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ABSTRACT

We consider the problem of unsupervised domain adaptation for semantic seg-
mentation by easing the domain shift between the source domain (synthetic data)
and the target domain (real data) in this work. State-of-the-art approaches prove
that performing semantic-level alignment is helpful in tackling the domain shift
issue. Based on the observation that stuff categories usually share similar appear-
ances across images of different domains while things (i.e. object instances) have
much larger differences, we propose to improve the semantic-level alignment with
different strategies for stuff regions and for things: (1) for the stuff categories, we
generate the feature representation for each class and conduct the alignment op-
eration from the target domain to the source domain; (2) for the thing categories,
we generate the feature representation for each individual instance and encour-
age the instance in the target domain to align with the most similar one in the
source domain. In this way, the individual differences within thing categories
will also be considered to alleviate over-alignment. In addition to our proposed
method, we further reveal the reason why the current adversarial loss is often un-
stable in minimizing the distribution discrepancy and show that our method can
help ease this issue by minimizing the most similar stuff and instance features
between the source and the target domains. We conduct extensive experiments in
two unsupervised domain adaptation tasks, GTA5→ Cityscapes and SYNTHIA
→ Cityscapes, and achieve the new state-of-the-art segmentation accuracy.

ii



To my parents, for their love and support.

iii



ACKNOWLEDGMENTS

I gratefully acknowledge the help and support of my advisors Thomas S. Huang
and Honghui Shi throughout my researches. Their vision and guidance have
helped me build the ability to pursue productive research.

I am grateful for the help offered by the Image Formation and Processing Group
members. They are truly a great family to me.

I am thankful for my mother and father, who console me when I am depressed
and cheer for me when I make an accomplishment.

iv



TABLE OF CONTENTS

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 3 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . 6

CHAPTER 4 STUFF AND INSTANCES MATCHING FRAMEWORK . 8
4.1 Stuff and instance matching (SIM) . . . . . . . . . . . . . . . . . 8
4.2 Self-supervised learning with SIM . . . . . . . . . . . . . . . . . 10
4.3 Training procedure . . . . . . . . . . . . . . . . . . . . . . . . . 12

CHAPTER 5 IMPLEMENTATIONS . . . . . . . . . . . . . . . . . . . . 13
5.1 Network architecture . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Training details . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CHAPTER 6 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . 14
6.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.2 GTA5 to Cityscapes . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.3 SYNTHIA to Cityscapes . . . . . . . . . . . . . . . . . . . . . . 18

CHAPTER 7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . 20

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



LIST OF ABBREVIATIONS

CNN Convolutional Neural Network

GAN Generative Adversarial Network

GPU Graphics Processing Unit

mIoU mean Intersection of Unions

SIM Stuff and Instances Matching

vi



CHAPTER 1

INTRODUCTION

Semantic segmentation [2] enables image scene understanding at the pixel level,
which is crucial to many real-world applications such as autonomous driving. The
recent surge of deep learning [3] methods that generate features from large train-
ing datasets has significantly accelerated the progress in semantic segmentation
[4, 5, 6, 7]. However, collecting data with pixel-level annotations is costly in
terms of both time and money. Specifically, to annotate an image in the widely
used benchmark Cityscapes [8] dataset takes 1.5 hours on average; that sums up
to 7,500 hours in total for annotating all the 5,000 images. Such annotation cost is
quite burdensome, given that training deep neural networks on the collected data
usually takes less than dozens of hours.

To address the problem of high-cost annotations, unsupervised domain adapta-
tion methods are proposed for semantic segmentation [9, 10]. In these works,
a model trained on a source domain dataset with segmentation annotations is
adapted for an unlabeled target domain. The source domain datasets can be syn-
thetic, e.g., from video games, so that little human effort is required. However,
such methods suffer from the domain shift problem. Existing methods deal with
the problem by minimizing the distribution discrepancy of the features extracted
by a feature extractor [11, 12] between the source domain and the target domain.
To this end, the GAN [13] structures, usually composed of a generator and a dis-
criminator, are broadly used in this context. The generator extracts features from
the input images, and the discriminator distinguishes which domain the features
are generated from. The discriminator can thereby guide the generator to generate
the target domain features with a distribution closer to the feature distribution of
the source domain in an adversarial way.

