗ 0.100 0.092 0.008
Built in 2010s 0.018 0.020 -0.002 0.078 0.109 -0.031∗∗∗
Superior design and first class quality 0.068 0.067 0.001 0.078 0.069 0.009
Average design and quality 0.899 0.854 0.045∗∗∗ 0.880 0.818 0.062∗∗∗
Below Average design and quality 0.032 0.079 -0.047∗∗∗ 0.042 0.113 -0.071∗∗∗
No appreciable view 0.972 0.956 0.016∗∗∗ 0.971 0.946 0.025∗∗∗
Water View 0.007 0.015 -0.008∗∗∗ 0.005 0.022 -0.017∗∗∗
Other than water View 0.021 0.029 -0.008∗ 0.023 0.032 -0.008∗
1 or 2 Bedrooms 0.082 0.075 0.008 0.088 0.074 0.014∗∗
3 Bedrooms 0.592 0.613 -0.021∗ 0.601 0.600 0.002
4 Bedrooms 0.282 0.278 0.004 0.273 0.289 -0.016
5 Bedrooms 0.043 0.034 0.009∗ 0.038 0.037 0.000
1 Bathrooms 0.689 0.690 -0.001 0.658 0.655 0.003
2 Bathrooms 0.276 0.270 0.006 0.300 0.302 -0.002
3 Bathrooms 0.035 0.040 -0.005 0.042 0.043 -0.001
1 Carparks 0.314 0.333 -0.018 0.316 0.311 0.004
2 Carparks 0.641 0.618 0.022∗ 0.642 0.641 0.001
3 Carparks 0.038 0.042 -0.004 0.040 0.045 -0.006
4 Carparks 0.007 0.007 0.000 0.003 0.002 0.001
Wall: Brick 0.239 0.234 0.005 0.254 0.201 0.053∗∗∗
Wall: Concrete 0.192 0.220 -0.028∗∗∗ 0.192 0.210 -0.018∗
Wall: Roughcast 0.149 0.148 0.001 0.145 0.159 -0.014
Wall: Weatherboard 0.320 0.320 -0.000 0.307 0.324 -0.017
Wall: Mixed Material 0.056 0.050 0.006 0.063 0.073 -0.010
Wall: Other 0.044 0.028 0.016∗∗∗ 0.038 0.032 0.006
Roof: Steel/G-Iron 0.589 0.557 0.032∗∗ 0.573 0.578 -0.005
Roof: Tile Profile 0.379 0.419 -0.040∗∗∗ 0.352 0.359 -0.008
Roof: Other 0.032 0.024 0.008∗ 0.035 0.023 0.012∗∗∗
Dist. from CBD (km) 3.529 3.684 -0.155∗∗∗ 3.475 3.603 -0.128∗∗
Dist. from Christchurch Coast (km) 5.414 5.252 0.163∗∗ 5.314 5.020 0.293∗∗∗
Dist. from the nearest Public Hospital (km) 3.446 3.478 -0.032 3.451 3.496 -0.045
Dist. from the nearest Private Hospital (km) 4.196 4.177 0.019 4.246 4.251 -0.005
Dist. from the nearest Regional Park (km) 1.972 1.852 0.120∗∗∗ 1.965 1.859 0.106∗∗∗
Dist. from the nearest Botanical Park (km) 1.593 1.692 -0.099∗∗∗ 1.578 1.702 -0.124∗∗∗
Dist. from the nearest Community Park (km) 0.235 0.245 -0.010∗∗ 0.228 0.246 -0.018∗∗∗
Dist. from the nearest Sports Park (km) 0.404 0.400 0.004 0.410 0.403 0.007
Dist. from the nearest Water Body (km) 1.215 1.240 -0.025 1.192 1.205 -0.013
Dist. from the nearest Residential Red Zone (km) 2.355 2.225 0.129∗∗∗ 2.294 2.050 0.244∗∗∗
Elevation (m) 7.543 7.207 0.336∗∗∗ 7.410 6.898 0.512∗∗∗
Number of Observations 3,641 2,652 6,293 3,169 2,728 5,897
∗p < .10,∗∗p < .05,∗∗∗p < .01
Note: This table presents summary statistics on the shared boundaries of TC2 and TC3 for Jan 1, 2005, to Oct 27, 2011 (Before
period), and Oct 28, 2011, to Dec 31, 2018. Standard errors are clustered at area unit levels.

145



Table A.6: Dynamic Effects on the Shared Boundaries of TC2 and TC3

(1) (2)

Coef. Std.Err. Coef. Std.Err.

TC3 × -7 0.009 (0.028) 0.026 (0.038)
TC3 × -6 −0.003 (0.016) −0.009 (0.024)
TC3 × -5 −0.029 (0.022) −0.006 (0.030)
TC3 × -4 −0.031 (0.021) 0.006 (0.029)
TC3 × -3 −0.012 (0.023) −0.013 (0.030)
TC3 × -1 0.002 (0.024) −0.051 (0.036)
TC3 × 1 −0.033 (0.027) −0.088∗∗ (0.042)
TC3 × 2 −0.134∗∗∗ (0.036) −0.213∗∗∗ (0.050)
TC3 × 3 −0.166∗∗∗ (0.031) −0.242∗∗∗ (0.042)
TC3 × 4 −0.160∗∗∗ (0.030) −0.169∗∗∗ (0.045)
TC3 × 5 −0.123∗∗∗ (0.027) −0.144∗∗∗ (0.040)
TC3 × 6 −0.122∗∗∗ (0.025) −0.175∗∗∗ (0.041)
TC3 × 7 −0.111∗∗∗ (0.019) −0.115∗∗∗ (0.029)

