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Abstract. In large software projects often multiple modeling languages are used
in order to cover the different domains and views of the application and the lan-
guage skills of the developers appropriately. Such “multi-modeling” raises many
methodological and semantical questions, ranging from semantic consistency of
the models written in different sublanguages to the correctness of model transfor-
mations between the sublanguages. We provide a first formal basis for answer-
ing such questions by proposing semantically well-founded notions of a multi-
modeling language and of semantic correctness for model transformations. In
our approach, a multi-modeling language consists of a set of sublanguages and
correct model transformations between some of the sublanguages. The abstract
syntax of the sublanguages is given by MOF meta-models. The semantics of a
multi-modeling language is given by associating an institution, i.e., an appropri-
ate logic, to each of its sublanguages. The correctness of model transformations
is defined by semantic connections between the institutions.

1 Introduction

In an idealized software engineering world, development teams would follow well-
defined processes in which one single modeling language is used for all requirements
and design documents; but in practice “multi-modeling” happens: in a large software
project entity-relationship diagrams and XML may be used for domain modeling, BPEL
for business process orchestration, and UML for design and deployment. In fact, UML
itself can be seen as a multi-modeling language comprising several sublanguages such
as class diagrams, OCL, and state machines; each sub-modeling language provides a
particular view of a software system. Such views have the advantage of complexity re-
duction: a software engineer can concentrate on a particular aspect of the system such
as the domain architecture or dynamic interactions between objects.

On the other hand, multi-modeling raises a host of methodological and semantical
questions: are the different modeling sublanguages semantically consistent with each
other? How can we correctly transform an abstract model in one modeling language into
a more concrete one in another language? How can we detect semantic inconsistencies



between heterogeneous models expressed in different modeling sublanguages? More
generally, is there a notion of “multi-modeling language” which provides more insight
than just an ad-hoc collection of modeling languages put together? Is it possible to give
a semantics to multi-modeling languages which allows one to deal with consistency,
validation and verification but that retains the advantages of multiple views by providing
a local semantics and local reasoning capabilities for each modeling language?

The methodological use of views and viewpoints in software modelling is a long
standing research topic [17]. In the literature, there are three main complementary
approaches for interrelating modeling notations: the “system model approach”, the
“model-driven architecture approach”, and the “heterogeneous semantics and devel-
opment approach”. In the system model approach the different modeling languages are
translated into a common (formally defined) modeling notation called system model [9]
which serves as unique semantic basis and for analyzing consistency of software en-
gineering models. In the “model-driven architecture approach” [25] model transfor-
mations and consistency issues are typically dealt with at the syntactic level of the
modeling notation. In the third approach different modeling languages are interrelated
by semantic-preserving mappings [23,12]; a mathematical semantics is given locally
for each modeling language and the consistency between different languages is an-
alyzed semantically through the semantic-preserving mappings. All three approaches
have been applied to several modeling languages including UML, but to the best of our
knowledge, multi-modeling languages in the software engineering sense have never
been systematically studied. However, research within the theory of institutions [18] on
institution morphisms and comorphims [19], and on “heterogeneous institutions” [23]
is directly relevant to this problem.

We combine ideas from model-driven architecture and heterogeneous semantics and
propose a new, semantically well-founded notion of a multi-modeling language and a
new notion of semantic correctness for model transformations. In particular, our for-
mal definition of a multi-modeling language L: (i) uses the Meta-Object Facility MOF
and its algebraic semantics [8] for describing the metamodels and models of the sub-
languages of L; (ii) associates an institution to each sublanguage S of L and gives a
mathematical semantics to each software engineering model1 of S by a corresponding
(logical) theory in the institution of S; (iii) defines the links between different sublan-
guages of S by model transformations and provides a notion of semantic correctness for
such transformations; and (iv) provides a notion of consistent heterogeneous (software
engineering) model in the multi-modeling language L, which is derived from a notion
of a class of heterogeneous mathematical models at the institution level.

The approach is illustrated in Fig. 1: There are three sublanguages S1, S2, and S3
of a common multi-modeling language L, software engineering models M1, M2, and
M3 conforming to (the meta-model representations of) the sublanguages, and having a
formal semantics in the institutions I1, I2, I3. The model transformations trans12 and

1 For distinguishing semantic models from the models of a modeling language we write “soft-
ware engineering model (SE-model)” for a (syntactic) model defined in a modeling language
such as UML. In contrast to this, “(semantic) models” are part of the mathematical seman-
tics of a modeling language so that a semantic model corresponds to a model of a theory in a
suitable logic; here, we will use institutional models (Ins-models).
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Fig. 1. Relations between metamodels, models, and semantic domains.

trans13 between the sublanguages S1 and S2, and S1 and S3, respectively, are applied
to M1 yielding (sub-models of) M2 and M3. These model transformations are backed
by semantic connections conn12 and conn13 between I1 and I2, I3 which make it
possible to show that these model transformations are correct.

In addition to make these concepts precise, we illustrate them by a case study in-
volving (UML) class diagrams and relational database schema diagrams as modeling
languages. Based on earlier work [12] we show that class diagrams and schema di-
agrams form a multi-modeling language where class diagrams are related to schema
diagrams by a semantically correct model transformation.

The paper is organized as follows: In Sect. 2 we briefly recall the necessary back-
ground from the theory of institutions. Section 3 shows how MOF metamodels and
model transformations are algebraically formalized as membership equational theories.
In Sect. 4 we present the institutional semantics of metamodels and in Sect. 5 our for-
mal notions of semantic connections between institutions and of correct model trans-
formations. The notions of multi-modeling languages and consistent multimodels are
introduced in Sect. 6. In Sect. 7 we discuss related work and future work.

