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Abstract

3D tele-immersion (3DTI) has recently emerged as a new
way of video-mediated collaboration across the Internet.
Unlike conventional 2D video-conferencing systems, it can
immerse remote users into a shared 3D virtual space so that
they can interact or collaborate “virtually”. However, most
existing 3DTI systems can support only two sites of collabo-
ration, due to the huge demand of networking resources and
the lack of a simple yet efficient data dissemination model.
In this paper, we propose a general publish-subscribe model
for multi-site 3DTI systems, which efficiently utilizes limited
network resources by leveraging user interest. We focus on
the overlay construction problem in the publish-subscribe
model by exploring a spectrum of heuristic algorithms for
data dissemination. With extensive simulation, we identify
the advantages of a simple randomized algorithm. We pro-
pose optimization to further improve the randomized algo-
rithm by exploiting semantic correlation. Experimental re-
sults demonstrate that we can achieve an improvement by a

factor of five.

1 Introduction

3D tele-immersion is a new video medium that creates
3D photorealistic, immersive, and interactive collaboration
among geographically dispersed users. Over the last few
years, 3DTI has shown great potentials in a wide range of
applications such as video-conferencing, distance learning
of physical activities, collaborative art performance, fire-
fighter training, and medical consultation [2, 12, 17, 24, 28].

As shown in Figure 1, each 3DTI site consists of an array
of 3D cameras and an array of 3D displays. The 3D cameras
are set up to capture the participant in the local scene from
various angles, with each camera producing a continuous
3D video stream. The streams from all sites are exchanged
through the Internet and aggregated at each 3D display in
real time, such that an integrated 3D virtual space (“cyber-
space”) can be constructed that immerses the participants

"’\ E@‘ Internet L i
' . Iy ’
| — —/} e %,

L e x|

RN B A I .
LN =
— VAN H Ll
N A
Site 2 s / . Wel vyvy Site N
2 e/ @ :
e L - _» M. .

Figure 1. Multi-Site 3DTI Systems

from all sites, as illustrated in Figure 2. The shared visual
context enables remote users to interact or collaborate “vir-
tually” in the cyber-space.

However, the huge demand of networking and comput-
ing resources has restricted current 3DTI systems to work
with only two sites. Each 3D video stream can consume
a large amount of bandwidth (e.g., 640 x 480 x 15fps x
5B /pixel ~ 180Mbps), making even two sites of collab-
oration challenging enough. Moreover, the rendering time
cost, which is about 10ms/stream by our measurement [28],
grows linearly with the number of streams. The problem
is exacerbated if multiple sites are connected together, with
each site producing tens of such large streams, which can
easily exceed the bandwidth and timing bounds'.

Therefore, the “all-to-all” data distribution scheme,
adopted by existing 2D video-conferencing and 3DTTI sys-
tems ([2, 9]), has to be abandoned as the scale of the 3DTI
system grows. As a concrete example, the 3DTI system de-
scribed in [28] involved two sites thousands of miles apart,

I'The timing bound is necessary to guarantee interactivity.



each sending about ten streams to the other. With the mea-
sured resource limits, even three-site collaboration was not
possible if all streams from each site were sent to all other
sites.

Some previous work has addressed the issues in a piece-
meal manner: these include background subtraction [11],
resolution reduction, real-time 3D compression [13, 14, 25],
and multi-stream adaptation [15, 27]. However, multi-site
tele-immersion poses unique challenges that have not been
addressed. In particular, a simple yet efficient data dissem-
ination model is needed to handle the coordinated delivery
of large-volume data among multiple sites.

In this paper, we present a general publish-subscribe
model to support multi-site 3DTI collaboration. Figure 3
shows the system architecture, in which the 3D cameras be-
come the publishers, and the 3D displays become the sub-
scribers. The subscription at each display is made by the
local user as a preferred “field of view” (FOV) in the cyber-
space, such that only the streams that are contributing to
the FOV will be transmitted across the Internet. The FOV
can be a subset of streams from other sites, or a particular
rendering viewpoint of the cyber-space, for example. By
leveraging user interest in a particular FOV, we can reduce
the amount of required bandwidth without sacrificing much
visual quality for the user. This is because the data that are
not subscribed/delivered do not contribute to the user’s field
of view, thereby not noticeably affecting the visual quality.

Finally, a rendezvous point (RP) is introduced at each site
to decouple the act of publishing from that of subscribing.
An RP is basically a proxy server that is located at each
site, to collect all streams from that site and disseminate
them out to the network, as well as receive all streams in-
tended for the participant at the local site. All RPs form an
application-level overlay to disseminate only the data that
are subscribed.

We find the static overlay construction problem among

Figure 2. With multi-site 3DTI, remote users
can interact and collaborate in a “cyber-
space”.
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Figure 3. The Publish-Subscribe 3DTI System
Model

all RPs to be an key challenge in the publish-subscribe
model, due to several characteristics of multi-site 3DTI sys-
tems: (1) a dense graph: since a participant in 3DTI collab-
oration typically wants to see a large fraction of the other
participants from a wide field of view, the overlay graph
among all RPs has high density (i.e., the average in/out-
degrees of all RP nodes are large) , and (2) multiple system
constraints: each site has inbound/outbound bandwidth lim-
its, and the end-to-end latency has to be small to guarantee
interactivity.

