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ABSTRACT

The main focus of this thesis is to study the stability of fix points for a dynamical system.

In the first part, we consider two dynamical models whose underlying graph can be represented

by a single network. We first consider the Kuramoto model, a canonical model of coupled phase

oscillators. We obtain two results on its partial phase-locked state, where a subset of oscillators

remain close in phase while others drift away. Firstly, we derive an analytical criterion for the

finite-N model to guarantee the existence of partial phase-locking for sufficiently strong coupling,

by proving the existence of an attracting ball around a fixed point of a subset of the oscillators.

Secondly, we deduce a deterministic condition for the model in the large N limit, giving almost

sure existence of a partially entrained cluster of computable size. We then explore a social network

model describing the formation of opinions. Two approaches, automorphism reduction method and

“nearest-neighbor” mean-field analysis, are proposed to analyze its fix points and their stabilities.

Both approaches aim to resolve the problem of the curse of dimensionality. For the first approach,

we exploit the graph automorphism of the Petersen graph and find its three stable fix points, a

consensus state, a balanced and an unbalanced state. For the second approach, we use the Erdös-

Rényi graph to illustrate the idea of approximating a large system by an “averaged” smaller one

by considering the distances of neighbors of a given vertex.

In the second part, we generalize the single-network case into complex networks to account

for real-world problems. In particular, we study a node-aligned multilayer Kuramoto model that

encapsulates multiple channels of connectivity among oscillators. Our primary goal is to understand

how inter-layer connections affect system stability. We address this question from two aspects: the

effect of inter-layer topologies and the effect of a weak inter-layer perturbation. For the first aspect,

we discuss two specific topologies: a complete graph and a cycle-tree graph or one containing only

no-edge-shared cycles, and explore their effects on the stability of a twisted fixed point of the

Kuramoto model. For the second aspect, we focus on a duplex network and provide analytical

treatment to measure the effect of an additional weak inter-layer coupling on the system stability

using the standard perturbation theory. It is found that under specific conditions our system is

always destabilized due to the line addition, conforming to the famously counter-intuitive Braess’s

Paradox.
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Chapter 1

Introduction

Though it has been for nearly twenty years in the past, the severe wobble of the London

Millennium Bridge on its opening day remains fresh in people’s memory. In June 2000, when

thousands of pedestrians walked across the bridge, significant shaking and swaying occurred out

of nowhere, which made the government shut it down almost immediately. It took entirely two

years for the engineers to fix this problem with appropriate modifications and make it reopen in

2002. Such wobbles in the first place seem to be utterly unexpected, though Cornell University

mathematician Steven Strogatz and three others provided a reasonable explanation in their 2005

Nature paper [1]. According to Strogatz, this strange phenomenon arose from the resonance between

the bridge and people’s footsteps. As pedestrians crowded through the bridge, as he explained, their

periodic footfalls energized the bridge, causing it to move sideways, and in turn, inducing people

to adjust their gaits to conform to the movement of the bridge, and eventually fell in sync with

each other. “Wobbling and synchrony are inseparable. They emerge together, as dual aspects of a

single instability mechanism, once the crowd reaches a critical size,” they stated in their paper [1].

Despite the studies on the vibration of the Millennium Bridge still yet to conclude, this incident

vividly paints a picture and opens a door to a world of synchronization in real life.

In the natural world, synchronization phenomena are ubiquitous around us. As early as the

17th century, Dutch scientist Christiaan Huygens observed synchronization between pendulums.

As the pendulums move back and forth, sound pulses travel through the wall the clocks hang

on. These sound pulses create vibrations and interfere with the pendulum swing and eventually

they synchronize. Oliveira and Melo developed a model explaining the phase-locking between

pendulums and reported their results in a recent paper [2]. Other than this, synchronization is

also widely observed in biological, chemical, physiological and social systems [3, 4]. For instance,

fireflies flash concertedly during the night in forests [5]; fishes swim in schools deep in the ocean;

birds flock in circles at sunset; human heart rhythms synchronize while co-sleeping [6]; the level

of skin conductance tends to sync up as a couple sits face-to-face staring at each other [7]. More

examples and references can be found in an excellent book by Strogatz [8].

Research on comprehending the essence of the synchronization phenomena has been ongoing

for decades, with one primary focus on the mechanism within a population of oscillators that

account for the synchronization. To understand the theoretical principles behind it, it is requisite

to find a model with nonlinear interactions among oscillators that can be mathematically analyzed.

However, finding such a model had been proved difficult especially for a large system. A pioneering

breakthrough was firstly made by Winfree in his first paper [9]. He considered a phase model

containing a huge population of interacting limit-cycle oscillators and realized that synchronization

occurs when the oscillator coupling is strong enough. However, his model is still hard to solve
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in its full generality. Followed his pace, Yoshiki Kuramoto, a Japanese physicist in the field of

nonlinear dynamics, simplified the model even further. In 1975, he proposed a model of phase

oscillators running at arbitrary intrinsic frequencies and coupled through the sine of their phase

differences, which is known as the Kuramoto model nowadays. The beauty of this model lies in

both its simplicity and complexity. On the one hand, the interaction among oscillators is simple

enough to be mathematically tractable. On the other hand, it is rich enough to display a variety

of different synchronization patterns and sufficiently flexible to be adapted to various contexts.

Although nearly half a century has passed, research on the Kuramoto model never ceased. Many

excellent reviews have been given on the Kuramoto model including Strogatz’s work in 2000 [10]

and Acebrón’s survey in 2005 [11].

The simplest form of the Kuramoto model deals with equally-weighted, all-to-all, and purely

sinusoidal couplings [12,13]:

θ̇i = ωi +
γ

N

N∑
j=1

sin(θj − θi) i = 1, 2, ..., N, (1.1)

where N is the number of oscillators in the system, θi ∈ T1 = (−π, π] is a phase variable describing

the state of the ith oscillator, ωi ∈ R is the natural frequency of the ith oscillator following a

given distribution with a probability density g(ω), and γ > 0 is the coupling strength among the

oscillators. Here, we scale γ by a factor of N , the cardinality of each oscillator’s neighborhood,

to ensure the model is well behaved as N → ∞. Note that by choosing an appropriate rotation

frame: θ = θ−Ωt where Ω is the first moment of g(ω), the equation (1.1) is equivalent to a system

with the average natural frequency of oscillators being zero. Thus, without loss of generality, we

can always assume
∑

i ωi = 0. Depending on various distributions of ωi, different synchronization

scenarios can occur in the parameter regions where incoherence is unstable. And for the Kuramoto

model, its synchronization can be conveniently measured by a complex order parameter

reiΨ =
1

N

N∑
j=1

eiθj , (1.2)

where i is the imaginary unit, the radius 0 < r(t) < 1 measures the phase coherence of the oscillator

population and the angle Ψ(t) represents the average phase. As N →∞, the radius vanishes when

all the oscillators are out of synchrony and becomes positive in synchronized states. By a mean-

field argument, Kuramoto suggested that the order parameter should undergo a phase transition

at some critical coupling γ∗, with amplitude ∝
√
γ − γ∗: since the amplitude is small for γ % γ∗

one expects only partial synchronization, meaning phase-locked and drifting oscillators co-exist in

the system. Strogatz gives a nice survey in his paper from 2000 [10]. In particular, he mentions

the Bowen lectures of Kopell in 1986, where she raises the possibility of doing a rigorous analysis

for large but finite N and then trying to prove a convergence result as N →∞.
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The general bifurcation picture described by Kuramoto has been established for the continuum

model: Strogatz and Mirollo introduced the continuum model and showed that if the frequencies are

distributed with density g(ω) then the incoherent state goes unstable exactly at the critical value

γ∗ = 2
πg(0) predicted by Kuramoto [14]. Strogatz, Mirollo and Matthews [15] showed that below

the threshold γ∗ the evolution decays to an incoherent state via Landau damping, and Mirollo and

Strogatz computed the spectrum of the partially locked state in the continuum model [16]. This

general picture has been expanded by a number of authors including Fernandez [17], Dietert [18] and

Chiba [19]. See also the review paper of Acebrón, Bonilla, Pérez Vicente, Ritort and Spigler [11],

particularly section II.

The partially phase-locked states in the finite-N Kuramoto model have received somewhat less

attention in the literature than either fully phase-locked states of the finite-N model or partially

phase-locked states in the continuum model. Back to 2004, Aeyels and Rogge [20] proved the ex-

istence of partial entrainment of a three-cell network and showed its local stability. They defined

the partial entrainment as a subset of oscillators remaining close to one another, while not neces-

sarily being close to any fixed configuration. Three years later, De Smet and Aeyels [16] derived

an elegant result by quantifying the influence of the coupling strength γ on the size of the partial

entrainment. A neat sufficient condition was formulated as an inequality for the natural frequency

differences of oscillators bounded by a function of γ and N . In particular, a critical value of γ

guaranteeing partial entrainment with respect to a given subset of oscillators was found with the

use of trigonometric inequalities.

One of the goals of this thesis is to address the issue that relatively little work on partial

synchronization for the Kuramoto model has been done. The two primary references we followed

are Dorfler and Bullo’s paper [21] on the full synchronization of the finite-N Kuramoto model and

the above-mentioned work on the partial entrainment by De Smet and Aeyels [16]. We will present

two independent but related results in Chapter 2. Firstly, we shall derive an analytical criterion

that, for sufficiently strong coupling, guarantees the existence of a partially phase-locked state. We

do this by defining a semi-norm and proving the existence of an attracting ball around a fixed point

of a subset of the oscillators. We also prove the existence of a larger invariant ball such that any

point in it asymptotically converges to the attracting ball. Secondly, we shall consider the large N

(thermodynamic) limit for the Kuramoto system. We use a result of De Smet and Aeyels [16] on

partial entrainment to show that when the natural frequencies of the oscillators are independent

identically distributed with a unimodal distribution, their result reduces to a deterministic condition

giving almost sure existence of a partially entrained state for sufficiently strong coupling.

The Kuramoto model formation considered in Chapter 2 is in its simplest version where the

underlying topology is a complete graph. By dint of the simple structure of a complete graph, we

are able to characterize its synchronization analytically in a fairly simple manner. Nevertheless, in

many applications one would like to understand a more general topology. For a dynamical system

with a more generalized underlying topology, the fixed points together with their respective stability
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are not well understood. Throughout this thesis, we will always assume the underlying topology

is an undirected graph. In Chapter 3, we will examine fixed points of a simple model for a social

network in a more general setting. In particular, we discuss two types of underlying graphs of the

system. First we consider the case in which the underlying graph has a great deal of symmetry.

We shall use the Petersen graph as an example to illustrate our approach. The gist is to reduce

the graph exploiting its automorphism group, so as to simplify the analysis process. The second

approach applied to large random graphs with few symmetries. Specifically, we shall focus on the

Erdös-Rényi random graph model with a large number of nodes and propose a novel mean-field

technique to study the fixed points. We name this technique the “nearest-neighbor” mean-field

analysis method. The meat is to measure the effect of interactions among nodes by the distance

between them. Hence, instead of considering every individual communication, we can classify the

nodes and evaluate the average interaction between groups, and therefore tackle the curse of the

dimensionality problem caused by the large size of the graph. We find good qualitative agreement

between the fixed points of the model on the Erdös-Rényi graph and the fixed points on the reduced

“mean-field” graph.

Starting from Chapter 4, we turn our attention from the traditional single-layer network repre-

sentation to the multilayer network representation. For dynamical systems in real-world problems

that incorporate multiple channels of connectivity and various interactions among entities, the

canonical single-layer network structure is too simple to model them correctly. This issue alone

gives incentive to the complex network theory blooming in recent decades. In Chapter 4, we will

study a node-aligned multilayer Kuramoto model and explore how the inter-layer connections affect

the stability of the twisted phase-locking states of the model. In particular, we shall focus on two

specific inter-layer topologies: a complete graph and a cycle-tree graph, which is a graph containing

only no-edge-shared cycles. For the complete graph, we conclude that the inter-layer connections

always impede the phase-locking by computing eigenvalues of the graph Laplacian directly. For

the cycle-tree graph, we investigate by following a workflow from a single cycle to multiple cycles

with a single hub, and finally to a tree of cycles. Along with the analysis, perturbation theory

and algebraic graph theory are applied to find the change of the number of positive eigenvalues

of the Jacobian resulting from the addition of inter-layer connections. We find that the effect of

inter-layer connections depends on the number of layers in each cycle: it impedes the phase-locking

only when there exist cycles containing too few layers.

In Chapter 4, we contrast two cases: one with full inter-layer connection and one without any

such connections. However, considering the intermediate case of a partial inter-layer coupling, i.e.,

a subset of nodes on one layer is connected to another layer while others are not, what will happen

if we add a weak inter-layer connection? How will this extra coupling effect the stability of the

whole dynamic? We consider this question in Chapter 5. We put forward a two-layer Kuramoto

oscillator system. This system is proposed as an analog to the famous Braess’s Paradox that adding

a road intended to help can adversely impact the traffic and increase the overall journey time. The
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underlying graph is a node-aligned duplex network. For this system, our result enables analytical

measurement of the effect of an extra coupling on the stability using the standard perturbation

theory. It is found, counter-intuitively as the Braess’s Paradox, that under specific conditions our

system is always destabilized by the additional inter-layer coupling.
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Chapter 2

Partial Synchronization of Kuramoto Model

2.1. Background

The literature on synchronization is large, and many different types of synchronization [22] have

been studied including chaotic synchronization [23], phase synchronization [24], lag synchronization

[25], generalized synchronization [26–28], etc. In this chapter, we will focus on a specific type, also

a most heavily studied one, for a system of a large population of oscillators. We present the precise

definition as follows:

Definition 2.1. For a dynamical system: d~θ
dt = f(~θ,~λ), where ~θ is a vector of the oscillators’ phases

and ~λ is a vector of parameters. For some i, j ∈ {1, ..., N}, we say the ith and jth oscillators are

synchronized (or phase-locked or coherent) if

θ̇i(t)− θ̇j(t)→ 0 as t→∞, (2.1)

and asynchronous (or drifting or incoherent) otherwise. Here, the overdot denotes the differen-

tiation with respect to time t. Moreover, if (2.1) is true for all pairs of oscillators, we say the

system reaches full synchronization (or full phase-lock or coherence). If it is not true for any pair

of oscillators, we say the system is asynchronous (or incoherent).

The Kuramoto model:

θ̇i = ωi +
γ

N

N∑
j=1

sin(θj − θi) i = 1, 2, ..., N, (2.2)

is a canonical model for understanding the synchronization phenomenon. During the past decades,

a great deal of work has been directed towards studying necessary and/or sufficient conditions on

the critical coupling strength to make the Kuramoto system phase-lock [10, 11, 16, 20, 29–35]. One

particularly useful result by Dorfler and Bullo [21] is an explicit sufficient condition on the frequency

spread that guarantees phase-locking:

γ > ωmax − ωmin, (2.3)

where ωmax := max
i
ωi and ωmin := min

i
ωi. Under this condition, the Kuramoto model (2.2)

supports full phase-locking for all possible distributions of the natural frequencies supported on

[ωmin, ωmax]. On the other hand, the standard `1/`∞ estimate on the sum gives a necessary
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condition on the coupling strength γ in order for the system to support a phase-locked state:

γ ≥ N

2(N − 1)
(ωmax − ωmin) ≈ 1

2
(ωmax − ωmin) . (2.4)

From Equation (2.4) it is easy to see that if ωi are independent and identically distributed according

to a distribution with unbounded support, then in the large N limit one can expect, at best, partial

phase-locking, as the law of large numbers will guarantee that, with high probability, Equation (2.4)

will be violated. To see this, note that

P( max
i∈{1...N}

|ωi| < c) = (P(|ωi| < c))N .

If the support of the distribution is unbounded, then (P(|ωi| < c)) < 1 for all c and thus

limN→∞ P(maxi∈{1...N} |ωi| < c) = 0. So for fixed coupling strength γ, full-phase-locking occurs

with vanishing probability in the large N limit. One can, of course, One can, of course, consider

scaling γ with N — this involves extreme value statistics of the distribution [29] — but if one is

taking γ to be fixed one must consider partial phase-locking or partial entrainment.

Partially locked states occur due to two factors. One is the inhomogeneity of the oscillators

themselves. The difference in the natural frequencies of oscillators in the Kuramoto model is one

example. Another factor had not been uncovered until eighteen years ago (2002) when Kuramoto

and Battogtokh [36] found that, with certain initial conditions, oscillators with identical natural

frequency can behave differently too. Since then, people started to realize that coupling inhomo-

geneity is also a factor of partial locking. This discovery was so fascinating that people gave it a

sensational name, “the Chimera state”, inspired by the mythological creature composed of a lions

head, a goats body, and a serpents tail. Thenceforth a chimera state refers to a spatio-temporal

pattern in which a population of identical oscillators is split into coexisting regions of phase-locked

and drifting oscillations. This research field, though interesting and active, is out of the scope of

this chapter. We will, instead, pay our attention to understanding the partially locked states for

the classic Kuramoto model (2.2) that arose by the first factor.

The partially locked states in the finite N Kuramoto model have received less attention in the

literature than either fully phase-locked states of the finite-N model or partial locked states in the

continuum model. Among the finite-N results we do mention the work of Aeyels and Rogge [20]

and particularly De Smet and Aeyels [16]. De Smet and Aeyels establish a partial entrainment

result that will be important for the latter part of this chapter. To make the future argument clear,

we shall first draw a distinction between partial phase-locking and partial entrainment (as used

by De Smet and Aeyels): we will use partial phase-locking to refer to a subset of oscillators that

approximately rotate rigidly. More precisely, a partially phase-locked subset S of oscillators is the

one that satisfies: there exists a constant vector θ∗ ∈ TN such that the translated phase vector
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θ̃ := θ − θ∗ follows

lim sup
t→∞

|θ̃i(t)− θ̃j(t)| ≤ δ(N) ∀ i, j ∈ S, (2.5)

where δ(N) → 0 as N → ∞. Typically in this chapter δ ∝ N−
1
2 , where N is the total number of

oscillators. Following De Smet and Aeyels we use partial entrainment to mean that there exists a

constant c small but independent of N such that

lim sup
t→∞

|θi(t)− θj(t)| ≤ c ∀ i, j ∈ S. (2.6)

Obviously this distinction is mainly important in the large N limit.

In this chapter, we present two independent but related results. Firstly, we consider partial

phase-locking in the finite-N Kuromoto model. The essence is perturbing a phase-locked solution by

adding in additional oscillators that are not phase-locked to the main group. We define a collection

of semi-norms and associated cylindrical sets in the phase space. We show that under suitable

conditions the semi-norms are decreasing in forward time, and thus the associated cylindrical sets

are invariant in forward time. The invariance of the cylindrical sets in forward time implies the

existence of a subset of oscillators that remain close in phase for all time, while the infinite directions

of the cylinder correspond to the degrees of freedom of the remaining oscillators that are not phase-

locked to the group. More precisely, we first consider a Kuramoto model with a small forcing term

and prove a standard proposition showing that if the unperturbed Kuramoto problem admits a

stable phase-locked solution then the perturbed problem admits a solution that stays near to this

phase-locked solution. We then apply this proposition to the Kuramoto model itself by identifying a

subset of oscillators with a small spread in natural frequency and treating the remaining oscillators

as a perturbation. This will lead to a sufficient condition for the existence of a partially phase-

locked solution in terms of the infimum over all subsets of oscillators of a certain function of the

frequency spread in that subset. Under such condition, the number of unbounded oscillators is at

most N1/2. Finally, we present some supporting numerical experiments.

For the second result, we reconsider some earlier work of De Smet and Aeyels [16] in the

case where the natural frequencies of the oscillators are independent and identically distributed

random variables, in the large N limit. We analyze the condition derived in [16] for the existence

of a positively invariant region and show that, in the large N limit, we can find a deterministic

condition guaranteeing the existence of a positively invariant region for sufficiently large coupling

constant γ. The theorem shows that, for the coupling strength γ sufficiently large and ωi chosen

independently and identically distributed from some reasonable distribution, then with probability

approaching one as N → ∞ there exists an entrained subset of oscillators of positive density. We

also get (deterministic) bounds on the size of the partially entrained cluster.
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2.2. Partial Phase-locking

2.2.1. Main Result

Our first result is to establish that, given a set of stable phase-locked oscillators, one can add to

the system a second set of oscillators that do not phase-lock to the first without materially impeding

the phase-locking. Before going into details, we first give some intuition why we expect this to be

true. The following is reasonably well-known. Suppose that an autonomous ODE xt = f(x) has an

asymptotically stable fixed point x0 where the linearization is coercive: yT∇f(x0)y ≤ −c‖y‖2. If

one makes a sufficiently small time-dependent perturbation to the ODE, xt = f(x) + εg(x, t) then

there will be a small ball around the former fixed point that is invariant in forward time (trapping)

– trajectories that begin in the region remain so for all time. To see this, let x = x0 + y and note

that

yt = f(x0 + y) + εg(x0 + y, t) ≈ ∇f(x0)y + εg(x0 + y, t), (2.7)

1

2

d

dt
‖y‖2 ≈ yT∇f(x0)y + εyTg . −c‖y‖2 +

ε

2
(‖y‖2 + ‖g‖2). (2.8)

Thus if ‖y‖ is of the right size: large enough that −(c− ε
2)‖y‖2 + ε

2‖g‖
2 < 0 but small enough to

justify f(x0 + y) ≈ ∇f(x0)y, then we find that d
dt‖y‖

2 ≤ 0 and orbits initially in the ball remain

so for all time. The intuition, therefore, is that under perturbation the fixed point should smear

out to an invariant ball of radius
√
ε. Similar constructions are used in the PDE context to prove

the existence of attractors [37–41]. In the proof of the actual theorem, of course, we will take a bit

more care but this is the essential idea.

Our first goal is to define what we mean by a partially phase-locked solution. To this end,

we shall define a family of semi-norms ‖ · ‖S indexed by a subset of oscillators S ⊆ {1, 2, 3, . . . , N}
representing the collection of phase-locked oscillators.

Definition 2.2. Given a non-empty index subset S ⊆ Ω = {1, 2, 3, . . . , N}, we define a semi-norm

on a phase vector θ with respect to S as follows

‖θ‖2S :=
1

|S|
∑

i,j∈S,i≤j
(θi − θj)2, (2.9)

where |S| is the cardinality of the set S.

Remark 2.3. The open semi-ball ‖θ‖S < R is a cylinder in RN that is unbounded in N − |S|+ 1

directions and is bounded in the remaining |S| − 1 directions. The unbounded directions correspond

to the N − |S| oscillators that are not phase-locked together with 1 direction corresponding to the

common translation mode θ 7→ θ + α1̂ where α is a scalar and 1̂ is an all-ones vector.
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Note that when taking the universal set, i.e., S = Ω, we have

‖θ‖2S =
1

N

∑
1≤i≤j≤N

(θi − θj)2 = ‖θ − 〈θ〉1̂‖2, (2.10)

where 〈θ〉 refers to the mean of θ. In this case, the semi-norm reduces to the usual `2 norm modding

out by the translation degree of freedom.

Of course these are only semi-norms, not norms, as there is always at least one null direction.

However, we will slightly abuse notation by referring to sets ‖θ‖S < r as a ball of radius r since the

whole idea is to mod out what is happening in the null directions. Having defined these seminorms

we can use this to define partial phase-locking.

Definition 2.4. Let T1 = (−π, π] be a torus and TN a N -dimensional torus. Denote

• |θ1 − θ2|: geodesic distance between θ1 ∈ T1 and θ2 ∈ T1.

• 4(α,N) := {(θ1, θ2, ..., θN ) ∈ TN |maxNi,j=1 |θi − θj | < α} for any α ∈ [0, π].

• 4̄(α,N) := {(θ1, θ2, ..., θN ) ∈ TN |maxNi,j=1 |θi − θj | ≤ α} for any α ∈ [0, π].

Definition 2.5. We say the dynamical system (2.2) achieves partial phase-locking if there exists a

subset of oscillators S ⊆ {1, 2, 3, . . . , N} such that the following is true: for some constant vector

θ∗ ∈ TN , the translated phase vector θ̃ := θ − θ∗ satisfies

lim sup
t→∞

|θ̃i(t)− θ̃j(t)| ≤ δ(N), ∀ i, j ∈ S, (2.11)

where δ(N)→ 0 as N →∞.

Remark 2.6. In two ways, partial phase-locking has a stronger requirement than partial entrain-

ment (a constant invariant region), which we shall define later. For one, it requires a subset of

oscillators remain close to a fixed configuration; for another, the phase distance between any pair

of phase-locked oscillators (up to a fixed point) decreases to zero as N →∞.

We need the following result from Dorfler and Bullo [21] to prove our main theorem.

Theorem 2.7 (Dörfler-Bullo). If γ > γcritical := ωmax − ωmin, then the Kuramoto model (2.2)

achieves full synchronization and all oscillators eventually have a common frequency ωavg = 1
N

∑N
j=1 ωj.

Also, the set 4̄(α,N) is positively invariant for every α ∈ [αmin, αmax], and each trajectory starting

in 4(αmax, N) approaches asymptotically 4̄(αmin, N). Here, αmin and αmax are two angles that

satisfy sin(αmin) = sin(αmax) = γcritical/γ and αmin ∈ [0, π/2), αmax ∈ (π/2, π].

