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Abstract—Code updates, such as those for debugging purposes,
are frequent and expensive in the early development stages of
wireless sensor network applications. We propose AdapCode, a
reliable data dissemination protocol that uses adaptive network
coding to reduce broadcast traffic in the process of code updates.
Packets on every node are coded by linear combination and
decoded by Gaussian elimination. The core idea in AdapCode
is to adaptively change the coding scheme according to the
link quality. Our evaluation shows that AdapCode uses up to
40% less packets than Deluge in large networks. In addition,
AdapCode performs much better in terms of load balancing,
which prolongs the system lifetime, and has a slightly shorter
propagation delay. Finally, we show that network coding is doable
on sensor networks in that (i) it imposes only a 3 byte header
overhead, (ii) it is easy to find linearly independent packets, and
(3) Gaussian elimination needs only 1KB of memory.

I. INTRODUCTION AND MOTIVATION

Wireless sensor networks have been widely used to perceive
and interact with the physical world for different purposes such
as military surveillance [6], habitat monitoring [15], structural
monitoring [18], and medical applications [4]. Sensor network
applications are typically developed and debugged in the lab
then deployed in a representative environment (e.g., outdoors),
where the remaining environment-dependent bugs are elimi-
nated. Often, such troubleshooting requires frequent upload
of new code, motivating efficient broadcast. The broadcast
must be reliable, fast, and minimal in the amount of network
bandwidth consumed. Furthermore, it is desired that the load it
imposes on the network be balanced in order to balance energy
consumption, which reduces the need for battery recharge
during field debugging.

Network coding has been recently introduced to reduce
traffic in general networks [1]. A lot of work in both wired
and wireless networks followed this idea. This reduction of
traffic makes the most sense in wireless sensor networks,
where nodes have very scarce resources. Moreover, since
communication is slow compared to computation, a trade-off
between computation and communication can be exploited. It
becomes acceptable to do more sophisticated computation in
order to reduce the need for transmission. In addition, the
broadcast nature of wireless sensor networks increases the
benefits of network coding. Due to the one-to-many property,
the sink needs to update codes or sends protocol configuration
messages to all nodes [7]. We focus on making this broadcast
scenario efficient. Encoding packets in intermediate nodes and

then sending only coded packet instead of individual packets
reduces the traffic and saves energy without increasing delay.

Previous work [8] applying network coding to wireless
networks cannot be applied to sensor networks. In sensor
networks, memory is so limited that nodes cannot cache over-
heard packets which might not be useful, and energy is also
too precious to broadcast the packets nodes have overheard. A
protocol running in sensor networks must be simple and easily
implemented. Moreover, the dynamic environment of wireless
sensor networks should be considered; nodes can temporarily
disconnect or fail and the link quality between nodes can vary
over time. A good algorithm should be adaptive to reflect this
dynamic nature.

This paper proposes AdapCode, a reliable data dissemina-
tion protocol using adaptive network coding, to reduce traffic
in the process of code updates. Our coding methodology is
to randomly generate N coefficients and compute the linear
combination of N packets. Gaussian elimination is used to
decode the original packets. From our preliminary work, we
found that the best coding scheme (i.e., one that produces
the least packets) varies depending on the link density. For
example, N = 8 is the best when nodes have 12 neighbors,
while N = 2 is the best when they have only 5 neighbors.
Generally, if nodes have more neighbors, they can encode
more packets together without losing reliability since they
can get enough combinations from their neighbors to decode.
Taking advantage of variations in connectivity, we present an
adaptive network coding protocol, where nodes dynamically
decide N based on how many neighbors they have. Since
the broadcast must be received by all nodes, 100% reliability
is required and guaranteed by NACK messages. We compare
AdapCode with Deluge, a state-of-the-art protocol for prop-
agating new code images, in TinyOS version 2. The results
show that AdapCode uses less packets than Deluge does to
send an image of the same size in dense deployments. For
example, in a large network, AdapCode uses up to 40% less
packets to send a code image of 1024 packets and up to 30%
less packets to send a code image of 128 packets when nodes
have about 7 neighbors on average. Furthermore, AdapCode
outperforms Deluge in terms of load balancing. The number
of packets sent in AdapCode from the top 10% most-sending
nodes is significantly smaller per node than that with Deluge.
This property delays the need for changing batteries since
the power consumption is more equally distributed across all



2

nodes in those topologies. Moreover, AdapCode propagates
new image of that size within a propagation delay that is up
to 15% shorter compared to that of Deluge.

