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ABSTRACT

Data visualization is the primary means by which data analysts explore patterns, trends, and in-
sights in their data. Despite of their growing popularity, existing visualization tools (e.g., Tableau,
PowerBI, Excel) are limited in their ability to automatically find desired visualizations or insights.
As a result, the process of visual data exploration is manually-intensive and time-consuming, and
becomes simply unsustainable as the complexity and scale of the dataset increases. In this disser-
tation, we address the shortcomings of existing visualization tools by facilitating expressive and
scalable data exploration. In particular, we propose two systems: 1) Zenvisage—for effortlessly
and efficiently finding visualizations with specific patterns or insights among large collections, and
2) ShapeSearch—for finding visualizations based on fine-grained and fuzzy patterns. Both Zen-
visage and ShapeSearch draw heavily from use-cases in a variety of domains including biology,
battery science, and cosmology, and provide expressive visual primitives to capture a large variety
of data exploration needs. Backed by formal algebra and semantics, the visual primitives help
operate on collections of visualizations (e.g., by composing, filtering, comparing, matching, and
sorting) based on visual trends and patterns. Furthermore, these systems support built-in recom-
mendations, and multiple flexible query specification mechanisms, including intuitive interactions
and natural language, simultaneously catering to the needs of both novice and expert analysts. To
automatically parse and execute visual queries efficiently, Zenvisage and ShapeSearch support a
suite of optimizations, that can traverse and evaluate a large number of visualizations within in-
teractive response times. We document performance results, as well as results from multiple user-
and case-studies that demonstrate that users are able to effectively use Zenvisage and ShapeSearch
to eliminate error-prone and tedious exploration and directly identify desired visualizations.
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CHAPTER 1: INTRODUCTION

With massive volumes of data available in every sphere of human endeavor, there is a pressing
need for tools that make it simpler for analysts — both novice and expert — to extract insights,
test hypotheses, and make sense of trends and patterns in large datasets. Visual data exploration is
typically the first step in studying large datasets [1]. Visual analytics tools such as Microsoft Excel,
Qlikview, and Tableau allow analysts to easily specify and generate a desired visualization by
selecting attributes and the data subset of interest. While these tools are highly effective at creating
user-specified visualizations, as the scale and complexity of datasets increase finding visualizations
with interesting trends or patterns becomes extremely cumbersome and challenging.

To illustrate further, let us look at the challenges of several groups who have been hobbled by
the ineffectiveness of current data exploration tools.

Example 1.1 (Genomics Data Analysis) Clinical researchers at NIH-funded center at the Univer-
sity of Illinois and Mayo Clinic are interested in studying data from clinical trials, in the context of
gene and protein data. One such task involves finding pairs of genes that visually explain the dif-

ferences in clinical trial outcomes. Current tools require the researchers to generate and manually
evaluate tens of thousands of scatter plots for whether the outcomes (positive vs. negative) can be
clearly distinguished in the scatter plot.

Another more fine-grained task is to study changes in gene expression for investigating the
impact of drugs on disease treatment. When influenced by an external factor, a gene can get
induced (up-regulated), or repressed (down-regulated), or can have both induced or repressed pat-
terns within a certain time window. Moreover, there can be further variations in the scale, rep-
etitions, or the rate of change of these patterns depending on the type and influence of external
factors. Based on their domain understanding and past experience, researchers first hypothesize
the expected change in expression that an affected gene should depict, and then manually inspect
them for the hypothesized patterns.

Example 1.2 (Battery Science) Battery scientists at Carnegie Mellon University perform visual
exploration of datasets containing solvent properties at various scales—molecular, meso, and
continuum—to design better batteries. A specific task may involve finding solvents with some
desired behavior: e.g., those whose solvation energy of Li+ vs. the boiling point is an increasing

trend. To do this using current visual analytic tools, these scientists manually examine these plots
for each of the thousands of solvents.

Example 1.3 (Cosmological Data Analysis) Dark Energy Survey scientists study the history and
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makeup of our universe by understanding the variation in properties of astronomical objects (e.g.,
galaxies) over time. For example, astronomers monitor the brightness (luminosity) of stars over
time to search for new planetary objects—a dip in brightness is symbolic of a planetary object
passing between the star and the telescope, and the width and the degree of dips are used for
characterizing these planetary objects. Based on their domain understanding, astronomers apply
on-the-fly filters (on values, specific attributes, and so on), or modify the scale (e.g., from seconds
to days to months) to change the shape of the trend. Scientists currently identify such insights by
either manually searching for visualizations with desired variations in properties, or write custom
scripts in Python or R. Often, writing code for each new use-case and manually optimizing them
becomes as tedious as manual searching of visualizations to find patterns.

In all these examples, the recurring theme is the manual examination of a large number of gen-
erated visualizations for one or more specific visual patterns. We outline the key characteristics of
these examples that highlight why the process of data exploration is often tedious, time-consuming,
and increasingly unsustainable with current visualization tools.

1. Too many visualizations to explore. Data analysts often explore subsets of data for interest-
ing patterns, by manually specifying visualizations formed by different combination of attributes.
Even for a modest dataset with a small number of attributes, the number of visualizations that need
to be examined is often in the hundreds or thousands. This need to manually specify and examine
every visualization hampers rapid analysis and exploration.

2. Approximate notion of desired patterns. Many application domains such as bioinformatics,
astronomy, and finance require non-traditional database support for large data sequences such as
time series where analysts often search for patterns that fit some approximate notion of what they
want. They are often not interested in the specific details as much as the overall shape of the
patterns.

3. Ad-hoc. Based on their domain understanding and what they discover during the data explo-
ration, data analysts typically look for visualizations with previously unknown patterns and apply
constraints on-the-fly. For instance, biologists often search for a pattern in a group of genes, that
is similar to a pattern just discovered in another group. Existing pattern search tools, on the other
hand, usually require heavy precomputation and indexing, thereby limiting ad-hoc exploration. For
such cases, generating visualizations can take hours, impeding interaction, preventing exploration,
and delaying the extraction of insights.
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1.1 OUR VISION

Our goal is to build systems that can capture the aforementioned characteristics and automati-

cally “fast-forward” to the desired insights, thereby minimizing the significant burden on the part
of the data analysts in scenarios like the ones described above. In order to achieve this goal, we
focus on three aspects.

1. Expressive visual primitives. We note that one of the major hindrances with existing visual
analytic tools is that they do not support enough mechanisms to let users specify the patterns they
are interested in, apart from the visualization generation and encoding aspects. However, data
exploration needs in most of these scenarios can be captured within a common set of operations
(e.g., comparison, sorting, and filtering) on collections of visualizations based on trends or patterns.
Thus, in this thesis, we focus on developing a minimal set of operators and primitives that can
capture the tasks that often require tedious manual examination.

2. Flexible specification mechanisms and built-in recommendations. Since a substantial
fraction of our targeted end-users, such as our biomedical researchers, are often not proficient in
programming, we need to support interactive and more natural shortcuts for common interaction
“idioms” as well as support built-in recommendations to guide users towards their desired goals.

3. Automated and scalable execution. For fast-forwarding to desired insights, we should be
able to automatically compile and execute the visual primitives, traversing over large collections
of visualizations to find the ones that match the criteria. Often, even a single visual query can lead
to the generation of thousands of visualizations; executing each one independently as an aggregate
query would take several hours, rendering the tool somewhat useless. In this thesis, we focus on
developing a suite of optimizations that are optimized for visual queries and can lead to substantial
improvements over the naive schemes adopted within existing visualization tools.

1.2 THESIS CONTRIBUTIONS AND OUTLINE

This dissertation is divided into two parts, covering two new systems — Zenvisage and Shape-
Search, both implementing expressive visual data exploration primitives and scalable query pro-
cessing algorithms for accelerating the search of desired visual trends. The first part, consisting of
Chapters 3 to 6, covers the Zenvisage system, and the second part, consisting of Chapters 7 to 9,
presents the ShapeSearch system. The outline of the dissertation is as follows:

In Chapter 2, Related Work, we survey the related work from the visualization, database and
data-mining that our work draws on, as well as explain the limitations of existing tools.
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PART I

In Chapter 3, Zenvisage System Overview, we introduce our system, Zenvisage, and describe
the user-experience of someone using Zenvisage, as well as give an overview of the different
components of the system.

In Chapter 4, ZQL: An Expressive Visualization Query Language, we introduce ZQL, a visual
query language that forms the core of Zenvisage. We describe how ZQL is powerful enough to
capture the use cases discussed in this chapter. We describe the syntax and semantics of ZQL and
formalize the notion of a visual exploration algebra, an analog of relational algebra, describing
a core set of capabilities for any language that supports efficient visual data exploration. We
demonstrate that ZQL is complete in that it subsumes these capabilities.

In Chapter 5, Zenvisage Query Optimization, we explain how Zenvisage automatically trans-
lates and executes ZQL over large collections of visualizations. We show that Zenvisage can lever-
age any relational database system as a back-end, and develop a number of simple optimizations
that accelerates the execution of ZQL queries by minimizing the number of issued SQL queries.

In Chapter 6, Zenvisage User Evaluation, we present findings from our user study focused on
evaluating the effectiveness and usability of Zenvisage.

The contents of Chapter 3 have appeared in our CIDR’17 [2] paper, and the contents of Chapters
4 to 6 have appeared in our VLDB’17 [3] paper as well as an extended technical report [4]. The
work was done in collaboration with Albert Kim, John Lee, and several masters and undergraduate
students. I was responsible for the design and development of the first version of the system, and
jointly responsible for the query language, query optimizations, user studies, and performance
experiments.

PART II

In Chapter 7, ShapeSearch Overview, we motivate the need for flexible and fuzzy pattern match-
ing, and introduce our system, ShapeSearch, a flexible and efficient shape matching system for
trendlines. ShapeSearch supports flexible query specification mechanisms including regular ex-
pressions and natural language. We describe the system design, followed by the ShapeQuery
algebra, comprising the primitives and operators that help express a wide variety of use-cases. We
also describe how we translate natural language queries into the ShapeQuery algebra.

In Chapter 8, Fuzzy Shape Matching, we introduce the problem of fuzzy shape matching in
ShapeSearch and present algorithms for this problem along with query-aware optimizations and
perceptually-aware scoring methodologies for comparing and ranking shapes of visualizations.

4



In Chapter 9, ShapeSearch User Evaluation, we present a user study and a genomics case study,
focusing on evaluating the expressiveness, effectiveness, and usability of ShapeSearch.

The contents of Chapters 7 to 9 are going to appear in our SIGMOD’20 paper, and have also
appeared in our short VLDB’18 demo paper [5] as well as our extended technical report [6]. The
work was done in collaboration with Zesheng Wang and Paul Luh. I was responsible for the design
and development of the system, algebra, visual regular expression, natural language parser, user
study, case-study as well as the performance experiments.

In Chapter 10, Conclusions and Future Work, we conclude and present open future research
directions stemming from this line of work.

5



CHAPTER 2: RELATED WORK

Our work in this dissertation draws on many prior papers in the areas of visualization, databases,
and data mining.

2.1 VISUAL ANALYTIC SYSTEMS

Querying data through direct manipulation to modify the shape of a desired output visualization
is an intuitive, yet powerful method of data exploration. For this reason, researchers have designed
a number of new interfaces that allow users to do just this. Our work extends prior research in
“sketch-to-query” systems, such as QuerySketch and Google Correlate, which allow users to draw
or modify an existing visualization to form a query, which the system then uses to browse the
dataset for similar-looking visualizations [7, 8]. Wattenberg was the first to create a functional
prototype of such a system [8]. Later, Google Labs launched the “Search by Drawing” feature
in Google Correlate, which allows users to compare trends in search terms within a specific time
frame [9]. Ryall et al. and Holz et al. have developed similar interfaces that allow users to sketch
on a graph to identify matching trends and patterns [10, 11]. Hochheiser et al. took a slightly dif-
ferent approach and developed TimeSearcher, a tool that allows users to directly set constraints
by drawing rectangular boxes on data graphs [12]. TimeSearcher's additional functions include
pattern inversions and “leaders and laggards” to help identify trends and patterns in the data. The
aforementioned papers evaluate their systems with a single data type, and a single set of visualiza-
tions of interest; we extend these papers by implementing more general systems to accommodate
multiple modes of specification, multiple data types, multiple sets of visualizations, and multiple
data sets. We add necessary customization capabilities to the sketching interface that can adapt to
various forms of needs of analyst needs and inputs—for instance, applying search to only a subset
of points, providing a representative visualization as a starting point with the option to consider or
ignore scale when needed, specifying a function as an input, supporting drag-and-drop, drawing a
new trend, or modifying an existing trend.

2.2 VISUALIZATION RECOMMENDATION SYSTEMS

There has been extensive research on how to provide users with appropriate visualizations with
minimal user input. Data analysts frequently work with large amounts of data in various formats,
and are constantly called upon to make decisions about what exactly to visualize. Pioneering
research by Mackinlay et al. envisioned and developed an “artificial assistant” that generated ef-
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fective visualizations for its users [13, 14]. Recent work by Wongsuphasawat et al. has extended
this work through Voyager [15], a system that recommends multiple charts based on statistical and
perceptual measures. Several researchers have focused on identifying outliers in data. Vartak et
al. tackled this problem with SeeDB, a system for visualizing data that deviates from reference
trends [16]. Profiler and Scorpion, developed by Kandel et al. and Wu et al. respectively, focus on
providing insights to users by working from anomalies [17,18]. Building on previous work in this
area, we devised a simple visualization-recommendation system for users, and examined how they
took advantage of this feature during their everyday workflow with their own datasets.

2.3 SIMILARITY METRICS FOR VISUALIZATIONS

Identifying similar trends in data is difficult. The definition of “similar” is subjective by na-
ture, varying across personal experience and across different data types. Many researchers have
explored the categorization of time-series data based on the shape of the line graph [12, 19], and
similar approaches have also been applied to scatter plots [20,21]. Computational techniques have
also been developed to identify similar trends for users. One widely used approach labels two
trends similar if their computed Euclidean Distance among all the trends in the data is the smallest
value. Other popular techniques include Dynamic Time Warping (DTW) [22], which warps time
axes to align pairs of trends. Google Correlate uses a combination of the Approximate Nearest
Neighbor system [23] and a custom distance function to balance precision and speed [7]. Addi-
tionally, there has been a plethora of work on indexing and retrieving for a fixed set of time-series,
typically via the Euclidean distance metric [24–30]. In short, much of the previous work in this
field has focused on the technical aspects of identifying shapes and patterns in a fixed set of time
series, without an appropriate user interface. Our research is general in that it does not require pre-
indexing of time series (nor is it restricted to time series), and instead adapts dynamically to any
candidate set of visualizations selected by the user during ad-hoc visual data exploration. In addi-
tion, we incorporate a novel customizable interface for the searching and specification of desired
patterns, and provides recommendations, and has been tested via case studies with users to observe
what patterns they identify in their own data, and focuses on how such visual query systems will
complement their workflow.

2.4 SYMBOLIC PATTERN MINING AND QUERYING

. There are a number of symbolic approaches [31–33] that discretize a time series into a se-
quence of symbols (or events), and use variants of string matching algorithms such as edit-distance
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or longest common subsequence to find similar sequences present in the input trendline. Having
a fewer number of discrete symbols as opposed to continuous points also helps in making simi-
larity search efficient. Shape Definition Language (SDL) [34], like ShapeSearch, allows users to
search for trendlines with specific pattern sequences via a structured keyword-based input. Like
other indexing-based approaches [33, 35–38], SDL segments each time-series into fixed-length
segments, and indexes them with closest matching pattern symbols in advance—trading-off flex-
ibility and precision for efficiency. Similarly, SPIRIT [39] is a regular-expression-based tool that
incorporates user-controlled constraints for mining frequent patterns in sequence databases. The
major downside with this line of work (and a key distinguishing factor compared to our work) is
that the detailed information about each trendline is difficult to faithfully abstract in advance to an-
swer all possible shape queries. Moreover, a time-series can have varying shape for different filters
and aggregations, often applied on-the-fly during ad hoc data exploration (as we illustrate in Chap-
ter 7). Therefore, instead of representing a trendlines as a sequence of patterns, or using pre-built
indexes, in this work, we develop online query-aware optimizations for efficient pattern matching.
Allowing real-time pattern matching over arbitrary subsets of data with varying granularities and
aggregations, makes our work more suitable for ad hoc data exploration scenarios.

2.5 STATISTICAL PACKAGES AND PROGRAMMING LIBRARIES

Statistical analysis tools [40–43] support complex data mining primitives, but require extensive
knowledge of the underlying algorithms and parametrization, limiting their use to experts, e.g.,
a user can select to use decision trees, with a certain depth and splitting criteria on their dataset
using any of these tools. Programming libraries such as Weka [44] and Scikit-learn [45] support
embedding machine learning and data mining within programs. Indeed, complex statistical tasks
such as classification, regression, and dimensionality reduction are hugely important, but require
programming ability or an understanding of machine learning and statistics to be useful. In this
work, we instead build systems that are substantial generalization over existing data exploration
tools, aimed at identifying the patterns and trends that hold in the data, by non-programmers, which
can be then used to train a machine learning algorithm later on.

2.6 OLAP BROWSING TOOLS

There has been some limited work on interactive browsing of data cubes, e.g., [46, 47]. While
we may be able to reuse some of the metrics from that line of work, the work focuses on sug-
gestions for raw aggregates (cells) to examine that are informative given past browsing, or those
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that show a generalization or explanation of a specific cell, and not on two (or more) dimensional
visualizations, or the full data exploration capabilities (e.g., searching for trends, patterns, outliers)
that we support in our proposed systems..

2.7 DATA MINING LANGUAGES

There has been some limited work in data mining query languages, all from the early 90s, on
association rule mining (DMQL [48], MSQL [49]), or on storing and retrieving models on data
(OLE DB [50]), as opposed to a visual data exploration language aimed at identifying visual trends
or insights.

2.8 OVERALL TAKEAWAYS

In conclusion, despite the wealth of data exploration and mining tools, selecting the“right”
view on the data that reveals the “desired” insight still remains laborious and time-consuming.
In particular, while visual analytics tools have made it much easier for business analysts to analyze
data, the onus is on the user to manually specify the view they want to see, and then repeat this
until they get the desired view. Similarly, databases are powerful and efficient but the rigidity of
the syntax limits users ability to express queries like “show me visualizations where the sales is
increasing over years”. And finally, data mining and statistical tools are hard to use, especially by
novice users, since these tools often involve extensive programming, manual optimizations (not
desirable for ad-hoc querying), as well as an understanding of which data mining tool applies to
what purpose.

In the subsequent chapters, we introduce two systems, namely Zenvisage and ShapeSearch,
aimed towards addressing the limitations of existing tools. In particular, we discuss the research
challenges and their solutions underlying these systems that facilitate expressive and scalable
means for finding visualizations with the desired insights.
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CHAPTER 3: ZENVISAGE SYSTEM OVERVIEW

In this chapter, we introduce Zenvisage, a visual data exploration system that accelerates the
search for desired visual patterns. Zenvisage allows users to search for patterns by drawing, select-
ing, or modifying a pattern of interest. We first describe the user experience and various features
offered through the front-end interface, and then explain how the Zenvisage back-end enables these
features.

3.1 THE FRONT-END

The Zenvisage front-end is designed as a lightweight web application that runs completely
within a user's browser. The application provides an intuitive graphical interface to compose
queries for exploring trends and insights in data, and visualizes the output results from the back-
end, taking into consideration data properties and perceptual principles.

3.1.1 User Experience

Since Zenvisage is meant to be an end-user-facing interactive data exploration tool, the user
experience of the tool is hugely important in determining the utility and usability of the tool. Here,
we describe the experience of an individual using Zenvisage.

In Figure 3.1, we show Zenvisage loaded with the real estate dataset.

Attribute Selection. The first step is attribute selection (Box 1). Here the user can specify the
desired X axis attribute, and the desired Y axis attribute for the visualization or visualizations
that the user is interested in. In this case, the user has specified the X axis is quarters (in other
words, time), and the Y axis is the sold price. (By default Zenvisage assumes average as the
aggregation applied to the Y axis, but this can be changed by clicking on the gear symbol next
to Zenvisage.) Additionally, the user specifies the category: this is variable indexing the space
of candidate visualizations the user is operating over. Here, the selected category is “metro”—
indicating a metro area or township.

Summarization of Typical and Outlier Trends. As soon as the user selects the X, Y and category,
immediately, Zenvisage populates Box 2 with typical or representative trends across categories,
and outliers. In this case, there are three typical trends that were found across different metros (i.e.
categories): one corresponding to a spike in the middle (Panama City), one to a gradual increasing
trend (San Jose), and one to a trend that increased and then decreased (Reno)—most of the other
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31	Figure 3.1: Zenvisage interactive visual query interface

trends were found to be similar to one of these three. The outlier visualizations (Pittsburgh, Peoria,
Cedar Rapids) have a large number of seemingly random spikes.

Drawing or Drag-and-Drop Canvas. Then, in Box 3, the editable canvas, the user can either draw
a shape that they are looking for, or alternatively drag and drop one of the displayed visualizations
into the canvas. In this manner, the user indicates that they would like to see a similarity search
starting from the shape or pattern that they have drawn or dragged onto the canvas. (Zenvisage also
supports a dissimilarity search, the opposite of a similarity search, once again a non-default option
hidden away behind the gear symbol.) The user is also free to edit the drawn pattern. In this figure,
the user has drawn a trend which is gradually increasing up, then gradually decreasing after that.

Similarity Search Results. As soon as the user completes an interaction in Box 3, Box 4 is
populated with results corresponding to visualizations (on varying the category) that are most
similar to the trend in Box 3, ordered by similarity. We describe how the similarity search results
are computed in the next Section. As yet another example of similarity search, see Figure 3.2,
where the user has drawn a gradually increasing trend in the canvas area (or dragged an existing
visualization onto the area), and the results returned below, corresponding to San Jose, Denver,
and Honolulu are matches of increasing trends.

ZQL Specification Interface. Lastly, the user can specify a multi-line ZQL (Zenvisage query
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Figure 3.2: Finding cities with similar sales over year trends to a user-drawn trend

language) query in Box 5. ZQL is a high level language that aims to automate the manual visual
data exploration process by allowing users to specify their desired visualization objective in a few
lines. Instead of providing the low-level data retrieval and manipulation operations, users operate
at the level of sets of visualizations, and compare, sort, filter, and transform visualizations as well
as attributes — eventually visualized on either the X or Y axis. We provide details about our formal
syntax, the expressiveness and power, and completeness of ZQL in the next chapter. Once the user
completes the action, this request triggers a recomputation and redisplaying of the results shown
in Box 4.

Starting from this point, the user is free to switch back and forth from ZQL to the simple interaction
mode, depending on whether the user has complicated requirements or simple ones.

3.1.2 Key Components

Sketching Canvas. We created the drawing canvas using dygraph [51], the same charting library
behind Google Correlate [9]. The drawing panel acts as the most frequently used method for
exploring data in Zenvisage. Users can form and issue queries through direct manipulation of
the drawing panel. Once the trends panel has been populated, the user can either sketch on the
drawing panel, or drag-and-drop one of the representative or outlier trends from the trends panel
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into the drawing panel to issue a query. When either of these actions is completed, the graph in
the drawing panel is passed on to the server, which then searches for graphs that are similar to
the input graph. We also equipped the drawing panel with a range selector, which allows users to
make comparisons based on a subset of points instead of on the entire range of the domain. This
drawing panel can be further customized as described in the Settings panel below.

Custom Query Builder. If the user would like the full expressive power of ZQL, the user may
choose to use the front-end’s custom query builder, which allows users to directly specify their
query in the ZQL query format, depicted in Figure 7.2. The builder contains all the columns
necessary for writing a ZQL query. Users write their query in a row-wise manner. For each row,
they can either drag and drop the attributes from the building blocks panel on to a cell in the ZQL
table. If a row requires a user-drawn input, the user may select the row and use the drawing box
to draw the trend she is looking for. Iterators and outputs of previous rows may also be reused
by dragging and dropping them to the current cell. Users also have the option to run and see the
output of a specific row row by clicking on the “Submit Active Row” button.

Result Visualizer. The Zenvisage front-end’s visualizer makes use of Vega-lite [52] grammar and
the Vega visualization specification for mapping the query results to effective visualizations. The
Zenvisage front-end determines the default visual encodings, such as as size and position, and uses
the visualizer to map the output data according to the Vega-lite grammar.

Other Settings. Other options provided in the settings panel include an aggregation method. This
setting determines how attributes are grouped into a metric: either by average value or total value.
Users also can choose the number of results they want to retrieve; to display scatter plots instead
of line charts; and to ignore the x-range for all computations. When the Consider x-range option is
toggled on, instead of comparing trends based on x-values, the drawing panel divides the x-range
into ten equally spaced bins. Essentially, it simplifies the x-range considerably, by averaging or
adding all the numbers that fall into the same bin. The similarity algorithms are then carried on
using the same binning system. Lastly, we provide users with an Input equation option, where they
can enter equations such as y = 2x+10 to input trends on the drawing panel rather than drawing
them by hand.

3.1.3 Similarity Measures

The settings panel also allows users to choose between three different similarity metrics. Cur-
rently, the three metrics Zenvisage provides are Euclidean Distance, DTW, and Segmentation, each
of which is described below.
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Figure 3.3: Four graphs returned from drawing a peak in the drawing panel. The trend drawn by
the user is visible in teal for comparison. DTW is able to detect the similarity between the
x-shifted trends.

Euclidean Distance: The Euclidean Distance between two lines is calculated by taking the
square root of the sum of the differences for each x value in the data. In the case of x values in the
two trends that do not overlap perfectly, we use interpolation to generate the necessary points to
calculate the distance.

Dynamic Time Warping (DTW). DTW [53] measures the similarity between two lines by
warping their axes to align them more closely. For instance, two trends may look similar in shape,
but computing the Euclidean Distance between them may reveal that they are not similar at all.
However, DTW can account for such differences, as depicted in Figure 3.3. After the algorithm
aligns the two trends, the calculated distance will be minimized if the overall shape is similar.

Segmentation. While the DTW metric is very good at identifying trends with a similar shape,
it is unfortunately very expensive to compute, and is sensitive to noise in the trends. We developed
a custom similarity metric which combines the segmentation method described in [54] with DTW
[22]. Our method is as follows. When an array of n points is provided as an input, each point is
connected to create n− 1 segments. Then, the segments are incrementally merged in bottom-up
fashion one at a time—if the costs of merging them are below a user specified (or system-default)
threshold. This is repeated until none of the adjacent segments can be merged further (see Figure
3.4). Once this process is complete, we use DTW to compute the distances between the trends.

We chose the above three similarity metrics to capture the breadth of existing metrics. While
Euclidean Distance may not be perfect for all scenarios, it is a fast and simple method that works
well if all the data is on a similar scale and has an overlapping range. With DTW, which warps time
axes to align the trends, users can query based on the overall shape of the trend, largely ignoring
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Figure 3.4: An example of the segmentation applied to the sales price of homes in San Jose with
two different error thresholds. (a) has a smaller error threshold than (b), and thus represents the
graph using five segments, compared to two of (b). This method helps look at overall shape of the
trends, instead of being biased by small noise in the trends.

the problem the Euclidean Distance metric faces when the range of the data is not uniform. DTW
is a popular method for identifying shapes, with many researchers having created variations of it
based on their needs [53,55,56]. The segmentation method was developed in-house to address the
performance problems of DTW, to capture broader trends in data than DTW can, and to reduce the
effect of noise and increase speed while sacrificing accuracy.

3.2 THE BACK-END

All user inputs at the interface are internally translated and composed into one or more ZQL
queries by the query builder module at the front-end before being sent to the back-end for process-
ing. The front-end talks to the back-end through a REST interface, and all of the data transfers
happen in a JSON format. The Zenvisage back-end is responsible for running all of the com-
putations necessary for generating output visualizations that match user-specified insights. It is
developed completely in Java and runs within an embedded Jetty web-server [57].

The back-end consists of a ZQL parser, an optimizer, and a query executor, and is capable of
processing any ZQL query. At a high-level, the parser reads in the ZQL query is a textual format,
parses the query and validates its structure, and checks the database catalog for the existence of
the referenced columns and operators including the functional primitives. If everything succeeds,
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the parser creates a graph of computation, consisting of SQL queries for retrieving data for each
visualization from the underlying storage engine, following by processing (e.g., trend matching,
comparing, filtering) to be applied on visualizations for selecting the ones to be output to the
users. We dig deeper into the details of ZQL query processing, including optimizations that allow
Zenvisage to scale over large collections of visualizations in the next chapter.

