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Abstract

Spatial skills are a subset of cognitive skills essential to success in many different STEM

fields, including engineering, chemistry, geology, and computer science [1, 2]. Those with

low spatial skill often struggle in introductory college-level STEM coursework and drop out

of STEM majors. Fortunately, spatial skills are quite malleable. Video games present a

particularly promising way of training spatial skills; certain commercial video games, such

as Medal of Honor, Portal 2, and Tetris, have been empirically shown to improve players’

spatial skills after just a few hours of training [3, 4, 5], and video games provide a motivational

advantage over other forms of spatial skill training interventions since they are designed to

be fun. However, other commercial games, such as the “brain-training” game Lumosity,

seem to have no effect on players’ spatial skills [5]. It is not clear what makes some games

effective and others ineffective at spatial skill training, which makes it difficult to design

game-based spatial skill training interventions to improve students’ STEM proficiency and

retention.

Prior work studying the effectiveness of game-based spatial skill training interventions is

also limited by the fact that it does not take the their motivational appeal to their target

audience into account - the main advantage games have over other kinds of training interven-

tions. Low spatial skill students, who are disproportionately female, stand the most to gain

from spatial skill training interventions through improved proficiency in STEM coursework,

but are not targeted in the design or evaluation of spatial skill training games.

In this dissertation, I present a data-driven, player-centric approach to designing spatial

skill training video games that contributes to our understanding of what game features may

contribute to a game’s effectiveness at training spatial skills and its motivational appeal

to its critical target audience of low spatial skill students. First, I explain the design of

Homeworld Bound, a game I designed as a testbed for evaluating the ability of different

spatial game features to tap into players’ spatial skills and demonstrate its effectiveness as a

training intervention for children. In my first study, I demonstrate my data-driven approach

to evaluating the effectiveness of specific game features at tapping into players’ spatial skills

by analyzing the relationship between player performance and spatial skill in Homeworld

Bound. My results reveal that most of the levels in Homeworld Bound successfully tap into

players’ spatial skills and provide insights about how to fix the levels that do not.

In my second study, I take a player-centric approach to designing the player experience

of spatial skill training games, investigating how demographic factors and gaming habits,
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preferences, and motivations predict spatial skill in young adults. I use my findings to

develop a set of recommendations for designing spatial skill training games that appeal to

low spatial skill young adults specifically. I then present a revised and improved version

of Homeworld Bound, Homeworld Bound: Redux, and demonstrate how I incorporated my

findings from my data-driven and player-centered research studies to improve the game’s

ability to tap into players’ spatial skills and its motivational appeal for low spatial skill

young adults. Finally, I present the results of a controlled training study I conducted in a

large introductory STEM course for non-majors to evaluate the training effectiveness and

motivational appeal of Homeworld Bound: Redux for low spatial skill college students. While

I found no training effects of Homeworld Bound: Redux compared to alternative training

programs after 70 minutes of training, I found that performance on certain levels of the game

was correlated with spatial skill and that low spatial skill students were more intrinsically

motivated to play the game than to complete a non-game spatial skill training intervention.

My findings in this dissertation contribute a deeper understanding of what features influ-

ence a game’s effectiveness at training spatial skills and motivating low spatial skill students

to play it. These findings can be used to inform the design of more effective and motivating

spatial skill training interventions in the future to promote the development of skills critical

for pursuing STEM majors and careers.

iii



To Kristen, for your friendship and mentorship from the very beginning of my PhD journey

to the very end.

iv



Acknowledgments

I owe the completion of this dissertation to the many people who have provided advice,

feedback, moral support, and material assistance to my dissertation work over the years.

First, I would like to thank my advisor, Professor Brian Bailey. You had my back even

before I became your student, you helped me write my first conference paper, and you always

made time to offer me feedback, suggestions, and advice that shaped my research over the

past 6 years of my Ph.D. Thank you for taking me on as a student, supporting me, and

providing the guidance I needed to finish strong.

To the rest of my committee members: thank you for your helpful suggestions, which

improved the quality of my dissertation work and provided me with diverse perspectives

from educational psychology, computer science education, and social psychology to shape

this interdisciplinary dissertation project. Professor Chad Lane, thank you for introducing

me to the field of academic games research in my first year through your amazing class and

getting me started on the project that has become my dissertation. I am grateful to have

been in touch with you and the rest of the educational psychology folks these past years.

Professor Alex Kirlik, thank you for your insights on the cognitive psychology aspect of my

project and providing the skeptical sanalysis that helped me strengthen my arguments and

methods. Professor Craig Zilles, thank you for collaborating with me on the very last project

in my dissertation and giving me the opportunity to conduct research in the context of your

programming course. Who knows when I would have graduated if not for you! Professor

Geoffrey Herman, thank you for bringing your engineering and computer science education

expertise to bear in advising me on my dissertation project and helping to shape the direction

of my final project. Professor Gale Lucas, thank you for taking me on as a summer research

assistant 3 years ago and giving me the opportunity to conduct some really unique games

research. It was a pleasure working with you and the rest of the folks at the Institute for

Creative Technologies.

To all of the many undergraduate and graduate students who helped me work on my

games and assisted with my research studies: Rebecca Teasdale, Jackie Huey, Xiaoyi Chen,

Hanzhao Deng, Qixin Wang, Luke Lu, Robin Sheong, Alexander Dzurick, EJ Lee, Jiexin Lu,

Yuqi Yao, Jamie Lee, India Owens, Sebastian Saraceno, James Yang, Jinyuan Li, Qingqing

Yang, Zhengqi Fang, and Tiffany Li. Thanks especially to Ziang Xiao and Po-Tsung Chiu,

who ran an entire study for me when I had to travel, and Nick Olenz, who singlehandedly

built Exploration Mode and several crucial pieces of my games’ infrastructure. This project

v



would not have been possible without you all.

Thank you to Professor Brian Woodard, Angie Wolters, Ziang Xiao, Tiffany Li, and the

rest of the SIIP spatial visualization team for collaborating with me on various spatial skill

training projects and helping me expand the scope of my work to engineering students. I

hope to collaborate on more spatial training programs with you someday!

Professor Elisa Mekler, thank you and the rest of the folks in the MMI group at the

University of Basel for welcoming me to Switzerland for the summer and for your valuable

advice on my research. It was a pleasure collaborating with you and I would love to do more

in the future!

Special thanks to Dr. So Yoona Yoon, Professor Mary Hegarty, and Professor Michael

Peters for allowing me to use their psychometric tests for my research, and for their advice

about how best to use them.

I am also grateful for the support of the NSF Graduate Research Fellowship that supported

my dissertation work and gave me the chance to collaborate with international researchers

in Switzerland as part of the NSF GROW program.

Thank you, Professor Wai-Tat Fu, for believing in my games research, encouraging me to

pursue it from the start, and your valuable feedback on my work.

To Professor Marion Scheepers, Professor Liljana Babinkostova, and my fellow Boise State

REU cohort, thank you for that amazing summer in 2012 that convinced me to apply to

graduate school and get my Ph.D.

To my undergraduate advisors, Professor Max Hailperin and Professor Mike Hvidsten,

who supported me every step of the way towards graduate school.

To my wonderful labmates and friends in the Human-Computer Interaction (HCI) research

area at the University of Illinois: Kristen Vaccaro, Amy Oetting, Grace and Eric Yen,

Sanorita Dey, Hidy Kong, Robert Deloatch, Jennifer Kim, Motahhare Eslami, Wayne Wu,

John Lee, Po-Tsung Chiu, India Owens, Sneha Krishna Kumaran, Patrick Crain, Mingkun

Gao, Ziang Xiao, Emily Hastings, Gina Do, Sebastian Rodriguez, Farnaz Jahanbakhsh,

Tiffany Li, Rick Barber, Joon Park, and Silas Hsu. Thank you for the constant emotional

and moral support over these past 6 years.

To my non-HCI friends I met in the graduate program at the University of Illinois: Ce-

cilia Mauceri, Daphne Tsatsoulis, Shane Rife, Amanda Bienz, Carl Pearson, Cassandra Ja-

cobs, Jason Rock, Nate Bowman, Erin Carrier, Imani Palmer, Andrew Reisner, Paul Eller,

Jonathan Ligo, Megan Emigh, Sean Thetallone, Doris Xin, Alli Nilles, Everett Hildenbrandt,

Ally Kaminsky, Adam Stewart, Shant Boodaghians, Margaret Lawson, Sherry Yi, Ben Moy,

Zane Ma, Deepak Kumar, Josh Leveillee, and Riccardo Paccagnella. Thank you for getting

me to take frequent breaks from my research and socialize. And, of course, for the moral

vi



and emotional support that kept me going over the past 6 years.

To Monica Ste. Marie and Emily Hamberg - your long distance friendship means the

world to me! Thank you for your support and for providing perspective from outside of

academia to my life! Hopefully we can hang out more in person now that I’m graduating.

And finally, to my family, who are always there to listen, give advice, and help me through

the ups and downs of graduate school. And for providing me a place to flop down in your

backyard and lie in the sunshine with our cats whenever I needed a break.

vii



Table of Contents

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 My Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Defining Spatial Skills: A Taxonomy . . . . . . . . . . . . . . . . . . . . . . 10
2.2 The Relationship Between Spatial Skills and STEM . . . . . . . . . . . . . . 11
2.3 The Motivational Power of Video Games as Training Tools . . . . . . . . . . 13
2.4 Spatial Skill and Demographic Factors . . . . . . . . . . . . . . . . . . . . . 15
2.5 Spatial Skill Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Game Features Related to Spatial Skills . . . . . . . . . . . . . . . . . . . . 27

Chapter 3 Homeworld Bound, A Game for Training Children’s Spatial Skills . . . . 29
3.1 Overview of the Game and Design Process . . . . . . . . . . . . . . . . . . . 29
3.2 Target Audience and Technical Specifications . . . . . . . . . . . . . . . . . 30
3.3 Game Features to Support Spatial Skill Development . . . . . . . . . . . . . 31
3.4 Game Features to Support Engagement . . . . . . . . . . . . . . . . . . . . . 34
3.5 Game Features to Support Modularity . . . . . . . . . . . . . . . . . . . . . 35
3.6 Pilot Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 4 Untangling the Relationship Between Spatial Skills, Game Features,
and Gender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Chapter 5 A Player-Centric Approach to Designing Spatial Skill Training Games . . 73
5.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Design Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 6 Homeworld Bound: Redux - Revising Homeworld Bound For Improved
Learning and Player Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.1 Game Revisions to Enhance Spatial Features and Player Experience . . . . . 95
6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

viii



Chapter 7 Evaluating Homeworld Bound: Redux with Low Spatial Skill Students . 106
7.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.4 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Chapter 8 Discussion and Future Directions . . . . . . . . . . . . . . . . . . . . . . 128
8.1 A Theoretical Framework for Mapping Spatial Game Features to Spatial Skills128
8.2 A Data-Driven Approach to Designing and Evaluating Spatial Game Features 130
8.3 A Player-Centric Approach to Designing and Evaluating Spatial Skill Train-

ing Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.4 Homeworld Bound: Redux as a Research and Design Tool for Spatial Skill

Training Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

ix



Chapter 1: Introduction

There is a huge demand for STEM expertise in today’s increasingly technology-driven

economy; in the United States, STEM jobs are currently growing at double the rate of non-

STEM jobs [6]. Unfortunately, there are simply not enough students graduating from college

with the necessary skill set to fill the need for scientists, engineers, computer programmers,

mathematicians, and other STEM occupations, particularly in industry and government

[7], and the gender gap in STEM disciplines remains a problem [8]. And this is despite

countless interventions have been proposed and implemented with the goal of attracting

more students, especially women and girls, to STEM fields [9]. While there are many factors

that affect students’ decisions to pursue STEM careers, recent research suggests that these

interventions may be missing a key piece of the puzzle: a set of cognitive skills called spatial

skills.

Spatial skills are a specific set of cognitive skills that we use every day to perceive and com-

prehend the spatial relationships between and within different objects in our environment,

enabling us to use tools and navigate [10]. They are also one of the strongest predictors

of future achievement in STEM coursework and STEM careers, independent of math and

verbal ability [11, 2]. Spatial skills come into play in a variety of different tasks required

in STEM coursework: imagining cross-sectional structures in geology [12, 13], translating

between 2D and 3D representations of 3D objects in computer aided design for engineering

[14, 15, 16, 17], reading x-ray and MRI images [18], and comprehension of large programs

in computer science [19, 20].

Students with underdeveloped spatial skills often struggle in their STEM classes and

become discouraged and drop out, deciding that a STEM major is too hard and not for them.

Therefore, spatial skills may act as a gatekeeper of sorts for STEM disciplines, causing low

spatial skill students to encounter too much difficulty in their coursework and drop out [10].

Furthermore, there is a consistently demonstrated gender gap in spatial skill mirroring the

gender gap in STEM participation that begins as early as elementary school [21, 22, 23, 8].

Thus, it is important to train students’ spatial skills from an early age in order to prevent

low spatial skill from becoming a barrier to success in STEM coursework, majors, and future

careers for otherwise interested, motivated students.

The research literature to date suggests that spatial skills are quite malleable. The two

primary methods of training spatial skills in the research literature are workbook exercises

and video games. A meta-analysis of research studies utilizing these two methods revealed

that they tend to be equally effective with moderate effect sizes [10]. However, video games
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are a particularly good medium for spatial skill training interventions since they naturally

bring the player into a visual environment where learning can occur in a self-directed man-

ner. More importantly, though, video games are designed to harness the power of intrinsic

motivation to keep players engaged without any extrinsic incentives like the cash payment

or course credit typically used in spatial skill training interventions [24, 25]. Thus, they are

likely to be more appealing to students than more traditional types of spatial training that

utilize multiple choice questions and sketching exercises; currently, 79% of people under age

18 play video games of some type in their free time [26].

Several commercial video games have already demonstrated empirical effectiveness in spa-

tial skill training, including the first person shooters Medal of Honor: Pacific Assault [3]

and Unreal Tournament 2004 [27], the first person puzzle game Portal 2 [5], the platformer

Super Mario 64 [28], the ball rolling arcade platformer game Marble Madness [29], the puz-

zle game Tetris [4], and the driving game Crazy Taxi [30] (see Figure 1.1). However, other

commercial games, such as the 3D ball rolling game Ballance [3] and even so-called “cog-

nitive training” games designed specifically to train these skills like Lumosity, produce no

training effects at all [5, 31] (see Figure 1.2). The fact that games developed specifically to

train cognitive skills have failed to produce training effects, while the only games shown to

be effective thus far are commercial games that were not even intended to train any specific

cognitive ability suggests that the research community and video game developers do not

truly understand what factors contribute to an effective training game for spatial skills. How

are we to design effective spatial skill training games that help students gain the skills they

need to be successful in STEM if we don’t know why some games are effective and others

are not?

One barrier to discovering this knowledge is the near exclusive use of commercial games

in the spatial skill training literature. Using a pre-built, non-open source commercial game

makes it very difficult or impossible to isolate and test specific features of interest, which

in turn makes it very difficult to determine what features to include to ensure a game is

effective at training. Another concern with the overwhelming use of commercial games in

the spatial skill training game literature is that they do not scale well; they must be purchased

individually and may not be affordable for public school districts on tight budgets trying to

prepare their students for success in future STEM coursework and majors. A third and final

problem with using only pre-built commercial games is that they are not designed to appeal

specifically to those with low spatial skill, who stand the most to benefit from spatial skill

training interventions in terms of persistence in STEM coursework and majors. Since both

gender and pre-existing spatial skill have been shown to influence preferences for different

kinds of games [32, 33, 34], a commercial game that trains spatial skills may not appeal at
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Figure 1.1: Examples of commercial games successful at training spatial skills in empirical
studies. Clockwise from upper left: Tetris, Portal 2, Crazy Taxi, Medal of Honor: Pacific
Assault, Super Mario 64, and Marble Madness. All screenshots are shown under fair use
doctrine.
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Figure 1.2: Examples of commercial games unsuccessful at training spatial skills in empirical
studies. Left: the Rotation Matrix minigame in the brain training game Lumosity, where
players must track a pattern as it rotates. Right: the ball rolling game Ballance. All
screenshots are shown under fair use doctrine.

all to the demographic that could benefit the most from spatial skill training: those with

low spatial skill, who tend to be disproportionately women and girls [8]. Less motivation to

play means a lower likelihood of persisting in playing long enough to see a significant and

durable training effect, and thus the main advantage of game training is lost.

1.1 MY APPROACH

To address the limitations in the existing research literature on spatial skill training

games, I use a combination of data-driven and player-centric design approaches inspired

by design-based research in the field of education and drawn from my own background in

human-computer interaction (HCI). Design-based research combines theory and practice in

developing and evaluating designed learning interventions, using theory to inform the design

of interventions, evaluating them quantitatively and qualitatively with feedback from real

users in naturalistic settings, and using the evaluation results to inform theory and improve

the intervention’s design simultaneously [35, 36, 37]. Using this approach, I designed my

own game as an intervention to train spatial skills, Homeworld Bound, and its later revision,

Homeworld Bound: Redux (see Figure 1.3), with modular level structure to isolate different

combinations of theoretically grounded spatial game features across different levels (Chap-

ters 3 and 6). Both design-based research and user interface design in HCI use an iterative

design approach [38, 37], which changes and refines the end product through repeated cycles
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of design and testing with users. The design process for Homeworld Bound, as described in

Chapter 3, involved iterative cycles of design and evaluation as well. I conducted each eval-

uation in a naturalistic context (either as a school classroom activity or in a more informal

children’s museum setting) in line with the principles of design-based research [39, 37].

Figure 1.3: Screenshots of Homeworld Bound: Redux, the final version of my spatial skill

training game. The game’s premise is that the player is stranded on an alien planet and must

collect parts from the environment with which to rebuild their spaceship. In Exploration

Mode levels (upper and lower left), players navigate through a 3D world in first person,

collecting parts from the environment. In Construction Mode levels (upper and lower right),

players use the parts they collected in Exploration Mode to build useful items in 3D by

rotating and aligning parts.

As part of this iterative, design-based approach to developing Homeworld Bound, I im-

plemented automatic collection of detailed player behavior data, allowing me to take a

data-driven approach to evaluating which combinations of spatial features may be tapping

into players’ spatial skills by analyzing the relationship between spatial skill and player per-

formance in each level (Chapters 4 and 7) with finer granularity than has been done in any

previous work. Seeing which levels tap into players’ spatial skills and which do not can pro-

vide new and more detailed insights about what combinations of features may be more likely
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to produce a game effective at training spatial skills, simultaneously advancing the theoreti-

cal understanding of spatial cognition in video games and informing future implementations

of game-based spatial skill training interventions.

However, designing a game that trains players’ spatial skills is not enough. It must also be

fun for its target audience, otherwise the motivational power of a game-based intervention

is lost. In the later chapters of this dissertation (from Chapter 5 onwards), I focus on

designing for a target audience of low spatial skill young adults. This focus led me to

conduct an online survey study to understand what low spatial skill young adults look for in

a game (Chapter 5), bringing my target population in as consultants and active participants

in shaping the game’s future design as advocated for in design-based research [35, 37]. I

then made a new version of my game, Homeworld Bound: Redux, redesigned based on what

I learned about the preferences and motivations of this target audience (Chapter 6). My

final evaluation study of Homeworld Bound: Redux as a training intervention continued this

design-based, player-centric approach; I evaluated not just the game’s training effectiveness

but also its intrinsic appeal to low spatial skill students and to demographic groups likely to

have lower spatial skill: women and those with less prior gaming experience, in a naturalistic

large classroom setting (Chapter 7).

1.2 CONTRIBUTIONS

This dissertation advances knowledge about how to design spatial skill training video

games for both training effectiveness and desirability in their target population. In particular,

this dissertation makes four main contributions:

• A theoretical framework for mapping spatial game features to spatial skills.

In Chapter 3, I present a theoretically grounded approach to developing games and

game features that tap into players’ spatial skills. This approach is grounded in a

theoretical framework I developed to map different dimensions of spatial skill to dif-

ferent game features derived from both the existing research literature on spatial skill

typology and existing empirical evidence regarding which video games are effective at

training players’ spatial skills. I demonstrate the implementation of my theoretical

framework in a functional, engaging children’s computer game: Homeworld Bound.

My small scale training study of the game finds that Homeworld Bound improves

children’s scores on a test of spatial skill over the course of four 45 minute sessions,

indicating that a game designed using this framework can be an effective spatial skill

training intervention. In addition, my analysis of the relationship between spatial skill
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and level-by-level performance for Homeworld Bound in Chapter 5 and for its revised

version, Homeworld Bound: Redux in Chapter 7 provides evidence that each game

feature in my theoretical framework, as implemented in the game, taps into players’

spatial skills in different ways.

• A data-driven approach to designing and evaluating spatial game features.

In Chapter 4, I take a data-driven approach to studying what game features may

contribute to the effectiveness of a game at training spatial skills, using my spatial

skill training game Homeworld Bound as a testbed. I present the first empirical study

analyzing the potential of different game features to tap into the spatial skills of children

ages 7-12, how this relationship differs by gender, and give practical recommendations

for implementing these features in games to assess or train players’ spatial skills based

on the complex relationship between gender, spatial skill, and in-game behavior I found.

My data-driven, level-by-level player behavior analysis reveals that many but not all

levels in Homeworld Bound tap into children’s spatial skills via some aspect of player

performance. These findings allow me to hypothesize potential reasons for the lack

of relationship between spatial skills and performance in certain levels, which in turn

allow me to make the revisions to the game described in Chapter 6 to improve its ability

to tap into players’ spatial skill. In Chapter 7, my similar analysis of the relationship

between player performance and spatial skill with adults playing Homeworld Bound:

Redux, the revised version of Homeworld Bound, shows that no Exploration Mode

levels and only about half of Construction Mode levels are effective at tapping into

players’ spatial skills. As in my study with children, getting these insights allows me to

hypothesize potential reasons for the lack of association between player performance

and spatial skill in various levels of the game and suggest potential fixes that might be

implemented and tested in future work.

• A player-centric approach to designing and evaluating spatial skill training

games. In Chapter 5, I present a player-centric approach to designing spatial skill

training games. I conduct a survey study across three diverse populations of high school

students and college-age adults to gain a deeper and more complex understanding

of how the following demographic and prior gaming experience variables predicted

pre-existing spatial skill: gender, socioeconomic status (SES), gaming habits, gaming

preferences, and gaming motivations. I find that the only predictors of spatial skill

were gender and population. While this finding is consistent with prior work, the lack

of relationship between preference for action video games and spatial skill is not and

suggests that this relationship may be absent for certain populations. I use the findings
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of this study to develop a set of design recommendations for spatial skill training games

that align with the preferences of the low spatial skill populations I identified: facilitate

short gameplay sessions, promote simple fun and thrill, and focus on adventure and

puzzle genres.

I then continue this player-centric approach by implementing these recommendations in

my own spatial skill training game, Homeworld Bound, to produce Homeworld Bound:

Redux, a new version designed to be more appealing to low spatial skill young adults

(Chapter 6). I evaluate Homeworld Bound: Redux in a controlled study conducted in

the context of an introductory programming course in Chapter 7. My analysis of both

the game’s training effects and its intrinsic appeal relative to other interventions focus

on low spatial skill students since they are the target audience of the game. I also look

at how other demographic factors such as gender and prior gaming experience influence

training effects and intrinsic appeal. The results of the study show that gender and

prior gaming experience has no effect on training effects or intrinsic appeal. However, I

find that low spatial skill students rated their intrinsic motivation to play Homeworld

Bound: Redux higher than that to complete a non-game spatial training activity,

indicating that the game succeeds in its goal of being more intrinsically motivating for

low spatial skill students than a non-game intervention.

• Homeworld Bound: Redux as a research and design tool for spatial skill

training games. In Chapters 3 and 4, I describe the design and evaluation of Home-

world Bound, a game I have designed as a testbed for analyzing the effectiveness of

different game features in tapping into the spatial skills of children ages 7-12. In Chap-

ter 6, I describe the design process I used for Homeworld Bound: Redux, a new version

of the game I built for a target audience of high school students and college-age adults.

The design of Homeworld Bound: Redux combines the theoretically grounded, data-

driven, and player-centric approaches to game design I used in Chapters 3, 4, and 5.

A playable version of the game and its source code are both easily accessible online

so that it can be modified, used for future research studies, and set up in classrooms

large or small for training interventions by the larger community of cognitive training

game designers, researchers, and educators.

The findings underlying the four main contributions of my dissertation have been published

in several ACM SIGCHI conference papers. My findings in Chapter 4 were published in

the IUI 2017 conference paper Untangling the Relationship Between Spatial Skills, Game

Features, and Gender in a Video Game [40]. My Chapter 5 findings were published in the

CHI 2019 paper A Player-Centric Approach to Designing Spatial Skill Training Games [41].
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The findings of Chapter 6 were published in the CHI PLAY 2019 poster paper A Testbed for

Fun and Effective Features in Spatial Skill Training Games [42]. My findings in Chapter 7

have been submitted to the CHI PLAY 2020 conference as the paper Evaluating a Game-

Based Spatial Skill Training Intervention for Low Spatial Skill Students and are currently

under review.

The four contributions of my dissertation outlined in this chapter address the limitations of

the current state of the research on spatial skill training by providing 1) the first theoretical

framework for spatial features in video games, 2) a data-driven approach to selecting and

identifying spatial game features successful at tapping into players’ spatial skills, 3) a player-

centric approach to designing spatial skill training games focusing on the player experience of

their target audience, and 4) the first publicly accessible noncommercial spatial skill training

game for use in training interventions and as a testbed for evaluating the effectiveness of

various spatial game features at tapping into players’ spatial skill and appealing to low

spatial skill players, who stand the most to benefit from spatial skill training interventions.

The use of noncommercial spatial skill training interventions underlies all four of these

contributions. Selecting and implementing specific theory-driven features in a modular fash-

ion to isolate them in different game levels is not possible in a pre-built commercial game.

In addition, collecting sufficiently detailed player behavior data on a level-by-level basis to

detect which game features are successful at tapping into player’s spatial skills is infeasible

with commercial games, which do not have built-in automatic player data collection acces-

sible to researchers. Commercial games also are not designed with low spatial skill players

as the specific target audience, and so they may not appeal to this critical target population

for spatial training interventions. In addition, commercial games are difficult to modify for

future investigations of different combinations of game features and incur a financial cost

on any school or research group wishing to use them as a training intervention. Finally,

companies selling their own cognitive training or brain training games have a financial in-

centive to make their customers believe their game works, whether it actually does or not,

whereas noncommercial cognitive training games reduce the incentive to exaggerate a game’s

training capabilities and the potential for customers to be scammed out of money. It is for

these reasons that I believe research with noncommercial games is the future of not just

game-based spatial skill training research, but game-based cognitive training more broadly.
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Chapter 2: Related Work

This chapter gives a broad overview of the existing research literature related to spatial

skills, their connection to STEM efficacy, their ability to be trained, and why video games in

particular have the potential to be very effective spatial skill training tools. I also discuss the

limitations of the existing research in the realm of video game-based spatial skills training

that provide the motivation for the research described in this dissertation. This chapter

contains a small amount of material from my previously published work on the topic of

spatial skill training games [40, 41, 42].

2.1 DEFINING SPATIAL SKILLS: A TAXONOMY

The research literature has consistently demonstrated that a particular subset of cogni-

tive skills called spatial reasoning skills are important for success in many different STEM

disciplines. Defining exactly what spatial skills are has been driven mostly by the use and

exploratory factor analysis of psychometric tests that require a variety of different mental

visualization tasks (see [43] for a summary). Thus, spatial skills are often defined in terms of

different subskills derived from these psychometric tests. While there is no strong consensus

on what these subskills are, the most commonly agreed upon subskills are spatial visual-

ization, which involves mentally manipulating or transforming visual stimuli (e.g. mental

rotation, mental paper folding), and spatial orientation, which involves imagining a pattern

or scene and how it might change when viewed from different egocentric perspectives [44].

Chatterjee proposed that spatial skills can be broken down into a 2x2 taxonomy along two

axes (see Figure 2.1): intrinsic-extrinsic (information about a specific object versus informa-

tion about the relations between a group of objects) and static-dynamic (fixed information

versus information about how something is changing over time) [45]. In this taxonomy, spa-

tial visualization (and thus mental rotation and mental paper folding) corresponds to the

intrinsic-dynamic dimension, while perspective-taking most closely aligns with the extrinsic-

static dimension. This taxonomy has gained gradual support in the research literature, with

its endorsement by Newcombe and Shipley [46] and adoption by Uttal et al. in their meta-

analysis of spatial skill training studies [10]. Empirical support for this categorization comes

from numerous research studies on the distinction between extrinsic and intrinsic spatial

skills [47, 48, 49, 50] as well as the distinction between static and dynamic spatial skills

[51, 52]. Therefore, I adopt this 2x2 taxonomy as my working definition of spatial skills

as well in this dissertation, summarizing spatial skills as a whole as the ability to perceive
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and comprehend the spatial relationships both within and between different objects in one’s

environment.

2.2 THE RELATIONSHIP BETWEEN SPATIAL SKILLS AND STEM

Spatial skill is correlated with performance on a variety of different tasks spanning many

different STEM disciplines, such as three dimensional biology problems [53], practical anatomy

classes [54], reading x-ray and MRI images [18], imagining cross-sectional structures in ge-

ology [12, 13], program comprehension in computer science [19, 20], and a variety of visu-

alization skills necessary for computer aided design (CAD) in engineering, such as translat-

ing between 2D orthographic projections and corresponding 3D representations of objects

[14, 15, 16, 17]. More broadly, over 50 years of longitudinal research involving over 400,000

participants has consistently shown across multiple datasets that spatial skills are one of

the strongest predictors of future achievement in STEM coursework and STEM careers,

independent of math and verbal ability [11, 2].

2.2.1 The Relationship Between Spatial Subskills and STEM

The vast majority of studies on the relationship between spatial skills and STEM use tasks

from the intrinsic-dynamic quadrant of the spatial skills taxonomy described in Section 2.1

as measures of spatial skill. Thus, for most of the studies described in this dissertation, I used

standardized tests of mental rotation (an intrinsic-dynamic spatial skill) as my measure of

spatial skills. However, other quadrants of the 2x2 taxonomy may also be relevant to STEM

performance. For instance, in a study by Hegarty et al., a measure of extrinsic-static spatial

skill predicted the performance of first year dentistry students in restorative dentistry classes

[55]. More generally, Uttal et al’s meta-analysis results show that training in one quadrant

of the 2x2 taxonomy often produces transfer effects to other quadrants [10]. In most of the

studies I discuss in this dissertation, the risk of inducing mental fatigue in child participants

(Chapter 4) as well as the time constraints produced by conducting my other studies online

(Chapter 5) or in a classroom (Chapter 7) made adding a test of extrinsic-static spatial

skills unfeasible. However, in my pilot study in Chapter 3, I was able to use measures of

both intrinsic-dynamic and extrinsic-static spatial skill to achieve better coverage of spatial

subskills likely to be relevant to STEM performance.

When developing the theoretical mapping between spatial subskills and spatial game fea-

tures that informed the design of my spatial skill training game Homeworld Bound (Chap-

ter 3), I included three out of the four spatial subskills in the 2x2 taxonomy (intrinsic-
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Figure 2.1: The 2 x 2 taxonomy of spatial skills, as proposed by Chatterjee [45].

dynamic, extrinsic-static, and extrinsic-dynamic). I excluded intrinsic-static quadrant from

consideration in my theoretical framework due to the seeming inverse relationship it exhib-

ited with STEM proficiency in one study by Kozhevnikov et al., which found that scien-

tists and engineers performed much better on tests of intrinsic-dynamic spatial skill than

intrinsic-static spatial skill, whereas the opposite pattern was true for artists [52].

2.2.2 Low Spatial Skills as Barrier to Entry to STEM Disciplines

Despite the strong association between spatial skills and STEM performance, spatial skills

become less and less important in specific STEM disciplines such as geology, physics, and

chemistry as students complete their STEM coursework, become more specialized, and move

from novice to expert in their fields. This is likely due to the acquisition of domain-specific

semantic knowledge that allows them to visualize 3D structures and spatial operations with-

out actually performing mental operations [1], a more specific version of Hambrick et al.’s

“circumvention-of-limits” hypothesis about the relationship between domain-specific knowl-

edge and cognitive abilities [56, 57]. This hypothesis is supported by the results of several

studies. For instance, Stieff found in a series of 3 experiments that students taking an or-

ganic chemistry class used mental rotation strategies to determine whether two molecular
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diagrams represented identical molecules or mirror images, whereas expert chemists used

analytical strategies instead [58]. In the field of geology, Hambrick et al. found that spa-

tial skill predicted performance in a bedrock mapping task only for those with low levels of

geology knowledge [57].

Low spatial skills may therefore serve as a barrier to entry to STEM disciplines, causing

students to avoid STEM majors or drop out of them before they have had a chance to develop

domain-specific skills that render spatial skills less important [2, 59]. Attaining a certain

level of spatial skill may be enough to help low spatial skill students persist and succeed in

spatially-demanding introductory courses. Thus, as I and others have argued, low spatial

skill students may benefit the most from spatial skill training interventions [1, 60, 41]. It is

for this reason that my player-centric approach to designing the player experience of spatial

skill training games in Chapter 5, my resulting revisions to Homeworld Bound to create

an improved version, Homeworld Bound: Redux, and my evaluation of Homeworld Bound:

Redux as a training intervention in Chapter 7 all focus on low spatial skill populations.

2.3 THE MOTIVATIONAL POWER OF VIDEO GAMES AS TRAINING TOOLS

Video games have been widely studied as interventions in the cognitive training literature,

and this is also true of the spatial skill training literature more specifically. But why should

game be the means of training spatial skill and not some other kind of training program?

The appeal of video games is particularly strong for children and adolescents, who stand

the most to gain from spatial skill training; 79% of them report playing video games of

some kind in their free time [26]. Deci and Ryan’s self-determination theory of motivation

provides a good grounding theory for explaining the motivational appeal of video games.

Self-determination Theory (SDT) was developed around the concept that humans have an

inherent tendency towards growth and have innate psychological needs which motivate their

behavior: competence, autonomy, and relatedness. Of particular relevance to game-based

training is the subtheory of SDT Deci and Ryan developed in 1985: cognitive evaluation

theory (CET), which focuses on competence and autonomy as the primary factors influenc-

ing intrinsic motivation, motivation that is driven by inherent interest rather than extrinsic

incentives such as a monetary reward [61, 62]. According to CET, people are intrinsically

motivated to seek out optimally challenging activities by their need for competence, but feel-

ings of competence and self-efficacy alone are not sufficient to promote intrinsic motivation.

A person must also feel that it was their own decision to engage in a task - they must feel a

sense of autonomy or self-determination. Feelings of competence are increased by an optimal

level of challenge and constructive feedback, but diminished by negative feedback [63, 64].

13



Feelings of autonomy, meanwhile, are fostered via opportunities for choice and self-direction

in an activity [61], and diminished by offering extrinsic incentives: tangible rewards like

money or punishments like a bad grade in school [65].

Good video games naturally incorporate competence and autonomy-promoting experi-

ences, which have been shown to promote motivation, enjoyment and feelings of well-being

in players [25, 66]. Game designers strive to promote players’ sense of competence and au-

tonomy in order to keep players engaged and enjoying themselves. To do this, they scaffold

the player’s experience of progressing through a game. Scaffolding is a method rooted in

the learning sciences literature and has been shown to be empirically effective at enhancing

learning [67]; to scaffold a learning experience is to provide a high level of initial support,

guidance, and feedback on the learner’s actions, and then gradually remove this support

as the learner progresses [68]. The scaffold helps the player progress initially, increasing

their sense of competence, while its gradual removal increases their sense of autonomy. Spe-

cific examples of scaffolds in video games include tutorials and hints, which can be made

adaptive to further tailor the scaffolding experience to the learner [69, 70, 71, 72]. Thus,

video games promote intrinsic motivation in players through the use of competence and

autonomy-promoting experiences.

