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Abstract

Topic modeling has been a key problem for document analysis. One of the canonical approaches

for topic modeling is Probabilistic Latent Semantic Indexing, which maximizes the joint probability of

documents and terms in the corpus. The major disadvantage of PLSI is that it estimates the probability

distribution of each document on the hidden topics independently and the number of parameters in the

model grows linearly with the size of the corpus, which leads to serious problems with overfitting. Latent

Dirichlet Allocation (LDA) is proposed to overcome this problem by treating the probability distribution

of each document over topics as a hidden random variable. Both of these two methods discover the

hidden topics in the Euclidean space. However, there is no convincing evidence that the document space

is Euclidean, or flat. Therefore, it is more natural and reasonable to assume that the document space

is a manifold, either linear or nonlinear. In this paper, we consider the problem of topic modeling on

intrinsic document manifold. Specifically, we propose a novel algorithm called Laplacian Probabilistic

Latent Semantic Indexing (LapPLSI) for topic modeling. LapPLSI models the document space as a

submanifold embedded in the ambient space and directly performs the topic modeling on this document

manifold in question. We compare the proposed LapPLSI approach with PLSI and LDA on three text

data sets. Experimental results show that LapPLSI provides better representation in the sense of semantic

structure.
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(a DHS Institute of Discrete Science Center for Multimodal Information Access and Synthesis). Any opinions, findings, and
conclusions or recommendations expressed here are those of the authors and do not necessarily reflect the views of the funding
agencies.
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1 Introduction

Document representation has been a key problem for document analysis and processing, such as clustering,

classification and retrieval [7][9][10]. The Vector Space Model (VSM) might be one of the most popular

models for document representation. In VSM, each document is represented as a bag of words. Correspond-

ingly, the inner product (or, cosine similarity) is used as the standard similarity measure for documents or

documents and queries. Unfortunately, it is well known that VSM has severe drawbacks, mainly due to the

ambiguity of words (polysemy) and the personal style and individual differences in word usage (synonymy).

To deal with these problems, IR researchers have proposed several dimensionality reduction techniques,

most notably Latent Semantic Indexing (LSI) [7]. LSI uses a Singular Value Decomposition (SVD) of

the term-document matrix X to identify a linear subspace (so-called latent semantic space) that captures

most of the variance in the data set. The general claim is that similarities between documents or between

documents and queries can be more reliably estimated in the reduced latent space representation than in the

original representation. LSI received a lot of attentions during these years and many variants of LSI have

been proposed [1][12][20][21].

Despite its remarkable success in different domains, LSI has a number of deficits, mainly due to its unsat-

isfactory statistical formulation [11]. To address this issue, Hofmann [10] proposed a generative probabilistic

model named Probabilistic Latent Semantic Indexing (PLSI). PLSI models each word in a document as a

sample from a mixture model, where the mixture components are multinomial random variables that can be

viewed as representations of “topics.” Each document is represented as a list of mixing proportions for these

mixture components and thereby reduced to a probability distribution on a fixed set of topics. This distribu-

tion is the “reduced representation” associated with the document. The major disadvantage of PLSI is that it

estimates the probability distribution of each document on the hidden topics independently and the number

of parameters in the model grows linearly with the size of the corpus. This leads to serious problems with

overfitting [16][5][19]. Latent Dirichlet Allocation (LDA) is then proposed to overcome this problem by

treating the probability distribution of each document over topics as a K-parameter hidden random variable

rather than a large set of individual parameters, where the K is the number of hidden topics.

Both of the above two topic modeling approaches discover the hidden topics in the Euclidean space.

However, there is no convincing evidence that the documents are actually sampled from a Euclidean space.

Recent studies suggest that the documents are usually sampled from a nonlinear low-dimensional manifold
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which is embedded in the high-dimensional ambient space [9][24]. Thus, the local geometric structure is

essential to reveal the hidden semantics in the corpora.

In this paper, we propose a new algorithm called Laplacian Probabilistic Latent Semantic Indexing

(LapPLSI). LapPLSI considers the topic modeling on the document manifold. It models the document

space as a submanifold embedded in the ambient space and directly perform the topic modeling on this

document manifold in question. By discovering the local neighborhood structure, our algorithm can have

more discriminating power than PLSI and LDA. Specifically, LapPLSI first builds an nearest neighbor graph

to model the local document manifold structure. It is natural to assume that two sufficiently close documents

have similar probability distribution over different topics. The nearest neighbor graph structure is then

incorporated into the log-likelihood maximization as a regularization term for LapPLSI. In this way, the

topic model estimated by LapPLSI maximizes the joint probability over the corpus and simultaneously

respects the local manifold structure.