In the previous GAN-style approaches, the adversarial loss is essentially a bi-
nary cross-entropy about whether the generated feature is from the source domain.
We observe that such a global training signal is usually weak for the segmenta-
tion task. First, the alignments between stuff regions and between things require
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Figure 1.1: mIoU comparison on the validation set of Cityscapes by adapting
from GTA5 dataset to Cityscapes dataset. The blue line corresponds to the output
space adversarial adaptation strategy [1]. The red line corresponds to the output
space adversarial adaptation combined with our proposed SIM structure. The
model performance is tested every 5000 iterations.

different treatments but the adversarial loss lacks such structural information. For
example, the stuff regions usually lack the appearance variance in an image but
the things can have diverse appearances in the same image. Therefore, it is sub-
optimal to use an adversarial loss to align the stuff and thing features globally
without differential treatments. Second, the global GAN structure only adapts
the feature distribution between two domains and does not necessarily adapt the
target domain features towards the most likely space of source domain features.
Therefore, as the semantic head gathers the features from the source domain with
more training iterations, it becomes harder for the feature generator to adapt the
target domain features exactly toward the source domain features. This leads to a
performance drop on the target domain images as shown in figure 1.1.

This thesis proposes a stuff and instance matching (SIM) framework to address
the aforementioned difficulties. First, we treat the alignments between stuff re-
gions and between instances of things with different guidance. The key idea is
shown in figure 1.2. The multiple stuff regions in a source image are usually sim-
ilar, so the stuff from different domains can be directly aligned with their global
feature vectors, while the multiple instances of the same thing, e.g., of the car
category, can be diverse in the source image. Therefore we align instances in the
target image to the most similar ones in the source image.

Second, we deal with the instability with the GAN training framework. We
apply a L1 loss to explicitly minimize the distance between the target domain
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Stuff: “tree” Instance: “car”

features of synthetic data features of real data

Instance: “car”Stuff: “tree”

Figure 1.2: Illustration of the proposed and Stuff Instances Matching (SIM)
structure. By matching the most similar stuff regions and things (i.e., instances)
with differential treatments, we can adapt the features more accurately from the
source domain to the target domain.

stuff and thing features with the most similar source domain counterparts. In this
way, the adaptation is processed in a more accurate direction, instead of the rough
distribution matching when using only the adversarial cross entropy loss, even
after the semantic head gathers the source domain features with longer training
iterations. As shown in figure 1.1, we implement the output space adversarial
adaptation [1] from GTA5 [9] dataset to Cityscapes [8] dataset, and compare it
with our model which adds the SIM module. We successfully solve the problem of
the performance drop at longer training iterations with a few more computations.

Finally, we propose to improve the SIM framework with a self-supervised learn-
ing strategy. Specifically, we use predicted segmentation with high confidence to
train the segmentation model, and to enhance the alignment for both stuff cate-
gories and thing categories.

We evaluate the proposed approach on two unsupervised domain adaptation
tasks, the adaptation from GTA5 to Cityscapes and that from SYNTHIA to Cityscapes,
and achieve a new state-of-the-art performance on both tasks.
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CHAPTER 2

RELATED WORK

The domain adaptation in classification is a broadly studied problem after the
surge of deep learning methods, and great progress has been made [14]. However,
the domain adaptation in the semantic segmentation problem is more challenging
as it is in essence a pixel-level classification problem involving structured contex-
tual semantic adaptation. A typical practice of this task is adapting a semantic
segmentation model trained on synthetic datasets [9, 10] (source domain) to per-
form on real image datasets [8] (target domain). The key idea of the domain
adaptation task is to align the feature distributions between the source domain and
the target domain, so that the model can utilize the knowledge learned from the
source domain to perform tasks on the target domain. We generally divide current
methods into three categories: image-level transferring, feature-level transferring
and label-level transferring.

The image-level transferring refers to changing the appearance of images such
that images from the source domain and the target domain are more visually sim-
ilar. These methods [15, 16, 17] usually transfer the color, illumination and other
stylization factors of images from one domain to another or from both domains to
a neutral domain. In [15], Li et al. use CycleGAN [18] with a perceptual loss to
preserve the locality of semantic information to perform the unpaired image-to-
image transferring. In [17], Zhang et al. propose an Appearance Adaptation Net-
work which transfers appearances of images between two domains mutually, such
that the images’ appearance tend to be domain-invariant. Choi et al. [19] propose
a GAN-based self-ensembling data augmentation method for domain alignment.