Unfortunately, game-based spatial skill training studies lose some of this intrinsic motivation-

boosting autonomy because they use prebuilt video games that are not designed with the

target audience of low spatial skill populations in mind. This is a problem because as pre-

viously mentioned, those with low spatial skill also tend to spend less time playing with

“spatial” toys and games during childhood [73]. Low spatial skill players may therefore not

enjoy the kinds of out-of-the-box games they are asked to play during training studies, and

this in turn may undermine their motivation to play their assigned game, decrease the effort

they put into it, and limit the effectiveness of the training intervention.

Therefore, I argue for a player-centric approach [74, 75] to designing games for low spa-

tial skill populations by asking directly for their input about what they like in a gaming

experience. I apply this player-centric approach in Chapter 5 in an online study to identify

the gaming habits, preferences, and motivations of low spatial skill populations, and then

demonstrate how to apply this knowledge to the design of a spatial skill training game,

Homeworld Bound: Redux, to improve the player experience and motivational appeal of

the game for its target audience of low spatial skill young adults in Chapter 6. Finally, in

Chapter 7, I evaluate not only the training effects of Homeworld Bound: Redux, but also its

intrinsic appeal relative to other training interventions, with low spatial skill young adults.

14



2.4 SPATIAL SKILL AND DEMOGRAPHIC FACTORS

Prior research has found that certain demographic factors are associated with spatial skill

level: gender, socioeconomic status, and frequency of action video gameplay. Each of these

factors has the potential to affect both enjoyment of a game-based intervention and the

game’s training effectiveness.

2.4.1 Gender

One of the most well-known and consistent findings in the research literature on spatial

skills is the gender gap. Multiple meta-analyses have found that women and girls score

lower than men and boys on various standard tests of dynamic spatial skills such as mental

rotation and spatial perception, with effect sizes ranging from 0.44 to 0.90 [21, 76, 77, 22].

These differences have been found to be consistent across age groups [21] and cultures [76],

and emerge as early as elementary school (around age 9) [21, 23] or even in some cases as

early as age 4 [78]. Gender differences have also been found to widen with age [76].

Several reasons have been proposed for this gender gap (for a good review, see [77]).

Some research suggests that biological differences such as hormone levels or brain structure

may cause gender differences in spatial skill. However, studies of the effect of sex hormones

such as testosterone or estrogen on spatial skills in humans have found mixed effects [79,

80, 81, 82, 83, 84, 85, 86, 87], and studies on brain structure seem to indicate that gender

differences are very task specific and do not generalize more broadly to spatial skills as a

whole [88, 89, 90, 91, 92, 93, 94, 95]. Some evolutionary explanations have been proposed

as well [96, 97], but cannot be empirically tested.

Another explanation for gender differences in the research literature with more consensus is

that environmental factors, such as the frequency of participation in spatial activities during

childhood, explains the development of boys’ and girls’ spatial skills. This hypothesis is

supported by findings that boys are more likely to report having spatial experiences growing

up than girls [98, 99] and that among men and women with high amounts of prior spatial

experience, gender differences in spatial skill are small or nonsignificant [100, 101, 102, 73].

A third proposed reason for the gender gap in spatial skills is stereotype threat due to high

spatial skill being perceived as a masculine trait. There are several examples in the research

literature that support this hypothesis by studying priming effects. For instance, Sharps et

al. showed in two studies that emphasizing the spatial nature of a spatial skills test, such

as an object location memory task or a mental rotation task, increased the gender gap in

spatial test scores, while there was no gender difference in test scores when the spatial nature
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of the task was not mentioned in the instructions [103, 104]. In another study, McGlone and

Aronson found that when male and female undergraduates were primed to think of their

gender identity, male students’ performance increased, while female students’ performance

decreased [105]. Other research by Ariel et al. has found that women tend to report less

confidence in their spatial skills than men even when no actual differences in performance

are present on tests of spatial skills, and that women have less confidence in their self-

assessments of spatial skills than men [106]. Even just telling study participants that women

tend to perform better on a mental rotation task than men results in a narrower gender gap

in performance on the mental rotation task [107].

In summary, the consensus in the research literature seems to be that prior spatial experi-

ence acquired while growing up is likely a primary cause of gender differences in spatial skill,

but that stereotype threat exacerbates this difference. Inherent biological differences may

contribute as well, but the evidence in this case appears rather inconsistent and difficult to

empirically test. Thus, giving all children, regardless of gender, the opportunity to partici-

pate in spatial activities early on in life is likely to plant the seeds of achieving more gender

equity in spatial skill performance later in life, in turn potentially reducing the influence

of stereotype threat and helping to encourage more women to pursue and persist in STEM

majors and careers.

Thus, I focus on analyzing gender effects throughout this dissertation with the goal of

helping the research community, game designers, and educators design spatial skill training

interventions that serve this important target audience of women and girls. Children were my

target audience for Homeworld Bound and my initial evaluations of the game in Chapters 3

and 4 since this would enable training programs using the game to intervene and reduce the

gender gap in spatial skills from an early age, before students start taking STEM electives

and deciding on a major in college. In both studies, I focused part of my analysis on

gender differences in training effects and in the extent to which each level of Homeworld

Bound tapped in to children’s spatial skills. This focus allowed me to discover important

gender differences that suggested that girls may not have been served as well by my training

intervention as boys, which in turn led me to conduct an online player research survey in

Chapter 5 to better understand the preferences of my game’s target audience of low spatial

skill students (who are disproportionately female). My final evaluation of Homeworld Bound:

Redux in Chapter 7 as a training intervention likewise involved the analysis of how gender

influenced training effects and enjoyment of Homeworld Bound: Redux relative to other

interventions.
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2.4.2 Socioeconomic Status (and Gender)

Socioeconomic status (SES) is also related to spatial skill. For instance, Levine et al.

found that children ages 7-9 with higher SES performed better on a spatial skills test than

those with lower SES. Furthermore, SES and gender interacted in their study such that for

low SES students, there was no gender difference in scores [108]. Another study by Noble et

al. found that among first children ages 6-7, low SES populations had lower spatial skill than

high SES populations [109]. Carr et al 2018 found in a longitudinal study of 304 elementary

children that both gender and low SES predict low spatial skill and suggested that children

with low SES or who are female and have poor visual working memory are good candidates

for spatial skill interventions [110]. Verdine et al. found that this low SES disadvantage in

spatial skills is present even as early as age 3 [111].

However, there is not yet any body of research I am aware of studying the relationship

between SES, spatial skill, and gender in adults. To address this gap in the research lit-

erature, I investigate the relationship between demographic characteristics related to SES,

gender, and spatial skills in Chapter 5 and develop design recommendations for improving

the design of spatial skill training games to appeal to women and girls from low SES pop-

ulations, the demographics most likely to have low spatial skill and thus the demographics

with the most to gain from spatial skill training interventions. In Chapter 6, I implement

these player-centric design recommendations in my spatial skill training game Homeworld

Bound: Redux to improve the game’s appeal to low SES women and girls.

2.4.3 Action Gaming Experience (and Gender)

There is also a substantial body of work investigating the relationship between prior

gaming experience and spatial skills. Several studies have shown that action video game

players (categorized based on their self-reported frequency of playing action games such as

Grand Theft Auto 3, Half-Life, Counter-Strike, Crazy Taxi, Team Fortress Classic, Spider-

Man, Halo, Marvel vs Capcom, Roguespeare and Super Mario Kart) tend to have higher

spatial skill than those who do not play action games, performing better on various measures

of spatial attention and visual search [112, 113, 114, 115, 116, 27, 117].

In addition, prior work has shown that men tend to play more action video games, such

as shooting and sports games, which are are disproportionately represented in the spatial

training literature (see Section 2.5), than women [118, 119, 34, 120]. Most video games are

designed with a male target audience in mind and therefore the game content may not appeal

as much to women and girls [118, 121]. Adding to this the well-documented gender gap in
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spatial skills in favor of men, it seems that those who stand the most to benefit from spatial

skill training interventions - those with low spatial skill, who are disproportionately women

and girls - will not be as motivated to play the kinds of action games that have been shown

to be effective at training spatial skills in the research literature, such as Unreal Tournament

and Medal of Honor.

To date, there exists only a single study that has investigated the relationship between

spatial skills, video game play, and demographics together. Quaiser-Pohl et al. looked at

the relationship between gender, game genre preferences, and spatial skill among secondary

school students in Germany (ages 10-20). In addition to completing a paper test of spatial

skill, students rated how frequently they played each of 8 different video game genres. Stu-

dents were then grouped into three latent classes based on their stated genre frequencies:

“non-players”, “action-and-simulation game players”, and “logic-and-skill-training players.”

Quaiser-Pohl et al. found that male action-and-simulation players had higher spatial skill

test scores than male non-players, but there was no difference in spatial skill between dif-

ferent player classes for females [32]. More research of this kind, which examines multiple

predictors of spatial skill, is needed in order to develop a more complete, up-to-date picture of

the gaming preferences of low spatial skill populations that enables us to design game-based

spatial skill training interventions that appeal to this critical target audience.

Gender and prior gaming experience may impact not just motivational appeal, but training

effectiveness as well. Heterogeneity of treatment effects is common phenomenon in the

educational research literature [122], and in the spatial skill training literature as well. The

effect of gender is mixed; some studies have found that women and men improve equally with

a game-based spatial skill training intervention [123, 124, 125], while others have found that

women improve more than men [3, 126, 30]. There is currently little in the research literature

about how prior gaming experience affects training effectiveness, although Terlecki et al.

found that women who reported low levels of spatial activities (including computer/video

game play) improved their spatial skills with a game intervention slower than men and

women with high levels of spatial activities [4].

2.4.4 My Contribution

Given that demographic factors such as gender and action gaming experience are related

to both spatial skill and gaming habits, it is critical to ensure that a game-based spatial

skill training intervention is effective and motivating for demographic groups that may be

less interested in playing the existing commercial action games that have been shown to

be effective for a general population, especially demographic groups with lower spatial skill
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(women, girls, those with low SES, and those who do not play action video games) who stand

the most to benefit from spatial skill training as a means of enabling future success in STEM

coursework, majors, and careers. Therefore, in Chapter 5 of this dissertation, I investigate

the demographic predictors of spatial skill using a large scale online survey that analyzes

the relationship between gender, belonging to a low SES population, and gaming habits,

preferences, and spatial skill simultaneously. Combining the predictors studied in different

prior studies allows me to develop a more complex and specific model of low spatial skill

populations and their gaming preferences, habits, and motivations, as does my sampling from

three distinct and diverse populations. Understanding low spatial skill populations’ gaming

preferences, habits, and motivations, in turn, allows me to make design recommendations

for game-based spatial skill training interventions targeting this critical target audience so

that such interventions are more motivating and fun for them - the main advantage of using

a game-based intervention. Without considering the appeal of a game to its target audience,

the motivational advantage of game-based interventions is lost.

Another way this dissertation research builds on prior work on the relationship between

demographic factors and spatial skill is by investigating the different appeal specific spatial

skill training interventions may have for demographics that tend to have lower spatial skill,

such as women and those who do not play action video games. Since those with low spatial

skill stand the most to benefit from spatial skill training interventions, it is important that

a spatial skill training intervention designed for them is evaluated with them as well. To

investigate the extent to which different types of spatial skill training interventions produce

training effects in and are appealing to low spatial skill demographics, I evaluate how gender

and prior gaming experience influence the training effects and intrinsic appeal of my spatial

skill training game Homeworld Bound: Redux compared to a more traditional workbook-

based spatial skills training intervention in Chapter 7.

2.5 SPATIAL SKILL TRAINING

While the effectiveness of cognitive skill training in general has been questioned frequently

in the last few years [127, 31], evidence for the effectiveness of spatial skill training in

particular remains consistent across multiple meta-analyses. Uttal et al.’s meta-analysis of

spatial skill training intervention studies analyzed all types of spatial skill training, the vast

majority of which were either workbook exercises (often in the context of a course) or video

games, and cited an average effect size of d=0.47 (moderate). This effect size was consistent

across both workbook exercise training and game training. The results also demonstrated a

moderate transfer effect of d = 0.48, indicating that training on one type of spatial task often
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transfers to other spatial tasks [10]. Sala et al.’s more recent meta-analysis of cognitive skill

training in general focused exclusively on video game training and cited a more conservative

effect size range of g=0.14-0.22 (small) for spatial skill training studies, with the specific

effect size dependent on the type of game used (action, non-action, Tetris-like, or any kind

of game) [31]. Below, I review the current state of the spatial skill training literature for

both non-game interventions and game-based interventions.

2.5.1 Non-Game Spatial Skill Training Interventions

Non-game spatial skill training interventions have primarily been used in the context

of STEM courses - particularly in engineering, where researchers have sought to develop

training programs aimed at reducing the failure rate of students in introductory engineering

courses, which tend to heavily emphasize inherently spatial exercises such as CAD modeling,

visualizing cross sections, and isometric sketching. Hsi et al. designed one of the earliest

interventions, a weekend spatial strategy tutorial, to supplement one such engineering course.

They invited students who had received a low score on a spatial skills pre-course assessment

to take part in the intervention. Students participating in the intervention improved their

spatial skills, and no student failed the course that semester, compared to the 25% failure

rate of previous semesters [15].

Sorby and Baartmans implemented a more comprehensive 10 week spatial skill training

course for first year engineering students with low spatial skill involving many different types

of computerized and paper and pencil spatial exercises, such as cross section visualization,

revolving solids about an axis, mental rotation, and translating between 2D orthographic

views and 3D views of an object. The results of multiple training studies using these exercises

showed substantial spatial skill learning gains for both engineering and non-engineering

students as well as lower dropout rates in early engineering courses [128, 129, 130, 131].

Miller and Halpern conducted a longitudinal study in which undergraduate STEM students

were given 12 hours of spatial training using Sorby’s workbook exercises. Compared to a

randomized control group, the students who received the spatial training not only improved

their spatial skills, but also had improved performance in an introductory physics course.

However, these benefits did not persist when a follow-up analysis was conducted 8 months

later [132].

Mostly digital training materials have been successful as well. For instance, Roca-González

et al. found that 16 hours of augmented reality (AR) training on translating between or-

thographic 2D and 3D object views and virtual orienteering improved engineering students’

spatial skills [133]. In addition, Onyancha et al. found that low spatial skill students im-
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proved their spatial skills relative to a control group after 4 hours of training with digital

CAD, rotation, and drawing exercises over a 4 week period [134].

Non-game spatial skill training has also been implemented for children with the goal of

increasing math performance. Cheng and Mix showed that practicing a mental rotation task

improved first and second grade children’s scores on mental rotation test and on fill-in-the-

blank mathematical equation solving [135].

2.5.2 Spatial Skill Training with Video Games

Studies of game-based spatial skill training have focused almost exclusively on pre-built

commercial games. Action video games in particular have been distinguished in the research

literature as one of the more effective genres of games at training spatial skills. Green and

Bavelier hypothesize that this is due to the combination of high speed gameplay and the

requirement to quickly attend to multiple moving objects on the screen [136] typically present

in action games. However, there is substantial disagreement in the research literature about

what defines an action game, especially given the extent to which the games industry has

changed in the last couple decades to create many new game genres [137, 138, 139, 140].

To date, the most consistently agreed upon and most widely studied action game genre in

both academia [3, 114, 116, 141, 142, 143, 31] and industry [144, 145, 146] seems to be first

person shooters.

First Person Shooters

One of the most commonly studied action games in the spatial skill training literature is

the first person shooter Medal of Honor. Green and Bavelier had non-action game players

play either Medal of Honor: Allied Assault or Tetris for 10 hours in 1 hour sessions across

10 consecutive days and found that the group playing Medal of Honor improved their visual

attention skills, whereas the group playing Tetris did not [112]. Feng et al. conducted a

training study using a newer game in the same Medal of Honor series: Medal of Honor:

Pacific Assault and the 3D ball rolling puzzle game Ballance as an active control group.

Both groups played their assigned game for 10 hours over four weeks. Participants in the

Medal of Honor group improved on measures of both spatial attention and mental rotation,

whereas participants in the Ballance group did not [3]. Boot et al. conducted a similar study

where participants trained on Medal of Honor: Allied Assault, Tetris, or Rise of Nations (a

real-time strategy game) for a total of 21.5 hours over the course of 4-5 weeks, while a

passive control group did not complete any kind of training. All four groups were tested
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at the beginning of the study, in the middle, and at the end. In contrast to the findings of

Green and Bavelier, playing Medal of Honor did not improve performance on any measure

of visual attention, but the group playing Tetris did improve relative to other groups on a

mental rotation task [141].

Other first person shooters have been studied as well. Green and Bavelier conducted an-

other study in which participants played either the first person shooter Unreal Tournament

or Tetris for a total of 30 hours over 4-6 weeks. Both groups improved the spatial resolution

of visual processing, but the group playing Unreal Tournament improved more [27]. Choi

and Lane used a similar study design (a total of 30 hours of training, with Tetris as the

control group’s game), but used a third person and a first person version of the shooter

BeGone as the experimental groups. Only participants in the first person shooter group im-

proved on measures of visual attention, and no groups improved on measures of navigational

spatial skill [147]. In a study with 10-15 year old children, McClurg and Chaillé found that

participants playing the first person spacecraft shooter Stellar 7 for 9 hours over the course

of six weeks improved on a measure of mental rotation compared to a passive control group

[148]. Battlezone, a first person tank combat game very similar to Stellar 7, was also found

to improve spatial orientation and mental rotation in undergraduate and graduate students

after 5 hours total of training over a week compared to a no-contact control group [149].

Other Genres of Video Games

However, spatial skill training effects are not limited to first person shooters. Several other

games from a wide variety of genres, some of which may fall into the somewhat ill-defined

category of “action” game and some of which may not (see Chapter 5 and [137, 138, 139, 140]

for a more thorough discussion) have also produced training effects in controlled studies. In

the aforementioned study with Stellar 7, another experimental group played the puzzle game

The Factory, which requires complex object manipulation, and found that players in this

group also improved their mental rotation skills [148]. Similarly, in the aforementioned study

with Battlezone, a different experimental group that played a top down arcade shooter, Targ,

improved on measures of spatial orientation and mental rotation as well [149].

Platformer games, in which the player’s primary concern is navigating safely to the end of

a level without falling down into pits, also show potential as training interventions. A study

conducted by Kühn et al. found significant gray matter increases in brain areas essential for

spatial navigation in participants who played the platformer Super Mario 64 for at least 30

hours over the course of 2 months relative to a passive control group [28]. Another platformer,

the arcade game Marble Madness, has also been shown to produce training effects in 10-11
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year olds on multiple measures of dynamic spatial skill after 135 minutes of practice, whereas

no such improvement was present in another group of participants assigned to play the word

game Conjecture instead [29].

Several racing and driving games have been shown to produce training effects as well.

In a study by Cherney, participants trained on Antz Extreme Racing for 4 hours improved

on a measure of mental rotation, while a control group competing crossword puzzles and

logic games such as sudoku did not [126]. In a later study by Cherney et al. [30], female

participants who played either the Segway Circuit minigame from Wii Fit or Crazy Taxi,

both driving games requiring navigation, for just one hour improved their mental rotation

skills relative to a control group competing the same sort of puzzle activities as in [126].

Other games’ training effects present a more complex picture. The real time strategy

(RTS) game Rise of Nations produced no spatial attention or mental rotation training effects

in a mostly undergraduate participant pool in a study by Boot et al. after 21.5 hours of

training [141]. However, in another study by Basak et al., after 23.5 hours of training

with Rise of Nations, older adults improved on a measure of mental rotation relative to a

no-contact control group [150].

The puzzle game Tetris, in which players must rotate and fit together falling blocks in

completely filled rows to score points, presents a somewhat contradictory picture of training

effects as well. In a study by Okagaki and Frensch, participants who played Tetris for 6

hours total across 12 sessions improved their reaction time on mental rotation and spatial

visualization tasks relative to a no-contact control group [151]. Similarly, Cherney found that

participants assigned to play Tetrus (a version of Tetris designed for the PC) for 4 hours

improved a measure of mental rotation relative to a control group completing crossword

puzzles and logic games [126]. On the other hand, Terlecki et al. found that 12 hours of

training with Tetris over 12 weeks produced similar gains in mental rotation skill as in a

control group that played Solitaire, which lasted several months after both interventions

ceased. However, training effects for those who played Tetris transferred to other spatial

tasks, and these transfer effects persisted several months later for the Tetris group as well.

In contrast to Terlecki et al.’s study, Sims and Mayer found that after 12 hours of training

with Tetris, participants did not improve any more than a passive control group on any of

several different mental rotation tests and other spatial skill tests. One reason for the stark

contrast in results between this last study and the others may be the difference in sample

size; Terlecki et al. had a total of 72 participants in the training condition and 108 in the

control condition, Cherney had 20 per condition, Okagaki had around 25 per condition, but

Sims and Mayer had less than 10 per condition. Thus, the effect of Tetris training may be

detectable only with sample sizes larger than those in Sims and Mayer’s study.
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One last study worth mentioning was conducted by Shute et al., who assigned participants

to play either the first person navigation puzzle game Portal 2 or the commercial brain

training game Lumosity for a total of 8 hours each, administering a battery of various

cognitive tests before and after the intervention. While players of Portal 2 improved on

nearly every cognitive test (including tests of mental rotation and navigation), players in the

Lumosity condition improved on none of these measures [5].

Some of these results may not be too surprising; after all, games shown to be effective

at training spatial skills like Medal of Honor: Pacific Assault, Portal 2, Super Mario 64,

Crazy Taxi, Battlezone, Stellar 7, and Marble Madness are all 3D and require the player

to navigate the environment in some way, and the block rotation tasks required of Tetris

players closely resemble tasks on standardized tests of mental rotation. Likewise, games like

Solitaire, Conjecture, Sudoku, word searches, and crossword puzzles that did not show spatial

skill training effects do not seem to incorporate much of any spatial elements, so this at least

makes sense. But Ballance, a game where the player must navigate a rolling ball carefully

along narrow paths and avoid rolling off ledges, seems to have a lot in common with the

games that were effective at training spatial skills: like them, it involves navigation through

a 3D environment, and like Marble Madness in particular, players navigate the environment

by controlling a rolling a ball. It is not clear why this game is ineffective at training spatial

skills but Marble Madness is.

Furthermore, all the games shown to be effective at training spatial skills vary widely

across different dimensions such as game genre (shooter, puzzle, platformer, racing), player

perspective (first person versus third person), and speed of play (fast-paced versus slow), so

it is not quite clear exactly what features of these games may be relevant to training spatial

skills. It is particularly embarrassing that Lumosity, a game designed specifically to train

spatial skills (among other cognitive skills), should have no training effects, but a bunch of

commercial games not even designed for the purpose of training should be effective training

tools. Clearly, we do not yet understand what features determine a game’s effectiveness at

training spatial skills, and it is very difficult to determine this with commercial games since

they make it very difficult to manipulate and test specific game features.

2.5.3 Noncommercial Games

To investigate the potential of specific game features for tapping into players’ spatial

skills, researchers have turned to non-commercial, custom-built games, although research

in this area is still in its infancy. Only two studies thus far outside of this dissertation

have investigated training effects of noncommercial games on spatial skill. Mazalek et al.
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found that using embodied, gesture-based controls for a teapot-touching game resulted in

improvements in a mental rotation task after just 13 minutes of training relative to two

other non-embodied experimental conditions playing the same game with either an Xbox

controller or a keyboard [152]. Similarly, Chang et al. found that those who played a virtual

reality perspective-taking game with a tangible and embodied control scheme improved their

performance on a test of perspective-taking relative to those who a low embodiment version

of the game or completed a questionnaire of algebra and grammar problems instead after

just 15-20 minutes of training [153].

However, these studies use low sample sizes and conduct post-tests of spatial skills imme-

diately after the training intervention. Low sample size could adversely affect the reliability

of their results, and the very short term training effects they found may not generalize to

studies of longer term training effects. In addition, Chang et al. used a VR game and

Mazalek et al. used a custom-built puppet control interface, approaches which are currently

not easily scalable and deployable across a large population of students and school districts.

2.5.4 My Contribution

In this dissertation, I contribute to this sparse literature on non-commercial spatial skill

training games with my novel methods for the development and evaluation of my modular

spatial skill training game Homeworld Bound and its successor, Homeworld Bound: Redux

(discussed in Chapters 3 and 6, respectively). The newest version of the game, Homeworld

Bound: Redux, contains spatial game features inspired not only by theory but also by those

present in commercial games that have been successful at training spatial skills, such as

Portal 2 and Tetris. However, unlike many of the commercial action games successful at

training spatial skills like Unreal Tournament 2004 and Medal of Honor, Homeworld Bound:

Redux does not contain any violence and thus presents no problem of inappropriate content

for implementation in school classrooms.

Homeworld Bound: Redux offers an estimated 2+ hours’ worth of gameplay, the longest

gameplay experience yet for a noncommercial spatial skill training game. More gameplay

means longer training periods are possible, which are more likely to produce training effects.

In addition, it is the first spatial skill training game to be open source and easily accessible

to other researchers and educators for use in research studies and training interventions.

Homeworld Bound: Redux is also the first noncommercial spatial skill training game scalable

to large classrooms and remote play thanks to its implementation as an online game playable

on the average personal computer or laptop to which a student or public school might have

access.
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My main contribution to the state of the art in the research literature on spatial skill

training studies in this dissertation is the use of Homeworld Bound: Redux in a large scale

classroom training study in Chapter 7 - the first study of spatial skill training effects in

a noncommercial game with more than 20 minutes of training time (70 minutes for my

study) and more than 16 participants per training condition (65 or more per condition for

my study). This study is also the first game-based spatial skill training study conducted as

part of students’ regular coursework in an introductory STEM course, which lends it more

ecological validity in the context of classroom spatial skill interventions. Furthermore, the

training study described in Chapter 7 is the first game-based spatial skill training study to

focus on training effects for a low spatial skill population specifically. Focusing on the low

spatial skill population allows me to focus my evaluation of training effects on the subset

of students for whom training interventions are most critical for improving the chance of

success in STEM coursework and majors.

As evidenced by my review of the spatial skill training game literature above, game-based

spatial skill training studies with children are overall quite rare and none have been done

with noncommercial games. However, children are an essential target population for spatial

skill training games given that training in childhood gives students more time to develop the

spatial skills necessary for success in STEM electives and introductory STEM coursework in

college and that the gender gap in spatial skills favoring men begins to emerge in childhood

[21, 23, 8]. My controlled study of the training effects of Homeworld Bound discussed in

Chapter 3 makes an important contribution to the research literature on game-based spatial

skill training with children. While only a pilot study with low sample size, this was the

first spatial skill training study of a noncommercial game conducted with children, with the

longest training period to date of any spatial skill training study of a noncommercial game

(a total of 3 hours distributed over 2 weeks), and showed that children’s spatial skills could

be trained with a game designed around my theoretical mapping between spatial subskills

and game features.

Finally, the modular level design of Homeworld Bound and Homeworld Bound: Redux,

coupled with its automatic player behavior logging, allow me to do what no game-based

spatial skill training study has been able to do as of yet - identify specific game features

that may be tapping more or less into players’ spatial skills on a level-by-level basis to

understand not just the what, but the why behind a game’s training effectiveness (or lack

thereof). In turn, identifying levels with specific combinations of game features that are

ineffective at tapping into players’ spatial skills allows me to identify ways of improving

the game’s effectiveness at tapping into players’ spatial skills on a level-by-level basis and

therefore its potential as a training intervention. In the next section, I discuss existing work
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analyzing the relationship between player performance, spatial skill, and game features and

how the studies I conducted with Homeworld Bound and Homeworld Bound: Redux in this

dissertation build upon and extend this work.

2.6 GAME FEATURES RELATED TO SPATIAL SKILLS

To understand why some games are effective at training spatial skills and others are not,

it is essential to understand what specific game features may be contributing to a game’s

effectiveness. As mentioned in Section 2.4, numerous studies have found that those who

play action video games frequently tend to have higher spatial skills than those who do

not. In these studies, researchers recruited participants that were either action video game

players (AVGPs) or non-action video game players (NVGPs) based on their self-reported

frequency of playing action or first person shooter games for a series of experiments. In

these experiments, AVGPs consistently showed higher performance on various measures of

spatial attention and visual search [112, 113, 114, 115, 116, 27, 117].

However, very few researchers have examined features in specific action games that may be

tapping into players’ spatial skill. Only two studies I am aware of looked at the relationship

between player behavior and spatial skill in a specific action game. One study by Greenfield

et al. found that expertise in the 3D arcade game The Empire Strikes Back was related to

players’ mental paper folding skill (an intrinsic-dynamic spatial skill) [124]. Another study

by Adams and Mayer found that overall performance in the action game Unreal Tournament

2004 in terms of total number of enemy kills was more related to players’ spatial skill than

their performance (high score) in the non-action game Tetris [154].

Only two studies outside of this dissertation conducted a more fine-grained analysis of

specific game features related to spatial skills. In a study where participants completed a

simple object location and navigation game utilizing the Virtual Morris Water Maze, de

Castell et al. found that higher spatial skill was associated with lower search time and

longer dwell time in the correct location. However, when proximal navigation cues were

introduced to the environment, the association between performance on the task and spatial

skill vanished [155]. Another study was conducted by Xiao et al., who developed Cubicle,

a gamified version of paper-based spatial skill training exercises adapted from Sorby et

al.’s spatial skill training workbook for engineering students [128, 129]. Each level of the

game was designed to train a different combination of the following spatial skills relevant to

engineering: 3D object visualization and manipulation, perspective taking, mental rotation,

2D to 3D transformation, and spatial memory. In a pilot study, Xiao et al. found that

performance in each level correlated highly with players’ mental rotation test scores [156].
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This dissertation aims to fill this large gap in the research literature by presenting the first

two studies conducting a fine-grained analysis of the relationship between player performance

and spatial skill across multiple sets of features and across levels with two very different

types of gameplay: first person exploration and 3D object construction (Chapters 4 and

7). These studies were made possible by the intentional modular design of levels in both

Homeworld Bound and Homeworld Bound: Redux as well as the detailed automatic player

behavior logging capabilities built in to both versions of the game, features that to my

knowledge are not present in any other game studied in the spatial skill training literature.

The modular level design of Homeworld Bound and Homeworld Bound: Redux, combined

with this detailed information about player behavior and performance, enables researchers to

study the effect of different combinations of theoretically grounded spatial game features on

the relationship between player performance and spatial skill on a level-by-level basis, identify

specific levels that are not tapping into players’ spatial skills sufficiently, and apply fixes

to these problematic levels before investing in a time-consuming and potentially expensive

controlled training study with the game. In addition, my study in Chapter 4 is the first study

of the relationship between player performance and spatial skill conducted with children, an

especially important target population for spatial skill training interventions given that the

gender gap in spatial skills favoring boys begins to emerge in childhood [21, 78, 23] and low

spatial skills present a barrier to success in STEM electives in high school and beyond [1, 2].
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Chapter 3: Homeworld Bound, A Game for Training Children’s Spatial Skills

In this chapter, I describe the design process for and preliminary evaluation of Homeworld

Bound, a game I designed from the ground up not only to train players’ spatial skills, but

also as a testbed for evaluating the effectiveness of different combinations of game features

at tapping into players’ existing spatial skills. The ultimate goal of developing Homeworld

Bound is to present a non-commercial game-based training intervention that is free and easy

for educators and students to use for spatial skill training interventions, and at the same

time easily modifiable and extendable by researchers and game designers for the continual

study of how different game features contribute to the training effectiveness of game-based

spatial skill training interventions.

3.1 OVERVIEW OF THE GAME AND DESIGN PROCESS

Homeworld Bound has a relatively simple premise: the player has crash-landed on a

seemingly uninhabited alien planet, their spaceship destroyed. The player must navigate

through several different alien landscapes to find the scrap parts they need to rebuild their

spaceship and return home. Along the way, the player collects parts that can be used to build

useful items that allow them to access new areas of the environment. Gameplay is divided

between Exploration Mode levels and Construction Mode levels. In Exploration Mode levels,

the player navigates canyons, fields, and city ruins, collecting parts until they have enough

to build something, at which point they can enter Construction Mode to actually build an

item out of the parts they have collected. In Construction Mode, the player builds items

such as the Rocket Boots (allows the player to jump higher) and Sledgehammer (allows the

player to destroy debris blocking their path) by correctly matching up the faces of two parts

that can be fused together, rotating one of the parts until the areas to be fused are aligned

correctly, and then fusing the parts together. This process is repeated for each part, until the

construction is finished and the player is returned to Exploration Mode to use their newly

built item to access new areas of the game world.

The design process for Homeworld Bound was driven by an in-depth analysis combining

theory of spatial skill typologies and evidence from empirical studies about what kinds of

games have been effective at training spatial skills in the past. Sections 3.2, 3.3, 3.4, and 3.5

describe the theoretical basis for the selection of game features and mechanics in the final

implementation of Homeworld Bound. Section 3.6 explains the iterative design and playtest

process that led up to the game’s final version. Section 3.7 discusses the implications of this
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work in the larger context of spatial skill training research. This chapter’s main contributions

to the research literature are 1) a theoretically grounded approach to developing games and

game features that tap into players’ spatial skills and 2) the implementation of these features

in a functional, engaging children’s computer game that has demonstrated potential to train

spatial skills.

3.2 TARGET AUDIENCE AND TECHNICAL SPECIFICATIONS

I designed Homeworld Bound for a target audience of late elementary school students

(ages 8-11) since this is the age when gender differences in spatial skill first clearly emerge

[21, 76]. Since addressing the well-established gender gap in spatial skills [21] as early as

possible is essential for making STEM fields more accessible to girls and women (and to

anyone with low spatial skills more broadly), an intervention at this stage would prevent

girls’ spatial skills from falling too far behind boys’ and becoming a barrier to participation

in STEM courses. More broadly, successful spatial skill training interventions at this young

age give all low spatial skill students a chance to develop their spatial skills well before they

encounter elective STEM courses in middle school, high school, and college, preventing low

spatial skill from being a barrier to success in STEM coursework, majors, and careers.

I decided to build Homeworld Bound using the Unity game engine for three reasons.

First, Unity is free for noncommercial use, so it would be more accessible to researchers

and educators wanting to modify the game in some way in the future for their purposes.

Second, Unity is designed for 3D games, making it easier for me to incorporate specific spatial

features from 3D video games that have been shown to be successful at training spatial skills

like Portal 2, Medal of Honor, and Unreal Tournament. Third, the Unity engine is platform-

independent and makes it easy to port games across different platforms, meaning that I

could target different platforms, such as PCs, Macs, mobile devices, various game consoles,

or online (WebGL) depending on the needs of the game’s target audience.

Homeworld Bound was initially developed for standalone PCs and Macs due to their

common use in schools; school districts on tight budgets, whether public or private, generally

possess at least a few computers for students to use. Textures for the game were created

primarily in GIMP, and 3D models were built mainly with Blender and 3DS Max. To reduce

development time, keep costs low, and ensure that the game would run even on older desktop

computers with limited computational resources, I used low fidelity stylized textures and low

polygon 3D models.
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Figure 3.1: Screenshots of Tetris and Portal 2. In Tetris, players must rotate falling blocks

to fit them together at the bottom of the screen. In Portal 2, the player must navigate

through the environment and complete puzzles by placing and traveling through pairs of

portals. In this example, the player has placed an orange portal and a blue portal. They

will enter the orange portal in front of them and come out of the blue portal on the far wall

in order to avoid crossing the red laser and activating the turret gun in the center of the

room. Once placed, a portal shows the player a view of what they will see once they step

through the portal, allowing the player to determine in advance if they have placed it in the

correct location via landmark orientation. Screenshots are shown under fair use doctrine.