Storage. Since Zenvisage uses standard SQL queries for retrieving data for visualizations, it can
work over any database. The current version, however, supports PostgreSQL as a row-store and
Vertica as a column store options. We have also implemented a bitmap-based in-memory database
for providing interactive response times, using a state-of-the-art implementation of bitmaps called
Roaring Bitmaps [58]. Most of the queries in Zenvisage are ad hoc and unpredictable, making
it infeasible to precompute or index the result visualizations in advance—rendering typical time
series indexing and retrieval techniques such as those adopted in Google Correlate or TimeSearcher
inapplicable. At the same time, traditional databases with conventional B-tree based indices result
in high memory and computation overhead.

By making use of bitmaps, our in-memory database exploits bit-level parallelism that signif-
icantly accelerate queries involving arbitrary and complex selection predicates and aggregation,
precisely the kind of queries that one would encounter in arbitrary visual data exploration. As
compared to conventional bitmaps, Roaring Bitmap is up to 10× faster and has higher compres-
sion rates. We follow a column oriented storage model, and as a default policy, we create indices
for all categorical columns and leave measure columns un-indexed. The un-indexed columns are
stored as an array, and indexed columns have a Roaring Bitmap for every distinct value of that
column.

3.3 RECOMMENDATIONS VIA REPRESENTATIVE AND OUTLIER SEARCH.

In addition to returning the pattern or similarity search results, the Zenvisage back-end also
recommends a set of interesting visualizations—the representative and outlier visualizations—to
help users further understand the trends in the data.

Initially, our implementation for the representative trends was to simply apply the k-means
algorithm on the set of candidate visualizations, and then display the cluster centers or centroids.
However, we found that when we have many visualizations that are quite similar to each other—
i.e., that they all have a similar “shape”, and are therefore not very interesting. Instead, we develop
a new algorithm based on a small modification to the k-means algorithm: if the desired number
of visualizations is k, we invoke the k-means algorithm with a larger k′ > k first. Then, after we
identify the k′ cluster centroids, we merge these cluster centroids greedily based on which pairs
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have the smallest distance between each other, until we get k visualizations. These visualizations
are then the representative trends that are output to the user. We have found that this approach,
while a small modification to k-means, yields much more visually appealing and “diverse” results.

As described previously, our outlier visualizations are found by summing up the distance for
each candidate visualization to the k visualizations that were found to be most representative; then
the k visualization candidates that are the most distant from these k representative visualizations
are deemed to be the outliers.

3.4 OVERALL TAKEAWAYS

In this chapter, we introduced Zenvisage, giving an overview of the key front-end and back-end
components of the system. Zenvisage is a general-purpose visual exploration system, that supports
multiple modes of specification, including a sketching canvas where users can draw a pattern of
interest, or drag and drop an existing visualization, with the system finding visualizations that are
similar to the queried pattern. In addition, Zenvisage also provides high-level recommendations,
in the form of representative and outlier visualizations, to help users get started. We worked with
potential users across multiple domains on a regular basis to gather feedback on our system and
understand how they envision themselves using it. Overall, Zenvisage appears to be an ideal fit for
the challenge of visualization exploration described in Chapter 1— in that it automates the painful
manual exploration of visualizations to find desired patterns.

In the next chapter, we dig deeper into the Zenvisage Query Language (ZQL) and corresponding
algebra, that together form an important component of Zenvisage.
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CHAPTER 4: ZQL: AN EXPRESSIVE VISUALIZATION QUERY LANGUAGE

In this chapter, we describe the syntax and semantics of Zenvisage query language (ZQL), the
forms the core of the Zenvisage system. ZQL provides a set of operations on collections of vi-
sualizations that help automate the search for desired patterns. We also formalize the notion of
visual exploration algebra, analogous to relational algebra, describing a core set of capabilities for
any language that supports visual data exploration, and demonstrate that ZQL is complete in that
it subsumes these capabilities.

4.1 OVERVIEW

Zenvisage query language or ZQL, provides users with a powerful mechanism to operate on
collections of visualizations. In fact, ZQL treats visualizations as a first-class citizen, enabling
users to operate at a high level on collections of visualizations much like one would operate on
relational data with SQL. For example, a user may want to filter out all visualizations where the
visualization shows a roughly decreasing trend from a collection, or a user may want to create
a collection of visualizations which are most similar to a visualization of interest. Regardless of
the query, ZQL provides an intuitive, yet flexible specification mechanism for users to express the
desired patterns of interest (in other words, their exploration needs) using a small number of ZQL
lines. Overall, ZQL provides users the ability to compose collections of visualizations, filter them,
and sort and compare them in various ways.

ZQL draws heavy inspiration from the Query by Example (QBE) language [59] and uses a
similar table-based specification interface. Although ZQL components are not fundamentally tied
to the tabular interface, we found that our end-users felt more at home with it; many of them
are non-programmers who are used to spreadsheet tools like Microsoft Excel. Users may either
directly write ZQL, or they may use the Zenvisage front-end, which supports interactions that are
transformed internally into ZQL.

We now provide a formal introduction to ZQL in the rest of this chapter. We introduce many
sample queries to make it easy to follow along, and we use a relatable fictitious product sales-based
dataset throughout this chapter in our query examples—we will reveal attributes of this dataset as
we go along.

4.2 FORMALIZATION

For describing ZQL, we assume that we are operating on a single relation or a star schema
where the attributes are unique (barring key-foreign key joins), allowing ZQL to seamlessly support
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Figure 4.1: Sales over year visualization for the product chair.

Name X Y Z Viz
*f1 ‘year’ ‘sales’ ‘product’.‘chair’ bar.(y=agg(‘sum’))

Table 4.1: Query for the bar chart of sales over year for the product chair.

Name X Y Z Viz
*f1 ‘year’ ‘sales’ ‘product’.* bar.(y=agg(‘sum’))

Table 4.2: Query for the bar chart of sales over year for each product.

natural joins. In general, ZQL could be applied to arbitrary collections of relations by letting the
user precede an attribute A with the relation name R, e.g., R.A. For ease of exposition, we focus on
the single relation case.

The concept of visualizations. We start by defining the notion of a visualization. We use a sample
visualization in Figure 4.1 to guide our discussion. Of course, different visual analysis tasks may
require different types of visualizations (instead of bar charts, we may want scatter plots or trend
lines), but across all types, a visualization is defined by the following five main components: (i) the
x-axis attribute, (ii) the y-axis attribute, (iii) the subset of data used, (iv) the type of visualization
(e.g., bar chart, scatter plot), and (v) the binning and aggregation functions for the x- and y- axes.

Visualization collections in ZQL: ZQL has four columns to support the specification of visualiza-
tions that the five aforementioned components map into: (i) X, (ii) Y, (iii) Z, and (iv) Viz.

Table 4.1 gives an example of a valid ZQL query that uses these columns to specify a bar chart
visualization of overall sales over the years for the product chair (i.e., the visualization in Fig-
ure 4.1)—ignore the Name column for now. The details for each of these columns are presented
subsequently. In short, the x-axis (X) is the attribute year, the y-axis (Y) is the attribute sales, and
the subset of data (Z) is the product chair, while the type of visualization is a bar chart (bar), and
the binning and aggregation functions indicate that the y axis is an aggregate (agg)—the sum of
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Name X Y Z Viz Process︷ ︸︸ ︷
Identifier

︷ ︸︸ ︷
Visualization Collection

︷ ︸︸ ︷
Operation

Table 4.3: ZQL query structure.

Name X Y Z Viz
... ... {‘sales’, ‘profit’} ... ...

Table 4.4: Query for the sales and profit bar charts for the product chair (missing values are the
same as that in Table 4.1)

sales.
In addition to specifying a single visualization, users may often want to retrieve multiple vi-

sualizations. ZQL supports this in two ways. Users may use multiple rows, and specify one
visualization per row. The user may also specify a collection of visualizations in a single row by
iterating over a collection of values for one of the X, Y, Z, and Viz columns. Table 4.2 gives an
example of how one may iterate over all products (using the notation * to indicate that the attribute
product can take on all possible values), returning a separate sales bar chart for each product.

High-level structure of ZQL. Starting from these two examples, we can now move onto the gen-
eral structure of ZQL queries. Overall, each ZQL query consists of multiple rows, where each row
operates on collections of visualizations. Each row contains three sets of columns, as depicted in
Table 4.3: (i) the first column corresponds to an identifier for the visualization collection, (ii) the
second set of columns defines the visualization collection, while (iii) the last column corresponds
to some operation on the visualization collection. All columns can be left empty if needed (in
such cases, to save space, for convenience, we do not display these columns). For example, the
last column may be empty if no operation is to be performed, like it was in Table 4.1 and 4.2. We
have already discussed (ii); now we will briefly discuss (i) and (iii), corresponding to Name and
Process respectively.

Identifiers and operations in ZQL. The Process column allows the user to operate on the defined
collections of visualizations, applying high-level filtering, sorting, and comparison. The Name
column provides a way to label and combine specified collections of visualizations, so users may
refer to them in the Process column. Thus, by repeatedly using the X, Y, Z, and Viz columns to
compose visualizations and the Process column to process those visualizations, the user is able
derive the exact set of visualizations she is looking for. Note that the result of a ZQL query is
the data used to generate visualizations. The Zenvisage front-end then uses this data to render the
visualizations for the user to peruse.
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Name X Y Z Viz
... {‘year’, ‘month’} {‘sales’, ‘profit’} ... ...

Table 4.5: Query for the sales and profit bar charts over years and months for chairs (missing
values are the same as in Table 4.1).

Name X Y Z Z2 Viz
... ... ... ... ‘location’.‘US’ ...

Table 4.6: Query which returns the overall sales bar chart for the chairs in US (all missing values
are the same as that in Table 4.1).

4.2.1 X, Y, and Z

The X and Y columns specify the attributes used for the x- and y- axes. For example, Table 4.1
dictates that the returned visualization should have ‘year’ for its x-axis and ‘sales’ for its y-axis.
As mentioned, the user may also specify a collection of values for the X and Y columns if they
wish to refer to a collection of visualizations in one ZQL row. Table 4.4 refers the collection
of both sales-over-years and profit-over-years bar charts for the chair—the missing values in this
query (“...”) are the same as Table 4.1. As we can see, a collection is constructed using {}. If
the user wishes to denote all possible values, the shorthand * symbol may be used, as is shown by
Table 4.2. In the case that multiple columns contain collections, a Cartesian product is performed,
and visualizations for every combination of values is returned. For example, Table 4.5 would
return the collection of visualizations with specifications: {(X: ‘year’, Y: ‘sales’), (X: ‘year’,

Y: ‘profit’), (X: ‘month’, Y: ‘sales’), (X: ‘month’, Y: ‘profit’)}. Additionally, ZQL allows
composing multiple attributes in the X and Y columns by supporting Polaris table algebra [4] over
the operators: +, x, /

With the Z column, the user can select which subset of the data they wish to construct their
visualizations from. ZQL uses the 〈attribute〉.〈attribute-value〉 notation to denote the selection
of data. Consequently, the query in Table 4.1 declares that the user wishes to retrieve the sales
bar chart only for the chair product. Note that unlike the X and Y columns, both the attribute
and the attribute value must be specified for the Z column; otherwise, a proper subset of the data
would not be identified.Collections are allowed for both the attribute and the attribute value in the
Z column. Table 4.2 shows an example of using the * shorthand to specify a collection of bar
charts, one for each product. A Z column which has a collection over attributes might look like:
{‘location’, ‘product’}.* (i.e., a visualization for every product and a visualization for every lo-
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Name X Y Viz
*f1 ‘weight’ ‘sales’ bin2d.(x=nbin(20), y=nbin(20))

Table 4.7: Query which returns the heat map of sales vs. weights across all transactions.

cation). In addition, the Z column allows users to specify predicate constraints using syntax like
‘weight’.[? < 10]; this specifies all items whose weight is less than 10 lbs. To evaluate, the ? is
replaced with the attribute and the resulting expression is passed to SQL’s WHERE clause. The
predicate constraint syntax has an analogous predicate collection syntax, which creates a collection
of the values which satisfy the condition. ‘weight’.[? < 10] specifies that the resulting visualiza-
tions must only contains items with less than 10 lbs, ‘weight’.{? < 10} creates a collection of
values, one for each item which is less than 10 lbs.

ZQL supports multiple constraints on different attributes through the use of multiple Z columns.
In addition to the basic Z column, the user may choose to add Z2, Z3, ... columns depending on
how many constraints she requires. Table 4.6 gives an example of a query which looks at sales
plots for chairs only in the US. Note that Z columns are combined using conjunctive semantics.

4.2.2 Viz

The Viz column decides the visualization type, binning, and aggregation functions for the row.
Elements in this column have the format: 〈type〉.〈bin+aggr〉. All examples so far have been bar
charts with no binning and SUM aggregation for the y-axis, but other variants are supported. The
visualization types are derived from the Grammar of Graphics [60] specification language, so all
plots from the geometric transformation layer of ggplot [61] (the tool that implements Grammar of
Graphics) are supported. For instance, scatter plots are requested with point and heat maps with
bin2d. As for binning, binning based on bin width (bin) and number of bins (nbin) are supported
for numerical attributes—we may want to use binning, for example, when we are plotting the total
number of products whose prices lie within 0-10, 10-20, and so on.

Finally, ZQL supports all the basic SQL aggregation functions such as AVG, COUNT, and
MAX. Table 4.7 is an example of a query which uses a different visualization type, heat map, and
creates 20 bins for both x- and y- axes.

Like the earlier columns, the Viz column also allows collections of values. Similar to the Z
column, collections may be specified for both the visualization type or the binning and aggregation.
If the user wants to view the same data binned at different granularities, she might specify a bar
chart with several different bin widths: bar.(x={bin(1), bin(5), bin(10)}, y=agg(‘sum’)). On
the other hand, if the user wishes to view the same data in different visualizations, she might write:
{bar.(y=agg(‘sum’)), point.()}.
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Name X Y Z
f1 ‘year’ ‘sales’ ‘product’.‘chair’
f2 ‘year’ ‘profit’ ‘location’.‘US’

*f3 <– f1 + f2 ‘weight’.[? < 10]

Table 4.8: Query which returns the sales for chairs or profits for US visualizations for all items
less than 10 lbs.

The Viz column allows users powerful control over the structure of the rendered visualization.
However, there has been work from the visualization community which automatically tries to
determine the most appropriate visualization type, binning, and aggregation for a dataset based
on the x- and y- axis attributes [52, 62]. Thus, we can frequently leave the Viz column blank
and Zenvisage will use these rules of thumb to automatically decide the appropriate setting for us.
With this in mind, we omit the Viz column from the remaining examples with the assumption that
Zenvisage will determine the “best” visualization structure for us.

4.2.3 Name

Together, the values in the X, Y, Z, and Viz columns of each row specify a collection of visual-
izations. The Name column allows us to label these collections so that they can be referred to be
in the Process column. For example, f1 is the label or identifier given to the collection of sales bar
charts in Table 4.2. The * in front of f1 signifies that the collection is an output collection; that is,
ZQL should return this collection of visualizations to the user.

However, not all rows need to have a * associated with their Name identifier. A user may define
intermediate collections of visualizations if she wishes to further process them in the Process
column before returning the final results. In the case of Table 4.8, f1 and f2 are examples of
intermediate collections.

Also in Table 4.8, we have an example of how the Name column allows us to perform high-
level set-like operations to combine visualization collections directly. For example, f3 <– f1

+ f2 assigns f3 to the collection which includes all visualizations in f1 and f2 (similar to set
union). This can be useful if the user wishes to combine variations of values without considering
the full Cartesian product. In our example in Table 4.8, the user is able to combine the sales for
chairs plots with the profits for the US plots without also having to consider the sales for the US
plots or the profits for chairs plots; she would have to do so if she had used the specification:
(Y: {‘sales’, ‘profit’}, Z: {‘product’.‘chair’, ‘location’.‘US’}).

An interesting aspect of Table 4.8 is that the X and Y columns of the third row are devoid of
values, and the Z column refers to the seemingly unrelated weight attribute. The values in the X,
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Name X Y Z Process
f1 ‘year’ ‘profit’ v1 <– ‘product’.*
f2 ‘year’ ‘sales’ v1 v2 <– argmaxv1[k = 10]D( f 1, f 2)
*f3 ‘year’ ‘profit’ v2

Table 4.9: Query which returns the top 10 profit visualizations for products which are most
different from their sales visualizations.

Y, Z, and Viz columns all help to specify a particular collection of visualizations from a larger
collection. When this collection is defined via the Name column, we no longer need to fill in the
values for X, Y, Z, or Viz, except to select from the collection—here, ZQL only selects the items
which satisfy the constraint, weight < 10.

Other set-like operators include f1 - f2 for set minus and f1 ˆ f2 for intersection.

4.2.4 Process

The real power of ZQL as a query language comes not from its ability to effortlessly specify
collections of visualizations, but rather from its ability to operate on these collections somewhat
declaratively. With ZQL’s processing capabilities, users can filter visualizations based on trend,
search for similar-looking visualizations, identify representative visualizations, and determine out-
lier visualizations. Naturally, to operate on collections, ZQL must have a way to iterate over them;
however, since different visual analysis tasks might require different forms of traversals over the
collections, we expose the iteration interface to the user.

Iterations over collections. Since collections may be composed of varying values from multiple
columns, iterating over the collections is not straight-forward. Consider Table 4.9—the goal is
to return profit by year visualizations for the top-10 products whose profit by year visualizations
look the most different from the sales by year visualizations. This may indicate a product that
deserves special attention. While we will describe this query in detail below, at a high level the
first row assembles the visualizations for profit over year for all products (f1), the second row
assembles the visualizations for sales over year for all products (f2), followed by operating (via
the Process column) on these two collections by finding the top-10 products who sales over year
is most different from profit over year, while the third row displays the profit over year for those
top-10 products. A array-based representation of the visualization collections f1 and f2, would
look like the following:
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f1=



X: ‘year’, Y: ‘profit’

Z: ‘product.chair’

Z: ‘product.table’

Z: ‘product.stapler’
...


f2=



X: ‘year’, Y: ‘sales’

Z: ‘product.chair’

Z: ‘product.table’

Z: ‘product.stapler’
...


(4.1)

We would like to iterate over the products, the Z dimension values, of both f1 and f2 to make
our comparisons. Furthermore, we must iterate over the products in the same order for both f1

and f2 to ensure that a product’s profit visualization correctly matches with its sales visualization.
Using a single index for this would be complicated and need to take into account the sizes of each
of the columns. While there may be other ways to architect this iteration for a single attribute, it is
virtually impossible to do when there are multiple attributes that are varying. Instead, ZQL opts for
a more powerful dimension-based iteration, which assigns each column (or dimension) a separate
iterator called an axis variable. This dimension-based iteration is a powerful idea that extends
to any number of dimensions. As shown in Table 4.9, axis variables are defined and assigned
using the syntax: 〈variable〉<– 〈collection〉; axis variable v1 is assigned to the Z dimension of
f1 and iterates over all product values. For cases in which multiple collections must traverse over
a dimension in the same order, an axis variable must be shared across those collections for that
dimension; in Table 4.9, f1 and f2 share v1 for their Z dimension, since we want to iterate over the
products in lockstep.

Operations on collections. With the axis variables defined, the user can then formulate the
high-level operations on collections of visualizations as an optimization function which maxi-
mizes/minimizes for their desired pattern. Given that argmaxx[k = 10] g(x) returns the top-10 x

values which maximizes the function g(x), and D(x,y) returns the “distance” between x and y,
now consider the expression in the Process column for Table 4.9. Colloquially, the expression says
to find the top-10 v1 values whose D( f 1, f 2) values are the largest. The f 1 and f 2 in D( f 1, f 2)
refer to the collections of visualizations in the first and second row and are bound to the current
value of the iteration for v1. In other words, for each product v1’ in v1, retrieve the visualizations
f1[z: v1’] from collection f1 and f2[z: v1’] from collection f2 and calculate the “distance” between
these visualizations; then, retrieve the 10 v1’ values for which this distance is the largest—these
are the products, and assign v2 to this collection. Subsequently, we can access this set of products,
as we do in the Z column of the third line of Table 4.9.
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Name X Y Z Process
f1 ‘year’ ‘sales’ v1 <– ‘product’.* v2 <– argmaxv1[t < 0]T ( f 1)

*f2 ‘year’ ‘sales’ v2

Table 4.10: Query which returns the sales visualizations for all products which have a negative
trend.

Name X Y Z Process
f1 ‘year’ ‘sales’ ‘product’.‘chair’
f2 ‘year’ ‘sales’ v1 <– ‘product’.(* - ‘chair’) v2 <– argminv1[k = 10]D( f 1, f 2)
*f3 ‘year’ ‘sales’ v2

Table 4.11: Query which returns the sales visualizations for the 10 products whose sales
visualizations are the most similar to the sales visualization for the chair.

Formal structure. More generally, the basic structure of the Process column is:

〈argopt〉〈axvar〉[〈limiter〉]〈expr〉 where

〈expr〉 →
(
max |min |∑ |∏

)
〈axvar〉 〈expr〉

→ 〈expr〉 (+|− |× |÷) 〈expr〉

→ T (〈nmvar〉)

→ D(〈nmvar〉,〈nmvar〉)

〈argopt〉 → (argmax|argmin|argany)

〈limiter〉 → (k = N | t > R | p = R) (4.2)

where 〈axvar〉 refers to the axis variables, and 〈nmvar〉 refers to collections of visualizations.
〈argopt〉 may be one of argmax, argmin, or argany, which returns the values which have the
largest, smallest, and any expressions respectively. The 〈limiter〉 limits the number of results:
k = N returns only the top-k values; t > R returns only values who are larger than a threshold

Name X Y Z Process
f1 ‘year’ ‘sales’ v1 <– ‘product’.*
f2 ‘year’ ‘sales’ v2 <– ‘product’.* v3 <– argmaxv1[k = 10]∑v2 D( f 1, f 2)

*f3 ‘year’ ‘sales’ v3

Table 4.12: Query which returns the sales visualizations for the 10 products whose sales
visualizations are the most different from the others.
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value t (may also be smaller, greater than equal, etc.); p =R returns the top p-percentile values. T

and D are two simple functional primitives supported by ZQL that can be applied to visualizations
to find desired patterns:

• [T ( f )→ R]: T is a function which takes a visualization f and returns a real number mea-
suring some visual property of the trend of f . One such property is “growth”, which returns
a positive number if the overall trend is “upwards” and a negative number otherwise; an
example implementation might be to measure the slope of a linear fit to the given input
visualization f . Other properties may measure the skewness, or the number of peaks, or
noisiness of a visualization.

• [D( f , f ′)→ R]: D is a function which takes two visualizations f and f ′ and measures the
distance (or dissimilarity) between these visualizations. Examples of distance functions may
include a pointwise distance function like Euclidean distance, Earth Mover’s Distance, or the
Kullback-Leibler Divergence. The distance D could also be measured using the difference
in the number of peaks, or slopes, or some other property.

ZQL supports many different implementations for these two functional primitives, and the user
is free to choose any one. If the user does not select one, Zenvisage will automatically detect
the “best” primitive based on the data characteristics. Furthermore, if ZQL does not have an
implementation of the T or D function that the user is looking for, the user may write and use their
own function.

Concrete examples. With just dimension-based iteration, the optimization structure of the Pro-
cess column, and the functional primitives T and D, we found that we were able to support the
majority of the visual analysis tasks required by our users. Common patterns include filtering
based on overall trend (Table 4.10), searching for the most similar visualization (Table 4.11), and
determining outlier visualizations (Table 4.12). Table 4.10 describes a query where in the first
row, the variable v2 selects all products whose trend is decreasing, and the second row visualizes
these product’s sales over year. Table 4.11 starts with the visualization sales over year for chair in
the first row, then in the second row computes the visualizations of sales over year for all products,
and in the process column computes the similarity with chair, assigning the top 10 to v2, and the
third row visualizes the sales over year for these products. Table 4.12 starts with the visualization
collection of sales over year for all products in the first row, followed by another collection of
the same in the second row, and in the process column computes the sum of pairwise distances,
assigning the 10 products whose visualizations are most distant to others to v3, after which they
are visualized. Table 4.13 features a realistic query inspired by one of our case studies. The overall
goal of the query is to find the products which have positive sales and profits trends in locations
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Name X Y Z Z2 Z3 Process
f1 ‘year’ ‘sales’ v1 <– ‘location’.* v2 <– arganyv1[t < 0]T ( f 1)
f2 ‘year’ ‘profit’ v3 <– ‘category’.* v4 <– arganyv3[t < 0]T ( f 2)
f3 ‘year’ ‘profit’ v5 <– ‘product’.* ‘location’.[? IN v2] ‘category’.[? IN v4] v6 <– arganyv5[t > 0]T ( f 3)
f4 ‘year’ ‘sales’ v5 ‘location’.[? IN v2] ‘category’.[? IN v4] v7 <– arganyv5[t > 0]T ( f 4)
*f5 ‘year’ {‘profit’, ‘sales’} v6 ˆ v7

Table 4.13: Query which returns the profit and sales visualizations for products which have
positive trends in profit and sales in locations and categories which have overall negative trends.

and categories which have overall negative trends; the user may want to look at this set of products
to see what makes them so special. Rows 1 and 2 specify the sales and profit visualizations for all
locations and categories respectively, and the processes for these rows filter down to the locations
and categories which have negative trends. Then rows 3 and 4 specify the sales and profit visual-
izations for products in these locations and categories, and the processes filter the visualizations
down to the ones that have positive trends. Finally, row 5 takes the list of output products from
the processes in rows 3 and 4 and takes the intersection of the two returning the sales and profits
visualizations for these products.

Pluggable functions. While the general structure of the Process column does cover the majority
of the use cases requested by our users, users may want to write their own functions to run in a
ZQL query. To support this, ZQL exposes a Java-based API for users to write their own functions.
In fact, we use this interface to implement the k-means algorithm for ZQL. While the pluggable
functions do allow virtually any capabilities to be implemented, it is preferred that users write their
queries using the syntax of the Process column; pluggable functions are considered black-boxes
and cannot be automatically optimized by the ZQL compiler.

4.3 EXPRESSIVENESS

We now formally quantify the expressive power of ZQL. To this end, we formulate an algebra,
called the visual exploration algebra, like relational algebra, with a basic set of operators that we
believe all visual exploration languages should be able to express. At a high level, the opera-
tors of our visual exploration algebra operate on sets of visualizations and are not mired by the
data representations of those visualizations, nor the details of how the visualizations are rendered.
Instead, the visual exploration algebra is primarily concerned with the different ways in which
visualizations can be selected, refined, and compared with each other.

Given a defined measure T for calculating the overall trend of a visualization, a distance metric
D for a pair of visualizations, and an algorithm R to identify the most representative visualizations
from a set of visualizations, a visual exploration language L is defined to be visual exploration

28



complete V ECT,D,R(L) with respect to T , D, and R if it supports all the operators of the visual
exploration algebra. These operators may optionally take these functions T , D, and D, as input
parameters. These functions T , D, and R (also defined previously) are “exploration functions”
without which the resulting algebra would have been unable to manipulate visualizations in the
way we need for data exploration. Unlike relational algebra, which does not have any “black
box” functions, visual exploration algebra requires these functions for operating on visualizations
effectively. That said, these three functions are flexible and configurable and up to the user to define
(or left as system defaults). Next, we formally define the visual exploration algebra operators and
prove that ZQL is visual exploration complete.

4.3.1 Ordered Bag Semantics

In visual exploration algebra, relations have bag semantics. However, since users want to see the
most relevant visualizations first, ordering is critical. So, we adapt the operators from relational
algebra to preserve ordering information.

Thus, we operate on ordered bags (i.e., a bag that has an inherent order). We describe the details
of how to operate on ordered bags below. We use R,S to denote the ordered bags. We also use the
notation R = [t1, . . . , tn] to refer to an ordered bag, where ti are the tuples.

The first operator that we define is an indexing operator, much like indexing in arrays. The
notation R[i] refers to the ith tuple within R, and R[i : j] refers to the ordered bag corresponding to
the list of tuples from the ith to the jth tuple, both inclusive. In the notation [i : j] if either one of i

or j is omitted, then it is assumed to be 1 for i, and n for j, where n is the total number of tuples.
Next, we define a union operator ∪: R∪S refers to the concatenation of the two ordered bags R

and S. If one of R or S is empty, then the result of the union is simply the other relation. We define
the union operation first because it will come in handy for subsequent operations.

We define the σ operator like in relational algebra, via a recursive definition:

σθ (R) = σθ ([R[1]])∪σθ (R[2 :]) (4.3)

where σθ when applied to an ordered bag with a single tuple ([t]) behaves exactly like in the
relational algebra case, returning the same ordered bag ([t]) if the condition is satisfied, and the
empty ordered bag ([]) if the condition is not satisfied. The π operator for projection is defined
similarly to σ in the equation above, with the π operator on an ordered bag with a single tuple
simply removing the irrelevant attributes from that tuple, like in the relational algebra setting.

