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ABSTRACT 

 

This dissertation presents a robust numerical method for the class of coupled systems comprised 

of multiple interacting partial differential equations (PDE). Particular emphasis is placed on 

incompressible Navier-Stokes equations that are coupled with a hyperbolic scalar PDE. The method is 

derived based on the variational multiscale (VMS) framework. Specifically, two classes of coupled 

systems are considered: free-surface flows with a sharp interface marker and stratified turbulence with a 

smooth temperature field. 

The additional nonlinearity introduced by the active scalar field to the nonlinear Navier-Stokes 

equation system is effectively accounted for by variationally derived stabilization term. In the context of 

the free-surface flows that are modeled by immiscible two-phase fluids, the dependency of fluid 

mechanical properties (i.e., density and viscosity) on the implicit interface marker (e.g., signed distance 

field) results in an interface that traverses through the elements. Applying VMS method to the coupled 

system results in an interface stabilization term. It is shown that the structure of the stabilization term 

leads to the so-called Ghost-Penalty method. In the context of internal dissipation in thermodynamics for 

incompressible flow with Boussinesq approximation, an energy conservation equation is appended that 

gives rise to a thermomechanically coupled system. The coupled fine-scale sub-problem is locally 

resolved to yield the closure model. The fine-scale turbulence features are accounted for by the VMS 

strategy wherein the hierarchical application of VMS results in further enhancement of the mass 

conservation. 

The new method for coupled systems is implemented using hexahedral and tetrahedral elements, 

and the code is parallelized for the distributed memory system. A range of problems is presented to show 

the mathematical and computational features of the method. 
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CHAPTER 1: INTRODUCTION 

1.1. BACKGROUNDS AND MOTIVATION 

Incompressible flows coupled with passive/active scalar fields are encountered in various natural 

phenomena and engineering practices, ranging from the atmospheric science [117], where a temperature 

field is transported through the turbulent flows, to the hydraulic engineering [139], where the fluid 

dynamics convect an implicit interface marker. Other regimes of applications with this class of coupled 

systems embrace combustion [15] or, more generally, the chemical reaction in a scalar mixing layer and 

the evolution of magnetic fields in stellar astrophysics [171]. Here the scalar fields are the concentration 

of chemical constituents or the components of electromagnetic fields. Most of these physical problems 

amongst the listed applications are nearly impossible to attain experimental data. The complexity of this 

class of coupled mathematical problems, partially due to the additional nonlinearity brought in to the 

system by the active scalar field, engendered fundamental difficulties in resolving these problems 

analytically, even in a very much simplified setting. Therefore, computational fluid dynamics (CFD) is 

the only reliable tool to address the new physics due to the coupling effects and obtain high-fidelity data 

to guide industrial designs. 

One essential ingredient in any CFD framework is a fluid dynamics solver. For the simplicity of 

discussion, this dissertation is not going to cover other low Mach number approximation but put the foci 

on the incompressible hydrodynamics. The governing partial differential equations (PDE) are the 

incompressible Navier-Stokes equations that represent two conservation laws: momentum and mass. 

There are two major challenges for a robust numerical method for this set of PDEs: advection-dominant 

flow (i.e., high Reynolds number) and the inf-sup or Ladyzhenskaya-Babuška-Brezzi conditions [16]. In 

continuum mechanics, conservation laws can be derived through the Leibniz-Reynolds transport theorem 

[39] and thus has the nature of hyperbolic PDE due to the material derivative. The characteristics of 

hyperbolic PDEs are directional, particularly in the advection-dominant flow, which indicates that the 

numerical discretization needs to be aware of the flow direction. In the context of finite differences and 
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finite volumes, this issue is addressed through upwind-biased schemes [99]. The inf-sup condition arises 

in the saddle-point problems like the momentum balance equation with a constraint of incompressibility, 

which prevents using equal order interpolation of unknown mixed fields (i.e., collocated grids in finite 

volume/difference method and same shape functions in finite element method). As conventional practices, 

a staggered grid [88] and its counterparts in finite-element regime—Taylor-hood elements [12] are widely 

used. 

In the context of the finite-element method, the numerical instability resulting from the advection-

dominant flow and inf-sup condition is addressed in the unified framework of stabilized methods. The 

original works on this subject are achieved by Hughes and his coworkers, including streamline 

upwind/Petrov-Galerkin (SUPG) [20] and Galerkin/least-square (GLS) [70] methods for advection-

diffusion equations, where a residual-based stabilized form is proposed to prevent the spurious solutions 

field when the Peclet number becomes large. These stabilized weak forms are then extended to the 

incompressible Stokes/Navier-Stokes problems [68], where the inf-sup condition is also overcome. 

pressure-stabilizing/Petrov–Galerkin [155] that helps with the inf-sup condition also falls into this regime. 

A more generalized framework—Variational Multiscale [66,67], is hereafter proposed by Hughes, which 

provides the rigorous mathematical foundation of the stabilized or the multiscale methods. The general 

philosophy of the VMS-type method is to variationally project the fine-scale solution that is filtered out 

by the discretization to the coarse-scale sub-problems. Two major branches of seeking solutions of fine 

scales are the Green’s function and the residual-free bubble, which had been proved to be equivalent [17]. 

The resulting stabilized form includes the components from SUPG, GLS, and PSPG and inherently 

contains an error estimator [93]. Masud and his coworkers have employed this framework to develop 

stabilized method for various PDEs in many different physics, including advection-diffusion equation for 

heat transfer and drug delivery [113,115], incompressible Navier-Stokes equations for fluid mechanical 

problems [84,105], Darcy flow for geophysics [111], and Schrödinger wave equation for electronic 

properties of materials [103,112]. Specifically, in this series of works on stabilized method, the fine-scale 

problems are discretized with bubble function, an idea can be traced back to the works of residual-free 
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bubbles [18,19,48,49] by Brezzi and Franca and their coworkers. However, it is not practical to derive the 

residual-free bubble for nonlinear PDE; thus, the standard bubble functions are adopted. 

Another fundamental but notorious difficulty in fluid dynamics solver is the turbulence—the 

indeterminacy of flow field in all dimensions of space and time. Although Navier-Stokes equations are 

generally valid across all scales, even for the limits of continuum mechanics, the computational cost of 

fully resolved simulation (i.e., direct numerical simulation (DNS)) is in the cubic order of Reynolds 

number [134]. Within the current architecture of computers, DNS is only practical for flows with 

relatively low Reynolds numbers. Therefore, a model must be utilized for industrial-strength simulations 

to reduce the resolution of the simulation. According to the resolution of the resolved scales and 

preservation of indeterminacy, turbulence modeling techniques can be classified as two primary classes: 

large-eddy simulation (LES) [143] and Reynolds-Averaged Navier-Stokes (RANS) [138]. LES-type 

methods usually require that the grid is sufficiently refined to resolve 80% of the energy of the entire 

domain and preserve the fluctuation of the flow fields while the RANS-type method often targets space 

and time averaged results. There are some hybrid methods that not exactly fall into these two regimes, 

including detached eddy simulation (DES) [146] and very-large-eddy simulation (VLES) , which utilize 

different strategies of modeling in different regions of the computational domain. Essentially, the purpose 

of the LES and RANS technique is to model the Reynolds stress, the gap between the unfiltered and 

filtered nonlinear convection term. For this reason, turbulence modeling is frequently referred to as a 

“closure problem”. 

VMS philosophy is inherently consistent with turbulence modeling since a fine-scale solution has 

already built for flow fields, and the projection from the fine scale to coarse scale is also well defined. 

The rest of the work for a feasible VMS-type LES model is as simple as identifying the sub-grid 

Reynolds stress in the weak form. The pioneering work has been achieved by Hughes and his colleagues 

in incompressible flows [13] and compressible flows [46], where the fine-scale/subgrid-scale fields are 

modeled with approximated Green’s function and driven by the coarse-scale residual. This feature ensures 

the proposed turbulence model automatically vanished at the place where the flow field is fully resolved 
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(i.e., DNS). Under the VMS framework, Masud and Calderer [30,107] further refine the method and 

evolve into a multilevel VMS method, which eventually removes all ad hoc devices in the turbulence 

modeling. 

The active scalar field in the governing system is introduced to represent other physics, which is 

two-way coupled with fluid dynamics. One class of this type of coupled system is free-surface problems. 

Two fundamental frames of reference in continuum mechanics are Lagrangian and Eulerian. Following 

this way of thinking, the representation of the free surface falls into two regimes: interface tracking and 

interface capturing. The interface-tracking techniques explicitly track the free surfaces as moving 

boundary, including particle finite-element methods [76,125,132], smooth particle hydrodynamics 

[38,120], constrained interpolation profile (CIP) method [151], etc. Masud and his colleagues [29,84] 

develops mesh moving strategies based on a pseudo elasticity problem with underlying arbitrary 

Lagrangian-Eulerian (ALE) frame of references. However, the capacity of the interface-tracking 

technique relies on the extent of mesh moving. In the problems with rotation and over-turning free 

surfaces, the mesh is often distorted to the extent that the Jacobian is nearly zero or even negative, and the 

simulation can not be pushed forward without remeshing of the computational domain. 

Due to such constraints of interface-tracking methods, the other type of method—interface-

capturing technique is widely used for the free surfaces in the two-phase flows. The idea of the interface-

capturing type method is to implicitly capture the evolution of the interface through a scalar field. By the 

choice of the scalar field, this type of method can be further classified as volume-of-fluid (VOF) method 

[87,148] that uses a marker scalar field (zero or one) which is governed by the mass conservation 

equation, and level-set method [54,148,149] that uses signed distance field which is governed by an 

advection equation. The signed distance field is smooth near the interface; thus, it has better accuracy of 

interface representing when compared to the VOF method with the same resolution. However, the 

governing hyperbolic PDE of the level-set method is not conservative, which brings in technical 

difficulties in a long-time run. Therefore, some auxiliary processes need to be amended, including the re-

initialization process [11,44,147] and mass conservation algorithm [81,144]. In the interface-capturing 
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method, due to the Eulerian frame of references, some elements are going to be transverse by the interface. 

The stiff matrices of those elements are ill-conditioned when the partition of one phase is too small, or the 

gap of density and viscosity of two phases is very large. To address this issue, several techniques 

[21,22,26,59] have been proposed in the literature to control the jump of velocity gradients across the 

interface. 

Another type of coupled system of fluid dynamics and an active scalar field is the density-

stratified flows. Unlike the free-surface problems, the introduced temperature field is not bringing any 

discontinuity into the system. However, the density stratification is involved with the flow physics; 

namely, it may enhance the production of turbulence, and it may also affect the damping mechanism of 

turbulence. Therefore, the foci of numerical methods for this type of problem are the evolved closure 

problems. Comparing to the isothermal case, a new subgrid-scale Reynolds flux term arises in the 

stratified flow due to the nonlinear advection in the conservation law of energy. The conventional 

subgrid-scale model for LES for isothermal flow has been extended to density-stratified turbulence 

[85,137,160]. The effective viscosity and thermal diffusivity are selected either by expanding the 

unknown fields to finer scales or by phenomenological assumptions (e.g., turbulent Prandtl number). The 

VMS type LES models are also reported in the literature, including the stable stratification [168] and 

natural convections [165]. 

1.2. OUTLINES OF THE DISSERTATION 

The dissertation presents the derivation of a new stabilized form of advection-diffusion equation 

that takes the fine-scale time-dependency into account, an interface stabilization which shows the 

mathematical foundation of ghost-penalty type method, an enhanced multilevel VMS turbulence model 

for isothermal flows and a new VMS residual-based turbulence model for incompressible flows with 

density stratification. Some auxiliary algorithms to serve for the robustness of long-time are also covered. 

The remaining chapters are organized as follows: 
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• Chapter 2 presents an interface-capturing method for two-phase flows with large-amplitude free-

surface motion. The method is developed by embedding the level-set equation in the momentum 

balance equations via dependency of the material properties on the signed distance field. For 

plunging free-surface motions, the method is augmented with a reinitialization process that is 

based on a stabilized form of the Eikonal equation and reconstructs the signed distance field. 

Conservation of mass in extreme free-surface motions is maintained via a mass-conservation term 

that is based on the notion of minimizing the error in the computed signed distance field. 

Benchmark test cases of two-dimensional (2D) and three-dimensional (3D) dam-break problems 

are presented to validate the method and show its range of applicability. 

• Chapter 3 presents our interface stabilized method for moving and deforming interface problem 

in immiscible, discrete, multi-phase flows. The jump in viscosity and density of the fluids across 

the arbitrarily deforming phase boundaries can trigger instability in the solution. The main 

contribution in this chapter is the variationally consistent derivation of interface stabilization 

terms that appear naturally when the Variational Multiscale (VMS) method is applied to the 

coupled system of partial differential. Benchmark problems in 2D and 3D are presented to 

highlight the salient features of the proposed interface stabilization method and to show its range 

of applications. 

• Chapter 4 presents a residual-based turbulence model for problems with free surfaces. To 

accommodate the moving boundaries, we cast the formulation in an Arbitrary Lagrangian-

Eulerian frame of reference. The free surface boundary condition is imposed weakly which 

results in a formulation that conserves the volume of the fluid. A variety of benchmark problems 

show the accuracy and range of applicability of the proposed formulation, and results are 

compared with published data. A wavy bed problem is investigated to show the interaction of 

turbulence generated at the bottom surface with the free surface, thereby leading to irregular free 

surface elevations. 
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• Chapter 5 presents a residual-based isothermal turbulence model. The method is derived based on 

Variational Multiscale ideas that assume a decomposition of the solution fields into overlapping 

scales that are termed as coarse and fine scales. The fine scales are further split hierarchically into 

fine-scales level-I and fine-scales level-II. The hierarchical variational problems that govern the 

two fine-scale components are modeled employing bubble functions approach. The model for 

level-II scales is variationally embedded in the mixed field level-I problem to yield a stable level-

I formulation. Subsequently, the model for level-I scales that in fact constitutes the fine-scale 

turbulence model is then variationally injected in the coarse-scale variational form. A significant 

feature of the method is that it does not contain any embedded tunable parameters. Three classes 

of numerical tests are carried out to validate the LES model, including homogeneous turbulence, 

turbulence with 1D homogeneity, and transition from laminar to turbulent flow. 

• Chapter 6 extends the multilevel VMS LES model to the incompressible flow with density 

stratification. The hierarchical application of VMS and three-level scale separation results in a 

new residual-based VMS turbulence model without any embedded or tunable parameters for 

implicit LES. The coupling between the mechanical and thermal phases is preserved in the fine-

scale model. A thorough study on the structure of the fully coupled anisotropic turbulence model 

is carried out to illustrate the necessity and superiority of the coupling in the fine scales. The 

variational consistency is also validated through a convergence rate study in both spatial and 

temporal refinement on a Beltrami-type problem with an exact solution. The statistical results of 

LES of Rayleigh-Benard convection with proposed model show good alignment with DNS and 

other LES model with finer mesh. 

• Chapter 7 finishes with some concluding remarks on the contributions of this dissertation. Also, 

the potential future research plans are outlined. 
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CHAPTER 2: INTERFACE-CAPTURING METHOD FOR FREE-SURFACE 

PLUNGING AND BREAKING WAVES* 

2.1. INTRODUCTION 

Breaking of high amplitude waves is a process that involves conversion of wave energy into 

turbulent energy, leading to violent transformation of free surfaces that exert massive hydrodynamic loads 

on off-shore installations and coastal infrastructure. Such waves are typically triggered in hurricanes and 

tropical storms, as well as in off-coast seismic activity that gives rise to high amplitude Tsunami waves. 

Catastrophic structural failure of large water reservoirs and dams also produces high amplitude waves that 

impart massive hydrodynamic loads on the downstream structures. Impulsive loads from waves breaking 

against substructures are generally much larger than the quasi-static forces and cause severe damage to 

structural elements. Therefore, modeling of breaking waves interacting with structures has been important 

in ocean and marine engineering. Furthermore, most of the offshore wind farms lie in shallow waters of 

depths between 5 to 30m [33] and therefore understanding hydrodynamic loads from high-amplitude 

waves has important design-related implications. 

The two dominant characteristic features of breaking waves are high Reynolds numbers and 

strong free surface kinematics. Wave impact force greatly depends on the evolution of free surface 

profiles, instantaneous wave height, local changes in velocities, and geometric properties associated with 

the breaking process [75,79]. From the design perspective the free-surface waves that are most relevant to 

offshore structures are the spilling and plunging breakers [159]. The energy from the plunging breakers 

gets dissipated over a relatively small area, thereby giving rise to high impulsive loads that onto the 

structures. 

Various approaches that are used for the modeling of free surfaces and two-phase flows involving 

moving interfaces include: (i) the interface-tracking methods, and (ii) the interface-capturing methods. 

 
* This chapter has been adapted from “Zhu, L., Goraya, S.A. and Masud, A., 2019. Interface-Capturing Method for 

Free-Surface Plunging and Breaking Waves. Journal of Engineering Mechanics, 145(11), p.04019088.”. The 

copyright owner has provided written permission to reprint the work. 
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Interface tracking techniques employ formulations that are written in an Arbitrary Lagrangian-Eulerian 

(ALE) [29,32,65,71,84,102] frame together with time evolving spatial meshes that explicitly track the 

kinematics of the free surface. ALE based methods are however limited by the extent to which they can 

accommodate the distortion of the mesh [102], and excessive distortion can eventually lead to mesh 

breakdown. Another class of interface tracking techniques is based on a Lagrangian description of fluids, 

namely the Particle Finite Element Method (PFEM) [132], where the continuum parts associated with 

rapidly moving interfaces are discretized with particles, while the domain away from the interfaces 

employs a Lagrangian description. This method has shown success in overcoming the mesh distortion 

issues because a contiguous mesh is no longer needed. Yet another method, termed as Constrained 

Interpolation Profile (CIP) [150] has been proposed that employs Soroban grids and has time-evolution 

and mesh adaptivity features for the free surfaces. 

The interface-capturing techniques are based on Eulerian frame of reference and employ fixed 

grids wherein the representation of complicated topology of the free surfaces is implicitly tracked via a 

scalar transport equation. These techniques have been employed in the context of finite element and finite 

volume methods. In the volume-of-fluid (VOF) scheme [43,87,97] for Cartesian grids, a step function is 

used to indicate the fraction of fluid within the cell.  The discontinuity induced due to the step function 

representation of the two-phase subdomains requires edge-based stabilized methods for the VOF 

approach to be successful [43]. On the other hand, the level set method [8,81,128,147] uses a continuous 

scalar field to mark the interface and therefore overcomes the numerical drawback associated with VOF 

scheme. Herein, instead of searching the partially filled elements, the interface is represented by the iso-

contour of zero level set. 

In this paper free-surface flow is described as a two-phase flow with well-defined interfaces, 

wherein fluids are modeled via residual-based stabilized form of the incompressible Navier-Stokes 

equations. The background mesh does not move, while the highly nonlinear motion of the air-water 

interface is tracked via a hyperbolic equation that is driven by the velocity field furnished by the Navier-

Stokes equations. A significant contribution in this work is an interface-capturing method that is derived 
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by embedding the level-set field in the material coefficients, thus providing pointwise spatiotemporal 

information on the evolving material interface, at a fixed, but otherwise arbitrary grid point.  

The nonlinear terms in the incompressible Navier-Stokes equations require stabilization to 

address instabilities associated with high convection, in addition to addressing the inf-sup condition on 

the combination of interpolation functions for the velocity and pressure fields. Amongst the celebrated 

stabilized methods are the Streamline Upwind/Petrov-Galerkin (SUPG) method [20], and the 

Galerkin/Least-squares (GLS) method [67]. In this work we blend ideas from VMS method [66,67] that 

were used in developing stabilized form of the incompressible Navier-Stokes equations [84], with the 

VMS stabilized form of the advection-diffusion equation [113], to derive the new method. Variational 

embedding of the fine-scale model in the coarse-scale weak form results in interface capturing terms with 

embedded discontinuity that helps in maintaining sharp definition of the interface, We emphasize the 

structural similarity of interface capturing term with the Ghost penalty term [8,23] and with the 

stabilization proposed for the cut finite element methods [28]. For complex 3D plunging waves, the 

method is augmented with a re-initialization process [147] that is based on a stabilized form of Eikonal 

equation. A mass correction term [144] is employed to minimize mass loss via applying a correction to 

the computed signed distance field.  

An outline of the paper is as follows. We first present the derivation of the method for rapidly 

fluctuating free-surface motions. The techniques for mass conservation and re-initialization are discussed 

next. A set of numerical test cases with increasing degree of complexity is presented to show the 

mathematical attributes of the proposed method. Conclusions are drawn at the end. 

2.2. STABILIZED INTERFACE FORMULATION OF THE INCOMPRESSIBLE NAVIER-STOKES 

EQUATIONS 

We write the Navier-Stokes equations where material coefficients are written as a function of the 

level-set field  . 

 ( ) ( ) ( ) ( ) ( )  , 2 0,i ,nt p T        −  + = + v v v ε v f   (2.1) 
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  ,in0 0,T = v   (2.2) 

  0, ,on g T=  v g   (2.3) 

 ( ) ( )( )  o2 0,n ,hp T  = −  =  σ n ε v I n h   (2.4) 

 ( )  0,0 0 ,on= v x v   (2.5) 

where (2.1) is the momentum balance equation and (2.2) is the incompressibility condition. v  and p  are 

velocity and pressure, respectively. g  is the Dirichlet boundary condition, v  is the Neumann boundary 

condition, and 
0v  is the initial condition. σ  is the stress tensor and ( ) v  is the strain rate tensor, which is 

defined as ( ) ( ( ) ) 2s T=   += ε vvv v .   is the density and   is the dynamics viscosity and these 

parameters possess distinctly different values for air and water phases. As we show in the numerical 

section, since both material parameters are a function of the signed distance field, they are evaluated via 

volume-proportional averaging in the elements that are traversed by the iso-contour of the zero level-set. 

We append a time dependent advection equation for the level set   to the transient Navier-Stokes 

equations. 

  0 0,in T +  = v   (2.6) 

 ( ) ( )  0 i,0 0n ,T = x x   (2.7) 

where (2.6) is the level-set advection equation,   is the signed distance field, 0  is the initial condition, 

and v  is the velocity field that is furnished by the Navier-Stokes equations. 

The appropriate spaces of trial solution and weighting functions for the velocity and the signed 

distance fields are the standard 1( ( )) sdn
H   spaces, and that for the pressure field is the standard 2 ( )L   

space. The standard weak form of the incompressible and immiscible two-phase Navier-Stokes equations 

and the level-set advection equation are: 

 ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ),, , , , ,2
h

s p       


+ + − +    =w wv v v v fw ww hw   (2.8) 

 ( ), 0q   =v   (2.9) 
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 ( ) 0,  + =v   (2.10) 

where ( ) ( ), d


=   is the ( )2L   inner product. 

The following section highlights the significant steps of the derivation while referring the 

interested to our earlier works [30,84,105] on the stabilized form of Navier-Stokes equations. 

2.2.1. Variational Multiscale Split 

The bounded domain   is discretized into non-overlapping element sub-domains 
e  with 

boundaries 
e , where 1

umel en

e= =   and umeln  is the total number of elements in the mesh. We denote the 

union of element interiors and element boundaries as 1 int( )umel en

e=
 =   and 1

umel en

e=
 =  , respectively. 

We assume an overlapping additive decomposition of velocity field ( ),tv x  and its weighting function 

( )w x  into coarse or resolvable and fine or unresolved scales. 

 ( ) ( ) ( ) ( ) ( ) ( )and , ,t t = + = +w x w x w x v x v x v x   (2.11) 

The fine-scale velocity field v  represents part of physics that is not adequately resolved by the 

given spatial discretization. Likewise, we assume an overlapping sum decomposition of the signed 

distance field into coarse- or resolvable- scales and fine- or sub-grid scales. 

 ( ) ( ) ( ) ( ) ( ) ( )a ,d ,n ,t t t      = + = +x x x x x x   (2.12) 

We would like to state that in the level-set advection equation, the fine-scale signed distance field 

  should be viewed as a measure of error facilitated by the error estimator inherent in the fine-scale sub-

problem in the VMS method. Substituting the additively decomposed form of (2.11) and (2.12) into (2.8), 

(2.9) and (2.10), and employing the linearity of the weighting function slot, we segregate the coupled 

system into the coarse-scale and fine-scale sub-problems that are written in the residual form. 

Coarse-scale sub-problems: 
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( ) ( )( ) ( )( ) ( )( )
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− =
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w w
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v

h

v   (2.13) 

 ( ) ( )( )2 , 0; ., qR q  = + =v v v v   (2.14) 

 ( ) ( ) ( )( )3 0; ,, , ,R        = + =+v v v v   (2.15) 

Fine-scale sub-problems: 

 

( ) ( )( ) ( )( ) ( )( )
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 

 − + −

+

=
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w w

w
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f h

v
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  (2.16) 

 ( ) ( ) ( )( )5 0,,; ,,R       =  +   =+v v v v   (2.17) 

Remark. Equations (2.15) and (2.17) are the coarse-scale and fine-scale variational problems for the 

level-set field. Fine-scale sub-problem (2.17) is to be viewed as an error estimator that facilitates a model 

to be embedded in (2.15) for an enhanced solution of the level set field  . 

2.2.2. Derivation of the Fine-Scale Model 

The coarse-scale and fine-scale sub-problems are nonlinear with respect to both the fine-scale 

velocity and the signed distance field. To derive the fine-scale model, we linearize ( )4 ; , ,R p w v  with 

respect to the fine-scale velocity field v . The linearized fine-scale sub-problem is: 

 
( )( ) ( )

( )( ) ( )( ) ( )

4

0

4 ;, , , , , ,

, ,

; , ,

,2 s

p R p
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R
d



    


    

=



  =



   

 +  +

+

      = + + 

v v v v v

w v v v w v v v w v

w wL
 (2.18) 

The right-hand side in (2.18) represents the residual of coarse-scale momentum balance equation. 

To keep the derivation simple, we drop the higher order fine-scale terms, and this also helps decouple the 

two fine-scale sub-problems. Consequently, dependence of fine-scale momentum balance on   and 
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dependence of fine-scale advection equation on v  is suppressed. We rewrite (2.18) in terms of the 

residual of the Euler-Lagrange equation of the coarse scales. 

 ( ) ( ) ( ) ( )NSE, , , ,2 s      +  +       = w v v w v v w v w r   (2.19) 

where NSE 2 s p   +  −    − = + −v v v v fr  is the residual of the Euler-Lagrange equations for the 

coarse scales in the Navier-Stokes flow model. Following along the lines of our previous work [84,105], 

we expand the fine-scale weighting function and trial solution in (2.19) via element-wise bubble functions 

as: 

 ande eb b = =γw v β   (2.20) 

Substituting (2.20) into (2.19), we solve for the coefficient  , and reconstruct the fine-scale field 

 v  as follows: 

 NSE NSE  =v τ r   (2.21) 

where the stabilization tensor NSEτ  is defined as: 
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+   
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+  

 
 =


  

 


 

I

I

vv
τ   (2.22) 

The denominator in (2.22) is comprised of four integral terms: the first two terms arise from the 

linearized convection operator in (2.19), while the last two terms emanate from the diffusion operator in 

(2.19). 

Remark: For the discussion on bubble functions and resulting stabilization tensor, interested readers is 

referred to [29,84] on the stabilized form for the incompressible Navier-Stokes equations. 