In this paper, we tackle the static overlay construction
problem with several tree-based heuristic algorithms and a
randomized algorithm. Somewhat surprisingly we find that
a simple randomized algorithm actually works well in the
unique context. Furthermore, we observe that the random-
ized algorithm and the tree-based approaches are actually at
two extreme ends of a general spectrum of algorithms. This
leads us to study the whole spectrum of algorithms with a
technique called “granularity analysis”, which indeed con-
firms the advantages of the randomized algorithm. In light
of these results, we propose optimization to further improve
the randomized algorithm by exploiting semantic correla-
tion among streams. We demonstrate that an improvement
by a factor of five can be achieved.

Although this work was motivated by multi-
stream/multi-site tele-immersion, the approaches can
also be applied to other distributed multimedia application
scenarios, such as multi-camera video conferencing,



distributed surveillance, and distance learning.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the related work on 3DTI, publish-subscribe
systems, and multicast overlay construction. Section 3 de-
scribes the design of the publish-subscribe model that lever-
ages user interest. In Section 4, the overlay construction
problem is discussed in great detail, together with a set of
heuristic algorithms. Section 5 provides the experimental
results, including the granularity analysis for evaluating the
general spectrum of algorithms. Finally, we conclude and
discuss future work in Section 6.

2 Background and Related Work

2.1 3D Tele-Immersion

3DTI has emerged as a new video medium for remote
collaboration. However, the prior work on 3DTI mainly
considered the multi-streaming challenge between only two
sites. For example, Ott er al. [15] proposed a transport-
level protocol for flow coordination, and Yang et al. [27]
addressed the problem in the session layer with a multi-
stream adaptation framework. Nevertheless, they did not
handle multi-site interconnection and data delivery in the
3DTI environments.

Yang et al. [26] presented a general ViewCast model
for distributed multimedia applications. The main idea of
ViewCast was to decouple the high-level semantics of user
customization from the low-level substrate for data dissem-
ination. This model can be applied to multi-stream/multi-
site 3DTI. However, the ViewCast model did not address
the specific problem of distributing the large volume of
data among multiple participating sites. Our work considers
the practical challenges of the low-level data dissemination,
and can serve as an underlying substrate for the ViewCast
model.

2.2 Publish-Subscribe Systems

The publish-subscribe communication paradigm con-
sists of three components: publishers, subscribers, and
a mediating infrastructure (brokers). The subscribers ex-
press interest in the data advertised by the publishers to
the brokers. The publishers, unaware of who subscribe
to what, simply deliver the data to the brokers. The bro-
kers then match the subscribers’ interests with the data pro-
duced by publishers, and deliver the matching content to the
subscribers. The main advantage of the publish-subscribe
paradigm is its capability to decouple the act of subscribing
from the act of publishing with a mediating infrastructure.
In the context of multi-site 3DTI systems, this leads to a
conceptually simple networking model to handle the inter-

connection and data delivery among multiple participating
sites.

There has been a large body of related work on publish-
subscribe systems. The readers are referred to [8] for a good
review. Our work differs in that it handles the delivery of
live 3D video streams with large bandwidth consumption
and stringent timing constraint. Furthermore, because a par-
ticipant in 3DTT collaboration typically wants to see a large
portion of other participants from a wide field of view, the
delivery graph among all RPs has high density, which poses
unique challenge for the static construction of the overlay
structure for data dissemination.

2.3 Overlay Construction

We find that the static overlay construction problem in
our publish-subscribe model is non-trivial. Related litera-
ture can be found on QoS routing for IP multicast [22] and
overlay construction for application-level multicast (e.g.,
[4, 10, 16, 29]). However, the major concern there was the
efficient or optimal construction of a single multicast tree on
a certain constraint. We need to care about the coordinated
construction of a large number of multicast trees on a partic-
ular set of nodes, subject to multiple constraints including
bandwidth and latency. The forest construction needs to be
carefully managed because the resources of the nodes are
shared among all trees.

There has been also other work on application-level mul-
ticast (e.g., [3, 6, 18, 21, 30]) that aimed for scalability by
using a structured overlay such as hierarchical clustering
and DHTs. Since 3DTI session is usually small to medium
sized, these structured techniques would incur unnecessary
overhead and complexity in the control plane.

In the next section, we introduce the general publish-
subscribe model for multi-site 3DTI systems. The problem
of overlay construction among all RPs is presented in Sec-
tion 4 in more detail.

3 Publish-Subscribe Model
3.1 Overview

We propose a general publish-subscribe model as a sim-
ple yet powerful data dissemination paradigm for multi-site
3DTI collaboration. The major advantages of the publish-
subscribe model are twofold: (1) it decouples the cameras
from the displays, such that the interconnection among mul-
tiple sites is greatly simplified; and (2) it leverages user in-
terest as subscription to efficiently utilize the limited sys-
tem resources, because only the data that are subscribed are
transmitted.