The feature-level transferring refers to matching the extracted feature distribu-
tions between the source domain and the target domain. While feature extractors
[11, 12, 20] can extract task-specific features, the features extracted from the target
domain and those from the source domain have a discrepancy due to the domain
shift, which negatively impacts the model’s performance on the target domain
dataset. Therefore, minimizing the feature distribution discrepancy with GAN
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[13] structure is a common practice in domain adaptation. Sankaranarayanan et
al. propose an image reconstruction framework [21] to make the reconstructed
images from two domains close to each other so that the features are pulled closer
with back propagation. Tsai and et al. propose a simple end-to-end output space
domain adaptation framework [1]. Wu and et al. propose a channel-wise feature
alignment network [16] to close the gap of the channel-wise mean and standard
deviation in CNN feature maps. Chang and et al. propose a framework [22] to
extract domain-invariant structures for adaptation.

The label-level transferring refers to giving pseudo-labels to the target domain
dataset given the knowledge learned from the source domain for helping the adap-
tation task. This follows a self-supervised learning framework [23] where no hu-
man efforts are input for labeling the target dataset. Zou et al. [24] propose a
class-balanced self-training framework. Li et al. [15] propose a joint self-learning
and image transferring framework for adaptation.
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CHAPTER 3

BACKGROUND

Definitions We follow the unsupervised semantic segmentation framework for
the domain adaptation task; that is, given a source domain dataset with images
and the pixel-level semantic annotations {xsi , ysi } and a target domain dataset with
only images {xti}, we plan to train a model that can predict the pixel-level labels
{ŷti} for the target domain images. We denote the class indices set with N .

Segmentation and adversarial adaptation The semantic segmentation task in
deep learning literature is broadly discussed [4, 5, 6, 7], and the problem-solving
strategy is formalized by utilizing a feature extractor network F to extract image
features and a classification head C to classify features into semantic classes. We
use the cross entropy loss to supervise the model on the pixel classification task
with the annotated source domain dataset in Eqn (3.1).

LS
seg(f

s
i ) = −

∑
i,h,w

∑
k∈N

ysi
(h,w) log(S(C(f s

i )
(h,w))(k)) (3.1)

where f s
i = F (xsi ), x

s
i ∈ Xs, Xs is the source domain image dataset, h and

w are the height index and the width index of the feature maps, y is the ground
truth label, S is the softmax operation. However, due to the domain shift prob-
lem, the model trained on the source domain will achieve inferior performance if
directly applied to test on the target domain. Therefore, we impose a traditional
GAN structure on the output space [1] to globally minimize the feature distri-
bution discrepancy between the source domain and the target domain. Here, the
feature extractor F and the classification head C serve as the generator G where
G = C ◦ F . A discriminator D will discriminate the output of G. We close the
feature distribution discrepancy between the source domain and the target domain
by optimizing the adversarial target function in Eqn (3.2).
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min
G

Ladv(G,D) = −
∑

xt
i∈XT

log(1−D(S(G(xti)))) (3.2)

while the discriminator tries to distinguish which domain the feature is from by
optimizing the discriminator target function in Eqn (3.3).

min
D

LD(G,D) = −
∑

xt
i∈XT

log(D(S(G(xti))))

−
∑

xs
i∈XS

log(1−D(S(G(xsi ))))
(3.3)
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CHAPTER 4

STUFF AND INSTANCES MATCHING
FRAMEWORK

The key idea of our method is that the past experience leading to good outcomes
should also help the current training process. Specifically to our task, the past ex-
perience should help both the feature-level transferring and the label-level trans-
ferring from the source domain to the target domain. First, we raise a stuff and
instance matching (SIM) framework to reduce the intra-class domain shift prob-
lem. Second, we propose a self-supervised learning framework combined with
our proposed SIM structure to enable the label-level transferring, which further
boosts the performance. The overall framework is shown in figure 4.1.

4.1 Stuff and instance matching (SIM)

First, we discuss the matching process for the background classes such as road,
sidewalk, sky etc.. These classes usually cover a large area of the image and lack
appearance variation, so we only extract the image-level stuff feature representa-
tion for them. For each source domain image, we access the correctly classified
label map by selecting the predicted labels matched with the ground truth labels
in Eqn (4.1).

Ls
Pi

= argmax
k∈N

(C(f s
i )

(k))

Ls
Ci

= Ls
Gi
∩ Ls

Pi

(4.1)

where Ls
Ci

is the correctly classified label map, Ls
Gi

is the ground truth label map,
Ls
Pi

is the predicted label map, and i ∈ {1..|XS|}. We average the features be-
longing to the same background semantic class across the width and height of the
image as the stuff representation for each background class in Eqn (4.2).