Then, we define the \ operator, for ordered bag difference. Here, the set difference operator
operates on every tuple in the first ordered bag and removes it if it finds it in the second ordered
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bag. Thus:
R\S = ([R[1]]\S)∪ (R[2 :]\S) (4.4)

where [t]\S is defined like in relational algebra, returning [t] if [t] is not in S, and [] otherwise.
The intersection operator ∩ is defined similarly to ∪ and \.

Now, we can define the duplicate elimination operator as follows:

δ (R) = [R[1]]∪ (R[2 :]\ [R[1]]) (4.5)

Thus, the duplication elimination operator preserves ordering, while maintaining the first copy of
each tuple at the first position that it was found in the ordered bag.

Lastly, we have the cross product operator, as follows:

R×S = ([R[1]]×S)∪ (R[2 :]×S) (4.6)

where further we have
[t]×S = ([t]× [S[1]])∪ ([t]×S[2 :]) (4.7)

where [t]× [u] creates an ordered bag with the result of the cross product as defined in relational
algebra.

Given these semantics for ordered bags, we can develop the visual exploration algebra.

4.3.2 Basic Notation

Assume we are given a k-ary relation R with attributes (A1,A2, . . . ,Ak). Let X be the unary
relation with attribute X whose values are the names of the attributes in R that can appear on the
x-axis. If the x-axis attributes are not specified by the user for relation R, the default behavior
is to include all attributes in R: {A1, . . . ,Ak}. Let Y be defined similarly with Y for attributes
that can appear on the y-axis. Given R, X , and Y , we define V , the visual universe, as follows:
V = ν(R) = X ×Y ×

(
×k

i=1πAi(R)∪{∗}
)

where π is the projection operator from relational
algebra and ∗ is a special wildcard symbol, used to denote all values of an attribute. At a high
level, the visual universe specifies all subsets of data that may be of interest, along with the intended
attributes to be visualized. Unlike relational algebra, visual exploration algebra mixes schema and
data elements, but in a special way in order to operate on a collection of visualizations.

Any subset relation V ⊆ V is called a visual group, and any k + 2-tuple from V is called a
visual source. The last k portions (or attributes) of a tuple from V comprise the data source of
the visual source. Overall, a visual source represents a visualization that can be rendered from
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a selected data source, and a set of visual sources is a visual group. The X and Y attributes of
the visual source determine the x- and y- axes, and the selection on the data source is determined
by attributes A1, . . . ,Ak. If an attribute has the wildcard symbol ∗ as its value, no subselection
is performed on that attribute for the data source. For example, the third row is a visual source
that represents the visualization with year as the x-axis and sales as the y-axis for chair products.
Since the value of location is ∗, all locations are considered valid or pertinent for the data source.
In relational algebra, the data source for the third row can be written as σproduct=chair(R). The ∗
symbol therefore attempts to emulate the lack of presence of a selection condition on that attribute
in the σ operator of the relational algebra. Readers familiar with OLAP will notice the similarity
between the use of the symbol ∗ here and the GROUPING SETS functionality in SQL.

Note that infinitely many visualizations can be produced from a single visual source, due to
different granularities of binning, aggregation functions, and types of visualizations that can be
constructed, since a visualization generation engine can use a visualization rendering grammar like
ggplot [61] that provides that functionality. Our focus in defining the visual exploration algebra
is to specify the inputs to a visualization and attributes of interest as opposed to the aesthetic
aspects and encodings. Thus, for our discussion, we assume that each visual source maps to a
singular visualization. Even if the details of the encoding and aesthetics are not provided, standard
rules may be applied for this mapping. Furthermore, a visual source does not specify the data
representation of the underlying data source; therefore the expressive power of visual exploration
algebra is not tied to any specific backend data storage model. The astute reader will have noticed
that the format for a visual source looks fairly similar to the visual components of ZQL; this is no
accident. In fact, we will use the visual components of ZQL as a proxy to visual sources when
proving that ZQL is visual exploration complete.

4.3.3 Exploration Functions

Earlier, we mentioned that a visual exploration algebra is visual exploration complete with re-
spect to three exploration functions T,R, and D. Here we define the types of these exploration
functions and describe them in more detail.

The function T : V →R returns a real number given a visual source. This function can be used
to assess whether a trend: defined by the visualization corresponding to a specific visual source, is
“increasing”, or “decreasing”, or satisfies some other fixed property. Many such T can be defined
and used within the visual exploration algebra.

The function D : V ×V →R returns a real number given a pair of visual sources. This function
can be used to compare pairs of visualizations (corresponding to the visual sources) with respect
to each other. The most natural way to define D is via some notion of distance, e.g., Earth Mover’s
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or Euclidian distance, but once again, the definition can be provided by the user or assumed as a
fixed black box.

The function R :Vn→Rn given a list of visual sources returns a list of values, one corresponding
to each of the visual sources. This function can take in an arbitrarily long list of visual sources, and
returns a score for each one. This function’s intended use is for ascertaining representativeness,
i.e., how representative do we believe the visualization corresponding to a specific visual source
to be. The function could equally well be used for ascertaining outlierness, or some other global
property that requires consideration of the entire set of visualizations with respect to each other.

4.4 VISUAL EXPLORATION ALGEBRA OPERATORS

Similar to how operators in ordered bag algebra operate on and result in ordered bags, operators
in visual exploration algebra operate on and result in visual groups. Many of the symbols for oper-
ators in visual exploration algebra are also derived from relational algebra, with some differences.
To differentiate, operators in visual exploration algebra are superscripted with a v (e.g., σ v, τv).
The unary operators for visual exploration algebra include (i) σ v for selection, (ii) τv for sorting
a visual group based on the trend-estimating function T , (iii) µv for limiting the number of visual
sources in a visual group, (iv) δ v for duplicate visual source removal, and (v) ζ v for finding the
most representative visual sources of a visual group based on algorithm R . The binary operators
include (i) ∪v for union, (ii) \v for difference, (iii) β v for replacing the attribute values of the vi-
sual sources in one visual group’s with another’s, (iv) φ v to reorder the first visual group based on
the visual sources’ distances to the visual sources of another visual group based on metric D, and
(v) ηv to reorder the visual sources in a visual group based on their distance to a reference visual
source from a singleton visual group based on D. These operators are described below, and listed
in Table 4.14:

Unary Operators. σ v
θ
(V ): σ v selects a visual group from V based on selection criteria θ , like

ordered bag algebra. However, σ v has a more restricted θ ; while ∨ and ∧ may still be used, only
the binary comparison operators = and 6= are allowed. As an example,
σ v

θ
(V) where θ = (X=‘year’ ∧ Y=‘sales’ ∧ year=∗ ∧ month=∗ ∧ product 6= ∗ ∧ location=‘US’

∧ sales=∗ ∧ profit=∗ ) from Table 4.15 on V would result in the visual group of time vs. sales
visualizations for different products in the US.

In this example, note that the product is specifically set to not equal ∗ so that the resulting visual
group will include all products. On the other hand, the location is explicitly set to be equal to US.
The other attributes, e.g., sales, profit, year, month are set to equal ∗: this implies that the visual
groups are not employing any additional constraints on those attributes. (This may be useful, for
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Operator Name Derived from Bag Algebra Meaning Unary/Binary
σ v Selection Yes Subselects visual sources Unary
τv Sort No Sorts visual sources in increasing order Unary
µv Limit Yes Returns first k visual sources Unary
δ v Dedup Yes Removes duplicate visual sources Unary
ζ v Representative No Selects k representative visual sources Unary

∪v/\v /∩v Union/Diff/Int Yes Returns the union of/differences be-
tween/intersection of two visual groups

Binary

β v Swap No Returns a visual group in which values
of an attribute in one visual group is re-
placed with values of the same attribute
in another visual group

Binary

φ v Dist No Sorts a visual group based on pairwise
distance to another visual group

Binary

ηv Find No Sorts a visual group in increasing order
based on their distances to a single refer-
ence visual source

Binary

Table 4.14: Visual Exploration Algebra Operators

example when those attributes are not relevant for the current visualization or set of visualizations.)
As mentioned before, visual groups have the semantics of ordered bags. Thus, σ v operates on one
tuple at a time in the order they appear in V , and the result is in the same order the tuples are
operated on.

τv
F(T )(V ): τv returns the visual group sorted in an increasing order based on applying F(T ) on each

visual source in V , where F(T ) is a procedure that uses function T . For example, τv
−T (V ) might

return the visualizations in V sorted in decreasing order of estimated slope. This operator is not
present in the ordered bag semantics, but may be relevant when we want to reorder the ordered bag
using a different criterion. The function F may be any higher-order function with no side effects.
For a language to visual exploration complete, the language must be able to support any arbitrary
F .

µv
k (V ): µv returns the first k visual sources of V ordered in the same way they were in V . µv is

equivalent to the LIMIT statement in SQL. µv is often used in conjunction with τv to retrieve the
top-k visualizations with greatest increasing trends (e.g. µv

k (τ
v
−T (V ))). When instead of a number

k, the subscript to µv is actually [a : b], then the items of V that are between positions a and b in V

are returned. Thus µv offers identical functionality to the [a : b] in ordered bag algebra, with the
convenient functionality of getting the top k results by just having one number as the subscript.
Instead of using µv, visual exploration algebra also supports the use of the syntax V [i] to refer to
the ith visual source in V , and V [a : b] to refer to the ordered bag of visual sources from positions
a to b.

δ v(V ) : δ v returns the visual sources in V with the duplicates removed, in the order of their first
appearance. Thus, δ v is defined identically to ordered bag algebra.
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ζ v
R,k(V ): ζ v returns the k-most representative visual sources from V based on representative-finding

algorithm R. The returned results may be in any order. Unlike ordered bag algebra, which does
not have this functionality, visual exploration algebra has a special purpose operator that uses the
black box function R to return representative visual sources, from among all of V : implicitly, this
black box function can compare all of V to itself.

Binary Operators. V ∪v U | V \v U | V ∩v U: Returns the union / difference / intersection of V and

U . These operations are just like the corresponding operations in ordered bag algebra.

β v
A(V,U): β v returns a visual group in which values of attribute A in V are replaced with the

values of A in U . Formally, assuming Ai is the ith attribute of V and V has n total attributes:
β v

Ai
(V,U) = πA1,...,Ai−1,Ai+1,...,An(V )×πAi(U). This can be useful for when the user would like to

change an axis: βX(V,σ v
X=year(V)) will change the visual sources in V to have year as their x-axis.

β v can also be used to combine multiple dimensions as well. If we assume that V has multiple
Y values, we can do β v

X(V,σ
v
X 6=∗(V)) to have the visual sources in V vary over both X and Y.

This operator allows us to start with a set of visualizations and then “pivot” to focus on a different
attribute, e.g., start with sales over time visualizations and pivot to look at profit. Thus, the operator
allows us to transform the space of visual sources.

φ v
F(D),A1,...,A j

(V,U): φ v sorts the visual sources in V in increasing order based on their distances to
the corresponding visual sources in U . More specifically, φ v computes F(D)(σ v

A1=a1∧...∧A j=a j
(V ),

σ v
A1=a1∧...∧A j=a j

(U))∀a1, ...,a j ∈ πA1,...,A j(V ) and returns an increasingly sorted V based on the
results. If σ v

A1=a1∧...∧A j=a j
for either V or U ever returns a non-singleton visual group for any tuple

(a1, ...,a j), the result of the operator is undefined. This operator supports comparative queries
where we find the x- and y-axes for which the visualizations are most different: φ v

−D,X ,Y (V,U).

ηv
F(D)(V,U): ηv sorts the visual sources in V in increasing order based on their distances to a single

reference visual source in singleton visual group U . Thus, U = [t]. ηv computes F(D)(V [i],U [1])
∀i ∈ {1, . . . , |V |}, and returns a reordered V based on these values, where F(D) is a procedure that
uses D. If U has more than one visual source, the operation is undefined. ηv is useful for queries in
which the user would like to find the top-k most similar visualizations to a reference: µv

k (η
v
D(V,U)),

where V is the set of candidates and U contains the reference. Once again, this operator is similar
to τv, except that it operates on the results of the comparison of individual visual sources to a
specific visual source.

4.5 PROOF OF VISUAL EXPLORATION COMPLETENESS

We now attempt to quantify the expressiveness of ZQL within the context of visual exploration
algebra and the three exploratory functions T , D, and R. More formally, we prove the following
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X Y year month product location sales profit
year sales ∗ ∗ chair US ∗ ∗
year sales ∗ ∗ table US ∗ ∗
year sales ∗ ∗ stapler US ∗ ∗
year sales ∗ ∗ printer US ∗ ∗

...

Table 4.15: Results of performing unary operators on V: σ v
θ
(V) where θ = (X=‘year’ ∧

Y=‘sales’ ∧ year=∗ ∧ month=∗ ∧ product 6= ∗ ∧location=‘US’ ∧ sales=∗ ∧ profit=∗ )
.

theorem:

Theorem 4.1. Given well-defined exploratory functions T , D, and R, ZQL is visual exploration

complete with respect to T , D, and R: V ECT,D,R(ZQL) is true.

Our proof for this theorem involves two major steps:

Step 1. We show that a visual component of ZQL has as much expressive power as a visual group
of visual exploration algebra, and therefore a visual component in ZQL serves as an appro-
priate proxy of a visual group in visual exploration algebra.

Step 2. For each operator in visual exploration algebra, we show that there exists a ZQL query
which takes in visual components semantically equivalent to the visual group operands and
produces visual components semantically equivalent to the resultant visual group.

Lemma 4.1. A visual component of ZQL has at least as much expressive power as a visual group

in visual exploration algebra.

Proof. A visual group V , with n visual sources, is a relation with k+2 columns and n rows, where
k is the number of attributes in the original relation. We show that for any visual group V , we can
come up with a ZQL query q which can produce a visual component that represents the same set
of visualizations as V .
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Name X Y Z1 ... Zk

f1 πX(V [1]) πY(V [1]) E1,1 ... E1,k
...

...
...

...
...

...

fn πX(V [n]) πY(V [n]) En,1 ... En,k

*fn+1=f1+...+fn

Table 4.16: ZQL query q which produces a visual component equal in expressivity to visual group
V .

Query q has the format given by Table 4.16, where V [i] denotes the ith tuple of relation V and:

Ei, j =

“ ” if πA j(V [i]) = ∗

A j.πA j(V [i]) otherwise
(4.8)

Here, A j refers to the jth attribute of the original relation. The ith visual source of V is rep-
resented with the fi from q. The X and Y values come directly from the visual source using
projection. For the Zj column, if the A j attribute of visual source has any value than other than
∗, we must filter the data based on that value, so Ei, j = A j.πA jV [i]. However, if the A j attribute is
equal to ∗, then the corresponding element in fi is left blank, signaling no filtering based on that
attribute.

After, we have defined a visual component fi for each ith visual source in V , we take the sum (or
concatenation) across all these visual components, and the resulting fn+1 becomes equal to the
visual group V .

Lemma 4.2. σ v
θ
(V ) is expressible in ZQL for all valid constraints θ and visual groups V .

Proof. We prove this by induction.
The full context-free grammar (CFG) for θ in σ v

θ
can be given by:

θ → E | E ∧E | E ∨E | ε (4.9)

E→C | (E) | E ∧C | E ∨C (4.10)

C→ T1 = B1 | T1 6= B1 | T2 = B2 | T2 6= B2 (4.11)

T1→ X | Y (4.12)

B1→ A1 | ... | Ak (4.13)

T2→ A1 | ... | Ak (4.14)

B2→ string | number | ∗ (4.15)
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where ε represents an empty string (no selection), and X , Y , and A1, ..., Ak refer to the attributes of
V .

To begin the proof by induction, we first show that ZQL is capable of expressing the base ex-
pressions σ v

C(V ): σ v
T1=B1

(V ), σ v
T1 6=B1

(V ), σ v
T2=B2

(V ), and σ v
T2 6=B2

(V ). The high level idea for each
of these proofs is to be come up with a filtering visual group U which we take the intersection with
to arrive at our desired result: ∃U,σ v

C(V ) =V ∩v U .
In the first two expressions, T1 and B1 refer to filters on the X and Y attributes of V ; we have

the option of either selecting a specific attribute (T1 = B1) or excluding a specific attribute (T1 6=
B1). Tables 4.17 and 4.18 show ZQL queries which express σ v

T1=B1
(V ) for T1 → X and T1 → Y

respectively. The ZQL queries do the approximate equivalent of σ v
T1=B1

(V ) =V ∩v σ v
T1=B1

(V).

Name X Y Z1 ... Zk

f1 - - - ... -

f2=f1 y1 <– _ v1 <– A1._ ... vk <– Ak._

f3 B1 y1 v1 ... vk

*f4=f1ˆf3

Table 4.17: ZQL query which expresses σ v
X=B1

(V ).

Name X Y Z1 ... Zk

f1 - - - ... -

f2=f1 x1 <– _ v1 <– A1._ ... vk <– Ak._

f3 x1 B1 v1 ... vk

*f4=f1ˆf3

Table 4.18: ZQL query which expresses σ v
Y=B1

(V ).

We have shown with Lemma 4.1 that a visual component is capable of expressing a visual
group, so we assume that f1, the visual component which represents the operand V , is given to us
for both of these tables. Since we do not know how f1 was derived, we use - for its axis variable
columns. The second rows of these tables derive f2 from f1 and bind axis variables to the values
of the non-filtered attributes. Here, although the set of visualizations present in f2 is exactly the
same as f1, we now have a convenient way to iterate over the non-filtered attributes of f1. The
third row combines the specified attribute B1 with the non-filtered attributes of f2 to form the
filtering visual component f3, which expresses the filtering visual group U from above. We then
take the intersection between f1 and the filtering visual component f3 to arrive at our desired visual
component f4, which represents the resultant visual group σ v

T1=B1
(V ). Although, we earlier said
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that we would come up with f3 = σ v
T1=B1

(V), in truth, we come up with f3 = B1×πY,A1,...,Ak(V )

for T1 → X and f3 = πX ,A1,...,Ak(V )×B1 for T1 → Y because they are easier to express in ZQL;
regardless we still end up with the correct resulting set of visualizations.

Tables 4.19 and 4.20 show ZQL queries which express σ v
T1 6=B1

(V ) for T1 → X and T1 → Y

respectively. Similar to the queries above, these queries perform the approximate equivalent of
σ v

T1 6=B1
(V ) =V ∩v σ v

T1 6=B1
(V). We once again assume f1 is a given visual component which repre-

sents the operand V , and we come up with a filtering visual component f3 which mimics the effects
of (though is not completely equivalent to) σ v

T1 6=B1
(V). We then take the intersection between f1

and f3 to arrive at f4 which represents the resulting σ v
T1 6=B1

(V ).

Name X Y Z1 ... Zk
f1 - - - ... -

f2=f1 x1 <– _ y1 <– _ v1 <– A1._ ... vk <– Ak._
f3 x2 <– x1.range - {B1} y1 v1 ... vk

*f4=f1ˆf3

Table 4.19: ZQL query which expresses σ v
X 6=B1

(V ).

Name X Y Z1 ... Zk
f1 - - - ... -

f2=f1 x1 <– _ y1 <– _ v1 <– A1._ ... vk <– Ak._
f3 x1 y2 <– y1.range - {B1} v1 ... vk

*f4=f1ˆf3

Table 4.20: ZQL query which expresses σ v
Y 6=B1

(V ).

The expressions σ v
T2=B2

and σ v
T2 6=B2

refer to filters on the A1, ...,Ak attributes of V . Specifically,
T2 is some attribute A j ∈ {A1, ...,Ak} and B2 is the attribute value which is selected or excluded.
Here, we have an additional complication to the proof since any attribute A j can also filter for
or exclude ∗. First, we show ZQL is capable of expressing σ v

T2=B′2
and σ v

T2 6=B′2
for which B′2 6= ∗;

that is B′2 is any attribute value which is not ∗. Tables 4.21 and 4.22 show the ZQL queries which
express σ v

T2=B′2
(V ) and σ v

T2 6=B′2
(V ) respectively. Note the similarity between these queries and the

queries for σ v
T1=B1

(V ) and σ v
T1 6=B1

(V ).
For σ v

T2=∗(V ) and σ v
T2 6=∗(V ), Tables 4.23 and 4.24 show the corresponding queries. In Ta-

ble 4.23, we explicitly avoid setting a value for Zj for f3 to emulate A j = ∗ for the filtering visual
component. In Table 4.24, f3’s Zj takes on all possible values from A j.*, but that means that a
value is set for Zj (i.e., T2 6= ∗).

Now that we have shown how to express the base operations, we next assume ZQL is capable
of expressing any arbitrary complex filtering operations σ v

E ′ where E ′ comes from Line 4.10 of the
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Name X Y Z1 ... Zj ... Zk
f1 - - - ... - ... -

f2=f1 x1 <– _ y1 <– _ v1 <– A1._ ... ... vk <– Ak._
f3 x1 y1 v1 ... B′2 ... vk

*f4=f1ˆf3

Table 4.21: ZQL query which expresses σ v
A j=B′2

(V ) when B′2 6= ∗.

Name X Y Z1 ... Zj ... Zk
f1 - - - ... - ... -

f2=f1 x1 <– _ y1 <– _ v1 <– A1._ ... vj <– A j._ ... vk <– Ak._
f3 x1 y1 v1 ... uj <– vj.range - {B′2} ... vk

*f4=f1ˆf3

Table 4.22: ZQL query which expresses σ v
A j 6=B′2

(V ) when B′2 6= ∗.

CFG. Specifically, we assume that given a visual component f1 which expresses V , there exists a
filtering visual component f2 for which σ v

E ′(V ) = f1ˆf2. Given this assumption, we now must take
the inductive step, apply Line 4.10, and prove that σ v

E→(E ′)(V ), σ v
E→E ′∧C(V ), and σ v

E→E ′∨C(V ) are
all expressible in ZQL for any base constraint C.

Name X Y Z1 ... Zj ... Zk
f1 - - - ... - ... -

f2=f1 x1 <– _ y1 <– _ v1 <– A1._ ... ... vk <– Ak._
f3 x1 y1 v1 ... ... vk

*f4=f1ˆf3

Table 4.23: ZQL query which expresses σ v
A j=∗(V ).

Name X Y Z1 ... Zj ... Zk
f1 - - - ... - ... -

f2=f1 x1 <– _ y1 <– _ v1 <– A1._ ... ... vk <– Ak._
f3 x1 y1 v1 ... vj <– A j.* ... vk

*f4=f1ˆf3

Table 4.24: ZQL query which expresses σ v
A j 6=∗(V ).

σ v
E→(E ′)(V ): This case is trivial. Given f1 which represents V and f2 which is the filtering visual

component for E ′, we simply the intersect the two to get f3=f1ˆf2 which represents σ v
E→(E ′).

σ v
E→E ′∧C: Once again assume we are given f1 which represents V and f2 which is the filtering

visual component of E ′. Based on the base expression proofs above, we know that given any base
constraint C, we can find a filtering visual component for it; call this filtering visual component
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f3. We can then see that f2ˆf3 is the filtering visual component of E→ E ′∧C, and f4=f1ˆ(f2ˆf3)

represents σ v
E→E∧C(V ).

σ v
E→E ′∨C: Once again assume we are given f1 which represents V , f2 which is the filtering visual

component of E ′, and we can find a filtering visual component f3 for C. We can then see that f2+f3

is the filtering visual component of E→ E ′∨C, and f4=f1ˆ(f2+f3) represents σ v
E→E∨C(V ).

With this inductive step, we have shown that for all complex constraints E of the form given by
Line 4.10 of the CFG, we can find a ZQL query which expresses σ v

E(V ). Given this, we can finally
show that ZQL is capable of expressing σ v

θ
(V ) for all θ : σ v

θ→E(V ), σ v
θ→E∧E ′)(V ), σ v

θ→E∨E ′(V ),
and σ v

θ→ε
(V ).

σ v
θ→E(V ): This case is once again trivial. Assume, we are given f1 which represents V , and f2,

which is the filtering visual component of E, f3=f1ˆf2 represents σ v
θ→E(V ).

σ v
θ→E∧E ′(V ): Assume, we are given f1 which represents V , f2, which is the filtering visual com-

ponent of E, and f3, which is the filtering visual component of E ′. f2ˆf3 is the filtering visual
component of θ → E ∧E ′, and f4=f1ˆ(f2ˆf3) represents σ v

θ→E∧E ′(V ).

σ v
θ→E∨E ′(V ): Assume, we are given f1 which represents V , f2 which is the filtering visual com-

ponent of E, and f3 which is the filtering visual component of E ′. f2+f3 is the filtering visual
component of θ → E ∨E ′, and f4=f1ˆ(f2+f3) represents σ v

θ→E∨E ′(V ).

σ v
θ→ε

(V ): This is the case in which no filtering is done. Therefore, given f1 which represents V ,
we can simply return f1.

Lemma 4.3. τv
F(T )(V ) is expressible in ZQL for all valid functionals F of T and visual groups V .

Name X Y Z1 ... Zk Process
f1 - - - ... -

f2=f1 x1 <– _ y1 <– _ v1 <– A1._ .. vk <– Ak._ x2, y2, u1, ..., uk <– argminx1,y1,v1,...,vk[k = ∞]F(T )( f 2)
*f3 x2 y2 u1 ... uk

Table 4.25: ZQL query q which expresses τv
F(T )(V ).

Proof. Assume f1 is the visual component which represents V . Query q given by Table 4.25
produces visual component f3 which expresses τv

F(T )(V ).

Lemma 4.4. µv
[a:b](V ) is expressible in ZQL for all valid intervals a : b and visual groups V .

Name X Y Z1 ... Zk Process
f1 - - - ... -

*f2=f1[a:b]

Table 4.26: ZQL query q which expresses µv
[a:b](V ).
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Proof. Assume f1 is the visual component which represents V . Query q given by Table 4.26
produces visual component f2 which expresses µv

[a:b](V ).

Lemma 4.5. ζ v
R, j(V ) is expressible in ZQL for all valid numbers j and visual groups V .

Name X Y Z1 ... Zk Process
f1 - - - ... -

f2=f1 x1 <– _ y1 <– _ v1 <– A1._ ... vk <– Ak._ x2, y2, u1, ..., uk <– R( j,x1,y1,v1, ...,vk, f 2)
*f3 x2 y2 u1 ... uk

Table 4.27: ZQL query q which expresses ζ v
R, j(V ).

Proof. Assume f1 is the visual component which represents V and R′ is the corresponding repre-
sentative-finding algorithm in ZQL. Query q given by Table 4.27 produces visual component f3
which expresses µv

[a:b](V ).

Lemma 4.6. δ v(V ) is expressible in ZQL for all valid visual groups V .

Name X Y Z1 ... Zk Process
f1 - - - ... -

*f2=f1.range

Table 4.28: ZQL query q which expresses δ v(V ).

Proof. Assume f1 is the visual component which represents V . Query q given by Table 4.28
produces visual component f2 which expresses δ v(V ).

Lemma 4.7. V ∪v U is expressible in ZQL for all valid visual groups V and U.

Name X Y Z1 ... Zk Process
f1 - - - ... -
f2 - - - ... -

*f3=f1+f2 ...

Table 4.29: ZQL query q which expresses V ∪v U.

Proof. Assume f1 is the visual component which represents V and f2 represents U . Query q given
by Table 4.29 produces visual component f3 which expresses V ∪v U .

Lemma 4.8. V \v U is expressible in ZQL for all valid visual groups V and U.

Proof. Assume f1 is the visual component which represents V and f2 represents U . Query q given
by Table 4.30 produces visual component f3 which expresses V \v U . The proof for ∩v can be
shown similarly.
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Name X Y Z1 ... Zk Process
f1 - - - ... -
f2 - - - ... -

*f3=f1-f2 ...

Table 4.30: ZQL query q which expresses V \v U.

Lemma 4.9. β v
A(V,U) is expressible in ZQL for all valid attributes A in V and visual groups V

and U.

Name X Y Z1 ... Zk
f1 - - - ... -
f2 - - - ... -

f3=f1 y1 <– _ v1 <– A1._ ... vk <– Ak._
f4=f2 x1 <– _

*f5 x12 y11 v11 ... vk1

Table 4.31: ZQL query q which expresses β v
A(V,U) where A = X.

Name X Y Z1 ... Zk
f1 - - - ... -
f2 - - - ... -

f3=f1 x1 <– _ v1 <– A1._ ... vk <– Ak._
f4=f2 y1 <– _

*f5 x11 y12 v11 ... vk1

Table 4.32: ZQL query q which expresses β v
A(V,U) where A = Y .