2 Preliminaries: Institutions and Institution (Co-)Morphisms

We briefly recall basic notions on institutions and their morphisms and comorphisms
which form the framework for our institutional semantics of multi-modeling languages.
We assume familiarity with the most elementary notions of category theory: category,
functor, and natural transformation (see, e.g., [20]).

An institution [18] I is a tuple I = (SignI ,SenI ,ModI , |=I), with: (i) SignI a
category whose objects are called signatures; (ii) a functor SenI : SignI → Set, called
the sentence functor, from SignI to Set, the category of sets; (iii) a contravariant functor



ModI : Signop
I → Cat, called the model functor, from SignI to Cat, the category of

categories; and (iv) a family |=I = {|=I,Σ}Σ∈SignI of satisfaction relations between
Σ-models M ∈ ModI(Σ) and Σ-sentences ϕ ∈ SenI(Σ), such that for each H :
Σ → Σ′ in SignI , M ′ ∈ ModI(Σ), and ϕ ∈ SenI(Σ), we have the equivalence

ModI(H)(M ′) |=I,Σ ϕ ⇐⇒ M ′ |=I,Σ′ SenI(H)(ϕ) .

An institution provides a categorical semantics for the model-theoretic aspects of a
logic, focusing on the satisfaction relation between models and sentences, and empha-
sizing that satisfaction is invariant under changes of syntax by signature morphisms.
Note that, given an institution I, we can always define an associated category ThI of
theories (theory presentations to be more exact, see, e.g., [21]), where theories are pairs
(Σ,Γ ) with Γ ⊆ SenI(Σ), and theory morphisms H : (Σ,Γ ) → (Σ′, Γ ′) are signa-
ture morphisms H : Σ → Σ′ such that Γ ′ |=Σ′ SenI(H)(Γ ), where the satisfaction
relation is extended to a semantic consequence relation between sets of sentences in the
usual way (see [18]). There is then an obvious functor sign : ThI → SignI defined on
objects by the equation sign(Σ,Γ ) = Σ.

An institution morphism [18] µ : I � I ′ from an institution I to another in-
stitution I ′ is given by: (i) a functor µSign : SignI → SignI′ ; (ii) a natural trans-
formation µSen : µSign; SenI′ ⇒ SenI ; and (iii) a natural transformation µMod :
ModI ⇒ µSignop ; ModI′ , such that for each M ∈ ModI(Σ) and each sentence
ϕ′ ∈ SenI′(µSign(Σ)) we have

M |=I,Σ µSen
Σ (ϕ′) ⇐⇒ µMod

Σ (M) |=I′,µSign(Σ) ϕ
′ .

Dually, an institution comorphism [19] (called a map of institutions in [21]) ρ : I → I ′
is given by: (i) a functor ρSign : SignI → SignI′ ; (ii) a natural transformation ρSen :
SenI ⇒ ρSign; SenI′ ; and (iii) a natural transformation ρMod : ρSignop ; ModI′ ⇒
ModI , such that for each M ′ ∈ ModI′(ρSign(Σ)) and each sentence ϕ ∈ SenI(Σ)
we have

M ′ |=I′,ρSign(Σ) (ϕ) ⇐⇒ ρMod
Σ (M ′) |=I,Σ ϕ .

Note that, given an institution comorphism ρ : I → I ′, the functor ρSign extends
naturally to a functor ρTh : ThI → ThI′ with ρTh(Σ,Γ ) = (ρSign(Σ), ρSen

Σ (Γ )).

3 Algebraic Semantics of MOF and of Model Transformations

We briefly explain how a MOF metamodel defines a modeling language, how it is for-
malized by means of a membership-equational logic theory, and how model transfor-
mations are formalized as equationally-defined functions in MOMENT2.

3.1 MOF

MOF [26] is a semiformal approach to define modeling languages. It provides a four-
level hierarchy, with levels M0, M1, M2 and M3, where level Mi+1 serves as the meta-
level for level Mi. The entities populating level Mi are collections of a certain type,



which is defined by means of an entity at level Mi+1. Level M0 contains collections
of structured data that are defined by using a specific model in a modeling space, e.g.,
tuples in a database or class instances of a class diagram. Level M1 contains mod-
els, which are used to represent a specific reality by using a well-defined language for
computer-based interpretation such as class diagrams or relational schemas. Level M2
contains metamodels. A metamodel is a model specifying the types that can be used in
a modeling language, such as the metamodel CD for defining class diagrams and the
metamodel RDBS for defining relational schemas, as shown in Fig. 2. An entity at level
M3 is a meta-metamodel enabling the definition of metamodels at the level M2.

For a modelM at levelM1 and a metamodel M at levelM2, we writeM : M to de-
note the metamodel conformance relation. In addition, a metamodel M can be enriched
with a set C of OCL constraints constituting a metamodel specification (M ,C ) [7] so
that a model M conforms to (M ,C ) when it conforms to the metamodel M and sat-
isfies the constraints C . In Fig. 2, the OCL constraints over the CD metamodel defines
the concept of opposite association ends and restricts the set of possible cardinalities.
The OCL constraint over the RDBS metamodel indicates that the columns of a foreign
key should be contained in the same table where the column is defined.

3.2 Algebraic Semantics of Metamodel Specifications and MOMENT2

The goal of the algebraic semantics of metamodel specifications in [8,7] is to give a
precise semantics to the conformance relation M : (M ,C ) between a model M and

Fig. 2. Levels M2 and M1 of the MOF hierarchy: metamodel and model examples.



a metamodel specification (M ,C ) (this subsumes M : M using M : (M , ∅)). This
semantics is achieved as follows. First of all, the set of MOF-conformant metamodel
specifications (M ,C ) is a syntactically well-defined set MetamodelSpecs. Second, the
set of equational theories in the institution of membership equational logic [22] is an-
other well-defined set ThMEL. The algebraic semantics is then defined as a function

A : MetamodelSpecs → ThMEL : (M ,C ) 7→ A(M ,C ) .