3.3 GAME FEATURES TO SUPPORT SPATIAL SKILL DEVELOPMENT

In order to design a game that incorporated evidence-based content, I looked to two pop-

ular commercial games shown to be effective in the spatial training literature as inspiration:

Tetris and Portal 2 (Figure 3.1). Although both Tetris and Portal 2 have been shown to

be effective at training certain spatial subskills [151, 4, 5], each game differs in the degree

of transfer its training affords. Tetris has been shown to improve mental rotation skills, an

intrinsic-dynamic spatial subskill that measures the ability to imagine how the appearance

of an object would change as it is rotated in various ways [157, 10]. However, this perfor-

mance improvement is generally limited to mental rotation tasks where the objects to be

rotated look very similar to the blocks the player must manipulate in Tetris [126, 158]. Por-

tal 2, in contrast, is a physics-based first person puzzle game requiring the player to decide

how to walk, climb, and jump their way through the environment using a special gun that

allows them to create portals on floors, walls, and ceilings and travel through them. Despite

the substantially different gameplay, training with Portal 2 has also been shown to improve
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Game Feature Spatial Operation

Object Rotation Intrinsic-Dynamic
Object Alignment Intrinsic-Dynamic
Landmark Orientation Extrinsic-Static
Navigation Visualization Extrinsic-Dynamic

Table 3.1: Theoretical framework for mappings between game features and spatial operations
used to inform the design of Homeworld Bound. Note: The mapping shown here reflects the
most current version; an older and less theoretically grounded version of this mapping was
used initially at the time of publication of this work [40] and then revised later to be more
in line with the research literature on spatial subskills [42].

players’ mental rotation ability and performance on an additional spatial subskill in the

extrinsic-dynamic category called as environmental spatial skill [159, 160, 5], demonstrating

the far transfer potential of training with this game.

While Tetris does not seem to afford the same far transfer benefits as Portal 2, it is a much

simpler game, and therefore it is easier to determine which of its features might play a role

in improving players’ spatial skills. In Tetris, players have two tasks: rotate falling blocks

quickly, and move those blocks into the most dense configuration possible. I will refer to

these two features as object rotation and object alignment. It is more difficult to determine

which features of Portal 2 gameplay might be contributing to its effectiveness at training

spatial skills. However, the game’s emphasis on its central mechanic of portals (see Figures

3.1 and 3.2 for explanations) suggests that players may be using landmark cues to decide

where to place a portal and then visualizing how their character would move from one end

of the portal through the other in order to evaluate whether their portal was placed in the

correct location. I will refer to these two features of the gameplay as landmark orientation

and navigation visualization.

Each of these four game features, object rotation, object alignment, landmark orientation,

and navigation visualization, correspond to specific spatial subskills. The object rotation and

object alignment operations required in Tetris correspond to the intrinsic-dynamic quadrant

in Uttal’s 2x2 taxonomy of spatial skills, while the landmark orientation and navigation

visualization required of Portal 2 players correspond to the extrinsic-static and extrinsic-

dynamic quadrants in the taxonomy, respectively (Table 3.1) [10]. I focused on incorporating

these features and their corresponding spatial operations into my design of Homeworld Bound

to make sure players’ spatial skills would be taxed by playing the game.
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Figure 3.2: Diagram of a commonly used method for traversing a room with portals in

Portal 2. Since the player’s momentum but not direction is conserved while traveling through

portals, falling through a portal (1) can generate the momentum necessary to fling the player

across a horizontal gap once they emerge from the second portal opening (2). In order to

place portals correctly to achieve this outcome, players must employ navigation visualization

to mentally visualize how their character would move in space as a result of entering and

exiting each portal.

The well-documented relationship between play with LEGO block construction sets and

spatial skill [161, 162, 163] provided the motivation for including LEGO-like construction

tasks in Homeworld Bound that incorporated object rotation and object alignment into game-

play. My idea was to have players construction a 3D object, one part at a time. Players

would be given a part to start with and would then determine how each subsequent part

should be placed and rotated to fit together with the rest and achieve the desired structure.

This task maps well to the kind of object rotation and alignment required in Tetris, except

in three dimensions rather than two. Since the other two spatial game features I proposed,

landmark orientation and navigation visualization, require the player to orient themselves

in the environment relative to specific landmarks and mentally plan a route through the

environment, respectively, tasks involving navigation were a natural fit for the game as well.

Therefore, I decided to design Homeworld Bound with construction and navigation as the

two central game elements.
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Figure 3.3: Concept art for Homeworld Bound showing the general premise of crash-landing
a spaceship on an alien world and exploring it.

3.4 GAME FEATURES TO SUPPORT ENGAGEMENT

Designing with engagement in mind, I had to decide how to integrate both construction

and navigation game elements into one seamless game experience that would be appealing

for the maximum number of children. The commercial game Minecraft caught my attention

because it incorporates both construction and navigation into a highly entertaining gaming

experience that has made it extremely popular with children [164]. In Minecraft, players

search the environment for and collect materials that they can use to build useful items,

which in turn help them to collect more kinds of materials, survive, and explore new areas

of the game world.

The appeal of Minecraft ’s gameplay can be explained by the psychological need satisfaction

of competence and autonomy it offers according to Deci and Ryan’s self-determination theory

(SDT) [61], as well as its incorporation of curiosity and control elements from Malone and

Lepper’s taxonomy of intrinsic motivations for learning [24]. Minecraft gameplay is very self-

directed, allowing players the freedom to explore wherever they want to satisfy their curiosity,

collecting items or building things as they choose. This self-direction likely promotes feelings

of autonomy and control in players. Minecraft gameplay can also build players’ sense of

competence as they collect more items and are gradually able to build more impressive,

useful items. These feelings of autonomy and competence, in turn, increase players’ intrinsic

motivation to play [62]. Inspired by Minecraft ’s method of integrating construction and

navigation into a continuous feedback loop and promoting autonomy and competence in

players, I designed similar mechanics for Homeworld Bound.

To further increase engagement and motivation to play, I added a simple narrative to the

game. This narrative served the dual goals of tying together the construction and exploration
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elements of Homeworld Bound into one coherent game experience and incorporating an

element of fantasy from Malone and Lepper’s taxonomy of intrinsic motivations for learning

[24]. The premise of the game, and the reason it is titled Homeworld Bound, is that the

player has crash-landed their spaceship on an alien world and must rebuild the spaceship

to escape the planet and return home (see Figure 3.3). In order to do so, the player must

scavenge materials from the environment, which they can use either to rebuild parts of their

spaceship or to build equipment that will allow them to reach more areas of the game world

and collect more parts.

3.5 GAME FEATURES TO SUPPORT MODULARITY

I designed Homeworld Bound to have a modular structure, which allowed me to analyze

the relationship between players’ spatial skills and each specific game feature individually.

The modular structure of Homeworld Bound is hierarchical. First, the game is divided into

Construction Mode and Exploration Mode, which the player switches between repeatedly as

they advance through the game. In Exploration Mode, the player searches the environment

for parts and batteries, both of which are used to build useful items in Construction Mode.

In Construction Mode, the player builds 3D items using the parts and batteries they have

collected by rotating and aligning parts with each other, one by one. Within each mode,

there are multiple levels, each incorporating a different environment designed to incorporate

a different mix of game features I hypothesized to embody my proposed four spatial game

features (object rotation, object alignment, landmark orientation, and navigation visualiza-

tion). I describe level-by-level differences in spatial features in more detail in the following

subsections. Figure 3.4 shows examples of some of the levels included in each mode.

3.5.1 Spatial Game Features in Exploration Mode Levels

Canyon

In the first Exploration Mode level, Canyon, player movement is restricted to a narrow,

winding canyon where the player cannot see very far ahead at any given time. Navigation

is relatively simple as the player is restricted to going from one end of the canyon to the

other or to various short offshoots that are all dead ends. The level is designed to require

the use of extensive landmark orientation as nearby landmarks become more familiar after

seeing them multiple times during level exploration. It is not designed to get players to use

navigation visualization. I designed this first level to be the simplest both for the purpose
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Figure 3.4: Game mechanics and features in Homeworld Bound, my spatial skill training
game and testbed for different spatial game features. In Exploration Mode, players navigate
through through the Canyon (top left), Highlands (middle left), and Ruined City (bottom
left) collecting parts. This requires them to orient themselves in the environment relative
to surrounding landmarks (landmark orientation) and determining a route and/or jumping
location to get to hard-to-reach parts (navigation visualization). In Construction Mode,
players build equipment (Rocket Boots, top right, Sledgehammer, middle right, and Ruined
City Key, bottom right) using the parts they collected. This requires players to determine
the correct rotation for a part in order for it to fit together correctly with the others (object
alignment) and then execute the series of rotations necessary to obtain that correct alignment
(object rotation).
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of helping the player learn the game and to determine if the simple task of exploring an

environment in first person without any sort of structure, as is often done in first person

shooter games like Medal of Honor and Unreal Tournament, might be enough to tap into

players’ spatial skills.

Highlands

In contrast, in the Highlands level, movement is unrestricted across a wide open field, with

a larger area for exploration. In addition, there are a series of large rocks spaced around

the environment that must be climbed using a series of successive jumps, so vertical as well

as horizontal navigation is required, utilizing the Rocket Boots item built in the previous

level. Given that the parts and batteries at the top of large rocks are only visible from a

significant distance away, players must plan out their multi-jump path to the top of the rock

to get the item before they get too close to the rocks, requiring them to employ navigation

visualization. Landmark orientation can also be used in this level by observing the different

shapes of rocks, trees, and other structures, although the most visually prominent landmarks

in this level serve as distal navigation cues: the outside of a walled city that dominates the

horizon, and the tallest rock in the middle of the level, which can be reached with a series

of ramps from other rocks not seen anywhere else in the level. Using landmarks that are

visible from much further away than in the Canyon level allowed me to study how landmark

distance (proximal or distal) may affect the extent to which landmark orientation taps into

spatial skill given the findings of Castell et al. that proximal landmarks may reduce the need

to employ mental rotation, an intrinsic-dynamic spatial skill hypothesized to be relevant to

navigation skill [155].

Ruined City

In the final implemented Exploration Mode level, Ruined City, searching for item parts

is accomplished in a different way. The six parts for the Ruined City Key, this level’s item

to build, are hidden in a series of partially ruined buildings. This makes it more difficult

to find the parts since the city is full of very similar looking building ruins with multiple

stories, and the buildings’ walls obscure parts hidden within from view (see Figure 3.4). The

purpose of making the part collection task more difficult in this level was to motivate the

player to use a search strategy that more explicitly requires the use of landmark orientation

and its associated extrinsic-static spatial skills. This strategy is supported by the presence

of pictorial clues the player can easily find and collect on the main paths through the level.
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Each clue shows a screenshot of the location of one Ruined City Key part from a camera

angle that simultaneously prevents the part from being obscured by building walls and also

includes enough background details for the player to be able to deduce with some effort in

which building and room a part is likely to be. Background details that help orient the player

include a colored lamp, the lamp’s position relative to the main path through the level, and

the shapes of the ruined building walls within which the part is to be found (see Figure 3.5).

The colored lamps are spaced evenly throughout the level and designed to help the player

find the rough area in which a part is located, while the rest of the background details help

the player figure out in which specific building, floor, and room the part is located.

Figure 3.5: Screenshot of the clue interface in the Ruined City level of Homeworld Bound.

As the player collects pictoral clues, they populate the picture grid on the left side of the

screen. The player can click on on one of them to expand and display it on the right side of

the screen. Players must use landmark orientation to figure out where they would have to

be standing in the level to get the view of the item part shown in each clue.
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Like the Highlands level, the Ruined City level is more vertical and requires the player

to make multi-step jumps from certain locations to get to the higher floors on buildings.

Thus, it may require the player to do some navigation visualization to plan how they will

get to where they are trying to go. The more dense and cluttered structure of the level

may make this task more difficult for the player and require more navigation visualization

than in the Highlands level. As mentioned above, the use of pictorial clues also requires

landmark orientation more explicitly than the unstructured exploration of the Highlands

and Canyon levels and thus may do a better job of embodying this spatial game feature

than the other two Exploration Mode levels. These pictorial clues were inspired in part by

the game mechanics in Portal 2.

3.5.2 Spatial Game Features in Construction Mode Levels

Construction Mode Overview

The player’s primary task in Construction Mode levels is to build an item from its con-

stituent parts piece by piece in 3D. The step by step process is more complex than Explo-

ration Mode levels (see Figure 3.4 for reference to specific UI features). At the start of the

level, the player sees a 2D image in the upper left corner of the screen showing what the

item should look like when it is finished. This image is static and thus cannot be rotated

to see the item from different perspectives, so in order to see the correspondence between

the placement of parts in the 2D image and the 3D parts they are manipulating, players

must mentally rotate either the 3D parts in the environment or the 2D image, engaging

their intrinsic-dynamic spatial skills. The first part of the item is already placed in the

environment in the center of the screen and cannot be manipulated or rotated in any way

since it serves as the construction’s base.

The player’s task is the following. First, they choose a part to place in the environment

using the icons on the bottom of the screen. Next, they decide to which area on the base

construction they will attempt to fuse their chosen part; each fusable area on each part is

black. Once the player has selected one fusable area on the base construction and one on

the selected part, they must determine how to rotate the selected part (object rotation) so

that if it were pushed against the base construction at the selected black faces, it would fit

together with the construction perfectly (object alignment). To make it easier for the player

to understand how the selected part must be rotated to align correctly with the construction,

the selected part moves so that it is next to the selected fusable area on the construction.

Rotation along the x, y, and z axes is accomplished by clicking on the red, green, and blue
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rotation arrows which surround the selected part, and each rotation rotates the part 90

degrees in the direction indicated by the arrows.

Once the player decides that they have matched up the correct two black faces where the

two parts should attach together and rotated the selected part to align it correctly, they can

click the Fuse button to attempt a fuse. If the face matching and the part’s current rotation

are correct, the part is fused. If not, an error message pops up telling the player which of the

two errors they made (wrong face or wrong rotation). A wrong face error indicates that the

attachment attempt failed due to the two selected faces being incompatible; a wrong rotation

error indicates that the attachment attempt failed because the part was not rotated to fit

together correctly with the construction. The order of rotations and face selection is flexible;

players can rotate first and then select, or select and then rotate, and selections of faces and

parts can be changed at any time. The camera can be rotated around the construction and

zoomed using the mouse. Once fused, a part becomes part of the construction and can have

other parts fused onto it.

This process is repeated for each part attached to the construction until all parts are

successfully fused or the player runs out of rotations (the number of remaining rotations is

shown in the battery icon in the upper right corner of the screen). The player is free to

choose a different part to attach at any time if the current one is proving difficult to attach.

In addition, players can make as many different combinations of face selections as they want

before attempting attachment. While players can also experiment with rotating a part in

different ways, there is a soft limit on the number of rotations that can be performed in each

Construction Mode level.

I decided to limit the number of rotations allowed in Construction Mode levels to encourage

players to use mental rotation (an intrinsic-dynamic spatial skill corresponding to my object

rotation and object alignment spatial game features) instead of trying to fuse every possible

rotation of a part in succession until one is successful. Each rotation in Construction Mode

uses up a small amount of the player’s “battery power,” which is determined by the number

of batteries the player has collected in Exploration Mode. When their battery power runs

out, players can no longer rotate objects and must switch back to Exploration Mode to collect

more batteries before they can return to where they left off in Construction Mode. Batteries

are automatically respawned elsewhere in a level when they are collected, ensuring that the

player does not run out of them. This mechanic allows the player take a break from one in-

game task and do something else for a while (the game design principle of parallelism), which

has the added advantage of reducing player frustration and helping players come back to the

main task cognitively refreshed [165]. The player is automatically returned to Exploration

Mode to search for new parts once they finish a Construction Mode level.

40



Tutorial 1 and Tutorial 2

Once the player has collected all of the parts needed for the Rocket Boots item, they first

must play through two easier tutorial levels, Tutorial 1 and Tutorial 2 (see Figure 3.6), in

order to master the basics of Construction Mode gameplay they will need to complete the

Rocket Boots level. I decided to add in these tutorial levels after repeat playtesting with

children revealed that the whole process of rotating, aligning, selecting faces, and fusing took

a while for players to understand. Tutorial 1 focuses on getting players to match up black

fusing areas with the same shape by making all parts the same color and making each part

and fusing area very different shapes. Tutorial 2, in contrast, focuses on getting the player

to pay attention to the image of the finished item in the upper left corner by making fusing

areas very similar shapes or identical; the player can no longer rely on matching by fusing

area shape alone but must look at the picture to see where each part goes. The picture

makes this very clear since all parts are colored differently. Thus, Tutorial 1 emphasizes

shape matching, whereas Tutorial 2 emphasizes color and the relationship between the 3D

construction and the 2D image of the finished item. Later Construction Mode levels combine

both these elements in a variety of different ways.

Rocket Boots

The Rocket Boots level combines the features of Tutorial 1 (similarly colored parts in either

red or yellow) and Tutorial 2 (similarly shaped rectangular parts), making this level harder

than the preceding two. In order to succeed, the player must pay attention to the 2D image

of the finished item and the subtle differences in the shapes of fusing areas simultaneously.

Two parts have multiple axes of symmetry, allowing for multiple correct alignments when

rotating and making the fusing task for these parts a little easier.

Sledgehammer

The Sledgehammer level preserves the high degree of symmetry of parts, the similarity

of fusing areas, and the two color scheme of the Rocket Boots level, but introduces more

complex shapes: triangular prisms and a trapezoidal prism. All fusing areas, however,

remain rectangular or square. The more complex shapes allow the player to gain experience

with mentally rotating and aligning more general types of 3D shapes.
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Figure 3.6: Screenshots of the first (left) and the second (right) tutorial levels in the final
version of Homeworld Bound. The first tutorial emphasizes shape matching, while the second
emphasizes color and matching with the picture of the finished object in the upper left corner
of the screen.

Ruined City Key

With every fusing area an identical square, and almost all parts the same color, the Ruined

City Key level is designed so that players must rely heavily on the 2D static image of the

finished construction to determine where to attach parts and how they should be rotated.

The parts themselves are shaped like 3D Tetris blocks, meaning their shape is considerably

more complex than parts in the previous levels. While previous levels could be completed

without reference to the 2D image with a bit of guessing, this level was designed to make

this guessing strategy much less fun and persuade players to analyze the correspondences

between the 2D image and their 3D construction. The two color scheme is continued from

previous levels.

3.6 PILOT TESTING

Homeworld Bound is described in the previous sections of this chapter in the state it was

just before I used it in my first published study, which is discussed in the next chapter. How-

ever, multiple iterations of playtesting and development were necessary to get the game to a

state where gameplay aligned with my four proposed spatial game features and represented

a coherent, engaging whole. The following subsections describe the process of Homeworld

Bound ’s development up to this point.
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Figure 3.7: Screenshots of the tutorial level (left) and Rocket Boots level (right) in the
earliest functional prototype of Homeworld Bound.

3.6.1 Initial Prototype and Playtest

The first implementation of my concept for Homeworld Bound was a low fidelity but

functional prototype of the Rocket Boots level (see Figure 3.7). Play testing was conducted

by me and a collaborating graduate student in the Education department. We conducted

the playtest at the Children’s Museum of Indianapolis, inviting children in third through

eighth grade (ages 8-14) to try out the two implemented levels in the functional prototype,

the tutorial and the Rocket Boots level, during family visits to the museum. We observed

children during gameplay and asked them to think aloud about their experience playing the

game. We recorded the comments children made during gameplay as well as the amount of

time they chose to play, how engaged they appeared, and what emotions they seemed to be

expressing. Lastly, we conducted interviews with each child to identify which features of the

game were perceived as the most positive or negative and how we might improve the game

in its next iteration.

In total, five children played Homeworld Bound, with four completing both levels and the

fifth choosing to end the game early. We observed high levels of engagement in all children;

their eyes and attention were almost always on the game, and they leaned forward in their

seats as they played. Children’s facial expressions during gameplay conveyed primarily focus

and confusion with occasional bouts of mild frustration. Four out of five players tried to

figure out the game on their own, with only one turning to us for help. All five children

reported finding the game fun and were unable to identify an aspect of the game they found

boring, but found the task of trying to rotate and connect the parts correctly frustrating.

The playtest of my initial functional prototype revealed two ideas for possible revisions.

First, children had a hard time understanding in what direction a part was rotating when

43



they performed a rotation operation. This was likely due to a lack of rotation animation

for each part; parts simply rotated instantaneously when one of the rotation buttons on the

interface was clicked. I decided to add a more realistic animation to the rotation to show

the part smoothly transitioning from one rotation to another to address this issue. I also

worked on improving the background visuals for the next iteration as one player mentioned

this as an area of improvement. Issues that remained unresolved into the next iteration

included the lack of narrative (mentioned by one player) and most players’ confusion about

the step by step process of finding where to attach a part, rotating it to align correctly, and

attempting to fuse.

3.6.2 Second Prototype and Playtest

In addition to the changes made to Construction Mode mentioned above as a result of

my first playtest of Homeworld Bound, I implemented the first functional prototype of Ex-

ploration Mode with the help of a couple undergraduate students before the next playtest

in Fall 2015. The goal of this playtest was to prepare the game for a controlled training

study the next month. Given this short timeline for implementation and the small number of

students working on the game, I decided to implement Exploration Mode in a different game

engine to speed the development process. For this first prototype, I and the undergraduate

students used the Warcraft III World Editor as our development engine. Originally designed

for creating custom levels of the real time strategy game Warcraft III, the editor makes it

easy to create 3D environments with a collection of premade texture and 3D model assets

and simple editing tools. It also comes equipped with a simple scripting language that can

be used to add more complex logic to the game, and a prebuilt character movement system

and interface. Figure 3.8 shows screenshots of Construction Mode and Exploration Mode as

they looked for the second iteration of my functional prototype.

Playtesting for this version was conducted with a larger group of 16 children at a local

public elementary school, Barkstall Elementary. After installing Warcraft III on each of the

computers in their computer lab with the help of Barkstall’s IT personnel and adding the

necessary game files for both Exploration and Construction Mode to the filesystem on each

computer, I invited children to play both modes of the game in the lab. Each child completed

two 45 minute sessions of gameplay spaced across two days, during which they alternated

between Exploration Mode in Warcraft III and Construction Mode in Unity through the

use of passwords they were given upon completing each level. Children played the game

in groups of 8 simultaneously as I walked around and observed them, troubleshooting any

points of confusion or bugs they encountered but otherwise just letting them play.

44



Figure 3.8: Screenshots of the Ruined City level in Exploration Mode implemented with the
Warcraft III World Editor (left) and the Rocket Boots level implemented in Unity (right) in
the second functional prototype of Homeworld Bound. Game modes were connected together
via passwords given to the player after completing each level.

Overall, children seemed highly engaged with the game, although the process of switching

between two separate games and entering passwords in both of them proved cumbersome and

confusing for them. The playtest did not uncover any serious issues with player engagement

or usability, except for a few glitches, so the next iteration of the game did not substantially

change its content or gameplay apart from fixing bugs. However, children continued to find

the multi-step process of part attachment in Construction Mode confusing, and some needed

hints or additional explanations to understand it at first.

3.6.3 Controlled Training Study with Third Prototype

Method

In Fall 2015, I ran a controlled training study using the third iteration of Homeworld

Bound resulting from the previous playtest at Barkstall Elementary School. I recruited 21

students in grades 3-5 (ages 8-11) at University Primary School, a private elementary school

affiliated with the University of Illinois Urbana-Champaign, to participate. The study was

conducted during school hours in 6 sessions over the course of 2 weeks. The purpose of

this small-scale pilot training study was to see if playing Homeworld Bound could improve

students’ spatial skills relative to a nonspatial control game.
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The active control group played Little Alchemy, a simple yet addictive webgame where

players drag and drop different “elements” onto each other to combine them and create new

“elements.” The player starts with four basic elements and can create 360 unique elements

in total. I selected this game for the active control group due to its lack of spatial gameplay

elements and its potential to keep students engaged throughout the 6 sessions of the study.

All 21 students spent the first study session taking two different standardized tests of

spatial skill. The first test was the Revised Purdue Spatial Visualization Test: Visualization

of Rotations (PSVT:R) [166]. I chose to use the PSVT:R since it is a well-validated test

of mental rotation (an intrinsic-dynamic spatial subskill [10] that maps well to the object

rotation and object alignment tasks in Construction Mode). Furthermore, this specific test

of mental rotation is widely used in studies analyzing the link between spatial skills and

STEM proficiency [167, 168, 169, 170, 171]. Since the Revised PSVT:R was designed for

populations age 13 and up, on the advice of the test’s author, I reduced the number of

questions from 30 to the first 20 (test questions are ordered from easiest to hardest) and

increased the time limit from 20 to 25 minutes.

The second test administered was a version of Guay’s Visualization of Views test adapted

by Hegarty et al. [172, 55], a measure of perspective-taking (imagining how an object or

scene would look when viewed from a different perspective [49]. I included this perspective-

taking test to assess the extrinsic-static dimension of spatial ability [10] related to the task

of landmark orientation in Exploration Mode. Since this test, like the Revised PSVT:R,

was also designed for older populations, I increased the time limit from 8 to 15 minutes.

When calculating Visualization of Views test scores, I used the adjustment for guessing

recommended by the test’s authors (subtracting the number of incorrect answers divided by

the number of answer choices (6) from the total score). Given the likelihood of cognitive

fatigue children would be likely to experience if a third test was added and the lack of

well-validated tests of extrinsic-dynamic spatial skill, I could not add a third test to directly

measure the impact of the game’s navigation visualization tasks. However, research indicates

that spatial skill training often has transfer effects from one spatial subskill to another [10],

so measuring each dimension of spatial skill separately may not be necessary.

Students were assigned to play either Homeworld Bound or Little Alchemy using block

random assignment with age and gender as the blocking variables and played their assigned

game for the next four 45 minute sessions of the study. The final study session was a post-

test using the same PSVT:R and Visualization of Views tests as before, followed by a short

demographic survey.
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Figure 3.9: Children’s improvement from pretest to post-test on the Visualization of Views

Test, broken down by treatment condition and gender. LA = Little Alchemy, HB = Home-

world Bound. Note that there was only one girl in the Little Alchemy group due to the

removal of an outlier. While these patterns do not translate to statistically significant inter-

action effects, they warrant further investigation as to why boys’ performance is driving the

statistically significant test improvement in the Homeworld Bound group.

Results

Table 3.2 shows a summary of boys’ and girls’ scores on each pretest and post-test of

spatial skills. On the Views pretest, both girls’ and boys’ average scores (µ = 3.72 and

µ = 3.82, respectively) were above chance performance (0 out of 24 since scoring already

adjusts for guessing). On the PSVT:R pretest, however, only the boys’ average was well

above the level of chance (µ = 9.1), while the girls’ average was close to chance performance

(µ = 5.9, chance performance would be 5).

I analyzed the effects of training with either Homeworld Bound or Little Alchemy on

spatial skill pretest to post-test improvement. I was also interested in investigating gender

differences in pre- to post-test learning gains given that the age range of this study’s partic-

ipants was similar to the age at which the gender gap in spatial skills begins to emerge in
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Visualization of Views
Pretest µ Pretest σ Posttest µ Posttest σ

Girls, LA 4.17 N/A* 3.00 N/A*
Boys, LA 4.92 7.48 6.55 7.13
Girls, HB 2.44 3.88 3.63 3.94
Boys, HB 1.22 3.08 8.89 1.98

Shortened Revised PSVT:R
Pretest µ Pretest σ Posttest µ Posttest σ

Girls, LA 10.50 4.95 10.00 8.49
Boys, LA 9.43 5.02 9.43 5.80
Girls, HB 4.75 2.92 5.13 2.80
Boys, HB 8.33 4.04 9.33 5.51

Table 3.2: Girls’ and boys’ scores on the Visualization of Views and the shortened (20 ques-
tion) version of the Revised PSVT:R pretests and post-tests, broken down by experimental
condition. LA = Little Alchemy group, HB = Homeworld Bound group.

earnest [21, 76]. In order to counteract these gender differences before they become a barrier

to STEM access later in life, it is important that a spatial skill training intervention works

for girls at least as well as it works for boys. Therefore, I conducted two ANCOVAs, one

for each of the two spatial skill tests used (PSVT:R and Visualization of Views), each with

post-test score as the dependent variable, treatment condition (Homeworld Bound or Little

Alchemy) as the independent variable, and pretest score and gender as covariates. Due to

the small sample size, I was unable to analyze the interaction effect of gender with treatment

condition (to investigate whether different treatments are equally effective for each gender).

All effect sizes reported use ω2 values since the sample size is small [173].

Inspection of diagnostic plots for the PSVT:R ANCOVA showed that the ANCOVA as-

sumptions of normality, homoscedasticity, and linearity were met, and there were no outliers.

However, the interaction effects analysis revealed a marginally significant interaction effect

between pretest score and treatment condition (F (1, 16) = 3.42, p = 0.083), indicating a

possible violation of the homogeneity of slopes assumption. However, using the Johnson-

Neyman procedure [174] to determine a region of significance within the range of the pretest

scores yielded no significant regions, and thus a violation of the homogeneity of slopes as-

sumption could not be confirmed. The ANCOVA showed no effect of treatment condition

(F (1, 16) = 0.20, p = 0.66, ω2 = −0.018) or gender (F (1, 16) = 0.17, p = 0.69, ω2 = −0.019).

Only the test-retest effect was significant (F (1, 16) = 26.74, p < 0.0001), with a large effect

size of ω2 = 0.58.
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For the Visualization of Views ANCOVA, inspection of diagnostic plots and interaction ef-

fects analysis revealed that ANCOVA assumptions of normality, homoscedasticity, linearity,

and homoegeneity of regression slopes were met. However, one observation was identified

as an influential outlier (Cook’s distance = 1.01) due to a dramatic improvement between

pretest and post-test (∆ score = 9.4, in a test with a maximum score of 24) and was thus

removed from the dataset. After removing the outlier, the ANCOVA revealed significant

effects of treatment condition (F (1, 15) = 5.14, p = 0.039), retesting (F (1, 15) = 28.10,

p < 0.0001), and gender (F (1, 15) = 8.63, p = 0.010) such that those who played Home-

world Bound scored higher than those who played Little Alchemy, boys scored higher than

girls on the post-test relative to the pretest, and there was a large improvement overall from

pretest to post-test (ω2 = 0.47). Effect sizes for training condition ( ω2 = 0.07) and gender

(ω2 = 0.13) were medium according to the ranges specified by Field [175]. As shown in Fig-

ure 3.9, visualizing the effects of treatment condition and gender together revealed that the

Visualization of Views test score improvement observed in the Homeworld Bound condition

was a result of improvement in boys’ scores only.

3.6.4 Improvements for the Final Version of Homeworld Bound

Playtests of the first two functional prototypes of Homeworld Bound revealed that children

were overall quite engaged when playing the game. However, they found the step by step

process for completing levels in Construction Mode confusing and often needed help from

study proctors to understand how it worked. In addition, switching between Exploration

Mode implemented in the Warcaft III World Editor and Construction mode implemented

in Unity via passwords was clumsy, error prone, and took time away from playing the game.

Before executing my next study using Homeworld Bound, I made the following three

improvements to the game to address these limitations. First, I replaced the single block

stacking tutorial level in Figure 3.7 with two more targeted and complex tutorial levels,

Tutorial 1 and Tutorial 2, each designed to ease students gradually into the process of

building in Construction Mode. I briefly considered adding a step by step text tutorial

that guided the player through the process of attaching one part from beginning to end,

but discarded this idea after another pilot test at the local Orpheum Children’s Museum

revealed that children did not read the tutorial text and were therefore more confused than

before the tutorial was implemented. I settled on a minimalist tutorial that simply informed

players of the controls and let them explore and figure it out on their own. Given that

proctors would be present for future studies with children, I figured they could help fill in

any gaps of understanding during gameplay.
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Second, to reduce children’s confusion in Construction Mode further, I sought a way

to make the game’s controls feel more intuitive and natural. To make rotation feel more

intuitive, one of my undergraduate collaborators came up with the idea of and implemented

a set of 3D curved arrows aligned around the axes of a part that more intuitively conveyed

how to rotate a part a certain way than the previous prototype’s confusing and ambiguous

representation of rotation actions via interface buttons labeled “Rotate X”, “Rotate Y”, and

“Rotate Z.” To make camera movement feel more natural, he replaced the interface buttons

for rotating the camera in discrete units along two axes with a click and drag mechanic that

allowed free 360 degree rotation around the center of the construction area. He also added

a zoom feature to the camera that could be accomplished by simply scrolling up or down

on the mouse. To make it less confusing for kids to imagine how the selected part must

be rotated to align correctly with the construction, my undergraduate collaborator wrote

code to make the selected part move so that it is next to the selected fusable area on the

construction once a fusable area had been selected on both the construction and the selected

part.

Third, with more time before the next study was launched and with the help of a new

team of undergraduate students, I implemented Exploration Mode in the Unity engine so

that both modes could be played together in one cohesive game as intended, with mode

switching happening automatically at the end of each level or with the click of a button.

This implementation also served to address a major limitation of the Warcraft III version

of Exploration Mode. Due to the limitations of the Warcraft III engine, it was not feasible

to implement first person perspective, and so the game utilized a top-down, bird’s eye view,

with the player controlling the character from above. In contrast, the commercial games

shown most consistently to train spatial skills, such as the shooters Medal of Honor and

Unreal Tournament and the puzzle game Portal 2 are first person games. Thus, I made the

Unity implementation of Exploration Mode in first person perspective to be more similar to

the navigational tasks required of players in these other games.

The end result of these three modifications was the final version of Homeworld Bound as

shown in Figure 3.4 and as described in Sections 3.2, 3.3, 3.4, and 3.5.

3.7 DISCUSSION

This chapter discussed the design and initial evaluation process for Homeworld Bound, a

game designed to train the spatial skills of children in late elementary school as well as to

evaluate the efficacy of specific features at tapping into players’ existing spatial skill. The

initial iterative design process used to refine the game was crucial to achieving these twin
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goals, both in the period leading up to the small scale training study and in the period

afterward, where several major modifications allowed me to realize the implementation of

every spatial feature proposed in my theoretical mapping between spatial subskills and game

features.

While the results from the training study indicate that Homeworld Bound may have

some potential as a spatial skill training intervention, these results must be interpreted with

caution given the low sample size used in this study of about 10 children per experimental

group. In addition, all participants attended a private elementary school, and this may have

exacerbated the gender effects observed since students attending private schools tend to be

from high socioeconomic status (SES) backgrounds, and gender differences in spatial skill are

greater among high SES populations [108]. Furthermore, improvement was only observed on

the perspective-taking test and not on the mental rotation test, although this may have been

due to floor effects for girls’ scores on the PSVT:R test. The observation that the training

effect for the perspective-taking test in the Homeworld Bound condition was due to boys’

improvement alone and not any noticeable improvement on the part of girls is troubling.

While these results might have simply been due to noise given the very small sample size, it

was also possible that Homeworld Bound may not have been as effective a training tool for

girls as it was for boys.

