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ABSTRACT

Traditional antenna array theory is well suited for guiding the design of very

large, uniform arrays. When an array is large enough one can often approx-

imate that the array is of infinite extent, greatly simplifying the analysis of

the structure and significantly reducing the cost of simulation. However, as

array size decreases these approximations break down and the total radiating

structure is subject to finite array effects. Such effects can perturb the ex-

pected radiation patterns and cause large variations in impedance across the

array elements. These effects can be partially mitigated through condition-

ing certain elements of the array, or adding terminated “dummy” elements

to the array. These methods often require many iterations of simulation and

can become costly as the number of parameterized variables grows.

In order to better understand the finite array effects and reduce our de-

pendency on parametric simulations, we study a modal decomposition of the

array currents. In particular we use characteristic mode analysis (CMA)

which produces an indexed set of “simpler” eigencurrents, and eigenvalues

that dictate the energy storage properties of the modes. These modes are

dependent entirely on the method of moments impedance matrix of the struc-

ture, and therefore are independent of the array feeding method. Whereas

CM is often used in the study of single port, electrically small structures

that are dominated by one or two modes, our template arrays are electrically

large and made of multiple disjoint elements, with multiple feed points. This

work explores and catalogs the types of characteristic mode results attained

from two different classes of antenna arrays. We calculate and compare the

accuracy of our modal summations and determine how matrix conditioning

affects the modal decompositions of different arrays and different array ele-

ments. These results can help establish expected accuracy guidelines for this

electrically large class of problems.
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CHAPTER 1

INTRODUCTION

1.1 Background

Antenna arrays are used in a myriad of applications, from advanced home

wireless networking to military-grade radar systems. Composed of two or

more antennas, the elements are spaced and excited such that the radiated

fields constructively (or destructively) interfere, enhancing (or degrading)

the total gain in a desired direction. Varying the amplitude and phase of the

element excitations can allow us to electronically control the orientation of

our beam-pattern. This allows rapid modifications of our radiation pattern

and reduces the need for mechanical means of rotating and reorienting the

array platform.

Basic array analysis often treats the elements as non-interacting entities,

acting as if each element were operating in free-space. This approach, while

suitable for only simple applications, allows us to assume that all of the array

element currents are proportional to their incident signals. Furthermore, it

allows us to synthesize the total array pattern as a product of a single-element

pattern and an array pattern [1]. For most practical applications one must

additionally account for mutual coupling effects which cause our elements to

behave differently than they would in a free-space situation. Mutual coupling

in arrays can be attributed to one of three mechanisms, as illustrated in Fig-

ure 1.1. Direct space coupling occurs directly between the elements of the

array, with the radiation from one perturbing the field of another. Increasing

element spacing can reduce this effect, but often at the cost of introducing

grating lobes to the radiation pattern. Indirect coupling occurs when radia-

tion from the array is scattered by nearby conductive structures, such as the

platform the array is mounted on. While an electrically large ground-plane

can act as a reflector, an irregular ground-plane can contribute to indirect
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Figure 1.1: Mechanisms for coupling between elements of an array, from [1].

coupling in less predictable ways. The final mechanism is coupling through

the feed structure of the array. Given the need for precise control over ele-

ment excitation, feed-networks can often be the most sensitive aspect of an

array design. Non-linear elements and phase-shifters can make it difficult to

model an advanced feed, and therefore make it a complex task to isolate and

prevent feed network coupling.

Even with these considerations in mind, most array design methodologies

are best suited for guiding the design of very large, uniform arrays. When

an array is large enough one can often approximate that the array is of infi-

nite extent, greatly simplifying the analysis of the structure and significantly

reducing the cost of simulation. In such cases one can assume that all of the

elements have identical surroundings (in at least one dimension) and there-

fore are subject to identical coupling effects. However, as array size decreases

these approximations break down and the total radiating structure is subject

to finite array effects that can perturb the expected radiation patterns and

cause large variations in impedance across the array elements [2]. These ef-

fects can be partially mitigated through conditioning certain elements of the

array, or adding terminated “dummy” elements to the array. These methods

often require many iterations of simulation and can become costly as the

number of parameterized variables grows. Most importantly, the changes

made through parametric optimization are often not generalizable. That is

to say, we know they improve performance but it is often not clear what is

the cause of the improvement. Without a more generalizable definition of

optimization, one must perform these parametrics each time a base design is

modified.
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1.2 Motivation

The goal of this research is to investigate the application of characteristic

mode analysis to the problem space of electrically large radiators, specifically

resonant length antenna arrays. Characteristic mode theory applications are

being widely explored in the contemporary literature. This reinvigorated

area of research has been largely focused on the study of electrically small

and resonant length antennas [3, 4, 5, 6] and CMA solvers are becoming

commonplace in commercial solver suites. In recent years studies of CMA

and its application to simple arrays has garnered interest [7, 8, 9]. However,

we must determine specific metrics of interest relevant to the application

space and determine if this particular modal decomposition is able to provide

accurate modal data. Further, we need to investigate how the modal data

behavior is related to the operation of the array, and whether it is a tool well

suited for the study of electrically large antenna arrays.

We approach this work by reviewing the topic of CMA and applying it

to two classes of antenna arrays. In Chapter 2 we provide an overview of

CMA and note a number of concerns and open problems in its application.

In Chapter 3 we apply CMA to linear arrays of resonant length rings in

free-space. These arrays are very electrically large, with up to 40 elements,

and are subject to grating-lobes. Chapter 4 address smaller half-wavelength

dipole arrays, with some in the presence of finite rectangular ground-planes.

Chapter 5 provides our conclusions from the accuracy analysis and sugges-

tions for future work.
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CHAPTER 2

METHOD OF MOMENTS AND
CHARACTERISTIC MODE ANALYSIS

Central to this project’s work is the use of characteristic mode analysis and

the insight it offers the study of electromagnetic phenomena. In order to un-

derstand how the method can be utilized to optimize the design procedure of

finite arrays we must first have a strong understanding of what the method-

ology is comprised of and the information it provides. In this section we

provide an overview of characteristic mode analysis and define the values of

interest that we will examine further and use to quantify our results in later

sections. Additionally, we address the need for modal tracking algorithms

and provide an overview of the ones we utilize.

2.1 CMA overview

Originally explored by Garbacz and Turpin [10], CMA was used to provide a

general means of expanding radiated and scattered fields in electromagnet-

ics problems featuring perfect electric conductors. The CMA method was

deemed particularly useful because the basis over which the fields were ex-

panded was entirely determined by the conductor’s shape, and not by the

method of excitation. Soon after its introduction the method was reformu-

lated by Harrington and Mautz [11, 12] into a more general form, enabling

the analysis of more geometrically complicated structures. To introduce the

method we will summarize the formulation provided in [11], which considers

a problem of conducting bodies with surface S and an impressed electric field

Ei. We define a current operator in the equation

[
L(J)− Ei

]
tan

= 0 (2.1)

where J is the electric current on surface S and tan denotes the tangential

components on S. In this form the generic L operator produces a field
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intensity quantity from a provided current J. Using this as an impedance

operator we introduce the notation

Z(J) = [L(J)]tan (2.2)

where Z is a symmetric operator which can be separated in the form Z =

R + jX, resulting in R and X being both real and symmetric operators,

respectively. Additionally, R is positive semidefinite as the power radiated

by some current J on surface S is 〈J∗, RJ〉 ≥ 0. In this work we have limited

our scope to purely PEC problems in free space, which allows us to refer to

Poynting’s theorem

Psrc = Prad + j2ω(Wm −W e) (2.3)

where

Psrc = −
˚

V

~E · ~J∗i dV (2.4)

Prad =

‹

S′

(
~E × ~H∗

)
· d~s′ (2.5)

and assert that the real part of the radiated power must be equal to the real

part of the source power:

Re[Prad] = Re

‹
S′

~Em × ~H∗nds
′

 = Re[Psrc]. (2.6)

In order to solve our electromagnetic systems computationally we must

adapt these formulas so that they can be applied to a discretized system.

Using linear algebra notation we can represent the real radiated power as

Re[Prad] = Re[Psrc] = Re[( ~J∗)TZ ~J ] = ~JTR ~J =
〈
~J,R ~J

〉
. (2.7)

Adapting some of the formulation from [10] a generalized eigenvalue problem

is stated:

Z( ~J) = νR( ~J) (2.8)

where ν = 1 + jλ, formalizing that Psrc is a complex multiple of Re[Prad].
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Simplifying the problem:

(R + jX) ~J = (1 + jλ)R ~J (2.9)

we arrive at the standard form of the characteristic mode eigenvalue problem

X(Jn) = λnR(Jn) (2.10)

where, due to the properties of X and R, the eigenvalues λn and eigen-

functions Jn must be real for any given mode number n. Additionally, the

eigenfunctions Jn, also referred to as eigencurrents, satisfy the orthogonality

requirements

〈Jm, RJn〉 = 0

〈Jm, XJn〉 = 0

〈Jm, ZJn〉 = 0

(2.11)

where m 6= n.

2.2 Modal solutions of excited structures

Once solved, we can use the eigenresults from Eq. (2.10) to derive a number

of related values that can help describe the modal operation of a practical

antenna design. Harrington shows that we can produce a modal analysis for

a total current J on a structure by using the eigencurrents as both the ex-

pansion and testing functions in a MoM solution [13]. We do so by assuming

that the J, produced by some feed or incident wave, is a linear combination

of weighted modal currents

J =
∑
n

αnJn (2.12)

where αn are the unknown weighting coefficients. After some manipula-

tion and use of the orthogonal properties of the modal currents under the

impedance operations we arrive at the relationship

αn(1 + jαn) =
〈
Jn, E

i
〉

(2.13)
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where Ei is the incident excitation vector. The right side of Eq. (2.13) is

referred to as the modal excitation coefficient and can be denoted as:

V i
n =

〈
Jn, E

i
〉

=

‹

S

Jn · Eids. (2.14)

The modal excitation coefficient represents how well an impressed field ex-

cites a given modal current Jn. With the eigencurrents normalized to radiate

unit power as

〈J∗m, RJn〉 = δmn (2.15)

the total modal solution can be expressed as

J =
∑
n

V i
nJn

1 + jλn
. (2.16)

Additionally we can utilize the complex Poynting theorem to show how the

characteristic modes radiate power independently of one another:

P (Jm, Jn) = 〈J∗m, ZJn〉 = 〈J∗m, RJn〉+ j 〈J∗m, XJn〉

=

‹

S′

~Em × ~H∗nds+ jω

˚

τ ′

(
µ ~Hm · ~H∗n − ε ~Em · ~E∗n

)
dτ

= (1 + jλn)δmn

(2.17)

where S ′ is any surface enclosing S and τ ′ is the space enclosed by S ′. From

Eq. (2.17) we see that positive and negative eigenvalues result in modes

storing net magnetic of electric energies, respectively. Further we see that

modes with eigenvalues of zero have an entirely real radiated power quantity,

with these modes being called resonant.