It is worthwhile to highlight several aspects of our proposed algorithm here:

1. The conventional generative probabilistic modeling approaches, e.g., PLSI and LDA, discover the

hidden topics in the Euclidean space. Our approach considers the problem of topic modeling directly

on the document manifold in question and discovers the hidden topics.

2. The graph Laplacian used in our algorithm is a discrete approximation to the Laplace-Beltrami oper-

ator defined on manifold. By discovering the local neighborhood structure, our algorithm can have

more discriminating power than PLSI and LDA.

3. Our algorithm constructs a nearest neighbor graph to model the intrinsic structure in the data, which

is unsupervised. When there is network structure available, e.g. hyperlink between Web pages, it can

be naturally used to construct the graph.

The rest of the paper is organized as follows: in Section 2, we give a brief review of topic modeling

with PLSI and LDA. Section 3 introduces our algorithm and give a theoretical analysis of the algorithm.

Extensive experimental results on document modeling and document clustering are presented in Section 4.

Finally, we provide some concluding remarks and suggestions for future work in Section 5.
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2 A brief review of PLSI and LDA

The core of Probabilistic Latent Semantic Indexing (PLSI) is a latent variable model for co-occurrence data

which associates an unobserved topic variable zk ∈ {z1, · · · , zK} with the occurrence of a word wj ∈
{w1, · · · , wM} in a particular document di ∈ {d1, · · · , dN}. As a generative model for word/document

co-occurrences, PLSI is defined by the following scheme:

1. select a document di with probability P (di),

2. pick a latent topic zk with probability P (zk|di),

3. generate a word wj with probability P (wj |zk).

As a result one obtains an observation pair (di, wj), while the latent topic variable zk is discarded. Translat-

ing the data generation process into a joint probability model results in the expression

P (di, wj) = P (di)P (wj |di),

P (wj |di) =
K∑

k=1

P (wj |zk)P (zk|di).
(1)

The parameters can be estimated by maximizing the log-likelihood

L =
N∑

i=1

M∑
j=1

n(di, wj) log P (di, wj)

∝
N∑

i=1

M∑
j=1

n(di, wj) log
K∑

k=1

P (wj |zk)P (zk|di)

(2)

where n(di, wj) the number of occurrences of term wj in document di. The above optimization problem

can be solved by using standard EM algorithm [8].

Notice that there are NK + MK parameters {P (wj |zk), P (zk|di)} which are independently estimated

in PLSI model. It is easy to see that the number of parameters in PLSI grows linearly with the number of

training documents (N ). The linear growth in parameters suggests that the model is prone to overfitting

[16][5].

To address this issue, Latent Dirichlet Allocation (LDA) [5] is then proposed. LDA assumes that the

probability distributions of documents over topics are generated from the same Dirichlet distribution with
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K parameters. Essentially, LDA modifies the second step of PLSI generating scheme:

1. select a document di with probability P (di),

2. pick a latent topic zk,

2.1 generate θi ∼ Dir(α),

2.2 pick a latent topic zk with probability P (zk|θi),

3. generate a word wj with probability P (wj |zk).

Dir(α) is the Dirichlet distribution with a K-dimensional parameter α.

The K + MK parameters in a K-topic LDA model do not grow with the size of the corpus. Thus, LDA

does not suffer from the same overfitting issue as PLSI.

3 Laplacian Probabilistic Latent Semantic Indexing

By assuming that the probability distributions of documents over topics are generated from the same Dirich-

let distribution, LDA avoids the overfitting problem of PLSI. However, both of these two algorithms fail to

discover the intrinsic geometrical and discriminating structure of the document spare, which is essential to

the real applications. In this Section, we introduce our LapPLSI algorithm which avoids this limitation by

incorporating a geometrically based regularizer.

3.1 The Latent Variable Model with Manifold Regularization

Recall that the documents d ∈ D are drawn according to the distribution PD. One might hope that knowl-

edge of the distribution PD can be exploited for better estimation of the conditional distribution P (z|d).

Nevertheless, if there is no identifiable relation between PD and the conditional distribution P (z|d), the

knowledge of PD is unlikely to be very useful.