Proof. Assume f1 is the visual component which represents V and f2 represents U . There are
three cases we must handle depending on the value of A due to the structure of columns in ZQL:
(i) A = X (ii) A = Y (iii) A = A j where A j is an attribute from the original relation R . For each
of the three cases, we produce a separate query which expresses β v. For A = X , the query given
by Table 4.31 produces f5 which is equivalent to β v

X(V,U) We use the superscripts in the last row
so that cross product conforms to the ordering defined in Section 4.4. For A = Y , the query given
by Table 4.32 produces f5 which is equivalent to β v

Y (V,U), and for A = A j, the query given by
Table 4.33 produces f5 which is equivalent to β v

A j
(V,U).

Lemma 4.10. φ v
F(D),A1,...,A j

(V,U) is expressible in ZQL for all valid attributes A1, ...,A j and visual

groups V and U.
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Name X Y Z1 ... Zj-1 Zj Zj+1 ... Zk
f1 - - - ... - - - ... -
f2 - - - ... - - - ... -

f3=f1 x1 <– _ y1 <– _ v1 <– A1._ ... vj-1 <– A j−1._ vj+1 <– A j+1._ ... vk <– Ak._
f4=f2 uj <– A j._

*f5 x11 y11 v11 ... vj-11 uj2 vj+11 ... vk1

Table 4.33: ZQL query q which expresses β v
A(V,U) where A = A j and A j is an attribute fromR

Name X Y Z1 ... Zj Process
f1 - - - ... -
f2 - - - ... -

f3=f1 v1 <– A1._ ... vj <– A j._
f4=f2.order v1 –> ... vj –> u1, ..., uj <– argminv1,...,v j[k = ∞]F(D)( f 3, f 4)

*f5=f1.order u1 –> ... uj –>

Table 4.34: ZQL query q which expresses φ v
F(D),A1,...,A j

(V,U).

Proof. Assume f1 is the visual component which represents V , and f2 represents U . Without loss
of generality, assume the attributes we want to match on (A1, ...,A j) are the first j attributes of R.
Query q given by Table 4.34 produces visual component f5 which expresses φ v

F(D),A1,...,A j
(V,U). In

the table, we first retrieve the values for (A1, ...,A j) using f3 and reorder f2 based on these values
to get f4. We then compare the visualizations in f3 and f4 with respect to (A1, ...,A j) using the
distance function F(D) and retrieve the increasingly sorted (A1, ...,A j) values from the argmin. We
are guaranteed that visualizations in f3 and f4 match up perfectly with respect to (A1, ...,A j) since
the definition in Section 4.4 allows exactly one visual source to result from any σ v

A1=a1∧...∧A j=a j
.

Finally, we reorder f1 according to these values to retrieve f5.

Lemma 4.11. ηv
F(D)(V,U) is expressible in ZQL for all valid functionals F of D and visual groups

V and singleton visual groups U.

Proof. Assume f1 is the visual component which represents V and f2 represents U . Query q given
by Table 4.35 produces visual component f4 which expresses ηv

F(D)(V,U).

Name X Y Z1 ... Zk Process
f1 - - - ... -
f2 - - - ... -

f3=f1 x1 <– _ y1 <– _ v1 <– A1._ ... vk <– Ak._ x2, y2, u1, ..., uk <– argminx1,y1,v1,...,vk[k = ∞]F(D)( f 3, f 2)
*f4 x2 y2 u1 ... uk

Table 4.35: ZQL query q which expresses ηv
F(D)(V,U).

Although we have come up with a formalized algebra to measure the expressiveness of ZQL,
ZQL is actually more expressive than visual exploration algebra. For example, ZQL allows the
user to nest multiple levels of iteration in the Process column
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Nevertheless, visual exploration algebra serves as a useful minimum metric for determining
the expressiveness of visual exploration languages. Other visual analytics tools like Tableau are
capable of expressing the selection operator σ v in visual exploration algebra, but they are incapable
of expressing the other operators which compare and filter visualizations based on summarization
functions T , D, and R. General purpose programming languages with analytics libraries such
as Python and Scikit-learn [45] are visual exploration complete since they are Turing-complete,
but ZQL’s declarative syntax strikes a novel balance between simplicity and expressiveness which
allows even non-programmers to become data analysts as we will see in Chapter 9.1.

4.6 DISCUSSION OF CAPABILITIES AND LIMITATIONS

Although ZQL can capture a wide range of visual exploration queries, it is not limitless. Here,
we give a brief description of what ZQL can and cannot do.

ZQL’s primary goal is to support queries over visualizations—which are themselves aggregate
group-by queries on data. Using these queries, ZQL can compose a collection of visualizations,
filter them in various ways, compare them against benchmarks or against each other, and sort the
results. The functions T and D, while intuitive, support the ability to perform a range of com-
putations on visualization collections—for example, any filter predicate on a single visualization,
checking for a specific visual property, can be captured under T . With the pluggable functions, the
ability to perform sophisticated computation on visualization collections is enhanced even further.
Then, via the dimension-based iterators, ZQL supports the ability to chain these queries with each
other and compose new visualization collections. These simple set of operations offer unprece-
dented power in being able to sift through visualizations to identify desired trends. These features
also distinguish ZQL from visualization languages languages such as D3 and Vega and tools such
as Voyager. While the latter support more expressive features for specifying visual encodings
and aesthetic properties for a given visualization, ZQL complements them with new primitives for
operating over a collection of visualization based on patterns or trends.

Since ZQL already operates one layer above the data—on the visualizations—it does not sup-
port the creation of new derived data: that is, ZQL does not support the generation of derived
attributes or values not already present in the data. The new data that is generated via ZQL is
limited to those from binning and aggregating via the Viz column. This limits ZQL’s ability to per-
form prediction—since feature engineering is an essential part of prediction; it also limits ZQL’s
ability to compose visualizations on combinations of attributes at a time, e.g., A1

A2 on the X axis.
Among other drawbacks of ZQL: ZQL does not support (i) recursion; (ii) any data modification;
(iii) non-foreign-key joins nor arbitrary nesting; (iv) dimensionality reduction or other changes
to the attributes; (v) other forms of processing visualization collections not expressible via T , D
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or the black box; (vi) multiple-dimensional visualizations; (vii) intermediate variable definitions;
(viii) merging of visualizations (e.g., by aggregating two visualizations); and (ix) statistical tests.

Finally, to facilitate ease of specification, ZQL lets users omit visualization specification details
as well as supports black-box primitives T and D with defaults parameters for pattern searching
and visualization comparison. The downside of this is that it makes it harder for users to debug
their queries. There remains important future work for balancing manual and automated query
specification. One important future research work could be to let users compose T and D using
more fine-grained primitives. Furthermore, we can provide more transparency and understanding
on what Zenvisage does internally, e.g., how Zenvisage arrived at recommendations as well as
display more interpretable outputs such as similarity scores of the visualizations.

4.7 OVERALL TAKEAWAYS

In this chapter, we describe how Zenvisage query language (ZQL) captures the data exploration
needs with its supported operations on collections of visualizations. These operations include:
composing collections of visualizations as well as filtering visualizations, comparing visualiza-
tions, and sorting visualizations based on some conditions. The conditions include similarity or
dissimilarity to a specific pattern, “typical” or anomalous behavior, or the ability to provide ex-
planatory or discriminatory power.

In the next chapter, we discuss how Zenvisage optimizes and executes ZQL queries over large
datasets.
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CHAPTER 5: ZENVISAGE QUERY OPTIMIZATION

An important challenge in building Zenvisage is the backend that supports the execution of ZQL.
A single ZQL query can lead to the generation of tens of thousands of visualizations — executing
each one independently as an aggregate query, would take several hours, rendering the tool some-
what useless. In this chapter, we discuss Zenvisage’s execution engine, which is responsible for
compiling and executing ZQL queries. The ZQL compiler translates ZQL queries into a combina-
tion of SQL queries to fetch the visualization collections and processing tasks to operate on them.
We present a basic graph-based translation for ZQL and then provide several optimizations to the
graph which reduce the overall runtime considerably.

5.1 BASIC TRANSLATION

Every valid ZQL query can be transformed into a query plan in the form of a directed acyclic
graph (DAG). The DAG contains c-nodes (or collection nodes) to represent the collections of
visualizations in the ZQL query and p-nodes (or process nodes) to represent the optimizations (or
processes) in the Process column. Directed edges are drawn between nodes that have a dependency
relationship. Using this query plan, the ZQL engine can determine at each step which visualization
collection to fetch from the database or which process to execute. The full steps to build a query
plan for any ZQL query is as follows: (i) Create a c-node or collection node for every collection
of visualizations (including singleton collections). (ii) Create a p-node or processor node for
every optimization (or process) in the Process column. (iii) For each c-node, if any of its axis
variables are derived as a result of a process, connect a directed edge from the corresponding p-
node. (iv) For each p-node, connect a directed edge from the c-node of each collection which
appears in the process. Following these steps, we can translate our realistic query example in
Table 4.13 in Chapter 4 to its query plan presented in Figure 5.1. The c-nodes are annotated with
f#, and the p-nodes are annotated with p# (the ith p-node refers to the process in the ith row of
the table). Here, f1 is a root node with no dependencies since it does not depend on any process,
whereas f5 depends on the results of both p3 and p4 and have edges coming from both of them.

f1

f2

p1

p2

f3

f4

p3

p4

f5

Figure 5.1: The query plan for the query presented in Table 4.13.
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Once the query plan has been constructed, the ZQL engine can execute it using the simple
algorithm presented in in Algorithm 5.1.

Algorithm 5.1. Algorithm to execute ZQL query plan:

1. Search for a node with either no parents or one whose parents have all been marked as

done.

2. Run the corresponding task for that node and mark the node as done.

3. Repeat steps 1 and 2 until all nodes have been marked as done.

For c-nodes, the corresponding task is to retrieve the data for visualization collection, while for
p-nodes, the corresponding task is to execute the process.

c-node translation: At a high level, for c-nodes, the appropriate SQL group-by queries are is-
sued to the database to compose the data for multiple visualizations at once. Specifically, for the
simplest setting where there are no collections specified for X or Y, a SQL query in the form of:

SELECT X, A(Y), Z, Z2, ...

WHERE C(X, Y, Z, Z2, ...)

GROUP BY X, Z, Z2, ...

ORDER BY X, Z, Z2, ...

is issued to the database, where X is the X column attribute, Y is the Y column attribute, A(Y)
is the aggregation function on Y (specified in the Viz column), Z, Z2, ... are the attributes/dimen-
sions we are iterating over in the Z columns, while C(X, Y, Z, Z2, ...) refers to any additional
constraints specified in the Z columns. The ORDER BY is inserted to ensure that all rows corre-
sponding to a visualization are grouped together, in order. As an example, the SQL query for the
c-node for f1 in Table 4.12 would have the form:

SELECT year, SUM(sales), product

GROUP BY year, product

ORDER BY year, product

If a collection is specified for the y-axis, each attribute in the collection is appended to the SE-

LECT clause. If a collection is specified for the x-axis, a separate query must be issued for every
X attribute in the collection. The results of the SQL query are then packed into a m-dimensional
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array (each dimension in the array corresponding to a dimension in the collection) and labeled with
its f# tag.

p-node translation: At a high level, for p-nodes, depending on the structure of the expression
within the process, the appropriate pseudocode is generated to operate on the visualizations. To
illustrate, say our process is trying to find the top-10 values for which a trend is maximized/mini-
mized with respect to various dimensions (using T ), and the process has the form:

〈argopt〉v0[k = k′]
[
〈op1〉v1

[
〈op2〉v2 · · ·

[
〈opm〉vmT ( f 1)

]]]
(5.1)

where 〈argopt〉 is one of argmax or argmin, and 〈op〉 refers to one of (max |min |∑ |∏). Given
this, the pseudocode which optimizes this process can automatically be generated based on the
actual values of 〈argopt〉, 〈op〉, and the number of operations. In short, for each 〈op〉 or dimension
traversed over, the ZQL engine generates a new nested for loop. Within each for loop, we iterate
over all values of that dimension, evaluate the inner expression, and then eventually apply the
overall operation (e.g., max, ∑). For Equation 5.1, the generated pseudocode would look like the
one given by Listing 5.1. Here, f refers to the visualization collection being operated on by the
p-node, which the parent c-node should have already retrieved.

f = make_ndarray(SQL(...))

tmp0 = make_array(size=len(v0))

for i0 in [1 .. len(v0)]:

tmp1 = make_array(size=len(v1))

for i1 in [1 .. len(v1)]:

tmp2 = make_array(size=len(v2))

for i2 in [1 .. len(v2)]:

...

tmpm = make_array(size=len(vn))

for im in [1 .. len(vn)]:

tmpm[im] = T(f[0, i1, i2, ..., im])

tmpm-1[im-1] = opm(tmpm)

...

tmp1[i1] = op1(tmp2)

tmp0[i0] = op0(tmp1)

return argopt(tmp0)[:k’]

Listing 5.1: Pseudocode for a process in the form of Equation 5.1.
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Although this is the translation for one specific type of process, it is easy to see how the code
generation would generalize to other patterns.

5.2 OPTIMIZATIONS

We now present several optimizations to the previously introduced basic translator. In prelimi-
nary experiments, we found that the SQL queries for the c-nodes took the majority of the runtime
for ZQL queries, so we concentrate our efforts on reducing the cost of computing c-nodes. How-
ever, we do present one p-node-based optimization for process-intensive ZQL queries. We start
with the simplest optimization schemes, and add more sophisticated variations later.

5.2.1 Parallelization

One natural way to optimize the graph-based query plan is to take advantage of the multi-query
optimization (MQO) [63] present in databases and issue in parallel the SQL queries for independent
c-nodes—the c-nodes for which there is no dependency between them. With MQO, the database
can receive multiple SQL queries at the same time and share the scans for those queries, thereby
reducing the number of times the data needs to be read from disk.

To integrate this optimization, we make two simple modifications to Algorithm 5.1. In the first
step, instead of searching for a single node whose parents have all been marked done, search for
all nodes whose parents have been marked as done. Then in step 2, issue the SQL queries for all
c-nodes which were found in step 1 in parallel at the same time. For example, the SQL queries for
f1 and f2 could be issued at the same time in Figure 5.1, and once p1 and p2 are executed, SQL
queries for f3 and f4 can be issued in parallel.

5.2.2 Speculation

While parallelization gives the ZQL engine a substantial increase in performance, we found
that many realistic ZQL queries intrinsically have a high level of interdependence between the
nodes in their query plans. To further optimize the performance, we use speculation: the ZQL
engine pre-emptively issues SQL queries to retrieve the superset of visualizations for each c-node,
considering all possible outcomes for the axis variables. Specifically, by tracing the provenance
of each axis variable back to the root, we can determine the superset of all values for each axis
variable; then, by considering the Cartesian products of these sets, we can determine a superset of
the relevant visualization collection for a c-node. After the SQL queries have returned, the ZQL
engine proceeds through the graph as before, and once all parent p-nodes for a c-node have been
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evaluated, the ZQL engine isolates the correct subset of data for that c-node from the pre-fetched
data.

For example, in the query in Table 4.13 in Chapter 4, f3 depends on the results of p1 and p2 since
it has constraints based on v2 and v4; specifically v2 and v4 should be locations and categories
for which f1 and f2 have a negative trend. However, we note that v2 and v4 are derived as a result
of v1 and v3, specified to take on all locations and categories in rows 1 and 2. So, a superset of
f3, the set of profit over year visualizations for various products for all locations and categories (as
opposed to just those that satisfy p1 and p2), could be retrieved pre-emptively. Later, when the
ZQL engine executes p1 and p2, this superset can be filtered down correctly.

One downside of speculation is that a lot more data must be retrieved from the database, but we
found that blocking on the retrieval of data was more expensive in runtime than retrieving extra
data. Thus, speculation ends up being a powerful optimization which compounds the positive
effects of parallelization.

5.2.3 Query Combination

From extensive modeling of relational databases, we found that the overall runtime of concur-
rently running issuing SQL queries is heavily dependent on the number of queries being run in
parallel. Each additional query constituted a Tq increase in the overall runtime (e.g., for our set-
tings of PostgreSQL, we found Tq = ~900ms). To reduce the total number of running queries, we
use query combination; that is, given two SQL queries Q1 and Q2, we combine these two queries
into a new Q3 which returns the data for both Q1 and Q2. In general, if we have Q1 (and Q2) in the
form of:

SELECT X1, A(Y1), Z1

WHERE C1(X1, Y1, Z1)

GROUP BY X, Z1

ORDER BY X, Z1

we can produce a combined Q3 which has the form:

SELECT X1, A(Y1), Z1, C1, X2, A(Y2), Z2, C2

WHERE C1 or C2

GROUP BY X1, Z1, C1, X2, Z2, C2

ORDER BY X1, Z1, C1, X2, Z2, C2

where C1 = C1(X1, Y1, Z1) and C2 is defined similarly. From the combined query Q3,

50



it is possible to regenerate the data which would have been retrieved using queries Q1 and Q2 by
aggregating over the non-related groups for each query. For Q1, we would select the data for which
C1 holds, and for each (X1, Z1) pair, we would aggregate over the X2, Z2, and C2 groups.

While query combining is an effective optimization, there are limitations. We found that the
overall runtime also depends on the number of unique group-by values per query, and the number
of unique group-by values for a combined query is the product of the number of unique group-by
values of the constituent queries. Thus, the number of average group-by values per query grows
super-linearly with respect to the number of combinations. However, we found that as long as the
combined query had less than MG unique group-by values, it was more advantageous to combine
than not (e.g., for our settings of PostgreSQL, we found MG = 100k).

Formulation 5.1. Given the above findings, we can now formulate the problem of deciding which
queries to combine as an optimization problem: Find the best combination of SQL queries that

minimizes: α×(total number of combined queries) + ∑i (number of unique group-by values in

combined query i), such that no single combination has more than MG unique group-by values.

The cost of adding a thread, α , is generally more than MG—for instance, in PostgreSQL we
found α > 100k (MG) for different experimental settings. By further assuming that the cost of
processing all group by values < MG is same, we can simplify the problem to finding the minimum
number of combined queries such that the maximum number of group by values per combined
query is less than MG. We prove that the solution to this problem is NP-HARD by reduction from
the PARTITION PROBLEM.

Proof. Let g1,g2, ...gn be the group by values for the queries Q1,Q2, ...,Qn we want to combine.
We want to find minimum number m of combined queries, such that each combined query Gi

has at most MG maximum group by values. Recall that in the Partition problem, we are given
an instance of n numbers a1,a2, ...,an, and we are asked to decide if there is a set S such that

∑ai⊂S ai = ∑ai 6⊂S ai. Let A = ∑ai and consider an instance of Query Combination problem with

gi = M
2×ai

A
G . With this setting, it is easy to see that the answer to the Partition instance is YES if

and only if the minimum number of combined queries is 2.

Wrinkle and Solution. However, a wrinkle to the above formulation is that it assumes no two
SQL queries share a group-by attribute. If two queries have a shared group-by attribute, it may be
more beneficial to combine those two, since the number of group-by values does not increase upon
combining them. Overall, we developed the metric EFGV or the effective increase in the number
of group-by values to determine the utility of combining query Q′ to query Q: EFGVQ(Q′) =

∏g∈G(Q′) #(g)[[g/∈G(Q)]] where G(Q) is the set of group-by values in Q, #(g) calculates the number
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of unique group-by values in g, and [[g /∈ G(Q)]] returns 1 if g /∈ G(Q) and 0 otherwise. In other
words, this calculates the product of group-by values of the attributes which are in Q′ but not in
Q. Using the EFGV metric, we then apply a variant of agglomerative clustering [64] to decide the
best choice of queries to combine. As we show in the experiments, this technique leads to very
good performance.

5.2.4 Cache-Aware Execution

Although the previous optimizations were all I/O-based optimizations for ZQL, there are cases in
which optimizing the execution of p-nodes is important as well. In particular, when a process has
multiple nested for loops, the cost of the p-node may start to dominate the overall runtime. To ad-
dress this problem, we adapt techniques developed in high-performance computing—specifically,
cache-based optimizations similar to those used in matrix multiplication [65]. With cache-aware
execution, the ZQL engine partitions the iterated values in the for loops into blocks of data which
fit into the L3 cache. Then, the ZQL engine reorders the order of iteration in the for loops to max-
imize the time that each block of data remains in the L3 cache. This allows the system to reduce
the amount of data transfer between the cache and main memory, minimizing the time taken by
the p-nodes.

5.3 EXPERIMENTAL STUDY

In this section, we evaluate the runtime performance of the ZQL engine. We present the runtimes
for executing both synthetic and realistic ZQL queries and show that we gain speedups of up to
3× with the optimizations We also varied the characteristics of a synthetic ZQL query to observe
their impact on our optimizations. Finally, we show that disk I/O was a major bottleneck for the
ZQL engine, and if we switched our back-end database to a column-oriented database and cache
the dataset in memory, we can achieve interactive run times for datasets as large as 1.5GB.

Setup. All experiments were conducted on a 64-bit Linux server with 8 3.40GHz Intel Xeon
E3-1240 4-core processors and 8GB of 1600 MHz DDR3 main memory. We used PostgreSQL
with working memory size set to 512 MB and shared buffer size set to 256MB for the majority of
the experiments; the last set of experiments demonstrating interactive run times additionally used
Vertica Community Edition with a working memory size of 7.5GB.

PostgreSQL Modeling. For modeling the performance on issuing multiple parallel queries with
varying number of group by values, we varied the number of parallel queries issued (#Q) from 1 to
100, and the group by values per query (#V) from 10 to 100000, and recorded the response times
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Query Description
# c-
nodes

# p-
nodes

# T # D #V

# SQL
Queries:
NO-
OPT

# SQL
Queries:
SMART-
FUSE

1

Plot the related visualizations for
airports which have a correlation
between arrival delay and traveled
distances for flights arriving there.

6 3 670
93,000 18,642

6 1

2

Plot the delays for carriers whose
delays have gone up at airports
whose average delays have gone
down over the years.

5 4
1,000

0
11,608

4 1

3

Plot the delays for the outlier
years, outlier airports, and outlier
carriers with respect to delays.

12 3 0
94,025

4,358 8 2

Table 5.1: Realistic queries for the airline dataset with the # of c-nodes, # of p-nodes, # of T
functions calculated, # of D functions calculated, # of visualizations explored, # of SQL queries
issued with NO-OPT, and # of SQL queries issued with SMARTFUSE per query.

(T). We observed that the time taken for a batch of queries was practically linearly dependent to
both the number of queries as well as the group by values. Fitting a linear equation by performing
multiple regression over the observed data, we derived the following cost-model,

T (ms) = 908× (#Q)+1.22× (#V )

100
+1635 (5.2)

As per the above model, adding a thread leads to the same rise in response time as increasing
the number of group by values by 75000 over the existing threads in the batch. In other words, it
is better to merge queries with small number of group by values. Moreover, since there is a fixed
cost (1635 ms) associated with every batch of queries, we tried to minimize the number of batches
by packing as many queries as possible within the memory constraints.

Optimizations. The four versions of the ZQL engine we use are: (i) NO-OPT: The basic trans-
lation. (ii) PARALLEL: Concurrent SQL queries for independent nodes. (iii) SPECULATE: Spec-
ulating and pre-emptively issuing SQL queries. (iv) SMARTFUSE: Query combination with spec-
ulation. In our experiments, we consider NO-OPT and the MQO-dependent PARALLEL to be
our baselines, while SPECULATE and SMARTFUSE were considered to be completely novel op-
timizations. For certain experiments later on, we also evaluate the performance of the caching
optimizations from Chapter 5.2.4 on SMARTFUSE.
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Figure 5.2: Effect of number of visualizations (left) and length of the chain (right) on the overall
runtimes.

5.3.1 Realistic Queries

For our realistic queries, we used 20M rows of a real 1.5GB airline dataset [66] which contained
the details of flights within the USA from 1987-2008, with 11 attributes. On this dataset, we
performed 3 realistic ZQL queries inspired by the case studies in our introduction. Descriptions of
the queries can be found in Table 5.1.

Figure 5.2 (left) depicts the runtime performance of the three realistic ZQL queries, for each of
the optimizations. For all queries, each level of optimization provided a substantial speedup in ex-
ecution time compared to the previous level. Simply by going from NO-OPT to PARALLEL, we saw

a 45% reduction in runtime. From PARALLEL to SPECULATE and SPECULATE to SMARTFUSE,

we saw 15-20% reductions in runtime. A large reason for why the optimizations were so effective
was because ZQL runtimes are heavily dominated by the execution time of the issued SQL queries.
In fact, we found that for these three queries, 94-98% of the overall runtime could be contributed
to the SQL execution time. We can see from Table 5.1, SMARTFUSE always managed to lower
the number of SQL queries to 1 or 2 after our optimizations, thereby heavily impacting the overall
runtime performance of these queries.

5.3.2 Varying Characteristics of ZQL Queries

We were interested in evaluating the efficacy of our optimizations with respect to four different
characteristics of a ZQL query: (i) the number of visualizations to explore, (ii) the complexity of
the ZQL query, (iii) the level of interconnectivity within the ZQL query, and (iv) the complexity of
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the processes. To control for all variables except these characteristics, we used a synthetic chain-
based ZQL query to conduct these experiments. Every row of the chain-based ZQL query specified
a collection of visualizations based on the results of the process from the previous row, and every
process was applied on the collection of visualizations from the same row. Therefore, when we
created the query plan for this ZQL query, it had the chain-like structure. Using the chain-based
ZQL query, we could then (i) vary the number of visualizations explored, (ii) use the length of
the chain as a measure of complexity, (iii) introduce additional independent chains to decrease
interconnectivity, and (iv) increase the number of loops in a p-node to control the complexity of
processes.

To study these characteristics, we used a synthetic dataset with 10M rows and 15 attributes (10
dimensional and 5 measure) with cardinalities of dimensional attributes varying from 10 to 10,000.
By default, we set the input number of visualizations per chain to be 100, with 10 values for the
X attribute, number of c-nodes per chain as 5, the process as T (with a single for loop) with a
selectivity of .50, and number of chains as 1.

Impact of number of visualizations. Figure 5.2 (left) shows the performance of NO-OPT, SPEC-
ULATE, and SMARTFUSE on our chain-based ZQL query as we increased the number of visual-
izations that the query operated on. The number of visualizations was increased by specifying
larger collections of Z column values in the first c-node. We chose to omit PARALLEL here since
it performs identically to NO-OPT. With the increase in visualizations, the overall response time
increased for all versions because the amount of processing per SQL query increased. SMART-
FUSE showed better performance than SPECULATE up to 10k visualizations due to reduction in
the total number of SQL queries issued. However, at 10k visualization, we reached the threshold
of the number of unique group-by values per combined query (100k for PostgreSQL), so it was
less optimal to merge queries. At that point, SMARTFUSE behaved similarly to SPECULATE.

Impact of the length of the chain. We varied the length of the chain in the query plan (or the
number of rows in the ZQL query) to simulate a change in the complexity of the ZQL query and
plotted the results in Figure 5.2 (right). As the number of nodes in the query plan grew, the overall
runtimes for the different optimizations also grew. However, while the runtimes for both NO-
OPT and SPECULATE grew at least linearly, the runtime for SMARTFUSE grew sublinearly due
to its query combining optimization. While the runtime for NO-OPT was much greater than for
SPECULATE, since the overall runtime is linearly dependent on the number of SQL queries run in
parallel, we see a linear growth for SPECULATE.

Impact of the number of chains. We increased the number of independent chains from 1 to
5 to observe the effect on runtimes of our optimizations; the results are presented in Figure 5.3
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Figure 5.3: Effect of number of independent chains (left) and the number of loops in a p-node
(right) on the overall runtimes.

(left). While NO-OPT grew linearly as expected, all PARALLEL, SPECULATE, and SMARTFUSE

were close to constant with respect to the number of independent chains. We found that while
the overall runtime for concurrent SQL queries did grow linearly with the number of SQL queries
issued, they grew much slower compared to issuing those queries sequentially, thus leading to an
almost flat line in comparison to NO-OPT.

Impact of process complexity. We increased the complexity of processes by increasing the num-
ber of loops in the first p-node from 1 to 2. For the single loop, the p-node filtered based on a
positive trend via T , while for the double loop, the p-node found the outlier visualizations. Then,
we varied the number of visualizations to see how that affected the overall runtimes. Figure 5.3
(right) shows the results. For this experiment, we compared regular SMARTFUSE with cache-
aware SMARTFUSE to see how much of a cache-aware execution made. We observed that there
was not much difference between cache-aware SMARTFUSE and regular SMARTFUSE below 5k
visualizations when all data could fit in cache. After 5k visualizations, not all the visualizations
could be fit into the cache the same time, and thus the cache-aware execution of the p-node had an
improvement of 30-50% as the number of visualizations increased from 5k to 25k. However, this
improvement, while substantial, is only a minor change in the overall runtime.