Another commonly used metric is modal significance

MS =

∣∣∣∣ 1

1 + jλn

∣∣∣∣ (2.18)

which is a measure of the normalized amplitude of the modal currents [14].

Frequently used in the analysis of electrically small devices, the modal signif-

icance is used to determine which one or two modes are “dominant” on small

structure. Additionally, the term is not dependent on the excitation vector.
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Alternatively, we will focus on the modal current weight term, denoted as αn

in Eq. (2.12), and defined via Eq. (2.16) as

αn =
V i
n

1 + jλn
. (2.19)

This complex value helps provide a better look at the relative impact and

properties of a given modal current, and how the modal eigencurrents are

scaled due to a specified excitation.

2.3 Numerical accuracy concerns

As noted, modern applications of characteristic mode analysis are based on

the solution of the characteristic mode generalized eigenvalue problem

XJ = λRJ (2.20)

where X and R are the imaginary and real parts, respectively, of the method

of moments impedance matrix Z. For lossless conductive structures, Z would

ideally be symmetric. As such, X and R should be Hermitian-symmetric.

However, we note that these ideal cases do not often hold in practice. In our

work, we make use of the commercial solver FEKO, which we use to build

our models and calculate our impedance matrices. Despite our structures

being made entirely of perfect electric conductors, the calculated Z is often

asymmetric. This may facilitate some of FEKO’s more advanced MoM solver

techniques, but it is non-ideal for CM applications. Additionally, as noted in

one of the seminal works on characteristic mode analysis by Harrington and

Mautz [11], any system is prone to numerical inaccuracy, which can degrade

the measure of symmetry attainable for our MoM based approach. However,

these problems can be partially mitigated by reconditioning methods which

can force symmetry and positive semi-definiteness. We address these steps

in further detail in Section 3.1.1.
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2.4 Mode tracking over frequency

When studying characteristic modes over a range of frequencies, the Method

of Moments impedance matrix Z must be calculated at each frequency point

of interest. From the real and imaginary parts of Z we solve the characteris-

tic mode eigenvalue problem. However, since there is no inherent correlation

between multiple solutions over frequency, we must use a mode tracking

algorithm in order to determine consistent modal designations across the

frequency range. The process depends upon the idea that the modal decom-

position changes slowly with frequency. As long as the frequency increment is

small one should be able to classify like modes, even as they change slightly

between independent solutions. While commercial solvers attempt to ad-

dress the problem, there is no one best methodology for modal tracking. To

address this issue we utilize an adapted form of the algorithm presented in

[15]. Some direct methods attempt to track modes by following the eigenval-

ues of modes over frequency. Unfortunately, many antenna models support

degenerate modes, which result in more than one mode having the same

eigenvalue at a particular frequency, often causing direct tracking algorithms

to lose track of modes. The modified method we apply relies on the eigen-

vectors of the CM problem. This method takes advantage of the fact that

individual characteristic modes are orthogonal to one another through the

impedance operators, R and X, as shown by

〈
Ji,RJj

〉
= δij, (2.21)

where i and j are the indices of two characteristic modes. Using this property

we correlate the modes by their eigencurrent distributions. To do so, we

initially solve the problem at our first frequency point, freqa, and then take

the inner product of our eigencurrent with the set of eigencurrents calculated

at the following frequency point, freqb:〈
Ji
freqa

,RJj
freqb

〉
. (2.22)

When a mode’s inner product with a mode at the following frequency is high,

we label it with the same modal index. Utilizing the inner product of eigen-

currents produces significantly better tracking results than those found in our

commercial solver; however, as demonstrated in Chapter 4 this method can
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still struggle with larger problems. We note that while convention typically

starts tracking modes from the low end of the frequency band of interest, our

modified method can start tracking from any frequency point.
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CHAPTER 3

LINEAR RING ARRAYS

Modal decomposition methods are useful tools in analyzing antenna struc-

tures and other radiation-based problems. One of the most thorough studies

of finite antenna arrays is Bekers’ “Finite Antenna Arrays: An Eigencurrent

Approach”[16]. In this work Bekers analyzed finite linear antenna arrays of

simple strip dipoles and thin wire rings. The methodology was based around

constructing a representation of the total array’s behavior by way of an iter-

ative “cycling” process where single-element modes with perturbations were

used as the bases for the total array currents. The author acknowledged the

utility of characteristic mode analysis but opted to use an alternative decom-

position that would allow a unit-cell type approach. As we have noted, a

benefit of characteristic mode analysis is that it explicitly characterizes the

entire conducting body as a whole, including the coupling behavior between

elements. Consequently it incurs computational and storage costs when ap-

plied to an electrically large problem.

In this chapter we examine linear arrays of thin rings, similar to those

studied in Bekers’ past works [16, 17, 18]. The purpose of this section is

to determine the achievable accuracy of a CM decomposition, and to see if

the properties discerned in these past works are comparable to the results

produced by CM analysis. Being able to draw correlations between the two

analyses allows us to make use of this past research within the context of

the resurgent field of CM analysis. We first examine how well the CM eigen-

value problem—often used in the study of electrically small antennas—is

conditioned for our electrically large radiating structures.
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3.1 Modal problem conditioning

The seminal works of Harrington and Mautz [12] noted the effects of non-

ideal impedance matrix formulations on the CM eigenvalue problem. Recent

work has explored these potential numerical problems at length [19] and

has compared the discretized results of a moment-method solution to the

modal results of a sphere, one of the few canonical structures one can study.

As we are concerned with the interactions of multiple elements in a finite

array, we perform similar tests on a set of linear arrays. Reproducing a

model studied in [16] we simulate variations of a 40-ring linear array. We

simulate the structure in the commercial solver FEKO and using in-house

GPU accelerated MoM code [20] written in Python. The in-house solver uses

Galerkin testing and RWG basis functions [21, 22]. The interactions between

most basis function elements are processed using a 12-point quadrature rule.

Green’s function singularities, which arise in the case of a basis function

overlap, are handled using Duffy integration in conjunction with an adaptive

Gauss-Kronrod rule [22]. With both simulation tools we define the rings as

infinitely thin PEC strips, discretized using the RWG basis functions [23].

Additionally in FEKO we construct a model in which the rings are defined

as thin wires and simulated using a thin-wire kernel. The structural and

meshing dimensions are specified per each simulation, where all electrical

dimensions are with respect to f0 = 300 MHz, at which a single ring is

approximately 1λ long.

3.1.1 Single-ring antenna element

We begin by solving the CM problem for a single-ring element, with geometric

variables as depicted in Figure 3.1. We model the ring as an infinitely thin

PEC strip in the FEKO modeling tool, with an impressed voltage source

implemented on an edge port. We then use FEKO to generate an impedance

matrix of the structure. Additionally, we use the exported geometry data

from FEKO and reproduce the structure in our in-house MoM solver. Last,

we use FEKO to produce an impedance matrix for a similarly sized ring, using

a thin-wire kernel implementation. With these three different impedance

matrix calculations, we solve the CM eigenvalue problem of Eq. (2.10) and

then compare the accuracy of our modal sum currents to the currents from

12



Figure 3.1: A single thin-strip ring with relevant dimensions (ring width wr,
outer radius ro, inner radius ri, inter-element spacing d). The dotted

segment represents the location of the voltage edge port.

a direct MoM solution.

Concurrent work by Guan et al. [24] defines an `2 norm percent error for

a total modal current distribution compared to a standard MoM solution.

Modified to fit with our established notation, this total current percent error

quantity is defined for the real and imaginary current components as

Real error(m) = 100 ·
∣∣<(Jmodal(m))−<(Jdriven)

∣∣
2

|Jdriven|2
(3.1)

and

Imaginary error(m) = 100 ·
∣∣=(Jmodal(m))−=(Jdriven)

∣∣
2

|Jdriven|2
(3.2)

where Jmodal(m) is the complex current vector of the modal summation Eq.

(2.16) of m-many modes, and Jdriven represents the complex current vector

resulting from a standard MoM driven solution, with the `2 norm defined for

some vector x as

|x|2 =

√√√√ n∑
k=1

|xk|2. (3.3)
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Additionally we present a total error quantity defined as

Total error(m) = 100 ·
∣∣Jmodal(m) − Jdriven

∣∣
2

|Jdriven|2
(3.4)

We wish to see how many modes must be included in Eq. (2.16) in order to

achieve a suitably accurate modal sum. Additionally, we compare the accu-

racy of our modal sums using impedance matrices (1) as they are originally

produced, (2) that are symmetrized after being produced, and (3) that are

symmetrized and recomposed to be positive definite. As noted in Section 2.3,

our impedance matrices would ideally be symmetric and positive definite, and

certain modal properties are dependent upon these conditions. Addressing

this ex post in cases 2 and 3, the impedance matrix can be symmetrized as

Zsym =
1

2

(
Z + ZT

)
. (3.5)

Indefiniteness of the real part of the impedance matrix is addressed by de-

composing the R matrix as

RÎn = ξnÎn (3.6)

and replacing negative eigenvalues in ξ with the value zero. The resistance

matrix is then recomposed as

Rpos = ÎξÎT (3.7)

where ξ is a diagonal matrix of the modified eigenvalues, with negative values

set to zero. Unless stated otherwise, any use of the resistance matrix in this

work is referring to the post-processed Rpos positive-definite version of Eq.

(3.7).