Overheads in AdapCode in our implementation are reason-
ably low. First, the packet header overhead occurs in two ways;
storing coefficients of the linear combination and handling
computation overflow. Our analysis shows that storing coeffi-
cients needs 17 bits and handling computation overflow needs
5 extra bits in our implementated setting. The total storage
overhead is therefore 3 bytes, not significant given the 46-
bytes TinyOS packet size. Second, once we randomly choose
the coefficients, it is possible to have linearly dependent com-
binations. This is another form of overhead since it required
more packets to be received such that they can be decoded.
We show that the expected number of extra packets needed to
obtain a given number of linear independent combinations of
messages is not large. Finally, we show that the computation
cost of Gaussian elimination is only 1KB memory.

The rest of this paper is organized as follows: Section 2 in-
troduces the related work. Section 3 provides some preliminary
experimental data that guide algorithm design. The section
explores the best coding scheme in different network densities.
Section 4 presents our design of AdapCode. We analyze
the overhead needed in Section 5. Finally, the evaluation of
AdapCode is shown in Section 6.

II. RELATED WORK

Our approach is to apply network coding in sensor networks
to reduce the traffic used in propagating large amounts of data.
Related research can be divided into three categories: data
dissemination, network coding, and network programming.

Power is one of the most critical resources in wireless
sensor networks. Since packet transmission is a very energy-
consuming action for sensors, a lot of work has focused on
reducing packet transmissions. One of the most widely used
approaches is to do data aggregation [12]. This approach
cannot be used when all the original packets are needed at
the received as is the case with propagating code updates.
In this paper, we focus on the packet broadcast problem in
which all nodes need to receive all the packets. Obviously,
naive flooding is also not desirable since it leads to the
broadcast storm problem [13]. An approach trying to minimize
the number of packets required for a sink to flood queries is
probabilistic broadcast [11] [5]. We experimentally show that
network coding outperforms probabilistic broadcast.

Network coding [1] is used to improve throughput or save
bandwidth. The core idea of network coding is to allow
the mixing of data (e.g., by an XOR operation or a linear
combination) at intermediate network nodes. Network coding
has been applied in general networks. Li et al. applied network
coding in wired networks [10]. For wireless networks, Katti et
al. take advantage of overheard packets [8]. Their work takes
advantage of cross links, which is not feasible in our one-to-
many scenario. The approach also incurs overhead since nodes
need to broadcast overheard packets they receive. Recently,

network coding has been introduced in wireless sensor net-
works for ubiquitous data collection [3] and continuous data
collection [16]. These coding schemes are used for data stor-
age in query-based applications but not for saving bandwidth.
Widmer et al. apply network coding in delay-tolerant networks
and shows that network coding compares very favorably to
probabilistic routing in reliability and robustness [17].

Deluge is now perhaps the most popular data dissemination
protocol used for reliable sensor network broadcast [7]. It is
heavily used for network code upload [2] [19]. It can dis-
seminate data with 100% reliability at nearly 90 bytes/second.
Deluge builds off Trickle, a protocol for maintaining code up-
dates in sensor networks [9]. Trickle uses the epidemic/gossip
approach where a node suppresses its own broadcast if
it overhears a similar code summary. The advertising rate
changes depending on whether the node is up-to-date or not.
Trickle can re-program an entire network in as little as twenty
seconds. Trickle only provides a mechanism for determining
when nodes should propagate code and only deals with single
packets. Deluge adds full support for the dissemination of large
data objects. Deluge has been integrated into TinyOS and was
recently ported to TinyOS version 2. We aim at further reduce
the traffic needed in the network programming process.

III. PRELIMINARY EXPLORATION

Network coding helps in sensor networks for two main
reasons. First, sensor nodes are extremely resource restricted
and hence traffic needs to be minimized. One may be willing
to pay the cost of computation in order to reduce traffic.
Second, sensor networks have a broadcast nature. Previous
research applying network coding in wireless networks fo-
cused on unicast since there are not many broadcast scenarios
in wireless networks. In contrast, we study the case where
some information (e.g., code updates [7] or network re-
configuration), needs to be known by all nodes.

Our work tries to use network coding to reduce the traffic of
code dissemination. A simple example of how network coding
reduces traffic in such a broadcast scenario can be seen in
Figure1. The sink, A, needs to broadcast 2 packets, a and
b. If nodes simply forward the messages they receive, A, B,
and C need to send a total of 6 packets (2 packets each).
With network coding, B and C can a combination of a and b,
say a + b and a + 2b respectively. D and E can then simply
decode the packets by solving linear equations. We thus save
two packets in total.