The key point of this algebraic semantics is that the set of models M conformant
with (M ,C ), which we denote J(M ,C )K, is precisely axiomatized as the carrier of the
sort CModel in the initial algebra TA(M ,C ) of the MEL theory A(M ,C ). That is, we
have the definitional equality J(M ,C )K = TA(M ,C ),CModel , and hence

M : (M ,C ) ⇐⇒ M ∈ J(M ,C )K ⇐⇒ M ∈ TA(M ,C ),CModel .

Intuitively, the elements of sort CModel are models algebraically represented as sets
of objects with an associative, commutative union operation with identity (ACU), cor-
responding to an algebraic description of graphs. MEL is used in an essential way to
impose the OCL constraints C by means of a conditional membership.

The algebraic semantics supports the notion of submodel (see [6] for details). From
a graph-theoretic point of view, given M1,M2 ∈ J(M ,C )K, we say that M1 is a sub-
model of M2, written M1 ⊆ M2 iff it is a subgraph, so that all the nodes (objects with
attribute values) and edges (association ends) ofM1 are included inM2 up to name and
edge order isomorphism. The submodel relation is a partial order, endowing J(M ,C )K
with a poset structure (J(M ,C )K,⊆). The notion of submodel will be very useful to
obtain a flexible notion of multimodel in a multimodeling language.

These notions are implemented in Maude and integrated within the Eclipse Model-
ing Framework (EMF) in the MOMENT2 tool [8,7,6].

3.3 Model Transformations

In this work we consider functional model transformations that map input models M ,
such that M : (M ,C ), to output models β(M) so that β(M) : (M ′,C ′), where in
general (M ,C ) 6= (M ′,C ′).

Definition 1. Given metamodel specifications (M ,C ) and (M ′,C ′), a functional
model transformation from (M ,C ) to (M ′,C ′) is a function β : J(M ,C )K →
J(M ′,C ′)K. The transformation β is called monotonic, if, in addition, it is a mono-
tonic function β : (J(M ,C )K,⊆)→ (J(M ′,C ′)K,⊆).

MEL theories A(M ,C ) associated to MOF metamodel specifications (M ,C )
are by construction executable by rewriting in Maude [13]; in fact by confluent and
terminating equations modulo ACU. Therefore, the initial algebra TA(M ,C ) is com-
putable [4]. Furthermore, any computable function β : J(M ,C )K → J(M ′,C ′)K can
in such a case be specified by a finite set of confluent and terminating equations modulo
ACU. This is exactly the approach taken in MOMENT2, where a model transforma-
tion β can be specified as a set of recursive model equations, which are automatically
translated into ordinary MEL equations, as detailed in [6].
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Fig. 3. Model equation: MOMENT2 format (left) and graphical representation (right).

Let us consider a model transformation between the metamodel specifications for
class diagrams (CD) and for relational database schemas (RDBS) in Fig. 2: βcd2rdbs :
J(MCD,CCD)K → J(MRDBS,CRDBS)K. The transformation is defined by several
model equations that specify the translation process: classes are transformed into tables
with primary keys, class attributes are transformed into table columns, and bidirectional
associations are transformed into auxiliar tables that contain foreign keys that point to
the tables that correspond to the associated classes. The complete specification of the
model transformation is given in App. A using the concrete syntax of MOMENT2. In
Fig. 3 we show a simplified version of the model equation that generates columns in
a table from attributes of a class. The model equation is specified by a left-hand side
(LHS) model pattern, a right-hand side (RHS) model pattern, and a negative application
condition (NAC), which is applied over a LHS instance. The NAC ensures that the rule
is applied only once for each attribute. MOMENT2 formalizes this model transforma-
tion as the function βcd2rdbs, which is internally defined by equations that are generated
from the user defined model equations of the transformation (see [6] for further details).

βcd2rdbs maps the class diagram model cd in Fig. 2 to the relational schema
βcd2rdbs(cd) ⊆ rs, where rs is the relational schema shown in Fig. 2. This model trans-
formation is monotonic by considering the submodel relation in both source and target
metamodel specifications. In particular, we consider the submodel tutor of cd that is
constituted only by the class Tutor, i.e., tutor , cd ∈ J(MCD,CCD)K and tutor ⊆ cd .
We have then that βcd2rdbs(tutor) ⊆ βcd2rdbs(cd).

4 Institutional Semantics of Metamodels

In order to capture the semantics of models conforming to a given metamodel, we use
the mathematical framework of institutions.

Definition 2. Given a MOF-compliant metamodel specification (M ,C ), an institu-
tional semantics for (M ,C ) is specified by: (i) an institution I; and (ii) a functor
σ : (J(M ,C )K,⊆)→ ThI .



Therefore, an SE-model M ∈ J(M ,C )K is interpreted as a theory σ(M) ∈ ThI
in the corresponding institution. This definition highlights a crucial difference between
“models” in the software engineering sense, which we call SE-models, and semantic
models in the institution I, which we call Ins-models, and in this case I-models. The
key point is that an SE-model of a system is only a partial specification of such a sys-
tem, allowing many possible implementations. For example, in a UML class diagram
the semantics of the methods involved is typically only partially specified. By contrast,
an Ins-model is typically much closer to an actual implementation, and may fully con-
strain various relevant aspects of such an implementation: for example, the full semantic
specification of the methods in a class diagram.