Figure 3.2 shows the total current percent errors calculated for four similar

thin-strip ring models, as simulated by FEKO, with separate error values

calculated for the real and imaginary components of our currents. “Orig”

indicates a solution using the original impedance matrix. “Sym” indicates

that the matrix was made symmetric via Eq. (3.5). “SPD” indicates that

the matrix was made symmetric and positive-definite via Eq. (3.7).

Most interestingly we see that composing a modal sum using the original

direct solution to the CM eigenvalue problem produces dramatically inaccu-

rate currents. This behavior is unexpected and indicates a fundamental issue

14



with directly performing a CM decomposition on the raw impedance matrix

from FEKO. This particular behavior is due to the the physical degrees of

symmetry in the single element. Comparison cases and comments can be

found in Appendix A. Symmetrizing the impedance matrix improves the

accuracy in all cases. If we further condition our impedance matrix and re-

compose it such that it is positive definite, we observe varying results across

our four model variations. In variations 1 and 4 we observe that forcing

positive definiteness results in the most accurate modal sums, with regard to

both the real and imaginary current components. Variations 1 and 4 of these

ring models are made of thin strips with width wr = λ/100. Variation 2

shows a significant reduction of accuracy from enforcing positive definiteness

relative to the “only symmetrized” case. Variation 3 appears to encounter

a minimum error floor, with enforcing positive definiteness only granting a

minimal increase in accuracy. This overall comparison shows how sensitive a

CM decomposition can be to the relationship between the problem geometry

and mesh density. Furthermore it shows that care must be taken when using

the output information from a commercial solver and how one must perform

additional problem conditioning. The CM problem is often presented in a

“plug-and-play” manner where the user only requires the impedance matrix

of a structure, but even for a single ring with ka ≈ 1 we witness inaccuracy

that must be reduced with proper care. From these results we will choose

to work with the dimensions used in variation 4 and enforce symmetry and

positive definiteness on our impedance matrices. For a single array element

this results in the best modal sum accuracy where only the first two modes

are needed for Re(J) error minimization. Additionally, the Im(J) component

is slower to converge in most CM decompositions, with this being more ap-

parent in larger examples presented later. This behavior is consistent with

past analyses of strip dipoles [25]. The total current percent errors for the

complete modal sums of the thin-strip ring are shown in Table 3.1.

Using the same thin-strip ring geometry we calculate our impedance ma-

trices using our in-house MoM code. Again we calculate the total current

percent error for the original matrix, symmetrized matrix, and symmetric

positive definite matrix, with the results shown in Figure 3.3. In contrast

to the FEKO matrix related results in Figure 3.2, here we note that the

original matrices do produce reasonable results, and in two geometry varia-

tions they produce the most accurate modal current summations. Similar to
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wr = λ/50; ml = λ/30
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(d) Variation 4:
wr = λ/100; ml = λ/30

Figure 3.2: Total current percent error values calculated according to Eqs.
(3.1) and (3.2) for a single thin-strip ring simulated in FEKO. Four ring

variations were tested, with differing ring widths (wr) and maximum mesh
edge lengths (ml), using the original impedance matrix, and two ex post

conditioned matrices.

Table 3.1: Total current percent error values calculated according to Eqs.
(3.1) and (3.2) for the thin-strip rings of Figure 3.2 with all modes

included. The values represent the real/imaginary errors, respectively.

Ring Model Original Error Sym Error Sym and Pos Def Error

FEKO Var 1 62.87 / 32.60 14.57 / 7.80 3.78 / 2.76
FEKO Var 2 45.08 / 38.17 5.58 / 5.14 21.20 / 17.95
FEKO Var 3 71.43 / 61.98 14.39 / 12.65 13.59 / 11.83
FEKO Var 4 84.90 / 46.29 8.22 / 4.74 1.19 / 1.12
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(a) Variation 1:
wr = λ/100; ml = λ/60
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(b) Variation 2:
wr = λ/50; ml = λ/60
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(c) Variation 3:
wr = λ/50; ml = λ/30
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(d) Variation 4:
wr = λ/100; ml = λ/30

Figure 3.3: Total current percent error values calculated according to Eqs.
(3.1) and (3.2) for a single thin-strip ring simulated using in-house MoM

code. The y-axis values are truncated to better demonstrate the differences
between the results. Single mode error in all cases is 100%.

the FEKO case, the modal currents of the thinner strip rings (variations 1

and 4) achieve the most accurate modal representations; however, with the

in-house formulation the original matrices provide the most accurate results.

In variations 2 and 3 we observe the symmetrized case resulting in the least

error, and original and positive definite matrices resulting in almost identical

modal accuracies. Finally, in none of the geometry and mesh variations does

the positive definite impedance matrix produce the best results, running con-

trary to the results of the previous simulations and intuition. The accuracy

values of the complete modal sum are presented in Table 3.2.

When simulating wire antennas it is often acceptable to use a thin-wire

kernel where we assume only current tangential to the wire exists. A wire

“thickness” value can be included to increase the accuracy of the simulation

and to help avoid singularities when evaluating overlapping wire segments.
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Table 3.2: Total current percent error values calculated according to Eqs.
(3.1) and (3.2) for the thin-strip rings of Figure 3.3 with all modes

included. The values represent the real/imaginary errors, respectively.

Ring Model Original Error Sym Error Sym and Pos Def Error

In-house Var 1 1.47 / 1.11 7.29 / 3.87 7.71 / 4.00
In-house Var 2 11.59 / 9.99 1.39 / 1.20 11.72 / 9.87
In-house Var 3 12.55 / 11.01 1.03 / 0.89 12.51 / 10.83
In-house Var 4 2.86 / 2.36 5.57 / 3.01 14.42 / 7.88
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(a) sl = λ/30; rw = λ/2000
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(b) sl = λ/60; rw = λ/2000

Figure 3.4: Total current percent error values calculated according to (3.1)
and (3.2) for a single thin-wire ring simulated in FEKO. Two ring

variations were tested, with differing wire segment lengths (sl), both with
constant wire radii (rw).
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Using FEKO we produce impedance matrices for two variations of a thin-

wire ring comparable to the thin-strip models analyzed previously. Figure 3.4

depicts the current error for the two models with varying segment lengths.

One key distinction in the wire case can accurately represent both the real

and imaginary components of the current distribution, with both summations

achieving zero error. However, while the real component only requires the

sum of two modes, the imaginary error drops quickly and then stays constant

until we include the higher order currents contributed by the very last few

modes of the summation. This behavior is distinct from both RWG-based

models, where the imaginary part of the error decreases over the entire range

of included modes, albeit slowly.

Having simulated our single ring element using three different methods

and four different discretized geometries, we make the following conclusive

observations.

1. The FEKO RWG formulation of a thin-strip ring requires recondition-

ing in order to make the results usable. Further, additional conditioning

does not guarantee suitable accuracy of the modal sum for all appli-

cations and comparisons. This is best seen in the decompositions of

variations 2 and 3 of the FEKO formulation, as shown in Figures 3.2b

and 3.2c. We note that the thinner models attain a higher accuracy in

general.

2. The in-house formulation can be degraded by forcing additional con-

straints such as symmetry and positive definiteness. As shown in Fig-

ures 3.3a and 3.3d, the original impedance matrix produces the most

accurate modal decomposition. Figures 3.3b and 3.3c show the sym-

metrizing the impedance matrix results in increased accuracy, but forc-

ing positive definiteness severely degrades it.

3. The thin-wire kernel can provide a perfect match to the equivalent

driven current solution, both in terms of real and imaginary error com-

ponents. However, to achieve an accurate imaginary current component

the highest order modes must be included.

Expanding on these points we note that one general trend observed for the

RWG models is that the percent error is minimized rapidly by the inclusion of

the first few modes. The total current error then typically reaches its absolute
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minimum once approximately 25 modes are included. One significant outlier

is the imaginary component of the thin-wire kernel error, where the error

appears to reach a consistent value once 11 modes are included. However,

it is only once the last four modes are added that we see an additional

drop in the model’s error. This unusual behavior demonstrates the influence

of characteristic mode ordering and potential oversights related to reduced

order modeling. Our modal indices are determined by the magnitude of

the corresponding modal eigenvalue, as is typically the convention in CM.

Lower-order modes are designated as more modally significant by definition,

as shown in Eq. (2.18). Convention leads us to believe that lower-order

modes therefore contribute most strongly to a modal sum’s accuracy, with

higher-order modes providing small adjustments. As we see in the thin-wire

case however, the higher-order modes of even this simple ring element are

essential to the modal sum accuracy. Were we to only solve for a reduced set

of modes, we could potentially omit these final modes and assume that the

missing currents were simply outside the range of the characteristic mode

basis.

As noted, for all cases of the in-house solver, and in variation 2 of the

FEKO model, enforcing positive-definiteness reduces the maximum attain-

able accuracy of the model, relative to one that is simply symmetrized. This

can be due to the fact that forcing positive-definiteness essentially “zeros” out

the offending components of the impedance matrix. If one were to relax the

constraint and keep modes associated with negative but very low magnitude

R eigenvalues, those modes may be able to contribute to the accuracy of the

greater modal sum. However, as a matter of definition the mode would no

longer be a true characteristic mode. Modified formulations of characteristic

modes often have to relax these constraints, especially when attempting to

include dielectrics [26].

Additionally, we note a special consideration that may arise when com-

puting these results using standard eigenvalue solvers. In this work we use

the MATLAB function eig() to solve one-sided and generalized eigenvalue

problems. By default the function will perform checks on the condition of the

problem and use different eigenvalue problem solution algorithms depending

on the result. For our set of problems we note that the matrix R is poorly

conditioned. In this case eig() would use the QZ algorithm to perform the

decomposition. However, when we recompose our matrix and force it to be
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symmetric, the solver will use the Cholesky decomposition which will pro-

duce inaccurate results. In this case it is important to force the use of the

QZ algorithm. Further, we note that even reconditioned impedance matri-

ces and QZ decomposition can lead to numerically complex eigenvalues and

eigenvectors in some cases. In all of our simulations we discard the imaginary

component of the eigendata, and discard the mode entirely if the returned

eigenvalue is infinite.