5.3.3 Interactivity

The previous figures showed that the overall execution times of ZQL queries took several sec-
onds, even with SMARTFUSE, thus perhaps indicating ZQL is not fit for interactive use with large
datasets. However, we found that this was primarily due to the disk-based I/O bottleneck of SQL
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Figure 5.4: SMARTFUSE on PostgreSQL (left) and Vertica (right)

queries. In Figure 5.4 (left), we show the SMARTFUSE runtimes of the 3 realistic queries from
before on varying size subsets of the airline dataset, with the time that it takes to do a single
group-by scan of the dataset. As we can see, the runtimes of the queries and scan time are vir-

tually the same, indicating that SMARTFUSE comes very close to the optimal I/O runtime (i.e., a
“fundamental limit” for the system).

To further test our hypothesis, we ran our ZQL engine with Vertica with a large working memory
size to cache the data in memory to avoid expensive disk I/O. The results, presented in Figure 5.4
(right), showed that there was a 50× speedup in using Vertica over PostgreSQL with these settings.
Even with a large dataset of 1.5GB, we were able to achieve sub-second response times for many
queries. Furthermore, for the dataset with 120M records (11GB, so only 70% could be cached), we
were able to reduce the overall response times from 100s of seconds to less than 10 seconds. Thus,
once again, Zenvisage returned results in a small multiple of the time it took to execute a single
group-by query. Overall, SMARTFUSE is interactive on moderate sized datasets on PostgreSQL,
or on large datasets that can be cached in memory and operated on using a columnar database—
which is standard practice adopted by visual analytics tools [67]. Improving on interactivity is
impossible due to fundamental limits to the system; in the future, we plan to explore returning
approximate answers using samples, since even reading the entire dataset is prohibitively slow.

5.4 OVERALL TAKEAWAYS

In this chapter, we described ZQL, the underlying query language for Zenvisage for operating
over collections of visualizations at a time. Unlike relational query languages that operate directly
on data, ZQL operates on collections of visualizations, which are themselves aggregate queries
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on data. ZQL conceptually captures two types of operations: composition and processing. The
composition operation enables us to compose a collection of visualizations, while the processing
operation allows us to operate on a collection of visualizations, by filtering, comparing, or sorting
these visualizations. ZQL is a synthesis of desiderata after discussions with data scientists from a
variety of domains, and we show that ZQL is expressive — it builds on a visual exploration algebra
that we develop and has nice theoretical properties

An important challenge in building Zenvisage is the backend that supports the execution of
ZQL. A single ZQL query can lead to the generation of 10,000s of visualization — executing each
one independently as an aggregate query, would take several hours, rendering the tool somewhat
useless. Zenvisage ’s query optimizer operates as a wrapper over any traditional relational database
system. This query optimizer compiles ZQL queries down to a directed acyclic graph of operations
on collections of visualizations, followed with the optimizer using a combination of intelligent
speculation and combination, to issue queries to the underlying database. We also demonstrated
that the underlying problem is NP-HARD. Our query optimizer leads to substantial improvements
over the naive schemes adopted within relational database systems for multi-query optimization.

In the next chapter, we present an user evaluation of Zenvisage focused on evaluating its effec-
tiveness and usability.
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CHAPTER 6: ZENVISAGE USER EVALUATION

In this chapter, we present a user study that we conducted to evaluate the utility of Zenvisage
for data exploration versus two types of systems—first, visualization tools, similar to Tableau, and
second, general database and data mining tools, which also support interactive analytics to a certain
extent. In preparation for the user study, we conducted interviews with data analysts to identify
the typical exploration tasks and tools used in their present workflow. Using these interviews, we
identified a set of tasks to be used in the user study for Zenvisage. We describe these interviews
first, followed by the user study details.

6.1 ANALYST INTERVIEWS AND TASK SELECTION

We hired seven data analysts via Upwork [68], a freelancing platform—we found these analysts
by searching for freelancers who had the keywords analyst or tableau in their profile. We con-
ducted one hour interviews with them to understand how they perform data exploration tasks. The
interviewees had 3—10 years of prior experience and explained every step of their workflow; from
receiving the dataset to presenting the analysis to clients. The rough workflow of all interviewees
identified was the following: first, data cleaning is performed; subsequently, the analysts perform
data exploration; then, the analysts develop presentations using their findings. We then drilled
down onto the data exploration step.

We first asked the analysts what types of tools they use for data exploration. Analysts reported
nine different tools—the most popular ones included Excel (5), Tableau (3), and SPSS (2). The rest
of the tools were reported by just one analyst: Python, SQL, Alteryx, Microsoft Visio, Microsoft
BI, SAS. Perhaps not surprisingly, analysts use both visualization tools (Tableau, Excel, BI), pro-
gramming languages (Python), statistical tools (SAS, SPSS), and relational databases (SQL) for
data exploration.

Then, to identify the common tasks used in data exploration, we used a taxonomy of abstract
exploration tasks proposed by Amar et al. [69]. Amar et al. developed their taxonomy through
summarizing the analytical questions that arose during the analysis of five different datasets, in-
dependent of the capabilities of existing tools or interfaces. The exploration tasks in Amar et
al. include: filtering (f), sorting (s), determining range (r), characterizing distribution (d), finding
anomalies (a), clustering (c), correlating attributes (co), retrieving value (v), computing derived
value (dv), and finding extrema (e). When we asked the data analysts which tasks they use in their
workflow, the responses were consistent in that all of them use all of these tasks, except for three
exceptions—c, reported by four participants, and e, d, reported by six participants.

Given these insights, we selected a small number of appropriate tasks for our user study encom-
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passing eight of the ten exploration tasks described above: f, s, r, d, a, c, co, v. The other two—dv
and e—finding derived values and computing extrema, are important tasks in data analysis, but
existing tools (e.g., Excel) already provide adequate capabilities for these tasks, and we did not
expect Zenvisage to provide additional benefits.

6.2 USER STUDY METHODOLOGY

The goal of our user study was to evaluate Zenvisage with other tools, on its ability to effectively
support data exploration.

Participants. We recruited 12 graduate students as participants with varying degrees of expertise
in data analytics. Table 6.1 depicts the participants’ experience with different categories of tools.

Tools Count

Excel, Google spreadsheet, Google Charts 8

Tableau 4

SQL, Databases 6

Matlab,R,Python,Java 8

Data mining tools such as weka, JNP 2

Other tools like D3 2

Table 6.1: Participants’ prior experience with data analytic tools

Baselines. For the purposes of our study, we explicitly wanted to do a head-to-head qualitative
and quantitative comparison with visual analytics tools, and thus we developed a baseline tool to
compare Zenvisage against directly. Further, via qualitative interviews, we compared Zenvisage
versus against other types of tools, such as databases, data mining, and programming tools. Our
baseline tool was developed by replicating the visualization selection capabilities of visual ana-
lytics tools with a styling scheme identical to Zenvisage to control for external factors. The tool
allowed users to specify the x-axis, y-axis, dimensions, and filters. The tool would then populate
all visualizations meeting the specifications.

Comparison Points. There are no tools that offer the same functionalities as Zenvisage. Visual
analytics tools do not offer the ability to search for specific patterns, or issue complex visual
exploration queries; data mining toolkits do not offer the ability to search for visual patterns and are
instead tailored for general machine learning and prediction. Since visual analytics tools are closer
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in spirit and functionality to Zenvisage, we decided to implement a visual analytics tool as our
baseline. Thus, our baseline tool replicated the basic query specification and output visualization
capabilities of existing tools such as Tableau. We augmented the baseline tool with the ability
to specify an arbitrary number of filters, allowing users to use filters to drill-down on specific
visualizations. This baseline visualization tool was implemented with a styling scheme similar to
Zenvisage to control for external factors. As depicted in Figure 6.1, the baseline allowed users to
visualize data by allowing them to specify the x-axis, y-axis, category, and filters. The baseline
tool would populate all the visualizations, which fit the user specifications, using an alpha-numeric
sort order. In addition to task-based comparisons with this baseline, we also explicitly asked
participants to compare Zenvisage with existing data mining and visual analytics tools that they
use in their workflow.

Dataset. We used a housing dataset from Zillow.com [70], consisting of housing sales data for
different cities, counties, and states from 2004-15, with over 245K rows, and 15 attributes. We
selected this dataset since participants could relate to the dataset and understand the usefulness of
the tasks.

Tasks. We designed the user study tasks with the case studies from Chapter 1 in mind, and trans-
lated them into the housing dataset. Further, we ensured that these tasks together evaluate eight of
the exploration tasks described above—f, s, r, d, a, c, co, and v. One task used in the user study is
as follows: “Find three cities in the state of NY where the sold price vs year trend is very different
from the state's overall trend.” This query required the participants to first retrieve the trend of
NY (v) and characterize its distribution (d), then separately filter to retrieve the cities of NY (f),
compare the values to find a negative correlation (co), sort the results (s), and report the top three
cities on the list.

Study Protocol. The user study was conducted using a within-subjects study design [71], forming
three phases. First, participants described their previous experience with data analytics tools. Next,
participants performed exploration tasks using Zenvisage (Tool A) and the baseline tool (Tool
B), with the orders randomized to reduce order effects. Participants were provided a 15-minute
tutorial-cum-practice session per tool to get familiarized before performing the tasks. Finally,
participants completed a survey that both measured their satisfaction levels and preferences, along
with open-ended questions on the strengths and weaknesses of Zenvisage and the baseline, when
compared to other analytics tools they may have used. The average study session lasted for 75
minutes on average. Participants were paid ten dollars per hour for their participation. After the
study, we reached out to participants with backgrounds in data mining and programming, and
asked if they could complete a follow-up interview where they use their favorite analytics tool for
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Figure 6.1: The baseline interface implemented for the user study.

performing one of the tasks.

Metrics. Using data that we recorded, we collected the following metrics: completion time, ac-
curacy, and the usability ratings and satisfaction level from the survey results. In addition, we
also explicitly asked participants to compare Zenvisage with tools that they use in their workflow.
For comparisons between Zenvisage and general database and data mining tools via follow-up
interviews, we used the number of lines of code to evaluate the differences.

Ground Truth. Two expert data analysts prepared the ground truth for each the tasks in the form of
ranked answers, along with score cut-offs on a 0 to 5 scale (5 highest). Their inter-rater agreement,
measured using Kendall’s Tau coefficient, was 0.854. We took the average of the two scores to rate
the participants’ answers.
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6.3 KEY FINDINGS

Three key findings emerged from the study and are described below. We use µ , σ , χ2 to denote
average, standard deviation, and Chi-square test scores, respectively.

Finding 6.1. Zenvisage enables faster and more accurate exploration than existing visualiza-
tion tools. Since all of our tasks involved generating multiple visualizations and comparing them to
find desired ones, participants were not only able to complete the tasks faster—µ=115s, σ=51.6 for
Zenvisage vs. µ=172.5s, σ=50.5 for the baseline—but also more accurately—µ=96.3%, σ=5.82
for Zenvisage vs. µ=69.9%, σ=13.3 for the baseline. A one-way between-subjects ANOVA, fol-
lowed by a post-hoc Tukey’s test [72], we found that Zenvisage had statistically significant faster
task completion times compared to the baseline interface, with p value of 0.0069. The baseline
required considerable manual exploration to complete the same task, explaining the high task com-
pletion times. In addition, participants frequently compromised by selecting suboptimal answers
before browsing the entire list of results for better ones, explaining the low accuracy. On the
other hand, Zenvisage was able to automate the task of finding desired visualizations, consider-
ably reducing manual effort. Also of note is the fact that the accuracy with Zenvisage was close
to 100%—indicating that a short 15 minute tutorial on ZQL was enough to equip users with the
knowledge they needed to address the tasks—and that too, within 2 minutes (on average).

When asked about using Zenvisage vs. the baseline in their current workflow, 9 of the 12 partic-
ipants stated that they would use Zenvisage in their workflow, whereas only two participants stated
that they would use our baseline tool (χ2 = 8.22, p<0.01). When the participants were asked how,
one participant provided a specific scenario: “If I am doing my social science study, and I want

to see some specific behavior among users, then I can use tool A [Zenvisage ] since I can find the

trend I am looking for and easily see what users fit into the pattern.” (P7). In response to the sur-
vey question “I found the tool to be effective in visualizing the data I want to see”, the participants
rated Zenvisage higher (µ=4.27, σ=0.452) than the baseline (µ=2.67, σ=0.890) on a five-point
Likert scale. A participant experienced in Tableau commented: “In Tableau, there is no pattern

searching. If I see some pattern in Tableau, such as a decreasing pattern, and I want to see if any

other variable is decreasing in that month, I have to go one by one to find this trend. But here I

can find this through the query table.” (P10).

Finding 6.2. Zenvisage complements existing database and data mining systems, and pro-
gramming languages. When explicitly asked about comparing Zenvisage with the tools they use
on a regular basis for data analysis, all participants acknowledged that Zenvisage adds value in
data exploration not encompassed by their tools. ZQL augmented with inputs from the sketching
canvas proved to be extremely effective. For example P8 stated: “you can just [edit] and draw to
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find out similar patterns. You'll need to do a lot more through Matlab to do the same thing.” An-
other experienced participant mentioned the benefits of not needing to know much programming
to accomplish certain tasks: “The obvious good thing is that you can do complicated queries,

and you don't have to write SQL queries... I can imagine a non-cs student [doing] this.” (P9).
When asked about the specific tools they would use to solve the user study tasks, all participants
reported a programming language like Matlab or Python. This is despite half of the participants
reporting using a relational database regularly, and a smaller number of participants (2) reporting
using a data mining tool regularly. Additionally, multiple participants, even those with extensive
programming experience, reported that Zenvisage would take less time and fewer lines of code for
certain data exploration tasks. (Indeed, we found that all participants were able to complete the
user study tasks in under 2 minutes.) In follow-up email interviews, we asked a few participants to
respond with code from their favorite data analytics tool for the user study tasks. Two participants
responded — one with Matlab code, one with Python code. Both these code snippets were much
longer than ZQL: as a concrete example, the participant accomplished the same task with 38 lines
of Python code compared to 4 lines of ZQL. While comparing code may not be fair, the roughly
order of magnitude difference demonstrates the power of Zenvisage over existing systems.

Finding 6.3. Zenvisage can be improved. While the participants looked forward to using
custom query builder in their own workflow, a few of them were interested in directly exposing the
commonly-used trends/patterns such as outliers, through the drag and drop interface. Some were
interested in knowing how they could integrate custom functional primitives (we could not cover
it in the tutorial due to time constraints). In order to improve the user experience, participants
suggested adding instructions and guidance for new users as part of the interface. Participants also
commented on the unrefined look and feel of the tool, as well as the lack of a diverse set of usability
related features, such as bookmarking and search history, that are offered in existing systems.

6.4 OVERALL TAKEAWAYS AND FUTURE WORK

In this chapter, we presented a user study, comparing Zenvisage with a custom-made manual
visual analytics tool to assess how Zenvisage can aid in visualizing interesting patterns, trends, or
insights from large datasets. We also conducted additional interviews with data analysts to identify
the low level tasks and tools used in their typical workflow, and explored how Zenvisage can help
with their everyday activities. Our findings show that that Zenvisage enables much faster task
completion times, as well as helps retrieve more accurate results than the manual visualization
tools. Even those with considerable experience with programming languages such as Python and
Matlab believe that Zenvisage takes less time and fewer lines of code for certain data exploration
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tasks, and can be a valuable addition to their analytics workflow.
Zenvisage has also found usage in domains such as genomics, astronomy, and material sci-

ence [73]. In genomics, scientists have used Zenvisage for understanding the gene expression
profiles of breast cancer cells that exhibit induced, transient, and repressed patterns after a partic-
ular treatment. Scientists were able to gain novel scientific insights, such as finding characteristic
gene expression profiles that confirmed the results of a related publication. In astronomy, re-
searchers have used Zenvisage for studying common patterns among stars that exhibit planetary
transits versus stars that don’t. And in material science, Zenvisage has been used for identifying
battery solvents with favorable properties and mass production potential through studying how
changes in certain chemical properties correlate to changes in other chemical properties.

In addition, we found that Zenvisage can be be used beyond the exploratory phase of analy-
sis, for data verification, debugging preliminary datasets, and performing sanity-checks on down-
stream models. For example, during their analysis, Zenvisage allowed astrophysicists to debug
a mislabelled feature, leading them to find that the way data was aggregated was erroneous on a
collaborator’s dataset.

Nonetheless, there are several open questions that we need to address to further improve the
usability of Zenvisage. First, we need to provide more transparency and understanding on what
Zenvisage does internally, e.g., how Zenvisage arrives at recommendations, displaying more inter-
pretable outputs such as similarity scores of the visualizations, as well as providing more system-
level control to users, e.g., setting a minimum similarity threshold for displaying the search, as
well as the ability to tune the smoothing algorithms and parameters.

Another barrier to adoption of Zenvisage involves the limited support for data preparation tasks
such as schema understanding, data cleaning, imputing missing values, data integration, and facil-
itating export of visualizations for downstream analysis. A more tighter integration between these
pre-processing tasks and the visual analysis operations that are currently supported in Zenvisage
can eliminate detour and distraction and lead to faster insight generation.

Finally, many users want Zenvisage to support more sophisticated features that are typically used
in analytics workflows. For example, users want to dynamically create subsets of data for each
visualizations, rather than using the fixed categorical attribute. Other feature requests includes
uploading the values of pattern to be searched via a CSV file, using an input equation, e.g. , y = x2

for querying, and data smoothing.
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CHAPTER 7: SHAPESEARCH SYSTEM OVERVIEW

In this chapter, we present ShapeSearch, a pattern-based querying system for trendlines that
extends the capabilities of Zenvisage by providing more flexible mechanisms for specifying desired
patterns of interest.

We, first, start with the motivation for ShapeSearch, outlining the common characteristics of
pattern-based queries that are difficult to satisfy using existing tools (Section 7.1). We, then, pro-
vide a brief overview of our key ideas (Section 7.2), and the system design (Section 7.3) that show
how ShapeSearch satisfies the desired characteristics. In the remaining sections, we dig deeper
into the key components of ShapeSearch. First, we give an overview of a novel ShapeQuery alge-
bra (Section 7.4), along with its formal semantics (Section 7.5), and scoring mechanisms (Section
7.6), form the.core of ShapeSearch. We, then, describe the parser that we built from scratch for
parsing natural language-based shape queries (Section 7.7). Finally, we compare with additional
prior work that are related to ShapeSearch (Section 7.8).

7.1 MOTIVATION

Identifying patterns in trendlines is an integral part of data exploration—routinely performed by
domain experts to make sense of their datasets, gain new insights, and validate their hypotheses.
For example, clinical data analysts examine trends of health-indicators such as temperature and
heart-rate for diagnosis of medical conditions; astronomers study the variation in properties of
galaxies over time to understand the history and makeup of the Universe; biologists analyze gene
expression patterns over time to study biological processes; and financial analysts study patterns in
stock trends data to predict future behaviour. Due to the lack of extensive programming experience,
these domain experts typically perform manual exploration, tediously examining trendlines one at
a time until they find ones that match their desired shape or pattern, e.g., gene expressions that rise
and then become stable.

Limitations of existing tools. Recent work including Zenvisage let users interactively search for
desired patterns [9, 74, 75]. However, as we will discuss below, these tools expect users to search
in highly constrained ways, and, in addition, are overly rigid in how they assess a match. Most
tools expect users to specify a complete and exact trendline as an input usually by sketching it
on a canvas, followed by computing distances between this exact trendline and several candidate
trendlines to identify matches. As a result, these tools are unable to support search when the
desired shape is under-specified or approximate, e.g., finding stocks whose prices are decreasing
for some time, followed by a sharp rise, with the position and intensity of movements being left
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unspecified, or when the desired shape is complex, e.g., finding gene expression profiles where
there is an unspecified number of peaks and valleys followed by a flattening out. Some data
mining tools provide the ability to search for patterns in time series, e.g., [34,39], but require heavy
precomputation, limiting ad-hoc exploration, in addition to suffering from the same limitations in
flexibility as the visualization tools. Yet another alternative for domain experts with programming
expertise is to write code to perform this flexible match, but writing code for each new use-case,
followed by manual optimization is often as tedious as manual searching of visualizations to find
patterns.

7.1.1 Characterizing Shape Search Queries

The design of ShapeSearch has been motivated by case studies and use-cases from domains
such as genomics, astronomy, battery science, and finance.

We also collected a corpus of about 250 natural language queries via Mechanical Turk (mturk),
where we asked crowd workers to describe patterns in trendline visualizations collected from real
world datasets. We highlight the key characteristics of pattern matching tasks, based on our dis-
cussions with domain experts and analysis of mturk queries below.

Fuzzy Matching. Domain experts typically search for patterns (i) that are approximate, and are
often not interested in the specific details or local fluctuations as much as the overall shape, and
(ii) they often do not specify or even know the exact location of the occurrence of patterns. For
example, biologists routinely look for structural changes in gene expression, e.g., rising and falling
at different times (Figure 7.1a). Such changes characterize internal biological processes such as the
cell cycle or circadian rhythms, or external perturbation, such as the influence of a drug or presence
of a disease. Similarly, many crowd workers tend to describe trendlines using high level patterns
such as increasing and then decreasing, without being precise about locations and/or features of
the changes.

Combination of Multiple Simple Patterns. We notice that both domain experts as well as crowd
workers often describe complex patterns using a combination of multiple simple ones. Each indi-
vidual pattern is typically described using words such as "increasing", "stable", "falling", which
are easy to state in natural language but hard to specify using existing query languages. Moreover,
pattern matching tasks in many domains often go beyond finding a sequence of patterns, requir-
ing arbitrary combinations, e.g., disjunction, conjunction or quantification, with varying location
or width constraints. Examples include finding stocks with at least 2 peaks within a span of 6
months, e.g., the so-called "double/triple top" patterns that indicate future downtrends [76], or
finding cities where the temperature rises from November to January and falls during May to July
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Figure 7.1: Shapes characterizing various real world phenomena

such as Sydney.

Ad hoc and Interactive. Pattern-based queries are often defined on-the-fly during analysis, based
on other patterns observed. For instance, biologists often search for a pattern in a group of genes
similar to a pattern recently discovered in another group [73]. Similarly, astronomers monitor
the shape of the luminosity trends of stars over time to search for and characterize new planetary
objects (Figure 7.1c). For example, a dip in brightness often indicates a planetary object passing
between the star and the telescope. In order to limit comparison of patterns over similar duration
(i.e., the X axis) or over value ranges (i.e, the Y axis), it is common to apply constraints while
pattern matching. Examples include searching for changes in buying and selling patterns of stock
or house prices in a specific range or duration. As such, some tools, e.g., TimeSearcher [75],
allow interactive specification of constraints, however the pattern matching is still precise or value-
based.

7.2 OVERVIEW OF OUR APPROACH

To satisfy the aforementioned characteristics, ShapeSearch incorporates three novel ideas.

(a) ShapeSearch incorporates an expressive shape query algebra that abstracts key shape-based
primitives and operators for expressing a variety of desired trendline patterns. The most powerful
feature of this algebra is its capability for “fuzzy” matching, allowing approximate and inexact
pattern specification, without compromising on the needs of occasional precise queries. We devel-
oped this algebra after discussions with domain experts, as well as studying mturk pattern queries,
as mentioned earlier.

(b) Unfortunately, naïvely executing these fuzzy queries is extremely slow, requiring an expensive
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Mechanism Intuitiveness Control Expressiveness
Natural language high low high
Sketch high high low
Regex low high high

Table 7.1: Comparison between specification mechanisms

evaluation of all possible ways of matching each candidate trendline to the query to select the
best one. We propose a dynamic programming-based optimal algorithm that reuses computations
to provide substantial speed-ups, and show that even this algorithm can be prohibitively slow for
interactive ad-hoc exploration. Thus, we develop a novel perceptually-aware bottom-up algorithm
that incrementally prunes the search space based on patterns specified in the query, providing a
40× speedup with over 85% accuracy compared to the optimal approach.

(c) Finally, to accommodate a range of needs without sacrificing on the expressiveness of the
algebra, ShapeSearch supports three query specification mechanisms (Table 7.1): sketching on a
canvas, natural language, and regular expressions (regex for short). All specification mechanisms
are translated to the same shape query algebra representation, and can be used interchangeably, as
user needs evolve.

7.3 SHAPESEARCH SYSTEM OVERVIEW

ShapeSearch provides powerful yet flexible mechanisms for users to search for trendline visu-
alizations with a desired shape. We first present an overview of the front-end interface and user
experience, and then describe the back-end.

Front-end. ShapeSearch supports an interactive interface for composing shape queries, as well as
for displaying the result visualizations. Figure 7.2 depicts this interface, with an example query on
genomics data discussed in the introduction. Here, the user is interested in searching for genes that
get suppressed due to the influence of a drug, depicted by a specific shape in their gene expression
— first rising, then going down, and finally rising again — with three patterns: up, down, and
up, in a sequence. To search for this shape, the user first loads the dataset [77]), via form-based
options on the left (Figure 7.2 Box 1), and then selects the space of visualizations to explore by
setting the x axis as time, the y axis as expression values, and the category as gene. Each value
of the category attribute results in a candidate visualization with the given x and y axis. Thus, the
category attribute defines the space of visualizations over which we match the shape. ShapeSearch
supports three mechanisms for shape specification — natural language, regular expressions (regex
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4) Results panel

for short), and sketching on a canvas:

Sketching on Canvas. By drawing the desired shape as a sketch on the canvas (Figure 7.2 Box
2a), the user can search for visualizations that are precisely similar (using a distance measure such
as Euclidean distance or Dynamic Time Warping [78]). As soon as the user finishes sketching,
ShapeSearch outputs visualizations that are precisely similar to the drawn sketch in the results
panel (Figure 7.2 Box 4).

Natural Language (NL). For searching for visualizations that approximately match patterns,
users can use natural language. For instance, as in Figure 7.2 Box 2b, the desired shape in the
aforementioned genomics example can be expressed as “show me genes that are rising, then going

down, and then increasing”. Similarly, scientists analyzing cosmological data can easily search
for supernovae (bright stellar explosions) using “find me objects with a sharp peak in luminosity”.
We describe in Section 7.7 how ShapeSearch translates natural language queries to a structured
internal representation.

Regular Expression (regex). For queries that involve complex combinations of patterns that
are difficult to express using natural language or sketch, the user can issue a regular expression-
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like query that directly maps to the structured internal representation, consisting of ShapeSearch
primitives and operations, described in detail in Section 7.4.

During exploration, users can choose specification mechanisms interchangeably based on the
complexity of the query. For both NL as well as regex, ShapeSearch, additionally supports auto-
complete functionality to guide users towards their target query. All queries are issued to the
back-end using a REST protocol. We use the term user query to refer to the submitted query using
any of the specification mechanisms.

Back-end. Figure 7.3 depicts the back-end components of ShapeSearch. The back-end parses and
translates the user query into a ShapeQuery, a structured internal representation of the query con-
sisting of operators and primitives supported in our algebra (Section 7.4). The back-end supports
an ambiguity resolver that uses a set of rules for automatically resolving syntactic and semantic
ambiguities, as well as forwards the parsed query to the user for further corrections and validation
(Figure 7.2 Box 3). The validated query is finally optimized and executed by the execution engine,
and the top visualizations that best match the ShapeQuery are presented to the user in the results
panel (Figure 7.2 Box 4).

We give an overview of ShapeQuery, a structured query algebra, motivated from use-cases in
real domains as well as our analysis of the crowdsourced pattern queries.

7.4 SHAPESEARCH ALGEBRA

We give an overview of ShapeQuery, a structured query algebra, motivated from use-cases in
real domains as well as our analysis of the crowdsourced pattern queries.
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Symbol Name Type
x.s START X VALUE Location Sub-Primitive
y.s START Y VALUE Location Sub-Primitive
x.e END X VALUE Location Sub-Primitive
y.e END Y VALUE Location Sub-Primitive
v SKETCH Location Sub-Primitive
p PATTERN Primitive
⊗ CONCAT Operator
� AND Operator
⊕ OR Operator

Table 7.2: Primitives and Operators in ShapeQuery

The ShapeQuery algebra consists of a minimal set of primitives and operators for declaratively
expressing a rich variety of patterns, while supporting the three characteristics of pattern-matching
tasks described in the introduction. At a high level, a ShapeQuery represents a shape as a com-
bination of multiple simple patterns. A simple pattern can either be precise with specific location
constraints, e.g., matching y = x between x = 2 to x = 6, or fuzzy, e.g., roughly increasing, where
the notion of the pattern is approximate and its location unspecified. Each simple pattern along
with its precise or imprecise constraints is called a ShapeSegment. Complex shapes, e.g., rising
and then falling, are formed by combining multiple ShapeSegments using one or more operators.
One can search for multiple patterns in a sequence (concat, ⊗) or matching the same sub-region of
the trendline (and, �), or one of many patterns matching a sub-region (or, ⊕), described later.