Our methodology of coding is to combine n packets into one
coded packet using linear combination. In node t, we generate
n coefficients at,1 ∼ at,n and compute bt = at,1 · p1 + at,2 ·
p2 + . . . + at,n · pn, where pk is the kth packet and bt is the
coded packet. The n coefficients are included in the header of
the coded packet. Therefore, a node receiving n coded packets
can easily solve Ap = b by Gaussian elimination.

In the following two subsections, we present a preliminary
performance exploration of naiive network coding that moti-
vates AdapCode design. First, we show by simulation that the
choice of the optimal number of packets to combine into one
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Category Parameter Value
Channel PATH LOSS EXPONENT 4.0

SHADOWING STANDARD DEVIATION 4.0 dB
PL D0 55.0 dB

Radio NOISE FLOOR -105.0 dBm
WHITE GAUSSIAN NOISE 4

TABLE I: Parameter setting of our simulations

Fig. 1: The network coding diagram.

depends on network density. We quantify this dependency and
exploit it later in our adaptive algorithm.

Second, given a well-tuned scheme (that combines, say,
every N packets), we show that naiive network coding outper-
forms a store-and-forward approach given the same bandwidth
consumption. Observe that, in the network coding scheme, a
node sends one message for every N messages it receives.
In other words, compared to naiive flooding, the bandwidth
saved is up to N−1

N . Another active approach saving an equal
amount of bandwidth is probabilistic forwarding, where a
node re-broadcasts an incoming message with probability 1

N .
Comparing the two schemes gives some preliminary insight
into the raw advantages of network coding.

We performed our preliminary experimental exploration
using the TOSSIM simulator [14]; a standard tool in sensor
network simulation that runs actual network code on simu-
lated nodes. The parameter settings are shown in Table I.
We considered a 10 × 10 grid of nodes. In the simulated
deployment, there is a source in the network that keeps on
sending broadcast messages. The node density is represented
by the average number of neighbors, which is varied from 4
to 12, per node.

A. A Motivation for Adaptive Coding

When performing network coding, nodes cannot decode
packets until they can get enough combinations to decode.
If a sufficient number of independent combinations is not
received, reliability is lost. Hence, it is interesting to explore
the reliability implications of chosing the number of packet
to combine. We refer to a particular choice of such number
by coding scheme. Hence, it is interesting to compare the
reliability of different coding schemes in a given network.

Fig. 2: Each curve shows the reliability of different coding
schemes in a specific density. The density is shown in terms
of number of neighbors.

To compute reliability, we ran different coding schemes on
at different network densities. In each scheme, we specify N ,
the number of packets to be combined. In other words, each
node will send out one packet containing a linear combination
of N messages upon receiving enough data. Therefore, the
number of packets sent using network coding is 1

N of that of
naiive flooding. Obviously, a node cannot decode any message
until it receives N packets. We compute reliability, defined
as the fraction of nodes that can successfully decode all the
messages. The result is shown in Figure 2. As intuition,
reliability will drop as N increases and density decreases
because it becomes harder to receive enough packets to decode
data successfully. However, most nodes can still decode all
messages under network coding as long as the node density
is high enough. For example, when nodes have 12 neighbors,
more than 98% of them can decode all messages when N is
8. In a sparse scenario, where nodes only have 5 neighbors,
the reliability remains 97% if we reduce N to 2 (which
means we can save 50% traffic without considering NACKs
and retransmission). This result clearly suggests that network
coding can reduce traffic without significant loss on reliability,
but N must be adapted to network connectivity.

In the ultimate implementation, we need 100% reliabil-
ity. Therefore, we add Negative-ACK (NACK) to the naiive
scheme. Observe that without the NACKs, a node receiving
N−1 packets and a node receiving no packets at all are equally
problematic because neither of them can decode any of the
original N messages. When NACKs are used, nodes receiving
less than N packets can send out NACKs to retrieve missing
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Fig. 3: Number of expected transmissions per packet for
different node densities. The density is shown in terms of
number of neighbors.

data they need that has already been decoded elsewhere. In
the above example, a node receiving N − 1 packets will need
only one more packets to decode all the messages.