Figure 3 shows the publish-subscribe model, where the
3D cameras that capture the local user in real time become



Field of View

Figure 4. An example showing a preferred
FOV in the 3DTI cyber-space and the con-
tributing streams (those from cameras 1, 2,
7, 8).

the publishers, and the 3D displays that render the inte-
grated cyber-space become the subscribers. Finally, a proxy
server is placed at each site to act as the rendezvous point
(RP). Within a local site, the RP forms a star network to the
cameras and the displays to handle publishing and subscrib-
ing, respectively. Among the RPs, an efficient application-
level overlay is constructed to disseminate the subscribed
streams across the Internet.

3.2 FOV-based Subscription

One major goal of the publish-subscribe model is to
leverage the user interest as the subscription, in order to ef-
ficiently utilize the limited system resources. More specifi-
cally, the user configures a preferred field of view (FOV) in
the cyber-space (Figure 2) as the subscription for each dis-
play, so that only the data that are contributing to the FOV
will be transmitted. The FOV can be a subset of streams
from other sites, or a particular rendering viewpoint of the
cyber-space, for example. Figure 4 shows a FOV speci-
fied for a 3DTI cyber-space, and the streams produced from
camera 1, 2, 7, 8 are the four most contributing streams to
the selected FOV. By leveraging user interest in a particu-
lar FOV, we can reduce the amount of required bandwidth
without sacrificing much visual quality for the user. This
is because the data that are not subscribed/delivered do not
contribute to the user’s field of view, thereby not noticeably
affecting the visual quality.

In order to allow the participants to specify a favored
FOV for each display, a subscription framework is needed.
We assume the design of the subscription framework is or-
thogonal to the publish-subscribe model, in order to decou-
ple the high-level user customization semantics from the

low-level stream dissemination substrate [26]. We only re-
quire the subscription framework to have two key function-
alities: (1) allow the participants to specify a preferred FOV
in a meaningful format (e.g., a rendering viewpoint of the
cyber-space), and (2) convert the specified FOV to a con-
crete subset of streams that are contributing to the FOV.
This subset of streams constitutes the actual subscription re-
quests (i.e., which display subscribes to which stream), and
will be fed into the overlay construction module (Section
4) as input. The insight of this design is that the proposed
publish-subscribe model only serves as a substrate to handle
the interconnection and data dissemination among multiple
sites, while the high-level semantics of user interest in a
FOV are left to the application designers, which results in
better customization and flexibility?.

The subscription requests from all displays are then col-
lected by the local RP, and further aggregated to a central-
ized membership server’. Based on the global subscrip-
tion workload (i.e., which site subscribes to which streams),
the server dictates all RPs to organize into an application-
level overlay network for data dissemination. After an RP
collects the streams from other sites on the overlay, it dis-
tributes them to the local displays as requested.

It turns out that the static overlay construction problem
in this context is non-trival (NP-complete). In this paper, we
mainly tackle this static problem with a spectrum of heuris-
tic algorithms, with the details presented in the next section.

4 Overlay Construction

As described above, within each site the RP forms a star
network to the cameras and displays. However, the con-
struction of the overlay among all RPs on the WAN is a key
challenge in the publish-subscribe model.

4.1 Overview

Given all the subscription requests made via the sub-
scription framework (Section 3.2), the main goal is to or-
ganize an overlay structure to disseminate the data among
all RPs as requested. More specifically, each RP request
only those streams that are subscribed by at least one of its
local displays.

In the multi-stream/multi-site 3DTI environments, the
overlay graph we are to construct is essentially a forest of
multiple trees, where each tree is designated to disseminate

2As an example, ViewCast [26] can be used as a subscription frame-
work, where for each display the user only needs to specify a preferred
viewpoint of the cyber-space; a set of most correlated streams with respect
to this viewpoint will be automatically selected to make the subscription
requests.

3Since the 3DTI sessions are typically small to medium sized, we take
the centralized approach for its simplicity.



Figure 5. An example showing the publish-
subscribe model of four sites. The label on
each edge denotes the index of the source
RP node for the transmitted stream.

one stream among the set of requesting RPs. The construc-
tion of such forest is complicated by several characteristics
of multi-site 3DTI environments: (1) multiple constraints:
each site has the inbound and outbound bandwidth limits,
and the end-to-end delay between any pair of nodes has
to be small in order to guarantee interactivity; (2) a dense
graph: since the participant typically wants to see a large
portion of other participants from a wide field of view, the
overlay graph consisting of all RPs often has very high den-
sity (i.e., the average in/out-degrees of all nodes are large);
hence, the construction of the forest needs to be carefully
coordinated because the bandwidth resources are shared
among all trees.

More concretely, we define a multicast group, G(s), as
the set of RP nodes that have requested the stream s. Note
that we exclude the edge hosts (i.e., the cameras, the dis-
plays) from the overlay structure for the sake of simplic-
ity. From hereafter, we use the terms nodes and RPs inter-
changeably.

