
c© 2007 by Zhenyu Yang. All rights reserved.

MULTI-STREAM MANAGEMENT FOR SUPPORTING MULTI-PARTY 3D
TELE-IMMERSIVE ENVIRONMENTS

BY

ZHENYU YANG

B.E., Shanghai Jiao Tong University, 1994
M.S., University of Illinois at Urbana-Champaign, 2002

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2007

Urbana, Illinois

Abstract

Three-dimensional tele-immersive (3DTI) environments have great potential to promote col-

laborative work among geographically distributed participants. However, extensive applica-

tion of 3DTI environments is still hindered by the problems pertaining to scalability, man-

ageability and reliance of special-purpose components. Most existing 3DTI systems either

do not provide multi-party connectivity or require dedicated resources. Thus, one critical

question is how to organize the acquisition, transmission and display of large volume real-

time 3D visual data over commercially available computing and networking infrastructures

so that “everybody” would be able to install and enjoy 3DTI environments for high quality

tele-collaboration.

In the thesis, we explore the design space from the angle of multi-stream Quality-of-

Service (QoS) management to support multi-party 3DTI communication. In 3DTI envi-

ronments, multiple correlated 3D video streams are deployed to provide a comprehensive

representation of the physical scene. Traditional QoS approach in 2D and single-stream sce-

nario has become inadequate. On the other hand, the existence of multiple streams provides

unique opportunity for QoS provisioning. Previous work mostly concentrated on compres-

sion and adaptation techniques on the per stream basis while ignoring the application layer

semantics and the coordination required among streams.

As the result of research, we propose an innovative cross-layer hierarchical and distributed

multi-stream management middleware framework for QoS provisioning to fully enable multi-

party 3DTI communication over general delivery infrastructure. The major contributions of

our management framework are as follows. First, we introduce the view model for repre-

iii

senting the user interest in the application layer. The design of the management framework

revolves around the concept of view -aware multi-stream coordination, which leverages the

central role of view semantics in 3D free-viewpoint video systems. Second, in the stream

differentiation layer we present the design of view to stream mapping, where a subset of

relevant streams are selected based on the relative importance of each stream to the current

view. Conventional streaming controllers focus on a fixed set of streams specified by the ap-

plication. Different from all the others, in our management framework the application layer

only specifies the view information while the underlying controller dynamically determines

the set of streams to be managed. Third, in the stream coordination layer we present two

designs applicable in different situations. In the case of end-to-end 3DTI communication,

a learning-based controller is embedded which provides bandwidth allocation for relevant

streams. In the case of multi-party 3DTI communication, we propose a novel ViewCast

protocol to coordinate the multi-stream content dissemination upon an end-system overlay

network. Finally, we embed 3DTI session management in the framework which facilitates

the session initialization, resource registration, and membership maintenance.

We implement the prototype of multi-stream management framework and evaluate it

through both simulation and real 3DTI session among tele-immersive environments residing

in different institutions across the Internet2. Our experimental results have demonstrated

the implementation feasibility and performance enhancement of the management framework.

iv

To ...

v

Acknowledgments

Most of all, I would like to express my deepest gratituide to my advisor, Professor Klara

Nahrstedt, for her invaluable support throughout my Ph.D. pursuit. With her insightful

suggestions, she guided me towards important research topics while helping and encouraging

me to explore solutions. To me, Professor Klara Nahrstedt has been a great mentor. I am

deeply impressed by how she cared about every developmental detail of her students from

plan of study towards career choice. It is such a wonderful experience working with her.

The memory that I will cherish forever.

I would like to thank my honorable committee members: Professor Roy H. Campbell,

Professor Thomas S. Huang, and Professor Benjamin W. Wah for their helpful technical

discussions. Their insightful comments on my thesis have greatly helped me to improve the

quality of this work.

Thanks go towards people involved in the TEEVE (Tele-immersive Environments for

Everybody) project. Most importantly, I would like to thank Professor Ruzena Bajcsy in

the University of California at Berkeley for her critical support of the project. I would also

like to thank Wanmin Wu, Renata Sheppard, Gregorij Kurillo, Peter Pajcsy, Yi Cui, Bin Yu,

Jin Liang, Dongyun Jin, Miles Johnson, Lisa Wymore, Sang-Hack Jung, Cynthia Bruyns,

Katherine Mezur, Ross Diankov, Samuel Johnston, Roger Cheng, Muyuan Wang, Zahid

Anwar, Robert Bocchino, Nadir Kiyanclar, Art Yeap, William Yurcik, Bradford Wilson,

Jeffrey Naisbitt, Jigar Doshi, and Ravishankar Sathyam for their important contribution

in implementation, construction, experiment and publication, which manifested the very

essence of collaborative work.

vi

I am grateful to my colleagues in the MONET (Multimedia Operating Systems and

Networking) group. It is very lucky for me to work with them and be influenced by their

high standard of devotion to research. Special thanks go to Wanghong Yuan, Baochun Li,

Xiaohui Gu, Kai Chen, Yuan Xue and Xiao Li for their excellent samples of writing. Thanks

to Wenbo He for several informative discussions. I am grateful to Anda Ohlsson, Erna

Amerman, Barb Cicone, Anthony Hooker, Mary Beth Kelley, Debby Reynolds, Kay Tomlin

and Shirley Finke for their great administrative support during my graduate study in the

University of Illinois at Urbana-Champaign.

Finally, I would like to say “Thank You ...” to my wife, Yihe Zu, and my whole family

for their greatest love and support.

The work presented in the thesis was supported by National Science Foundation under

NSF SCI 05-49242 and NSF CNS 05-20182. However, views and conclusions of this thesis

are those of the author and should not be interpreted as representing the official policies,

either expressed or implied, of NSF.

vii

Table of Contents

List of Tables . xi

List of Figures . xii

List of Abbreviations and Notations . xiv

Chapter 1 Introduction . 1
1.1 Motivation . 1
1.2 Research Challenges . 3
1.3 Existing Solutions . 5

1.3.1 Existing Tele-immersive Systems . 5
1.3.2 Real-time 3D Video Compression . 6
1.3.3 Multi-stream Coordination . 6
1.3.4 View-based Camera/Stream Selection 7
1.3.5 Multicast-based Content Dissemination 7

1.4 Solution Overview . 8
1.5 Major Contributions . 10
1.6 Roadmap of the Thesis . 11

Chapter 2 3DTI System Overview . 12
2.1 3DTI Models . 12

2.1.1 Data Model . 12
2.1.2 View Model . 14
2.1.3 Timing Model . 16

2.2 Multi-stream Management Framework . 17
2.2.1 Stream Differentiation . 18
2.2.2 Stream Coordination . 18
2.2.3 Streaming Control . 19

2.3 3DTI Architecture . 20

Chapter 3 Stream Differentiation . 22
3.1 Overview . 22
3.2 Contribution Factor . 23

3.2.1 Angular Difference . 24
3.2.2 Viewing Volume . 26

3.3 Evaluation . 28

viii

Chapter 4 Bandwidth Allocation . 30
4.1 Overview . 30
4.2 Reinforcement Learning . 31

4.2.1 Markov Decision Process . 31
4.2.2 Reinforcement Learning . 33
4.2.3 Model Mapping . 34

4.3 Priority-based Scheme . 38
4.4 Non-priority Scheme . 39
4.5 Evaluation . 39

Chapter 5 ViewCast . 41
5.1 Overview . 41
5.2 Multi-party 3DTI Session Architecture . 44
5.3 Multi-party 3DTI Session Initiation Protocol 46
5.4 Problem Formulation . 48

5.4.1 Definition of ViewCast Components 48
5.4.2 Problems of ViewCast . 50

5.5 Solution . 51
5.5.1 Minimum Quality Guarantee . 51
5.5.2 View Change Resilience . 52
5.5.3 ViewCast Management . 56

5.6 Evaluation . 58
5.6.1 Experiment Setup . 58
5.6.2 Rejection Ratio . 60
5.6.3 Streams Per View . 60
5.6.4 Workload . 63
5.6.5 Collateral Cost of ViewCast . 66

Chapter 6 Streaming Control . 69
6.1 Problem Description . 69
6.2 PID Controller . 71
6.3 Implementation . 72
6.4 Evaluation . 73

6.4.1 Experiment Setup . 73
6.4.2 Network Setting: UC Berkeley → UIUC 74
6.4.3 Network Setting: Broadband User → UIUC 75

Chapter 7 Real-Time 3D Video Compression 78
7.1 Design Methodology . 78
7.2 Intra-stream Compression Scheme . 79

7.2.1 Color Reduction . 80
7.2.2 zlib Compression . 81
7.2.3 Practical Issues . 82

7.3 Evaluation . 83
7.3.1 Evaluation Metrics . 83

ix

7.3.2 Environment . 84
7.3.3 Compression Time . 84
7.3.4 Decompression Time . 86
7.3.5 Compression Ratio . 86
7.3.6 Visual Fidelity . 86
7.3.7 Lessons Learned . 88

Chapter 8 Related Work . 89
8.1 Existing Systems . 89

8.1.1 Tele-conferencing Systems over COTS Components 89
8.1.2 Tele-presence Systems over Augmented Components 90
8.1.3 Tele-immersive Systems over Advanced Networking Service 90

8.2 3D Compression . 91
8.2.1 Depth Image Compression . 92
8.2.2 Volumetric Data Compression . 93
8.2.3 Triangular Meshes Compression . 94

8.3 Multi-stream Coordination . 95
8.4 View-based Camera/Stream Selection . 95
8.5 Multicast-based Content Dissemination . 96

Chapter 9 Conclusion and Future Work 98
9.1 Contributions . 98
9.2 Future Work . 99

References . 101

Author’s Biography . 106

x

List of Tables

4.1 PSNR (dB) and Rendering Time (ms) . 40

5.1 View Management Algorithm . 57
5.2 Simulation Parameters . 59

6.1 Program of PID controller . 72

7.1 Compression Time of Two Schemes . 85
7.2 Decompression Time of Two Schemes . 86
7.3 Compression Ratio of Two Schemes . 87
7.4 PSNR of Two Schemes . 87

xi

List of Figures

1.1 Collaborative 3DTI Environments . 2
1.2 Three Basic Tiers of 3DTI Environments . 3
1.3 Service Middleware Layer in 3DTI Architecture 8
1.4 The Structure of Service Middleware Layer 9

2.1 A 3D Camera Unit . 13
2.2 3DTI Data Model . 14
2.3 3DTI Timing Model . 17
2.4 3DTI Architecture . 18
2.5 Multi-party Service Middleware Architecture 20

3.1 Effect of Angular Difference . 25
3.2 Relation between Camera and User View Orientations 26
3.3 Effect of Viewing Volume . 27
3.4 Color Portion of a Macro-frame . 28
3.5 Rendering using all Cameras . 29
3.6 Rendering using selected Cameras . 29

4.1 The Markov Decision Process . 31
4.2 Stream Adaptation for Optimal Quality . 35
4.3 Multiple Reinforcement Learning Machines 37
4.4 PSNR of Learning-based Scheme . 40

5.1 Stream Differentiation regarding to View . 42
5.2 An overlay network of 3DTI session . 45
5.3 ViewCast streaming . 47
5.4 Effect of View Change . 53
5.5 Source Balancing in ViewCast . 54
5.6 Priority Balancing in ViewCast . 54
5.7 Load Balancing in ViewCast . 55
5.8 Average Rejection Ratio . 61
5.9 Average Rejection Ratio (continued) . 62
5.10 Average Number of Streams Per View . 63
5.11 Average Number of Streams Per View (continued) 64
5.12 Standard Deviation of Workload . 65

xii

5.13 Standard Deviation of Workload (continued) 66
5.14 Average Number of Victims Per fix victim() 67
5.15 Average Number of Victims Per fix victim() (continued) 68

6.1 Streaming Control Problem . 70
6.2 An Overall Control System . 71
6.3 Initialization of the Rendering Timer . 73
6.4 Macro-frame Size with Kp = 247000, Ki = 60000 and Kd = 1000 74
6.5 Error with Kp = 247000, Ki = 60000 and Kd = 1000 75
6.6 Macro-frame size with Kp = 10000, Ki = 40000 and Kd = 625 76
6.7 Error with Kp = 10000, Ki = 40000 and Kd = 625 76
6.8 Macro-frame size with Kp = 10000, Ki = 20000 and Kd = 625 77
6.9 Streaming Control Performance with Different Settings of PID Gains 77

7.1 Color Distribution of 3DTI Video . 80
7.2 Color Description Tree . 81
7.3 Visual Quality before Compression . 87
7.4 Visual Quality after Compression . 88

xiii

List of Abbreviations and Notations

3DTI three-dimensional tele-immersive . 1

QoS quality-of-service . 1

TEEVE Tele-immersive Environments for Everybody 11

TFS target frame size . 35

PSNR the peak signal-to-noise ratio . 36

R the basic data rate of one 3D video stream 4

Ns the number of streams in one 3DTI environment 4

Ne the number of environments in one 3DTI session 4

Nr the number of 3D renderers in one 3DTI session 4

f a 3D image frame . 13

fs the raw data size of one 3D image frame . 13

w the pixel width of one 3D image frame . 13

h the pixel height of one 3D image frame . 13

Ft a 3D macro-frame captured at time t . 14

f i
t an image frame captured by the ith 3D camera of the camera array at time t 14

Si the set of 3D video streams generated from the ith environment 15

si,j a 3D video stream generated from the jth 3D camera in the ith environment 15

S the set of all streams . 15

F i
t a 3D macro-frame captured in the ith environment at time t 15

f i,j
t an image frame captured by the jth 3D camera in the ith environment at time t 15

s.~w the unit vector defining the view of stream s 15

xiv

Wi the set of stream views in the ith environment 15

uk a 3D renderer . 15

uk. ~w the unit vector defining the view of kth renderer 15

U the set of all renderers . 15

Tsnd int(F) the completion time interval of sending macro-frame F 16

Trcv int(F) the completion time interval of receiving macro-frame F 16

Trcv(F) the receiving time of macro-frame F 17

Tdisp(F) the displaying time of macro-frame F 17

cf(s, u) the funtion of contribution factor . 18

Φ the state space of Markov Decision Process 32

σi the state of Markov Decision Process . 32

A the action space of Markov Decision Process 32

ai the action of Markov Decision Process . 32

Pa(σ, σ′) the state transition probability of Markov Decision Process 32

rf(σ) the reward function of Markov Decision Process 32

π the policy function of Markov Decision Process 32

Q(σ, a) the Q value function of Markov Decision Process 33

δ the size of frame increment . 34

G the graph of overlay network . 48

V the set of vertices in the graph . 48

vi the vertex in the graph . 48

Ii the in-bound bandwidth limit of vertex vi 48

Oi the out-bound bandwidth limit of vertex vi 48

Ri the set of in-bound streams of vertex vi . 48

Fi the set of out-bound streams of vertex vi . 48

cs(s) the cost function of stream . 49

E the set of edges . 48

xv

〈vi, vj〉 the edge in the graph . 49

ce(〈vi, vj〉) the cost function of edge . 49

df(s, u) the differentiation function . 50

of(S ′, u) the optimal function . 50

xvi

Chapter 1

Introduction

The work of multi-stream management middleware framework is motivated by the provision

of Quality-of-Service (QoS) to support three-dimensional tele-immersive (3DTI) environ-

ments under general and often limited system resources. In this chapter, we introduce our

research motivations, review currently available solutions, present the overview of the man-

agement framework, and summarize the major contributions. Finally, we outline the rest of

the thesis.

1.1 Motivation

3DTI environments have great potential to promote collaborative work among geographically

distributed participants. Earlier research efforts ([50, 17, 28, 42]) have illustrated possible ap-

plications of 3DTI environments in various areas such as scientific research, medical science,

artistic performance, education, physical therapy, training and entertainment, where a higher

level of spatial interactivity is desired. Meanwhile, end-devices (e.g., 3D cameras and dis-

plays) that make the tele-immersive edge applications possible are becoming more available

and deployable due to advance in hardware. Consequently, there have been various efforts

to create tele-conferencing and tele-immersive environments (e.g., [10, 15, 20, 39, 48, 47]).

The current approaches represent a very good start for the next generation of tele-immersive

systems where the ultimate goal is to deliver 3DTI experience to the broader audience.

However, disregarding the promise extensive deployment of 3DTI environments is still

hindered by the problems pertaining to scalability, manageability and reliance of special-

1

purpose operating and networking infrastructures. There are two major deficiencies in

current work. First, most existing 3DTI systems either do not provide 3D multi-stream

immersive content or require dedicated computing and networking components. We argue

that with the advance of end-devices it is now practical to further extend the application

of 3DTI environments with general content creation and delivery infrastructures. Second,

most existing systems only support the inter-connection of two parties across the Internet.

Enabling multi-party 3DTI collaboration is still challenging due to the huge demand of

computing and networking resources.

Hence, one critical question is how to organize the large volume of 3D visual data,

being captured, processed, transmitted and rendered, and their corresponding resources,

over current commercially available (COTS) computing and networking infrastructures for

the delivery of realistic immersive experience so that “everybody” would be able to install

and enjoy 3DTI environments for high quality tele-collaboration (Figure 1.1).

Figure 1.1: Collaborative 3DTI Environments

In the thesis, we investigate the design space from the angle of multi-stream QoS man-

agement between the 3D multi-camera/multi-display tele-immersive edges and the general

2

purpose operating and communicating infrastructures available. The design space includes

the functions of application layer for capturing, reconstructing and displaying 3D video con-

tent, as well as the functions of distributed middleware layer for compressing, streaming,

and coordinating 3D video content across the Internet.

1.2 Research Challenges

There are three basic tiers in the core of 3DTI environments (Figure 1.2). In the capturing

tier, each environment installs an array of 3D cameras at various angles to cover a wide field

of view. Using real-time computer vision techniques, the camera array dynamically derives

the 3D representation of the user in multiple video streams with each corresponding to one

camera. In the transmission tier, the generated video streams are exchanged with remote

tele-immersive environments. Given a global coordinate system, the 3D representations

from different environments are merged and rendered together in a common 3D virtual

space by the rendering tier, delivering a strong awareness of immersive experience for every

participant.

Internet2

Capturing Tier Rendering TierTransmission
Tier

Figure 1.2: Three Basic Tiers of 3DTI Environments

The work of the thesis is mainly focused in the transmission tier, which investigates the

issue of QoS provisioning to address the following challenges in multi-party/multi-stream

3

3DTI environments.

• Large-volume Data. To achieve realistic 3D visual effect, it is desirable to transmit

multiple video streams from each 3DTI environment of one communication session.

In our experimental system ([57, 4]), one 3D video stream has the basic rate over

30 Mbps (currently at the resolution of 320 × 240 pixels per 3D image frame and 10

frames per second) to support spatial collaboration, and each environment produces

up to 10 streams. The frame resolution is being upgraded to 640× 480. If all streams

are sent, the overall bandwidth from one environment will soon exceed Gbps level.

The problem would become even more exacerbated if multiple environments were con-

nected. Suppose the basic data rate of one stream is R, the number of streams per

environment is Ns, the number of environments in one 3DTI session is Ne, and the

number of 3DTI renderers is Nr. Then the total amount of data to be transmitted

would become R×Ns×Ne×Nr, which is a very significant demand at the networking

scale of Internet.

• Rendering Cost. At the resolution of 320×240 per frame and 10 frames per second,

a 3DTI envrionment with 10 streams requires a rendering capacity of 7.7 M points

per second. Unlike 3D capturing and reconstruction, the parallelization of rendering

is much more difficult as all streams must be rendered in one single virtual space.

Thus, the cost of rendering grows linearly with the total number of streams sent to the

rendering process (i.e., Ns ×Ne).

