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ABSTRACT

This thesis addresses two visual understanding tasks: visual relationship detection (VRD) and
video action recognition. The majority of the thesis is focused on VRD, which is our main
contribution.

Relations amongst entities play a central role in image and video understanding. In the first three
chapters, we discuss visual relationship detection, whose goal is to recognize all (subject, predicate,
object) tuples in a given image. Due to the complexity of modeling (subject, predicate, object)
relation triplets, it is crucial to develop a method that can not only recognize seen relations, but also
generalize to unseen cases. Inspired by a previously proposed visual translation embedding model,
or VTransE [1], we propose a context-augmented translation embedding model that can capture
both common and rare relations. The previous VTransE model maps entities and predicates into a
low-dimensional embedding vector space where the predicate is interpreted as a translation vector
between the embedded features of the bounding box regions of the subject and the object. Our
model additionally incorporates the contextual information captured by the bounding box of the
union of the subject and the object, and learns the embeddings guided by the constraint predicate «

union (subject, object) ´ subject ´ object. In a comprehensive evaluation on multiple challenging
benchmarks, our approach outperforms previous translation-based models and comes close to or
exceeds the state of the art across a range of settings, from small-scale to large-scale datasets,
from common to previously unseen relations. It also achieves promising results for the recently
introduced task of scene graph generation.

In the final part of the thesis, we consider action understanding in videos. In many scenarios,
we observe moving objects instead of still images. Thus, it is also important to capture motion
information and recognize the action being performed. Recent work either applies 3D convolution
operators to extract the motion implicitly or adds an additional optical flow path to leverage temporal
features. In our work, we propose to use a novel correlation operator to establish a matching between
consecutive frames. This matching encodes the movement of objects through time. Combined
with the classical appearance stream, the proposed method hence learns the appearance and motion
representations in parallel. On the challenging Something-Something dataset [2], we empirically
demonstrate that our network achieves comparable performance to the state-of-the-art method.
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CHAPTER 1: INTRODUCTION

Performance on object detection and localization has improved greatly over the last few years
with the introduction of the deep R-CNN model [3] and its successors [4, 5, 6, 7]. The next natural
step is to go beyond detecting individual objects and start reasoning about semantic relationships
between multiple objects, which could be useful for applications such as image captioning [8],
retrieval [9, 10], and visual question answering [11]. In this thesis, we discuss two relationship
understanding tasks: visual relationship detection (VRD) [12] and video action recognition. The
former one concentrates on image data, while the latter puts more emphasis on temporal modeling.
Since VRD is our main contribution, the majority of the thesis focuses on VRD. We only talk briefly
about action recognition.

1.1 THE VRD TASK

VRD focuses on understanding interactions between pairs of object entities in the image. These
interactions can be spatial, comparative, or action-based, and are represented as (subject, predicate,
object) triplets such as (desk, beneath, laptop), (tower, taller than, trees), or (person, eat, pizza).
VRD has two goals: detection of object instances participating in an interaction, and correct
prediction of the interaction type. Inferring the relations between object pairs is not always
straightforward visually, and depends on context. For instance, (person, hold, umbrella) and
(person, hold, guitar) are dissimilar in an image even though they share the same predicate ‘hold’.
The very large output space makes this task even more challenging. Consider the Stanford VRD
dataset [12], which has 100 classes of objects, 70 classes of predicates, and a total of 30k training
relationship annotations. The number of possible interaction triplets, including unusual cases such
as (dog, ride, horse), is 100ˆ 100ˆ 70 “ 700k, meaning that most relationships do not even have
a training example. This sparsity necessitates the development of methods that can recognize the
predicate even if it occurs with a novel subject or object.

To improve generalization to rare or unseen relationships, we propose a novel framework called
Union Visual Translation Embedding, or UVTransE. Our starting point is the recently introduced
VTransE method of Zhang et al. [1], which maps entities and predicates into a low-dimensional
embedding vector space where the predicate is interpreted as a translation vector between the
embedded appearance features of the subject and the object. More concretely, if s, p, and o are
vectors representing the subject, the predicate, and the object in the learned embedding space,
VTransE assumes that a relationship (s, p, o) exists if s` p « o. This formulation was inspired, in
turn, by translation embeddings for relational data [13].
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VTransE does a good job of predicting relationships that it has seen in training time; however,
it is not well-suited to recognizing unseen relationship triplets. This is due to two critical issues.
First, VTransE calculates object vectors based on the features from subject and predicate only. That
is, subject and predicate vectors (s, p) in the learned embedding space completely determine the
object o as s` p. Consider an unusual relationship, such as (dog, drive, car). Since the triplet is
rare in the training set, the dog and drive vectors are not trained to produce this particular object
car, so we end up with s` p ff o. In addition, the VTransE embedding is not sufficiently flexible
for modeling cases where many possible objects can satisfy a predicate with a given subject, since
fixing s and p roughly determines o.

In order to overcome the above two problems, we propose an extension to VTransE that not only
enables triplets to be recognized in unseen cases, but also enables entities to have a distributed
representation in the embedding space. Like VTransE, we model objects and predicates as em-
bedding vectors; however, our predicate embedding vectors are not constrained to represent the
translation between the subject and the object. Our idea is that by subtracting the embeddings of
the subject and the object from the embedding of the entire box of the union of subject and object

should provide an embedding corresponding to the predicate of interest, or u ´ s ´ o « p. For
example, emb(person Y horse) ´ emb(person) ´ emb(horse) « emb(ride). (Note that here and
in the following, whenever we talk about the union box or union feature, we mean the bounding
box of the union of the subject and object, and the features extracted from this box.) By removing
object-related information from the contextual union feature, we hope to leave behind an embedding
that contains information only about the predicate, leading to better zero-shot performance. Even
though our modification of the VTransE formulation may seem straightforward, our experiments
will demonstrate that UVTransE model can much better handle the challenges of VRD. For example,
as shown in the results in Figure 3.1, the learned predicate embedding ‘touch’ can model both
(person, touch, skateboard) and (person, touch, glasses), even when (person, touch, glasses) has
not been seen during training.

Similar to prior works like [12, 14], we also incorporate a recurrent language model that uses
word embeddings to learn about the semantic relatedness between different objects or different
relations in an attempt to counteract the data sparsity problem. It has been shown that words with
similar meaning are close to each other in word embedding spaces such as word2vec [15] and
GloVe [16]. Such semantic similarity might help us in detecting relation triplets not seen during
training. For instance, given that we have seen (person, ride, motorbike) during training time, at test
time, if we have an image containing the relation (person, ride, bicycle), we might be able to detect
this relationship since motorbike and bicycle are semantically similar. Accordingly, we design a
language module that benefits the overall detection task, including zero-shot cases. An overview of
our UVTransE model, and its relationship with the language model, are shown in Fig. 1.1.
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Figure 1.1: Overview of our UVTransE visual relationship detection model. Given an image, Faster
R-CNN is fist used to detect objects. For each pair of detected objects, appearance and spatial
features are extracted and fed into the visual module, which computes the UVTransE embedding:
union ´ (subject + object). The predicate embedding output by UVTransE may be optionally sent
to a Bi-GRU language model. Finally, triplets (s, p, o) are ranked based on scores from the visual,
language, and object detection modules.

1.2 THE VIDEO ACTION RECOGNITION TASK

Next, we introduce the task of video action recognition. It involves the identification of different
human actions from video clips. Due to the success of Convolution neural network (CNN) on
ImageNet Classification [17], CNN has been adapted to capture not only the appearance feature,
but also motion information for video analysis. There are two common strategies for action
classification. The first way is extending 2D convolution to 3D [18] and capture the temporal
information implicitly. The alternative approach is using a two-stream network [19], which consists
of an appearance stream and a motion stream. The appearance stream is similar to the normal
convolution neural networks which extract RGB features from still image frames, while the motion
stream applies convolution on top of the pre-calculated optical flow input for explicit motion
modeling.