Understanding the reasons for an ineffective cognitive training intervention is difficult

without first analyzing the extent to which various levels of the game did or did not tap

into the cognitive skills to be trained. In the next chapter, I describe a follow-up corre-

lation analysis I conducted to understand the relationship between spatial skill, in-game

performance and behavior, and gender across the different levels of Homeworld Bound and

diagnose potential problems with the game design.
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Chapter 4: Untangling the Relationship Between Spatial Skills, Game
Features, and Gender

In this chapter, I describe a correlation study conducted to assess the extent to which

performance and behavior in the game I designed to train children’s spatial skills, Home-

world Bound, are associated with players’ current level of spatial skill and gender. Since

Homeworld Bound was designed to separate different spatial game features into different

levels, examining the correlations between players’ spatial skill and their performance in the

game allows me to understand which levels are doing a better or worse job of tapping into

spatial skills. If performance on certain levels is highly correlated with spatial skill, this may

be an indication that these levels are taxing the appropriate cognitive resources. Conversely,

if performance on certain levels is not correlated with spatial skill, this indicates that those

particular levels may need to be redesigned to require the use of spatial skill in completing

the level.

In addition, analyzing the relationship between spatial skill, gender, and player behavior

allows me to investigate the extent to which the game may be tapping into the spatial skills

of and engaging one gender over another. This is a particularly important investigation in

light of the gender gap in spatial skills emerging in late elementary school that favors boys

and mirrors the STEM gender gap. It is crucial that interventions designed to train spatial

skills work at least as well for populations that tend to have lower spatial skill (such as girls)

as they do for higher spatial skill populations (such as boys) in order to allow lower spatial

skill populations the chance to catch up on spatial skill development before it becomes a

barrier to access to STEM coursework, majors, and careers later in life.

This chapter’s principal contributions to the research literature are the following: 1) the

presentation of the first empirical study analyzing the potential of different game features

to tap into children’s spatial skills, 2) how gender affects the extent to which different game

features tap into children’s spatial skills, and 3) practical recommendations for implement-

ing these features in games to assess or train players’ spatial skills based on the complex

relationship between gender, spatial skill, and in-game behavior my results reveal. This

chapter contains a substantial portion of my previously published work [40], coupled with

some additional analyses.

4.1 RESEARCH QUESTIONS

RQ1: On which levels of Homeworld Bound is player performance associated with spatial

skill?
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RQ2: Is the association between player performance and spatial skill stronger for more

difficult levels of Homeworld Bound?

RQ3: How does the level-by-level relationship between player performance and spatial

skill differ by gender?

4.2 METHOD

I recruited 20 children ages 7-12 via a publicly accessible weekly newsletter distributed by

the University of Illinois at Urbana-Champaign to participate (accompanied by their parents)

in a 3 hour study session involving cognitive testing and Homeworld Bound gameplay. I chose

to recruit children ages 7-12 because previous research has established that the effect size

of gender differences in spatial skill is significant and roughly uniform across this entire age

range [21, 76].

After parents signed a consent form and children verbally assented to participate, the

children took a shortened version of the Revised Purdue Spatial Relations Test (PSVT:R)

[166] as a pretest of spatial skills. Since the PSVT:R is designed for people age 12 and

up, I shortened it from 30 questions to just the easiest 20 questions (the first 20 since test

questions are ordered by difficulty) as recommended to me by the researcher who developed

the test. I used a single pretest of spatial skills rather than administering enough tests to

cover all 4 quadrants of the spatial skill framework introduced in Chapter 3 because this

study would take place in a single session and I did not want the children participating in

the study to become mentally fatigued before starting their multiple hour gameplay session.

Next, children filled out a short demographic survey on their age, gender, and previous video

game experience. Game experience metrics included a quantitative ranking of video game

play frequency (1=no experience, 6=daily play) as well as a free response question asking

children to list the games they play most often.

After completing the survey, each child played the game for 2 hours or until they finished

the game, whichever came first. While parents accompanied their children for the duration of

the study, the study proctors minimized parent-child interactions during gameplay by asking

parents to physically distance themselves from their children, although parents were allowed

to come around briefly to see what their children were doing. Children were allowed to stop

playing whenever they wanted. After finishing the gameplay session, children completed a

post-game survey in which they rated how fun, boring, easy, and frustrating they found the

game and why on a 5 point Likert scale. They were also asked what they would change if

they were making the game. Parents were compensated $10 an hour per child and given a

$20 bonus in addition to the base rate if they and their child stayed for the entire 3 hours.
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4.2.1 In-Game Player Behavior Metrics

I collected a large amount of player behavior data from participants. Data collected

focused primarily on time taken to finish each level, number of errors made, and behaviors

associated with player impulsiveness. I reasoned that more impulsive players would spend

less time standing around thinking about where to go next in Exploration Mode and would

spend less time trying to rotate parts in Construction Mode to the correct alignment before

attempting to attach them. I therefore measured impulsiveness by percentage of time each

player spent standing still versus moving in Exploration Mode and how many rotations each

player performed in Construction Mode before trying to attach two parts. Analyzing time

taken to finish levels and number of errors gives me a sense for how difficult the game was,

while measuring player exploration and errors made allows me to see to what extent spatial

skills are associated with two approaches to problem solving that education literature has

shown to be important for learning: the growth mindset and exploring the problem space.

The growth mindset is an attitude towards learning that views mistakes and failures as the

best possible learning opportunities. It embraces the ’fail fast, fail often’ adage championed

by many Silicon Valley entrepreneurs and has been associated with increased player engage-

ment and motivation in video games [176]. Exploring the problem space involves trying out

many different strategies, approaches, or directions to allow for cross-pollination between

them. This idea has gained attention in the design community for its propensity to increase

creativity and improve solution quality [177].

Thus, each of the main player behaviors I measure allow me to get a sense for how players’

spatial skills are related to the game’s difficulty (time spent in each level, number of errors),

and different types of player strategies (impulsiveness, growth mindset, exploring the problem

space) when experiencing specific game features at different levels of granularity (between

the two game modes versus between individual levels within each mode). The specific player

behavior metrics I collected for each game mode are summarized in Table 4.1. An explanation

of some of the more complicated metrics follows.

Wrong Face and Wrong Rotation Errors

There are two types of errors a player can make in Construction Mode when attempting to

attach two parts together. If the player has selected the correct two faces to attach and has

rotated the part to be attached so that it is aligned correctly, then the attachment attempt

succeeds. However, if the player selects two faces that are not supposed to be attached in

the finished object (A and B in Figure 4.1) and tries to attach them, this is a wrong face
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Exploration Mode Construction Mode

Time spent playing Time spent playing
Number of times stopped Sessions

% time spent stopped Rotations
Avg time spent stopped Face and rotation errors

Number of batteries RPAA

Table 4.1: The in-game player behavior metrics collected in each mode of the game. RPAA
= Rotations per attachment attempt.

error. If the player manages to select the correct two faces to attach but the rotation of

the part to be attached is incorrect and the player tries to attach them (C and D in Figure

4.1), this is a wrong rotation error. Thus, errors are only counted when the player clicks the

“Connect” button to attach two parts, and each attachment attempt will result in at most

one error. Players’ part rotation and face selection actions before an attachment attempt is

made (clicking the “Connect” button) are considered exploratory actions and not errors.

Number of Sessions

Since rotation operations in Construction Mode were “powered” by batteries that could

be collected in Exploration Mode, players who ran out of battery power after performing too

many rotations would have to switch from Construction Mode to Exploration Mode, collect

more batteries, and then switch back to Construction Mode to continue building where they

left off. I recorded the number of times players had to make this switch as an additional

metric of how much difficulty they had with each Construction Mode level and to what

degree their Construction Mode play experience was broken up into smaller units of time

versus chunked into larger sessions.

Rotations and Rotations per Attachment Attempt

Players must rotate parts in 3D in Construction Mode in order to line up the two faces

of each part correctly for attachment. Each rotation action the player performs with the

interface controls corresponds to a 90 degree rotation of the current active object along one

of the X, Y, or Z axes. I calculated a player’s rotations per attachment attempt in order to

see to what extent players were exploring the problem space visually (doing a lot of rotations

before making an attachment attempt) or had a more impulsive, growth mindset-oriented

strategy (doing fewer rotations before making an attachment attempt).
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Figure 4.1: Faces A and B on the left are not the same size or shape, so trying to attach
them would be a wrong face error. Faces C and D on the right have the same size and shape
but are not yet aligned to face each other, so attaching them would be a wrong rotation
error.

4.3 RESULTS

Of the 20 children who participated in the study, 10 were female, and ages ranged from 7

to 12 (median=10, mean=9.95). All but two had previously played video games, and all but

one of those played games at least weekly. In addition, 11 (55%) were not able to complete

the entire game. Of those who did not complete the entire game, 4 of them chose to quit

early due to frustration, 2 quit early due to a prior commitment, and the remaining 5 played

for the entire 2 hours but ran out of time to finish the game. Due to the relatively small

number of players who made it as far as the Ruined City in Exploration and Construction

Mode (n=9), I excluded data from these levels from my statistical analyses, leaving me with

data from the first two Exploration Mode levels and the first four Construction Mode levels

(Tutorial1, Tutorial2, and Rocket Boots in the Canyon and Sledgehammer in the Highlands).

The focus of my analysis was the correlation between in-game behaviors and children’s

scores on the spatial skill pretest. There were 20 questions on the pretest, and scores (num-

ber of questions answered correctly) were heavily skewed towards the low end (µ = 7.15,

median=6, σ = 4.77). The lowest score was 1 and the highest was 17.

To compare the effects of high-level features across the entire game and low-level features

specific to certain parts of the game, I performed a hierarchical 2 stage correlation analysis,
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Behavior Gender Age Pretest Pretest (Boys) Pretest (Girls)

Time
Exploration n.s. -0.71* -0.55* n.s. n.s.
Canyon n.s. -0.65* n.s. n.s. n.s.
Highlands -0.48* -0.62* -0.57* n.s. n.s.

% Time Stood Still
Total, Canyon,
Highlands n.s. n.s. n.s. n.s. n.s.

Avg Time Stopped
Total, Canyon,
Highlands n.s. n.s. n.s. n.s. n.s.

Num. Times Stopped
Total, Canyon,
Highlands n.s. n.s. n.s. n.s. n.s.

Num. Batteries
Total, Canyon,
Highlands n.s. n.s. n.s. n.s. n.s.

Table 4.2: Behavior, demographic, and spatial skill pretest correlations using Spearman’s
ρ for Exploration Mode levels. *p < 0.05, n.s. = non-significant correlation. Gender was
coded as 1=Female, 2=Male, so a positive correlation indicates a behavior associated more
with males.

starting with mode-level player behaviors and then breaking them down further level-by-level

in the second stage. My primary measures of interest for player behavior were time taken

to finish all levels, errors made, and impulsiveness (as measured by percentage of time spent

standing still versus moving and rotations per attachment attempt). The concrete metrics

I used for each of these behaviors, which were the same for each stage of my hierarchical

analysis, are summarized in Table 4.1. I will first present general results for all participants,

and then investigate the effects of gender in later sections. My complete correlation analysis

between spatial skill pretest scores, player behaviors, and demographics is summarized in

Tables 4.2 and 4.3. I used Spearman’s ρ for all analyses since pretest score and most

behavioral measures had highly skewed, non-normal distributions. In addition, I used a

p-value of 0.05 for all tests of statistical significance for correlations without a Bonferroni

correction for multiple comparisons. I chose not to include an adjustment for multiple

comparisons due to the already low power of my sample of n = 20 participants.
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Behavior Gender Age Pretest Pretest (Boys) Pretest (Girls)

Time
Total, Tutorial1 n.s. n.s. n.s. n.s. n.s.
Tutorial2 n.s. -0.50* n.s. n.s. n.s.
Rocket Boots n.s. -0.68* n.s. n.s. n.s.
Sledgehammer n.s. n.s. n.s. -0.64* n.s.

Rotations
Total, Tutorial1,
Tutorial2 n.s. n.s. n.s. n.s. n.s.
Rocket Boots n.s. -0.58* n.s. -0.67* n.s.
Sledgehammer n.s. n.s. -0.56* -0.94* n.s.

Combined Errors
Total n.s. n.s. n.s. -0.85* n.s.
Rocket Boots n.s. -0.52* n.s. n.s. n.s.
Tutorial1, Tutorial2,
Sledgehammer n.s. n.s. n.s. n.s. n.s.

Wrong Face
Total n.s. n.s. n.s. -0.92* n.s.
Tutorial1 n.s. n.s. n.s. -0.67* n.s.
Tutorial2 +0.49* n.s. n.s. n.s. n.s.
Rocket Boots,
Sledgehammer n.s. n.s. n.s. n.s. n.s.

Wrong Rotation
Rocket Boots n.s. -0.66* -0.45* -0.65* n.s.
Tutorial1, Tutorial2,
Rocket Boots,
Sledgehammer n.s. n.s. n.s. n.s. n.s.

RPAA
Total, Tutorial1,
Tutorial2, Boots,
Sledgehammer n.s. n.s. n.s. n.s. n.s.

Num. Sessions
Total n.s. n.s. n.s. n.s. n.s.
Tutorial1, Tutorial2,
Rocket Boots,
Sledgehammer n.s. n.s. n.s. n.s. n.s.

Table 4.3: Behavior, demographic, and spatial skill pretest correlations using Spearman’s
ρ for Construction Mode levels. *p < 0.05, n.s. = non-significant correlation. Gender was
coded as 1=Female, 2=Male, so a positive correlation indicates a behavior associated more
with males. RPAA = Rotations per Attachment Attempt.

58



4.3.1 Exploration Mode Taps Into Spatial Skills

First, I analyzed the relationship between high-level player behaviors across all levels in

Exploration and Construction Mode and pretest scores. Total time spent in Exploration

Mode had a significant negative correlation with pretest score (ρ = −0.55, p = 0.016). None

of the other high-level player behaviors were significantly correlated with pretest scores.

Thus, children with higher pretest scores tended to finish Exploration Mode levels more

quickly. Since time spent in Construction Mode as a whole was not significantly associated

with pretest score, this result suggests that Exploration Mode as a whole requires more

spatial skill than Construction Mode as a whole.

4.3.2 Specific Levels Tap Into Spatial Skills

To get a more detailed picture of the extent to which each game mode tapped children’s

spatial skills, I analyzed pretest scores and player behavior level-by-level in both Construction

Mode and Exploration Mode.

In Exploration Mode, pretest score had a significant negative correlation with time spent

in the Highlands (ρ = −0.57, p = 0.01) but no significant correlation with time spent in the

Canyon level. Thus, only the Highlands level appears to be tapping into children’s spatial

skills.

In Construction Mode, number of wrong rotations performed in the Rocket Boots level

had a significant negative correlation with pretest score (ρ = −0.45, p = 0.047). For the

Sledgehammer level, pretest score and total number of rotations had a significant negative

correlation (ρ = −0.56, p = 0.015). Thus, the Rocket Boots and Sledgehammer both tapped

into players’ spatial skills, but in different measures of performance. There was no significant

relationship between performance in the Tutorial 1 and Tutorial 2 levels and spatial skill.

4.3.3 Gender and Age Differences

Boys (µ = 9.2, median=8, σ = 5.05) scored higher on the pretest of spatial skills than

girls (µ = 5.1, median=3.5, σ = 3.63), but this difference was not significant (t = −2.08,

p = 0.053). Since the pretest consisted of 20 multiple choice questions with 4 answer choices

per question and 1 correct answer per question, it is interesting to note that boys’ average

performance was above chance, but girls’ was not. While the difference in performance

between boys and girls did not reach statistical significance, the direction of the difference

is consistent with previous research establishing gender differences, not only in spatial skill
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but also on the particular psychometric test I used [78, 178]. It is likely that with a larger

sample, a statistically significant difference in performance by gender would be detected.

Research has shown that boys tend to have higher spatial skill than girls and that this

difference begins to emerge when children are around the same age as the children in my

study [21]. Therefore, I investigated the extent to which there were gender or age differences

in player behaviors that might influence how effectively the game taps into spatial skill

for different demographics. Tables 4.2 and 4.3 present a complete summary of all player

behavior, gender, and age correlation analyses I ran at both the mode-level and level-by-level.

I used Spearman’s rho for all analyses since I was analyzing a categorical variable (gender)

and the behavioral measures tended to have highly skewed, non-normal distributions.

Age: Younger Players Find Game More Difficult

Age was associated with several mode-level behaviors. At the mode level, younger players

spent more time in Exploration Mode and spent more time standing still in Exploration

Mode. Age was also associated with level-by-level behaviors. Time spent in every level of

Exploration Mode and the Tutorial 2 and Rocket Boots levels of Construction Mode had

a significant negative correlation with age. Younger players also used more rotations and

made more wrong rotation errors in the Rocket Boots level. These results demonstrate that

Exploration Mode levels are harder for younger players, as is the Rocket Boots level and to

a lesser extent the Tutorial 2 level in Construction Mode.

Gender: Girls take More Time, Boys Make More Errors

There were no significant correlations between gender and any mode-level player behaviors.

However, there were a few gender differences in behavior in individual game levels. Girls

took longer to complete the Highlands level, while boys made more wrong face errors in the

Tutorial2 level. While these gender effects occur only for a small subset of behaviors in a

small subset of the game’s levels, they may indicate that girls and boys are using different

strategies when they play certain levels.

For instance, since girls took longer to complete the Highlands level, they may have spent

more time deciding where to go next than boys, who may prefer to act more impulsively,

choosing a direction and walking there without worrying about whether it is the optimal

direction to choose. Similarly, boys make more wrong face errors in the second tutorial level

of Construction Mode, possibly because girls spend more time thinking about whether they

matched up parts correctly before even trying to attach. This more impulsive, exploratory
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behavior on the part of boys and more premeditated, careful behavior on the part of girls

may be related to spatial skill since time spent in the Highlands level was also related to

spatial skill pretest scores.

4.3.4 Gender Effects on Relationship Between Spatial Skill and Performance

Since gender affected players’ in-game behavior and pretest score, it may also affect the

predictive power of spatial skill pretest scores on certain player behaviors. I therefore per-

formed another correlation analysis between player behaviors in different parts of the game

and pretest scores, but broken down by gender and age.

Boys’ Pretests, Not Girls’, Predictive of Behavior

For boys at the mode level, total number of errors and total number of wrong face er-

rors had significant negative correlations with pretest scores (ρ = −0.85, p = 0.0018 and

ρ = −0.92, p = 0.0002, respectively). Here, we see additional correlations missing from

the combined gender sample: total errors and total wrong face errors. Thus, it appears

that matching the correct two faces for part attachment tapped into boys’ spatial skill in

Construction Mode. However, unlike in the combined gender correlation analysis, the cor-

relation between time spent in Exploration Mode and spatial skill failed to reach statistical

significance for boys. Surprisingly, there were no significant correlations between mode-level

behaviors and pretest scores for girls. Given that time spent in Exploration Mode only had

a statistically significant relationship with spatial skill in the combined gender sample, it is

likely that the lack of statistical significance for this relationship in either the boys’ or girls’

sample is a consequence of the loss of statistical power in these small samples (n = 10 each).

For boys, level-by-level analysis revealed that pretest scores were correlated with behavior

in three different Construction Mode levels (Tutorial 1, Rocket Boots, and Sledgehammer)

and no Exploration levels. Some of these correlations had also been observed in the combined

gender sample. For the Rocket Boots level, as with the combined gender sample, there was

a significant negative correlation between number of wrong rotations and pretest score, but

it was stronger for boys (ρ = −0.65, p = 0.04). Likewise, the correlation between number

of rotations used in the Sledgehammer level and pretest score was significant and stronger

for boys (ρ = −0.94, p < 0.0001). The correlation between time spent in the Highlands

Exploration Mode level and pretest score observed in the combined gender sample failed to

reach statistical significance in the boys sample, likely due to reduced statistical power as a

result of cutting the sample in half by gender.
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Other relationships between pretest score and level-by-level performance that were not

present in the combined gender sample emerged in the boys sample. Boys’ pretest scores

had a significant negative correlation with the number of wrong face errors in the Tutorial 1

level (ρ = −0.67, p = 0.036), and boys’ pretest scores had a significant negative correlation

with number of rotations in the Rocket Boots level (ρ = −0.67, p = 0.034). In addition, boys’

pretest scores had a significant negative correlation with time spent in the Sledgehammer

level (ρ = −0.64, p = 0.046).

In contrast, girls’ pretest scores were not significantly associated with any level-by-level

behaviors.

4.4 DISCUSSION

In this section, I discuss the results of my analysis of the relationship between spatial

skill and player performance in different levels of Homeworld Bound (RQ1), the extent to

which this relationship is dependent on a level’s difficulty (RQ2), and the extent to which

this relationship is dependent on a player’s gender RQ3. I then conclude by discussing

the design implications of these findings for spatial skill training video games and potential

avenues for future work.

4.4.1 RQ1 and RQ2: What Homeworld Bound levels tap into players’ spatial skills?

Exploration Mode

I found that completion time was related to spatial skill the Highlands level, but not in

the Canyon level. This may be due to the fact that the Highlands level is larger than the

Canyon and has a more open structure, requiring players to rely more on landmarks than

nonstrategic wandering to navigate and find parts. Thus, players may be required to employ

landmark orientation more in the Highlands level due to the increased number of possibilities

for where parts may be and the need to remember where the player has already looked by

reference to landmarks.

Another possible explanation is that players with higher spatial skill have an easier time

jumping with the Rocket Boots, a skill required much more often in the Highlands than in

the Canyon since many batteries in the Highlands level are accessible only via jumps. Many

of the children frequently reported having difficulty with the jumps, and since jumping

mechanics play a significant role in some games that have been demonstrated to improve

spatial skills, such as Portal 2 and Super Mario [5, 28], the simple acts of judging distance
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Figure 4.2: An example of a jumping sequence requiring navigation visualization in the
Highlands level of Homeworld Bound. If the player wants to reach the battery (A), they
must first jump onto the shorter rock on the right (B) since rock A is too tall to be reachable
in one jump from the ground. The glowing object on rock B is an item part.

and controlling trajectory involved in such jumps may be taxing children’s spatial skills as

well. Thus, the jumping mechanic may simply make the Highlands level more difficult and

therefore tax players’ spatial skills more. In addition, some batteries were located on top

of rocks that were too tall to be reached in one jump, so players had to figure out what

shorter rocks nearby to jump on first in order to be high enough to get to the top of the

tallest rock in one jump (see Figure 4.2 for an example). In short, players likely needed to

spend time planning and picturing their route from the ground to the top of a rock via a

series of jumps (navigation visualization). Thus, the Highlands level may be successful at

tapping into players’ spatial skills where the Canyon level is not due to the Highlands level’s

implementation of more vertical navigation and tasks requiring navigation visualization.

Construction Mode

I found that while there was no relationship between performance in the Tutorial 1 and

Tutorial 2 levels and spatial skill, performance on both the Rocket Boots and Sledgehammer

levels was associated with spatial skill in different ways. Spatial skill was associated with
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Level Performance Metric Mean Median

Tutorial 1 Completion Time 327 330
Tutorial 2 Completion Time 171 138
Rocket Boots Completion Time 398 320
Sledgehammer Completion Time 251 186
Tutorial 1 Total Rotations 37 37
Tutorial 2 Total Rotations 23 17
Rocket Boots Total Rotations 39 31
Sledgehammer Total Rotations 32 24
Tutorial 1 Wrong Face Errors 1 1
Tutorial 2 Wrong Face Errors 0 0
Rocket Boots Wrong Face Errors 9 4
Sledgehammer Wrong Face Errors 3 1
Tutorial 1 Wrong Rotation Errors 2 1
Tutorial 2 Wrong Rotation Errors 1 0
Rocket Boots Wrong Rotation Errors 9 5
Sledgehammer Wrong Rotation Errors 8 3

Table 4.4: Mean and median performance in each of the Construction Mode levels in Home-
world Bound. Completion times are in seconds. All numbers are rounded to the nearest
integer.

number of wrong rotations in the Rocket Boots level, while in the Sledgehammer level,

spatial skill was associated with the total number of rotations used. One possible reason

is that the Rocket Boots level was more difficult than the Sledgehammer level, especially

since players had to complete the Rocket Boots level before the Sledgehammer level and

thus would have had more practice with Construction Mode levels before attempting the

Sledgehammer level.

Player performance data supports the notion that the Rocket Boots level was the hardest

Construction Mode level. As Table 4.4 shows, there was high variance in individual player

performance on each Construction Mode level, but regardless of whether the median or mean

is used, players made many more wrong face and wrong rotation errors on the Rocket Boots

level than on other levels. The amount of time and rotations needed to complete the Rocket

Boots level also appears to be much higher than in the Tutorial 2 or Sledgehammer levels,

although these performance metrics were not significantly related to players’ spatial skill.

Interestingly, time spent and rotations used were similar between the Tutorial 1 and Rocket

Boots levels. The difficulty of the Tutorial 1 level in terms of time and rotations but not

errors, as well as the lack of correlation between performance and spatial skill in this level,

suggests that its difficulty may have mainly been due to players getting used to the controls
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Figure 4.3: The two most difficult parts to attach in the Rocket Boots Construction Mode
level, the main body (left) and the sole of the toebox (right). Players had to use the location
of two different attachment faces (1 and 2 on both parts) to correctly align and attach these
parts.

and learning how to play, since it was the first Construction Mode level encountered. Thus,

Tutorial 1’s spatial elements may have been simple enough to not tax players’ spatial skills

at a detectable level. Tutorial 2 may have failed to tax players’ spatial skills for the same

reason since it seems to have been the easiest Construction Mode level of all.

Similarly, it is interesting to note there was no relation between number of wrong face

errors and spatial skill in the Rocket Boots level, despite the large number of wrong face

errors players made in this level. One possible reason for this may be that there are a large

number of very similarly shaped fusing areas on parts in this level (6 in total, each shaped

like a roughly square picture frame). If players did not pay attention to the reference image

of the finished item in the upper left corner, they might resort to brute force, trying to fuse

each part on every single one of these similar areas until the game switched from giving them

wrong face errors to wrong rotation errors.

Despite being designed to be even harder than the Rocket Boots level, the Sledgehammer

level seemed to be easier than the Rocket Boots level, although harder than the tutorial

levels for the most part based on Table 4.4. My observation that children had a lot of

difficulty attaching two parts in particular in the Rocket Boots level may explain why. As

Figure 4.3 shows, both parts had two different attachment regions, and the player needed to

note the location of both of them in order to determine how each part should be rotated to

correctly align it with the part they needed to attach it to. The Sledgehammer level, while
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utilizing more complex part shapes and more parts than the two tutorial levels, did not have

parts requiring this more complex, multiple step object alignment task, which may explain

why players’ spatial skill was related to the number of wrong rotation errors they made in

the Rocket Boots level but not in the Sledgehammer level.

However, the total number of rotations used was related to spatial skill in the Sledgeham-

mer level but not the Rocket Boots level. Thus, predicting the result of a given rotation

operation (object rotation) may have been more spatially demanding in the Sledgehammer

level. This is perhaps due to the more complex part shapes used in the Sledgehammer level;

the Rocket Boots level had primarily solid or hollowed out cuboids, whereas the Sledge-

hammer introduced triangular and trapezoidal prisms for the first time. Thus, the Rocket

Boots level seems to tap into players’ spatial skills via more difficult object alignment tasks,

whereas the Sledgehammer level seems to tap into players’ spatial skills via more difficult

object rotation tasks.

Summary

In summary, my results indicate that all of the spatial game features I hypothesized would

tap into players’ spatial skills in Chapter 3, as implemented in Homeworld Bound, did indeed

tap into players’ spatial skills in certain Construction Mode and Exploration Mode levels

(RQ1). I found that fewer wrong rotation errors in the Rocket Boots level as well as fewer

rotations in the Sledgehammer level (corresponding to the game features object alignment

and object rotation) were correlated with higher spatial skill. I also found that less time

spent in the Highlands level was correlated with higher spatial skill, suggesting that the

combination of landmark orientation and navigation visualization tasks required for the

Highlands level tapped into players’ spatial skill. The greater complexity of navigation tasks

and the implementation of navigation visualization tasks in the Highlands level may explain

why this level was successful at tapping into players’ spatial skills where the Canyon level

was not.

Level difficulty alone was not enough to tap into players’ spatial skills, as evidenced by

the lack of relationship between spatial skill and performance in the Tutorial 1 level, which

was about the same level of difficulty for players as the Rocket Boots level in terms of

completion time and total rotations used. This suggests that the difficulty of certain spatial

operations contained in a level, such as those in my four feature model (object alignment,

object rotation, landmark orientation, and navigation visualization), is more important in

determining the extent to which it taps into players’ spatial skill than general difficulty

alone (RQ2). Examining the difficulty of each spatial operation on a level-by-level basis can
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therefore be used as a diagnostic tool for identifying how certain levels might be modified

to improve their ability to tax players’ spatial skills. The more each level in a spatial skill

training game is able to tap into players’ spatial skill during gameplay, the more likely it is

to actually produce measurable training effects over time.

4.4.2 RQ3: Gender Differences in Correlations and Behavior

The finding that girls’ spatial skill pretest scores did not predict any level-by-level or

mode-level behaviors, while boys’ pretest scores predicted five level-by-level and two mode-

level behaviors, is very surprising (RQ3). It seems that the spatial features as implemented

in my game may not be tapping into girls’ spatial skills, but it is not clear why.

First, I wondered if girls were simply not as interested in the game as boys and therefore

used less strategic behaviors when playing. To see if this was likely, I analyzed Spearman

correlations between gender and children’s self-reported 5-point Likert scale measures of fun,

easiness, boredom, and frustration from the post-game survey. There was no significant cor-

relation between gender and any of the four self-report measures. I also examined children’s

explanations for why they rated fun, easiness, boredom, and frustration the way they did

and what they would change about the game, but there did not appear to be a distinctive

gender difference in the responses. Therefore, girls did not seem to have a more negative

experience than boys.

If the girls in my study were less familiar with construction and first person exploration

games like Homeworld Bound, this may have caused the difference in girls’ and boys’ in-game

strategies. I analyzed boys’ and girls’ self-reported lists of games they played to see if there

was evidence for this hypothesis. Out of 20 children, 15 provided information about the

games they played. Both genders reported playing a diverse set of games, including racing,

first person shooter, construction, sports, and puzzle games. The only noticeable difference

was that 7 boys (a majority) reported playing construction games like Minecraft and Roblox,

whereas only 3 girls (a minority) did. Both Minecraft and Roblox, like Homeworld Bound,

allow the player to explore and collect materials from a virtual world and use those materials

to build objects. Since fewer girls had experience with this kind of game, perhaps they spent

more time familiarizing themselves with the controls and play style, which may have affected

their in-game behavior.

Another possibility is that girls may be using different strategies while playing to reduce

cognitive load. For example, girls’ longer completion times for the Highlands level may be

due to the use of less cognitively taxing nonspatial strategies to circumvent this difficulty

(such as random wandering until all parts are found). However, without additional data

67



beyond these quantitative measures, it is difficult to know for certain why girls took longer

to complete the Highlands level.

A second and perhaps more likely explanation for the observed gender differences is that

the particular psychometric test I used for the pretest, the Revised Purdue Spatial Visualiza-

tion Test: Rotations (PSVT:R), may not have been sensitive enough to capture differences

in spatial skill among children with low spatial skill - those who performed no better than

chance, and who were disproportionately girls. I chose this test because to the best of my

knowledge, no spatial skill tests currently exist for children in the age range I targeted with

this study. Every spatial skill test I could find was designed either for very young children

(ages 0-3) or for adults. I felt that the PSVT:R was the best possible option given that it

was designed for subjects ages 12 and up. I attempted to reduce the difficulty of the test

by eliminating the 10 hardest questions, but it is likely that the test needs to be made even

easier to accurately assess the spatial skill of children in late elementary school.

4.4.3 Design Implications

These findings have several important implications for game designers interested in as-

sessing their players’ spatial skill. First, spatial skills do seem to be correlated with different

dimensions of player performance in Exploration Mode and Construction Mode as a whole,

as well as in individual levels within each mode. The Highlands level in Exploration Mode

and the Rocket Boots and Sledgehammer levels in Construction Mode seem particularly

effective at tapping into players’ spatial skills.

Given that the most likely reasons for the stronger correlation between performance and

spatial skill in the Highlands level are its larger, more open, more vertical, and more complex

navigation requirements overall, game designers may therefore consider incorporating large,

open spaces that require players to recognize landmarks from many different angles in order

to most effectively tap into players’ spatial skills via landmark orientation, or possibly include

more tasks involving planning of multiple step navigation, such as that required to make

a series of vertical jumps to reach a battery, to get players to exercises their navigation

visualization skills more. To determine which explanation - larger level, more open level

structure, more vertical navigation (jumping), or some combination thereof - is more likely,

it is necessary to further isolate these different subfeatures of the Highlands level in separate

levels so the effect of each feature on the relationship between spatial skill and performance

can be isolated. This is an excellent direction for future work but lies outside the scope of

this dissertation.

Since the Rocket Boots level’s strongest relationship between performance and spatial skill
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is in players’ spatial skills via object alignment, whereas the Sledgehammer level seems to tap

into players’ spatial skills via object rotation, giving each level a unique feature found in the

other may help make both more spatially demanding. For instance, the use of more complex

parts in the Rocket Boots level may require players to perform more spatially taxing object

rotation tasks, whereas including parts whose successful alignment depends on attending

to multiple areas on the construction at once may increase the amount of spatial cognition

necessary for the level’s object alignment tasks. In Chapter 6, I discuss how I implemented

both of these modifications to make these levels more cognitively taxing for players. However,

more complex part shapes and more complex part alignment tasks are features that could

be incorporated into any construction-based spatial skill training game, not just Homeworld

Bound.

In Exploration Mode, only the more complex, more vertical first person navigation in

the Highlands level tapped into players’ spatial skills, while the very simple first person

navigation in the Canyon level did not. Like the Highlands level, many other games that

have shown spatial skill training effects require the player to navigate an environment in first

person by either walking or jumping: Medal of Honor, Unreal Tournament, and Portal 2,

for example. However, Portal 2 includes many additional game mechanics, such as aiming

and shooting a “portal gun” at walls to create portals for spatial teleportation and disabling

enemy turret guns that shoot at the player.

The fact that the Highlands level includes none of these additional navigational features

yet still manages to tap into players’ spatial skill suggests that the act of first person navi-

gation alone (provided the task is sufficiently difficult) may be enough to make first person

games like Medal of Honor and Unreal Tournament effective at training spatial skills. This

makes intuitive sense since first person exploration is how we experience the world around

us as humans. However, it still may be the case that the more complex navigational require-

ments in Portal 2 (portal-based navigation, see Chapter3, Section 3.3 for a more detailed

explanation) tax players’ spatial skills more than more basic navigation, just as the more

open, larger level design of the Highlands level and its correspondingly more difficult navi-

gation tasks may have contributed to the significant relationship between spatial skill and

performance in this level in a way that the simpler navigation in the Canyon level could not.

This notion is supported by a study by Castell et al., who found that introducing proximal

(closer) landmarks into a navigation game reduced players’ need to use mental rotation when

playing the game [155].

While Tetris and Construction Mode both require the player to rotate and fit blocky

shapes together, there are also a number of substantial differences between the two games.

Tetris is a 2D game with possible rotations along only one axis, while Construction Mode
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allows the player to make rotations along each of the X, Y, and Z axes in 3D. In addition,

there is an inherent time-sensitivity to actions in Tetris (act too slowly and your blocks will

be placed very poorly, resulting in a game over before too long), with the result that expert

Tetris players tend to rotate Tetris blocks very quickly in order to assess all of their possible

options before they run out of time to place the block [179]. There is no such time sensitivity

in Construction Mode. In fact, Construction Mode encourages careful, deliberate thought

when rotating objects due to the constraint that each rotation uses up battery power, which

the player can only replenish by leaving Construction Mode to collect more batteries.