To reflect the effect of NACKs on performance, we measure
another metric, which we call the number of expected trans-
missions. The number of expected transmissions is defined
as the total number of transmissions plus twice the number of
missing packets. The intuition behind the definition is that once
a node misses a packet, it must send out one NACK to one of
its neighbors. The neighbor will reply with the needed packet.
This procedure results in two extra transmissions. Although the
number of expected transmissions is only a rough estimate, it
can serve as a guideline on how to choose a reasonable N .
Figure 3 depicts the number of expected transmissions per
message sent by source under different node densities and
coding schemes. Note that, there are always 100 nodes in
our topologies. Hence, without network coding, at least 100
messages are incurred when the source wants to broadcast a
packet. Using this figure, we can obtain the coding scheme that
can result in the fewest number of expected transmissions for
topologies with different grid size. For example, when nodes
have 8 neighbors, setting N = 4 can achieve the minimum
number of expected transmissions.

This helps us understand how good network coding can be
in different densities. Coding lots of packets together helps
reduce the traffic, but it also decreases reliability. Once the
reliability drops, we need more NACK/reply traffic to alleviate
the situation. The number of expected packets enables us to
balance the tradeoff between traffic and reliability. The best
coding scheme for various densities is shown in Table II to
demonstrate how network coding is using up redundant links.

B. Network Coding versus Forwarding

Next, we compare naiive network coding (with no NACKs)
to forwarding for the same bandwidth consumption. As alluded
above, to ensure same bandwidth consumption, the forwarding
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Fig. 4: Reliability of network coding(NC) and gossip

scheme must forward received packets with a probability of
1/N (i.e., it is a gossip scheme) whereas the network coding
scheme reduces every N received packets into one forwarded
packet, ensuring the same receive to forward ratio. The results
of this comparison for different N are shown in Figure 4. In
most cases, network coding has better reliability than gossip.
For example, when N = 6, the reliability of network coding
remains 99% when nodes have 10 neighbors. Meanwhile, the
reliability of gossip becomes 36% under the same setting.
Network coding is therefore preferable in the sense that it
will require less NACK overhead to ensure reliable broadcast.

This preliminary experiment suggests network coding is a
better way to disseminate data across the whole network. It is
not difficult to see why gossip behaves so poorly. When we use
gossip, a node randomly decides whether to forward a received
packet or not. It is very likely for two neighboring nodes
to forward the same packet, resulting in useless duplicate
packets. Network coding, on the other hand, sends out a
random linear combination of all the N packets. It is less
probable for two nodes to choose the same (or a dependent)
linear combination. Therefore, useless duplicate packets occur
less frequently when we use network coding.

IV. ADAPCODE DESIGN

The results of the previous section suggest that we can
reduce traffic by applying network coding and if the coding
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Avg. number of neighbors 12 11 10 9 8 7 6 5 4
Best coding scheme N=8 N=8 N=7 N=5 N=4 N=3 N=2 N=2 N=1

TABLE II: Best coding scheme derived from simulation

scheme is adaptive to network conectivity, the overhead of
reliable broadcast can be kept small. We next summarize
the properties of a code distribution protocol that we aim to
satisfy:
• Reliability: When performing code distribution, every

node in the network should correctly receive the updated
code. This is accomplished by using NACKs. In this
paper, we do not address temporary node failures and
reboots.

• Adaptation: Although Table II has shown us the best
coding scheme under different connectivity, in a real
deployment, node densities may not be known a priori.
Also, since nodes may run out of energy or suffer changes
in radio range, node connectivity may not remain static.
Therefore, a protocol using network coding should be
able to decide its coding scheme adaptively using each
node’s local knowledge.

• Low Memory Usage: Memory is a limited and valuable
resource in sensors. A MicaZ sensor typically has only
4 kilobytes of RAM. Hence, a protocol using network
coding should not require large memory usage (e.g., for
doing Gaussian elimination). Observe that any memory
used by dissemination protocol can be released after code
distribution finishes. Therefore, doing network coding
during the code distribution period will not interfere with
sensor operations that follow such distribution. Neverthe-
less, it is still vital that our protocol can fit into the RAM
of sensors.

• Rapid Propagation: When a developer wants to do
code distribution frequently, a desired feature is that the
updated image is propagated to every node in the network
rapidly. The time taken to propagate the updated image
should be of the order of seconds.

• Low Traffic: The traffic required by code distribution
should be very small. If too much traffic is introduced,
the code distribution procedure may use up too much
energy and hurt battery life.

• Load Balancing: The traffic sent by each sensor should
be approximately balanced. If a small portion of sensors
incur a significantly larger amount of traffic than others,
those heavy-loaded sensors may fail much quicker.

Next, we describe a protocol that achieves the above perfor-
mance goals.