For each multicast group G(s), a multicast tree, Ty,
needs to be constructed to disseminate the stream s from the
source to all other nodes in G(s). Figure 5 shows an over-
lay graph of four sites with four trees constructed among
the RPs, {A, B, C, D}. For instance, RPs A, B, C, and D
form a multicast group G(sp) that subscribe to the stream
labeled “B” (i.e., the source is site B), and RP A, B, D form
another multicast group G(s 4) for stream labeled “A”. The
tree constructed to deliver stream sg consists of the source
node B, an intermediate node C, and two leaf nodes A, D.

In the next section, we consider the practical challenges

of the overlay construction problem among all RPs , and
provide a more formal definition.

Table 1. Notations

Notations Comment

N The total number of sites or RP
nodes in a multi-site 3DTT ses-
sion (N > 3)

H; 1 < 7 < N, the site ¢ that
consists of the cameras, displays,
and an RP node

RP; The RP node at site H;
I;,0; The inbound, outbound

bandwidth limits at node
RP;, respectively

din(RP;), doyt (RP;) | The actual inbound, outbound
degree of node RP; in the con-

structed overlay, respectively

s‘; The stream originating from site
H; with a local index ¢
ri(sg) The subscription request spec-
ifying that RP; requests the
stream s
G(s) The multicast group for stream s
T, The multicast tree constructed to
disseminate stream s
F The total number of multicast

groups (or trees in the forest)

u;—; is the number of subscrip-
tion requests made by node RP;
for node RP; (i.e., u;—; num-
ber of streams originating from
site H; are requested by RF;),
among which 4;_, ; are rejected

X The total request rejection ratio,
defined in Equation 1

m;i, M, m,; number of streams originate
from site H; and are subscribed
by at least one other RP, among
which m; streams have not been
disseminated out yet to any other

RP.

cost(RP;, RP;)r, The latency (or cost) between

node RP; and RP; in tree T,

Beost An upper bound for real-time la-

tency to guarantee interactivity

4.2 Problem Formulation

Due to the huge demands of computing and network-
ing resources in multi-site 3DTI collaboration, we have two




constraints and one optimization goal to satisfy in the over-
lay construction problem. To facilitate the discussion, a list
of notations is shown in Table 1 as a reference.

e Constraint I (bandwidth). Each node has inbound (/;)
and outbound (O;) bandwidth limits in the unit of num-
ber of streams (i.e., I;, O; € N). A node should never
receive data more than its inbound bandwidth limit
(i.e., din(RP;) < I; where d;,(RP;) is the actual in-
degree of node RP; in the overlay), nor be delegated to
send data more than its outbound bandwidth constraint
(i.e., dout (RP;) < O;, where d, ¢ (RF;) is the actual
out-degree of RFP;).

e Costraint Il (latency). In 3DTI, remote participants
are rendered into the cyber-space in real time for in-
teractive collaboration. Therefore, the expected end-
to-end latency or cost between any pair of nodes,
cost(RP;, RP;) (for 1 < 4,5 < N and ¢ # j), should
not exceed a bound®*, B.,:, in order to guarantee in-
teractivity.

e Optimization Goal (request rejection ratio). Due to the
two stringent constraints listed above, we cannot guar-
antee that all subscription requests are satisfied. The
metric we wish to minimize is the total rejection ratio
of all requests in the system, denoted by X. Suppose
the number of subscription requests made by node RP;
to RP; is u;—; (i.e., u;—; number of streams originat-
ing from site H; are subscribed by at least one display
at site H;), among which @;_,; are rejected, we thus
have

N
x=3 > (M

Y
i=1j=1j#i = 7

More specifically, the forest construction problem can be
formulated as follows.
Forest Construction Problem. Given (1) a completely
connected graph G = (V,E), (2) an in-degree bound
I(v) € N, and an out-degree bound O(v) € N, for
each node v € V, (3) a cost ¢c(e) € Z* for each edge
e € E, which denotes the latency, and (4) a set of sub-
graphs Gsubsets = {Gt | Gi = (Vi,Ei) where Gz -
G and1 < i < |Ggupsets| = F'}, each with a source
node S(G;) € V;, the goal is to find a spanning forest,
F={T, | T, C G;forl < i < F}, with each tree
T; being a spanning tree that connects the source S(G;)
to a subset of the other nodes (G, C G; — S(G;)), such
that the total number of excluded nodes, ), |G, — G}], is
minimized, subject to the constraint that for all v € T;

4As it is impossible to guarantee hard real-time bound in asynchronous
network, we only attempt to satisfy an upper bound on expected latency
from the source to the subscribers.

Cost bound = 10

Figure 6. An example showing the basic algo-
rithm to join a node into an existing tree.

1 <i<F),din(v) < I(v)and doye(v) < O(v), and
cost(v, S(G;))r, < Beost-

Wang et al. [23] proved that the problem of finding a so-
lution subject to two or more constraints in any combination
in the multicast routing problem is NP-complete. In the next
section, we study several heuristic algorithms to address the
problem.