3.1.2 Variable length linear arrays

Having examined the single-ring element, we proceed to study linear arrays

of 5, 10, 20, 30, and 40 ring elements. The total current error metrics of a

single ring indicated that the conditioning of the resistance matrix R had a

dramatic effect on the accuracy of a modal sum. Past work [19] has shown

that the indefinite nature of calculated R matrices is largely due to finite

precision limitations. Alternative formulations making use of spherical wave

expansions of the dyadic Green function have shown promise in reducing

numerical difficulties in the decomposition [27]. However as most CM imple-

mentations, both commercial and research oriented, make use of the EFIE

method and the free-space electric field Green function, we restrict our focus

to these methods and how they perform when applied to electrically large

array problems.

Revisiting the R-matrix eigenvalue problem, RÎn = ξnÎn, for a range of

different array sizes we determine how many of the eigenmodes are asso-

ciated with either negative or complex eigenvalues. Negative eigenvalues

indicate negative radiated power, with the associated eigencurrents In caus-

ing IHn RIn ≤ 0. These modes arise from numerical noise. Asymmetry in R

results in undesirable complex eigenvalues. With these undesired cases spec-

ified, we regard modes that produce positive and real eigenvalue as “valid.”

We present the number of eigenvalues with these properties in Table 3.3, for

non-symmetrized matrices directly produced by FEKO. In tabulating the re-

sults we noted that the undesired properties are not exclusive of each other.

In this table we present results for two frequencies, comparing when a single

ring has ka ≈ 0.5 and ka ≈ 1. This is to provide additional context, consid-

ering most CM simulations are done on electrically small elements. Besides
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Table 3.3: Properties of eigenvalue solutions from Eq. (3.6) for
non-symmetrized matrices produced by FEKO.

Narray Nedges ka Negative Re(ξ) Complex ξ Valid ξ

1 60 .52/1.04 17/15 30/38 21/15
5 300 4.29/8.58 251/224 222/282 98/91
10 600 9/18.00 247/220 388/412 135/146
20 1200 18.42/36.84 525/457 868/846 199/277
30 1800 27.84/55.67 800/691 1364/1284 260/399
40 2400 37.26/74.51 1071/935 1808/1710 379/531

the initial case of a single ring we note that all of the results are for very elec-

trically large structures, where ka is designated by the total array’s largest

dimension. This is an important point as the MoM impedance matrix is cal-

culated on the entire structure, and not built using an element cell method.

While expensive computationally, this approach is most likely to capture the

inter-element coupling behavior of the array.

Symmetrizing the FEKO matrices by (3.5) we evaluate the R matrix eigen-

value problem and gather the results shown in Table 3.4. We see that sym-

metrizing the impedance matrix completely removes the complex eigenvalues,

and while there is a slight increase in negative real eigenvalues, overall there is

a net gain of valid values. This effect is most noticeable when comparing the

valid eigenvalues of the 40 element array, showing the importance of recon-

ditioning the impedance matrix of very electrically large problems. We note

that symmetrizing the impedance matrices removes the complex eigenvalues

but has the effect of adding to the number of eigenvalues with negative real

parts. Despite this shift in undesirable properties, the net effect is a gain in

the number of valid modes. As a comparison, we perform the same decompo-

sitions using our in-house MoM code, with the results cataloged in Tables 3.5

and 3.6. The results show how sensitive the R conditioning is to variations

in its formulation. Entries marked with a “—” indicate that the solver failed

to solve the eigenvalue problem, which is a shortcoming of the in-house code

that is currently being worked on.
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Table 3.4: Properties of eigenvalue solutions from Eq. (3.6) for ex post
symmetrized matrices originally produced by FEKO.

Narray Nedges ka Negative Re(ξ) Complex ξ Valid ξ

1 60 .52/1.04 22/18 0/0 38/42
5 300 4.29/8.58 126/110 0/0 174/190
10 600 9/18.00 260/233 0/0 340/367
20 1200 18.42/36.84 533/483 0/0 667/717
30 1800 27.84/55.67 809/736 0/0 991/1064
40 2400 37.26/74.51 1083/985 0/0 1317/1415

Table 3.5: Properties of eigenvalue solutions from Eq. (3.6) for
non-symmetrized matrices produced by in-house MoM code.

Narray Nedges ka Negative Re(ξ) Complex ξ Valid ξ

1 60 .52/1.04 3/0 20/24 39/36
5 300 4.29/8.58 27/3 194/144 101/155
10 600 9/18.00 73/13 446/348 147/249
20 1200 18.42/36.84 —/39 —/776 —/421
30 1800 27.84/55.67 —/57 —/1204 —/589
40 2400 37.26/74.51 —/88 —/1646 —/744

Table 3.6: Properties of eigenvalue solutions from Eq. (3.6) for ex post
symmetrized matrices originally produced by in-house MoM code.

Narray Nedges ka Negative Re(ξ) Complex ξ Valid ξ

1 60 .52/1.04 3/0 0/0 57/60
5 300 4.29/8.58 41/15 0/0 259/285
10 600 9/18.00 105/39 0/0 495/561
20 1200 18.42/36.84 —/94 —/0 —/1106
30 1800 27.84/55.67 —/145 —/12 —/1643
40 2400 37.26/74.51 —/203 —/22 —/2175
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3.2 Array modal accuracy and beam steering

So far we have examined the accuracy of the modal current summation terms

associated with individual antenna elements. Following [16] we now construct

a large linear array of 40 rings, aligned along the element H-plane, as depicted

in Figure 3.1. The inter-element spacing is 3λ/5. With uniform amplitude

and phase the array pattern is directed towards broadside. Examining our

current error metric in Figure 3.5, we make note of some key properties.

1. For all three matrix conditions the real part of the error drops precipi-

tously with the inclusion of mode 80.

2. The matrix conditioning has no strong effect on the real error compo-

nent.

3. The matrix conditioning only affects the imaginary error component

past the inclusion of 370 modes.

4. The addition of modes 91 through 129 results in an increase in the

imaginary error component.

5. The symmetric and positive definite impedance matrix results in the

most accurate decomposition. This is consistent with the results for a

single element with the same geometry and meshing.

When studying a single antenna element such as a dipole or loop, the

error in total structure current can be a useful metric. However as we move

to multiple arrays an error metric that is based on port impedance values

becomes more useful. We define total structure impedance (TSI) error as

TSI error(m) = 100 ·
∣∣Zmodal(m) − Zdriven

∣∣
2

|Zdriven|2
(3.8)

where Z is a vector of complex port impedances of length n, and Zmodal(m) is

the impedance seen at port resulting from a modal sum of m-many modes.

The metric is interpreted as the average percent error in port resistance

or reactance one can expect from the modal-sum representation of the ar-

ray’s current distribution. This can serve as a direct means of determining

if a modal-sum current is suitably accurate for an array developer, as per-

formance specifications and array feed considerations may require improved
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Figure 3.5: Total current percent error of a 40-element linear ring array
(d = 3λ/5) with different impedance matrix conditioning. The array

elements are excited with uniform amplitude and phase.

accuracy. In Figure 3.6 we examine the real and imaginary TSI components

for the symmetric and positive definite case of the array studied in Figure

3.5. The x-axis is limited since the addition of modes past 1500 does not

result in a change in TSI. We observe that the inaccuracy of the imaginary

current component translates to error in the real impedance component.

3.2.1 Beam steering effects

Up until this point we have only examined arrays that are uniformly excited

for broadside radiation. Figure 3.7 depicts the total current percent error for

the 40-element linear array as the main beam is steered in small increments

from broadside. We note that no significant changes in error occur past the

inclusion of 1500 modes. Two distinct effects are identified from the displayed

results:

1. As shown in Figure 3.7a, the real component of the current error is

incredibly sensitive to the scanned beam angle. A slight deviation from

broadside excitation results in a “notch” effect, where the current error

increases for a number of added modes.
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Figure 3.6: Real and imaginary parts of the TSI error (3.8) of a 40-element
linear ring array (d = 3λ/5) with a symmetric and positive definite

impedance matrix.

2. As shown in Figure 3.7b, steering 0.5◦ from broadside results in an

increase in the imaginary current component. However, further slight

increases, from 1◦ to 2◦, reduce the imaginary current error.

In order to determine which modes contribute most to the modal sum quan-

tity and how they may correlate with the current error values, we plot the

magnitude of the complex modal weights [Eq. (2.19)] for the five scan angles,

as shown in Figure 3.8. This plot is limited to the first 120 as all further

values produce very low magnitude weights. From these results we can note

that mode 80 is the major contributing current in a broadside excitation, an

observation consistent with the current error metrics already shown.

3.2.2 Modal far-field accuracy

In addition to studying the weighted sums of eigencurrents, we can also exam-

ine the corresponding modal far-fields of the CM eigencurrent summations.

For the linear array we are examining, we scan the beam along the array

H-plane, which in this case is a cut-plane in xz. We then sample the far-field

across θ = −90◦ : 90◦ in one-quarter degree increments. We define a modal
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Figure 3.7: Current percent error of a 40-element linear ring array
(d = 3λ/5) with excitations for five different beam angles relative to

broadside.
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Figure 3.8: The magnitude of the modal weight coefficients of the
40-element linear ring array for five minor variations in beam angle.
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far-field error metric as

Far-field error(m) = 100 ·
∣∣Eφ(θ)modal(m) − Eφ(θ)driven

∣∣
2

|Eφ(θ)driven|2
(3.9)

and note that the array radiation is almost entirely φ oriented, making it the

E-field component of interest. Following from the fine scan angle adjustments

shown in Figure 3.7, we proceed to examine the corresponding far-field error

behavior, as depicted in Figure 3.9. Similarities and contrasts between the

error metrics include:

1. The array current accuracy was very sensitive to scan angle; however,

we see that the far-field accuracy is resilient.

2. The far-field percent error and the real current percent error decrease

in a similar fashion. In both cases the inclusion of mode 80 drastically

reduces the error, as the real current percent error drops from 89.90%

to 1.63%, and the far-field percent error from 42.90% to 0.98%.

3. The addition of modes 82 through 90 results in an increase in far-field

error for a broadside excitation. Similar behavior occurs for the other

small beam scan angles. These trends are more easily seen in Figure

3.9b. This behavior mimics the increase seen in the imaginary current

error.