8



target image

source image

shared

ℒ"#$%

ℒ"#$&

SH

SH

IMSMGA ℒ'() ℒ*+" ℒ,-"

ℒ"#$

Semantic Head (SH)

𝑐 𝑤
ℎ

ℒ'()

Global Adaptation (GA)

discriminator

Instance Matching (IM)

car

source label

target pseudo label

+

∩

bus

bike

person

…… …

samples

ℒ,-"

ℒ"23

Stuff Matching (SM)

sky

road

samples

…… …

Ground truth

Predicted label

Structure Overview

𝑛
𝑊

𝐻

𝑛
𝑊

𝐻

𝑛
𝑊

𝐻

𝑐𝑤
ℎ

𝑐 𝑤
ℎ

Figure 4.1: Framework. (1) The overall structure is shown on the left. The solid
lines represent the first step training procedure in Eqn (4.9), and the dash lines
along with the solid lines represent the second step training procedure in Eqn
(4.10). The blue lines correspond to the flow direction of the source domain data,
and the orange lines correspond to the flow direction of target domain data. ∩ is
an operation defined in Eqn (4.1); + is an operation defined in Eqn (4.8) and is
only effective in the second step training procedure. (2) The specific module
design is shown on the right. h, w and c represent the height, width and channels
for the feature maps; H , W and n represent the height, width and class number
for the output maps of the semantic head. For SH, the input ground truth label
map supervises the the semantic segmentation task, and the semantic head also
generates a predicted label map joining the operations of ∩ and +. For SM and
IM, the grey dash lines represent the matching operation defined in Eqns (4.3)
and (4.5) respectively.

Ab(L, f) =

∑
h,w δ(L

(h,w) − b)f (h,w)

max(ε,
∑

h,w δ(L
(h,w) − b))

Sb
j = Ab(Ls

Ci
, f s

i ) where j = imodw,

if Ab(Ls
Ci
, f s

i ) 6= 0

(4.2)

where Sb
j is the j’th source domain semantic feature sample of class b, b ∈ B

(background classes), i ∈ {1..|XS|}, w is the number of feature samples to be
stored for each class, δ is the Dirac delta function and ε is a regularizing term. For
each target domain image, we minimize the distance of the stuff representation of
each background class with the closest intra-class source stuff feature representa-
tion. Because the ground truth of the target domain image is not provided, we use
the predicted label map to generate the stuff feature representation for each back-
ground class. We adapt the stuff feature representation of the background classes
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by minimizing the loss function defined in Eqn (4.3) when the model is trained on
the target domain.

Lstf =
∑
i

∑
b

min
j

∥∥∥Ab(Lt
Pi
, f t

i )− Sb
j

∥∥∥1
1

(4.3)

where i ∈ {1..|XT |}, and b ∈ Lt
Pi
∩B.

Second, we discuss the instance matching process for the foreground classes
such as cars, persons etc.. Because the ground truth does not provide the in-
stance level annotations, we generate the foreground instance mask by finding the
disconnected regions for each foreground class in the label map L. This coarsely
segments the intra-class semantic regions into multiple instances, and thus various
instance-level feature representations of one image can be generated accordingly
in Eqn (4.4).

Rk = {rk1 , rk2 , ..., rkm} = T (L, k)

I(r, f) =
∑

h,w r
(h,w)f (h,w)

max(ε,
∑

h,w r
(h,w))

(4.4)

where rki is the i’th (i ∈ {1, ..,m}) binary mask of the connected region belonging
to class k, k ∈ K (foreground classes), T is the operation to find the disconnected
regions of class k from the label mask L, and I is the operation to generate the
instance-level feature representation. The source domain instance feature samples
can be generated in algorithm 1. Therefore, the target domain instance features
can be pulled closer to the closest intra-class source domain instance feature sam-
ple by minimizing the loss function in Eqn (4.5).

Lins =
∑
i

∑
k∈K

1∣∣Rt
k

∣∣ ∑
rt∈Rt

k

min
j

∥∥∥I(rt, f t
i )− Sk

j

∥∥∥1
1

(4.5)

where i ∈ {1..|XT |}, and Rt
k = T (Lt

Pi
, k).