Therefore, we will make a specific assumption about the connection between PD and the conditional

distribution P (z|d). We assume that if two documents d1, d2 ∈ D are close in the intrinsic geometry of

PD, then the conditional distributions P (z|d1) and P (z|d2) are similar to each other. In other words, the

conditional probability distribution P (z|d) varies smoothly along the geodesics in the intrinsic geometry of
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PD. This assumption is also referred to as manifold assumption [3], which plays an essential rule in devel-

oping various kinds of algorithms including dimensionality reduction algorithms [3][9] and semi-supervised

learning algorithms [4][25].

Let fk(d) = P (zk|d) be the conditional Probability Distribution Function (PDF), we use ‖fk‖2M to

measure the smoothness of fk along the geodesics in the intrinsic geometry of PD. When we consider the

case that the support1 of PD is a compact submanifoldM⊂ R
M , a natural choice for ‖fk‖2M is

‖fk‖2M =
∫

d∈M
‖∇Mfk‖2dPD(d) (3)

where ∇M is the gradient of fk along the manifoldM and the integral is taken over the distribution PD.

In reality, the document manifold is usually unknown. Thus, ‖fk‖2M in Eqn. (3) can not be computed.

Recent studies on spectral graph theory [6] and manifold learning theory [2] have demonstrated that ‖fk‖2M
can be discretely approximated through a nearest neighbor graph on a scatter of data points.

Consider a graph with N vertices where each vertex corresponds to a document in the corpus. Define the

edge weight matrix W as follows:

Wij =

⎧⎪⎨
⎪⎩

cos(di, dj), if di ∈ Np(dj) or dj ∈ Np(di)

0, otherwise.
(4)

where Np(di) denotes the set of p nearest neighbors of di. Define L = D−W , where D is a diagonal matrix

whose entries are column (or row, since W is symmetric) sums of W , Dii =
∑

j Wij . L is called graph

Laplacian [6], which is a discrete approximation to the Laplace-Beltrami operator	M on the manifold [2].

1In mathematics, a support of a function f from a set X to the real numbers R is a subset Y of X such that f(x) is zero for all
x ∈ X that are not in Y .
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Thus, the discrete approximation of ‖fk‖2M can be computed as follows:

Rk =
1
2

N∑
i,j=1

(P (zk|di)− P (zk|dj))
2 Wij

=
N∑

i=1

P (zk|di)2Dii −
N∑

i,j=1

P (zk|di)P (zk|dj)Wij

= fTk Dfk − fTk W fk

= fTk Lfk

(5)

where fk = [fk(d1), · · · , fk(dM )]T = [P (zk|d1), · · · , P (zk|dM )]T . Rk can be used to measure the smooth-

ness of conditional probability distribution function P (zk|d) along the geodesics in the intrinsic geometry

of the document set. By minimizingRk, we get a conditional PDF function fk which is sufficiently smooth

on the document manifold. A intuitive explanation of minimizingRk is that if two documents di and dj are

close (i.e. Wij is big), fk(di) and fk(dj) are similar to each other.

Now we can define our new latent variable model. The new model adopts the generative scheme of PLSI.

It aims to maximize the regularized log-likelihood as follows:

L = λL − (1− λ)R = λL − (1− λ)
K∑

k=1

Rk

∝ λ
N∑

i=1

M∑
j=1

n(di, wj) log
K∑

k=1

P (wj |zk)P (zk|di)

− 1− λ

2

K∑
k=1

N∑
i,j=1

(P (zk|di)− P (zk|dj))
2 Wij

(6)

where λ is the regularization parameter.

3.2 Model Fitting with Generalized EM

To see how we can estimate the parameters in our LapPLSI model, we first consider the case that λ = 1. In

this case, LapPLSI boils down to the traditional PLSI model.

The standard procedure for maximum likelihood estimation in latent variable models is the Expectation

Maximization (EM) algorithm [8]. EM alternates two steps: (i) an expectation (E) step where posterior

probabilities are computed for the latent variables, based on the current estimates of the parameters, (ii) a
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maximization (M) step, where parameters are updated based on maximizing the so-called expected complete

data log-likelihood which depends on the posterior probabilities computed in the E-step.

Recall in PLSI, we have NK + MK parameters {P (wj |zk), P (zk|di)} and the latent variables are the

hidden topics zk. For simplicity, we use Ψ to denote all the NK + MK parameters.