TC3 × dred × -7 −0.007 (0.009)
TC3 × dred × -6 0.004 (0.006)
TC3 × dred × -5 −0.011 (0.010)
TC3 × dred × -4 −0.016 (0.010)
TC3 × dred × -3 −0.001 (0.008)
TC3 × dred × -1 0.022∗ (0.011)
TC3 × dred × 1 0.023∗∗ (0.011)
TC3 × dred × 2 0.040∗∗ (0.017)
TC3 × dred × 3 0.036∗∗ (0.013)
TC3 × dred × 4 0.007 (0.011)
TC3 × dred × 5 0.012 (0.010)
TC3 × dred × 6 0.028∗ (0.015)
TC3 × dred × 7 0.003 (0.008)

AdjustedR2 0.667 0.672
AIC 62.208 -134.423

Number of Observations 12,190
Baseline Mean log(P) 12.78
∗p < .10,∗∗p < .05,∗∗∗p < .01
Note: This table presents the dynamic effects of TC on the shared boundaries of
TC2 and TC3 for log of property price for the City of Christchurch for the pe-
riod 2005–2018. The reference group is TC2 and the reference transaction time
is 2 years before TC announcement (Oct 28, 2009 – Oct 27, 2010). Both models
include amenity controls, seasonal and area unit fixed effects. Standard errors
are clustered at area unit levels.
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Table A.7: Descriptive Statistics: Shared Boundaries of TC1 and TC2

Before Oct 28, 2011 After Oct 28, 2011

TC1 TC2 Difference TC1 TC2 Difference
Selling Price (NZ$) 365591.140 382920.073 -17328.933 520211.566 542395.385 -22183.819
Floor Area (m2) 148.077 152.251 -4.174 143.195 154.218 -11.023∗
Land Area (m2) 691.826 713.458 -21.632 696.950 745.321 -48.371∗∗
Built in 1910s 0.000 0.006 -0.006 0.000 0.000 0.000
Built in 1920s 0.010 0.000 0.010 0.006 0.000 0.006
Built in 1930s 0.010 0.006 0.004 0.000 0.006 -0.006
Built in 1940s 0.029 0.056 -0.027 0.019 0.051 -0.032
Built in 1950s 0.333 0.235 0.099∗∗ 0.415 0.218 0.197∗∗∗
Built in 1960s 0.435 0.436 -0.001 0.354 0.449 -0.065
Built in 1970s 0.005 0.073 -0.068∗∗∗ 0.013 0.064 -0.052∗∗
Built in 1980s 0.029 0.028 0.001 0.044 0.051 -0.007
Built in 1990s 0.019 0.067 -0.048∗∗ 0.038 0.026 0.012
Built in 2000s 0.106 0.089 0.017 0.057 0.109 -0.052∗
Built in 2010s 0.024 0.006 0.019 0.025 0.026 -0.000
Superior design and first class quality 0.097 0.117 -0.021 0.088 0.147 -0.059
Average design and quality 0.903 0.877 0.026 0.906 0.840 0.066∗
Below Average design and quality 0.000 0.006 -0.006 0.006 0.013 -0.007
No appreciable view 1.000 0.966 0.034∗∗ 0.994 0.936 0.058∗∗∗
Water View 0.000 0.011 -0.011 0.000 0.019 -0.019∗
Other than water View 0.000 0.022 -0.022∗∗ 0.006 0.045 -0.039∗∗
1 or 2 Bedrooms 0.048 0.050 -0.002 0.019 0.051 -0.032
3 Bedrooms 0.599 0.598 0.001 0.660 0.596 0.064
4 Bedrooms 0.300 0.302 -0.002 0.264 0.301 -0.037
5 Bedrooms 0.053 0.050 0.003 0.057 0.051 0.005
1 Bathrooms 0.700 0.654 0.047 0.755 0.660 0.094∗
2 Bathrooms 0.246 0.318 -0.072 0.189 0.308 -0.119∗∗
3 Bathrooms 0.053 0.028 0.025 0.057 0.032 0.025
1 Carparks 0.251 0.223 0.028 0.333 0.237 0.096∗
2 Carparks 0.691 0.743 -0.052 0.623 0.737 -0.115∗∗
3 Carparks 0.048 0.028 0.020 0.038 0.019 0.019
4 Carparks 0.010 0.006 0.004 0.006 0.006 -0.000
Wall: Brick 0.356 0.419 -0.023 0.434 0.423 0.011
Wall: Concrete 0.314 0.257 0.057 0.277 0.282 -0.005
Wall: Roughcast 0.111 0.117 -0.006 0.088 0.109 -0.021
Wall: Weatherboard 0.101 0.134 -0.033 0.138 0.115 0.023
Wall: Mixed Material 0.072 0.050 0.022 0.063 0.051 0.012
Wall: Other 0.005 0.022 -0.018 0.000 0.019 -0.019∗
Roof: Steel/G-Iron 0.435 0.408 0.027 0.365 0.436 -0.071
Roof: Tile Profile 0.541 0.575 -0.034 0.597 0.532 0.065
Roof: Other 0.024 0.017 0.007 0.038 0.032 0.006
Dist. from CBD (km) 4.828 4.714 0.114 4.675 4.845 -0.171
Dist. from Christchurch Coast (km) 11.226 11.114 0.112∗ 11.135 11.181 -0.046
Dist. from the nearest Public Hospital (km) 4.822 4.736 0.086 4.580 4.922 -0.341∗
Dist. from the nearest Private Hospital (km) 3.737 3.557 0.180∗∗∗ 3.715 3.601 0.114∗
Dist. from the nearest Regional Park (km) 3.727 3.858 -0.131 3.877 3.700 0.177
Dist. from the nearest Botanical Park (km) 1.180 1.238 -0.058 1.163 1.281 -0.119∗∗∗
Dist. from the nearest Community Park (km) 0.235 0.262 -0.027∗ 0.220 0.266 -0.046∗∗∗
Dist. from the nearest Sports Park (km) 0.276 0.310 -0.034∗∗ 0.278 0.280 -0.003
Dist. from the nearest Water Body (km) 1.066 1.072 -0.005 1.134 1.053 0.081
Dist. from the nearest Residential Red Zone (km) 6.155 6.001 0.154∗∗ 6.070 6.085 -0.014
Elevation (m) 17.976 17.469 0.507∗∗∗ 17.799 17.596 0.203
Number of Observations 207 179 386 159 156 315
∗p < .10,∗∗p < .05,∗∗∗p < .01
Note: This table presents summary statistics on the shared boundaries of TC1 and TC2 for Jan 1, 2005, to Oct 27, 2011 (Before
period), and Oct 28, 2011, to Dec 31, 2018. Standard errors are clustered at area unit levels.
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Table A.8: Dynamic Effects on the Shared Boundaries of TC1 and TC2

(1) (2)

Coef. Std.Err. Coef. Std.Err.