This is captured by the above definition which gives semantics to an SE-model
M ∈ J(M ,C )K as a logical theory σ(M) ∈ ThI . That is, σ(M) is a “partial” specifica-
tion describing not a single Ins-model, but a class (actually a category) of Ins-models in
the institution I, viz. the class ModI(σ(M)). Such I-models typically fully constrain
some relevant aspects of the system partially specified by the SE-model M . For exam-
ple, if we choose for I a computational logic, some of the I-models associated to M
may be executable as programs. Therefore, an institutional semantics for a metamodel
specification may support program generation methods that are correct by construction.
For relational database schemas as SE-models, e.g., the Ins-models may be relational
models of actual databases conformant with the given schema.

The functoriality condition in the definition of institutional semantics is very nat-
ural. Intuitively, if M ⊆ M ′, then any implementation of the system partially speci-
fied by the SE-model M ′ should a fortiori give us an implementation of the system
partially specified by M , essentially by disregarding the implementation of the extra
features in M ′ \M . Mathematically, this is captured by the fact that the submodel in-
clusion M ⊆ M ′ induces a theory morphism σ(M) → σ(M ′), which, in turn, by
the contravariance of the functor ModI : Signop

I → Cat, induces a forgetful func-
tor ModI(σ(M ′)) → ModI(σ(M)), corresponding to the intuition that from an im-
plementation of M ′ we can always obtain an implementation of M . This functoriality
condition will be useful to arrive at a proper notion of Ins-models for an SE-multimodel.

Let us exemplify the definition by explaining the institutional semantics for our
running examples of (simplified) UML class diagrams and relational database schemas.
The first is described in more detail in [11], the second builds on the traditional seman-
tics of relational database schemas [14].

Institutional semantics for class diagrams. Signatures of the class diagram institu-
tion ICD declare class names, typed attributes, operations, and association names
with corresponding properties as association ends. On the signature part, the functor
σCD : (JMCD,CCDK,⊆) → ThICD maps, for instance, the class diagram in Fig. 2 to
the ICD-signature

({EOffice, Tutor,EString,Void},
{tName : Tutor→ EString},
{addTutor : EOffice× Tutor→ Void},
{tuteof ⊆ tutors : Tutor× eOffice : EOffice}) .



Sentences associated with a signature of ICD declare multiplicities of form
0..1, 0..?, 1..1, 1..? for associations. Applying σCD to the class diagram of Fig. 2 yields
a theory with a single sentence

association(tuteof, tutors : Tutor : 1..?, eOffice : EOffice : 1..1) .

Models of a class diagram signature are given as sets of object states. Object states
are sets of created object identifiers of the declared class names, together with functions
that interpret attributes and methods, as well as relations that interpret associations.
Moreover, models of a presentation are required to satisfy the constraints put on asso-
ciations. In our example, for each e-office, there is at least one tutor, and for each tutor
there is exactly one e-office, such that if we navigate from a tutor to his e-office, then
we can navigate back to the tutor, and vice versa.

A signature morphism between two class diagram signatures consistently maps
class names, properties, methods, and association names. For example, there is an em-
bedding signature morphism from the signature induced by our sample model without
the method addTutor to the signature of the sample model above. The reduct of any
model along a signature morphism simply “forgets” all additional information of the
target. Signature morphisms canonically extend to sentences.

Institutional semantics for relational database schemas. Signatures of the relational
database schema institution IRDBS declare the primitive types, the table names, the
columns names, the typing of columns, and the primary keys of tables where each
primary key of a table has to be a column of that table. On the signature part, the
functor σRDBS : (JMRDBS,CRDBSK,⊆)→ ThIRDBS maps, for instance, the relational
schema in Fig. 2 to the IRDBS-signature

({NUMBER,VARCHAR},
{EOffice,EOffice_Tutor, Tutor},
{Tutor_tid, tname, tutor_fk, eOffice_fk,EOffice_tid},
{(Tutor, Tutor_tid) 7→ NUMBER, (Tutor, tname) 7→ VARCHAR,
(EOffice_Tutor, tutor_fk) 7→ NUMBER, (EOffice_Tutor, eOffice_fk) 7→ NUMBER,
(EOffice,EOffice_tid) 7→ NUMBER},
{Tutor 7→ Tutor_tid,EOffice_Tutor 7→ tutor_fk,EOffice 7→ EOffice_tid})

Sentences associated with a signature of IRDBS declare constraints on tables and
columns: all column entries in a table that do not correspond to either primary keys
or foreign keys can be null (not nnv) and not unique, all columns that correspond to
primary keys shall be nnv and unique, and all columns that correspond to foreign keys
(fk) encode cardinality constraints as nnv and unique statements. Applying σRDBS to
the example in Fig. 2 yields a theory with the following sentences:

nnv(Tutor, Tutor_id) unique(Tutor, Tutor_id)
nnv(EOffice_Tutor, tutor_fk) unique(EOffice_Tutor, tutor_fk)
nnv(EOffice_Tutor, eOffice_fk)
fk(EOffice_Tutor, tutor_fk, Tutor) fk(EOffice_Tutor, eOffice_fk,EOffice)



nnv(EOffice,EOffice_id) unique(EOffice,EOffice_id)

Models of a relational database signature are given by relations over interpreta-
tions of the primitive types such that the typings of the columns in tables are satisfied.
The interpretation of primitive types introduces special null-values. A model satisfies
a clause nnv(t, c) if the projection corresponding to the column c of the interpretation
of the table t does not contain non-null values; and it satisfies clause unique(t, c), if
the projection of t to c does not show duplicated entries. A model satisfies a clause
fk(t1, ci1 . . . cik , t2) if for all tuples in t1 projected to ci1 . . . cik , there exists a tuple in
t2 projected over its primary key columns.

A signature morphism between two relational database signatures consistently maps
the primitive types, the table names, and the columns names such that this mapping can
be extended to the typing of columns and the primary keys of tables.

5 Semantic Connections and Correct Model Transformations

The institutional semantics of metamodel specifications provides a formal framework
without which the following burning question in software engineering cannot be given
any precise meaning: When is a model transformation β : J(M ,C )K → J(M ′,C ′)K
correct?