The only feature common to both Tetris and Construction Mode is the requirement of

rotating and fitting objects together. The ability of Construction Mode, and especially the

Rocket Boots level, to tap into players’ spatial skills despite its few similarities to Tetris

suggests that the simple act of rotating objects and deciding how to fit them together

taps spatial skills in different types of spatial environments and in games with different

priorities for speed and accuracy. Therefore, object rotation and object alignment appear to

be good features to include in a game for assessing and training players’ spatial skill and

are generalizable to many different types of games, although construction-based and puzzle

games are probably the most natural fit for these two features.

Given my finding that girls spent more time in the Highlands level than boys and boys

made more wrong face errors than girls in the Tutorial 2 level, it may be that boys and

girls tend to utilize different strategies to complete each of these levels. However, with only

quantitative timing data, it is difficult to test this explanation. Collecting additional data

about players in future studies, such as path traces in Exploration Mode levels, post-game

interviews, or questionnaires assessing players’ strategy use in the game, could be one way

of analyzing the reasons for gender differences in navigational strategies and behavior in

each level. In addition, it is important to note that while more exploratory and risk-taking

behavior (such as boys’ greater wrong face error rate) is beneficial up to a certain point

in a learning experience, too little forethought about one’s actions could result in random,

nonstrategic actions that help the player brute force their way to success but do not tap into

the (spatial) skills that the intervention is designed to train. Similarly, waiting too long to

make a move for fear of making a mistake can hinder the learning process. Thus, a balance is

needed between the more implusive and more cautious behavior I observed in boys and girls,

respectively. One way to encourage players to achieve this balance might be to implement

a machine learning algorithm that detects when the player is acting too cautiously or too

impulsively and either reduces the cost of errors (for more cautious players) or increases the

cost of errors (for more impulsive players).

Lastly, gender differences in player behavior and the degree to which pretest scores pre-
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dicted in-game behaviors indicate that game designers need to consider gender differences

in both spatial skill and player behavior if they want to ensure that a spatial skill training

intervention works at least as well for girls as for boys. The data collected in my study

do not shed much light on the mystery of the gender differences in correlations I observed;

girls did not seem to be less motivated to play the game and were only a little less familiar

with similar games than boys. There is a need for future work exploring in more detail not

just what, but why these gender differences in the relationship between spatial skill and

performance exist and if they are consistent across different age groups or found only in the

particular age range or demographic of children I studied.

4.4.4 Limitations and Future Work

The biggest limitation of this study is its low sample size of n = 20 children. With a

sample of this size, my analysis lacked sufficient power to detect medium or small effects

(with 20 participants and a 95% confidence level, I had an 83% chance of detecting an ef-

fect of size r = 0.6 or higher). Since increasing the confidence level via an adjustment for

multiple comparisons would have further reduced power, I elected not to adjust for mul-

tiple comparisons. However, given that I performed a total of 210 statistical comparisons

in my statistical analysis, it is very likely that a good portion could be spurious findings

and therefore the findings in this chapter should be treated as preliminary. In addition, my

sample was likely biased towards children of University of Illinois staff given my recruitment

method. Additional correlation studies with larger, more diverse samples are needed to con-

firm these findings and determine the extent to which they generalize to other populations.

Furthermore, while my study was able to identify certain features in Homeworld Bound that

tap in to children’s spatial skills, it cannot verify that these features actually train spatial

skills. A controlled study with pre- and post-tests of spatial skill is needed to establish a

causal relationship between specific game features and spatial skill development.

In Chapter 7, I address each of these limitations in a controlled study analyzing the

training effects of a newer version of Homeworld Bound and its level-by-level ability to tap

into players’ spatial skills with a large sample of low spatial skill college students.

This work had three other limitations that could be addressed in future work outside

of the scope of this dissertation. First, using completion time, time spent standing still,

and number of batteries collected as the sole measures of performance in Exploration Mode

may have caused my analysis to miss connections between more sophisticated measures of

in-game performance and spatial skill. One such measure might be the efficiency of paths

taken through the level to collect items; the shorter the path and the fewer times the player
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returns to an area they had already checked before, the more likely it is that the player

may be using landmark orientation skills to engage in strategic navigation as opposed to

the brute force method of random wandering that is unlikely to tap into players’ spatial

skills. Future work could investigate the implementation of automatic path trace metrics to

facilitate their analysis as measures of strategic performance.

Another limitation of my study was that the incentive structure used for participation

(hourly compensation and a bonus for staying the full 3 hours, both monetary) is that

it may have caused children who got bored or frustrated and wanted to stop early to keep

playing the game, but without motivation to progress, potentially affecting their performance

in later levels of Homeworld Bound. Future work could utilize an incentive scheme that, in

addition to providing a base amount for participation, gives participants extra rewards for

progress made in the game rather than simply the amount of time spent on it to discourage

unmotivated, low effort gameplay.

A final limitation of this work is that the ability to detect relationships between children’s

spatial skill and performance in Homeworld Bound may have been limited by floor effects

on the spatial skill pretest, especially for girls. Future work studying children’s spatial

skills should investigate the use of a more sensitive pretest of spatial skill than the PSVT:R

(such as the MRT-Animals or MRT-Letters mental rotation tests used by Jansen et al. and

Neuburger et al. [180, 23]) to determine whether the gender difference in the predictive

power of player behavior on pretest scores is due to boys and girls using different strategies,

floor effects for girls’ PSVT:R test scores, or some other cause.
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Chapter 5: A Player-Centric Approach to Designing Spatial Skill Training
Games

Designing spatial skill training games that contain the right set of features to tap into

players’ spatial skills and develop them through gameplay is essential for them to be effec-

tive as interventions, but it is not enough. Prior research has found that game-based spatial

skill training interventions and more traditional spatial workbook exercises are about equally

effective [1]. Thus, the main advantage to going to the trouble of developing a functional

game-based intervention lies in the motivational power of video games. Good video games

naturally incorporate experiences that promote players’ feelings of competence and auton-

omy, which have been shown to promote motivation, enjoyment and feelings of well-being in

players [25, 66]. Without this motivational benefit, there is little reason to invest the time

and effort into creating a game.

Furthermore, the kind of games one person likes may be very different from what another

likes, which in turn may affect their motivation to keep playing, or to start playing in the

first place. While in-school or laboratory interventions, in which the learner receives course

credit or monetary compensation for participation, may motivate the learner to play via

these extrinsic incentives, those who do not enjoy the game being played are not likely to

continue to play it long term of their own volition outside of the classroom or laboratory. In

addition, their motivation during an in-school or laboratory intervention may be lower than

those who enjoy the game more, causing them to potentially not try as hard, not progress

as much, and not learn as much. Therefore, it is essential to understand the preferences

and motivations of the target audience during the game’s design process to ensure that the

target audience can reap the full motivational benefits of the game-based intervention.

I argue that students with the lowest levels of spatial skill should be the target audience for

spatial skill training games given that they stand the most to benefit from them. Students

with low spatial skill tend to struggle in introductory courses and are more likely to drop

out of STEM majors - unless they can bring their spatial skills up to a certain “threshold” of

ability that gets them through early STEM coursework [1, 10]. This is especially a problem

for female students given the consistent gender gap in spatial skills [21, 77, 22], which may

contribute to the gender gap in many STEM fields [8]. Bringing low spatial skill students’

spatial skills up to a certain threshold could be one way of reducing this gender gap in

STEM, and in general allowing more students who otherwise might drop out to continue in

STEM majors and then on to STEM careers in the future.

Unfortunately, most of the games that have been successful at training players’ spatial

skills in the laboratory may be most appealing to the subset of the population that already
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has higher levels of spatial skills: male action video game players. Most video games shown

empirically to train spatial skills are action games, and those who play action video games

more often generally have higher spatial skills [32, 143, 31]. In addition, men and boys tend

to enjoy action video games more than women and girls [99, 32, 34, 181], and previously

studied games that train spatial skills tend to be overwhelmingly commercial games, which

for decades have been designed with men and boys as the target audience [182, 183, 184].

In essence, those with low spatial skill, especially women and girls, are not being served

by current approaches to finding game-based spatial skill training interventions. Designing

training games with low spatial skill students in mind is therefore essential for addressing this

problem and helping more underrepresented students pursue STEM careers. The current

work takes a player-centered approach [74, 75] to designing games for this target population

by asking directly for their input about what they like in a gaming experience. Combining

this information with demographic characteristics allows me to present a player persona

[185] of sorts to help game designers understand the gaming preferences and demographics

of low spatial skill populations.

The study presented in this chapter extends previous work on the relationship between

demographics, video game play, and spatial skill in several ways. First, I combine predictors

of spatial skill from several different studies: video gameplay habits, genre preferences, gen-

der, age, and SES, in order to build a more complex model of spatial skill predictors than

any of them alone and to provide a more specific picture of the low spatial skill population.

Second, I include participants from three distinct populations: online college-age adults, stu-

dents from a non-selective, lower SES status high school, and students from an academically

selective, higher SES status high school. This diversity of sampling allows my findings to be

more generalizable than studies utilizing only a single population. Third, I analyze a set of

predictive variables that has not yet been studied: motivations and emotional gratifications

(emotional experiences appreciated during media use [186]) in gaming. These are important

aspects of player experience [24, 187, 188, 189, 190] that can help me build a more in-depth

model of low spatial skill populations and understand not just what, but why certain genres

or patterns of play might appeal to them.

This chapter makes two main contributions to the research literature on spatial skills train-

ing: 1) a deeper and more complex understanding of the relationship between pre-existing

spatial skill and video game play habits, preferences, and underlying gaming motivations

and 2) a set of design recommendations for spatial skill training games that align with the

preferences of low spatial skill populations of high school students and college-age adults

from diverse backgrounds. This chapter contains a substantial portion of my previously

published work [41].
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5.1 RESEARCH QUESTIONS

The research study described in this chapter was guided by the following four questions:

RQ1: What video gameplay habits and preferences predict spatial skill independent of

gender, age, and population?

RQ2: What motivations for playing video games predict spatial skill independent of

gender, age, and population?

RQ3: What emotional gratifications in video games predict spatial skill independent of

gender, age, and population?

RQ4: What are the specific gaming habits and preferences of those with the lowest levels

of spatial skill?

5.2 METHODS

I conducted an online and in-school study to assess the relationship between spatial skill

and gaming preferences. The study consisted of a timed test of spatial skill followed by a

series of questionnaires asking about participants’ gaming habits and preferences. Thus, the

data I collected about habits and preferences was based entirely on self-report measures,

which can often differ significantly from their actual behavior [191, 192]. However, even if

participants’ expressed desire of what is important to them in a game is inaccurate, it is still

valuable for the purpose of designing a game to appeal to them because it can still tell me

what people may look for first when choosing a new game to play.

5.2.1 Recruitment

I recruited three different populations in the age range 12-22. The first population was

a non-selective high school serving primarily low SES students; about 63% of students are

eligible to receive free or reduced lunch, or other low income family services. The second

population was an academically selective high school serving primarily higher income fami-

lies (only about 9% of students are eligible for free or reduced lunch). The third population

consisted of college-age adults (ages 18-22) recruited from a large public university, a com-

munity college, and various online sources. These three populations were selected to obtain

a sample in my target age range that was as diverse as possible. I chose to conduct my

study with this age range to strike a balance between a younger population with more time

to benefit from spatial skill training and my desire to build upon previous findings in the

spatial skill literature, which focuses almost exclusively on college-age adults.
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For the college-age population, flyers were posted around the University of Illinois at

Urbana-Champaign campus and Parkland College (a community college in Champaign) as

well as at libraries and coffee shops in the Urbana-Champaign area. Online advertisements

were posted on Facebook, Reddit’s r/SampleSize subreddit, and in campus email newsletter,

and participants could take the survey online at any time and anywhere that they had

internet access. At the two high schools, the survey was incorporated into the school day

as a class activity that students could participate in with parental permission and consent

forms.

There was no monetary compensation for completing the survey. Instead, I offered a

different kind of reward to participants designed to motivate them to take both the test

of spatial skill and the questions about their gaming preferences seriously: an opportunity

to find out what their primary motivations for gaming were and how well they performed

on the spatial test compared to average U.S. adult performance. This form of reward has

been used successfully on LabInTheWild.org to attract a large, diverse array of people to

participate in online psychology experiments [193].

5.2.2 Survey Procedure

Upon beginning the survey, participants were asked to read and electronically sign either

an assent form (for high schoolers) or a consent form (for online participants). The form

explained the purpose of the survey and that participants would receive a summary of their

performance on the test and their motivations for gaming at the end. Once participants

gave their assent or consent, they began a short timed test of spatial skill: an online version

of the redrawn Vandenberg and Kuse Mental Rotations Test (MRT-A) [194].

The MRT is one of the most commonly used assessments of spatial skills [102, 32, 3, 5]

and has the advantage of being short, making it feasible for an online study. It consists

of two blocks of 12 multiple choice questions. Three minutes are given to complete each

block, with a break of two minutes in between (my online version also allowed participants

to continue to the next block before the two minutes were up if they wanted). For each

question, participants must select from the available answers which two represent the exact

same object as a given exemplar figure (see Figure 5.1). The MRT includes a set of written

instructions and four practice problems with correct answers provided to ensure participants

understand the task before they start, which I reproduced in the online version. In between

survey administration at the high schools and online deployment, I implemented logging of

time spent on the test as a way of checking whether participants took the test seriously.
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Figure 5.1: A practice question from the online MRT test. An exemplar figure is shown, and

test takers must choose which 2 of the 4 drawings below correspond to an identical figure.

The correct answers in this case are A and C.

After finishing the test, participants were asked about their gaming habits and preferences.

The first survey question asked if the participant had ever played video games. If they had,

they were asked a series of follow-up questions related to how recently and how often they

played video games (for how many years, hours per week, length of play session), then asked

to name their 3 favorite genres and their top 3 favorite games (digital or non-digital). If

the participant indicated they had never played video games, they were asked the same

questions about games in general, and the questions about recent play, years of play, and

favorite video game genres were omitted.

Next, all participants completed the Digital Games Motivation Scale (DGMS), an in-

ternationally validated questionnaire used to assess different motivations for playing games

[195, 196], and an Emotional Gratifications questionnaire to assess participants’ most valued

emotional experiences in games (see Table 5.1). Developed by Bartsch [186], it was originally
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designed for movie and television experiences, but it has been adapted previously by other

researchers for video games [197] - I use an adapted version similar to theirs. I included

these questionnaires to provide insight into the “why” behind participants’ gaming habits

and genre preferences. I added an attention check question to both questionnaires, which

asked the participant to select a specific answer choice. Those who failed to answer with the

requested choice for either questionnaire would be marked as failing the attention check.

Finally, participants completed an optional demographic survey, which asked them to

state their gender, age, and country of residence. I also asked participants if they had

completed this survey already and provided a text box for them to mention any technical

difficulties they had encountered on the spatial skill test or surveys. Once this section was

complete, participants saw a summary page describing their performance on the spatial

skill test relative to the United States adult average, as well as bar graphs showing their

strongest motivations for playing games and their most valued emotional experiences in

games, which corresponded to participants’ scores on each construct in the DGMS and

Emotional Gratifications questionnaires, respectively.

5.2.3 Data Preparation

In total, I gathered data from 506 participants (235 from the selective high school, 63 from

the non-selective high school, and 208 from the online survey for adults).

For the public selective and non-selective high school samples, I removed the data of

participants who failed attention checks on the DGMS or Emotional Gratifications ques-

tionnaire or did not complete the entire survey (selective: n=14, non-selective: n=22) as

well as those who reported having technical problems during the spatial skill test that might

have affected their performance (selective: n=1, non-selective: 0). This left me with 220

and 41 participants for the selective and non-selective high schools, respectively.

For the online sample, I removed the data of participants who were not between the

ages of 18 and 22 (n=73), followed by those who failed to input a valid age (n=23) since

the focus of my analysis was on college-age participants only. I also removed the data of

those who indicated that this was not their first time taking my survey to avoid duplicate

responses (n=9), those who failed attention checks on the questionnaires or did not complete

the entire survey (n=8), and those who reported technical problems (n=7). Two additional

participants took less than 30 seconds to complete each section of the test (less than 3

seconds per question) and scored 5 out of 24 possible points, below the level of chance. This

indicated that these participants did not take the test seriously, and thus I omitted their

data as well, leaving me with a final count of 89 online participants.
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5.2.4 Data Summary

My cleaned sample consisted of 350 participants. In the selective high school sample, 48%

(106) identified as female, 50% (111) as male, and 2% (3) as a different gender, of whom

one specified their gender as Genderfluid. In the non-selective high school sample, 41%

(17) students identified as female, 56% as male, and the remaining student as Transgender

Male. The age range of selective high school students was 12-17, while for the non-selective

high school it was 14-22 (6 chose not to answer, only one student reported an age higher

than 18). All but two participants in the online sample reported their country of residence

as the United States (98%). The remaining two were from Singapore and South Korea,

respectively. In addition, 2% of the selective high school students (5) and 7% of the online

sample (6) reported never having played video games. All of the non-selective high school

students reported playing video games. Cronbach’s α for each construct on the DGMS and

Emotional Gratifications questionnaire ranged from 0.73-0.91, indicating good reliability.

5.2.5 Grouping Games & Game Genres

The 15 video game genre list used in my study is adapted from some of my prior work out-

side of this dissertation [198] and includes the following genres: Role-Playing Game (RPG),

Action, First Person Shooter (FPS), Strategy, Adventure, Simulation, Music, Fighting, Fam-

ily, Racing, Fitness, Sports, Platformer, Puzzle, and Other. The Action genre included in

my 15 genre list is intended to be a catch-all category for games that people generally con-

sider to be action games but that do not fall into any of the other action-related categories

(e.g. arcade games).

However, prior work analyzing the relationship between spatial skills and video game genre

preferences generally categorizes games and game genres into a more manageable number

of categories. Usually, there are two: “Action” or “Non-Action” [112, 114, 27, 141, 142, 31,

143]. However, there is substantial disagreement about what defines an action game [137].

Therefore, I categorized my participants’ favorite genres as “Action” or “Non-Action” first

using a more broad set of criteria and then using a more restrictive set.

Looking at the academic research literature on spatial skills and action gameplay, I found

that some studies equated first person shooters with action games [3, 142, 143], while others

named some exemplar action games [114, 115, 116, 141] with genres corresponding to the

following genres in my original 15 item list: Action, Platformer, First Person Shooter, Sports,

Simulation, Fighting, and Racing. In the industry sphere, Ernest Adams’ Fundamentals of

Game Design reference book mentions a few subgenres of the Action game genre, two of
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which correspond to genres in my original list: Fighting and Platformer [144]. A list from

a recent LifeWire article includes the subgenres Shooter and Platformer [145]. TvTropes’

action subgenres of Platformer, Fighting, and First-Person Shooter [146] are found on my

15 genre list, as are BoardGameGeek’s subgenres of Fighting and Platformer [199].

Taking the disjunction of all of these definitions as my broad definition of action games,

I ended up with the following list of “Action” genres: Action, Platformer, First-Person

Shooter, Sports, Simulation, Fighting, and Racing. However, only a single game in Castel

et al’s list of “Action” games was tagged as Simulation: NHL 2002. Since this game was

also tagged as Sports, I decided to remove Simulation from my list, leaving me with Action,

Platformer, First-Person Shooter, Sports, Fighting, and Racing. If a participant’s list of

favorite genres included any genre from my action genre list, I set the variable Action Favorite

Genre (Broad) to 1 (true), and if not, 0 (false). For my strict definition of Action genre

(Action Favorite Genre (Restrictive)), I took the conjunction of all definitions from the

literature, leaving me with the First-Person Shooter (and the Action genre by definition).

Another approach to grouping video game genres is latent class analysis, as in Quaiser-

Pohl et al. [32]. Using this approach, I clustered video game-playing participants’ favorite

genres from my 15 item list with the R package poLCA using 2-7 class solutions. Each so-

lution was run 100 times with a maximum number of 5000 iterations. Due to the large

number of parameters (participants could select up to 3 favorite genres), I used the Akaike

Information Criteria (AIC) (and interpretability) to evaluate each solution. The four class

solution provided the best balance between low AIC and interpretability. I interpreted the

four classes as “Action Gamers” (favoring Action, FPS, Fighting, and Other), “Cognitive

Gamers” (favoring Strategy and Puzzle), “Role-Playing Gamers” (favoring RPG and Sim-

ulation), and “Sports/Social Gamers” (favoring Racing, Fitness, Sports, and Family). I

assigned each participant their predicted genre class as the variable Favorite Genre Class.

To categorize participants’ favorite games as Action or Non-Action, I used genre tags from

the review-aggregation site Metacritic. If a game’s tags included the word “Action” (e.g.,

“Action”, “Action Adventure”, “Action RPG”), I counted the game as Action; if not or if

the listed game was not a video game, I counted it as Non-Action. If any of a participant’s

favorite games was an action game according to this definition, I assigned the participant a

value of 1 (true) for the Action Favorite Game variable, and 0 (false) if otherwise. If the game

was a video game but not listed on Metacritic (e.g. “Brawl Stars”), or its description was

too vague to uniquely identify it (e.g., “Mario”, “Telltale Games”), I marked it as “neither”

and looked at the rest of the games the participant listed. If no other games were categorized

as Action (meaning that this game would be the deciding factor in whether Action Favorite

Game was 1 or 0), I omitted the participant’s data from the dataset (n=14).
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Measure Scale

Gender F/M*

Age Number

Population NSHS/SHS/Online

Played Videogames Recently Y/N

How Long Played Videogames 1-5 (< 6 mo.-10+ yrs)

Weekly Hours Number

Session Duration 1-5(< 15 min.-4+ hrs)

Action Fav. Game Y/N*

Action Fav. Genre (Broad) Y/N*

Action Fav. Genre (Restrictive) Y/N*

Fav. Genre Class Y/N*

Habit 1-5 (Disagree-Agree)

Moral Self-Reaction 1-5 (Disagree-Agree)

Agency 1-5 (Disagree-Agree)

Narrative 1-5 (Not-Very Important)

Escapism 1-5 (Not-Very Important)

Pastime 1-5 (Not-Very Important)

Performance 1-5 (Not-Very Important)

Social 1-5 (Not-Very Important)

Contemplative Experiences 1-5 (Disagree-Agree)

Fun 1-5 (Disagree-Agree)

Thrill 1-5 (Disagree-Agree)

Character Engagement 1-5 (Disagree-Agree)

Vicarious Release of Emotions 1-5 (Disagree-Agree)

Empathic Sadness 1-5 (Disagree-Agree)

Social Sharing of Emotions 1-5 (Disagree-Agree)

Table 5.1: Hierarchical Regression Measures. *See Grouping Games & Game Genres section.

NSHS = non-selective high school, SHS = selective high school.
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5.3 RESULTS

My analysis of the data proceeded in two stages. First, to understand what gaming prefer-

ences predicted spatial skill, I conducted hierarchical regressions analyzing the relationship

between demographics, gaming habits and preferences, and spatial skills. Next, I used the

results of the regression analysis to identify the subset of my sample with the lowest spa-

tial skills and characterize their gaming habits and preferences in order to develop a set of

recommendations for designers of spatial skill training games.

5.3.1 Hierarchical Regression Analysis

My regression analysis consisted of 3 hierarchical regressions with my entire sample of video

game players (n = 350). According to the criteria used by Wilson Van Voorhis et al., this

sample size provides sufficient statistical power for the number of variables I am analyzing

[200]. I chose a hierarchical analysis because I was interested primarily in gaming preferences

as predictors of spatial skill after taking into consideration demographic variables’ predictive

power. For each regression, participants’ score on the spatial skill test was the dependent

variable. I entered the following demographic variables in the first block: gender (only male

and female were used due to the small number of participants (5) identifying as a different

gender), age, and population (selective high school, non-selective high school, online). I

entered the following gaming experience variables in the second block (See Table 5.1 for

details):

1. Habits Regression: Played Videogames Recently, How Long Played Videogames,

Weekly Hours, Session Duration, Action Favorite Game, Action Favorite Genre (Broad),

Action Favorite Genre (Restrictive), and Favorite Genre Class.

2. Motivations Regression: Habit, Moral Self-Reaction, Agency, Narrative, Escapism,

Pastime, Performance, and Social constructs from the DGMS [196].

3. Emotional Gratifications Regression: Contemplative Experiences, Fun, Thrill,

Character Engagement, Vicarious Release of Emotions, Empathic Sadness, and Social

Sharing of Emotions constructs from the Emotional Gratifications questionnaire [186].

All regressions were performed using the statistical software package R. For each regres-

sion described below, diagnostic plots indicated that the assumptions of linearity of the

data, normality of residuals, homoscedasticity, and independence of observations were met,

and no variables had variance inflation factors greater than 2. All reported β values are

unstandardized regression coefficients.
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Video Game Players Only

Initially, I analyzed the predictors of spatial skill for only those participants who had

played video games before, since those who had never played video games would be unable

to indicate their video game genre preferences or answer the Played Videogames Recently

and How Long Played Videogames questions. My first regression model, Habits, looked at

predictors of spatial skill related to participants’ gameplay habits and genre preferences.

Before running the model, I noticed that two participants had given extremely high answers

for the Weekly Hours question: 90 and 100 hours, so I omitted these participants’ data from

my Habits model. With only the first block added, the model was significant (F (4, 259) =

12.51, p < 0.0001) and explained 15% of the variance in the data (adjusted R2 = 0.15). Only

male gender (β = 3.43, t = 5.57, p < 0.0001) was a significant predictor of spatial skill. In

the second block of habits variables, Action Favorite Game (Broad) was the only significant

predictor (β = 1.81, t = 2.07, p = 0.040), but the second block did not significantly improve

the model (F (9, 250) = 1.24, p = 0.27).

There were a significant number of missing Weekly Hours responses (n=52), especially

from the non-selective high school. Including only the participants who submitted answers to

the weekly hours question would have excluded a large number of participants’ data from the

analysis. Therefore, I reran the Habits model again but dropped the Weekly Hours variable.

In the new Habits model, the first block was significant (F (4, 301) = 16.46, p < 0.0001) and

explained 17% of the data’s variance. Male gender (β = 3.56, t = 6.25, p < 0.0001) and

being a selective high school student (β = 2.52, t = 2.03, p = 0.043) were both predictors of

spatial skill. Adding the second block of habits variables did not significantly improve the

model (F (8, 293) = 1.34, p = 0.22).

My second model, Motivations for Playing, also had a significant first block (F (4, 321) =

18.00, p < 0.0001) explaining 17% of the variance, with male gender (β = 3.52, t = 6.58,

p < 0.0001) and selective school population (β = 2.45, t = 2.075, p = 0.039) as the only

predictors of spatial skill. Adding the second block of motivation constructs from the DGMS

did not reveal any significant predictors, explained only 1% of additional variance, and did

not improve the model significantly (F (8, 313) = 1.41, p = 0.19).

My third and final model, Emotional Gratifications for Playing, revealed the same pattern

of results: significant first block (F (4, 321) = 18.00, p < 0.0001) explaining 17% of the

variance, with male gender (β = 3.53, t = 6.58, p < 0.0001) and membership in the public

selective school population (β = 2.45, t = 2.08, p = 0.039) as the only predictors of spatial

skill. Adding the second block of emotion constructs explained only 2% of additional variance

and did not improve the model significantly (F (7, 314) = 1.98, p = 0.057).
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In summary, my models showed consistently that among participants who played video

games, no gaming habits or preferences (RQ1), no motivations for gaming (RQ2), and no

emotional gratifications (RQ3) improved the model’s predictive power over and above what

the first block of demographic factors provided. Only gender and population were predictive

of spatial skill.

Adding in Non-Video Game Players

While participants who reported never playing video games constituted a relatively small

portion of my sample (11 participants, 3%), excluding them might bias my data more in

favor of action video gamers, since non-video game players by definition do not play action

video games. For this reason, I decided to redo the above analyses to include non-video game

players. In order to do this, I had to remove the variables Played Videogames Recently and

How Long Played Videogames from the Habits model since they were questions about video

gameplay habits and thus not applicable to non-video game players. In addition, I assigned

a value of 0 (false) to the Action Favorite Game and Action Favorite Genre variables for

each non-video game player in the sample.

Rerunning the Habits, Motivations, and Emotions regression models, I found that the

Habits model stayed mostly the same. However, the first block (gender, age, and population)

explained more of the variance (18%), and the second block of the Motivations for Playing

model became a significant improvement over the first block (F (8, 324) = 2.05, p = 0.040),

explaining an additional 2% of the variance. Within the second block, habit was the only

DGMS construct associated with spatial skill (β = 0.27, t = 2.63, p = 0.009), and the

association had little practical importance given its low beta value; increasing average habit

score from 1, the minimum possible, to 5, the maximum possible, would only add about one

point to the predicted spatial skills test score. The Emotional Gratifications model did not

change significantly (gender and population were the only predictors, and the second block

did not improve the model). All in all, adding non-video game players to my models did not

change them in any significant way.

5.3.2 Low Spatial Skill Population Preferences

Taken together, my regression models suggest that the only predictors of spatial skill

across my three study populations were gender and population, with male participants and

students at the selective high school scoring higher on the spatial skills test than females

and participants from the other two populations. Male gender and being a student at the

84



Figure 5.2: Video game genre preferences for the LSS group, as compared to the HSS group.
FPS = First Person Shooter, RPG = Role-Playing Game. Percentages do not add up to 100
because participants could choose up to 3 favorite genres.

selective high school each add about 2.5-3.5 points to one’s spatial skill test score, meaning

that a male selective high school student is predicted to score 6 points higher (out of 24

possible points) than a female participant from the online population or the non-selective

high school.

Thus, my data suggests that female participants from the online or non-selective high

school populations constitute the lowest spatial skill group in my sample. To provide insight

into what this demographic looks for in a game, I analyzed their gaming habits, genre

preferences, motivations, and emotional gratifications. While I could have used a threshold

value of spatial skill test score to segment my population into low and high spatial skill

groups instead, I chose to segment based on the results of my regressions instead because

there currently exists no agreed upon threshold to distinguish between “low” and “high”

spatial skill people for the mental rotation test I used (the Vandenberg and Kuse MRT),

so any threshold I decided on would result in a rather arbitrary segmentation of the data.

Henceforth, for the sake of brevity, I will refer to the subset of my participants who are

female and come from the online or non-selective high school as the low spatial skills (LSS)

group (n=85).

The LSS group reported playing games most often in fairly short sessions; their most

popular answer choice was “15-59 minutes” (43%), and about equal numbers of them chose

“Less than 15 minutes” (22%) and “1-2 hours” (24%). Reported weekly hours of gameplay

tended to be somewhat low in the LSS group. Those in the LSS group who answered the

question about weekly gameplay hours (69%) reported a mean of 2.95 hours a week (median

= 2, min = 0, max = 20).
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Figure 5.2 summarizes the LSS group’s favorite video game genres compared to the pref-

erences of the participant group with the highest spatial skill (male selective high school

students, HSS). Six LSS participants did not provide favorite video game genres because

they reported not playing video games. The two most popular genres in the LSS group

were Adventure and Puzzle, which were each chosen by 32% of the group. While 67% of

the LSS group’s video game players chose favorite genres that fell into my broadly-defined

“Action” genre (Action, Platformer, First-Person Shooter, Sports, Fighting, and Racing),

Figure 5.2 shows that most of this “Action” preference is due to a preference for the Rac-

ing and Sports genres. Genres in my more restrictive “Action” game grouping (including

only the First-Person Shooter and Action categories) were much more popular with the HSS

group (chosen by 42% and 29%, respectively) than with the LSS group (chosen by 19% and

16%, respectively).

I looked up the Metacritic genre tags for each participant’s favorite video games in order

to understand participants’ genre preferences in more detail. LSS group members listed 101

favorite video games in total, which generated 79 unique tags. Each game had 2-6 tags.

Although the Miscellaneous and General tags occurred very frequently, I chose to ignore

them as they were not descriptive and always occurred in the presence of more descriptive

genre tags. Eight LSS participants (9%) did not list any favorite games.

Analysis of LSS participants’ favorite games revealed a pattern not evident in the favorite

genre data: while only a little over half of the LSS group (59%) listed at least one video

game, Action game preferences were strong among those who did. The four most popular

video game genre tags were all highly related to both my more broad and more restrictive

definitions of “Action” genre: Action, Action-Adventure, First-Person, and Shooter. Among

those in the LSS group who listed at least one video game (n=45), 67% named a game tagged

as Action, and the tags Action-Adventure, First-Person, and Shooter were each named by

29% of them. In total, 80% of those who listed at least one video game named at least

one favorite game with a tag including the word “Action” (Action, Action-Adventure, and

Action-RPG). In addition, only 16% of the LSS group listed both video games and non-

video games as favorites, suggesting that there may be two distinct groups of game type

preferences among the LSS group: digital and non-digital.

Overall, the LSS group indicated that they were moderately motivated by most of the

DGMS constructs. They generally felt somewhat positive about spending time playing

games, scoring a median of 3.67 on the Moral Self-Reaction construct. In addition, they

were moderately motivated by the desire to perform and achieve (Performance, median =

3.33), a sense of agency (Agency, median = 3), the in-game narrative (Narrative, median =

3), playing just to pass the time (Pastime, median = 3), and the desire to escape from daily
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life (Escapism, median = 2.67). LSS participants were less motivated by getting to interact

with other players (Social, median = 2.33), and playing out of habit (Habit, median = 2),

each with a particularly low mode of 1. Thus, most LSS participants have a diverse array

of motivations for playing games, but may not be particularly regular or social gamers.

The Emotional Gratifications questionnaire revealed that the LSS group valued mainly

pleasurable, hedonistic emotional experiences in games; the only constructs on which they

scored higher than 3 (Neither Agree Nor Disagree) were Fun (median=3.75) and Thrill

(median=3.5). LSS group members scored a median of 2-3 on the remaining constructs of

Character Engagement, Social Sharing of Emotions, Contemplative Experiences, Vicarious

Release of Emotions, and Empathic Sadness. While the distribution of Character Engage-

ment scores seemed to be somewhat bimodal with peaks at 1 and 4, suggesting two distinct

camps of pro- and anti-character engagement, scores on the remaining constructs were con-

sistently low, indicating that the LSS group did not value these more neutral to negative

emotional experiences very much in gameplay. This was especially true of Empathic Sadness,

which had a mode of 1.

Taken together, my findings regarding the gaming habits, preferences, and motivations of

LSS participants (RQ4) suggest that this subgroup is split fairly evenly between a prefer-

ence for digital games and a preference for non-digital games. Those whose favorite games

are video games tend to favor certain subgenres of Action video games as well as the non-

Action genres, but the LSS group in general seems to enjoy the Adventure and Puzzle genres

the most. Overall, LSS participants prefer short play sessions, have many different motiva-

tions for gaming, and value the emotions of fun and thrill the most in gaming experiences,

but do not generally play habitually or socially and do not value more negative emotional

experiences in games.