The discrepancy between the error minimization rate of the modal eigencur-

rents and that of the modal far-fields is due to the orthogonality constraints

established in the original CM problem formulation. Characteristic modes

by definition are orthogonal through the R matrix, making their far-fields

orthogonal to one another. Because orthogonality is ideally enforced on the

far-field sphere, inaccuracy in the solution manifests in the near field and

modal currents. It is possible to enforce orthogonality on the surface of the

radiating structure, creating a set of orthogonal modal currents [28]. In such

a case the currents would minimize in error more rapidly than the modal

far-fields.
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Figure 3.9: Far-field error [Eq. (3.9)] of the array and excitations examined
in Figure 3.7

3.2.3 Modal attribution and scan behavior

Following Bekers’ methodology [16] we select a set of scan angles that will

result in grating lobes entering the visible region of the array. With his

decomposition method one could specify modal far-fields that exhibited main

lobes in the direction of a scan angle and in the direction of the emerging

grating lobe. Using CM and a decomposition of the entire linear array as

a single conducting body, we examine the scan behavior of the array and

determine if similar behavior can be directly attributed to specific array

eigencurrents. To determine our scan angles of interest we calculate and plot

the array factor of our 40 ring array with 3λ/5 spacing:

AF =

Nel∑
n=1

wne
j2π(n−1) dx

λ
(u−us) (3.10)

where wn is a unit value weight, and u and us are the simplified u-v projection

values of our scan range where u = sin θ. Using a linear phase progression

we scan the array from broadside at 0◦ to 90◦ and plot the magnitude of the

array factor over the θ = −90◦ : 90◦ half-space, as shown in Figure 3.10. The

linear pattern on the right side of the plot illustrates the main beam of the

array being swept from broadside. The semi-circular segment on the left side

of the figure shows an additional main beam entering the visible region of the

array as an undesired grating lobe. Once we perform the CM decomposition
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we can calculate the power radiated by our modal sum by computing

〈
J∗modal(m),RJmodal(m)

〉
= Prad(m) (3.11)

where Jmodal(m) is the current vector of the modal summation [Eq. (2.16)]

of m-many modes. The resulting values are presented as a percentage of the

power radiated by the standard driven solution and are displayed in Figure

3.11. Starting from broadside at 0◦ we see that very little power is radiated

by the first approximately 80 modes. As we steer away from broadside we

see power contributed by lower-order modes, with there being a near linear

relationship until approximately 35◦ from broadside. At 30◦ the summation

requires 58 modes in order to capture more than 95% of the radiated power.

At 35◦ the power behavior changes dramatically, with only 24 modes being

needed to capture 95% of the radiated power. This change coincides with the

emergence of the secondary grating lobe, as indicated in Figure 3.10. This

would indicate that as power is radiated in more simultaneous directions,

power is better supported by lower order modes. We note that the order

in which modes are included is solely determined by the magnitude of their

corresponding eigenvalues. As such, we see that the broadside pattern of

our array cannot “make use” of the lower order modes to radiate power.

Furthermore, reiterating what was shown in Figure 3.5 we note that the lower

order modes do not contribute to the current accuracy either at broadside.

Following [16] we proceed to examine four specific scan angles which result

in grating lobes entering the visible region. We then identify which modal far-

fields have main and secondary lobes that are best aligned with the desired

scan angle and expected grating lobe angles. By inspection we note that the

modes that best characterize the scan behavior are as follows:

1. Mode 3 produces a main lobe at ±41.8◦ and secondary lobe at ∓90◦,

corresponding the array’s scan and resulting grating lobe angles.

2. Mode 5 produces a main lobe at ±47.3◦ and secondary lobe at ∓68.9◦,

corresponding the array’s scan and resulting grating lobe angles.

3. Mode 10 produces a main lobe at ±53.1◦ and secondary lobe at ∓60.1◦,

corresponding the array’s scan and resulting grating lobe angles.

4. Mode 11 produces a single main lobe at ±56.2◦ corresponding to both
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Figure 3.10: Array factor [Eq. (3.10)] magnitude of the 40-ring linear array
with 3λ/5 spacing. The array is phased with a linear phase progression

from 0◦ to 90◦ from broadside, with the AF shown over the θ = −90◦ : 90◦
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Figure 3.11: Power radiated by the modal sum current as a percentage of
the power radiated by the port-driven solution.
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Table 3.7: Total current percent error [Eqs. (3.1) and (3.1)] values for the
linear ring array at broadside and scanned to 41.8◦ with all modes included.

The values represent the real/imaginary errors, respectively.

Scan Angle Original Error Sym Error Sym and Pos Def Error

0◦ 0.04412 / 8.34 1.029e-07 / 5.957 6.838e-08 / 1.156
41.8◦ 4.472 / 3.333 1.322 / 1.247 0.7105 / 0.6088

the array’s scan angle and grating lobe angles at ∓56.2◦.

To ensure that the current accuracy behavior near broadside still applies

once grating lobes enter the visible region, we scan our array to our first test

point of 41.8◦ and compare the total current percent error for our array under

different impedance matrix conditionings, as shown in Figure 3.12, with the

minimum error values of a full solution shown in Table 3.7. We see a number

of differences between these results and the broadside case in Figure 3.5.

1. The real current error is strongly affected by the matrix conditioning,

with further treatment resulting in quicker error minimization, as well

as better total accuracy compared to the broadside excitation.

2. The real and imaginary current error behaviors are more similar to each

other (gradual minimization), whereas at broadside the real and imagi-

nary current errors have unique behaviors (real error drops quickly with

very few modes, while imaginary error is unchanged by most modes).

3. In all three conditions, the real current can achieve nearly perfect ac-

curacy at broadside. When scanned far from broadside only the sym-

metric and positive definite case delivers acceptable accuracy.

While the modal sum behavior exhibits differences from broadside oper-

ation, we can safely say that if we make our impedance matrix symmetric

and positive definite we can compose an accurate modal sum modal. Next

we examine the modal far-fields directly, and plot the ones that correspond

to the highest modal weighting coefficients. The H-plane normalized total

far-field values of the driven solution and related modes are shown in Figure

3.13. In Case 1 and Case 2 we see that the driven field solution is largely

characterized by two modal pairs, modes 3 & 4 and modes 5 & 6, respec-

tively. The modal fields are clearly aligned along the main beam angle and
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Figure 3.12: Total current percent error of a 40-element linear ring array
(d = 3λ/5) with different impedance matrix conditioning. The array

elements are excited with uniform amplitude and linear phase to steer the
beam 41.8◦ from broadside.

also demonstrate major lobes along the grating lobe directions. Further, we

note that lower order modes produce modal currents that exhibit spatial

symmetry, and consequently modal far-fields that are symmetric along the

E and H cut-planes. In Case 3 and Case 4 there are three highly weighted

modes that largely align with the driven far-field. We note that these scan

angles require the use of higher-order modes which result in modal-fields

with multiple prominent lobes. The total field is therefore more reliant on

the weighted interference between the modal far-fields, in order to produce

a simple pattern of a single main lobe and single grating lobe. Due to the

symmetric nature of the modal far-fields we note that if a modal pattern has

a main beam at angle X and a grating lobe at angle Y , there will be mirrored

lobes at angles −X and −Y . Further we note that as the absolute difference

between angles X and −Y decreases, more modes are required in the modal

summation, as seen in Cases 3 and 4. When that absolute difference is larger,

as in Cases 1 and 2, we require fewer modes.
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(b) Case 2: Scan angle +47.3◦

Figure 3.13: Normalized total modal far-fields exhibiting main lobes
corresponding to array scan angles and grating lobe angles.
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Figure 3.13 (Continued): Normalized total modal far-fields exhibiting main
lobes corresponding to array scan angles and grating lobe angles.
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3.3 Chapter conclusions

Applying characteristic mode decomposition effectively requires meaningful

accuracy metrics. In order to ensure we are solving for true characteristic

modes we must ensure that our impedance matrices are properly conditioned,

and we must understand the effects of impedance matrix variations on the

CM eigenvalue problem. For resonant length rings we have shown how sen-

sitive the CM problem is to fine dimensions and mesh density. Care must

be taken when choosing a solver to generate the impedance matrix as small

changes in how the EFIE problem is formulated can result in significant

differences in achievable modal accuracy and the extent of reconditioning

required. Expanding the problem space to very electrically large antenna ar-

rays requires to us to solve larger problems and endure higher computational

costs and decreased numerical accuracy in the eigenvalue problem solution

stage. When operating a phased array we demonstrate how phase shifted

excitations can cause meaningful variations in modal sum accuracy. While

often treated as a plug-and-play methodology, we have shown that electrically

large multi-port problems require extra care in their solution and eigenvalue

decomposition stages.
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CHAPTER 4

DIPOLE ARRAYS AND FINITE GROUND
PLANES

In the previous chapter we studied large linear arrays of ring antenna ele-

ments and determined the modal accuracy behavior of the structure when

operated as a phased array. We were able to determine modal far-fields

that best characterized the array operation and connect the CM analysis to

past works that utilized other decomposition methods. In this chapter we

shift our focus to a different class of problem. For these simulations, we

will be studying an array of half-wavelength dipoles over a finite rectangular

ground plane, as shown in Figure 4.1. The inter-element spacing and the

ground-plane separation are λ/4 at the frequency of interest. The dipoles

are center-fed with delta-gap edge ports. This basic template design was

chosen because we aim to identify modal properties and how they are related

to individual common array features. This template design is simple in the

hopes of allowing the effects to be separable from one another. Since the

characteristic modes are dependent only on the geometry of the problem,

due to the form of the CM eigenvalue problem Eq. (2.10), we note the most

prominent structural properties of this template design:

• Electrically large ground-plane

• Half-wavelength dipoles

• Multiple ports

• Maximum dimension ≈ 2.23λ

• Number of mesh edges ≈ 1100

and emphasize how these properties contrast with those of the typically elec-

trically small structures analyzed with CM. Additionally, we note that the

largest component in this design (the ground-plane) has no direct physical

connection to any of the array elements and their feed points.
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Figure 4.1: 3D model of the basic array template.