Likewise, the fine-scale signed distance field can be expressed in an analogous form that is driven 

by the residual of the coarse scale level-set equation, namely, 

 LSA  LSAr  =   (2.23) 
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The derivation of the fine scale model   is further elaborated upon in the section on the 

stabilized advection equation for the level-set field. 

2.2.3. Interfacial Stabilization via Fine-scale Modeling 

We embedded the signed distance field in the momentum balance equations via the dependency 

of density   and dynamic viscosity   on  . Accordingly, this gives rise to coarse and fine scale density 

and viscosity fields as follows: 

 
( ) ( ) ( )

( ) ( ) ( )
,

,

H

H





       

       

+ −

+ −

−

+

 + = +

+ − =
  (2.24) 

 
Figure 2.1 Two-phase flow on an Eulerian mesh. Phases are defined by the sign of  , the interface is 

defined by the zero level-set, ghost-penalty-type stabilization is operational in a narrow band along the 

interface, and standard stabilization is operational over element interiors.  

It is important to note that ( ),H    yields the Dirac delta function 
( )I 




, which is defined along 

the embedded interface that is given by the zero contour of the signed distance field as shown in Figure 

2.1. Along this interface lies a narrow band and the width of this band is defined via regularization of the 

Dirac delta function 
( )I 




. This band is the sub-region in which the fine-scale signed distance field 

affects the mechanical material parameters. 
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We now linearize the coarse-scale variational formulation for the momentum balance equation. 

The dependency of the mechanical properties on the signed distance field introduces the Heaviside 

function ( )H   that further adds to the nonlinearity in the system. Since we need to linearize the coarse-

scale formulation with respect to fine-scale fields, i.e., v  and  , to simplify the derivation we drop the 

higher-order cross-coupling terms. The linearization operator for coarse-scale momentum balance 

equation is defined as: 

 ( )( ) ( ) ( )1 11

0 0

;; ,, , , , , ,, ,;
d d

p R R p
d d

R p
 

     
 = =

  = ++ +v v w v v v vw wL   (2.25) 

Applying (2.25) onto (2.13), and rearranging the terms we get, 
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

    
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− 

=
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w v vw v w w

w w

f

v

v v w

w v v v w

w

v v v v

f

v

w

v

h

  (2.26) 

Terms in the first row in (2.26) are the standard Galerkin terms, while the terms in the second row 

depend on the fine-scale velocity field. Terms in the third row are the interfacial terms that are driven by 

the jump in the material properties on either side of the interface. Furthermore, the Dirac delta function 

facilitated by the fine-scale signed distance field localizes the terms appearing in the third row to a narrow 

band along the interface (see Figure 1). In the limit, this narrow band represents the interface. The 

interfacial terms in the third row of (2.26) can be simplified to the following form: 

 ( ) ( )( ) ( )( ) ( )ˆ, ,2 ,2
I I

I

s s        + −  + −  
  − +  =  − −w v vf w vw   (2.27) 

where ̂  is defined as the interfacial viscosity given as 

 ( )ˆ


    


+ − + −= − − −   (2.28) 

Substituting the fine-scale velocity field from (2.21) and fine-scale signed distance field from (2.23) into 

(2.26), we obtain the domain interior and interfacial stabilized formulation for the fully coupled system. 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( )LNSE NSE LS  AA S

, , ,2 , , ,

ˆ, , 0

h

I

s

sr

p   

 





+  +   −   −

+  −

−

=

w v w v v w v w w f w h

χ τ r vw
  (2.29) 

where ( )( ) ( )( ) q = −  +  +  +   +  + χ v w v w v w w w . It is important to note that the 

nonlinear stabilized form (2.29) is entirely expressed in terms of the coarse scales. Henceforth, the 

superposed bars are dropped.  

2.2.4. Stabilized Advection Equation for the Level-Set Field 

In Eulerian methods for moving boundary problems, the kinematics of the evolving interfaces is 

tracked by a scalar field that is governing by the level-set advection equation. Numerical instability in 

advection dominated cases is a well-documented issue and therefore various techniques have been 

proposed to develop stable formulations, namely, Galerkin/Least-Square (GLS) [70], Streamline-

upwind/Petrov-Galerkin (SUPG) [20] and VMS [113] methods. 

Since the problem under consideration is that of pure advection, it requires stabilization. As the 

flow physics evolves, the complex kinematics of the evolving interface gives rise to finer feature that may 

not get adequately resolved on the otherwise fixed grid. This causes the residual of the Euler-Lagrange 

equation for the signed distance field starts growing, which can adversely affect the location of the 

interface, thereby deteriorating the computed flow physics. In this context, we view the fine scale sub-

problem facilitated by the VMS framework as serving the role of an error estimator that yields a 

correction term which is then embedded in the coarse-scale sub-problem to improve the accuracy of the 

signed distance field.  

The variational multi-scale split of the level-set advection equation was well addressed in the 

previous section and the coarse-scale and fine-sale subproblems are defined in (2.15) and (2.17), 

respectively. In the following sub-sections, we will first solve the fine-scale sub-problem to derive a 

model for fine-scale signed distance field   and then substitute this fine-scale model in the coarse-scale 

variational form. 
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2.2.4.1. Derivation of the fine-scale model 

We employ the linearity of the trial solution slot in (17) and re-arrange it as follows 

 ( ) ( ) ( )LSA, , ,r      
 

    +  += − =v v   (2.30) 

where  LSAr  = − − v  represents the residual of the coarse-scale level set advection equation defined 

over the sum of element interiors. Without loss of generality, we assume that the fine-scale weighting 

function and trial solution are represented via bubble functions within element subdomains, i.e. eb  =  

and eb  = . Here   and   are the coefficients of the fine-scale trial solution and weighting function, 

respectively. Expanding fine-scale fields via bubble function in (2.30), we get 

 ( ) ( ) LSA, ,e e e eb b b b r   
 

+  =v   (2.31) 

Since the fine-scale field is time-dependent, we employ backward Euler method as the time 

integrator, though we want to point out that any appropriate time integrator, for example, generalized α 

method, can also be used. The spatially discretized form (2.31) can be written as 

 ( )( ) ( )
1

 LSA, ,e e e eb t b b b r   
−



= + v   (2.32) 

where t  denotes the time-step. Taking the element-wise constant coefficients   and   out of the 

integral expressions, we get an analytical expression for the coefficient of the trial solution   as follows. 

 ( )( ) ( )
1

1

 LSA, ,
ee

e e e eb t b b b r
−

−



 + = v   (2.33) 

We can now construct the fine-scale signed distance field through interpolation via bubble 

function. Employing the mean value theorem and assuming coarse-scale residual to be constant over 

element interior, a simplified expression of the fine-scale signed distance field is obtained: 

 
( ) ( )

LSA
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e

e
e e

e e e
b d r r

t b

b
b

b b


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−



 = =
+

=
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
u

  (2.34) 

where LSA  is the stabilization tensor for the time-dependent level set advection equation. 
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2.2.4.2. The resulting coarse-scale sub-problem 

We re-arrange the coarse-scale sub-problem (2.15), apply divergence theorem and substitute the 

fine-scale model for the signed distance field. 

 , 0, ,
t t t t

          





   
− +

    
+  +   =    


+  

     
v v v v   (2.35) 

The level set advection equation is temporally a first-order system. We drop the second-order time 

derivative of signed distance field, thereby yielding a stabilized first-order system. 

 , 0, ,
t t t

  
      

     
+ − =     

  

  
+   +  

     
v v v v   (2.36) 

Remark. The first term in the stabilized form is the standard Galerkin term. The second term has the 

same structural form as the stabilization term derived in the constant-in-time fine-scale VMS method for 

advection equation [113]. The last term is derived based on time-dependency of the fine-scale VMS 

formulation. 

Remark. The time-dependent fine-scale models can also be integrated via higher order time marching 

schemes. For details, interested reader is referred to the derivation of the time-dependent fine-scale model 

[30]. As an example, we present the final stabilized formulation of level-set advection equation in the 

context of generalized α-method as 
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  (2.37) 

2.2.5. Stabilized Form of the Incompressible Navier-Stokes Equations with Free Surface 

The stabilized weak form of the incompressible and immiscible two-phase Navier-Stokes 

equations can be written as 

 ( ) ( ) ( ) ( )NSE  NSE

Gal VMS VMS Gal, ; , , , ; , , ; , ;
e

Iq p q p   + + =w v w v w v wB B B L   (2.38) 
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 ( ) ( )LSA LSA

Gal VMS; , ; , 0   + =v vB B   (2.39) 

The bilinear terms in (38) are defined as 
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B   (2.40) 

where NSE

GalB  and LSA

GalB  are the standard Galerkin terms,  
VMS

eB  are the interior stabilization term and 

VMS
IB  is the interfacial stabilization term to help with the instability arising due to the free-surface 

sloshing motion. It is important to note that the structure of the so-called ghost penalty term (Baiges et al. 

2017) arises naturally in the proposed method. 

2.3. REINITIALIZATION AND MASS CONSERVATION 

2.3.1. The Re-Initialization Process 

Although the evolution of signed distance field   is governed by the level set advection equation 

(2.6), this equation may warp the signed distance field that can in turn affect the location of the interface 

and thus introduce numerical errors in the finite element calculations. This effect is usually accumulative 

that grows with time and can make the computed field deviate from the strict definition of a signed 

distance field. To correct this error, a re-initialization process is carried out that helps recover the signed 

distance field. One specific property of signed distance field which is usually employed is that the norm 

of its gradient is equation to one (i.e., 1 = ). This equation is also known as the Eikonal equation. In 

this work, the pseudo-time form [147] of Eikonal equation is employed in the context of finite elements, 
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and it is stabilized via the SUPG method. In addition, a weakly imposed boundary condition is applied to 

fix the location of the interface during the reinitialization process. The stabilized weak form is: 

 
( )( ) ( ) ( )( )
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  (2.41) 

where 
r  is the signed distance field after re-initialization, 

0  is the signed distance field after solving the 

free-surface fluid flow problem, K  is the spring coefficient to enforce the interfacial boundary condition, 

and SUPG 2eh =  is the SUPG stabilization parameter. In Eqn. (2.41), the first term is the standard 

Galerkin term, the second term is the SUPG based stabilization, the third term is the discontinuity-

capturing term and the last term is weakly imposed boundary condition at the moving interface. 

2.3.2. Global Mass Conservation 

In a closed domain   (i.e., no inflow or outflow fluxes at the domain boundaries), the mass of 

the system that is comprised of two immiscible fluids is represented as 

 ( ) ( )( )( ) ( ) ( )( )1M HdH H d       + +
 

− − −= + − = − +     (2.42) 

where ( )H   is the discontinuous Heaviside function, and +  and −  are densities of the fluid in the two 

sub-regions. Mass conservation means that the current mass tM  is equal to the initial mass 0M , which in 

fact is known from the initial conditions. We add a global constant perturbation   to the re-initialized 

signed distance field r  to enforce mass conservation [144]. 

 ( ) ( )( ) 0t rM H Md    + −


−= − ++  =   (2.43) 

We approximate the Heaviside function with the regularized version, expand it through Taylor series, and 

drop second order terms to solve for   

 
( ) ( )

( ) ( )

0 r

r

dM H

dH

d 



   


  

+
 

+


− −

−

− − −

 −

 
=

 


  (2.44) 
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In applications to free-surface problems, where the difference in density between the two phases is very 

large (e.g., 
water air  ), the expression for the global constant mass correction can be simplified as 
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
  (2.45) 

where 
0V  is the initial volume of water and ( )H   is the regularized Heaviside function defined as: 
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Remark. The mass conservation term appears as a correction to the computed signed distance function 

and it accounts for the dissipation of mass due to numerical diffusion.   

2.4. NUMERICAL TESTS 

We first present the convergence rate study to illustrate the consistency and stability of the 

proposed stabilized method for advection equation that models the level-set field. We then couple the 

interface-capturing algorithm within the Navier-Stokes equation and carry out a series of numerical tests 

on two-phase flows. Finally, we present two-dimensional and three-dimensional dam-break flows to show 

the versatility of the proposed method for solving harder free-surface flow problems. 

2.4.1. Pseudo-1D Advection 

The first test case [123] is a smooth initial scalar field 0  that is advected with a given velocity 

field ( ),x yv  which represents one-dimensional flow over a two-dimensional domain [0,1]×[0,1]. The 

initial condition and spatial distribution of the velocity field are given as: 

 ( ) ( ) ( )( ) ( )
2 2 2

0 , exp 0.5 0.5 exp 0.15x y x y = − − − − − −   (2.47) 
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The computational domain and initial condition are shown in Figure 2.2. Since zero flux is 

applied at the inflow, only the portion of the domain which is influenced by initial condition is considered 

in the convergence rate test that employs the L  norm, which is defined as: 

 ( ) ( )max h ee  
 

= −
x

x x   (2.49) 

 

Figure 2.2 Initial and final interface location for the pseudo 1D advection test 
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a) Initial state 

 

b) End state 

Figure 2.3. Warped scalar field at initial and final stage for the pseudo 1D advection 
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Figure 2.4. Convergence rates on uniform meshes for linear 3D elements 

Four hierarchical meshes are used and the problem is run to a fixed number of time-steps (N = 

16). The t x   ratio in CFL number is set equal to 1.0 by systematically reducing x  and t . Figure 

2.3a shows the spatial distribution of the scalar level-set field and the iso-surface with zero value is the 

circular geometrical object that is convected with the flow. Figure 2.3b shows the spatial distribution of 

the zero contour and the warped level-set field at the end of the sixteenth time-step. The convergence 

rates attained for both linear hexahedral and linear tetrahedral elements are shown in Figure 4, and the 

computed rates from last two finest meshes attain an asymptotic optimal convergence. 

2.4.2. Dam-break Flow (2D) 

The collapse of a water column under gravity is a widely-used benchmark problem to study the 

features of a numerical method for free-surface kinematics.  A water column of height 2a is instantly 

released in a tank (see Figure 2.5), which collapses under the effect of gravity and flows towards the 

opposite wall of the tank. The density of water is 1000 kg/m3 and that of air is 1 kg/m3. The dynamic 

viscosity of water is 1.0×10-3 Pa·s and for air is 1.0×10-5 Pa·s. The experiment data reported in [89] is 

based on a water tank apparatus that is open at the top. Sloshing water that crosses the top edge of the 
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tank falls back in the tank due to gravitational forces. In order to replicate the experimental setup, the top 

boundary of the mesh is kept high enough so that the computed free surface does not hit the mesh 

boundary at the top and this helps avoid artificial reflection of the water column, that would affect the 

flow physics. Consequently, two different domain sizes and mesh resolutions are considered: 4a×4.8a, 

80×80 and 4a×6a, 120×160. The finer mesh being less dissipative necessitates a larger domain height to 

prevent contact with the top boundary. 

 

Figure 2.5 Two-dimensional dam-break problem: spatial dimensions 

Because of the rapid change in the surface profile and large motion of the water column, all 

aspects of the algorithm are invoked, i.e., (i) stabilized method for the two fluids, (ii) time-dependent 

level-set method, (iii) SUPG stabilized Eikonal system, and (iv) the mass conservation algorithm. 

Consequently, this problem serves as a good test case for checking the robustness of the framework. 

The initial and final states of the dam-break flow are both stationary and thus the exact initial 

energy as well as the asymptotic final energy of the system are known. Viscous effects result in the 

dissipation of the system energy and therefore its rate of decay is an important measure of the energy 

dissipation features of the method. Because of extreme free surface kinematics, a mass correction 

algorithm is embedded in the method that compensates for the mass loss due to complex interfacial 
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kinematics in the long-time simulations. Since the density of air is negligibly small as compared to that of 

water, the system mechanical energy head 
mE  (potential and kinematic head) and relative mass M  are 

calculated via integration over the water domain only. 

 ( )
1

2
m gh H dE 



 
+   


=


 v v   (2.50) 

 ( )M H d


=    (2.51) 

where ( )H   is the regularized Heaviside function. The history of mechanical energy head and mass 

variation are shown in Figure 2.6. The finer mesh being less dissipative results in better approximation of 

the kinetic energy. However, the coarser mesh still yields the same asymptotic behavior of energy decay 

as that for the fine mesh. In addition, the initial rate of decay of energy, which is given by the slope of the 

curves is approximately the same for both the meshes, which shows that coarse mesh is also able to 

accurately model the flow physics. The mass history of the finer mesh shows better overall conservation 

property with maximum mass variation of 2%. Since the mass correction term is not a variationally 

derived term, it only provides first-order correction to mass conservation. 
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a) Energy history for long-time run of the dam-break flow. 

 

b) Mass history for long-time run of the dam-break flow. 

Figure 2.6 Energy and mass history for long-time run of the dam-break flow: coarse and fine meshes 

2.4.3. Dam-Break Flow with an Obstacle (2D) 

The next test case is dam-break flow with an obstacle, where the air-water interface results in 

complex evolving topology. It serves as a good benchmark problem because of the availability of the 
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experimental data [87] on the history of pressure at several locations on the obstacle, and the depth of 

water column at various locations upstream and downstream of the obstacle. The dimensions of the 

computational domain and the initial location of the water column are shown in Figure 7. The obstacle is 

located 2.3955m away from the left wall. The mesh is comprised of 128×64 linear quadrilateral elements 

that cover the entire computational domain, while the obstacle is represented by 7×10 grid of quads. 

Figure 8 shows a series of snapshots of the free-surface evolution and pressure distribution at different 

time points during the simulation. In Figure 9, we provide time history of the pressure field at spatial 

point P1, P3, P5 and P7 which are the spatial locations of the data points in the experimental set up [87]. 

Points P1 and P3 are at the upstream face of the obstacle, while points P5 and P7 are at the top of the right 

vertical wall, as shown in Figure 7. We also compare our results with the reported numerical data [43,87]. 

The time history of pressure at P1 and P3 shows good agreement with the published experiment and 

numerical data. The peak pressure at P1 that occurs at approximately 0.4s is much higher as compared to 

the experimental value, and this can be attributed to infinite stiffness of the obstacle because it is modeled 

via Dirichlet boundary condition. In Figure 10, the time history of water height at two different locations 

(H3: 0.582 m from the left wall, and H4: 1.732 m from the left wall) are compared with the published 

experimental and numerical data and again a good correlation is attained. Figure 11a presents time history 

of mass variation which shows that initially there is negligible mass loss up until the wave first impacts 

the obstacle. Also plotted is the case where mass correction term is deactivated, and it shows 14% loss in 

mass during the course of the simulation. Fig 11b presents the zoomed view for the case where the mass 

conservation algorithm is activated which shows that the maximum mass variation is less than 2% even 

for this rapidly oscillating large amplitude free surface flow problem. 
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Figure 2.7 Schematics of the two-dimensional dam-break flow with obstacle (units: cm) 

 
(a) t = 0.5s 

Figure 2.8 2D dam-break flow with obstacle: pressure field and air-water interfaces 
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(b) t = 1.0s 

(c)t = 1.5s 

(d) t = 2.0s 

Figure 2.8 (cont.) 
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(a) 

(b) 

Figure 2.9 Time history of pressure at various locations on the obstacle: (a) P1, (b) P3, (c) P5 and 

(d) P7 
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(c) 

(d) 

Figure 2.9 (cont.) 
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(a) 

(b) 

Figure 2.10 Time history of water height at two locations: (a) H3 and (b) H4 
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Figure 2.11 Mass time history of the water body in the 2D dam-break flow with an obstacle 

2.4.4. Free-Surface Wave Interacting with a Rectangular Column (3D case) 

Waves breaking against structures and wave structure interaction are important problems in ocean 

and marine engineering. Since large impulsive forces can cause severe damage to structural elements, 

therefore, in the designing of coastal structures in the nearshore region, wave forces and ambient fluid 

conditions need to be considered. This test case has published experimental data as well as numerically 
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computed time history of velocity and impulsive force and therefore serves as a good test bed for studying 

the attributes of the proposed method. 

The computational domain is a rectangular box with dimensions 1.6m×0.6m×0.6m. The width of 

the square column is 0.12m and its height is the same as that of the computational domain. The location 

of the structural column is shown in Figure 12. The initial water body is of dimension 0.4m×0.6m×0.3m. 

The domain is discretized with a structured mesh of linear hexahedral elements, and taking advantage of 

geometric symmetry of the problem, only half of the domain is discretized. Zero normal velocity 

condition is imposed at the plane of symmetry along with slip condition in the other two directions along 

this plane. Furthermore, slip conditions are applied at all the other boundaries of the computational 

domain. The mesh resolution is 128×48×24 with slight refinement around the structural column where 

element width is 1 cm. 

 
Figure 2.12 Schematic diagram for dam-break wave interacting with a square column (unit: centimeters) 

Since in the experiment setup there is some residual water at the bottom of the tank, we have also 

added a thin layer of water with depth equal to 1 cm at the floor of the computational domain. The density 

and dynamic viscosity of water and air are 1000 kg/m3 (water) and 1 kg/m3 (air), and 1.0×10-3 Pa·s (water) 

and 1.0×10-5 Pa·s (air), respectively. 
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Free surface flow is initialized as a dam-break flow and subsequent free surface motions 

including wave splitting and water splashing are induced because of interaction with the square column. 

Generalized α-method is used for time integration. The step size for first 100 steps is 0.005s which is then 

reduced to 0.001s for subsequent calculations. The coupled system of Navier-Stokes equations and level-

set equation are monolithically solved via a parallel sparse direct solver. In each time-step, the converged 

signed distance field is re-initialized to conform it to its strict definition. We present the time history of 

the computed horizontal velocity at 0.146 m upstream of the center of the column and 0.026 m off the 

floor and compare it with reported experimental data [57] and numerical data [38,95,135]. Petroff and 

Yeh had obtained experimental data for this problem which is reported in [135]. We see in Figure 13 that 

the proposed method accurately predicts the time of impact, the maximum velocity at the instant of 

impact and subsequent decay in velocity as a function of time. Figure 14 shows the computed impact 

force that is obtained via integrating the normal pressure on the front and back surfaces of the column and 

integrating the shear stress along the side wall of the column. Once again, a good comparison with the 

reported data can be seen. Figure 15 shows the snapshots of the free surface kinematics and the complex 

free surface patterns around the column. The runup height along the distal wall and the plunging wave 

generated due to reflection gives rise to intricate 3D free surface patterns. Figure 16 presents streamlines 

that are colored by the vorticity magnitude in the water subdomain to highlight the complex nature of 

internal flow structures around the column. 
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Figure 2.13 Time history of the horizontal velocity 

 

Figure 2.14 Time history of water impact on the column 
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(a) t = 0.25s 

 

(b) t = 0.5s 

Figure 2.15 Snapshots of interaction between dam-break wave and square column in various time 
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(c) t = 0.75s 

 

(d) t = 1.0s 

Figure 2.15 (cont.) 

 



41 

 

 

(a) t = 0.5s: two wave fronts that split by the column starting to merge 

 

(b) t = 0.6s: water fronts reach the other side of the domain and the two main waves are interacting 

Figure 2.16 Snapshots of streamlines colored by vorticity in various time 
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(c) t = 1.565s: back waves go beyond the column again and impact force on column reaches the peak in 

negative 

Figure 2.16 (cont.) 

2.5. CONCLUSIONS 

We have presented an interface-capturing finite element method that is comprised of a 

variationally derived ghost-penalty type term which appears naturally via VMS stabilization of the system 

furnished by the Navier-Stokes equations and the level-set equation. The evolution of the interface is 

consistently represented in the governing system through the dependence of the material properties on the 

signed distance field. We employ time-dependent fine-scales in the level-set advection equation where 

fine-scales are viewed as correction terms to the signed distance field and they help improve the accuracy 

of the signed distance field when computed over cruder discretization. It is important to note that for the 

class of problems involving breaking waves, the free-surface kinematics can get complex and therefore 

spatial discretization that are initially considered adequate for mild free-surface motions can become 

crude discretization as the free-surface nonlinearity evolves. In this context, the fine-scale signed distance 

field becomes important for consistently correcting the computed coarse scale signed distance field. For 

numerical stability in the long time calculations with plunging and breaking waves we also need to ensure 

conservation of mass in order to conserve momentum and energy in the closed system. This is done via a 
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mass-correction term that is added to the stabilized form. Furthermore, the complexity of the free-surfaces 

necessitate that the level-set field complies with the strict definition of the signed distance field. This 

requires a reinitialization process that invokes solving a stabilized pseudo-time form of the Eikonal 

equation. A benchmark problem in 2D is presented to highlight the salient features of the proposed level-

set method. The full algorithm is tested on 2D dam break flow using linear elements and good 

comparison with the experimental data as well as with the published computed data is attained. The fully 

coupled method is implemented in 3D using equal-order 8-node brick elements for all the fields, i.e., 

velocity, pressure, and the signed distance fields. The complexity of the 3D free-surface flow around the 

rectangular column shows the robustness of the method to handle large amplitude free-surface oscillations 

as well as plunging and breaking acting of the waves without giving rise to numerical instability issues 

that are typical in this class of problems.  
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CHAPTER 3: VARIATIONALLY DERIVED INTERFACE STABILIZATION FOR 

DISCRETE MULTIPHASE FLOWS AND RELATION WITH THE GHOST-PENALTY 

TERM 

3.1. INTRODUCTION 

Modeling of two-phase flows and free surface flows with moving fluid boundaries is fundamental 

to many problems in fluid mechanics. Examples include free surface wave action on marine structures, 

sloshing and mixing in storage tanks, and surface instabilities that arise in free falling water columns. 

Another class of problems where two-fluid interfacial dynamics plays an important role is the mixing of 

immiscible fluids where jumps in the density and/or viscosity across the interface boundary can trigger 

various types of physical instabilities. In all these problem classes, spatiotemporal stability of the 

deforming interfaces is a key ingredient for accurate modeling of multiphase flow. 

In computational modeling of interfacial phenomena in fluids, both interface-tracking methods 

[29,65,71,80,84,102,132,150] and interface-capturing methods [8,43,82,87,96,131,147,149] have been 

employed. Interface tracking techniques are invariably used in conjunction with the Arbitrary Lagrangian-

Eulerian (ALE) framework [29,65,71,84,102] that enables the motion of the domain boundaries. However, 

for large free-surface motion, excessive distortion leads to mesh breakdown [80]. Employing Lagrangian 

description of fluids, Particle Finite Element Method (PFEM) [132] that overcomes the mesh distortion 

issues because it does not require a contiguous mesh, and Constrained Interpolation Profile (CIP) [150] 

method that employs Soroban grids to facilitate mesh adaptivity have been proposed for moving interface 

problems. 

An alternate family of methods employed for moving interfaces is based on the so-called 

interface-capturing techniques. These techniques are invariably written in an Eulerian frame of reference 

and an auxiliary scalar field termed as the signed distance field is employed to implicitly trace the 

location of the interface. Compared to the interface-tracking algorithms, an important feature of the 

interface-capturing methods is the representation of complicated topology of the evolving interface via 

the solution of the scalar transport equation, termed as the level set equation. In the level set method 
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[149,131,147,82,8], the iso-contour of the zero level set of the scalar field marks the spatial location of the 

interface and therefore intrinsically tracks the interface. The interface-capturing techniques are in turn 

classified by the continuity of the scalar field and have been employed in the context of the finite element 

[43,96] and the finite volume methods [87]. 