The point is that, although model transformations can be very useful to leverage
model building efforts in one modeling language to be used in another modeling lan-
guage, we can in principle define many such βs, but some of them may be disastrous.
Given an SE-model M ∈ J(M ,C )K, which gives us a partial specification of a system,
we want the transformed model β(M) ∈ J(M ′,C ′)K to be a model of the same system
from a different perspective. In particular, β(M) should never have implementations
that are incompatible with those allowed byM . However, when modeling languages do
not have any precise mathematical semantics, this very real problem can be painfully
experienced in practice, but there is no way to systematically understand and prevent it.

5.1 Semantic Connections

Institution (co-)morphisms provide relations between different institutions which can be
used to reflect model transformations semantically. Intuitively, institution comorphisms
map a “poorer” institution into a “richer” one, whereas institution morphisms forget
logical structure by mapping a “richer” institution into a “poorer” one. Sometimes,
however, we have situations in which two institutions cannot be naturally related by
either an institution morphism or an institution comorphism. In the example, ICD shows
operations which have no counterpart in IRDBS; on the other hand, IRDBS allows the
uniqueness constraint to be stated while this cannot be mimicked in ICD. However, we
may choose a “lowest common denominator” institution IPCD, which is poorer than
both ICD and IRDBS: the institution of “poor man’s class diagrams”, which is defined
like ICD but does not show operations in its signature. We can then use this IPCD to
relate ICD and IRDBS by what we call a semantic connection.2

2 In recent discussions with A. Tarlecki we have learned that the same idea is also contemplated
in his upcoming paper with T. Mossakowski [24].



Definition 3. A semantic connection between an institution I and another institution
I ′ is a pair (µ, ρ) of the form I µ

� I0
ρ→ I ′, where I0 is a third institution, µ is an

institution morphism, and ρ is an institution comorphism.

Using IPCD, we may define a semantic connection ICD
µC2R� IPCD

ρC2R→ IRDBS
between ICD and IRDBS as follows: The signature part µSign

C2R of the institution mor-
phism µC2R : ICD → IPCD forgets all operations and the sentence part µSen

C2R is the
identity. On the other hand, the institution comorphism ρC2R is defined along the lines
of the model transformation βcd2rdbs in Sect. 3.3, adding primary keys and encoding
association-clauses as nnv and unique properties of the columns that are involved in
foreign keys; here the model part ρMod

C2R is the identity.
A semantic connection I µ

� I0
ρ→ I ′ also allows us to relate models in I and I ′

by viewing them both as models in the “common semantic ground” I0:

Definition 4. Given institutions I, I ′, and a semantic connection I µ
� I0

ρ→ I ′, a
pair of models (M,M

′), with M ∈ ModI(Σ), M
′ ∈ ModI′(ρSign(µSign(Σ)), and

Σ ∈ SignI , is called (µ, ρ)-consistent, if µMod
Σ (M) = ρMod

µSign(Σ)(M
′).

For the semantic connection ICD
µC2R� IPCD

ρC2R→ IRDBS, e.g., two models for
the class diagram and the relational database schema in Fig. 2 which have a different
number of Tutors would be inconsistent.

5.2 Correctness of Model Transformations

Based on semantic connections, we may go on to define a notion of semantic correctness
for a model transformation.

Definition 5. Given metamodel specifications (M ,C ) and (M ′,C ′) with corre-
sponding institutional semantics (I, σ : (J(M ,C )K,⊆) → ThI) and (I ′, σ′ :
(J(M ′,C ′)K,⊆) → ThI′), and given a semantic connection I µ

� I0
ρ→ I ′, a model

transformation β : J(M ,C )K → J(M ′,C ′)K is called (µ, ρ)-correct, if the following
two conditions hold:

1. For each M ∈ J(M ,C )K we have

ρSign(µSign(sign(σ(M))) = sign′(σ′(β(M))) .

This condition can be visualized as the commutativity of the diagram:

J(M ,C )K J(M ′,C ′)K

ThI ThI′

SignI SignI0 SignI′

β

σ σ′

µSign ρSign
sign sign′

where if β is not monotonic this is just a commuting diagram of functions, but if β
is monotonic we further require it to be a commuting diagram of functors.



2. For each M ∈ J(M ,C )K we have the containment:

ρMod
Σ′ (ModI′(σ′(β(M))) ⊆ µMod

Σ (ModI(σ(M)))

where Σ = sign(σ(M)), Σ0 = µSign(Σ), and Σ′ = ρSign(Σ0).

Note that condition (1) is a sanity check for the SE-models M and β(M) to be re-
latable at the semantic level, since the signatures of their corresponding theories σ(M)
and σ′(β(M)) should be compatible. Condition (2) assumes condition (1) and adds the
further stipulation that each I ′-model of β(M), when brought to the common ground
I0, should also be (the downgraded version of) an I-model ofM . This captures the cru-
cial requirement that an implementation of β(M) should never be incompatible with the
implementations allowed by M .

The model transformation βcd2rdbs is indeed correct w.r.t. the semantic connection
ICD

µC2R� IPCD
ρC2R→ IRDBS, as, given a class diagram cd ∈ (MCD,CCD), the “poor

man’s”-models of σRDBS(βcd2rdbs(cd)) in IPCD still fulfill all cardinality constraints
induced by associations.

6 Multimodeling Languages

At the very least, a multimodeling language should be a collection of modeling lan-
guages supporting different views of a system. But if no interactions of any kind are
supported between models in the different modeling sublanguages, a multimodeling
language is not very useful, since there is no way of taking advantage of model build-
ing and model analysis efforts in one sublanguage to benefit similar efforts in another
sublanguage. Therefore, we assume in what follows that a multimodeling language sup-
ports model transformations between some of its sublanguages.