5.4 DESIGN RECOMMENDATIONS

Focusing on the low spatial skill (LSS) group in my sample and analyzing their gaming

habits, preferences, and underlying motivations for gaming allowed me to obtain a more de-

tailed picture of the kinds of games they might be the most interested in. Here, I summarize

this picture and provide several recommendations to designers of game-based spatial skill

training interventions based on my findings.
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Facilitate Short Gameplay Sessions

Since the LSS group reported playing in short sessions (about 15-59 minutes), reported a

low number of hours played per week, and were motivated to play games in part by the desire

to just pass the time, I recommend that game interventions focus on providing a gameplay

experience that is easy to engage and disengage with to facilitate short sessions. One way

to do this might be to make game levels completable in less than 15 minutes each, allowing

players to feel a sense of accomplishment and progression despite short play sessions. Mobile

games are particularly well-suited to short sessions [201].

Promote Simple Fun and Thrill

LSS participants’ responses to the Emotional Gratifications questionnaire indicated that

they valued hedonistic emotional experiences in games and put less value in emotional expe-

riences that were more social and cognitive in nature or more negative. Game designers can

accommodate these emotional gratifications by designing games to emphasize the more im-

mediate pleasures of gameplay - simple fun, of course, but also thrill. Thrill can be elicited in

gameplay by creating tense, suspenseful situations, such as the pressure to overcome a chal-

lenge within a certain time limit or complete a mission objective without being discovered

and attacked by enemy forces.

Focus on Adventure and Puzzle Genres

The LSS group’s gaming preferences seemed to be split along a digital divide: my analysis

of their favorite games revealed that a large portion of them seemed to prefer action video

games, while many others preferred non-digital games, as evidenced by their responses to

the question about favorite games. How can game designers reconcile these two sets of

preferences in practice? Here, my findings regarding the LSS group’s video game genre

preferences may provide insights. Overall, the most popular genres with the LSS group

were Adventure and Puzzle, which may indicate some common ground between digital and

non-digital gamers’ preferences.

Game designers may therefore want to focus on these two genres when designing spatial

skill training video games, especially since they lend themselves well to being combined with

other genres - like the action games many LSS gamers enjoy. For instance, fast-paced first-

person shooter gameplay could be combined with an overarching story, as is done in many

Action-Adventure games, and would also support one of the LSS group’s stronger gameplay
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motivations: Narrative. To accommodate non-digital players, Adventure and Puzzle games

could be adapted to non-digital formats. Text-based adventures could be designed with

spatial features (e.g., having to navigate through buildings or caves and gradually build a

mental map of the area as features are described to the player), and many board games

exist already that present puzzle-esque spatial challenges, such as the laying out of complex

tunnel pathways in the board game Saboteur or the spatial planning required for moves in

checkers and chess.

Another advantage of focusing on Adventure and Puzzle genres is that they may be easier

to combine with spatially-relevant features. While very little is known empirically about

which game features are spatially relevant, some preliminary steps in this direction have

been taken by me and my colleagues Xiao et al., who found that performance on first person

exploration and 3D object construction tasks within a computer game correlated with spatial

skill [202, 156]. In addition, Chang et al. and Mazalek et al. found that a first person explo-

ration VR game with tangibles improved players’ spatial skills in the short term [152, 153].

Each of these in-game tasks map well to the Adventure and Puzzle genres and demonstrate

how a synergy between spatially-relevant features and LSS population preferences might be

achieved. However, these studies are preliminary work with underpowered samples, so in-

stead of or in addition to the feature sets they recommend, game designers may want to try

incorporating features found in games shown empirically to train spatial skills, such as Medal

of Honor (Action, First-Person Shooter), Portal 2 (Action, First-Person Shooter, Puzzle),

or Super Mario 64 (Action, Platformer).

5.5 DISCUSSION

In this study, I investigated four research questions, RQ1, RQ2, RQ3 and RQ4, re-

garding the gaming habits, preferences, and motivations of low spatial skill teens and young

adults in order to provide player-centered design guidance for game-based spatial skill train-

ing interventions that aim to increase students’ efficacy in STEM majors and careers. My

findings are consistent with prior work showing a male and high socioeconomic status ad-

vantage in spatial skill [108, 109, 21, 10, 111], but inconsistent with prior work showing a

relationship between action gaming and spatial skill [112, 114, 27, 141, 143, 31].

A likely reason for this failure to replicate is that I analyzed only preference for action

games, whereas these previous works all measured actual frequency of action gameplay,

which may be more relevant to spatial skills. Although I did attempt to measure frequency

of gameplay in terms of estimated weekly hours of gameplay, the significant number of par-

ticipants who left the question on weekly gameplay hours blank prevented me from analyzing
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action gameplay frequency. Given that a mere preference for action games was not related to

spatial skills in this study, it may be that the relationship between spatial skills and action

gaming found in prior work is due primarily to the development of spatial skills via action

gameplay rather than a preference on the part of those with high spatial skill for action

video games.

Another potential reason for my failure to replicate the action gaming and spatial skill

relationship may be the difference between the definitions of “Action game” I used and

the definitions other researchers have used. My broad definition of Action games based on

my literature review (encompassing the First-Person Shooter, Platformer, Sports, Fighting,

Racing, and Action categories from my 15 item genre list) was probably broader than what

most researchers define as Action, since I took the (inclusive) disjunction of all genres defined

by researchers as “Action” to compose my own definition. Given the lack of consensus

about what defines an Action game in the research literature, I recommend the development

of a formal schema for game classification to facilitate more consistency between different

researchers’ work and allow different studies to be more easily compared.

My different results may also be due to the fact that nearly all prior work used extreme

groups analysis [112, 27, 124, 114, 141, 143], and had very low sample sizes (n ≤ 20 per

comparison group for individual studies). Extreme groups analysis and low sample size can

sometimes lead to overestimated effect sizes, a scenario less likely with my larger sample size

and regression analysis [203, 204, 205]. I encourage future work in this area also utilizing

larger sample sizes and regression analysis instead of separating data into arbitrary groups

and increasing the risk of inaccurate results.

In addition, the over-representation of selective (high SES) high school students in my

sample relative to the other populations likely caused my results to be less representative of

the general population of 14-22 year olds. Since previous work has shown that the gender

gap in spatial skills is larger for those with high SES [108], one potential concern is that

over-representation of the high SES high school students in my sample may have led to an

overestimation of the gender gap in this work. However, this is not likely since the gender

gap in performance on the spatial skill pretest was very similar across the three populations

I studied. Each population had a mean gender gap in test performance of 3.5-4.4 and the

low SES high school students, not the high SES high school students, had the biggest gender

gap in performance. Still, over-representation of the high SES selective high school students

could have influenced the study’s results in other ways. Future work should address this

limitation by conducting research studies with a wider range of schools, particularly those

in lower income communities who attend nonselective public schools. In order to do this,

especially with public schools in lower income communities, it is important that researchers

90



spend the time to establish a relationship with such schools and design research studies

in collaboration with them with the twin goals of 1) not interfering with existing required

curricula and 2) ensuring that the schools and students are getting something of equal value

out of the study to avoid overburdening cash-strapped school districts that are already

pressed for time to cover required content.

Another factor potentially affecting my results was that the method for administering the

exam was different for the high school populations and the college-age online population.

While high schoolers at the low SES high school were given the option to participate in the

study instead of attending one of their math classes and participated in the study while

I supervised them as a proctor, the online population could do the study whenever and

wherever they wanted to without a proctor supervising them, and the students from the

high SES high school completed the study as part of the required curriculum. Since there

was no monetary reward for completing the survey, those who elected to participate in the

online population may have been more intrinsically motivated to take the spatial skills test

and survey seriously than the high schoolers, many of whom may have chosen to participate

just to get out of class (at the low SES high school) or were required to participate regardless

of interest (at the high SES high school). Evidence of this difference in motivation is seen

in the fact that a much greater proportion of the low SES high school student population

failed attention checks on the surveys than in the other two populations. Overall, differences

in levels of motivation to take the study seriously may have adversely affected the accuracy

of high school students’ responses.

Furthermore, response rates for the low SES high school students were low overall. The

study was advertised to several classes at this high school, but in all but one classroom, the

majority of students did not return the parental consent form they were asked to get signed to

participate in the study. Future work is needed to develop a more effective incentive scheme

for motivating students to participate in research studies like mine that involve cognitive

testing and long questionnaires and to take the tests and questionnaires seriously. Giving

course credit or monetary rewards for completion may increase response rate but does not

completely address the problem of motivation; an extrinsic incentive may undermine the

motivation of intrinsically motivated students to participate [65] and may cause them to fill

in meaningless answers on tests and surveys just to get the reward quickly [206].

Presenting more pre-study material explaining the relevance of the study contents to

students’ lives or personalizing the post-study summary of each student’s performance on

the test and answers on the survey more could help improve response rate and quality of

responses while avoiding undermining intrinsic motivation. For example, instead of giving

students a single number to represent their score on the spatial skills test, they could be
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given a “spatial cognition profile” based on the kinds of errors they made on the test, and a

similar “gaming motivation profile” could be devised to personalize the report of participants’

primary gaming motivations. This, combined with taking more time to talk about the wide

variety of tasks and jobs which require spatial skills and what specifically students will get

out of the study in more detail before asking for participation could improve response rates

and quality of responses in future studies.

Another limitation of my results is that my models only explained 15%-19% of the vari-

ance in participants’ spatial skills. Future work could introduce more potentially relevant

variables, such as frequency and type of spatial non-video game activities [111, 207], which

might help not only predict spatial skill more accurately but provide more design recom-

mendations for spatial skill training interventions targeting populations that do not enjoy

digital games, or any kind of game at all.

Given my inconclusive results, I advise game designers to not worry too much about

whether or not to use action games for training interventions. It is far more important to

incorporate the more specific, fine-grained gaming preferences of low spatial skill populations

so that the game intervention is actually something they would want to play. By asking

more detailed and fine-grained questions about participants’ gaming habits, preferences, and

motivations, I was able to provide more sophisticated, concrete recommendations than would

have been possible with more simplistic measures of gameplay habits and genre preferences

that have typically been used in past work [124, 112, 114, 27, 141].

Since I found that LSS group members seemed divided between a preference for digital

and non-digital games, one might reasonably ask if this group is indeed the best target

audience for video game-based spatial skill training interventions. I believe it is; while there

was certainly a digital/non-digital split in game preference, the majority (59%) of the LSS

group named a video game as one of their favorite games, indicating that a large chunk of

the low spatial skill population could be open to a video game-based intervention. However,

I am not suggesting that those with a preference for non-digital games should be ignored;

rather, I recommend game designers consider how to apply my design recommendations

to both digital and non-digital spatial skill training games. Designing for digital and non-

digital interventions allows game designers to target a wider section of the low spatial skill

population - those who have the most to gain from spatial skill training interventions that

can help them achieve the threshold of spatial skill necessary to succeed in STEM majors

and future careers [1, 10].

I set out in this chapter to guide game designers in a player-centered approach to spa-

tial skill training game design to improve the STEM efficacy of low spatial skill students,

but the approach is applicable to the design of any educational or cognitive training game.
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What is exciting about the possibility of using games as interventions is not simply that

the intervention will train a skill, but that people will actually want to do the training, just

for the intrinsic fun of it. These same skills, after all, can be trained in laboratory or class-

room settings using traditional workbook exercises, but this requires extrinsic compensation,

whether in the form of money or course credit; as soon as the extrinsic compensation ends,

participants are likely to stop training by themselves. The intrinsic fun offered by game

training - if the game is designed with the target population’s preferences in mind - offers a

way for those who stand the most to benefit from training to obtain these benefits relatively

painlessly, utilizing their leisure time for informal learning [208] rather than replacing the

precious few moments of leisure they have with something that feels like work.
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Chapter 6: Homeworld Bound: Redux - Revising Homeworld Bound For
Improved Learning and Player Experience

This chapter describes the set of revisions made to my spatial skill training game Home-

world Bound as a result of the findings of Chapters 4 and 5 with the goal of improving the

connection between spatial skill and in-game tasks as well as improving the player experi-

ence for the game’s target audience: low spatial skill students. With these improvements,

the new version of the game, Homeworld Bound: Redux, is better positioned to tap into

students’ spatial skills more consistently and strongly across different levels containing dif-

ferent combinations of spatial features and tasks, and is more likely to be enjoyable and

engaging for low spatial skill students. Another major change I made to the game was to

change the target audience from elementary school students ages 8-11 to low spatial skill

high school students and college-age adults since the latter was the population whose gaming

preferences I identified in Chapter 5. Redesigning the game to make it more appropriate

for this older age group (mainly to make it more challenging) allows me to implement my

design recommendations from Chapter 5 in a game that fits the target audience of those

recommendations.

Game-based interventions targeted at children have an advantage in that the intervention

has more time to train students’ spatial skills up to the threshold necessary to succeed in

STEM coursework [1] and may thus prevent student avoidance of STEM electives early on

in school. However, an older audience of high school students and college-age adults still has

time to benefit from spatial skill training interventions, which could make the difference in

terms of what major a student settles on during college, encouraging more students to persist

in STEM majors who might otherwise drop out due to the spatial demands of introductory

STEM courses. An intervention designed for college-age adults also can be implemented as

a required part of introductory STEM courses by professors to improve students’ success

rate in the course, an approach used successfully by Sorby et al. [128, 129, 131, 209].

Implementation of a game-based spatial skill training intervention directly in a course also

allows researchers to study the training effects and player experience at scale (introductory

STEM courses in many public universities in the United States tend to be quite large) with

the intended target audience of the game: students at risk of giving up on STEM coursework

or majors due to their low spatial skill.

To help researchers and game designers understand what game features are most important

for a game’s effectiveness at training spatial skills and what features are most important for

enhancing the player experience of low spatial skill students, I designed Homeworld Bound:

Redux, the revised version of the original Homeworld Bound game described in Chapter 3.
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The design revisions I made for Homeworld Bound: Redux are grounded in the theoretical

framework I developed for mapping between spatial operations and game features (Chapter 3,

the empirical findings of my first attempt at implementing game features derived from this

mapping (Chapter 4), and my recommendations for designing spatial skill training games

for low spatial skill populations [41].

This chapter’s principal contributions to the research literature on spatial skill training

games are 1) a demonstration of how to implement spatial features derived from my theoret-

ical framework in Chapter 3 and the player experience features I recommended in Chapter 5

in a spatial skill training game for low spatial skill young adults, 2) an open-source, scalable

spatial skill training game that can be modified, used for future research studies, and set

up in classrooms by the larger community of cognitive training game designers, researchers,

and teachers. This chapter contains an expanded, mmore detailed version of my previously

published work [42].

6.1 GAME REVISIONS TO ENHANCE SPATIAL FEATURES AND PLAYER
EXPERIENCE

Given the lack of relationship between different player performance and spatial skill in

several levels I found in my study investigating the relationship between spatial skill and

performance in the original Homeworld Bound (Chapter 3), there were several opportunities

for improving the extent to which each level tapped into players’ spatial skills via object

rotation, object alignment, landmark orientation, and navigation visualization. In addition

to enhancing the spatial features of Homeworld Bound, I modified the game to be more

in line with the recommendations I made in Chapter 5 for designing spatial skill training

games that are appealing to the population that stands the most to benefit from them: those

with low spatial skill [41]. These player experience (PX) recommendations focused on 1)

facilitating short gameplay sessions, 2) promoting simple fun and thrill, and 3) focusing on

the Adventure and Puzzle genres.

6.1.1 More Complex Spatial Features

The first substantial revisions to the original Homeworld Bound involved making the

game’s spatial features more complex and thus more likely to require players to tap into

their spatial skills during gameplay in both Construction and Exploration Mode.

95



Figure 6.1: Screenshots of Exploration Mode (left) and Construction Mode levels in Home-

world Bound: Redux. Shown here are levels with time limits: Rocket Boots part collec-

tion (upper left) and Sledgehammer part collection (bottom left) in Exploration Mode and

Rocket Boots construction (upper right) and Sledgehammer construction (bottom right) in

Construction Mode. Only levels pertaining to the collection of parts for and construction of

more complex items like the Rocket Boots and Sledgehammer have a time limit.

Construction Mode

In Construction Mode, I focused on increasing the complexity of part shapes for the Rocket

Boots and Sledgehammer levels (see Figure 6.1 for screenshots of the new versions). Due

to time constraints, the Ruined City Key level was not implemented in Homeworld Bound:

Redux. In the Rocket Boots level, I replaced some of the cuboid parts with trapezoidal

prisms, increased the number of parts, and gave parts with similar shapes different main

colors. I introduced trapezoidal prisms to the Rocket Boots level since they were already

present in the original Sledgehammer level and I hypothesized that the difficulty of predicting

the result of rotating this more complex part shape (object rotation) was the reason for the

relationship between spatial skill and performance on the Sledgehammer level that I found

in Chapter 4.
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Figure 6.2: The two chiral pairs of parts (first pair on top, second pair on bottom) in the

Sledgehammer Construction Mode level in Homeworld Bound: Redux. Each member of a pair

is identical except for the location of the black fusing area on its side; on one part the fusing

area is on its left side, and on the other, its right side. These fusing areas must be attached

together during construction, and thus each pair is chiral; neither of the parts can be rotated

to look identical to the other. And since each of these parts has two fusing areas (one on

top, and one on the side), figuring out the rotation and alignment necessary to successfully

fuse them to the construction requires a more complex object alignment procedure similar

to that required in the original Rocket Boots level (see Chapter 4).

I increased the number of parts used and gave parts with similar shapes different colors

in the Rocket Boots level to make it more difficult to complete this level without reference

to the 2D image of the finished construction in the upper left corner given my hypothe-

sis in Chapter 4 that players might be using a brute force strategy for figuring out which

parts to attach in this level instead of using the intended spatial strategy of establishing

correspondences between the 2D representations of parts in the image and their 3D coun-

terparts. Establishing these correspondences would require players to mentally rotate either

the parts shown in the 2D image or the 3D parts on their screen and thus tap into their

intrinsic-dynamic spatial skills more deeply to complete the level.
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In the Sledgehammer level, I increased the number and complexity of parts by splitting

some of them in half. This produced chiral pairs: pairs of parts that looked alike except

that they were mirror images of each other and could not be rotated to look identical to one

another. I introduced these chiral pairs with the goal of tapping more deeply into players’

intrinsic-dynamic spatial skills since distinguishing each part within a chiral pair from the

other involves the intrinsic-dynamic spatial task of mentally rotating one of the parts to see

that it cannot be superposed upon the other. This task is central to many of the most widely

used tests of intrinsic-dynamic spatial skill assessment, such as those used by Shepard and

Metzler [157] and Vandenburg and Kuse [210] in their seminal work. In addition, these chiral

pairs each require a more complex object alignment procedure involving multiple fusable

areas that I hypothesized was related to the link between spatial skill and performance in

the original Rocket Boots level in Chapter 4 (see Figure 6.2 for an example of the alignment

procedure for a chiral pair).

A final revision I made to Construction Mode levels to increase the difficulty of the

intrinsic-dynamic mental rotation tasks they required was to remove the automatic move-

ment of parts close to selected fuse areas once two fuse areas were selected. While this feature

aided children’s understanding of what it meant for the fusable areas of the construction and

the selected part to be aligned and thus aided them in figuring out the correct rotation, I

felt that this aid might make the object rotation and object alignment tasks required to fuse

a part too easy for the adult target audience of Homeworld Bound: Redux.

Exploration Mode

In Exploration Mode, I made two main changes to increase the complexity of the naviga-

tion task in the Canyon level. I focused my revisions on the Canyon level since I found no

relationship between completion time in the Canyon level and spatial skill in my correlation

study with Homeworld Bound (Chapter 4). My goal with the revisions was to make the

level’s navigation more strategic and challenging to tap into players’ spatial skills better.

First, I worked with one of my undergraduate collaborators to redesign the Canyon level so

that there were multiple ways to reach each area of the level, some shorter than others. We

implemented this redesign by adding tunnels between certain areas of the level that provided

a shorter route than the original path between the two areas the player would have had to

take. The goal of adding these alternative paths was to make it more difficult for players to

find parts by engaging in the kind of nonstrategic wandering I observed in earlier playtests

that reduced the need to employ navigational spatial skills. With the increased number

of possibilities and forking paths in the Canyon level, players might find wandering more
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Figure 6.3: Bird’s eye view map of the revised Canyon level. The distinct regions of rock
formation colors can be seen here (purple, blue, pink, and gray) as well as the new tunnels
added to create alternative paths through the level (overlaid in black). Yellow Xs indicate
the location of Rocket Boots parts in the timed level.

tedious and be motivated to use landmark orientation to find parts quicker by recognizing

and avoiding paths they had already traversed.

The second change I made to the Canyon level was to make landmarks more distinctive

through the use of distinct color variations to further encourage players to use landmark

orientation to navigate through the level. As Figure 6.3 shows, in Homeworld Bound: Redux,

the Canyon level is divided into four sections by the color of the rock formations in each:

blue, gray, purple, and pink. This variety of colors was chosen to make the color differences

noticeable while still fitting in with the level’s overall color scheme of turquoise.

6.1.2 Time Limits to Increase Difficulty and Suspense

To further discourage the nonstrategic wandering in Exploration Mode I observed during

playtests with the original Homeworld Bound and motivate players to engage in strategies

utilizing landmark orientation and navigation visualization instead, I added a time limit
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and a static map showing the location of each item part to certain Exploration Mode levels

(See Figure 6.1). Allowing players to orient themselves by determining the correspondences

between the bird’s eye view of the landmarks on the map and the landmarks visible from their

own egocentric perspective in the environment (such as tunnel entrances and colorful rock

formations, see Figure 6.3) may encourage players to use a landmark orientation strategy

for navigating and finding item parts rather than wandering around until they stumble upon

something. In addition, if players do not plan out a route on the map ahead of time, it is very

difficult to find all the item parts shown on the map within the time limit, so the combination

of map and time limit may also prompt players to engage in navigation visualization at the

start of the level. Including the map and time limit features in only certain Exploration

Mode levels allows researchers to use Homeworld Bound: Redux to evaluate the added value

of these new features for tapping into players’ spatial skills in comparison to levels lacking

these features.

I also added a time limit to the more complex Construction Mode levels (Rocket Boots

and Sledgehammer) to increase the difficulty of the spatial operations players were required

to perform in these levels: the object rotation and object alignment operations that tap

into players’ intrinsic-dynamic spatial skill. This same time pressure is present in levels of

Tetris, a game successful at improving players’ mental rotation (an intrinsic-dynamic spatial

skill) and in standardized tests of spatial skill. Furthermore, the fact that prior work has

shown that gender differences in scores on standardized tests of spatial skill are often more

pronounced when time limits are more stringent suggests that not only accuracy but also

speed are necessary to achieve higher levels of spatial skill. Thus, including a time limit

in only certain Construction Mode levels allows researchers to evaluate the extent to which

time pressure by itself might be an important feature to include in spatial training tasks

to motivate players to perform accurate spatial operations more quickly and thus tax their

spatial skills more fully.

To increase the hedonistic feeling of thrill during gameplay (PX Recommendation #2),

I combined three new game elements in timed Construction Mode and Exploration Mode

levels: the time limit mentioned above, a narrative explanation for the time limit, and

suspenseful music. Before each timed Exploration Mode level started, I added a narrative

explanation for the timer (“there is an evil power here that can sense the energy output of

the fully charged Fuser. Use the Fuser to find the locations of hidden building materials, but

work quickly so that you aren’t detected”). In both Exploration and Construction Mode

levels, I worked together with one of my undergraduate collaborators to change the in-game

music to a more ominous and urgent version when there was less than 1 minute left on the

timer (both the regular and ominous versions of the music for timed levels were original
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compositions by my collaborator). The narrative explanation for the time limit and sense of

urgency also served the purpose of increasing the presence of narrative in the game, one of

low spatial skill players’ stronger gaming motivations and a key component of one of their

favorite video game genres, Adventure (PX Recommendation #3).

6.1.3 A New Purpose for Batteries

Given the new adult target audience, Construction Mode levels in Homeworld Bound:

Redux needed to be more difficult so players could not brute force them by accumulating

a very large number of batteries and then trying every possible rotation at every possible

fusing area, thus avoiding the use of spatial skills to complete the level. Previous research

analyzing strategies used by Tetris players supports this notion; Kirsh and Maglio found

that Tetris players could avoid using the intrinsic-dynamic spatial skill mental rotation by

simply performing a quick succession of actual rotations on Tetris blocks as they fell to more

easily see all the possibilities (referred to as epistemic actions by Kirsh and Maglio) [211].

To prevent brute force methods, the number of rotations allowed in each Construction

Mode level in Homeworld Bound: Redux is not determined by how many batteries the

player collects. Instead, rotations are limited to a fixed amount that is just slightly more

than the minimum number of rotations required for the particular level (allowing for a couple

mistakes or less efficient multi-step rotations). When players use up all their rotations in a

Construction Mode level, the construction breaks apart and they must restart the level from

the beginning instead of getting to collect more batteries and resuming the level where they

left off. Thus, players must plan out and visualize the rotations they will perform even more

carefully in Homeworld Bound: Redux, requiring them to think more about object rotation

and object alignment to avoid wasting rotations and having to restart the level.

The decoupling of batteries with rotations in Construction Mode rendered batteries in their

current form useless. However, instead of removing batteries from the game altogether, I

changed the way that batteries were integrated into gameplay. Instead of being an infinite

resource the player can collect to get more and more rotation operations in Construction

Mode levels, batteries must be collected in pieces and built in Construction Mode themselves.

Rather than providing “power” for rotation operations in Construction Mode, batteries now

allowed players to charge up the Fuser to full power, which is required to build more complex

items like the Rocket Boots and Sledgehammer. I added this narrative explanation for

batteries due to the moderate importance my new target audience of low spatial skill young

adults placed in in-game narratives and its important role in one of their preferred video

game genres, Adventure (PX Recommendation #3).
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This design decision resulted in 8 new Construction Mode levels, one for each battery.

Adding these additional 8 Construction Mode levels to Homeworld Bound: Redux served

two main purposes. First, it helped balance the time spent in the game between Exploration

and Construction mode. In the original game, Homeworld Bound, players spent about 80%

of their time in Exploration Mode, meaning that there was much less time spent on the

part of the game designed to train intrinsic-dynamic spatial skills using object rotation and

object alignment tasks. With more Construction Mode levels, more time could be devoted

to training intrinsic-dynamic spatial skills and more combinations of game features could

be tested for their effectiveness at tapping into players’ spatial skills.

Another benefit of adding more Construction Mode levels was that it broke up the oth-

erwise lengthy Exploration Mode levels (Canyon and Highlands) into shorter sublevels that

could each be completed in a few minutes. The Canyon and Highlands levels each got par-

titioned into 5 shorter levels: one leading up to each of the 4 new Construction Mode levels

and the final one leading up to the original Rocket Boots level (Canyon) or the original

Sledgehammer level (Highlands). Splitting up Exploration Mode levels in this way allowed

for shorter Exploration Mode level completion times, which in turn made the game more

suitable for shorter gameplay sessions (PX Recommendation #1). Longer levels might

force players to play longer than they wanted to or were able to since stopping gameplay in

the middle of a level would break the player’s flow and require more time to remember what

they were in the middle of upon returning to the game.

6.1.4 Improved Scaffolding for Construction Mode

Since I had repeatedly observed that players struggled to understand how gameplay in

Construction Mode worked, both with the children in my previous pilot studies and adult

testers, I revised the tutorial section of Construction Mode to improve the learning ex-

perience. The final tutorial design I settled on for the original version of the game was

minimalist since I found that children ignored the text in a more structured competence-

promoting tutorial, and I wanted to give them more autonomy in gameplay. However, one of

my undergraduate colleagues helped me realize that in order to provide appropriate scaffold-

ing, I needed to strike a balance between the competence and autonomy-promoting aspects

of my previous attempts at the tutorial. The final version of the tutorial, developed by my

both of us, achieved this balance by scaffolding the learning experience.

Scaffolding is a method rooted in the learning sciences literature and has been shown

to be empirically effective at enhancing learning [67]. To scaffold a learning experience is

to provide a high level of initial support, guidance, and feedback on the learner’s actions,
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Figure 6.4: Screenshot of the new tutorial level for Construction Mode in Homeworld Bound:
Redux. The player is given a restricted set of controls and simple step-by-step instructions
for the entire process of selecting a part, choosing where to fuse it to, rotating it, and fusing
it. Each step of the tutorial must be followed in order to progress to the next step.

and then gradually remove this support as the learner progresses [68]. The scaffold helps

the player progress initially, increasing their sense of competence, while its gradual removal

increases their sense of autonomy. In turn, these feelings of autonomy and competence

increase the player’s intrinsic motivation to play [63, 61, 25].

The new, scaffolded tutorial for Construction Mode in Homeworld Bound: Redux consists

of one simple, structured level that introduces each basic operation required in Construction

Mode one by one, and introduces supplemental controls later at the beginning of the first

battery level. At the beginning of the tutorial level, the player is walked through a simplified

version of the process of part selection, fusing area selection, rotation, and attachment. At

each step of the process, the player is told what to do and is not allowed to perform a wrong

action. In addition, the camera is kept fixed at a zoom level and angle that allows the player

to see everything necessary to complete one part attachment and no more. This restriction

also serves the purpose of exposing the player more gradually to the controls and features

of Construction Mode so they are not overwhelmed. Explanatory text is provided at each

step to help the player understand how the process works (see Figure 6.4).

Once the tutorial level is complete, the player is introduced to the camera zoom and

camera rotation controls at the beginning of the first battery level and is required to try
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each out once before the rest of the level’s controls are enabled. Once the level starts, the

player encounters wrong rotation and wrong face errors for the first time with explanations

about what part of the fusing process is incorrect (either “INCORRECT ALIGNMENT” or

“INCOMPATIBLE LOCATION”, respectively).

I implemented this new scaffolded tutorial to improve the player experience of learning

Construction Mode gameplay. In the original Homeworld Bound, the tutorial levels were

often progression stoppers for players such that if proctors had not been present at studies

using the game, players would not have been able to progress past the tutorial level and may

have quit the study in frustration. The improved tutorial in Homeworld Bound: Redux is

designed to allow players to play the game as intended - without recourse to external help.

Eliminating the need for proctors to explain Construction Mode’s tutorial means the game

can be more easily used in large classrooms and outside of the classroom as well - where

most commercial games are played anyway.

6.1.5 Enabling Online, Remote Play

The last major game revision I made was to make Homworld Bound: Redux playable

online. The original Homeworld Bound was playable only via an executable file on a local

Windows or Mac computer. For a study involving n computers, the file had to be copied

onto each of the n different computers, and two different executable files were needed for

Windows and Mac computers. Furthermore, all player data the game recorded was dumped

into a directory on each local machine, meaning that to get all of it for data analysis, I

had to copy each player data file off every one of the n computers used for the study. All

this is to say that the requirement to run a local executable to play prevented studies using

the game from scaling well. Running the game locally also made it extremely difficult to

run remote studies and collect data from them, a threat to the ecological validity of future

studies aiming to analyze the player experience of the game since laboratory or classroom

studies with proctors present are not the natural environment in which a person typically

plays games for leisure.

To address these limitations, I developed Homeworld Bound: Redux as an online game

via Unity’s WebGL build option. Once compiled to WebAssembly, a Unity game can be

embedded and run in a webpage, and telemetry data from the game can be output to a central

database for rapid and scalable data collection and analysis. When a study is conducted using

Homeworld Bound: Redux, participants need only be directed to the webpage hosting the

game and then instructed on how to quit the game so that their telemetry data can be sent to

the central database at the end of each study session. Thus, conducting online, remote, and
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anonymous studies with Homeworld Bound: Redux is straightforward and enables study

participants to play the game in a more naturalistic play context than a laboratory or a

classroom.

6.2 DISCUSSION

This chapter described the revisions made to Homeworld Bound, my game for training

children’s spatial skills, to improve its ability to tap into players’ spatial skill, improve the

player experience for its new target audience of low spatial skill young adult players, make

the game suitably challenging for low spatial skill young adults, and enable the game to be

played online. Revisions to the game’s spatial features were made by analyzing empirical

data from the correlation study I describe in Chapter 4 in combination with my theoretical

framework for mapping game features to spatial skills I describe in Chapter 3 to identify

specific game features in certain levels that may have allowed players to circumvent the use

of spatial skills during gameplay and then adding incentives for players to adopt spatial

strategies instead. Revisions to improve the player experience of the game were made based

on the recommendations of my player-centric analysis of what low spatial skill young adults

from diverse backgrounds look for in a game as described in Chapter 5. Additional revisions

to make the game more challenging for adult players and playable online were implemented

over the course of several iterations of informal playtesting. These four major categories of

revisions resulted in Homeworld Bound: Redux, a spatial skill training game for low spatial

skill young adults that can be easily implemented and scaled in classrooms, laboratory

studies, and any remote location where players have access to a computer and an internet

connection.

The current WebGL build of Homeworld Bound: Redux as well as its open-source code is

available for download at https://github.com/hwauck/homeworld-bound for researchers,

game designers, and educators to use and modify for future studies evaluating the game’s

training effectiveness. It is my hope that sharing the code for Homeworld Bound: Redux will

inspire other researchers to continue to build on the game and make further improvements

to its spatial features and player experience features.

Of course, the question of whether Homeworld Bound: Redux actually can train players’

spatial skills and actually appeals to its target audience remains. In the next chapter, I give

a partial answer to these questions using a controlled training study deployed in the context

of an introductory STEM course.
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Chapter 7: Evaluating Homeworld Bound: Redux with Low Spatial Skill
Students

The preceding chapter of this dissertation described the design and revision process for

creating Homeworld Bound: Redux, the latest version of my game for training spatial skills.

The game was revised from its original version, Homeworld Bound, to do a better job of

tapping into players’ spatial skills and improve the player experience for its new target

audience of low spatial skill young adults. The next logical step is, of course, to evaluate the

extent to which the game’s revisions actually accomplish these goals, using the data-driven

and player-centric approach I have introduced in the preceding chapters. In this chapter,

I discuss the results of a study I conducted in an introductory programming course for

non-STEM majors at the University of Illinois Urbana-Champaign to evaluate Homeworld

Bound: Redux in terms of both training effectiveness and motivational appeal for low spatial

skill college students.

My evaluation focuses on low spatial skill college students because they have the most

to gain from spatial skill training interventions. Low spatial skill serves as a barrier to

success in introductory STEM coursework and majors [Uttal and Cohen 2012], and may be

exacerbating the gender gap in STEM since women consistently make up a disproportionate

number of those with low spatial skill [21, 76, 8]. Thus, low spatial skill students represent a

critical target audience for spatial skill training interventions aiming to help more students

succeed in STEM coursework, persist in STEM majors, and pursue STEM careers.

The evaluation studies I conducted for Homeworld Bound in Chapters 3 and 4 suffered

from the limitation of lower sample sizes, hindering their generalizability and reliability. This

limitation is also shared by other studies evaluating the training effects of non-commercial

spatial skill training games [152, 153]. In addition, game-based spatial skill training studies

in general do not investigate training effects on low spatial skill populations specifically,

limiting our ability to know if a training intervention will be effective for this critical target

audience. In this chapter, I contribute the first study evaluating the spatial skill training

effectiveness of a non-commercial game that is 1) conducted in a player-centric way, using its

target audience of low spatial skill students as participants and 2) conducted with a sample

size large enough to observe reliable training effects.

However, it is not enough to study the training effects of a game-based training intervention

with a low spatial skill population; for a truly player-centric approach to game evaluation,

the motivation of the target audience to play must be taken into account as well. Low

spatial skill students may not enjoy the kinds of games that are most frequently studied

in the spatial skill training literature [32, 34, 41], which could remove the fun from the
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game experience and thus remove one of the key advantages games have over other training

interventions. In addition, students with low spatial skill may find a spatial skill training

game too difficult if it is not designed with low spatial skill students in mind, potentially

leading them to give up on the intervention when implemented as a course assignment. The

study I describe in this chapter contributes the first investigation in the research literature

of low spatial skill students’ motivation to complete a game-based intervention relative to

other spatial training interventions.