As an example,“rising from x=2 to x=5 and then falling” can be translated into a ShapeQuery
[x.s=2,x.e=5, p=up]⊗[p=down] consisting of two ShapeSegments separated by a ⊗ operator.
The first ShapeSegment captures “rising from x = 2 to x = 5”; the second expresses a “falling"
pattern. Since the second must “follow” the first, the two ShapeSegments are combined using
the CONCAT operator, denoted by ⊗. We now describe the shape primitives and operators that
constitute the ShapeQuery algebra. Table 7.2 lists these primitives and operators.

7.4.1 Shape Primitives and Operators

A ShapeSegment is described using two high level primitives: LOCATION and PATTERN.
ShapeSearch allows users to skip one or more of these primitives in their query. The LOCATION
values can be skipped in order to match the PATTERN anywhere in the trendline. Similarly, users
can input the exact trendline to match, or the endpoints of the ShapeSegments to match without
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Pattern ShapeQuery
Increasing from 2 to 5 and then decreasing [p=up, x.s=2, x.e=10]⊗[p=down]
Decreasing or increasing anywhere [p = *]⊗(p=up⊕p=down) ⊗[p = *]
Increasing at 45, decreasing at 60 and then becomes flat [p = 45]⊗[p = -60]⊗[p = flat]
Decreasing over a width of 3 points: [x.s=., x.e=.+3, p=down]
Increasing at least once and at most 5 [p=up, q=1,5]
W shaped pattern [p=-45]⊗[p = 60]⊗[p=-45]⊗[p = 60]
Specific sketch [v = (2:10,3:14,...,10:100)]
Shape whose trend is increasing relatives its own trend before some
point in the past (e.g, inverted bell shaped)

[p=down]⊗[p > $−.p]

Table 7.3: Examples of ShapeQueries

specifying the PATTERN. We describe each of these supported primitives.

Specifying LOCATION. LOCATION defines the endpoints of the sub-region of the trendline be-
tween which a pattern is matched: starting X/Y coordinate (x.s/y.s), ending X/Y coordinate
(x.e/y.e). For example, [x.s=2,x.e=10, y.s=10,y.e=100] is a simple ShapeQuery to find trend-
lines whose trend between x=2 to x=10 is similar to the line segment from (2,10) to (10,100).
Users can also draw a sketch to find trendlines similar to the sketch, a functionality supported
in other tools alluded to in the introduction [3, 9, 75]. ShapeSearch translates the pixel values
of the user-drawn sketch to the domain values of the X and Y attributes, and adds the trans-
formed vector of (x,y) values as a vector v in the ShapeQuery. As an example, the ShapeQuery
[v=(2:10,3:14,...,10:100)] finds trendlines that have precisely similar values to v using a distance
measure, e.g., Euclidean distance, or dynamic time warping [78].

Specifying PATTERN. PATTERN defines a trend or a semantic feature in a sub-region of the
trendline. A number of basic semantic patterns, commonly used for characterizing trendlines, are
supported, such as up, down, flat, or the slope (θ ) in degrees. For example [p=up] finds trendlines
that are increasing, [p=45] finds trendlines that are increasing with a slope of about 45◦, and
[x.s=2,x.e=10, p=up] finds trendlines that are increasing from x = 2 to 10. Finally, one can use
p=* to match any pattern and p=empty to ensure that there are no points over the sub-region.

Combining PATTERN. ShapeQuery supports three operators to combine ShapeSegments:

• CONCAT (⊗) specifies a sequence of two or more ShapeSegments. For example, using
[p=up]⊗[p=down] one can search for genes that are first rising, and then falling. Note
that ⊗ is one of the most frequently used operations, and we sometimes omit ⊗ between
ShapeSegments, e.g, [p=up][p =down], to make it succinct to describe.

• AND (�) simultaneously matches multiple patterns in the same sub-region of the trendline.
Unlike CONCAT, all of the patterns must be present in the same sub-region. For example,
one can look for genes whose expression values rise twice but do not fall more than once
within the same sub-region.
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⊗

[p=up][p=down] ⊕

⊗ [p=up]

[p=up][p=down]

Figure 7.4: ShapeQuery AST

• OR (⊕) searches for one among many patterns in the same sub-region of the trendline,
picking the one that matches the sub-region best. For example, one can search for genes
whose expressions are either up- or down-regulated.

Note that when the same operator is specified consecutively, ShapeSearch fuses them into
one, hence all operators can take two or more operands. For example, [p=up] ⊗[p=down]
⊗[p=down] is parsed as a single ⊗ operation with three operands [p=up], [p=down], and
[p=down].

Multiple operations are often used in a given ShapeQuery. ShapeSearch follows left to right
precedence order for execution of the operations. However, sub-expressions can be nested using
parentheses () to specify precedence as in mathematical expressions. In Figure 7.4, we depict how
ShapeSearch parses a complex ShapeQuery [p=up]⊗[p=down] ⊗(([p=up]⊗[p=down])⊕[p=flat])
into an Abstract Syntax Tree (AST) representation.

Comparing Patterns. In some cases, one may want to compare the pattern in a ShapeSegment
with the preceding or succeeding ShapeSegments. To support such use cases, ShapeSearch (i)
allows a ShapeSegment to refer to the previous or the next ShapeSegment using $+ or $− respec-
tively, and (ii) compare patterns between the current and referred ShapeSegment using operations
>, <, or =. For example, astronomers can issue a ShapeQuery [p=up]⊗[p < $−.p] with x=time
and y=luminosity (brightness) to search for celestial objects that were initially moving rapidly to-
wards earth, but after some point either slowed down or started moving away. The second Shape-
Segment [p < $−.p] ensures that the slope of brightness over time is less than that in the previous
sub-region [p=up].

Similarly, one can set p <1
2$−.p to ensure the slope of second sub-region is ≤ 1

2 of the first. To
avoid ambiguity in position reference and for efficient execution, ShapeSearch restricts $-based
references to a simple CONCAT operation, i.e., across a sequence of patterns at the same level of
nesting.
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Expressing complex patterns. The aforementioned basic primitives and operators are powerful
enough to express more complex ShapeSearch use-cases. We discuss three such complex patterns
below, along with shortcuts for their easy specification.

1. Searching shapes of specific width. In some cases, users want to find specific shapes irrespec-
tive of their start location. For example, one may want to search for cities with maximum rise in
temperature over a width of 3 months. To express such queries, ShapeSearch supports the ITERA-
TOR (.), e.g., [x.s=.,x.e=x.s+3,p=up] that iterates over all points in the trendline, setting each
point as the start x position, with the x end position set to 3 units ahead. Internally, for a trendline
of length n, this query can be rewritten as an OR operation over (n−3+1) ShapeSegments, where,
for the ith ShapeSegment, x.s=i and x.e=i+3.

2. Searching for sub-patterns. One can easily perform sub-pattern matching using [p=*]. For
example, [p=*][p=up][p= down] [p=*] searches for a peak anywhere in the trendline.

3. Constraining patterns. In some cases, users want to search for patterns but with multiple
constraints on X and Y axes. For example, financial analysts can use the ShapeQuery [p=up,
x.s=1, x.e=6,y.s=100,y.e=200]⊗[p=down, x.s =7,x.e=12,y.s=200,y.e=100] to search for
stock whose values increased between 100 and 200 over the first 6 months, and then decreased
between 200 to 100 over the remaining 6 months.

4. Quantifiers. One can search for trendlines where a pattern occurs a specific number of
times using quantifiers, denoted by q. For example, [p=up,q={1,2}] can be used to search for
trendlines where there is an increasing pattern at least once and at most twice. Quantifiers can
be internally rewritten using an OR of one or more CONCAT operations. For example, the above
query is rewritten as ([p=*] ⊗[p=up]⊗[p=*])⊕([p=*]⊗[p=up]⊗[p=*] ⊗[p=up]⊗[p=*]).

5. Nesting A combination of patterns can be constrained to be within a specific sub-region by
specifying them as a value of the PATTERN primitive. For example, to search for stocks that
increased anytime between February to October, we can use nesting as follows: [x.s=2,x.e=10,
p=([p=*][p=up][p=*])]. This can be rewritten using CONCAT operations as follows: [x.s=2,
p=*]⊗[p=up]⊗[p=*]⊗[x.s=10,p=*].

6. Complex Shapes. Complex shapes can be searched by breaking them into multiple Shape-
Segments, where each ShapeSegment specifies a pattern with a specific slope. For instance, a “W-
shaped” pattern can be searched using [p=-60]⊗[p=60]⊗[p=-60]⊗[p=60]. Similarly, in the fol-
lowing query, by setting different values for a, b and c, one can search for peaks of varying sharp-
ness: [p=*][p=up,x.s=.,x.e=x.s+a] [p=flat,x.s=$-.x.e,x.e=x.s+b][p=flat,x.s=$-.x.e,x.e=x.s

+c] [p=*].
7. Specifying both precise and fuzzy patterns. As mentioned earlier, one can draw a sketch of

a shape and embed it within a ShapeSegment using the sketch (v) LOCATION primitive. Thus,
by combining such ShapeSegments with those that involve semantic patterns such as p=up, e.g.,
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[p=up]⊗[v=(10:10, 11:14, ...,20:100)]⊗[p=down], we issue a ShapeSearch query that in-
volves both precise and fuzzy pattern matching.

8. Scale invariant matching. One can automatically search for shapes at varying granularity
of x-scales and degree of smoothing. For example, for [p=*]⊗[p=up] ⊗[p=down]⊗[p=*],
ShapeSearch searches for [p=up] and then [p=down] pattern at all possible scales and selects the
one that leads to the best match. To do so, ShapeSearch uses efficient algorithms that we describe
in the subsequent sections.

As ShapeSearch evolves, it may support additional shortcuts to simplify the writing of fre-
quently used complex patterns.However, all of the complex patterns as well as the shortcuts can
be expressed using basic primitives and operations for their execution. Thus, we omit further dis-
cussion of complex patterns and limit ourselves to the semantics and efficient scoring of basic
primitives and operators.

7.5 FORMAL SEMANTICS OF SHAPEQUERY

We now formally define the semantics of ShapeQuery. Given three dataset attributes x, y, and
z, ShapeSearch first generates a collection of trendlines V , one for each unique value of the z

attribute. Each trendline is a sequence of (x, y) values ordered by x. A ShapeQuery Q operates
on one trendline, Vi, at a time, and returns a real number, called score, between −1 to +1, i.e.,
Q : Vi→ score; score ∈ [−1,1]. The value of score describes how closely Vi matches Q, with +1
the best possible match, and −1 the worst.

The ShapeQuery Q operates on Vi with the help of ShapeSegments (S1,S2, . . . ,Sn) and oper-
ators (O1,O2, . . . ,Om). Each ShapeSegment, Si operates on V p,q

i , a sub-region of Vi starting at
p = x.s and ending at q = x.e and returns a scorei ∈ [−1,1] using scoring functions we describe
subsequently. A common subclass of ShapeQueries are fuzzy ShapeQueries. A fuzzy Shape-
Query is a sequence of ShapeSegments where there is at least one ShapeSegment with missing or
multiple possible values for x.s or x.e. Thus, for fuzzy ShapeQueries, we try all possible values
of p and q, selecting the sub-region that leads to the best score. One or more ShapeSegments
are combined using operators such as ⊗, �, ⊕. Formally, an operator Oi takes as input the scores
score1,score2, . . . ,scoren from its n input ShapeSegments and outputs another scorei using scoring
functions that capture the behavior of the operators. When combined via AND or OR operators,
ShapeSegments may operate on overlapping sub-regions V p,q

i , however, for CONCAT, the sub-
regions must not overlap since CONCAT specifies a sequence of patterns. Next, we describe our
scoring methodology.
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P Score

up 2·tan−1(slope)
π

down −2·tan−1(slope)
π

flat (1.0−‖4·tan−1(slope)
π

‖)
θ = x (1.0−‖2·tan−1(slope−x))

(π−‖tan−1(x‖) ‖)
∗ 1

empty -1
v L2 norm (configurable)

Table 7.4: Pattern Scores

O Score
⊗ ∑

k
i=1 scorei/k

� min(score1, ...,scorek)
⊕ max(score1, ...,scorek)

Table 7.5: Operator Scores

7.6 SCORING METHODOLOGY

For supporting interactive response times, ShapeSearch needs to efficiently and effectively com-
pute the match between a ShapeQuery Q and a trendline Vi.

To satisfy both efficiency and effectiveness, ShapeSearch approximates each sub-region with a
line, using the slope to quantify how closely it captures any given ShapeSegment. The line-based
quantification is robust to noise or minor fluctuations, as is often intended in ShapeQueries. At the
same time, lines are extremely fast to compute, requiring only a single pass on the data. As we
explain shortly, lines over larger sub-regions can be quickly inferred from lines over over smaller
ones, without additional passes. As the complexity of a pattern increases, the number of lines
required to approximate it also increases. However, even for complex shapes, a small number of
line segments is sufficient. Our study of patterns (e.g., double-bottom, triple-top) in finance [?] as
well as mturk queries reveal that the maximum number of lines is usually small or less than 6.

As depicted in Table 7.4, ShapeSearch uses different scoring functions for each pattern primitive
that transforms the slope to a value in [−1,1] using a tan−1 function. For example, for an up

pattern, the function returns a score between [0,1] for all trendlines with slope from 0◦ to 90◦, a
score of [−1,0] for slopes < 0◦ (opposite of up). Moreover, a change in trend from 10◦ to 30◦ is
visually more noticeable than from 60◦ to 80◦, thus we capture this behavior using tan−1 where the
rate of increase in output decreases as the value of slope increases. Finally, we apply normalization,
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Algorithm 7.1 ShapeQuery Scoring

Input: L: a sub-region of trendline, Q: a ShapeQuery sub-expression, ScrFunc: scoring
functions from Tables 7.4 and 7.5
Output: score

1: procedure EXECSHAPEQUERY(L, Q, ScrFunc)
2: if Q.root is a ShapeSegment then
3: hasValidLoc <- CheckLocationConstraints(L, Q)
4: hasValidLineFit <- CheckGoodnessofFit(L)
5: if (hasValidLoc && hasValidLineFit) is False then
6: return -1;
7: end if
8: return ScrFunc(L,operator,Q.root)
9: end if

10: operator← Q.root.operator
11: operands← operator.children
12: k = operands.size
13: operandscores← []
14: if operator ∈ {�,⊕} then
15: for each child in operands do
16: operandscores.append(EXECSHAPEQUERY(L,child))
17: end for
18: return ScrFunc(operator,operandscores)
19: end if
20: if operator ∈ {⊗} then
21: candscores = []
22: for each segmentation {L1,L2, ...,Lk} of L do
23: sgtscores← []
24: for each child in operands do
25: sgtscores.append(EXECSHAPEQUERY(Li,child))
26: end for
27: sgtscores← ScoreComparators(sgtscores,Q.root)
28: candscores.append(ScrFunc(operator,sgtscores))
29: end for
30: return max(candscores)
31: end if
32: end procedure
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such as multiplying by 2/π , to re-scale the output of tan−1 between−1 and 1. Thus, depending on
the specified pattern primitive, ShapeSearch uses the corresponding scoring function to compute
the score for that ShapeSegment. For a given ShapeSegment, if the location constraints are not
met, we assign a score of -1, and ignore the rest of the primitives.

We state the following observation regarding the scoring of a single ShapeSegment.

Observation 7.1. The scoring of a ShapeSegment, as part of a ShapeQuery Q without compar-

isons, on a sub-region L can be done using the slope of the corresponding single line segment and

the x.s, x.e, y.s, and y.e values of the sub-region, independent of other sub-regions.

For a shape input as a sketch, users sometimes intend to perform precise matching. For such
ShapeSegments we compute the score using L2 norm (Euclidean distance) between the drawn
sketch and the trendline without fitting a line segment. The L2 norm can vary from 0 to ∞; there-
fore, we normalize the distance within [1, -1] using using Max-Min normalization. In addition,
ShapeSearch allows users to use sketch for fuzzy matching where ShapeSearch fits a minimum
number of lines to the sketch given an error threshold (adjustable via a slider), and automatically
constructs a CONCAT operation of ShapeSegments, with one ShapeSegment for each line with
the pattern corresponding the slope of the line.

In addition to providing domain-specific pattern types (UDPs), ShapeSearch also allows users to
override the default scoring methodology by letting them define their own scoring functions. For
seamless integration, user-defined scoring functions must take a sun-region as input, and output a
score within [−1, 1].

For two contiguous ShapeSegments compared using $-references, ShapeSearch returns a sin-
gle score as if they were one single ShapeSegment evaluated over their combined sub-region.
Internally, ShapeSearch evaluates each of ShapeSegments over their corresponding sub-region
independently and combines scores across the CONCAT appropriately. The score of the Shape-
Segment that uses that $ reference is set to +1 if the constraint is satisfied, otherwise it is set to
−1. For ease of explanation, we refer them as a single ShapeSegment for the rest of the paper.

The scores across ShapeSegments are combined using the scoring functions for the operations.
Note that, in general, as depicted in Figure 7.4, the operands of an operator can be sub-expressions
involving other operators. Nevertheless, as depicted in Table 7.5, the scoring functions for opera-
tors are more straightforward as they directly capture the semantic behavior of the operators. For
instance, CONCAT matches a sequence of patterns, therefore, the scoring function takes average
of the scores of its operands to give equal weightage to each operand. AND matches multiple pat-
terns over the same sub-region, so to avoid any ShapeSegment not having a good match, we take
the minimum of all scores across its operands. On the other hand, OR picks the best among all
matches, so it takes the maximum across all scores. From these definitions, we state the following
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observations:

Observation 7.2. The scoring of AND or OR operations with k operands on a sub-region L can

be done by scoring each of the k operands independently on the sub-region L.

Observation 7.3. The scoring of CONCAT with k operands on sub-region L can be done by

dividing sub-region L into all possible sequences of k sub-regions, followed by scoring operand i

on sub-region i.

Note that the scoring of an operand can be done independently of others. We used the term
segmentation to refer to a division of a sub-region into L sub-regions.

Ensuring goodness of fit. It is possible that a line poorly approximates a given segment of the
trendline. Therefore, we use a configurable (via a slider) threshold parameter to suggest how much
error they can tolerate. For measuring the goodness of fit, we compute the standard R2 error [79],
also called coefficient of determination, of the line, between 0 to 1, with higher values indicating
lower errors and better fit. ShapeSearch gives a score of −1 to a ShapeSegment for a given sub-
region if R2 is less than the threshold.

Overall algorithm. Algorithm 7.1 outlines the steps for scoring a ShapeQuery. At the start, the
algorithm takes the entire trendline Vi as L, the Abstract Tree Representation (AST) of ShapeQuery
as Q, and the list of scoring functions ScrFunc as in Tables 7.4 and 7.5 as inputs. If the root node
of the ShapeQuery tree is a ShapeSegment, ShapeSearch directly computes the score of the Shape-
Segment on the sub-region using scoring functions after checking the location and goodness of fit
constraints (lines 2-9). If the root node is � or ⊕, ShapeSearch invokes each of the operands (i.e.,
child sub-trees) to compute their scores on the sub-region independently, combining the scores as
per their scoring functions (lines 14-18). However, if the root node is a CONCAT with k operands,
i.e., child sub-trees, ShapeSearch segments L into all possible k sub-regions: L1,L2, ...,Lk, and then
for each segmentation, invokes the ith operand on ith segment (lines 20-30). Finally, the maximum
score across all segmentations is output.

7.7 PARSING AND TRANSLATION

We now provide an overview of the key steps involved in parsing. We use the following natural
language query collected from MTurk for illustration: “show me the trendlines that are increasing
from 2 to 5 and then decreasing”.

Step 1. Primitives and Operators Recognition. Given a natural language query, the first step is
to map words to their corresponding shape primitives and operators. We follow a two-step process.
First, using the Part-of-Speech (POS) tags and word-level features, we classify each word in the
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Type Features
POS Tags pos-tag,pos-tag-,pos-tag+
Words word-, word+, word–,word++
Predicted entities predicted-entity,predicted-entity+,predicted-entity-, d(predicted-

entity+),d(predicted-entity-)
Space and time prepositions time-preposition+,time-preposition-,space-preposition+,space-

preposition-,d(time-preposition+), d(time-preposition-),d(space-
preposition+),d(space-preposition-)

Punctuation d(,+),d(,-),d(;+),d(;-),d(.+),d(.-)
Conjunctions d(and+),d(or-),d(and then+)
Miscellaneous d(x),d(y),d(next),ends(ing),ends(ly), length(query)

Table 7.6: Features used during natural language parsing (d(x) denotes distance in terms of
number of words between current word and x), x+ denotes next x, x- denotes previous x.

query as either noise or non-noise. For example, words ∈ {determiner, preposition stop-words}
are more likely to be noise, while words ∈ {noun, adjective, adverb, number, transition words,
conjunction} may refer to a primitive or operator. Next, given a sequence of non-noise words,
we use a linear-chain conditional-random field model (CRF) [80] (a probabilistic graphical model
used for modeling sequential data, e.g., POS tagging) to predict their corresponding primitives and
operator. For example, the above query is tagged as “show (noise) me (noise) the (noise) trendlines
(noise) that (noise) are (noise) increasing (p) from (noise) 2 (x.s) to (noise) 5 (x.e) and then (⊗)
decreasing (p)”..

We train the CRF model [80] on the same 250 natural language queries that we used for char-
acterizing trendline patterns. We extract a set of features (listed in Table 7.6) for each non-noise
word in the sequence. In addition, ShapeSearch stores “synonyms” for each primitve and oper-
ator (e.g., “increasing" for up, “next" for CONCAT), and if a non-noise words closely matches
with them (e.g., with edit distance <= 2), we add the matched primitive or operator as a fea-
ture called predicted-entity. This idea is inspired from the concept of “boostrapping” in weakly-
supervised learning approaches [81,82], and helps improve the overall accuracy. We implemented
the model using the Python CRF-Suite library [83] with parameter settings: L1 penalty:1.0, L2

penalty:0.001, max iterations: 50, feature.possible-transitions: True. On 5-fold cross-validation
over the crowd-sourced queries, the model had an F1 score of 81% (precison = 73%, recall =

90%).

Step 2. Identifying Pattern Value. For each of the words predicted of type p, e.g., increasing and
decreasing in the above query, we additionally map them to the corresponding semantic pattern
supported in ShapeSearch, e.g., “increasing” is mapped to p=up. For this mapping, ShapeSearch
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Ambiguity (example queries with pre-
dicted entitites)

Resolution

A1: Conflicting LOCATION and
PATTERN in a ShapeSegment (e.g.,
[decreasing (p) from 4 (x.s) to 8 (x.e)])

R1: Change the sub-primitive of LOCATION from x to y or
y to x. R2: Swap the start and end positions of LOCATION.

A2: Multiple p in the same ShapeSeg-
ment (e.g., [increasing (p) from 2 (x.s) to
5 (x.e) with decreasing (p)] next (⊗))

R1: Move one of the ps to the adjacent ShapeSegment
with missing p. R2: split the ShapeSegment into two new
ShapeSegments with an OR operator between them

A3: Overlapping ShapeSegments with
⊗(e.g., increasing (p) from 4 (x.s) to 8
(x.e) and then (⊗) decreasing (p) from 8
(x.s) to 0 (x.e)

R1: Change x to y, if y values missing. If y values already
present, replace ⊗ with � operator.

Table 7.7: Common Ambiguities and their Resolution

computes the similarity between the specified word and synonyms of the supported patterns, first
using edit distance and then using wordnet [84]. The semantic pattern with the highest similarity
between any of its synonyms and the specified word is selected.

Step 3. ShapeQuery Generation and Ambiguity Resolution. Next, we group primitives and op-
erators into a ShapeQuery. ShapeSearch first groups all the primitives between two operators into
a single ShapeSegment. For instance, for the above query, the primitives are grouped as follows:
[increasing (p=up), 2 (x.s), 5 (x.e) ] and then (⊗) [ decreasing (p=down)]. In some cases, this may
lead to incorrect grouping of primitives, e.g., two patterns in the same ShapeSegment. Moreover,
there could be semantic ambiguity because of wrong entity tagging, e.g., decreasing (p=up) from
5 (y.s) to 10 (y.e) where x.s and x.e values are wrongly tagged as y.s and y.e respectively. Shape-
Search uses rule-based transformations that try to reorder and change the types of entities to get
a correct and meaningful ShapeQuery. In Table 7.7, we list three common ambiguities (A1, A2,
A3) and a sequence of rules (e.g., R1, R2) that are applied in order to resolve these.

Step 4. Parsed ShapeQuery Validation. The parsed ShapeQuery is sent to the front-end, and
displayed as part of the correction panel (Box 4 in Figure 7.2) for users to correct, further refine or
edit the query if needed. The correction panel is a form-based representation of the ShapeQuery,
where users can add, delete, or modify ShapeQuery primitives and operators with the help of drop-
down menu options, or filling in text-boxes. While the ShapeQuery is validated by the user, the
system executes the parsed query in parallel, and resulting visualizations are displayed in the result
panel. If the users choose to modify the ShapeQuery, the validated query is executed again and
results are updated.
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7.8 ADDITIONAL RELATED WORK

In Chapter 2, we already discussed a number of prior work in visual analytics and data mining
that our work draws on. Here, we discuss the additional work that are related to our techniques we
introduce in this chapter.

In Table 7.8, we compare ShapeSearch capabilities and expressiveness with three representative
systems from these areas: (1) Zenvisage, our general purpose visual querying tool that we dis-
cussed from Chapters 3–5, (2) Qetch [74], a recent sketch-based system, and (3) Shape Definition
Language (SDL), a symbolic pattern searching language for trendlines.

At a high-level, ShapeSearch builds on the system capabilities of visual querying systems as
well as expressiveness of symbolic pattern languages, while extending both to suit the needs of
real domain users. Our user study in Chapter 9 compares ShapeSearch with (1) and (2) in terms of
usability and effectiveness. We summarize key differences with these systems and others below.

Visual querying tools [3, 8–10, 85] help search for visualizations with a desired shape by taking
as input a sketch of that shape. Most of these tools perform precise point-wise matching using
measures such as Euclidean distance or DTW. A few tools such as TimeSearcher [75] let users
apply soft or hard constraints on the x and y range values via boxes or query envelopes, but do not
support mechanisms for specifying shape primitives beyond location constraints. Qetch improves
upon these systems by supporting a custom similarity metric that is robust to distortions in the user
sketch, in addition to supporting a “repeat” operator for finding recurring patterns. However, eeee
Qetch and other visual querying tools have limited expressiveness when it comes to fuzzy pattern
match needs. Furthermore, ShapeSearch introduces a novel algebra that improves extensibility by
acting as a common “substrate” for various input mechanisms, along with an optimization engine
that efficiently matches patterns against a large collection of trendlines.

Symbolic sequence matching papers approach the problem of pattern matching by employing
offline computation to chunk trendlines into fixed length blocks, encoding each block with a sym-
bol that describes the pattern in that block [31–34, 39]. The most relevant one of these papers is
on the Shape Definition Language (SDL) [34], which encodes each block using “up”, “down”,
and “flat” patterns, much like ShapeSearch, and supports a language for searching for patterns
based on their sequence or the number of occurrences. Since SDL operates on pre-chunked-and-
labeled trendlines, the problem is one of matching regular expressions against string sequences
(one per pre-labeled trendline). Therefore, SDL cannot rank these trendlines, instead only return-
ing a boolean score for whether the pattern matches the string sequence. This limits the expres-
siveness of SDL (Table 7.8), especially when the patterns are more complex, as well as when they
don’t align perfectly well with the boundaries of the blocks used for chunking. Moreover, since the
trendlines are pre-labeled and indexed, SDL does not support on-the-fly pattern matching where
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Aspect Zenvisage Qetch SDL ShapeSearch
System Capabilities
Precise Pattern 33 33 7 33

Fuzzy Pattern 7 3 33 33

Specification sketch sketch regex sketch, NL, Regex
Auto Smoothing 7 33 3 3

Algorithm ED, DTW Custom Custom Custom
Ad hoc Patterns 3 3 7 33

Normalization 3 33 7 3(z-score)
Indexing Needed 3 3 7 3

Scalability 33 3 3 33

Extensibility 7 7 7 33

Query Expressivity
Range Constraints 3 3 7 33

Sub-Pattern Matching 3 3 3 33

Sequence Matching 7 7 33 33

Width Selection 7 7 7 33

Multi- X or Y Constraints 7 7 7 3

Quantifiers 7 3(repeat) 33 33

Iteration 7 7 7 3

Nesting 7 7 7 3

Back/Forward Reference 7 7 7 3

Table 7.8: ShapeSearch vs. related systems capabilities

the same trendline can change shapes based on filters or aggregation constraints. ShapeSearch, on
the other hand, adopts a more online query-aware ranking of trendlines without requiring precom-
putation, and is thus more suited for ad-hoc data exploration scenarios.