4.3 Heuristic Algorithms

As an overview, we discuss three tree-based algorithms
and a randomized algorithm in this section. In all algo-
rithms, the trees in the multicast forest are constructed in-
crementally, that is, within a multicast group G(s), all re-
quests for the stream s are processed sequentially in a ran-
domized order. We formally define the subscription request
as ;(s}), specifying that RP; requests to receive stream s
which originates from site H; with index g. Processing a
request r; (s;}) thus means joining the node RP; into the ex-
isting tree TS?. Section 4.3.1 describes a basic algorithm we
propose for this purpose.

Furthermore, the order in which trees are constructed
affects the overall optimization goal, due to the inter-
dependencies among the trees. The inter-dependencies are
caused by the shared limited resources of the nodes that are
present in multiple trees. We propose three tree-based al-
gorithms - LTF, STF, and MCTF - in Section 4.3.2, and a
simple randomized algorithm in Section 4.3.3.

4.3.1 Basic Node Join Algorithm

We first describe a basic algorithm for processing one re-
quest 7;(s7), i.e., joining the node RP; into the existing tree
TS;. Recall that the 3DTI session involves a dense graph.
Therefore, we seek for load balancing among all nodes such
that no one would be particularly overloaded. The basic
idea of this algorithm is thus to find a close-by node with



maximum available bandwidth left in the existing tree, to
serve as the parent to the requesting node.

Before attempting to join the node RPF; into the tree
ng, the algorithm first checks the in-degree of RP;. If
din(RP;) < I, it proceeds to the next step. Otherwise,
it rejects the request because the inbound bandwidth limit is
saturated.

After passing the inbound check, this basic algorithm
looks for a parent node RPj in the existing tree Tsjq_ with
free out-degree and the maximum remaining forwarding
capacity (rfc) among all nodes in TS;J, subject to the la-
tency constraint that the cost from RP; to the source of
ng (i.e., RP;) is smaller than a real-time bound (i.e.,
cost(RP;, RPj)TSq < Beost), if RP; is connected to RP;,.

The rfc; of nd7(le RP; denotes the available portion of
out-degree that can be used for forwarding streams. It is
computed as r fc; = O; — doyt (RP;) — 7h; where ; rep-
resents a reservation mechanism as follows. For each local
stream R P; has yet to send, (i.e., the stream is subscribed by
at least one other node, but has not reached any node other
than RP;), a slot of out-degree is reserved to disseminate
the stream out. Thus, m; denotes the number of streams that
(1) originate from node RP;, (2) are subscribed by at least
one other RP, but (3) have not yet been disseminated out to
any other node in the existing forest. With this reservation
mechanism, we minimize the probability that a whole tree
cannot be constructed because the source node is saturated.

If no such eligible RP;, can be found in Ts;;, the request

ri(sg-) is rejected. In this case, the tree is said to be satu-
rated. The detailed algorithm is presented in pseudo code
in the Appendix.

Figure 6 is an example where only one tree is shown for
simplicity. F is the new node to join the existing tree of six
nodes, {A, B, C, D, E, S} where S is the root. Among the
nodes, E has no out-degree left to serve F (i.e., rfc=0), in
which 4 is reserved for its out-streams (1) and 4 is already
taken in other trees (d;,,(RP;)). D has the largest rfc (22-8-
0=14), but has a cost (8+3+3=14) exceeding the upper cost
bound 10. A has the second largest rfc (15-5-3=7), and has a
cost (4+5=9) smaller than the bound. Therefore, A becomes
the parent to serve F. Again, this basic node join algorithm
always seeks to achieve load balancing, which is essential
in such a dense graph as a multi-site 3DTI session.

4.3.2 Tree-based Algorithms

Based on the basic node join algorithm, we propose three
tree-based algorithms which differ by the order in which
trees are constructed. We define the size of a tree 15 to be
the number of nodes in the corresponding multicast group,
i.e., |G(s)|. For each algorithm, the basic node join algo-
rithm described in Section 4.3.1 is used to process a single

request.

Largest Tree First (LTF) Algorithm. The intuition is
to construct the largest tree first so that even if the last few
trees cannot be constructed due to saturation, the number of
rejected requests should be small because we are left with
the smallest trees. More specifically, we first sort all multi-
cast groups based on the size, and then construct the span-
ning trees one by one from the largest multicast group to the
smallest one.

Smallest Tree First (STF) Algorithm. As a comparison
to LTF, we also study this reversed algorithm which starts
from the smallest multicast group, and ends with the largest
one. Our hypothesis is that the rejection ratio of LTF should
be smaller than that of STF.

Minimum Capacity Tree First (MCTF) Algorithm.
This algorithm evaluates how difficult to construct a tree
in terms of the aggregate forwarding capacity of a tree. The
intuition is that the larger this value is, the easier it is to
construct the tree. That is because new requests are easier
to accommodate with a tree containing large aggregate for-
warding capacity. A node RP;’s forwarding capacity can be
computed as O; — m;, where m; is the number of streams
RP; has to send out (i.e., the number of streams that origi-
nate from RP; and are subscribed by at least one other RP).
The forwarding capacity of a tree, T, is the aggregate for-
warding capacity of all nodes in the multicast group G(s).
This algorithm sorts all multicast groups in the ascending
order based on the aggregate forwarding capacity, and starts
from the multicast group with the least capacity, to the one
with the largest.