4.2 Self-supervised learning with SIM

Because the model is only trained on the source domain with the ground truth an-
notations, the features and the softmax output are thus generated to optimize the
source domain segmentation loss function but ignore the target domain segmen-
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Algorithm 1: Instance-level source feature samples
Result: Sk

z = 10; # maximum class instances in an image
ck = 0,∀k ∈ K; # instance feature counter
for xsi ∈ XS do

for k ∈ K do
Rs

k = T (Ls
Ci
, k)

if Rs
k 6= ∅ then
Rsort = sort Rs

k by area in descent order
for l ∈ {1..min(z,|Rsort|)} do

j = ck mod z ∗ w
ck = ck + 1
Sk
j = I(Rsort[l], f

s
i )

end
end

end
end

tation supervision. However, the distribution of the ground truth labels from both
domains also have a discrepancy, and this negatively impacts the model’s per-
formance on the target domain. Therefore, we propose a self-supervised learning
framework combined with our feature matching methods to alleviate this problem.

We first follow the framework described in chapter 3 and section 4.1 to train a
model with the source domain images XS and ground truth annotations Y S along
with the target domain imagesXT . Then we use the trained model to give pseudo-
labels to the pixels with high confidence of the predicted labels in the training set
images XT shown in Eqn (4.6).

ŷti = argmax
k∈N

1[S(C(f t
i ))

(k)>ykt ]
(C(f t

i )
(k)) (4.6)

where 1 is a function which returns the input if the condition is true or a don’t

care symbol if not, and ykt is the confidence threshold for class k. Then, we add
the semantic segmentation loss on the target domain images in Eqn (4.7) along
with other losses to retrain our model.

LT
seg(f

t) = −
∑
i,h,w

∑
k∈N

ŷ
(h,w)
i log(S(C(f t

i )
(h,w))(k)) (4.7)

With the pseudo labels supervising the model to generate features corresponding
to specific classes, these features should generically be adapted to be closer to the
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corresponding intra-class source domain features. The Lt
Pi

is thereby augmented
by Eqn (4.8) for the stuff feature adaptation loss defined in Eqn (4.3) and the
instance feature adaptation loss defined in Eqn (4.5):

1Lt
Pi
6=ŷti

(Lt
Pi
) = 1Lt

Pi
6=ŷti

(ŷti) (4.8)

1 selects the positions in the input satisfying the condition.

4.3 Training procedure

We follow a two-step training procedure to improve the performance of the gener-
ator G on semantic segmentation task on the target domain dataset. First, we train
our model without the self-supervised learning module, and optimize the target
function in Eqn (4.9) with G and D in an adversarial training strategy:

min
G,D

Lstep1 =min
G

(λsegL
S
seg + λadvLadv+

λci(Lstf + Lins)) + min
D

λDLD

(4.9)

where λ’s are the weight parameters for the losses. Second, after giving the pseudo
labels to the target domain training dataset with the model trained in the first step,
we reinitialize and repeat the training process to optimize the loss function in Eqn
(4.10).

min
G,D

Lstep2 =min
G

(λseg(L
S
seg + LT

seg) + λadvLadv+

λci(L̃stf + L̃ins)) + min
D

λDLD

(4.10)

where L̃stf and L̃ins are augmented with predicted ŷtis according to Eqn (4.8).
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CHAPTER 5

IMPLEMENTATIONS

5.1 Network architecture

Segmentation Network. We adopt ResNet-101 model [12] pre-trained on Ima-
geNet [25] with only the 5 convolutional layers {conv1, res2, res3, res4, res5}
as the backbone network. Due to memory limit, we do not use the multi-scale
fusion strategy [26]. For generating better-quality feature maps, we follow the
common practice from [4, 26, 1] and twice the resolution of the feature maps of
the final two layers. To enlarge the field of view, we use dilated convolutional
layers [26] with stride 2 and 4 in res4 and res5. For the classification heads, we
apply an ASPP module [5] to res5 with λseg = 1.

Discriminator. Following [1], we use 5 convolutional layers with kernel size
4x4, stride 2 and channel numbers {64, 128, 256, 512, 1} to form the network. We
use a leaky ReLU [27] layer of -0.2 slope between adjacent convolutional layers.
Due to the small batch size in the training process, we do not use batch normaliza-
tion layers [28]. The sole discriminator is implemented on the upsampled softmax
output of the ASPP head on res5 with λadv = 0.001 and λD = 1.