4.1 Ground-plane effects on modal accuracy

Comparing our basic template array from Figure 4.1 to the linear arrays of

Chapter 3 we note that while the electrical size and structures are very dif-

ferent, both models have a similar number of discretized mesh edges. From

a computational standpoint this will dictate the size of our impedance ma-

trices. Therefore we expect that deviations in the modal behaviors of these

arrays will be heavily driven by the presence of a finite ground plane. The

new template array also uses half-wavelength dipoles as opposed to rings, but

both are being used as resonant-type antennas that are electrically large. Our

first test is on a basic array with five dipole elements, with λ/4 inter-element

spacing. The rectangular ground-plane is 1λ × 5λ/2. For all simulations in

this section we force the impedance matrix of our structure to be symmetric

and positive definite. With this conditioned matrix we solve the CM eigen-

value problem and produce the complex modal weighting coefficients when

the array is steered to broadside, with their magnitudes shown in Figure 4.2.

The plot is truncated to the first 200 modes as there are no significant val-

ues with higher modal indices. We observe eight modes with relatively high

weights, with these modes all being below modal index 30. However, while

a few significantly weighted modes may be enough to capture the behavior

of an electrically small radiator, after analyzing our 40-element array in the

previous chapter, we anticipate the need for many more modes in order to
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Figure 4.2: Magnitude of the modal weighting coefficients [Eq. (2.19)] of
the basic array with five elements and λ/4 inter-element spacing steered to

broadside.

compose an accurate modal sum.

Similar to the analysis of the linear array of rings, we calculate the total

current percent error of our test array phased to radiate at broadside. The

real and imaginary error components are shown in Figure 4.3, with two y-

axes due to the large variation in scale between the results. We see that the

current errors exhibit similar trends, notably that they both drop rapidly

with the first sub-100 modes and do not experience another relatively major

reduction until nearly mode 600. The results are plotted on a logarithmic

scale to better show the effects of higher order mode inclusion, but we note

that the real current error drops below 1% with as few as 23 modes. The

same cannot be said for the imaginary current component which can only

reach approximately 10% error once 600 modes have been included in the

modal summation.

To determine if the presence of the ground plane has a pronounced effect on

the scan accuracy of the modal sum, we calculate the total current percent

error for a range of scan angles up 45◦, as shown in Figures 4.4 and 4.5.

The accuracy values for a complete modal sum are enumerated in Table 4.1.

We observe that as scan angle increases the real current accuracy degrades,

with the broadside excitation resulting in a perfect representation, ignoring

the effects of numerical precision. The imaginary current however is most

inaccurate at broadside, and over the range of samples beam angles never

drop below 3% error. Notably the error minimization behavior is similar

39



0 100 200 300 400 500 600 700 800 900 1000

Number of modes included

10-15

10-10

10-5

100

105

T
ot

al
 c

ur
re

nt
 p

er
ce

nt
 e

rr
or

100

101

102

Real part
Imag part

Figure 4.3: Comparison of the total current percent errors of the real and
imaginary components for the five-element array with ground-plane,

scanned to broadside.

Table 4.1: Total current percent error values for a complete modal
summation of the five-element array with ground-plane for a range of scan

angels.

Scan Angle Real J Error Imaginary J Error

0◦ 1.598e-11 3.831
5◦ 1.867 3.407
15◦ 3.340 2.632
25◦ 2.853 3.771
35◦ 3.862 3.204
45◦ 3.747 3.237

across the range of beam angles as a qualitative matter, but differs in the

range of achievable error values.

Examining the far-field percent error as presented in Figure 4.6, we note

that at all of the test beam angles we can achieve less than 1% error with

as few as 35 modes included. Compared to the peak current accuracy values

in Table 4.1, we see that a structure with a large ground-plane can produce

a very accurate modal far-field summation for a range of excitations, while

the modal current error may still be unacceptable for certain analyses.
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Figure 4.4: Total current percent error of the real current component for
the five-element array with ground-plane, scanned from broadside to 45◦.
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Figure 4.5: Total current percent error of the imaginary current component
for the five-element array with ground-plane, scanned from broadside to 45◦.
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Figure 4.6: Far-field percent error [Eq. (3.9)] for the five-element array with
ground-plane, scanned from broadside to 45◦.
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Table 4.2: Properties of the four test arrays used for the fixed aperture
study. All electrical lengths are relative to f0 = 100 MHz where the array

elements are λ/2 long.

Number of
elements

Inter-element
spacing

Free-space isotropic
directivity

3 λ 3
5 λ/2 5
7 λ/3 4.803
9 λ/4 4.728

4.2 Array inter-element spacing effects

4.2.1 Fixed aperture arrays

With the basic design illustrated in Figure 4.1 in mind, we approach a com-

mon problem faced in array installations. If a user requires a certain amount

of gain from an array but is limited by platform size, how can they best utilize

the fixed aperture? Does it benefit the user to increase the number of ele-

ments with smaller inter-element spacing, or to have a more sparsely spread

array of fewer elements? As a practical application matter, if an array has

fewer elements, each element must handle more power in order to maintain

an acceptable total radiated power. To study and compare the performance

trade-offs we simulate four arrays of half-wavelength dipoles, with element

spacing shown in Table 4.2. For all four arrays we fix the ground-plane size

as λ × 2.5λ, and place the ground-plane λ/4 behind the array. As labeled

in Figure 4.1, this leaves a ground-edge distance of λ/4 between the outer-

most elements and the ground-plane edge. We note that this distance is with

respect to the ŷ dimension.

In order to demonstrate the type of performance trade-off we should an-

ticipate from our full-wave simulations we initially calculate the directivity

of a simplified scenario. For a uniformly excited, equally spaced linear array

of isotropic sources in free-space, the directivity is formulated following [29]:

D =

∣∣∣ sin(Nδ/2)N sin(δ/2)

∣∣∣2
1
N

+ 2
N2

∑N−1
m=1

N−m
mβd

sin(mβd) cos(mα)
(4.1)
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Figure 4.7: Directivity of a uniformly excited, equally spaced linear array
[Eq. (4.1)] for fixed length arrays with variable numbers of elements. The
circular markers indicate the electrical spacing values at f0 = 100 MHz.

where N is the number of elements, d is the inter-element spacing, β is the

wavenumber, α is the inter-element phase difference, and δ is any phasing

beyond that used for ordinary endfire operation. For a range of inter-element

spacing values we calculate D for a broadside excitation, as shown in Figure

4.7. The bold points mark the noted free-space isotropic diversity values

shown in Table 4.2. We note that this formulation does not include the

effects of mutual coupling between elements or any specific element factors.

As N increases we see that the fixed aperture constraint, which forces the

inter-element spacing to decrease, appears to limit the achievable directivity.

Next, we simulate our four array configurations using the FEKO MoM

solver, now including a finite ground-plane. Solving for the far-fields, and

feeding the array elements each with a Z0 = 50Ω transmission line model, we

calculate the realized gain for the array with a ground-plane. The results at

broadside are shown in Figure 4.8 over a frequency range where the length

of a single dipole l varies from 0.4λ to 0.55λ. Additionally we simulate

the array without a ground-plane, as shown in Figure 4.9, noting that the

full-wave simulation does account for mutual coupling. Operating at the

frequency that makes the array elements half-wavelength dipoles (l/λ = 0.5)

we see that the full-wave results, with and without ground-planes, follow

the directivity trends indicated by the simplified formula [Eq. (4.1)]. Most
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Figure 4.8: Realized broadside gain values for four fixed aperture arrays
with a finite ground-plane.

Table 4.3: Electrical length of inter-element spacing at the frequencies
where realized gain drops dramatically, as shown in Figures 4.8 and 4.9.

Number of elements Spacing (no ground) Spacing (with ground)

7 dipoles 0.2225λ 0.2288λ

9 dipoles
0.2228λ
0.2331λ

0.2294λ
0.2338λ

notably we observe significant drops in realized gain for the arrays with 7

and 9 elements when the elements are at sub-resonant lengths, both with

and without a ground-plane present. This indicates that the effect is largely

driven by mutual coupling due to the inter-element spacing values, and not

the presence of a ground-plane. In Table 4.3 we note the electrical length of

the inter-element spacing at the frequencies where the realized gain decreases

most.

4.2.2 Error due to inter-element coupling

Having observed a strong coupling effect from the fixed-aperture arrays, we

simulate a five-element array in free-space for a range of inter-element spac-

ing values with a broadside excitation. We then calculate the total current
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Figure 4.9: Realized broadside gain values for four fixed aperture arrays in
free-space.

percent error to determine if the coupling behavior in these cases can be well

represented by a sum of characteristic mode eigencurrents. The real and

imaginary current error values are shown in Figure 4.10, with two different

y-axes due to the large variation in error values. We draw the following

insights from the results:

1. For a broadside excitation the real current error is effectively negligi-

ble for a wide range of inter-element distances, including very tightly

coupled elements.

2. The imaginary current error peaks when the elements are approxi-

mately λ/2 apart, and in general is higher when the elements are

tightly coupled. Therefore the imaginary current distributions that

are induced by a tightly coupled array are poorly represented by the

characteristic mode set of eigencurrents.

Array resonance and radiated power

In addition to observing the drop-off in broadside radiation, we can examine

the port impedance values of our five-element array in free space as well.

Figure 4.11 shows the port resistance and reactance values for elements 1

46



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Inter-element spacing ( )

0

0.2

0.4

0.6

0.8

1

1.2

T
ot

al
 c

ur
re

nt
 p

er
ce

nt
 e

rr
or

10-9

0

2

4

6

8

10

12

Real part
Imag part

Figure 4.10: Total current percent error of a five half-wavelength dipole
array with variable inter-element spacing.

through 3, where element 1 is the outer-most element, and element 3 is the

center element. Due to the symmetric nature of the excitation, impedance

values for elements 4 and 5 are not shown. We note that the drop in realized

gain coincides with all the port impedance values rapidly approaching zero,

as a function of frequency. This effect is commonly seen when one encounters

a blind-angle for a phased-array. At that particular scan-angle inter-element

interference results in zero port impedance, and a drop in radiated power. It

is particularly interesting to observe this effect when the array is excited for

broadside radiation, making this effect more of a “blind frequency.”