• Stream Correlation. In one tele-immersive environment, video streams derived from

the 3D camera array are correlated as all cameras are calibrated and synchronized to

concurrently capture the visual information of a common physical scene. The rendering

quality depends on the overall contribution of streams. This multi-stream content

feature, combined with the bound imposed by the bandwidth and rendering overhead,

demands for the design of multi-stream coordination in the transmission tier.

4

• View-based Rendering. Unlike traditional 2D video rendering, 3D video rendering

is an interactive process. In order to render 3D objects with correct visual effect,

the displaying device needs to keep track of the user view information (using tracking

devices or mouse and keyboard) and render the 3D scene accordingly. The interactivity

through view selection is the key feature of 3D video applications ([6]). The problem is

how to incorporate the view semantics into the management design for a more efficient

QoS provisioning not achievable through previous 2D QoS techniques. We need to

point out that view-based rendering and stream correlation are dynamic concepts as

the user view could change arbitrarily during one 3DTI session.

• Multi-party Connectivity. Finally, the problem of connecting multiple 3DTI envi-

ronments has become more complicated due to the aforementioned challenges. Because

of the huge data volume, it is impractical to take the approach of a unicast based dis-

semination scheme. However, most available multicast schemes are stream-oriented

which do not have the desired flexibility to accommodate the dynamics of stream

correlation and view semantics as in the 3DTI application layer.

1.3 Existing Solutions

Before introducing our multi-stream management framework, we briefly describe current

available solutions. More careful review of related work is in Chapter 8. We summarize

previous work in five main aspects: (1) existing tele-immersive systems, (2) real-time 3D

video compression, (3) multi-stream coordination, (4) view-based camera/stream selection,

and (5) multicast-based content dissemination.

1.3.1 Existing Tele-immersive Systems

There are several existing systems that aim to provide tele-immersive realism to users (e.g., [39,

48, 47, 51, 10]). Due to the huge volume of 3D data stream, it poses significant challenges

5

to the current networking resources. Most of them resort to either modifying the transport

and network services or relying on dedicated components. Among them, only [10] has the

support of multi-party connection. However, instead of multiple 3D streams only single 2D

stream after rendering is transmitted which greatly lowers the spatial interactivity among

different parties.

1.3.2 Real-time 3D Video Compression

Real-time 3D video compression algorithms can be classified into two categories: inter-stream

compression and intra-stream compression. In inter-stream compression ([31, 29]), streams

are cross-compared to exploit the spatial redundancy residing in the multi-stream setting.

The advantage of inter-stream compression is the removal of redundant pixels. Thus, the

rendering overhead is reduced as well. However, inter-stream compression incurs considerable

communication overhead as streams are initially distributed, which affects its scalability.

In addition, the performance of compression ratio is highly associated with the density

of cameras. In contrast, intra-stream compression schemes ([56, 30]) process each stream

individually without cross-stream comparison. Intra-stream compression usually achieves

much better compression ratio and scalability than inter-stream compression. However,

one disadvantage of intra-stream compression is that the number of pixels is not reduced.

Real-time 3D video compression provides a low-level mechanism for solving the data volume

problem. However, in a multi-stream scenario it is not sufficient to deal with high-level

concepts of view semantics and multi-stream coordination.

1.3.3 Multi-stream Coordination

Coordination Protocol (CP) ([39, 40]) is a transport layer protocol used for assisting multi-

stream coordination in cluster-to-cluster application. The protocol utilizes dedicated routers

deployed at the aggregation point to monitor the status of application layer streams. The

6

advantage of CP is that it provides a general means where per stream information can be

collected and disseminated for high level multi-stream management. However, the protocol

has not addressed the real problem of multi-stream coordination.

1.3.4 View-based Camera/Stream Selection

In tele-immersive systems, view-based camera/stream selection is applied mainly in the

3D video processing and encoding stage to make it affordable within processing capac-

ity (e.g., [38, 22]). However, there is not much work involved with camera/stream selection

for QoS provisioning. In collaborative virtual systems, the awareness-driven model has been

applied for QoS management ([21, 44, 23]). Given the awareness information of the user,

the model dynamically adjusts the set of sources and the quality. However, the limitation of

the approach lies in its incapability of handling multiple correlated streams at each source

and among sources as required in multi-party/multi-stream 3DTI environments.

1.3.5 Multicast-based Content Dissemination

Multicast protocols including application level multicast ([26, 11, 24]) are mostly concerned

with the efficient transmission of one particular stream or a set of streams for a group

of receivers. However, stream-oriented multicast schemes are limited in their flexibility of

accommodating the dynamics of view and stream correlation as in 3DTI environments.

As we have seen, although solid progresses have been made in several tele-immersive sys-

tems the goal of building 3DTI environments over general infrastructures with high quality

and wide usage has not been fully accomplished. Many existing efforts have made explo-

rations in individual aspects of the design space. However, none of them provide a com-

prehensive and semantic-aware multi-stream management framework that is adequate to

support QoS provisioning in multi-party 3DTI environments.

7

…

3D camera

3D display

Transmission Tier

Service Middleware
Capturing Tier Rendering Tier

Network

Figure 1.3: Service Middleware Layer in 3DTI Architecture

1.4 Solution Overview

As for the solution, we embed a distributed service middleware framework to provide multi-

stream QoS management (Figure 1.3). The middleware is designed and implemented on the

basis of COTS components and general networking infrastructure. Thus, the framework has

the advantage of easy deployment and configuration. The service middleware framework has

the hierarchical structure as illustrated in Figure 1.4.

• Stream Differentiation. The task of stream differentiation layer is to perform the

view to stream mapping and to prioritize streams. When the 3D camera array is boot-

strapped, it registers with the stream differentiation layer to save the meta-data of

cameras. During the 3DTI session, the meta-data will be used by the stream differ-

entiation layer to dynamically compute the relative importance of each stream based

on the current user view information captured by the rendering tier. Conventional

streaming controllers focus on a fixed set of streams specified by the application. Dif-

ferent from all the others, in our management framework the application layer only

specifies the view information while the underlying controller dynamically determines

8

service
middleware

stream
differentiation

bandwidth
allocation ViewCast

stream
coordination

PID controller end-system
overlay network

streaming control

Figure 1.4: The Structure of Service Middleware Layer

the set of streams to be managed.

• Stream Coordination The stream coordination layer is responsible for multi-stream

coordination to deliver appropriate stream content and achieve multi-stream QoS man-

agement. We introduce two different approaches depending on the application scenario.

In the case of end-to-end 3DTI communication, a learning-based strategy is applied

to determine the bandwidth allocation for the most important streams. In the case of

multi-party 3DTI communication, we propose a novel ViewCast protocol to optimize

the overlay topology for content dissemination at the stream level. The ViewCast pro-

tocol also includes session management functions such as session initialization, resource

registration, and membership maintenance.

• Streaming Control. In the case of end-to-end 3DTI communication, the stream-

ing control layer utilizes a PID (proportional-integral-derivative) controller to monitor

the link status and guarantee temporal quality of data transmission for interactive

tele-communication. In the case of multi-party 3DTI communication, we assume the

existence of an end-system overlay network which provides the information of link

status to be used for streaming control.

9

In real implementation, the service middleware framework is made of service gateways.

Each 3DTI environment is managed by one or more service gateways. The end-devices of 3D

camera and display need to register with their local service gateways in order to receive QoS

management service. From a global scale, service gateways are connected with each other to

form a distributed management overlay network. To alleviate the burden of edge computers

(i.e., 3D reconstruction and rendering), service gateways are running on dedicated computers

and connected with local cameras and displays via high-speed LAN. The connection between

service gateways could be LAN, WAN or Internet, depending on the scale of distribution.

1.5 Major Contributions

The major contributions of our management framework are summarized as follows.

• Comprehensive Management Framework. The hierarchical management frame-

work integrates different layers to achieve a comprehensive QoS provisioning. The

stream differentiation layer responds to view changes and provides a high-level guid-

ance for multi-stream coordination. In the stream coordination layer, the granularity

reduces to a set of relevant streams. Finally, the streaming control layer focuses more

on temporal streaming quality of assigned streams. Through the layering organization,

different QoS concerns are properly addressed within a unified framework.

• View-oriented Content Dissemination. We present a novel ViewCast protocol

to coordinate multi-stream content dissemination on the top of end-system overlay

network for supporting multi-party 3DTI communication. Different from all other

stream-oriented multicast protocols, the scope of QoS management in ViewCast is

not bounded by a fixed set of streams. The new view-oriented approach brings more

flexibility, customization and adaptability to the design.

10

• Support of Multi-party 3DTI Communication. To the best of our knowledge, we

are the first one who present a feasible solution to support multi-party 3DTI communi-

cation with multi-stream 3D video content. Our work will provide valueable reference

to the future generation of 3DTI systems which extend towards larger user group and

more interesting collaborative activity.

• Implementation and Validation. We implement the prototype of multi-stream

management framework as part of the TEEVE (Tele-immersive Environments for

EVEbody, [57, 4]) project and evaluate it through both simulation and real 3DTI

session among tele-immersive environments residing in different institutions more than

2000 miles apart across the Internet2. Our experimental investigation demonstrates the

implementation feasibility and potential performance enhancement of the management

framework.

1.6 Roadmap of the Thesis

The rest of the thesis is organized as follows. Chapter 2 introduces the 3DTI system and

the architecture of multi-stream management framework. Chapter 3 presents the view-based

stream differentiation. Chapter 4 presents the learning-based bandwidth allocation for QoS

optimization in the point-to-point case, and evaluation results from real 3DTI experiment.

Chapter 5 introduces the ViewCast content dissemination protocal for the multi-party 3DTI

communication. Chapter 6 introduces the streaming control layer and a PID controller for

maintaining temporal quality of streaming. For completeness, we describe 3D video com-

pression in Chapter 7. We review related work in Chapter 8. Finally, Chapter 9 summarizes

the thesis and suggests future work.

11

Chapter 2

3DTI System Overview

In this chapter, we introduce the 3DTI system. First, we describe the data, view and timing

model. Second, we introduce the multi-stream management framework. Finally, we present

the 3DTI architecture.

2.1 3DTI Models

2.1.1 Data Model

The overall 3DTI data model consists of two parts: (a) the 3D reconstructed video data

model that represents the information coming out from one single 3D camera, and (b) the

integrated data model that includes all video streams captured concurrently by the 3D

camera array.

3D Video Data Model. The data from a single 3D camera constitutes one stream of 3D

frames representing the color and spatial information of the physical scene captured from

the particular viewpoint of the 3D camera. The spatial information can be obtained by

applying stereo algorithms on images captured from multiple 2D cameras. In general, given

two or more images of a scene, depth of each point in 3D space can be obtained by finding

matching points on different images and using triangulation.

More specifically, in our 3DTI setting one 3D camera consists of four aligned 2D digital

cameras that form a basic processing unit which is used to capture both color and depth

information. Figure 2.1 shows one 3D camera unit, which has one color camera on the top

12

Figure 2.1: A 3D Camera Unit

and three black/white cameras at the bottom. The synchronization of cameras is achieved

by connecting them via hotwires. The black and white cameras are used to compute depths

by adopting a trinocular stereo algorithm ([36, 37]) and the color camera is used to extract

appearance information from the corresponding viewpoint. Each 3D camera unit is linked

to an edge computer via 1394b connection. The edge computer computes depth and color

of each point on the reference image which is captured by the central black and white

camera. The data returned by the 3D camera represents a 3D image frame which consists of

a two-dimensional array of XYZ-RGB information (i.e., depth coordinates plus color bits)

for each pixel. Each pixel requires 5 bytes to store XYZ (2 Bytes) and RGB (3 Bytes)

information. Thus, assuming that w and h denote width and height of a 3D image frame

(denoted as f) in pixel, the raw data size of one frame (denoted as fs) can be calculated as:

fs = w×h× resolution/pixel. In our environment, each 3D camera cluster can reconstruct

a 3D frame at the rate of 10 frames/second, and if we consider w = 320 pixels, h = 240

pixels, then one 3D video stream, uncompressed, demands 3,840,000 Bytes per second.

13

Integrated Data Model. The capturing tier consists of Ns equal 3D camera units mounted

in various spatial viewpoints which form a 3D camera array (Figure 2.2(a)). All camera

units are synchronized to capture at the same time instant. This means that at time t the

capturing tier must have Ns 3D reconstructed frames, which constitute a macro-frame, to

form a comprehensive 3D representation of the scene at time t. This macro-frame generated

at time t is denoted as Ft, which consists of {f 1
t , f 2

t , ..., fNs
t } single 3D frames from the

individual camera units (Figure 2.2(b)). We denote f i
t as the image frame captured by

the ith 3D camera at time t. Hence, the tele-immersive application yields a stream of

macro-frames (Ft0 , Ft1 , ..., Ft∞) that are captured at the fixed synchronized rate (e.g., 10

macro-frames per second). The advantage of the 3D multi-camera array is the coverage of

large field of view, which provides more freedom of view selection to the user. With accurate

global calibration, the view of the scene can be rendered in a seamless fashion, offering a

better quality than that of 2D multi-camera array.

1

…

Ns

3D camera

…f1,t fNs,t

3D macro-frame

Network

…f1,t fNs,t

3D renderer

Capturing Tier Rendering TierTransmission Tier

N
et

w
or

ki
ng

A
pp

lic
at

io
n

(a) 3D Camera Array (b) Integrated Data Model

Figure 2.2: 3DTI Data Model

2.1.2 View Model

There are many types of displays for rendering 3D scene ranging from stereoscopic displays

to traditional 2D monitors. One important thing to note is that 3D video displaying is not

a passive process. In order to render 3D objects with correct visual effect, the display device

needs to acquire the user view information and render the 3D scene accordingly. The system

14

detects user view change using various tracking devices. In our 3DTI setting, the user is

allowed to manipulate his view using keyboard and mouse.

One of the unique characteristics of 3D multi-camera array is the stream correlation in

the sense that 3D cameras are concurrently capturing data with a synchronized clock and

presenting complementary visual information of a common physical scene. As each video

stream only covers part of the whole content, the importance of each stream according

to what the user is currently watching is different. Therefore, it has become an interesting

problem to design a multi-stream QoS adaptation based on the semantic link among different

cameras, and the interaction between the user view and the orientation of cameras. Thus,

we adopt a view model to formally represent those relationships.

To facilitate future discussion, here we extend the data model and assume there are Ne

3DTI environments. After 3D video reconstruction, the camera array of each environment

produces a set of 3D video streams Si where 1 ≤ i ≤ Ne and (Si = {si,1, si,2, ..., si,|Si|})

with each si,j (1 ≤ j ≤ |Si|) corresponding to one stream of 3D video frames (i.e., si,j =

{f i,j
t0 , f i,j

t1 , ...}) generated in discrete time instants. We denote f i,j
t as the image frame

captured by the jth 3D camera in the ith environment at time t. For convenience, we

define the set of all streams as S with S = ∪Ne
i=1Si. Accordingly, we denote the macro-frame

as F i
t where F i

t = {f i,1
t , f i,2

t , ..., f
i,|Si|
t }. Due to the one-to-one correspondency between

3D camera and stream, we will use these two terms interchangeably without causing any

confusion. Each camera (or stream) has its own intrinsic and extrinsic parameters used

for the 3D reconstruction and rendering. The extrinsic parameters indicate the camera

orientation in a global coordinate system, which is denoted as the unit vector s.~w for stream

s. The set of camera orientations is denoted as Wi with Wi = {si,1. ~w, si,2. ~w, ..., si,|Si|. ~w}.

Meanwhile, we assume there are Nr renderers and the set of renderers is denoted as U with

U = {u1, u2, ..., uNr}. Each renderer has its user view information denoted as the unit vector

uk. ~w (1 ≤ k ≤ Nr), which represents the current viewing direction of the user.1

1We need to point out that for the view model to be complete it should include not only the directional

15

At any given time, the edge computer running the 3D rendering program only handles

one particular view of the 3D virtual space. When it receives a macro-frame F i
t , it starts to

process each 3D video frame within it (i.e., f i,j
t). For a 3D video frame, the 3D coordinate of

every pixel can be independently decoded because its (x, y, z) coordinate can be restored via

its row and column index of the array, its depth information, and the camera parameters.

If the global calibration is correct, the pixels of multiple streams rendered in the global 3D

coordinate system will form into the shape of the 3D object.

The above concept of rendering independency provides a simple yet powerful mechanism

to perform adaptation at the macro-frame or individual 3D frame level. For example, we

could use a subset of the macro-frame, F i
t
′ ⊂ F i

t . Alternatively, we could use a subset of

3D video frame, f i,j
t

′ ⊂ f i,j
t where not all pixels of the 3D video frame are transmitted and

rendered. As shown later, the view model provides an important high-level basis for multi-

stream coordination and QoS adaptation to achieve high visual quality under the resource

constraints.

2.1.3 Timing Model

The timing model specifies the temporal requirement for the transmission of macro-frames

as shown in Figure 2.3. It is important to realize that although the macro-frame F i
t from one

environment consists of |Si| reconstructed frames at time t, they cannot be transmitted at the

same time due to the sharing of network path. Hence, the transmission of individual frames

f i,j
t of the macro-frame F i

t needs to be shaped within a certain completion time interval

Tsnd int(F
i
t) and Tsnd int(F

i
t) should be less than the period of macro-frame. Furthermore, it

is important for the rendering of the macro-frame at the receiver that the individual frames

f i
t arrive within a completion time interval Trcv int(F

i
t) which is either equal to Tsnd int(F

i
t)

or Trcv int(F
i
t) − Tsnd int(F

i
t) ≤ δ, where δ is small. The receiving time of F i

t is denoted as

information but also the depth of the view. However, in our real 3DTI application it is quite sufficient to
only use the former since the current 3D collaborative space is relatively small.

16

Trcv(F
i
t). At the receiver, all frames f i,j

t will then be received and assembled together into

the resulting macro-frame F i
t and displayed at time Tdisp(F

i
t).

1

2

3D Video
Source 1

3D Video
Source 2

3D Video
Source N N

macro-frame Fi,t

3D frame

12...N

T_snd_int(Fi,t)

12...N

T_rcv_int(Fi,t)

1

2

N

T_disp(Fi,t)

...

T_rcv(Fi,t)

Figure 2.3: 3DTI Timing Model

2.2 Multi-stream Management Framework

To accommodate heterogeneous networking environments, the management framework adopts

an integrated hybrid design for both end-to-end and multi-party 3DTI communication. In

general, the management framework has three basic layers including stream differentiation,

stream coordination, and streaming control. The framework is embedded as a service mid-

dleware in the overall 3DTI architecture between the application and networking layers as

illustrated in Figure 2.4.

The task of application layer is to manipulate the raw 3D video and control the high-

quality multi-camera/display environment. In the data plane, it performs real-time 3D

reconstruction and rendering. In the control plane, it keeps track of the camera and user

view information. The service middleware layer contains the core of multi-stream manage-

ment framework and is composed of one or more service gateways (SG) which are connected

with edge computers through high-speed LAN to perform view-oriented multi-stream differ-

entiation, coordination and streaming control in the control plane and 3D video compression

in the data plane. The service middleware layer is a distributed layer which is connected

17

3D Multi-Camera

Array

High-Speed LAN

Service Gateways

TCP/IP Layer

End Users

3D Multi-Display

End Users

Application Layer

Service Middleware
Layer

High-Speed LAN

Service Gateways

Data Plane Control Plane

3D Video
Reconstruction

Camera
Information

3D Video
Rendering

User View
Information

Data PlaneControl Plane

stream
coordination

3D Video
Compression

3D Video
Decompression

stream
differentiation

streaming
control

stream
coordination

stream
differentiation

streaming
control

Figure 2.4: 3DTI Architecture

on top of the general TCP/IP layer. The basic layers of service middleware management

framework are introduced below.