In our work, we would like to explicitly model the motion flow while removing the costly optical
flow computation. Thus, we designed a novel architecture that uses correlation operator, which
is proposed by FlowNet [20], to instantiate correspondences between consecutive frames. These
correspondences encodes the motion through time explicitly. Different from traditional two-stream
networks, everything in our module is differentiable, and we are able to learn the motion features
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through backpropagation. Compared to 3D CNNs, our model has the benefit of factorizing out
the computation of appearance and motion. This enables us to explicitly model the temporal
information, and learn distinct weights for different representations of a video.

1.3 THESIS OUTLINE

The remainder of this thesis is structured as follows. In Chapter 2, we review algorithms for both
visual relationship detection and video action recognition. We also point out the connections of our
work and previous methods.

In Chapter 3, we start by giving the technical details of UVTransE, and present an extensive
empirical evaluation of our UVTransE method on multiple datasets and settings, from small-scale
to large-scale, and from common relationships to zero-shot recognition. In particular, we show that
we decisively outperform VTransE and most other competing methods on both the general and
zero-shot settings of the VRD dataset [12], UnRel dataset [21], two subsets of Visual Genome [22],
and the Open Images Challenge [23]. On the latter two datasets, we also apply our methods to
the recently proposed task of scene graph generation. A scene graph, introduced by Johnson et

al. [9], encapsulates all the relations amongst the object entities in an image. Its nodes correspond to
objects and directed edges correspond to their pairwise relationships. We generate scene graphs via
a simple two-stage approach, where we first detect objects, or nodes, and then infer relationships, or
edges, using our UVTransE approach. Our experiments will show that this approach is competitive
with more sophisticated state-of-the-art approaches designed to jointly reason about multiple edges
of the graph, such as Neural Motifs [24].

Finally, in Chapter 4, we introduce our video correlation network, which utilizes correlation
operation for motion extraction, and apply it on the challenging Something-Something dataset [2].
Through our experiments on Something-Something dataset [2], we will demonstrate that our
network could achieves competitive results over 3D CNNs and two-stream networks.
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CHAPTER 2: RELATED WORK

2.1 VISUAL RELATIONSHIP DETECTION

Detecting visual relationships in one form or another has been an active area of recognition
research for at least the last decade. Most earlier works focused on predicting specialized types of
predicates such as spatial relations [25, 26], or targeted human-centric relationships [27, 28, 29, 30,
31, 32]. Such phrase or relationship detections were used in applications such as object recognition
[33, 34, 35], image classification [36], and text grounding [37, 38].

Recently, Lu et al. [12] introduced the generic visual relationship detection (VRD) task and
a dataset that became one of the main benchmarks. They also proposed a VRD method that
established the basic template for many follow-up works, including ours: first objects are detected,
then object pairs are fed to a classifier that combines their appearance features with a language prior
on the relationship triplet occurrence. Zhang et al. [1] projected features from the detected objects
into a low-dimensional space and predicted the relationship using a learned relation translation
vector. This VTransE method is the main departure point for our own work. Dai et al. [39] proposed
a deep relational network method exploiting the statistical dependencies between objects and
their relationships, while Liang et al. [40] proposed building a semantic action graph capturing
possible relations and learning to traverse it using a reinforcement learning formulation. In Zhang
et al. [41], the authors employed a novel triplet-softmax loss to learn the joint visual and semantic
embedding. Very recently, Zhang et al. [42] defined margin-based losses to address common
types of errors existing in relationship prediction, resulting in a method that performs remarkably
well on the detection of common relationship triplets, but does not necessarily generalize to
rare or zero-shot relationships. As part of its visual representation, this method also uses the
bounding box of the union of subject and object, however, it does not use a subtractive model for
combining the union with the subject and object boxes, as we propose. Zhuang et al. [43] designed
a context-aware interaction classifier with good generalization to the zero-shot case. Plummer et

al. [14] obtained strong zero-shot performance through the use of multiple visual-language cues
learned with Canonical Correlation Analysis (CCA). Yu et al. [44] used a large amount of external
textual data to distill useful knowledge for triplet learning. Peyre et al. [21] focused on weakly
supervised learning of relationships (not a setting we consider), and also introduced the UnRel
dataset exhaustively annotated for a set of unusual triplets such as (elephant, wear, glasses). This is
one of the benchmarks used in our work.

As stated in the Introduction, we also apply our UVTransE method to scene graph generation.
Most scene graph generation methods consider the surrounding context of a node as a valuable
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cue, and apply context propagation mechanisms to exchange information between neighboring
nodes over a candidate scene graph. In Xu et al. [45], two sub-graphs, representing objects and
relationships respectively, are created. Node features, which are used to predict relation types, are
updated based on the messages passed between the two graphs. Similarly, Li et al. [46] proposed
constructing a dynamic graph, where messages are passed across different feature representations
to refine the scene graph. Zellers et al. [24] designed a Stacked Motif Network to extract contextual
cues, which are propagated across objects and relations. Yang et al. [47] developed an attentional
graph convolutional network to place attention on reliable edges when information is exchanged
between vertices in the candidate scene graph. In Chapters 3.2.3 and 3.2.4, we apply our method to
generate scene graphs on Visual Genome and Open Images datasets in a very straightforward way:
we first run object detectors to find the nodes of the scene graph, and then use UVTransE to find the
relations. Even though we are predicting each relationship independently, we will show that our
results are competitive with those of more context-aware methods.

2.2 VIDEO ACTION RECOGNITION

As stated in the Introduction, there are two major approaches for video action recognition. Since
the introduction of two-stream network [19], several improvements have been made to achieve
better performance. Feichtenhofer et al. [48] demonstrated that fusing at the convolution stages
with a novel spatial temporal pooling can boost accuracy. Feichtenhofer et al. [48] also showed
that multiplicative interactions of spacetime features are benificial for action recognition. On the
other hand, 3D CNNs learn spatial and temporal features at the same time by learning 3D filters in
space and time. Carreira et al. [18] extended the successful 2D Inception v1 [49] architecture to
3D, and got a significant performance boost on Kinetics dataset [50]. Tran et al. [51] and Xie et

al. [52] both factorized 3D convolution into 2D spatial convolution and 1D temporal convolution.
They showed that this factorization reduced overfitting and led to a better accuracy. Wang et al. [53]
incorporated non local block, which is a generalization of self attention layer, into 3D CNNs to
capture long range temporal and spatial dependency. In our work, we combine the strength of both
worlds, and propose the correlation operator to learn the dynamics of videos.
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CHAPTER 3: VRD APPROACH

3.1 THE UVTRANSE METHOD

In this chapter, we discribe our UVTransE method in detail. We split the VRD task into two
stages. In the first stage, we use an off-the-shelf object detection model, such as Faster R-CNN [6],
to predict object bounding boxes and per-class confidences in an image. For the second stage, we
learn a model to score all possible triplets ps, p, oq where s is a subject box, p is a predicate or
relation label, and o is an object box. Next, we describe our UVTransE relationship scoring model,
which is illustrated in Figure 1.1.