5.2 Training details

We use Pytorch toolbox and a single GPU to train our network. Stochastic gra-
dient descent (SGD) is used to optimize the segmentation network. We use Nes-
terov’s method [29] with momentum 0.9 and weight decay 5× 10−4 to accelerate
the convergence. Following [4], we set the initial learning rate to be 2.5×10−4 and
let it polynomially decay with the power of 0.9. For the discriminator networks,
we use Adam optimizer [30] with momentum 0.9 and 0.99. The initial learning
rate is set to 10−4 and the same polynomial decay rule is applied.
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CHAPTER 6

EXPERIMENTS

6.1 Datasets

The Cityscapes [8] dataset consists of 5000 images of resolution 2048×1024 with
high-quality pixel-level annotations. These images of street scenes were annotated
with 19 semantic labels for evaluation. This dataset is split into training, validation
and test sets with 2975, 500 and 1525 images respectively. Following previous
works [31, 32], we only evaluate our models on the validation set. The GTA5
[9] dataset contains 24966 fine annotated synthetic images of resolution 1914 ×
1052. All the images are frames captured from the game Grand Theft Auto V. To
accommodate the model with the limited GPU memory, we follow [1] and resize
GTA5 images to the resolution of 1280×720. This dataset shares all the 19 classes
used for evaluation in common with the Cityscapes dataset. The SYNTHIA [10]
dataset has 9400 images of resolution 1280 × 760 with pixel-level annotations.
Similar to [33, 1, 34, 15], we evaluate our models on Cityscapes validation set
with the 13 classes shared in common between SYNTHIA dataset and Cityscapes
dataset. The Cityscapes images are resized to 1024 × 512 for both the training
stage and the testing stage.

6.2 GTA5 to Cityscapes

We first present our overall results and compare to the previous state-of-the-art
methods; then we discuss the effectiveness of each module in our model; finally
we discuss the choice of hyperparameters of our proposed SIM module.

Overall results. We compare the performance of our method with the current
state-of-the-art methods in table 6.1. For fair comparison, we list the performance
of the models using resnet-101 [12] as the backbone. Our method achieves a new
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Table 6.1: Comparison to the state-of-the-art results of adapting GTA5 to
Cityscapes.

GTA5 → Cityscapes

Method ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l

fe
nc

e

po
le

lig
ht

si
gn

ve
ge

ta
tio

n

te
rr

ai
n

sk
y

pe
rs

on

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
ot

or
bi

ke

bi
ke

mIoU

Wu et al.[35] 85.0 30.8 81.3 25.8 21.2 22.2 25.4 26.6 83.4 36.7 76.2 58.9 24.9 80.7 29.5 42.9 2.5 26.9 11.6 41.7
Tsai et al.[1] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4
Saleh et al.[36] 79.8 29.3 77.8 24.2 21.6 6.9 23.5 44.2 80.5 38.0 76.2 52.7 22.2 83.0 32.3 41.3 27.0 19.3 27.7 42.5
Luo et al. [33] 88.5 35.4 79.5 26.3 24.3 28.5 32.5 18.3 81.2 40.0 76.5 58.1 25.8 82.6 30.3 34.4 3.4 21.6 21.5 42.6
Hong et al.[37] 89.2 49.0 70.7 13.5 10.9 38.5 29.4 33.7 77.9 37.6 65.8 75.1 32.4 77.8 39.2 45.2 0.0 25.5 35.4 44.5
Chang et al. [22] 91.5 47.5 82.5 31.3 25.6 33.0 33.7 25.8 82.7 28.8 82.7 62.4 30.8 85.2 27.7 34.5 6.4 25.2 24.4 45.4
Du et al. [34] 90.3 38.9 81.7 24.8 22.9 30.5 37.0 21.2 84.8 38.8 76.9 58.8 30.7 85.7 30.6 38.1 5.9 28.3 36.9 45.4
Vu et al. [38] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
Chen et al. [39] 89.4 43.0 82.1 30.5 21.3 30.3 34.7 24.0 85.3 39.4 78.2 63.0 22.9 84.6 36.4 43.0 5.5 34.7 33.5 46.4
Zou et al. [24] 89.6 58.9 78.5 33.0 22.3 41.4 48.2 39.2 83.6 24.3 65.4 49.3 20.2 83.3 39.0 48.6 12.5 20.3 35.3 47.0
Lian et al. [40] 90.5 36.3 84.4 32.4 28.7 34.6 36.4 31.5 86.8 37.9 78.5 62.3 21.5 85.6 27.9 34.8 18.0 22.9 49.3 47.4
Li et al. [15] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5

ours 90.6 44.7 84.8 34.3 28.7 31.6 35.0 37.6 84.7 43.3 85.3 57.0 31.5 83.8 42.6 48.5 1.9 30.4 39.0 49.2