A. Protocol Overview

In our protocol, we assume there are n data messages, each
with fixed length that can fit into a packet. There is one single
source in the system. The source will keep sending packets
containing those messages. All the other nodes will help
spread messages they receive. Those nodes will use network

coding to minimize the number of transmission while ensuring
that every active node in the system will correctly receive those
messages.

We divide the messages into sequentially numbered pages.
Each page contains a fixed number M of messages. We
explicitly require M to be a power of 2. In our system, we
choose M equals 8. The source will keep on transmitting
packets and will pause for a period of T milliseconds after
finishing a page. This pause of source is necessary to allow
other nodes to start propagate previous pages. The choice of T
is a tradeoff between traffic and propagation time, which we
will discuss in section VI. When a node receives a packet,
it first runs Gaussian elimination to see if it has gathered
enough information to decode all messages in the packet’s
page. When it succeeds in decoding all messages within
a page, it determines its coding scheme, N , according to
the number of its neighbors. We require N to be a factor
of M . This also implies that N must be a power of 2.
After determining the coding scheme, the node sends out M

N
packets, each containing a linear combination of N messages
in the page. The coefficients of each linear combination are
randomly chosen from 0 to p−1, where p is a prime number.
Furthermore, we make the leading coefficient of every linear
combination be 1. In the implementation, we choose p to equal
5. Also, to avoid multiple sensors transmitting at the same
time, which can cause serious collisions, sensors will randomly
backoff for a short time before they try to transmit. In our
design, the period of backoff is uniformly chosen between
10ms and 74ms. After finishing transmitting those packets,
the sensor puts the messages it just decoded into program
memory.

B. Adaptively Determining Coding Scheme

As mentioned above, we determine the coding scheme by
the number of neighbors that a sensor has. When a sensor starts
to buffer packets for a page, it keeps a counter, curNeighbor.
This counter is defined as the number of different sources of
the packets that the sensor knows of. After the sensor succeeds
in decoding that page, it computes its long-term number of
neighbors, avgNeighbor, using the formula: avgNeighbor =
α × avgNeighbor + (1 − α) × curNeighbor. The value
of α should be determined according to the stability of the
network. For example, if nodes in the network fail frequently,
we should have a small value of α to be resilient against
topology changes. On the contrary, if the topology remains
quite static over time, we should set α to a larger value to
obtain a more accurate number. In our implementation, we
choose α = 2

3 .
The sensor then decides N according to avgNeighbor and

Table II. From Table II, we can obtain a set of 2-tuples with the
form (a, b), where a is the average number of neighbors and b
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is the best coding scheme. The decision on N is made as the
largest power of 2 such that there exists a 2-tuple (a, b) with
a ≥ avgNeighbor and b ≤ N . Table III shows the resulting
decision derived from the above procedure.

C. Dealing with NACKs

During the code update process, every node keeps a count-
down timer. A node will send out a NACK to the local
broadcast address when the timer fires. In the NACK packet,
the sensor will indicate the page number it is asking for and
messages it needs to decode all messages in the page. Since
the source will pause for T milliseconds between pages, the
delay between pages is at least Tms. The value of the timer
is initially set to 2T milliseconds.

A key problem in dealing with NACKs is to determine
which node should respond to the NACK. If multiple nodes
respond simultaneously, they not only incur unnecessary
transmissions but may also cause serious packet collisions
and channel congestion. To solve the problem, we design a
mechanism to distributively select the responder to the NACK
without any maintenance overhead. When a node receives
a NACK message, it first checks whether it can reply with
the needed data. If it can do so, the node will delay for a
random period of time to see if any of its neighbors is replying
to this NACK. If no reply is heard before the timeout, this
node will respond to the NACK. Using this mechanism, we
can significantly reduce the risk of simultaneous responses to
NACKs.

Further, we adopt a ”lazy NACK” mechanism to reduce
the number of NACKs. When a node sends out a NACK, it
doubles the value of its countdown timer. The value of the
timer will be restored to T once the node receives a packet
in its page. Also, if a node overhears a NACK containing the
same page number as its own, it will reset its timeout timer
to avoid sending duplicate NACK.

The detailed algorithm of AdapCode design is shown as
follows.

V. COST ANALYSIS

Wireless sensors have very limited memory and trans-
mission ability. Many widely used techniques for wireless
networks can not be carried out on sensor networks since their
costs are too high for the capacities of wireless sensors. In this
section, we study the cost of our network coding protocol.