To explore this effect further we expand the array, making a nine-element

dipole array. Element length and spacing are preserved from the previous

example. Figure 4.12 shows the real and imaginary port impedance values at

broadside. Adding these four additional elements clearly changes the array

behavior, but the “blind frequency” effect is essentially preserved, with very

large variations in resistance and reactance seen below the element resonance

point. As shown in Figure 4.13, these variations align with two severe drops

in radiation efficiency for the entire array. In this example a total power of 1

Watt is incident across all ports and the loss of efficiency is due to impedance

mismatch at the element ports. Examining this efficiency plot we determine

three frequency points of interest: the two “dip” frequencies where efficiency

drops, and the frequency where efficiency is highest. The current percent

error values at these points are shown in Figures 4.14 and 4.15. Table 4.4
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Figure 4.11: Port impedance values of a five half-wavelength dipole array
with λ/4 inter-element spacing, over a range of frequencies, radiating at

broadside.

Table 4.4: Data points from Figures 4.14 and 4.15, cataloging the minimum
number of modes needed to achieve a certain percent error. Table entries

depict the error of the current magnitude / the error of the real part of the
current. The omitted value indicates that the desired percent error is

unachievable.

Percent error First dip Second dip Peak radiation

< 10% 7/5 7/6 9/5
< 5% 7/5 7/6 17/5
< 2% 18/7 7/7 71/5
< 1% 64/7 20/7 —/5

presents the number of modes needed to attain a desired percent error, both

in terms of total current error, and real part. Entries for the imaginary parts

are omitted because in most cases the real part of an error is incredibly low,

making the total error value almost entirely dependent on the imaginary

error component.

In Figure 4.16 we compare the magnitude of the modal weights at the

three frequencies of interest. Relative to one another, there are no significant

modal weights beyond mode 10. We note that these results are from three

independent simulations, with the modal indices determined by the charac-

teristic mode eigenvalue magnitudes at each frequency. Therefore “mode x”
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Figure 4.12: Total current percent error values of a nine-element array of
strip dipoles at the two frequencies where the array exhibits dips in total

radiated power.
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Figure 4.13: Radiation efficiency of a nine-element array of strip dipoles.
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(a) Error at l/λ = 0.4570.
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(b) Error at l/λ = 0.4665.

Figure 4.14: Total current percent error values of a nine-element array of
strip dipoles at the two frequencies where the array exhibits dips in total

radiated power.
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Figure 4.15: Total current percent error values of a nine-element array of
strip dipoles at l/λ = 0.5240, where the array radiates the peak amount of

power.
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at the first frequency of interest may not be related in any way to “mode x”

at the second frequency point. In order to make a meaningful comparison

and observe how a mode changes between these frequencies we must use a

mode tracking algorithm, as described in Section 2.4. Figures 4.17 and 4.18

show the tracked eigenvalue traces for the first 15 modes. In each figure a

vertical dashed line indicates the frequency modes are tracked from. This

means that the algorithm attempts to track what are designated as the 15

most significant modes at that frequency, and that those modes may not be

modally significant at all frequencies.

Examining the results we can observe a number of difficulties the track-

ing algorithm experiences. The most obvious problem is that in some cases

the algorithm loses track of a mode, which results in a truncated eigenvalue

trace. This problem is evident in all three examples. It is caused by the

algorithm failing to find a suitable match between the mode in question and

all of the modes at an adjacent frequency point. Numerically this means the

inner products of these modes are all below a reasonable threshold, indicating

that there is no correlation between the modes. This problem may arise due

to inadequate frequency sampling, even in electrically small problems where

eigenmodes typically change very slowly with frequency. The presented re-

sults are made with 251 frequency points, with increments of 100 kHz over

the range of 85 MHz to 110 MHz. Finer frequency sampling did not produce

markedly better results and in practice is very computationally expensive,

requiring a new impedance matrix to be formulated and eigenvalue prob-

lem solved at each added frequency point. In all three examples one can

also observe a number of eigenvalue crossing avoidances. Previous work has

explored this issue [30], which manifests as pairs of eigenvalue traces that,

instead of crossing as they approach each other, diverge and “switch” paths.

Past work has shown that these pairs of modes can sometimes be decou-

pled resulting in a more gradually changing eigenvalue path as well as more

consistent eigenvector designations. Our array problem is particularly prone

to this problem as shown by the multiple crossing avoidances that appear

in even the first ten most significant modes. This is problematic since the

utility of multi-frequency studies is dependent on how well modal behavior

can be tracked over the frequency range in question. Characteristic modes

for this scale of problem struggle with multiple issues making it very difficult

even to consistently define modes over a wide bandwidth. Alternative track-
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Figure 4.16: Modal weight coefficients of a nine-element array of strip
dipoles driven at broadside at three frequency points.

ing methods rely on tracking the modal far-fields of the eigencurrents [31];

however, attempts to implement it on this scale of problem yielded similarly

poor results. Hybrid tracking methods are a necessity in these cases and are

a growing area of research.

4.3 Ground-plane effects

4.3.1 Array and ground-plane mode differentiation

In all of our modal summations so far, when calculating our error metrics we

ordered our characteristic modes according to their eigenvalue magnitude,

as is often the convention in CM analysis. Adding an additional means of

classifying modes, we visually examined the modal eigencurrent magnitudes

of the first 50 modes of our template, and labeled them either “array modes,”

“ground modes,” or “interaction modes.” This simple classification was de-

termined by the peak eigencurrent values and whether they were primarily

located on the array structure, ground-plane, or some combination of the

two. Examples of the most distinct currents, which we refer to as “locally

dominant” currents, are shown in Figure 4.19. Of the first 50, only four

modes were deemed interaction modes. As shown in Figure 4.20, we define

an interaction mode as one that exhibits spatial variance that is dependent

on the dimensions of both the array and ground-plane. Stated differently,

52



0.44 0.46 0.48 0.5 0.52 0.54

l / 

-2

-1

0

1

2

3

4

5

6

E
ig

en
va

lu
e

(a) Mode tracking started from l/λ = 0.4570
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(b) Mode tracking started from l/λ = 0.4665

Figure 4.17: Tracked modal eigenvalues of a nine-element array of strip
dipoles with the modal tracking algorithms started at the “dip” frequencies,

as indicated by the vertical dashed lines.
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Figure 4.18: Tracked modal eigenvalues of a nine-element array of strip
dipoles with mode tracking started from l/λ = 0.5240, as indicated by the

vertical dashed line.

an interaction mode current distribution is one that cannot be entirely at-

tributed to either the array or ground-plane geometry. While we know a

driven solution of our test array will yield a main beam at broadside and

minimal radiation in the backplane due to the presence of our ground-plane,

we note that the modal far-fields of our structure are indifferent to how the

structure is fed. As shown in Figure 4.21, whether we examine the modal far-

field of an array, ground, or interaction mode, all of them produce symmetric

patterns in the H-plane; it is only through the complex summation that the

modal fields produce anything resembling the radiation pattern of our array

with a ground-plane. This differs from the array in free-space examined in

Chapter 2 where in many cases a single modal far-field largely encompassed

the behavior of the driven radiation pattern.

Since we drive our structure through ports located on the array elements,

we decide to examine whether sorting our modes in order of their array dom-

inance would result in a more rapid error minimization. We determine a new

ordering by sampling the weighted modal eigencurrents at the array ports,

and ordering our modes from highest to lowest magnitude average port cur-

rent. We compare the total current percent error trends of this ordering and

the traditional eigenvalue magnitude ordering in Figure 4.22. Unexpectedly,

we see that the new ordering actually slows the error minimization of the

real current component, moving the “needed” modes to higher indices. Con-

versely, the imaginary current component is minimized much more rapidly.
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(a) Array dominated eigencurrent: mode 1

(b) Ground-plane dominated eigencurrent: mode 2

Figure 4.19: Eigencurrent magnitudes of locally dominant type modes.
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Figure 4.20: Magnitude of interaction eigencurrent: mode 14.
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Figure 4.21: Normalized H-plane modal far-fields of the eigencurrents
shown in Figures 4.19 and 4.20.
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Figure 4.22: Total current percent error of a broadside array excitation
with different modal orderings.

As expected, the values converge past a point, as we were simply changing

the ordering of a linear summation. Additionally we inspect the far-field per-

cent error of this alternative ordering, with the results shown in Figure 4.23.

For most of the summation the array based ordering more rapidly minimizes

the CM modal far-field error, with 48 modes needed to achieve 1% error in

the array ordering, as compared to 67 modes with eigenvalue based ordering.

4.3.2 Complex modal weights and beam-steering

In the previous section we demonstrated how array dominant modes tend to

have a more significant impact on the accuracy of a modal summation. In

addition to a typical broadside excitation, we wonder then how the modes

relate to one another as the array is phase shifted. In the CM modal sum-

mation of Eq. (2.16) we can isolate the weighting factor α and plot its

change in magnitude and phase as a function of beam angle change. Figure

4.24 presents what we refer to as the delta-weights of a five-element half-

wavelength dipole array above a rectangular ground plane, as depicted in

Figure 4.1. Applying a uniform phase progression and equal amplitude ex-

citation we steer the beam angle in 1◦ increments and plot the change in

modal weight magnitude and angle. The angle values are wrapped such that

they all lie between +180◦ and −180◦. The color of the data points varies
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Figure 4.23: Far-field percent error of a broadside array excitation with
different modal orderings.

from magenta, indicating high weighted average current at array ports, to

cyan, indicating low current. The color scale is dictated by a uniform scale

based on the ordering of port current magnitude among the first 50 modes,

as designated by traditional eigenvalue based ordering. Figure 4.25 presents

the same type of data for the array but with 5◦ beam angle increments.

Immediately two trends become evident. First, array dominant modes

(magenta points) undergo a range of magnitude changes; however, they all

experience the same change in angle. This is evident in the magenta points

being spaced in horizontal lines. Second, the ground-plane dominant modes

(cyan points) demonstrate no significant change in magnitude, but a range of

differences in angle. This is evident in the cyan points being spaced in vertical

lines. We observe that the array modes mostly fall into a single horizontal

span, with occasional outliers. The delta values of the first increment from

broadside deviate the most from these trends. This is consistent with our

previous results that show strong variation in the modal sum as soon as the

symmetric current of a broadside excitation is perturbed. The delta weight

angle value of this horizontal group is dependent upon the beam steering

increment, with the observed values cataloged in Table 4.5. We note that

the delta weight value tends to decrease the further the beam is steered

from broadside, as indicated in the third column of the table. The clear

divide in modal behavior between array and ground dominant modes provides

an eigenvalue based method of determining a mode’s geometric properties
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Table 4.5: The change in the complex weight angle of array dominant
modes for a range of beam-steer increments and beam angle ranges. Plots
for scan increments of 1◦ and 5◦ are shown in Figures 4.24 and 4.25. The

remaining plots are shown in Appendix B.