In order to state our main theorem, we first need to define two functions g(K,N) and h(K,N)

that will prove important to the subsequent analysis.
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Definition 2.8. For the Kuramoto model (2.2) with natural frequencies {ωi}Ni=1, define two func-

tions:

g(K,N) = min
S⊂Ω,|S|=N−K

max
i,j∈S

|ωi − ωj |, (2.12)

h(K,N) =
(N −K)

N

√
1− 2K

(N −K)1/2
. (2.13)

We note that g(K,N) depends implicitly on the set of natural frequencies {ωi}Ni=1, and represents the

minimum spread in frequencies over subsets of size N −K. The function h(K,N) will arise in the

subsequent analysis and γh(K,N) represents an estimate of the maximum spread in frequencies for

N−K oscillators to be phase-locked. Note that h(K,N) is only defined for K ≤
√

16N+1−1
8 ≈ 0.5N

1
2 .

With Definition 2.8 we are ready to state our main theorem, which gives a sufficient condition

on the existence of partially phase-locked states.

Theorem 2.9. Suppose that there exists some integer K ≤
√

16N+1−1
8 such that g(K,N) <

γh(K,N)}, then for some constant vector θ∗ ∈ TN , there exists a subset of oscillators S with

|S| = N −K such that

1. INVARIANCE There exists a constant R with R = O(1) such that every oscillator with

the initial phase condition ‖θ(0)− θ∗‖S < R satisfies ‖θ(t)− θ∗‖S < R for all t > 0. In other

words, the ball ‖θ(t)− θ∗‖S < R is invariant in forward time.

2. CONVERGENCE There exists a constant r = O( 1√
N

)� R such that orbits that begin in

the larger ball ‖θ(0)− θ∗‖S < R converge to the smaller ball ‖θ(t)− θ∗‖S < r asymptotically.

Figure 2.1: Attracting and invariant balls for a subset of N −K oscillators
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Remark 2.10. We make a few remarks about this theorem. Firstly, we can actually derive analyt-

ical expressions for the sizes of the invariant and attracting balls, which are r = 2Kγ(N−K)1/2

N |λ2| and

R = N |λ2|
(N−K)γ . Here, λ2 is the second largest eigenvalue of the Jacobian matrix of Equation (2.2) at

θ∗. Note that λ2 depends implicitly on γ, and as γ increases we expect λ2 to become more negative.

Secondly, The integer K represents the number of free or non-phase-locked oscillators. The

function h(K,N) is only defined for K ≤
√

16N+1−1
8 ≈ 0.5N

1
2 for N large, so this theorem can only

guarantee the existence a subset of mutually phase-locked oscillators with K . 0.5N
1
2 oscillators

drifting away. This can probably be brought down with sharper estimates but we think it unlikely

that the scaling could be improved without substantially changing the approach.

Typically we will have g(K,N) < γh(K,N) in an interval, so there will be a range of integers

K for which the inequality is satisfied. In this situation, we would be primarily interested in the

smallest such K that satisfies the inequality, as this would represent the largest partially phase-locked

cluster. We denote such K as K∗, i.e., K∗ = argmin
K
{g(K,N) < γh(K,N)}.

When K = 0, corresponding to no free oscillators, the condition on γ in this theorem reduces

to γcritical(0) = ωmax − ωmin, which coincides with Theorem 2.7 of Dorfler and Bullo [21]. Thus

this theorem can be viewed as a generalization of their result to the case of partial phase-locking.

2.2.2. Proof of Main Result

In this section, we prove our first main result. A brief sketch of the main idea of the proof is as

follows: we first prove a standard proposition: If we take the Kuramoto model in a parameter regime

where there is a stable fixed point and we add a small perturbation, then there is an attracting ball

of small radius around the former fixed point. In particular, any initial conditions that begin near

the fixed point remain so for all time. We then use this result to study partial phase-locking by

considering subsets of oscillators that could potentially phase-lock, and considering the remaining

oscillators as a perturbation to these candidates for partial phase-locking.

Definition 2.11. We say θ∗ is a stable phase-locked solution of Equation (2.2) with frequencies

ω = (ω1, ω2, ..., ωN )T if it satisfies (2.2)

ωi =
γ

N

∑
j

sin(θ∗i − θ∗j ) (2.14)

and J , the Jacobian matrix at θ∗, i.e,

Jij(θ
∗) =


γ
N cos(θ∗i − θ∗j ), i 6= j,

− γ
N

∑
k 6=i cos(θ∗i − θ∗k), i = j

is negative semi-definite with a one dimensional kernel.

Proposition 2.12. Suppose θ∗ is a stable phase-locked solution. Consider the following perturbed
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Kuramoto model with perturbation εfi:

θ̇i = ωi −
γ

N

∑
j

sin(θi − θj) + εfi(θ, t), i = 1, 2, ...N, (2.15)

where ε is a small constant and f ′is are functions bounded by a constant C, i.e., max
θ,t,i
|fi(θ, t)| ≤ C.

Let {
r(ε) = 2εCN1/2/|λ2|,

R = |λ2|/γ,
(2.16)

where λ2 < 0 is the second largest eigenvalue of the Jacobian matrix of (2.2) at θ∗. Then for

ε < |λ2|2/(2CN1/2γ), the following statements hold:

(1) The ball ‖θ(t)− θ∗‖N < R is invariant in forward time.

(2) Every solution with ‖θ(0)− θ∗‖N < R asymptotically converges to a smaller invariant ball with

radius r(ε).

Proof. We will make a standard Lyapunov function calculation: the proof is sketched here, with

details relegated to the Appendix. We will represent θ as θ = θ∗ + θ̃. Note that by rotational

invariance we can assume θ̃ is mean zero. Also note that the norm ‖ · ‖2Ω is equivalent to the

standard Euclidean norm ‖ · ‖2 on the subspace of mean zero functions: if θ̃ has mean zero and 1̂

is the vector of all ones then ‖θ̃ + α1̂‖2Ω = ‖θ̃‖2Ω =
∑
θ̃2
i .

One can show an upper bound on d
dt‖θ̃‖

2 is of the following form:

d

dt
‖θ̃‖2 ≤ 2λ2‖θ̃‖2 + γ‖θ̃‖3 + 2εCN1/2‖θ̃‖.

To make d
dt‖θ̃‖

2 negative, it suffices to require{
2εCN1/2‖θ̃‖ < |λ2|‖θ̃‖2

γ‖θ̃‖3 < |λ2|‖θ̃‖2,
(2.17)

which is equivalent to
2εCN1/2

|λ2|
< ‖θ̃‖ < |λ2|

γ
. (2.18)

Let r(ε) = 2εCN1/2/|λ2| and R = |λ2|/γ, then by Gronwall’s inequality [42], the semi-norm of

θ̃ is exponentially decreasing when θ̃ is in the annulus of radii r(ε) and R, and then stays in the

ball of radius r(ε) forever. So statements (1) and (2) are proved. �

Now, we use Proposition 2.12 to prove Theorem 2.9.

Proof. For any integer K such that 0 ≤ K < N , consider N − K oscillators in the Kuramoto

model (2.2). By changing the order of labels, we can, w.l.o.g., focus on the first N −K oscillators
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and study the condition under which they will stably phase-lock. The evolution can be written as

follows

θ̇i = ωi −
γ

N

N∑
j=1

sin(θi − θj) (2.19)

= ωi −
γ

N

N−K∑
j=1

sin(θi − θj)−
γ

N

N∑
j=N−K+1

sin(θi − θj) (2.20)

= ωi −
γ̃

N −K

N−K∑
j=1

sin(θi − θj) + εfi, (2.21)

where γ̃ = γN−KN is a modified coupling strength on the first N −K oscillators and εfi represents

the effect of the remaining K oscillators. Then we have ε = γ
N , fi =

∑N
j=N−K+1 sin(θj − θi) ≤ K.

The strategy is to treat the effect of the remaining K oscillators as a perturbation and then apply

Proposition 2.12.

We first consider the unperturbed problem

θ̇i = ωi −
γ̃

N −K

N−K∑
j=1

sin(θi − θj), i = 1, 2, ..., N −K. (2.22)

Define

γ0 =
N−K
max
i,j=1

|ωi − ωj |.

By Theorem 2.7 if the spread in frequencies satisfies

γ0 < γ̃ =
γ(N −K)

N
, (2.23)

then the system (2.22) phase-locks. Plus, the set 4̄(α,N − K) is positively invariant for every

α ∈ [αmin, αmax], and each trajectory starting in 4(αmax, N − K) approaches asymptotically

4̄(αmin, N −K), where αmin ∈ [0, π/2), αmax ∈ (π/2, π] and sin(αmin) = sin(αmax) = γ0
γ̃ . From

these, it is clear to see that under a rotating frame with frequency ωavg, Equation (2.22) has a fixed

point θ∗ such that θ∗ ∈ 4̄(αmin, N −K).

Suppose L is the Jacobian matrix of (2.22) at the fixed point θ∗, i.e,

Lij =

{
γ̃

N−K cos(θ∗i − θ∗j ) i 6= j

− γ̃
N−K

∑
k cos(θ∗i − θ∗k) i = j.

Since θ∗ ∈ 4̄(αmin, N − K) and αmin ∈ [0, π2 ), we have cos(θ∗i − θ∗j ) > 0 and L is a negative

semidefinite Laplacian matrix with eigenvalues λ1 = 0 > λ2 ≥ λ3 ≥ ... ≥ λN−K , so the solution is

stably phase-locked.
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We next consider the effect of the perturbation term εfi where ε = γ
N and fi =

N∑
j=N−K+1

sin(θj−

θi) ≤ K. Proposition 2.12 guarantees the existence of an invariant ball for the first N−K oscillators

when

ε =
γ

N
<

|λ2|2

2K(N −K)1/2γ̃
, (2.24)

or equivalently, when

γ <

√
1

2K(N −K)3/2
·N |λ2|. (2.25)

The eigenvalue λ2 depends implicitly on γ so we need a lower bound on the magnitude of λ2

to close the argument and guarantee that (2.25) can be satisfied. Since the kernel of L is spanned

by (1, 1, 1, . . . , 1), we can consider the operator −L acting on the space of mean-zero vectors. For

any column vector x with length of N −K and
∑
i
xi = 0, we have, on the one hand,

xT (−L)x =
γ

N

∑
i,j

cos(θ∗i − θ∗j )x2
i −

γ

N

∑
i,j

cos(θ∗i − θ∗j )xixj

=
γ

2N

∑
i,j

cos(θ∗i − θ∗j )(xi − xj)2

≥ γ

2N
min
i,j

cos(θ∗i − θ∗j )
∑
i,j

(xi − xj)2

=
γ

N
min
i,j

cos(θ∗i − θ∗j )

(N −K)
∑
i

x2
i −

∑
i,j

xixj


=
γ(N −K)

N
min
i,j

cos(θ∗i − θ∗j )‖x‖2

≥ γ(N −K)

N

√
1− γ2

0

γ̃2
‖x‖2,

where the last inequality comes from sin(αmin) = sin(αmax) =
γ20
γ̃2

. On the other hand,

xT (−L)x ≤ γ

2N

∑
i,j

(xi − xj)2 =
γ(N −K)

N
‖x‖2.

Therefore we have the inequality

γ(N −K)

N

√
1− γ2

0

γ̃2
≤ |λ2| ≤

γ(N −K)

N
. (2.26)

Combining Equations (2.25) and (2.26), we can conclude that an invariant ball for the first
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N −K oscillators with radius R = |λ2|N
γ(N−K) exists when

γ0 =
N−K
max
i,j=1

|ωi − ωj | < γ̃

√
1− 2K

(N −K)1/2
. (2.27)

Therefore, we have proven the first part of Theorem 2.9. In fact, since the above argument holds

regardless of the subset of oscillators we choose, we can go through every subset holding N − K
elements and target the one with the smallest K such that (2.27) holds. So we derive a sufficient

condition: g(K,N) ≤ γh(K,N), where functions g and h are respectively defined in (2.12) and

(2.13). The existence of an invariant ball of N −K∗ oscillators where

K∗ := min
K
{K ∈ N : g(K,N) ≤ γh(K,N)} (2.28)

is guaranteed.

Similarly as Proposition 2.12, it can be concluded that if ‖θ(0)− θ∗‖S < R, then all the oscil-

lators in S asymptotically converges to the invariant ball ‖θ(t)− θ∗‖S < r, where r = 2γK(N−K)1/2

N |λ2| .

Therefore, we have a proof for the second part of Theorem 2.9. �

2.2.3. Experiments

We have performed numerical experiments using Matlab on the Kuramoto model (2.2) to

illustrate our first theorem. In the first three experiments, all of the oscillator frequencies are

chosen to be i.i.d. Gaussian random variables with small variance except for one, two or three

whose natural frequency is chosen to be large compared with others (the free oscillators). In

the last experiment, we consider a case where all oscillators have independent Cauchy distributed

natural frequencies.

Example 2.13 (One free oscillator). The first experiment depicts a case with N = 20 oscillators

with coupling strength γ = 1. The frequencies ω1, ω2, ..., ω19 are chosen to be Gaussian random

variables with mean 0 and variance γ
N , and the frequency ω20 is chosen to be γ + 0.1. One can

easily check K∗ = 1 by its definition, meaning there exists at most one free oscillator. The cluster

of the phase-locked oscillators eventually moves at a common angular frequency ω̄. We use the

change of variables θ̃i(t) = θi(t) − ω̄t for i = 1, 2, ..., N to work in the frame of reference which

the phase-locked cluster is expected to be stationary. With a slight abuse of notation, we rewrite

θ̃ as θ. The left graph in Figure 2.2 exhibits the evolvement of the phases θi on the real line with

respect to time t under the rotation frame; the right graph represents the phase trajectories on a

torus. It can be seen that there exists a large phase-locked cluster of 19 oscillators depicted by the

blue curves, and a free oscillator whose phase trajectory is associated with the red curve rotating

fast around the torus.
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Figure 2.2: A cluster of 19 phase-locked oscillators and 1 free oscillator.

For a more clear inspection, we zoom in a small portion of the right graph of Figure 2.2 and

redraw the trajectories under the rotation frame. This gives us Figure 2.3. It shows the trajectories

of the phase-locked oscillators and illustrates the effect of the free oscillator on the phase-locked

cluster. One can see a periodic disturbance when the free oscillator passes through the cluster,

though this is not sufficient to break up the cluster.

Figure 2.3: Phase trajectories on the torus under a rotated frame

The fundamental frequencies of the phase trajectory of a phase-locked oscillator ξ are expected

to be related to the angular frequencies of the free oscillator ω̃. In fact, we have ω̃ = 2πξ, which

can be observed from Figure 2.3. Every time a free oscillator completes a full-circle rotation, it

creates a periodic disturbance when passing through the phase-locked cluster and the cluster moves

forward a period. To make it more precise, we apply discrete Fourier transform on one of the blue

curves and obtain Figure 2.4.
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Figure 2.4: Single-sided amplitude spectrum of a locked phase trajectory

The fundamental frequency, as seen in Figure 2.4, is ξ = 0.0714, associated with the highest

peak denoted by the blue dashed line with the star marker. Other peaks correspond to all but the

first harmonic. On the other hand, the angular frequencies of the free oscillator can be computed by
θ(T )−θ(T/2)

T/2 where T = 1000s is the total running time. And the calculation gives us ω̃20 = 0.4483.

One can easily check ω̃ = 2πξ.

Example 2.14 (Two free oscillators). In this example, we still consider a system of N = 20 oscil-

lators with coupling strength γ = 1. The difference is that we require two instead of one oscillator

to have significantly large natural frequencies. More precisely, The frequencies ω1, ω2, ..., ω18 are

chosen to be Gaussian random variables with mean 0 and variance γ
N , and the two free oscillators

are chosen to have frequencies ω19 = γ + 0.1 and ω20 = 1.5γ + 0.01. As expected, K∗ = 2, and

as before we work in the coordinate system that rotates with the mean frequency of the cluster

of 18 oscillators. The numerical results are depicted in Figure 2.5: a set of eighteen phase-locked

oscillators with quasi-periodic disturbances as the two free oscillators pass through the cluster.

Figure 2.5: A cluster of 18 phase-locked oscillators and 2 free oscillators.
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The left graph in Figure 2.5 shows the phases of the oscillators in the cluster, which appear to

be quasi-periodic. The effect of the two free oscillators on the phase-locked ones can be seen from

the right graph in Figure 2.5. Enlarging a portion of this graph and redrawing the trajectories

under the rotation frame give Figure 2.6.

Figure 2.6: Phase trajectories on the torus under a rotated frame

Same as above, we expect a relationship between the fundamental frequencies of the phase

trajectory of a phase-locked oscillator ξ and the angular frequencies of the free oscillator ω̃: ω̃ = 2πξ,

Again, we apply discrete Fourier transform on one of the blue curves and obtain Figure 2.7.

Figure 2.7: Single-sided amplitude spectrum of a locked phase trajectory

The fundamental frequencies, as seen in Figure 2.7, are ξ1 = 0.0741 and ξ2 = 0.1738, associated

with the two highest peaks denoted by the dashed lines with the star markers. Other peaks denoted

by the blue dashed lines are associated with the higher-order harmonics of the wave with the

fundamental ξ1, i.e. multiples of ξ1; and those denoted by the green ones are the higher-order

harmonics of the wave with the fundamental ξ2, i.e. multiples of ξ2. The remaining small peaks
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are combinations of harmonics of the two waves. For instance, the pink line locates a frequency

ξ = ξ2 − 2ξ1 and the yellow one a frequency ξ = ξ2 − ξ1. Moreover, the angular frequencies of the

two free oscillators can be computed by θ(T )−θ(T/2)
T/2 where T = 1000s is the total running time.

And the calculation gives us ω̃19 = 0.4656 and ω̃20 = 1.0920. It can be easily seen that ω̃ = 2πξ

holds.

Example 2.15 (Three free oscillators). By increasing the natural frequency of one more oscillator,

the system of N = 20 oscillators with coupling strength γ = 1 evolves into a partial phase-

locked state with 3 free oscillators. The natural frequencies of such three oscillators are set to be

ω18 = γ + 0.1, ω19 = 1.5γ + 0.01 and ω20 = 2γ + 0.2. The other 17 oscillators’ natural frequencies

follow Gaussian distribution: ωi ∼ N(0, γ/N) for i = 1, 2, ..., 17. These 17 oscillators eventually

phase lock and move at a common frequency ω̄. Considering phase trajectories on the real line with

a rotation frame by applying a translation on the frequency: ω − ω̄ gives the left graph of Figure

2.8. The phase trajectories on the torus is depicted in the right graph.

Figure 2.8: A cluster of 17 phase-locked oscillators and 3 free oscillators.

Same as the first two examples, we zoom in a small portion of the right graph of Figure 2.8

and redraw the trajectories under the rotation frame, which yields Figure 2.9.
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Figure 2.9: Phase trajectories on the torus under a rotated frame

The phase trajectories of the phase-locked oscillators in the cluster, depicted as blue curves in

Figure 2.9, appear to be quasi-periodic. Following the same methodology, we apply discrete Fourier

transform on one of the blue curves and obtain Figure 2.10.

Figure 2.10: Single-sided amplitude spectrum of a locked phase trajectory

We again examine the relation between the fundamental frequencies of the phase-locked waves

ξ and the angular frequencies of the three free oscillators ω̃: ω̃ = 2πξ. In fact, one can see from

Figure 2.10 that ξ1 = 0.0957, ξ2 = 0.1880 and ξ3 = 0.3116, associated with the three highest peaks

denoted by the dashed lines with the star markers. And also, direct calculation gives ω̃18 = 0.6013,

ω̃19 = 1.1815 and ω̃19 = 1.9581. Clearly ω̃ = 2πξ holds in this case too. Furthermore, the blue

dashed lines in the graph represent harmonics of the wave with the fundamental ξ1; the yellow ones

with the fundamental ξ2; and the red ones with the fundamental ξ3. The remaining small peaks

are combinations of harmonics of the three waves. For instance, the peak denoted by the yellow

line represents a frequency of 2ξ2 − ξ3 and the one denoted by the pink line represents a frequency
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of ξ3 − ξ1.

Remark 2.16. In the previous three experiments, with one, and more than one free oscillators,

the solutions appeared to be periodic and quasi-periodic respectively. It is worth noting that it would

probably be quite difficult to prove the existence of a periodic or quasi-periodic solution. Even if one

were able to do so, a linear stability analysis of the solution would likely be highly non-trivial. In

the case of a periodic solution, the stability analysis would involve a Floquet problem; these types

of problems are difficult to solve in any but the simplest of cases. The spectrum of quasi-periodic

operators is even more difficult to understand: in the case of a quasi-periodic Schrödinger operator

the spectrum typically lies on a Cantor set [43], rather than simple bands and gaps as in the periodic

case. However, by showing the existence of a small exponentially attracting ball we can answer the

same physical question in a much easier way.

Example 2.17 (Cauchy distributed oscillators). The first three numerical experiments were in-

structive but obviously somewhat contrived in that we picked one, two or three of the oscillators

frequencies by hand to ensure that we had some free oscillators.

In this experiment, we take N = 500 oscillators with coupling strength γ = 5. The frequencies

ω1, ω2, ..., ω500 were chosen to be standard Cauchy random variables with constant scale 0.01, i.e.,

ωi ∼ 0.01·Cauchy(0, 1). Since Cauchy random variables have broad tails, we expect large outliers to

be relatively common (as compared with, for instance, a Gaussian distribution). In the experiment

depicted here, ωmax − ωmin = 7.2161 > γ = 5, so the condition for full phase-locking is not

satisfied. However, partial phase-locking is guaranteed if there exists some integer K such that

g(K) < γh(K).

Figure 2.11: Partially phase-locked oscillators with Cauchy distributed frequencies.

The graphs of functions g(K,N) and γh(K,N) with respect to K are drawn in the left graph

of Figure 2.11. From it, it is clear to see K∗ = 7, and thus, we are guaranteed the existence of

a phase-locked cluster of at least N − 7 = 493 oscillators. The theorem does not say much about

the basin of attraction, except to guarantee that it has a radius of at least O(1). The right graph
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in Figure 2.11 displays the evolution of the oscillator phases θi with respect to time t. The red

curves represent the trajectories of 494 phase-locked oscillators while the blue curves represent 6 free

oscillators. This example shows that N −K∗ is a strict lower bound of the size of the phase-locked

cluster.

2.3. Almost sure Entrainment

2.3.1. Main Result

Our goal in this section is to understand the probability of partial entrainment in the Kuramoto

model with randomly distributed frequencies, particularly in the large N limit. The results in the

previous section used a relatively strong definition of partial phase-locking, in that we required a

subset of oscillators to remain close to an equilibrium configuration. This resulted in fairly strong

control on ‖θ− θ∗‖S ; however, while it allowed a large number of non-phase-locked oscillators, the

percentage as a fraction of the total number had to remain small. In considering the limit N →∞,

one would really like to allow the possibility that a fixed percentage of the oscillators, possibly small

but independent of N , would fail to phase lock. To this end, we utilize a pretty result of De Smet

and Aeyels [16] that guarantees that a subset of oscillators remains close to one another, while not

necessarily being close to any fixed configuration: partial entrainment.

Theorem 2.18 (Aeyels-DeSmet). For the finite-N Kuramoto model (2.2), if

min
S⊂Ω,|S|=N−K

max
i,j∈S

|ωi − ωj | < γ

√
N

N −K

(
2N − 4K

3N

) 3
2

, (2.29)

then there exists a subset S ⊂ {1, ..., N} with |S| = N −K such that there is an invariant region:

∃c > 0 s.t. |θi(t)− θj(t)| < c, ∀t ≥ 0, ∀i, j ∈ S,

i.e., the Equation (2.2) achieves partial entrainment for at least N −K oscillators.

Remark 2.19. The above result is very strong, in the sense that it establishes entrainment when

a positive fraction of the oscillators is free. This is what one would expect from experiments,

applications, and the original physical arguments of Kuramoto. On the other hand, it does not give

very much information about the dynamics. While the angles of the entrained subset of oscillators

are guaranteed to remain close to one another, there can in principle be O(1) changes in the relative

positions of the oscillators, and thus, the order parameter is not guaranteed to be constant. One

expects that, on average, the free oscillators will not contribute to the order parameter (though

there is no proof of that) but even defining a “reduced” order parameter based only on the entrained

oscillators. The most that one can say is that the order parameter is bounded from above and below.

If we denote the right-hand side of Inequality (2.29) as h̃(K,N) and let ρ = K
N represent the
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density of unlocked oscillators, then it is clear that in this new variable ρ that

g(ρ) = min
S⊂Ω,

|S|
N

=1−ρ
max
i,j∈S

|ωi − ωj |, (2.30)

h̃(ρ) =

√
1

1− ρ

(
2− 4ρ

3

) 3
2

. (2.31)

In terms of ρ, the inequality (2.29) becomes g(ρ) < γh̃(ρ). Note the function h̃(ρ) is only well-

defined when ρ ≤ ρmax = 1
2 , which suggests that at most half of the oscillators can be phase-locked.

By considering the large N limit of the Kuramoto model, we obtain our second main result as

follows.

Theorem 2.20. Consider the Kuramoto model (2.2) where the natural frequencies {ωi}Ni=1 are

chosen independently and identically distributed from a distribution with the following properties:

• The distribution has a density f(x) that is symmetric and unimodal with support on the whole

line – the density is increasing on R− and decreasing on R+.

• The maximum of the density occurs at ω = 0.