Interface capturing methods that employ level set techniques for moving interfaces create 

elements that are traversed by zero contour of the level set. From the perspective of interfacial flow 

physics, local flow fields across these interfaces can give rise to Rayleigh-Taylor instability [152] (when 

lighter fluid is accelerated into heavier fluid) or Kelvin-Helmholtz instability [158] that arises due to local 

shear in the velocity field. However, from a computational perspective these arbitrarily moving interfaces 

give rise to numerical instabilities that are non-physical and therefore can render the method non-

convergent. In order to control these non-physical instabilities, various numerical techniques have been 

presented in the literature, namely (i) the unfitted finite element method [59], (ii) the fictitious domain 

method [25,55], (iii) the ghost penalty method [21], (iv) the cut finite element method [22,24,26–28,60], 

and (v) the X-FEM method [5]. These methods are based on adding a term to the formulation that 

provides control over the jump in the normal gradient across the deforming interphase boundaries. In this 

context (a) face stabilization technique that is operational over the discrete sd 1n −^  space, and (b) full 

gradient stabilization technique that is operational in a narrow band across the interface and provides 

control of the full sdn^  gradient [28] have been proposed. In either case, a positive parameter is needed, 

which is largely left unspecified by the theory. Some guidelines have been provided to select the value of 

this parameter [8,23] to suppress potential ill-posedness of the interfacial contribution to the stiffness 

matrix. A good review of the various aspects of the cut finite element methods is presented in [22]. 

We propose an interface stabilized method for free-surfaces and for discrete multiphase flows. 

Our premise is that in the ALE based techniques the motion of the interface boundary and therefore of the 

computational mesh appears in the governing system of momentum balance equations [29,65,71,84,102]. 

Likewise, for an Eulerian method where mesh stays fixed, the evolution of the interface between the 
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phases should also be uniformly and consistently represented in the continuum form of the governing 

momentum balance equations. This is accomplished by making the material properties a continuous 

function of the level-set field wherein the location of the zero contour defines the interface across which 

the material properties may change sharply. By embedding the level set field in the continuum equations 

via the dependence of local mechanical properties of the fluids on the spatial location of the interface we 

get a coupled system of equations. The discrete system that emanates from this coupled system of PDEs 

needs to address three important technical issues: (i) The restriction imposed by the inf-sup condition for 

the incompressible viscous fluids, (ii) Instability that can arise due to the skew advection term when time 

dependent form of level set equation is employed, and (iii) Interfacial instability that may arise due to 

discontinuity in the material properties across the deforming internal interfaces. The first two issues are 

related to the Navier-Stokes equations and the level-set advection equation and a successful approach to 

address them is to employ stabilization techniques. Among these techniques the Galerkin/Least-Square 

(GLS) [70] and the Streamline Upwind Petrov Galerkin (SUPG) [69] methods are of prime significance 

and have been used with considerable success in the literature. 

The significant and unique contribution in the present paper is a systematic application of the 

VMS-based ideas to the coupled system, which results in a method with three essential ingredients: (i) a 

stabilized method for incompressible flows that satisfy  discrete inf-sup condition, (ii) a stabilized level-

set method to capture the moving boundary on an otherwise fixed background mesh, and (iii) interface 

stabilization terms to control nonphysical oscillation around moving internal interphase boundaries. 

Variationally consistent derivation presented here shows that interface stabilization terms have a structure 

which is similar to that of the Ghost penalty terms [8,23]. This derivation is based on the earlier works of 

the senior author on Navier-Stokes equations [84,105] and the advection-diffusion equation [113]. It is 

important to realize that VMS framework [67] has been used in the literature in two contexts: (i) as a 

method for developing fine-scale models to account for the missing physics in the coarse scales, and (ii) 

as an error estimator for the numerically computed fields. In the present developments, application of 

VMS to Navier-Stokes equations is to be viewed in the former context, while for the time dependent 
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level-set equation, application of VMS is to be viewed in the context of improving spatial accuracy in the 

location of zero contour of the level-set field in addition to stabilizing the hyperbolic form of the equation. 

An outline of the paper is as follows. Section 3.2 presents a systematic procedure for the 

application of the VMS method to a coupled system of PDEs, rather than applying stabilization 

individually to each PDE, and subsequently coupling the stabilized discrete forms. A significant 

contribution of the proposed method is the delineation that applying VMS to the coupled system results in 

cross-coupling terms that naturally lead to “interfacial stabilization”. An outline of the underlying 

residual-based stabilized form of the incompressible Navier-Stokes equations is presented, which is 

extended to incorporate the level-set based evolving interfacial boundary. In the process the structure of 

the variationally derived ghost-penalty type terms is illustrated. Section 3.3 presents a VMS-stabilized 

level-set method where the variationally derived fine-scale model is shown to play a significant role in the 

structure of the interface stabilization terms, that is analyzed in Section 3.4. A set of numerical test cases 

with increasing degree of complexity is presented in Section 3.6, and conclusions are drawn in Section 

3.7.  

3.2. MULTIPHASE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH EMBEDDED LEVEL-

SET FIELD 

We employ Navier-Stokes equations and the level-set equation as a model system of coupled 

PDEs for the derivation of interface stabilized form for immiscible viscous fluids. In the ALE-based 

methods mesh velocity that describes the evolution of the discrete interface between the two fluids 

appears in the governing equations. Along these lines, in an Eulerian method it is appropriate to embed 

the inter-domain interface location in the continuum equations for momentum balance via the dependency 

of the material parameters on the level set field. Consequently, right from the beginning we assume the 

value of density and viscosity to be given by the location of the zero contour of the level set function  , 

i.e., ( )   and ( )  , and these parameters of density and viscosity are assumed to vary sharply across the 

interface. We then apply the VMS method to the coupled system to derive the stabilized form. A unique 
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feature of the derivation is that interfacial terms that have a structure which is similar to the ghost penalty 

type term arise as a part of the stabilized form, thereby justifying the variational basis of the ghost-penalty 

type methods [21]. 

Let sdn
  ^  be a connected, open and bounded region with piecewise smooth boundary  . 

The number of space dimensions 
sdn  is equal to 2 or 3. In addition, we have an embedded boundary 

I  

(possibly with smooth curved faces) that traverses through the domain and represents the interface 

between the two phases. We assume the material coefficients to be constant (but otherwise arbitrary) in 

each of the two phases of the fluid. Consequently, pointwise value of the material parameters (i.e., ( )   

and ( )  ) is specified by the location of the evolving interface boundary 
I  which is given by the zero 

contour of the level-set field  . The governing equations and appropriate boundary conditions for the 

two-phase incompressible Navier-Stokes equations are 

 

Figure 3.1 Schematics of domain interior and interfacial subregions: Interfacial stabilization terms are 

restricted to the localized subregion along I . 

 ( ) ( ) ( ) ( ) ( )  , 2 0,i ,nt p T        −  + = + v v v ε v f   (3.1) 

  ,in0 0,T = v   (3.2) 
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  0, ,on g T=  v g   (3.3) 

 ( ) ( )( )  o2 0,n ,hp T  = −  =  σ n ε v I n h   (3.4) 

 ( )  0,0 0 ,on= v x v   (3.5) 

where v  is velocity, p  is dynamic pressure and f  is the body force vector. Eqn. (3.1) is the momentum 

balance equation, and (3.2) is the continuity equation, where   is the density and   is the dynamic 

viscosity. Both parameters are considered as functions of the signed distance field. Vectors g  and h  are 

the Dirichlet and Neumann boundary conditions given in (3.3) and (3.4), respectively, and 0v  is the initial 

condition. σ  is the total stress and ( )ε v  is the rate-of-deformation tensor which is defined as ( ) s= ε v v , 

where 2( )( ) /s T  + =v v v  is the symmetric gradient operator. 

The level set field   is governed by the time dependent advection equation. 

  0 0,in T +  = v   (3.6) 

 ( ) ( )0 n,0 i = xx   (3.7) 

where (3.6) is the level-set advection equation,   is the signed distance field, v  is the velocity field 

furnished by the Navier-Stokes equations, and 0  is the initial condition for the level-set field. The 

location of interface is given by zero value of the signed distance field, ( ) 0 0| 0= = x x .  

The appropriate spaces of weighting functions for the velocity, pressure, and signed distance 

fields are: 

 

( )( ) 
( ) 

( )( ) 

1

2

1

Velocity         | , on

Pressure          |

Level-set Field        |

sd

sd

g

n

n
H

q q L

H
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

= =
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  (3.8) 

where 2 ( )L   are the square integrable functions, and 
1( )H   consists of functions that possess square-

integrable generalized derivatives through order one. The appropriate spaces of trial solutions t  for the 
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velocity field, 
t
 for the pressure field, and 

t  for the signed distance field are time-dependent spaces 

corresponding to ,  and  , respectively. 

The standard weak form of the incompressible and immiscible two-phase Navier-Stokes 

equations is: Find  , , t t tp   =  V v , such that  , ,q  =   W w , 
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( )( ) ( )

( )

, , ,2 ,

Navier-Stokes: ,

0

,

,

h

s

q

p     

 


=

 +  +   −  



= +


 

w v w v v w w

w f w h

v

v

  (3.9) 

 ( ) 0Level-set Advection: ,  +  =v   (3.10) 

Remark. At this point in the derivation of the method it suffices to know that the signed distance field 

evolves together with the physics of the problem and is given by a stabilized form of level set equations 

that is delineated in Section 3.3. 

3.2.1. VMS-based Stabilized Interface Method 

This section presents VMS based stabilization of the coupled system of PDEs that is comprised of 

the Navier-Stokes equations, and the hyperbolic level set equation. The main contribution in this paper is 

the variational derivation of interface stabilized form that is similar in its structure to the ghost-penalty 

method for interfacial velocity field [21]. A traditional application of the ghost penalty method requires 

specification of a positive weighting parameter that is left unspecified by the theory and is largely defined 

based on stability estimates [21] and scaling arguments [23]. The proposed method presents a systematic 

procedure to derive an analytical expression for this parameter. 

We start by applying VMS idea to a system of PDEs rather than applying the method individually 

and separately to each PDE. We assume overlapping decomposition of the unknown field into coarse (or 

resolved) scales and fine (or sub-grid) scales. For nonlinear field equations, this decomposition is to be 

viewed in the context of projection of fine scales on the coarse scale space. Accordingly, additive 

decomposition of the velocity field ( , )tv x  and its weighting function ( )w x  is represented as follows, 
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 ( ) ( ) ( ) ( ) ( ) ( )and , ,t t = + = +w x w x w x v x v x v x   (3.11) 

Likewise, we assume an overlapping sum decomposition of the signed distance field 

 ( ) ( ) ( ) ( ) ( ) ( )a ,d ,n ,t t t      = + = +x x x x x x   (3.12) 

Substituting (3.11) and (3.12) in (3.9) and (3.10) leads to two systems of coupled equation: one at the 

coarse-scale level and the other at the fine-scale level. 

System of Coarse-scale sub-problems: 

It is important to note that both coarse- and fine-scales from the velocity field of the fluid and 

signed distance field that defines moving boundaries of the fluid are uniformly present in the weak form 

of the two PDEs. 

( ) ( )( ) ( )( ) ( )( )

( ) ( )( ) ( )

( )( ) ( )

( ) ( )( )
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, , ,
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; , ,
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  


  + + + 





+  +  −  
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
 +

 =


 =   + =

v v v vw v v

v v

v v

w

v v

v w

w w

w f w h

  (3.13) 

( ) ( ) ( )( )3 , , 0Leve-set Advection: ; , ,R         = + =  + +  +v v v v           (3.14) 

Remark. In the present work we employ the time dependent form of the level set equation discussed in 

Section 3.3. 

System of Fine-scale sub-problems: 

Likewise, the coupled system at the fine scale level has coarse-scale and fine-scale fields for v  

and   fully embedded. 

( ) ( )( ) ( )( ) ( )( )

( ) ( )( ) ( )

( )( ) ( )
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   =− + −
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  = + +

+

w wv v v v v v

v v

v w

w w

w f w h

   (3.15) 
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( ) ( ) ( )( )5 , , 0Leve-set Advection: ; , ,R            + = + + =+ v v v v  (3.16) 

Fine-scale sub-problem provides an avenue to develop a model for the fine-scale fields in terms 

of the residuals of the Euler-Lagrange equations of the coarse scales. This feature of analytical modeling 

of the fine scales is the uniquely distinct feature of the VMS method that is in stark contrast with other 

numerical methods that are employed for enhancing stability and accuracy of the methods. The coarse-

scale and fine-scale sub-problems are nonlinear with respect to both the fine-sale velocity and the signed 

distance field, consequently we need to linearize these equations. Specifically, we linearize the 

momentum balance equation only with respect to fine-scale velocity field, where the linearization 

operator is defined as follows 

 ( )( ) ( )
0

4 4,; , , ; , ,,
d

R Rp p
d 

  
 =

    = +w v v w v v vL   (3.17) 

Applying (3.17) to (3.15) results in the linearized fine-scale sub-problem. 

 
( ) ( )( ) ( )( )( ) ( )( )

( )4

, ,

, , ,,

,2

;

s

R p

           

 

        + +  +  + +  +  + 

 = −

w v v v w v v v

v vw

w v
  (3.18) 

We rearrange (3.18) by keeping the terms that depend on  v  on the left hand side and substitute the 

expression of the residual from (3.15). 

 ( )( ) ( )( ) ( )( ) ( )NSE, , ,2 ,s          +   + =    −w v w vv v w rw v   (3.19) 

Following along the lines of our earlier works [84,105], we expand the fine-scale weighting function and 

trial solution in (3.19) via bubble functions that are nonzero within the element interior, i.e., eb =w γ  and 

eb =v β . The fine-scale model is as follows, 

 NSE NSE  =v τ r   (3.20) 

where the stabilization tensor NSEτ  and coarse-scale residual NSEr  of the momentum balance equation are 

defined as 
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( ) ( )

( )
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 

  
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 


 

v I

I

r v v v f

v
τ

v

  (3.21) 

Remark. For the discussion on bubble functions and the stabilization tensor, interested reader is referred 

to VMS stabilization form [84,105] for incompressible Navier-Stokes equations. 

Remark. We can derive the residual-based fine-scale signed distance field with a generic form 

LSA LSAr = . To keep the presentation concise, discussion on this derivation is deferred to Section 3. 

3.2.2. The Coarse-scale Sub-problem 

The important point to note is that the composition of density and viscosity with the level-set field 

introduces the Heaviside function ( )H   in the formulation. Though this brings in further nonlinearity in 

the system, appearance of   in the governing system provides an avenue to variationally develop 

interface stabilization method. The coarse-scale sub-problems is linearized about the fine-scale solution 

 , v  to be able to substitute the fine-scale velocity and signed distance fields. Accordingly, the 

linearized operator for the coarse-scale momentum balance equation and the advection equation is defined 

as 

 ( )( ) ( ) ( )1

0 0

1 1; , , , ,, , , ; , , ; ,
d d

p R R
d d

R p p
 

      
 = =

  = + +  +v v w v v v w vw   (3.22) 

As compared to (3.17), the linearized operator in (3.22) also includes the contribution emanating from 

linearization about the fine-scale signed distance field. 

The jump in the density   and dynamic viscosity   across the interface between phases can be 

defined via Heaviside function ( )H   as 

 ( ) ( )( ) ( ) ( )( )1 and 1H H HH         + − + −+=+= −−   (3.23) 



54 

 

where the subscript ( ) ( )
0+ 

=  and ( ) ( )
0 −

=  denotes the material parameters of discrete phases that 

represented by different signs of signed distance field. We substitute the additively decomposed form of 

  in (3.23), which can be further simplified as 

 

( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( )2

,

H

H H O

 

       

        

+ − −

+ − − + −

+ −

+

 =

= − −

+ +

 + +   (3.24) 

The higher order terms that depend on   in (3.24) are dropped. It is important to note that ( ),H    yields 

the Dirac delta function 
( )I 




, which is defined along the embedded interface given by zero value of the 

signed distance field. Likewise, we can derive an analogous expression for viscosity across 
I . 

 ( ) ( ) ( ) ( ),H         + −+ − + =   (3.25) 

Applying the linearization operator defined in (3.22) to the coarse-scale momentum balance equation in 

(3.13) and substituting linear expansion of the density in (3.24) and viscosity in (3.25), we get the 

linearized coarse-scale formulation: 

( )( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )1

,2

, , ,

, ,

,; , ,2
I I

II

s

s pR

    

         + −  + − 


 +  +  

  

    + +

− − = + +  − +   −

w v v v v v v v

v

w

v v

w

w v w vv f w
  (3.26) 

Remark. We denote the   in (3.26) with   for the sake of brevity. 

In addition, we have the continuity equation 

 ( ) ( ), ,q q = − v v   (3.27) 

The residual form of coarse-scale momentum balance equations (3.26) and continuity equation 

(3.27) can be re-arranged as 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
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  (3.28) 

Terms in the first row in (3.28) are the standard Galerkin terms, while the terms in the second row depend 

on the fine-scale velocity field. The Dirac delta function facilitated by the fine-scale signed distance field 

localizes the interface terms to a narrow band 
I  along the interface, as shown in Fig. 1. Consequently, 

the terms in the third row are the interfacial terms defined over I  that account for the jump in the 

mechanical properties from either side of the interface. In the limit, this narrow band represents the 

interface 
I . 

3.2.3. Stabilized Form of the Multiphase Navier-Stokes Equations with Embedded 

Interfaces 

After substituting fine-scale solution derived in Section 2.1 in equation (28) the nonlinear 

stabilized form (3.28) is completely expressed in terms of the coarse scale fields. Henceforth, the 

superposed bars are dropped. For ease of presentation we write the derived formulation in an abstract 

form: 

 ( ) ( )Stab  Stab,, ; ;, pq  =w v w   (3.29) 

where Stab  and  Stab  are defined as follows: 

 

( ) ( ) ( ) ( )
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  (3.30) 
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where 
Gal

 are the standard Galerkin terms, 
VMS

e  is the interior stabilization term and VMS
I

 is the 

interfacial stabilization term that helps with the instability arising due to the arbitrary motion of the 

interface boundary. 

Remark. The structure of the domain interior stabilization terms that emanate from (3.28) and are 

represented by VMS
I

 is same as that in [84,105]. 

Remark. The structure of the interface stabilization terms is delineated in Section 3.4. 

3.3. STABILIZED LEVEL-SET METHOD 

The updated interface is given by the level-set equation wherein the scalar level-set field is driven 

by the velocity field facilitated by the incompressible Navier-Stokes equations. Since the level-set 

equation is a non-dissipative and non-dispersive advection equation, it requires a stabilizing technique to 

yield accurate numerical solution. The computed level-set field is checked to ensure that it satisfies the 

criterion of the signed distance field. In case of deviation, a re-initialization process [11] that is governed 

by the Eikonal equation is invoked. If the numerical solution of the hyperbolic system induces dissipation 

of mass, a mass conservation algorithm [144] is invoked to preserve physics associated with the inertial 

effects. 

We consider the fine-scale level-set advection equation (3.16) 

 ( ) ( ) ( )LSA, , ,r        = − +  =v v   (3.31) 

where LSAr  − = + v  is the residual of the Euler-Lagrange equation of the coarse-scale level-set 

equation. We expand the fine-scale weighting function and trial solution in (3.12) by element-wise bubble 

functions as 

 ande eb b    = =   (3.32) 

Substituting (3.32) into (3.31), and following along [25] the fine-scale model can be extracted as 
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LSA LSAr =   (3.33) 

where 
LSA  is the stabilization parameter, derived in our earlier work [113]. 

 

( ) ( )( )
LSA 21

e

e

e e

e e e

d

t b d

b b

b b
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−





 
=

+ 



 v

  (3.34) 

Substituting   from (3.33) in (3.14) leads to stabilized form for advection equation that can be written as 
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( )
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 
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 
=  

 

   
= −  


+ 



 
 +  

   

v v

v v

v v v v

  (3.35) 

Remark. For the derivation of the stabilized method for the advection-diffusion equation, see [113]. For 

time-dependent fine-scales, interested reader is referred to the derivation in [30]. 

3.4. STRUCTURE OF THE INTERFACE STABILIZATION TERMS 

We now focus on the two interfacial terms in (3.28) that are defined over I  in the subdomain 

that contains the embedded interface I . To keep the problem simple, we have dropped the superposed 

bar on the coarse-scale quantities: w , v  and   (within the coarse-scale residual of level-set advection 

equation). These terms (i.e. interface stabilization 1 and 2) are only present in the interior of the elements 

that are traversed by the boundary I . 
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  (3.36) 

where ̂  is defined as the interfacial parameter given as 

 ( )
( )

( )
ˆ

in

in

  
    

   + −

− + − +

+ − + −

+ −

 
= 



−
= − −

−

−   (3.37) 

Since jump in the material properties occurs normal to the interface, this term in fact provides control 

over jump in the velocity gradient perpendicular to the interface. In the context of linear algebraic systems, 

such terms are invariably added to the system to control ill-conditioning in the elements that are cut by the 

interface as discussed in [23]. Furthermore, the jump in interface parameter ̂  in (3.37) which becomes 

the source of jump in the velocity gradient only takes place in the direction normal to the interface I . 

The material parameters do not have jump in their value in the direction, which is parallel to the interface, 

therefore ˆ 0 =  in the tangential direction to the interface. Consequently, in the limit as the length 

parameter normal to the interface approaches zero thickness, we can approximate (3.36) as an interface-

based term that controls the projection of the gradient field in the direction normal to the interface. 

Accordingly, the reduced form of this term at I  in sd 1n −^  can be written as 

 ( ) ( )ˆ ˆ,2 ,2
I I

s s

I I 
 

      v vw w n n   (3.38) 

whereas LSA LSAr  =  (as defined in Section 3), and 
s

I v n  is the projection of the gradient of velocity in 

the direction perpendicular to I . From the structure of (3.38), it can be seen that for the case of zero 
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jump in the kinematic viscosity, this interfacial stabilization vanishes, thereby confirming its variational 

consistency. 

Remark. In the numerical implementation of the method, we have opted for the full gradient method 

because of the ease of its implementation. 

3.5. ANALYSIS OF THE INTERFACE STABILIZATION TERM 

We assume that 
w a  , 

w a   and the density of the two-phase fluid is a bounded function 

such that ( )a w     . Our objective is to show that the interface terms as in fact a stabilization 

terms that add to the overall stability of the method. We have two forms of interface stabilizations 
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  (3.39) 

We first establish two conditions: 

1) ˆ 0 I   x  

2)   is a bounded function, where LSA LSAr  =  

For the second condition to hold, we also need to establish that LSA  is a bounded function. 

PROPOSITION 1: The sign of the fine-scale level-set field   is such that 

 
( ) 

( ) 

0 0

0 0

in |

in |

I

I

 

 

+

−

    



=

=   

x x

xx
  (3.40) 

PROOF: We consider two cases for the orientation of the level-set field  . 

Case 1: We assume the orientation of the signed distance field ( )x  such that in the phase with higher 

density indicated as w , ( ) 0x   (see Figure 3.2a). 

Case 2: We flip the assumed orientation of the signed distance field as shown in Figure 3.2b, such that 

( ) 0x   in a . 
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a) Case 1 b) Case 2 

Figure 3.2 Possible orientations of the level-set field 

In either case, the density   and dynamic viscosity   vary sharply across the phase boundary 
I  which 

is marked by zero value of the level-set  , while the jump in the value is defined via the Heaviside 

function ( )H  . 

 
( ) ( ) ( )( )

( ) ( )

1H H

H

     

   

+ −

− + −

−

+ −

= +

=
  (3.41) 

For the simplicity of further analysis, we use a regularized Heaviside function ( )H   that depends on the 

half width   of I  and the limit of the regularized Heaviside function approaches the sharp 

discontinuity, that is 

 
0

lim 0H H



→

− =    (3.42) 

We substitute   in terms of its additively decomposed form (3.12), and employing Taylor series 

expansion on the regularized Heaviside function we can simplify the expression 
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( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
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(Taylor Expansion)

(drop high-order terms)
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  (3.43) 

We drop the higher order terms in  . It is important to note that ( ),H    yields the Dirac delta function 

( )I 



, which is defined along the embedded interface 

I  that is marked by zero value of the signed 

distance field. 

We follow the convention adopted in the description of the level-set field where   is the coarse level set, 

while the fine-scale level-set   is the perturbation that can also be viewed as a correction term to the 

level set field. Accordingly, ( )   is the density of the fluid in the subdomain 
+  and 

−  as given by 

the coarse-scale signed distance field across the boundary 
I . 

 ( ) ( ) ( ) ( )
I

        + − + = −   (3.44) 

In this context, the densities of the two discrete phases are the lower and upper bounds on the density that 

depends on the signed distance field. 

 ( ) ( ) ( )
Ia w        + − 

 − +   (3.45) 

Now we look at it in the context of cut FEM where one side of I  is the void. This can be realized by 

setting 0a a = = . 

STEP 1: We first consider the (3.45) within the region ( ) | 0I + =  x x   
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 (3.46) 
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STEP 2: We now consider (3.45) within ( ) | 0I − =  x x  
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  (3.47) 

PROPOSITION 2: Magnitude and orientation of the interface parameter: 
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( ) 

ˆ 0 0
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  (3.48) 

PROOF: The interface parameter defined in (3.37) can be specialized to the two cases 

Case 1: Figure 3.2a ( ) |I ww  + = =  =x x  and ( ) | aIa  − = =  =x x  
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Case 2: Figure 3.2b a+ =   and w− =   
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  (3.50) 

where a  and w  are the dynamic viscosity of air and water, respectively 

PROPOSITION 3: The product ˆ 0 I   x   

PROOF: Combining (3.40) with (3.48) we get 
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  (3.51) 

PROPOSITION 4: LSA  is a bounded function 
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As stated in the derivation of the method, the fine scales are expanded in terms of bubble 

functions that are nonzero on the sum of element interior and vanish on inter element boundaries. 

Consequently, the bubble basis functions ( )B K   satisfy 

 
( )

( )

0

0

K

K





  

=  

x x

x x
  (3.52) 

where ( )B K  is the space of bubble function defined over a generic element K  in the discretized domain 

 and ( ) 1max =
x

x  which is the standard property associated with interpolation functions. The fine 

scale solution is given by equation (3.33) where the value of the unknown coefficients is obtained as a 

function of the chosen bubble basis function  , the data (  ,  , and f ), and the residual of the Euler-

Lagrange equation of the coarse scales. 

We first establish some preliminary results: 

1. We define the 2 )(L   inner product  →  

 ( , )u v uvd


=    (3.53) 

The 2 )(L   norm is defined as 

 2 2

0,|| ||v v d


=    (3.54) 

2. Poincare inequality 

 2 2 2

1|| || |)( | ||e eCb h b    (3.55) 

where 1 1 2C =  

3. Inverse estimate 

 N

-1

I V|| || || ||K K

e ehb bC   (3.56) 

where INVC  is the constant of the inverse estimate. 

4. For cubic bubbles we have: 

 2

1 ( ),K K KK
d C B Kh K  =     (3.57) 
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 2

0, 2|| || ( ),K K K K
KhC B K =     (3.58) 

 
0, 3|| || ( ),K K K

C B K K  =     (3.59) 

where 1KC , 2KC , and 3KC  are positive constants, independent of the element parameter 
Kh . 

Recall the definition of 
LSA  in (3.34) 
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, ,
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e e e e

b b

b b bt b
 =

+ v
  (3.60) 

where t  is a small positive constant given by the CFL condition / | |FLC ht  v  and FLC  is the Courant 

number that depends on the time marching scheme. 