3.1.1 Union Visual Translation Embedding

Let s, o, u P Rn be the appearance features of the bounding boxes enclosing the subject,
object, and union of subject and object, respectively. We want to learn three projection functions
f s : Rn Ñ Rd, f o : Rn Ñ Rd and fu : Rn Ñ Rd that map the respective feature vectors into
a common d-dimensional embedding space, as well as translation vectors p in the same space
corresponding to each of the predicate labels present in the data. In our implementation, the
functions f s, f o, and fu are multilayer perceptrons. A relationship (s, p, o) that exists in the
training data should impose the constraint fupuq ´ f spsq ´ f opoq « p. To achieve this, similarly
to [1], we learn f s, f o, fu, and p by minimizing the following multi-class cross-entropy loss
function:

Lvis “
ÿ

ps,p,oqPT

´ log
exp

`

pJp̂
˘

ř

qPP exp pqJp̂q
, (3.1)

where
p̂ “ fupuq ´ f spsq ´ f opoq , (3.2)

T is the set of all relationship triplets existing in the training data,1 and P is the set of all predicate
labels. In practice, we found that we need to constrain the norms of fupuq, f spsq, and f opoq

from getting arbitrary large. To this end, we augment Eq. (3.1) with soft constraints on embedding

1If there are multiple training examples with the same ps, p, oq, they yield multiple terms in the summations of Eqs.
(1) and (3).
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weights:

Lvis “
ÿ

ps,p,oqPT

´ log
exp

`

pJp̂
˘

ř

qPP exp pqJp̂q
`

C
`

r}f spsq}
2
2 ´ 1s` ` r}f opoq}

2
2 ´ 1s``

r}fupuq}
2
2 ´ 1s`

˘

, (3.3)

where rxs` “ maxp0, xq. We experimented with other penalties to encourage the norms to stay
close to one but found this one gave the best results. C is a hyperparameter that determines the
relative importance of the soft constraints, and its effect will be examined in Chapter 3.2.

Our formulation of Eq. (3.3) differs from VTransE [1] in the addition of the contextual union
feature and the norm regularization terms. Ablation studies of Chapter 3.2.1 will show that these
modifications are key to improving performance, not only on common cases but also on the zero-shot
case.

At test time, given a candidate triplet (s, p, o), we can score the predicate p as

zp “
exp

`

pJp̂
˘

ř

qPP exp pqJp̂q
. (3.4)

Similarly to [1], we can then define the score of the entire triplet by the sum of softmax detection
scores for the subject and object, pzs, zoq, and the above predicate score zp:

zps,p,oq “ zs ` zp ` zo . (3.5)

Alternatively, for some datasets, we obtained better performance by taking the product of the above
scores. Dataset-specific details will be given in Chapter 3.2.

3.1.2 Language Module

Similar to prior work [40, 12, 14, 44], we combine UVTransE with a language model that helps
to combat data sparsity and learns which relationships are plausible between pairs of object classes.
Our language module is a bi-directional GRU (Bi-GRU) [54] that receives encodings of subject,
predicate, and object in three successive steps, concatenates the hidden states, and uses them for
predicate classification. Further details will be given in Chapter 3.1.3. The loss for our language
module Llang is a standard multi-class cross-entropy loss which encourages it to produce the ground
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truth predicate. The combined loss for our model is given by

Ltotal “ αLvis ` p1´ αqLlang . (3.6)

The score zps,p,oq for a candidate relationship is now given by

zps,p,oq “ zs ` zo ` αzp ` p1´ αqzl , (3.7)

where α is the weight for the visual module and zl is the softmax predicate score from the language
module. The values of α used in the experiments will be given in Chapter 3.2.

3.1.3 Implementation Details

In detail, the stages of our pipeline are: object detection, extraction of appearance and location
features from bounding boxes, UVTransE relation embedding, language module (optional), and
relationship scoring. The implementation of each of these components is described below.

Object Detection. Our first step is to run an object detector to locate a set of candidate objects in
an image. We train a separate Faster R-CNN detector [6] for each dataset. Our experiments use two
backbones: VGG-16 [55] and ResNet-101 [56] (see Chapter 3.2 for dataset-specific details). Each
candidate object output by the detector is associated with a bounding box bi, object class probability
zi, and an ROI-pooled feature vector fi.

Appearance feature extraction. Our appearance features are based on the ROI-pooled features
fi obtained from the object detector. These are 4096-d for the VGG backbone and 2048-d for
the ResNet backbone. More specifically, we use the ROIAlign features of [5], although in our
experience, the improvement they give over standard ROIPool features is slight (less than a
percentage point in mAP and relationship detection measures). We follow the specification in
Chapter 3.1.1, and pass the features fi through two FC layers with ReLU activation. The output
dimensionalities of FC layers are 512 and 256, and we get 256-d appearance features at the end.

Location feature extraction. We encode each single bounding box (subject or object) into a 5-d
vector li “ p

xi

WI
, yi
HI
, xi`wi

WI
, yi`hi

HI
, Ai

AI
q, where (xi, yi) are the center coordinates, (wi, hi) are the

width and height, Ai and AI are the areas of region i and image I , and WI and HI are the width
and height of the image I . To represent union boxes, we compute the following 9-d feature:

lsYo “

ˆ

xs ´ xo
wo

,
ys ´ yo
ho

, log
ws

wo

, log
hs
ho
,

xo ´ xs
ws

,
yo ´ ys
hs

, log
wo

ws

, log
ho
hs
,
Au

AI

˙

, (3.8)
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where (xs, ys, ws, hs) and (xo, yo, wo, ho) are the subject and object box coordinates and Au is the
area of the union box. In our network, all location features pls, lo, lsYoq are first concatenated into a
19-d vector, which is then fed into a two-layer MLP with intermediate layer dimenension of 32 and
output dimension of 16.

UVTransE Module. In this stage, each pair of objects, together with their union features, are sent
to UVTransE, which is discussed in detail in Chapter 3.1. After performing UVTransE, the outputs
are passed through two FC layers of input-output sizes of 256 (appearance) + 16 (location)Ñ 256,
and 256Ñ |P | to produce a confidence score per predicate. These scores can be used as-is to output
a set of ranked relationships, or can be combined with the scores of the language module.

Language Module. As stated in Chapter 3.1, our language module is based on bi-GRUs [54]. We
use GloVe [16] for our word embedding to encode subject and object class names. Then we get the
predicate embedding p̂ from UVTransE (Eq. 3.2) and put it through a fully connected (FC) layer to
get the same dimensionality as GloVe. Next, we feed the subject, predicate, and object encodings
into three successive steps of a bi-directional GRU (Bi-GRU) [54]. The hidden states, which are
100-d, are then concatenated across the three time steps and both directions are used for predicate
classification with two FC layers of size 600Ñ 256Ñ |P |.

3.2 EXPERIMENTS

In Chapter 3.2.1, we begin by evaluating our method on the VRD dataset [12], which is moderate
in size and is one of the most common benchmarks for relationship detection. Because we are
especially interested in the setting of rare and unusual relations, Chapter 3.2.2 presents an evaluation
on the UnRel dataset [21], which is small and can only be used for testing. Finally, to demonstrate
that our method also works well on larger-scale benchmarks, as well as on the recently introduced
task of scene graph generation, Chapters 3.2.3 and 3.2.4 report results on two subsets of the Visual
Genome [22] and Google’s Open Images [23].

3.2.1 Results on the Stanford VRD Dataset

Dataset. We follow the methodology of [12] to evaluate our method on the Stanford VRD
dataset [12]. This dataset contains 5,000 images with 100 object categories and 70 predicates. It
has around 30k relation annotations, with an average of 8 relations per image. We use the same
train/test split as in [12], consisting of 4,000 training images and 1,000 test images. In this specific
split, 1,877 relationships in the test set never occur in the training set, thus allowing us to evaluate
zero-shot prediction.
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Dataset-specific details. We use Faster R-CNN with the VGG-16 backbone to obtain candidate
objects. The VGG-16 network is initialized with parameters pre-trained on ImageNet and fine-tuned
on the VRD dataset and a subset of Visual Genome. Specifically, because some objects have less
than 50 instances in the VRD training set, we take at least 500 instances for each class from Visual
Genome. Our object detector has an mAP of 19.1 on the VRD dataset. This is low in absolute
terms, partly due to incomplete ground truth annotations, but higher than the 13.98 mAP reported
by Zhang et al. [1]. To obtain subject and object boxes for training UVTransE, we use ground truth
boxes as well as detected boxes with IoU ě 0.5. At test time, for each image, we use the top 30
candidate object boxes returned by Faster R-CNN for mining relationships.