Define the function g∞(ρ) implicitly by∫ g∞
2

− g∞
2

f(x)dx = 1− ρ, (2.32)

and the function h̃(ρ) by

h̃(ρ) =

√
1

1− ρ

(
2− 4ρ

3

) 3
2

.

Let γ∗ be the smallest value of γ such that there exists a solution to

g∞(ρ) = γh̃(ρ), ρ ∈ (0,
1

2
]. (2.33)

Then γ∗ is a threshold coupling strength for partial entrainment in the following sense: let

PN,γ denote the probability that the Kuramoto model admits a partially entrained state with O(N)

oscillators. Then

lim
N→∞

PN,γ = 1, ∀γ > γ∗.

Moreover we have bounds on the size of the largest partially entrained cluster: if Ncluster denotes

the number of the oscillators belonging to the largest partially entrained cluster then

1− ρmin ≤
Ncluster

N
≤
∫ γ

−γ
f(ω)dω.
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Here, ρmin is defined as the smallest ρ-coordinate of the intersection points of g∞(ρ) and γh̃(ρ).

The inequality holds in the sense that

lim
N→∞

P(Ncluster ≥ (1− ρmin)N −O(N
1
2

+ε)) = 1, (2.34)

lim
N→∞

P(Ncluster ≤ N
∫ γ

−γ
f(ω)dω +O(N

1
2

+ε)) = 1. (2.35)

Remark 2.21. This is, of course, a sufficient condition for partial phase-locking and not a neces-

sary one. Based on what is known about the continuous Kuramoto model and the physical arguments

on the finite-N Kuramoto model, one expects (and the numerics to be presented later to support

this) that partial entrainment occurs for much smaller values of γ than are required by the theorem.

As far as the hypotheses go, the second condition – that the maximum of the density of the

distribution occurs at ω = 0 – can be assumed w.l.o.g. by working in a co-rotating frame. In

the first condition, the assumption of symmetry is not really required and was adopted mostly for

ease of exposition, but the assumption that the density is unimodal enters into the proof in a more

substantial way. The difference between unimodality and multimodality is essential, for instance,

they have distinct supercritical bifurcation behaviours [44].

By the definition of g∞, it is clear that g∞ = 2F−1(1− ρ
2). Under the assumptions of symmetry

and unimodality, it is easy to verify that both g∞(ρ) and h̃(ρ) are decreasing functions with positive

second derivatives. In fact, if one can show (g∞ − h̃)(ρ) is a convex function when ρ ≤ 1
2 , then it

follows that these functions can be equal, i.e., g∞(ρ) = h̃(ρ), at no more than two distinct values of

ρ, which implies in the continuum limit the range of possible entrained cluster sizes is an interval.

Plus, as the coupling strength γ increases, ρmin decreases until the first intersection point vanishes,

which implies that partial synchronization becomes full synchronization. For instance, when the

natural frequencies ωi follow a standard Gaussian distribution, the graph of the functions g∞ and

γh̃ is shown as below.

Figure 2.12: Intersections of g∞ and γh̃ for Gaussian distribution.
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2.3.2. Proof of Main Result

To prove Theorem 2.20, one should first prove that under the assumptions of the distribution

of ωi, in the limit N → ∞ the function g(ρ) tends to a deterministic function g∞(ρ), which is

Proposition 2.22 stated below. The equation (2.34) in Theorem 2.20 then follows directly.

Proposition 2.22. Suppose that the natural frequencies {ωi}Ni=1 satisfy the assumptions in Theo-

rem 2.20, f(x) is its probability density function and F (x) is its cumulative distribution function.

Then, with high probability, g(K,N) converges to a deterministic function g∞(ρ) defined by the

Equation (2.32). More precisely, we have the estimate

lim
N→∞

P(|g(K,N)− g∞(
K

N
)| ≤ N−

1
2

+ε) = 1. (2.36)

Proof (Sketch of proof). Define a = F−1(1 − ρ
2) so that we have g∞ = 2a. First, using the law of

large number theorem, one can easily show g(ρ) ≤ 2a with probability one. What is less obvious

to show is that g(ρ) ≥ 2(a− δ) with probability one where δ = 1
2N
− 1

2
+ε and ε > 0. In other words,

we need to prove

P(A)→ 0 as N →∞, (2.37)

where A is the event that “there exists an interval with length L = 2(a− δ) containing more than

(1 − ρ)N points”. Notice that if no intervals of Length L with ωk at an endpoint contain more

than m points then no any other interval does. So it is only necessary to focus on N intervals

{[ωi, ωi + L] : i = 1, 2, ..., N}. Moreover, the interval centered at zero maximizes the probability

that a point lies in the interval, i.e., I = [−L/2, L/2] gives the largest P(x ∈ I) among all intervals

of length L. Based on these observations, it is not hard to see

P(A) ≤ N
N∑

M=(1−ρ)N

(
N

M

)
pM (1− p)N−M , (2.38)

where 1−ρ =
∫ a
−a f(x)dx and p =

∫ L/2
−L/2 f(x)dx =

∫ a−δ
−a+δ f(x)dx. Using the Stirling approximation,

one can prove that the right-hand side of the inequality (2.38) approaches zero as N approaches

infinity. So we are done. This is the main idea of our proof. The full proof can be found in

Appendix A.2. �

Proposition 2.22 suggests Equation (2.34), a probabilistic lower bound on the number of oscil-

lators in a partially entrained cluster. On the other hand, the probabilistic upper bound, given by

Equation (2.35) in Theorem 2.20, is implied by the central limit theorem. We formalize it in the

following proposition.

Proposition 2.23. Consider the finite N Kuramoto model (2.2) where the frequencies ωi are inde-

pendent and identically distributed according to a distribution with a density f(ω) that is symmetric
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and monomodal, with the unique maximum of f occuring at ω = 0. Then the probability that there

is any partially entrained cluster containing more than

N

∫ γ

−γ
f(ω)dω +O(N

1
2

+ε)

tends to zero as N →∞.

Proof (Sketch of proof). The proof of this is straightforward and similar to previous arguments, so

we just give the broad strokes. The basic observation is that from the usual `1/`∞ estimate we

have that a subset of oscillators cannot be partially entrained if

ωmax − ωmin ≥ 2γ.

By the usual central limit theorem arguments, the number of ωi lying in an interval I is, for N

large, approximately
∫
I f(ω). Since f is symmetric and monomodal the interval of length |I| = 2γ

which maximizes
∫
I f(ω) is the symmetric one, so the largest cluster will, with high probability,

have no more than
∫ γ
−γ f(ω)dω. �

Remark 2.24. It is worth comparing this with the minimum cluster size guaranteed by Theorem

2.20. The condition g∞(ρ) ≤ γh̃(ρ) defines the largest guaranteed cluster size 1−ρ∗ as a somewhat

complicated implicit function of the coupling strength γ, but this simplifies greatly in the limit of

large coupling strength γ. In the limit γ � 1 we have that ρ � 1 and the partial synchronization

condition becomes g∞(ρ) ≤ γh̃(0) = γ(2/3)
3
2 . Thus the theorem guarantees a partially locked cluster

of size at least

≈
∫ ( 2

3
)
3
2 γ

2

−( 2
3

)
3
2 γ

2

f(ω)dω

for large γ.

2.3.3. Experiments

In this section, we provide two numerical experiments to support Theorem 2.20. In the first

example, we consider oscillators with Gaussian distributed natural frequencies. In the second

example, we consider oscillators whose natural frequencies follow a Cauchy distribution.

Example 2.25. For the case of Gaussian distributed natural frequencies ωi, the function g∞(ρ) is

the inverse function of the error function:

g∞(ρ) = 2
√

2 erf−1(1− ρ).

Numerical calculations show that, in the thermodynamic limit, the minimum coupling strength

to guarantee the existence of partially entrained states is γ∗ ≈ 8.0027σ, where σ is the variance
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of the Gaussian distribution (it is clear from scaling that the critical coupling strength should

be proportional to the variance). For this critical value of γ, we have g∞(ρ) = γ∗h̃(ρ) at ρ ≈
.0901. Thus, for Gaussian distributed frequencies, Theorem 2.20 guarantees the birth of a partially

entrained cluster containing all but about 9.01% of the oscillators.

Plus, to verify Proposition 2.22, we consider N = 10000 oscillators with coupling strength

γ = 10 and suppose the natural frequencies follow a standard Gaussian distribution N (0, 1). Then

we should have g ≈ g∞ ± 0.01. The graphs of g and g∞ shown in Figure 2.13 have verified this.

Figure 2.13: A comparison between functions g and g∞ for Gaussian distribution

Example 2.26. For the case of Cauchy distributed natural frequencies ωi, their CDF and PDF

are as follows:

f(x; k, λ) =
1

kπ(1 + (x−λk )2)
, (2.39)

F (x; k, λ) =
1

π
arctan(

x− λ
k

) +
1

2
, (2.40)

where k is the scale parameter and λ is the location parameter specifying the location of the peak

of the distribution. We consider the case where λ = 0. the function g∞(ρ) is the inverse function

of the error function:

g∞(ρ) = 2 tan(
π

2
(1− ρ)).

Numerical calculations show that, in the thermodynamic limit, the minimum coupling to guarantee

the existence of partially entrained states is γ∗ ≈ 21.4950k (it is clear from scaling that the critical

coupling strength should be proportional to the scale parameter). For this critical value of γ we have

g∞(ρ) = γ∗h̃(ρ) at ρ ≈ .2258. Thus, for Cauchy distributed frequencies, Theorem 2.20 guarantees

the birth of a partially entrained cluster containing all but about 22.58% of the oscillators.
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Similarly as before, to verify Proposition 2.22, we consider N = 10000 oscillators with coupling

strength γ = 50 and suppose the natural frequencies follow a Cauchy distribution with k = 1 and

λ = 0. Then we should have g ≈ g∞ ± 0.01. The graphs of g and g∞ are shown below:

Figure 2.14: A comparison between functions g and g∞ for Cauchy distribution

Now, we do a simulation to verify Theorem 2.20, our second main result about partial syn-

chronization for the oscillators with Cauchy distributed natural frequencies.

Fix k = 1, N = 500, ω1 = 0 and ωi ∼ f(x; 1, 0) for i = 2, ..., N , then direct calculation gives

γ∗ = 21.4950. Define Φ1i = θi(
T
2 )− θ1(T2 ), Φ2i = θi(T )− θ1(T ) and Ψi = (Φ2i−Φ1i)× 2

T . Then we

have

Ψi → ωi∞ − ω1∞ as T →∞, (2.41)

and thus, Ψi approaches zero if θi is locked with θ1. Now, define a relative frequency difference:

d = 10−5× (maxi(Ψi)−mini(Ψi)), where 10−5 is a custom scale we choose to classify phase-locked

oscillators. If Ψi ≤ d, we regard θi as the oscillator that locks with θ1. To see the effect of γ on the

partial entrainment, we vary γ from 1 to 25, and for each γ, use 5 samples of ωi to solve Equation

(2.2) numerically up to time T = 500 with a time step dt = 0.1. Then we compute the average

number of oscillators in the largest cluster with frequency difference less than d, i.e, Ψi ≤ d, over

the 5 simulations. The histogram graphs of the amount of oscillators corresponding to γ = 5 and

γ = 25 are drawn separately in Figure 2.15, where the x-axis is the frequency difference Ψi and

the y-axis is the average number of oscillators satisfying Ψi ∈ (x− d
2 , x+ d

2). The graphs show, as

we expected, the size of the largest cluster of phase-entrained oscillators is larger for γ = 25 than

which of γ = 5.
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(a): γ = 5 (b): γ = 25

Figure 2.15: Histogram graphs of average number of phase-entrained oscillators

To make our argument more clear, we will define three parameters Pnumeric, Plower and Pupper

and make a careful comparison among them.

First, let Pnumeric denote the average percentage of oscillators in the largest phase-entrained

cluster over the 5 simulations. For instance, the right graph in Figure 2.15 shows that Pnumeric =
487.2
500 ≈ 97% when γ = 25.

Second, notice that if we have

|ωi − ωj | > 2γ ≥ 2γ

N
|
N∑
j=1

sin(θj − θi)|, (2.42)

then the ith oscillator and jth oscillator will never synchronize. Thus, by the law of large number,

the percentage of oscillators that lock together must be less than
∫ γ
−γ f(x; 1, 0)dx. Let Pupper denote

this percentage, i.e., Pupper =
∫ γ
−γ f(x; 1, 0)dx.

Finally, according to Theorem 2.20, we know that as γ > γ∗ = 21.4950, there are at least

n = (1 − ρmin) × N oscillators locking together, where ρmin is defined as the ρ-coordinate of the

first intersection point of g∞ and γh̃. Let Plower denote the percentage of oscillators in the largest

phase-entrained cluster derived from this theorem, i.e., Plower = 1− ρmin.

Obviously, we have the following inequality

Plower ≤ Pnumeric ≤ Pupper. (2.43)

To check Inequality (2.43), we consider γ = 16, 17, ..., 30 and draw the graphs of Pnumeric, Pupper and

Plower corresponding to each γ as below. Note that when γ < γ∗ = 21.4950, functions g∞ and γh̃

have no intersections, so our theorem cannot guarantee any cluster of phase-entrained oscillators.
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Therefore, Plower = 0 when γ < γ∗ = 21.4950, as seen in Figure 2.16.

Figure 2.16: A comparison among Pnumeric, Plower and Pupper for Cauchy distribution

Moreover, we consider the asymptotic value of the percentage of locked oscillators for large

coupling strength γ. Note that as γ grows large, ρmin tends to approach zero, and thus, h̃(ρ)

approaches (2
3)

3
2 . From Equation (2.33), we have

g∞(ρ)→ (
2

3
)
3
2γ ≈ 0.544γ as ρ→ 0.

Using the definition of g∞ as given by (2.32), it is easy to compute that ρmin = 2
∫∞

( 2
3

)
3
2 γ

2

f(x)dx ≈

2
∫∞

0.272γ f(x)dx. Thus, when γ is large,

Plower ∼ 1− 2

∫ ∞
0.272γ

f(x)dx. (2.44)

Denote the right-hand side as Plower asym, i.e., Plower asym = 1 − 2
∫∞

0.272γ f(x)dx. Then for Cauchy

distribution, (1 − Plower asym) ∼ 1
γ , i.e., the percentage of unlocked oscillators is inversely propor-

tional to the coupling strength when the strength is large. On the other hand, for Pupper, by its

definition, we have for any γ > 0,

Pupper = 1− 2

∫ ∞
γ

f(x)dx. (2.45)

From (2.44) and (2.45), it is easy to see that as γ grows large, Plower tends to approach Pupper. We

make the comparison by considering γ=1000, 2000, 3000, ..., 10000 in the following graph:
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Figure 2.17: A comparison between Plower and Pupper for Cauchy distribution

Eventually, we quantify a useful measure of coherence, the order parameter r, defined as

r(t) =| 1

N

N∑
j=1

eiθj(t) |, (2.46)

with respect to γ = γ∗/2, γ∗, 2γ∗ separately. Not surprisingly, r(t) gets closer to 1 with faster

convergence rate for larger coupling strength γ. See Figure 2.18 below.

Figure 2.18: Order parameter r(t) for different coupling strengths

2.4. Conclusion

In this chapter, we derive an explicit expression of a sufficient condition on the coupling strength

γ to achieve partial phase-locking in the classical finite-N Kuramoto model (2.2) with an arbitrary

distribution on the oscillators’ natural frequencies. Compared with a recent report on the full
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phase-locking given by F.Dörfler and F.Bullo [21], this is a more generalized result encompassing a

wide range of patterns from zero to O(N
1
2 ) free oscillators. Interestingly, we realize that oscillators

with singular natural frequencies, regardless of how large, present little effect on the behavior of

the cluster of phase-locked oscillators, and if such cluster exists, there is only one big group with

all but at most K oscillators. Mean-field calculations suggest that phase-locking should occur

when K ∝ τN for τ small enough. The present approach, in the setting of a strong definition

of partial phase-locking where we require a subset of oscillators to remain close to an equilibrium

configuration, is sufficient to prove phase-locking when K = O(N
1
2 ). If weakening the requirement

to only partial entrainment, where a subset of oscillators remains close to one another while not

necessarily being close to any fixed configuration, then we will have more free oscillators. De Smet

and Aeyels [16] actually considered the scenario where O(N) free oscillators exist. In the large N

limit, using their sufficient condition on the partial synchronization for a finite-N system, we show

that this condition can be reduced to a deterministic one giving almost sure existence of a partially

entrained state.

The underlying graph of the Kuramoto model we consider in this chapter is a complete graph.

An all-to-all topology like so is simple and elegant, thus enabling abundant past research. As the

exploration has matured, the fixed points (also known as steady states), as well as their stability

in the dynamical system with a complete underlying structure, are well-understood. However in

practice, the real systems could be sparse or asymmetric or both. With a lack of desirable properties

on the graph topology itself, it is not only analytically but also numerically harder to investigate

the fixed points in these systems, especially when the system grows in size. In the next chapter,

we will discuss two types of more generalized graphs: one with symmetry but not fully connected

and one with few symmetry but involves a large population of objects. A separate method will be

proposed per graph to examine the fixed points in the context of a specific social network in its

respective graph configuration. We hope these methods shed some light on the study of dynamical

systems with general underlying topologies.
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Chapter 3

Analysis on Social Dynamics

3.1. Background

Studies on the social network defined as a system consisting of a finite set or sets of actors

and the relation or relations among them [45] can be dated back to mid-twentieth. Here, actors

refer to social entities such as discrete individuals, corporations, or collective social units. Opinion

dynamics, as one of the processes studied, play a crucial role to understand human interactions

in our society. For instance, Parsegov et al. [46] proposed a novel multidimensional model de-

scribing the evolution of agents’ opinions on several interdependent topics. They provided rigorous

examination on the stability properties of their model including the convergence of the agents’ opin-

ions. Das et al. [47] considered a problem of modeling how people update opinions based on their

neighbors’ opinions. They established an analytical model for opinion formation and informational

influence based on carefully designed online experiments, and explored the effect of the size of the

neighborhood as well as stubborn nodes on the convergence of opinions. Quattrociocchi et al. [48]

focused on how different sizes and interaction patterns of the information system may affect the

opinions’ distribution. In particular, they investigated the effect of media communication patterns

and showed that plurality and competition within information sources lead to stable configurations

where multiple distant cultures coexist. For more references see [49–53].

Among all concepts of social network analysis, one of the most important branches is the

balance theory. The idea of it was first brought up by Heider [54] in his study on attitudes and

cognitive organizations, where he stated that a stable social network requires every triad (a subset

of three actors) has even number of negative relation affects. In essence, these networks are ones

that satisfy the aphorism “enemy of my enemy is my friend”. People call such a structure a balanced

state. More precisely, a network is balanced, if, when two people like each other (a positive relation

in the network), then they are consistent in their evaluation of all other people, and when they

dislike each other (a negative relation in the network), then they disagree in the evaluation of

all other people. Recently, Agbanusi and Bronski [55] proposed a model for the co-evolution of

opinions and positions in a social network in order to understand the dynamics and emergence of

balance. In their paper, the underlying topology considered is a complete graph. This chapter aims

to extend their result to other interesting graphs such as the Petersen graph and the Erdös-Rényi

graph.

First, we define their model explicitly. Consider a simple undirected graph Γ with N vertices
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and |E| edges, where E is the edge set, i.e.,

E = {(vi, vj) : i < j and vi, vj are two vertices in the graph}. (3.1)

Each node represents an actor and each edge represents the relation between a pair of actors. There

are two types of variables in the model:

• Position xi(t) is associated with vertex vi in the graph and represents the position actor i

on some issue. The larger the size of a vertex, the stronger position where an actor stands,

i.e., the larger xi is. Besides, a solid vertex represents a positive position while a hollow one

negative position.

• Opinion γij(t) is associated with an edge in the graph and represents the degree of friend-

liness between actor i and actor j, with γij(t) > 0, associated with a solid edge, representing

friendliness; and γij(t) < 0, associated with a dashed edge, antagonism.

Let x denote the vector of the actors’ positions and γ the (lexicographically ordered) inter-actor

opinions. Define a Dirichlet energy as

D(x,γ) =
∑

(i,j)∈E

γij(xi − xj)2, (3.2)

which represents the total amount of disharmony in the system. The goal is to target the state with

the minimum energy under some constraints and analyze its stability. So examining the gradient

flow in the configuration space is a necessity. This problem is equivalent to understanding the

dynamics of constricted and interacted oscillators. Compared with the Kuramoto model studied

in Chapter 2, we use the position x to represent oscillators in our current model instead of the

phase configuration represented by angle θ. Additionally, each pair of nodes’ positions interact via

a linear function while the coupling strength γ is a variable dependent on the positions themselves.

In consideration of reality, it is natural to assume the following constraints on this dynamic:

g1 :=
1

|E|
∑

(i,j)∈E

γij = Q > 0, (3.3)

g2 :=
1

|E|
∑

(i,j)∈E

γ2
ij = P > 0, (3.4)

g3 :=

N∑
i=1

x2
i = R > 0, (3.5)

where P , Q and R are positive constants.

• The first constraint (3.3) requires the mean of the opinions to be positive. This can be

interpreted as a societal pressure toward civil discourse: while some people may hold negative

opinions of others, the average opinion must be positive.
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• The second constraint (3.4) excludes extreme personal opinion. The Cauchy-Schwarz in-

equality implies that P −Q2 ≥ 0. The quantity ν2 := P −Q2 defines the opinion variance and

represents some socially acceptable range of opinions.

• The third constraint (3.5) excludes extreme personal position. We will assume, w.l.o.g.,

R = 1 throughout this chapter. Otherwise, just rescale xi for all i.

Following the method of Lagrange multipliers, the constrained free energy is given by

D :=
∑

(i,j)∈E

γij(xi − xj)2 − µ

|E|
∑

(i,j)∈E

γij −
τ

|E|
∑

(i,j)∈E

γ2
ij − λ

N∑
i=1

x2
i (3.6)

= D − µg1 − τg2 − λg3, (3.7)

where µ, τ and λ are the three Lagrange multipliers enforcing the constraints (3.3)-(3.5). W.l.o.g.,

assume that γji = γij for all (i, j) ∈ E (see paper [55] for more details). Let L be the Laplacian

matrix corresponding to (3.2), i.e. a |V |× |V | matrix whose entry at the ith row and jth column is

Lij =


∑
i 6=k

γik, i = j,

−γij , i 6= j, (i, j) ∈ E or (j, i) ∈ E,
0, otherwise.

(3.8)

Notice that the positions xi(t) and the opinions γij(t) evolve according to a constrained gradient

flow generated by the negative gradient vector field: ẋi = − ∂D
∂xi

and γ̇ij = − ∂D
∂γij

, or more explicitly,

ẋi = −2
∑

j:(i,j)∈E or (j,i)∈E

γij(xi − xj) + 2λxi = −2(Lx)i + 2λxi, (3.9)

γ̇ij = −(xi − xj)2 +
µ

15
+

2τ

15
γij , (3.10)

with over-dots denoting differentiation with respect to time t.

By understanding the stability of the above gradient flow, the authors [55] made a few conclu-

sions on the complete graph:

• For a small spread of opinions, the whole system on a complete graph converges to a con-

sensus state where everyone stands at the same position on some issue.

• For a larger spread of opinions, a stable balanced state occurs where all people divide into

two groups with opposing views.

• Except for consensus and balanced states, all other steady solutions are completely unbal-

anced and unstable based on the numerical results.

In the following part of this chapter, we will first extend their results from the complete

graph to an interesting cubic symmetric graph, the Petersen graph, following a method of
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reduction where the theory of graph automorphism serves as the key. This method only applies

to graphs with symmetric structure. For large random graphs, however, such nice architecture

vanishes, and thus, a different approach is required. We will, as a result, propose a “nearest-

neighbor” mean-field analysis technique on graphs with few symmetry and particularly carry

out our treatment on the Erdös-Rényi graph for scrutinization.

3.2. Social Dynamics on Petersen Graph

3.2.1. Notation and Preliminaries

The Petersen graph is one of the favorite graphs among graph theorists. It is a cubic symmetric

graph with 10 vertices and 15 edges, i.e., |V | = 10 and |E| = 15. The 10 vertices are indexed by

C(5, 2) = 10 two-element subsets of a five-object set. Two vertices are joined by an edge if the

corresponding subsets are disjoint. This gives us a regular graph of degree three, with automorphism

group S5 (up to isomorphism) corresponding to all permutations of the underlying five-element set,

as shown below.

Figure 3.1: The Petersen graph

Though the symmetric group S5 has a large number of subgroups (156), the total number

of different automorphism classes of its subgroups (up to isomorphism) is much smaller (16). We

display a complete list of the automorphism classes as below:

{Z1(trivial group), Z2, Z3, Z4, D4, Z5, Z6, S3, D8, D10, A4, S2 × S3, GA(1, 5), S4, A5, S5} . (∗)

Definition 3.1. An automorphism of a graph is a permutation of the vertices that preserve

adjacency. More precisely, if σ is an automorphism of a graph G, then (v1, v2) is an edge in G

if and only if (σ(v1), σ(v2)) is an edge in G. The equivalence classes of the vertices of G under
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the action of the automorphism are called vertex orbits. The equivalence classes of the edges are

called edge orbits.

Clearly, each automorphism group in (∗) is an automorphism of the Petersen graph. Applying

these automorphism groups on the Petersen graph and regarding each group orbit as a single

element will give us associated reduced graphs. By virtue of the structure of the reduced graphs,

we aim to find all states on the Petersen graph that minimizes the Dirichlet energy (3.2) and then

study the stability of these states.