TC2 × -7 0.034 (0.047) 0.548 (0.335)
TC2 × -6 0.014 (0.025) 0.133 (0.276)
TC2 × -5 0.007 (0.062) 0.921∗∗ (0.309)
TC2 × -4 0.097 (0.061) 1.463∗∗∗ (0.426)
TC2 × -3 0.081 (0.059) −0.008 (0.378)
TC2 × -1 0.036 (0.055) 0.134 (0.375)
TC2 × 1 −0.006 (0.066) −0.154 (0.570)
TC2 × 2 −0.013 (0.059) −0.062 (0.544)
TC2 × 3 −0.019 (0.022) 0.589∗∗ (0.238)
TC2 × 4 0.067 (0.059) 0.195 (0.516)
TC2 × 5 −0.063 (0.045) −0.135 (0.448)
TC2 × 6 −0.009 (0.038) 0.488∗ (0.254)
TC2 × 7 0.039 (0.063) 1.281∗∗∗ (0.334)

TC2 × dred × -7 −0.086 (0.052)
TC2 × dred × -6 −0.019 (0.044)
TC2 × dred × -5 −0.149∗∗ (0.048)
TC2 × dred × -4 −0.227∗∗∗ (0.068)
TC2 × dred × -3 0.017 (0.057)
TC2 × dred × -1 −0.010 (0.059)
TC2 × dred × 1 0.027 (0.095)
TC2 × dred × 2 0.009 (0.086)
TC2 × dred × 3 −0.100∗∗ (0.041)
TC2 × dred × 4 −0.020 (0.082)
TC2 × dred × 5 0.010 (0.069)
TC2 × dred × 6 −0.082∗ (0.042)
TC2 × dred × 7 −0.204∗∗∗ (0.053)

Adjusted R2 0.807 0.813
AIC -864.431 -920.148

Number of Observations 701
Baseline Mean log(P) 12.85
∗p < .10,∗∗p < .05,∗∗∗p < .01
Note: This table presents the dynamic effects of TC on the shared bound-
aries of TC1 and TC2 for log of property price for the City of Christchurch
for the period 2005–2018. The reference group is TC1 and the reference
transaction time is 2 years before TC announcement (Oct 28, 2009 – Oct
27, 2010). Both models include amenity controls, seasonal and area unit
fixed effects. Standard errors are clustered at area unit levels.
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Table A.9: Descriptive Statistics for Matching with 1 Nearest Neighbor: Shared Bound-
aries of TC2 and TC3

Before Oct 28, 2011 After Oct 28, 2011

Variable
Mean t-test Mean t-test

TC3 TC2 %bias t p > t TC3 TC2 %bias t p > t
Structural Characteristics:
Selling Price (NZ$) 356,397 352,763 0.1 0.05 0.962 432,848 455,833 −10.5 −3.75 0.000∗∗∗

Floor Area (m2) 146.62 147.7 −2.0 −0.71 0.480 146.68 146.22 0.9 0.31 0.756
Land Area (m2) 667.87 663.05 2.7 0.96 0.337 664.44 667.77 −1.7 −0.61 0.542
Built in 1910s .041 .042 −0.4 −0.13 0.895 .038 .039 −0.7 −0.24 0.810
Built in 1920s .172 .181 −2.3 −0.81 0.418 .158 .159 −0.3 −0.11 0.912
Built in 1930s .058 .063 −2.2 −0.81 0.418 .064 .059 1.8 0.64 0.524
Built in 1940s .075 .064 4.0 1.55 0.122 .067 .065 0.6 0.23 0.820
Built in 1950s .138 .127 3.1 1.08 0.280 .119 .132 −3.9 −1.34 0.179
Built in 1960s .158 .154 1.2 0.43 0.670 .149 .152 −0.9 −0.33 0.744
Built in 1970s .093 .086 2.6 0.89 0.376 .089 .096 −2.3 −0.78 0.437
Built in 1980s .042 .046 −1.9 −0.69 0.492 .044 .042 1.0 0.35 0.730
Built in 1990s .069 .070 −0.3 −0.12 0.907 .056 .067 −4.6 −1.67 0.095∗

Built in 2000s .134 .144 −3.0 −1.07 0.285 .099 .094 1.8 0.64 0.521
Built in 2010s .021 .024 −2.0 −0.67 0.504 .117 .094 7.9 2.63 0.009∗∗∗

Superior design and first class quality .070 .070 −0.3 −0.12 0.905 .072 .074 −1.0 −0.37 0.714
Average design and quality .886 .883 1.1 0.41 0.685 .897 .872 7.0 2.75 0.006∗∗∗

Below Average design and quality .044 .047 −1.2 −0.48 0.634 .031 .053 −8.4 −3.90 0.000∗∗∗