We consider the mass type term 
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  (3.61) 

Step 1: LSA

e  is bounded from below. 
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Employing Poincaré inequality for the integrated expression for LSA LSAe
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  (3.63) 

where 
2

1 2 32 /A K K KC C CC =   

Step 2: LSA

e  bounded from above. 

 LSA 1 2 1 2 2
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|| || ( ) | |( ) |

e e
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e e
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Employing inverse estimate for the integrated LSA

e  
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where 2 2 2

1 2 3 INV INV( / ) 1 2K K K ABC C C C C C C= = . 

From (3.63) and (3.65) we have 

 2 2

LSA

e

B KA K t C tC h h      (3.66) 

LEMMA 1: ( )VMS ; ,I 
w w  is positive definite. 
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where VMS
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 is a positive constant. 

PROOF: 
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LEMMA 2: ( )VMS ; ,I 
w w  is positive definite. 
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PROOF: 
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  (3.70) 

Consequently, both forms of interface stabilization terms derived in Section 2 subtend a normed 

quantity that adds to the stability of the method. 

3.6. NUMERICAL TESTS 
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Before the presentation of the numerical results, we briefly discuss the implementation of the 

interfacial stabilizations in (3.36) that we derived in Section 2. In the numerical test cases we have 

employed a regularized Heaviside function to numerically approximate the Dirac delta function. The 

Heaviside function ( )H   and its regularized form ( )H   are defined as follows 

 ( ) ( )
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1 1 1
0 1

if0 if

if in f
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2 2
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= = 

 
 

 −

  
= + +   

 
  


  (3.71) 

Parameter   is a length scale perpendicular to the interface 
I . In the numerical implementation, this is 

taken as one element diameter on either side of 
I . Consequently, the regularized Dirac delta function is 
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  (3.72) 

One advantage of the level set method is the implicit modeling of the interface or free-surface 

evolution without the need of interface-conforming meshes as is the case in ALE-based methods. We first 

present the convergence rate studies to show the consistency and stability of the proposed stabilized weak 

form for the level-set equation. Then we use a widely used numerical test case to verify conservation of 

mass during interface evolution, and the time-dependent correction that is facilitated via the fine-scales. 

Therefore, we present the interface stabilized Navier-Stokes equations and carry out convergence rate 

study with solitary wave problem that has an exact solution. Method is then tested on harder engineering 

problems of dam break, and free-falling water column and the attributes of the stabilization tensor are 

investigated. We close the section with 3D dam-break flow to show application of the method to a 

problem of engineering interest. 

3.6.1. Shear Flow (Vortex in a Box) 



67 

 

Vortex-in-a-box [123] is a common benchmark problem to evaluate the performance of numerical 

schemes for the level set equation. We carry out the rate of convergence study with hexahedral and 

tetrahedral elements, employing two time-dependent test cases. In these problems the third dimension is 

constrained to create plane strain conditions. 

The stream function   for the prescribed vortex velocity field defined in a 2D unit square 

   0,1 0,1 =   is given as 

 ( ) ( ) ( )2 21
, , cos sin sin

T

t
x yx y t


 



 
=  

 
  (3.73) 

This velocity field produced by (3.73) is divergence free. The zero contour of 
0  is a circular interface 

located at (0.5, 0.75) with a radius of 0.15. The time-dependent VMS stabilized weak form in (3.35) is 

applied with backward Euler scheme as the time integrator. The /t x   ratio in the CFL number is set 

equal to 1, and the time duration is 4T = . A smooth initial condition is employed in this test case. 

 ( ) ( ) ( )( ) ( )
2 2 2

0 , exp 0.5 0.75 exp 0.15x y x y = − − − − − −   (3.74) 

Figure 3.3a shows the planar view and warped view of the level set field and the zero intercept 

defines the object at 0t = . The rotational flow stretches the initial circular interface, and Figure 3.3b 

shows the planar view and warped profile for the computed level set field at / 2t T= . The flow is then 

reversed from time / 2T  to T . The computed profile is employed to evaluate the error in the scalar field 

with respect to the initial condition. The L  norm of error between the computed solution ( ), ,x y T  and 

the initial condition ( )0 ,x y  is evaluated and linear rate of convergence is attained for both B8 and T4 

elements, as shown in Figure 3.4. Nave et al. [123] show a cubic convergence rate in the L  norm using 

Hermite cubic interpolation functions for this problem. 
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(a) Interface location and warped scalar field at t = 0s 

  

(b) Interface location and warped scalar field at t = 2s 

Figure 3.3 Interface location at initial and intermediate stages of vortex-in-a-box test 
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Figure 3.4 Convergence rates for uniform meshes with linear 3D elements 

3.6.2. Shear Flow Reversal 

This test case is a continuation of the problem presented in Sec 3.6.1. The circular interface is 

rotated around 2.25 times in a total time 2 4T = . Subsequently, from 2T  to 8T = , the vortex flow is 

reversed to bring the vortex back to its initial location. To check proposed stabilized weak form of level-

set advection equation, re-initialization process or mass correction are not invoked. This test case 

investigates the effects of two time integration methods employing two consecutive meshes, i.e.: (i) 

128 128  B8 elements with backward Euler method; (ii) 128 128  B8 elements with generalized alpha 

method; and (iii) 256 256  B8 elements with the generalized alpha method. The time increment in the 

first two cases is set equal to 0.01s, while it is 0.005s in the third case to maintain the CFL number. The 

location of the interface for all three cases at 2 4T =  is shown in Figure 3.5a. Figure 3.5b shows the final 

shape of the interface which is compared with the exact solution given by the initial state. In the case with 

finer mesh (256×256), the numerical solution (blue line) is very close to the exact solution (black line).  

As indicated in Section 3, the time-dependent fine scales recover the errors induced due to limited mesh 

resolution, truncated interpolation space and the order of accuracy of the time integrator employed for the 

resolved scale. Such improvements in the accuracy of capturing the interface also contribute to the 
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reduction in mass loss during temporal evolution. In Figure 3.6, we plot the history of normalized mass 

(volume) of the region where signed distance field is positive. As noted in Herrmann [61], the standard 

level set method shows more than 30% mass loss on a 128×128 mesh. Desjardins et al. [41] show a level-

set method together with a mass conservation algorithm that uses 5th order spatial interpolation scheme 

(HOUC5) and 2nd order time integrator (Crank-Nicolson) on a 128×128 mesh, and it still has 4% variation 

in mass. In our method, the case of 128×128 linear elements with the generalized alpha method results in 

mass change that is less than 5%. With a finer mesh 256×256, the mass loss in our method reduces to 

under 1%. We wish to point out that both test cases in the present work are carried out with linear 

elements without the re-initialization process and without any mass correction algorithm. These results 

can be further improved by p- and h- refinements and by using high-order time marching schemes. 

  

(a) Interface location at t = 4s (b) Interface location at t = 8s 

Figure 3.5 Comparative study: Location of the interface for shear flow test. Black: exact solution, Blue: 

time-dependent VMS (256×256, generalized  ), Red: time-dependent VMS (128×128, generalized  ), 

Green: time-dependent VMS (128×128, backward Euler) 
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Figure 3.6 Time history of normalized mass (volume) loss in shear flow via the proposed stabilized 

method 

3.6.3. Travelling of Solitary Wave 

The test case is the classic free-surface flow problem involving propagation of a 2D solitary 

wave. A schematic description of the problem is shown in Figure 3.7. 

 

Figure 3.7 Schematics of the two-dimensional travelling solitary wave (units: m) 
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The initial velocity and location of the air-water interface is set according to the second order analytical 

approximation by Laitone [90], wherein the 2D velocity field ( )1 2,v v  and height of the air-water 

interfaces ( )x  are given as follows 
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  (3.75) 

The maximum amplitude of the solitary wave is 2H = , the depth of the still water body 10d = , the 

gravitational acceleration 9.8g = , and c  is the speed of wave propagation. All parameters are in SI units. 

The size of the computational domain is [ 8 ,8 ] [0,2 ]d d d−   to minimize the effect of truncated left and 

right boundary on the solitary wave. The domain   is subdivided by the interface 
I  into water-

subdomain ( ) ( ) , |w xx y y =   with density 3k000 g/m1  and dynamic viscosity 310 Pa s1 −  , and 

air-subdomain ( ) ( ) , |a xx y y =   with density 
31 kg/m  and dynamic viscosity 

410 Pa s1 −  . Slip 

boundary conditions are applied at all four boundaries of the computational domain. Convergence rate 

test employs four structured hierarchical meshes comprised of linear quadrilateral elements: 10 10 , 

20 20 , 40 40 , 80 80 . A finer mesh with 160 160  elements is used for generating the reference 

solution. All test cases are run for 10 time-steps with a uniform time increment 0.01s , which ensures a 

low CFL number for all the meshes to eliminate the accumulation of error from the time marching 

scheme. The 2L  norm of the error in the free-surface profile is defined as: 

 ( ) ( )( )
8

exact

8
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2 d

h
d

e xx dx 
−

= −   (3.76) 

A nearly optimal convergence rate is attained in this test as shown in Figure 3.8. 
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Figure 3.8. Spatial convergence of the travelling solitary wave 

3.6.4. Free-Surface Sloshing Problem 

This test case investigates the coupled response of the governing system of equations for the flow 

physics and the level-set method for the free-surface evolution. Since analytical solution is available for 

this 2D sloshing problem it serves as a good test case to numerically establish the consistency of the 

method and evaluate its accuracy for long-time simulations. The initial profile of the free-surface 

elevation is given by the following function. 
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where 1W =  is the width of the tank, and 0.01a =  is the initial wave amplitude. A schematic description 

of the problem is presented in Figure 3.9. 
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Figure 3.9 Schematics of the two-dimensional free sloshing problem (units: m) 

The depth of liquid in the tank is 5 m0.h =  and the Reynolds number Re /h gh =  is set equal to 100, 

200 and 400. A relatively coarse mesh that is comprised of 40 52  elements and a time increment 

0.001t s =  is used for all the three test cases. Each simulation is stopped when it reaches a non-

dimensional time * / 20t t g h == . The comparison of the normalized elevation of free-surface along the 

left edge with the analytical solution provided in [164] is shown in Figure 3.10. The amplitude of the 

damped periodic behavior of the analytical solution is accurately tracked by the numerical method for all 

the Reynolds numbers as shown in Figure 3.10. Only a small phase lag is observed after several cycles, 

which is attributed to the accumulation of error in the time marching scheme. 
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Figure 3.10 Time history of the normalized elevation of the liquid along the left edge: numerical and 

analytical results 

 

3.6.5. Dam-Break Flow (2D) 

The collapse of a water column in a tank is a widely-used benchmark problem to verify numerical 

methods for free-surface evolution because of the availability of experimental data [89,101]. A water 

column of height 2a is instantly released in a tank. It collapses under the effect of gravity and flows 

towards the opposite wall of the tank. The geometric description of this problem is shown in Figure 3.11. 

The computational domain is a box of dimensions 4 2.4a aa   , where a is a length parameter taken as a 

= 0.146m. The water column has dimensions 2a a a  . The density of water is 1000 kg/m3 and that of 

the air is 1 kg/m3. The dynamic viscosity of water is 1.0×10-3 Pa·s and for air it is 1.0×10-5 Pa·s.  
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Figure 3.11 Two-dimensional dam-break problem 

Because of the rapid change in the surface profile and large motion of the water column, all facets 

of the algorithm are invoked, i.e., the stabilized method for the two fluids, the time-dependent level-set 

method, and SUPG stabilization of time-dependent Eikonal equation. The mass loss from the proposed 

stabilized method for the level-set advection equation is very small and therefore mass conservation 

algorithm is not activated in this test case. In this sense this problem serves as a good test case to 

investigate the robustness of the method. 

3.6.5.1. Boundness of   and stability of the interfaces 

We first present the numerical study of effectiveness of the proposed interfacial stabilization term 

and the boundness of stabilization parameter e  that has been analytically established in Sec. 4. 

Following the problem settings discussed above, two simulations are carried out employing a 40×20 mesh 

of linear elements. One simulation is with the interface stabilization term and the second one is without it. 

Figure 3.12a shows the free surface profile at time t = 0.19s for the case where interface stabilization is 

not invoked and numerical instability at the interface triggers non-physical surface profile. However, as 

the interface stabilization term is activated, a stable interface evolution can clearly be seen in Figure 3.12b. 
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In addition, Figure 3.12b also marks the narrow band around the interface where this term is active, and 

the edges of the band also can be seen to traverse through the elements, as does the interface. 

(a) 

(b) 

Figure 3.12 Interface location (white), velocity distribution and active region of interfacial stabilization 

term at t = 0.19s: (a) without interfacial stabilization and (b) with interfacial stabilization 

To numerically verify the boundness of the stabilization parameter, in Figure 3.13 we plotted the 

value of LSA

e  in terms of the magnitude of velocity at the center of the element. Figure 14 presents the 

histograms of LSA

e  at various of time points during the simulation. As time evolves and the entire system 
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gets accelerated by the gravitational force, the distribution of the stabilization tensor also evolves into a 

Gaussian distribution. It is important to note that all through the simulation, element-wise constant LSA

e  is 

positive and it stays bounded. 

 

Figure 3.13 Stabilization tensor vs. norm of velocity and its histograms 

 

Figure 3.14 Histograms of stabilization tensor 
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Figure 3.14 (cont.) 

3.6.5.2. Validation of the evolution of free-surface profile 

We now test the two versions of the formulation; one in which a term associated with div-

stabilization on the interior of the elements is added in the entire domain, and this test case is simulated 

with an 80×40 mesh. The second version of the formulation does not invoke div-stabilization term and 

rather employs the variationally derived ghost-penalty terms that are active only in the elements that are 

traversed by the interface. This simulation is carried out with a 40×20 mesh. It is interesting to note that 
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even though this mesh is considerably cruder, the numerical solution from interface stabilization method 

compares very well with the numerical data published in [82].  In both the cases the time increment t  

corresponding to the two meshes is adjusted to maintain the same CFL number across both the 

simulations. Both simulations is stopped at t = 0.4s when the front of the interface reaches the upper right 

corner. Although the top of the tank in the experimental setup is open, for numerical simulations the top 

edge of the mesh becomes an artificial edge of the computational domain for the two-phase flow. 

We keep track of the motion of point A that lies at the toe of the water column and slides along 

the floor of the tank, and point B that is at the top of the water column and slides down along the left wall 

of the tank. The location of both points A and B is normalized with the characteristic length a  and the 

simulation time is normalized by characteristic time 2g a  to eliminate the dimensional effects. Figure 

3.15a shows the sliding motion of point A in terms of dimensionless length traversed versus the 

dimensionless time. Likewise Figure 3.15b shows the time evolution of the sliding motion of point B 

along the left wall. In both the cases, good agreement is attained with the published experimental [89,101] 

and simulated data [43,82]. 

 

(a) Time evolution of point A at the toe of the advancing column 

Figure 3.15 Two-dimensional dam-break flow: location of water front vs. time 
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(b) Time evolution of point B collapsing along the left wall 

Figure 3.15 (cont.) 

3.6.6. Free Overfall Under the Effect of Gravity 

This test case investigates interfacial stability of an open channel flow that evolves into a freely 

falling water column under the effect of gravity. The schematic diagram of the test problem is represented 

in Figure 3.16. The Weber number in this test problem is greater than 1.5 and therefore the influence of 

surface tension is negligible. The channel has a width of 0.1m and a length of 0.3m, while the dimension 

of the rectangular domain is 0.5m × 0.4m. The domain is discretized with a structured mesh comprising 

4600 bilinear elements. The size of element is 0.01m × 0.005m. A uniformly distributed inflow velocity 

field  ,0 m/sxv=v  is prescribed at the left boundary, and open boundary condition is set at the bottom of 

the domain which also serves as the outflow boundary. Except for the inflow and outflow boundaries, slip 

boundary conditions are applied at all the other surfaces. The domain is initially filled with air and a layer 

of water with depth of 
* 0.075mnY =  is injected in the domain. The location of air-water interface at the 

inflow boundary is marked by the signed distance field and it is held fixed, thereby splitting the inflow 

into air and water inflow region, as shown in Figure 3.16. 
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Figure 3.16 Schematic diagram of the free overfall problem (units: m) 

A non-dimensional depth 
nY  is used to quantify the problem through the critical depth *

cY  and the 

definitions are as follows, 

 ( )*
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* *and xc
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n n
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Y Y v Y g
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= =   (3.78) 

Three test cases with different nY  (1.0, 0.68 and 0.49) are simulated using the same mesh and the 

corresponding inflow velocity xv  is calculated via (3.78) for a fixed value of * 0.075nY = . According to 

the reported work [100], 1.0nY =  results in a subcritical state and the other two choices of nY  are 

supercritical states. 

We first investigate the subcritical case with 1.0nY = . Figure 3.17 shows the air-water interface, 

the pressure distribution in the water body and streamlines for the entire domain that is colored by the 

magnitude of vorticity at various time points. The simulation is continued until the system reaches a 

statistically steady-state. It is important to note that the system would not reach an absolute steady state 

due to the Rayleigh-Taylor instability that can arise because of the discrete density jump across the 

interface. In Figure 3.18, we compare the statistical steady-state air-water interface with the reported 

experimental data [100] and numerical results reported in [8] that employ an adaptive mesh technique 
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with 33,301 triangular elements. Despite a relatively crude spatial discretization the computed free 

surface profile with our method compares well with the experimental data and the numerical reference 

obtained on much finer mesh resolutions. 

 

(a) t = 0.2s 

 

(b) t = 0.4s 

Figure 3.17 Free overfall: air-water interface, pressure distribution, streamlines and magnitude of 

vorticity at various time points: (a) t = 0.2s, (b) t = 0.4s, (c) t = 0.6s and (d) t = 0.8s 
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(c) t = 0.6s 

 

(d) t = 0.8s 

Figure 3.17 (cont.) 
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Figure 3.18 Comparison of the air-water interface profiles 

We next focus on the supercritical cases with 0.68nY =  and 0.49nY = . We compare the statistical 

steady-state air-water interface profile from our simulation with the experimental data reported in [100]. 

Figure 3.19(a, b) shows the top and bottom air-water interface profiles and a good comparison with the 

experimental data is attained. 

 

Figure 3.19 Comparison of open channel and lower air-water interface with various non-dimensional 

depths nY  
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Figure 3.19 (cont.) 

For the supercritical case with 0.49nY = , due to the larger inflow velocity, the lower air-water 

interface does not reach a stable state as is the situation in the other two cases. Rather the typical Kelvin-

Helmholtz interfacial instability arises along the lower air-water interface and can be seen in Figure 3.20. 

In addition, Figure 3.20 also shows the Q-criterion color contours that show the physical instability along 

the lower air-water interface. The bounding lines show good agreement with the experimental results 

from Figure 3.20. 

 

Figure 3.20 Instantaneous lower profile and enveloping line of supercritical case 0.49nY =  
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Figure 3.20 (cont.) 

3.6.7. Three-dimensional Dam-break Flow with an Obstacle 

This test case investigates the proposed method on 3D two-phase flows with rapidly evolving 

interfaces. The computational domain has dimensions 3.22 m .0 m1  m 1.0   in X, Y and Z direction, 

respectively. An obstacle of dimension m0.161 m 0.161 0.   m 403   is placed at 2.315 mx =  from the 

left end ( 0x = ) and it lies symmetric in the spanwise direction, as shown in Figure 3.21. We have 

employed 8-node brick elements for both the Navier-Stokes equations as well as the time-dependent level 

set equation. Numerical quadrature of sufficiently high order is used to evaluate all integrals. In 3D the 

air-water interface is a 2D surface that is invariably quite complex as shown in Figure 3.22. Although the 

geometry and the initial conditions for the problem are symmetric, due to the highly nonlinear nature of 

the flow physics that is further compounded by the very erratic free surface evolution, the discrete system 

is not symmetric. This non-symmetry is enhances as the advancing front hits the obstacle thereby making 

the subsequent flow further non-symmetric. Consequently, the computed interface or zero iso-surface of 

the level set is not uniformly connected, as it is at the start of the problem, and there is propensity for 

deviation from the strict definition of the signed distance field. This requires using the Eikonal equation to 

reinitialize the signed distance function which has also been implemented using 8-node brick elements. 
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Figure 3.21 Schematics of the three-dimensional dam-break problem (units: cm) 

To solve this problem, we generated a structured mesh with resolution of 64 32 32   hexahedral 

elements. The obstacle is comprised of 3 12 5   elements that are removed from the system. Figure 3.22 

shows the 3D contour plots of the free surface evolution at different time points, and they are color coded 

with the pressure field. The advancing wave hits the obstacle at around 0.5 sec, giving rise to rapid 

change in the elevation of the free surface. Very intricate free surface elevation patterns can be seen with 

water jumping over the obstacle, followed by the merging of the two advancing fronts around the obstacle 

as shown in Figure 3.22a to Figure 3.22c. After hitting the right wall the reflected wave travels back and 

the advancing front can be seen in Figure 3.22d and Figure 3.22e. The pressure is high when the wave hits 

the obstacle and the distribution of pressure at the obstacle as well as at the right wall can be seen in 

Figure 3.23a and Figure 3.23b. From these plots we see that the right wall has higher wall normal 

pressure than even the obstacle. This is attributed to the momentum gained by the falling water column as 

it jumps over the obstacle before it hits the wall. 
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(a) t = 0.5s 

 

(b) t = 1.0s 

Figure 3.22 Three-dimensional dam-break flows with obstacle: Interface location 
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(c) t = 1.5s 

 

(d) t = 2.0s 

Figure 3.22 (cont.) 
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(e) t = 2.5s 

Figure 3.22 (cont.) 

To quantify the numerical results for the 3D dam-break flow, we present the time history of 

pressure at points A and B located on the obstacle (see Figure 3.24) and the time history of water height at 

two locations in the domain with coordinates (0.582,0.5,0) and (1.732,0.5,0) (see Figure 3.25). Once 

again we compare our results with experimental data [87] and reported numerical results [82,96]. Our 

numerical simulation accurately captures the time history of pressure at both the locations, and a good 

correlation is attained with the reported experimental and numerical data. The numerical results show a 

higher-pressure pulse at around 0.4 second when the water front hits the obstacles, as compared to the 

reported experimental data. This is potentially due to the reason that the obstacle is modeled as a rigid 

body by prescribing Dirichlet boundary conditions on the surface of the obstacle, thus enhancing the 

incompressibility effects in the flow. 
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(a) Pressure profile: t = 0.50s 

 

(b) Pressure profile: t = 0.75s 

Figure 3.23 Three dimensional dam-break flow with obstacle: pressure profile at the obstacle  
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(a) Pressure time history at point A. 

 
(b) Pressure time history at point B. 

Figure 3.24 Pressure history at the obstacles: comparison with experimental and numerical data 
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(a) Water elevation history at point (x,y,z) = (0.582,0.5,0). 

 

(b) Water elevation history at point (x,y,z) = (1.732,0.5,0). 

Figure 3.25 Water elevation history at two locations: Comparison with experimental and numerical data 

3.7. CONCLUSIONS 

We have presented a stabilized interface formulation for the surface flows on fixed Eulerian 

meshes where the motion of the interface is tracked via the level-set advection equation. The evolution of 
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the interface is consistently represented in the governing system via dependence of density and viscosity 

on the level set field which is driven by the velocity field furnished by the Navier-Stokes equations. 

Application of VMS method to the coupled systems of equations gives rise to interfacial terms that have a 

structure which is similar to the Ghost penalty terms reported in the literature. These interfacial terms do 

not appear naturally if VMS-based stabilization is applied individually to each of the two PDEs. 

Representing the location of the interface via dependency of the mechanical material coefficients on the 

level-set also provides an avenue to variationally account for sub-grid effects engendered by the 

deforming interface. The variationally consistent derivation presented here not only provides the 

necessary stabilization for the sources of instability in convective free-surface flows, it also shows the 

variational basis of the ghost penalty term as a stabilizing term. 

The proposed method gives rise to two forms of stabilization terms: (i) full gradient form, and (ii) 

interface form that is operational at the domain boundary between the phases. A significant attribute of 

the current method is the derivation of the interfacial stabilization parameter that varies spatially as well 

as temporally as the interfacial physics evolves. Mathematical analysis reveals that this parameter is 

bounded and positive definite which is numerically confirmed on several test cases presented in the 

numerical section. Consequently, the interfacial term is a bounded term that adds to interfacial stability, 

thereby controlling nonphysical interfacial modes that may get triggered due to jumps in density and 

viscosity of the fluids across the moving and deforming interfaces. 

Benchmark problems in 2D are presented to highlight the salient features of the proposed method. 

Shear flow in a box presents a circular interface that is convected via a vortex velocity field and computed 

results show linear convergence in the L  norm for both linear hexahedral and linear tetrahedral elements. 

The response for the linear sloshing problem is compared with the analytical solution and the period as 

well as the amplitude are uniformly preserved for various Reynolds number flows. Method is then applied 

to 2D dam break problem and good comparison with the experimentally observed data as well as with the 

published computed results is attained. Simulation of free overfall of open channel under gravity with 

discrete air-water interface shows stable and convergent solution even on relatively cruder discretization. 



96 

 

The 3D dam break problem with obstacle presents large free-surface motions and shows the enhanced 

stability and accuracy of the method to model breaking waves and complex flow patterns of practical 

interest in engineering.  
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CHAPTER 4: RESIDUAL-BASED TURBULENCE MODELS AND ARBITRARY 

LAGRANGIAN-EULERIAN FRAMEWORK FOR FREE SURFACE FLOWS* 

4.1. INTRODUCTION 

Modeling of fluid flows with free surfaces is an essential ingredient in the design and analysis of 

off-shore structures such as oil platforms and off-shore wind turbine farms in which the dynamics of free 

surface waves plays an important role. Accurate representation of free surfaces is also important to model 

the effect of waves on coastal structures. These applications are gaining attention due to the growing 

interest in new energy resources, and the need to build structures that can survive possible environmental 

hazards caused by climate change. Another area where free surface wave dynamics is important is fluid 

sloshing inside storage tanks. Although sloshing fluid can have undesirable destabilization effects during 

fluid transportation, it can also be carefully modulated to have stabilizing effects by serving as energy 

sinks that mitigate earthquake effects on built structures. Other problems where free surface flows are 

important are flows in rivers and channels, and in the modeling of ship hydrodynamics. In all these cases, 

accurate modeling of free surface effects is crucial for evaluating wave and current action on the 

structures. 

Several approaches have been reported in the literature to study free surface flows. The interface 

tracking techniques model the evolution of free surfaces via a set of nodes or particles with time evolving 

spatial locations that track the geometry of the free surface. First applications of the interface tracking 

methods were based on the Arbitrary Lagrangian-Eulerian (ALE) methods [65,71] where the ALE frame 

of reference enables the motion of the boundaries and the nodal coordinates. The main advantage of this 

approach is a precise description of the evolving interface, and therefore an accurate modeling of flow 

physics that is associated with the evolution of the interface. However, a limitation of such methods is 

that under conditions of large free surface motions, the computational mesh needs to be redefined in order 

 
* This chapter has been adapted from “Calderer, R., Zhu, L., Gibson, R. and Masud, A., 2015. Residual-based 

turbulence models and arbitrary Lagrangian–Eulerian framework for free surface flows. Mathematical Models and 

Methods in Applied Sciences, 25(12), pp.2287-2317”. The copyright owner has provided written permission to 

reprint the work. 
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to avoid excessive mesh distortions. Particle methods are another sub-class of interface tracking methods 

that are based on a Lagrangian description of the fluid, namely, the Particle Finite Element Method 

(PFEM) [126,132]. These methods effectively overcome the mesh distortion issues. The Lagrangian 

description of the fluid and the fact that a contiguous mesh is not needed makes these methods suitable for 

problems with very large deformations of the free surfaces. Despite their versatility, particle methods are 

computationally expensive due to the need for determining a tessellation at each time step to compute the 

interaction between the particles. The ALE/Lagrangian method [132] is a compromise between the two 

approaches. The region near the free surfaces is modeled employing a particle method that enables the 

free surface to undergo large deformations, and the remaining part of the domain is modeled using an 

ALE frame. Space-time methods for free surface problems [110,156,157] also fall in the category of 

interface tracking methods because the space-time domains evolve along the time axes to accommodate 

the motion of the moving free surfaces. A formal equivalence between the deforming space-time domain 

techniques and ALE based techniques is presented in [110]. 