The consensus state, where everyone stands at the same position, i.e., xi(t) ≡ xj(t) for any

pair (i, j), is the simplest state among all. We will show, probably not surprisingly, that this state

is a stable fixed point and almost every initial condition converges exponentially to consensus, i.e,

it is a global minimizer, when the variance ν2 = P −Q2 is sufficiently small. To start with, directly

applying Agbanusi and Bronski’s result [55] gives the following lemma:

Lemma 3.2. Suppose L(γ(t)) is the graph Laplacian on the Petersen graph, then x = 1√
10

110

is a global minimizer, i.e., x(t) → 1√
10

110 as t → ∞, if L is positive semi-definite with a one-

dimensional kernel.

Using Lemma 3.2 it is not hard the derive our first theorem in this chapter:

Theorem 3.3. If P < 31
30Q

2, or in other word, the variance ν2 = P−Q2 < 1
30Q

2, then L is positive

semi-definite with a one-dimensional kernel and thus the consensus state is a global minimizer.

Proof. Recall our assumption γij = γji and the graph Laplacian

Lij = Lij(γ) :=


∑
i 6=k

γik, i = j,

−γij , i 6= j, (i, j) ∈ E or (j, i) ∈ E,
0, otherwise.

(3.11)

We write each opinion as a mean plus a mean-zero part, i.e., γij = Q+ γ̃ij for each (i, j) ∈ E, where

the mean-zero part γ̃ij satisfies

1

|E|
∑

(i,j)∈E

γ̃ij = 0,
1

|E|
∑

(i,j)∈E

γ̃2
ij = P −Q2. (3.12)

Notice that each vertex in the Petersen graph has degree 3. The corresponding graph Laplacian

takes the form L = QL0 + L̃, where L0 = 3I − A with A as the adjacency matrix of the Petersen

graph, and L̃ is a matrix with Lij(γ̃) as an entry at the ith row and jth column. First, we take a

look at the eigenvalues of L0. ng the fact that the trace of a matrix is the sum of all its eigenvalues,

it is easy to obtaiNotice that the adjacency matrix A satisfies A2 + A = 2I + J where I is the

identity matrix and J denote the 10 × 10 matrix of all 1’s. Suppose λ is an eigenvalue of A,
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then since (2I + J) has eigenvalue 12 with multiplicity 1 and eigenvalue 2 with multiplicity 9, we

have that one eigenvalue of A satisfies λ2 + λ = 2 and nine others satisfy λ2 + λ = 12. Usin

det(A − λI) = (λ − 3)(λ + 2)4(λ − 1)5. Thus, the minimum non-zero eigenvalue of L0 is 2. Let

σmin(·) denote the minimum non-zero eigenvalue, then we have

σmin(L0) = 2. (3.13)

Next, we make an important observation: the matrix L0 commutes with every graph Laplacian, and

thus, can be simultaneously diagonalized. Hence it suffices to estimate the most negative eigenvalue

of L̃. The latter can be estimated by the Hilbert-Schmidt inequality. More explicitly, we have

σmin(L̃) ≥ −‖L̃‖HS , (3.14)

where ‖ · ‖HS denotes the Hilbert-Schmidt norm. According to its definition,

‖L̃‖2HS =
∑
i,j

(L̃ij)
2 = 2

∑
(i,j)∈E

γ̃2
ij +

∑
i

(
∑
j∈Si

γ̃ij)
2 ≤ 2

∑
(i,j)∈E

γ̃2
ij + 3

∑
i

(
∑
j∈Si

γ̃2
ij) = 8|E|(P −Q2).

(3.15)

where Si = {j : (i, j) ∈ E or (j, i) ∈ E}. We used Cauchy-Schwarz inequality in a middle step when

deriving (3.15). Combining the spectrum estimations of L0 and L̃, (3.13) and (3.15), we eventually

obtain the following inequality:

σmin(L) ≥ 2(Q−
√

2|E|(P −Q2)), (3.16)

where |E| = 15. By requiring the right-hand side to be positive, we derive a sufficient condition to

guarantee that the consensus state is a global minimizer as follows:

P <
31

30
Q2, or equivalently, ν2 = P −Q2 <

1

30
Q2. (3.17)

�

Except for the consensus state, plenty of other steady states exist on the Petersen graph due

to its highly symmetric structure. To study these states, we propose a method of reduction by

applying graph automorphisms. We will try to shed light on the power of this reduction method

and show how it simplifies the process of analysis in the next part.

3.2.2. Method of Reduction

We shall discuss the main idea of our method of reduction in this section. Consider a state

that is invariant under a non-trivial automorphism group of the Petersen group (see the list (∗)
above). Regarding the vertices on the same orbit under the automorphism group as one vertex

gives us a reduced graph. Figure 3.2 is an example by taking the automorphism group as S2 × S3
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generated by permutations (123) and (12)(45).

Figure 3.2: A reduction on the Petersen graph

The left image of Figure 3.2 is the original Petersen graph with 10 vertices and 15 edges, while

the right one is the reduced graph with 3 vertices and 3 edges under S2 × S3. To make it more

clear, notice that the vertex orbits of this automorphism are

O1 = {(4, 5)} = {x1},

O2 = {(1, 2), (1, 3), (2, 3)} = {x2, x3, x4},

O3 = {(3, 5), (2, 5), (2, 4), (1, 4), (3, 4), (1, 5)} = {x5, x6, x7, x8, x9, x10}.

Each orbit is represented by a vertex in the reduced graph. Suppose p1, p2, p3 represent the three

new vertices and a, b, c the three new edges, then minimizing the Dirichlet energy (3.2) with the

third constraint (3.5) leads to a reduced optimization problem:

min
p1,p2,p3

3a(p1 − p2)2 + 6b(p2 − p3)2, (3.18)

subject to: p2
1 + 3p2

2 + 6p2
3 = 1, (3.19)

where the constant 3 arises from the fact that the orbit set O1 connects with O2 through 3 edges

in the full graph and the constant 6 is due to the 6 edges between O2 and O3. By applying the

Lagrange multiplier method, this optimization problem can be converted to a generalized eigenvalue

problem:

(A− σB) · p = 0 subject to p2
1 + 3p2

2 + 6p2
3 = 1, (3.20)
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where p = (p1, p2, p3)T , A =

 3a −3a 0

−3a 3a+ 6b −6b

0 −6b 6b

 and B =

1 0 0

0 3 0

0 0 6

 .
By solving (3.20), one can write the solution σ and p1, p2, p3 in terms of a and b. Then the values

of λ and x will be determined since we have

λ = σ, (3.21)

x = (p1, p2, p2, p2, p3, p3, p3, p3, p3, p3). (3.22)

Plugging Equations (3.21) and (3.22) back in the gradient system (3.9)-(3.10) and combining with

the constraints (3.3), (3.4) and (3.5) will give a system of five equations with five unknown variables

a, b, c, µ, τ and two constants P and Q. Note that the value of λ equals the Dirichlet energy by

Equation (3.9) and we may have more than one solution of (3.20). If the minimum value of σ is

negative, then we will have an energy lower than which of the consensus state, which indicates a

probability of the existence of a stable non-consensus state. Thus by detecting the value of σmin

we can find a threshold on the opinion variance ν2 := P − Q2 for negative energy. To examine

the stability of such a new-born state, we linearize the flow around the equilibria and count the

number of negative eigenvalues of the resulting linear map. Recall that the critical points of the

flow are precisely the constrained extrema of the Dirichlet energy D, i.e. the critical points of D .

A standard Lyapunov function argument gives us a new threshold on ν2 for a stable state.

3.2.3. Non-consensus States

In this section, we will focus on non-consensus states of our system. According to what we

discussed in section 3.2.1, the system converges to a consensus state for small variance ν2 = P −Q2,

as one might expect. However, for a larger value of the variance, we have observed convergence to

two different stable states, one balanced state and one unbalanced state, as what we will deliberate

below.

We start with the balanced state. This is depicted in Figure 3.3, which reflects numeric for

Q = 1 and
√
P −Q2 = 2. In this state, we have a magnate with strong negative opinion denoted

by the vertex v1 and nine opponents who take positive positions denoted by the other vertices in

the graph. The edge between every pair of vertices vi and vj represents the degree of friendliness

between actor i and actor j, with γij(t) > 0, associated with a solid edge, representing friendliness;

and γij(t) < 0, associated with a dashed edge, antagonism. Note that the ten vertices are grouped

into three camps: each one is associated with an orbit under an automorphism group S2 × S3.

More precisely, we have a fixed element v1, a 3-element orbit {v2, v3, v4} and a 6-element orbit

{v4, v5, v6, v7, v8, v9, v10}. Let p1, p2 and p3 represent their positions (or opinions) and a, b and c

represent their relationships (a associates with the green dashed edge; b associates with the red
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solid edge; and c associates with the black solid edge). Then we have an opinion vector

X = {x1, x2, x3, ..., x9, x10}

= {p1, p2, p2, p2, p3, p3, p3, p3, p3, p3},
(3.23)

and a relationship vector

Γ = {γ12, γ13, γ14, γ25, γ29, γ36, γ37, γ48, γ410, γ57, γ58, γ68, γ69, γ710, γ910}

= {a, a, a, b, b, b, b, b, b, c, c, c, c, c, c}.
(3.24)

Figure 3.3: A balanced state on the Petersen graph

Now applying our method of reduction, the original optimization problem

minimize
x,γ

D(x,γ) =
∑

(i,j)∈E

γij(xi − xj)2,

subject to the constraints g1, g2 and g3 (3.3)-(3.5) is equivalent to a generalized eigenvalue problem.

(In fact, we used this state as an example to illustrate the reduction method and derived such

eigenvalue problem in section 3.2.2. We restate it here simply for completeness.)

(A− σB) · p = 0 subject to p2
1 + 3p2

2 + 6p2
3 = 1, (3.25)

where p = (p1, p2, p3)T , A =

 3a −3a 0

−3a 3a+ 6b −6b

0 −6b 6b

 and B =

1 0 0

0 3 0

0 0 6

 .
Clearly, A is symmetric and B is positive definite, so σ’s are real. And since B is invertible,

solving det(B−1A−σI) = 0 gives us σ, i.e., σ is the regular eigenvalue of B−1A and p is the regular
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eigenvector of B−1A. Direct computation gives us the eigenvalues as follows:

Λ =


σ1

σ2

σ3

 =


0

2a+ 3b
2 −

α
2

2a+ 3b
2 + α

2

 ,

and the corresponding eigenvectors are

v1 =


1

1

1

 , v2 =


− 1

2b(9b− 12a+ 3α)

− 1
2b(4a+ b− α)

1

 , v3 =



1
2b(12a− 9b+ 3α)

− 1
2b(4a+ b+ α)

1

 ,

where α =
√

16a2 − 16ab+ 9b2.

Now, taking the other two constraints g1 and g2 into consideration, we obtain the following equation

system: 

L~x = σ~x

(p1 − p2)2 =
µ

15
+

2τ

15
a

(p2 − p3)2 =
µ

15
+

2τ

15
b

(p3 − p3)2 = 0 =
µ

15
+

2τ

15
c

1

15
(3a+ 6b+ 6c) = Q

1

15
(3a2 + 6b2 + 6c2) = P.

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

By Equation (3.26), we can write p1, p2 and p3 in terms of a and b. So in fact we have five equations

(3.27)− (3.31) and five unknown variables a, b, c, µ and τ . By solving this equation system, we can

write a and b in terms of P and Q, and so that σ can be rewritten as a function of P and Q. Notice

that the Dirichlet energy is

3a(p1 − p2)2 + 6b(p2 − p3)2 = ~xA~xT = ~xB(B−1A~xT ) = σ~xB~xT = σ.

So if negative energy exists, it should be achieved by the smallest non-zero eigenvalue at the value

σmin = σ2 = 2a+
3b

2
− α

2
.
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Corresponding to σ2, we have an associated eigenvector
p1

p2

p3

 =


− 1

2b(9b− 12a+ 3α)

− 1
2b(4a+ b− α)

1

 .

By plugging in the values of p1, p2 and p3, the above system of equations can be rewritten as follows.

µ

15
+

2τ

15
a =

1

b2
(8a− 4b− 2α)2

µ

15
+

2τ

15
b = (

1

2b
(4a+ b− α) + 1)2

µ

15
+

2τ

15
c = 0

a+ 2b+ 2c = 5Q

a2 + 2b2 + 2c2 = 5P,

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

where α =
√

16a2 − 16ab+ 9b2. Solving this equation system gives us the following result of the

balanced state.

Theorem 3.4. The Dirichlet energy turns negative when the variance ν2 = P −Q2 > 0.25.

Figure 3.4: Minimum energy for the balanced state

To investigate the stability of such a balanced state, it is natural to check eigenvalues of the

Hessian matrix of D at critical points, since it is known that the gradient flow near critical points

is stable if the Hessian is negative definite [55].

Lemma 3.5 (Agbanus-Bronski). Define a phase space

Ω = {(x,γ) ∈ R10 × R15 : g1 = Q, g2 = P, g3 = 1}

and suppose ω0 ∈ Ω is a critical point of D i.e. a local extremum of D subject to the constraints
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(3.3)-(3.5). Let H(ω0) be the associated Hessian:

H(ω0) = −


∂2D

∂xi∂xk
∂2D

∂γlk∂xi

∂2D
∂xk∂γij

∂2D
∂γlk∂γij

∣∣∣ω0

(3.37)

and Tω0Ω be the tangent space to Ω at ω0. If H(ω0)|Tω0Ω is negative definite, then D has a strict

local minimum at ω0 and thus the gradient flow is stable near ω0.

By direct computation, we obtain

∂2
xD = 2(L− λI)

∂2
γD = − 2τ

|E|I|E|×|E|

∂2D
∂xk∂γij

= 2(xi − xj)(δik − δjk)

∂2D
∂γij∂xk

= 2(xi − xj)(δik − δjk).

(3.38)

Suppose B is a 10× 15 matrix with entries Bk,ij = ∂2D
∂γij∂xk

, then we have

H =

[
−2(L− λI) −B
−BT 2τ

|E|I|E|×|E|,

]
. (3.39)

Taking the gradient of the constraints g1, g2 and g3 with respect to time t, we have

∑ dγij
dt = 0

∑
γij

dγij
dt = 0

∑
xi
dxi
dt = 0.

(3.40)

Define three 25× 1 vectors (10 components associate with vertices and 15 associate with edges.):

v1 =

(
~0

~1

)
, v2 =

(
~0

Γ

)
, v3 =

(
X

~0

)
, (3.41)

where Γ and X are as defined in (3.23) and (3.24). Then from (3.40) we see v1,v2 and v3 form a

orthogonal space of Tω0Ω. More explicitly, let A = (v1,v2,v3)⊥, then

Tω0Ω = (span{∇g1,∇g2,∇g3})⊥ = (span{v1,v2,v3})⊥ = Nullspace(A).
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Clearly, Nullspace(A) is a 22-dimensional vector space. Onto computing H|Tω0Ω, it suffices to find

a basis for Nullspace(A): {w1,w2, ...,w22} since

(H|Tω0Ω)ij = 〈wi, Hwj〉. (3.42)

Computing the number of non-negative eigenvalues of H|Tω0Ω numerically leads to the following

theorem.

Theorem 3.6. There exists a constant c0 ∈ (1.01, 1.02) such that the balanced state is stable when

the variance ν2 = P −Q2 > c0.

Figure 3.5: Number of non-negative eigenvalues for the balanced state

Following the same methodology, one can also explore the unbalanced state analytically. This

state is depicted in Figure 3.6, which reflects numerics for Q = 1 and
√
P −Q2 = 2. In this state,

ten actors belong to three different factions: one with positive opinions (supporters), one with

negative opinions (opponents), and the other sits on the fence (neutrals). The opposition has a

leader v1 with two followers v2 and v4. Similarly there is a lead supporter v3 with two followers v6

and v7. The remaining four actors v5, v8, v9 and v10 are neutrals. In fact, this unbalanced state is

invariant under D4 = C4×Z2, the symmetry group of the square, as a subgroup of an automorphism

group of S5. The cyclic group C4 fixes the factions: the leaders of the positive and negative factions

are invariant under this group, and the followers and neutral people are permuted by this group.

Additionally, there is a Z2 subgroup corresponding to reflections of the square that switches the

positive and negative factions and leaves the neutral faction fixed. More precisely, under a group

action of D4, the ten vertices fall in three different orbits: a 2-element orbit {v1, v3}, a 4-element

orbit {v2, v4, v6, v7} and another 4-element orbit {v5, v8, v9, v10}. Let p1, p2 and p3 represent their

positions (or opinions), then clearly p3 = 0 representing the neutral position. Let a, b, c and d

represent their relationships (a associates with the green dashed edge; b associates with the red

solid edge; c associates with the blue solid edge; and d associates with the black solid edge). Then
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we have an opinion vector

X = {x1, x2, x3, ..., x9, x10}

= {−p1,−p2, p1,−p2, 0, p2, p2, 0, 0, 0},
(3.43)

and a relationship vector

Γ = {γ12, γ13, γ14, γ25, γ29, γ36, γ37, γ48, γ410, γ57, γ58, γ68, γ69, γ710, γ910}

= {b, a, b, c, c, b, b, c, c, c, d, c, c, c, d}.
(3.44)

Figure 3.6: An unbalanced state on the Petersen graph

Similarly as above, applying the method of reduction will eventually give us a system of

equations: 

µ

15
+

2τ

15
a =

1

b2
(2a+ b− 2c− β)2

µ

15
+

2τ

15
b = (

1

2b
(2a+ b− 2c− β) + 1)2

µ

15
+

2τ

15
c = 1

µ

15
+

2τ

15
d = 0

a+ 4b+ 8c+ 2d = 15Q

a2 + 4b2 + 8c2 + 2d2 = 15P,

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

where β =
√

4a2 + 4ab− 8ac+ 9b2 − 4bc+ 4c2.

The corresponding minimum energy can be expressed as

σmin =
1

2
(2a+ 3b+ 2c− β). (3.51)

Solving the equation system (3.45)-(3.50) numerically gives us the following result of the unbalanced
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state.

Theorem 3.7. The Dirichlet energy turns negative when the variance ν2 = P − Q2 > c1 where

c1 ∈ (0.21, 0.22).

Figure 3.7: Minimum energy for the unbalanced State

The stability of the unbalanced state relies on the eigenvalues of its border Hessian matrix

H(ω0)|Tω0Ω, as what we discussed above for the balanced state. Computing the number of non-

negative eigenvalues of H|Tω0Ω numerically leads to our next result.

Theorem 3.8. All solutions of the unbalanced state corresponding to the negative Dirichlet energy

is stable. More precisely, the unbalanced state is stable when the variance ν2 = P −Q2 > c1 where

c1 ∈ (0.21, 0.22).

Figure 3.8: Number of non-negative eigenvalues for the unbalanced state

In Figure 3.8, corresponding to different values of ν2, the blue dots represent the number

of non-negative eigenvalues of H|Tω0Ω and the green line the Dirichlet energy. We see that when

ν2 ≈ 0.212, the energy turns negative and there are no non-negative eigenvalues, i.e., all eigenvalues

of H|TωΩ are negative, which implies the stability of the unbalanced state.

To study other non-consensus states except for the balanced and the unbalanced state discussed

above, we again seek aid from the symmetry of the Petersen graph. In other words, we consider
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all the remaining subgroups of the automorphism group of the Peterson graph (except for the one

associated with the balanced state and the one with the unbalanced state) given by (∗). States

that are invariant under these subgroups provide possible stable steady solution on the Petersen

graph that minimizes the Dirichlet energy. Following the same procedure as above, we computed

the threshold of negative energy on the variance ν2 and derived the eigenvalues of the associated

boundary Hessian matrix. It turns out all other non-consensus states we found using the graph

symmetry are unstable. To avoid redundancy, we omit the analysis process here.

3.2.4. Summary of Results

Based on our numerics, only three stable states exist on the Petersen graph that minimizes the

Dirichlet energy (3.2) subject to three constraints (3.3)-(3.5) including one consensus state and two

non-consensus states: a balanced state and an unbalanced state. Regarding these steady states,

two questions were addressed:

1. When does the Dirichlet energy D become negative?

2. When does each state become stable?

We showed that both of the questions depend on the variance of opinions ν2 = P −Q2. Recall

Q represents the mean of actors’ opinions. W.l.o.g., we assume Q = 1 in this part for simplification.

Then the point of the Dirichlet energy turning negative will be determined by a threshold value of

P for each state, and so will the state’s stability. More precisely, we have the following results:

1. For the consensus state S0, the Dirichlet energy D ≡ 0 regardless of any value of P , and

the state stays stable when P < p0 := 31
30 .

2. For the balanced state S1, the Dirichlet energy D becomes negative when P > p1 :≈ 1.25

and the states becomes unstable when P > p′1 :≈ 2.

3. For the unbalanced state S2, the Dirichlet energy D becomes negative and the state becomes

unstable simultaneously when P > p2 :≈ 1.2.

States Threshold of negative energy Threshold of stable state

Consensus (S0) D ≡ 0 P < p0 = 31/30

Balanced (S1) P > p1 ≈ 1.25 P > p′1 ≈ 2

Unbalanced (S2) P > p2 ≈ 1.2 P > p2 ≈ 1.2

Table 3.1: A comparison among three stable states

In Figure 3.9, we present a comparison among the above three stable states. The stable region

is marked blue and the unstable region red. As we can see from the graph, the minimum energy

is achieved by a consensus state when the variance ν is small and the minimum energy is zero.

We rigorously proved that the consensus state is a global minimizer when ν < P0 − 1. As the
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variance ν increases to P2 − 1, a stable unbalanced state occurs with negative energy and it stays

stable regardless of how large the variance grows. Keep increasing ν towards P1 − 1, the energy

associated with a balanced state starts being negative and the state comes to be stable as ν exceeds

P ′1− 1. From then on, two stable states coexist in the system. The balanced state crosses with the

unbalanced state when P = P ∗ ≈ 8.16. From this point of intersection onward, the whole social

network reaches its lowest energy at the balanced state.

Figure 3.9: A comparison among three stable states

3.3. Social Dynamics on Erdös-Rényi Graph

3.3.1. Notation and Preliminaries

The Erdös-Rényi model, one of the most famous and fundamental models generating random

graphs, was firstly proposed and studied by two Hungarian mathematicians Paul Erdös and Alfréd

Rényi in the 1950s and 1960s. The graph it generates is called the Erdös-Rény graph denoted

by ER(n, q) where n represents the total number of nodes in the graph and q ∈ [0, 1] represents

the probability that any pair of nodes in the graph are connected. The existence of an edge is

independent of all other edges. Note that the probability q here does not depend on n, which

ensures strongly connected topology especially when n is large.
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Figure 3.10: An example of the Erdös-Rényi graph

Our goal is to find stable states that minimize the disharmony in a social network with an

underlying Erdös-Rényi graph, where the disharmony is measured by a Dirichlet energy (3.2):

D(x,γ) =
∑

(i,j)∈E

γij(xi − xj)2.

It is nearly impossible to do such calculation by considering interactions among every pair of ver-

tices, especially when the number of vertices in the graph is large. Moreover, unlike the Petersen

graph, the Erdös-Rényi graph lacks a symmetric structure. As a result, directly using the auto-

morphism classes of subgroups to reduce the size of the graph does not apply any further. Instead,

a novel method, which we call “nearest-neighbor” mean-field model, is proposed to resolve this

problem and will be delved into in the next section.

3.3.2. Method of Mean Field Analysis

In general, behaviors of large asymmetric random models are complex and highly nonlinear,

which makes it hard to analyze their dynamics in a mathematically elegant way. Mean-field analysis,

however, with a concentration on the macroscopic behaviors of the whole system, drastically reduces

the dimensionality of the problem and thus the difficulty. It reformulates the dynamics of the

system in terms of the “average state” of the system. More precisely, for a given object o, instead

of examining the interactions between o and every other individual object, mean-field analysis

approximates the interaction on o by considering the averaged effect from all others.

Inspired by the standard mean-field formation, we propose a novel “nearest-neighbor” mean-

field model for the Erdös-Rényi graph. The gist is to classify neighbors of a given vertex V0 in the

graph by their distance from it, and approximate the total effect that all other vertices act on V0

by summing up the averaged effect of each class of V0’s neighbors cross all the classes. In fact,
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running the dynamics (3.9)-(3.10):

ẋi = −2
∑

j:(i,j)∈E or (j,i)∈E

γij(xi − xj) + 2λxi = −2(Lx)i + 2λxi,

γ̇ij = −(xi − xj)2 +
µ

15
+

2τ

15
γij ,

subject to the three constraints (3.3)-(3.5):

g1 :=
1

|E|
∑

(i,j)∈E

γij = Q > 0,

g2 :=
1

|E|
∑

(i,j)∈E

γ2
ij = P > 0,

g3 :=

N∑
i=1

x2
i = R > 0,

on an Erdös-Rényi graph ER(n, q) for n = 20 and q = 0.3 with a random initialization gives a

steady state as shown below.