Definition 6. A multimodeling language is specified by

1. A family ((Mi,Ci))i∈I of metamodel specifications.
2. An irreflexive relationK ⊆ I×I where each pair (i, j) ∈ K is called a connection.
3. For each (i, j) ∈ K a model transformation βij : J(Mi,Ci)K→ J(Mj ,Cj)K.

The family LC&R = (Mi,Ci)i∈{CD,RDBS} with KC&R = {(CD,RDBS)} and
βC&R = {βCD,RDBS} with βCD,RDBS = βcd2rdbs may serve as a simple example of a
multimodeling language C&R = (LC&R,KC&R, βC&R) .

It is assumed that for the purposes of the multimodeling language there is, given
(i, j) ∈ K a single model transformation relating (Ci,Mi) to (Cj ,Mj). This seems
reasonable, since such a model transformation is used to provide a systematic “change
of viewpoint” from the perspective supported by (Ci,Mi) to that of (Cj ,Mj).

We envision teams of system designers and developers using such a multimodeling
language to design and develop a given system. A useful division of labor is supported
by the multimodeling language, so that some team members may concentrate their ef-
forts on building and validating models mostly in a given sublanguage. If the team is
well-coordinated and the multimodelign language has a good infrastructure, team mem-
bers working in different sublanguages will benefit from the efforts of their colleagues



working in other sublanguages. For example, if a model in sublanguage (Cj ,Mj) has
not yet been developed, a modeler may not have to begin from scratch, but may have
available model framents in (Cj ,Mj) that have been obtained by transformations from
models in other sublanguages (Ci,Mi). Or a person responsible for model analysis in
sublanguage (Cj ,Mj) may be asked to verify some properties of a model in (Cj ,Mj)
after it is transformed by βi,j . This leads to the important question: What is a multi-
model? for which we provide the following definition.

Definition 7. Given a multimodeling language (((Mi,Ci))i∈I ,K, β) an I-indexed
family (Mi)i∈I is called

1. a pre-multimodel, if Mi ∈ J(Mi,Ci)K for all i ∈ I;
2. a multimodel, if it is a pre-multimodel and, furthermore, we have βij(Mi) ⊆ Mj

for all (i, j) ∈ K.

The notion of pre-multimodel may seem chaotic, but may accurately reflect the real
situation of a team at moments when different team members are actively developing
different models quite independently of each other. We think of this as a hopefully
transient but very common situation, reflecting the fact that the software team may be
large and geogragraphically distributed, so that it may not be feasible for model changes
in different sublanguages to be immediately taken into account across sublanguages.

However, to avoid dangerous and costly design divergences, from time to time team
members should try to keep their model building efforts coordinated by freezing the
current pre-multimodel M = (Mi)i∈I and asking some hard questions about it. A very
natural question to ask is: is it the case that for each (i, j) ∈ K we have βij(Mi) ⊆Mj?
This may not be the case, and then this may perhaps reveal that incompatible design
decisions may have been made in different sublanguages.

The idea behind the model inclusion βij(Mi) ⊆ Mj is that the model Mi, even
when we transform it, may only account for part of all the information that must be
modeled from the (Mj ,Cj) modeling point of view. Therefore, requiring an equality
βij(Mi) = Mj would be too restrictive. The inclusion requirement βij(Mi) ⊆ Mj

could perhaps be relaxed to a requirement that βij(Mi) can be “mapped” to a submodel
of Mj , but we do not explore this further here. For our example of tutors and e-offices
in Fig. 2, the models not only form a multimodel in the multimodeling language C&R,
but also βcd2rdbs(cd) ⊆ rs holds.

Note that a multimodeling language as defined so far lacks an institutional seman-
tics. This means that the requirements βij(Mi) ⊆ Mj , although useful for the coher-
ence of the overall effort, are primarily syntactic and do not address the burning issue
of the semantic correctness of the transformations βij supported by the multimodeling
language. For this we need an institutional semantics.

Definition 8. Given a multimodeling language (((Mi,Ci))i∈I ,K, β) an Ins-semantics
for it is specified by:

1. an Ins-semantics (Ii, σi) for each (Mi,Ci), i ∈ I;
2. for each (i, j) ∈ K a semantic connection Ii

µij
� Iij

ρij→ Ij such that βij is
(µij , ρij)-correct.



Applying this definition to C&R we get that ((Ii, σi)i∈{CD,RDBS}, ICD
µC2R�

IPCD
ρC2R→ IRDBS) is an Ins-semantics for the multimodeling language C&R.

The above Ins-semantics for a multimodeling language can be very useful in several
ways. First of all, it can make sure that its model transformations βij are semantically
correct. Since they will be used all the time across many modeling efforts and their
incorrectness would be disastrous, this is a very valuable requirement worth verifying.
There is, however, a second very useful consequence, namely, that we also obtain a
notion of Ins-model for a multimodel.

Definition 9. Let M = (Mi)i∈I be a multimodel in a multimodeling language with
an Ins-semantics. Then the class of its Ins-models is defined as the set Mod (M) of all
families (M i)i∈I where

1. M i ∈ ModIi(σi(Mi)), that is, each M i is an Ins-model for the model Mi.
2. For each (i, j) ∈ K the models M i and ModIj (σj(βij(Mi) ⊆ Mj))(M j) are

(µij , ρij)-consistent.

The second condition is an “obvious” semantic compatibility condition, but it is
somewhat terse in its formulation, so let us unpack it. Since M = (Mi)i∈I is a multi-
model, for (i, j) ∈ K we must have βij(Mi) ⊆Mj . By the functoriality of σj this then
gives us a theory morphism σj(βij(Mi) ⊆ Mj), which is also a signature morphism,
and which when applying the contravariant functor ModIj to it gives us a reduct of M j

to a model in ModIj (sign(σj(βij(Mi)))). This reduct and the model Mi are the ones
that must be (µij , ρij)-consistent.