Table 6.2: Ablation study on the adaptation from GTA5 dataset to Cityscapes
dataset. AA stands for adversarial adaptation; IT stands for image transferring;
SIM stands for semantic and instance matching; SSL stands for self-supervised
learning.

method AA IT SIM SSL mIoU

source only 36.6
+ AA[1] X 41.4
+ IT[15] X X 44.9

+ SIM X X X 46.2
+ SSL X X X X 49.2

target only 65.1

state of the art.
Module contributions. We show the contribution of each module to the over-

all performance of our model in table 6.2. If trained purely on the source domain
dataset, the model can achieve an mIoU of 36.6 on the Cityscapes validation set.
Then, we follow the work of [1] to add the global adversarial training on the out-
put space with the adversarial loss in Eqn (3.2) and the discriminator loss in Eqn
(3.3), and the mIoU is thereby improved to 41.4. As mentioned in Chapter 2,
image-level adaptation is also a key factor in minimizing the discrepancy of data
distribution. Therefore, it is helpful to utilize a transferred source-domain im-
age dataset whose appearance is more similar to that of the target-domain image
dataset. We adopt the transferred GTA5 images of [15] which utilizes a Cycle-
GAN [18] structure to adapt the style of GTA5 images to the style of Cityscapes
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Target Image Source OnlyGround Truth AA+IT Ours

Figure 6.1: Visualization of the segmentation results. Source only, AA+IT, and
Ours correspond to the models that achieve mIoU of 36.6, 44.9, and 49.2 in table
6.2, respectively.

images. This further improves the mIoU to 44.9, which serves as the baseline for
our work.

Then, we add our SIM module to the training framework. The background
classes include road, sidewalk, building, wall, fence, vegetation, terrain and sky.
The foreground classes are all the remaining classes used for evaluation. With the
best setting for the SIM module where λci = 0.01 and w, the number of seman-
tic source domain feature samples to be stored is 50 and the mIoU improves to
46.2 by optimizing the Eqn (4.9). In this setting, we empirically set the maximum
source domain instance features of each class to be stored to 10 for each image,
and the feature of the instance covering larger area is to be stored with higher
priority. We also adapt 10 instance features at maximum for each class from the
target domain to the source domain. This is because instance feature represen-
tations of small regions or noise regions may be too numerous for storage and
adaptation. For example, there are many dots corresponding to the bike class in
the image at the intersection of the second row and last column in figure 6.1; all
these dots are segmented into separate regions, and it would be inefficient to adapt
all of them from the target domain to the source domain.

Finally, we retrain our model with the combination of SIM and the self-supervised
learning (SSL) framework given the pseudo-labeled target dataset by the training
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Table 6.3: Influence of λci given the number of semantic feature samples to be
stored is 50 (w = 50).

λci 0.1 0.05 0.01 0.005 0.001

mIoU 43.4 44.2 46.2 45.4 45.5

Table 6.4: Influence of the number of semantic feature samples to be stored (w)
given λci = 0.01.

w 10 50 200 800 1600

mIoU 45.2 46.2 46.1 45.3 45.0

step 1. When generating the pseudo labels for the target dataset, we choose the
confidence threshold for each class. We first follow Eqn (4.6) to give pseudo la-
bels for each pixel by setting yt = 0 for each image in the target dataset. Then,
we generate a confidence map corresponding to the pseudo label map where the
confidence is the maximum item of the softmax output in each channel so that
the pseudo label at each pixel is associated with a confidence value. After this,
we rank the confidence values belonging to the same class across the whole target
dataset. If the median confidence value is below 0.9, then the confidence thresh-
old for that class is set to the median confidence value; otherwise, it is set to 0.9
exactly. With the new ykt being set, we follow Eqn (4.6) to generate the pseudo
labels with don’t cares for the target dataset and thus the model retraining can be
processed by optimizing the Eqn (4.10). This improves the mIoU to 49.2. Fur-
thermore, we compare our model with the oracle model [1] trained on the target
dataset without any transferring method. There is a gap of 15.9%, indicating that
further studies on this problem are necessary. We provide a visualization showing
the improvements of our methods in figure 6.1.