We freeze the weights of the detector while jointly training UVTransE and language modules.
The hyper-parameters used for the VRD dataset are C “ 1.0 (regularization constant, Eq. 3.3) and
α “ 0.5 (visual-language weighting, Eq. 3.7). SGD is used as the optimizer with an initial learning
rate of 1e´3 for the detector, UVTransE, and the language module.

Evaluation metrics. Our evaluation methodology is consistent with [12]. Given a test image, the
VRD model being evaluated is used to score all possible predicates between every pair of detected
objects, retaining only the top k best-scoring predicates for each pair. Then we rank all these
predictions and report Recall@50 and Recall@100, or the fraction of ground-truth triplets that are
correctly recalled in the top 50 or 100. The evaluation is done for three setups.

1. Predicate detection: To investigate whether the VRD model is good at detecting relations,
independent of the quality of object detection, we measure the accuracy of predicate prediction
when the ground truth object classes and boxes are given. A few previous works [39, 57]
evaluate their predicate detection under the k “ 70 setting, where k is the number of chosen
predicates for each object pair, to achieve better recall. However, we stick to the original
setting [12] and evaluate it for k “ 1.

2. Phrase detection: In this setting, a prediction is considered correct if a triplet ps, r, oq is
correctly recognized, and the area of intersection over union (IoU) between the predicted
sY o box and the ground-truth is above 0.5.

3. Relationship detection: This is similar to phrase detection, except that it requires the IoU
for subject and object box to both be above 0.5, which is more challenging.

Ablation Study. First, we perform ablation studies to evaluate the effectiveness of different
components of our model. Table 3.1 shows the performance of our model for different values of the
regularization parameter C on the embedding weights (Eq. 3.3). The low performance for C “ 0

confirms that regularizing the norms of projected subject, object, and predicate vectors is important
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All Test Zero-shot Only
Phr. Det. Rel. Det. Phr. Det. Rel. Det.

C “ 0 6.48 4.67 4.28 3.08
C “ 0.5 22.14 18.96 11.21 9.75
C “ 1.0 23.92 20.22 11.77 10.21
C “ 1.5 23.38 19.99 11.46 9.75

Table 3.1: The effect of C on Recall@50 on the Stanford VRD dataset. Bold indicates highest
numbers.

for learning effective embeddings in our framework. The value of C “ 1 gives us the best results so
we use it in all subsequent experiments.

In Table 3.2, we compare our method to several baselines using the same trained detector, and
thus, the same predicted bounding boxes, detector confidence scores, and visual features to describe
the boxes. The simplest baseline, called Appearance, is to directly classify the predicate based
on the concatenated visual features of the subject, object, and union boxes. The second baseline,
Appearance + spatial, concatenates spatial features described in Chapter 3.1.3 with the appearance
features. Both methods learn a single projection matrix, but use the same weight regularization as
described in Chapter 3.1. The results confirm that adding spatial features to purely appearance-based
features significantly improves performance. The third baseline, Summation, uses summation
instead of subtraction in Eq. (3.2). Since this formulation is very similar to UVTransE, we run
it to validate the effectiveness of the subtractive model. Across all our metrics, the results for
Summation are 1-2% below those of UVTransE. This shows that despite the superficial similarity,
the subtractive model better captures the structure of the VRD problem. The baseline in the fourth
line of Table 3.2 is our own re-implementation of VTransE [1], for which we found that we
had to add our regularization terms (Eq. 3.3) to achieve results comparable to [1]. We show the
performance of two variants: without a language model (UVTransE [V]), or with our Bi-GRU
language model (UVTransE [V+L]). Both variants include our spatial features. Compared to
VTransE [V], UVTransE [V] boosts performance significantly both in the general and in the
zero-shot case. For the predicate detection task, the absolute improvement is about 5% in the
general case and 10% in the zero-shot case, confirming that incorporating the union box in the
translational formulation helps to isolate predicate information, particularly for rare and previously
unseen cases. Adding the language module benefits VTransE and UVTransE about the same,
although the absolute improvements are smaller in the zero-shot case than in the general case („ 2 -
3% vs. „ 5%) as the language model tends to bias predictions towards relationships seen during
training.

Comparison to the state of the art. Next, we compare performance to an extensive collection
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Predicate Det. Phrase Det. Relationship Det.
All Zero-shot All Zero-shot All Zero-shot

R@50 R@50 R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100
Appearance 18.17 7.44 8.59 10.68 5.34 10.11 7.52 9.11 4.82 8.97
Appearance + spatial 38.89 14.35 20.06 24.70 7.98 11.84 17.02 20.54 6.90 10.02
Summation 49.01 18.52 21.93 27.80 10.25 14.94 17.78 21.37 9.47 13.33
VTransE [V] (our impl.) 45.12 12.84 19.74 25.62 7.27 10.61 16.21 20.48 6.31 9.55
VTransE [V+L] (our impl.) 50.11 15.31 26.13 31.40 8.73 12.05 22.23 26.14 7.67 10.99
UVTransE [V] 49.98 22.92 23.92 29.57 11.77 17.41 20.22 24.13 10.21 15.92
UVTransE [V+L] 55.46 26.49 30.01 36.18 13.07 18.44 25.66 29.71 11.00 16.78

Table 3.2: Comparisons of baselines to our proposed method on the Stanford VRD dataset. Bold
indicates highest numbers.

of VRD models from the recent literature, which are summarized in Table 3.3. VLK [12] is a
two-stage model that uses both appearance features and language priors for relationship prediction.
VTransE [1] is the main method we build upon, as discussed previously. Note that the results
reported by [1] differ from those of our re-implementation discussed above due to the use of
different detectors and our inclusion of norm regularization in the training objective. VRL [40]
applies a deep variation-structured reinforcement learning framework to sequentially discover object
relationships and attributes using appearance and language features. SA-full, the fully supervised
version of the method of Peyre et al. [21], uses appearance and spatial features to handle multi-
modal relations and generalize well to unseen triplets. DR-Net [39] exploits statistical dependencies
between objects and their relationships when modeling relations. DSR [57] designs a ranking
objective that enforces the annotated relationships to have higher scores than negative examples.
CCA [14] utilizes multiple CCA embedding cues (both vision and language), along with an SVM
for ranking relationship proposals. LK [44] distills large-scale external linguistic knowledge from
Wikipedia to achieve better performance for rare relationships. CAIR [43] builds one classifier for
each predicate, but the classifier parameters are also adaptive to the context, i.e. (subject, object)
pairs. Zoom-Net [58] encourages deep message interactions between local object features and
global predicate features to recognize relationships. RelDN [42] is one of the most recent methods
that achieves state-of-the-art performance using graphical contrastive losses to better learn subtle
subject-object associations. Finally, LS-VRD [41] learns a visual and a semantic module that map
features from the two modalities into a shared space such that the relations are discriminative.