Scan increment Beam angle range Array ∆ weight angle

1◦ 0◦ to 9◦ −4.9◦ to −4.6◦

2◦ 0◦ to 18◦ −9.4◦ to −8.2◦

3◦ 0◦ to 27◦ −14.1◦ to −12.7◦

4◦ 0◦ to 36◦ −18.7◦ to −14.9◦

5◦ 0◦ to 45◦ −23.3◦ to −17.3◦

without having to view the eigencurrent distribution directly. This could

serve as a classifier in modal data processing methods.

4.3.3 Ground-plane as loading element

An emerging approach to analyzing arrays with characteristic mode analy-

sis consists of viewing the total structure as a composition of sub-structures

[32]. For our template dipole array we divide the design into the array ele-

ments and the finite ground plane. As we have seen before, when solving the

original characteristic mode problem for the entire structure, we arrive at so-

lutions that feature ground plane current dominated modes. However, often

the solved eigencurrents are used in order to determine the input impedance

at potential feed points on a structure. As we never intend on feeding the

overall structure from the finite ground plane, this results in a solution fea-

turing large amounts of eigenvector data that are not necessarily of major

importance. Without any modification, our original problem takes the form

[ZAA] [JA] + [ZAB] [JB] = [VA]

[ZBA] [JA] + [ZBB] [JB] = [VB]
(4.2)

where the subscript A represents the antenna array, and the subscript B

represents the ground plane. J and V represent the current and voltage

values that are either observed or impressed, respectively. Since we know we

will not be feeding the structure through the ground plane, we can safely set
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Figure 4.24: Delta weight values for a five-element dipole array above a
rectangular ground-plane with beam scanned in 1◦ increments from

broadside. The color scale from cyan to magenta indicates the average
modal current magnitude at the array ports, ranging from low density

(ground-modes) to high density (array-modes).
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Figure 4.25: Delta weight values for a five-element dipole array above a
rectangular ground-plane with beam scanned in 5◦ increments from

broadside.
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VB to zero. Some algebraic manipulation lets us then define VA as

{
[ZAA]− [ZAB] [ZBB]−1 [ZBA]

}
[JA] = [ZSUB] [JA] = [VA] (4.3)

where ZSUB now includes the self-matrix of the antenna array as well as the

loading effect of the ground plane. If we need to solve for the equivalent

eigencurrents on the ground plane we can easily calculate them as

[JB] = − [ZBB]−1 [ZBA] [JA] . (4.4)

If we rebuild our total modal current sum using Eqs. (4.3) and (4.4) we

can concatenate the resulting current vectors and compare their accuracy to

a direct MoM solution. Figure 4.26 shows the percent current error values

as a function of edge index. Values to the left of the vertical red line are

the edges of the array elements. The values to the right of the vertical red

line are the many edges on the finite ground-plane. We can see that the

ground-plane current error is dominant, while the array element current is

in alignment with the MoM solution. Directly comparing the results we plot

the current percent error as a function of modes added to the modal sum, as

shown in Figure 4.27. We observe that the error introduced by the substruc-

ture approach has no appreciable effect on the imaginary current accuracy.

However, it is clear that the substructure method limits the accuracy of the

higher-order real currents. While substructure decomposition is attractive

for problems where large portions of the design are unchanged or not di-

rectly excited, these results show that the method appears ill-suited for CM

decompositions of large N problems.

4.4 Chapter conclusions

This section has examined the class of linear dipole arrays in the presence of

finite conducting ground-planes. While these arrays had few elements com-

pared to the linear ring arrays in Chapter 3, the problems maintained high

N values due to the large rectangular ground plate. Operating it as a phased

array demonstrated how CM summations are sensitive to breaking electrical

symmetry, with broadside excitations achieving higher accuracy with fewer

modes. Attempts to further study dips in radiated power were frustrated by
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Figure 4.26: Current percent error as a function of mesh edge index. Values
to the left of the vertical red line indicate edges on the array elements.

Values to the right of the line indicate edges on the ground-plane.
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Figure 4.27: Comparison of current percent error values when modes are
calculated directly for the entire structure, and when the substructure

procedure is used.

the difficulty mode tracking poses for larger problems over appreciable fre-

quency ranges. We demonstrated the differences between ground and array

dominant modes and the differing effects they have on the total modal sum-

mation accuracy. An eigenvalue based method of differentiating these modes

was demonstrated with the use of delta weight values. Finally we examined

the application of substructure decomposition to the modal problem and the

accuracy penalty it incurs when applied to electrically large problems.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This work has investigated the utility and accuracy of using characteristic

mode analysis in the study of electrically large finite antenna arrays. Re-

search into characteristic mode analysis has seen a resurgence in recent years

and has been implemented in a number of commercial solver suites as well.

However, like any computational method it should not be applied blindly

and this work illustrates a number of difficulties that can arise when using it

on large array problems. We have demonstrated accuracy metrics for single

resonant elements, linear arrays, and an array with a finite ground-plane.

The metrics are based on eigencurrent and modal far-field projections. The

accuracy convergence of modal sums has been shown to vary depending on

element symmetry, and whether the structure supports a meaningful imag-

inary current distribution. These metrics have been utilized to show the

sensitivity and behavior of a modal sum applied to a phased array steering a

beam away from broadside. Additionally we have demonstrated that popular

mode tracking algorithms are still unable to track eigenmodes for our scale

of problem across a meaningful range of frequency points. This fact coupled

with the computational costs of large N eigenvalue problems calls into ques-

tion the utility of direct characteristic mode applications to large problems.

Attempts to utilize substructure based methods show promise despite the

error introduced to ground-plane currents. The presented results are to be

used in conjunction with an engineer’s knowledge of error tolerance. CM is

not a one-size-fits-all approach and this work demonstrates some of the limits

of its application.

Utilizing and providing accuracy metrics for alternative modal decompo-

sitions is an area of much needed future work. Energy storage and radiation

modes [33] show great promise in isolating ground-plane properties from the

large radiation problem; however, this method currently is limited to elec-

trically smaller problems. Port focused methods [34, 35] can help reduce
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the size of the CM problem for simple antenna elements with known cur-

rent distributions. Element cell methods may prove to be a more fruitful

area of research, where inter-element coupling can be incorporated by iter-

ative perturbation methods, instead of the entire-structure basis approach

investigated in this work. We demonstrated the effect of impedance matrix

conditioning and the need to relax requirements of purely real modes when

the CM problem produces complex results. Further work on studying the

impact of these mode definitions is necessary, and can be expanded to array

work that includes dielectrics in the modal decomposition [24].
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APPENDIX A

ADDITIONAL MODAL ACCURACY
VALUES

Having examined a single-ring element and its CM decomposition we now

simulate and study an electric dipole, another common antenna array el-

ement. Figure A.1 depicts the total current percent error values for four

geometric variations of a λ/2 dipole, with the impedance matrices computed

by FEKO.

An alternative element, a square ring, is tested using FEKO with the

results shown in Figure A.2. It was chosen as a test element because of its

reduced dimensions of symmetry relative to a circular ring.

Comparing these results with the thin-strip ring results presented in Chap-

ter 3, we can make some observations about the effect of physical symmetry

on the modal decomposition of an antenna element, which past works have

shown can affect how modes couple to one another [30]. The circular ring has

infinitely many axes of symmetry. The square ring has four axes of symmetry.

A sufficiently thin strip dipole has one axis of symmetry, assuming it behaves

like a thin-wire. We note that square ring does not suffer from the “broken”

solutions of the circular ring, where when using the original impedance ma-

trix the error remains high as more modes are added to the summation. The

dipole converges most rapidly in terms of real error, achieving near perfect

accuracy. Variation 2 of the dipole experiences divergent behavior in the

imaginary current summation, a behavior which must be studied further.
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(a) Variation 1:
wd = λ/100; ml = λ/60
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(b) Variation 2:
wd = λ/50; ml = λ/60
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(c) Variation 3:
wd = λ/50; ml = λ/30
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(d) Variation 4:
wd = λ/100; ml = λ/30

Figure A.1: Total current percent error [Eqs. (3.1) and (3.2)] values for a
single thin-strip dipole simulated in FEKO. Four variations were tested,

with differing dipole widths (wd) and maximum mesh segment lengths (ml),
using the original impedance matrix, and two ex post conditioned matrices.

68



0 10 20 30 40 50 60

Number of modes included

0

5

10

15

20

25

30

35

T
ot

al
 c

ur
re

nt
 p

er
ce

nt
 e

rr
or

Orig: real
Orig: imag
Orig: total
Sym: real
Sym: imag
Sym: total
SPD: real
SPD: imag
SPD: total

Figure A.2: Total current percent error for a single thin-strip square ring
with thin-strip width wr = λ/100 and maximum mesh edge lengths
ml = λ/30, using the original impedance matrix, and two ex post

conditioned matrices.
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APPENDIX B

DELTA MODAL WEIGHT PLOTS

In Section 4.3.2 delta modal weight values are plotted for 1◦ and 5◦ beam

steering increments. Figures B.1-B.3 present the delta modal weights for 2◦,

3◦, and 4◦ increments. The delta weight trends are presented in Table 4.5.
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Figure B.1: Delta weight values for a five-element dipole array above a
rectangular ground-plane with beam scanned in 2◦ increments from

broadside. The color scale from cyan to magenta indicates the average
modal current magnitude at the array ports, ranging from low density

(ground-modes) to high density (array-modes).
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Figure B.2: Delta weight values for a five-element dipole array above a
rectangular ground-plane with beam scanned in 3◦ increments from

broadside.
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Figure B.3: Delta weight values for a five-element dipole array above a
rectangular ground-plane with beam scanned in 4◦ increments from

broadside.
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