2.2.1 Stream Differentiation

The design of stream differentiation revolves around the concept of view-awareness. It is the

front-end of multi-stream management to aggregate the information of the camera orienta-

tion and user view as described in the view model. The main task of stream differentiation

layer is to calculate the contribution factor , denoted as cf(s, u) with s ∈ S and u ∈ U , as the

indicator of stream importance regarding to the user view. The contribution factor provides

a rough but very important criterion for stream coordination to filter out less important

streams and prioritize important ones.

2.2.2 Stream Coordination

As introduced earlier, the stream coordination layer consists of two parts, bandwidth alloca-

tion and ViewCast for accommodating end-to-end and multi-party communications, respec-

tively.

Bandwidth Allocation. In the case of end-to-end 3DTI communication, the content

dissemination topology is relatively simpler. Such simplicity allows us to perform finer-

18

granularity multi-stream coordination. The bandwidth allocation utilizes the visual quality

feedback to dynamically determine the bit budget for the most important streams. In the

stream differentiation layer, the contribution factor provides a rough guidance for multi-

stream coordination. For example, we could apply a priority-based scheme to allocate

more bandwidth to more important streams. Such scheme works well under certain circum-

stances ([59]). However, the relationship between the contribution factor and the rendering

quality is more complicated. When the available bandwidth becomes very low, balancing

the bandwidth allocation among selected streams could achieve better quality. The main

drawback of contribution factor is that it is a static criterion in terms of the user view. Thus,

it cannot adjust to the change of the networking condition. For more active and accurate

QoS control, we propose to apply the control based on the method of reinforcement learning.

ViewCast. For multi-party 3DTI communication we are no longer interested in stream-

wise bandwidth allocation due to the trade-off between complexity and benefit. Instead, we

are interested in designing more efficient dissemination protocols. As mentioned in Chap-

ter 1, due to the huge data volume, it is impractical to take the unicast-based approach

for connecting multiple environments. On the other hand, most available multicast schemes

are stream-oriented which do not have the desired flexibility to accommodate the dynam-

ics of stream correlation and view-based rendering as in the 3DTI communication. Thus,

we propose an innovative ViewCast approach for more QoS adaptability by leveraging the

high-level user view concept.

2.2.3 Streaming Control

The task of streaming control layer is to guarantee the temporal property of transmission as

we introduce in the 3DTI timing model. For the case of end-to-end 3DTI communication,

a PID-based controller is introduced which monitors the arrival time of macro-frame at the

receiver end (i.e., Trcv(F
i
t)). The receiver starts a periodic timer for rendering frames at fixed

interval. Therefore, each macro-frame has a deadline that it must be received for rendering

19

on time. The difference between the arrival time and the deadline for each macro-frame

is monitored and used as feedback to the PID controller to derive an appropriate target

macro-frame size at the sender side. The case of multi-party 3DTI communication is more

complicated. Currently, we assume the existence of an end-system overlay network upon

which the ViewCast protocol is built. The overlay network will provide the information of

link status (e.g., available bandwidth) to be used for streaming control.

2.3 3DTI Architecture

We abstract the distributed service middleware layer into an overlay network (Figure 2.5),

G = 〈V, E〉, where each vertex vi represents the service gateway (SG) in one 3DTI environ-

ment. There are several tasks performed in each vertex at the local and global scale.

Service Gateways

V1

V2

V3

V4

Figure 2.5: Multi-party Service Middleware Architecture

20

• Local Management. When the capturing and rendering tiers are initiated, they

register with its local service gateway. Thus, each vertex needs to keep track of its

own local resource information including the number of 3D cameras and displays, the

parameters of the cameras and the user view information.

• Overlay Maintenance. The service gateways need to communicate with each other

to maintain the functioning of the overlay structure during the 3DTI session. The in-

formation exchanged includes overlay network membership, link status, local resources

and available streams.

• View Dissemination. The 3DTI view content is disseminated through the cooper-

ative work among service gateways (or vertices). The view content is retrieved in a

hierarchical manner. First, when the user view information is captured by the ren-

dering tier, it decides whether the view request can be accommodated locally. If not,

the request is forwarded to the local service gateway. The service gateway maps the

view request to a set of relevant streams and checks whether they are available. If

necessary, the service gateway either tries to obtain required streams from the source

or request other service gateways to relay the streams based on the current status of

view dissemination topology.

21

Chapter 3

Stream Differentiation

We discuss the stream differentiation problem in this chapter. The stream differentiation

lies in the front end of the service middleware management framework. It captures the

information of camera orientation and the user view to compute the function of contribution

factor for each stream regarding to the user view. The contribution factor serves as a high-

level guidance for multi-stream coordination.

3.1 Overview

The idea of stream differentiation is formulated to address issues of the bandwidth require-

ment and the rendering cost. As mentioned in Chapter 1, there are four major levels for

the increase in the data volume, (1) the data rate of one video stream, (2) the number of

video streams per 3DTI environment, (3) the number of environments, and (4) the number

of renderers in one 3DTI session. First, each pixel of the 3D video frame carries two extra

bytes for storing the depth information in addition to the three bytes RGB data used for the

color information. Second, 3DTI environments require the installation of multiple 3D camera

units in order to provide a wide view coverage and spatial definition of the scene. From the

rendering prospective, when the scene is rendered in the 3D virtual space the user has more

freedom to choose his view. As more video streams applied, the change from one view to

another will become more seamless, delivering more enhanced immersive visual experience

to the end user. However, the overall data rate in one 3DTI environment grows linearly with

the number of streams deployed. Finally, when connecting multiple 3DTI environments and

22

multiple renderers the problem of overall data traffic becomes even more exacerbated as

every rendering process needs to acquire the streams from all 3DTI environments.

The value of stream differentiation is highly associated with the property of rendering

independency. That is, every pixel generated from the 3D reconstruction of camera array can

be correctly rendered without the coexistence of any other pixel. Therefore, it is possible to

tune the bandwidth budget at the pixel granularity according to the importance of streams.

There is one point to note here that some 2D multi-view video systems also apply multi-

camera array (e.g., [34]). However, the nature of the problem is quite different. In such

systems, the view change is accomplished via camera (or video stream) switching. When

a user change his view, the system switches to the corresponding video stream. Compared

with the 3DTI communication, the number of available views is rather fixed (according to

the number of 2D cameras in use), the view change is not as smooth as in the 3D rendering,

and the spatial interactivity is restricted due to the lack of 3D information. Although the

2D multi-view system may still need to deal with the multi-stream differentiation issue if

the system is expected to tranfer multiple streams simultaneously, the problem would be

much easier since there is a clear-cut in the view/stream relation. The situation in 3DTI

video is more complicated as the rendering system merges multiple 3D video streams to

display a single complete view in a common geometric space. As streams are correlated in

the rendering quality of the final view, the problem becomes more complicated as how to

differentiate the level of contribution of each stream.

3.2 Contribution Factor

The basic approach of stream differentiation is to derive the function of contribution factor,

cf(s, u), which indicates the importance of stream to the given user view. The applicability of

stream differentiation is due to the fact that at any time instant the 3D renderer only displays

one particular view of the virtual space. Because of the spatial distribution of cameras, the

23

relative importance of each camera and its correspondent stream must be different regarding

to what is currently being rendered. However, the actual relation between streams and the

rendering quality is very complicated. Therefore, we investigate the problem of calculating

contribution factor based on two important aspects, (1) the angular difference and (2) the

viewing volume.

3.2.1 Angular Difference

The usage of angular difference is based on an important observation that when a camera

rotates away from the viewing direction of the user, its effective image resolution as projected

onto the viewing plane will decrease due to the effect of foreshortening and occlusion. For

example, if the user is currently looking at the front of a 3D object streams generated from

side cameras are not as important as the front cameras. If we assume the object is not

transparent (which is usually valid in 3DTI case), then the cameras from the back are the

least important.

The effect of angular difference is illustrated in Figure 3.1, showing two cameras and the

user view. The orientation of two cameras are denoted as s1. ~w and s2. ~w respectively. The

orientation of user view is denoted as u.~w. As shown, the angular difference of s1. ~w and

u.~w is larger than that of s2. ~w and u.~w. As a direct consequence, the captured frame from

Camera 2 is more similar to the rendered frame of the user view. In other words, Camera 2

has larger contribution to the rendered 3D scene and therefore is more important.

The angular difference can be calculated using the operation of vectors. For unit vectors,

the dot product (si. ~w · u.~w) gives the value of cosθi, where θi is the angle between si. ~w and

u.~w. When the angular difference is small (i.e., θ close to 0 ◦), then the value of dot product

will become close to 1. Otherwise when θ is close to 180 ◦, then the value of dot product will

become close to -1. Based on that, we define the function of contribution factor cf(s, u) for

24

Camera 1

Camera 2
User

Captured frame of
Camera 2

Captured frame of
Camera 1

Rendered frame
from user view

Overview

Figure 3.1: Effect of Angular Difference

s ∈ S and u ∈ U as in Equation (3.1).

cf(s, u) = s.~w · u.~w (3.1)

For practical concern, we use the normal of the camera image plane to represent the

vector s.~w. The normal can be computed using the rotation matrix of the camera which

is derived from the extrinsic parameters of the camera. Suppose the rotation matrix for

camera i in the global coordinate system is ri. Then the normal of the camera is computed

using Equation 3.2.

si. ~w = ri(0, 0,−1)T (3.2)

The vector u.~w of user view is defined as the direction along the z-axis in the virtual

space with u.~w = (0, 0,−1) . Figure 3.2 shows the relationship of the normal of camera and

the orientation of the user. In the figure, the coordinate system of camera is specified by

25

the axes of xi, yi, and zi and the global system is specified by the axes of xu, yu and zu.

xi

yizi

xu

yu

zu

Figure 3.2: Relation between Camera and User View Orientations

3.2.2 Viewing Volume

The effect of viewing volume takes into account of view changes in addition to rotation.

The viewing volume is a user-defined space within which objects are considered visible and

rendered by the graphics system (a method known as culling). For example, the graphics

library of OpenGL ([3]) provides a set of APIs for the user to define the viewing volume.

Thus, we attach a new attribute of viewing volume to each renderer, denoted as u.v for

u ∈ U .

Figure 3.3 shows the effect of viewing volume. When the perspective projection mode is

used, the viewing volume becomes a frustum. In the figure, the feet of the object are outside

26

User

Rendered view

Figure 3.3: Effect of Viewing Volume

the viewing volume. Therefore, it is not rendered in the display.

For a pre-defined viewing volume at the renderer, the importance of each camera depends

on how much of the captured 3D image lies inside the viewing volume. If most pixels of the

3D image are outside the viewing volume, then the camera is not important (i.e., has little

contribution). Therefore, viewing volume is an important factor to evaluate the importance

of camera.

It is relatively simple to compute whether a point is inside an enclosed space or not.

Suppose the space is bounded by several planes. We define the normal of each plane to face

towards the inside of the space. Then a point is inside the space if its distance to every plane

is greater than or equal to zero.1

Based on that, we may compute the visibility of every pixel in a given 3D image. However,

to reduce the computational cost, we divide the image frame into 16× 16 blocks and choose

1A plane divides a space in two halves and the sign of distance depends on whether the point is in the
same half space pointed by the normal of the plane or not.

27

the block center as the reference point. For each stream s, we compute its visibility ratio,

denoted as vr(s, u), which is the number of visible reference points versus the total number

of reference points. Thus, we have another version of the contribution factor function as

given in Equation 3.3 which combines the effect of angular difference with viewing volume.

cf(s, u) = vr(s, u)× (s.~w · u.~w) (3.3)

In practice, we ignore the effect of viewing volume because the virtual space is relative

small. Therefore, we only calculate the contribution factor based on the angular difference

as in Equation (3.1).

3.3 Evaluation

We perform an experiment using a macro-frame captured in real 3DTI experiment. The

macro-frame consists of 12 individual 3D image frames covering 360 ◦. Figure 3.4 shows the

color portion of the macro-frame with its individual frames.

Figure 3.4: Color Portion of a Macro-frame

28

Figure 3.5 shows the 3D rendering effect when all cameras are used, while Figure 3.6 only

uses the cameras by choosing streams with contribution factor ≥ 0 (i.e., a maximum of 90 ◦

from the viewing direction). The visual quality of two settings has very little perceivable

difference.

Figure 3.5: Rendering using all Cameras

Figure 3.6: Rendering using selected Cameras

29

Chapter 4

Bandwidth Allocation

We discuss the bandwidth allocation problem in this chapter. The bandwidth allocation

is the core of the stream coordination layer for the end-to-end 3DTI communication. The

problem is how to allocate the bit budget for the transmission of streams that are considered

as important.

4.1 Overview

So far, we have seen that one level of multi-stream adaptation can be achieved by dropping

streams whose value of contribution factor is below certain threshold (e.g., < 0). Assuming

cameras are uniformly distributed in space, this simple approach could reduce the required

data rate by half without significantly affecting the visual quality as demonstrated in Chap-

ter 3.

The problem remains as how to deal with important streams, particularly, if available

bandwidth or rendering capacity is not sufficient to accommodate all important streams

with full content. We propose three bandwidth allocation schemes as the solution. For

the first scheme, we formulate the problem based on the general model of Markov decision

process (MDP). We then apply the method of reinforcement learning upon the model to

search for an optimal bandwidth allocation. For the second scheme, we use a priority-based

method for bandwidth allocation. Under the priority-based scheme, streams with bigger

value of contribution factor are assigned larger bit budget. For the last scheme, we use

a non-priority method which allocates bit budget evenly among important streams. We

30

evaluate those three schemes in this chapter.

4.2 Reinforcement Learning

To help with the discussion, we briefly introduce the Markov decision process followed by the

concept of reinforcement learning. More details of Markov decision process and reinforce-

ment learning can be found in [13, 27]. After introduction, we describe how to apply the

reinforcement learning method in solving the allocation problem through model mapping.

4.2.1 Markov Decision Process

Markov decision process is a discrete time stochastic control process for modeling the sys-

tem (environment) influenced by probability and the action of the decision marker (agent).

The markov decision process is illustrated in Figure 4.1. In the figure, the environment is

represented by a set of states. In each state, the agent selects an action which changes

the environment to the next state according to certain probability. When state transition

happens, the agent gathers information about the immediate reward.

value
function

policy

agent

action

state
transition

environment

state

reward
reward

function

Figure 4.1: The Markov Decision Process

There are four basic components of a Markov decision process.

31

• State Space: Φ = {σ1, σ2, ..., σn} .

• Action Space: A = {a1, a2, ..., am}.1

• State Transition Probability : Pa(σ, σ′) with Pa(σ, σ′) = Pr{σt+1 = σ′|σt = σ, at = a}

for a ∈ A and σ, σ′ ∈ Φ, which indicates the probability of state transition from σ to

σ′ given the action a.

• Reward Function: rf : Φ→ <, rf(σt) indicates the immediate reward at the state σt.

The goal of the Markov decision process is to determine the action at at each state σt to

maximize certain cumulative function of the reward, for example, the discounted sum as in

Equation (4.1).
∞∑

t=0

γtrf(st) (4.1)

where γ denotes the discount factor. The mapping from state to action is called the policy

function, denoted as π with π : Φ→ A. The optimal policy is denoted as π∗. The set of all

policies is denoted as Π.

To derive π∗, we introduce the value function Ψ with Ψ : Π×Φ→ <. The value function

is defined as in Equation (4.2).

Ψπ(σ) = rf(σ) + γ
∑
σ′∈Φ

Pπ(σ)(σ, σ′)Ψπ(σ′) (4.2)

The value function of the state is its immediate reward plus the expected discounted reward

of the next state given that the action specified by the policy is taken. It indicates the

desirability of a state not in its immediate reward but the long-term potential. Given the

value function, the optimal policy function is defined as in Equation (4.3),

π∗(σ) = arg max
a

∑
σ′∈Φ

Pa(σ, σ′)Ψπ∗(σ′) (4.3)

1Usually, it is also defined Aσ ⊆ A as the set of possible actions for state σ ∈ Φ. We simplify the notation
here.

32

namely, the optimal policy function chooses the action for a given state which will produce

the maximum expected long-term reward.

If the system model is well established, the optimal policy can be solved using iterations

of Equation (4.2) and Equation (4.3) based on dynamic programming.

4.2.2 Reinforcement Learning

Reinforcement learning is one way of deriving the optimal policy based on the Markov deci-

sion process when it is difficult to acquire system information such as the reward function or

the probability of state transition. For example, in the situation of the bit budget allocation

problem, the method based on reinforcement learning does not require a priori understanding

of the model regarding to how each stream affects the rendering quality, a very complicated

process in practice.

More specifically, we use the Q-learning algorithm ([54]) which is one of the most popular

and effective algorithms for learning from delayed reward to determine the optimal policy.

For policy π, we introduce the Q value function with Q : Π×Φ×A→ <. The definition of

Q value function is given in Equation (4.4).

Qπ(σ, a) = rf(σ) + γ
∑
σ′∈Φ

Pa(σ, σ′)Ψπ(σ′) (4.4)

Different from the value function Ψ, the Q value function indicates the goodness of state-

action pair under certain policy π. Regarding the optimal policy π∗, the relation between

the value function Ψ and the Q value function is given in Equation (4.5).

Ψπ∗(σ) = arg max
a∈A

Qπ∗(σ, a) (4.5)

Thus, in terms of optimal policy we transform Equation (4.4) into the recursive form as in

33

Equation (4.6).

Qπ∗(σ, a) = rf(σ) + γ
∑
σ′∈Φ

Pa(σ, σ′) max
a′∈A

Qπ∗(σ′, a′) (4.6)

Based on that, the Q-learning algorithm updates the Q value function using Equation (4.7).

Q(σt, at)← (1− α)Q(σt, at) + α

(
rt+1 + γmax

a∈A
Q(σt+1, a)

)
(4.7)

where α denotes the learning rate. In practice, at each iterative step t the Q-algorithm

chooses an action at according to the Q value function and the rule of ε-greed. That is, with

probability ε we choose the action at of maximum Q(σt, at) and with probability 1 − ε we

choose other actions randomly. The goal of ε-greedy algorithm is to balance exploitation

and exploration. We then observe the next reward, denoted as rt+1 and the next state σt+1

to update the Q value in Q(σt, at) accordingly.

4.2.3 Model Mapping

The reinforcement learning method provides a general strategy of searching when the system

information is incomplete. For application, the main task of model mapping is to define

basic components including the state space, the action space and the reward function. The

challenge is to keep the complexity of the model in bound. Since the bandwidth allocation

scheme is only applied in the end-to-end case (i.e., Ne = 1 and Nr = 1), we simplify the

notation here by ignoring the index of the environment.

We treat the multi-stream management as a discrete event system. An event occurs when

it is ready to send the next macro-frame Ft with Ft = {f 1
t , f2

t , ..., f
|S|
t }. Due to the property

of rendering independency a 3D video stream can change its bit amount to adapt to the

fluctuating resource availability. The bandwidth allocation is performed at discrete levels of

frame size fs with a step size δ. Assume that there are K quantized levels where K = fs
δ
,

each frame of the stream can choose frame size from the possible set of {fs0, fs1, ..., fsK}

34

where fs0 = 0, fsk = fsk−1 + δ for 0 < k ≤ K, and fsK = fs. We denote the bandwidth

allocation vector as ~C = (c1, c2, ..., c|S|), where each component cj specifies the frame size

allocated for stream sj (1 ≤ j ≤ |S|). The problem is to find an optimal allocation vector

~C∗ to optimize the visual quality under the constraint of available bandwidth bw as depicted

in Figure 4.2.

fs

fs

fs

stream 1

bandwidth
allocation

t
r
a
n
s
m
i
s
s
i
o
n

quality feedback

available bandwidth (bw)

... ...

stream 2

Figure 4.2: Stream Adaptation for Optimal Quality

Initial Design

State Space. We define the state space as in Equation (4.8). For simplicity, we define target

frame size (TFS) as the maximum macro-frame size that can be transmitted and rendered

given the current available bandwidth and the rendering capacity. The TFS is expressed in

units of δ.