It must be stated that getting completely apples-to-apples comparisons against the above methods
is difficult as they vary in a number of respects. Among the most important is the quality of the
underlying object detector, which depends on the network architecture and training protocol (details
of training are usually not fully discussed in the papers, nor are the accuracies of the detector always
reported). Other factors include the feature descriptors (in particular, whether spatial or linguistic
features are included), the use of external data for training detectors or language model, the type of
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Detector (pre-training) mAP ROI feature Spatial feature Language feature Joint reasoning Extra training data
VLK [12] VGG - X - -
VTransE [1] VGG 13.98 X - - -
VRL[40] VGG (ImageNet) - X X -
SA-full [21] VGG (ImageNet) X - - -
CCA [14] VGG (COCO) X X - -
LK [44] VGG X X - Wikipedia
CAIR [43] VGG X X - -
Zoom-Net [58] VGG X - X -
RelDN [42] VGG (COCO) Align X X - -
LS-VRD [41] VGG (COCO) - X - -
DR-Net [39] VGG (ImageNet) X - - -
DSR [57] VGG X X - -
UVTransE [V+L] VGG (ImageNet) 19.10 Align X X - Visual Genome

Table 3.3: Summary of state-of-the-art methods on the VRD dataset. The ‘Detector’ column lists the
architecture of the detector and the dataset used for pre-training (if mentioned in the original paper).
‘ROI feature’ indicates the type of ROI feature used (in papers that do not explicitly mention using
ROIAlign, we assume ROIPool is used). ‘mAP’ lists the accuracy of the detector. ‘Spatial feature’
and ‘language feature’ indicate whether bounding box features similar to the ones of Chapter 3.1.3
and a language model similar to the one of Chapter 3.1.2 are used. ‘Joint reasoning’ indicates
whether the method uses context or joint reasoning instead of predicting each pairwise relationship
separately. ‘Extra training data’ indicates whether additional data is used for training either the
detector or the language model. In each column, Xindicates the presence of features, - indicates
absence, and blank means the information is not provided in the original paper.

inference performed, the evaluation protocol, and so on. In an attempt to be transparent about these
sources of variation, we list them in Table 3.3. With these caveats in mind, Table 3.4 compares
our results to published numbers from the above papers the full VRD test set. Our model with
the visual feature alone, UVTransE [V], reaches comparable performance to CAIR and Zoom-Net.
After including the language module, we outperform all methods except for the most recent RelDN

Predicate Det. Phrase Det. Relationship Det.
k “ 1 k “ 10 k “ 70 k “ 1 k “ 10 k “ 70

R@50 R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100
VLK [12] 47.87 16.17 17.03 - - - - 13.86 14.07 - - - -
VTransE [1] 44.76 19.42 22.42 - - - - 14.07 15.20 - - - -
VRL [40] - 21.37 22.60 - - - - 18.19 20.79 - - - -
SA-full [21] 50.40 16.70 18.10 - - - - 14.90 16.10 - - - -
CCA [14] - - - 16.89 20.70 - - - - 15.08 18.37 - -
LK [44]

Æ

55.16 23.14 24.03 26.47 29.76 26.32 29.43 19.17 21.34 22.56 29.89 22.68 31.89
CAIR [43] - 24.04 25.56 - - - - 20.35 23.52 - - - -
Zoom-Net [58] 50.69 24.82 28.09 - - 29.05 37.34 18.92 21.41 - - 21.37 27.30
RelDN [42] - 31.34 36.42 34.45 42.12 34.45 42.12 25.29 28.62 28.15 33.91 28.15 33.91
LS-VRD [41] - 28.93 32.85 32.90 39.66 32.90 39.64 23.68 26.67 26.98 32.63 26.98 32.59
DR-Net [39]‹ 80.78 - - - - 19.93 23.45 - - - - 17.73 20.88
DSR [57]‹ 86.01 - - - - - - - - - - 19.03 23.29
UVTransE [V+L] 55.46 30.01 36.18 31.82 40.43 31.51 39.79 25.66 29.71 27.41 34.55 27.32 34.11

Table 3.4: Full test set performance on the Stanford VRD dataset. Bold indicates highest numbers,
underline indicates second-highest.

Æ

indicates use of large-scale external Wikipedia data. ‹

indicates k “ 70, instead of k “ 1 for predicate detection (See Sec. 3.2.1).
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Predicate Det. Phrase Det. Relationship Det.
R@50 R@50 R@100 R@50 R@100

VLK [12] 8.45 3.36 3.75 3.13 3.52
VTransE [1] [1] - 2.65 3.51 1.71 2.14
VRL [40] - 9.17 10.31 7.94 8.52
SA-full [21] 23.60 7.4 8.7 7.1 8.2
CCA [14] - 10.86 15.23 9.67 13.43
LK [44]

Æ

16.98 13.01 17.24 12.31 16.15
CAIR [43] - 10.78 11.30 9.54 10.26
Zoom-Net [58] - - - - -
RelDN [42] - - - - -
LS-VRD [41] - - - - -
DR-Net [39] - - - - -
DSR [57]‹ 60.90 - - 5.25 9.20
UVTransE [V+L] 26.49 13.07 18.44 11.00 16.78

Table 3.5: Zero-shot performance on the Stanford VRD dataset. Bold indicates highest numbers,
underline indicates second-highest.

Æ

indicates use of large-scale external Wikipedia data. ‹

indicates k “ 70, instead of k “ 1 for predicate detection (See Sec. 3.2.1).We treat k as a
hyper-parameter that can be cross validated for phrase and relationship detection. In our case,
k “ 10.

(which uses a different detector pre-trained on COCO [59]).
Table 3.5 presents a comparative evaluation for the zero-shot setting. Our method surpasses

all other methods that use only the given dataset for training, and is comparable to LK, which
incorporates external language data. Significantly, several of the strongest methods from Table 3.4,
including Zoom-Net, RelDN, and DR-Net, do not report their results for the zero-shot setting at
all. At least in some cases, this is because achieving high performance on common relations comes
at the cost of very low performance on rare relations. In particular, we tested the RelDN model
published by the authors [42] on the zero-shot test set and obtained accuracies close to 0 on all
metrics, with almost all rare relationships being confidently classified as ‘no relationship’.

Qualitative results. Figure 3.1 shows example predictions by our model for both seen and unseen
relationships. There are many plausible detected triplets that are marked as negatives due to the
lack of annotations (Missing GT column). In some cases, predicates are not mutually exclusive.
For example, (person, on, bike) can also be labeled as (person, ride, bike); however, predicting ride

for this pair of objects is penalized due to the missing ground truth.
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Person look Camera Person hold Umbrella Person eat Pizza

Desk beneath Laptop Bus has Wheel Person touch Skateboard

Motorcycle with Engine Horse wear Hat Person touch Glasses

Person ride Bike
(GT: on, sit on)
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(GT: on)
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Bus taller than Person
(GT: next to)

Giraffe outside of Sky
(GT: under)

Bus park next Post
(GT: next to)

Chair behind Ramp
(GT: on)

Figure 3.1: Examples of relationship detection on the VRD test split. A triplet is correctly recognized
if both the bounding boxes are correctly localized and the predicate matches the ground truth. The
‘Missing GT’ column shows relationships that were marked as incorrect since they are not present
in the ground truth. The ‘Incorrect’ column shows legitimate mistakes. The last row shows our
zero-shot results.

3.2.2 Results on the UnRel Dataset

Dataset. To further investigate the generalization ability of our method, we perform experiments
on the UnRel dataset [21]. It consists of 1071 images with 76 unusual triplets, such as (person, ride,
dog), (car, under, elephant), etc. The ground truth on this dataset is more exhaustively annotated
than on VRD.

UnRel contains too few images for training, so we simply use it as a test set for ourUVTransE
model trained on the VRD dataset. The hyperparameters are the same as in Chapter 3.2.1.

Evaluation metrics. Following [21], we evaluate retrieval and localization with mAP over triplet
queries ps, p, oq in two settings:

1. With ground truth: We are given GT pairs of boxes (bs, bo) and then rank them based
on their predicate scores zp (Eq. 3.4). The purpose of this setup is to test the “predicate
prediction” part only, without the contribution of the object detector.