Hyperparameters analysis. This mainly deals with the settings of λci, the
weight for the semantic matching loss and the instance matching loss, and w, the
number of semantic feature samples to be stored for our proposed SIM module.
For the hyperparameters of other modules, we follow [1] to set λseg = 1, λadv =

0.01 and λD = 1 to control the variables.
First, we discuss the influence of λci given w = 50, which is shown in table

6.3. We test the influence of λci with different w’s. Here we only exhibit the
results with w = 50, the setting that achieves the best performance, to provide
intuition into the influence of the choice of λci. We argue that λci should not
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Table 6.5: Comparison to the state-of-the-art results of adapting SYNTHIA to
Cityscapes.

SYNTHIA→ Cityscapes

Method ro
ad

si
de

w
al

k

bu
ild

in
g

lig
ht

si
gn

ve
ge

ta
tio

n

sk
y

pe
rs

on

ri
de

r

ca
r

bu
s

m
ot

or
bi

ke

bi
ke

mIoU

Luo et al. [33] 82.5 24.0 79.4 16.5 12.7 79.2 82.8 58.3 18.0 79.3 25.3 17.6 25.9 46.3
Tsai et al.[1] 84.3 42.7 77.5 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 46.7
Du et al. [34] 84.6 41.7 80.8 11.5 14.7 80.8 85.3 57.5 21.6 82.0 36.0 19.3 34.5 50.0
Li et al. [15] 86.0 46.7 80.3 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 51.4

ours 83.0 44.0 80.3 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 52.1

be set either too large or too small. If it is too large, the features corresponding
to the image-level or instance-level semantic class would be pulled too close to
the same source domain feature sample, such that these target-domain features
would also be very close to each other and thus would lack intra-class feature
variance. This could worsen the scene understanding for the feature extractor and
thus negatively impact the overall performance of our model. On the other hand, if
λci is too small, the matching loss would not help the model much in minimizing
the feature discrepancy between the source domain and the target domain. As
shown in table 6.3, when λci = 0.01, an appropriately large value, the model
achieves the best performance.

Second, we show the influence of the choice of w, the number of semantic
feature samples to be stored, in table 6.4. As the model is always being updated
during the training stage, it would be infeasible to access all the source-domain
feature samples with the newly updated model. Therefore, we store a number
of feature samples generated with recent updated models. The number of these
feature samples, w, should balance the factors such that (1) w should be large
enough so that there will be enough source domain feature samples to be matched;
and (2) w should not be so large that the stored source domain feature samples are
not up-to-date. With our experiments, w = 50 achieves the best performance.

6.3 SYNTHIA to Cityscapes

We evaluate the mIoU of 13 classes shared between the source domain and the
target domain as [33, 1, 34, 15]. We use the same hyperparameters which achieve
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Table 6.6: Ablation study on the adaptation from SYNTHIA dataset to
Cityscapes dataset. AA stands for adversarial adaptation; IT stands for image
transferring; SIM stands for semantic and instance matching; SSL stands for
self-supervised learning.

method AA IT SIM SSL mIoU

source only 38.6
+ AA[1] X 45.9
+ IT[15] X X 46.0

+ SIM X X X 47.1
+ SSL X X X X 52.1

target only 71.7

the best performance discussed in section 6.2 for all the following experiments.
We compare our model with the previous state-of-the-art models in table 6.5. Our
model also achieves a new state of the art on adaptation from SYNTHIA dataset
to the Cityscapes dataset.

Table 6.6 shows the contribution of each module. The model can achieve an
mIoU of 38.6 if trained on the source domain only. By adding the adversarial
training module and utilizing the transferred source domain images, the model
can achieve an mIoU of 46.0. We notice that the improvement of utilizing the
transferred images is not obvious, and we conjecture that this is because of the
large gap between the layouts of the source domain and the target domain. By
adding our SIM module, the mIoU improves to 47.1. After retraining our model
with self-supervised learning using the same pseudo-labeling strategy described
in section 6.2, our model achieves an mIoU of 52.1.
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CHAPTER 7

CONCLUSIONS

We propose a stuff and instance matching (SIM) module for the unsupervised
domain adaptation of semantic segmentation from a synthetic dataset to a real-
image dataset. We (1) consider the difference of appearance variance between
the stuff regions and the instances of things, and thus treat them differently in the
adaptation process; (2) explicitly minimize the distance of the closest stuff and
instance features between the source domain and the target domain, which enables
the adaptation in a more accurate direction and stabilizes the GAN training process
at longer iterations. When combined with self-training, our SIM model achieves
a new state of the art on this task.
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