Φ =
{

σ = (~C, TFS) |
|S|∑
j=1

cj ≤ TFS
}

(4.8)

Action Space. When the macro-frame is generated from the capturing tier, the decision agent

chooses an action for bandwidth allocation. As an initial design, we define action a (a ∈ A)

as vector ~a = (a1, a2, ..., a|S|), where −K ≤ aj ≤ K for 1 ≤ j ≤ |S|.

To illustrate, suppose the state σ has the form (c1, c2, ..., c|S|, TFS) and the next target

frame size is TFS ′. After applying the action, the next state σ′ becomes

σ′ = (c1 + δa1, c2 + δa2, ..., c|S| + δa|S|, TFS ′)

35

where the action should be chosen such that the bandwidth constraint
∑|S|

j=1(cj+δaj) ≤ TFS ′

still satisfies.

Reward Function. The reward function is related to the rendered visual quality. We use

the peak signal-to-noise ratio (PSNR) of the reconstructed image measure as the reward.

However, it is very difficult to derive the reward function directly from the allocation vector

and user view. Therefore, we treat the rendering process as a black box which takes the

video streams and the user view. Then the RGB portion of the rendered image is saved

in 2D form and used for comparison. To get the PSNR measure, the 3D video is rendered

twice, one with adaptation and one without. Denote the rendered RGB portion of the 3D

image as Iwa and Iwo respectively. The PSNR is computed using Equation (4.9),

PSNR = 20× log10

(√∑height
i=1

∑width
j=1 [Iwa(i, j)− Iwo(i, j)]

2

height× width

)
(4.9)

where width and height denote the dimension of the rendered image (which is different from

the dimension of the 3D frame).

Refinement: Multiple Reinforcement Learning Machines

The definition of action space is general enough. However, the drawback is also obvious which

lies in the size of the action space (|A| = O(K |S|)). As a solution, we introduce the concept

of multiple reinforcement learning machines RLM = {RLMTFS1 , RLMTFS2 , ..., RLMTFSH
}

(where H is the number of machines), with each machine corresponding to one particular

target frame size (Figure 4.3).

Within one learning machine RLMTFSj
(1 ≤ j ≤ H), the target frame size TFSj is

assumed to be fixed. Given that, the state space for that machine can be defined as in

Equation (4.2.3).

ΦTFSj
=
{

σ = ~C |
|S|∑
k=1

ck = TFSj

}

36

value
function

policy

agent
action

environment

state
reward

RLM1

value
function

policy

agent
action

state
reward

RLM2

value
function

policy

agent
action

state
reward

RLMH

...

Figure 4.3: Multiple Reinforcement Learning Machines

Based on that, we define the action space ATFSj
for each learning machine RLMTFSj

as

in Equation (4.2.3).

ATFSj
=
{

ap,q | cp > 0 ∧ cq < fs
}

The action will move one unit of allocation (i.e., δ) from stream p to stream q. To

illustrate, suppose the state σ has the form (c1, c2, ..., cp, ..., cq, ..., c|S|). After applying the

action ap,q, the next state σ′ becomes

σ′ = (c1, c2, ..., cp − δ, ..., cq + δ, ..., c|S|)

where the total macro-frame size (TFSj) remains unchanged.

The introduction of multiple learning machines recognizes an important fact that when

37

the available resource remains relatively stable, it is really unnecessary to try actions that

reduce the overall macro-frame size. Compared with the initial design, the size of action

space is reduced to O(H × |S|2). The size of state space remains unchanged. It is possible

to further reduce the size of state space by changing the smallest unit of TFS from δ to fs.

From the running time point of view, multiple RLM’s do not incur more running time than

single RLM. Actually, at any time only one version of RLM’s is selected according to the

availalbe bandwidth and updated.

4.3 Priority-based Scheme

The priority-based scheme performs bandwith allocation according to the value of contribu-

tion factor and the following principles.

1. Streams with larger contribution factor should have higher priority.

2. Whenever possible, a minimum frame size defined as fs× cf(s, u) should be granted.

3. Once 2. is satisfied, the priority should be given to cover a wider field of view.

To apply the priority-based scheme, we select a subset of streams S ′ with S ′ = {s|s ∈

S∧ cf(s, u) ≥ 0} and let m = |S ′|. We then sort streams in descending order of contribution

factor for bandwidth allocation. First, if TFS ≥ fs ×
∑

s∈S′ cf(s, u), the frame size cj for

stream sj is allocated as in Equation (4.10).

cj = min

(
fs, fs× cf(sj, u) + (TFS −

j−1∑
k=1

ck)×
cf(sj, u)∑m

k=j cf(sk, u)

)
(4.10)

If the target frame size is big enough to accommodate the minimum frame size of all streams,

then the minimum frame size is allocated. After that, the residue of TFS is allocated

proportional to the contribution factor.

38

If TFS < fs ×
∑

s∈S′ cf(s, u), then we allocate minimum stream frame size in order of

priority as in Equation (4.11).

cj = min

(
fs× cf(sj, u), TFS −

j−1∑
k=1

ck

)
(4.11)

It is possible that some of the selected streams may not get the quota of transmission.

4.4 Non-priority Scheme

For the non-priority scheme, the target frame size TFS bandwidth is allocated evenly among

selected streams as in Equation (4.12).

cj =

 TFS/m if TFS < m× fs

fs otherwise
(4.12)

4.5 Evaluation

For evaluation, we use 12 3D video streams (320× 240 resolution and 5 frames/second) pre-

recorded from the multi-camera environment showing a person and his physical movement

with a horizontal view of 360 ◦. The renderer is implemented with the library of OpenGL.

The experiments are performed on the local testbed, where we send video streams to the

3D renderer within the Gigabit LAN. The adaptation is configured to choose TFS between

8 fs and 1 fs. Meanwhile, we gradually rotate and shift the view during the experiment.

The PSNR is calculated by comparing with the base case of full streaming (i.e., 12 streams

each with 100% content). We also measure the rendering time using a Dell Precision 470

computer with 1 GByte memory running Windows. We first compare the performance of

priority-based scheme and non-priority scheme. The average PSNR and rendering time are

shown in Table 4.1. The average rendering time of 12 streams is 159.5 ms per macro-frame.

39

In the table, We combine the results of running time of both schemes as they are very similar.

TFS (fs)
Average PSNR

Time
Priority Non-Pri.

7 39.75 39.38 93.83
6 36.85 33.31 84.63
5 34.46 31.48 68.36
4 31.79 30.02 55.87
3 30.15 28.98 43.82
2 27.71 27.66 31.89
1 26.42 26.91 22.59

Table 4.1: PSNR (dB) and Rendering Time (ms)

For the learning-based allocation scheme, we set TFS = 3.6fs and run the experiment

using the similar setting. The results are plotted in Figure 4.4.

Figure 4.4: PSNR of Learning-based Scheme

Figure 4.4 shows that after 150 seconds the PSNR starts to settle down with an average

PSNR of 38.57 which is much higher than priority-based and non-priority schemes.

40

Chapter 5

ViewCast

We introduce ViewCast in this chapter, which is a view-based content dissemination scheme

used for stream coordination in the case of multi-party 3DTI communication. Compared

with the case in end-to-end communication, the networking topology of multi-party commu-

nication is much more complicated. Therefore, as a trade-off the main focus of ViewCast is

to optimize the transmission of multiple streams with full stream content instead of applying

stream-level bandwidth allocation as in the end-to-end case. In this chapter, we first present

an overview of ViewCast and the multi-party 3DTI session management for the ground of

discussion. Then we introduce the basic problem of ViewCast followed by proposed solutions

and the evaluation.

5.1 Overview

The view concept reflects the user interest at a higher-level, which distinguishes the View-

Cast from any other content delivery schemes at the level of per stream. The ViewCast

scheme basically specifies that when the user retrieves content from a multi-party/multi-

stream system as in the case of 3DTI environments, only the user’s view interest is required.

The ViewCast scheme then controls the stream selection dynamically according to the view

requirement and the status of resources with the ultimate goal of sustaining the QoS for the

rendered view. Therefore, ViewCast has the advantages of improved flexibility, customiza-

tion, adaptability, coordination and responsiveness under more dynamic and constrained

resource environment. We envision the application of ViewCast in, for example, multi-

41

capturing

1

5

7

3

8

4

6 2

3D camera

transmission

1

5

7

3

8

4

6 2

rendering

user view
streams contributing
to user view

Figure 5.1: Stream Differentiation regarding to View

camera conferencing, surveillance system, 3D TV, and video sensor networks. From the

3DTI prospective, we point out several important properties of ViewCast as listed below.

Most of the features may apply to other multi-party/multi-stream systems as well.

• Multi-party/multi-stream Environment. The basic assumption for ViewCast is that

each content source supplies multiple correlated streams corresponding to one single

view.

• Stream Correlation. Stream correlation is an important feature in multi-camera sys-

tems, where the concept of view has very intuitive definition.

• Stream Differentiation. Along with stream correlation is the feature of stream dif-

ferentiation. That is, a given view should favor some of the streams over others. In

3DTI environment, the rendering process is view-dependent and the contribution of

each stream to the rendering quality of the view could be different. As the angle of a

3D camera shifts away from the user view, its effective image resolution will decrease

due to foreshortening and occlusion. As illustrated in Figure 5.1, given the user view

(right part), cameras 4 and 5 are the most important ones. Cameras 3 and 6 are less

important but will improve the visual quality if added. The rest cameras are the least

important.

42

• Inter-stream Coding Independency. We assume the coding/decoding independency

among streams. Since each stream can be independently transmitted and rendered, it

is easier to perform the view to stream mapping and to select streams with different

possible combinations. As illustrated in Figure 5.1, given the user view and the ori-

entation of cameras ViewCast can select various subsets of streams (or cameras) such

as {s4}, {s4, s5}, {s4, s5, s3} or {s4, s5, s3, s6}... depending on the quality and resource

constraints. Inter-stream coding independency provides more flexibility in stream se-

lection and QoS adaptation. On the other hand, it also adds design challenge as there

are more choices.

• Open Model. From an OSI layering point of view, the ViewCast scheme resides in

the presentation layer. It maps between the semantics in the application layer (i.e.,

stream correlation/differentiation) and the stream manipulation in the session layer.

More specifically, in 3DTI environments the ViewCast scheme only dictates desirable

attributes of the application (e.g., the definition of view) and how these attributes

affect the multi-streaming. However, the design choice of higher and lower layers is

open depending on specific requirements. We are the first to identify a very core and

ideal function in the presentation layer.

• View Change. As observed, the view change operation may occur frequently in 3DTI

environments. There are two consequences of view change. First, stream differentiation

varies with view change. For example, in Figure 5.1 when the user view changes to the

position of dotted arrow (right part) cameras 1 and 2 will become the most important

ones. This variance distinguishes ViewCast from other systems based on fixed stream

differentiation such as layered coding and multi-description coding. Second, as soon as

the view change is detected, the system must respond by switching streams accordingly.

Stream switching may be costly. The direct impact to the user is the discontinuity of

rendering. If multicast protocol is used in the underlying layer, then stream switching

43

at the parent vertex may influence the child vertices. The dynamics of view change

presents a critical challenge for designing system based on ViewCast.

The key advantage of ViewCast is that by leveraging the high-level view semantics the

visual quality, which is closely related to view, can be guaranteed while the low-level stream-

ing regulation layer can have larger flexibility for topology construction and QoS adaptation

so that the resource constraints can be satisfied adaptively.

5.2 Multi-party 3DTI Session Architecture

Figure 5.2 illustrates the 3DTI session architecture, which is managed at two levels. At the

local level, each 3DTI environment is managed by its service gateway (SG), which consists

of one or more processors. When a 3D camera initiates, it registers with the service gateway

to save the meta-data of its stream. Due to the runtime cost of 3D reconstruction, once a 3D

frame is generated it is forwarded to the service gateway through high-speed LAN for further

processing of data compression and streaming control. The gateway manages rendering as

well and retrieves streams on behalf of its local renderers. Thus, service gateway is an

application level data aggregating point at each 3DTI site. We implement ViewCast on top

of the end system multicast ([24]) which is becoming an appealing alternative to IP multicast

due to the advantage of flexibility and easy deployment. At the application level, service

gateways collect multiple streams either from local sources (i.e., cameras) or from remote

sources (i.e., peer service gateways). The collected streams are then multicasted according

to the current status of the overlay network and the forwarding topology managed by the

session controller (explained next). Therefore, service gateways form an end system overlay

network for content delivery.

After the bootstrapping of local environment is completed, the service gateway registers

with the central session controller at the global level. The way session controller manages is

similar to other proposed schemes (e.g., [23]). When a new service gateway joins the session,

44

C

C
C

SG

R

C

C

C

SG

R

SG
R

C
SG

R

R CSG service gateway renderer camera

session
controller

LAN

LAN

LAN

LAN
Internet2

(MAN/WAN/LAN)

Figure 5.2: An overlay network of 3DTI session

the session controller informs other service gateways to let them connect with each other

and form the initial overlay graph, G = 〈V, E〉. Then the session controller starts to receive

and serve view requests for each vertex and update the delivery topology accordingly. For

simplicity, it is assumed that all participating service gateways must register with the session

controller before the live session can start.

During a live 3DTI session, the user can switch its viewing position of the virtual space

at the renderer. If the view change cannot be resolved, the renderer will forward it to

the service gateway. The service gateway checks whether it has the streams available for

accommodating the view change. Otherwise, it sends a view request to the session controller

to compute a new multicast topology for coordinating the multi-streaming.

We take a centralized approach at the global level because of its low messaging cost and

responsiveness to the dynamics of 3DTI session. The approach is feasible in our situation

where the number of service gateways is within a reasonable scale (≤ 20).

45

5.3 Multi-party 3DTI Session Initiation Protocol

The session protocol specifies in detail how the 3DTI session is initiated and managed. The

steps of 3DTI session initialization are summarized below.

1. Start the session controller.

2. Start the service gateway. The service gateway registers its membership with the

session controller.

3. The session controller updates the new service gateway with the membership of other

service gateways which are currently active.

4. When 3D camera array is started, it registers with its local service gateway. The service

gateway keeps the local resource information including the number of cameras and the

orientation of each camera regarding to a global coordinate system. The resource

information is sent to the session controller as well.

5. When the renderer is started, it contacts with the its local service gateway for sending

view request.

After the session is started, the view request is served in the following steps.

1. The renderer captures the user view change and checks if it can be accommodated

locally (i.e., if the view change is small).

2. If the view change cannot be accommodated, the renderer sends the request to its local

service gateway.

3. The service gateway resolves the view request to streams and checks if it caches the

relevant streams. If so, it serves the renderer by sending those streams.

4. In case needed, the service gateway forwards the view request to the session controller

where the view dissemination topology is calculated globally.

46

v1 streams: s1,4 , s1,5
v5 streams: s5,1 , s5,7 , s5,8

s 1,4
, s 1,5

s
1,4

v1 streams: s1,2 , s1,3 , s1,4
v5 streams: s5,1 , s5,8

s1,2 , s1,3

s1,2 , s1,3

u2.w u3.w

u4.w

s5,1 , s5,8

s
5,1 , s

5,8

s
5,7

v1 streams: s1,2 , s1,3
v5 streams: s5,4 , s5,5 , s5,6

s5,4 , s5,5 , s5,6

user view

u2.w u3.w

u4.w

u2

u3

u4

v2

v3

v4

v1

v5

Figure 5.3: ViewCast streaming

5. After a new dissemination topology is calculated, the session controller broadcasts it

to all active service gateways to complete the view request.

Figure 5.3 illustrates how ViewCast works. As the figure shows, each vertex represents

a service gateway. Service gateways form an overlay network and cooperate for content

delivery. In the figure, a vertex can request a view from a multi-stream source on behalf of

its renderer. For example, renderer u2 registers with vertex v2 and v2 requests a view (denoted

as u2.w) from vertex v5. Depending on the view and available resources, each requesting

vertex may get different subset of streams. As long as the quality and resource constraints

are satisfied, vertices which have available streams can serve other vertices. Furthermore, a

vertex can retrieve streams from multiple vertices in parallel.

47

5.4 Problem Formulation

We introduce the basic components and problems of ViewCast based on the initial graph of

the overlay network G = 〈V, E〉.

5.4.1 Definition of ViewCast Components

Streams. In the multi-party/multi-stream system, a vertex vi generates a set of streams.

We denote Si as the set of streams originated from vertex vi (i.e., Si = {si,1, si,2, ..., si,|Si|}).

Each stream si,j (1 ≤ j ≤ |Si|) has extra field, denoted as si,j.w, which represents the view

information of that stream. Note that, it is possible to have Si = ∅ as the vertex may only

serve rendering and viewing (i.e., no content generated at the vertex vi). The complete

stream space is denoted as S with S = ∪∀vi∈V Si.

Vertices: V = {v1, v2, ..., vNe}. There are Ne vertices. In 3DTI environments, a vertex

vi represents a service gateway which manages its local multiple streams. It can retrieve

streams from other vertices as well by sending view requests. Vertex vi is characterized by

the following parameters.

• Inbound and outbound bandwidth constraints, denoted as Ii and Oi, respectively.

For simplicity, we assume all streams have the same data rate. Then Ii and Oi are

degrees measured as the number of streams vi can receive and send. The inbound

(and outbound) capacity is partitioned into reserved bins, where each bin hosts one

3D video stream.

• Set of inbound streams Ri where Ri ⊆ S − Si. We denote Ri(vj) as the set of streams

received which are originated from vertex vj (i.e., Ri(vj) ⊆ Sj).

• Set of outbound streams Fi where Fi ⊆ Ri ∪ Si. For stream s ∈ Ri, s is called a

relay stream. Otherwise, stream s ∈ Si is called an original stream. We define a relay

48

function rf(vi, vj, s). If vertex vi transmits stream s to vj, then rf(vi, vj, s) is true.

Otherwise it is false.

• Cost of stream (cs : S × V → <). Consider a stream s at vertex vi (i.e., s ∈ Ri ∪ Si).

If s ∈ Si then cs(s, vi) = 0. Otherwise, there must exist a forwarding vertex vj such

that vj transmits s to vi. In that case, cs(s, vi) = cs(s, vj) + ce(vj, vi), where ce(vj, vi)

denotes the cost of edge 〈vj, vi〉 (introduced below). The cost of stream reflects the

delay from the source to the destination.

Edges: E = {〈vi, vj〉|vi ∈ V ∧vj ∈ V }. We define a cost function of edge ce : E → <, which

maps an edge to a real number. The cost function indicates the delay along the edge.

System Constraints. At any given time, the following conditions must always be satisfied

for all vertices.

1. Bandwidth Constraint

∀vi ∈ V, |Fi| ≤ Oi ∧ |Ri| ≤ Ii (5.1)

2. Relay Constraint

∀vi ∈ V, Ri ⊆ S − Si ∧ Fi ⊆ Ri ∪ Si ∧ (∀s ∈ Ri, ∃vj ∈ V s.t. rf(vj, vi, s) = true) (5.2)

3. Delay Constraints

∀vi ∈ V, max∀s∈Ri
(cs(s, vi)) ≤ Tdelay (5.3)

where Tdelay is the delay bound for interactive communication. We name conditions (5.1),

(5.2) and (5.3) as the system constraints.

User. We denote the set of users as U with U = {u1, u2, ..., uNr}. Each user represents a

renderer. The abstract concept of view reflects the user interest in retrieving the content.

49

We denote ui.w as the view information of the user. For simplicity, we assume each vertex

can host one renderer. Therefore, we attach the view attribute to each vertex and use the

notation of vertex vi.w instead, and use the set of V to represent U .