2. With candidates: Candidate boxes (bs, bo) are provided by the object detector and ranked
according to the combined score zps,p,oq (Eq. 3.5). In this setting, we also have to evaluate the

16



With GT
With candidates

union subj subj/obj
Chance 38.4 8.6 6.6 4.2
DenseCap [60] - 6.2 6.8 -
VLK [12] 50.6 12.0 10.0 7.2
SA-full [21] 62.6 14.1 12.1 9.9
UVTransE [V] 70.6 19.2 17.2 14.8
UVTransE [V+L] 71.7 18.0 16.3 14.1

Table 3.6: Retrieval on UnRel (mAP) with IoU=0.3.

accuracy of localization. According to [21], a candidate pair of boxes is positive if its IoU with
GT pair is above 0.3. There are three localization metrics: mAP-subj: the subject box itself
should have at least 0.3 overlap with its GT; mAP-union: the entire relationship is localized
as one bounding box and it should have at least 0.3 overlap with the GT; mAP-subj/obj:
Both subject and object boxes should have at least 0.3 overlap with their corresponding GT
boxes.

Comparison with state of the art. We compare our results with numbers from four methods
reported by [21]. The chance baseline randomly orders the proposals. The second method is
DenseCap [60], where the output bounding box is interpreted as either a subject box or a union
box for evaluation, as suggested in [21]. VLK [12] is the result from the re-implementation of [12]
by [21]. Finally, SA-full [21] is, to our knowledge, the state-of-the-art fully supervised method on
UnRel. As previously mentioned, our model is only trained on the Stanford VRD dataset, and is
evaluated on the UnRel dataset without any changes, similar to the VLK and SA-full methods.

The retrieval results in Table 3.6 show that our model consistently outperforms all other methods.
Interestingly, our language module improves the accuracy when the ground truth boxes are given,
but degrades it slightly when the objects are provided by the object detector, likely because the
language model gets confused if the predicted object classes are wrong, or the boxes are incorrectly
localized. This behavior is different from what we observed on zero-shot evaluation for the VRD
dataset, since the images in UnRel are deliberately unusual and hard.

Figure 3.2 shows the top triplets retrieved by our model for some representative queries. We use
red boxes around images to indicate wrongly retrieved examples. It can be seen that we are able to
successfully retrieve examples of rare relations such as (elephant, wear, glasses), and (hat, on top

of, building).
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Person stand on Car Elephant wear Glasses Cat ride Skateboard Hat on top of Building Person pull Boat
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Figure 3.2: Top three retrievals for a set of UnRel triplet queries with our model. A relationship is
marked as positive if the subject and object boxes have IoU ě 0.3 with the ground truth. Otherwise,
it is marked as an error (red box around the entire image).

3.2.3 Results on the Visual Genome Dataset

Datasets. To demonstrate the effectiveness of our model on large-scale datasets that are more
geared towards scene graph generation, we perform experiments on two cleaned subsets of Visual
Genome [22]. The first one, created by Xu et al. [45], is composed of the most frequent 150
objects and 50 predicates. We call this one VG-IMP after the method of [45]. After pre-processing,
VG-IMP is split into training and test sets containing 75,651 images and 32,422 images, respectively.
The second subset, created by Zhang et al. [1], contains an even larger number of objects and
predicates, 200 and 100, respectively. We follow the same 73,801/25,857 train/test split as in [1].
We call this subset VG-VTransE.

Implementation details. On the VG-IMP subset, we train a Faster R-CNN detector with a VGG-16
backbone to obtain an mAP of 19.2%. Competing methods using the same backbone report higher
performance, namely, 20.0% for Neural Motifs [24], 20.4% for Graph R-CNN [47], and 25.5%
for RelDN [42]. Maximizing the accuracy of object detection is not the focus of our work, but to
better compete with these methods on the final accuracies for relationship localization, we trained a
stronger detector using a ResNet-101 backbone, for an mAP of 23.8%. For the VG-VTransE subset,
the only competing method with published results is VTransE [1], which uses a VGG-16 backbone.
On that subset, the mAP of our VGG-16 detector is 12.5%, which is sufficient to compete with [1].
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We initialize the parameters in Faster R-CNN with ImageNet pre-training. After fine-tuning the
parameters on the respective Visual Genome subset, we fix it, and train our UVTransE module
along with the language module with initial learning rate of 1e´2. At test time, for each image, we
use the top 50 candidate object proposals ranked by Faster R-CNN for mining relationships.

To get good performance on Visual Genome evaluation metrics (described below), we found it
useful to add a ‘background’ or ‘no relationship’ class during training. We define positive relation
triplets as those where both subject and object have IoU ě 0.5. During training, for each image,
we sample 32 relations with the ratio of positive to negative triplets being 1 : 3. On the VRD
dataset (Chapter 3.2.1), this kind of sampling improves performance for common relationships,
but significantly degrades performance for the zero-shot case, as many unseen relationships get
classified as ‘background’ with high confidence.

For the results of this chapter, we also found it necessary to change Eqs. (3.5) and (3.7) to use
product instead of addition:

zps,p,oq “ zs ˆ zo ˆ zp , (3.9)

and for UVTransE [V+L],

zps,p,oq “ pαzp ` p1´ αqzlangpq ˆ zs ˆ zo . (3.10)

In the experiments of this chapter, the UVTransE hyperparameters are C “ 0.1 and α “ 0.5.

Evaluation metrics. To evaluate on the VG-IMP subset, we follow a methodology consistent with
[45] and report performance for the following three settings.

1. Predicate Classification (PredCls): Given ground truth boxes and their corresponding
objects, predict the predicate between object pairs. This is the same as predicate detection of
Chapter 3.2.1.

2. Phrase Classification (PhrCls): Given ground truth boxes, recognize the objects and their
relations.

3. Scene Graph Generation (SGGen): Predict objects, boxes (IoU ě 0.5) and the relations
between object pairs directly from an image. This is equivalent to relationship detection in
Chapter 3.2.1.

On the VG-VTransE subset, we follow [1] and report the performance for phrase and relationship
detection, defined as in chapter 3.2.1.

For both subsets, we use Recall@50 and Recall@100 to evaluate how many labelled relationships
are hit in the top 50 or 100 predictions. We follow related works in enforcing that for a given subject
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Detector (pre-training) mAP ROI feature Spatial feature Language feature Joint reasoning
IMP [45] VGG (COCO) Pool - - X
MSDN [46] VGG (ImageNet) Pool - - X
Neural Motifs [24] VGG (ImageNet) 20.0 Align X X X
Graph R-CNN [47] VGG (ImageNet) 20.4 Align X - X
RelDN [42] VGG (COCO) 25.5 Align X X -
LS-VRD [41] VGG (COCO) - - - X -
UVTransE [VGG+V+L] VGG (ImageNet) 19.2 Align X X -
UVTransE [ResNet+V+L] ResNet (ImageNet) 23.8 Align X X -

Table 3.7: Summary of state-of-the-art methods on the VG-IMP dataset. See caption of Table 3.3
for explanation of the columns.

and object bounding box, the system must not output multiple predicate labels, which is the same
as setting k “ 1 in the VRD dataset [12].

Comparison with state of the art. Table 3.7 summarizes different state-of-the-art methods on the
VG-IMP subset. IMP [45] uses standard RNNs and learns to iteratively improve its predictions
via message passing between predicates. MSDN [46] jointly refines the features for different
tasks by passing messages along a dynamically constructed graph. Neural Motifs [24] proposes
a Stacked Motif Network to capture higher-order motifs in scene graphs. Graph R-CNN [47]
utilizes attentional graph convolutional networks to learn to modulate information flow through
unlikely edges in the scene graph.