E-step:

The posterior probabilities for the latent variables are P (zk|di, wj), which can be computed by simply

applying Bayes’ formula on Eqn. (1):

P (zk|di, wj) =
P (wj |zk)P (zk|di)∑K
l=1 P (wj |zl)P (zl|di)

(7)

M-step:

With simple derivations [11], one can obtain the relevant part of the expected complete data log-likelihood

for PLSI:

Q(Ψ) =
N∑

i=1

M∑
j=1

n(di, wj)
K∑

k=1

P (zk|di, wj) log
[
P (wj |zk)P (zk|di)

]

Maximizing Q(Ψ) with respect to the parameters Ψ and with the constraints that
∑K

k=1 P (zk|di) = 1 and
∑M

j=1 P (wj |zk) = 1, one can obtain the M-step re-estimation equations [11]:

P (wj |zk) =
∑N

i=1 n(di, wj)P (zk|di, wj)∑M
m=1

∑N
i=1 n(di, wm)P (zk|di, wm)

, (8)

P (zk|di) =

∑M
j=1 n(di, wj)P (zk|di, wj)

n(di)
. (9)

With a initial random guess of {P (wj |zk), P (zk|di)}, PLSI alternately applies the E-step equation (7) and

M-step equations (8, 9) until a termination condition is met.

Our LapPLSI model adopts the same generative scheme as that of PLSI. Thus, LapPLSI has exactly the

same E-step as that of PLSI. For the M-step, it can be derived that the relevant part of the expected complete
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data log-likelihood for LapPLSI is

Q(Ψ) = λQ(Ψ)− (1− λ)R

= λQ(Ψ)− 1− λ

2

K∑
k=1

N∑
i,j=1

(P (zk|di)− P (zk|dj))
2 Wij

Since the regularization part R only involves the parameters P (zk|di), we can get the same M-step re-

estimation equation for P (wj |zk) as in Eqn. (8). However, we do not have a close form re-estimation

equation for P (zk|di). In this case, the traditional EM algorithm can not be applied.

In the following, we discuss how to use the generalized EM algorithm (GEM) [14] to maximize the

regularized log-likelihood of LapPLSI in Eqn. (6). The major difference between GEM and traditional

EM is in the M-step. Instead of finding the globally optimal solutions for Ψ which maximize the expected

complete data log-likelihood Q(Ψ) in the M-step of EM algorithm, GEM only needs to find a “better” Ψ.

Let Ψn denote the parameter values of the previous iteration and Ψn+1 denote the parameter values of the

current iteration. The convergence of GEM algorithm only requires that Q(Ψn+1) ≥ Q(Ψn) [14].

In each M-step, we have parameter values Ψn and try to find Ψn+1 which satisfy Q(Ψn+1) ≥ Q(Ψn).

Apparently, Q(Ψn+1) ≥ Q(Ψn) holds if Ψn+1 = Ψn.

We have Q(Ψ) = λQ(Ψ) − (1 − λ)R. Let us first find Ψ(1)
n+1 which maximizes Q(Ψ) instead of

the whole Q(Ψ). This can be done by simply applying Eqn. (8) and (9). Clearly, Q(Ψ(1)
n+1) ≥ Q(Ψn)

does not necessarily hold. We then try to start from Ψ(1)
n+1 and decrease R, which can be done through

Newton-Raphson method [17]. Notice that R only involves parameters P (zk|di), we only need to update

P (zk|di)n+1 part in Ψn+1.

Given a function f(x) and the initial value xt, the Newton-Raphson updating formula to decrease (or

increase) f(x) is as follows:

xt+1 = xt − γ
f ′(x)
f ′′(x)

(10)

where 0 ≤ γ ≤ 1 is the step parameter. Since we have

Rk =
1
2

N∑
i,j=1

(P (zk|di)− P (zk|dj))
2 Wij = fTk Lfk ≥ 0,

the Newton-Raphson method will decrease Rk in each updating step. With Ψ(1)
n+1 and put Rk into the
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Newton-Raphson updating formula in Eqn. (10), we can get the close form solution for Ψ(2)
n+1, and then

Ψ(3)
n+1, · · · , Ψ(m)

n+1, where

P (zk|di)
(t+1)
n+1 = (1− γ)P (zk|di)

(t)
n+1 + γ

∑N
j=1 WijP (zk|dj)

(t)
n+1∑N

j=1 Wij

. (11)

Clearly,
∑K

k=1 P (zk|di)
(t+1)
n+1 = 1 and P (zk|di)

(t+1)
n+1 ≥ 0 hold in Eqn. (11) as long as

∑K
k=1 P (zk|di)

(t)
n+1 =

1 and P (zk|di)
(t)
n+1 ≥ 0. Notice that the P (wj |zk)n+1 part in Ψn+1 will keep the same.