Differentiation Function. The differentiation function is denoted as df with df : S×V →

<, which gives the importance of a stream regarding to a given user view. Depending on

specific application, the definition of differentiation function could be different. For the case

of 3DTI environments, the differentiation function is actually the function of contribution

factor as described in Chapter 3, i.e., df(s, v) = cf(s, v) = s.~w · v.~w.

Optimal Function. The optimal function is denoted as of with of : 2S × V → <,

which dictates the goal for optimization. For example, in 3DTI environments it could be

the rendering quality of view regarding to the set of streams received. Since it is quite

complicated to derive an exact form of optimal function as in our case. A simple linear

approach is taken as in Equation (5.4).

of(S ′, v) =
∑
s∈S′

df(s, v) (5.4)

5.4.2 Problems of ViewCast

Given above notations and definitions, there is the maximum quality problem of ViewCast

as formalized below.

Maximum Quality Problem

1. to maximize Σvi∈V of(Ri, vi)

2. subject to system constraints (5.1), (5.2) and (5.3)

The maximum quality problem is NP-complete, which can be proved based on the layered

peer-to-peer streaming problem proposed in [16]. Another related problem of ViewCast is

the minimum quality problem as given below.

Minimum Quality Problem

1. to satisfy ∀vi ∈ V, of(Ri, vi) ≥ ∆

50

2. subject to system constraints (5.1), (5.2) and (5.3)

where ∆ is a given lowest bound on acceptable quality. The minimum quality problem is

also NP-complete as shown by studies on finding minimum-cost degree-constrained multicast

trees ([12, 43]).

In summary, we explain the basic idea of ViewCast under the 3DTI scenario. To simplify

the explanation, certain technical restraints are imposed on the model. However, those

restraints are not inherent in the general ViewCast concept. For example, it is not required

that all streams have similar data rate or quality. The essence of ViewCast includes the

definition of view and whether it can be used to differentiate streams.

5.5 Solution

There are two major goals for the ViewCast-based solution.

• Minimum quality guarantee: each vertex should receive a minimum set of streams to

have some quality guarantee of every other vertex inside its view. For 3DTI environ-

ments, it implies the consistent presence of all participants in the virtual space, which

is critical for collaborative work.

• View change resilience: when a vertex changes its view, the impact on other affected

vertices should be minimized for the continuity of group interaction.

5.5.1 Minimum Quality Guarantee

Because the minimum quality problem is hard, we propose heuristics using the approach

based on priority ([59]) and preemption ([58]) with the following steps.

Step 1. Given view request v.w, the importance of the stream is calculated using the

differentiation function df(s, v). In 3DTI environment, it is the same as the function of

contribution factor.

51

Step 2. The streams are selected against a threshold, for example, in 3DTI environment

we choose streams such that df(s, v) ≥ 0, reflecting a 180 ◦ total view range.

Step 3. The selected streams are further differentiated into several priorities according to

their importance. In 3DTI environments each vertex has around 8 streams. The stream

selection in Step 2 produces a subset of 3 to 4 streams. We then define the set of priorities

P as {p1, p2, p3, p4}, where p4 is the highest priority. Next, we assign priorities to selected

streams according to the differentiation function. In our case of 3DTI environments, the

stream having the largest value of contribution factor is assigned the priority p4 and so

forth.

Step 4. As mentioned earlier, the inbound (and outbound) bandwidth resource is divided

into bins with each bin hosting one stream. Suppose it is needed to forward stream s from

vertex vi to vertex vj. If both vertices have available bins, it is straightforward to establish

the streaming. Otherwise, the bin of lower priority stream can be preempted. For example,

if stream s has p4 priority based on the view, it can take the bin in either vi or vj occupied

by streams of lower priority (i.e., p1,2,3). When the preemption is needed, the bin of lowest

priority stream will be taken first. The bin allocation of selected streams is performed in

descending order of priority and terminated when the preemption is not possible.

Currently, we control the QoS of view rendering at the per stream granularity. When

there is not enough resource to transmit a stream at its full content, the streaming will be

dropped. However, it is an interesting problem to explore whether a quantitative improve-

ment could be achieved at finer granularity (e.g., to transmit a stream with different data

rate as in the end-to-end case) in ViewCast.

5.5.2 View Change Resilience

The negative impact of view change is illustrated in Figure 5.4. In the figure, vertex v3 and

v4 have similar views and v4 is streaming s2 and s3 from v3. When vertex v3 changes its

view, streams needed by v4 may temporarily become unavailable. In such case, v4 becomes

52

a victim. The impact will grow as the size of dependent vertices increases. The view change

operation is a frequent phenomenon in 3DTI environment and may cause large overhead if

not treated properly.

V2

V3

V4

V1

u2.w u3.w

u4.w

s 4,
s 5

s2, s3

s 2,
s 3

u2

u3

s
4

u4

V2

V3

V4

V1

u2.w

u4.w

s 4,
s 5

s 2,
s 3

u2

u3

s
4

u4

s7, s8

u3.w

victim

(a) Before View Change (b) After View Change

Figure 5.4: Effect of View Change

Previous solutions rely on concepts of soft leave ([23]) and buffering ([16]). Soft leave

requires the changing vertex to continuously serve old streams until affected vertices have

found replacement. Although doable, under multi-stream scenario it would incur longer

delay. Buffering let the intermediate vertices continue streaming from cache to absorb the

propagation of quality degradation. However, it is not a feasible approach for live commu-

nication.

We apply the strategy of dependency balancing to improve the resilience of view change

tolerance. There are three basic techniques in dependency balancing: (1) source balancing,

(2) priority balancing, and (3) load balancing. We introduce them in the following.

53

VC - Approaches

Dependency balancing
1. Source – As long as delay requirement is

met, try to stream from more sources.

va vb

sj,1 sj,2

vc

va vb

sj,1

vc

sj,2

better

Figure 5.5: Source Balancing in ViewCast

Source Balancing

Source balancing attempts to diversify the supplying vertices to lower the dependency on

each individual vertex. The basic idea is illustrated in Figure 5.5, where vertices va, vb have

the same set of streams (i.e., {sj,1, sj,2}) that can be relayed to vertex vc. Under that, the

streaming schedule on the right part is considered better since it provides a more evenly

distribution of streaming among the sources.

Priority Balancing

VC - Approaches

Dependency balancing
2. Priority – Distributed streams among

sources in uniformity of priority.

va vbsj,1:P4
sj,2:P3

vc

better

sj,3:P2
sj,4:P1

va vbsj,1:P4
sj,3:P2

vc

sj,2:P3
sj,4:P1

Figure 5.6: Priority Balancing in ViewCast

The basic idea of priority balancing is illustrated in Figure 5.6. In the figure, vertices va,

vb have the same set of streams (i.e., {sj,1, sj,2, sj,3, sj,4}) that can be relayed to vertex vc.

The stream priority of vc as determined by its view is sj,1 : p4, sj,2 : p3, sj,3 : p2 and sj,4 : p1.

54

vc

va

vb

vc

va

vb

better

total forwarding load

TFa = 4

TFb = 0

forwarding load to specific vertex

TFa-c = 0

TFb-c = 0

Figure 5.7: Load Balancing in ViewCast

Under that, the streaming schedule on the right part is considered better since it provides a

more evenly distribution of streaming quality among the sources.

Load Balancing

Load balancing attempts to balance the forwarding load among all the vertices. There are

two criteria in calculating the load. One is the total forwarding load as is often discussed in

the literature (e.g., [14]). The other is the forwarding load to specific vertex. The ViewCast

scheme considers the latter as more important. The justification is illustrated in Figure 5.7.

In the figure, vertex vb receives four streams from va. Next, vc requests similar streams.

Considering total forwarding load, vb will be the forwarding vertex to vc. However, that

makes vc solely depend on vb. In the right figure, if we use the forwarding load to specific

vertex as the criterion. Then both va and vb can serve vc which reduces forwarding depen-

dency among the sources. Therefore, in ViewCast we choose the forwarding load to specific

vertex as the first criterion over the total forwarding load.

Finally, possible techniques at the application level can also limit the overhead of view

change effectively. For example, in 3DTI environment most of the view change occurs with

small degree which can be tolerated by human perception. Thus, the rendering tier sends

view request only when the view change is significantly big.

55

5.5.3 ViewCast Management

The main task of ViewCast management is to serve view request (vi.w), which is performed

by the session controller for each vertex (vi). The main serve view algorithm is sketched

in Table 5.1.

The get streams routine calculates the differentiation function df(s, vi) with the given

view (vi.w). The selected streams are assigned priority and saved in S̄.

The find source routine searches for a supplying vertex that can stream s to vertex

vi while obeying system constraints. It first scans the vertices which have available bins.

Then it picks up the vertex that has the minimum forwarding load to vertex vi for load and

source balancing (break even with the minimum total forwarding load). If such vertex is

not available, it looks for a vertex which has the bins that can be preempted. For priority

balancing, each vertex maintains the sum of priorities (sp) for every other vertex. For

example, if vertex vi serves p3 and p2 streams for vertex vj, then spi(vj) will be 5. The

bigger this sum the higher the streaming quality that vertex vi serves vertex vj. Therefore,

when there are several candidate vertices for relaying one stream to a destination vertex, the

one with the smaller sum will be selected to achieve priority balancing.

The find out bin and find in bin routines are pretty straightforward. They return

either an unused bin or a bin used by lower priority stream for preemption. For selecting an

outbound bin to be preempted, we prefer to choose the lowest priority stream. For selecting

an inbound bin to be preempted, one important consideration is to select a stream that is

least used in forwarding to reduce the preemption cost, because once an inbound stream is

preempted all child vertices that rely on it will not be streaming from the parent vertex any

more.

The serve stream maintains the bookkeeping of inbound and outbound bins of source

and destination vertices. When preemption or view change is performed, the affected vertices

are saved in the victim set. The fix victim routine tries to fix the broken link. To reduce

56

Table 5.1: View Management Algorithm
serve view(vi)

S̄ ← get streams(S, vi)
for s ∈ S̄ in descending order of priority

v ← find source(s, vi)
if (v = null)

report rejection
end
out ← find out bin(s, v, vi)
in ← find in bin(s, v, vi)
if (out = null or in = null)

report rejection
return

end
serve stream(s, v, out, vi, in)

end
fix victim()

end

find source(s, dst)
for each v ∈ V other than dst

if (v can stream s to dst under system constraints)
if (v has extra outbound bins)

V1 ← V1 ∪ v
else

V2 ← V2 ∪ v
end

end
end
if (V1 6= ∅)

return v ∈ V1 where v has the least forwarding to dst
else

return v ∈ V2 where v has preemptable bins
end

end

57

the cost, this routine only fixes the broken link related to higher priority streams (e.g., p4

and p3). Otherwise, the affected vertex will simply ignore the lost stream and propagate

the message to its child vertices. The propagation will terminate either when the preempted

stream is not important for all child vertices or some child vertices have found new sources.

After the serve view routine is completed, the session controller calculates the new

topology and broadcasted to all vertices (i.e., service gateways).

5.6 Evaluation

We evaluate ViewCast in simulated 3DTI session. In this chapter, we introduce the experi-

mental setup for the evaluation and then report the experimental results, including rejection

ratio, overhead and QoS provisioning.

5.6.1 Experiment Setup

We implement a message-driven ViewCast simulator using C++ (on Windows and Linux

operating systems). The simulator first generates application-level overlay network. We use

mesh topology for the overlay network, where the connectivity between vertices follows the

uniform distribution. The total number of vertices, defined as the session size, ranges from

5 to 10. The total number of edges is determined by the connectivity ratio (CR) which is

the ratio of edges compared with the corresponding complete directed graph. For example,

a directed graph of 8 vertices will have 42 edges, if the connectivity ratio is set to 75% (i.e.,

56× 75%). We choose the connectivity ratio from 25% to 100%.

In the experiment, each vertex has 8 original streams which are evenly distributed in

360 ◦. For any view request to a vertex, at most 4 of its original streams are selected for

an optimal coverage of 180 ◦. To determine the range of degree bound, in the maximal case

of 10 vertices each vertex requires at least an in-degree ≥ 36 to get the optimal coverage

from every other vertex and an out-degree ≥ 8 so that all its streams may be accessible for

58

serving any view. The estimation has not considered relaying overhead. For simplicity, we

set the in-degree bound to be the same as the out-degree bound. The range of degree bound

(DegB) is chosen between 12 to 36.

During the simulated 3DTI session, each vertex sends view change request to the central

session controller. The interval of view change follows the normal distribution with a mean of

60 seconds. We use two patterns of view change: random walk and Zipf. In the random walk

pattern, each vertex adds a view change degree to its current view. The view change degree

follows the normal distribution with a standard deviation of 20 ◦. In the Zipf pattern, the

view is changed according to a Zipf distribution of 10 pre-selected view degrees (i.e., n = 10).

The Zipf distribution is actually the power-law distribution in discrete form. In our 3DTI

simulation, it dictates that the ith most popular view degree has the access frequency in

proportion to ω/iα, where α is a constant and ω is determined by n. The total running time

of one simulation experiment is 200 minutes.

The propogation delay along each edge follows the normal distribution with a mean of 50

ms. We assume each stream has the same bandwidth. Since our main goal of simulation ex-

periment is to study the Viewcast overhead and the impact of view change, the transmission

delay is of less interest. The simulation parameters are summarized in Table 5.2.

Table 5.2: Simulation Parameters
overlay topology mesh topology
number of vertices 5, 6, ..., 10
connectivity ratio (CR) 25%, 50%, 75%, 100%
in-degree (out-degree) bound (DegB) 12, 24, 36
number of streams per vertex 8
number of streams for optimal view
coverage

4

simulation time 200 minutes
view change interval normal distribution (µ = 60 seconds)

view change pattern
(1) random walk with view change degree in
normal distribution (µ = 0 ◦, σ = 20 ◦),
(2) Zipf (n = 10, α = 1.0)

propogation delay of each edge normal distribution (µ = 50 ms)

59

5.6.2 Rejection Ratio

We measure the rejection ratio of view change request. Recall that in ViewCast, the view

change request is served with relevant streams in descending order of importance and the

request is rejected if and only if there is no resource available to supply any stream. For

comparison, we introduce another method of view dissemination based on multicast, where

a view request is served by multicasting its relevant streams. However, the application needs

to explicitly specify the set of streams needed for a view and the system must supply all the

streams. Otherwise the request will be rejected. We use the notation of MC-n (1 ≤ n ≤ 4) to

refer to the multicast-based method where the application always specifies a set of n streams

to satisfy a view request. For example, MC-3 means that the system must deliver 3 streams

to the application otherwise the view request will be rejected. The results of rejection ratio

are plotted in Figure 5.8 and Figure 5.9. We use VC to denote the ViewCast method. Other

notations are explained in Section 5.6.1.

From Figure 5.8 and 5.9, we observe that the connectivity ratio has a very strong impact

on the view dissemination capacity of the overlay network. In the most constrained cases

(e.g., Figure 5.8(a,c,e)) where CR ≤ 25%, the rejection ratio is pretty high in either ViewCast

or multicast-based methods. However, when the session size increases (≥ 8) ViewCast starts

to perform much better. There is a clear-cut in performance at the medium region of CR

= 50%. When both the connectivity ratio and the degree bound are improved (CR ≥ 75,

DegB ≥ 24), the rejection ratio of ViewCast becomes almost zero. The rejection ratio of

multicast-based method drops as well. However, we show later that even in those cases

ViewCast still performs better.

5.6.3 Streams Per View

We measure the average number of streams for all successfully served view requests in View-

Cast. The results of streams per view are plotted in Figure 5.10 and Figure 5.11.

60

 0

 20

 40

 60

 80

 100

 5 6 7 8 9 10

A
ve

ra
ge

 R
ej

ec
tio

n
R

at
io

 (
%

)

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

 0

 20

 40

 60

 80

 100

 5 6 7 8 9 10

A
ve

ra
ge

 R
ej

ec
tio

n
R

at
io

 (
%

)

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

(a) CR = 25%, DegB = 12 (b) CR = 50%, DegB = 12

 0

 20

 40

 60

 80

 100

 5 6 7 8 9 10

A
ve

ra
ge

 R
ej

ec
tio

n
R

at
io

 (
%

)

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

 0

 20

 40

 60

 80

 100

 5 6 7 8 9 10

A
ve

ra
ge

 R
ej

ec
tio

n
R

at
io

 (
%

)

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

(c) CR = 25%, DegB = 24 (d) CR = 50%, DegB = 24

 0

 20

 40

 60

 80

 100

 5 6 7 8 9 10

A
ve

ra
ge

 R
ej

ec
tio

n
R

at
io

 (
%

)

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

 0

 20

 40

 60

 80

 100

 5 6 7 8 9 10

A
ve

ra
ge

 R
ej

ec
tio

n
R

at
io

 (
%

)

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

(e) CR = 25%, DegB = 36 (f) CR = 50%, DegB = 36

Figure 5.8: Average Rejection Ratio

Those figures indicate that ViewCast serves each view request with an average of 2.5 to

3 streams. This number is close to what could be achieved by MC-2 and MC-3. However,

if we examine Figure 5.10-5.11 along with Figure 5.8-5.9 and compare ViewCast with MC-2

61

 0

 20

 40

 60

 80

 100

 5 6 7 8 9 10

A
ve

ra
ge

 R
ej

ec
tio

n
R

at
io

 (
%

)

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

 0

 20

 40

 60

 80

 100

 5 6 7 8 9 10

A
ve

ra
ge

 R
ej

ec
tio

n
R

at
io

 (
%

)

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

(g) CR = 75%, DegB = 12 (h) CR = 100%, DegB = 12

 0

 20

 40

 60

 80

 100

 5 6 7 8 9 10

A
ve

ra
ge

 R
ej

ec
tio

n
R

at
io

 (
%

)

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

 0

 20

 40

 60

 80

 100

 5 6 7 8 9 10

A
ve

ra
ge

 R
ej

ec
tio

n
R

at
io

 (
%

)

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

(i) CR = 75%, DegB = 24 (j) CR = 100%, DegB = 24

 0

 20

 40

 60

 80

 100

 5 6 7 8 9 10

A
ve

ra
ge

 R
ej

ec
tio

n
R

at
io

 (
%

)

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

 0

 20

 40

 60

 80

 100

 5 6 7 8 9 10

A
ve

ra
ge

 R
ej

ec
tio

n
R

at
io

 (
%

)

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

(k) CR = 75%, DegB = 36 (l) CR = 100%, DegB = 36

Figure 5.9: Average Rejection Ratio (continued)

and MC-3, we will see that ViewCast achieve much lower rejection ratio by a margin around

20% to 40%.