Figure 3.11: A steady state on ER(20, 0.3)

From Figure 3.11, it can be seen that there exists a leading vertex V0 standing at the front line

with a strong position on some issue while all its neighbors take weaker positions as they move away

from it. Moreover, the vertices with the same distance from V0 (or in other words, neighbors on the

same level) share a common perspective with similar strength. However, as the distance increases,

the intensity of attitudes that our actors hold dramatically declines. This striking phenomenon

suggests applying a mean-field approach on different levels of neighbors of a given vertex will likely

be a valid approximation of the original dynamics. Such approximation will greatly reduce the high

dimensionality of our equation system down to just a few dimensions and thus make the problem
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much simpler to analyze.

To make a precise “nearest-neighbor” mean-field model formation, we start with an arbitrary

vertex in the graph V0, and regard all its neighbors with distance one as the vertices in the first

generation and those with distance two as the second, etc. Also, we regard the origin V0 itself as

its zero generation for convenience. See Figure 3.12 below.

Figure 3.12: Generations of vertices from V0

Definition 3.9. Given a vertex V0 and any k ∈ N, define vk as the average number of vertices in

the kth generation of V0 and ek,k+1 as the average number of edges between vertices in the kth and

(k + 1)th generations.

Note that v0 = 1 by Definition 3.9. In fact, for an Erdös-Rényi graph ER(n, q), a straightfor-

ward calculation gives

vk = (n−
k−1∑
i=0

vi)(1− (1− q)vk−1), (3.52)

ek,k+1 = vk · q · (n−
k∑
i=0

vi). (3.53)

According to Equation (3.52), we have v1 ≈ nq and v2 ≈ n − nq for large n. So the whole

system can be approximated by two generations of a vertex when the system is large enough. We

assume actors in the same generation share a common position on some issue, then the resulting

reduced model becomes extremely simple since it contains only seven dimensions in total. Let xi

denote the position of the ith generation and γij the opinion between actors in the ith and jth

generations. Then we have three positions {x0, x1, x2} and four opinions {γ01, γ11, γ12, γ22} (γ00 is

excluded since we have only one actor in the origin and γ02 is also excluded since there exist no
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edges between the origin and its second generation).

Figure 3.13: An Erdös-Rényi reduced model

Define x = (x0, x1, x2) and γ = (γ01, γ11, γ12, γ22), then for the reduced model, the associated

Dirichlet energy is

D(x,γ) = e01γ01(x0 − x1)2 + e12γ12(x1 − x2)2, (3.54)

and the associated constraints are

g1 :=
1

|E|
(e01γ01 + e11γ11 + e12γ12 + e22γ22) = Q > 0, (3.55)

g2 :=
1

|E|
(e01γ

2
01 + e11γ

2
11 + e12γ

2
12 + e22γ

2
22) = P, (3.56)

g3 := x2
0 + v1x

2
1 + v2x

2
2 = 1, (3.57)

where |E| = e01 + e11 + e12 + e22. Define I = {(0, 1), (1, 1), (1, 2), (2, 2)}, then the method of

Lagrange multipliers gives a constrained free energy

D := D − µg1 − τg2 − λg3 (3.58)

=
∑

(i,j)∈I

γijeij(xi − xj)2 − µ

|E|
∑

(i,j)∈I

eijγij −
τ

|E|
∑

(i,j)∈I

eijγ
2
ij − λ

2∑
i=0

vix
2
i , (3.59)

where τ, µ and λ are the three Lagrange multipliers enforcing the constraints (3.55)-(3.57). Based

on (3.59), the gradient flows of the positions and opinions are

ẋi = −2
∑

j:(i,j)∈I or (j,i)∈I

eijγij(xi − xj) + 2λvixi, (3.60)

γ̇ij = −eij(xi − xj)2 +
µ

|E|
eij +

2τ

|E|
eijγij , (3.61)

with over-dots denoting differentiation with respect to time t. Now taking the derivatives on our
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constraints (3.55)-(3.57) gives ∑
i,j:(i,j)∈I

eij γ̇ij = 0, (3.62)

∑
i,j:(i,j)∈I

eijγij γ̇ij = 0, (3.63)

2∑
i=0

vixiẋi = 0. (3.64)

Plugging the gradient flows (3.60) and (3.61) into Equations (3.62)-(3.64) gives

λ =

2∑
i=0

vixi
2∑
j=0

eijγij(xi − xj)

‖v · x‖2
, (3.65)

τ =
|E|

2(B2 −AC)

B∑
i,j

e2
ij(xi − xj)2 −A

∑
i,j

e2
ijγij(xi − xj)2

 , (3.66)

µ =
|E|

(AC −B2)

C∑
i,j

e2
ij(xi − xj)2 −B

∑
i,j

e2
ijγij(xi − xj)2

 , (3.67)

where A =
∑
e2
ij , B =

∑
e2
ijγij and C =

∑
e2
ijγ

2
ij .

Therefore, our original goal that minimizes the disharmony in a system with a large underlying

Erdös-Rényi graph has been successfully boiled down to solving a differential equation system

(3.60)-(3.61) with seven variables (x0, x1, x2, γ01, γ11, γ12, γ22).

3.3.3. Stable Steady States

In this section, we will present numerical results on the stable steady solutions of our mean-field

reduced model. Starting with an arbitrary initial state (x(0),γ(0)) that satisfies the constraints

(3.55)-(3.57), we run the gradient flow (3.60)-(3.61) using a built-in Mathematica solver “NDSolve”.

From a considerable amount of numerical experiments, we have observed three stable steady states:

a consensus state and two non-consensus states.

1. Consensus State:

In this case, all actors eventually reach an agreement, i.e., x1 = x2 = x3. Figure 3.14 shows an

example consensus state where all actors hold negative views on some matter to the same extent,

denoted by the three hollow nodes with the same size in the bottom graph. Also, the solid edges

between nodes represent friendliness whereas the dashed ones represent antagonism. The thickness

of an edge represents the strength of the relationship between the two nodes it connects.
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Figure 3.14: A consensus state of the Erdös-Rényi reduced model

2. Type 1 non-consensus state:

In this case, the origin V0, as an extremist, stands significantly strongly on some matter, which

corresponds to the blue curve in the top graph and the big black node in the bottom graph in

Figure 3.15. Its two generations take opposite and weaker positions as they move away from V0.

In fact, we have already observed this state for the full model as shown in Figure 3.11.

Figure 3.15: Type 1 non-consensus state of the Erdös-Rényi reduced model

3. Type 2 non-consensus state:

Compared with the above non-consensus state, type 2 non-consensus state that we describe

here occurs much less often in our numerical experiments. In this state, our origin V0 has a group of

devoted followers constituting its first generation. They stand positively and strongly to a similar
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extent on some issue, which are associated with the yellow and blue curves in the top graph and the

two black nodes in the bottom graph in Figure 3.16. The actors in the second generation, however,

take a weak negative position represented by the green curve and the node with the smallest size.

Figure 3.16: Type 2 non-consensus state of the Erdös-Rényi reduced model

For each of the three stable states presented above, the original model has a correspondent

state on the full Erdös-Rényi graph with n vertices. To examine whether our mean-field reduced

model is a valid approximation of the original full model, we will explore the relation between the

variance of opinions ν2 = P −Q2 and the probability of the occurrence of each stable state for both

our reduced model and the full model.

All simulations are conducted on an Erdös-Rényi graph ER(n, q) with n = 20 and q = 0.5. We

vary the variance of opinions by fixing Q = 1 and change the value of P from 1.1 to 5 at a step size

of 0.1. For the reduced model, we run 5000 realizations for each value of P on the gradient vector

field (3.60)-(3.61) with each realization initializing from a state that satisfies constraints (3.55)-

(3.57). And then we compute the ratio of the occurrence of non-consensus states over all stable

steady states. For the full model, however, since the system grows dramatically as the number of

vertices increases and the simulation then can be intensely time-consuming, we run 100 realizations

instead of 5000 on the gradient vector field (3.9)-(3.10) for each value of P . The results are shown

in Figure 3.17 and Figure 3.18 as below.
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Figure 3.17: Occurrences of non-consensus states for the Erdös-Rényi reduced model

Figure 3.18: Occurrences of non-consensus states for the Erdös-Rényi full model

Several useful observations can be made from the above two figures:

1. As the opinion variance increases, not surprisingly, the frequency that non-consensus states

occur rises. In other words, the dynamical system tends to be asynchronous when people’s

opinions vary much.

2. The type 2 non-consensus states always occur less than the type 1 for both the reduced and

the full models. This implies that type 1 non-consensus state yields a more negative Dirichlet

energy.

3. For the reduced model, only type 1 non-consensus state exists in a small range of opinion

variance; the type 2 non-consensus state arises when the variance is larger than 1 and since then

both of these two types of states co-exist. For the full model, however, the type 2 non-consensus

state always rarely shows up whatever the value of the opinion variance is.

What we find amazing here is that although we have substantially reduced the large dimen-

sionality of our model to a very small one, the reduced model and the full model share the same

set of stable steady states. Meanwhile, it is worth noting that Figure 3.17 and Figure 3.18 display
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quantitatively different behaviors on these states. This might be caused by their different initial

distributions on the positions. To quantitatively approximate the full model, further adjustments

or perhaps a brand new approach is needed, but the analysis process is expected to be much harder

than what we proposed in this chapter.

3.4. Conclusion

In this chapter, we propose two approaches to analyze steady states on a simple social network:

automorphism reduction method and “nearest-neighbor” mean-field analysis. Both approaches aim

to solve the problem of the curse of dimensionality: as the size of the network grows large, the cost of

simulation will become absurdly expensive and analytical assessments will be rather difficult. The

first approach applies to graphs with a highly symmetric structure such as the Petersen graph and

results in a dimension reduction with the aid of the graph automorphism. The second approach

applies to large asymmetric systems such as the Erdös-Rényi random networks. It manages to

reduce the dimensionality of the whole system to only a few, and the numerical results show that

the behaviors on stable steady states of the reduced model and the full model agree qualitatively.

However, they do not agree quantitatively: the frequencies of each type of steady state’s occurrence

do not perfectly match. This is not much out of our expectation due to the different distributions

on the initial positions of the full and the reduced models. For a better understanding, further

research is required.

So far, whichever underlying graph of our model, we always assumed a simplex relationship

embedding, i.e. a single-layer network. However, in reality, reducing a social network to a graph in

which actors interact in a pairwise fashion by only a single type of relationship is far from enough

to accurately represent a real system. For this reason, researchers started to study social networks

with a complex structure in the last twenty years. Such a network has been generally referred to

as “multilayer network”. We will explore how the multi-layer structure affects the synchronization

of the whole dynamical system in the next two chapters.
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Chapter 4

Synchronization on Node-aligned Multilayer Networks

4.1. Background

Before the birth of the complex network theory, traditional single-layer network representation

was generally used to describe a dynamical system. However, people gradually realized that such

representation is an over-simplification of many real-world problems [56]. Multilayer networks,

on the other hand, can incorporate multiple channels of connectivity and constitute the natural

environment to describe systems interconnected across different types of connections: each channel

(relationship, activity, category) is represented by a layer and the same node may have various kinds

of interactions (different set of neighbors in each layer) [57]. For instance, in a social network, social

interactions rarely occur on a single channel and several relationships may bind individual pairs

[56]. Disease transmission, which involves different spreading channels and disease mutations, is

another typical example. Wang and five more authors [58] explored the processes of the coevolution

and interactions between information and disease transmission by using actual information and a

proposed multiplex network spread model. Jiang and Zhou [59] studied the resource control of

epidemic spreading through a multilayer network and found that a significantly large amount of

the total population may be infected (i.e., an outbreak will occur) if the amount of resource is

below a threshold. Not only in biology, researchers have also made progress in the traffic dynamics

on multilayer networks. One main intention is to improve the transportation performance by

optimizing the topology structures and routing strategies of the network. Recently Wu et al. [60]

published a survey on the past work of complex traffic dynamic models. One may be able to form

a better perspective on the traffic flow on a multilayer network after reading the next chapter. In

the current chapter, we will mainly focus on the topology of inter-layer connections and explore

how it will affect the synchronization of the whole dynamic.

In the last two decades, a large amount of study has been conducted on dynamical systems

with multiple layers of connectivity. However, the inconsistency of the usage of terminology arose

a great confusion at the initial stage of research until a general framework for multilayer networks

was brought up in Kivela’s paper [61] in 2014. In the same year, Boccaletti et al. [57] gave a more

straightforward definition of a multilayer network in a comprehensive review, which we will use in

this chapter. For more details, we refer the interested readers to the books by Newman [62] and

Barabási [63].

Definition 4.1. A multilayer network is a pair M = (G, C) where G = {Gα : α ∈ {0, 1, ...,M −
1},M ≥ 2} is a family of graphs Gα = (Vα, Eα) (called layers of M) and C = {Eαβ ⊆ Vα × Vβ :

α, β ∈ {0, 1, ...,M −1}, α 6= β} is a set of interconnections between nodes of different layers Gα and
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Gβ. The set Vα contains all the nodes in the αth layer and Eα contains all the edges. The elements

of C are called crossed layers, and the elements of each Eα are called intra-layer connections of

M while the elements of each Eαβ(α 6= β) are called inter-layer connections.

Definition 4.2. If a multilayer network satisfies two extra conditions where V0 = V1 = ... =

VM−1 = V and the only possible type of the inter-layer connections are those in which a given node

is only connected to its counterpart nodes in all the rest of layers, i.e., Eαβ = {(x, x) : x ∈ V } for

every α, β ∈ {0, 1, ...,M − 1}, α 6= β, then we call it a multiplex network. If the second condition

is weakened from all the rest of layers to some of them (i.e., not all layers are necessarily to be

connected), then we call it a node-aligned multilayer network.

(a) (b) (c)

Figure 4.1: (a) A multilayer network; (b) A multiplex network; (c) A node-aligned multilayer
network

Laplacian matrix, as an important tool to understand both the topology of a graph and the dy-

namics defined on it, is ubiquitously used in the field of geometry and dynamical systems. Similarly,

for multilayer graphs, we can define a corresponding supra-Laplacian matrix:

Definition 4.3. Suppose G is a multilayer graph with M layers. The supra-Laplacian L of G is

separated into two contributions:

L = LL + LD =

M⊕
α=1

L(α) + LD, (4.1)

where LL is the Laplacian matrix representing the intra-layer topology and LD the inter-layer

topology. The symbol
⊕

refers to the direct sum of matrices and L(α) refers to the Laplacian of

the graph on the αth layer. In particular, if G is a node-aligned multilayer network and each layer

consists of N nodes, then the supra-Laplacian matrix is

L = LL + LD =

M⊕
α=1

L(α) + LD ⊗ IN×N . (4.2)
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If additionally each layer of G shares the same structure, i.e., G0 = G1 = ... = GM−1, then we have

L(0) = L(1) = ... = L(M−1) = L which results in

L = LL + LD = IM×M ⊗ L+ LD ⊗ IN×N , (4.3)

where ⊗ refers to the Kronecker product of matrices.

To make the definition more clear, we present a geometric interpretation of the supra-Laplacian

matrix as in Figure 4.2 for a node-aligned multilayer network with 3 layers and 3 nodes on each

layer.

Figure 4.2: An interpretation of the supra-Laplacian matrix when M = 3 and N = 3.

One can show directly from the definition of supra-Laplacian matrix and the definition of

eigenvalues/eigenvectors that the following theorem holds for any node-aligned multilayer networks

with the same topology on each layer.

Theorem 4.4. If ~w is an eigenvector of L with eigenvalue λ and ~v is an eigenvector of LD with

eigenvalue µ, i.e., L~w = λ~w and LD~v = µ~v, then for the supra-Laplacian matrix L = IM×M ⊗L+

LD ⊗ IN×N , the eigenvector is

~x =


v1 ~w

v2 ~w
...

vM ~w


and the corresponding eigenvalue is λ+ µ, where vi is the ith component of the vector ~v.

Definition 4.5. Given a matrix M , define n+(M), n−(M) and n0(M) as the number of positive,

negative and zero eigenvalues of M respectively. The inertia of a matrix is defined as a tuple

(n+, n0, n−).
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The goal of this chapter is to study how the inter-layer connections will enhance or impede the

phase-locking of the whole system. Computing the eigenvalues of the supra-Laplacian matrix L is

essential to answer this question. In particular, for a node-aligned multilayer network with the same

structure on each layer, according to Theorem 4.4, it boils down to examining the inertia of the

matrix LD. If LD exists at least one positive eigenvalue, i.e., n+(LD) > 0, then the phase-locking

states will be desynchronized/destabilized. If LD exists no positive eigenvalues, i.e., n+(LD) = 0,

then the largest eigenvalue of L is the same as which of LL, which implies the inter-layer connections

do not qualitatively affect the system synchronization/stability.

Throughout the whole chapter, we will consider a node-aligned multilayer network G with M

layers {G0, G1, ..., GM−1} and each layer consists of N nodes following the same Kuramoto dynamic.

More precisely, the phase of the ith oscillator on the αth layer satisfies the equation

dθαi
dt

= ωi +
∑
j:j∼i

γij sin(θαj − θαi ) +
∑

β:(α,β)∈E

τ sin(θβi − θ
α
i ) (4.4)

for i ∈ {1, 2, ..., N} and α ∈ {0, 1, ...,M − 1}. Here, all the constants: ωi, the natural frequency of

the ith oscillator; γij , the intra-layer coupling strength between the ith and jth oscillators; and τ ,

the inter-layer coupling strength, are all independent of the layers. In other words, the structure of

each layer is identical, which will make the eigenvalue analysis procedure mathematically tractable.

Furthermore, for the first summation, the subscript j : j ∼ i refers to the indices of the oscillators

that are on the same layer with the ith oscillator and are connected to it; for the second summation,

E in the subscript refers to the set consisting of all the pairs (α, β) if the αth and βth layers are

connected. Hence the first summation represents the intra-layer connections while the second the

inter-layer connections. We will, w.l.o.g., always assume τ = 1.

Finding the phase-locked solution of Equation (4.4) and exploring the effect of the inter-layer

connections on its stability is generally hard. For instance, if the inter-layer connections form a

cycle, many stable phase-locked states may exist, but as one adds more edges in the graph, namely

adding more pairs in E, the stable states either go away or becomes unstable. Fortunately, for

specific inter-layer topologies, one can prove the existence of twisted phase-locked states (will be

defined later) and computing the eigenvalues of the Jacobian of Equation (4.4) at such states is

feasible. In this chapter we will mainly discuss two inter-layer topologies that allow twisted states:

• A complete graph, i.e., E contains all pairs of layers.

• A cycle-tree graph, i.e. a graph containing only cycles and the cycles are connected in a tree.

For the first scenario, the multilayer network becomes a multiplex network with an additional

condition that all layers share the same structure. This is the easiest possible multilayer topology.

We will discuss it in the next section. For the second scenario, the layers are only connected in

cycles and no cycles share the same edge. To conclude on the inter-layer effect of such a graph, we

follow a path from the simplest case, a single cycle, to a graph with multiple cycles connecting with
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a single hub that we call a cycle-flower, and finally to a general cycle-tree graph. We will discuss it

in the third section. At any above scenario, the Jacobian of Equation (4.4) at the twisted states is

a supra-Laplacian matrix with a simple structure:

L = IM×M ⊗ L+ LD ⊗ IN×N .

Finding eigenvalues of LD, or more specifically, n+(LD), then becomes a primary task. For

the complete or single cycle inter-layer topology, the eigenvalue computation is straightforward.

For the cycle-flower graph, we will conduct perturbation analysis on a rank-one-perturbed matrix

to approximate the eigenvalues. For the cycle-tree graph, however, we will instead seek help from

algebraic graph theory since the increasing rank of perturbation will make the normal perturbation

analysis hard.

4.2. Complete Inter-layer-connected Multilayer Networks

In this section, we consider a multilayer Kuramoto system with complete inter-layer connec-

tions, i.e. a multiplex Kuramoto model, the dynamic (4.4) then becomes

dθαi
dt

= ωi +
∑
j:j∼i

γij sin(θαj − θαi ) +
∑
β 6=α

sin(θβi − θ
α
i ) (4.5)

for i ∈ {1, 2, ..., N} and α ∈ {0, 1, ...,M − 1}. An example of complete inter-layer connections is

depicted in Figure 4.3 as below.

Figure 4.3: An example of a four-layer multiplex network.

Suppose θ0
i is a solution on layer zero (i.e., α = 0) that satisfies

dθ0
i

dt
= ωi +

∑
j:j∼i

γij sin(θ0
j − θ0

i ) (4.6)
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for i ∈ {1, 2, ..., N}, then the twisted state defined as

θαi = θ0
i +

2αqπ

M
, α = 0, 1, ...,M − 1 (4.7)

is a solution of Equation (4.5) for any winding number q ∈ Z. The Jacobian at this solution is

a supra-Laplacian matrix L = IM×M ⊗ L + LD ⊗ IN×N , where the entry at the ith row and jth

column of L is

Lij =

 −
∑
k:k∼i

γik cos(θαk − θαi ), i = j

γij cos(θαj − θαi ), i ∼ j
(4.8)

with i ∼ j meaning the ith and jth nodes are connected in the graph, and the entry at the (α+1)th

row and (β + 1)th column of LD is

LDα+1,β+1 =

 −
∑
φ 6=α

cos(θφ1 − θα1 ), α = β

cos(θβ1 − θα1 ), α 6= β
(4.9)

=

{
1, α = β

cos(2qπ(β−α)
M ). α 6= β

(4.10)

Here, from Equation (4.9) to (4.10), we used the fact that
∑M−1

i=0 cos(2qπi)/M = 0.

Theorem 4.6. The eigenvalues of L at the twisted states (4.7) are

λik = λi, k ∈ {1, 2, ...,M − 2}

λik = λi +M/2, k = M − 1,M,
(4.11)

for any i ∈ {1, 2, ..., N} regardless of the value of the winding number q, where λi is an eigenvalue of

the Laplacian L. Therefore, λmax(L) > λmax(L), which implies the inter-layer connections always

destabilize the twisted states.

The proof of Theorem 4.6 follows directly from the following two lemmas.

Lemma 4.7. The rank of the Laplacian matrix LD is two.

Proof. To prove rank(LD) = 2, it suffices to make an observation that

LD = v ⊗ v + w ⊗ w

where

v =


sin(θ0

1)

sin(θ1
1)

...

sin(θM−1
1 )

 and w =


cos(θ0

1)

cos(θ1
1)

...

cos(θM−1
1 )

 .
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Lemma 4.8. Suppose λ1 ≤ λ2 ≤ ... ≤ λM−1 ≤ λM are eigenvalues of LD, then λ1 = λ2 = ... =

λM−2 = 0 and λM−1 = λM = M
2 .

Proof. By Lemma 4.7, we know M − 2 eigenvalues are zero eigenvalues. To compute the remaining

two non-zero eigenvalues, we firstly find the eigenvalues of v ⊗ v and w ⊗ w separately. W.l.o.g.,

assume θ0
1 = 0, then

v =



0

sin(2qπ
M )

sin(4qπ
M )

...

sin(2q(M−1)π
M )


and w =



0

cos(2qπ
M )

cos(4qπ
M )

...

cos(2q(M−1)π
M )


.

Since the trace of v ⊗ v is

Tr(v ⊗ v) =
M−1∑
α=1

(sin(
2qαπ

M
)2) =

M−1∑
α=1

1

2

(
1− cos(

4qαπ

M
)

)

=
1

2
(M − 1)− 1

2

M−1∑
α=1

cos(
4qαπ

M
) =

M

2
,

the unique non-zero eigenvalue of v ⊗ v is M
2 . Similar computation shows that M

2 is also the

unique non-zero eigenvalue of w ⊗ w. Also, notice that v is orthogonal to w since v · w =
M−1∑
α=0

sin(2qαπ
M ) cos(2qαπ

M ) = 0. It is not hard to show that if ~z is an eigenvector of w ⊗ w corre-

sponding to its non-zero eigenvalue, then it is an eigenvector of v ⊗ v corresponding to its zero

eigenvalue. In fact, note that w ⊗ w = wwT and v ⊗ v = vvT . For a vector ~y = wwT~x where ~x is

any M × 1 non-zero vector, we have

wwT~y = w(wTw)wT~x =
M−1∑
α=1

(
sin(

2qαπ

M
)

)2

wwT~x =
M

2
(wwTx) =

M

2
~y,

so that ~y is an eigenvector of w ⊗ w with an eigenvalue λ = M
2 . Also,

vvT~y = v(vTw)wT~x = 0

shows that ~y is an eigenvalue of v ⊗ v with an eigenvalue λ = 0. Moreover, since rank(w ⊗ w)=1,

we have ~z = c~y for some constant c. We proved that for the non-zero eigenvalue λ = M
2 , the

corresponding eigenspaces of w ⊗ w and v ⊗ v are orthogonal. Therefore, λM−1 = λM = M
2 . �
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4.3. Cycle-tree Inter-layer-connected Multilayer Networks

In section 4.2, we proved that the complete inter-layer connections always destabilize the

twisted phase-locked states of the multilayer Kuramoto system. In this section, however, we consider

a system where the inter-layer graph contains only cycles and all cycles are connected in a tree.

Especially, for the twisted states with the winding number q = 1, we conclude that the inter-layer

connections destabilize the system only if there exists at least one cycle containing less than four

layers.

To validate our conclusion, we will walk the following path, illustrated in Figure 4.4, from the

most specific case to the most general one: first, we consider a simple single cycle and compute

its eigenvalues directly; then we study a cycle flower and find eigenvalues by perturbation analysis;

eventually, we take into the account a cycle tree and compute the corresponding eigenvalues with

the help of algebraic graph theory.

Figure 4.4: Walk-through: a single cycle → a cycle flower → a cycle tree.