There is also a large body of work on keyword- and natural language-based interfaces for query-
ing databases [86] and generating visualizations [87, 88]. However, since the underlying shape
query algebra in ShapeSearch is different from SQL, parsing and translation strategies from ex-
isting work cannot be easily adapted. Recently, conversation-based systems such as AVA [89]
have been proposed. However, these systems provide a high level framework for facilitating and
automating the insight search, but consider pattern matching tasks over individual visualization as
black-boxes.

7.9 OVERALL TAKEAWAYS

In this chapter, we motivated the need for flexible mechanisms for supporting fuzzy and ad
hoc pattern matching needs, and proposed ShapeSearch towards this end. ShapeSearch supports a
minimal set of primitives that allows users to compose rich variety of shape queries over trendlines,
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and exposes multiple flexible mechanisms to let users easily specify their patterns of interest.
In the next chapter, we discuss how ShapeSearch optimizes the execution of fuzzy Shape-

Queries, an important subclass of queries for which ShapeSearch needs to automatically and effi-
ciently find the endpoints of one or more patterns in the trendline.
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CHAPTER 8: FUZZY SHAPE MATCHING

The most interesting and powerful feature of ShapeSearch is its capability for “fuzzy” matching,
allowing users to search for patterns without specifying exact locations, e.g., increasing followed
by decreasing. Recall that a a fuzzy ShapeQuery is one with atleast one ShapeSegment with mul-

tiple possible values for x.s or x.e.
In the absence of exact location values for a CONCAT, ShapeSearch has to exhaustively score

all possible segmentations to find the one with the best score (line 22-29 in Algorithm 1). This
becomes prohibitively expensive as the number of points in the trendline increases. For example, a
simple fuzzy ShapeQuery [p=up]⊗[p=down]⊗[p=up] on a trendline with 100 points can result
in 104 possible segmentations for finding three segments that lead to the best score. More generally,
for a CONCAT operator with k operands, the exhaustive approach creates n(k−1) segmentations,
where n is the number of points in the trendline. We state this problem formally:

Problem 8.1 (Fuzzy CONCAT Scoring). Given a CONCAT operation with k operands and a sub-

region L of the trendline with n points, find the segmentation with k subregions where the score of

CONCAT is maximum.

8.1 THE DYNAMIC PROGRAMMING ALGORITHM

We first show that we can substantially reduce the number of segmentations for a a CONCAT
operation operating on a sequence of ShapeSegments by reusing the scores from CONCAT opera-
tions over sub-sequences of ShapeSegments. We, next, show that this extends to the case when one
or more operands of CONCAT are AND or OR expressions, but none of the operands internally
involve nested CONCATs. Finally, we show how we can reuse computations when an AND or OR
operand internally has a nested CONCAT or when an operand is a nested CONCAT. We start with
the simplest case of a CONCAT on a sequence of ShapeSegments.

From Observation 2.3, it can be seen that for the CONCAT operation itself, the scoring of the jth

operand on jth sub-region does not depend on the scoring of first j−1 operands on the first j−1
sub-regions. Thus, we can find the optimal segmentation of first j− 1 operands over all smaller
sub-regions and then combine them with the scores of jth operand on the remaining part of the
sub-region to find the optimal segmentation.

Suppose the optimal segmentation of [p=up] ⊗[p=down] ⊗[p=flat] over sub-region x = 1
to 100 is when [p=up] is scored over the sub-region x = 1 to 45, [p=down] over x = 46 to 60,
and [p=flat] over x = 61 to 100. Then, for another CONCAT operation involving a sub-sequence
[p=up]⊗[p=down] over the sub-region x = 1 to 60, the optimal segmentation should have the

86



same sub-regions for [p=up] and [p=down] as in the previous CONCAT. This is because of the
scoring of [p=flat] from x = 61 to 100 does not affect the scoring of [p=up]⊗[p=down] over
x = 1 to 60.

We use this idea to develop a faster dynamic programming algorithm (DP) for scoring CONCAT
operations over ShapeSegments. Formally, let OPT (1, t,(1 : j−1)) be the best score correspond-
ing to the optimal segmentation over the sub-region between x = 1 to x = t for first j−1 operands,
and SC(t + 1, i, j) be the score of jth operand over the sub-region between x = t + 1 and x = i.
Then, the optimal segmentation OPT (1, i,(1 : j)) for first j operands over x = 1 and x = i can be
computed using the following recursion:
OPT (1, i,(1, j)) = MAX

t
{ ( j−1)×OPT (1,t,(1: j−1))+SC(t+1,i, j))

j }
As base cases, we set OPT (m,m+1,( j : j)) = SC(m,m+1, j).
Using the above recurrence, we develop a DP algorithm that reuses the intermediate results by

memoizing the results of OPT (1, i,(1, j)) in a 2D array of size n×k and SC(t +1, i, j) in 3D array
of size n×n×k. It is to easy see that the DP algorithm considers O(n2k) segmentations to find the
optimal score.

Theorem 8.1. Finding the best segmentation for a CONCAT operation on ShapeSegments argu-

ments can be done in O(n2k) using Dynamic Programming.

AND/OR operands with no nested CONCAT. Let the ith operand of the CONCAT at the root
be an AND/OR expression with no nested CONCAT. From Observation 3.2, and lines 17-22 in
Algorithm 1, we can score operand i on sub-region i without any segmentation. Thus, the above
theorem is also valid when an operand in the CONCAT operation is an AND/OR expression with
no CONCAT operations internally.

AND/OR operand with a nested CONCAT or directly nested CONCATs. If the ith operand of
the CONCAT at the root consists of a nested CONCAT (either under an AND or OR expression
or directly), the ith sub-region needs to undergo further segmentation to find the optimal score for
the nested CONCAT. For example, for scoring the ShapeQuery in Figure 7.4, the DP algorithm
is first invoked for the CONCAT at the root node. The third operand for the root CONCAT is an
OR which consists of another CONCAT and [p=flat] as its operands. Therefore, for every candi-
date sub-region for the third operand, another DP algorithm is invoked for the nested CONCAT.
However, this is not a problem since we can reuse the score of ShapeSegments across invocations.
For example, in Figure 7.4, CONCAT operations essentially involve scoring of ShapeSegments
[p=down], [p=up] over all possible sub-regions. We, thus, score each ShapeSegment only once
for a given sub-region, and reuse it across multiple invocations of the DP algorithm for each CON-
CAT. Moreover, the DP recursion involves SC(t+1, i, j) for computing the cost of the operand (i.e.,
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sub-expression) j from sub-region t+1 to i, which again can be shared across repeated invocations
of same t, i, j.

Unfortunately, even though the DP algorithm is orders of magnitude faster than the exhaustive
approach, we note that for trendlines with large number of points, even a ShapeQuery with a single
CONCAT operation can be slow, because of its quadratic runtime. As we will see in Section 8.4,
the DP algorithm takes 10s of seconds even for ShapeQueries with 3 or 4 ShapeSegments over
trendlines with a few hundreds of points. We, next, discuss optimizations to further decrease the
runtime of CONCAT operation on ShapeSegments.

8.2 A PATTERN-AWARE BOTTOM-UP APPROACH

The DP-based optimal approach scores all possible sub-regions for each operand in the CON-
CAT operation. For instance, consider a fuzzy ShapeQuery [p=up]⊗[p=down]⊗[p=flat] and
a trendline L of 120 points. Here, for operand [p=up], the DP approach scores sub-regions of
all possible sizes, starting from the smallest possible sub-region (x.s=1 to x.e=2) to (x.s=1 to
x.e=116). Note that a sub-region requires at least 2 points to fit a line.

Greedy approach. Two sub-regions that differ only in a few points tend to have similar scores.
For instance, the scores of [p=up] over sub-regions (x.s=1 to x.e=15) and (x.s=1 to x.e=16)
are likely to be similar. Therefore, an optimization over DP is to consider only those sub-regions
for each ShapeSegment that differ substantially in their sizes. For example, a greedy approach
could be to start with sub-regions of equal size for each of the three ShapeSegments (i.e., 40
points each), and then greedily vary their sizes until we reach the maximum. One way of varying
their sizes is to greedily extend one sub-region at a time, and proportionally shrink the others.
For example, the next three configurations after starting with equal sizes could be: (60,30,30),
(30,60,30), (30,30,60). We pick the best of these and then repeat the process. Clearly, this approach
scores much fewer segmentations (O(log(nk))), compared to O(n2) segmentations explored by the
DP approach. However, as we show in our experiments (Section 8.4), such an approach leads to
extremely poor accuracy.

Pattern-aware segmentation. The problem with the greedy approach is that it treats all points
equally, and as possible candidates for endpoints of ShapeSegments. A better approach could be to
select end points to be those where the slope (or pattern) changes drastically. We first illustrate our
intuition, and then describe an algorithm that performs segmentation in a pattern-aware manner.

Intuition. As depicted in Figure 8.1, consider two sub-regions A on the left and B on the right
for the trendline L. Say the trendline in sub-region A is inverted V-shaped, i.e., increasing until
a point P and then decreasing. Now, for all possible segmentations where [p=up]’s sub-region
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A B

P

Option 1[p=up] [p=down][p=flat]
Option 2[p=up] [p=down][p=flat]
Option 3[p=up] [p=down][p=flat]

Figure 8.1: Pattern-aware selection of LOPs

lies completely in A, there are following possibilities for x.e of [p=up]: 1) [p=up]’s x.e point is
before P. 2) [p=up]’s x.e point is after P. 3) [p=up]’s x.e point is at P.

Since [p=down] follows [p=up], we can see that option 1 that sets [p=up]’s x.e < P is less
likely to be optimal as that will lead to scoring of a part of [p=down] on an increasing trend.
Similarly, x.e > P is less optimal as that will lead to scoring of a part of [p=up] on a decreasing
trend. Thus, if we have to (greedily) select one point in sub-region A for [p=up]’s x.e, P is likely
a better choice. We call such a point as locally optimal point (LOP).

A Bottom-up algorithm. Based on the above intuition, we develop a much faster algorithm that
uses the following assumption to reduce the number of segmentations.

Assumption 8.1 (Closure). If a point is not locally optimal for any of the sub-expressions in the

CONCAT operation (i.e., a CONCAT on a sub-sequence of the operands), it cannot be x.s or x.e

of a ShapeSegment in the optimal segmentation.

That is, local optimality leads to global optimality. Because of this assumption, our proposed
algorithm is approximate. However, our empirical results (Section 8.4) show that despite this
assumption, the accuracy of the algorithm is very close to that of DP, while taking orders of mag-
nitude less time.

Algorithm 8.1 outlines the steps for scoring a fuzzy ShapeQuery. At a high level, the algorithm
starts by dividing the trendline into smaller contiguous sub-regions (line 2). Next, it selects locally
optimal points (LOPs) over small sub-regions (line 12), followed by a bottom-up merging step that
uses LOPs over small sub-regions to find LOPs over larger sub-regions.

Selection of LOPs. We define a point P to be a LOP in a sub-region A for the sub-expression Si if
it is either the x.e of the first ShapeSegment or x.s of the last ShapeSegment of Si. For instance, in
the above example, it is easy to see that a LOP P in sub-region A is the x.e value of [p=up] in the
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optimal segmentation of [p=up]⊗[p=down] in A. Since a CONCAT operation with k operands can
have (k2) sub-sequences, there can be a maximum of 2.k2 LOPs in A. The SelectLOPs function
(line 9) is used for selecting LOPs. It is a variant of Algorithm 7.1 that returns both the final score
as well as the end points of lines that make the optimal segmentation.

Merging. Next, the algorithm incrementally merges nodes in a bottom-up fashion to select LOPs
over larger sub-regions (lines 6 to 17). More specifically, the Merge function (line 23) merges a
sub-sequence t1 : si⊗si+1 ...⊗si+m−1 in the left child with a sub-sequence t2 : s j⊗s j+1 ...⊗s j+n−1

in the right child if (i) si+1...⊗si+m−1⊗s j...⊗s j+n−1 is a subsequence of query Q, or (ii) si+1...
⊗si+m−1⊗s j+1...⊗s j+n−1 is a subsequence of query Q when si = s j (i.e., we consider the common
boundary ShapeSegment only once). While the score of the merged subsequence for case (i) can
be easily computed using the average of the scores of left and right subsequence weighted by
their number of ShapeSegments, i.e, (m)∗score(t1)+(n)∗score(t2)

m+n , for case (ii) we rescore the common
ShapeSegment by estimating the slope of a line from the x.s of the last ShapeSegment of t1 to
x.e of the first ShapeSegment of t2. If the sc is the score of common ShapeSegment, t1∗ and t2∗

are the scores of left and right subsequence without the common ShapeSegment, then the score of
the merge subsequence is: (m−1)∗score(t1∗)+sc+(n−1)∗score(t2∗)

m+n−1 . When multiple sub-sequences in the
children nodes generate the same sub-sequence in the parent node, we select the sub-sequences
that result in maximum score after merging, i.e., the one with the most optimal segmentation (line
24–25), thereby pruning out LOPs corresponding to non-selected sub-sequences. This merging
process is repeated at each intermediate node. Finally, at the root node, we select the points that
result in the maximum score for the entire sequence of operands.

Figure 8.2 depicts the logical order for scoring ShapeQuery a⊗(b⊕(c⊗d)) over the sub-sub-
regions. Here, a, b, c, and d represent a ShapeSegment. The SegmentTree algorithm starts by
scoring individual ShapeSegments (e.g., a,b,c and d in a⊗(b⊕(c⊗d ))) independently over each
of leaf nodes as depicted in Figure 8.2. Next, it computes the scores of sub-sequences in the
intermediate nodes using the merging process described below. For example, in Figure 8.2, node
4 depicts the sub-sequences formed by combining sub-sequences from nodes 1 and 2, and node 5
depicts the sub-sequences formed by combining sub-sequences from nodes 3 and 4. When multiple
sub-sequences in the children nodes generate the same sub-sequence in the parent node, we select
the sub-sequences that result in maximum score after concatenation (i.e, the one with the most
optimal segmentation), thereby pruning out LOPs corresponding to non-selected sub-sequences.
For example, at node 5, a⊗b can be computed from 1) a from node 3 and b from node 4, 2)
a⊗b from node 3 and b from node 4, and 3) a from node 3 and a⊗b from node 4. Among the 3
concatenations, we pick the one that gives the maximum score.

Given the closure assumption, the merging process leads to optimal segmentation as follows:
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Algorithm 8.1 Fuzzy Matching Algorithm

Input: L: a sub-region of trendline, Q: a CONCAT operation, ScrFunc: scoring functions from
Tables 7.4 and 7.5
Output: score

1: procedure EXECFUZZYQUERY(L, Q, ScrFunc)
2: subRegions←ComputeSubRegions(L) // leaf nodes
3: T←ComputeSubSequences(Q)
4: nodes← Queue()
5: // scoring of leaf segments
6: for each s in subRegions do
7: lops← []
8: for each t in T do
9: lops[t]← SelectLOPs(s, t)

10: end for
11: node← [s.start, s.end, lops[t]]
12: nodes.add(node)
13: end for
14: // bottom-up processing
15: while nodes.size() > 1 do
16: s← nodes.size()
17: // pairwise merging of nodes at the same level
18: while s > 0 do
19: s1← nodes.deque(), s2← nodes.deque()
20: mlops← []
21: for each t1, t2 in s1.lops.keys(),s2.lops.keys() do
22: score, lops← Merge(L,s1[t1],s2[t2])
23: if score > mlops[t1⊗t2].score then
24: mlops[t1⊗t2 ] = {lops, score}
25: end if
26: end for
27: node← [s1.start, s2.end, mlops]
28: nodes.add(node)
29: s = s − 1;
30: end while
31: end whilenode← nodes.deque()
32: return node.lops[Q].score
33: end procedure
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Theorem 8.2. Given the closure assumption, the bottom-up algorithm with k CONCAT operands

is optimal with a time complexity of O(nk4), i.e., linear in the number of points in the trendlines.

PROOF: We prove the above theorem via induction.
Base case. For a single node SegmentTree, there is no difference between the SegmentTree

algorithm and DP, since the SegmentTree algorithm uses DP to select the LOPs for a single node.
Induction step. Let L and R be two sibling nodes in the SegmentTree consisting of optimal

scores for each possible subsequence of operands in the CONCAT operations, and let P be their
parent node. Let SL

i(k−1) be the score of sub-expression from operand i until k in L for the optimal
segmentation of (i−1)th to kth operands in L and SR

(k+1 j be the score of the sub-expression from
operand k+ 1 until j for the optimal segmentation of kth to j+ 1th operands in R. Let SP

i j be the
score of sub-expression of operand i until j in P, formed by concatenation of operands i−1 until k

in L and k until j+1 in R. As per the Closure assumption, the optimal segmentation corresponding
to SP

i j must include the optimal segmentation i− 1 until k in L and k until j + 1 in R. Since kth

operand is common between L and R, we need to re-compute its score over the sub-region from
x.e of (k− 1)th operand in L and x.s of (k+ 1)th operand in R during concatenation. Let scP

k be
the re-computed score of the kth ShapeSegment. Then, Si j can thus be computed as:

Si j = MAX
k
{
(k−i)×SL

i(k−1))+scP
k +( j−k)∗SR

(k+1, j))

( j−i+1) }
Since, for computing Si j, we consider all possible combinations of optimal segmentations in L

and R and pick the one that gives the maximum score, it must be optimal.
Conclusion. Thus, by the principle of induction, the SegmentTree algorithm must also be opti-

mal over the entire SegmentTree.
Time Complexity. For a sub-region of n points, the maximum number of leaf nodes is n/2 (since

we need at least 2 points per sub-region) and therefore the total number of nodes in the tree is
n. At each of the leaf node, we estimate the scores of each ShapeSegment independently, taking
O(n×k) operations across all leaf nodes. Each intermediate node involves a merge step, involving
concatenation of subsequences from left node with the right node. For k operands in CONCAT,
there can be a maximum of k2 subsequences per node, requiring a total of k4 concatenations.
Moreover, each concatenation involves the computation of score scP

k of the kth ShapeSegment that
intersects left and right child. The computation of scP

k involves the estimation of the slope of line
from x.e of (k−1)th ShapeSegment in L to x.s of k+1th ShapeSegment in R, which can be done
in constant time from statistics of kth ShapeSegment’s sub-region in L and R (see Theorem 3.3).
Thus, each merging step involves O(k4) operations. Overall, the SegmentTree algorithm takes
O(n/2×k4+nk) ≈ O(nk4) time, i.e., linear in the number of points in the sub-region. In practice,
k4 is not a problem, since not all combinations of sub-sequences lead to a valid sub-sequence in
the CONCAT operands, therefore the actual number of merges are much fewer. Moreover, k is
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Figure 8.2: Bottom-up scoring of ShapeQuery

typically small (≤ 5). �.

8.2.1 Pruning Optimization

A large number of ShapeQueries are sequential pattern matching queries, consisting of only a
single CONCAT operation on a sequence of simple patterns such as up, down, θ = x . For such
CONCAT operations, we can bound the final scores of trendlines and filter low-scoring trendlines
without scoring them until the root node of the SegmentTree. We first describe our key observa-
tions.

Observation 8.1. Given a sub-region L comprising of sub-sub-regions: L1,L2, ...,Ln, the score of
a ShapeSegment consisting of patterns up or down over L, scoreup/down,L is bounded between the
maximum and minimum scores over any of the smaller sub-regions, i.e., MIN

i
(scoreup/down,Li) ≤

scoreup/down,L ≤MAX
i

(scoreup/down,Li). This is because the scores of up or down vary monotoni-
cally with the slope of the line, and the slope of the line over the large sub-region is always bounded
between the maximum and minimum slopes of the lines over any smaller regions, MIN

i
(slopeLi)

≤
slopeL ≤ MAX

i
(slopeLi). However, when a slope (e.g., θ = x ) is specified as pattern, the above

observation does not hold for MIN
i

(slopeLi) ≤ x ≤ MAX
i

(slopeLi), because the scorex,L can be

more than MAX
i

(scorex,Li) when |x− slopeL| ≤ MIN
i

(x− slopeLi). For such cases, we set the
upper bound to 1, the maximum possible score.

Observation 8.2. The score of an operator is bounded between the minimum and maximum
scores of input ShapeSegments. This is clear from the scoring functions of operators as defined in
Table 7.5.
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Pattern Max possible Score Min possible Score
up max across all level i nodes min across all level i nodes
down max across all level i nodes min across all level i nodes
flat max across all level i nodes if all θ > 0 or all θ < 0; otherwise 1 min across all level i nodes
θ = x max across all level i nodes if all θ > x or θ < x ; otherwise 1 min across all level i nodes

Table 8.1: Bounds on scores for different patterns based on scores at a given level i in the SegmentTree

Based on the above observations, we can derive the bounds on the final score of a ShapeSegment
at the root node using the maximum and minimum scores of the ShapeSegment at a given level i

in the SegmentTree. We summarize the bounds for each of the patterns in Table 8.1. Thus, instead
of processing each trendline completely in one go, we process trendlines in rounds. In each round,
we process one level of SegmentTree for all of the trendlines simultaneously, and incrementally
refine the upper and lower bounds on their scores. Before moving on to the upper levels, we
prune the trendlines that have their upper bound score lower than the current top-k lower bound
scores. Overall, the pruning optimization helps avoid processing to complete for a large number
of trendlines in the collection, and is particularly effective when the user is looking for trendlines
with rare patterns.

8.3 ADDITIONAL OPTIMIZATIONS

ShapeSearch supports a couple of additional optimizations that result in faster scoring of trend-
lines.

Generating lines via Summary Statistics. For scoring a sub-region, ShapeSearch fits a line to
approximate it. This is costly for fuzzy ShapeQueries where ShapeSearch needs to score sub-
regions of varying sizes, fitting one line for every sub-region. We note that a summary of five
statistics namely, ∑xi, yi, ∑xi.yi, ∑x2

i , and n for a sub-region, is sufficient to compute the slope of
the line over the sub-region as follows:

θ =
(n×∑xi.yi−∑xi ∑yi)

(n×∑x2
i − (∑xi)2)

,δ = ∑yi−θ ×∑xi. (8.1)

Moreover, it is easy to see that the individual summaries over two sub-regions (A and B) are
sufficient to compute the slope of the line over the combined region AB, without making additional
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passes over the data.

θAB =
(nA +nB)∗ (∑xAi.yAi +∑xBi.yBi)− (∑xAi +∑xBi)∗ (∑yAi +∑yBi)

(nA +nB)×∑((xAi)2 +(xBi)2)−∑(xAi + xBi)2 (8.2)

Thus, the summary statistics help reduce data movement as well as the amount of data processed
during segmentation. We summarize our finding using the following theorem.

Theorem 8.3 (Additivity). Given two adjacent segments A and B, a line segment over the com-

bined segment AB can be estimated using linear regression on the summarized statistics over the

individual segments A and B.

Push-Down Optimizations. When a ShapeQuery consists of both fuzzy and non-fuzzy Shape-
Segments, location constraints are pushed down to the trendline generation component to prune
trendlines that do not have any value in the specified x ranges. Similarly, ShapeSearch avoids com-
puting summary statistics over x ranges that are not used in the ShapeQuery (e.g., 0 to 50 in the
above query), since the values over such ranges are ignored for segmentation and scoring. Overall,
our empirical evaluation shows that these push-down optimizations significantly help in improving
the overall response time of ShapeSearch.

8.4 PERFORMANCE EVALUATION

In this section, we evaluate the runtime and accuracy of ShapeSearch pattern matching algo-
rithms. We first compare the runtime of the exhaustive pattern matching algorithm (Section 7.6)
with four algorithms proposed in this chapter: (i) the dynamic programming-based (DP) algorithm,
(ii) the Greedy algorithm, (iii) the SegmentTree algorithm, and (iv) the SegmentTree algorithm
with pruning. We also compare with Dynamic Time Warping (DTW) [78], another dynamic-
programming algorithm that is typically used for matching shapes in trendlines in systems like
Zenvisage [3], to show the efficiency of ShapeSearch relative to existing systems. Next, we com-
pare the accuracy of SegmentTree and Greedy with respect to the results of DP. Note that Segment-
Tree and Greedy are approximate while DP is an optimal algorithm and gives the same results as
that of the exhaustive algorithm. Finally, we vary the characteristics of ShapeQueries to assess the
impact of different factors on performance.

Datasets and Setup. Figure 8.2 depicts the five real-world datasets drawn from the UCI reposi-
tory [90], and the list of queries we used for our experiments. Each dataset consists of trendlines
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Runtime (sec) Accuracy (%)
# Dataset |V| |Vi| Query Exhuastive DP DTW Segment

Tree
Segment
Tree+Prune

Greedy Segment
Tree

Greedy

1 Weather 144 366 (θ=45◦⊗d⊗u⊗d) 290 52 11 5 2.8 0.9 85 25
2 Weather 144 366 ((u⊕d)⊗f⊗u⊗d) 211 55 9 4 3.2 1.1 90 30
3 Weather 144 366 (f⊗u⊗d⊗f ) 244 47 9 5 3.3 1.4 100 25
4 Worms 258 900 (d⊗(θ=45◦

⊕θ=−20◦ )⊗f)
4737 76 53 10 7 2.2 90 35

5 Worms 258 900 (d⊗θ=45◦⊗d) 4320 63 44 12 9 3.4 90 35
6 Worms 258 900 (u⊗d⊗u) 3953 68 42 9 6 2.5 90 20
7 50Words 905 270 (d⊗(u⊕(f⊗d))) 1046 105 28 7 5 1.1 90 25
8 50Words 905 270 (d⊗θ=45◦⊗d) 954 122 32 7 5 1.9 100 40
9 50Words 905 270 ((u⊕d)⊗(u⊕d)⊗f) 979 131 29 9 7 1.2 85 40
10 Housing 1777 138 (f⊗d⊗u⊗f) 165 58 40 14 12 1.5 80 15
11 Housing 1777 138 (u⊗d⊗u⊗f) 152 63 41 17 13 1.9 85 20
12 Housing 1777 138 (u⊗f⊗((θ=45◦⊗

θ=60◦)⊕(u⊗d)))
157 52 35 18 14 1.2 75 15

13 Haptics 463 1092 (u⊗d⊗f⊗u) 6869 890 62 16 12 3.1 90 40
14 Haptics 463 1092 (d⊗u⊗d⊗f) 7189 924 58 20 15 2.6 95 25

Table 8.2: Runtime and accuracy results

with a mix of shapes, and the datasets differ from each other in terms of number of trendlines (|V |)
as well as their length (|Vi|). The queries were selected to have at least 20 trendlines with scores
> 0 to ensure that the issued ShapeQueries were relevant to the dataset. All experiments were
conducted on a 64-bit Linux server with 16 2.40GHz Intel Xeon E5-2630 v3 8-core processors
and 128GB of 1600 MHz DDR3 main memory. Datasets were stored in memory, and we ran six
trials for each query on each dataset.

8.4.1 Overall Run-time and Accuracy

Runtime Comparison. Figure 8.2 (Runtime) depicts the runtime for each of the query across
all datasets. We see the time taken by the exhaustive algorithm is prohibitively large, rendering it
no longer interactive. DP provides an order of magnitude speed-up over the exhaustive approach;
however even DP can take 100s of seconds over trendlines with only a few hundred points. Both
Greedy and SegmentTree provide a 2× to 40× improvement in runtime compared to DP, taking
only a few seconds in the worst case. These algorithms explore a much fewer number of segmen-
tations compared to the DP approach. We also see that these algorithms are about 10× faster than
the DTW algorithm, whose runtime, like DP, varies quadratically with the number of points in the
trendline. Finally, SegmentTree with Pruning further provides a speed-up of 10-30% by pruning
low utility trendlines. Since the improvement in performance of SegmentTree and Greedy comes
at the cost of accuracy, we next compare the accuracy.