4.3.3 Randomized Algorithm (RJ])

Note that LTF, STF, and MCTF all seek to build the trees
one by one, that is, only when it finishes processing all
requests in one tree will it move on to construct the next
one. In contrast, we propose a randomized algorithm, called
“Random Join” (RJ), which simply randomizes all requests
for the whole forest, with no prioritization on any tree.
Again, the basic node join algorithm (Section 4.3.1) is used
to process each request.

Somewhat surprisingly, our simulation in Section 5 finds
that RJ generally outperforms the other tree-based algo-
rithms. We will also show that the tree-based algorithms
and the randomized algorithm are actually at two extreme
ends of a more general spectrum of algorithms. This leads
us to a more extensive study of the whole spectrum of algo-
rithms (Section 5.3), which indeed confirms the advantages
of RJ.

One of the reasons that the randomized algorithm works
better is that every node in multi-site 3DTI collaboration is
likely to be overloaded with subscription requests, because
a participant typically wants to see a large portion of other



participants from a wide field of view. In tree-based algo-
rithms, a node is much more likely to be congested in the
first few constructed trees if it is the source, or a node near
the source. This increases the probability of rejection in the
construction of the latter trees because the node’s total band-
width is shared among different trees. In contrast, the ran-
domized algorithm achieves good load balancing because it
distributes the tasks of request processing among different
trees randomly. The likelihood a single node is congested is
thus minimized, and the rejection ratio decreased.

In light of these results, we next propose further opti-
mization to the basic RJ algorithm by exploiting the seman-
tic correlation among streams.

4.4 Exploiting Correlation

In 3DTI environments, the streams generated from one
site have high semantic correlation among each other, be-
cause the cameras are often capturing the same scene, only
from different angles (Figure 4). Therefore, we hope to ex-
ploit the inter-stream correlation to minimize the level of
loss in times of saturation. As a motivating example, sup-
pose a site A subscribes to four streams from site B (si, sg,
sg’, sgl) and one stream from site C (s7). Then losing one
stream from B is less critical than losing the single stream
from C, since the former reduces the visual quality of a
scene, while the latter loses a scene. Therefore, to mini-
mize the level of loss for each participant, we selectively
drop streams (i.e., reject requests) when the tree to join is
saturated.

We describe a modified RJ algorithm, called CO-R]J,
which exploits stream correlation. First, we introduce the
concept of criticality for a node to lose a stream. Recall that
u;—; is the number of streams that node RP; subscribes
from node RP;. The criticality for node RP; to lose a
stream s; originating from RFP; is

Qi%j =

forl1 <i,j < Nandi#j 2)
i—j

In the previous example, the criticality for node A to lose
any stream from site B is thus i, and that to lose SZ is 1.

In CO-RJ, whenever a request is rejected due to tree
saturation, the algorithm looks for a victim request with a
smaller criticality value than the current request. If such a
victim can be found, CO-RIJ rejects the victim request, and
satisfies the current request.

More specifically, when a request 7;(s’;) (node RP; re-
questing stream sp ) is rejected due to tree saturation, the
algorithm checks the trees that have been constructed on
the following conditions: (1) if there is a stream s} (k # j)
with Q;—r < Qi—j, and (2) RP; is a leaf node in tree
TSZ (or more simply T},), and (3) the parent of RP; in T}, -
node R P}, - has already joined the tree 7' 5" (or more simply

8
Stream S g

Cost bound = 10 — 7

2
Stream S,

/) {sk, 8%, {s, sg,ss sq

Figure 7. An example showing the CO-RJ al-
gorithm. The label on the edge denotes the
latency between the two nodes.

T}), and (4) the cost between RFP; and the source for stream
sf (i.e., RPj), if connecting RP; to RFPy, is less than the
real time bound (i.e., cost(RP;, RP;)r; < Beost). If the
four conditions are all satisfied, CO-RJ removes the edge
RP, — RP;in Ty and add a new edge RP;, — RP; in tree
T;. In other words, RP; loses s} instead of s%. This oper-
ation is done with minimal cost, as RP; was a leaf node in
tree T}, hence removing the old link would not cause relo-
cation of any other nodes in 7}.
Figure 7 is an example showing two trees rooted at node

A (for stream s2) and G (for stream s3), respectively. E has
joined the tree for stream s but w1shes to receive stream

s2 too. E’s subscription contalns two streams from site
A (sl,s2), and four streams from site G (sg7 a0 g, g)
Therefore, the criticality for E to lose a stream from A is
%, and that from G is i, ie., Qr_.c < Qr_ 4. Assume the
tree of sﬁ is saturated, i.e., no eligible node can be found to
serve E based on the bandwidth and delay constraints (Sec-
tion 4.2.1). We have (1) Qg_qg < Qr_a, (2) Eis a leaf
node in the original tree of 52, which means removing it has
no harm for the other nodes, (3) node F, which is the parent
of E in tree s , actually has the stream s2, and (4) if con-
necting E to F in the tree of s2, the cost (2+3+4—9) would
be smaller than the bound. Smce all four conditions are sat—
isfied, CO-RJ will remove the link FHE in the tree of s
and add the link F—E in the tree of 52 as shown in Flgure 7
In other words, F serves E with the new stream s2 1nstead
of s although F 1tse1f is saturated. Because for E, s is less
crltlcal to lose than s2