Every iteration of Eqn. (11) makes the topic distribution smoother on the nearest neighbor graph, es-

sentially, smoother on the document manifold. The step parameter γ can be interpreted as a controlling

factor of smoothing the topic distribution among the neighbors. When it is set to 1, the new topic distribu-

tion of a document is the average of the old distributions from its neighbors. This parameter will affect the

convergence speed but not the convergence result.

We continue the iteration of Eqn. (11) until Q(Ψ(t+1)
n+1 ) ≤ Q(Ψ(t)

n+1). Then we test whether Q(Ψ(t)
n+1) ≥

Q(Ψn). If not, we reject the proposal of Ψ(t)
n+1, and return the Ψn as the result of the M-step, and continue

with the next E-step. We summarize the model fitting approach of our LapPLSI by using generalized EM

algorithm in Algorithm (1).

4 Applications and Empirical Results

In this section, we evaluate our LapPLSI algorithm in two application domains: topic representation and

document clustering.

In all the mixture models, the expected complete log-likelihood of the data has local maxima at the

points where all or some of the mixture components are equal to each other. We run the EM algorithm

multiple times with random starting points to improve the local maximum of the EM estimates. To make

the comparison fair, we use the same starting points for PLSI and LapPLSI.

Throughout our experiments, we empirically set the number of nearest neighbors p to 5, the value of the

Newton step parameter γ to 0.1, the value of the regularization parameter λ to 0.0012.

2We set the parameter λ to make the two terms Q(Ψ) and R in the LapPLSI regularized log-likelihood comparable. In our
experiments, Q(Ψ) is around −106 and R is less than 100.
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Algorithm 1 Generalized EM for LapPLSI

Input: N documents with a vocabulary size M
The number of topics K, The number of nearest neighbors p
Regularization parameter λ, Newton step parameter γ
Termination condition value θ

Output: P (zk|di), P (wj |zk), i = 1, · · · , N ; j = 1, · · · , M k = 1, · · · , K

1: Compute the the graph matrix W as in Eqn. (4);
2: Initialize the probability distributions (parameters) Ψ0;

Ψ0 = {P (zk|di)0, P (wj |zk)0}
3: n← 0;
4: while (true)
5: E-step: Compute the posterior probability as in Eqn. (7) ;

M-step:
6: Compute P (wj |zk)n+1 as in Eqn. (8);
7: Compute P (zk|di)n+1 as in Eqn. (9);

8: P (zk|di)
(1)
n+1 ← P (zk|di)n+1;

9: Compute P (zk|di)
(2)
n+1 as in Eqn. (11);

10: while
(
Q(Ψ(2)

n+1) ≥ Q(Ψ(1)
n+1)

)

11: P (zk|di)
(1)
n+1 ← P (zk|di)

(2)
n+1.

12: Compute P (zk|di)
(2)
n+1 as in Eqn. (11)

13: if
(
Q(Ψ(1)

n+1) ≥ Q(Ψn)
)

14: P (zk|di)n+1 ← P (zk|di)
(1)
n+1;

15: else
16: Ψn+1 ← Ψn;
17: if (Q(Ψn+1)−Q(Ψn) ≤ θ)
18: break;
19: n← n + 1;
17: return Ψn+1

4.1 Document Modeling

In order to visualize the hidden topics discovered by LapPLSI approach, we conduct the following exper-

iment on TREC AP corpus. We use a subset of the TREC AP corpus containing 2,246 newswire articles

with 10,473 unique terms3.

To compare different approaches, we randomly pick four terms (i.e., “film”, “school”,“space” and “com-

puter”), and find four topics that have these four terms as the most representative terms, respectively. That is,

for term wj , we find the topic zk such that P (wj |zk) ≥ P (wi|zk),∀wi �= wj . In this way, we can compare

3This TREC AP subset can be downloaded at
http://www.cs.princeton.edu/∼blei/lda-c/
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Table 1: The 15 most representative terms generated by our LapPLSI algorithm for four topics. The terms
are selected according to the probability P (w|z).

Topic 1 Topic 2 Topic 3 Topic 4
film school space computer

movie students launch system
films university mission technology

disney college shuttle systems
universal student earth calif

mca education nasa program
brooks schools test programs
theaters district scientists computers
mary board pictures equipment
dog public venus problem

movies class spacecraft personal
yosemite teachers engineers stations
recycling black rocket numbers

screen professor project design
entertainment teacher launched data

Table 2: The 15 most representative terms generated by the PLSI algorithm for four topics. The terms are
selected according to the probability P (w|z).