A second family of methods that is used to study free surface flows is based on interface 

capturing techniques. In this approach, the computational mesh is fixed and the location of the free 

surface is traced employing an additional scalar field. One of the first applications of this method is the 

Volume of Fluids (VOF) technique [43,62,96], which uses a scalar field that represents the fraction of 

fluid in each of the mesh elements.  Another interface capturing technique is the Level Set method 

[4,82,94,149] in which an additional field is introduced to capture the evolving interface. In interface 

capturing techniques, the additional scalar field is invariably governed by a time-dependent advection 

equation [37]. 

A mixed approach is also possible for problems with free surfaces and moving solid objects. In 

these methods, the free surface can be represented by an interface-capturing approach, and the fluid-solid 

interfaces can be represented by an interface-tracking approach. This family of methods, which is known 

as Mixed Interface-Tracking/Interface-Capturing Technique (MITICT) was first presented in [154] and 

then used for free-surface flow and fluid-object interaction in [2]. 



99 

 

The present paper develops a residual-based turbulence model for flows with free surfaces. To 

accommodate free surfaces motions the formulation is cast in an ALE frame of reference [29,84].  

Underlying idea of the residual-based turbulence models is the VMS method [13,30,50,66,124] wherein 

the solution fields are decomposed in components of overlapping scales, namely, the coarse and the fine 

scales. The fine scales are modeled in terms of the residuals of the Euler-Lagrange equations of the coarse 

scales, and are variationally embedded in the coarse-scale equations. In the present work we extend the 

formulation presented in [30] on turbulence models for domains with moving boundaries, to free surface 

flows. In [108], we presented a model based on three-level hierarchical decomposition of the velocity and 

pressure fields. We used linear shape functions to represent the coarse-scale fields, and hierarchical 

bubbles for the two levels of fine scales. Use of bubble functions helps in confining the fine-scale 

problems to element interiors, thereby facilitating a convenient way to extract models for fine scales that 

are functions of the residuals of the Euler-Lagrange equations for the coarse scales. This has been shown 

in a variety of turbulent flow problems over fixed [30,107] and moving domains [108]. In the present 

paper we extend [108] to problems with free surfaces and show the applicability of the proposed method 

via application to two sets of turbulent free surface flow problems. 

A literature review reveals that other authors have also explored multiscale methods. For 

example, Collis [36] and Gravemeier et al. [50] have proposed three-scale methods using the VMS 

approach. Our method also proposes three-scale decomposition. However in our case, the smallest scales 

are solved using bubble function approach [17,19] that is applied to element interiors and it yields an 

analytical expression for the level-three scales. The terms modeling level-three scales are substituted in 

the level-two system of equations and it results in a model for the finer turbulence scales that is free of 

user-defined parameters. This sequential and variationally consistent nesting of models from the finer 

levels into the equations at the coarser levels provides a mathematically consistent and computationally 

inexpensive model for turbulent flows 

The remaining part of the paper is organized as follows. In Sec. 2, the incompressible Navier-

Stokes equations are presented in an ALE frame of reference. In Sec. 3, a residual-based method for 
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turbulent free surface flows is presented. In Sec. 4, we apply the proposed method for turbulent flows 

with free surfaces to two open channel problems. First, we study the flow in a flat open channel. The 

turbulent features of the flow are the driving mechanism that causes the free surfaces to evolve in time. 

We investigate the flow with two different slopes of the channel, and mesh refinement study is carried out 

to show the convergence of computed physics. The second problem studied is a channel with an 

undulated bottom surface. Multiple flow conditions are analyzed and the results are compared with 

experimental [9] and numerical results [170]. Also presented are numerical results for a thin channel with 

wavy bottom surface. Turbulence generated at the bottom surface interacts with the free surface. This 

leads to evolving irregular free surface elevations. Conclusions are drawn in Sec. 5. 

4.2. THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 

Let 3

t   be a connected, open, bounded region with time-dependent piecewise smooth 

boundary t . The incompressible Navier-Stokes equations written in an Arbitrary Lagrangian-Eulerian 

(ALE) frame are: 

 ( ) 2ν ( )M p
t
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+ −  −  +  =

 Y

u
u u u ε u f  (4.1) 

   0      in  Ω 0,Tt• = u   (4.2) 

     on  0,Tg t
=  u g   (4.3) 

  (2ν ( ) )    on  0,Tt h t
p •− =  ε u I n h  (4.4) 

  (2ν ( ) )    on  0,Tt f t
p •− =  ε u I n 0  (4.5) 

 ( )  0   on  0,Tt f tM •− =  u u n  (4.6) 

 0 0( ,0)   on      {0}=  u x u   (4.7) 



101 

 

where u  is the velocity vector, p  is the kinematic pressure, f  is the body force (per unit of mass), ν  is 

the kinematic viscosity ( ν>0 ), 
Mu  is the fluid mesh velocity, 

t



 Y

u
 is the time derivative of the velocity 

field in the ALE frame, I  is the identity tensor, 
tn  is the exterior normal to the boundary 

t , 
0u  is the 

initial condition for the velocity field, ( ) s= ε u u  is the strain rate tensor, 3: g t
 →g  is the Dirichlet 

boundary condition, and 3: h t
 →h  is the Neumann boundary condition. Without loss of generality, 

the surface tension on the free surface of the fluid f t
  is assumed to be negligible, i.e. Eq. (4.5). In 

addition, the free surface boundary moves to satisfy the continuum condition that the flux of fluid across 

the free surface is zero, i.e. Eq. (4.6). 

The standard weak form of the problem (4.1)-(4.7) is: find ( ),t u x  and ( )p ,t x  such that 

for all ( ) vw x  and . ( )q x ., 

 ( )( , ) ( , ) ( , 2ν ) ( , ) ( , )s s

M p
t

•


+ −  +   −  =



u
w w u u v w u w w f  (4.8) 

 ( , ) 0q  =u  (4.9) 

where ( )( , ) d• • •


=   is the ( )2L  -inner product. The functions ( )( )
3

1

0( ) Hv = w x  and 

( ) ( )0 2( )q C L =  x  are the weighting functions for the velocity and the pressure fields, 

respectively, and  and  are the time-dependent spaces of trial solutions for the velocity and the 

pressure fields, respectively. 

The variational problem can be expressed in a compact abstract form as: 

 ( ) ( ); , ; Mp =w u u w  (4.10) 

 ( ); 0q =u  (4.11) 

where the functional ( ); , ; Mpw u u  contains the terms from the left hand side of (4.8), ( ) ( , )w = w f  

and ( ); ( , )q q= u u . 
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4.3. RESIDUAL-BASED TURBULENCE MODELS FOR FREE SURFACE FLOWS 

The variational problem (4.10)-(4.11) is a mixed-field problem. It needs to be stabilized to (i) 

account for the convective effects, and (ii) enable the use of arbitrary interpolations for the velocity and 

pressure fields. To address these issues, VMS ideas were introduced and it was later realized that these 

ideas actually extend to the development of turbulence models where larger features can be numerically 

resolved while finer features can be modeled. In addition, these residual-based approaches automatically 

take care of the issues enumerated above. To derive a formulation that successfully encompasses all these 

attributes we employ the VMS framework, which decomposes the solution fields into components of 

different scales. In the following section we present a synopsis of the method that we derived in [108] and 

we extend it to the treatment of the free surface condition that is considered in the present work. 

4.3.1. Multiscale Decomposition 

We assume a multiscale decomposition of the solution fields into overlapping hierarchical scales 

termed as coarse and fine scales. 

 

coarse scale fine scale

( , ) ( , )     '( , )t t t= +u x u x u x  (4.12) 

 

coarse scale fine scale

( , ) ( , )     '( , )p t p t p t= +x x x  (4.13) 

Similarly, we also decompose the weighting functions w  and q  into coarse and fine scales: 

 

fine scalecoarse scale

( ) ( )     '( )= +w x w x w x  (4.14) 

 

fine scalecoarse scale

( ) ( )     '( )q q q= +x x x  (4.15) 

 

Remark. We assume that the coarse and fine-scale components admit a unique decomposition, which is 

important for the stability and consistency of the method. From a computational perspective this condition 

is easily satisfied by the discretized formulations via the use of linearly independent interpolations. 
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Substituting (4.12)-(4.15) in the variational problem (4.10)-(4.11) and employing the fact that the 

operators ,  and  are linear with respect to their weighting functions, the problem can be 

decomposed in two sub-problems: 

Coarse-scale sub-problem 

 ( ) ( ); ', '; Mp p+ + =w u u u w  (4.16) 

 ( ); ' 0q + =u u  (4.17) 

Fine-scale sub-problem 

 ( ) ( )'; ', '; 'Mp p+ + =w u u u w  (4.18) 

 ( )'; ' 0q + =u u  (4.19) 

In our earlier work on the Navier-Stokes equations [23, 7] we had only assumed a multiscale 

decomposition of the velocity field, while the pressure field was not decomposed. In our subsequent 

developments [28] we showed that the continuity condition (4.2) is better enforced if the final formulation 

has a div-stabilization term. This term was injected in the method developed in [107], while in [30] it was 

systematically derived by assuming a multiscale decomposition of the pressure field. Although this 

second approach has superior mass conservation properties, it gives rise to a fine-scale problem that itself 

is a mixed-field problem, whereas the fine-scale problem that corresponds to the first approach is a single 

field problem. This difference in the two formulations also gets manifested in the numerical evaluation of 

the fine-scale models. While the former approach is computationally less intensive, the later approach 

possesses superior attributes even in the very small time-step range. 

The method employed to solve the coupled coarse and fine-scale problems, is summarized as 

follows. First, a model for the fine scales 'u  and 'p  is extracted from fine-scale problem (4.18)-(4.19) in 

terms of the residuals of the Euler-Lagrange equations for the coarse scales u  and p . Then, the model is 

substituted in the coarse-scale problem (4.16)-(4.17). This variationally consistent embedding of the fine-

scale model in the coarse-scale formulation amounts to a variational projection of the fine scales onto the 
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coarse-scale space. As a consequence, the resulting formulation is only expressed in terms of the coarse-

scales, and the effects of the fine scales are accounted for via the projected fine-scale model. 

Remark. The fine-scale problem (18)-(19) is a mixed field problem, and therefore it needs to be 

stabilized to (i) account for the fine convective terms, and (ii) have the flexibility to use arbitrary 

interpolations for the fine-scale velocity and pressure fields. We carry out a hierarchical application of 

VMS ideas [30,109] that leads to another overlapping split of the fine-scale fields. Objective of this split 

is to derive a stabilized formulation for the fine-scale system represented by equations (18)-(19). 

Remark. The level-three scales are used to stabilize the level two scales and make the level-two model 

free of any constraints on the combination of interpolation functions, as well as any assumption on the 

order of the pressure field, or any restriction on the structure of the stabilization tensor. Numerical tests 

show that if there are less constraints on the level-two model, its modeling capacity and capability is 

tremendously increased which is reflected via the higher Reynolds number flows that it can resolve. 

4.3.2. Solution of the Fine-Scale Problem 

The fine-scale problem (4.18)-(4.19) is a mixed field problem, and therefore it needs to be 

stabilized to (i) account for the fine convective terms, and (ii) have the flexibility to use arbitrary 

interpolations for the fine-scale velocity and pressure fields. We carry out a hierarchical application of 

VMS ideas [30,109] that lead to another overlapping split of the fine-scale fields. Objective of this split is 

to derive a stabilized formulation for the fine-scale problem (4.18)-(4.19). Figure 1 shows a schematic 

diagram of the hierarchical approach. Accordingly, we assume a multiscale decomposition of the velocity 

field in two overlapping components termed as fine-scale level-I and level-II: 

 

level-I scale level-II scale

'( , )  ' ( , )     ' ( ; )I IIt t t= +u x u x u x  (4.20) 
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Coarse scales

Fine scales Level-I

- Full mixed field problem

- Fully time dependent

Fine scales Level-II

- Single field problem

- Quasi-static

Computationally 

resolved scales

Modeled scales

Variational projection:

- Stabilization of coarse 

scale problem

- Turbulence model

Variational projection:

- Stabilization of fine 

scales Level-I problem

 ,
ALE

pv

 ' , 'I I ALE
pv

 'II ALE
v

 

Figure 4.1 Schematic diagram of telescopic depth in scales 

Consistency and stability of the method necessitate that the decomposition of level-I and level-II 

scales, as stipulated in  (4.20), is unique. Because of the scale split in (4.20), we can limit any modeling 

assumptions to the level-II velocities 'IIu  with no presumptions on level-I velocities 'Iu . Since 'IIu  are 

sufficient to stabilize the level-I scales, we do not assume a multiscale decomposition of the fine-scale 

pressure field: 

 

level-I scale

'( , )  ' ( , )Ip t p t=x x  (4.21) 

Likewise we decompose the fine-scale component of the weighting velocity field into level-I and 

level-II components, but we do not decompose the fine-scale pressure weighing function: 

 

level-I scale level-II scale

'( )  ' ( )     ' ( )I II= +w x w x w x  (4.22) 

 

level-I scale

'( )  ' ( )Iq q=x x  (4.23) 

We then substitute the decompositions (4.20)-(4.23) in the fine-scale problem (4.18)-(4.19), and 

employing the linearity with respect to the weighting functions 'w  and 'q , we further split the fine-scale 

problem into two sub-problems: 

Fine-scale problem I 
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 ( ) ( )' ; ' ' , ' ; 'I I II I M Ip p+ + + =w u u u u w  (4.24) 

 ( )' ; ' ' 0I I IIq + + =u u u  (4.25) 

Fine-scale problem II 

 ( ) ( )' ; ' ' , ' ; 'II I II I M IIp p+ + + =w u u u u w  (4.26) 

 

Remark. The present approach results in an homogeneous multiscale framework [116] as the same 

operators  and  govern the three nested problems involved in the hierarchical decomposition, i.e. 

problems (4.16)-(4.17), (4.24)-(4.25) and (4.26). 

We extract 'IIu  from (4.26) in terms of the residual of level-I scales and the residual of the Euler 

Lagrange equations of the coarse scales. To do so, we employ bubble functions to interpolate the level-II 

velocity field. Because of their definition and construction, bubble functions help localize (4.26) to sum of 

these terms over the element interiors. In the numerical tests presented in Sec. 4, we have used forth order 

polynomial bubble functions for 'IIu . This leads to a model for 'IIv  that can be expressed in an abstract 

form as follows: 

 ( )' , , ' , 'II II I Ip p=v     v u  (4.27) 

We variationally project the model for 'IIu  onto the level-I problem (4.24)-(4.25), which can be 

expressed as: 

 ( )( ) ( )' ; ' , , ' , ' , ' ; 'I I II I I I M Ip p p p+ + + =w u u u u u w  (4.28) 

 ( )( )' ; ' , , ' , ' 0I I II I Iq p p+ + =u u u u  (4.29) 

Equations (4.28)-(4.29) depend only on the coarse-scales and the level-I fine scales. Using a 

second set of bubble functions that is linearly independent of the first set of bubbles employed to derive 

the model (4.27), we can solve (4.28)-(4.29) and derive a model for the level-I scales in terms of the 

coarse-scale fields: 
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 ( )
'

,
'

I

I

I

p
p

 
= 

 

u
   u  (4.30) 

Revisiting the objective underlying the hierarchical decomposition of scales we see that the level-

II scales were primarily used to stabilize the fine-scale variational problem (4.18)-(4.19), and the level-I 

scales served as the model for the turbulent scales. Solution of the nested up-scaling equations (4.28)-

(4.29) yields  ' , 'I Ipu  with 'IIv  embedded, and therefore the fine-scales can be approximated by the 

level-I solutions: 

 
''

''

I

Ipp

  
  

   

uu
       (4.31) 

4.3.3. The Variational Multiscale Turbulence Model 

The model for the fine-scale fields (4.31) is substituted in the coarse-scale problem (4.16)-(4.17). 

The resulting formulation can be written in an abstract form as: 

 ( ) ( ) ( ), , , ' ',Turb

Gal M VMS M GalB q p B q p F+ =w ; u v w , ; u , u , v w  (4.32) 

where 

 
( ) ( ), , , ( , ) ( , ) ( ,2ν ) 

                                                                     ( , )  ( , )

s s

Gal M MB q p
t

p q


= + −  +  



−   +  

u
w ; u v w w u u u w u

w u

 (4.33) 

Equation (4.33) comprises all the terms that appear on the left hand side of the standard variational form 

(4.8)-(4.9),  

 ( ) ( , )GalF =w w f  (4.34) 

is the right hand side of (4.8). 

 

( ) ( )
'

' ', ( , ) (

2ν , ') 

  ( , ' ') ( , ')

Turb

VMS M M M

T s

B q p
t

q

p


= − −  −  



−   

−    −  

u
w , ; u , u , v w u u w w u

w u + + w u

w u u w

  (4.35) 
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The right hand side of (4.35) contains terms that arise due to the a-priori assumption of the existence of 

fine scales. These terms serve two purposes: they provide stability to the mixed field problem, and they 

serve as the turbulence model. 

Remark: Since the fine-scale fields (4.30) depend on the residuals of the Euler-Lagrange equations of the 

coarse-scales, the final formulation (4.32) only depends on the coarse-scale fields u  and p . 

4.3.4. Free Surface Condition 

The turbulence model (4.32) is complemented by the condition that enforces zero flux across the 

free surface (4.6). Several techniques have been proposed in the literature to enforce this condition 

[65,161]. In this work we impose this condition in a weak form which can be written as follows: 

 ( ) 0tMfs
t

d •


−  = u u n  (4.36) 

where   is an arbitrary weighting function, v is the fluid velocity on the free surface, 
Mu is the mesh 

velocity, fs

t  is the time dependent free surface boundary, and tn  is the time evolving unit normal vector 

on fs

t .  

Imposing the zero-flux condition in a weak sense has two advantages. Firstly, the global mass of 

the fluid is conserved because local errors due to the free surface discretization are compensated for. 

Secondly, the unit normal tn  vector has to be computed only at the Gauss points, where the normal is 

uniquely defined. This is a significant advantage as compared to imposing the zero-flux condition 

strongly at the nodal points in which case the normal needs to be computed at the nodal points. In general 

the normal at the nodal points is non-unique due to 0C  continuity of the fields, and this is especially true 

for simplical elements. 

Formulation  (4.36) needs to be solved iteratively because the normal tn  depends on the 

displacement field associated with the free surface. In the numerical tests presented in Sec. 4 we have 

solved (4.36) using a fixed-point iteration approach. To obtain the updated free surface geometry, tn  has 
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been computed using the most current configuration of the free surface. For the benchmark problems 

presented in Sec. 4, the free surface is well resolved in two to three iterations. 

 

 (a) 

 (b) 

Figure 4.2 Detailed view of the free surface at two different time instants 

Remark: The evolving free surfaces determine the boundaries of the computational domain. In the 

following section we use a mesh moving scheme to adapt the mesh to the evolving domain boundaries. 
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4.3.5. Mesh Moving Scheme 

Once the location of the nodes on the free surface has been determined, the location of the interior 

nodes needs to be updated to maintain a good quality mesh for subsequent calculations. To update the 

mesh we use the method proposed by Masud and co-workers [80,104,110], in which the displacement of 

the nodal coordinates is determined by solving equation: 

 ( )1 0 ine

t  +  =   d  (4.37)  

 ( , ) on m

tt= d g x  (4.38) 

 on f= d 0  (4.39) 

where ( , )td x  is the displacement field of the mesh, f  is the part of the boundary that is fixed, m

t  is the 

free surface boundary, and ( , )tg x  is the instantaneous displacement of the free surface. From the 

standpoint of the mesh moving scheme, ( , )tg x  is a Dirichlet boundary condition that is specified to 

match the geometry of the free surface obtained in Sec. 3.4. 

The parameter e  controls the relative deformation of the elements. The value of e  depends on 

the volume eV  of element e, the volume of the smallest element of the mesh minV , and the volume of the 

largest element of the mesh  maxV  as follows: 

 min max

max

1e

e

V V

V V


−
=  (4.40) 

Via equation (4.40) the larger elements are assigned a lower value of e  than the smaller elements. This 

process introduces a relative stiffening effect throughout the mesh that is inversely proportional to the size 

of the elements. Consequently, smaller elements in the vicinity of the free-surface behave stiffer and 

therefore maintain their aspect ratio during the mesh rezoning process. This transfers the large amplitude 

deformations induced by the oscillating free surface on to the larger elements that are in the interior of the 

domain. This process is not deleterious for the interior elements because the percentage of relative 
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distortion as measured in terms of change in element jacobian before and after deformation is fairly 

uniform all across the mesh. For details, interested reader is referred to [80,104]. 

Remark: The formulation for the fluid equations (4.32) and the formulation that models the evolution of 

the free surface are coupled. We solve them in an iterative fashion using the algorithm described in Box 

4.1. 

Box 4.1 Algorithmic form of the solution procedure 

Initialize the algorithm: 1i = , 1n = , 0t = , 0

n

i =u u , 

n

it


=



u
0 , 0n

ip =  and ( )
n

M i
=u 0 . 

 1. Time step loop: Update time level, t t t +   and the time step counter, 1n n + . 

 2.  Compute the predictor variables: 1n n

i

−=u u , 1n n

ip p −=  , 

1

1
nn

i
t t





−

 − 
=

 

u u
and ( ) ( )

1

M

n

i M

n−
=u u , 

and reset the iteration counter, 1i =  

  a. Nonlinear iteration loop: Compute the fine-scales level-I 'v  and 'p  using eq. (4.31) and 

(4.27). 

  b. Employing eq. (4.32), compute the element consistent tangent matrices ( )e n

iK  and element 

residual vectors ( )e n

iR  and assemble them to form the linearized system n n

i i i =K d R , where 

,
T

n n

i i ip  =   d v . 

  c. Apply the Dirichlet boundary conditions to the linear system of equations formed in step b. 

  d. Solve the linear system formed in steps b and c. 

  e. Update the solution vectors: 
1 1, , ,

T T T
n n n n n n

i i i i i ip p p+ +
     = +       u u u  and 

1

1
n n

n

i

i it t t+

 
= + 

  

u u
u . 

  f. Update the free surface geometry using eq. (4.36) employing the velocity field obtained in 

step e. 

  g. Update the mesh nodal coordinates by solving problem (4.37)-(4.39) and compute the 

updated mesh velocity ( )
1

n

M i+
u . 

 3. End of nonlinear iteration loop: If convergence criterion is not satisfied, update the 

  nonlinear iteration counter, 1i i + , and go to step 2.a. Else, continue with step 4. 

 4. Update the converged solution: 1

n n

i+=u u , 1

n n

ip p += , 
1

n n

it t +

 
=

 

u u
 and ( ) ( )

1

n

M M

n

i+
=u u . 

End of time step loop: If n is the last time step stop, else go to step 1. 

4.4. NUMERICAL TESTS 
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Literature review reveals that there are only a handful of benchmark test cases for validating 

turbulence models for problems with free surfaces. A common test case is a confined turbulent channel 

flow under body force generated due to gravity where flow is confined between two parallel fixed walls. 

For this test case reference DNS results were reported by Moser and co-workers [121] for various 

Reynolds number flows. 

We first present the case of regular deep sea waves for which analytical solution is available [47], 

and therefore it serves as a good benchmark problem to verify the accuracy and stability of the method. 

Then we present two sets of numerical tests. First set considers a turbulent channel that has a fixed bottom 

surface, while the top surface is free to evolve. The flow is driven by the gravity force. The Reynolds 

number 395TRe = . Two different slopes of the bottom boundary are analyzed. The second set of 

problems is inspired by [9,170], and it consists of an open channel flow with a non-flat bottom surface. 

We employ same geometric configuration as is used in [170], and we compare our results with the 

experimental data reported in [9], and LES results reported in [170]. For this problem, we also consider a 

configuration with reduced depth of the channel wherein turbulence generated at the bottom boundary 

interacts with the evolving free surface and gives rise to more complex free surface flow patterns than are 

reported in [170]. 

All the numerical tests have been conducted using tri-linear hexahedral elements for the coarse-

scale fields, quadratic bubble functions for the fine-scale level-I fields and fourth-order bubble functions 

for the fine-scale level-II fields. The element integrals are evaluated using full Gaussian quadrature and 

the generalized-alpha method with  0 =  is used for time integration. 

4.4.1. Regular Waves 

This test case investigates a regular wave of height 10m, period T=10 sec and wave length 

λ=159m in a water depth of 120m. Body force is -981 and fluid viscosity is 0.01. The results of the 

numerical simulations are compared to the analytical Stokes V solution, which is  the solution of fifth 
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order Stokes theory as presented in reference [47]. Fig 3 shows a schematic description of the problem 

where the inflow velocity ( )0, ,xU x y t x= =   , and ( ), ,x y t   is defined by as follows. 

 

( ) ( )

( ) ( )

( ) ( )

1 2
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1 2 1 2
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

 





 
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 

   
− − + −   

   

−   
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   

   
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   

 (4.41) 

where 2k H = ,  2c kT= , H is the wave height, and T is the wave period. 

 

Figure 4.3 Schematic diagram of the problem description with inflow profile [13]  

The computational domain is two dimensional with 1025 nodes in the horizontal direction and 

258 nodes in the vertical. The upstream vertical boundary is forced with the solution of [47], whereas on 

the downstream vertical and lower boundaries a zero velocity condition is imposed. The length of the 

domain is 8000m, and hence, during the simulations reflected waves do not contaminate the wave field. 

Figure 4 shows two representative snap-shots of the surface profile. In this simulation massless 

particles are seeded below the surface to highlight the near surface amplification of the particle motion 

due to the propagating free-surface waves. Fig. 5 shows the surface profile as a function of time at three 

locations within the domain. The figure shows that as expected a large wave develops at the front of the 

wave train, but that after this the wave crests and wave troughs are in good agreement with [47]. The 

figure also shows that there is no significant numerical dissipation of wave energy within the domain. Fig 

6 compares the simulated surface profile over one wave length to the Stokes V solution. The plot shows 
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that the wave length and the elevation of both the wave crest and the wave trough are all in excellent 

agreement, but that there are some small differences in the shape of the wave profile.  

 
In free surface flows, wave celerity is the velocity at which the free surface waves propagate. Fig 

7 shows contours of surface elevation. The solid and dashed black lines represent the wave celerity group 

and deep water wave group celerity, respectively. The plot demonstrates that, as the solid black line 

overlies a wave crest, the waves are propagating at the correct nonlinear wave speed. This is also evident 

in Fig 5 as the wave profiles overlie one another. 

 
Finally, Fig 8 shows the profile of horizontal velocity through depth over half a wave period. The 

results of the numerical simulation are compared to the Stokes V solution under the wave crest and can be 

seen to be in excellent agreement. The only unexpected feature evident in the simulation is a small 

positive kink in the velocities right at the water surface. 