Demographic factors like prior gaming experience and gender may also affect motivation

to engage with game-based spatial interventions since action video game players tend to

have higher spatial skill than those who do not play action games [124, 112, 115] and men

tend to play more action games than women [118, 119, 34, 120]. These demographic factors

may lead to differential training effects as well [3, 126, 4, 30]. It is therefore critical to

ensure that a game-based spatial skill training intervention is effective and motivating for

demographic groups that may be less interested in playing existing commercial action games

like Unreal Tournament and Medal of Honor that have been shown to be effective for a

general population. Therefore, in this chapter I extend my player-centric analysis of training

effects and enjoyment to not just low spatial skill students, but also to demographic groupings

by gender and prior gaming experience to evaluate whether the intervention’s benefits extend

only to certain demographics. This chapter thus contributes a deeper understanding of

how different demographics may benefit differently from game-based spatial skill training

interventions to the research literature.

A particular advantage to using a non-commercial, modular game like Homeworld Bound:

Redux as a spatial skill training intervention is that features hypothesized to be relevant

to a game’s training effectiveness can be manipulated and isolated across different levels to

analyze their empirical ability to tap into players’ spatial skills. This data-driven analysis,

in turn, can be used to identify levels of the game that are doing a good job of tapping into

players’ spatial skills and diagnose levels that are not tapping sufficiently into players’ spatial

skills. Comparing the different features and difficulty across these levels can provide insights

into how the less effective levels might be improved to tax players’ spatial skills more and

increase the game’s training effectiveness. The study I describe in this chapter contributes

the most detailed analysis to date of the effectiveness of multiple types of game features at

tapping in to players’ spatial skills, providing researchers and game designers with insights

that can be used to increase a spatial skill training game’s likelihood of actually achieving

training effects and deepen our theoretical understanding of the mechanisms behind spatial

skill use in digital games.
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7.1 RESEARCH QUESTIONS

RQ1: How does the spatial skill training effectiveness of Homeworld Bound: Redux com-

pare with the training effectiveness of online spatial exercises and a graphics programming

activity for undergraduate non-STEM majors?

RQ2: How motivated are undergraduate non-STEM majors to play Homeworld Bound:

Redux compared to completing traditional spatial workbook exercises or a graphics program-

ming activity?

RQ3: What is the relationship between spatial skill improvement and demographic char-

acteristics such as current spatial skill level, prior gaming experience, and gender?

RQ4: What is the relationship between enjoyment of different spatial skill training in-

terventions and demographic characteristics such as current spatial skill level, prior gaming

experience, and gender?

RQ5: What is the relationship between spatial skill and performance in different levels

of Homeworld Bound: Redux?

7.2 METHODS

To answer my research questions, I conducted a training study in the context of an in-

troductory computer science course for non-STEM majors. I decided to conduct the study

with this class because its students were likely to have lower spatial skill than average given

that spatial skill tends to be higher among engineering and other STEM majors [2]. Another

advantage to conducting the study in this course was the large class size, which enabled me

to be more confident in my estimates of effect size and do follow-up subgroup and correlation

analyses. I launched the study at the very beginning of the course in August 2019. All study

activities were incorporated into the class as assignments by the instructor and were graded

for completion only.

Students took an online spatial skill pretest in the first week of class. The pretest was an

online version of the Revised Visualization of Rotations Test (PSVT:R) (Figure 7.1) [166],

one of the most commonly used tests of spatial skill in engineering education. The online

version was created by some of my collaborators for a different project and automatically

randomizes the order of questions and answer choices each time the test is taken to reduce

test-retest effects. The online platform logs the time spent on the test as a way of checking

whether students took the test seriously. If a student failed to answer all 30 questions on

the test within the specified time limit of 20 minutes, they were redirected to a page telling

them they were finished, and their answers for the remaining questions were marked as
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blank. Students were also asked to report any technical difficulties they encountered while

taking the test to the instructor or researchers.

One week after taking the test, students participated in a training intervention in their lab

section. Since there were 15 lab sections, I assigned 5 sections to each of the following three

training conditions: Homeworld Bound: Redux, Spatial Exercises, and Python Graphics.

For more details about each training condition, see the following subsection. When choosing

which sections to assign to which condition, I controlled for time of day and day of week

(ensuring sections at different times of day and days of the week were as evenly distributed as

possible over the three conditions), and after this did my best to ensure that conditions were

evenly distributed over different teaching assistants (some teaching assistants taught multiple

sections). I did not randomly assign individual students to conditions since seeing other

students in the same section doing a different intervention might affect students performance

and motivation on theirs.

Figure 7.1: A sample question from the Revised PSVT:R test of mental rotation. Partici-

pants are shown an exemplar figure before and after being rotated a certain way and must

decide which of the answer choices results from performing the same rotation on the second

exemplar figure. In this case, the correct answer is D.

At the beginning of the lab period, students were informed that since spatial skills are

strong predictors of success in computer science courses, they would be completing a spatial

activity. Students then worked on their assigned intervention for 70 minutes of the 80

minute lab period, or until they finished the activity. Once the 70 minutes were up or

students had finished the activity, they were directed to complete the enjoyment subscale
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Figure 7.2: Sample screens from the two spatial training interventions. Left: screenshots
of Homeworld Bound: Redux’s Exploration Mode (A) and Construction Mode (B). Right:
Examples of three question types used in the Spatial Exercises intervention: Choosing the
2D object that produced the shown 3D solid of revolution (C), determining which operation
has been performed on the two intersecting objects shown on the left to produce the object
on the right (D), and selecting which of the answer views on the right is produced by
performing the two indicated 90 degree axis rotations on the figure on the left (E).

of the Intrinsic Motivation Inventory (IMI), a well-validated measure of intrinsic motivation

for a task [212, 213, 214] consisting of 7 7-point Likert scale questions. I asked students to

rate enjoyment in order to compare not only training effects, but also students’ motivation

to do the activity, across conditions. If students finished their intervention before the class

ended, teaching assistants checked the assignment for completion and reasonable effort and

then allowed students to leave once they had completed the IMI.

A week after completing the intervention, students were asked to take an online post-test

and demographic questionnaire. The post-test was the same as that used for the pretest.

After completing the post-test, students read an informed consent form and were given

the option to allow the use of their data for this study. Lastly, students completed the

questionnaire, which included questions about gender, growth mindset, what kinds of games

(digital or otherwise) they played most often, and how much time they spent weekly playing

video games. Asking these questions allowed me to perform more detailed subgroup analyses

of training effects.
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7.2.1 Training Interventions

Homeworld Bound: Redux

Homeworld Bound: Redux is a first person, online computer game designed to train spatial

skills. The design of the game is based on a combination of two sets of game features, as

described in Chapter 6. Game features relevant to spatial skills were proposed using a map-

ping between different spatial subskills in the spatial skill typology proposed by Chatterjee

[45] and adopted by Uttal et al. in their meta-analysis of the spatial skill training literature

[10] and features drawn from other video games that have been empirically demonstrated

to train players’ spatial skills [4, 112, 3, 5]. These features were then incorporated as the

game’s core gameplay mechanics: object rotation (rotating 2D or 3D in-game objects relative

to the player), object alignment (aligning matching surfaces on objects to fit them together),

landmark orientation (orienting oneself in first person by using nearby visual landmarks),

and navigation visualization (visualizing one’s path to get from one point to another in an

environment before beginning the movement) [40]. In Chapter 5, I proposed another set of

game features appealing to players with low levels of spatial skill [41] and later incorporated

them into Homeworld Bound: Redux as described in Chapter 6 to improve the game’s ap-

peal to this subset of the population that stands the most to gain from spatial skill training

interventions [42].

The game’s premise is that the player is stranded after a crash on an alien planet and

must explore and salvage scraps from the surrounding environment with which to rebuild

their ship. Gameplay alternates between two modes (see Figure 7.2): Exploration Mode,

where the player explores a 3D environment in first person, collecting scrap parts from the

environment, and Construction Mode, where the player constructs useful items out of the

scrap parts they have collected piece by piece by choosing parts to attach, choosing the

specific area on each part where the parts will attach, rotating them to align correctly,

and then pushing and “fusing” them together. Constructed items can then be used in

Exploration Mode to access new areas of the game and progress. Exploration Mode was

designed to incorporate the landmark orientation and navigation visualization spatial game

features, while Construction Mode was designed to incorporate the object rotation and object

alignment features.

Before constructing an item, the player must first collect parts for and build four batteries,

which are designed to be simpler warm-up levels preparing the player to build the item that

will allow them to access a new area. Battery construction levels tend to have fewer parts

than item construction levels, and limit only the number of rotations the player can perform
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on parts, while item construction levels limit both rotations and time. If the player runs

out of rotations (or time, when applicable) in a Construction Mode level, the player must

restart the level. Similarly, Exploration Mode levels where the player is collecting battery

parts have no time limit, while Exploration Mode levels where the player is collecting item

parts have a time limit and a static map that must be used to navigate to all the item parts

within the time limit.

I chose to study the training effects of Homeworld Bound: Redux because while multiple

papers have been published about its design and development process [40, 42], it has not

yet been evaluated for training effectiveness or for its purported benefits as a training tool

more motivating than traditional spatial training exercises for low spatial skill students.

In addition, since the game contains detailed reporting of in-game player behavior and

performance data for each level, I can analyze to what extent the features of each game

level are actually tapping into players’ pre-existing spatial skill to look for clues as to how

different levels may be contributing more or less to the game’s training effectiveness.

Spatial Exercises

As a point of comparison with the game-based intervention Homeworld Bound: Redux,

I wanted to include a more traditional spatial training condition without game elements

in order to determine if Homeworld Bound: Redux does indeed offer advantages in terms

of motivation over a more traditional method of training that has already been shown to

train college students’ spatial skills. For this condition, I chose to use a subset of Sorby’s

spatial skill training exercises for first year engineering students. These workbook exercises,

in their original form, included a wide variety of different activities, from sketching isometric

views of objects to mental rotation and visualizing cross sections and revolved solids about

axes and are designed to be used in the context of a college-level course dedicated to spatial

skill training [128, 129]. They are the best example I know of in the research literature of

empirically-proven spatial skill exercises designed specifically to help students succeed in a

STEM discipline (engineering).

Previous work has adapted these workbook exercises for a digital format, enabling them to

scale better in large classrooms [215]. With the help of collaborators who had implemented

the digital version of the workbook exercises, I selected a subset of the digital version of the

exercises to use in the current study that were appropriately challenging for non-STEM ma-

jors. Since Sorby’s exercises were designed for engineering majors, who typically have higher

spatial skill than students in non-STEM majors [2], my collaborators and I selected six sets

of the easiest exercises that targeted spatial subskills most similar to the ones targeted by
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Homeworld Bound: Redux in order to make a fairer comparison between the two interven-

tions in my study. The exercises we chose focused on visualizing cross sections of objects,

revolving solids about axes, and mental rotation around multiple axes (see Figure 7.2 for

an example of each kind of exercise). We chose six sets of exercises since my collaborators

estimated that this amount would take students at least an hour to finish based on their

prior experience using the digital versions of Sorby’s exercises in engineering classrooms.

Python Graphics

The third training intervention in my study was designed to be more of a regular classroom

activity for the course I administered the study within - a simple programming lab using

Python’s Turtle graphics library, which enables lines and shapes to be drawn on a canvas

with simple Python commands. This lab was chosen for this study among other labs in

the course because it appeared to be a spatial activity. However, I considered it unlikely

to train the kind of spatial skills I was studying given that the activity was confined to

drawing simple 2D shapes such as squares and triangles (students’ main tasks were to draw

a line, draw a square, and draw an equilateral triangle next to the square), which I felt

would not develop students’ generalizable mental rotation skills. The lab was designed to

be completable within the 70 minute lab session for all students.

7.3 RESULTS

My results consisted of a primary analysis of training effects and enjoyment of each inter-

vention (RQ1 and RQ2), followed by secondary analyses of individual characteristics that

might affect training effectiveness and enjoyment (RQ3 and RQ4), and a correlation anal-

ysis aimed at determining which levels of Homeworld Bound: Redux may be contributing

the most or least to its training effectiveness (RQ5).

7.3.1 Data Cleaning

In total, 545 students completed all parts of the study (pretest, in-class training interven-

tion, IMI enjoyment subscale, post-test, and demographic survey), and 490 (90%) consented

to have their data used for this study. Within this group, I removed the data of students

who experienced technical problems taking the pretest or post-test (31). In order to deter-

mine which students did not take the test seriously, I looked at the relationship between

time spent on the test and test score. Inspecting plots of time spent versus score for the
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Figure 7.3: Plot of the relationship between score and time spent on the pretest used to
establish a cutoff for removing the data of students who did not take the test seriously.
Students were given 20 minutes to take the test, so the positive correlation between time
spent on the test and test score for those who finished the test in well under 20 minutes
(the left side of the graph) indicates that these participants were likely not taking the test
seriously.

pretest and post-test (see Figures 7.3 and 7.4), I observed what appeared to be a positive

correlation between time spent and test score for those who spent the least amount of time

on the test up until a certain threshold of time spent, such that no one who spent less time

than the threshold scored above around 15 points. For the pretest, this threshold seemed

to be at about 8 minutes, whereas for the post-test it was about 5 minutes. Therefore, I

decided to omit the data of all students who spent less than 8 minutes on the pretest or less

than 5 minutes on the post-test since they used far less time than they were given for the

test and received a low score. This criteria eliminated 116 additional students, leaving me

with a total of 343 students in the dataset.
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Figure 7.4: Plot of the relationship between score and time spent on the post-test used to
establish a cutoff for removing the data of students who did not take the test seriously.
Students were given 20 minutes to take the test, so the positive correlation between score
and time spent on the test for those who finished the test in well under 20 minutes (the left
side of the graph) indicates that these participants were likely not taking the test seriously.

7.3.2 Participant Characteristics

Of the students in the cleaned dataset, 59% identified as male, 40% as female, and the

remaining 1% identified as nonbinary, genderfluid, gender non-conforming, or not specifying.

Students’ self-reported hours of video game play per week were mostly evenly distributed

between the four lowest answer choices: 0 hours, Less than 1 hour, 1-2 hours, and 3-7

hours per week, with 51% of the sample answering either 0 hours or less than 1 hour. The

distribution of scores on the spatial skill pretest is shown in Figure 7.5. Scores overall

(µ = 16.44, median = 17) were lower than the cutoff used in previous engineering education

research for identifying low spatial skill students (18/30 or 60%) [131, 134].
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Figure 7.5: Histogram showing the distribution of Revised PSVT:R pretest scores. Scores

had a roughly normal but left-skewed distribution, and mean and median performance fell

below the threshold used in engineering education research for identifying low spatial skill

students (18 out of a maximum of 30 points).

7.3.3 Training Effects and Enjoyment (RQ1 and RQ2)

To determine how training effectiveness compared across conditions for low spatial skill

students (RQ1), I analyzed the data of students who scored 18 points out of 30 (60%)

or lower on the spatial skills pretest (n = 202). Of these students, 72 were in the Spatial

Exercises condition, and 65 were in each of the two remaining conditions (Homeworld Bound:

Redux and Python Graphics). I used this cutoff since it is the same one Sorby et al. and

Onyancha et al. used to determine if engineering students’ spatial skills fell below a desired

level of competence [131, 134]. As a check, I performed the same analyses using a 21/30

cutoff that is used by engineering professors at my university to identify first year students

in need of extra spatial skill training, and found that the results did not materially differ

between the two thresholds.

With this sample of low spatial skill students, I ran an ANCOVA with post-test score as

the dependent variable, treatment condition (Homeworld Bound: Redux, Spatial Exercises,
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or Python Graphics) as the independent variable, and pretest score as a covariate. Based

on inspection of diagnostic plots and interaction effects analysis, ANCOVA assumptions

of normality, homoscedasticity, linearity, and homoegeneity of regression slopes were met.

There was no significant effect of treatment condition on post-test score, controlling for

pretest score (F (2, 198) = 0.33, p = 0.72), all Cohen’s d < 0.10.

Figure 7.6: Intrinsic Motivation Inventory (IMI) ratings of enjoyment for each training

intervention.

To determine which spatial training condition was most motivating for low spatial skill

students (RQ2), I performed a one-way ANOVA using the same dataset as described above,

with average IMI score as the dependent variable and treatment condition as the independent

variable. Cronbach’s α for the IMI was 0.93, indicating good reliability, and inspection of

diagnostic plots confirmed that assumptions of normality and homoscedasticity were met.

The ANOVA revealed a significant effect of treatment on IMI score (F (2, 196) = 21.54,

p < 0.0001). A posthoc Tukey test showed that all pairwise differences were significant;

the Python Graphics condition (µ = 4.90) was rated higher than both the Spatial Exercises

(µ = 3.44, d = 1.23, p < 0.0001) and Homeworld Bound: Redux (µ = 4.20, d = 0.52,

p = 0.0076), and Homeworld Bound: Redux was rated higher than the Spatial Exercises
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(d = 0.56, p = 0.0027) (Figure 7.6). Thus, students reported enjoying the Python Graphics

condition the most, but enjoyed Homeworld Bound: Redux more than the Spatial Exercises.

7.3.4 Predictors of Improvement and Enjoyment (RQ3 and RQ4)

To determine what individual characteristics and demographic factors may have influ-

enced training effectiveness in each condition (RQ3), I conducted three linear regressions

(one for each treatment condition) with pretest to post-test spatial skill improvement as

the dependent measure and pretest score, weekly hours of video game play, and gender as

predictors. Since the group of participants who specified a gender other than male or female

was too small to include in a linear regression analysis (n = 3), I removed them from the

dataset for the purposes of this analysis, but otherwise used my entire dataset (n = 340).

Based on inspection of diagnostic plots, linear regression assumptions of linearity, normality,

and homoscedasticity were met, and variance inflation factors were less than 2 for all linear

regressions, indicating no multicollinearity problems. For each linear regression analysis, I

report the standardized regression coefficient β in addition to the unstandardized regression

coefficient B to aid in effect size comparisons between coefficients.

In the Homeworld Bound: Redux condition, pretest score (B = −0.19, β = −0.26, t =

−2.64, p = 0.0096) was the only significant predictor of spatial skill improvement such that

those who did worse on the spatial skills pretest improved more from pretest to post-test.

However, the overall model was not significant and had a low R2 value (adjusted R2 = 0.037,

F (3, 103) = 2.36, p = 0.076). For the Spatial Exercises condition, pretest score was the only

significant predictor (B = −0.37, β = −0.43, t = −5.03, p < 0.0001), but unlike in the

Homeworld Bound: Redux condition, the overall model was significant (adjusted R2 = 0.18,

F (3, 119) = 9.89, p < 0.0001). Similarly, for the Python Graphics condition, pretest score

was the only significant predictor (B = −0.34, β = −0.43, t = −4.93, p < 0.0001), and the

overall model was significant (adjusted R2 = 0.16, F (3, 106) = 8.15, p < 0.0001).

To determine what individual characteristics and demographic factors may have influ-

enced enjoyment of training interventions (RQ4), I conducted one linear regression for each

treatment condition in the same manner as described above, with IMI enjoyment score as the

dependent measure and pretest score, weekly hours of video game play, and gender as pre-

dictors. In the Homeworld Bound: Redux condition, there were no significant predictors of

enjoyment. The model overall was significant, but had a low R2 value (adjusted R2 = 0.056,

F (3, 100) = 3.05, p = 0.032). For the Spatial Exercises condition, only pretest score was

a significant predictor of enjoyment (B = 0.040, β = 0.20, t = 2.27, p = 0.025) such that

those with higher pretest scores enjoyed the intervention more, and the model was significant
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(adjusted R2 = 0.14, F (3, 119) = 7.61, p = 0.00011). In the Python Graphics condition,

there were no significant predictors of enjoyment. The model overall was significant but had

a low R2 value (adjusted R2 = 0.047, F (3, 106) = 2.78, p = 0.045).

7.3.5 Homeworld Bound: Redux Level Performance and Spatial Skill (RQ5)

To understand the relative effectiveness of different parts of Homeworld Bound: Redux

at tapping into players’ spatial skills and discover potential ways of improving the game’s

training effectiveness (RQ5), I conducted a linear regression analysis investigating the re-

lationship between students’ in-game performance and their current level of spatial skill in

the Homeworld Bound: Redux condition, as measured by pretest score. There were a total

of 107 students in the Homeworld Bound: Redux condition. However, a series of unrepro-

ducible browser crashes during the study caused a loss of player performance data for a

subset of students in this condition. These crashes affected the data of 31 students, so after

eliminating these students, I was left with n = 76 students for the linear regression analysis.

For all linear regression analyses in this section, inspection of diagnostic plots, linear regres-

sion assumptions of linearity, normality, and homoscedasticity were met for each regression,

and variance inflation factors were less than 2, indicating no multicollinearity. For each lin-

ear regression analysis, I report the standardized regression coefficient β in addition to the

unstandardized regression coefficient B to aid in effect size comparisons between coefficients.

Overall, the number of levels students completed in Homeworld Bound: Redux varied

widely, ranging from a minimum of 5 to a maximum of 20. On average, students completed

10.45 levels (median: 9.5), and the distribution was heavily skewed towards the low end of

the range (only a handful of students completed a large number of levels). My first analysis

evaluated whether performance in Homeworld Bound: Redux as a whole, as measured by

number of levels completed, was related to current spatial skill level. I performed a linear

regression analysis for this purpose with pretest score as the dependent measure, number of

levels completed as the independent variable, and self-reported weekly hours of video game

play as a covariate to control for the effect of prior video game experience. The model was

significant overall (adjusted R2 = 0.21, F (3, 73) = 10.73, p < 0.0001). Levels completed

was a significant predictor of pretest score after controlling for weekly video game hours

(B = 0.73, β = 0.48, t = 4.33, p < 0.0001), while weekly video game hours was not after

controlling for levels completed (B = −0.03, β = −0.0068, t = −0.061, p = 0.95).

To get a more fine-grained understanding of how performance in Homeworld Bound: Re-

dux was related to current spatial skill level, I conducted a series of regressions looking

at the relationship between students’ spatial skill pretest score (dependent measure) and
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performance in individual Homeworld Bound: Redux levels (predictor) while controlling for

prior gaming experience (covariate). Since the number of students who had completed more

than 8 levels was significantly smaller than the generally recommended sample size for lin-

ear regression [200], I analyzed performance for only the first 8 levels (the first 4 levels of

Exploration Mode and the first 4 levels of Construction Mode).

Coefficient values Model Values

Level Measure B β t p R2 (adj) df F p

Exp B1 Time 0.0038 0.078 0.67 0.51 0.0084 73 1.32 0.27

Exp B2 Time −0.0099 −0.10 −0.85 0.40 0.012 73 1.45 0.24

Exp B3 Time −0.0066 −0.11 −0.97 0.34 0.011 72 1.39 0.25

Exp B4 Time −0.0019 −0.085 −0.65 0.52 −0.0068 58 0.80 0.46

Exp All Time −0.00095−0.053 −0.39 0.70 −0.011 58 0.66 0.52

Con B1 Attempts −0.58 −0.19 −1.62 0.11 0.037 73 2.44 0.094

Con B1 Time* −0.0069 −0.26 −2.27 0.026 0.068 73 3.73 0.029

Con B1 Errors* −0.29 −0.25 −2.20 0.031 0.062 72 3.43 0.037

Con B2 Attempts** −0.83 −0.43 −4.07 0.00012 0.19 73 9.60 0.0002

Con B2 Time** −0.0080 −0.46 −4.46 0.0001 0.22 73 11.33 0.0001

Con B2 Errors* −0.090 −0.27 −2.38 0.020 0.074 73 4.00 0.022

Con B3 Attempts** −1.16 −0.41 −3.58 0.00068 0.16 62 7.09 0.0017

Con B3 Time** −0.0071 −0.50 −4.49 0.0001 0.23 62 11.33 0.0001

Con B3 Errors* −0.10 −0.32 −2.68 0.0094 0.091 62 4.22 0.019

Con B4 Attempts −0.13 −0.047 −0.31 0.76 −0.039 45 0.13 0.88

Con B4 Time −0.0014 −0.087 −0.56 0.58 −0.034 45 0.24 0.79

Con B4 Errors 0.022 0.064 0.42 0.64 0.0074 45 −0.037 0.85

Table 7.1: Summary of regression analysis results for first 8 Homeworld Bound: Redux levels

(Exp = Exploration, Con = Construction). B is the unstandardized regression coefficient, β

is the standardized regression coefficient. *p < α without Bonferroni correction (α = 0.05),

**p < α with Bonferroni correction (α = 0.05/17 = 0.0029) for β coefficients. p-values less

than 0.0001 are reported as 0.0001. Time is measured in seconds. Exp All refers to the

combined “All Batteries” level. For the sake of brevity, B and β values for weekly video

game hours are not shown.

Since the first 4 levels of Exploration Mode (Exploration B1-Exploration B4) are battery

part collection levels and therefore contain no timed levels, the only measure of performance
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in these levels is completion time. Furthermore, since parts can be collected in any order in

Exploration Mode and an Exploration Mode level ends each time a certain number of battery

parts have been collected, I decided to also conduct a regression treating all 4 battery part

collection levels as one big level (Exploration All). Since none of the first 4 Construction

Mode levels (Construction B1-Construction B4) are timed levels either, the measures of

performance for these levels are number of attempts, completion time, and number of errors

made. Every time the player must restart a Construction Mode level due to running out

of rotation operations, a new attempt is counted. An error is counted whenever the player

attempts to attach two parts together in Construction mode and either a) has selected two

parts that cannot be attached to each other, b) has selected two parts that can be attached

to each other, but has selected the wrong areas on each part to attach, or c) has selected

the correct areas on each part to attach, but one of the parts is not rotated correctly to

align with the other so they can be pushed together. I performed one linear regression per

performance measure per level, for a total of 17 linear regressions.

The results of the regression analysis are summarized in Table 7.1. Overall, better perfor-

mance in most Construction Mode levels is associated with higher spatial skill pretest scores

even after controlling for prior video game experience, especially for B2 and B3. In contrast,

performance was not associated with spatial skill pretest score in any Exploration Mode

levels. Controlling for performance, weekly hours of video games played was not associated

with pretest score in any linear regression. Performance was comparable across levels except

for B1 having noticeably fewer errors (see Table 7.2).

7.4 DISCUSSION AND FUTURE WORK

7.4.1 RQ1 & RQ2: Training & Motivational Effects for Low Spatial Skill Students

Overall, I found no evidence of a training effect for any intervention (RQ1). It is not

too surprising that I failed to find training effects for the spatial interventions given that

most game-based spatial skill training studies use a training period of at least several hours

[112, 3, 126, 150, 147, 5], in contrast to the 70 minute training period I used, a product of my

decision to sacrifice training time for a larger sample of low spatial skill students. In addition,

the Spatial Exercises and Python Graphics interventions did not take the full class period as

intended for most students, so average training duration was even shorter in these conditions

(around 30 minutes). Despite this, I still believed I might observe training effects in the

Homeworld Bound: Redux or Spatial Exercises conditions since other controlled studies

have found spatial skill training effects using training times of an hour or less [152, 30, 153].
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Level Measure Median Mean

Exploration B1 Time 108.36 138.83

Exploration B2 Time 72.80 91.23

Exploration B3 Time 137.15 147.99

Exploration B4 Time 196.72 308.97

Construction B1 Attempts 2 2.71

Construction B2 Attempts 3 3.67

Construction B3 Attempts 3 3.6

Construction B4 Attempts 3 3.04

Construction B1 Time 292.23 325.36

Construction B2 Time 378.34 448.89

Construction B3 Time 709.69 827.83

Construction B4 Time 482.02 579.46

Construction B1 Errors 3.5 5.53

Construction B2 Errors 5.5 11.43

Construction B3 Errors 13.0 18.12

Construction B4 Errors 6.0 10.67

Table 7.2: Median and mean performance on first 8 Homeworld Bound: Redux levels. Time

is measured in seconds. Since there were an even number of data points, medians were

calculated by taking the mean of the middle two data points.

One key difference between these other short interval training studies and my training

study was that each of them conducted pretests, interventions, and post-tests within a very

short time period. Mazalek et al. and Chang et al. conducted the pretest, intervention, and

post-test all in the same day, and Cherney et al. conducted them within 48 hours of each

other, while I spaced my pretest, intervention, and post-test of spatial skills out to ensure

that there was at least a week long gap between the pretest and the intervention and between

the intervention and the post-test. Adding these gaps allowed me to minimize possible test-

retest effects and test the longer term transferability of each training intervention. Therefore,

it is likely that spatial skill training lasting an hour or less results in only very short term

training effects, whereas longer training periods are necessary to observe lasting training

effects. Future work should evaluate the training effects of playing Homeworld Bound: Redux

with a much longer training period, spaced across multiple weeks.
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Low spatial skill students enjoyed Homeworld Bound: Redux more than the other inter-

vention intended to train spatial skills, Spatial Exercises (RQ2), with a medium effect size

(d = 0.56, 0.76 points on a 7 point scale). This finding provides evidence that the game-based

intervention Homeworld Bound: Redux provides motivational benefits over more traditional

workbook exercises. However, it is interesting to note that the active control activity, the

Python Graphics lab, was enjoyed more than either of the training interventions. This may

be due to low spatial skill students preferring less spatially demanding activities. Another

possibility is that the Python Graphics lab was rated higher because it may have been eas-

ier to complete than the other two; many students finished this activity in 20-30 minutes,

while students in the Spatial Exercises condition typically took 30-35 minutes to finish, and

students playing Homeworld Bound: Redux had enough content to play for the entire 70

minute lab period. Future work should investigate the extent to which student enjoyment

of an intervention may change over the course of a longer term intervention.

7.4.2 RQ3 and RQ4: Influence of Demographics on Training Effects and Enjoyment

Analyzing potential demographic differences in pretest to post-test improvement revealed

that pretest score was the only significant predictor in all three conditions; those with lower

pretest scores improved more on the post-test, while there was no significant effect of weekly

hours of video game play or gender on test score improvement. The standardized regression

coefficients for pretest score in each condition ranged from -0.26 to -0.43, indicating that

an increase of one standard deviation (5.83 points) on the pretest would predict a decrease

of anywhere between 1.08 points and 1.77 points in pretest to post-test improvement. This

somewhat modest influence is likely due to a ceiling effect since there is more room for

improvement on lower pretest scores than on high ones and the effect was observed in all

three conditions.

When looking at the same demographic predictors for enjoyment, only pretest score was a

significant predictor of intervention enjoyment, and only in the Spatial Exercises condition.

In addition, the effect size for this predictor was too small to have practically useful predictive

power. With a standardized regression coefficient of 0.20 for pretest score, an increase of

four standard deviations (24.52 points on a test with a maximum score of 30 points) on the

pretest corresponds to an increase of just 1 point on the enjoyment rating scale (out of 7

points).

Thus, I found no evidence that demographics influenced training effects (RQ3) or enjoy-

ment of training intervention (RQ4) in any practically significant way. However, this finding

may simply be due to the fact that there was not enough time in the 70 minute training
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period I used to produce measurable training effects for any participants. More research

with a longer intervention time is needed to determine if any effects of demographics might

become visible in the longer term for either training effectiveness or enjoyment. In addition,

future work should investigate other demographic variables that might affect students’ en-

joyment of a particular spatial skill training intervention, such as socioeconomic status and

preferred types of video games, both of which have been shown to be related to spatial skill

in previous work [108, 32, 27, 110].

7.4.3 RQ5: Certain Homeworld Bound: Redux Levels Tap Into Players’ Spatial Skill

My regression analysis revealed that most Construction Mode levels in Homeworld Bound:

Redux tapped into players’ spatial skills. The relationship between in-game performance

and spatial skill was particularly strong in the B2 and B3 levels for number of attempts and

completion time, where the largest effect sizes were found (see Table 7.1). For instance, every

increase of one standard deviation in number of attempts (2.06 attempts) corresponded to

a decrease of 2.31 points on pretest score in the B3 level. Likewise, every increase of one

standard deviation in completion time (6.76 minutes) corresponded to a decrease of 2.81

points on pretest score in the B3 level. Thus, the game mechanics of object rotation and object

alignment appear to be spatial in nature for the B2 and B3 levels. However, performance in

the B1 level had a weaker association with spatial skill, and performance in the B4 level had

no significant association with spatial skill. The B1 level may have been a little too easy to

adequately tap into players’ spatial skills given that performance in this level seemed to be

better than in B2 and B3 (see Table 7.2). It is also possible that the learning curve involved

in simply learning how to play affected performance more than spatial skill since B1 was

the first Construction Mode level. On the other hand, performance on the B4 level was not

noticeably better than on B2 and B3, so this explanation is insufficient for B4.

Another more likely possibility is that players are using the shapes of the 2D attachment

areas on object parts to align parts rather than the 3D shapes of the parts themselves. In the

B1 and B4 levels, these 2D attachment areas are generally rectangular or triangular, whereas

in the B2 and B3 levels, the shapes are more complex (see Figure 7.7). When determining

how a part should be rotated to line up its attachment area with the corresponding area on

another part, the more complex attachment shapes in B2 and B3 likely require much more

mental rotation effort than the simpler and more symmetrical shapes found in B1 and B4.

Performance in Exploration Mode levels, on the other hand, was not predictive of spatial

skill. Given that several games successful at training spatial skills require the player to

navigate a 3D environment in first person (e.g. Unreal Tournament, Portal 2, Medal of
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Honor: Pacific Assault), it is a bit surprising that no Exploration Mode levels tap into

spatial skills given its emphasis on first person navigation. It seems it is not enough for a

game to give players a navigation task in first person. It may be that the navigation task in

the first four Exploration Mode levels was too easy, so players could simply wander around

until they found all the parts, eliminating the need to use landmark orientation.

Figure 7.7: Examples of 2D attachment area shapes in levels B1-B4 in Homeworld Bound:

Redux ’s Construction mode. Glowing green areas indicate the attachment areas the player

is currently trying to align by rotating one of the parts. In levels B1 and B4, the 2D shapes

are simpler and more symmetric, potentially reducing the need to employ mental rotation

skills to complete the level.

Another possibility is that the environment had enough nearby landmark cues that players’

need to engage their mental rotation skills was reduced, a phenomenon observed in prior work

on navigation-based games utilizing such proximal landmark cues [155]. A third possibility

is that the presence of a map may be crucial for ensuring players engage mental rotation

skills. First person shooters like Unreal Tournament as well as other navigation-based games

shown to train spatial skills like the Segway Circuit minigame in Wii Fit have minimaps the

player must use to orient themselves in the environment.
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Some later Exploration Mode levels designed to tap more into players’ navigation visualiza-

tion skills include a static map of the environment and a time limit, which may force players

to be more strategic in their navigation. The last level in the current version of the game

also requires players to collect clues that depict the location of parts. Each of these features

may require players to engage in more explicit landmark orientation that is likely to engage

their mental rotation skills more fully. Future work is needed to explore the relationship

between performance and spatial skill on these later levels to test this hypothesis.

In summary, I found that the object rotation and object alignment features as implemented

in Construction Mode levels with more complex, asymmetrical attachment areas were able

to tap into players’ spatial skills more effectively than the object rotation and object align-

ment features found in other Construction Mode levels, while the landmark orientation and

navigation visualization features as implemented in all Exploration Mode levels analyzed

were not effective at tapping into players’ spatial skill (RQ5).