Topic 1 Topic 2 Topic 3 Topic 4
film school space computer

movie students venus time
company student earth two
disney university mission west

last schools nasa show
environmental education shuttle military

mca board spacecraft president
films teachers magellan virginia

universal college telescope virus
years teacher two told

people high astronauts system
town public launch program
year state miles computers

movies class hubble years
say parents make last

different approaches on the same topic and evaluate the terms generated by them that are used to represent

this particular topic. Table 1, 2 and 3 show the terms generated by the LapPLSI, PLSI, and LDA algorithms,

respectively, to represent the four topics. For all these three algorithms, we need to pre-define the number

of hidden topics in the data set. We empirically set it to 100 as suggested in [5].

All the three topic modeling approaches have quite good performance on these four topics. For the first
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Table 3: The 15 most representative terms generated by the LDA algorithm for four topics. The terms are
selected according to the probability P (w|z).

Topic 1 Topic 2 Topic 3 Topic 4
film school space computer

movie students shuttle says
theater education nasa system
actor schools launch program

musical university mission long
films college earth theyre

actress student venus numbers
best teachers spacecraft years
last board two time

vietnam teacher mars year
new high magellan work

theaters class rocket number
available parents telescope people

star teaching flight digital
academy officials astronauts software

Table 4: Statistics of TDT2 and Reuters corpora.
TDT2 Reuters

No. docs. used 9394 8067
No. clusters used 30 30
Max. cluster size 1844 3713
Min. cluster size 52 18
Med. cluster size 131 45
Avg. cluster size 313 269

three topics, although different algorithms select slightly different terms, all these terms can describe the

corresponding topic to some extent. For the forth topic (“computer”), LapPLSI is slightly better than PLSI

and LDA. As can be seen, LapPLSI selects more terms related to “computers” (e.g., technology, equipment)

than PLSI and LDA. In the next subsection, we give a quantitative evaluation of these three algorithms on

document clustering.

4.2 Document Clustering

Clustering is one of the most crucial techniques to organize the documents in an unsupervised manner.

The hidden topics extracted by the topic modeling approaches can be regarded as clusters. The estimated

conditional probability density function P (zk|di) can be used to infer the cluster label of each document. In

this experiment, we investigate the use of topic modeling approach for text clustering.

13



Table 5: Clustering performance on TDT2

K
Accuracy (%)

PLSI LDA LapPLSI K-means AA NC NMF-NCW
2 91.5 93.1 99.9 97.6 93.9 99.8 99.7
3 82.3 88.2 99.7 90.4 90.6 97.9 95.9
4 76.1 80.8 98.3 86.3 86.4 95.9 93.2
5 70.0 77.6 97.3 81.1 81.6 94.7 89.9
6 69.0 73.6 97.4 79.2 79.4 93.4 91.4
7 63.7 67.4 96.5 73.8 80.4 89.1 85.8
8 59.8 65.1 96.0 72.5 73.8 85.0 82.3
9 63.2 66.5 95.7 73.6 73.6 86.0 83.9
10 60.7 65.8 93.8 72.3 73.5 81.4 82.6

Avg 70.7 75.3 97.2 80.8 81.5 91.5 89.4

K
Normalized Mutual Information (%)

PLSI LDA LapPLSI K-means AA NC NMF-NCW
2 71.9 79.3 98.2 90.3 84.8 97.8 97.5
3 68.2 79.0 97.6 84.4 82.6 94.1 90.9
4 65.1 74.2 94.6 82.2 78.6 91.0 89.1
5 62.9 71.7 93.6 79.2 75.3 90.4 85.6
6 63.6 71.7 93.8 79.6 76.0 90.3 88.8
7 60.0 66.6 92.0 75.6 76.0 85.1 83.6
8 57.6 64.7 91.0 73.6 70.7 81.4 80.7
9 62.7 68.9 91.7 77.6 73.8 83.9 83.9
10 61.8 68.7 90.2 76.5 73.4 80.5 82.9

Avg 63.8 71.6 93.6 79.9 76.8 88.3 87.0
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Figure 1: Accuracy and normalized mutual information vs. the number of classes on TDT2 corpus

4.2.1 Data Corpora

We conducted the performance evaluations using the TDT2 4 and the Reuters5 document corpora. These two

document corpora have been among the ideal test sets for document clustering purposes because documents
4Nist Topic Detection and Tracking corpus at

http://www.nist.gov/speech/tests/tdt/tdt98/index.htm
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in the corpora have been manually clustered based on their topics and each document has been assigned one

or more labels indicating which topic/topics it belongs to.