Comparative evaluation results on VG-IMP are shown in Table 3.8. We can see that our model
with the ResNet detector (UVTransE (ResNet+V+L)) outperforms all methods except the very
recent RelDN, whose detector is even more accurate than ours, and LS-VRD. In particular, we get
better performance than several methods that include message passing or graph CNNs to jointly

PredCls PhrCls SGGen
R@50 R@100 R@50 R@100 R@50 R@100

IMP [45] 44.8 53.1 21.7 24.4 3.4 4.2
MSDN [46] 63.1 66.4 19.3 21.8 7.7 10.5
Neural Motifs [24] 65.2 67.1 35.8 36.5 27.2 30.3
Graph R-CNN [47] 54.2 59.1 29.6 31.6 11.4 13.7
RelDN [42] 68.4 68.4 36.8 36.8 28.3 32.7
LS-VRD [41] 68.4 68.4 36.7 36.7 27.9 32.5
UVTransE [VGG+V] 59.7 63.3 30.7 31.9 25.2 28.3
UVTransE [VGG+V+L] 61.2 64.3 30.9 32.2 25.3 28.5
UVTransE [ResNet+V] 64.4 66.5 35.0 36.1 29.9 33.2
UVTransE [ResNet+V+L] 65.3 67.3 35.9 36.6 30.1 33.6

Table 3.8: Full test set performance on the VG-IMP dataset. Bold indicates highest numbers,
underline indicates second-highest.
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Phr. Det. Rel. Det.
R@50 R@100 R@50 R@100

VTransE [1] 9.46 10.45 5.52 6.04
UVTransE [V] 15.47 19.70 8.52 10.59
UVTransE [V+L] 17.53 21.92 9.55 11.74

Table 3.9: Full test set performance on the VG-VTransE dataset. Bold indicates highest numbers.

reason about multiple relationships. We also observe that our language module does not enjoy as
significant a gain as in Table 3.4. This is likely due to the fact that there are far more relations in the
Visual Genome dataset than in VRD, so the training data for the language model is sparser.

Table 3.9 reports results on the VG-VTransE subset, which has an even larger number of object
classes and relationships than VG-IMP. Here, as in Chapter 3.2.1, we can once again observe
significant improvements over VTransE.

Qualitative results of scene graph generation. In Figure 3.3, we show some example outputs of
scene graph generation using UVTransE[V+L] on Visual Genome. Through careful inspection, we
can see that UVTransE generally fails in two cases: either the object detector cannot find the objects
present in the ground truth, which are highlighted with orange boxes, or the spatial configuration
makes it hard to predict the predicate. For instance, in the image with the pelican (bottom right),
there is a predicted false positive: (wing-1, has, wing-2). In addition, many seemingly correct
relations are marked as false positives due to incomplete ground truth. For example, (racket-1, in,
hand-1) is a plausible relation in the top left image of Figure 3.3; however, it does not exist in the
annotations.

3.2.4 Results on the Open Images Dataset

Dataset. Our final set of experiments is on the Open Images dataset [23], which is even larger
than Visual Genome: 94,747 training and 5,775 validation images according to the recommended
split. On the other hand, the number of object classes and predicates is smaller, only 57 and 10,
respectively. Among the 10 predicates, there is one special predicate, is, which is used to describe
visual attributes, e.g., (table, is, wooden). Therefore, in addition to relation prediction, we also have
to adapt our method to perform attribute prediction.

Implementation details. We use Faster R-CNN with ResNet-101 backbone as the object detector
and region feature extractor. We initialize the network with weights pre-trained on COCO [59] and
fine-tune on Open Images to achieve an mAP of 51% on our validation split. Similar to the Visual
Genome setup described in chapter 3.2.3, we freeze the detector and only train our UVTransE

21



has
woman-1

of

leg-1

wearing

holding

racket-1

hat-1

hand-1

holding

of

in

plant-1

pot-1

head-1

cat-1

nearhas

in

in

on sidewalk-1

man-1
head-1

wave-1

of

has

has

of
arm-1

surfboard-1on

has

logo-1

wears shirt-1

under

on

on

riding

laptop-1

screen-1

table-1

glass-1

on

of

near

has

near on

bird-1

tail-1

wing-1 wing-2

of has

ofhashas of

has

shirt-GT1wears

logo-GT1

has

neck-GT1

of

cat-1head-1

sidewalk-1

plant-1

pot-1

plant-GT1

on plant-GT1

laptop-1

screen-1glass-1

table-1

wing-1

wing-2

bird-1

tail-1 neck-GT1

logo-1surfboard-1

shirt-1
man-1 head-1

arm-1

wave-1

logo-GT1

woman-1

leg-1

hand-1
racket-1

hat-1

shirt-GT1

building-1 tower-1

clock-1

tree-1
tree-2

building-GT1

clock-1

building-1

tower-1

on
has

on

has

on

has

tree-1 in front of

tree-2 in front of

near building-GT1

Figure 3.3: Example scene graphs generated on VG-IMP images. In the images, green boxes are
objects detected with IoU ě 0.5, while orange boxes are ground truth objects that are not detected
by our pipeline. In the scene graphs, green ellipses are true positive relations recognized by our
model at Recall@20, orange ellipses are false negatives, and magenta ellipses are false positives
(sometimes due to missing ground truth).

module along with the language module with C “ 0.1 and α “ 0.5. During training, 25% of
triplets in each batch are positive. In test time, we select the top 50 candidate proposals from Faster
R-CNN for mining relationships, and the final triplet scores are calculated with Eq. (3.9) and Eq.
(3.10) for UVTransE [V] and UVTransE [V+L] predictions, respectively.

In order to tackle the predicate is, we use the same object proposals generated by Faster R-CNN
and train an additional classifier on each proposal to output the probability for each attribute. The
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Figure 3.4: Example scene graphs generated on Open Images. In the images, green boxes are
objects detected with IoU ě 0.5, while orange ones are ground truth objects that are not detected.
In the scene graphs, attributes are represented with cyan boxes. Green ellipses are true positive
relations recognized by our model at Recall@20, orange ellipses are false negatives, and magenta
ellipses are false positives.

attribute score is calculated with
zps,is,aq “ zs ˆ za, (3.11)

where a is the attribute and za is the output probability from the attribute classifier.

Evaluation metrics. In the Open Images Challenge, results are evaluated based on Recall@50
of relationship detection (R@Nrel), mAP of relationship detection (mAPrel), and mAP of phrase
detection (mAPphr). The final score is calculated with 0.2ˆR@Nrel`0.4ˆmAPrel`0.4ˆmAPphr.
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Public Private Full
tito 0.256 0.237 0.243
kyle 0.280 0.235 0.249
RelDN [42] 0.320 0.332 0.328
UVTransE [V] 0.285 0.246 0.258
UVTransE [V+L] 0.321 0.273 0.287

Table 3.10: Results on Open Images Challenge for the top three teams on the public leaderboard vs.
our methods. These values are evaluated based on the official mAPrel, mAPphr, and Recall@50 for
relationship detection. Public and private correspond to 30% and 70% of test data respectively. Full
is 0.3ˆ public `0.7ˆ private. Bold indicates highest numbers. Underline indicates second highest.

The mAPrel takes the mean of AP for each predicate, where true positive is defined as having correct
object boxes (IoU ě 0.5), classes, and predicates. The mAPphr is similar to mAPrel, but applied to
the union of subject and object boxes instead of individual boxes.

Comparison with state of the art. We compare our results with other models from the official
kaggle competition. There are 99,999 test images, and the official test set is split into public and
private sets, which contain 30% and 70% of test data, respectively. We present results for both
splits in Table 3.10. We also have an additional column, named “Full”, for overall performance,
which is calculated by 0.3ˆ public score `0.7ˆ private score. As shown in Table 3.10, we surpass
most teams except for RelDN, who once again use a better object detector (Faster R-CNN with
ResNeXt-101-FPN). Notice also the large gap between UVTransE [V+L] and the second place
(kyle) considering the low absolute scores and the large amount of test images.