No appreciable view .965 .964 0.3 0.12 0.903 .963 .966 −1.7 −0.66 0.509
Water View .008 .010 −1.7 −0.65 0.514 .005 .007 −1.3 −0.68 0.495
Other than water View .027 .026 0.7 0.25 0.806 .032 .027 3.0 1.04 0.299
1 or 2 Bedrooms .076 .076 0.1 0.03 0.975 .074 .076 −0.8 −0.30 0.761
3 Bedrooms .616 .599 3.5 1.23 0.219 .606 .621 −3.2 −1.12 0.263
4 Bedrooms .274 .289 −3.3 −1.18 0.238 .282 .269 2.9 1.03 0.303
5 Bedrooms .034 .036 −1.2 −0.43 0.670 .038 .033 2.5 0.89 0.375
1 Bathrooms .690 .690 0.1 0.03 0.977 .649 .659 −2.0 −0.70 0.482
2 Bathrooms .270 .273 −0.6 −0.23 0.819 .308 .295 2.8 0.98 0.328
3 Bathrooms .040 .037 1.3 0.46 0.646 .043 .046 −1.6 −0.55 0.581
1 Carparks .329 .311 4.0 1.41 0.159 .307 .321 −3.2 −1.13 0.259
2 Carparks .621 .641 −4.1 −1.44 0.149 .652 .636 3.4 1.19 0.236
3 Carparks .042 .040 1.0 0.37 0.715 .040 .040 −0.4 −0.16 0.873
4 Carparks .007 .008 −1.1 −0.37 0.708 .002 .002 −0.8 −0.27 0.786
Wall: Brick .240 .220 4.8 1.73 0.084 .203 .239 −8.7 −3.08 0.002∗∗∗

Wall: Concrete .221 .216 1.3 0.45 0.654 .210 .212 −0.6 −0.19 0.847
Wall: Roughcast .147 .156 −2.5 −0.90 0.370 .157 .149 2.2 0.79 0.432
Wall: Weatherboard .312 .318 −1.3 −0.46 0.645 .319 .304 3.2 1.14 0.256
Wall: Mixed Material .050 .058 −3.4 −1.21 0.225 .076 .065 4.5 1.56 0.118
Wall: Other .029 .032 −1.6 −0.60 0.546 .035 .031 2.3 0.83 0.406
Roof: Steel/G-Iron .561 .580 −4.0 −1.41 0.158 .580 .559 4.1 1.45 0.146
Roof: Tile Profile .415 .398 3.4 1.20 0.232 .395 .418 −4.7 −1.64 0.101
Roof: Other .025 .022 1.9 0.74 0.457 .025 .023 1.5 0.56 0.573

Distance-based amenity characteristics:
Distance to CBD (km) 3.676 3.616 2.9 1.03 0.302 3.560 3.551 0.5 0.16 0.869
Distance to Christchurch Coast (km) 5.280 5.437 −5.4 −1.90 0.058∗ 5.100 5.263 −5.6 −1.97 0.049∗∗∗

Distance to the nearest Public Hospital (km) 3.479 3.445 2.0 0.71 0.479 3.487 3.453 2.0 0.71 0.476
Distance to the nearest Private Hospital (km) 4.160 4.280 −5.7 −2.02 0.043∗∗∗ 4.199 4.314 −5.4 −1.90 0.058∗

Distance to the nearest Regional Park (km) 1.849 1.938 −6.3 −2.26 0.024∗∗∗ 1.853 1.913 −4.2 −1.53 0.126
Distance to the nearest Botanical Park (km) 1.676 1.643 2.4 0.83 0.406 1.658 1.628 2.1 0.74 0.462
Distance to the nearest Community Park (km) .246 .234 6.6 2.32 0.020∗∗∗ .247 .228 10.0 3.54 0.000∗∗∗

Distance to the nearest Sports Park (km) .401 .403 −0.7 −0.26 0.796 .398 .410 −4.5 −1.62 0.105
Distance to the nearest Water Body (km) 1.252 1.224 3.7 1.31 0.192 1.233 1.182 7.0 2.45 0.014∗∗

Distance to the nearest Residential Red Zone (km) 2.244 2.403 −8.2 −2.88 0.004∗∗∗ 2.077 2.285 −10.9 −3.82 0.000∗∗∗

Note: This table compares the mean on the shared boundaries of TC2 and TC3 for the matched sample obtained by nearest neighbor matching with 0.2 caliper
width on structural characteristics, without replacement.
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Table A.10: Descriptive Statistics for Matching with 1 Nearest Neighbor: Shared Bound-
aries of TC1 and TC2

Before Oct 28, 2011 After Oct 28, 2011

Variable
Mean t-test Mean t-test

TC2 TC1 %bias t p > t TC2 TC1 %bias t p > t
Structural Characteristics:
Selling Price (NZ$) 362,218 365,182 −11.3 −0.99 0.324 511,892 509,159 1.8 0.14 0.889
Floor Area (m2) 143.35 150.03 −13.6 −1.19 0.236 141.3 141.78 −0.9 −0.08 0.940
Land Area (m2) 689.26 701.35 −7.6 −0.67 0.503 700.5 705.58 −3.0 −0.27 0.791
Built in 1910s 0 0 0.0 . . 0 0 . . .

Built in 1920s 0 0 0.0 . . 0 0 0.0 . .

Built in 1930s .008 .015 −8.2 −0.56 0.576 .009 0 15.9 0.99 0.325
Built in 1940s .030 .044 −7.0 −0.61 0.545 .036 .028 4.5 0.35 0.730
Built in 1950s .301 .228 16.2 1.35 0.177 .288 .278 2.3 0.17 0.864
Built in 1960s .489 .493 −0.8 −0.06 0.949 .486 .519 −6.5 −0.47 0.637
Built in 1970s 0 .007 −3.9 −0.99 0.324 0 .019 −9.7 −1.44 0.151
Built in 1980s .023 .022 0.3 0.03 0.978 .027 .028 −0.4 −0.03 0.973
Built in 1990s .030 .029 0.3 0.03 0.975 .009 .046 −21.2 −1.69 0.092∗

Built in 2000s .113 .147 −11.5 −0.83 0.405 .126 .056 25.6 1.82 0.070∗

Built in 2010s .008 .015 −5.9 −0.56 0.576 .018 .028 −6.2 −0.48 0.631
Superior design and first class quality .075 .110 −11.3 −0.99 0.323 .081 .120 −12.2 −0.96 0.336
Average design and quality .925 .890 11.2 0.99 0.323 .919 .870 14.6 1.17 0.243
Below Average design and quality 0 0 0.0 . . 0 .009 −9.5 −1.01 0.312
No appreciable view 1 1 0.0 . . 1 .991 5.1 1.01 0.312
Water View 0 0 0.0 . . 0 0 0.0 . .