A. Packet Overhead

When a node transmits a packet containing a linear combi-
nation of messages, it needs to put the coefficients it chooses
in the packet. This will induce additional overhead. A packet
can be composed by at most M messages. Since we make the
leading coefficient be 1, there are at most M − 1 coefficients
left to be specified. These coefficients can be any integer
between 0 and p−1. Therefore, there are pM−1 choices for the
coefficients, which need at most dlog2 pM−1e bits to specify.

Overhead is also induced by the possibility of overflow
when doing linear combination. Suppose each message has

Algorithm 1 ADAPTCODE

1: coeffMatrix ← a M ×M matrix
2: invMatrix ← a M ×M matrix
3: curNeighbor ← 0
4: timerV alue ← 2T
5: set countdown timer equals timerV alue ms
6: while code distribution is going on do
7: if a packet is received then
8: sender ← the sender of the packet
9: pageNumber ← the page number of the packet

10: if sender has not been seen before then
11: curNeighbor ← curNeighbor + 1
12: timerV alue ← 2T
13: set countdown timer equals timerV alue ms
14: construct coeffMatrix using coefficients from

packets in page pageNumber
15: rank ← Gaussian(coeffMatrix, invMatrix)
16: if rank = M then
17: solve all messages in the page by invMatrix
18: avgNeighbor = α × avgNeighbor + (1 − α) ×

curNeighbor
19: determine N using avgNeighbor
20: broadcast M

N packets
21: curNeighbor ← 0
22: pageNumber ← pageNumber + 1
23: if a NACK is received then
24: pageNumber ← the page number of the packet
25: if page pageNumber is already received then
26: wait for a random period
27: if no response heard during the period then
28: reply to the NACK
29: if timer timeouts then
30: send a NACK
31: timerV alue ← 2× timerV alue
32: set countdown timer equals timerV alue ms

Algorithm 2 Gaussian(coeffMatrix, invMatrix)
1: run Gaussian elimination on coeffMatrix
2: if coeffMatrix is invertible then
3: invMatrix ← the inverse matrix of coeffMatrix
4: return the rank of coeffMatrix

t bits. Its numeric value will be no larger than 2t − 1. The
linear combination involves at most M messages, each with
coefficient at most p−1. Hence, the numeric value of the linear
combination is at most (p−1)×M× (2t−1). The number of
bits needed to represent this value is dlog2(p− 1)×Me+ t.
Overhead caused by overflow is hence dlog2(p− 1)×Me.

In our implementation, we choose M to be 8 and p to be 5.
The overhead caused by coefficients is 17 bits. The overhead
caused by overflow is 5 bits. Hence, the overall overhead for
our protocol is at most 22 bits, which is less than 3 bytes.
Compared to a standard MicaZ packet, which has 46 bytes,
the overhead is acceptably small.
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avgNeighbor 0 – 5 5 – 8 8 – 11 11 –
N 1 2 4 8

TABLE III: The choice of N according to avgNeighbor

B. Solvability of Gaussian Elimination

Ideally, we need M different linear combinations of mes-
sages to yield the original messages in a page. However,
since we limit the choice of coefficients to integers between
0 and p − 1, it is possible that some linear combinations are
linear dependent. In this section, we derive an upper bound
on the expected number of packets needed to obtain M linear
independent combinations of messages.

We treat the coefficients of every linear combination as a
vector with length M . Our goal is to derive the number of
vectors needed to obtain M linearly independent vectors, given
that every entry, except the first one, in a vector are randomly
chosen between 0 and p − 1 and the first entry is 1. For the
ease of analysis, we consider the linear dependency in ZM

p ,
the residue class of modulo p. In Zp, all operations are treated
as modulo operations. For example, in Z5, we have 3+3 = 1
and 2 × 3 = 1. Since every set of linearly dependent vectors
is also linearly dependent in ZM

p , our simplification will yield
the upper bound of the expected number of vectors needed.

Let Ei, 1 ≤ i ≤ M , be the expected number of vectors
needed to obtain i linear independent vectors in ZM

p . Our
goal is to derive the value of EM . Obviously, E1 = 1.
Suppose we already have j linear independent vectors, namely,
v1, v2, · · · , vj . Now we are given another randomly generated
vector, vj+1, and we wish to compute the probability that vj+1

is independent from v1, v2, · · · , vj . If vj+1 is not independent
from those vectors, there exist constants c1, c2, · · · , cj such
that