Acccuracy Comparison. Figure 8.2 (Accuracy) depicts the accuracy of SegmentTree and Greedy
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Figure 8.3: Accuracy with respect to DP over 3 real datasets with varying number of output trendlines.
Annotations denote the average deviation (in %) of the score of kth trendline chosen by algorithms with
respect to the kth optimal trendline.

relative to DP. We do not compare the accuracy of DTW with ShapeSearch algorithms since their
scoring functions differ; instead we perform an user study in the next section to compare the
effectiveness of ShapeSearch scoring functions with DTW and other similar metrics. We define
accuracy here to be the number of trendlines picked by the algorithm that are also present in the top
20 trendlines selected by DP. We see that Greedy has a low accuracy (< 30%), since it gets stuck on
local optima. The accuracy of SegmentTree is closer to that of DP and is never off by more than 2
trendlines when we look at top 10 visualizations. Unlike Greedy, SegmentTree compares the local
patterns in the trendlines and those specified in the ShapeQuery to select the segmentations that
could result in high score.

Figure 8.3 depicts the accuracy results over top-k visualizations (with k varying from 2 to 20)
for 3 of the the datasets. Annotations in each of the figures depict the average deviation in % of
the score of kth visualization that an algorithm selects with respect to the score of the kth optimal
visualization, indicating how off the shapes of selected visualizations are from optimal ones. We
note that the accuracy of SegmentTree improves as the number of output visualizations increases,
and is never off by more than 2 visualizations or have more than > 12% deviation in scores when
we look at top 20 visualizations.

Overall, the runtime and accuracy results demonstrate that the SegmentTree achieves compa-
rable accuracy to that of DP in much less time.

Next, we explore the impact of push-down optimizations on the overall performance of queries.

Impact of Push-Down Optimizations. We issue non-fuzzy queries, one query for each of the
datasets, as depicted in Table 8.3. Figure 8.4 depicts the runtimes for ShapeSearch (note that all
ShapeSearch algorithms behave similar for non-fuzzy queries) with and without push-down opti-
mizations. We observe that non-fuzzy queries execute very quickly (< 4s for over 1000 trendlines
with more than 1000 points each), but pushdown optimizations help in further reduction of run-
time in proportion to the selectivity of the LOCATION primitives in the query. For example, for
ShapeQuery [p=up,x.s=60,x.e=80] on the Haptics dataset, pushdown optimizations help reduce
the runtime from 3s to < 1.2s.
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Name Non-Fuzzy Queries
Weather [p=down,x.s=1,x.e=4]⊗[p=up,x.s=4,x.e=10]⊗[p=down, x.s=10,x.e=12]
Worms [p=down,x.s=50,x.e=100]
50 Words [p=down,x.s=200,x.e=400]⊗[p=up,x.s=800,x.e=850]
Real Estate [p=down,x.s=1,x.e=20]⊗[p=up,x.s=20,x.e=60] ⊗[p=down,x.s=60,x.e=138]
Haptics [p=up,x.s=60,x.e=80]

Table 8.3: Non-Fuzzy Queries
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Figure 8.4: Average running time before and after push-down optimizations on non-fuzzy queries.

8.4.2 Varying ShapeQuery Characteristics

We evaluated the efficacy of our SegmentTree-based optimizations with respect to three different
characteristics of ShapeQueries, as discussed below.

Impact of number of data points. Figure 8.5 shows the performance of algorithms as we increase
the number of data points in trendlines for a fuzzy ShapeQuery (u⊗d⊗u⊗d). With the increase in
data points, the overall runtimes increases for all algorithms because of the increase in the number
of segmentations. Nevertheless, SegmentTree shows better performance than DP after 100 data
points since the SegmentTree approach is less sensitive (linear time) to the number of data points
than that of DP (quadratic).

Impact of number of patterns. Figure 8.5 depicts the performance of fuzzy ShapeQueries with
varying number of ShapeSegments (alternating up and down patterns) and issued over the weather
dataset. As the number of ShapeSegments in the ShapeQuery grows, the overall runtimes of
the algorithms also increases, with the runtimes for SegmentTree and SegmentTree with pruning
growing much faster (k4) than DP (k). However, the overall time for DP is still larger because the
number of data points (366 in the weather dataset) plays a more dominant (n2) role.

Impact of number of trendlines. We increased the number of trendlines from 100 to 1000 in the
real-estate dataset with a step size of 100 and issued a fuzzy ShapeQuery (u⊗d ⊗u⊗d); the results
are depicted in Figure 8.5. While the overall runtime for all approaches grows linearly with the
number of trendlines, the gap between SegmentTree and SegmentTree with pruning grows wider.
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Figure 8.5: Runtimes on Varying Characterisitcs of ShapeQueries

This is because more trendlines get pruned as the size of the collection grows larger.

8.5 OVERALL TAKEAWAYS

In this chapter, we discussed the algorithms for executing fuzzy queries, a common subclass of
ShapeQueries where there is at least one ShapeSegment with missing or multiple possible values
for their starting and end locations in the trendline. Unfortunately, naïvely executing the fuzzy
queries is extremely slow, requiring an expensive evaluation of all possible ways of matching each
candidate trendline to the query to select the best one. We proposed a dynamic programming based
optimal algorithm that reuses computation to provide substantial speed-ups, and show that even
this algorithm can be prohibitively slow for interactive ad-hoc exploration. We then developed a
novel perceptually-aware bottom-up algorithm that incrementally prunes the search space based
on patterns specified in the query, providing a 40× speedup with over 85% accuracy, compared to
the optimal approach.

Next, we present the results from the user evaluation of ShapeSearch, that we conducted to
assess the usability and effectiveness of ShapeSearch.
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CHAPTER 9: SHAPESEARCH USER EVALUATION

In this chapter, we first present a user study and a case study that we conducted to evaluate
the evaluate the utility of ShapeSearch (relative to visual query systems [3, 9, 75]) on its ability
to effectively support pattern matching tasks in trendlines. Next, we discuss the performance of
ShapeSearch, focusing on overall runtime and accuracy.

9.1 USER STUDY

We conducted a user study to perform a qualitative and quantitative comparison of ShapeSearch
with two baseline tools: our own system Zenvisage that we discussed from Chapters 3–6, and
Qetch [74], both recent sketch-based systems for trendline pattern search. These systems allow
users to sketch a pattern on a canvas, zoom in and out of the trendline to focus on a specific sub-
region, and apply filtering and smoothing to match trendlines at varying granularities. While Qetch
supports its own custom shape matching algorithm, Zenvisage allows users to choose between the
Euclidean or DTW distance measures depending on the task. Qetch additionally supports a sim-
ple regex (via a repeat operator) to search for repeated occurrences of a sketched pattern. We
disabled the sketching capability in ShapeSearch to isolate the benefits of the novel natural lan-
guage and regex query mechanisms over sketch. ShapeSearch∗ denotes ShapeSearch with onatural
languagey natural language- and regex-based querying mechanisms. We recruited 24 (14M/10F)
participants with varying degrees of expertise in data analytics via flyers and mass-emails. We em-
ployed within-subjects study design between ShapeSearch∗ and each of the baseline tools, using
two groups of 12 participants each. Note that by design, each participant encountered sketch ca-
pabilities only once—either in Zenvisage or Qetch. Participants were free to employ either natural
language or regex for ShapeSearch∗.

Dataset and Tasks. Based on the domain case studies from Chapter 7, as well as prior work in
time series data mining [91–95] and visualization [3, 9, 75, 96, 97], we identified seven categories
of pattern matching tasks, as depicted in Table 9.1. We designed these tasks on two real-world
datasets: the Weather and the Dow Jones stock datasets from the UCI repository [90] that partici-
pants could easily understand and relate with. Together, the seven tasks spanned both exploratory
search as well as targeted pattern-based data exploration, which helped us test the effectiveness of
individual interfaces in various settings.

Ground Truth. For each of the tasks, three of the authors and 20 Mechanical Turk (mturk) work-
ers, assigned a score between 0 (worst match) to 5 (best match) to each of the candidate trendlines.
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Tasks Description
Exact Trend
Match (ET)

Find shapes similar to a specific shape, e.g., cities with weather patterns similar to that of NY,
stock trends similar to Google’s.

Sequence
Match (SQ)

Find shapes with similar trend changes over time, e.g., cities with the following temperature
trends over time: rise, flat, and fall, stocks with decreasing and then rising trends.

Common
Trends ( TC)

Summarizing common trends e.g., find cities with typical weather patterns, stock with typical
price patterns.

Sub-pattern
Match (SP)

Find frequently occurring sub-pattern, e.g., stocks that depicted a common sub-pattern found
in stocks of Google and Microsoft, cities with 2 peaks in temperature over the year.

Width spe-
cific Match
(WS)

Find shapes occurring over a specific window, e.g., cities with steepest rise or fall in temper-
ature over 3 months, peaks with a width of 4 months.

Multiple X or
Y constraints
(MXY)

Find shapes with patterns over multiple disjoint regions of the trendline, e.g., stocks with
prices rising in a range of 30 to 60 in march, then falling in the same range over the next
month.

Complex
Shape
Matching
(CS)

Find shapes involving trends along specific directions, and occurring over varying duration,
e.g., stocks with head and shoulder pattern, cup-shaped patterns, W-shaped patterns.

Table 9.1: Pattern Matching Tasks

Each mturk worker was presented with the task description in Table 9.1, along with a collection
of trendlines, each of which they had to rate based on how closely the trendline matches the task
description. We took the average of the ratings provided by the three authors and mturk workers
to be the ground truth. We measure the participant’s task accuracy as the (sum of the ground truth
scores of the top K trendlines selected by the participant) × 100 / (sum of the top K ground-truth
scores for the task). K varied between 2 to 5 per task.

9.1.1 Key Findings

We describe our key findings below.

Overall Task Accuracy and Completion Times. As depicted in Figure 9.1a and Figure 9.1b,

ShapeSearch∗ helped participants achieve higher accuracy and less time overall than Qetch and

Zenvisage, and in particular for, 5 out of 7 tasks; however, for precise and complex shape match-

ing tasks, ShapeSearch∗ performed worse than baselines due to the lack of sketch capabilities.

On average across all tasks, ShapeSearch∗ helped participants achieve an accuracy of 87%—8%
more than Qetch and 17% more than Zenvisage—in about 30-40% less time, a significant improve-
ment. While Zenvisage and Qetch involve less reasoning during query synthesis, they often lead
to significantly more queries issued and manual browsing of trendlines for identifying the desired
ones. ShapeSearch∗, on the other hand, can accept more fine-grained user queries to rank relevant
trendlines effectively, enabling participants to retrieve more accurate answers with less effort. In
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Figure 9.1: User study results († and ∗ denote that ShapeSearch had statistically significant
improvements (α = 5%) with respect to Zenvisage and Qetch respectively)

order to better understand the differences between the tools, we separately analyze tasks where
ShapeSearch∗ did better and worse than the baselines.

Settings Where ShapeSearch∗ Wins. Since sketch systems are based on precise matching, for
sequence and sub-pattern matching tasks (SQ and SP), users drew multiple sketches for a given
sequence or subsequence to find all possible instances. ShapeSearch∗, however, is effective at
automatically considering a variety of shapes that satisfy the same sequence or subsequence of
patterns. Similarly, for tasks involving multiple constraints along the X and Y axes, or the width
of patterns(TC, WS, MXY), a large majority of the participants gave more accurate results in less
time with ShapeSearch∗. ShapeSearch∗ supports a rich set of primitives for users to add multiple
constraints on the patterns, including searching for patterns over multiple disjoint regions. While
the users could zoom into a specific region of the trendline and sketch their desired patterns in
the sketch systems, these capabilities were not sufficient to precisely specify all of the constraints
at the same time. We believe that supporting visual widgets in the baseline tools that internally
leverages the ShapeSearch primitives could remedy this issue.

Settings Where ShapeSearch∗ Loses. The opposite effect was observed (more time, less accu-
rate with ShapeSearch∗) when finding trendlines exactly similar to a given trendline (ET). This is
understandable given that ShapeSearch∗ does not possess sketching capabilities which is a perfect
fit for this task, and that ShapeSearch∗ regex scoring functions are targeted more towards approx-
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imate and fuzzy pattern matching. For complex shapes (CS), Qetch performed the best, followed
by ShapeSearch∗, and then Zenvisage. Zenvisage performs the worst because the Euclidean and
DTW measures used for matching shapes are sensitive to distortions in the sketch drawn by users
for such complex shapes. Qetch, on the hand, applies corrections to distortions in shapes for bet-
ter matching. For ShapeSearch∗ the results were mixed. We noted that the few participants who
over-simplified the shape with fewer patterns (e.g., [p=down][p=up] for “cup-shaped” instead of
[p=up][p=flat][p=up]) had poorer accuracy compared to those who used regex appropriately with
correct sequence and width constraints. Overall, we find that complex shapes are easier to draw,
harder to describe. We believe ShapeSearch with its sketching interface can potentially address
these issues.

User Preferences and Limitations. In the end, we asked participants to complete a survey to
gauge their preferences for the three mechanisms, sketch, natural language, and regex for each task.
(Recall that each participant encounters a given specification mechanism in onatural languagey one
tool .) We asked participants to select one or more of the three mechanisms they thought were most
suited for each of the tasks they performed. They were allowed to select more than one if they felt
multiple mechanisms were helpful. Figure 9.1c depicts the % of participants who selected the
mechanism for each of the tasks. As depicted in the figure, user’s preference results are correlated
with their accuracy and completion times: most participants preferred the sketch-based interface
for precise and complex shape-tasks, and natural language and regex for other tasks. When asked
about their preferences in general, about 62% of the participants believed that the three interfaces
integrated together would be most effective, 29% felt natural language and regex together without
sketch would be sufficient for all pattern matching tasks, and onatural languagey 8% considered a
sketch-based tool as sufficient, validating our design of a tool that goes beyond sketch capabilities.
Participant P2 said “Almost always, I will go with Tool B [ShapeSearch∗]. I know exactly what I

am searching [for] and what the tool is going to do, it is much more concise, I feel more confident

in expressing my query pattern".
About 2/3rd of the participants said they would opt for regex over natural language or sketch, if

they had to choose one. Participant P8 said “the concept for visual regex by itself is very powerful

and could be helpful for most cases in general”. This was surprising given than more than half
of these participants had no prior experience with regular expressions-like languages. Participant
P8 said “the concept for visual regex by itself is very powerful, could be helpful for most cases

in general”. Participant P4 said “regex was very friendly to use, very powerful for a large num-

ber of usecases”. On the other hand, participant P1 who preferred natural language over regex
said, “Natural language and drawing [sketching-based querying] are good [sufficient] for most of

the patterns, once or twice [rarely] I will search for complicated patterns with constraints, but I
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can then first use natural language and then fill the missing fields in the [form-based correction]

panel below..." On a 5-point Likert scale ranging from strongly disagree (1) to strongly agree (5),
participants gave a score of 3.9 when asked how effective ShapeSearch was in understanding and
parsing their natural language queries. And when asked how easy it was to learn and apply regular
expression, they gave a rating of 4.4.

Other findings. When asked about the effectiveness of using lines for matching trendlines, the
average response was positive with a rating of 4.1 on a scale of 5. Participant P4 said “Green lines

are good, they make me more confident, help me understand trendlines especially [the] noisy ones

without me having to spend too much time parsing signals. I can also see how my [query] pattern

was fitted over the trendline ...”. Finally, participants also suggested several improvements to
make ShapeSearch more useful in their workflows such as supporting more mathematical patterns
by default like concave, convex, exponential, or statistical measures such as entropy; simplifying
regex syntax by removing brackets; automatic regex validation and auto-correction; query and
trendline recommendations, and using different colors for lines that correspond to different patterns
(ShapeSegments) in the ShapeQuery.

Next, we present findings from a case study with bioinformatics researchers.

9.2 CASE STUDY: GENOMICS

To understand the use of ShapeSearch in a real-world setting, we conducted an open-ended
evaluation of ShapeSearch via a case study with two bioinformatics researchers (R1 and R2). Both
researchers were graduate students at a major university and perform pattern analysis on genomic
data on a daily basis using a combination of spreadsheets and scripting languages such as R.

We started the study with a 15 minute introduction and a demo of the ShapeSearch tool on
the Weather data set [90] that we had also used for the user-study, and asked participants to per-
form a few pattern matching tasks to help them familiarize themselves with the tool, as well as
to ensure that they understood the functionalities of the tool. After introduction, participants used
ShapeSearch to explore a popular mouse gene dataset [77] that they often analyze as part of their
work. Since we were interested in seeing if they could create queries that reveal previously un-
known insights, we requested our participants to think aloud, explain the kind of queries they were
constructing, whether the results confirmed some already known fact, and how they currently per-
formed such exploration using existing tools. This also helped us ensure that their mental model
was matching with what the queries actually expressed. Each session lasted for about 75 minutes.
We summarize our findings below.
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9.2.1 Findings and Takeaways

I. Both participants were able to grasp the functionalities of ShapeSearch after a 15 minute intro-

duction and demo session without much difficulty. During this session, the participants appreciated
the ease of pattern search, saying “(R1) oh, this feature [searching using combinations of pat-

terns such as up and down] is cool, ... something that we frequently do”, “(R2) I like that you can

change your patterns [queries] that easily, and see the results in no time...”. Both participants con-
curred that ShapeSearch could be a valuable tool in a biologist’s workflow, and can help perform
faster pattern-based data exploration, compared to current R language scripting or spreadsheet
approaches.

II. Using succinct queries, participants could interactively explore a large number of gene groups,

depicting a variety of gene expression patterns. Both R1 and R2 were able to query for genes with
differential expressions over time. R1 initially issued natural language queries to search for genes
that suddenatural languagey start expressing themselves at some point, and then gradually stop
expressing, i.e., flat, followed by increase, and then gradual decrease, a pattern signifying an effect
of external stimulus such as a drug or a treatment. Thereafter, R1 was interested in understanding
the variations in expression rates, e.g., identifying groups of genes that rise and fall much faster,
or where changes are gradual. To search for these patterns, she interactively adjusted the width of
patterns in her queries via regex. Finally, R1 also searched for groups of genes that show similar
changes in expression over time, indicating they regulated similar cell mechanisms.

III. ShapeSearch helped participants validate their hypotheses, and make new discoveries. R2
used regex to explore a group of genes that increase with a slope of 45◦ until a certain point, and
then remain high and stable (flat), as well as those with the inverse behavior (ones that start high
and then gradually reduce their expression and remain low and flat). Such patterns are typically
symbolic of permanent changes (e.g., due to aging) in cell mechanisms, often seen among genes in
stem cells. While exploring these patterns, R2 discovered two genes, gbx2 and klf5, in the results
panel, that had similar expression patterns, and mentioned that the two genes indeed have similar
functionality and are actively being investigated. Next to these two genes, he saw another gene
spry4 with almost similar expression, and hypothesized that the similarity in shape indicates that
spry4 possibly had similar functionalities to gbx2 and klf5, something that is not well-known, and
could lead to interesting discoveries if true.

IV. ShapeSearch helped participants find genes with unexpected or outlier behaviors. During the
end of her study, R1 mentioned that it is rare to see a gene with two peaks in their expressions
within a short window. However, on searching for this pattern via natural language, she found a
gene named “pvt1” having two peaks within a short time duration of 10 time points. She found this
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surprising, and said there could either be some preprocessing error, or some rare activity happening
in the cell. She then searched for other unexpected patterns (e.g., three peaks, always increasing).

V. Both natural language and regex are equally effective. Comparing between natural language
and regex, R1 said she could express most of her queries using natural language, and would use
regex onatural languagey when the pattern is too long, and involves multiple constraints. R2, on
the other hand, said he would use regex in all scenarios. He believed regex was not significantly
difficult to learn, and helped him feel more in control and confident about what he was expressing,
and whether the system was correctly inferring and executing his issued queries.

VI. Participants faced a few challenges during exploration. They wanted to switch back and forth
between queries, so that they do not have to remember and reissue their previous queries. In
addition to better presentation of the the fitted lines (e.g., coloring), they wanted to understand in
more detail how the scores were computed, and if they could tweak the scoring according to their
needs using visual widgets.

9.3 OVERALL TAKEAWAYS AND FUTURE WORK

In this chapter, we present a user-study and an open-ended case study with two genomics re-
searchers for evaluating the expressiveness, effectiveness, and the usability of ShapeSearch. The
findings from the user-study show that compared to sketch-based querying systems, ShapeSearch
leads to more accurate and faster query results as well as have higher preference among users for
tasks involving sequence-based patterns, sub-patterns, patterns involving multiple X and Y range
constraints as well as those that involve complex combinations of patterns and location constraints.
On the other hand, for searching for trendlines that precisely match the drawn pattern, sketch-based
systems perform better. However, ShapeSearch with its sketching interface can potentially capture
the precise shape-matching requirements.

We observe similar findings from the case study. ShapeSearch helped genomics researchers
perform faster exploration of large number of gene groups, validate hypotheses, make new discov-
eries, as well as find genes with unexpected or outlier patterns.

Apart from providing more transparency on the approximation and scoring mechanisms as well
as supporting additional patterns, there are a number of avenues for future work to further improve
the capabilities of ShapeSearch. Currently, natural language, regex, and sketch cannot be used
simultaneously to specify or refine a given pattern query, rather each specification leads to an
independent query. We envision a more integrated interface where users can switch back and forth
among natural language, regex and sketch to incrementally build and refine their queries. For
example, users can start with a high level specification of the pattern by drawing a sketch, and then
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incrementally refine it using either natural language (e.g., increase the slope of increasing), or add
fine-grained constraints via regex.

Furthermore, ShapeSearch algebra (from Chapter 6) can be integrated with ZQL algebra (from
Chapter 4) to simultaneously support both fine-grained and fuzzy pattern searching as well as
operations such as comparison, filtering over collections of visualization. Recall from Chapter 4
that ZQL supports a user-defined functional primitive T which takes a visualization f and returns
a real number measuring some visual property of the trend of f such as monotonicity, skewness.
However, users needs to register T with Zenvisage in advance, and its execution is not optimized by
the ZQL optimizer. Since a ShapeQuery also returns as real number in the range of -1 to 1, it can be
easily used as a T primitive within a ZQL query. This will add more fine-grained pattern searching
capabilities to ZQL, in addition to making such queries more amenable to various optimizations
that we discussed in Chapter 8.

In the next chapter, we conclude and discuss a number of future directions stemming from our
work in this dissertation.
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CHAPTER 10: CONCLUSION AND FUTURE WORK

In this dissertation, we described two visual data exploration systems — Zenvisage and Shape-
Search, that synthesize techniques from databases, data mining, and visualization to fast-forward
users to their desired visualizations. The research challenges and their solutions discussed in this
dissertation play a significant role in the development of these systems.

In Chapter 3, we discussed the overall architecture and system development of Zenvisage as well
as our first attempt towards addressing the visualization search problem via sketch-based interface
and visualization recommendations. The remaining chapters covered two major extensions to the
initial prototype, addressing the challenges of expressiveness (Chapters 4–6), and flexible and
fuzzy pattern matching (Chapters 6–8 ).

In Chapter 4, we introduced a visualization exploration language — ZQL, which is based on an
expressive algebra and forms the core of Zenvisage. In Chapter 5, we discussed how Zenvisage
optimizes and executes ZQL queries interactively on large datasets. In Chapter 6, we reported
findings from the user evaluation of both the sketching interface and ZQL with respect to manual
visualization tools.

Then, in Chapter 7, we introduced a shape-based algebra coupled with multiple specification
mechanisms for fuzzy pattern matching over trendlines in ShapeSearch. In Chapter 8, we discussed
algorithms for efficient fuzzy shape matching over trendlines. In Chapter 9, we presented a user
study as well as a case study, comparing ShapeSearch with exisiting systems for pattern matching
over trendlines.

Overall, the automation in Zenvisage and ShapeSearch leads to (i) fewer man-hours to derive
insights, (ii) less error as analysts are less likely to miss out on important trends or patterns, (iii)
reduced frustration, tedium, and wastage of time of analysts, and (iv) identification of patterns or
trends that the analysts were not otherwise aware of, and (v) higher data coverage by allowing
traversal through a large number of visualizations at once. Furthermore, since these systems are
intended to make knowledge hidden in data more evident and easier to access, they have already
found usage within real world domains such as battery science, genomics, and ad analysis, and
have lead to interesting findings.

Nonetheless, we are still far from solving the problem of visualization search and recommenda-
tion. There are several bottlenecks in our approach that we aim to address in future.

1. Facilitating Self-Service Data Preparation and Integration. Before users can start doing
analysis, they need to spend considerable effort on pre-processing, profiling, cleaning, transform-
ing, and integrating their data into a format amenable for importing into Zenvisage and Shape-
Search. Smarter and easier-to-use data preparation and integration support is critical to overcom-
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ing the delays and inflexibility that frustrate users and hamper data exploration. Some important
future steps include automatically learning the data formats as well as types of attributes such as
categorical, quantitative; profiling to generate statistical summaries of data; eliminating duplicate
data; spotting anomalies as well as interpolating missing values. In addition, users typically want
to access and join a wider variety of datasets, but have to switch to another ETL tool or write
code to do so manually. Augmenting tools with machine learning techniques to automatically
join disparate but relevant data sets and creating a metadata catalog or glossary can be helpful as
more users seek to drive data transformation and integration themselves through self-service BI
and visual analytics tools, eliminating detours and distraction.

2. Intuitive Interactions for Supporting Novice Users. While our user studies showed that
ZQL is easy to use, it may be unrealistic to expect everyone with interest in data analysis to learn
ZQL. It remains to be seen if we can develop intuitive interactions that can translate automatically
into lines of ZQL. For example, one novel direction could be to develop visual widgets and in-
teractions that could let users compose two collections of visualizations and specify comparisons
between the two collections along X, Y or Z attributes. These interactive primitives can potentially
capture most two or three line ZQL queries, which form a large majority of overall queries issued
to Zenvisage. Another method that we have been exploring is incremental composability: can
we develop interaction primitives that correspond to a single line of ZQL, following which users
can use multiple such interactions to generate a more complex query. These interaction primitives
may include the use of drop-down menus. This would be akin to formulae in Microsoft Excel —
which most analysts are comfortable with. We are also exploring the use of interactive querying
interfaces, such as GestureDB [98] and DataPlay [99], which were originally developed for SQL,
and try to adapt it to ZQL.

3. Conversational and Context-Driven Exploration. We observe that users often do not
precisely know their questions when they start their analysis, instead they construct the questions
as the exploration evolves. In addition, for complex analysis tasks, it is common for users to break
them down into a sequence of simpler queries that build upon previous queries. Unfortunately, both
Zenvisage and ShapeSearch currently treat each query independent of the past queries, thus users
need to construct each query from scratch, impacting their flow of data exploration. A natural next
step could be to represent the context of user exploration using a state machine consisting of partial
queries as different possible states. The state can then be incrementally updated and executed as
new queries arrive. Furthermore, we need to integrate the supported specification mechanisms such
as sketch, natural language, regex such that users can seamlessly switch among them depending
on the complexity of the individual queries.
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4. Perceptually-Conscious Similarity and Outlier Search. Zenvisage makes use of similar-
ity measures such as Euclidean distance and Dynamic Time Warping (DTW) for comparing two
visualizations as well as for finding typical and outlier visualizations. However, typically these
measures do not provide results that look visually similar to human analysts (especially when
there is no perfect match); this is because they often provide the same “weight” to different fea-
tures in a visualization. In particular, if there is a single dominant peak in a visualization, from
the human perception standpoint, this is the main feature that should be used to assess similarity.
Recent work has shown that similar issues arise in scatterplots as well, i.e., existing models of scat-
terplot similarity fail to accurately capture human visual perception [100]. Towards this end, we
have been developing a similarity metric for trendlines that gives more importance to perceptual
features. At a high level, the metric incorporates a weighted combination of points corresponding
to extrema, the points in the local neighborhood of the extrema, as well as the local and global
trends for measuring similarity. Our early experiments show that this metric performs better than
other metrics listed on prototypical datasets, and at the same time, are much cheaper to compute.
In future, we plan to further tune this metric based on our user study results.

5. In-Database Support for Common Analytics Operations. In Zenvisage’s current archi-
tecture, the majority of the processing, e.g., comparison among visualizations, is done in its mid-
dleware, while limited amount of computation is pushed down to relational database management
systems (RDBMS). The downside of this approach is that as the size of the dataset increases, the
data transfer tends to dominate, resulting in an increase in latency. We find that a number of vi-
sual analytic operations involve comparisons between visualizations, which can be pushed inside
RDBMS by expressing them using SQL queries. Unfortunately, the SQL queries for comparing
visualizations tend to be complex and result in inefficient physical plans. In order to express such
queries more easily, we envision developing new logical operations along with corresponding ex-
tensions to SQL that can simplify the writing of comparison-based visual analytic queries. For
efficient execution, we can also develop new physical operators as well as algebraic equivalence
rules and access patterns that can exploit the semantics of comparison operations to significantly
improve the performance.
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