Other than water View 0 0 0.0 . . 0 .009 −5.9 −1.01 0.312
1 or 2 Bedrooms .045 .051 −2.9 −0.24 0.809 .045 .028 9.4 0.68 0.498
3 Bedrooms .654 .610 8.9 0.74 0.458 .667 .685 −3.8 −0.29 0.771
4 Bedrooms .248 .294 −10.0 −0.85 0.358 .261 .269 −1.6 −0.12 0.904
5 Bedrooms .053 .044 3.8 0.32 0.746 .027 .019 3.8 0.42 0.675
1 Bathrooms .737 .654 17.6 1.47 0.143 .757 .769 −2.6 −0.20 0.839
2 Bathrooms .233 .316 −18.5 −1.53 0.128 .207 .185 5.1 0.41 0.683
3 Bathrooms .030 .029 0.3 0.03 0.975 .036 .046 −5.0 −0.35 0.704
1 Carparks .248 .235 3.0 0.24 0.807 .297 .352 −12.1 −0.86 0.351
2 Carparks .707 .699 1.8 0.15 0.883 .694 .602 19.8 1.42 0.156
3 Carparks .038 .051 −7.2 −0.55 0.583 .009 .037 −16.8 −1.39 0.167
4 Carparks .008 .015 −8.2 −0.56 0.576 0 .009 −11.6 −1.01 0.312
Wall: Brick .444 .397 9.5 0.77 0.441 .432 .398 6.9 0.51 0.609
Wall: Concrete .293 .331 −8.3 −0.66 0.507 .297 .306 −1.8 −0.13 0.895
Wall: Roughcast .075 .118 −13.3 −1.18 0.240 .090 .083 2.3 0.18 0.860
Wall: Weatherboard .158 .125 10.2 0.77 0.441 .135 .176 −12.2 −0.83 0.407
Wall: Mixed Material .030 .022 3.3 0.41 0.681 .045 .037 3.4 0.30 0.767
Wall: Other 0 .007 −6.4 −0.99 0.324 0 0 0.0 . .

Roof: Steel/G-Iron .383 .441 −11.7 −0.96 0.338 .432 .407 5.1 0.37 0.709
Roof: Tile Profile .609 .551 11.6 0.95 0.341 .523 .574 −10.4 −0.76 0.446
Roof: Other .008 .007 0.1 0.02 0.987 .045 .019 14.4 1.11 0.267

Distance-based amenity characteristics:
Dist. from CBD (km) 4.773 4.822 −5.2 −0.42 0.678 4.902 4.772 13.8 1.04 0.299
Dist. from Christchurch Coast (km) 11.151 11.227 −12.5 −0.99 0.321 11.214 11.203 1.8 0.13 0.893
Dist. from the nearest Public Hospital (km) 4.869 4.801 4.4 0.36 0.719 5.065 4.766 19.2 1.49 0.137
Dist. from the nearest Private Hospital (km) 3.555 3.747 −34.9 −2.68 0.008∗∗∗ 3.590 3.680 −17.2 −1.18 0.240
Dist. from the nearest Regional Park (km) 3.721 3.759 −2.9 −0.23 0.815 3.559 3.765 −15.8 −1.20 0.230
Dist. from the nearest Botanical Park (km) 1.272 1.177 24.6 2.05 0.041∗∗ 1.326 1.172 42.2 3.26 0.001∗∗∗

Dist. from the nearest Community Park (km) .257 .251 4.3 0.34 0.736 .265 .219 31.7 2.26 0.025∗∗

Dist. from the nearest Sports Park (km) .315 .262 34.6 2.88 0.004∗∗∗ .297 .273 15.1 1.16 0.246
Dist. from the nearest Water Body (km) 1.061 1.066 −1.0 −0.09 0.931 1.063 1.052 2.2 0.17 0.862
Dist. from the nearest Residential Red Zone (km) 6.029 6.158 −20.8 −1.61 0.109 6.107 6.100 1.2 0.08 0.936

Note: This table compares the mean on the shared boundaries of TC1 and TC2 for the matched sample obtained by nearest neighbor matching with 0.2 caliper
width on structural characteristics, without replacement.
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Table A.11: DID for Matching with 1 Nearest Neighbor: Shared Boundaries

Panel A: TC2 vs TC3

Coef. Std.Err. Coef. Std.Err.

TC3 × post1 0.043 (0.031) 0.044 (0.030)
TC3 × post2 −0.025 (0.049) −0.005 (0.049)
TC3 × post3 −0.038 (0.046) −0.058 (0.047)
TC3 × post4 −0.072∗∗ (0.029) −0.109∗∗∗ (0.032)

dred(km) −0.039 (0.027)
dred × post4 0.016∗∗∗ (0.005)
TC3 × dred −0.008∗∗∗ (0.003)
TC3 × dred × post4 0.018∗∗∗ (0.004)

Adjusted R2 0.667 0.671
AIC -295.215 -423.845

Number of Observations 11,805
Baseline Mean log(P) 12.70

Panel B: TC1 vs TC2

TC2 × post1 −0.070 (0.085) −0.061 (0.083)
TC2 × post2 0.065 (0.083) 0.053 (0.078)
TC2 × post3 0.012 (0.066) 0.014 (0.067)
TC2 × post4 −0.039 (0.069) −0.102 (0.140)

dred(km) −5.800 (4.045)
dred × post4 −0.036 (0.027)
TC2 × dred −0.047 (0.030)
TC2 × dred× post4 0.010 (0.022)

Adjusted R2 0.800 0.801
AIC -765.773 -771.897

Number of Observations 607
Baseline Mean log(P) 12.77
∗p < .10,∗∗p < .05,∗∗∗p < .01
Note: This table presents the DID estimates on the shared boundaries. It cov-
ers years 2005 to 2018. The reference TC is TC2 and TC1 in panels A and B,
respectively. All models include amenity controls, year, seasonal and area unit
fixed effects. Standard errors are clustered at area unit levels.
The sample in each panel is obtained by propensity score matching using the
nearest neighbor with 0.2 caliper width on the whole set of structural attributes.
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Appendix B: Appendix of Chapter 2

B.1 Slope
A slope is the rise or fall of the land. It is important for the builder to identify the

slopes on the land since sloped land can be challenging to work on. Mathematically, the

slope of a piece of land is expressed as “the rise over the run”, where the rise is the vertical

difference (difference in height/elevation) between two points in the land area, and the run

is the horizontal distance between these two points.

slope = rise
run =

vertical difference
horizontal distance

The percent rise (%) slope is then computed as slope×100. The degree (°) of slope is θ .