∑j
k=1 ck × vk = vj+1. Now, note that the first entries

of all these vectors are 1. Hence we have
∑j

k=1 ck = 1. The
number of different choices of (c1, c2, · · · , ck) satisfying this
constraint is pj−1. This implies there are pj−1 different vectors
that are linearly dependent with v1, v2, · · · , vj . Since there are
pM−1 different choices for vj+1. The probability that vj+1

is linearly independent from the other vectors is 1 − pj

pM . In
other words, after obtaining j linearly independent vectors, we
need, on average, pM

pM−pj more vectors to yield another linearly
independent vector. This results in the recursion formula:
Ei+1 = Ei + pM

pM−pj , for all i ≥ 1. Solving this formula

we obtain EM = 1 +
∑M−1

j=1
pM

pM−pj . In our implementation
settings, we have EM = E8 = 8.30, which is very close to 8,
the least number of packets needed to decode all messages in
one page.

C. Feasibility of Gaussian Elimination

Wireless sensors are known for having very limited memory.
It is very important that Gaussian elimination does not use
up too much memory. In this section, we study the memory
needed to run Gaussian elimination.

Typically, Gaussian elimination requires two M ×M ma-
trixes, one to store the original coefficients and the other
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Fig. 5: The probability of receiving a packet from another node
in different distances

to store the inverse matrix. In our implementation, we store
numerators and denominator in different places, resulting in
four M ×M matrixes. There are totally 4×M2 elements in
those matrixes. What’s left is to determine the size of each
element.

Let A = [aij ] be the coefficient matrix composed of
coefficients in received packets and Aij be the matrix obtained
from A by deleting row i and column j. Also, let [A] be
the determinant of matrix A. Every element in the inverse
matrix A−1 will be in the form of [Aij ]

[A] . Therefore, the
size of elements in the matrixes should be big enough to
hold the maximum possible value of [A]. Let DM be the
maximum possible value of determinant of the coefficient
matrix. Note that D1 = 1 since we require the leading
coefficient to be 1. According to the definition of determinant,
[A] =

∑M
i=1 ai1 × [Ai1], for all M > 1. Now that ai1 is

at most p − 1 and [Ai1] is no larger than DM−1, the value
of [A] is upper bounded by M × (p − 1) × DM−1 and we
can obtain the recursion: DM ≤ M × (p − 1) × DM−1.
Solving the inequality yields: DM ≤ M !×(p−1)M−1. In our
implementation settings, DM is less than 231, meaning that we
only need to allocate 4 bytes for each element in the matrixes.
Thus, the total memory usage of Gaussian elimination would
be 4×4×M2 = 210bytes = 1KB, which can fit in the memory
of most modern sensors. In our implementation, AdapCode
requires 1433 bytes in RAM.

VI. PERFORMANCE EVALUATION

A. Simulation Settings

In this section, we present our simulation results for Adap-
Code. We consider a 10×10 grid of MICAZ nodes simulated
in TOSSIM of TinyOS version 2. Table I shows the simulation
settings. To have an idea about what the transmission range is
in this parameter setting, we show the probability of receiving
a packet from another node in Figure5.
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Fig. 6: Performance of AdapCode under different T

B. Interpage Pause Interval

As mentioned in section IV, the source will pause for T
milliseconds after transmitting a page. The choice of T is
a tradeoff between traffic and latency. Obviously, larger T
will result in longer latency. On the other hand, large T can
help reduce traffic due to two reasons: First, larger T implies
larger timeout intervals before a node sends out a NACK. The
number of unnecessary NACKs is hence reduced. Moreover,
since nodes decide their coding scheme based on the number
of neighbors heard in a page, larger T will allow nodes have
enough time to make a good estimation on their number of
neighbors. This will enable nodes to choose a coding scheme
that can incur the least traffic.

To show the influence of T on the performance of Adap-
Code, we measure both the mean number of packets sent
per node and the time needed to disseminate an image with
1024 packets. As shown in Figure 6b, the time needed to
disseminate the image almost grows linearly as T increases.
On the other hand, Figure 6a shows that increasing T reaches
deminishing returns in terms of reducing traffic. For example,
when we change T from 100 to 200, the mean number of
packets sent per node drops from 1115 to 813, resulting in
a 302 packet reduction. However, when we change T from
500 to 600, the reduction in traffic is merely 34 packets. In
our design, we choose T = 300 since this results in both low
traffic and low latency.

C. Traffic

In the following sections, we compare AdapCode with Del-
uge, the state-of-art code dissemination protocol. We evaluate
these two protocols using three metrics: traffic, load balance,
and propagation delay. We assume that the source needs to
broadcast a piece of code that can be divided into D packets.
We run both protocols 50 times in a grid deployment for each
grid size between 4m and 7m. To see how AdapCode behaves
under different code sizes, we evaluate the performance for
both D = 128 and D = 1024, which approximately corre-
sponds to code images with sizes 2KB and 20KB.