Indeed, a single cycle and a cycle flower are special cases of a cycle tree, where the results that

hold for a cycle tree apply automatically. The aforementioned workflow alleviated the difficulty of

studying the general case directly, and hence leading to a clearer argument.

4.3.1. A Single Cycle

When all layers are connected in a cycle, i.e., E = {(α, β) : α ∈ {0, 1, ...,M − 1}, β = (α ±
1) mod M}, the phase of the ith oscillator on the αth layer satisfies the dynamic

dθαi
dt

= ωi +
∑
j:j∼i

γij sin(θαj − θαi ) +
(

sin(θβ1i − θ
α
i ) + sin(θβ2i − θ

α
i )
)

(4.12)

for i ∈ {1, 2, ..., N} and α ∈ {0, 1, ...,M − 1}, where β1 = (α+ 1) mod M and β2 = (α− 1) mod M .

Similarly as the complete graph case discussed above, one can check that the twisted state

θαi = θ0
i +

2αqπ

M
, i ∈ {1, 2, ..., N} and α = 0, 1, ...,M − 1 (4.13)
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is a solution of Equation (4.12) for any q ∈ Z, where θ0
i corresponding to the phase of the ith

oscillator on layer zero satisfies θ̇0
i = ωi +

∑
γij sin(θ0

j − θ0
i ). Then for the supra-Laplacian at this

state L = IM×M ⊗L+LD ⊗ IN×N , the entry at the (α+ 1)th row and (β + 1)th column of matrix

LD is

LDα+1,β+1 =


−2 cos(2qπ

M ), α = β

cos(2qπ
M ), β = (α± 1) mod M

0, else.

(4.14)

Let a = cos(2qπ
M ), then LD = −aLDM where

LDM :=



2 −1 0 0 . . . 0 −1

−1 2 −1 0 . . . 0 0

0 −1 2 −1 . . . 0 0
...

...
...

...
. . .

...
...

−1 0 0 0 . . . −1 2


is a M ×M toeplitz matrix.

Theorem 4.9. For the twisted state (4.13) with a winding number q ∈ Z, we have

(1) If the multilayer network contains less than 4q layers and more than d4q
3 e layers, i.e., 4q

3 <

M < 4q, then the inter-layer connections destabilize the system.

(2) If the multi-layer network contains at least 4q layers, i.e., M ≥ 4q, then the inter-layer con-

nections do not qualitatively affect the system stability.

Proof. The proof follows directly from the fact that the eigenvalues of the supra-Laplacian L at

the twisted states are

λik = λi − cos(qθ) (2− 2 cos(kθ)) (4.15)

for i ∈ {1, 2, ..., N} and k ∈ {0, 1, ..., M2 }, where θ = 2π
M and λi is an eigenvalue of the Laplacian L.

This fact can be derived immediately by combining the following lemma and Theorem 4.4. �

Lemma 4.10. The eigenvalues of LDM are λk = 2− 2 cos(2πk
M ) with eigenvectors

xn(k) = sin(
2πkn

M
)

yn(k) = cos(
2πkn

M
)

where xn(k) or yn(k) denotes the nth component of the eigenvector associated with the eigenvalue

λk and 0 ≤ k ≤ M
2 .
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Proof. Suppose λ is an eigenvalue of LDM and ~z is an associated eigenvector, then we have

2z1 − z2 − zM = λz1,

−z1 − zM−1 + 2zM = λzM ,

−zk−1 + 2zk − zk+1 = λzk, 1 ≤ k ≤M − 1,

where zn is the nth component of ~z for n = 1, 2, ...,M . As usual for such equations one seek the

solution with the form zn = An. Plugging this solution into the above equations gives us AM = 1

so that Ak = e
2πki
M . As a result, the kth eigenvalue and its associated eigenvector are

λk = 2− 2 cos(
2πk

M
),

zn(k) = Akn = cos(
2πkn

M
) + i sin(

2πkn

M
), 1 ≤ n ≤M.

Since LDM and λk are real, ~z should be real, which implies both the real and imaginary parts of

~z are invariant under LDM . Therefore, xn(k) = cos(2πkn
M ) and yn(k) = sin(2πkn

M ) serve as the nth

component of the eigenvectors associated with λk = 2− 2 cos(2πk
n ) for 0 ≤ k ≤ M

2 . More precisely,

when M is odd, we have one eigenvector ~x(0) for λ0 = 0 (~y(0) = ~0), and two eigenvectors ~x(k) and

~y(k) for all 0 < k < M
2 ; when M is even, we have one eigenvector ~x(0) for λ0 = 0 (~y(0) = ~0), two

eigenvectors ~x(k) and ~y(k) for all 0 < k < M
2 and one eigenvector ~x(M2 ) for λM

2
= 4 (~y(M2 ) = ~0). �

Example 4.11. In this example, we consider a node-aligned multilayer Kuramoto network with 3

layers connected in a cycle and each layer consists of 20 oscillators, i.e., M = 3 and N = 20. More

precisely, we have

dθαi
dt

= ωi +
∑
j:j∼i

γij sin(θαj − θαi ) +
(

sin(θβ1i − θ
α
i ) + sin(θβ2i − θ

α
i )
)

(4.16)

for i ∈ {1, 2, ..., 20} and α ∈ {0, 1, 2}, where β1 = (α + 1) mod 3 and β2 = (α − 1) mod 3. For

convenience, assume γij = 1 for any i, j ∈ {1, 2, ..., 20}. The natural frequencies ω1, ω2, ..., ω20

are chosen to be uniform random variables in the range of [0, 1.6]. We first ignore the last term

in the right hand-side of the above equation, or in other words, we only consider the intra-layer

connections. Then the phase of oscillators on each layer satisfies

dθi
dt

= ωi +
∑
j:j∼i

sin(θj − θi) (4.17)

for i ∈ {1, 2, ..., N}. Solving this gradient flow numerically gives us a phase-locked solution. The

straight lines in Figure 4.5 represent the evolution of the 20 oscillators’ phases as time t increases

from 0 to 100. It is clear that all oscillators move at a common frequency.
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Figure 4.5: Evolution of oscillators’ phases on a single layer

Let θi for i ∈ {1, 2, ..., 20} denote this phase-locked solution, then θαi = θi + 2απ/3 for i ∈
{1, 2, ..., 20} and α ∈ {0, 1, 2} is a solution of Equation (4.16). We then compare the eigenvalues

of the intra-layer matrix LL associated with θi and the eigenvalues of the full matrix L associated

with θαi . The result is shown as below.

Figure 4.6: A comparison between eigenvalues of L and LL

In Figure 4.6, the x-axis represents the indices of eigenvalues and the y-axis represents the

eigenvalues themselves. Clearly, λ(LL) ≤ λ(L). In fact, all eigenvalues of LL are non-positive

so without the inter-layer connections we have a stable solution. However, with the inter-layer

connections, L has positive eigenvalues implying the system following Equation (4.16) is not stable

anymore. Therefore, this example shows that the inter-layer connections destabilize the system

when M = 3.

4.3.2. A Cycle Flower

In this part, we consider a flower-like graph. Instead of all layers connecting in a single cycle

as discussed above, they now form multiple cycles linked with a single hub, which we call a cycle

flower. More precisely, given M layers G0, G1, ..., Gn1−1, Gn1+1, ..., Gn2−1, ..., Gnl−1+1, ..., Gnl−1,
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suppose layers G0, G1, ..., Gn1−1 are connected in a cycle C1, G0, Gn1+1, ..., Gn2−1 in a cycle C2,

· · · · · · , and G0, Gnl−1+1, ..., Gnl−1 in a cycle Cl, i.e., E = E1 ∪ E2 ∪ E3 ∪ E4 where

E1 = {(α, β) : ni−1 + 2 ≤ α ≤ ni − 2, β = α± 1, i = 1, 2, ..., l},

E2 = {(α, β) : α = 0, β = ni−1 + 1 or ni − 1, i = 1, 2, ..., l},

E3 = {(α, β) : α = ni−1 + 1, β = 0 or α+ 1, i = 1, 2, ..., l},

E4 = {(α, β) : α = ni − 1, β = 0 or α− 1, i = 1, 2, ..., l}.

Here, the layer G0 is a hub that connects all the cycles. Clearly, the ith cycle has ni − ni−1 nodes

(assume n0 = 0) for i ∈ {1, 2, ..., l}, and M = 1+(n1−1)+(n2−n1−1)+...+(nl−nl−1−1) = nl−l+1.

An example with l = 4 cycles is shown as below.

Figure 4.7: Four cycles with a single layer G0 as a hub.

Same as before, assume θ0
i is a solution on layer zero (i.e., α = 0) that satisfies

dθ0i
dt = ωi +∑

j
γij sin(θ0

j − θ0
i ) for i ∈ {1, 2, ..., N}, then the twisted state

θ
αj
i = θ0

i +
2(αj − nj−1)qπ

nj − nj−1
, nj−1 ≤ αj ≤ nj − 1, (4.18)

serves as a solution of Equation (4.4) for i ∈ {1, 2, ..., N} and j ∈ {1, 2, ..., l}, where q is an arbitrary

fixed integer. Let

aj = cos(
2qπ

nj − nj−1
), 1 ≤ j ≤ l, (4.19)

and fαj be the inter-layer coupling between the αjth layer and other layers, i.e.,

fαj =
∑

(αj ,β)∈E

sin(θβ − θαj ). (4.20)
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Then for αj 6= 0 we have

dfαj

dθβ
=

{
aj , β = αj ± 1, nj−1 ≤ αj ≤ nj − 1

−2aj , β = αj ,
(4.21)

and

df0

dθβ
=


aj , β = nj − 1, j = 1, 2, ..., l

aj , β = nj + 1, j = 0, 1, ..., l − 1

−2
l∑

k=1

ak, β = 0,

(4.22)

so that our Laplacian matrix LD can be written as a block diagonal matrix plus a rank-two per-

turbation:

LD =



−2
l∑

k=1

ak

A1

A2

Al


+



0 a1 0 · · · al

a1

0
... 0
al



=: A+ P, (4.23)

where each diagonal block Aj =

aj



−2 1 0 . . . 0

1 −2 1 . . . 0

0 1 −2 . . . 0
...

...
...

. . .
...

0 0 0 . . . −2


is a (nj − nj−1 − 1) × (nj − nj−1 − 1) tridiagonal matrix embodying the inter-layer connections

within the jth cycle. The M ×M matrix P embodies the inter-layer connections between the hub

G0 and all other layers, of which the entry at the ith row and jth column is

Pij =


ak, i = 1, j = sk or ek

ak, j = 1, i = sk or ek

0, else,

(4.24)

where sk = nk−1 − k + 3 and ek = nk − k + 1 for k ∈ {1, 2, ..., l}.

Example 4.12. In this example, we consider 7 layers of oscillators connected in 2 cycles with a

single hub. Each cycle consists of 4 layers. The figure is shown below.
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Figure 4.8: Two cycles with a single layer G0 as a hub.

In this case, n0 = 0, n1 = 4, n2 = 8 and M = 1 + (n1− n0− 1) + (n2− n1− 1) = 1 + 3 + 3 = 7.

Let a1 = a2 = cos(π/2). The first cycle consists of n1 − n0 = 4 layers. The inter-layer connections

among G1, G2 and G3 are embodied in the matrix A1 =

G1 G2 G3
G1 −2a1 a1 0

G2 a1 −2a1 a1

G3 0 a1 −2a1

.

Similarly, the second cycle consists of n2−n1 = 4 layers. The inter-layer connections among G5, G6

and G7 are embodied in the matrix A2 =

G5 G6 G7
G5 −2a2 a2 0

G6 a2 −2a2 a2

G7 0 a2 −2a2

.

Finally, the inter-layer connections between the hub G0 and all other layers are embodied in the

following matrix:

G0 G1 G2 G3 G5 G6 G7



G0 −2(a1 + a2) a1 0 a1 a2 0 a2

G1 a1

G2 0

G3 a1

G5 a2

G6 0

G7 a2

.

Combining all these matrices gives us the Laplacian matrix LD = A + P , which exhibits the

complete inter-layer connections.
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One can prove that the number of positive eigenvalues of LD, n+(LD), depends on the number

of layers within each individual cycle:

Theorem 4.13. Define a constant a to be

a :=
l∑

j=1

aj =
l∑

j=1

cos(
2qπ

nj − nj−1
), (4.25)

where l is the total number of cycles in a multilayer network with M layers. And define sets Sk as

Sk := {j : nj − nj−1 = k and k/4 < (q mod k) < 3k/4}, (4.26)

for 3 ≤ k ≤ M . Let mk = |Sk|, i.e, mk represents the number of cycles that contain k layers and

satisfies k/4 < (q mod k) < 3k/4. Then for the Laplacian matrix LD at the twisted state (4.18),

we have

n+(LD) =

M∑
k=3

(k − 1)mk. (4.27)

Moreover, the following inequality holds:

n+(A)− 1 ≤ n+(LD) ≤ n+(A), (4.28)

or more precisely,

n+(LD) = n+(A) if a > 0, (4.29)

n+(LD) = n+(A)− 1 if a < 0. (4.30)

Notice that Theorem 4.13 implies n+(LD) = 2m where m = |{j : nj − nj−1 = 3}| when

considering the twisted solution with q = 1. The number of positive eigenvalues of LD only

depends on the number of cycles with 3 layers in this scenario. This gives the main result of this

part as follows.

Theorem 4.14. For the twisted state (4.18) with q = 1, we have

(1) If there exists an cycle with less than four layers, i.e., nj0−nj0−1 < 4 for some j0 ∈ {1, 2, ..., l},
then the inter-layer connections desynchronize the system.

(2) If all cycles contain at least four layers, i.e., nj−nj−1 ≥ 4 for j = 1, 2, ..., l, then the inter-layer

connections do not qualitatively affect the synchronization of the system.

We leave the proof of Theorem 4.13 for later after verifying several lemmas first as follows.

Lemma 4.15. Except for one eigenvalue −2
∑l

k=1 ak, all other eigenvalues of A are of the form

λ
kj
j = −aj

(
2− 2 cos(

kjπ

nj − nj−1
)

)
,
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where 1 ≤ kj ≤ nj − nj−1 − 1 and 1 ≤ j ≤ l. Particularly, for q = 1, if nj − nj−1 ≥ 4 for all j,

then A is a negative semi-definite matrix.

Proof. Applying the same argument as in Lemma 4.10, one should be able to prove that for each

block matrix Aj , the eigenvalues are λ
kj
j = 2− 2 cos(

kjπ
nj−nj−1

) where 1 ≤ kj ≤ nj − nj−1 − 1, with

which the eigenvalues of A can be easily obtained. �

Lemma 4.16. The perturbation P is a rank-two matrix with two non-zero eigenvalues

λ = ±

2
l∑

j=1

a2
j

 1
2

= ±

2
l∑

j=1

cos2(
2qπ

nj − nj−1
)

 1
2

.

Proof. The matrix P being rank-two is obvious. In fact, P can be written as

P = v ⊗ w + w ⊗ v,

where v = (1, 0, ..., 0)T and w = (0, a1, ..., a1, a2, ..., al)
T are two M × 1 vectors. More precisely, the

ith components of the vectors v and w are

vi =

{
1, i = 1

0, else,
wi =

{
ai, i = si or ei

0, else,

where sk = nk−1 − k + 3 and ek = nk − k + 1 for k ∈ {1, 2, ..., l}.
Plus, solving the characteristic polynomial function det(P −λI) = 0 directly gives P ’s eigenvalues.

�

Lemma 4.17. Define a parameter family of operators LDt = A + tP . If A is invertible, then

det(LDt ) = 0 as a function of t has two roots t = ±1.

Proof. Clearly det(LDt ) is a quadratic function with one root t = 1 since LD1 = LD is a Laplacian

matrix. So only the second root is to be determined. Note that LDt has a non-trivial kernel if there

is a non-zero vector x such that LDt x = 0. Let D = −A and replace P with v ⊗ w + w ⊗ v in LDt

where v and w are vectors defined in the proof of Lemma 4.16, then we have

−Dx+ t(〈v, x〉w + 〈w, x〉v) = 0. (4.31)

Since A is invertible, so is D. Solving for x gives us

x = t(〈v, x〉D−1w + 〈w, x〉D−1v). (4.32)
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Taking the inner product with v and w respectively gives

〈v, x〉 = t
(
〈v, x〉〈v,D−1w〉+ 〈w, x〉〈v,D−1v〉

)
, (4.33)

〈w, x〉 = t
(
〈v, x〉〈w,D−1w〉+ 〈w, x〉〈w,D−1v〉

)
. (4.34)

Let b1 = 〈v, x〉 and b2 = 〈w, x〉, then the above equations can be written in a matrix form as

Mt

[
b1

b2

]
:=

[
t〈v,D−1w〉 − 1 t〈v,D−1v〉
t〈w,D−1w〉 t〈w,D−1v〉 − 1

][
b1

b2

]
=

[
0

0

]
. (4.35)

It is easy to show b1 · b2 6= 0. So Mt has a non-trivial kernel if and only if LDt has a non-trivial

kernel, which leads to finding roots of det(Mt) = 0. Let

τ1 = 〈v,D−1w〉〈w,D−1v〉 − 〈v,D−1v〉〈w,D−1w〉, (4.36)

τ2 = 〈v,D−1w〉+ 〈w,D−1v〉. (4.37)

Then direct calculation gives

det(Mt) = t2τ1 − tτ2 + 1. (4.38)

Solving for t gives

t1,2 =
τ2 ±

√
τ2

2 − 4τ1

2τ1
. (4.39)

Notice that τ1 < 0 and τ2 = 0, so t1,2 = ±
√
−τ1/τ1. Since we have argued t = 1 is a root of

det(Mt) = 0, t = −1 must be the other root, which completes our proof. �

Now we are ready to prove Theorem 4.13.

Proof of Theorem 4.13. We first make an important observation. Recall we defined aj as in Equa-

tion (4.19):

aj = cos(
2qπ

nj − nj−1
) 1 ≤ j ≤ l,

and Sk as in Equation (4.26):

Sk = {j : nj − nj−1 = k and k/4 < (q mod k) < 3k/4}.

Define S =
M⋃
k=3

Sk. It is not hard to observe that aj < 0 if j ∈ S. According to Lemma 4.15, the

eigenvalue of A is either −2a = −2
∑l

k=1 ak or

λ
kj
j = −aj

(
2− 2 cos(

kjπ

nj − nj−1
)

)
.
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Thus, the number of positive eigenvalues of A satisfies

n+(A) =
M∑
k=3

(k − 1)|Sk| =
M∑
k=3

(k − 1)mk if a > 0, (4.40)

n+(A) =

M∑
k=3

(k − 1)|Sk|+ 1 =

M∑
k=3

(k − 1)mk + 1 if a < 0. (4.41)

Now it suffices to find the relation between n+(A) and n+(LD). Recall the parameter family of

operators LDt as defined in Lemma 4.17 and the vectors v and w as defined in the proof of Lemma

4.16, we can rewrite LDt as

LDt = LD + (t− 1)P = LD + (t− 1)(v ⊗ w + w ⊗ v). (4.42)

We want to detect whether the eigenvalues of LDt cross from the left half-plane to the right half-

plane or in the opposite direction near t = 1 to track the count of positive eigenvalues. Clearly,

LD0 = A and LD1 = LD. We know LD has a zero eigenvalue associated with an all-ones eigenvector

~1. Suppose λ0 = 0 and v0 = ~1, then by perturbation theory,

dλ0

dt

∣∣∣
t=1

=
〈v0, (

dLDt
dt |t=1)v0〉
‖v0‖2

=
〈~1, P~1〉
‖~1‖2

. (4.43)

Direct calculation gives us dλ0
dt |t=1 = 4a

M , so the eigenvalue of LDt is

λ ≈ 4(t− 1)

M

l∑
j=1

cos

(
2qπ

nj − nj−1

)
(4.44)

for t close to 1. The sign of the derivative of λ0 indicates the direction of the zero eigenvalue

movement. According to Lemma 4.17, the equation det(LDt ) = 0 has no root occurring at t ∈ (0, 1).

Keeping this fact in mind, we discuss three cases separately for the twisted state (4.18) with q = 1

as the following. The results naturally extend to any integer winding number q.

Case I: j 6∈ S̄ for all j ∈ {1, 2, ..., l}:

This is the case where nj − nj−1 > 4 implying aj > 0 for all j. So A is negative definite and
dλ0
dt |t=1 > 0. One can expect that one of the LDt ’s negative eigenvalues moves from the left half-

plane to zero as t increases to 1. There is no crossing to the right half-plane since det(LDt ) = 0 has

no root occurring at t ∈ (0, 1). So we have n+(LD) = n+(A) = 0. See the figure below, the black

crosses represent eigenvalues of LDt for 0 ≤ t < 1 and the red one represents the zero eigenvalue of

LD (t = 1).
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Figure 4.9: Movement of eigenvalues of LDt for case I.

Case II: j 6∈ S for all j and j ∈ ∂S for some j:

This is the case where nj − nj−1 ≥ 4 for all j and nj − nj−1 = 4 for some j. One can check

A is negative semi-definite, dλ0
dt |t=1 ≥ 0 and dλ0

dt |t=0 = 0. In fact, it is not hard to show that the

eigenspace associated with the zero eigenvalue λ0 satisfies Eλ0(A) ⊆ Eλ0(LD) and dim(Eλ0(A)) =

dim(Eλ0(LD))− 1 (See Appendix B for detailed proof). So zero eigenvalues of LDt stays zero and

one of its negative eigenvalues moves from the left half-plane to zero as t increases to 1. Still, there

is no crossing to the right half-plane. So we have n+(LD) = n+(A) = 0. See the figure below, same

as before, the black crosses represent eigenvalues of LDt for 0 ≤ t < 1 and the red ones represent

zero eigenvalues of LD (t = 1).

Figure 4.10: Movement of eigenvalues of LDt for case II.

Case III: j ∈ S for some j ∈ {1, 2, ..., l}:

This is the case where nj − nj−1 < 4 for some j. In this case, A has positive eigenvalues and
dλ0
dt |t=1 can be either positive or negative. If dλ0

dt |t=1 > 0, the eigenvalues moves from left to right

as t close to 1, corresponding to the left half of Figure 4.11. So we have n+(LD) = n+(A). On the

other hand, if dλ0
dt |t=1 < 0, the eigenvalues moves from right to left as t close to 1, corresponding

to the right half of Figure 4.11. So we have n+(LD) = n+(A)− 1.
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Figure 4.11: Movement of eigenvalues of LDt for case III

Combining all these cases, the proof of Theorem 4.13 is finished. �

Example 4.18 (Case II). In this example, we consider a multilayer Kuramoto network with 13

layers connecting in 3 cycles linked with a single hub. The first cycle consists of 4 layers, the second

5 layers and the third 6 layers, i.e., n1 = 4, n2 = 9, n3 = 15. Clearly, this is an example of case II.

Direct calculation gives a :=
∑3

j=1 aj =
∑

cos( 2π
nj−nj−1

) ≈ 0.8 > 0 and m := |{j : nj − nj−1 =

3}| = 0. Based on the proof of Theorem 4.13, we have

n+(LDt ) = n+(A) = 0, 0 ≤ t ≤ 1, (4.45)

n0(LDt ) =

{
n0(A), 0 ≤ t < 1

n0(A) + 1, t = 1.
(4.46)

For each fixed time t, LDt is a 13× 13 matrix with eigenvalues λ1 ≤ λ2 ≤ ... ≤ λ13. In Figure 4.12,

the trend of each eigenvalue λi over time t from t = 0 to t = 1 is drawn by a curve starting from

the x-axis. The nine gray curves show that λi(L
D
t ) remains negative over the whole time domain

[0, 1] for i ∈ {1, 2, ..., 9}. The red curve shows that as t increases from 0 to 1, λ10(LDt ) increases

from negative to zero, which increments the kernel dimension of LDt by one. The remaining three

eigenvalues of LDt drawn by the green curves (three curves overlap on the y-axis) remain zero as t

increases. All these patterns fit well into Equation (4.45) and (4.46).

Figure 4.12: Eigenvalues of LDt .
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According to Theorem 4.14, we know for this case the inter-layer connections do not qualita-

tively affect the stability of the system. To check this, it suffices to compare the eigenvalues of the

intra-layer LL and the eigenvalues of the full matrix L. Recall that

L = LL + LD = IM×M ⊗ L+ LD ⊗ IN×N .

The eigenvalues of LL are eigenvalues of L each repeating M times, which results in the values

shown as red flat bars in Figure 4.13 below. Also, since all eigenvalues of LD are non-positive, the

eigenvalues of L are expected to be no greater than the eigenvalues of LL. This explains why the

blue curve is always below the red one in Figure 4.13. Finally, since the maximum eigenvalue of LD

is zero, it is expected that max(λ(L)) = max(λ(LL)). Therefore, the full dynamical system and the

same system without inter-layer connections are either both stable or both unstable. The left half

of Figure 4.13 represents the eigenvalues of the Supra-Laplacian at a stable solution of Equation

(4.18) while the right half at an unstable solution of Equation (4.18).

Figure 4.13: A comparison of eigenvalues between L and LL

Example 4.19 (Case III). In this example, we consider two multilayer Kuramoto networks corre-

sponding to case III with one satisfying a < 0 and one a > 0, where the variable a was defined in

(4.25).