 

 
Figure 4.4 Two snapshots of free-surface waves with massless particles showing the near-surface motion 

of fluid particles 
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Figure 4.5 Variation in the surface profile in time at three locations within the domain. The horizontal 

dashed lines represent the elevation of the wave crest and wave trough using the analytical solution of 

[13] 

 

 
 

Figure 4.6 Surface profile over one wave length compared to a Stokes V solution [13]. 
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Figure 4.7 Contours of surface elevation. The solid black line represents the wave celerity, and the 

dashed black line the deep water wave group celerity. 

 

 
 

Figure 4.8 Horizontal velocities through a half wave period at x = 5λ and t = 24T. The blue line is the 

simulated velocity profile under the wave crest and the red line the corresponding Stokes V solution 

4.4.2. Flat Open Turbulent Channel Flow 

This test case models an open channel flow with a flat bottom surface. This problem was studied 

by Pan and Banerjeea [129] and Nagaosa [122] wherein they treated the free surface as a rigid wall with 

Ele
vati
on 
(m) 
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free-slip boundary condition that precluded the deformation of the free surface. In this paper we use the 

formulation presented in the previous sections that considers the top surface as a freely evolving 

boundary, and we numerically compute the evolving free surface configurations. 
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Figure 4.9 Schematic diagram of the channel problem with a flat bottom 

The computational domain studied is schematically represented in Fig. 9. The length of the 

domain is 6xL = , width 4zL = , and height 1yL = .  We apply zero velocity on the bottom surface, while 

the top surface is considered to be a free surface. Periodic boundary conditions are applied on the lateral 

surfaces, and this assumption can be made because the flow is statistically uniform in the x and z 

directions. The viscosity of the fluid is set equal to 0.0001472. The problem is driven by a constant body 

force. The slope of the channel is set equal to 1 80  and 1 40  in Sec 4.2.1 and 4.2.2, respectively. 

We study the flow using three meshes of 32 32 32  , 64 32 64   and 64 64 64   hexahedral 

elements. The elements are uniformly distributed in the x and z directions and graded on the y direction. 

The grading is obtained using a hyperbolic distribution that clusters more nodes near the fixed wall and is 

given by the following expression: 

 
( )( )

( )

tanh 1
1

tanh
i

i N
y





−
= −  (4.42) 
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where   is set equal to 1.5 for all the cases, N is the number of elements in the wall-normal direction and 

 0,i N . The time step size t  is set equal to 0.025 for all the test cases. 

The flow is initialized with a stream-wise parabolic velocity field that is randomly perturbed in 

the x and z directions by less than 10% of the parabolic mean velocity. After a transitory regime in which 

the turbulence structures develop and the free surface starts to evolve, the flow reaches a statistically 

steady state regime. The solution field is then sampled every 10 time steps for a period of 5000 steps. The 

sampled solution is averaged over time and also in the stream-wise and span-wise directions. The 

statistics were computed on the mesh nodes and  not on a background Eulerian mesh because of the 

complexity arising due to the evolving free-surface levels. This procedure is also consistent with the 

approach adopted in the reference results that are used for validation purpose [170]. Also as the reviewer 

points out, the “Eulerian” statistics are not straightforward to calculate near the free surface because the 

surface level evolves in time. 

4.4.2.1. Channel with flatter slope 

The first test case has a slope of the bottom surface equal to 1 80  that gives rise to body force 

components 0.00337204xf =  and 0.2697632yf = − . The y-axis is through the depth axis and has its 

origin at the bottom of the channel. The Reynolds number of the flow based on Taylor’s micro-scales is 

395. 

 
Figure 4.10 Instantaneous velocity field for the channel with slope 1 40  
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For the channel with 1 40  slope, Fig. 10 shows the geometry of the problem and velocity field at 

a typical time point. 

(a) (b) 

(c) (d) 

 

Figure 4.11 Mean velocity and RMS fluctuations along the wall normal direction for the channel with 

1 80  slope 

 
Figure 11 shows the mean velocity and the root mean square of its fluctuations in each of the 

three spatial dimensions. In addition to showing the results obtained with each of the three meshes 

employed, Fig. 11 also shows the DNS results for the lower half part of an equivalent confined turbulent 

channel flow [121]. 

Near the wall, the statistics of the confined channel are very close to the statistics of the open 

channel. This is due to the fact that the effects of the free surface diminish with depth. Closer to the free 

surface, the results from the confined channel are different from the results for the open channel because 
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open channel has a free surface, while the confined channel has fluid domain in the top half of the channel 

above the pseudo free surface. The effect of the free surface is clearly evident in the fluctuations of the 

velocity field in the wall-normal and span-wise directions, i.e., Fig. 11(c) and Fig. 11(d), respectively.  All 

the results presented in Fig. 11 are expressed employing wall units [134]. The second column of Table 1 

shows the Froude number of the flow, which is a measure of the ratio between inertial and gravity forces, 

and is defined as 

 O

y y

U
Fr

f L
=  (4.43) 

where OU  is the mean velocity of the free surface, yf  is the vertical component of the body force vector, 

and yL  is the depth of the channel. For the uniform channel problem, 1yL = . 

Table 4.1 Froude number of the flat open channel flow 

Mesh Lowest slope Highest slope 

32 32 32   2.68 3.87 
64 32 64   2.39 3.46 
64 64 64   2.37 3.34 

 

4.4.2.2. Channel with steeper slope 

The same study was carried out for a channel with stepper slope of 1 40 . The components of the 

body force are set to 0.00337204xf =  and 0.134882yf = − . The Reynolds number of flow based on 

Taylor’s micro-scales is 395. Figure 12 shows the statistics of the flow in which the computed solution 

shows similar features as in the previous case. While near the wall the results are similar to the statistics 

of the confined turbulent channel, the effects of the free surface are more pronounced near the upper 

surface. The third column of Table 1 shows the Froude number obtained with each of the three meshes. 

As expected, Froude number is higher than in the previous case because the channel is steeper, and 

therefore inertial force is more significant than the gravitational force. 
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(a) (b) 

(c) (d) 

 

Figure 4.12 Mean velocity and RMS fluctuations along the wall normal direction for the channel with 1 40  

slope 

We use the consistent tangent tensor for the fluid problem. Since the flow features induced by 

surface motions are relatively less intense as compared to the complexity of the turbulent flow, the 

convergence rate is close to being quadratic. Table 2 shows the evolution of the residual as a function of 

the iteration number for the flat open channel flow problem at higher Froude number. The results shown 

in the table correspond to the mesh that has 64 64 64   elements. Depending on the time level 

considered, the solution converges in 4 iterations levels. 
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Table 4.2 Residual reduction in Newton-Raphson scheme for the flat open channel flow at higher Froude 

number. The residual is reported at the end of each fluid iteration. 

Iteration number t = 827.15 t = 829.40 t = 831.65 

1 12.040 10−  12.038 10−  12.098 10−  

2 41.131 10−  41.112 10−  41.218 10−  

3 88.789 10−  88.508 10−  88.786 10−  

4 112.523 10−  112.378 10−  124.461 10−  

5 142.693 10−  143.660 10−  - 

4.4.3. Turbulent Channel Flow with Wavy Bed 

This test problem is also an open channel flow, however with a non-flat bed. The bottom of the 

channel has a shape that resembles a fixed sand dune. This problem was proposed by Balachandar and 

Patel [3] who studied deep water flows experimentally, and by Yue and co-workers [170], who analyzed 

the problem computationally. We consider the same problem specifications as in these references and 

compare our results with the published data. In addition, we also analyze this problem at a higher Froude 

number to show the applicability of the present method to problems where free surface undergoes larger 

and irregular deformations due to the interaction of bottom generated turbulence with the top free surface. 
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Figure 4.13 Schematic diagram of the channel problem with a wavy bottom surface 

The computational domain employed in our studies is schematically represented in Fig. 13, and 

the precise locations of its key sections are given in Table 3. The bottom boundary surface approximates 

the shape of a sand dune, with no-slip boundary conditions imposed. On the lateral walls, periodic 

boundary conditions are applied, and this assumption can be made because the flow is statistically 
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uniform in the x and z directions. The top boundary is located at a distance L  from the crest of the dune 

and is considered to be a free surface. The viscosity of the fluid is set equal to 1.  

Table 4.3 Coordinates of key locations of the bottom surface of the wavy channel 

x-

coordinate 

y-

coordinate 
Comment 

0 0 Periodic boundary 

10 0 Change of slope 

50 -20 Change of slope 

75 -20 Change of slope 

137.5 -18.1174 Change of slope 

325 -1.95791 Change of slope 

390 0 Change of slope 

400 0 Periodic boundary 

 

4.4.3.1. Lower Froude number flow 

With the goal of comparing our results with the existing data [43, 3], we set the depth 132L = , 

and apply a gravitational body force of magnitude 981. The channel is inclined at a mean angle of 2.56o 

that results in body force components 0.7651799xf =  and 980.9997yf = − . The domain is discretized 

using 80 64 64  hexahedral elements that are evenly distributed in the x and z directions. As shown in 

Fig. 14, the elements are graded through the depth of the channel in the y direction. The top 5 layers of 

elements have a height of 4 5 , the remaining elements are distributed using a hyperbolic function (4.44), 

in which 1.75, 132L = = , and N=59. 

 
( )( )

( )

tanh 1
1 ( 4)

tanh
i

i N
y L





 −
= − − 

  

  (4.44) 

The time step size t  is set equal to 0.015. 
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Figure 4.14 Transversal view of the mesh for the wavy channel with depth  L=132 

The problem is initialized from at rest conditions and it evolves until it reaches a statistically 

steady state regime. Figure 15 shows the fully developed velocity field. It can be observed that the motion 

of the free surface is relatively small. To compute the statistics of the flow, we sample the solution every 

10 time steps over a period of 5,000 steps. In addition to averaging the solution over all the sampled time 

steps, we average it along the span-wise direction. Figure 16 shows the averaged geometry and velocity 

fields, and the mean velocity streamlines. The mean flow has a recirculation zone downstream of the 

dune, which starts at 10x =  and ends at 104x = . The length of the recirculation zone agrees well with the 

LES-based result of 90x = , reported by Yue and co-workers [170]. The Froude number based on the 

mean velocity of the free surface at 0x =  is 0.42. Figure 17 shows the mean velocity of the flow at 6 

vertical cross sections along the length of the channel. The results are compared with the experimental 

data reported by Balachandar and Patel [3] and the computed results on a similar mesh reported by Yue et 

al. [43] employing a dynamic Smagorinsky model. Our results agree well with the existing data. The LES 

results [43] are plotted beyond 1y L =  because they considered a layer of air on top of the open channel. 

The results show that the layer of air, which adds to the inertia at the free surface, still does not have a 

significant effect on the results for the case under consideration. Figure 18 shows the root mean square of 

the fluctuations of the velocity field in the stream-wise direction at several cross sections. In this case, a 

very good agreement with previously published results is also observed.  
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Figure 4.15 Instantaneous velocity field for channel with depth L=132 

 

Figure 4.16 Mean velocity field for channel with depth L=132 

 

(a) (b) 

Figure 4.17 Mean velocity along the y-coordinate for channel with depth L=132, (a) x =40, (b) x=80, (c) x 

=100, (d) x =120, (e) x =240 and (f) x =360 
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(c) (d) 

(e) (f) 

Figure 4.17 (cont.) 

 

(a) (b) 

Figure 4.18 RMS fluctuations of the steam-wise velocity field along the y-coordinate for channel with 

depth L=132, (a) x =40, (b) x=80, (c) x =100, (d) x =120, (e) x =240 and (f) x =360 
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(c) (d) 

(e) (f) 

Figure 4.18 (cont.) 

4.4.3.2. Higher Froude number flow 

The next problem that we analyze is a harder problem as it has shallower depth and a steeper 

slope. Due to the shallower depth the turbulence generated at the bed of the channel interacts with the free 

surface thereby causing irregular and chaotic free surface motion. Furthermore, steeper slope leads to 

higher Froude number flow. We set the depth of the channel L equal to 20, along with a mean inclination 

of the channel at 13.39o. The components of the body force are 4.0xf =  and 980.992yf = − . Other 

parameters of the problem are same as in the previous case. The mesh employed in the present test is 

developed following the same guidelines as in the previous test case, and it is comprised of 80 54 48   

hexahedral elements. The time step size is set equal to 0.01. Figure 19 shows the velocity field in the fully 

developed regime. In this test case, the free surface undergoes larger motions. As can be seen in Fig. 19b, 

the fluid accelerates downstream from the sand dune, and therefore the depth of the fluid column 
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decreases locally. Further downstream of this region, fluid velocity slows down because of the obstruction 

in the form of a gradual sand dune. Consequently, in this region the depth of the channel increases. 

The statistically averaged solution is represented in Fig. 20, in which the streamlines of the 

velocity field also show the presence of a recirculation region downstream of the first dune. The Froude 

number based on the computed flow is 0.69. Vertical profiles of the stream-wise velocity field and its 

fluctuations are represented in Figs. 21 and 22, respectively.  

 

(a)

    (b) 

Figure 4.19 Instantaneous velocity field for channel with depth L=20 

 

 

Figure 4.20 Mean velocity field for channel with depth L=20 
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 (a) (b) 

 (c)  (d) 

 (e)  (f) 

Figure 4.21 Mean velocity along the y-coordinate for channel with depth L=20, (a) x =40, (b) x=80, (c) x 

=100, (d) x =120, (e) x =240 and (f) x =360 
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 (a) (b) 

 (c)  (d) 

 (e) (f) 

Figure 4.22 RMS fluctuations of the steam-wise velocity field along the y-coordinate for channel with 

depth L=20, (a) x =40, (b) x=80, (c) x =100, (d) x =120, (e) x =240 and (f) x =360 

4.5. CONCLUSIONS  

We have presented an extension of our previous work on residual-based turbulence models for 

problems with moving boundaries [108] to a formulation that is able to accommodate free surface 

problems. The method has been derived assuming a multiscale decomposition of the velocity and pressure 

fields into coarse and fine scales. This leads to two coupled mixed-field problems. The mixed-field fine-
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scale problem is stabilized by a further decomposition of the fine-scale velocity field into level-I and 

level-II fine scales. The problem governing level-II scales is modeled using forth order bubble functions, 

and its solution is variationally embedded in the problem that governs the level-I scales. The stabilized 

level-I fine scale problem is solved using quadratic bubble functions as interpolation functions for the 

level-I velocity and pressure fields. The derived level-I model that approximates the fine-scale fields is 

variationally embedded in the coarse-scale problem and these terms model the effects of the sub-grid 

scales on the resolved scales. The bubble function approach employed to model the two fine-scale 

problems leads to a formulation that does not have any embedded or tunable parameters. The formulation 

is applied to study two free surface flow problems to show the applicability of the method.  The first test 

case is a flat open channel with a fixed boundary on the flat bottom surface, periodic boundaries on the 

lateral walls, while the top boundary is a free surface. The flow is driven by a gravitational body force. 

Two different inclinations of the channel are considered, and the mean velocity field and its root mean 

square fluctuations are reported over the depth of the channel. The second problem investigated is an 

open channel flow with a wavy bottom boundary. Two different depths of the channel are investigated, 

and the results obtained are compared with the experimental and numerical results reported in the 

literature [9,170]. These numerical tests show the stability and accuracy of the proposed formulation for 

modeling free surface flows. Specifically the wavy bed problem that involves interaction of interior 

turbulence with free surface elevation shows the robustness of the method for irregular free surface flows. 
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CHAPTER 5: MULTILEVEL VARIATIONAL MULTISCALE LARGE-EDDY 

TURBULENCE MODEL FOR ISOTHERMAL FLUID 

5.1. INTRODUCTION 

Boundary layer theory and flow separation are now well understood. However, these phenomena 

in the presence of turbulence are still open-ended research issues. Main issue is that turbulence precludes 

the use of any simplifying assumptions and necessitates the solution of NSE in all generality, thereby 

leading to DNS. In order to economize DNS calculations, a common practice is to inject ad hoc models 

into NSE that induce high wave-number dissipation. These models in turn introduce artificial length 

scales and modeling parameters that are applicable only in certain scenarios. This issue of ad hoc or 

intuitive models has been the bottleneck in the modeling of turbulence. 

A literature review reveals Subgrid-Scale (SGS) Models for Large Eddy Simulation (LES), 

wherein the equations for LES are derived from NS equations with low-pass spatial filters [52,140]. The 

discretization filtering operator is called implicit filter. The flow motion is then divided into two parts: the 

resolved motion and the subfilter-scale motion (SFS). The scale of the flow motion smaller than the grid 

size is referred to the unresolved SFS motion, or subgrid-scale (SGS) motion. For the SGS motion, a 

closure model is required to link the SGS motion effect to the resolved SFS. In most of the engineering 

applications, the implicit filter is the only one filter used in the LES modeling. However, the filter width, 

filter shape, and filter resolution are free parameters in LES and narrowing them down for a problem at 

hand is neither easy nor straightforward.  

In light of these limitations, modern fluid mechanics calls for theoretical and mathematical 

developments for deriving high-fidelity numerical methods with enhanced stability properties to be able 

to explain the complex behavior of turbulent flows. 

In this paper we present the derivation of closure model for LES that is based on the notion of the 

Variational MultiScale (VMS) method [17,66,67]. VMS was introduced by Hughes as a framework to 

develop stable and accurate numerical approximations of partial differential equations, preventing 
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numerical instabilities that arise when the standard Galerkin Finite Element (FE) method is used. In the 

context of the incompressible Navier–Stokes equations there are two well-known instabilities. First, there 

is the need to satisfy a compatibility between velocity and pressure approximation spaces, i.e., the inf–sup 

condition [16], which is not satisfied when equal order interpolation is used. Second, we have the 

instabilities that appear when convective dominated flows [20] are simulated, which can be solved by 

adding some kind of extra dissipation to the problem. There is also a much less known loss of accuracy in 

the discrete velocity due to poor mass conservation which can be linked to a poor resolution of the 

pressure typical of mixed interpolations that satisfy the inf–sup condition. 

We have developed residual based turbulence models for LES. It is based on exploiting the fine-

scale variational structure facilitated by the VMS framework and then embedding ideas from the 

Residual-Free Bubbles (RFB) method [84,107,108] directly at the fine-scale level. This merger of RFB 

with VMS results in a new and more powerful method that facilitates great flexibility in variationally 

deriving LES type models for turbulence. A significant attribute of the new approach is that it does not 

need filter functions that invariably cause problems near the walls of the computational domain. 

Furthermore, contrary to the ad hoc models employed in traditional LES techniques, residual based 

turbulence models are consistent with the Navier-Stokes equations in the sense that if coarse-scales 

represent all the features of the flow, then the fine-scale terms vanish uniformly. From a numerical 

implementation perspective, the residual based turbulence models only involve element level 

computations thereby resulting in substantial ease in terms of implementation in existing CFD codes. 

Flexibility of RFB yields many options for the derivation of the closure models that can then be 

variationally embedded in the mean solution in a mathematically consistent fashion. In this method there 

are no empirical or tunable parameters. This means there are no filter functions to be used anywhere in 

the mesh. Methods work for Tetrahedral and Hexahedral elements, and for fixed and moving meshes. 

Since there are no empirical models involved, the method can be viewed as DNS on cruder meshes, or as 

LES models but without an empirical induction of intuitive ideas. 
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In the numerical section we apply this method to several problems of engineering interest that 

possess an increasing degree of complexity. In particular, our turbulent flow studies have shown that: (i) 

our method is able to predict the correct energy decay in the sub-inertial range which is a desirable 

property for any LES method, (ii) model can accurately predict the behavior of wall-bounded flows, and 

(iii) our method can also be applied to more complex flows involving flow separation and reattachment, 

giving rise to flow reversals and separation bubbles. Computed results also compare very well with some 

of the state-of-the art LES models proposed in the literature. 

5.2. INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 

The Navier-Stokes equations for the isothermal incompressible flows are 

 ( )2 ins p
t




 −    +  = 


+
u

u u u f   (5.1) 

 i0 n = u   (5.2) 

where   30,: T →u  is the velocity field and  0: ,p T →  is the kinematic pressure field, 0   

is the kinematic viscosity,   30,: T  →f  is the body force (per unit of mass), and the symmetric 

gradient operator s  is defined as 1/ 2( )s T=  +  . The domain 3   is connected, open and 

bounded with piecewise smooth boundary  . Eqn.(5.1) is the momentum balance equation and Eqn.(5.2) 

is the mass conservation equation in the form of incompressibility condition. The Dirichlet and Neumann 

boundary conditions, and initial condition are defined as 

 on g=u g   (5.3) 

 ( )2 ons

hp  = − n hu I   (5.4) 

 ( ) 0,0 =u x u   (5.5) 

where 
g h =    and g h =   , g  is the Dirichlet boundary condition, h  is the Neumann boundary 

condition and 0u  is the initial solenoidal velocity field (i.e., 0 0 =u ). 
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Let w  and q  represent the weighting function for the velocity u  and pressure q . The standard 

weak form of (5.1) and (5.2) with appropriate boundary conditions (5.3) and (5.4) and initial condition 

(5.5) is: Find ( ), tt u x  and ( ), tp t x , such that ( ) w x  and ( )q x , 

 ( ) ( ) ( ) ( ) ( ),, , 2 , , ,
h

s p
t




 
+


 +   −   =

 
+




u
ww u u w u w w f w h   (5.6) 

 ( ), 0q  =u   (5.7) 

where ( ) ( ), d
 

=   is the ( )2L   product. ( )( )
3

1

0H=   and ( ) ( )0 2LC=    are the function 

space of weighting functions, and t  and t  are the time-dependent counterparts for trial solutions. For 

the simplicity of illustration, we denote the variational forms (5.6) and (5.7) in abstract forms as 

 ( ) ( ), ; ,q p =w v w   (5.8) 

where ( ),w v  is the summation of left-hand side of (5.6) and the left-hand side of (5.7) and ( )w  is the 

right-hand side of (5.6). 

The conventional large eddy simulation (LES) approaches model the contribution of the sub-grid 

scale (SGS) fields by diffusion. This analogy is rational from the perspective of energy cascade nature of 

turbulence and the modelling propose is henceforth simplified as the estimation of the turbulent viscosity. 

Dynamic Smagorinksy model, which follows this methodology, is the most popular LES model that 

provides a local and dynamic model for the turbulent viscosity. On the basis of the split of resolved and 

sub-grid scales, it further makes uses the finest resolved wave to represent the SGS behavior. 

 

Figure 5.1 Methodology of conventional LES approaches 
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Remark. why do we call it a closure model: The flow motion is then divided into two parts: the resolved 

motion and the subfilter-scale motion (SFS). The scale of the flow motion smaller than the grid size is 

referred to the unresolved SFS motion, or subgrid-scale (SGS) motion. For the SGS motion, a closure 

model is required to link the SGS motion effect to the resolved SFS. 

5.3. RESIDUAL-BASED VARIATIONAL MULTISCALE TURBULENCE MODEL 

Variational Multi-Scale (VMS) framework assumes an overlapping decomposition of the 

unknown solution fields along with their corresponding weighting functions into coarse and fine scales. In 

the context of turbulence modeling, coarse scales represent the larger features in the flow. From a 

mathematical perspective, the coarse scale features belong to a finite dimensional space. The fine scales, 

on the other hand, represent the higher modes that correspond to the higher wave numbers along the 

wave-number axis as shown in Figure 5.1, and they belong to an infinite dimensional space. 

Our work extends the VMS turbulent model by further decompose the fine scales into two levels: 

fine scale level-I and fine scale level-II. In a hierarchy structure of the variational formulation, we 

managed to project the solution of finer scales to the coarser scales and to push the modelling part into the 

fine-scale level-II. Consequently, there is no modelling element in the coarse-scale variational 

formulation. Term-wise, the proposed formulation provides a comprehensive LES model, including the 

SGS Reynolds stress representing the fluctuation and the Leonard stresses representing the forward- and 

back- scatter of energy. Compared to two-level VMS model, it provides a model of SGS/fine-scale 

pressure to enforce the fine-scale mass conservation, which is the div stabilization term in the context of 

stabilization method. 

The mixed-field formulation (5.6) and (5.7) is constraint by the inf-sup condition that prevents 

using equal order interpolation of velocity and pressure fields. Also, due to the convection term in the 

momentum balance equation (5.6) in the Eulerian frame of refence, stabilization formulation is needed. 

VMS framework is utilized in the literature to address these numerical instabilities and further extended 

to large-eddy turbulence model by adding the Reynolds stress to the weak form, whereas the fine-scale or 
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subgrid-scale velocity is derived in the residual-driven form by resolving the fine-scale sub-problems with 

bubble function as local support. 

5.3.1. Variational Multiscale Decomposition 

We assume an overlapping and additive decomposition of the trial solutions (velocity and 

pressure) into coarse and fine scales, where coarse scale represents the physics resolved by the given 

mesh resolution and fine scale represents the subgrid-scale physics that is filtered by the spatial and 

temporal resolution, such as 

 

( ) ( ) ( )

( ) ( ) ( )
Coarse scale Fine scale

Coarse scale Fine scale

, , ,

, , ,

t t t

p t p t p t

= +

= +

u x u x u x

x x x
  (5.9) 

The spaces of functions for the coarse scales are defined to be linearly independent of the spaces used to 

represent the fine scales. For a detailed discussion on the spaces of functions, see [107,108,173]. 

Similarly, we can assume an additive decomposition of the weighting functions: 

 
( ) ( ) ( )

( ) ( ) ( )q q q

= +

= +

w x w x w x

x x x
  (5.10) 

Substituting the VMS decomposition (5.9) and (5.10) into the variational form (5.8) and segregate 

the weighting functions in coarse and fine scales, the problems can be split into sub-problems in two 

scales: 

Coarse-scale sub-problems: 

 ( ) ( ), ; ,q p p + + =w u u w   (5.11) 

Fine-scale sub-problems: 

 ( ) ( ), ; ,q p p    + + =w u u w   (5.12) 

5.3.2. Solution of the Fine-Scale Sub-Problems 
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To attain the solution of the fine-scale sub-problem, we first linearize the nonlinear form (5.12) 

with respect to the fine-scale fields through a linearization operator defined as 

 ( )( ) ( )
0

, ; , , , , ; ,
d

R q p p R q p p
d 

 
 →

       = + +w u u w u u   (5.13) 

Applying the operator (5.13) to the fine-scale sub-problem (5.12), we get the linearized fine-scale 

problems in abstract residual-driven form as 

 ( ) ( ) ( )( ) ( ) ( ), ; , , , ; , , ,L

M M Cq p q p q r        = − − = − −w u u w u w w r   (5.14) 

 
( ) ( ) ( ) ( ) ( )
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,, ; ; , : , , ,2,

, ,

L s

tq p

p q

          =   +  

   −   + 

 +



+w u u u w u u w u u w u

w u

w
  (5.15) 

 ( ) ( ),: 2, s

M t pp  −    + = −+r u u u uu f   (5.16) 

 ( ) :Cr = u u   (5.17) 

where ( ), ; ; ,L q p   w u u  represents the linearized Navier-Stokes equation, Mr  is the Euler-Lagrange of 

the momentum balance equation and Cr  is the Euler-Lagrange of the incompressibility condition. 