The TDT2 corpus consists of data collected during the first half of 1998 and taken from 6 sources,

including 2 newswires (APW, NYT), 2 radio programs (VOA, PRI) and 2 television programs (CNN, ABC).

It consists of 11201 on-topic documents which are classified into 96 semantic categories. In this experiment,

those documents appearing in two or more categories were removed, and only the largest 30 categories were

kept, thus leaving us with 9,394 documents in total.

The Reuters corpus contains 21578 documents which are grouped into 135 clusters. Compared with

TDT2 corpus, the Reuters corpus is more difficult for clustering. In TDT2, the content of each cluster is

narrowly defined, whereas in Reuters, documents in each cluster have a broader variety of content. More-

over, the Reuters corpus is much more unbalanced, with some large clusters more than 200 times larger than

some small ones. In our test, we discarded documents with multiple category labels, and only selected the

largest 30 categories. This left us with 8067 documents in total. Table 4 provides the statistics of the two

document corpora.

4.2.2 Evaluation Metric

The clustering result is evaluated by comparing the obtained label of each document with that provided by

the document corpus. Two metrics, the accuracy (AC) and the normalized mutual information metric (MI)

are used to measure the clustering performance [22]. Given a document xi, let ri and si be the obtained

cluster label and the label provided by the corpus, respectively. The AC is defined as follows:

AC =
∑n

i=1 δ(si, map(ri))
n

where n is the total number of documents and δ(x, y) is the delta function that equals one if x = y and

equals zero otherwise, and map(ri) is the permutation mapping function that maps each cluster label ri to

the equivalent label from the data corpus. The best mapping can be found by using the Kuhn-Munkres

algorithm [13].

Let C denote the set of clusters obtained from the ground truth and C ′ obtained from our algorithm.

5Reuters-21578 corpus is at
http://www.daviddlewis.com/resources/testcollections/reuters21578/
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Their mutual information metric MI(C, C ′) is defined as follows:

MI(C, C ′) =
∑

ci∈C,c′j∈C′
p(ci, c

′
j) · log2

p(ci, c
′
j)

p(ci) · p(c′j)

where p(ci) and p(c′j) are the probabilities that a document arbitrarily selected from the corpus belongs to

the clusters ci and c′j , respectively, and p(ci, c
′
j) is the joint probability that the arbitrarily selected document

belongs to the clusters ci as well as c′j at the same time. In our experiments, we use the normalized mutual

information MI as follows:

MI(C, C ′) =
MI(C, C ′)

max(H(C), H(C ′))

where H(C) and H(C ′) are the entropies of C and C ′, respectively. It is easy to check that MI(C, C ′)

ranges from 0 to 1. MI = 1 if the two sets of clusters are identical, and MI = 0 if the two sets are

independent.

4.2.3 Performance Evaluations and Comparisons

To demonstrate how the document clustering performance can be improved by topic modeling approaches,

we implemented four state-of-the-art clustering algorithms as follows.

• Canonical K-means clustering method (K-means in short).

• Two representative spectral clustering methods: Average Association (AA in short) [23], and Normal-

ized Cut (NC in short) [18][15]. Spectral clustering methods have recently emerged as one of the most

effective document clustering tools. These methods are based on graph partitioning theories. They

model the given document set using a undirected graph in which each node represents a document,

and each edge is assigned a weight to reflect the similarity between two documents. The clustering

task is accomplished by finding the best cut of the graph with respect to the predefined criterion func-

tion. The difference between AA and NC is the different cut criteria they used. Interestingly, Zha

et al. [23] has shown that the AA criterion is equivalent to that of the LSI followed by the K-means

clustering method if the inner product is used to measure the document similarity.

• Nonnegative Matrix Factorization (NMF) based clustering. We implemented a normalized cut weighted

version of NMF (NMF-NCW in short) [22], which has been shown to be a very effective document

16



Table 6: Clustering performance on Reuters

K
Accuracy (%)

PLSI LDA LapPLSI K-means AA NC NMF-NCW
2 72.6 79.1 92.2 79.0 82.2 86.3 87.0
3 65.8 69.2 89.1 68.7 73.0 78.7 77.6
4 56.7 59.6 80.3 62.2 63.1 74.5 74.5
5 52.1 56.5 73.9 59.6 59.2 72.0 71.4
6 52.6 53.2 71.9 59.7 58.6 70.2 68.7
7 45.5 47.3 69.3 53.8 54.0 64.1 63.6
8 45.6 46.8 65.6 50.2 47.6 59.9 54.1
9 41.1 42.2 61.0 44.5 43.2 57.6 52.8
10 43.0 44.5 59.4 47.0 44.2 57.0 53.3