62

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 6 7 8 9 10

A
ve

ra
ge

 S
tr

ea
m

s
P

er
 V

ie
w

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 6 7 8 9 10

A
ve

ra
ge

 S
tr

ea
m

s
P

er
 V

ie
w

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

(a) CR = 25%, DegB = 12 (b) CR = 50%, DegB = 12

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 6 7 8 9 10

A
ve

ra
ge

 S
tr

ea
m

s
P

er
 V

ie
w

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 6 7 8 9 10

A
ve

ra
ge

 S
tr

ea
m

s
P

er
 V

ie
w

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

(c) CR = 25%, DegB = 24 (d) CR = 50%, DegB = 24

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 6 7 8 9 10

A
ve

ra
ge

 S
tr

ea
m

s
P

er
 V

ie
w

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 6 7 8 9 10

A
ve

ra
ge

 S
tr

ea
m

s
P

er
 V

ie
w

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

(e) CR = 25%, DegB = 36 (f) CR = 50%, DegB = 36

Figure 5.10: Average Number of Streams Per View

5.6.4 Workload

We measure the standard deviation of workload among vertices to investigate how evenly

the forwarding load is divided. The workload is defined as the number of out-bound streams

63

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 6 7 8 9 10

A
ve

ra
ge

 S
tr

ea
m

s
P

er
 V

ie
w

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 6 7 8 9 10

A
ve

ra
ge

 S
tr

ea
m

s
P

er
 V

ie
w

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

(g) CR = 75%, DegB = 12 (h) CR = 100%, DegB = 12

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 6 7 8 9 10

A
ve

ra
ge

 S
tr

ea
m

s
P

er
 V

ie
w

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 6 7 8 9 10

A
ve

ra
ge

 S
tr

ea
m

s
P

er
 V

ie
w

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

(i) CR = 75%, DegB = 24 (j) CR = 100%, DegB = 24

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 6 7 8 9 10

A
ve

ra
ge

 S
tr

ea
m

s
P

er
 V

ie
w

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 6 7 8 9 10

A
ve

ra
ge

 S
tr

ea
m

s
P

er
 V

ie
w

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

(k) CR = 75%, DegB = 36 (l) CR = 100%, DegB = 36

Figure 5.11: Average Number of Streams Per View (continued)

served by a vertex. The results of standard deviation of workload are plotted in Figure 5.12

and Figure 5.13.

Those figures indicate several trends. First, the standard deviation grows bigger as the

degree bound increases. Second, when the overall request of stream sharing increases (i.e.,

64

 0

 5

 10

 15

 20

 5 6 7 8 9 10

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 W

or
kl

oa
d

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

 0

 5

 10

 15

 20

 5 6 7 8 9 10

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 W

or
kl

oa
d

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

(a) CR = 25%, DegB = 12 (b) CR = 50%, DegB = 12

 0

 5

 10

 15

 20

 5 6 7 8 9 10

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 W

or
kl

oa
d

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

 0

 5

 10

 15

 20

 5 6 7 8 9 10

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 W

or
kl

oa
d

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

(c) CR = 25%, DegB = 24 (d) CR = 50%, DegB = 24

 0

 5

 10

 15

 20

 5 6 7 8 9 10

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 W

or
kl

oa
d

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

 0

 5

 10

 15

 20

 5 6 7 8 9 10

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 W

or
kl

oa
d

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

(e) CR = 25%, DegB = 36 (f) CR = 50%, DegB = 36

Figure 5.12: Standard Deviation of Workload

MC-4 or MC-3) the workload tends to be more deviated. Third, we notice in terms of

load sharing ViewCast tends to perform not as good as multicast-based schemes, which is

expected as ViewCast prefers forwarding load to specific vertex as the major load balancing

criterion.

65

 0

 5

 10

 15

 20

 5 6 7 8 9 10

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 W

or
kl

oa
d

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

 0

 5

 10

 15

 20

 5 6 7 8 9 10

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 W

or
kl

oa
d

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

(g) CR = 75%, DegB = 12 (h) CR = 100%, DegB = 12

 0

 5

 10

 15

 20

 5 6 7 8 9 10

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 W

or
kl

oa
d

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

 0

 5

 10

 15

 20

 5 6 7 8 9 10

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 W

or
kl

oa
d

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

(i) CR = 75%, DegB = 24 (j) CR = 100%, DegB = 24

 0

 5

 10

 15

 20

 5 6 7 8 9 10

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 W

or
kl

oa
d

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

 0

 5

 10

 15

 20

 5 6 7 8 9 10

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 W

or
kl

oa
d

Session Size (Number of Vertices)

MC-1 / Random Walk
MC-2 / Random Walk
MC-3 / Random Walk
MC-4 / Random Walk

MC-1 / Zipf
MC-2 / Zipf
MC-3 / Zipf
MC-4 / Zipf

VC / Random Walk
VC / Zipf

(k) CR = 75%, DegB = 36 (l) CR = 100%, DegB = 36

Figure 5.13: Standard Deviation of Workload (continued)

5.6.5 Collateral Cost of ViewCast

In ViewCast, due to the preemption of network resource and view change some vertices may

have their streams involuntarily discontinued. We call those broken links the victims. More

66

precisely, a victim is defined as a pair of (v, s) where v ∈ V and s ∈ S. After each view request

is served, the routine of fix victims() is called to fix any possible victims. The size of victim

set indicates the scope of affected vertex/stream pairs. In the simulation, we measure the

average number of victims. The results are plotted in Figure 5.14 and Figure 5.15.

 0

 1

 2

 3

 4

 5

 6

 5 6 7 8 9 10

A
ve

ra
ge

 N
um

be
r

of
 V

ic
tim

s
P

er
 fi

x_
vi

ct
im

()

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

 0

 1

 2

 3

 4

 5

 6

 5 6 7 8 9 10
A

ve
ra

ge
 N

um
be

r
of

 V
ic

tim
s

P
er

 fi
x_

vi
ct

im
()

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

(a) CR = 25%, DegB = 12 (b) CR = 50%, DegB = 12

 0

 1

 2

 3

 4

 5

 6

 5 6 7 8 9 10

A
ve

ra
ge

 N
um

be
r

of
 V

ic
tim

s
P

er
 fi

x_
vi

ct
im

()

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

 0

 1

 2

 3

 4

 5

 6

 5 6 7 8 9 10

A
ve

ra
ge

 N
um

be
r

of
 V

ic
tim

s
P

er
 fi

x_
vi

ct
im

()

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

(c) CR = 25%, DegB = 24 (d) CR = 50%, DegB = 24

 0

 1

 2

 3

 4

 5

 6

 5 6 7 8 9 10

A
ve

ra
ge

 N
um

be
r

of
 V

ic
tim

s
P

er
 fi

x_
vi

ct
im

()

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

 0

 1

 2

 3

 4

 5

 6

 5 6 7 8 9 10

A
ve

ra
ge

 N
um

be
r

of
 V

ic
tim

s
P

er
 fi

x_
vi

ct
im

()

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

(e) CR = 25%, DegB = 36 (f) CR = 50%, DegB = 36

Figure 5.14: Average Number of Victims Per fix victim()

67

 0

 1

 2

 3

 4

 5

 6

 5 6 7 8 9 10

A
ve

ra
ge

 N
um

be
r

of
 V

ic
tim

s
P

er
 fi

x_
vi

ct
im

()

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

 0

 1

 2

 3

 4

 5

 6

 5 6 7 8 9 10

A
ve

ra
ge

 N
um

be
r

of
 V

ic
tim

s
P

er
 fi

x_
vi

ct
im

()

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

(g) CR = 75%, DegB = 12 (h) CR = 100%, DegB = 12

 0

 1

 2

 3

 4

 5

 6

 5 6 7 8 9 10

A
ve

ra
ge

 N
um

be
r

of
 V

ic
tim

s
P

er
 fi

x_
vi

ct
im

()

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

 0

 1

 2

 3

 4

 5

 6

 5 6 7 8 9 10

A
ve

ra
ge

 N
um

be
r

of
 V

ic
tim

s
P

er
 fi

x_
vi

ct
im

()

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

(i) CR = 75%, DegB = 24 (j) CR = 100%, DegB = 24

 0

 1

 2

 3

 4

 5

 6

 5 6 7 8 9 10

A
ve

ra
ge

 N
um

be
r

of
 V

ic
tim

s
P

er
 fi

x_
vi

ct
im

()

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

 0

 1

 2

 3

 4

 5

 6

 5 6 7 8 9 10

A
ve

ra
ge

 N
um

be
r

of
 V

ic
tim

s
P

er
 fi

x_
vi

ct
im

()

Session Size (Number of Vertices)

VC / Random Walk
VC / Zipf

(k) CR = 75%, DegB = 36 (l) CR = 100%, DegB = 36

Figure 5.15: Average Number of Victims Per fix victim() (continued)

The results indicate that in most cases the number of victims is small (around 2 ∼ 3),

which is quite acceptable.

68

Chapter 6

Streaming Control

The purpose of streaming control is to ensure temporal quality, which is important for

satisfactory live tele-communication. Particularly, we are interested in maintaining a fixed

frame rate of rendering throughout the entire 3DTI session to reduce jerkiness. To achieve

that, we use the video frame as the probing packet and feed the result into a PID controller

to fine tune the frame size such that the arrival of each frame meets the deadline of rendering.

The details are given in this chapter.

6.1 Problem Description

The streaming control layer is the bottom layer of the management framework. Below it,

there is the transport layer. We choose TCP as the transport protocol due to its desir-

able properties including reliable and in-order delivery, congestion control, and the easiness

of handling large size packet at the application layer. Those features are well suited for

transmitting large volume data. Even though the backoff and retransmission mechanisms

seem to make it unfit for real-time streaming, it has been shown that TCP is widely used

in commercial systems ([52]). Note that, the streaming control method can be applied to

UDP-based transport protocol as well, e.g., the tcp-friendly rate control protocol ([18]).

Figure 6.1 illustrates the basic problem of streaming control based on the timing model

introduced in Chapter 2. At the capturing tier, macro-frames are generated at the fixed

period. Accordingly, at the rendering tier we apply a timer which has the same period as

the capturing. Thus, for each macro-frame Ft we have Tdisp(Ft) which is the time that Ft

69

Network

Tdisp(Ft)

macro-frame (Ft)

Tdeadline(Ft)

f1,t

f2,t

f3,t

f4,t

f5,t

Trecv(Ft)

Figure 6.1: Streaming Control Problem

must be rendered. There are two other related time instants, Tdeadline(Ft) which is the time

that Ft must be received and Trcv(Ft) which is the actual time that Ft is received. Ideally,

we should guarantee Trcv(Ft) ≤ Tdeadline(Ft) for every macro-frame.

Suppose the network is stable. If we increase the size of macro-frame, then Trcv(Ft)

will grow towards Tdeadline(Ft). Since it is generally preferrable to have larger frame size,

the streaming control should choose a suitable frame size such that Trcv(Ft) is as close to

Tdeadline(Ft) as possible. On the other hand, suppose the network status changes with the

available bandwidth decreased. The direct consequence is that Trcv(Ft) will become bigger

and may finally grow beyond Tdeadline(Ft) which indicates that the frame size is too big under

the current network condition.

Therefore, we can monitor the difference of Tdeadline(Ft) − Trcv(Ft) as the feedback for

the control process. The goal of control is to keep the difference close to 0. If Tdeadline(Ft)−

Trcv(Ft) > 0, the size of next frames should be increased. Otherwise, if Tdeadline(Ft) −

Trcv(Ft) < 0, the size of next frames should be decreased.

In this chapter, we present the scheme of PID-based (proportional-integral-derivative)

streaming control. We first introduce the PID controller [19]. Then, we describe how it is

applied in the streaming control. Finally, we show the experimental results as evaluation.

70

6.2 PID Controller

Figure 6.2 illustrates an overall control system. In the figure, plant is the component whose

output (Y) needs to be controlled. The controller performs the control function (Uf), based

on the error (e) which is the difference between the desired value (Rv) and the output. The

output of the control function is given to the plant to enforce the control.

R e
Controller

U
Plant

Y

Figure 6.2: An Overall Control System

The basic PID control function is given in Equation 6.1, which is a linear combination

of a proportional term, an integral term and a derivative term,

uf (t) = Kp

(
e(t) +

1

Ti

∫ t

0

e(τ)dτ + Td
de(t)

dt

)
(6.1)

where e(t) is the difference between the desired value Rv and the actual output Y , Kp is the

proportional gain, Ti is the integral factor and Td is the derivative factor. For the discrete

form, we could use the following approximation.

∫ t

0

e(τ)dτ ≈ ∆t
n∑

j=0

e(j)
de(t)

dt
≈ e(n)− e(n− 1)

∆t

where ∆t is the sampling period. By introducing the integral gain Ki and the derivative

gain Kd, the discrete case of PID function can be derived as in Equation 6.2.

uf (n) = Kpe(n) + Ki

n∑
j=0

e(j) + Kd(e(n)− e(n− 1)) (6.2)

71

Table 6.1: Program of PID controller
update(error)

t← get time()
∆t← t− last time
derror ← error−prev error

∆t

ierror ← ierror + error ×∆t
frame size← Kp × error + Ki × ierror + Kd × derror

prev error ← error
last time← t

end

where,

Ki =
Kp∆t

Ti

Kd =
KpTd

∆t

The design procedure is to tune the parameters of Kp, Ki and Kd. For this, we choose the

Ziegler-Nichols method as a reference [60], which is a very popular online tuning strategy.

First, we set Ki and Kd to zero and increase Kp until there is sustained and stable oscillation

in the output. Once the critical gain (Kc) and the oscillation period (Pc) are obtained, the

parameters can be set as in Equation 6.3. The tuning details are given in Section 6.4.

Kp = 0.65Kc Ti = 0.5× Pc Td = 0.125× Pc (6.3)

6.3 Implementation

The programming of PID function is pretty straightforward. The sketch of the program is

listed in Table 6.1, where the update routine is executed at the sender side whenever an

acknowledgement packet is received.

The main implementation issue is how to start the timer at the rendering tier. Figure 6.3

illustrates the problem. Suppose at the beginning of the first period, a macro-frame F1 is

pushed to the network by the capturing tier. After certain amount of time, the macro-frame

is received by the rendering tier at time Trcv(F1). The question is how to determine an

72

appropriate deadline for macro-frame F1, which depends on when we start the rendering

timer. Seemingly, the most appropriate time to start the rendering timer is the time instant

when the first bit of F1 is received (i.e., T0). However, since it is not easy to acquire this

value we use a simple method of approximation.

signaling
packet

macro-frame 1

2

1

2

3

3

capturing tier rendering tier

T0

deadline

Figure 6.3: Initialization of the Rendering Timer

Before the capturing timer starts, a small packet is sent to the rendering tier. The

rendering tier records the receipt time of the packet, which we use as the start time of the

rendering timer, T0.

6.4 Evaluation

6.4.1 Experiment Setup

We perform the experiment to evaluate the feasibility of the PID controller. For the data,

we set the frame rate (fr) as 5 frames/second. Thus, the period is 200 ms. We set the

deadline to be 20 ms ahead of the next period. For the networking, we use two different

settings. In the first setting, we deploy one data sender at the University of California at

73

Berkeley and one data receiver at the University of Illinois at Urbana-Champaign. For the

second setting, we deploy one data sender at the uplink of the broadband network and one

data receiver at the University of Illinois at Urbana-Champaign.

6.4.2 Network Setting: UC Berkeley → UIUC

We use the Ziegler-Nichols method for tuning the control parameters. First we set Ki = 0

and Kd = 0, We find the critical gain Kc around 380000. We then set Kp = 247000. We

choose Pc = 2
fr

and ∆t = fr with fr = 5 frames/second. Thus, we start to probe Ki from

500000 and Kd from 15000 as suggested by the Ziegler-Nichols method. The results of one

set of parameters are plotted in Figure 6.4.

 0

 50000

 100000

 150000

 200000

 0 100 200 300 400 500

M
ar

co
-F

ra
m

e
S

iz
e

(B
yt

e)

Time (Second)

Figure 6.4: Macro-frame Size with Kp = 247000, Ki = 60000 and Kd = 1000

We run the test for 500 seconds. As shown in the figure, the frame size starts to converge

at 110 seconds. In the stabilized area, the average frame size is 187 KBytes, indicating

a throughput of 7.5 Mbps for one TCP connection. The standard deviation of frame size

is 929 Bytes. We also plot the error in Figure 6.5. In the stabilized area, the average of

absolute error is 0.001296 second and the standard deviation of error is 0.001324 second.

Those results indicate that the converging is very fast, and the variation of frame size and

74

frame arrival is pretty small.

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 100 200 300 400 500

E
rr

or
 (

S
ec

on
d)

Time (Second)

Figure 6.5: Error with Kp = 247000, Ki = 60000 and Kd = 1000

6.4.3 Network Setting: Broadband User → UIUC

We take similar approach for tuning the control parameters. We first find the critical gain Kc

around 15000 and 20000. We still choose Pc = 2
fr

and ∆t = fr with fr = 5 frames/second.

Therefore, we derive Kp = 10000, Ki = 40000 and Kd = 625. We use above parameters and

run the experiment for 300 seconds. The results are plotted in Figure 6.6.

As shown in the figure, the frame size starts to converge around 20 seconds. In the

stabilized area, the average frame size is 24 KBytes, indicating an uplink throughput of 960

Kbps. The error is plotted in Figure 6.7. The average of absolute error in the stabilized area

is 0.003803 second and the standard deviation is 0.003572 second.

We also try different settings of parameters. Figure 6.8 shows the result with Kp = 10000,

Ki = 20000 and Kd = 625. We reduce the gain of Ki and find that the time of convergence

grows to around 35 seconds. However, the variation becomes much less.

In the following tests, we try two more settings with (1) Kp = 10000, Ki = 20000 and

Kd = 300; and (2) Kp = 10000, Ki = 20000 and Kd = 900. The results are plotted in

75

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200 250 300

M
ar

co
-F

ra
m

e
S

iz
e

(B
yt

e)

Time (Second)

Figure 6.6: Macro-frame size with Kp = 10000, Ki = 40000 and Kd = 625

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 50 100 150 200 250 300

E
rr

or
 (

S
ec

on
d)

Time (Second)

Figure 6.7: Error with Kp = 10000, Ki = 40000 and Kd = 625

Figure 6.9(a) and Figure 6.9(b) respectively.

76

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200 250 300

M
ar

co
-F

ra
m

e
S

iz
e

(B
yt

e)

Time (Second)

Figure 6.8: Macro-frame size with Kp = 10000, Ki = 20000 and Kd = 625

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200 250 300

M
ar

co
-F

ra
m

e
S

iz
e

(B
yt

e)

Time (Second)

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200 250 300

M
ar

co
-F

ra
m

e
S

iz
e

(B
yt

e)

Time (Second)

(a) Kp = 10000, Ki = 20000 and Kd = 300 (b) Kp = 10000, Ki = 20000 and Kd = 900

Figure 6.9: Streaming Control Performance with Different Settings of PID Gains

77

Chapter 7

Real-Time 3D Video Compression

For the service middleware layer, one major challenge is to accommodate the huge data rate

from the application layer. This is especially true at higher frame resolutions and rates.

Real-time 3D video compression is needed to alleviate this bandwidth requirement. An-

other challenge for 3D video compression lies in the diversity of data. Existing image/video

compression algorithms such as JPEG, MPEG, and H.263 cannot be applied directly to 3D

video compression because the video frame includes not only color information, but also

depth information. Thus, we need to design a compression scheme that can handle both

color and depth information.

7.1 Design Methodology

Because of their different properties, the color and depth data must be considered differently.

The human visual system is relatively insensitive to variations in color. 2D compression

algorithms such as MPEG and JPEG take advantage of this insensitivity by using lossy

compression methods that still perform well on color video images. However, any loss of

depth information may distort the rendered volumetric image. Therefore, we decided to use

a lossless algorithm to compress the depth information. In addition, the compression scheme

must meet the following goals.

• The compression and decompression must be performed fast enough for real-time in-

teractive communication.

78

• There must be sufficient compression to accommodate the underlying bandwidth lim-

itation.

• The compression algorithm should balance information loss against time and space cost

to allow effective real-time transmission of 3D images with acceptable visual quality.

• The intra-stream compression algorithm must take into account particular 3D repre-

sentations used in tele-immersive environments and should be compatible with inter-

stream compression algorithms.

In the following sections, we present one intra-stream compression scheme for 3D depth

images motivated by the design considerations given above.

7.2 Intra-stream Compression Scheme

We apply color reduction to compress the color information and then uses zlib to further

compress all the data, including the depth information. The scheme is denoted as CR-zlib

scheme. Color reduction is a popular image compression technique [2, 1] that reduces the

number of bits used to represent colors (e.g. reducing from 24 bits to 8 bits per pixel). Color

reduction can maintain high visual quality in most cases. In addition, there are several

reasons for using color reduction in the context of 3DTI environments.