• A multilayer network with a < 0:

Suppose 10 layers are connected in 3 cycles linked with a single hub. The first cycle consists of

3 layers, the second 4 layers, and the third 5 layers, i.e., n1 = 3, n2 = 7, n3 = 12. Direct calculation

gives a :=
∑3

j=1 aj =
∑

cos( 2π
nj−nj−1

) ≈ −0.2 < 0 and m := |{j : nj − nj−1 = 3}| = 1. Based on

the proof of Theorem 4.13, we have

n+(LDt ) =

{
n+(A) = 3, 0 ≤ t < 1

n+(A)− 1 = 2, t = 1,
(4.47)

n0(LDt ) =

{
n0(A), 0 ≤ t < 1

n0(A) + 1, t = 1.
(4.48)

In Figure 4.14, the trend of each eigenvalue λi over time t from t = 0 to t = 1 is drawn by a curve
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starting from the x-axis. The six gray curves correspond to the trend of eigenvalues λi(L
D
t ) whose

signs do not change over the whole time domain [0, 1]. The red curve shows that as t increases from

0 to 1, one eigenvalue of LDt decreases from positive to zero, which increments the kernel dimension

of LDt by one. The remaining three eigenvalues of LDt drawn by the green curves (three curves

overlap on the y-axis) remain zero as t increases. All these patterns fit well into Equation (4.47)

and Equation (4.48).

Figure 4.14: Eigenvalues of LDt

According to Theorem 4.14, it is expected that the full system will be destabilized by the inter-

layer connections since max(λ(L)) > max(λ(LL)). To check this, we again compare the eigenvalues

of L and LL at a solution of Equation (4.4), which gives us Figure 4.15 as below.

Figure 4.15: A comparison of eigenvalues between L and LL

From Figure 4.15 it can be seen that all eigenvalues of LL are negative so we have a stable

solution without the inter-layer connections. However, after adding the inter-layer connections, L
has positive eigenvalues implying the full system following Equation (4.4) is not stable anymore.

So this example shows the fact that the inter-layer connections destabilize the system with the

existence of cycles containing less than four layers.

81



• A multilayer network with a > 0:

Suppose 10 layers are connected in 3 cycles linked with a single hub. The first cycle consists of

3 layers, the second 4 layers, and the third 7 layers, i.e., n1 = 3, n2 = 7, n3 = 14. Direct calculation

gives a :=
∑3

j=1 aj =
∑

cos( 2π
nj−nj−1

) ≈ 0.12 > 0 and m := |{j : nj − nj−1 = 3}| = 1. Based on

Theorem 4.13, we have

n+(LDt ) = n+(A) = 2, 0 ≤ t ≤ 1, (4.49)

n0(LDt ) =

{
n0(A), 0 ≤ t < 1

n0(A) + 1, t = 1.
(4.50)

In Figure 4.16, the trend of each eigenvalue λi over time t from t = 0 to t = 1 is drawn by a curve

starting from the x-axis, which fits well into Equation (4.49) and Equation (4.50).

Figure 4.16: Eigenvalues of LDt

Similarly as above, comparing the eigenvalues of LL and L shows the fact that the full system

can be destabilized by the inter-layer connections. We omit the details here to avoid redundancy.

4.3.3. A Cycle Tree

As seen above, for either a single cycle or a graph of multiple cycles with a single hub, the

effect of inter-layer connections on the twisted states only depends on the number of layers in each

cycle. It is natural to expect the same result for a more general setting where the cycles in a graph

are allowed to be connected with different hubs. This leads to the subject of our current subsection:

a cycle tree.

Definition 4.20. If a graph G only contains cycles and these cycles are connected in a tree, i.e.,

no cycles share edges, then we call it a cycle tree.
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Figure 4.17: A cycle tree

In this case, the method we used for a cycle flower does not apply anymore. This is because

the increasing rank of perturbation due to the increasing amount of hubs will make the calculation

extremely hard. Instead, we take advantage of Algebraic Graph Theory to do the analysis. In

fact, the result for the cycle-flower graph, Theorem 4.14, also holds for the cycle-tree graph. To

prove it, fundamental knowledge of graph theory is needed, which can be found in standard lecture

notes [64–66]. We review it here for further usage.

Given a connected undirected graph G = (V,E,O), where V is the vertex set, E is the

edge set and O is some orientation assigned to the graph. For instance, for the graph below,

V = {v1, v2, v3, v4}, E = {e1, e2, e3, e4, e5} and the orientation is given by the edge direction.

Figure 4.18: A connected undirected graph with some orientation

Definition 4.21 (Incidence vector). For G = (V,E,O), an incidence vector corresponding to each

edge e ∈ E is defined as a vector Ie with length |V | such that the ith component is

(Ie)i =


1 e ends at vi,

−1 e starts at vi,

0 else.

(4.51)
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For instance, for the graph in Figure 4.18, we have

Ie1 = {−1, 1, 0, 0},

Ie2 = {0,−1, 1, 0},

Ie3 = {0, 0,−1, 1},

Ie4 = {1, 0, 0,−1},

Ie5 = {1, 0,−1, 0}.

Definition 4.22 (Incidence matrix). An incidence matrix B = B(G) is a |V | × |E| matrix with

incidence vectors (Ie)e∈E as columns, i.e.,

Bij =


1 ej ends at vi,

−1 ej starts at vi,

0 else.

(4.52)

For instance, the incidence matrix of the graph in Figure 4.18 is

B =


−1 0 0 1 1

1 −1 0 0 0

0 1 −1 0 −1

0 0 1 −1 0

 .

Definition 4.23 (Cycle space). Let F be an arbitrary field. The kernel of the incidence matrix

B(G) over F is the cycle space of G denoted by K. In other words,

K := {x ∈ FE : Bx = 0}.

Definition 4.24 (Fundamental cycles). Let T ⊂ E be a spanning tree of G. For each e ∈ E \ T ,

the set T ∪ {e} contains exactly one cycle Ce. These cycles are the fundamental cycles of G with

respect to T .

Definition 4.25 (Fundamental cycle vectors). Given a fundamental cycle Ce, the fundamental

cycle vector ~vCe corresponding to Ce is defined as a vector of length |E| such that the ith coordinate

is

(~vCe)i =


1 ei ∈ Ce and ei is clockwise,

−1 ei ∈ Ce and ei is counterclockwise,

0 ei /∈ Ce.

(4.53)

Let’s consider the graph in Figure 4.18 again and pick a random spanning tree T = {e1, e2, e3}
(the red edges) as shown below.
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Figure 4.19: A connected undirected graph with a spanning tree

The fundamental cycle vectors with respect to T are

~vCe4 =


−1

−1

−1

−1

0

 , ~vCe5 =


−1

−1

0

0

−1

 .

Remark 4.26. There are |E| − |V |+ 1 fundamental cycles for every spanning tree T . The funda-

mental cycle vectors corresponding to these cycles form a |E| − |V | + 1 dimensional vector space,

which is independent of the choice of T .

Lemma 4.27. Every fundamental cycle vector ~vCe lies in the cycle space K, i.e., B~vCe = 0 for

any ~vCe, where B is the incidence matrix.

Theorem 4.28. Fundamental cycle vectors form a basis of the cycle space K and dim(K) =

|E| − |V |+ 1. We call it the cycle basis.

In a cycle tree, the cycle spaces corresponding to every cycle are orthogonal to each other.

This suggests us finding eigenvalues of the whole graph can be reduced to finding eigenvalues of

each single cycle. This is essentially why the results for either a single cycle or a cycle flower also

hold for a cycle tree.

Theorem 4.29. Given a cycle tree, there exists a twisted state with the winding number q = 1 to

the multilayer Kuramoto model, and the corresponding inter-layer Laplacian matrix LD satisfies

n+(LD) = 2m where m is the number of cycles containing 3 layers. As a result, we have

(1) If all cycles contain at least four layers, i.e., nj−nj−1 ≥ 4 for j = 1, 2, ..., l, then the inter-layer

connections do not qualitatively affect the stability of the system.

(2) If there exists a cycle with less than four layers, then the inter-layer connections destabilize the

system.

Theorem 4.29 can be easily extended to all integer winding numbers as we showed in Theorem
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4.13. To prove Theorem 4.29, we need an elegant result from Bronski, Deville, and Ferguson’s

paper [67] stated as below.

Theorem 4.30 (Bronski, Deville, and Ferguson). Let G = (V,E,Γ) be a connected, weighted graph

with weight γe on each edge, and let LG be the Laplacian matrix. Then the number of positive

eigenvalues of LG satisfies

n+(LG) = {e ∈ E|γe < 0} − n+(ZG), (4.54)

where ZG is defined as a cycle intersection matrix ZG := −Y T
GD

−1
G YG. Here, YG is a |E|×c matrix

whose columns are given by yi, where {y1, ..., yc} is a basis of the cycle space K(G), and DG is a

|E| × |E| matrix whose e’th entry is γe.

Lemma 4.31. Suppose G = (V,E) is composed of l components Gi = (Vi, Ei) for i ∈ {1, ..., l} and

these components do not share edges, then the cycle space of G satisfies K(G) =
l⊕

i=1
K(Gi).

Proof. Notice that each component Gi has separate edge set, i.e., Ei ∩Ej = ∅ for any i 6= j. Then

by the definition of the cycle space, it can be easily seen that K(Gi) is a subspace of K(G) and

dim(K(G)) =
∑l

i=1 dim(K(Gi)). Plus, K(Gi) ∩
∑

j 6=iK(Gj) = {0}. Therefore, one can conclude

that K(G) =
l⊕

i=1
K(Gi). �

Aside from the main branch of our proof, we would like to mention an interesting observation

found along the way. This result is not necessary for the proof of Theorem 4.29, but it provides a

nice property of the Laplacian matrix’s kernel, which is why we feel it is worth presenting here as

Lemma 4.32.

Lemma 4.32. Given any connected graph G, suppose LG is the Laplacian matrix and L̃G is the

principal submatrix of LG obtained by deleting the first row and column of LG, then dim(Ker(LG)) =

dim(Ker(L̃G)) + 1.

Proof. Suppose LG is an n× n matrix, we order its eigenvalues in an increasing order: λ1 ≤ λ2 ≤
... ≤ λn. Then the interlacing theorem gives λk(LG) ≤ λk(L̃G) ≤ λk+1(LG) for k ∈ {1, ..., n − 1}.
This implies

dim(Ker(L̃G))− 1 ≤ dim(Ker(LG)) ≤ dim(Ker(L̃G)) + 1. (4.55)

On the other hand, for any vector ~x ∈ Ker(L̃G), we claim ~y ∈ Ker(LG) where y :=

(
0

~x

)
. In
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fact, writing LG and ~x explicitly gives

LG =



−
∑
j 6=1

a1j a12 · · · a1n

a21 −
∑
j 6=2

a2j · · · a2n

...
...

. . .
...

an1 an2 · · · −
∑
j 6=n

anj


and ~x =


x2

x3

...

xn

 ,

where aij = aji. Then we have
n∑
j=2

aij(xj − xi) − ai1xi = 0 for i = 2, ..., n as L̃G~x = 0. Summing

these n− 1 equations up gives
n∑
i=2

n∑
j=2

aij(xj − xi)−
n∑
i=2

ai1xi = 0. The first term is clearly zero by

the symmetry, which results in
n∑
i=2

a1ixi = 0. This implies LG~y = 0. Furthermore, note that the

all-ones vector ~1 lies in Ker(LG) and it is independent with the vector ~y constructed above, so we

have

dim(Ker(LG)) ≥ dim(Ker(L̃G)) + 1. (4.56)

Combining the inequalities (4.55) and (4.56) gives

dim(Ker(LG)) = dim(Ker(L̃G)) + 1, (4.57)

which ends the proof. �

Theorem 4.30, in alliance with the aforementioned lemmas, yields the following proposition.

Proposition 4.33. n+(LG) =
l∑

i=1
n+(LGi) =

l∑
i=1

n+(L̃Gi).

Proof. Suppose ZG is the cycle intersection matrix of G defined in Theorem 4.30 and ZGi is the

cycle intersection matrix of Gi. Then by Lemma 4.31, we have

ZG = −Y T
GD

−1
G YG

= −


Y T
G1

. . .

Y T
Gl



D−1
G1

. . .

D−1
Gl



YG1

. . .

YGl



=


ZG1

. . .

ZGl

 ,

which implies n+(ZG) =
l∑

i=1
n+(ZGi). Notice that different components of G do not share edges,
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i.e., Ei ∩ Ej = ∅ for any i 6= j, then Theorem 4.30 gives

n+(LG) = {e ∈ E | γe < 0} − n+(ZG)

=

l∑
i=1

{e ∈ Ei | γe < 0} −
l∑

i=1

n+(ZGi) =

l∑
i=1

n+(LGi).

Plus, by Lemma 4.32, it is not hard to see that n+(LGi) = n+(L̃Gi). Therefore, we proved

n+(LG) =
l∑

i=1
n+(LGi) =

l∑
i=1

n+(L̃Gi). �

Proposition 4.33 shows that the number of positive eigenvalues of a cycle-tree graph’s Laplacian

depends on which of each cycle’s Laplacian. This coincides with the result we derived for a cycle

flower in section 4.3.2. As a result, Theorem 4.29 holds immediately.

4.4. Conclusion

In this chapter, we discuss a node-aligned multilayer Kuramoto model and show that if the

layers are connected into a complete graph or a cycle tree, i.e. a graph containing only no-edge-

shared cycles, then a twisted state exists as a phase-locked solution of the Kuramoto model. The

Jacobian of the Kuramoto equation at this state is a supra-Laplacian matrix. Our main focus is on

the effect of the inter-layer connections on the stability of such a twisted state. For the complete

graph, we prove the inter-layer connections always destabilize the system since the value of the

eigenvalues of the graph Laplacian is increased due to these connections. For the cycle-tree graph,

we prove that whether the inter-layer connections will enhance or impede the phase-locking depends

on the number of layers in each cycle. In particular, for the twisted state with a winding number of

q = 1, the system will only be destabilized if there exists at least one cycle containing less than four

layers. Otherwise, the system stability will not be qualitatively affected since the largest eigenvalue

remains the same regardless of the inter-layer connections.

We have seen that the inter-layer topology is an important factor in system stability. Another

question one may ask is how robust the system stability is towards inter-layer perturbations. Intu-

itively, the phase locking is enhanced with more inter-layer couplings. However, we will show in the

next chapter that, for a duplex Kuramoto model under specific conditions, one of its stable states

is always destabilized by an additional weak inter-layer coupling using the standard perturbation

theory. This result coincides with the famous Braess’s Paradox which we will briefly introduce at

the beginning of the next chapter.
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Chapter 5

Perturbation Analysis on Duplex Networks

5.1. Background

Back to 1968, a German mathematician Dietrich Braess noticed an interesting phenomenon

that an addition of an intuitively helpful road to a network can adversely worsen the traffic and

increase the overall journey time, which is totally counter-intuitive [68]. To make it clear, consider

a network of two non-interfering routes from s to t. Suppose the traveling time is always one hour

on the roads (v, t) and (s, w) regardless of the traffic, i.e., the cost c(x) = 1 where x represents

the fraction of the traffic on the given route overall routes. Meanwhile, the travelling time on the

roads (s, v) and (w, t) is linearly proportional to the traffic, i.e., c(x) = x. Therefore, for the initial

network shown in Figure 5.1(a), the least total amount of travelling time is 1 + 0.5 = 1.5 hours

since evenly splitting the traffic on (s, v) and (s, w) is the optimal choice. Now, suppose we install

a teleportation device allowing drivers to travel instantly from v to w shown as the edge (v, w) in

Figure 5.1(b) with c(x) = 0. The new route (s → v → w → t) is never worse than the original

two routes (s→ v → t) and (s→ w → t) and strictly better than the case where some traffic fails

to use it. We, therefore, expect all drivers to veer to this new route. And as a result, the total

traveling time will be increased to 2 hours due to the full congestion on (s, v) and (w, t). We have

made the clogging even worse!

Figure 5.1: Braess’s Paradox [69]

There exists a physical demonstration on Braess’s Paradox. As shown in Figure (5.2)(a), we

attach one end of a spring to a fixed support and the other end to a taut string S. Another identical

spring is attached to the free end of S and carries a heavy weight. In addition, we use two extra

strings, one attaches the support and the lower end of S and the other the weight and the upper end

of S. Suppose the stretched length of a spring is a linear function of the force applied to it, then this

mechanical structure can be viewed as the traffic network depicted in Figure 5.1(b): the two long

strings are equivalent to roads (s, w) and (v, t); the taut string is equivalent to (v, w); and finally
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the two springs are equivalent to (s, v) and (w, t). Now cutting off the taut string, surprisingly,

cause the weight to rise, which corresponds to the better traffic congestion in the network (5.1)(a).

Figure 5.2: A string-springs system: a physical demonstration on Braess’s Paradox [69]

In analogy with the Braess’s Paradox, a similar phenomenon also occurs in dynamical systems

with a population of coupled oscillators. Quite naturally, people expect that connecting a pair of

initially uncoupled oscillators would generically favor synchrony. However, Nishikawa and Motter

[70] found that a system can be easier to reach synchronization if the average network distance is

larger. They presented both numerical results and analytical estimates on the synchronizability of

a scale-free network. A few years later, Witthaut and Marc Timme [71, 72] showed that adding

specific links could decrease the total grid capacity and thus destroy the locking on the grid,

though additional couplings stabilize synchronous states on average. Numerical experiments were

performed on both a second-order Kuramoto-like model and a complex network. Very recently,

they published a nice review on antagonistic phenomena in network dynamics [73] (we especially

refer readers to part one for the phenomena of Braess’s paradox). For more related work, we refer

readers to the references [74–78].

Although the interest in this field seems to be arising in a recent decade, most of the results are

purely numerical. The purpose of this chapter is to provide an analytical treatment of the Braess’s

paradox in a multilayer Kuramoto model, which is inspired by Coletta and Jacquod’s work on

linear stability analysis of coupled-oscillator networks [74]. More specifically, we will explore the

effect of adding a small coupling between a pair of oscillators on stable synchronous states of a

duplex network, i.e. a multiplex network with two layers, using first-order perturbation theory. In

particular, when the underlying graph of each layer is a circle, we give a simple elegant result stated

in the next section.
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5.2. Main Result

Suppose we have a cyclic duplex network, i.e. a two-layer multiplex network with the graph

on each layer being a single cycle. Every node in the graph represents a phase oscillator. Suppose

each layer contains N oscillators and they satisfy the following Kuramoto dynamic:

dθ
(1)
i

dt
= ω + γ(sin(θ

(1)
i+1 − θ

(1)
i ) + sin(θ

(1)
i−1 − θ

(1)
i )) + τi sin(θ

(2)
i − θ

(1)
i ), (5.1)

dθ
(2)
i

dt
= −ω + γ(sin(θ

(2)
i+1 − θ

(2)
i ) + sin(θ

(2)
i−1 − θ

(2)
i )) + τi sin(θ

(1)
i − θ

(2)
i ), (5.2)

for i ∈ {1, 2, ..., N} where we assume θ
(·)
N+1 = θ

(·)
1 and θ

(·)
0 = θ

(·)
N .

Figure 5.3: A cyclic duplex network

Here, θ
(1)
i refers to the phase of the ith node on the first layer and θ

(2)
i the ith node on

the second layer. ω is the natural frequency of each node and γ represents the intra-layer coupling

strength. We assume all nodes share the same frequency and the same intra-layer coupling strength.

The constant τi represents the inter-layer coupling strength between the ith nodes of both layers.

Suppose τ1 = τ2 = ... = τN−1 = τ > 0, τN = 0 and

θ = (θ(1),θ(2)) = (θ, ..., θ,−θ, ...,−θ) (5.3)

is an asymmetric stable consensus state under such dynamic. One can easily check that such stable

state exists. The Jacobian matrix of the duplex Kuramoto model (5.1)-(5.2) at this state is negative

semi-definite with N eigenvalues λ1 = 0 > λ2 > ... > λN . Since the largest eigenvalue vanishes, the

state stability is determined by λ2. Therefore, we will compute the leading order correction to λ2

resulting from adding a weak connection between the two layers.

To add a small perturbation on the network, we set τN as δ where 0 < δ � 1, and suppose

θ̃ = (θ̃(1), θ̃(2)) = (θ̃(1),−θ̃(1)) (5.4)
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is an asymmetric state for the perturbed dynamic.

Figure 5.4: An inter-layer perturbation on a duplex network

To determine the stability of this new state, we will apply the method of perturbation analysis

to our duplex network later in this section. Before stating our main result, it is necessary to clarify

a few notations first.

θ̃ := θ + δθ, (5.5)

θ
(k)
ij := θ

(k)
i − θ

(k)
j , k = 1, 2, (5.6)

θ̃
(k)
ij := θ̃

(k)
i − θ̃

(k)
j , k = 1, 2, (5.7)

ε
(k)
ij := δθ

(k)
i − δθ

(k)
j , k = 1, 2, (5.8)

θii := θ
(1)
i − θ

(2)
i , (5.9)

θ̃ii := θ̃
(1)
i − θ̃

(2)
i , (5.10)

εii := δθ
(1)
i − δθ

(2)
i . (5.11)

Applying these notations and the asymmetry of our state, we have

θ
(1)
ij = θ

(2)
ij = 0, i 6= j

θ̃
(1)
ij = −θ̃(2)

ij , i 6= j

θii = 2θ
(1)
i = 2θ,

(5.12)


ε
(1)
ij = −ε(2)

ij , i 6= j

εii = 2δθ
(1)
i .

(5.13)

Now, we are ready to state our main result.

Theorem 5.1. Suppose c0 = τ
γ cos(2θ) where θ is defined in (5.3). Define

f1 = −2(1 + c0)r1 + r2
1 + rN1 (5.14)

f2 = −2(1 + c0)r2 + r2
2 + rN2 , (5.15)

g1 = r1 + rN−1
1 − 2rN1 (5.16)

g2 = r2 + rN−1
2 − 2rN2 , (5.17)
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where r1,2 = 1 + c0 ±
√
c2

0 + 2c0, then the following statements hold:

(1) For the phase differences defined in (5.8) and (5.11), we have

ε
(1)
ij =

δ sin(2θ)

γ

1

f1g2 − f2g1
(f2(ri1 − r

j
1)− f1(ri2 − r

j
2)) +O(δ2), (5.18)

εii =
2δ sin(2θ)

γ

1

f1g2 − f2g1
(f2r

i
1 − f1r

i
2) +O(δ2). (5.19)

(2) After adding the perturbation τN = δ, the change of the second largest eigenvalue of the

Jacobian of our equation system (5.1)-(5.2) is

∆λ2 =
N−1∑
k=1

2τδ sin2(2θ)

γ
(uk − uN+k)

2 1

f1g2 − f2g1
(f2r

k
1 − f1r

k
2)− δ cos(2θ)(uN − u2N )2 +O(δ2),

(5.20)

where u is the eigenvector of the original Jacobian without perturbation associated with the second

largest eigenvalue. If ∆λ2 > 0, then the perturbation destabilizes the dynamic, otherwise it stabilizes

the dynamic. In particular, when c0 > 0 and sin(2θ) 6= 0, i.e., θ ∈ (`π−π/4, `π)∪(`π, `π+π/4) for

some ` ∈ N, we can conclude that, for N large, our system is always destabilized by the perturbation

since 1
f1g2−f2g1 (f2r

k
1 − f1r

k
2) is positive for all k ∈ {1, 2, ..., N − 1}.

To verify Theorem 5.1, we need to prove the following two lemmas.

Lemma 5.2. Suppose A is a n× n tridiagonal matrix with cornered elements:

A =



c 1 0 . . . 0 1

1 c 1 . . . 0 0
. . .

. . .
. . .

. . .
. . .

. . .

0 0 . . . 1 c 1

1 0 0 . . . 1 d


.

Then the element at the ith row and jth column of its inverse is

(A−1)ij =

Pij 1 ≤ i ≤ j

Qij j < i ≤ n,
(5.21)

where the values of Pij and Qij are given by

Pij = a1(j) · ri1 + a2(j) · ri2, (5.22)

Qij = (a1(j)− z1(j)) · ri1 + (a2(j)− z2(j)) · ri2. (5.23)

Here, ri, zi and ai for i = 1, 2 are defined as
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r1 = (−c+
√
c2 − 4)/2

r2 = (−c−
√
c2 − 4)/2,

(5.24)

z1(j) = 1/(rj1(r2 − r1))

z2(j) = 1/(rj2(r1 − r2)),
(5.25)

and a1(j)

a2(j)

 =
1

f1g2 − f2g1

 g2 −f2

−g1 f1


 z1(j)rn1 + z2(j)rn2

z1(j)(rn−1
1 + drn1 ) + z2(j)(rn−1

2 + drn2 )

 , (5.26)

where for k ∈ {1, 2}, fk = crk + r2
k + rnk

gk = rk + rn−1
k + drnk .

(5.27)

Proof. Following the usual argument, we consider the difference equation for i ∈ {2, 3, ..., n− 1}:

r(i− 1) + cr(i) + r(i+ 1) = 0. (5.28)

Assume a simple form of r(i) = ri, we then have

r2 + cr + 1 = 0. (5.29)

Solving (5.29) for r gives r1,2 as shown in (5.24). Define Pij and Qij as in (5.22) and (5.23):

Pij = a1(j) · ri1 + a2(j) · ri2,

Qij = (a1(j)− z1(j)) · ri1 + (a2(j)− z2(j)) · ri2.