Qualitative results of scene graph generation. Figure 3.4 presents examples of generated scene
graphs on Open Images. Our model is able to cover different kinds of relations, including positional
predicates such as on, attributive predicates such as is, and interactive predicates such as play.
Similar to the results on Visual Genome, UVTransE has a hard time when the spatial configuration
is challenging. Take the top left image, which contains two people sitting on chairs as an example.
We can see that our model outputs (man-1, at, table-1), whose spatial structure is quite similar to
other relationships that involve at, such as (chair, at, desk).
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CHAPTER 4: VIDEO WORK

4.1 CORRELATION NETWORK

In this section, we describe our proposed correlation network in detail. We start by defining the
correlation operation used in our network. We then briefly introduce the backbone architecture that
we use for action recognition. Finally, we discuss how we incorporate the correlation operator with
the backbone to leverage temporal information.

Correlation operator Suppose that there are two feature maps f1 and f2 both with dimension
C ˆ H ˆ W , where C, H , and W indicate the channel, height, and width respectively. The
correlation of patch p1 in f1 with patch p2 in f2 encodes the similarity between these two patches.
To make the computation more tractable, the correlation operator we use is defined between two
pixels only. Thus, the correlation between a single pixel px1, y1q in f1 and another pixel px2, y2q in
f2 is given by Eq. 4.1

cpx1, y1, x2, y2q “

řC
c“1 f

c
1px1, y1qf

c
2px2, y2q

}f1px1, y1q}2 }f2px2, y2q}2
(4.1)

In our model, we further limit px2, y2q to be within a K ˆ K neighborhood of px1, y1q and
perform the correlation operation for every pixel in f1. Therefore, the output size of the correlation
operator is K ˆK ˆH ˆW . The K ˆK dimension can then be flatten to generate a feature map
of size K2 ˆH ˆW , where K2 becomes the output channel dimension. To extend this operation
to a video clip with T frames, we compute correlation for every pair of adjacent frames in the given
input clip. Since this gives us T ´ 1 output only, we pad the sequence with a self-correlation of the
first frame to make the output length consistent with the input.

Backbone The backbone we used is specified in Table 4.1. We follow [18] to inflate the original
ResNet50 [56] architecture, and [51] to separate out the 3D convolution into temporal and spatial
convolution. Since we want to keep as much temporal information as possible for correlation
calculation, we perform temporal striding at the later stages (res4 and res5).

Correlation network In our correlation network, we follow the two-stream architectures, and have
one appearance and one motion stream. For the motion stream, we remove the res5 stage shown
in Table 4.1, and apply the correlation operator after res2, res3 and res4. After calculating the
correlation features, we apply convolutions with stride to reduce all spatial dimension to 14ˆ 14.
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Layers I3D Res50 Output size
res1 1ˆ 7ˆ 7, 64, stride 1ˆ 2ˆ 2 16ˆ 112ˆ 112

pool1 1ˆ 3ˆ 3, stride 1ˆ 2ˆ 2 16ˆ 56ˆ 56

res2

¨

˚

˚

˝

1ˆ 1ˆ 1, 64
1ˆ 3ˆ 3, 64
3ˆ 1ˆ 1, 64
1ˆ 1ˆ 1, 256

˛

‹

‹

‚

ˆ 3 16ˆ 56ˆ 56

res3

¨

˚

˚

˝

1ˆ 1ˆ 1, 128
1ˆ 3ˆ 3, 128
3ˆ 1ˆ 1, 128
1ˆ 1ˆ 1, 512

˛

‹

‹

‚

ˆ 4 16ˆ 28ˆ 28

res4

¨

˚

˚

˝

1ˆ 1ˆ 1, 256
1ˆ 3ˆ 3, 256
3ˆ 1ˆ 1, 256
1ˆ 1ˆ 1, 1024

˛

‹

‹

‚

ˆ 6 8ˆ 14ˆ 14

res5

¨

˚

˚

˝

1ˆ 1ˆ 1, 512
1ˆ 3ˆ 3, 512
3ˆ 1ˆ 1, 512
1ˆ 1ˆ 1, 2048

˛

‹

‹

‚

ˆ 3 4ˆ 7ˆ 7

global average pool, fc #classes

Table 4.1: The I3D ResNet backbone for building correlation network.

We then concatenate these feature maps, and feed into a residual block similar to res3 stage, but
with 3 blocks only. Finally, we average pool the features to get an output of size 512. This vector is
then concatenated with the output of appearance stream for the final action classification.

4.2 EXPERIMENTS

Dataset We evaluate our model on Something-Something v1 dataset [2]. This dataset includes
110k videos of 174 different low-level actions, each lasting between 2 to 6 seconds. It is composed
of humans performing actions with everyday objects. The same action is performed with different
objects so that models are forced to understand the actions instead of recognizing the objects. It is
therefore an interesting question whether our model actually recognizes the actions.

Training and Testing During training, we apply temporal jittering and sample a clip of 16 frames,
covering roughly 2.67 seconds, from the training data. We resize the input video to have shorter
side randomly sampled in [256, 320] pixels, and perform a center crop of size 224 ˆ 224. We
set K “ 49, 25, and 13 respectively for res2, res3 and res4. We use a minibatch size of 64 with
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Methods Top 1 Accuracy
TRN 42.0

R(2+1)D 45.7
NL I3D 44.4

GCN 46.1
S3D-G 48.2

Ours [RGB] 45.6
Ours [Corr] 39.8

Ours [RGB + Corr] 48.2

Table 4.2: Comparing the result of our correlation network with the state-of-the-art on Something-
Somthing v1dataset.

synchronous batchnorm. We first train the appearance stream for 35k iterations with initial learning
rate 0.01 and learning rate decay at 25k. Next, we train the motion stream for 45k with the same
initial learning rate and learning rate decay at 35k. Finally, we finetune the overall network for 20k.
We set the weight decay to 10´4 and the dropout of 0.5 is applied after the average pool. For testing,
we sample 10 clips uniformly spaced out in the video and average the clip-level predictions as the
video-level results.

Results We compare our correlation network with the state-of-the-art methods shown in Table
4.2. TRN [61] extends the relational reasoning module [62] to temporal domain to learn the
temporal dependencies between video frames at multiple time scales. R(2+1)D [51] factorized the
3D convolution into spatial and temporal component for better accuracy. NL I3D [40] designed
the non-local block which applied self attention layer to model the long range temporal and
spatial interactions. GCN [63] represented video as space-time region graphs and applied graph
convolution to learn the object relationships in video. S3D-G [52] applied separable 3D convolution
at the top of the network, and 2D convolution at the bottom for better speed-accuracy trade-offs.

As shown in Table 4.2, our model with the additional correlation features improved its RGB
counterpart by roughly 3%. This shows the effectiveness of the correlation modeling, and its ability
to model the temporal information.
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CHAPTER 5: CONCLUSIONS

In this thesis, we introduced the UVTransE framework for visual relationship detection, which
extends the VTransE framework [1] by adding a union box feature to the subject and object box
features for learning the embedding of the predicate. While our original motivation was primarily
to improve zero-shot performance of VTransE, extensive experiments have demonstrated that our
UVTransE model achieves state-of-the-art results in multiple challenging scenarios, from small-
scale to large-scale, on both the full test set and zero-shot settings. The latter is a significant
contribution, since some other state-of-the-art methods, like RelDN [42] achieve high accuracy on
common relationships at the cost of low zero-shot performance. We obtain consistent improvements
over prior work while keeping the formulation straightforward. The simplicity of our model
combined with its versatility and high performance thus makes it a good practical choice for
advanced visual reasoning tasks such as scene graph generation.

In addition, we tackled the action recognition task and designed a correlation network. Unlike
previous approach, our network establishes frame to frame correspondences and makes the compu-
tation of motion explicit and end-to-end trainable. Through our experiments, we demonstrate its
superior performance for action recognition on Something-Something dataset with RGB input only.
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