5.3.2.1. Multi-level decomposition on the fine scale 

The fine-scale sub-problems defined in (5.14) is a mixed-field problems as (5.8). Objective at 

this point is to resolve the fine-scale sub-problem locally to extract expressions for the fine-scale velocity 

and pressure fields. However, the fine-scale problem lies in an infinite dimensional space. Accordingly, 

some simplifications need to be made to make the problem tractable. In addition, (12) is a mixed field 

problem and therefore subject to the inf-sup condition imposed by the Babuska-Brezzi theorem. In order 

to convert the problem into an unconstrained problem, we employ VMS-based stabilization concepts. 

Similar to the original weak form, we use VMS as the remedy again for those numerical issues. Here, the 

fine-scale velocity field are further decomposed into fine-scale level-I and fine-scale level-II, 

 ( ) ( ) ( )
Intermediate scale Finest scale

, , ,I IIt t t  = +u x u x u x   (5.18) 



139 

 

 ( ) ( ) ( ), , ,I IIt t t  = +w x w x w x   (5.19) 

 

Figure 5.2 Methodology of VMS approaches 

The level-II velocity field will help develop stabilized form for level-I fine-scale problem, thus making it 

an unconstrained problem thereby facilitating analytical extracting of the fine-scale models. We employ a 

multiscale decomposition of the velocity field and its weighting function, and it is sufficient to derive a 

stabilized formulation. Therefore, we do not assume a multiscale decomposition of the fine-scale pressure 

field and its weighting function. Therefore, we do not assume a multiscale decomposition of the fine-scale 

pressure field and its weighting function. Consequently, 

 
( ) ( )

( ) ( )

, ,

, ,

I

I

p t p t

q t q t

 =

 =

x x

x x
  (5.20) 

Substituting the fine-scale VMS decomposition (5.18) and (5.19) into the fine-scale formulation 

(5.14), we can separate the fine-scale sub-problems into fine-scale level-I sub-problems and fine-scale 

level-II sub-problem. 

Fine-scale level-I sub-problems 

 ( ) ( )( ) ( )( ),, ; , , , ,L

I I II I M Cpq p q r      = − −+ u uw u u u w r   (5.21) 

Fine-scale level-II sub-problem 

 ( ) ( )( ), ; , , , ,L

II I II II M pq p+     = −w u u u w r u   (5.22) 

5.3.2.2. Solution of fine-scale level-II 
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By pushing all terms depends on fine-scale level-I trial solution of velocity field I
u  to the right-

hand side, the fine-scale level-II sub-problem can be rewritten as follows 

 ( ) ( )( ) ( )( ), ; , , , ,, ,L

II II II M I II Mp pq p      = −  −w u u w wur r u   (5.23) 

 ( ) ( ),, 2 s

M t pp       +  −    + =  +r uu u u u u u   (5.24) 

where ( ),M p  r u  is the perturbed Euler-Lagrange of momentum balance equation. Now that the right-

hand side of (5.23) are only depends on coarse-scale trial solutions and the left-hand side is irrelevant to 

this field, we can numerically solve (5.23) by choosing basis function and time-marching schemes. We 

can denote the solution of fine-scale level-II velocity field in the abstract form as 

 ( ) ( )( ), , , ,II II M Mp p p    = − +u u u τ u r r   (5.25) 

Remark. At this stage, the fine-scale level-II velocity field has been fully represented by coarse-scale and 

fine-scale level-I fields. 

5.3.2.3. Solution of fine-scale fields 

We first rewrite the formulation of fine-scale level-I (5.21) by separating the terms that depend on 

the fine-scale level-II velocity field II
u  from other terms, 

 ( ) ( )( ) ( )( ) ( )( ), ; , , , , ,, ,L

I I I II I M Cq p q q rp     +   = − −u u uw u u χ w w r   (5.26) 

where the weighting function χ  derived from the adjoint operator of linearized Navier-Stokes equation is 

defined as follows 

 ( ) ( )( ), Tq q=   − −   +  − χ wuw w w wu   (5.27) 

Substituting the fine-scale level-II solution (5.25) onto (5.26) yields the stabilized fine-scale formulation 

as 

 ( ) ( ) ( )( ) ( )( ) ( ), ; , , , ,, , , ,L

M M Cq p q q qp r         − = − −  −τ uw u u χ w w χ w rr   (5.28) 

The solution of the fine-scale fields can be represented as 
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p p r

   
= −      

u u r
τ u

u
  (5.29) 

Remark. All fine-scale level-II terms in (5.28) are eliminated through the projection. Thus, the subscript 

of fine-scale level is dropped henceforth for the simplicity. In other words, we use the enriched fine-scale 

level-I fields as the estimated fine-scale solutions, that is 

 I

p p

    
       

v v
  (5.30) 

5.3.3. The Multi-Level Fine-Scale Variational Multiscale Turbulence Model 

We reorganize the coarse-scale variational formulation (5.11) as follows, 

 ( ) ( ) ( )( ) ( ) ( )
Galerkin LES modelStabilization

, ; , , , , , 0q p q p   − + −   +  =w u w χ w u w w u u   (5.31) 

The stabilization part in (5.31) consists of all the terms that is linearly dependent on the fine-scale fields 

u  and p , while the LES model part (i.e., Reynolds stress) is split from the nonlinear convection term. 

Remark. First ever method to variationally derive closure models for turbulence. (turbulence is the 

research frontier in fluid mechanics today).  

Remark. From theoretical perspective, the new method is developed by integrating the RFB method from 

Brezzi directly at the fine-scale variational level in the VMS method from Hughes. This has resulted in a 

powerful method where fine-scale (or centered fluctuations) level is the perturbation part of the total 

solution while coarse-scale is the mean solution.  

Remark. Flexibility of RFB yields many options for the derivation of the closure models that can then be 

variationally embedded in the mean solution in a mathematically consistent fashion. 

5.4. NUMERICAL RESULTS 
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5.4.1. Taylor Green Vortex at Re = 1600 

Taylor-Green Vortex is a popular test case to study the generation of small-scale vorticity from a 

smooth initial condition under the influence of vortex stretching. It is a simple test case to set up because 

of the relatively simple setting of initial conditions and the homogeneous nature of the computed 

turbulence scales. The initial conditions are 

 ( )

( ) ( ) ( )

( ) ( ) ( )0

sin cos cos

cos sin cos

0

x y z

u x y z

 
 

= − 
 
 

x   (5.32) 

where all the kinematic energy stays in the largest wave mode of the domain as shown in Figure 5.7. The 

computational domain is  
3

0, =  and all six boundaries are applied with no normal flow condition and 

slip boundary condition. Two uniformly structured meshes were created with number of nodes 333  and 

365  to conduct h-refinement study with the method. The domain is discretized with B8 and B27 elements 

for the purpose of p-refinement tests. We compare results with DNS data presented reference [136] that 

was obtained via pseudo-spectra method on 3768  nodes in a  
3

0,2  domain. We also compare our 

results with other two-level VMS method that employs NURBS basis functions reported in van Opstal et 

al. in [127] and Evans et al. [45]. We have employed the generalized alpha method with step size 

dt=0.01s for 32-cubed mesh and dt=0.005s for the 64-cubed mesh to keep the same CFL number.  

Figure 5.3 shows the time history of kinetic energy and we notice that 64-cubed meshes show 

uniformly better accuracy as compared with the 32-cubed meshes thereby confirming the h-refinement 

feature. Secondly, for given number of nodes, quadratic bricks show better accuracy as compared with the 

linear bricks, thus confirming the p-refinement feature of the method. Figure 5.4 shows the decay rate of 

kinetic energy. Both element types and both meshes attain nearly similar peak decay rate as compared 

with the DNS data, and show closer comparison with DNS as compared with the C1 and C3 B-splines. 

We perform a h- and p- refinement study with the energy decay rate and mesh refinement uniformly 

presents better comparison with the DNS data for both element types as shown in Figure 5.5. Our results 



143 

 

of 643 accurately predicts the trend the kinetic energy and its decaying rate in the turbulent stage (t > 10s). 

Also, we observe that high order interpolation also helps improve the results in Figure 5.5. The energy 

spectra of different mesh resolutions and different interpolation orders at t = 10s are plotted in Figure 5.6. 

The slope of energy spectra are consistent with the Kolmogorov -5/3 law.  

 

Figure 5.3 History of kinetic energy of Taylor-Green vortex 

 

Figure 5.4 History of kinetic energy decaying rate of Taylor-Green vortex: comparison between two-

level VMS and three-level VMS 
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Figure 5.5 History of kinetic energy decaying rate of Taylor-Green vortex: h- and p- refinement of three-

level VMS 

 

Figure 5.6. Energy spectra vs wave numbers at t = 10s.  
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(a) 

(b) 

Figure 5.7 Iso-contours of Q criterion: (a) initial condition and (b) at t = 10s when dissipation is in 

progress. 

5.4.2. Turbulent Channel Flow 

Turbulent channel flow is a standard benchmark problem for statistically stationary turbulence. 

We test our method for three different friction Reynolds number Re  flows: 395, 590 and 950. The 

problem is driven by a constant pressure gradient in streamwise direction and the kinematic viscosity is 

appropriately adjusted for create the relevant friction Reynolds number flow. The geometric description 

of the various mesh settings are given in Table 1. The simulation results is compared with DNS reference 
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in [121] (395 and 590) and [64], and with reported two-level VMS results in [13,14,50,107]. T10 result of 

three-level VMS is reported in [30] 

Table 5.1 Simulations settings of turbulent channel flow 

Re   x zL L   /dP dx      t   
miny+   Mesh res. 

395 2π×2π/3 3.37204e-3 1.472e-4 0.025 1.313 32×33×32 

590 2π×π 1.0 1.6949e-3 0.0015 0.903 64×65×64 

950 4π×4π/3 2.63099e-3 5.3992e-5 0.01 1.455 64×65×64 

5.4.2.1. Friction Reynolds number 395 

The first test case is Re=395. The mesh is comprised of 32-cubed nodes, which are appropriately 

connected to create 8-node and 27-node hexahedral elements. The mesh is graded in the wall normal 

direction such that ( ) ( )( ) ( )tanh 1 2 tanhyy j j N = − −  where 2.75 =  is the stretch coefficient 

and j  is the node numbering in wall-normal direction. Figure 5.8 shows the schematics of the channel 

problem. Periodic boundary conditions are applied in the streamwise direction of the flow as well in the 

span-wise direction, while no slip conditions are imposed on the top and bottom walls. We have 

employed the generalized-α method for time integration at both coarse-scale as well as at the fine-scale 

levels. Time step employed in the study is shown in Table 1.  In addition, we employed Additive Schwarz 

preconditioner and Bi-Conjugate Gradient Stabilized method for the solution of the system of equations.  
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Figure 5.8 Schematics of the problem description of the channel problem 

Figure 5.9 (cont.) shows the streamwise mean flow, and the flow fluctuations in the streamwise 

direction, wall-normal direction, and spanwise direction. Computed results are compared with DNS data 

reported in [121] and was obtained via a pseudo-spectral method with 256×193×192 nodes. Hexahedral 

elements with the current three-level VMS constructs perform better than the quadratic triangles with 

three level VMS constructs [30]. In addition, linear bricks with three-level VMS constructs perform better 

than the linear bricks with two level VMS constructs [107], thus providing the numerical manifestation of 

the underlying variational structure of the residual-based LES model. We have also compared our data 

with C1 continuous B-splines reported [13].  
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Figure 5.9 Streamwise mean, Streamwise fluctuation, wall-normal fluctuation, spanwise fluctuation 395 
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Figure 5.9 (cont.) 

5.4.2.2. Friction Reynolds number 590 

This section presents numerical test case of Re 590 = . The domain’s dimensions are presented 

in Table 1 and it is discretized with 64-cubed nodes that are appropriately connected to make meshes of 8-

node bricks, employing the three-level VMS model. We compare our results with published DNS data 

[121] and some published data [30,50,107] in the literature. Linear bricks with enhanced fine-scale model 

facilitated via the variational embedding of fine-scale physics which is preserved because of the higher-

order functions employed at the fine-scale level are able to produce a closer approximation to the DNS 
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data as compared to quadratic tetrahedral elements or linear-hexahedra. A similar trend is seen in all the 

fluctuations as well. 

 

 

 

Figure 5.10 Streamwise mean, Streamwise fluctuation, wall-normal fluctuation, spanwise fluctuation 590 
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Figure 5.10 (cont.) 

5.4.2.3. Friction Reynolds number 950 

The third test case is Re 950 =  and the geometric and material parameters for this test case are 

presented in Table 1. We compare our results with DNS data from Hoyes and Jimenez [64] and C1 

continuous B-splines in Bazilevs et al [14]. 
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Figure 5.11 Streamwise mean, Streamwise fluctuation, wall-normal fluctuation, spanwise fluctuation 950 
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Figure 5.11 (cont.) 

5.4.3. Flow over flat plate 

Flow over a flat plate is a standard transition problem where a laminar boundary layer gets 

detached and grows into turbulent flow. Two cases are investigated that represent two ends of the 

spectrum: In one case the leading edge is circular while in the other there is a sharp corner. In both cases, 

we only simulate the half of the domain due to the fact that the flat plate is infinitely long. 

5.4.3.1. Flow over flat plate with smooth leading edge 
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In the first numerical study, we set the leading edge of the flat plate as a smooth semicircle. The 

Reynolds number defined based on the radius of the circle is 1725. The dimensions and boundary 

conditions are illustrated in Figure 5.12. To reduce the computational cost, the semi-disk shape of the 

domain is set in maxk  the regime of the laminar flow before being perturbed by the flat plate. A uniform 

inflow velocity is applied on the left side of the domain. Slip and no-penetration boundary conditions are 

applied on the top and symmetric boundaries. No slip conditions are applied on the plate and periodic 

boundary conditions are applied in the spanwise direction (z-axis). An outflow boundary condition is 

implemented to prevent the backflow. We have employed 8-node brick elements and 10-node tetrahedral 

elements for this simulation with a structured mesh: 65 40181  . The simulation is initialized with static 

flow and gradually increase the inflow velocity to the designated magnitude. The turbulence is self-

initialized without any synthetic turbulence embedded in the inflow. Once the flow reaches the 

statistically steady state, we collecting data for around 10 flow-through time. 

Once the flow reaches the leading edge of the flat plate, the laminar flow is perturbed, and a 

recirculation bubble develops due to the separation effect. To verify the results, we average the velocity 

field in time and homogeneous space dimension and extract the parameters of the structures of the bubble. 

These parameters includes: rl  length of reattachment, rh  height of recirculation bubble, cx  center of 

recirculation,   separation angle, maxk  maximum turbulent kinetic energy, minx  location of maximum 

backflow and minU  maximum of backflow. These values are compared with DNS results [91] in Table 2. 

An instantaneous flow field is shown in Figure 5.13 and the space and time averaged 2D flow field is 

presented in Figure 5.14. To further validate our simulation results, we extract velocity fields in six 

different locations within and outside the recirculation bubble and compare the distribution of mean and 

fluctuation along wall-normal direction with other LES simulations [92,169] utilizing other turbulence 

model with finer mesh in Figure 5.15 and Figure 5.16. In each case we get a very good correlation with 

the published data. 
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Figure 5.12 Schematic diagram of domain dimensions and boundary condition for boundary layer 

separation with smooth leading edge 

 

Figure 5.13 Streamlines of velocity and iso-contours of Q-criterion: laminar, transitional and turbulent 

regimes 
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Figure 5.14 Streamlines of time and space averaged velocity field 

Table 5.2. Comparison of attributes of recirculation bubble 
 

rl   rh  /c rx l      
maxk   minx   minU   

DNS w/ noise 4.7 0.43 0.76 15 0.11 2.9 -0.23 

DNS w/o noise 7.6 0.61 0.82 16 0.11 4.9 -0.25 

LES 7.09 0.53 0.82 17 0.1040 4.66 -0.24 

 

 

Figure 5.15 Mean streamwise velocity field 
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Figure 5.16 Fluctuation of streamwise velocity field 

 

5.4.3.2. Flow over flat plate with blunt leading edge 

The problem setting of this test case is very similar to the previous one except for the blunt 

leading edge of the flat plate. The Reynolds number defined through the thickness of the place is 7500. 

Like previous test case, we start the simulation with static flow field and gradually increase the inflow 

velocity to the designated level. The turbulence is self-initialized without any input noise. A snapshot of 

iso-contours of Q criterion at the stage when the flow is fully developed is shown in Figure 5.17. 
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Figure 5.17 Iso-contours of Q criterion (value: 5) 

Through time and space averaging, we measure the length of reattachment as 3.86rl = , which is 

consistent with 3.38~3.68 from other LES results [153]. The height of the recirculation bubble is 

measured as / 0.52ry H = , which is very close to 0.53 from reported LES results [153]. To further verify 

the proposed turbulence model, we first compare the distribution of wall mean pressure coefficient and its 

root-mean-square values from our simulation with experimental data [35,86,142] and reported LES 

simulation results [153] in Figure 5.18. From Figure 5.19 to Figure 5.22, the distribution of mean and 

fluctuation of averaged velocity field at various locations along wall-normal direction from our simulation 

are compared with reported LES results [153] and experimental data [142]. 
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(a) 

(b) 

Figure 5.18 Streamwise wall pressure distribution (mean and fluctuation) 
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Figure 5.19 Streamwise mean velocity distribution 

 

Figure 5.20 Wall normal mean velocity distribution 
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Figure 5.21 Streamwise velocity fluctuation distribution 

 

Figure 5.22 Wall normal velocity fluctuation distribution 

5.5. CONCLUSIONS 

In this work, we have presented a residual-based isothermal turbulence model based on the multi-

level fine-scale variational multiscale method. In the present work, the fine or subgrid scales are solved 

from a linearized transient form of incompressible Navier-Stokes equations. The mixed form of fine-scale 

sub-problems are stabilized via the VMS method through utilizing the decomposition of the fine scales. 

Thus, the unknown fields are decomposed into three levels: coarse-scale, fine-scale level-I and fine-scale 
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level-II. This multi-level nested formulation features a variationally consistent forward and backward 

scatter between various scales, thus it pioneered a new method for deriving closure models for 

Turbulence. 

From theoretical perspective, the new method is developed by integrating the RFB method from 

Brezzi directly at the fine-scale variational level in the VMS method from Hughes. This has resulted in a 

powerful method where fine-scale (or centered fluctuations) level is the perturbation part of the total 

solution while coarse-scale is the mean solution. Flexibility of RFB yields many options for the derivation 

of the closure models that can then be variationally embedded in the mean solution in a mathematically 

consistent fashion. Methods work for Tetrahedral and Hexahedral elements, and for fixed and moving 

meshes. Since there are no empirical models involved, the method can be viewed as DNS on very fine 

meshes, or as LES models but without an empirical induction of intuitive ideas. 

To validate the proposed methods, we carried out a serious of numerical studies of canonical 

flows with increasing challenges on turbulence model. The first test case is the Taylor-Green vortex 

problem, where the energy budget and decaying rate are compared with DNS results, and a h- and p- 

refinement study for hexahedral and tetrahedral elements. Then we use the code to run the turbulent 

channel flow with friction Reynolds number up to 950. Finally, the method is utilized with boundary 

layer separations of flows over a plate with a smooth or a blunt leading edge. 
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CHAPTER 6: LARGE-EDDY RESIDUAL-BASED TURBULENCE MODEL FOR 

INCOMPRESSIBLE FLOW WITH DENSITY STRATIFICATION 

6.1. INTRODUCTION 

Amongst various fluid physics problems, the incompressible flows coupled with a scalar field are 

the underlying governing system. Via Reynolds transport theorem, one can attain a hyperbolic partial 

differential equation (PDE) for the scalar field in the form of the advection-diffusion equation, where the 

velocity field is furnished by the solution of the incompressible Navier-Stokes equations for fluid 

dynamics. The scalar field is also in turn involved in the conservation of momentum. Therefore, the scalar 

field is often referred to as an “active” scalar field [140] due to the two-way coupling nature of the 

system. The scalar field could be the concentration of chemical constituents [15] for simulation of 

combustion, the magnetic field in stellar astrophysics [171], or the temperature field of stratification in 

natural water bodies (e.g., lake and ocean), etc. In particular, density stratification is the dominant physics 

in various engineering and environmental applications. Natural plumes [163] due to stratifications are 

widely observed in different scales of space, time, and intensities, including eruptions of volcanos and 

sudden release of carbon dioxide bubbles in the lakes. The studies on phytoplankton blooms [6] have 

revealed that the hydrothermal effect plays a vital role in the stimulation of large reproduction of the 

microalgae. Another environmental flow that needs to consider the density stratification is the tropical 

cyclones, where the winded forced ocean circulation has a strong correlation with the intensity of the 

hurricanes [56]. Apart from these environmental or geophysical flows, one industrial application of 

stratification is the storage of heat energy, which becomes the major concern in the renewable energy 

industry [52] due to the unsteady characteristics in those energy sources (e.g., solar and wind farms). To 

maximize the efficiency of the heat storage and exchange devices, the stratification effects need to be 

taken into account in the design of overall systems [52]. Apparently, a robust computational fluid 

dynamics (CFD) tool is necessary not only to understand the role of density stratification in physical 
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processes, including the production and dissipation of turbulence [7,77,133], but also to help the design of 

energy-efficient devices. 

CFD methods for simulation of stratified turbulence can be classified by the resolution and 

determinacy into Reynolds-averaged Navier-Stokes (RANS), large-eddy simulations (LES), and direct 

numerical simulation (DNS) [134]. LES [140] is a relatively ideal choice of numerical methods for the 

purpose that we have covered previously due to the balance of accuracy and computational cost. The 

closure problem (i.e., the gap between filtered and unfiltered nonlinear convection) becomes more 

complicated than that in the isothermal incompressible flows due to additional nonlinear convection in the 

conservation of energy. Besides, the stratified turbulence also results in anisotropy in small scales, which 

is examined through DNS [51,98,145]. Thus, an isothermal LES model needs to be extended to the 

stratified turbulence, and a dynamically and locally adaptive LES model is required to address the 

anisotropy in the unresolved scales. The dynamic strategy to determine the turbulence viscosity, first 

proposed in [53] for isothermal flows, has been utilized for LES of stably and unstably stratified 

turbulence [83,137,162]. Remmler  and Hickel [137] uses the adaptive local deconvolution method 

(ALDM) to construct an efficient scheme for implicit LES, and Khani and Waite [83] investigate the 

appropriate filter scales to capture the fundamental features in stratified turbulence. Specifically, the 

dynamic strategy may result in a negative value of the Smagorinsky coefficient that eventually leads to 

instability [119]. Another path following a similar hypothesis is to use the renormalization group (RNG) 

theory [167] to derive the turbulent viscosity and diffusivity, which has been extended from isothermal 

flows [118] to turbulent thermal convection [160]. 

Apart from the LES models based on the turbulent viscosity, variational multiscale (VMS) 

framework [3,13,31,66,72–74,107] suggests an alternative approach to turbulence modeling that does not 

rely on any hypothesis on the unresolved scales. The VMS modeling of isothermal turbulence is 

originated by Hughes and his colleagues [72], then implemented with pseudo-spectral method [73,74], 

and further extended to finite-element methods [3,13,31,107]. A thorough review of the VMS method of 

incompressible turbulence modeling can be seen in [1]. Recently, the VMS method is used for the 
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coupled system of incompressible flow with an active scalar field [165,166,168], including stably 

stratified turbulence [168], thermal convection [165] and particle-laden flows [166]. Yan and his 

colleagues [166,168] designed a new fine-scale model by tweaking the coupling in the fine-scale inertia 

while the advection and diffusion of fine-scale velocity and temperature were left uncoupled. The 

incompressible turbulence model is directly used in [165] for thermal convection. In the context of the 

VMS framework, two major classes of fine-scale modeling exist: the Green’s function [3,13,165,166,168] 

and residual-free bubbles [31,107]. The latter method preserves the transient linearized fine-scale sub-

problems without any approximation, which is suitable for the extension of the turbulence model for 

addressing additional physics. In this work, the VMS large-eddy turbulence model is derived based on the 

idea of multi-level fine-scale modeling [31,58] and VMS method for a coupled system [173], which 

results in a fully-coupled turbulence model for stratified turbulence. No ad hoc devices or parameters are 

needed. 

An outline of the paper is as follows. The coupled system of incompressible flow with density 

stratification is established in Section. 6.2. The derivation of the three-level VMS turbulence model is 

presented in Section. 6.3. A set of numerical test cases is carried out to validate the proposed method and 

exhibit a wide range of applications in Section. 6.4. Conclusions are drawn at last. 

6.2. INCOMPRESSIBLE THERMAL FLUID WITH BOUSSINESQ BUOYANCY 

6.2.1. Strong Form 

The influence of the spatiotemporally varying active scalar field (e.g., temperature) ( ),T tx  leads 

to the variation of density ( ), t x . In the context of incompressible Newtonian fluids, the effect of the 

density variation is accounted for by introducing a buoyancy force to the momentum balance equation, 

while the continuity equation satisfies the incompressibility condition. A background gradient in addition 

to local heat source is the driving mechanism for the thermal phase. With these assumptions, we have the 

classic equation for density-stratified flows known as the Boussinesq equations [42]. 
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 ( )2 s

bp
t

 


 = − +   


+ − +
u

uu u g f   (6.1) 

 0  =u   (6.2) 

 ( ) f
t


  


 −   


+ =u   (6.3) 

where u  and p  is the velocity and kinematic pressure fields, respectively; 
0T T = −  is the relative 

temperature, T  is the absolute temperature and 
0T  is the reference temperature;   is the kinematic 

viscosity of the fluid,   is the thermal expansion coefficient, g  is the gravitational acceleration vector, 

and   is the thermal diffusivity; 
bf  is the non-gravitational body force (e.g., Lorentz force) and f  is the 

heat source/sink. (6.1) is the momentum balance equation with a buoyancy term accounting for the 

thermal effects, (6.2) is the continuity equation to enforce the incompressible condition, and (6.3) is the 

energy conservation in the form of the convection-diffusion of the relative temperature field. 

The initial conditions in the domain   and boundary conditions on the domain boundary  =   

are: 

 ( ) ( )  0 0,0 in= u x u x   (6.4) 

 ( ) ( )  0,0 0in = xx   (6.5) 

 ( ), on M

M gt =u x g   (6.6) 

 ( ), on E

E gt g = x   (6.7) 

 ( ) on2 s M

M hp − =   = u Iσ n n h   (6.8) 

 on E

hEh   =   = n n   (6.9) 

where 0u  and 0  are the initial conditions for velocity and relative temperature fields, respectively, Mg  

and Eg  are the Dirichlet boundary conditions for the mechanical and thermal phases, Mh  and Eh  are the 

Neumann boundary conditions of mechanical and thermal phases. σ  is the total stress in the fluid and   
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is the heat flux. n  is the normal vector directed outwards at the boundary. Specifically, these boundaries 

satisfy the following conditions: 0M M

g h  = , 
h

M M

g  = , 0E E

g h  =  and 
h

E E

g  = . 

6.2.2. Dimensionless Parameters 

By introducing the characteristic length scale 
0L  that is the distance between the hot and cold 

wall, temperature scale T  and velocity scale 
0U , the classic non-dimensional numbers are defined as, 

 Pr (Prandtl Number)



=   (6.10) 

 

3

0
Ra (Rayleigh Number)

TL


=

 g
  (6.11) 

 0

0 0

Fr (Fronde Number)
U

N L
=   (6.12) 

where 
0 /N d d= g x  is the Brunt-Vaisala frequency. The Prandtl number defined in (6.10) represents 

the ratio between fluid kinematic viscosity and thermal diffusivity. The case when Pr 0.71=  has gained 

wide interests in the literature because it corresponds to the flow of air. 