We first compare the mean number of packets per node
needed to broadcast D data packets. In addition to data
packets, we also count the number of NACKs and replies to
NACKs in AdapCode. Similarly, since Deluge uses epidemic
messages and request messages to trigger code dissemination,
we count the number of these two types of packets. Further, we
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Fig. 7: Number of packets sent per node for different grid
sizes

include naiive flooding as a performance baseline. In flooding,
every node needs to broadcast whatever messages it receives.
The mean number of packets per node needed for flooding is
computed as the number of data segments, which is 128 and
1024 for different settings on D. In other words, we assume
there is no packet loss and retransmission in flooding. The
mean number of packets sent per node for different grid sizes
are shown in Figure 7.

It is very clear from the figure that AdapCode uses signif-
icantly fewer packets than flooding for all grid length sizes.
Although we unfairly assume links in flooding never drop a
packet, AdapCode uses 41–80% and 33–83% fewer packets
than flooding for D = 128 and D = 1024, respectively.
AdapCode also has better performance when compared with
Deluge. The performance gain is greater when the grid size
is small. When D = 128, AdapCode uses up to 24% less
traffic than Deluge does. When D = 1024, the save of traffic
by AdapCode is even more significant, up to 40%, than that
by Deluge. These results prove that our protocol is adaptive
enough to choose a coding scheme that can reduce traffic
without incurring too many retransmissions.

D. Load Balancing

The main motivation for saving traffic is to reduce the
energy consumed and to prolong the lifetime of the network.
Therefore, load balancing is almost as important as bandwidth
usage efficiency. If some nodes are too heavily loaded, those
nodes will tend to die out quickly, which can potentially influ-
ence the connectivity and coverage of the network. To compare
the quality of load balancing of AdapCode and Deluge, we
compute the number of packets sent by the 10% nodes that
send the most packets. Figure 8 shows the average number
of packets transmitted per such node. The results show that
AdapCode achieves a much better load balance than Deluge.
Moreover, the differences between AdapCode and Deluge are
not severely influenced by grid sizes. When D = 128, the
heavy weighted nodes in AdapCode transmit 57–67 fewer
packets than those nodes in Deluge. When D = 1024, the
differences become 266–422 packets. Therefore, AdapCode
can do a better job in prolonging network lifetime by achieving
good load balance.

The reason why AdapCode has better load balancing prop-
erties is because AdapCode has better function distribution
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Fig. 9: Mean time required for all nodes to receive all data

properties. Every node in AdapCode needs to forward some
data packets once it decodes messages in a page. Hence,
the load of forwarding messages is equally distributed among
neighbors. Further, when a node receives a NACK, it needs
to backoff for a random period of time before it replies to
the NACK. This mechanism makes every node have similar
probability of replying to NACKs. Further, since a page in
AdapCode consists of only 8 messages, the burden of replying
to a single NACK is small.

E. Propagation Delay

Another important metric in code dissemination protocols
is the time taken to disseminate the code. Since developers
may usually want to frequently update code in the debug-
ging stages, high propagation delay will make the procedure
painfully slow. From Figure 9, we can see that AdapCode
satisfies the requirement of small propagation delay. Adap-
Code generally takes less time than Deluge to complete code
dissemination. When D = 128, AdapCode is quicker than
Deluge by about 10Furthermore, AdapCode is always quicker
than Deluge when D = 1024. The latency difference between
the two protocols can be as high as 20 seconds, or 15%. Since
Deluge is known to be a highly optimized code dissemination
protocol, this result shows AdapCode has much promise. We
have not yet optimized its implementation but have improved
over Deluge nevertheless.

VII. CONCLUSION

In this paper, we present AdapCode, a code dissemination
protocol that achieves low traffic, low latency, and good
load balancing. The core idea of AdapCode is to (i) take
advantage of redundant links in wireless sensor networks by

using network coding to reduce data packets, and (ii) exploit
adaptive behavior to choose the best coding scheme to reduce
NACK/reply packets.

We analyze the cost of network coding and conclude that
network coding is feasible on wireless sensors in terms of
overhead and memory size. We then implement AdapCode
and compare it against Deluge, the most widely used code dis-
semination protocol. We observe that AdapCode outperforms
Deluge in all three important performance metrics: traffic, load
balancing, and latency.
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