The tables on the next page show a range of slope classifications used in different countries

and different settings.
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Table B.1: Classification of Land Slopes

(a) Slopes Commonly Used
in Irrigated Fields

Slope Class % °
Horizontal 0 - 2 0 - 1.15
Very Flat 2 - 5 1.15 - 2.86
Flat 5 - 10 2.86 - 5.71
Moderate 10 - 25 5.71 - 14.03
Steep > 25 > 14.03

http://www.fao.org/3/r4082e/r4082e04.htm

(b) Government of Canada
Soil Landscape of Canada

Slope Class % °
Little or None 0 - 3 0 - 1.72
Gentle 4 - 9 2.29 - 5.14
Moderate 10 - 15 5.71 - 8.53
Steep 16 - 30 9.09 - 16.70
Extremely steep 31 - 60 17.22 - 30.96
Excessively steep > 60 > 30.96

http://sis.agr.gc.ca/cansis/nsdb/slc/v3.2/cmp/

slope.html

(c) Tweed Shire Council Australia
Dwelling Houses

Slope Class % °
Flat 0 - 10.51 0 - 6
Moderate 10.51 - 21.26 6 - 12
Steep 21.26 - 32.49 12 - 18
Extremely Steep > 32.49 > 18
https://www.tweed.nsw.gov.au/Download.aspx?

Path=~/Documents/Planning/TSC02931_Fact_

Sheet_4_Working_with_Sloping_Sites.pdf

(d) China Urban
Construction Suitability

Slope Class % °
Flat 0.3 - 2 0 - 1.15
Little 2 - 5 1.15 - 2.86
Gentle 5-10 2.86 - 5.71
Moderate 10 - 25 5.71 - 14.03
Steep 25 - 50 14.03 - 26.67
https://wenku.baidu.com/view/

504c9a10227916888486d79a.html

Note: This table presents a range of slope classifications used in different countries
and different settings. % is the percent rise of slope. °is the degree of slope. The
source data for panels (a) (b) and (c) provides slope in the percent rise, whereas
the source data for panel (c) provides slopes in degree.
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Table B.2: Estimation Results with Alternative Land Slope Class

Generalized w/ Slope
Coef. Std.Err.

2007Q1 0.717∗∗∗ (0.054)
2007Q2 0.766∗∗∗ (0.051)
2007Q3 0.736∗∗∗ (0.068)
2007Q4 0.658∗∗∗ (0.051)
2008Q1 0.698∗∗∗ (0.052)
2008Q2 0.582∗∗∗ (0.043)
2008Q3 0.648∗∗∗ (0.090)
2008Q4 0.543∗∗∗ (0.060)
2009Q1 0.453∗∗∗ (0.055)
2009Q2 0.505∗∗∗ (0.048)
2009Q3 0.573∗∗∗ (0.044)
2009Q4 0.645∗∗∗ (0.045)
2010Q1 0.604∗∗∗ (0.041)
2010Q2 0.724∗∗∗ (0.059)
2010Q3 0.683∗∗∗ (0.064)
2010Q4 0.634∗∗∗ (0.059)
2011Q1 0.583∗∗∗ (0.055)
2011Q2 0.727∗∗∗ (0.065)
2011Q3 0.636∗∗∗ (0.061)
2011Q4 0.695∗∗∗ (0.068)
2012Q1 0.699∗∗∗ (0.049)
2012Q2 0.676∗∗∗ (0.043)
2012Q3 0.692∗∗∗ (0.046)
2012Q4 0.861∗∗∗ (0.043)
2013Q1 0.809∗∗∗ (0.045)
2013Q2 0.972∗∗∗ (0.052)
2013Q3 1.039∗∗∗ (0.060)
2013Q4 0.995∗∗∗ (0.061)
2014Q1 0.993∗∗∗ (0.062)
2014Q2 1.208∗∗∗ (0.081)
2014Q3 1.278∗∗∗ (0.082)
2014Q4 1.231∗∗∗ (0.057)
2015Q1 1.547∗∗∗ (0.080)
2015Q2 1.497∗∗∗ (0.071)
2015Q3 1.543∗∗∗ (0.070)
2015Q4 1.421∗∗∗ (0.063)
2016Q1 1.692∗∗∗ (0.095)
2016Q2 1.666∗∗∗ (0.080)
2016Q3 1.707∗∗∗ (0.085)
2016Q4 1.957∗∗∗ (0.144)
Decade Discount Rate δ 0.066∗∗∗ (0.007)

One Tree Hill School Zone −0.396∗∗∗ (0.014)
Double Grammar Zone 0.534∗∗∗ (0.036)

5 Rooms 1.043∗∗∗ (0.042)
6 Rooms 1.061∗∗∗ (0.042)
7 Rooms 1.274∗∗∗ (0.046)
8+Rooms 1.247∗∗∗ (0.047)

Flat (0-10%) 0.036 (0.026)
Steeply Sloped (25-50%) −0.101∗∗∗ (0.024)
Extremely Steeply Sloped (50-70%) −0.342∗∗∗ (0.055)

Adjusted R2 0.940
Log-Likelihood -40865.385
AIC 81830.77
BIC 82162.8
Number of Observations 5,657
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
Note: This table presents estimation results for the generalized
builder’s models using alternative slope class. Selwyn College
school zone is the base school zone. 2-to-4-room category is set as
the reference room group. Moderately sloped land (10-25%) is the
base land slope class. Robust Standard errors in parentheses.
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B.2 AIMS Address Components
To comprise full addresses for AIMS Address Component dataset, information on the

component types and orders described in the table below is used. More information about

AIMS Address Component data can be found at LINZ data service site.