Why are such Ins-models useful from a software engineering point of view? Be-
cause they allow us to address another burning practical question: When is a multi-
model inconsistent? Intuitively, a multimodel is inconsistent when it has no implemen-
tation meeting all the requirements imposed by all the models of the multimodel. But
since Ins-models are mathematical surrogates for implementations of the differen sys-
tem aspects (and may in fact be implementations when the logics are computable), if a
multimodel has no Ins-models, then there is no hope for it to have an implementation.

Definition 10. In a multimodeling language with an Ins-semantics a multimodel M =
(Mi)i∈I is called consistent, if Mod (M) 6= ∅.

The point, therefore, is that if Mod (M) = ∅, then the whole software design is
inconsistent and irrealisable: the different models Mi in M place semantic constraints
on each other that cannot be simultaneously satisfied.

7 Related Work and Conclusions

Interrelating different modeling notations is a difficult task due to the variety of possible
structuring mechanisms and underlying computational paradigms. In the introduction
we have already shortly discussed the three main approaches: the “system model ap-
proach”, the “model-driven architecture approach”, and the “heterogeneous semantics
and development approach”.



Further system model formalisms are for example, stream-based [10], graph gram-
mar [16] and rewrite system models [13], or the integration of different specification
formalisms, like CSP and Z [32]. In the model-driven architecture approach, the MOF
standard permits the syntactical definition of modeling languages by means of the meta-
model notion. The formal semantics of the MOF standard and its use for model trans-
formations have been studied in algebraic [8], relational [2], graph grammar [5] and
type-theoretic [27,28] settings. OCL-constraints of meta-models have been added in
our algebraic setting in [7] and in the relational approach for Alloy in [3]. Most of these
model transformation approaches are also well supported by tools such as AGG [1],
VIATRA2 [31], and MOMENT2 [6]. The heterogeneous semantics line of research
concentrates on the comparison and integration of different specification formalisms,
retaining the formalisms most appropriate for expressing parts of the overall prob-
lem [33]. The theory of institutions [18] and its subsequent development into a power-
ful framework for heterogenous specifications [29,23,15,30] provide the mathematical
foundations for our approach.

This paper is aimed as a first step for developing a consistent and semantically well-
founded framework for software development with multiple modeling languages. We
have presented a novel notion of multi-modeling language which not only allows the
developer to study the consistency of a multi-language design, but makes it also easy
to integrate additional modeling languages. In our approach a multi-modeling language
consists of a set of sublanguages and correct model transformations between some of
the sublanguages. The abstract syntax of the sublanguages is specified by MOF meta-
models. The semantics of a multi-modeling language is then given by associating an
institution to each of its sublanguages. A further main result of the paper is the notion
of semantic correctness of model transformations. It is defined by a so-called semantic
connection between the institutions of the source and target meta-model of the transfor-
mation. The main correctness condition is given by a model inclusion which expresses
the fact that a model transformation is understood as a kind of semantic refinement re-
lation. This definition corresponds well with the use of model transformations in MDA;
in other settings one may use other kinds of model transformations such as refactorings
and abstraction mappings. For such cases our correctness notion may not be adequate
and we may need to distinguish between different notions of correctness such as refine-
ment correctness, abstraction correctness, and structural correctness.

A careful reader may have observed that our algebraic semantics for MOF, which
has provided what might be called the “metalevel” at which the Ins-semantics for mod-
eling languages is defined, is itself an instance of this Ins-semantics. Specifically, all
MOF-compliant metamodels are exactly the SE-models of the MOF meta-metamodel.
Therefore, our algebraic semantics A for MOF is just an institutional semantics for
a modeling language in the general sense we have proposed. Namely, a semantics in
which the (meta-)metamodel is MOF itself, and the institution in question is MEL. This
suggests several important generalizations of the present work. Why restricting our-
selves to MOF? Why not considering similar semantics for multimodeling languages
in other modeling frameworks? More generally, why not considering multi-framework
multi-languages? Many challenging questions remain open and will be subject of our
further studies including verification and tool support for multi-language consistency.
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A Model transformation: from CD to RDBS

The uml2rdbs model transformation obtains relational schemas that conform to the
RDBS metamodel specification in Fig. 2 from class diagrams that conform to the CD
metamodel specification also in Fig. 2. In particular, we consider class diagrams that
contain bidirectional associations between classes, where there should be at least an
association end with upper and lower bound = 1.

In MOMENT2, the notion of domain is used to refer to a model. The uml2rdbs

transformation is defined with two domains uml and rdbs that represent the input and
output model of the transformation, respectively.

transformation uml2rdbs ( uml : SimpleCD ; rdbs : SimpleDB) {

The model transformation rules are given as model equations, where there may be
LHS and RHS model patterns for the uml and rdbs domains, indicating how they are
manipulated in a similar way to graph transformations. We provide a brief description
of each rule and its specification in the MOMENT2 model transformation language.