S Evaluation
5.1 Simulation Setup

Topology. We use the real Internet topology (i.e., Map-
net [1]) to evaluate the algorithms. We randomly select 3-10



nodes in the experiments. The costs of edges are computed 0.45
based on the geographical distances between the nodes. 04l P

Node Resource Distribution. We configure the ex- é —— -
periment parameters close to real-life settings. Accord- g %1 i BT
ing to the measurement by our implemented 3DTI system % 03 | 5 ,
[19, 28], the available bandwidth of tele-immersive sites on < B "

Internet2 could vary between 40Mbps and 150Mbps, and g 0255 1
a 3D video stream after using a series of reduction tech- < 0.2 - et
niques (e.g., background subtraction [11], resolution reduc- MeR T E
tion, real-time 3D compression [25, 14]) is approximately B4 5 & 7 8 9 w0
5-10Mbps. We evaluate two types of node capacity distri- Number of Sites

bution: (1) uniform: a capacity of O; = I; = 20 4 ¢ where (a) Zipf workload, heterogeneous nodes

1 <4 < N and € is uniformly distributed between 0 and 045

5. The number of streams each site has to send is 20. (2) L
heterogeneous: fifty percent of the nodes have large capac- P S S
ity (30), twenty-five percent have medium capacity (20) and % 035 |- e - BT
the other twenty-five percent have small capacity (10). The 2 o 7
number of streams each site has to send is uniformly dis- D:E) . |
tributed between 10 and 30. &

Subscription Workloads. We mainly evaluate two z STF |
types of subscription workloads: (1) Zipf-distributed: it has 015 1 MCTE v ]
been shown that the stream popularity in multimedia ap- o ‘SRJ ; T
plications follows a Zipf-like distribution [5, 7, 20]. We Number of Sites
find this to be intuitively true in 3DTI environments, as (b) Zipf workload, uniform nodes
the front cameras that capture people’s faces are likely to
be subscribed by most sites. (2) random: the randomized 0.4 T —
workload is to account for the possibility that the streams 035 - R R e
have more or less similar popularity in some 3DTI appli- § 03 ** e
cations, such as surveillance and group collaboration. For § o25f Y -
both Zipf-distributed and random workloads, two hundred % o i
samples are generated to enumerate the possible subscrip- E i
tions (i.e., which streams are subscribed by which sites). 1;“3 o
5.2 Rejection Ratio 0 e R

Number of Sites
Figure 8 shows the average5 rejection ratios (defined in (c) Random workload, heterogeneous nodes
Section 4.2) achieved by the tree-based algorithms and the

basic randomized algorithm, under different node resource 22: | ]
distribution and subscription workloads. e '03 | +* ]
First, we notice the general trend is that the rejection & 028 L L //’/ o |
ratio is increasing with the number of sites. This is be- g el S )
cause the total subscription workload grows much faster o ooal e S
than the total available resources to serve the subscription ® ox2f ~ ) ]
requests. The resource per node is almost constant, whereas Y - o STF —+ |
the subscription load grows with the total number of avail- 018t o o MeTE
able streams. 016 L g’ s (R

Second, the data support our hypothesis that the LTF al-
gorithm should perform better than STF. For example, with
heterogeneous nodes under random workload (Figure 8(c)),
LTF is about 25% better than STF. The rationale is that even

Number of Sites

(d) Random workload, uniform nodes

Figure 8. Average rejection ratios of different

SWe take the average rejection ratio across the two hundred random .
algorithms.

samples of subscription workloads.



if the last few trees cannot be constructed because of satu-
ration, the number of rejected requests should be small be-
cause we are left with the smallest trees.

Third, as mentioned before, somewhat surprisingly RJ
generally achieves the lowest rejection ratio in different ex-
perimental settings. For example, with uniform nodes un-
der random workload (Figure 8(d)), RJ is about 26.7% bet-
ter than STF, while 16.7% better than LTF and MCTE. Al-
though LTF sometimes obtains close performance to RJ
(Figure 8(a) and 8(b)), it is computationally more expen-
sive, because tree-based algorithms requires sorting of all
multicast groups, while RJ just randomly picks requests to
serve. Therefore, RJ turns out to be the simplest but the
most favorable solution in the unique problem context.

5.3 Granularity Analysis

As mentioned earlier, we observe that the RJ algorithm
and the tree-based algorithms (LTF, STF, MCTF) are ac-
tually at two extreme ends of a more general spectrum of
algorithms. We thus perform more extensive experiments
to gain insight into the difference between the two types of
approaches.