6.2.3. Standard Weak Form 

Let 1

0( ) )( )( sdn
H = w x , 0 2( ) ( ) ( )q LC =  x , and 1

0 )( () H  = x  be the 

weighting functions for the velocity u , kinematic pressure p , and relative temperature   fields, the 

standard weak form of the problem is: 

Find ( ), , t t tp   = V u , such that, ( ), ,q  =   W w  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,, , , ,2 , ,M
h

s

t M bp 


    + + − + = +w u w u u w g w hu ww fw   (6.13) 

 ( ), 0q  =u   (6.14) 

 ( ) ( ) ( ) ( ) ( ),, , , , ,E
h

t Eh f        


+ + = + u   (6.15) 

6.2.4. Closure Problems in Density-Stratified Flows 
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Compared to isothermal incompressible flow, there is one more nonlinear convection term 

u  that appears in the strong and weak forms of energy conservation equation. In the context of 

convectional LES, the gap between the filtered and unfiltered nonlinear convection term (i.e., 

( ) ( ), , − u uw u w u  in (6.13) and ( ) ( ),,    − u u  in (6.15)) needs to be closed, which is also 

known as the “closure problem”. Therefore, the LES turbulence model needs to be extended from 

incompressible isothermal flows to incompressible flows with density stratification. Employing the VMS 

method for the system of weak forms, we describe the process of deriving the fully coupled residual-

based turbulence model. 

Remark. In the context of VMS framework, the basis functions for the coarse-scale trial solutions and 

weighting functions are viewed as filters or projectors in the conventional LES formulation. 

6.3. VARIATIONAL MULTISCALE METHOD 

6.3.1. Variational Multiscale Decomposition 

We discretize the bounded domain   into eln  non-overlapping elements with subdomain 
e  and 

its boundary e e =  , where 1,2, , ele n=  is the element numbering. Henceforth, we can construct the 

union of element interiors ( )1 inteln e =   and element boundaries 1
eln e =  . We further assume an 

additive decomposition of the unknown fields  , ,
T

p u  and their corresponding weighting functions 

 , ,q w  as 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

,

, ,

, ,

, , ,

,

t t t

t t t

p t p t p t

   +

= +



=

= +

x xu u x

x

u

x x

x

x

x

  (6.16) 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

q q q

  

=



= +

= +

+x x

x

w x w x w x

x x

x   (6.17) 
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An assumption is made that the fine-scale fields vanishes at the element boundaries, that is 

 
0 on

0 n

0

0 o

p

q









= =



 =

=



 = =

u 0

w 0
  (6.18) 

We now introduce the appropriate function spaces for coarse-scale and fine-scale unknown fields 

by specifying a direct sum decompositions as =  , = +  and = + , where ,  

and  are the spaces for the coarse-scale velocity, pressure and temperature fields that obey 0C  

continuity over the entire domain with element-wise support of complete polynomials of orders 

determined by shape functions. On the other hand,  the function spaces of fine-scale fields  ,   and 

  are infinite dimensional. We utilize bubble functions to discretize the fine scales, which satisfies the 

assumption (6.18). 

By substituting the splits of weighting functions defined in (6.17) to the standard Galerkin weak 

forms (6.13)-(6.15), we have 

 
( ) ( ) ( )( ) ( )( )

( ) ( ) ( )

, ,2,

,

,,

, , M
h

s

t

M b

p




      

 

+ + + + + − +

+ + = + + +

w w w w u w w w

g

w

w w w w w

u u

w

u

h f
  (6.19) 

 ( ), 0q q+  =u   (6.20) 

 ( ) ( ) ( )( ) ( ) ( ),, , , , ,E
h

t Eh f             


    + +   +  + ++ + = +u   (6.21) 

Because of the linearity of the additively decomposed weighting functions in (6.17), we can split the weak 

form into coarse-scale and fine-scale sub-problems as follows, 

Coarse-scale sub-problems 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,, , , ,2 , ,M
h

s

t M bp 


    + + − + = +w u w u u w g w hu ww fw   (6.22) 

 ( ), 0q  =u   (6.23) 

 ( ) ( ) ( ) ( ) ( ),, , , , ,E
h

t Eh f        


+ + = + u   (6.24) 

Fine-scale sub-problems 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,, , , , ,2 , M
h

s

t M bp 


          + + − + = +w u w u w u w w g w h w fu   (6.25) 
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 ( ), 0q   =u   (6.26) 

 ( ) ( ) ( ) ( ) ( ),, , , , ,E
h

t Eh f        


 +    = + +u   (6.27) 

6.3.2. Linearization of Fine-scale Sub-problems 

The fine-scale problems summarized in (6.25)-(6.27) are a mixed nonlinear coupled systems. We 

first introduce the linearization operator with respect to all the fine-scale trial solution fields: 

{ , , }p   = V u , that is 

 ( )( ) ( )
0

, , ,
d

R R p p
d 

    
 =

      += + +u u u   (6.28) 

Applying the above linearization operator to the fine-scale sub-problems in (6.25)-(6.27), we get the 

linearized fine-scale problems as 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

,

,

, , , ,

, ,

,

,

2 ,

, ,,2 ,

s

t

s

t b M

p

p

      

 

         

  

     + + + − +

    = − − − −  + − + =

w u w u w wu u w g

w u w u u w g w

u u w

u w w f w r
  (6.29) 

 ( ) ( ), , Cq q r = − u   (6.30) 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

,

,

, , , ,

, , , , ,

t

t Ef r

         

        

         + + +

= − − − +



       = −

u u

u
  (6.31) 

where Mr , Cr  and Er  are the residuals of the Euler-Lagrange equations of the coarse-scale conservation 

laws, including momentum, mass and energy, respectively, and are defined as 

 ( ) ( ),, 2, s

M t bpp    +  += −  +  −r u u u uu g f   (6.32) 

 ( )Cr = u u   (6.33) 

 ( ) ( ),,E t fr      −= +    −u u   (6.34) 

Remark. The linear operator (6.28) is to eliminate the fine-scale Reynolds stress ( ),  w u u  and fine-

scale Reynolds flux ( ),   u , while it preserves the coupling between mechanical and thermal phases. 
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In the earlier work of the senior author on isothermal incompressible turbulence model [31], a similar 

treatment was suggested. 

Remark. The notation   in the terms containing perturbed fine scales are dropped in following 

derivations. 

6.3.3. Variational Multiscale Decomposition in Fine Scales 

We decompose the fine-scale trial solution and weighting function into fine-scale level-I and fine-

scale level-II. The purpose of applying VMS framework at the fine scale level is to derive a stabilized 

fine-scale formulation for the fine-scale inf-sup condition and the advection of fine-scale velocity u  and 

  . Therefore only these two fields and their corresponding weighting functions are subjected to a further 

additive split 

 ( ) ( ) ( ) ( ) ( ) ( ), , , and , , ,I II I IIt t t t t t     = + = +u x u x u x x x x   (6.35) 

 ( ) ( ) ( ) ( ) ( ) ( )andI II I II   + = =+w x w xx xx w x   (6.36) 

By segregating the terms in the weight functions corresponding to different levels in the fine-scale, we 

obtain the fine-scale level-I and fine-scale level-II problems: 

Fine-scale level-I problems 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,2 ,, , , , ,s

I t I I I I I I Mp                 + + + − + = −w u w u wu uw u u gw w w r   (6.37) 

 ( ) ( ), ,I I Cq q r = −u   (6.38) 

 ( ) ( ) ( ) ( ) ( ),, , , , ,I t I I I I Er                    + + + = −u u   (6.39) 

Fine-scale level-II problems 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ),, , , ,,2 ,,s

II t II II II II II II Mp            + +     + − + = −w u w u w u wu g wu u w rw  (6.40) 

 ( ) ( ) ( ) ( ) ( ),, , , , ,II t II II II II Er                 +  = − + +u u   (6.41) 

6.3.4. Modelling of Fine-scale Level-II 
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Our aim in this section is to extract the solution of fine-scale level-II velocity 
II
u  and temperature 

II  . These solutions will be substituted in the fine-scale level-I and will result in a stabilized formulation 

for the fine-scale problems. We rearrange the fine-scale level-II problems in (6.40) and (6.41) by splitting 

the different level of fine-scale trail solutions as, 
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  (6.42) 
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  


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 − 
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where 
M
r  is the residual of the Euler-Lagrange equation of the linearized fine-scale level-I conservation 

of momentum, while 
Er  is the residual of the Euler-Lagrange equation of the linearized fine-scale energy 

equation. 

 

( )

( )

,

,

2

SS
M

SS
E

s

M I t I I I I

E I t I I I

r

p

r

 

    









   +  +  −    +

+ +

  = +
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  (6.44) 

We use bubble functions to interpolate the fine-scale trial solutions and weighting functions as 

follows, 

 
and

and

e e e e
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 
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  (6.45) 

For the time marching scheme, we have employed generalized-alpha method [78] for the first-order 

system, where the inertial term is evaluated at mn +  while other terms are evaluated at fn +  as 

marching from time-step n  to 1n + . For a generic time-dependent filed ( ) , its temporal discretization 

through generalized-α method can be represented as 
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By applying the chosen spatial and temporal discretization to (6.42) and (6.43), we obtain a linear 

system as.  
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where ˆ
M , including cross-scale advection term, skew advection term and symmetric diffusion terms, is 

in fact the standard linear system of linearized fine-scale Navier-Stokes equation that is derived in our 

earlier work [106,173]. ˆ
E  represents the cross-scale advection-diffusion in the thermal phase and is 

exactly similar to our earlier work [114,173]. The coupling terms (i.e., ˆ
ME  and ˆ

EM ) of mechanical phase 

and thermal phase are also admitted in the fine-scale problems. Consequently, a full ( ) ( )1 1sd sdn n+ +  

matrices are derived from the discretized linear system in (6.47). Henceforth, the fine-scale level-II 

velocities and temperature are written in the residual-driven form 
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Remark. The time dependent terms ( )n
 and their time derivative ( ) /n t   of level-II fine scale are 

neglected (i.e., ( ) 0
n

=  and ( ) / 0
n

t  = ). To ensure the unconditionally stability, 
m , 

f  and   are 

determined by a constant   [78]. 

Remark. To avoid the issue of orthogonality of standard bubble function and its derivatives, the 

advection parts in (6.48) are enriched with advection bubble, as suggested in senior author’s previous 

work [106,114]. 

6.3.5. Modelling of Fine-scale Level-I 

Applying the VMS decomposition to the fine-scales (6.35) on the combined fine-scale level-I 

sub-problems (6.37)-(6.39) and utilizing divergence theorem, we have 
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where weighting functions M
χ  and E

χ  are defined as, 
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The basis function for the fine-scale weighting function and trial solution is bubble function, that is 

 
; ; ;

; ; ;

e e e e e e

e e e e e e

b b

b

p b p

b q b q

 

 

 =



   = =

 =  = =

u u

w w
  (6.52) 

Using the spatial discretization defined in (6.52) and generalized-α method (6.46) as time marching 

scheme, the discrete system of stabilized fine-scale weak form is 
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where , ,
T

e e e ep   =  V u  and , ,e e e eq   =  wW  are the fine-scale trial solution and weighting 

function, respectively. Henceforth, the fine-scale velocities, pressure and temperature are solved as 
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Remark. The stabilized fine-scale sub-problems are now fully addressed in fine-scale level-I. For the 

simplicity of derivation, the subscript I  is dropped. 

Remark. The coefficients m  , 
f  and   for the time integration in (6.54)&(6.49) are not necessarily 

the same. 

6.3.6. Residual-based turbulence model 

By substituting the VMS decomposition (6.16) into the coarse-scale sub-problems (6.22)-(6.24) 

and grouping these terms by the dependency of fine-scale fields, we have 
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where the weighting functions are defined as 
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The stabilized nonlinear weak form is the derived VMS residual-based turbulence model for 

stratified turbulence. In abstract form, we rewrite (6.55) as follows, 

 ( ) ( ) ( ) ( )VMSGal LES Gal, , ; , , , , , , , , , ,; ; ,q p q p q p      + + =w u w u w u w   (6.57) 

where Gal  and Gal  are the Galerkin terms 
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VMS  is the stabilization terms, 

 ( ) ( ) ( )VMS ;, , , , , ,M Eq p   = +χw u u   (6.59) 

And LES  is the large-eddy turbulence model. 

 ( ) ( ) ( )LES , , , , ,; ,q p       = +w u w u uu   (6.60) 

Remark. We drop the superposed bar from the coarse-scale weighting function and trial solutions since 

the stabilized form (6.55) is fully represented in the terms of coarse-scale fields. 

6.4.  NUMERICAL TESTS 

6.4.1. 2D Natural Convection: A Benchmark 
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Figure 6.1 The schematics of natural convection problem 

In this subsection, we carry out a convergence study to validate the accuracy of the proposed 

method through the classic Rayleigh-Bénard convection in a 2D bi-unit domain. The left and right walls 

are applied with Dirichlet boundary conditions on the relative temperature field to provide a constant 

background temperature gradient as the driving mechanism of the problem. The top and bottom are 

adiabatic walls. All four walls have no-slip condition, and a zero-pressure reference is applied at the left-

bottom corner in order to filter out the constant pressure mode. The schematic diagram and boundary 

conditions are presented in Figure 6.1. The unit gravitational force is applied in the negative y-direction, 

and the thermal expansion coefficient is set as 1 = . The Prandtl number Pr 0.71=  that represents the 

physics of air flows, and Rayleigh number is adjusted by proportionally changing the value of kinematic 

viscosity   and thermal diffusivity  . 

Though the exact solution for natural convection has derived by Chenoweth and Paulucci [34] for 

cases with Ra 0→ , cases that are particularly concerned for engineering purposes with much larger 

Rayleigh number has no analytical solution. Therefore, the convergence study in this subsection is 

compared with reported numerical data [10,40,63,165], including maxima velocity, local and averaged 

Nusselt number. 
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6.4.1.1. Averaged Nusselt number 

The averaged Nusselt number describes the averaged heat flux along a certain boundary, and it is 

defined as follows: 

 
1

Nu
H

HA
d


=   n   (6.61) 

Table 6.1 Reported averaged Nusselt number in the literature 

Ra 103 104 105 106 

REF. [40] 1.118 2.243 4.519 8.800 

REF. [63] -- 2.24475 4.52164 8.82513 

REF. [10] 1.114 2.245 4.510 8.806 

REF. [165] 1.118 2.245 4.516 8.810 

Present Work  2.24462 4.52021 8.81490 

 
Amongst the reported data in the literature, Hortmann et al. [63] used a multigrid finite volume method 

and extrapolated the averaged Nusselt number through the finest mesh for various Rayleigh number with 

more significant figures than other available data. Therefore, these numbers are used as references for our 

convergence rate study about the error of the averaged Nusselt number (i.e., the relative difference 

between the computed and the reported Nu ), as shown in Figure 6.2. 
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Figure 6.2 Convergence rate of averaged Nusselt number 

6.4.1.2. Maxima of velocities 

The maximum horizontal velocity maxU  within the vertical middle line and the maximum vertical 

velocity maxV  along the horizontal middle line are also reported in various literature [10,40,63,165]. We 

list these reported data in Table 6.2 and Table 6.3 as the references to validate the proposed method. As a 

comparison, the data are attained from the proposed method with a mesh of 200 200  B8 elements. 

 

Table 6.2 Maximum horizontal velocity maxU  at the vertical middle line 

Ra 103 104 105 106 

REF. [40] 0.136 0.192 0.153 0.079 

REF. [63] -- 0.192 0.153 0.079 

REF. [10] 0.153 0.193 0.132 0.077 

REF. [165] 0.138 0.194 0.132 0.078 

Present Work -- 0.192063 0.130386 0.0769102 
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Table 6.3 Maximum vertical velocity 
maxV  at the horizontal middle line 

Ra 103 104 105 106 

REF. [40] 0.138 0.234 0.261 0.262 

REF. [63] -- 0.233 0.261 0.262 

REF. [10] 0.155 0.234 0.258 0.262 

REF. [165] 0.139 0.235 0.259 0.263 

Present Work -- 0.232963 0.257658 0.261474 

 

6.4.2. Titled Square Enclosure with Pipes 

Natural convective flows where the thermal effects on fluids are taken into account as buoyancy 

force is widely applied as the physical model for various engineering applications in energy, including 

solar collector and heat exchanger, where a pipe or a system of pipelines is arranged within an enclosure. 

The problem settings are illustrated in Figure 6.3, where a hot pipe goes through a square enclosure. In 

this numerical test, we are particularly interested in the heat exchange due to stratification between the 

cold wall of the square and the hot wall of the cylinder. Two design factors of the devices are considered, 

including the radius of the pipe and the orientation of the device. 
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Figure 6.3 Schematics of natural convection in a 2D heat exchanger 

 

Figure 6.4 Velocity and relative temperature color rendering, streamlines of velocity and isothermal 

contours with background structured mesh (Ra = 106, r = 0.2, 1 cylinders) 
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Figure 6.5 Vertical velocity distribution along x = 0.5 and y = 0.5 (Ra = 106 and r = 0.2) 

 

Figure 6.6 Temperature field distribution along x = 0.5 and y = 0.5 (Ra = 106 and r = 0.2) 

The first test case that we considered is with radius 0.2r = , and gravity is perpendicular to the 

temperature gradient. The streamline of velocity and temperature contours are illustrated in Figure 6.4 to 

show the solution fields. To validate the numerical solution via the proposed method, we compare our 

simulated results with the reported computational results in [172], where the conventional uncoupled 

VMS stabilization is utilized with cubic spatial interpolation. In Figure 6.5 and Figure 6.6, the distribution 

of the two components of the velocity field along the horizontal and vertical centerline are presented, 
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respectively. Our results are attained from a structured mesh of 5408 nodes with linear quadrilateral 

elements, while the referred data is computed from 6379 nodes with cubic interpolation. 

(a) 

(b) 

Figure 6.7 Velocity and relative temperature color rendering, streamlines of velocity and isothermal 

contours (Ra = 106, r = 0.3, 1 cylinder): (a) No inclination and (b) inclined: 45 degrees 

Via variation of radius of the inner circle and the angle of inclination, we further test another two 

cases, where the radius is enlarged to 0.3r =  and the gravity is at / 4  angle with the temperature 

gradient. To illustrate the solution fields, we present the streamlines of velocity and temperature contours 
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in Figure 6.7. For quantitative validation, we compare the distribution of local Nusselt number (heat flux) 

along the peripheral of the domain and inner circular boundaries with reported numerical data [130], 

where the solution is computed via finite volume method in a staggered grid, as shown in Figure 6.8. 

 

 

Figure 6.8 Distribution of local Nusselt number with respect to the arclength of peripheral boundaries and 

central angle of inner boundary 

6.4.3. 3D Natural Convection 

In this section, we extend the 2D natural convection to three dimensional, where the walls normal 

to the z-axis are adiabatic and imposed with no-slip boundary conditions. For consistency with 
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experimental settings [141], the dimension of the z axis is 0.32 . The gravitational acceleration is still in 

the negative y-direction (i.e.,  0, 1,0= −g ). The Rayleigh number is increased to 9R 0a 1.5 1=  , which 

makes the flow physics fall in the turbulent regime. Due to the boundary layers in all three dimensions, a 

tensor-product Chebyshev grid 
n n nx y zC C C   is used, where the number of nodes in each dimension is:  

51n nx y= =  and 17nz = . Once the simulation reaches the statistical steady state, we carry out time 

averaging of the solution fields. To visualize the flow field, the streamlines of velocity and isosurfaces of 

temperature are plotted in Figure 6.9. In Figure 6.10, the time-averaged results are compared with the 

experimental data [141] and other reported results through DNS [141] and LES [165] with finer mesh, 

including the distribution of vertical velocity 2u  and temperature   along the horizontal mid-line (i.e., 

0.16z =  and 0.5y = ), and distribution of horizontal velocity 1u  and temperature   along the vertical 

mid-line, where good alignments are shown in these plots. 

 

Figure 6.9 Time-averaged flow field: streamlines of velocity and iso-contours of temperature 
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(a)

(b) 

Figure 6.10 Mean profile comparisons for the present 3D simulations of natural convection: (a) 

temperature along the horizontal mid-line, (b) vertical velocity along the horizontal mid-line, (c) 

temperature along the vertical med-line and (d) horizontal velocity along the vertical med-line 
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(c)

(d) 

Figure 6.10 (cont.) 

6.4.4. Rayleigh-Bénerd Convection 

In this test, we use the proposed method to study the well-known Rayleigh-Bénard convection, 

where the gravity is in the same direction as temperature gradient. With such a setting, the buoyancy 

effect is opposed by the viscous damping effect, which results in the definition of the Rayleigh number in 

(6.11). Once the Rayleigh number reaches a certain level, Rayleigh-Bénard instability is triggered. Slip 

boundary conditions are applied on the top and bottom surfaces (i.e., 1z =  ), where periodic boundary 

conditions for all fields are applied on the homogeneous directions (i.e., x and y). The Rayleigh number is 
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8Ra 10=  and Prandtl number is Pr 1= . We initialize the problem with a static flow with zero-gradient 

temperature field. Once the flow reaches the statistical-steady state, the velocity fields and temperature 

fields are averaged over the two homogeneous directions (i.e., x and y) and time. We first compare the 

temporal evolution of total kinematic energy and total entropy with the DNS and LES results reported in 

[160] in Figure 6.11 and Figure 6.12. Due to the different initialization strategy, there are deviations in 

some extents. However, once the flow reaches the statistical-steady state, we observe a consistent trend of 

time histories. Next, we compare the distribution of the space-time averaged mean temperature and 

vertical velocity fluctuation with the reported DNS and LES results with a finer mesh [160] in Figure 6.13 

and Figure 6.14, where good comparisons are observed. In Figure 6.15, we illustrate the iso-contours of 

temperature at two time-spots (12.5s and 50.0s). In Figure 6.15a, while the flow is developing from the 

static flow driven by the RB instability, the salt fingering mixing process is observed. Once the flow is 

fully developed, a more drastic mixing process can be seen in Figure 6.15b. 

 

Figure 6.11 Time history of total kinetic energy 
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Figure 6.12 Time history of total entrolpy 

 

Figure 6.13 Space-time averaged mean profile of temperature field along the Z axis 
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Figure 6.14 Fluctuation of vertical velocity along the Z axis 

(a) 

Figure 6.15 Iso-surfaces of temperature contours ( 0.1 =  ): (a) t = 12.5s and (b) t = 50.0s 
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(b) 

Figure 6.15 (cont.) 

6.5. CONCLUSIONS 

This paper has presented a VMS large-eddy turbulence model for the incompressible flow with 

density stratifications. The turbulence model is variationally derived through a hierarchical three-level 

VMS formulation where the fine-scale is further decomposed into fine-scale level-I and fine-scale level-

II. In the context of stabilization methods, the resulting stabilized formulation overcomes the inf-sup 

condition, is essentially stable for advection-dominant flow, and yields a derived div-stab term, which 

further enhances the mass conservation. The Reynolds stress and flux arising from the two nonlinear 

advection terms are “closed” by the extended turbulence model, which is resolved through a discrete local 

system without any designed or artificial parameters. The fine-scale sub-problem is a transient coupled 

mixed formulation, which gives rise to a dynamic turbulence model that accommodates a wide range of 

flow problems. The proposed method is implemented with hexahedral and tetrahedral elements. 

A benchmark problem of 2D laminar natural convection is used to validate the consistency of the 

proposed method. The proposed method is then tested with turbulent flows unstable stratifications, and 

the total energy and entropy budgets have consistent behavior as DNS results. Space and time averaged 

results are also compared with DNS or LES results with finer mesh. 
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CHAPTER 7: CONCLUDING REMARKS AND FUTURE DIRECTIONS 

7.1. CONCLUDING REMARKS 

The dissertation presents the variational multiscale methods for the coupled systems of 

incompressible flows with an active scalar field, of which two types of problems is detailed discussed: 

free-surface flows and stratified turbulence. By utilizing the VMS method for the coupled system instead 

of applying VMS method for a single PDE, the physics of additional nonlinearity is addressed, and the 

numerical challenges related to the additional physics are resolved. 

The main conclusions of the present work are the following: 

• A new stabilized weak form for advection-diffusion equation is constructed by taking the fine-

scale time-dependency into account in the coarse scale. Compared to conventional VMS 

stabilized form for hyperbolic equation, a new stabilization term is derived, and it serves the 

purpose of reducing the numerical dissipation. In the application on the level-set method, the 

conservation of mass is largely improved. 

• To ensure the robustness of long-time run of free-surface flows, a re-initialization process is 

added to the present framework. The Eikonal equation is transformed into pseudo time-dependent 

form and a stabilized form with SUPG/VMS type stabilization plus a residual-based shock-

capturing term is used to solve this type of Hamilton-Jacobian equation. 

• Following the previous two points, a stabilized framework of level-set method is established fully 

on the bubble-function based VMS method, as the first of its kind. Spatial and temporal 

refinement tests are carried with the proposed stabilized level-set method, and convergence rates 

are optimal for both hexahedral and tetrahedral elements. 

• Conservation of mass is critical for the robustness and accuracy of long-time run of free-surface 

problems when the level-set method is the interface-capturing algorithm. 

• Application of VMS method to the coupled systems of free-surfaces gives rise to interfacial terms 

that have a structure which is similar to the Ghost penalty terms reported in the literature. These 
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interfacial terms do not appear naturally if VMS-based stabilization is applied individually to 

each of the two PDEs. Representing the location of the interface via dependency of the 

mechanical material coefficients on the level-set φ also provides an avenue to variationally 

account for sub-grid effects engendered by the deforming interface. The variationally consistent 

derivation presented here not only provides the necessary stabilization for the sources of 

instability in convective free-surface flows, it also shows the variational basis of the ghost penalty 

term as a stabilizing term. 

• The multilevel VMS LES turbulence model is further extended to hexahedral elements (linear 

and quadratic). A set of numerical tests with increasing complexities has performed to verify the 

proposed isothermal turbulences for general LES applications. 

• The multilevel VMS LES turbulence modeling philosophy is adopted in the incompressible flows 

with density stratifications. A coupled fine-scale problem is resolved, of which the solution yields 

to the LES model of stratified turbulence, for both stable and unstable stratification. 

• All the proposed methods are implemented with finite-element discretization. The codes are also 

parallelized for distributed-memory systems. The scalability is validated up to approximately 

2000 CPUs. 

7.2. FUTURE WORK 

The dissertation has presented a methodology of numerical methods for coupled fluid dynamic 

systems where VMS is served as a mathematical bridge between coarse/resolved and fine/subgrid scales. 

This framework can be further utilized for other complex flows with additional physics. 

The isothermal turbulence model can be extended for the Langmuir circulation by adding a 

surface stress on the top of the domain. The fine-scale sub-problems can automatically adapt to the 

modified driven mechanism in the governing PDE. Following this way of thinking, the stratified 

turbulence model can be extended to Rayleigh–Bénard–Marangoni convection. 
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Most of the applications within this dissertation employ incompressibility as low-Mach number 

approximation. Thus, the volumetric deformation is filtered out from the numerical methods. The 

turbulence model for incompressible flows can be further extend for low-Mach number variable-density 

flow, where the large amplitude of density and temperature variation is allowed. This model will serve for 

the combustions or chemical reactions and stellar hydrodynamics in astrophysics.  
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