The PackageToSchema model equation generates a schema in the model of the
rdbs domain that will contain the generated relational schema. The NAC condition
avoids the recursive application of this equation in a non-terminating way.

eq PackageToSchema {
lhs uml {

p : Package { }
};
lhs rdbs { };

rhs uml {
p : Package { }

};
rhs rdbs {

s : Schema { }
};

nac rdbs noSchema {
s : Schema { }

};
}

The ClassToTable model equation generates a table in the model of the rdbs

domain for each class that is found in the uml domain. The new table is named with
the class name. A primary key and its corresponding column are added to the generated
table.

eq ClassToTable {
lhs uml{

c : Class {
package = p : Package {},
name = cn

}
};
lhs rdbs {

s : Schema { }
};

rhs uml{
c : Class {



package = p : Package {},
name = cn

}
};
rhs rdbs {
t : Table {

schema = s : Schema { },
name = cn,
columns = cl : Column {

name = cn + "_tid",
type = "NUMBER",
nnv = true,
unique = true

},
key = k : Key {

name = cn + "_pk",
columns = cl : Column { }

}
}

};

nac rdbs noTable {
t : Table {

name = cn
}

};
}

The AttributeToColumn model equation generates a column in the model of the
rdbs domain for each attribute of a class that is found in the uml domain. The column
is added to the table that has been previously generated from the class that contains the
attribute. The name of the column is given by the concatenation of the class name and
the attribute name.

eq AttributeToColumn {
lhs uml{
c : Class {

name = cn,
properties = a : Attribute {

name = an,
type = at

}
}

};
lhs rdbs {
t : Table {

name = cn
}

};

rhs uml{
c : Class {

name = cn,
properties = a : Attribute {

name = an,
type = at

}
}

};
rhs rdbs {
t : Table {

name = cn,
columns = cl : Column {

name = cn + "_" + an,
type =



if at == "INTEGER" then
"NUMBER"

else
if at == "BOOLEAN" then

"BOOLEAN"
else

"VARCHAR"
endif

endif
}

}
};

nac rdbs noColumn {
cl : Column {

name = cn + "_" + an
}

};
}

The AssociationToTable model equation translates bidirectional associations
between classes to auxiliar tables that contain foreign keys to the tables that correspond
to the associated classes in the uml domain.

The name of the auxiliar table is given by the lexicographically ordered names of the
involved classes. In this way, we ensure that the application of this equation will always
produce the same result independently of different matches, implying confluence. In
the auxiliar table, a primary key, the column that is used in the primary key, two foreign
keys and their columns are generated. The not null value and unique properties of the
foreign key columns are not set. This data is set in the Multiplicity equation as
explained below.

eq AssociationToTable {
lhs uml{

ae1 : AssociationEnd {
name = ae1name,
owningClass = c1 : Class {

name = c1name
},
opposite = ae2 : AssociationEnd {

name = ae2name,
owningClass = c2 : Class {

name = c2name
}

}
}

};
lhs rdbms {

t1 : Table {
name = c1name,
key = k1 : Key { },
schema = s : Schema { }

}
t2 : Table {
name = c2name,
key = k2 : Key { }

}
};

rhs uml{
ae1 : AssociationEnd {
name = ae1name,
owningClass = c1 : Class {

name = c1name



},
opposite = ae2 : AssociationEnd {

name = ae2name,
owningClass = c2 : Class {

name = c2name
}

}
}

};
rhs rdbms {

t1 : Table {
name = c1name,
key = k1 : Key { },
schema = s : Schema { }

}
t2 : Table {
name = c2name,
key = k2 : Key { }

}
t : Table {
name = if c1name < c2name then c1name + "_" + c2name

else c2name + "_" + c1name endif,
schema = s : Schema { },
fks = fk1 : ForeignKey {

name = ae2name + "_fk",
refersTo = k1 : Key { },
columns = cl2 : Column { }

},
columns = cl1 : Column {

name = ae1name,
type = "NUMBER",
owningTable = t : Table { }

},
fks = fk2 : ForeignKey {

name = ae1name + "_fk",
refersTo = k2 : Key { },
columns = cl1 : Column { }

},
columns = cl2 : Column {

name = ae2name,
type = "NUMBER",
owningTable = t : Table { }

},
columns = kColumn : Column {

name = if c1name < c2name then c1name + "_" + c2name + "_tid"
else c2name + "_" + c1name + "_tid" endif,

type = "NUMBER",
nnv = true,
unique = true

},
key = k : Key {

name = if c1name < c2name then c1name + "_" + c2name + "_pk"
else c2name + "_" + c1name + "_pk" endif,

columns = kColumn : Column { }
}

}
};

nac rdbms noColumn {
t : Table {
name =

if c1name < c2name then c1name + "_" + c2name
else c2name + "_" + c1name endif

}
};

}



The following model equation uses the multiplicity metadata of association ends
to set the not null value and unique properties of the columns that are involved in the
foreign keys that are generated from associations.

The multiplicity metadata of an association end, owned by a class A and typed with
a class B, is used to set the column that corresponds to the foreign key that is owned
by the generated auxiliary table AB and that refers to the key of the table A. If lb
represents the lower bound of the association end, and ub represents its upper bound,
the nnv and unique properties of the corresponding column are computed as follows:

eq Multiplicity {
lhs uml{

ae1 : AssociationEnd {
lowerBound = lb,
upperBound = ub,
owningClass = c1 : Class {
name = c1name

},
type = c2 : Class {
name = c2name

}
}

};
lhs rdbms {

fk1 : ForeignKey {
refersTo = k1 : Key {
owningTable = t1 : Table {

name = c1name
}

},
columns = cl1 : Column {
name = cl1Name

}
}

};

rhs uml {
c1 : Class {

name = c1name
}
c2 : Class {

name = c2name
}

};
rhs rdbms {

fk1 : ForeignKey {
refersTo = k1 : Key {
owningTable = t1 : Table {

name = c1name
}

},
columns = cl1 : Column {
name = cl1Name,
nnv = if (lb == 0) then false else true endif,
unique = if (ub == 1) then true else false endif

}
}

};
}

This transformation can be applied to the class diagram, shown in Fig. 2, that con-
forms to the CD metamodel specification to generate the relational schema, also shown
in Fig. 2, that conforms to the RDBS metamodel specification. To apply the transfor-
mation, the uml domain is constituted by the input class diagram and the rdbs domain



is constituted by an empty RDBS model. After executing the model transformation, the
rdbs domain contains the generated relational schema.