• Color reduction is suitable in the case of simple color composition, which is typical

in a tele-conferencing setup. For example, Figure 7.1 shows the distribution of colors

in RGB space from 612 depth images captured in our 3DTI experiments, featuring a

person moving against a blank background.

• As our experiments show, if the color composition is relatively constant, then the

runtime overhead of color compression can be kept small. This property also fits well

with 3DTI environments.

79

• Color reduction is a pixel-level operation that can be performed on a partial image (i.e.

image with some of its pixels removed). Therefore, it can be easily combined with the

rendering independency property.

Figure 7.1: Color Distribution of 3DTI Video

7.2.1 Color Reduction

We briefly describe one color reduction algorithm tailored for 3DTI environments. The

algorithm is based on ImageMagick [2], which contains three phases: classification, reduction,

and assignment.

Color classification builds a color description tree for the image in RGB color space. In

Figure 7.2, the root of the tree represents the entire space from [0, 0, 0] to [Cmax, Cmax, Cmax]

(usually Cmax = 255). Each lower level is generated by subdividing the cube of one node

into eight smaller cubes of equal size. For each pixel in the input image, classification scans

downward from the root of the color description tree. At each level of the tree, it identifies

the single node that represents a cube containing the color of the pixel and updates the

statistics including the quantization error in that node.

Color reduction collapses the color description tree until the number it represents is

at most the number of colors desired in the output image. The goal is to minimize the

80

Figure 7.2: Color Description Tree

numerical discrepancies between the original colors and quantized colors. For this, color

reduction repeatedly prunes the tree. On any given iteration over the tree, it selects those

nodes whose quantization error is minimal for pruning and merges their color statistics

upward.

Finally, color assignment generates the output image from the pruned tree. It defines the

color map of the output image and sets the color of each pixel via indexing into the color

map. For the example of 24-bit to 8-bit color reduction, the output image contains the color

map of 768 bytes and an index array of pixels that is one third the size of the original pixel

array, achieving a total compression ratio close to 3.

7.2.2 zlib Compression

After color reduction, zlib [5] compression, a powerful, generic and openly available com-

pression tool, is applied to the depth information along with the reduced color information

to further improve the compression ratio.

The decompression follows similar steps in reverse except that color reduction is much

simpler. Once the color map and the color index array are restored, the original color infor-

mation can be easily recovered. As a summary, the overall compression and decompression

81

procedures are illustrated in Figure 7.2.2.

depth color

Color

Reduction

color_map color_indexdepth

zlib

Compression

depth

zlib

Decompression

color_index

Color

Retrieval

depth

color_map

color

(a) Compression Diagram (b) Decompression Diagram

7.2.3 Practical Issues

Color reduction is regarded as an expensive operation, which may affect the performance of

real-time image transmission. However, because the basic color layout of the image frames

in a tele-immersion session does not change dramatically (the colors of people’s hair, face

and clothes do not change), we need not perform the full-fledged color reduction algorithm

for each frame. Once the color description tree has been set up and properly pruned (via

the classification and reduction phases), the output color-reduced image can be generated

during the assignment phase. While the first frame of the session has to go through all

three phases, the follow-up frames can simply reuse the tree generated in the first frame

to generate the output image directly; this involves only the assignment phase. Since most

compute-intensive operations of the algorithm happen during the classification and reduction

phases, much computing overhead is saved.

Furthermore, a runtime monitoring feedback loop can be introduced at the sender side

to periodically calculate the color reduction error. If the errors become consistently larger

than a threshold, the original pruned tree has become less accurate at representing the color

layout of the current scene. In this case, we rerun the entire algorithm on the current image

frame to generate a new tree, and then continue the same procedure as described above. The

larger computing cost can be amortized over n frames. For tele-immersive environments, in

82

which the color layout is assumed to be very stable, the average value of n could be large.

As shown in the experimental results below, this compression scheme is very well suited

to our problem domain, giving good compression ratios as well as good real-time performance

and visual quality. Although color reduction is usually considered a time-consuming opera-

tion, we show that under the context of tele-immersive environments most of the computing

overhead can be eliminated to achieve very high performance for 3D video compression.

7.3 Evaluation

For comparison, we introduce another scheme, JPEG-RH, which uses motion JPEG for color

compression and run-length coding (RLE) plus Huffman coding for depth compression. For

implementation, we use the Independent JPEG Group’s library software. For the depth

compression, we use the Basic Compression Library by Marcus Geelnard.

7.3.1 Evaluation Metrics

According to the design goals, we evaluate and compare the performance of the two com-

pression schemes in terms of the time cost, compression ratio, and visual fidelity.

• Time Cost. The time cost represents the compression and decompression time for one

image frame. For compression, we are also interested in measuring the time cost of

the individual components: (1) for the CR-zlib Scheme, the time cost of each phase of

color reduction and zlib compression, (2) for the JPEG-RH Scheme, the cost of color

and depth compression.

• Compression Ratio (CR). The compression ratio is defined as: CR = size of original data
size of compressed data

.

• Visual Fidelity. The video fidelity is measured in terms of the peak signal-to-noise

ratio (PSNR), which is commonly used as a measure of reconstruction quality in image

compression.

83

7.3.2 Environment

We have implemented both compression schemes in C/C++ on the Linux operating system

and tested our code on Dell Precision 450 (Dual Xeon processor with 1 GBytes memory)

computers running Fedora Core 2. We decided to integrate our compression algorithm with

the UIUC/UC Berkeley tele-immersion system so that we could (1) transmit the compressed

frames and ensure that our compression and decompression were correct and (2) evaluate the

performance of the system with our compression installed as compared with the base system.

For testing and evaluation, we used a 3D video scene pre-recorded in the tele-immersive

environment that shows a person and his physical movement (Figure ??). Currently, our

system uses an image resolution of 320 × 240. Each uncompressed video stream in our

test tele-immersive recording contains 612 depth frames with a total per-stream size of 235

MBytes (612× 320× 240× 5).

In establishing our testing and evaluation environment, we wanted to reuse the existing

system as much as possible. Therefore, we integrated the compression and decompression

code into the service middleware layer. This integration made the compression and decom-

pression transparent to the capturing and rendering tiers and allowed us to deploy the code

with minimal system modification. The experimentation consisted of several runs, each

involving the compression and decompression of individual video frames as follows. The

service gateway at the sender end compressed a frame and transmitted it to the receiver,

where it was decompressed and compared with a local copy of the original frame to measure

degradation of visual fidelity.

7.3.3 Compression Time

Table 7.1 shows the compression time of both schemes. The time unit is one millisecond

(ms). For the CR-zlib scheme, the most expensive operation in terms of time taken is color

classification and reduction with an average around 35 ms. However, as mentioned earlier,

84

it is reasonable to assume a stable color layout in a tele-conferencing environment such

that the classification and reduction phases need to be performed only for the first frame of

the session or every n frames based on a monitoring mechanism. In between, frames may

omit the classification and reduction steps. For a stable color layout, n could be large (e.g.

n = 100). Therefore, the average compression time can be taken as around 10 ms, as we

assume an average recalculation period of 10 seconds and a frame rate of 10 frames per

second.

For the JPEG-RH scheme, the average compression time is around 13 ms. The color

(JPEG) compression performed better than the depth compression (even though the color

contains more data). This is probably because (1) the depth compression uses two different

types of compression (run-length encoding and Huffman coding), (2) the JPEG implemen-

tation we use may be more efficient than the implementations of RLE and Huffman coding,

and (3) the Huffman coding implementation recomputes the Huffman table for each frame,

whereas JPEG uses a fixed Huffman table.

The timing results of both compression schemes are quite good, with even the worst time

being around 20 ms and well below 100 msec, which is the basic requirement for processing

10 3D frames per second. These results show that our compression schemes are feasible for

the 3D video processing demanded by the 3DTI environments.

Table 7.1: Compression Time of Two Schemes

(a) CR-zlib Scheme (unit: ms)

min avg max

classification 0.416 7.11 14.4
reduction 0.001 27.6 80.9
assignment 0.878 4.19 9.29
zlib compression 2.66 4.93 11.1

(b) JPEG-RH Scheme (unit: ms)

min avg max

color compression 3.59 5.99 10.2
depth compression 3.68 7.02 10.5

85

7.3.4 Decompression Time

Table 7.2 shows the decompression times for both schemes. The decompression time of the

CR-zlib scheme is better than that of the JPEG-RH scheme (with average 1.7 ms versus

9.2 ms). For the JPEG-RH scheme, the color decoding (JPEG) is on average faster than

encoding, but depth decoding is significantly slower than depth encoding. This agrees with

the manual for the Basic Compression Library we use for Huffman coding, which states that

decoding is slower than encoding.

Table 7.2: Decompression Time of Two Schemes

(a) CR-zlib Scheme (unit: ms)

min avg max

decompression 1.36 1.72 3.99

(b) JPEG-RH Scheme (unit: ms)

min avg max

decompression 2.87 9.23 16.6

7.3.5 Compression Ratio

Table 7.3 gives the compression ratio achieved for the 612 depth frames. The performance

of compression is very impressive (with a compression ratio of 25.9 for the CR-zlib scheme

and 15.4 for the JPEG-RH scheme), which implies that on average the overall frame size

(both color and depth) can be shrunk from 384 KBytes (5× 320× 240) to below 15 KBytes.

This excellent compression reflects the large amount of spatial redundancy in the 3D depth

image, which consists of a person moving against an empty background (Figure ??). For

color compression, color reduction and JPEG have comparable average compression perfor-

mance. On the other hand, the depth compression performed by zlib is better than RLE

plus Huffman coding.

7.3.6 Visual Fidelity

The visual fidelity of the color information after decompression is measured using PSNR

(in dB). The results are given in Table 7.4, which indicates that both schemes have high

86

Table 7.3: Compression Ratio of Two Schemes

(a) CR-zlib Scheme

min avg max

color ratio 2.97 2.97 2.97
overall ratio 14.6 25.9 338

(b) JPEG-RH Scheme

min avg max

color ratio 9.57 15.8 126
depth ratio 7.69 14.9 272
overall ratio 8.69 15.4 200

compression quality, with the CR-zlib scheme achieving slightly better fidelity to the original

image.

Table 7.4: PSNR of Two Schemes

(a) CR-zlib Scheme (unit: dB)

min avg max

color 45.9 51.5 74.3

(b) JPEG-RH Scheme (unit: dB)

min avg max

color 41.5 45.7 68.3

We also visually judge the image quality by comparing two similar frames before and

after data compression as in Figure 7.3 and Figure 7.4. No subjective quality degradation is

observed. We note that in many tele-immersion scenarios such as the one shown, the color

layout of the image is rather simple, which yields unnoticeable degradation.

Figure 7.3: Visual Quality before Compression

87

Figure 7.4: Visual Quality after Compression

7.3.7 Lessons Learned

For color compression, the performance data indicates that color reduction could be a better

choice than JPEG in terms of compression time, compression ratio, and visual fidelity. How-

ever, the time cost of color reduction depends largely on the particular tele-immersive video

being processed. If the color change of the scene occurs very frequently and dramatically,

then JPEG may give a much better performance. Hence as an extension, we propose a pe-

riodic monitoring and switching mechanism which operates at two levels. In the lower level,

a monitoring thread decides whether a full-fledged execution of color reduction is necessary

by measuring quality after decompression. In the higher level, if the most recent window of

history shows a higher overhead for color reduction, the monitor may (depending on other

factors such as bandwidth estimation) decide to switch to JPEG compression. The switching

between the two schemes is very flexible as the compression method can be indicated in the

frame header by using one extra bit. For depth compression, the performance of zlib is better

than run length coding plus Huffman coding, though this is primarily an implementation

issue of the different compression libraries.

88

Chapter 8

Related Work

We summarize previous work in five main aspects: (1) existing systems, (2) 3D compression,

(3) multi-stream coordination, (4) view-based camera/stream selection, and (5) multicast-

based content dissemination.

8.1 Existing Systems

Existing tele-conferencing and tele-immersive systems can be classified into three categories:

(1) tele-conferencing systems over COTS computing platforms and existing Internet, (2)

tele-presence systems relying on augmented OS/middleware support and, (3) tele-immersive

systems over advanced networking service.

8.1.1 Tele-conferencing Systems over COTS Components

Most video conferencing systems widely in use today fall into the first category. Examples

include PolyCom, Microsoft NetMeeting, WebEx, etc. These systems aim to provide point-

to-point or limited multi-point communication for desktop users. Only a single view is

available for each user through a 2D web camera. Since such systems produce medium

or low quality video and audio stream compressed using standardized media format (H.263,

MPEG4, etc.), the bandwidth requirement is largely compatible with a variety of networking

environments including DSL and ISDN connections.

89

8.1.2 Tele-presence Systems over Augmented Components

Solutions in the second category aim to provide users the tele-presence experience beyond

the single 2D view. In [15] and [20], participants of video conference are grouped and tiled

into synthetic environments such as virtual auditorium or digital amphitheater. Coliseum

[10] is a desktop-based immersive conferencing system. Here, the 3D view of a user is cap-

tured by multiple cameras, extracted from background, then reconstructed and embedded

into the virtual environment. Finally, 2D video is created by locally rendering the 3D scene

from the user-defined viewpoint, then streamed to the network. A commonality shared by

these applications is that the transport services of current commodity operating systems

(e.g., Windows) do not satisfy their demands for the media streaming purpose. Therefore,

advanced software modules or middleware framework are developed to enhance the existing

transport service to effectively support these applications. In [15] and [20], frame tiling

and stream merging functions are provided to produce synthetic media stream. [10] cre-

ated Nizza, a middleware framework to simplify the development of the media streaming

subsystem.

8.1.3 Tele-immersive Systems over Advanced Networking

Service

Solutions in the last category include Virtue [47], MetaVerse [41, 48], and the National Tele-

Immersion Initiative [31, 39, 51]. These systems aim to provide teleimmersive realism to

users. Similar to Coliseum [10], they rely on multiple cameras to capture the 3D scene.

However, after reconstruction, the 3D data stream, instead of the 2D rendered view, is

transmitted to the network. The advantage of this choice is to give users maximum freedom

to watch the 3D scene from any viewpoint and change it anytime he/she wishes to do

so. In case more than one user are present at a local site such as a conferencing room with

multiple displays, they can also share the same 3D video stream by watching it from different

90

viewpoints. Due to the huge volume of 3D data stream, it poses significant challenges to

the current transport service and the capacity of the traditional Internet infrastructure

itself. The Tele-Immersion system developed by UNC Chapel Hill is deployed over the

Internet2, in order to cope with its considerable traffic demand. The entire architecture of

the network transport service also needs complete innovation. [52] proposed a cluster-to-

cluster architecture. Here, gateways are inserted at both ends of the path, which aggregate

and regulate all data flows through them. This solution was shown to well address the

synchronous arrival and racing condition among multiple camera streams. In [48], an overlay-

based multi-path routing service was introduced for efficient delivery of multiple streams.

It is shown that by utilizing redundant paths provided by the overlay routing service, the

aggregate bandwidth is significantly augmented, in comparison to the case of single end-to-

end path. Other than attempts to modify the network transport service, many efforts are

also made to design novel 3D data compression techniques. In [31], a 3D data compression

scheme was proposed, which exploits the fact that many pixels in the 3D space are captured

by multiple cameras. In order to remove these redundant points, one reference stream is

chosen, which is used by other streams to remove the redundant pixels already appearing in

the reference stream.

8.2 3D Compression

The 3D data model has a direct impact on the design of compression algorithms. Therefore,

we divide the related work into three categories based on the underlying data models and

present them in the order of relevance to our work including: (1) compression based on depth

images, (2) compression based on volumetric data, and (3) compression based on triangular

meshes.

91

8.2.1 Depth Image Compression

The data model of the first category is used in 3DTI environments as described in Chap-

ter 2. Under this model, a 3D image (i.e., macro-frame) is represented with multiple 2D

depth images captured by individual 3D cameras from different viewpoints at the same time

instant. In contrast to an ordinary 2D image, the depth image has extra depth information

for every pixel. There are two major compression methods: inter-stream and intra-stream

compression. In inter-stream compression [31, 29], the 2D image closest to the viewpoint

of the user is selected as the reference image, which is not compressed. Other images are

compared with the reference image to remove redundant pixels within a certain threshold of

depth distance. The method decreases the total number of pixels that need to be rendered

as the non-reference images are reduced to differential images. The problems of inter-stream

compression include the considerable communication overhead involved in broadcasting the

reference image and the diminishing redundancy between images of larger viewpoint differ-

ence. To alleviate these problems, a two-level referencing and grouping scheme is applied.

In addition, the performance of compression ratio is highly associated with the density of

cameras. In one experiment ([31]), 22 3D cameras are deployed with a horizontal field of

42 ◦ to achieve a five to one compression ratio.

Intra-stream compression schemes ([56, 30]) process each stream individually without

cross-stream comparison. In [56], color and depth components are compressed using different

algorithms. The color is compressed using lossy compression while the depth using lossless

compression. In [30], video stream encoding is extended to encode color and depth. Results

indicate that a better compression ratio is achieved when color and depth are encoded using

separate motion vectors. Intra-stream compression has several advantages. First, it achieves

better scalability, since the overhead related to the number of streams is almost trivial as

compared with inter-stream compression. Second, the compression ratio of intra-stream

compression is consistently better than that of inter-stream compression with comparable

92

quality. Unlike the latter, the performance is not affected by the density of cameras as each

stream is compressed separately.

The coding of multiple correlated video streams or multi-view video coding (MVC) has

recently become an active topic including, for example, a multiview transcoder [8] and ISO

survey of MVC algorithms [7]. The common idea is to augment MPEG encoding scheme with

cross-stream prediction to exploit spatial redundancy among different streams. However,

as pointed out earlier cross-stream compression could involve very high overhead. Most

implemented systems we have seen so far still encode each stream independently such as a

multi-view video system [34] and a 3D TV prototype [35].

8.2.2 Volumetric Data Compression

The volumetric data model in the second category refers to a regular 3D grid whose voxels

contain RGB or grayscale information. The 3D data are derived from a discrete collection

of samples generated by scientific simulations or by volumetric imaging scanners such as

computerized tomography (CT) scanners. The typically large size of the resulting voxel

datasets has been a driving factor in research targeting compression of volumetric images.

For example, one 3D image from the male dataset of the National Library of Medicine (NLM)

contains 1,878 cross-sectional (2D) images (slices) taken at 1mm intervals. The slice has a

resolution of 512 × 512, and each voxel needs 16 bits to store grayscale information. The

3D wavelet transform [53, 25, 9] is the most important compression method for this data

model; it is an extension of 2D wavelet compression techniques for 2D images. To perform

a 3D wavelet transform, a 3D image is first divided into unit blocks of size 16 × 16 × 16 to

take advantage of the spatial coherence in the cube. The wavelet coefficients are computed

for each unit block. Non-zero coefficients are then further processed using quantization and

entropy encoding. Although the 3D wavelet transform achieves a very high compression ratio,

its application to the 3D video of tele-immersive environments is not straightforward and

the overhead of the algorithm may offset its advantages. For example, it is not beneficial to

93

apply a 3D wavelet transform on a sparse dataset such as the contour of the subject. To make

a wavelet transform moreefficient in a tele-immersive context, a transformation function is

needed to first pack the data into a more dense volumetric form while maintaining a high

spatial coherence within unit blocks. This function may involve significant time cost.