Avg. 52.8 55.4 73.6 58.3 58.3 68.9 67.0

K
Normalized Mutual Information (%)

PLSI LDA LapPLSI K-means AA NC NMF-NCW
2 23.4 39.1 70.9 39.7 45.0 56.3 55.7
3 29.2 39.5 66.4 44.5 43.6 54.2 54.3
4 31.4 38.8 59.4 47.3 43.5 52.5 56.2
5 35.1 42.3 59.3 51.1 48.5 56.7 58.6
6 37.3 43.9 58.1 54.3 50.7 56.4 59.2
7 34.6 39.2 55.8 49.7 45.1 50.8 53.4
8 34.2 37.2 49.3 47.2 42.7 47.6 46.5
9 31.1 34.6 46.6 42.5 37.7 44.1 45.1
10 35.1 38.5 49.5 47.4 42.6 48.3 49.1

Avg 32.4 39.2 57.3 47.1 44.4 51.9 53.1

2 4 6 8 10
20

30

40

50

60

70

80

90

Number of classes

A
cc

ur
ac

y

PLSI
LDA
LapPLSI
K−means
AA
NC
NMF−NCW

2 4 6 8 10
0

10

20

30

40

50

60

70

Number of classes

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

PLSI
LDA
LapPLSI
K−means
AA
NC
NMF−NCW

Figure 2: Accuracy and normalized mutual information vs. the number of classes on Reuters corpus

clustering method.

Table 5 and 6 show the evaluation results using the TDT2 and the Reuters corpus, respectively. The

evaluations were conducted with the cluster numbers ranging from two to ten. For each given cluster number
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K, 50 test runs were conducted on different randomly chosen clusters, and the final performance scores were

obtained by averaging the scores from the 50 tests.

These experiments reveal a number of interesting points:

• The LDA approach consistently outperforms PLSI. By assuming that the probability distributions of

documents over topics are generated from the same Dirichlet distribution, LDA avoids the overfitting

problem of PLSI. This can be observed from our experimental results. However, both of these two

topic modeling approaches fail to outperform those standard clustering methods, especially comparing

with NC and NMF-NCW. One reason is that both PLSI and LDA discover the hidden topics in the

Euclidean space and fail to consider the discriminant structure.

• Our LapPLSI approach gets significantly better performance than PLSI and LDA. Moreover, LapPLSI

can even achieve better results than the state-of-the-art clustering algorithms. This shows that by

considering the intrinsic geometrical structure of the document space and directly performing topic

modeling on this document manifold, LapPLSI can have better hidden topic modeling power in the

sense of semantic structure.

• The improvement of LapPLSI over other methods is more significant on the TDT2 corpus than the

Reuters corpus. One possible reason is that the document clusters in TDT2 are generally more com-

pact and focused than the clusters in Reuters. Thus, the nearest neighbor graph constructed over TDT2

can better capture the geometrical structure of the document space.

5 Conclusions and Future Work

We have presented a novel method for topic modeling, called Laplacian Probabilistic Latent Semantic In-

dexing (LapPLSI). LapPLSI models the document space as a submanifold embedded in the ambient space

and directly performs the topic modeling on this document manifold in question. As a result, LapPLSI can

have more discriminating power than traditional topic modeling approaches which discover the hidden top-

ics in the Euclidean space, e.g. PLSI and LDA. Experimental results on document modeling and document

clustering show that LapPLSI provides better representation in the sense of semantic structure.

Several questions remain to be investigated in our future work:
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1. There is a parameter λ which controls the smoothness of our LapPLSI model. LapPLSI boils down to

original PLSI when λ = 1. Also, it is easy to see that P (zk|di) will be the same for all the documents

when λ = 0. Thus, a suitable value of λ is critical to our algorithm. It remains unclear how to do

model selection theoretically and efficiently.

2. We consider the topic modeling on document manifold and develop our approach based on PLSI.

The idea of exploiting manifold structure can also be naturally incorporated into other topic modeling

algorithms, e.g., Latent Dirichlet Allocation.

3. It would be very interesting to explore different ways of constructing the document graph to model

the semantic structure in the data. There is no reason to believe that the nearest neighbor graph is the

only or the most natural choice. For example, for web page data it may be more natural to use the

hyperlink information to construct the graph.
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