Then it is not hard to see Pij and Qij are solutions to the equation (5.29) for i ∈ {2, 3, ..., n − 1}
and j ∈ {1, 2, ..., n}, i.e.,

Pi−1,j + cPij + Pi+1,j = 0, (5.30)

Qi−1,j + cQij +Qi+1,j = 0. (5.31)

Suppose

(A−1)ij =

Pij 1 ≤ i ≤ j

Qij j < i ≤ n,

as defined in (5.21) and

Pjj = Qjj (5.32)

for j ∈ {1, 2, ..., n}. For convenience, we denote A:,j as the jth column of the matrix A. Then
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A · (A−1):,j = I:,j for j ∈ {2, 3, ..., n− 1} gives equations (5.30), (5.31) and

cP1j + P2j +Qnj = 0, (5.33)

cPjj + Pj−1,j +Qj+1,j = 1, (5.34)

P1j +Qn−1,j + dQn,j = 0. (5.35)

Notice that cPjj + Pj−1,j = −Pj+1,j by the equation (5.30), so (5.34) can be rewritten as

− Pj+1,j +Qj+1,j = 1. (5.36)

Plugging Pij and Qij as defined in (5.22) and (5.23) in the equations (5.32) and (5.36) gives us[
rj1 rj2
−rj+1

1 −rj+1
2

][
z1(j)

z2(j)

]
=

[
0

1

]
, (5.37)

which implies

z1(j) = 1/(rj1(r2 − r1)),

z2(j) = 1/(rj2(r1 − r2)),

as defined in (5.25) for j 6= 1, n. On the other hand, plugging Pij and Qij into equations (5.33) and

(5.35) yields

f1a1(j) + f2a2(j) = z1(j)rn1 + z2(j)rn2 , (5.38)

g1a1(j) + g2a2(j) = z1(j)(rn−1
1 + drn1 ) + z2(j)(rn−1

2 + drn2 ), (5.39)

where for k = 1, 2,

fk = crk + r2
k + rnk , (5.40)

gk = rk + rn−1
k + drnk . (5.41)

Solving the equations (5.38) and (5.39) for a1 and a2 yields (5.26) for j 6= 1, n.

Following the same manner, one can show that A · (A−1):,j = I:,j for j ∈ {1, n} is also guaranteed

by the same set of equations (5.32), (5.33), (5.36) and (5.35). This implies our solutions (5.25) and

(5.26) also apply for j = 1 and j = n. The lemma now has been proved. We note that the main

idea of this proof comes from Dow’s work in 2002 [79]. �

Lemma 5.3. Suppose c0 > 0, r1,2 = 1 + c0 ±
√
c2

0 + 2c0 and

fk = −2(1 + c0)rk + r2
k + rnk , (5.42)

gk = rk + rn−1
k − 2rnk (5.43)
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for k = 1, 2, then the following inequality

1

f1g2 − f2g1
(f2r

i
1 − f1r

i
2) > 0 (5.44)

is satisfied for any i ∈ {1, 2, ..., n} where n > 1 is an arbitrary positive integer.

Proof. To begin with, we make an useful observation that r1 · r2 = 1. Then fix an arbitrary

i ∈ {1, 2, ..., n}, we will prove the following inequalities separately:

(a) f2r
i
1 − f1r

i
2 < 0, (5.45)

(b) f1g2 − f2g1 < 0. (5.46)

Part (a) is much easier to show. Direct calculations give us

f2r
i
1 − f1r

i
2 = −2(1 + c0)(ri−1

1 − r1−i
1 ) + (ri−2

1 − r2−i
1 )− (rn−i1 − ri−n1 ), (5.47)

which is negative due to the fact that c0 > 0 and r1 > 1.

Part (b) is a bit less trivial to prove. First notice that when c0 = 0, we have r1 = r2 = 1

and thus f1g2 − f2g1 = 0. So it suffices to show the derivative of f1g2 − f2g1 with respect to c0 is

negative when c0 > 0. We start with computing the derivatives of f1, f2, g1 and g2 with respect to

c0 separately. Note that

r′1 =
dr1

dc0
= C · r1, (5.48)

r′2 =
dr2

dc0
= −C · r2, (5.49)

where C = 1/
√
c2

0 + 2c0. Using Equations (5.48) and (5.49) gives

f ′1 = C · nrn1 , (5.50)

f ′2 = −C · nrn2 , (5.51)

g′1 = C · (r1 + (n− 1)rn−1
1 − 2nrn1 ), (5.52)

g′2 = −C · (r2 + (n− 1)rn−1
2 − 2nrn2 ). (5.53)
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Then (f1g2 − f2g1)′ =

f ′1g2 + f1g
′
2 − f ′2g1 − f2g

′
1

= C · [(4n+ 2nc0 − 2− 2c0)(rn−2
1 + r2−n

1 )− (3n+ 4nc0 + 1)(rn−1
1 + r1−n

1 )

− (n− 1)(rn−3
1 − r3−n

1 ) + 4(1 + c0)],

≤ C · [(4n+ 4nc0)(rn−2
1 + r2−n

1 )− (3n+ 4nc0 + 1)(rn−1
1 + r1−n

1 )

− (n− 1)(rn−3
1 − r3−n

1 )], (5.54)

where the last inequality is due to c0 > 0 and rn−2
1 + r2−n

1 ≥ 2. Now we make another observation

on the coefficients of elements inside the parentheses of (5.54):

(3n+ 4nc0 + 1) + (n− 1) = (4n+ 4nc0). (5.55)

Define f(x) = x+1/x, c1 = (3n+4nc0+1)/(4n+4nc0), c2 = (n−1)/(4n+4nc0) and x0 = rn−2
1 > 1.

Then to show (f1g2 − f2g1)′ ≤ 0 , it is sufficient to prove

f(x0) ≤ c1f(r1x0) + c2f(x0/r1). (5.56)

Since the function f is convex and c1 + c2 = 1, we have

c1f(r1x0) + c2f(x0/r1) ≥ f(c1r1x0 + c2x0/r1). (5.57)

Note that c1r1 + c2/r1 = c1r1 + c2r2 = 1
4n+4nc0

[(1 + c0)(4n+ 4nc0) + (2n+ 4nc0 + 2)
√
c2

0 + 2c0] ≥
1+c0 ≥ 1, and also, f(x) is increasing when x ≥ 1. This implies f(c1r1x0 +c2x0/r1) ≥ f(x0) which

yields the inequality (5.56). Thus part (b) is also proved.

Combining the two inequalities (5.45) and (5.46) gives our result (5.44). �

Now, it is time to prove our main theorem.

Proof of Theorem 5.1. We will prove part (1) and (2) separately as below.

(1) Plugging θ̃ into the equations (5.1)-(5.2) and applying the first-order Taylor expansion

sin(θ + δθ) ≈ sin(θ) + δθ cos(θ) yield

J · δθ = δ sin(θ̃NN ) · v (5.58)

where J is the Jacobian matrix of (5.1)-(5.2) at θ, θ̃NN = θ̃
(2)
N − θ̃

(1)
N and vT =

(
v(1),v(2)

)
is a

1× 2N vector. Here v(1) is a N × 1 vector with all zero components except for the last one being

1, and v(2) is a N × 1 vector with all zero components except for the last being -1. The matrix J
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is of dimension 2N × 2N and can be written in the form of

J =

[
A B

B A

]
, (5.59)

where A is a N ×N tridiagonal Toeplitz matrix and B is a N ×N diagonal matrix with

Aij =

γ i ∼ j

−2γ −Bii i = j,
Bii =

τ cos(2θ) i 6= N

0 i = N.
(5.60)

Notice that δθ(1) = −δθ(2), the equation (5.58) gives

(A−B)δθ(1) = δ sin(θ̃NN )v(1), (5.61)

which implies δθ(1) = δ sin(θ̃NN )(A−B)−1v(1). Thus

ε
(1)
ij := δθ

(1)
i − δθ

(1)
j = δ sin(θ̃NN )

(
(A−B)−1

iN − (A−B)−1
jN

)
. (5.62)

Then to the first order in δ, we will have

ε
(1)
ij ≈ δ sin(θNN )

(
(A−B)−1

iN − (A−B)−1
jN

)
. (5.63)

Here, (A − B)−1
ij represents the element at the ith row and jth column of the inverse matrix of

A−B. Now, let’s find the inverse of A−B. Define c0 = τ cos(2θ)/γ, then

A−B = γ



−2− 2c0 1 0 . . . 0 1

1 −2− 2c0 1 . . . 0 0
. . .

. . .
. . .

. . .
. . .

. . .

0 0 . . . 1 −2− 2c0 1

1 0 0 . . . 1 −2


. (5.64)

Applying Lemma 5.2 by taking c = −2− 2c0 and d = −2 gives

(A−B)−1
iN =

1

γ(f1g2 − f2g1)
(f2r

i
1 − f1r

i
2), (5.65)

where f1, f2, g1, g2 and r1,2 are defined in Theorem (5.1). So (5.63) gives the equation (5.18). The

equation (5.19) can be proved following the same argument.

(2) Suppose J is the Jacobian matrix of the original system (5.1)-(5.2) valued at the solution
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θ and J̃ is the Jacobian of the perturbed system (by setting τN = δ) at the solution θ̃. Then

J̃ = J + ∆J +O(δ2), (5.66)

where

∆J =

[
−D D

D −D

]
(5.67)

composed with a diagonal matrix D with

Dii =

−τεii sin(2θ) i 6= N

δ cos(2θ) i = N.
(5.68)

Suppose u is the eigenvector of J associated with its second largest eigenvalue and ∆λ2 is the

difference between the second largest eigenvalue of J and J̃ , then

∆λ2 ≈ uT ·∆J · u =

N−1∑
k=1

τεkk sin(2θ)(uk − uN+k)
2 − δ cos(2θ)(uN − u2N )2. (5.69)

Equation (5.69) together with (5.19) that we proved in part (1) gives our result in the second part

(5.20). In particular, when θ ∈ (`π − π/4, `π) ∪ (`π, `π + π/4) for some ` ∈ N, we have c0 > 0 and

sin(2θ) 6= 0, and thus by Lemma 5.3 we know εkk sin(2θ) > 0 for any k ∈ {1, 2, ..., N−1}. Also note

that any vector v such that vk = vN+k for k = 1, 2, ..., N −1 and vN 6= v2N is not an eigenvector of

J . These imply that, for δ small and N large, we have ∆λ2 > 0. Therefore, our dynamical system

will be destabilized by the perturbation. �

5.3. Conclusion

In this chapter, we focus on a duplex Kuramoto network and study analytically how an ad-

ditional weak inter-layer connection would affect the system’s stability. Originally, the system has

an asymmetric stable consensus state θ = (θ(1),θ(2)) = (θ, ..., θ,−θ, ...,−θ). After adding a weak

coupling between the two layers, we obtain a perturbed system and an associated new asymmetric

state θ̃ is found. The effect of the perturbation on the state stability is measured by the change of

the second largest eigenvalue of the Jacobian of the Kuramoto model ∆λ2. We derive an explicit

expression of ∆λ2 using the standard perturbation theory. In particular, we prove that, for a large

system, when θ ∈ (`π − π/4, `π) ∪ (`π, `π + π/4) for some ` ∈ N, our system is always destabilized

by the perturbation due to a positive ∆λ2.

99



APPENDIX A

Proof in Chapter 2

A.1. Proof of Proposition 2.12

Proof. Suppose J is the Jacobian matrix of (2.2) at θ∗, λ1, λ2, ..., λN are N eigenvalues of J and

v1, v2, ..., vN are the corresponding eigenvectors. Since θ∗ is a stable fixed point, by definition,

λN ≤ λN−1 ≤ ... ≤ λ2 < λ1 = 0. And clearly, v1 = 1̂ = (1, 1, ..., 1). Let V = Ker(J) = span{1̂}
and W = span{v2, v3, ..., vN}, then V ⊕W = RN .

Consider any solution of Equation (2.15) that is close to θ∗, i.e., θ = θ∗+ θ̃ where ‖θ̃‖ is small.

Then we have

θ̇i =
˙̃
θi = ωi +

γ

N

∑
j

sin(θ∗j − θ∗i + (θ̃j − θ̃i)) + εfi(θ, t) (A.1)

= ωi +
γ

N
(
∑
j

sin(θ∗j − θ∗i ) +
∑
j

cos(θ∗j − θ∗i )(θ̃j − θ̃i)−
∑
j

sin(ξi,j)
(θ̃j − θ̃i)2

2
) (A.2)

+ εfi(θ, t) where ξij is between (θ∗j − θ∗i ) and (θj − θi) (A.3)

=
γ

N

∑
j

cos(θ∗j − θ∗i )(θ̃j − θ̃i)−
γ

N

∑
j

sin(ξi,j)
(θ̃j − θ̃i)2

2
+ εfi(θ, t) (A.4)

= (Jθ̃)i −
γ

N

∑
j

sin(ξi,j)
(θ̃j − θ̃i)2

2
+ εfi(θ, t), (A.5)

where (Jθ̃)i refers to the ith row of the matrix Jθ̃.

By our definition of semi-norm (2.9), ‖θ‖2 = ‖θ‖2Ω = 1
N

∑
1≤i≤j≤N

(θi − θj)2 = 1
N θ

TMθ, where

M =


N − 1 −1 −1 ... −1

−1 N − 1 −1 ... −1

......

−1 −1 −1 ... N − 1

 .

Notice that M has an eigenvalue 0 with multiplicity 1 and an eigenvalue N with multiplicity N−1,

so M is positive semi-definite. By computing the derivative of this semi-norm for θ̃ ∈W , we have
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d

dt
‖θ̃‖2 =

1

N

d

dt
θ̃TMθ̃ =

2

N
θ̃TM

˙̃
θ

≤ 2

N
θ̃TMJθ̃ +

γ

N2

∑
i,j

| sin(ξi,j)[(θ̃i − θ̃j)2
∑
k

(θ̃i − θ̃k)]|+
2

N
εθ̃TMf

≤ 2

N
θ̃TMJθ̃ +

γ

N2

∑
i,j

[(θ̃i − θ̃j)2
∑
k

|θ̃i − θ̃k|] +
2ε

N
‖θ̃TM‖ · ‖f‖

≤ λ2
2

N
θ̃TMθ̃ +

γ

N2

∑
i,j

(θ̃i − θ̃j)2(
∑
k

(θ̃i − θ̃k)2)1/2N1/2 +
2ε

N
(Nθ̃TMθ̃)1/2 · (N1/2C)

≤ 2λ2‖θ̃‖2 + γ‖θ̃‖3 + 2εCN1/2‖θ̃‖.

For θ̃ ∈ V , ‖θ̃‖ = 0. In this case, since M · J is negative semi-definite, we still have above

inequality. Thus for any small θ̃ ∈ RN , we have

d

dt
‖θ̃‖2 ≤ 2λ2‖θ̃‖2 + γ‖θ̃‖3 + 2εCN1/2‖θ̃‖.

To find the basin of attraction, it suffices to find the domain of ‖θ̃‖ such that

2λ2‖θ̃‖2 + γ‖θ̃‖3 + 2εCN1/2‖θ̃‖ < 0, (A.6)

which will be satisfied if {
2εCN1/2‖θ̃‖ < c1|λ2|‖θ̃‖2

γ‖θ̃‖3 < c2|λ2|‖θ̃‖2,
(A.7)

where c1 > 0, c2 > 0 and c1 + c2 ≤ 2. So we need

2εCN1/2

c1|λ2|
< ‖θ̃‖ < c2|λ2|

γ
. (A.8)

It is clear to see (A.8) makes sense only when ε < c1c2|λ2|2
2CN1/2γ

. Since c1c1 ≤ ( c1+c2
2 )2 ≤ 1, the loosest

bound on ε is |λ2|2
2CN1/2γ

, when c1 = c2 = 1.

Let r(ε) = 2εCN1/2/|λ2| and R = |λ2|/γ, then by Gronwall’s inequality [42], the semi-norm of

θ̃ is exponentially decreasing when θ̃ is in the annulus of the radii r(ε) and R, and then stays in

the ball of radius r(ε) forever. So statements (1) and (2) in Proposition 2.12 have been proved. �
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A.2. Proof of Proposition 2.22

Proof. The goal is to prove Equation (2.36):

lim
N→∞

P(|g(K,N)− g∞(
K

N
)| ≤ N−

1
2

+ε) = 1,

in other words, we need

lim
N→∞

P(g ≤ g∞ +N−
1
2

+ε) = 1, (A.9)

lim
N→∞

P(g ≥ g∞ −N−
1
2

+ε) = 1. (A.10)

For simplicity, define a = F−1(1 − ρ
2) so that we have g∞ = 2a and define δ = 1

2N
− 1

2
+ε, then

Equations (A.9) and (A.10) can be rewritten as

lim
N→∞

P(g ≤ 2(a+ δ)) = 1, (A.11)

lim
N→∞

P(g ≥ 2(a− δ)) = 1. (A.12)

Let’s prove Equation (A.11) first. In fact, we will show P(g ≤ 2a) tends to one as N →∞. Define

Xi = 1, if ωi ∈ [−a, a]

0, if ωi /∈ [−a, a].
(A.13)

Then X ′is are i.i.d random variables since ω′is are i.i.d random variables. Let X = X1+X2+...+XN ,

then X represents the number of ωi such that ωi ∈ [−a, a]. By strong law of large number theorem,
X
N converges to E(Xi) almost surely, i.e., P( lim

N→∞
X
N =

∫ a
−a f(x)dx) = 1. Notice that

∫ a
−a f(x)dx =

1 − ρ, so we have P( lim
N→∞

X
N = 1 − ρ) = 1. Moreover, we know g(ρ) ≤ 2a if X = (1 − ρ)N by the

definition of the function g. Therefore, P(g(ρ) ≤ 2a) = 1 as N → ∞. Equation (A.11) has been

proved.

The other direction Equation (A.12) is less trivial to prove. Intuitively, we want to show that

with high probability no intervals with length g∞ − 2δ contain more than (1 − ρ)N points. To

show this, we need to firstly make two important observations. First, notice that if no intervals of

Length L with ωk at an endpoint contain more than m points then no any other interval does. So

we can only focus on N intervals {[ωi, ωi+L] : i = 1, 2, ..., N}. Second, the interval centered at zero

maximizes the probability that a point lies in the interval, i.e., I = [−L/2, L/2] gives the largest

P(x ∈ I) among all intervals of length L. The proof follows from the fact that for µ =
∫ a+L
a f(x)dx,

its derivative dµ
da = f(a + L) − f(a) is zero when a = −L

2 . As a result, the probability that the

interval of length L with ωk at an endpoint contains more than m points is less than the probability

that [−L/2, L/2] contains more than m points. Now, fix L = 2(a − δ) where δ is defined at the

beginning of the proof. Define Ak as the event that interval [ωk, ωk + L] containing more than
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(1 − ρ)N points, A as the event that there exists an interval with length L containing more than

(1−ρ)N points, and B as the event that [−L/2, L/2] contains more than (1−ρ)N points. Clearly,

our goal is to prove

P(A)→ 0 as N →∞. (A.14)

Due to the above two observations and the union bound, we have

P(A) = P(∪Nk=1Ak) ≤
N∑
k=1

P(Ak) ≤ N · P(B). (A.15)

Note that

P(B) = N
N∑

M=(1−ρ)N

(
N

M

)
pM (1− p)N−M , (A.16)

where 1− ρ =
∫ a
−a f(x)dx and p =

∫ L/2
−L/2 f(x)dx =

∫ a−δ
−a+δ f(x)dx. we denote the right-hand side of

Equation (A.16) as R(ρ, p,N), then it is sufficient to show

R(ρ, p,N)→ 0 as N →∞. (A.17)

Define τN,M :=
(
N
M

)
pM (1− p)N−M = N !

M !(N−M)!p
M (1− p)N−M . Then

log(τN,M ) = log(N !)− log(M !)− log(N −M)! +M log(p) + (N −M) log(1− p).

For large N , using Stirling’s approximation: log(N !) ≈ N log(N)−N + 1
2 log(2πN), we have

log(τN,M ) ≈ N log(N)−N +
1

2
log(2πN)−M log(M) +M − 1

2
log(2πM)

− (N −M) log(N −M) + (N −M)− 1

2
log(2π(N −M))

+M log(p)− (N −M) log(1− p)

= N log(N)−M log(N)−M log(
M

N
)− (N −M) log(N)

− (N −M) log(
N −M
N

) +M log(p)− (N −M) log(1− p)

+
1

2
log

(
N

2πM(N −M)

)
= N

(
−M
N

log(
M

N
)− (1− M

N
) log(1− M

N
) +

M

N
log(p) + (1− M

N
) log(1− p)

)
+

1

2
log

(
N

2πM(N −M)

)
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By setting x = M
N , we have

log(τN,M ) ≈ N (−x log(x)− (1− x) log(1− x) + x log(p) + (1− x) log(1− p))

+
1

2
log

(
N

2πx(1− x)

)
− log(N).

Define

φ(x) := −x log(x)− (1− x) log(1− x) + x log(p) + (1− x) log(1− p), (A.18)

then

φ′(x) = log(
p

1− p
)− log(

x

1− x
) and φ′′(x) =

−1

x(1− x)
< 0. (A.19)

So φ reaches the largest when x = p. And thus, when N is large, the maximum of τN,M occurs

when x = M
N = p. In the neighborhood of the maximum: x = p+ y, φ(x) ≈ −1

2p(1−p)y
2. So we have

log(τN,M ) =
1

2
log(

1

2πp(1− p)N
)− N

2p(1− p)
y2 +O(y), (A.20)

and thus

τN,M ≈
1

N

√
N

2πp(1− p)
e
− Ny2

2p(1−p)+O(y)
. (A.21)

Recall that 1−ρ =
∫ a
−a f(x)dx and p =

∫ a−δ
−a+δ f(x)dx where δ = N−

1
2

+ε, then (1−ρ)−p ∼ N−
1
2

+ε.

So for M ≥ (1− ρ)N , we have M
N −p & N

− 1
2

+ε, i.e., y & N−
1
2

+ε. On the other hand, y ≤ 1−p < 1.

Thus

τN,M .
1

N

√
N

2πp(1− p)
e
− N2ε

2p(1−p)+O(1)
(A.22)

So we have

R(ρ, p,N) ≤ N ·N ·

(
1

N

√
N

2πp(1− p)
e
− N2ε

2p(1−p)+O(1)

)

= N

√
N

2πp(1− p)
e
− N2ε

2p(1−p)+O(1)
,

which implies R(ρ, p,N) → 0 as N → ∞ for any positive ε. The proof of Equation (A.12) is now

complete.

With the two equations (A.11) and (A.12), we proved Proposition (2.22).

�
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APPENDIX B

Proof in Chapter 4

Proposition B.1. Define a parameter family of operators LDt = A + tP where A and P are

defined as in (4.23) and t ∈ [0, 1]. If A is negative semi-definite, then as t increases from 0 to 1,

the following statements hold:

(1) zero eigenvalues of LDt remain stationary;

(2) negative eigenvalues of LDt are in motion below zero and exactly one of them hits zero at t = 1.

Proof. Recall LD0 = A = 

−2
l∑

k=1

ak

A1

A2

Al


(B.1)

where each diagonal block Aj = −ajÃ with aj = cos( 2qπ
nj−nj−1

) and Ã being



2 −1 0 . . . 0

−1 2 −1 . . . 0

0 −1 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . 2


,

a (nj − nj−1 − 1) × (nj − nj−1 − 1) tridiagonal matrix. By Lemma 4.10, we know Ã is positive

semi-definite. So aj ≥ 0 for j ∈ {1, 2, ..., l} given A is negative semi-definite. Without loss of

generality, assume l = 2, A1 is a n× n matrix and A2 is a m×m matrix. Also, assume a1 > 0 and

a2 = 0. Then the eigenspace of A associated with its zero eigenvalue λ0 is

Eλ0(A) = Span{ej : n+ 2 ≤ j ≤ 1 + n+m}, (B.2)

where ej = (0, . . . , 0, 1, 0, . . . , 0) is the standard basis of R1+n+m, with all components equal to 0,

except the jth, which is 1. Notice that for each ej ∈ Eλ0(A), Pej = 0 since the last m columns of

P are all zero vectors due to a2 = 0. So we have LDt ej = 0 for any t. Therefore,

Eλ0(A) ⊆ Eλ0(LDt ), (B.3)

we proved statement (1). To prove statement (2), notice that the (1 + n) × (1 + n) principal
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submatrix of A is invertible. Denote the corresponding principal matrix of LDt as LS, i.e., LS =

−2a1 ta1 0 . . . ta1

ta1 −2a1 a1 . . . 0

0 a1 −2a1 . . . 0
...

...
...

. . .
...

ta1 0 0 . . . −2a1


.

Then according to Lemma 4.17, det(LS) = 0 if and only if t = ±1 so LS is invertible for 0 ≤ t < 1,

and thus LDt ~x 6= 0 for any ~x 6∈ Eλ0(A). Therefore,

Eλ0(A) = Eλ0(LDt ), 0 ≤ t < 1. (B.4)

As t = 1, LS =

a1



−2 1 0 . . . 1

1 −2 1 . . . 0

0 1 −2 . . . 0
...

...
...

. . .
...

1 0 0 . . . −2


.

By Lemma 4.10, there exists only one eigenvector of LS associated with its zero eigenvalue, which

is an all ones vector. Therefore,

dim(Eλ0(LD1 )) = dim(Eλ0(A)) + 1, (B.5)

so we proved statement (2). �
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