Table B.3: AIMS: Address Component Type and Order

Address Component Type Address Component Order

Unit Type 1
Unit Value 2
Level Type 3
Level Value 4
Building Part 5
Building Name 6
Address Number Prefix 7
Address Number 8
Address Number Suffix 9
Address Number High 10
Road Name Prefix 11
Road Name 12
Road Type Name 13
Road Suffix Name 14
Water Route Name 15
Water Body Name 16
Suburb/Locality Name 17
Town/City Name 18
Postcode 19
Suburb/Locality ID 20
RoadCenterLine 21
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B.3 Building Outlines
There were quite number of mismatches between geocoded addresses and building out-

lines. We hand corrected as much as possible before performing spatial join and assign slopes

from building outlines to addresses. Three generalized models were estimated using slopes

constructed from building outlines.

In model (1), we used slopes from building outlines for the entire sample. There were 8

observations missing slopes from building outlines. 11 observations with slopes from building

outlines larger than 70% (35°) were recoded to the slope class steep (48-70% or 26-35°)

instead of dropped.

In model (2), we kept land parcel slopes for 5,048 properties that don’t share spatial

extends with others and replaced land parcel slopes with building outline slopes for 609

properties that share spatial extends with others.

In model (3), we kept land parcel slopes for 5,637 freehold properties, and replaced land

parcel slopes with building outline slopes for 20 cross lease properties.

Results are presented in Table B.4 on the next page. Overall these results are consistent

with the results in the main analysis. Per square meter land prices decrease with land slopes.

Estimated constant quality land price indices increased by 2.76, 2.78, 2.77-fold over the 10

years in models (1) to (3) accordingly. Recall, using parcel slopes the main analysis shows

land prices increased by 2.78-fold over the 10 years.
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Table B.4: Estimation Results – Generalized Models with Building Outlines

Model (1) Model (2) Model (3)
Coef. Std.Err. Coef. Std.Err. Coef. Std.Err.

2007Q1 0.680∗∗∗ (0.053) 0.692∗∗∗ (0.053) 0.694∗∗∗ (0.054)
2007Q2 0.721∗∗∗ (0.055) 0.745∗∗∗ (0.052) 0.750∗∗∗ (0.052)
2007Q3 0.723∗∗∗ (0.068) 0.726∗∗∗ (0.069) 0.729∗∗∗ (0.069)
2007Q4 0.631∗∗∗ (0.049) 0.640∗∗∗ (0.051) 0.642∗∗∗ (0.051)
2008Q1 0.675∗∗∗ (0.053) 0.688∗∗∗ (0.053) 0.689∗∗∗ (0.053)
2008Q2 0.562∗∗∗ (0.044) 0.573∗∗∗ (0.042) 0.579∗∗∗ (0.041)
2008Q3 0.622∗∗∗ (0.088) 0.633∗∗∗ (0.090) 0.632∗∗∗ (0.090)
2008Q4 0.506∗∗∗ (0.054) 0.515∗∗∗ (0.055) 0.527∗∗∗ (0.058)
2009Q1 0.439∗∗∗ (0.053) 0.444∗∗∗ (0.053) 0.446∗∗∗ (0.053)
2009Q2 0.489∗∗∗ (0.048) 0.496∗∗∗ (0.047) 0.499∗∗∗ (0.047)
2009Q3 0.553∗∗∗ (0.042) 0.564∗∗∗ (0.042) 0.569∗∗∗ (0.041)
2009Q4 0.623∗∗∗ (0.044) 0.631∗∗∗ (0.045) 0.635∗∗∗ (0.045)
2010Q1 0.575∗∗∗ (0.039) 0.590∗∗∗ (0.040) 0.594∗∗∗ (0.041)
2010Q2 0.693∗∗∗ (0.058) 0.701∗∗∗ (0.057) 0.714∗∗∗ (0.058)
2010Q3 0.659∗∗∗ (0.061) 0.667∗∗∗ (0.063) 0.671∗∗∗ (0.064)
2010Q4 0.611∗∗∗ (0.058) 0.622∗∗∗ (0.058) 0.624∗∗∗ (0.058)
2011Q1 0.542∗∗∗ (0.055) 0.563∗∗∗ (0.053) 0.567∗∗∗ (0.053)
2011Q2 0.705∗∗∗ (0.066) 0.709∗∗∗ (0.065) 0.711∗∗∗ (0.065)
2011Q3 0.606∗∗∗ (0.070) 0.616∗∗∗ (0.064) 0.619∗∗∗ (0.064)
2011Q4 0.672∗∗∗ (0.069) 0.683∗∗∗ (0.067) 0.686∗∗∗ (0.067)
2012Q1 0.667∗∗∗ (0.050) 0.686∗∗∗ (0.048) 0.688∗∗∗ (0.049)
2012Q2 0.647∗∗∗ (0.043) 0.657∗∗∗ (0.043) 0.660∗∗∗ (0.043)
2012Q3 0.669∗∗∗ (0.044) 0.671∗∗∗ (0.044) 0.682∗∗∗ (0.045)
2012Q4 0.835∗∗∗ (0.044) 0.845∗∗∗ (0.043) 0.848∗∗∗ (0.042)
2013Q1 0.779∗∗∗ (0.045) 0.786∗∗∗ (0.044) 0.795∗∗∗ (0.044)
2013Q2 0.942∗∗∗ (0.054) 0.944∗∗∗ (0.054) 0.950∗∗∗ (0.054)
2013Q3 0.984∗∗∗ (0.059) 1.020∗∗∗ (0.060) 1.025∗∗∗ (0.060)
2013Q4 0.954∗∗∗ (0.060) 0.972∗∗∗ (0.061) 0.978∗∗∗ (0.061)
2014Q1 0.953∗∗∗ (0.062) 0.959∗∗∗ (0.061) 0.967∗∗∗ (0.061)
2014Q2 1.168∗∗∗ (0.079) 1.173∗∗∗ (0.080) 1.174∗∗∗ (0.080)
2014Q3 1.242∗∗∗ (0.080) 1.257∗∗∗ (0.079) 1.260∗∗∗ (0.079)
2014Q4 1.182∗∗∗ (0.058) 1.214∗∗∗ (0.058) 1.219∗∗∗ (0.058)
2015Q1 1.481∗∗∗ (0.086) 1.494∗∗∗ (0.081) 1.506∗∗∗ (0.082)
2015Q2 1.466∗∗∗ (0.071) 1.467∗∗∗ (0.073) 1.468∗∗∗ (0.073)
2015Q3 1.489∗∗∗ (0.067) 1.506∗∗∗ (0.066) 1.522∗∗∗ (0.066)
2015Q4 1.402∗∗∗ (0.063) 1.419∗∗∗ (0.060) 1.422∗∗∗ (0.060)
2016Q1 1.638∗∗∗ (0.096) 1.656∗∗∗ (0.093) 1.657∗∗∗ (0.093)
2016Q2 1.569∗∗∗ (0.080) 1.614∗∗∗ (0.077) 1.640∗∗∗ (0.073)
2016Q3 1.643∗∗∗ (0.093) 1.669∗∗∗ (0.085) 1.668∗∗∗ (0.085)
2016Q4 1.874∗∗∗ (0.144) 1.922∗∗∗ (0.139) 1.924∗∗∗ (0.137)
Decade Discount Rate δ 0.065∗∗∗ (0.007) 0.066∗∗∗ (0.007) 0.067∗∗∗ (0.007)