Recall that the tree-based algorithms (i.e., LTF, STF,
MCTF) all construct the trees one by one, while RJ attempts
to construct the forest at once. We thus define the number
of trees an algorithm attempts to construct at once as the
granularity, g (1 < g < Fand g € N, where F is the total
number of multicast groups, or trees to construct). As two
extreme cases, the granularity of all aforementioned tree-
based algorithms is 1, while that of the randomized algo-
rithm is F'.

To better understand the impact of granularity on re-
jection ratio, we perform experiments by incrementally in-
creasing the granularity value. A modified LTF algorithm,
called Gran-LTF, is used in this experiment as it is the best
tree-based algorithm among the three.

Instead of constructing the trees one by one as in the
original LTF algorithm, Gran-LTF first sorts all multicast
groups in a descending order based on the size of the
groups. It then picks the first g (number of) multicast groups
for spanning tree construction. Note that within the set
of g multicast groups (thus g trees), the requests are pro-
cessed randomly using the basic node join algorithm (Sec-
tion 4.3.1). Only after finishing processing all requests in
the g multicast groups, the algorithm proceeds to the pick
the next g trees to construct, and so forth.

Figure 9 shows the result with ten uniform nodes under
random workload. Note that when ¢ = F', Gran-LTF be-
comes RJ. We observe that generally the larger the granu-
larity, the lower the rejection ratio. Although there is a small
fluctuation region in the end (where granularity is large), the
basic RJ algorithm is computationally simpler than others.

Average Rejection Ratio

! ! ! ! ! !
0 10 20 30 40 50 60 70 80 90 100

02 ! ! !

Granularity (Number of roups = 10)

Figure 9. Impact of granularity on rejection
ratio (N=10)

The graphs for other experimental settings look similar to
Figure 9 when N grows from 3 to 10, which we omit due to
the space limit.

5.4 Load Balancing

As mentioned earlier, load balancing is important to
achieve low rejection ratio in the bandwidth-demanding
and computation-intensive 3DTI environments. Figure 10
shows the average out-degree utilization achieved by RJ
with uniform nodes under random workload. First, we no-
tice that the average out-degree utilization is very high -
mostly close to 100%. Second, the standard deviation of
the out-degree utilization across all nodes is small (< 3%).
This shows that our algorithms achieve good load balancing
because each node takes approximately the same amount
of bandwidth to disseminate streams. Third, about 25%
of each node’s out-degree is dedicated for forwarding the
streams originating from other nodes. This indicates the
strength of our multicast-based protocol that substantially
reduces the burden of each source node compared to the
conventional unicast “all-to-all” solution.

5.5 Correlation

Finally, we compare the CO-RJ algorithm (Section 4.4)
with the original RJ algorithm (Section 4.3.3). Figure 11
shows the result with heterogeneous nodes under Zipf-
distributed workload. In order to account for stream cor-
relation, the definition of rejection ratio is modified as fol-
lows.

N N

i—J
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Figure 10. Average out-degree utilization
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Figure 11. Average rejection ratio with corre-
lation taken into account

where u;—, = min(u;—;) for 1 < j < N. Figure 11
shows that CO-RJ’s rejection ratio decreases as the number
of sites grows, while RJ performs worse. When N = 10,
CO-R]J is a factor of 5 better than RJ, which demonstrates
the strength of the optimization based on stream correlation.

6 Conclusion and Future Work

In this paper, we considered the practical challenges in
supporting multi-site 3DTI collaboration. We proposed a
general publish-subscribe model to handle the interconnec-
tion and data dissemination in the multi-stream/multi-site
environments. The publish-subscribe model leveraged user
interest in a field of view to efficiently utilize the limited
network resources.

We found the key challenge in the publish-subscribe
model was the static construction of an efficient overlay, to
deliver the live video streams among multiple 3DTI sites
subject to several system constraints. We explored a spec-
trum of heuristic algorithms to address the challenge. We
found that a simple randomized algorithm worked well in
this problem context. We hence proposed further optimiza-
tion to the basic randomized algorithm by exploiting stream

correlation. The experimental results demonstrated that the
optimization mechanism achieved significant improvement
over the basic algorithm.

As future work, we hope to collect a large amount of
user traces for subscription workloads in 3DTI ennviron-
ments, and perform more extensive experiments to evaluate
the heuristic algorithms. Moreover, we are in the processing
of applying the publish-subscribe model to work with View-
Cast [26], which may lead to experiments of larger scales
with real deployment on the Internet.
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Basic Node Join Algorithm

Algorithm 1 nodejoin: Join node RP; into the existing
tree Ts;). Return True if successfully joined, False if rejected

return False
end if
max «— 0
candidate — —1
for all nodes RP; in T» where k = 1 to |TS§| do

if RP, has stream s? and doyt(RP;) < Op and

COSt(RPi, RPj)TSP < Beost then
if £k = jand ((rjeserved[k] [p]=0) or (reserved[k][p]
=1and O — m > max)) then
candidate «— k
reserved[k][p] « 1
else
if k # jand Oy — g — dout (RPy) > max then
candidate — k
max <«— Ok — mk — dout(RPk)
end if
end if
end if
end for
if candidate # —1 then
add link RP.,ndidate — RP; in Tgr
return True ’
else
return False
end if