8.2.3 Triangular Meshes Compression

The last category of triangular meshes represents the most widely used 3D geometric model

in computer graphics for purposes such as manufacturing, scientific computation, and gam-

ing due to the fact that polygonal surfaces can be efficiently triangulated. The triangular

representation of 3D geometry has two major components: vertex coordinates and trian-

gles, and their associated properties including color. As complex scene representations may

contain millions of triangles, the amount of data required to store such scenes may be quite

large. On average, the number of triangles is twice the number of vertices, and each type of

data may exhibit different kinds of data redundancy. Hence, the popular mesh compression

algorithms treat vertices and triangles differently. The vertex data can be compressed using

the vertex spanning tree as in the Topological Surgery approach [49] adopted by the MPEG-4

standard. The spanning tree is constructed to exploit spatial coherence, or the observation

that proximity of the nodes in the tree often implies geometric proximity of the correspond-

ing vertices. The ancestors of the tree can be used as predictors and only the differences

between the predicted and actual values encoded. The differences are further processed using

quantization and entropy coding. The property information can be compressed in a similar

way. For triangle data, the basic unit of compression is the triangle strip which defines a

particular order of traversal such that each new triangle can be represented by adding one

vertex. Among triangle-based compression techniques proposed, Edgebreaker [45, 46] is the

most advanced scheme; it encodes the traversal using an alphabet of five symbols with an

overall performance of less than 2 bits per triangle. Recent efforts [32, 33, 46] aim to reduce

the number of bits per triangle and extend the basic scheme to more arbitrary topologies. 3D

94

compression based on triangular meshes achieves a very high compression ratio. However,

the challenge of applying this technique lies in the real-time and automatic acquisition of

3D models, which is currently an active research area.

8.3 Multi-stream Coordination

Coordination Protocol (CP) proposed in [39, 40] is a transport layer mechanism used for

coordinating multiple streams in cluster-to-cluster applications. The protocol resides on

the stack of the aggregation point (AP) which is a special host where all streams converge

before an out-going shared path and must be under the local administrative control. For one

cluster-to-cluster connection, a pair of AP’s are needed to cooperate. To use the protocol,

an application first registers its streams with the AP. Then the AP monitors the link status

of each stream (e.g., round trip time, loss rate and available bandwidth) by exchanging the

information in the protocol header. The per stream information aggregated by the AP can

be retrieved by the application.

The advantage of CP is that it provides a general means where per stream information

can be collected and disseminated for high level multi-stream management. The changes

needed are restricted to the end-to-end scope instead of intermediate routers. However, the

real question of how to coordinate multiple correlated streams is not answered.

8.4 View-based Camera/Stream Selection

View-based multi-stream selection has been used in 3DTI environments for two reasons.

First, image-based vision techniques are shown to be a feasible solution for real-time 3D

video systems ([6, 8]), where multiple cameras are distributed to reconstruct the 3D model

from images taken in real scenes. However, image-based techniques require tremendous

computational power and network resource if a large number of video streams need to be

95

processed in full scale. Second, as mentioned earlier the interactivity of dynamic view selec-

tion is the key feature of 3D video application. Therefore, the user view information provides

a natural hint for multi-stream selection.

In the 3D video pipeline ([38]) implemented for the telepresence project ([22]), the video

system installs 16 CCD cameras covering 360 ◦. During the runtime, 3 cameras are selected

for the texture and 5 cameras for reconstruction based on the user view. The concern

of adaptation is more focused on the 3D video processing and encoding part to make it

affordable within resource limitations. However, the issue of how to adapt the data according

to the bandwidth and user requirement, and the related spatial and temporal quality loss

has not been addressed.

In other cases, the limitation of human’s viewpoint is exploited to facilitate the design and

implementation of 3D video systems. For example, a prototype of group video teleconferenc-

ing system [55] is implemented which uses a linear array of cameras mounted horizontally

at eye level to capture a compact light field as an approximation for light field rendering.

8.5 Multicast-based Content Dissemination

The most important application of the ViewCast concept is in the multi-party/multi-stream

environment for QoS management, which distinguishes it from available protocols and tech-

niques in several aspects.

Multicast protocols including application level multicast (e.g., [26, 11, 24]) are mostly

concerned with efficient transmission of particular stream(s) for a group of receivers. In

contrast, ViewCast is a higher-level concept which is focused on the coordination of multi-

streaming among multiple groups.

The related awareness driven model has been applied in collaborative virtual environ-

ment ([21, 44, 23]) for quality of service management. Given the awareness information of the

user, the model dynamically selects the set of sources and the quality. Usually, each source

96

represents one audio/video stream with multiple levels. However, the limitation of the model

is its incapability of handling multiple correlated streams at each source and among sources

as required in multi-party/multi-stream systems. For example, in [23] a multi-sender 3D

videoconferencing application is implemented where certain 3D effect is created by placing

the 2D image of each participant in the virtual space. So each user is represented by one

2D stream. In their work, stream selection is used to reduce the downlink traffic of each

user based on the orientation of the view and the visibility. Streams that are not consid-

ered as visible will not be sent to a particular user. The application of stream selection is

much simpler than the case of 3DTI environments where each user is represented by multiple

streams.

97

Chapter 9

Conclusion and Future Work

This thesis addresses the problem of supporting 3DTI tele-immersive environments over

general computing and networking infrastructure for broader audience. Our work will enable

future generation of tele-immersive collaboration. We have presented a distributed service

middleware framework to support view-aware multi-stream coordination, which includes the

view-based stream differentiation layer, the stream coordination layer, and the streaming

control layer. The organization of this chapter is as follows. First, we summarize our major

contributions. Then, we briefly discuss possible future research directions.

9.1 Contributions

In an attempt to design and implement a distributed service middleware management frame-

work for QoS-provisioning and for supporting the Internet killer-application of 3DTI envi-

ronments, this thesis makes the following special contributions.

• Integrated service middleware framework. We propose a novel cross-layer frame-

work to integrate various design concerns at different layers. From taking the view-

oriented approach, accommodating stream coordination, down to manipulating com-

pression and transmission at the lower layer, the framework manages every aspect of

the 3DTI content dissemination. Thus, it can deliver high-quality QoS management

for 3DTI application by properly controlling different service components.

98

• View-oriented QoS provisioning. Unlike previous systems which apply stream-

level QoS management, we are making the breakthrough by the argument that QoS

management in the multi-stream scenario should focus on the user view. The view-

oriented approach not only provides more flexibility and adaptability but also a much

more clear guidance to reach high-quality QoS management.

• View-based content dissemination. Traditional content dissemination structures

are focused on delivering a set of streams. There is almost none or very little coor-

dination in the dissemination. For the first time, we claim that it is to the common

benefit of all content consumer that coordination should be performed. Using the view

as the high-level quality criterion, we can prioritize the delivery topology to make it

more efficient.

9.2 Future Work

The request for the next generation of communication will never end. Open questions still

exist in realizing fully automatic QoS management system for 3DTI environments. We

discuss several of the most interesting and challenging ones as follows.

• Smart view management. The theme of 3DTI environments revolves around the

view idea. During the 3DTI session, the end user arbitrarily selects his/her view to

get desirable visual effect. The next generation 3DTI system should provide automatic

view management service. The advantage is to let the user fully enjoy the immersive

environment with less intrusiveness of tracking devices. The view management will

also have better cooperation with the underlying view-based content dissemination

infrastructure.

• Finer granularity multi-party viewCast. Currently, ViewCast operates at the

stream granularity which either selects or drops the whole stream. A more interesting

99

study would be to investigate view dissemination at finer granularity.

• Multi-stream transcoding. In the current ViewCast structure, each stream is trans-

mitted independently. When user views are distributed in a relatively concentrated

area range, a possible approach is to perform 3D multi-stream transcoding to generate

a new set of streams which would improve the quality than using the original streams.

100

References

[1] Color reduction, http://www.catenary.com/appnotes/colred.html.

[2] Imagemagick, http://www.imagemagick.org/script/quantize.php.

[3] Opengl, http://www.opengl.org.

[4] Teeve project, http://cairo.cs.uiuc.edu/teleimmersion, http://tele-immersion.citris-
uc.org.

[5] Zlib 1.2.2, http://www.zlib.net.

[6] Report on 3dav exploration. International Organisation for Standardisation, ISO/IEC
JTC1/SC29/WG11 N5878, July 2003.

[7] Survey of algorithms used for multi-view video coding. International Organisation for
Standardisation, ISO/IEC JTC1/SC29/WG11 N6909, January 2005.

[8] B. Bai and J. Harms. A multiview video transcoder. In MULTIMEDIA ’05: Proceedings
of the 13th annual ACM international conference on Multimedia, pages 503–506, New
York, NY, USA, 2005. ACM Press.

[9] C. Bajaj, I. Ihm, and S. Park. 3d rgb image compression for interactive applications.
ACM Trans. Graph., 20(1):10–38, 2001.

[10] H. Baker, N. Bhatti, D. Tanguay, I. Sobel, D. Gelb, M. Goss, W. Culbertson, and
T. Malzbender. Understanding performance in coliseum, an immersive videoconfer-
encing system. ACM Transactions on Multimedia Computing, Communications, and
Applications, 1, 2005.

[11] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application layer mul-
ticast. In Proceedings of ACM Special Interest Group on Data Communication (SIG-
COMM’02), 2002.

[12] F. Bauer and A. Varma. Degree-constrained multicasting in point-to-point networks.
In Proceedings of IEEE conference on computer communications, 1995.

[13] R. Bellman. A markovian decision process. Mathematics and Mechanics, 6, 1957.

101

[14] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. Split-
stream: high-bandwidth multicast in cooperative environments. In Proceedings of ACM
symposium on Operating systems principles, 2003.

[15] M. Chen. Design of a virtual auditorium. MULTIMEDIA ’01: Proceedings of the 9th
annual ACM international conference on Multimedia, 2001.

[16] Y. Cui and K. Nahrstedt. Layered peer-to-peer streaming. In International workshop
on network and operating systems support for digital audio an video, 2001.

[17] K. Daniilidis, J. Mulligan, R. McKendall, D. Schmid, G. Kamberova, and R. Bajcsy.
Real-time 3d-teleimmersion. In Confluence of Computer Vision and Computer Graph-
ics, pages 253–265, 2000.

[18] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based congestion control for
unicast applications. In SIGCOMM ’00: Proceedings of the conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication, pages 43–56,
New York, NY, USA, 2000. ACM Press.

[19] G. Franklin and J. Powell. Digital control of dynamic systems. Addison-Wesley, 1981.

[20] L. Gharai, C. Perkins, C. Riley, and A. Mankin. Large scale video conferencing: A digital
amphitheater. In 8th International Conference on Distributed Multimedia Systems,
2002.

[21] C. Greenhalgh and S. Benford. Massive: A collaborative virtual environment for tele-
conferencing. In ACM Transactions on Computer Human Interactions, 1995.

[22] M. Gross, S. Würmlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz, E. Koller-Meier,
T. Svoboda, L. V. Gool, S. Lang, K. Strehlke, A. V. Moere, and O. Staadt. blue-c: a
spatially immersive display and 3d video portal for telepresence. ACM Trans. Graph.,
22(3):819–827, 2003.

[23] M. Hosseini and N. D. Georganas. Design of a multi-sender 3d videoconferencing ap-
plication over an end system multicast protocol. In MULTIMEDIA ’03: Proceedings of
the eleventh ACM international conference on Multimedia, pages 480–489, New York,
NY, USA, 2003. ACM Press.

[24] Y. hua Chu and H. Zhang. A case for end system multicast. In Proceedings of ACM
Sigmetrics, 2000.

[25] I. Ihm and S. Park. Wavelet-based 3d compression scheme for very large volume data.
Graphics Interface, pages 107–116, June 1998.

[26] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and J. O’Toole. Overcast: Reliable
multicasting with an overlay network. In Proceedings of ACM symposium on Operating
Systems Design and Implementation (OSDI’00), 2000.

102

[27] L. P. Kaelbling, L. L. Michael, and M. W. Andrew. Reinforcement learning: A survey.
Artificial Intelligence Research, 4:237–285, 1996.

[28] P. Kauff and O. Schreer. An immersive 3d video-conferencing system using shared
virtual team user environments. In CVE ’02: Proceedings of the 4th international
conference on Collaborative virtual environments, pages 105–112, New York, NY, USA,
2002. ACM Press.

[29] S.-U. Kum and K. Mayer-Patel. Real-time multidepth stream compression. ACM Trans.
Multimedia Comput. Commun. Appl., 1(2):128–150, 2005.

[30] S.-U. Kum and K. Mayer-Patel. Intra-stream encoding for multiple depth streams. In
NOSSDAV ’06: Proceedings of the international workshop on Network and operating
systems support for digital audio and video, 2006.

[31] S.-U. Kum, K. Mayer-Patel, and H. Fuchs. Real-time compression for dynamic 3d
environments. In MULTIMEDIA ’03: Proceedings of the eleventh ACM international
conference on Multimedia, pages 185–194, New York, NY, USA, 2003. ACM Press.

[32] T. Lewiner, H. Lopes, J. Rossignac, and A. Vieira. Efficient edgebreaker for surfaces of
arbitrary topology. In Proceedings of 17th Brazilian Symposium on Computer Graphics
and Image Processing, pages 218–225, Oct. 2004.

[33] H. Lopes, J. Rossignac, A. Safanova, A. Szymczak, and G. Tavares. Edgebreaker:
A simple compression algorithms for surfaces with handles. Computers and Graphics
International Journal, 27(4):553–567, 2003.

[34] J.-G. Lou, H. Cai, and J. Li. A real-time interactive multi-view video system. In
MULTIMEDIA ’05: Proceedings of the 13th annual ACM international conference on
Multimedia, pages 161–170, New York, NY, USA, 2005. ACM Press.

[35] W. Matusik and H. Pfister. 3d tv: a scalable system for real-time acquisition, transmis-
sion, and autostereoscopic display of dynamic scenes. ACM Trans. Graph., 23(3):814–
824, 2004.

[36] J. Mulligan and K. Daniilidis. Real time trinocular stereo for tele-immersion. In Inter-
national Conference on Image Processing, pages III: 959–962, 2001.

[37] J. Mulligan, V. Isler, and K. Daniilidis. Trinocular stereo: A real-time algorithm and
its evaluation. International Journal of Computer Vision, 47(1-3):51–61, April 2002.

[38] S. Mürmlin, E. Lamboray, and M. Gross. 3d video fragmens: dynamic point samples
for real-time free-viewpoint video. In Technical Report No. 397, Institute of Scientific
Computing, ETH, Zurich, 2003.

[39] D. E. Ott and K. Mayer-Patel. Coordinated multi-streaming for 3d tele-immersion. In
MULTIMEDIA ’04: Proceedings of the 12th annual ACM international conference on
Multimedia, pages 596–603, New York, NY, USA, 2004. ACM Press.

103

[40] D. E. Ott, T. Sparks, and K. Mayer-Patel. Aggregate congestion control for distributed
multimedia applications. In Proceedings of IEEE INFOCOM ’04, March 2004.

[41] T. M. Project. http://www.netlab.uky.edu/theme.html. 2001.

[42] R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and H. Fuchs. The office of the
future: a unified approach to image-based modeling and spatially immersive displays.
In SIGGRAPH ’98: Proceedings of the 25th Annual Conference on Computer Graphics
and Interactive Techniques, pages 179–188, New York, NY, USA, 1998. ACM Press.

[43] R. Ravi, M. Marathe, S. Ravi, D. Rosenkrantz, and H. Hunt. Approximation algorithms
for degree-constrained minimum-cost network-design problems. In Algorithmica, 2001.

[44] G. Reynard, S. Benford, ChrisGreenhalgh, and C. Heath. Awareness driven video
quality of service in collaborative virtual environment. In Proceedings of the SIGCHI
conference on Human factors in computing systems, 1998.

[45] J. Rossignac. Edgebreaker: Connectivity compression for triangle meshes. IEEE Trans-
actions on Visualization and Computer Graphics, 5(1):47–61, 1999.

[46] J. Rossignac, A. Safanova, and A. Szymczak. 3d compression made simple: Edgebreaker
with zip&wrap on a corner table. In Shape Modeling International Conference, Genova,
Italy, May 2001.

[47] O. Schreer, N. Brandenburg, S. Askar, and E. Trucco. A virtual 3d video-conferencing
system providing semi-immersive telepresence: A real-time solution in hardware and
software. In International Conference on eWork and eBusiness, 2001.

[48] S. Shi, L. Wang, K. Calvert, and J. Griffioen. A multi-path routing service for immersive
environments. In Workshop on Grids and Advanced Networks, in conjunction with
CCGrid 2004, 2004.

[49] G. Taubin and J. Rossignac. Geometric compression through topological surgery. ACM
transactions on Graphics, 17(2):26–34, 1998.

[50] H. Towles, W.-C. Chen, R. Yang, S.-U. Kum, and H. F. et al. 3d tele-collaboration over
internet2. In International Workshop on Immersive Telepresence (ITP 2002), December
2002.

[51] H. Towles, S.-U. Kum, T. Sparks, S. Sinha, S. Larsen, and N. Beddes. Transport
and rendering challenges of multi-stream, 3d tele-immersion data. In NSF Lake Tahoe
Workshop on Collaborative Virtual Reality and Visualization, Octomber 2003.

[52] B. Wang, J. Kurose, P. Shenoy, and D. Towsley. Multimedia streaming via tcp: an
analytic performance study. In MULTIMEDIA ’04: Proceedings of the 12th annual
ACM international conference on Multimedia, pages 908–915, New York, NY, USA,
2004. ACM Press.

104

[53] J. Wang and H. K. Huang. Medical image compression by using three-dimensional
wavelet transformation. IEEE Tran. on Medical Imaging, 15(4):547–554, August 1996.

[54] C. Watkins. Learning from delayed rewards. Ph.D. thesis.

[55] R. Yang, C. Kurashima, A. Nashel, H. Towles, A. Lastra, and H. Fuchs. Creating adap-
tive views for group video teleconferencing - an image-based approach. In International
Workshop on Immersive Telepresence (ITP 2002), 2002.

[56] Z. Yang, Y. Cui, Z. Anwar, R. Bocchino, N. Kiyanclar, K. Nahrstedt, R. H. Campbell,
and W. Yurcik. Real-time 3d video compression for tele-immersive environments. In
SPIE Multimedia Computing and Networking (MMCN 2006), San Jose, CA, January
2006.

[57] Z. Yang, K. Nahrstedt, Y. Cui, B. Yu, J. Liang, S. hack Jung, and R. Bajscy. Teeve: The
next generation architecture for tele-immersive environments. In IEEE International
Symposium on Multimedia (ISM2005), Irvine, CA, USA, 2005.

[58] Z. Yang, W. Wu, K. Nahrstedt, G. Kurillo, and R. Bajscy. Viewcast: View dissemination
and management for multi-party 3d tele-immersive environments. In ACM Multimedia
(MM2007), Augsburg, Germany, September 23-29, 2007.

[59] Z. Yang, B. Yu, K. Nahrstedt, and R. Bajscy. A multistream adaptation framework
for bandwidth management in 3d teleimmersion. In NOSSDAV ’06: Proceedings of the
international workshop on Network and operating systems support for digital audio and
video, 2006.

[60] J. G. Ziegler and N. B. Nichols. Optimal settings for automatic controllers. Transaction
ASME, 64:759–768, 1942.

105

Author’s Biography

Zhenyu Yang was born in September, 1972. He received his Bachelor of Engineering from

the Department of Computer Science and Engineering in Shanghai Jiao Tong University,

1994. He received his Master of Science from the Department of Computer Science in the

University of Illinois at Urbana-Champaign, 2002. Since Spring 2004, he has joined the

MONET (Multimedia Operating Systems and Networking) group as a Ph.D. student under

the supervision of Professor Klara Nahrstedt, and worked on the TEEVE (Tele-immersive

Environments for Everybody) project. After graduation, he will continue working with

Professor Klara Nahrstedt as a postdoctoral fellow. His research interests are operating

systems, networking, and distributed multimedia systems.

106