One Tree Hill School Zone −0.379∗∗∗ (0.015) −0.395∗∗∗ (0.014) −0.396∗∗∗ (0.014)
Double Grammar Zone 0.550∗∗∗ (0.038) 0.536∗∗∗ (0.036) 0.539∗∗∗ (0.036)

5 Rooms 1.061∗∗∗ (0.043) 1.040∗∗∗ (0.042) 1.038∗∗∗ (0.042)
6 Rooms 1.080∗∗∗ (0.044) 1.058∗∗∗ (0.043) 1.062∗∗∗ (0.043)
7 Rooms 1.295∗∗∗ (0.047) 1.262∗∗∗ (0.046) 1.264∗∗∗ (0.046)
8+Rooms 1.260∗∗∗ (0.048) 1.240∗∗∗ (0.047) 1.234∗∗∗ (0.047)

Flat to gently undulating (0-3°) 0.032 (0.030) 0.069∗ (0.040) 0.070∗ (0.042)
Undulating (4-7°) 0.011 (0.028) 0.060∗∗ (0.025) 0.057∗∗ (0.025)
Strongly rolling (16-20°) −0.094∗∗∗ (0.033) −0.059∗ (0.034) −0.041 (0.036)
Moderately steep (21-25°) −0.168∗∗ (0.072) −0.128∗∗∗ (0.045) −0.169∗∗∗ (0.035)
Steep (26-35°) −0.256∗∗∗ (0.054) −0.258∗∗∗ (0.048) −0.269∗∗∗ (0.044)

Adjusted R2 0.939 0.939 0.940
Log-Likelihood -40828.889 -40872.808 -40855.831
AIC 81761.78 81849.62 81815.663
BIC 82107.02 82194.93 82160.98
Number of Observations 5,649 5,657 5,657
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01
Note: This table presents estimation results for the generalized builder’s models using slopes constructed from building
outlines. Selwyn College school zone is the base school zone. 2-to-4-room category is set as the reference room group.
Rolling land (8-15°) is the base land slope class. Robust Standard errors in parentheses.
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Appendix C: Appendix of Chapter 3

C.1 Shopping Centers and Safe-swim Beaches in

Auckland

Table C.1: Shopping Centers in Auckland

Shopping Centers Suburb
Atrium on Elliott CBD
Dress-smart

Central Suburbs
Royal Oak Mall
Three Kings Shopping Mall
Westfield Newmarket
Westfield St Lukes
Botany Town Center

East Auckland

Meadowbank Shopping Center
Meadowlands Shopping Plaza
Eastridge Shopping Center
Pakuranga Plaza
Sylvia Park
Albany Mega Center

North Shore

Glenfield Mall
Highbury Shopping Center
Milford Shopping Center
Pacific Plaza
Shore City
Westfield Albany
Hunters Plaza

South Auckland
Manukau Supa Centa
Southmall Manurewa
Westfield Manukau City
Kelston Shopping Center

Central Suburbs

Lynnmall
Northwest Shopping Center
Waitakere Mega Center
WestCity Waitakere
Westgate Shopping Center

Note: This table lists the shopping centers in the
city of Auckland.
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Table C.2: Beaches without Long-term Water Quality Alarm

Name Name

St Heliers Beach Point Chevalier
Kohimarama Beach Blockhouse Bay
Mission Bay Beach Waikowhai Bay
Okahu Bay Granny’s Bay
Judges Bay Taumanu West
St Marys Bay Onehunga Lagoon
Home Bay Taumanu Centra
Herne Bay Taumanu East

Point England

Note: This table presents the list of beaches with-
out a long-term water quality alert. This infor-
mation is accessed from Auckland City Council’s
Safeswim website.

159

https://safeswim.org.nz
https://safeswim.org.nz

	Chapter 1 Salience of Hazard Disclosure and House Prices: Evidence from Christchurch, New Zealand
	Chapter 2 Is There a Slope Discount?
	Chapter 3 Does Proximity to School Still Matter Once Access to Your Preferred School Zone Has Already Been Secured?
	References
	Appendix A: Appendix of Chapter 1
	Appendix B: Appendix of Chapter 2
	Appendix C: Appendix of Chapter 3