7.4.4 Design Recommendations

Given my findings with regard to RQ5, I recommend increasing the visual complexity

and asymmetry of simpler attachment shapes in Homeworld Bound: Redux’s Construction

Mode levels so that mentally rotating them requires more effort. Another solution could be

to make all the shapes and sizes of attachment areas in a given level identical so that the

player is forced to rely on cues other than the shape of attachment areas (e.g. the picture

of the finished object and the shape of the 3D object itself) to determine where to attach

parts and how to rotate them. A more general design solution for spatial skill training games

involving object rotation and object alignment is to ensure that all shapes being rotated or

aligned (whether 2D or 3D) have some degree of asymmetry and that the level design does

not enable any circumvention of mental rotation via alternate strategies that may have been

unintentionally built into the game by its designers.

Since I found no evidence that the first four levels of Exploration Mode in Homeworld

Bound: Redux tapped into players’ spatial skills, I recommend that they be revised to

increase the difficulty of finding parts and to incorporate some sort of map use to prevent

players from engaging in nonstrategic wandering that does not tap into their spatial skills.

These revisions could also be applied to any spatial skill training game where the player has

to explore in first person and collect items in the environment. Pictorial clues showing a

screenshot or drawing of an item’s location and immediate surroundings could be used in

combination with environmental elements that make it impossible or very difficult to find

items without using landmark orientation to figure out where to go to see the view of the
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item shown in the clue, as in the Ruined City level in the original Homeworld Bound (see

Chapter 3). Parts could be hidden behind or inside of objects, or buried in the ground so

the player must be in the exact right spot to dig them up.

Incorporating map use into a first person navigation game would likely need to be combined

with some sort of time pressure in order to motivate players to use the map and engage their

landmark orientation skills instead of wandering around randomly until they find whatever

they are looking for. Time pressure could be achieved by having the player be chased

by enemies, an environmental hazard (like a flood, earthquake, fire, or the rolling stone in

Indiana Jones) or by simply giving the player a fixed amount of time to navigate through the

environment. Designers of spatial skill training games incorporating landmark orientation

and navigation visualization tasks should also limit the presence of proximal landmark cues

in the game’s environment since their presence may reduce the need for players to exercise

their spatial skills while navigating [155].

It is possible that the ability to see relationships between performance in Homeworld

Bound: Redux and spatial skill was limited by my decision to use completion time as the sole

measure of performance in Exploration Mode. Differences in performance might have become

evident if more sophisticated metrics such as path traces were employed to analyze how

strategic and efficient each player’s search strategy for parts was, as was done in DeCastell

et al.’s study with a water maze task [155]. Future work could implement automatic path

traces in Homeworld Bound: Redux or other navigation-based games to enable detailed and

scalable analysis of the link between in-game performance and spatial skill.

Since Homeworld Bound: Redux is an open source game available on Github (https://

github.com/hwauck/homeworld-bound), I encourage future work from interested research

teams around the world to revise the game based on my recommendations in order to improve

its ability to tap into players’ spatial skill across all game levels, which may in turn help it

to become more effective at training students’ spatial skills. My findings can also be used to

inform the design of other game-based or virtual spatial skill training interventions, removing

some of the guesswork from the design process and potentially increasing the efficiency of

game-based spatial skill training.
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Chapter 8: Discussion and Future Directions

Spatial skills, although critical for success in STEM disciplines, have long been ignored

in formal education in favor of focusing exclusively on developing students’ mathematical

and verbal skills [216, 217]. Fortunately, the importance of spatial skills in promoting access

to STEM majors and careers is beginning to be recognized, as evidenced by the emergence

over the last couple decades of a substantial body of literature analyzing the effectiveness

of various spatial skill training interventions both in the laboratory [151, 124, 112, 115, 27,

3, 4, 30, 5] and in the classroom [218, 15, 128, 129, 131, 133]. A large portion of such

studies analyze the training effectiveness of existing commercial games. Games have great

potential for not only developing learners’ spatial skills, but harnessing the power of intrinsic

motivation - the whole point of game-based interventions - to encourage learners to persist

and stay engaged with the intervention. However, the potential of game-based spatial skill

training interventions cannot be realized if we study only existing commercial games and do

not have the knowledge necessary to build our own effective game-based interventions that

are intrinsically motivating for their target audience.

The central contribution and goal of this dissertation is twofold. First, I provide re-

searchers, educators, and game designers with a data-driven, player-centric approach to

designing and evaluating games for training spatial skills that can be implemented to pro-

duce fun and effective spatial skill training games to help students succeed in STEM majors

and careers. Second, I provide an open source, free, and easily accessible game designed

using this approach for use and modification by researchers, game designers, and educators

as a spatial skill training intervention and a testbed for future spatial skill training game

research. In the following sections, I summarize the major findings of this dissertation and

discuss potential directions for future research.

8.1 A THEORETICAL FRAMEWORK FOR MAPPING SPATIAL GAME FEATURES
TO SPATIAL SKILLS

In Chapter 3, I presented a theoretically grounded approach to developing games and

game features that tap into players’ spatial skills. This approach was grounded in a theoret-

ical framework I developed to map different dimensions of spatial skill (intrinsic-dynamic,

extrinsic-static, and extrinsic-dynamic) to different game features (object rotation, object

alignment, landmark orientation, and navigation visualization). I developed this theoretical

framework based on my analysis of both the existing research literature on spatial skill typol-
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ogy and existing empirical evidence of which video games are effective at training players’

spatial skills. I then demonstrated the implementation of my theoretical framework in a

functional, engaging children’s computer game: Homeworld Bound. My small scale training

study found that Homeworld Bound improved children’s scores on a test of perspective-

taking (an extrinsic-static spatial skill) over the course of four 45 minute sessions, indicating

that a game designed using this framework can be an effective spatial skill training inter-

vention. In addition, my analysis of the relationship between spatial skill and level-by-level

performance for Homeworld Bound in Chapter 5 and its revised version, Homeworld Bound:

Redux in Chapter 7 provided evidence that each game feature in my theoretical framework,

as implemented in the games, tapped into players’ spatial skills in some fashion.

However, the results of these studies reveal that my framework may be a bit too generic

for consistently effective application across different player ages. While I was able to show

that most levels in Homeworld Bound tapped into children’s spatial skills, including both

Construction Mode (object rotation and object alignment features) and Exploration Mode

(landmark orientation and navigation visualization features), no Exploration Mode levels

and only about half of Construction Mode levels analyzed in my study of Homeworld Bound:

Redux with adults were effective at tapping into players’ spatial skills. This suggests that

certain simpler spatial features, such as navigating through a 3D environment by walking

and jumping in Exploration Mode, while adequate for tapping into children’s spatial skills,

may be too simple to tax adults’ spatial skills.

Thus, it might be helpful to have separate sets of guidelines for games designed for children

and for adults, with the adult version specifying more complex features. Based on my

finding from Chapter 7 that performance in Exploration Mode levels without maps or a

time limit was not associated with spatial skill, orientation based on translating between

a 2D map and a 3D environment may be a better way of tapping into players’ extrinsic-

static spatial skills than landmark orientation, and using time-constrained navigation tasks

in combination with a map (as in certain Exploration Mode levels in Homeworld Bound:

Redux and commercial games shown to train spatial skills like Crazy Taxi, Segway Circuit,

and Medal of Honor) may do a better job of tapping into adults’ extrinsic-dynamic spatial

skills than the more generic feature navigation visualization. Similarly, asymmetrical shape

rotation and asymmetrical shape alignment may be better features for tapping into adults’

intrinsic-dynamic spatial skill than simply object rotation or object alignment. Future work

should investigate the viability of this new proposed model for adults with studies analyzing

the relationship between performance and spatial skill across more levels of Homeworld

Bound: Redux than I was able to and with a variety of different types of games containing

these hypothesized spatial features.
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Another limitation of my existing framework is that most of my studies tested the ability

of game features to tap into or train only one dimension of spatial skill, intrinsic-dynamic

spatial skills. Only one of them analyzed a second dimension, extrinsic-static spatial skill,

and none of them tested my games’ ability to tap into players’ extrinsic-dynamic spatial

skill. This was largely due to the desire to not induce mental fatigue in my participants by

administering many pretests and post-tests and the constraints of the classroom contexts

where I conducted almost all of my studies. However, in order to truly test whether the

mapping I have proposed between spatial game features and different dimensions of spatial

skill is accurate, future work using tests of each of the spatial skill dimensions in my frame-

work is needed to investigate the relationship between player performance and spatial skill

as well as training effects in Homeworld Bound: Redux and other games with the spatial

game features in my framework.

8.2 A DATA-DRIVEN APPROACH TO DESIGNING AND EVALUATING SPATIAL
GAME FEATURES

In Chapter 4, I took a data-driven approach to studying what game features may con-

tribute to the effectiveness of a game at training spatial skills, using my spatial skill training

game Homeworld Bound as a testbed. I presented the first empirical study analyzing the

potential of different game features to tap into children’s spatial skills, how this relationship

differs by gender, and gave practical recommendations for implementing these features in

games to assess or train players’ spatial skills based on the complex relationship between

gender, spatial skill, and in-game behavior my results revealed. My data-driven, level-by-

level player behavior analysis revealed that most levels in Homeworld Bound tapped into

children’s spatial skills via some dimension of player performance (number of rotation op-

erations and errors in Construction Mode, completion time in both Construction Mode and

Exploration Mode).

These findings gave me important insights about which levels of the game were not ade-

quately taxing children’s spatial skills and allowed me to hypothesize potential reasons for

their inadequacy. These reasons, in turn, allowed me to make the revisions to the game

described in Chapter 6 that could be tested in a future study to see if they strengthened the

relationship between spatial skills and player performance in each problematic level. Since

the revised version of the game, Homeworld Bound: Redux, was designed to appeal to low

spatial skill high school students and college-age adults (based on the player research I con-

ducted with this target population in Chapter 5, the revisions I made could not be tested

with children, Homeworld Bound ’s original target population. Future research should test
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Homeworld Bound: Redux, the revised version of the game (or perhaps an easier version of

it), with children to see if these revisions were successful.

My similar analysis of the relationship between player performance and spatial skill with

adults playing Homeworld Bound: Redux in Chapter 7 showed that no Exploration Mode

levels and only about half of Construction Mode levels were effective at tapping into players’

spatial skills. As in my study with children, getting these insights allowed me to hypothesize

potential reasons for the lack of association between player performance and spatial skill

in various levels of the game and suggest potential fixes that might be implemented and

tested in future work. While this future work lies outside the scope of this dissertation, I

encourage other researchers to conduct studies with Homeworld Bound: Redux with adult

low spatial skill populations after implementing these fixes to see if they strengthen the rela-

tionship between spatial skill and player performance in problematic levels. I also encourage

future work analyzing the relationship between player performance and spatial skill using

the present version of Homeworld Bound: Redux with a longer play time than was possible

in my evaluation study in Chapter 7. Since the time participants had to play in my study

was 70 minutes and most players only got through the first four levels of Exploration Mode

and the first four levels of Construction Mode, doubling or tripling the intervention time

would likely give players enough time to play through the later levels of Construction and

Exploration Mode that have as-yet untested features.

The research community could employ approaches similar to the data-driven approach

described in this dissertation to diagnose problems with other spatial skill training games.

This approach may not be feasible with existing commercial games unless game modding

software allows for the implementation of detailed level-by-level player performance data

collection. If conducting this kind of level-by-level performance and spatial skill analysis

with other noncommercial games, care must be taken that they are designed not only to

implement detailed telemetry data but also to have modular level structure like Homeworld

Bound: Redux. Different levels should contain different combinations of spatial features so

that it is possible to determine which combinations of features might be tapping into players’

spatial skills.

8.2.1 How much level modularity is needed to evaluate specific features?

One criticism of my approach to designing for modularity of level structure in Home-

world Bound and Homeworld Bound: Redux is that while different combinations of spatial

features are present in each level, no feature can be tested in complete isolation. Future

work could tackle this problem in two ways. First, creating simpler, more bare-bones games
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could help isolate individual low-level spatial features by virtue of the game simply pos-

sessing fewer potentially relevant game features. However, creating games that are simple

enough to test individual spatial features might eliminate some important player experience

features, decreasing player motivation and making the training intervention less game-like.

Furthermore, the kinds of games that have proven most effective at far transfer spatial skill

training are not simple and contain a large variety of different spatial game features that in

turn produce a large variety of different spatial tasks for the player. As Spence and Feng

as well as Green and Bavelier note, a training intervention designed to target a very specific

cognitive function (using much more homogeneous selection of spatial tasks) is likely to pro-

duce training effects that do not transfer more generally and remain task-specific [219, 59].

Thus, I argue that the kind of game complexity that makes commercial video games such

interesting, immersive, engaging, and varied experiences for players should be preserved in

game-based spatial skill training interventions.

Another potential concern with the use of complex games like Homeworld Bound and

Homeworld Bound: Redux as training interventions for spatial skills is that such complex

games may contain features that, while enhancing the player experience, are irrelevant to the

development of spatial skill and distract the player from learning. Such seductive details have

been shown in the education research literature to hinder learning in a variety of multimedia

contexts [220, 221, 222] (see [223] for a review). While the decision to make Homeworld

Bound and Homeworld Bound: Redux complex games with large numbers of features risks

introducing seductive features that distract from spatial learning, I believe potential benefits

of increased transfer effects as noted by Green and Spence and improved player experience

are worth the risks given the crucial advantages both present compared to more targeted

and non-game spatial skill training interventions.

Furthermore, the intentional, data-driven design process I used when adding spatial and

experiential game features to Homeworld Bound: Redux reduces the risk of introducing

seductive features unrelated to spatial skill. Homeworld Bound and Homeworld Bound:

Redux were designed carefully to make sure all game features, even those incorporated for

enhancing player experience, were tied into the spatial aspects of gameplay. For instance,

the visuals of each level’s environment (rock colors and shapes in Exploration Mode, part

colors and shapes in Construction Mode) were selected to serve as cues for the spatial tasks

that form the core of its gameplay (landmark orientation, navigation visualization, object

rotation, and object alignment). The game’s narrative, conveyed via brief dialogue, contained

the minimum amount of text necessary to convey how to play the game and to give the player

a sense of purpose behind the spatial tasks they were performing - for example, why collect

batteries? Why is there a time limit for certain levels? Why is the player collecting parts
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and using them to build items? This same pattern is seen in commercial games shown

to be effective at training spatial skills like Medal of Honor, Super Mario 64, Portal 2,

Crazy Taxi, and Unreal Tournament. These complex games may have a large number of

features, but they limit the number of game features unrelated to spatial game mechanics

(such as narrative dialogue) and tie their other game features (e.g. game mechanics, visual

environments) in with spatial tasks.

Rather than reducing the number of game features to isolate them, a better solution would

be to conduct comparative studies using two versions of a game that keep all features of each

level the same except for one. For example, one could test versions of the same Exploration

Mode level in Homeworld Bound: Redux with and without a time limit, or with or without

a map. Construction Mode levels could be manipulated to allow unlimited rotations or not,

or to change the shape of fusing areas on parts to be symmetrical or not. Such comparative

studies focusing on the relationship between player performance and spatial skill could make

changes in each level of the game to allow for multiple features to be tested at once. After

iterating on the game’s design based on the results of these studies, comparative studies of

the training effects of two versions of the same game could be conducted in which only one

feature common to many levels is manipulated at a time in order to see the influence of an

individual feature on training effects.

Overall, my data-driven approach to diagnosing problems with individual levels of spa-

tial skill training games seems to be an effective way of catching problems and identifying

potential fixes before (or while) a game is deployed in a controlled training study, based

on my findings in Chapters 4 and 7. Catching problems before investing in a costly and

time-consuming training study is clearly preferable, as it can help researchers iterate on a

game’s design multiple times before testing its training effects to increase its chances of be-

ing a successful training intervention. However, I still recommend that researchers analyze

the relationship between spatial skill and player performance during training studies so that

there is additional data to help explain potential reasons for the intervention’s success (or

lack thereof) as a training intervention and encourage future work aimed at establishing the

accuracy of these reasons.

8.2.2 Stealth Assessment

A final area of future work utilizing my data-driven approach to analyzing the relationship

between spatial skill and player behavior in games is in the domain of stealth assessment.

Using an iterative design and evaluation process, researchers and game designers could revise

a game until the relationship between a specific dimension of spatial skill and player perfor-
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mance is very strong in each level. The game could then be used as a stealth assessment of

spatial skill by researchers and educators as an alternative to standardized paper and pencil

tests of spatial skill that are widely used in the spatial skill training research literature.

Stealth assessment is designed to promote a more immersive and positive experience for

the learner by placing them in a state of flow as described by Csikszentmihalyi - a state

in which the learner becomes completely absorbed in an activity, losing track of time and

engaging in the activity due to its intrinsic appeal rather than extrinsic incentives like grades

or other rewards [224]. Another purpose of stealth assessment is to reduce test anxiety or

remove it altogether [225], making estimates of spatial skill more accurate for those with test

anxiety. In addition, by concealing that spatial skills are what is being evaluated, stealth

assessment may produce more accurate estimates of spatial skill for women and other low

spatial skill populations, who tend to perform worse on spatial tasks when the tasks are

explicitly framed as spatial [103, 104, 107, 226, 227, 228, 106].

Stealth assessment is often implemented using Bayesian networks or other machine learn-

ing methods that can use more complex methods of recognizing learner’s skill levels than

simple level-by-level quantitative performance metrics, such as learning specific sequences

of actions that are relevant to a learner’s skill level. These more complex methods can be

used to identify specific student misconceptions for the purposes of providing targeted feed-

back or tailored content [225]. I encourage future work exploring how to implement stealth

assessment in Homeworld Bound: Redux and other spatial skill training games.

8.3 A PLAYER-CENTRIC APPROACH TO DESIGNING AND EVALUATING
SPATIAL SKILL TRAINING GAMES

In Chapter 5, I presented a player-centric approach to designing spatial skill training

games. I conducted a survey study across three diverse populations of high school students

and college-age adults to gain a deeper and more complex understanding of how the follow-

ing demographic and prior gaming experience variables predicted pre-existing spatial skill:

gender, socioeconomic status (SES), gaming habits, gaming preferences, and gaming moti-

vations. I found that the only predictors of spatial skill were gender and population (males

and students at a selective, high SES high school scored higher on a test of mental rotation

than females and students at a non-selective, low SES public high school and college-age

adults recruited online and around the Champaign-Urbana area). While this finding was

consistent with prior work, the lack of relationship between preference for action video games

and spatial skill was surprising given the consistent relationship between action gaming and

spatial skill found elsewhere in the literature [112, 113, 114, 32, 115, 116, 27, 117, 143, 31].
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I used the findings of this study to develop a set of design recommendations for spatial skill

training games that align with the preferences of the low spatial skill populations I identified

in my results (college-age women and girls from the non-selective high school): facilitate short

gameplay sessions, promote simple fun and thrill, and focus on adventure and puzzle genres.

I then continued this player-centric approach by implementing these recommendations in

my own spatial skill training game, Homeworld Bound, to produce a revised version of the

game, Homeworld Bound: Redux, designed to be more appealing to low spatial skill young

adults (Chapter 6). When I evaluated Homeworld Bound: Redux in a controlled study

conducted in the context of an introductory programming course, my analysis of both its

training effects and its intrinsic appeal relative to other interventions focused on low spatial

skill students since they were the target audience of the game. In addition, I looked at how

other demographic factors such as gender and prior gaming experience influenced training

effects and intrinsic appeal.

The results of the study showed that gender and prior gaming experience had no effect on

training effects or intrinsic appeal. This is not surprising given that the 70 minute training

period was not sufficient to produce detectable training effects for Homeworld Bound: Redux

or either of the other interventions tested (online spatial workbook exercises and the active

control group intervention, a python graphics exercise). However, I did find that low spatial

skill students rated their intrinsic motivation to play Homeworld Bound: Redux higher than

the spatial workbook exercises, indicating that the game succeeded in its goal of being more

intrinsically motivating for low spatial skill students than non-game spatial skill training

interventions. Of course, there is plenty of room for improvement given that low spatial skill

students still rated Homeworld Bound: Redux a modest 4.2 (average) out of 7 on intrinsic

enjoyment. Future work should conduct training studies with Homeworld Bound: Redux

that give students the opportunity to provide not just enjoyment ratings but more detailed

qualitative feedback about their experience with the game to inform future player experience

improvements.

8.3.1 Working with the Target Audience

Overall, my findings point to the importance of recruiting from the correct target audience

when conducting studies to inform the design of or to evaluate a game-based spatial skill

training intervention. While it may be much easier to recruit convenience samples, such as

students required to participate in research studies as part of their introductory psychology

courses, research studies using more generic subject pools cannot tell us if the game being

studied would ultimately be effective for those it is being designed for, and if the game is
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actually fun for them - the main advantage of using game-based training interventions. To

ensure the effectiveness and intrinsic appeal of a game-based training intervention for low

spatial skill students and underrepresented minorities in STEM fields, it is critical that we

go out and find participants for our studies from these populations.

While public schools and even some afterschool programs have many more restrictions for

how students’ time is spent, many will work with researchers if researchers come prepared

to invest in a relationship with the school and have something of value to offer teachers and

students, such as educational content that can fit in with a school’s existing curriculum.

In addition, with the increasing interest in scaling university education to larger and larger

class sizes, introductory STEM courses at universities provide an excellent opportunity for

implementing online game-based spatial skill training interventions that have been designed,

as Homeworld Bound: Redux was, to be easy for educators to deploy in their classrooms.

Engineering programs at various universities have been implementing spatial skill training

programs for first year students for a while now, some of which are standalone courses that

allow for more long term training effects to be observed [128, 129, 131, 229, 215]. Thus, we

should not limit ourselves to laboratory studies when designing and evaluating game-based

spatial skill interventions, as the overwhelming majority of the spatial skill game training

literature has, if we want to see these games eventually have a measurable long term impact

on STEM proficiency and retention in the communities they are designed to serve. Future

work should bring together researchers, teachers, and students in a collaborative, mutually

beneficial process to design and evaluate spatial skill training games in classroom contexts

with low spatial skill populations.

8.3.2 Beyond the Classroom

While classroom contexts are critical for achieving more ecological validity in spatial skill

training programs aiming at improving students’ STEM efficacy and retention, the ideal

context for evaluating game-based training interventions is “in the wild” - in a setting where

participants are given the freedom to play the game or not as they choose without any

extrinsic incentives. The lack of such “in the wild” studies in the spatial skill training game

literature, while understandable given the need for experimental control of some sort when

evaluating training effects - should not be ignored. The entire purpose of using games as

training tools instead of more traditional classroom instruction or workbook exercises is that

they provide the kind of intrinsic motivation that could potentially get people to play them in

their leisure time. Children spend only about 18.5% of their waking hours in school [230], so

a learning activity that could take place outside of school - and that students would actually
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be willing to sacrifice leisure time for - would be a huge win for educators and students

alike, allowing educators more time to focus on other academic subjects and students more

hours in the day to practice spatial skills in a way that’s more fun for them. This kind of

informal learning [208] of spatial skills through leisure activity is currently thought to be one

of the main reasons behind the gender disparity in spatial skills that emerges in childhood

[100, 161, 73, 102, 231, 77], and so might provide a way to give girls equal and long term

access to spatial activities that simply would not be possible with classroom interventions

alone.

8.4 HOMEWORLD BOUND: REDUX AS A RESEARCH AND DESIGN TOOL FOR
SPATIAL SKILL TRAINING GAMES

In Chapters 3 and 4, I described the design and evaluation of a spatial skill training game,

Homeworld Bound, that I designed as a testbed for analyzing the effectiveness of different

game features in tapping into children’s spatial skills. In Chapter 6, I described the design

process I used for a new version of Homeworld Bound I built for a target audience of high

school students and college-age adults. The new version, Homeworld Bound: Redux, is open-

source, online, and easily scalable so that it can be modified, used for future research studies,

and set up in classrooms for training interventions by the larger community of cognitive

training game designers, researchers, and educators. The design of Homeworld Bound: Redux

combines the theoretically grounded, data-driven, and player-centric approaches to game

design I used in Chapters 3, 4, and 5. The design of the improved spatial game features

in Homeworld Bound: Redux was informed by my data-driven analysis of the relationship

between spatial skill and performance in Chapter 4, which allowed me to identify potential

reasons for certain levels’ ineffectiveness at tapping into players’ spatial skills. For the new

version of the game, I also incorporated the game features that I found low spatial skill

young adults preferred in my Chapter 5 survey study to improve the game’s intrinsic appeal

to this critical target audience for spatial skill training interventions.

There are many future directions for modifying and improving Homeworld Bound: Re-

dux for future research studies and educational interventions. In the following sections, I

describe a few ideas. I encourage any researchers, game designers, or educators who find

these ideas compelling to access the game’s source code at https://github.com/hwauck/

homeworld-bound and make the suggested modifications.
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8.4.1 New Game Features to Try

While Homeworld Bound: Redux already contains game features relevant to three dimen-

sions of the spatial skill typology I use in this dissertation (intrinsic-dynamic, extrinsic-static,

and extrinsic-dynamic), the game does not as of now attempt to incorporate features meant

to tap into players’ lower level spatial skills. One such low level spatial skill is spatial at-

tention, which concerns the ability to attend and react to multiple moving targets in one’s

environment. Spatial attention is frequently required in first person shooters and other ac-

tion games, and training on an action game has been shown to improve players’ spatial

attention skills [112, 115, 27, 3, 141]. It has been hypothesized that this lower level spatial

skill may underlie all the higher level spatial skills in the typology [3, 59, 136]. Future work

could investigate adding some sort of moving targets to certain Homeworld Bound: Redux

levels that the player has to aim at or react to quickly to in order to tap into more of this

low level spatial attention skill.

However, I recommend caution if implementing these kinds of features, since research has

shown that those with low spatial skill are less likely to play first person shooter games

and other action games frequently than those with high spatial skill [112, 113, 114, 32,

115, 116, 27, 117, 143, 31]. Conducting more player research studies with low spatial skill

populations in the future could help to clarify whether there are any specific characteristics

of action games that they find unappealing. If so, game features that tax players’ spatial

attention like an action game could be added to Homeworld Bound: Redux, but omitting the

unappealing aspects of the genre for this target population. For instance, if low spatial skill

players are not as interested in combat and shooting weapons, this could be replaced with a

game where players need to aim at stimuli for a different reason, such as in the commercial

game Pokémon Snap, a rail shooter where players take pictures of wild Pokémon while

moving through a 3D environment and progress by taking higher quality pictures of their

targets.

Another feature I did not analyze in Homeworld Bound: Redux is the social aspect of

gaming. Many games are played with friends, family, and strangers on the internet. Adding

multiplayer and social features, such as collaborative in-game tasks and chat capability, may

increase engagement with the game for those who prefer multiplayer experiences. Social

aspects of gaming also relate to the third aspect of need satisfaction in Deci and Ryan’s

self-determination theory: relatedness, or the need to feel connected to other people [61].

Future work could investigate ways of implementing multiplayer functionality in Homeworld

Bound: Redux, either locally or online, and the effects of this relatedness-promoting game

feature on the player experience for low spatial skill populations.
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A final idea is to implement an intelligent system in Homeworld Bound: Redux to auto-

matically detect a player’s skill level based on their in-game behavior and adjust the game’s

content to tailor it to the appropriate difficulty for their skill level. Machine learning algo-

rithms, such as the Bayesian networks used by Shute in game-based stealth assessments of

various skills [225], could be employed to detect the player’s level of spatial skill and present

a harder or easier version of the next level based on prior patterns of behavior. This approach

has been used successfully in intelligent tutoring systems [232, 233, 234, 235] and has been

applied in a number of educational games as well [236, 69, 237, 176] to ensure the content is

neither so difficult that learners give up nor so easy that they do not learn anything from it.

8.4.2 New Platforms to Try

I chose to implement Homeworld Bound and its successor, Homeworld Bound: Redux for

personal computers due to their general availability in schools, public libraries, and homes.

However, with mobile devices taking the majority of the computing market share as of

2019 [238] and the unique functionalities smartphones afford, a mobile implementation of

Homeworld Bound: Redux could improve the game’s fit with its target audience and the

overall player experience in a few ways. First, more natural gesture controls could be used

for Construction Mode, such as tapping and dragging to move parts and pinching in or out

to change the zoom level of the camera. In addition, the game could take advantage of the

gyrometers and accelerometers already present in mobile devices to allow players to rotate

their device in order to rotate a part on the screen. This more embodied, spatial gesture-

based control, when used in virtual environments and simulations, has been shown to improve

students’ mental models and general understanding of science concepts [239, 240, 241] and

therefore may benefit the development of spatial skills as well.

Furthermore, children are now more familiar with smartphones than computers based on

my observations during my classroom studies, so a mobile version of the game may be easier

for them to learn the controls for than a game involving mouse and keyboard. And, of course,

mobile phones are more portable, enabling people to play anywhere when they have a spare

moment. In my online survey study in Chapter 5, I found that pastime (playing just to pass

the time) was one of the stronger motivations for play for low spatial skill young adults,

and low spatial skill adults also reported playing in relatively short sessions, most frequently

between 15-60 minutes. Playing the game on a phone allows low spatial skill players to play

to pass the time, such as on the bus, train, or plane, or in the waiting room for a doctor’s

appointment - situations in where shorter play sessions are the norm and in fact required.

Future work should investigate the extent to which a mobile version of Homeworld Bound:
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Redux could provide a better player experience for children and low spatial skill young adults

and facilitate “in the wild” gameplay more easily.

Augmented reality (AR) and virtual reality (VR) simulations and games have recently

garnered a lot of attention in the education research community [242, 243, 244], and present

a method for creating spatial skill training interventions that are more immersive, more

embodied through the use of gesture-based controls, and more closely align with how a

person perceives the world around them spatially. Embodied controls and hand gestures

have demonstrated success at improving students’ mental models in science domains by

helping students concretize abstract concepts [239] and make sense of them [240, 241]. It

would be interesting to see if a version of Homeworld Bound implemented in either AR or

VR, perhaps where players could manipulate 3D virtual representations of object parts in

Construction Mode directly with their own hands, might be more engaging for players or

more effective at training spatial skills.

The only two noncommercial spatial skill training games that have been studied thus

far in the research literature, apart from Homeworld Bound: Redux, are implemented in

either VR [153] or use embodied controls [152], and show some preliminary evidence of

success as training interventions relative to non-immersive interventions. In addition, VR

and AR software have been studied in combination with workbook exercises and sketching

as a way to train engineering students’ intrinsic-dynamic and extrinsic-static spatial skills,

such as mental rotation, spatial visualization, and spatial orientation [133]. Unfortunately,

VR and AR technology is not as scalable as online or mobile game interventions for large

classrooms due to the need for specialized hardware and software for each student. Therefore,

I recommend that future work focuses primarily on implementing Homeworld Bound: Redux

in ways that allow the game to be more accessible to public schools and more scalable

to large classrooms or in the wild studies. However, with the advent of more affordable

and mobile phone-compatible hardware for VR like Google Cardboard, VR-based, gesture-

controlled implementations of spatial skill training games like Homeworld Bound: Redux are

still worth considering as a potential future work direction.

8.4.3 Children as a Target Audience

While the latter portion of this dissertation focused on designing and evaluating a spatial

skill training game for young adults (Chapters 5, 6, and 7), children are still a very important

target population for spatial skill training interventions. Training children’s spatial skills

before low spatial skill becomes a barrier to the pursuit of STEM in secondary and tertiary

education is the ideal for spatial skill training interventions since performance and experience
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in early STEM courses in middle school or high school predicts students’ decision of whether

or not to pursue STEM majors and careers [245, 246, 247], especially among women [248].

To facilitate future work investigating the design of spatial skill training games for children,

Homeworld Bound: Redux could be modified to make an easier version suitable for children.

For example, in Construction Mode, less complex shapes, auto-alignment of selected fuse

areas (as in the final version of Homeworld Bound), and increasing the number of rotations

allowed per level could make levels easier. In Exploration Mode, giving more time on the

timed levels and possibly making the level map draw more attention to key landmarks

could make levels easier for children. I invite future work on creating an easier version of

Homeworld Bound: Redux for children to enable the continuation of the line of research on

designing spatial skill training games for children I started in Chapters 3 and 5.

8.5 CONCLUSION

This dissertation has made several contributions to the research literature aimed at com-

bining the approaches of the psychology, education, and human-computer interaction do-

mains to produce novel insights about best practices for designing spatial skill training games

to improve efficacy and retention in STEM majors and careers. First, I presented a theo-

retically grounded approach to developing games and game features that tap into players’

spatial skills and implemented these features in a functional, engaging children’s computer

game that has demonstrated potential to train spatial skills: Homeworld Bound. Using

Homeworld Bound as a testbed for a data-driven approach to evaluating specific game fea-

tures, I presented the first empirical study analyzing the potential of different game features

to tap into children’s spatial skills and gave practical recommendations for implementing

these features in games to assess or train players’ spatial skills.

I then turned to a player-centric approach to the design of spatial skill training games,

looking at what game features would promote a more positive, more intrinsically motivating

player experience among the important target audience of low spatial skill populations. This

investigation contributed to the spatial skill game training research literature via a deeper

and more complex understanding of the relationship between pre-existing spatial skill and

video game play habits, preferences, and underlying gaming motivations and a set of design

recommendations for spatial skill training games that align with the preferences of low spatial

skill populations of high school students and college-age adults from diverse backgrounds.

Combining the results of my data-driven and player-centric approaches, I redesigned

Homeworld Bound to improve its ability to tap into players’ spatial skills and its moti-

vational appeal for low spatial skill young adults. In doing so, I demonstrated how to imple-
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ment the spatial features derived from my theoretical framework and the player experience

features I recommended for increasing the game’s appeal to low spatial skill young adults in

a real game, Homeworld Bound: Redux. Homeworld Bound: Redux is an open-source and

free-to-use spatial skill training game scalable to large class sizes that can be modified, used

for future research studies, and set up in classrooms by the larger community of cognitive

training game designers, researchers, and teachers.

I evaluated Homeworld Bound: Redux in the context of a large introductory STEM

course, contributing the first study evaluating the spatial skill training effectiveness of a

non-commercial game that 1) analyzed not just training effects but also the intrinsic appeal

of the intervention for students, 2) focused analysis of both training effects and intrinsic

appeal on low spatial skill students, and 3) used a sample size large enough to detect differ-

ences in training effects reliably. In addition, my evaluation of Homeworld Bound: Redux in

a classroom setting contributes the most detailed analysis to date of the effectiveness of mul-

tiple types of game features at tapping in to players’ spatial skills, providing researchers and

game designers with insights that can be used to increase a spatial skill training game’s like-

lihood of actually achieving training effects and deepen the research community’s theoretical

understanding of the mechanisms behind spatial skill use in digital games.

These contributions have broader impacts beyond the research literature. Understanding

not just which game-based spatial skill training interventions work, but why, can help re-

searchers and game designers design interventions that are more likely to be effective. In

addition, focusing the design of spatial skill training games on low spatial skill populations

as the target audience and understanding their gaming preferences can help researchers and

game designers create interventions that are more likely to interest them enough to persist

in playing, achieve noticeable training effects, and increase their chances of succeeding in

and pursuing STEM majors and careers.

While Homeworld Bound: Redux was designed as a testbed for investigating how to make

spatial skill training games more effective, it is my hope that with future revisions and

evaluation studies, the game can also serve as an effective, accessible, and scalable training

intervention to be used by schools, teachers, and students to improve access to STEM some-

day. However, I hope Homeworld Bound: Redux can be more than a training intervention as

well: that it can serve a more general purpose as a tool for researchers, game designers, and

educators around the world to investigate the best ways to help students acquire the spatial

skills necessary to succeed in STEM coursework and careers using game-based interventions.
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