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Abstract

There has been a long standing division in AI between logical symbolic and probabilistic reasoning ap-

proaches. While probabilistic models can deal well with inherent uncertainty in many real-world domains,

they operate on a mostly propositional level. Logic systems, on the other hand, can deal with much richer

representations, especially first-order ones. In the last two decades, many probabilistic algorithms accept-

ing first-order specifications have been proposed, but in the inference stage they still operate mostly on a

propositional level, where the rich and useful first-order structure is not explicit anymore. In this thesis we

present a framework for lifted inference on first-order models, that is, inference where the main operations

occur on a first-order level, without the need to propositionalize the model. We clearly define the semantics

of first-order probabilistic models, present an algorithm (FOVE) that performs lifted inference, and show

detailed proofs of its correctness. Furthermore, we describe how to solve the Most Probable Explanation

problem with a variant of FOVE, and present a new anytime probabilistic inference algorithm, ABVE, meant

to generalize the ability of logical systems to gradually process a model and stop as soon as an answer is

available.
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Chapter 1

Introduction

For decades after the field of Artificial Intelligence (AI) was established, its most prevalent form of represen-

tation and inference was logical, or at least symbolic representations that were in a deeper sense equivalent

to a fragment of logic. While highly expressive, this type of model lacked a sophisticated treatment of degrees

of uncertainty, which permeates real-world domains, especially the ones usually associated with intelligence,

such as language, perception and common sense reasoning.

In time, probabilistic models became an important part of the field, incorporating probability theory into

reasoning and learning AI models. Since the 80s the field has seen a surge of successful solutions involving

large amounts of data processed from a probabilistic point of view, applied especially to Natural Language

Processing and Pattern Recognition.

This success, however, came with a price. Typically, probabilistic models are less expressive and flexible

than logical or symbolic systems. Usually, they involve propositional, rather than first-order representations.

When required, more expressive, higher level representations are obtained by ad hoc manipulations of lower

level, propositional systems.

Among probabilistic approaches, graphical models such as Bayesian and Markov networks (BNs and

MNs respectively) ([Pea88]) are among the most popular. These models are specified by a set of conditional

probabilities (for BNs) or factors, also called potential functions (for MNs). Both conditional probabilities

and factors are defined over particular subsets of the available random variables, and map assignments of

those random variables to positive real numbers (called potentials in MNs). For our purposes, it will be

helpful to think of graphical models in general and simply consider conditional probabilities as a type of

factor.

For example, in an application for document subject classification, one can specify a dependence between

the random variables subject apple, word mac (which indicate that the subject of the document is “apple”

and that the word “mac” is present in it) by defining a factor on their assignments. The higher the potential

for a given assignment to these random variables, the more likely it will be in the joint distribution defined

by the model.
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A limitation of expressivity in graphical models arises when the same dependence holds between different

subsets of random variables. For example, we might declare the dependence above to hold also between

subject microsoft, word windows. In traditional graphical models, we must use separate potential functions

to do so, even though the dependence is the same. This brings redundancy to the model and possibly wasted

computation. It is also an ad hoc mechanism since it does not cover other sets of random variables exhibiting

the same dependence (in this case, some other company and product).

The root of this limitation is that graphical models are propositional (random variables can be seen as

analogous to propositions in logic), that is, they do not allow quantifiers and parameterization of random

variables by objects. A first-order or relational language, on the other hand, does allow for these elements.

With such a language, we can specify a potential function that applies, for example, to all tuples of random

variables obtained by instantiating X and Y in the tuple

subject(X), company(X), product(X, Y ), word(Y ). (1.1)

This way we not only cover both cases presented before, but also unforeseen ones, with a single compact

specification.

In the last twenty years, many proposals for probabilistic inference algorithms accepting first-order spec-

ifications have been presented ([NH95, KDR00, CPQC03a, FGKP99, Poo93, RD04], among many others),

most of which based on the theoretic framework of ([Bac90, Hal90]). However, these solutions still per-

form inference at a mostly propositional level; they typically instantiate potential functions according to

the objects relevant to the present query, thus obtaining a regular graphical model on propositional random

variables, and then using a regular inference algorithm on this model. In domains with a large number of

objects this may be both costly and essentially unnecessary. Suppose we have a medical application about

the health of a large population, with a random variable per person indicating whether they are sick with a

certain disease, and with a potential function representing the dependence between a person being sick and

that person getting hospitalized. To answer the query “what is the probability that someone will be hospi-

talized?”, an algorithm that depends on propositionalization will instantiate a random variable per person.

However this is not necessary since one can calculate the same probability by reasoning about individuals

on a general level, simply using the population size, in order to answer that query in a much shorter time.

In fact, the latter calculation would not depend on the population size at all.

Naturally, it is possible to reformulate the problem so that it is solved in a more efficient manner.

However, this would require manual devising of a process specific to the model or query in question. It is

2



desirable to have an algorithm that can receive a general first-order model and automatically answer queries

like these without computational waste.

Representing and using the structure of probabilistic models is essential to solving them efficiently. It

has been shown that, even for propositional models, both exact and approximate inference are intractable

[Rot96, DL93]. Using independences in propositional models has proven crucial to managing the cost of

inference with them. Using first-order structure is a further step towards solving models which are otherwise

intractable.

A first step in this direction was given by [Poo03], which proposes a generalized version of the Variable

Elimination algorithm ([ZP94]) that is lifted, that is, deals with groups of random variables at a first-order

level. The algorithm receives a specification in which parameterized random variables stand for all of their

instantiations and then eliminates them in a way that is equivalent to, but much cheaper than, eliminating all

their instantiations at once. For the parameterized potential function (1.1), for example, one can eliminate

product(X, Y ) in a single step that would be equivalent to eliminating all of its instantiations.

The algorithm in [Poo03], however, applies only to certain types of model because it uses a single

elimination operation that can only eliminate parameterized random variables containing all parameters

present in the potential function (the method can eliminate product(X, Y ) from (1.1) but not company(X)

because the latter does not contain the parameter Y ). As we will see later, Poole’s algorithm uses the

operation we call inversion elimination. In addition to inversion elimination, we have developed further

operations (the main ones called counting elimination and partial inversion) that broaden the applicability

of lifted inference to a greater extent ([dSBAR05, dSBAR06]). These operations are combined to form the

First-Order Variable Elimination (FOVE) algorithm presented in this chapter. The cases to which lifted

inference applies can be roughly summarized as those containing dependencies where the set of parameters

of each parameterized random variable are disjoint or, when this is not the case, where there is a set of

parameters whose instantiations create independent solvable cases. We specify these conditions in more

detail when explaining the operations, and further discuss applicability in section 3.5. When no lifted

inference operation applies to a specific part of a model, FOVE can still apply standard propositional

methods to that part, assuring completeness and limiting propositional inference to only some parts of the

model.

3



1.1 Thesis Outline and Contributions

The thesis starts by presenting a survey of the literature on First-Order Probabilistic Inference (FOPI) in

Chapter 2. This is vast since FOPI is at the convergence of different and important subfields of AI: logical

reasoning, deductive databases, graphical models, machine learning, etc. Each field has produced approaches

from its own point of view and flavor, and it is not always simple to draw the relationships between distinct

works.

From the survey, it becomes clear that lifted inference has received little attention until recently, since

most works are based on some form of propositionalization. Chapter 3 presents the main contribution of the

thesis, the First-Order Variable Elimination (FOVE) algorithm, which eliminates entire classes of random

variables at each step.

The algorithm is presented for calculating marginal probabilities, the most common probabilistic infer-

ence task. The modifications needed for performing another common task, calculating the Most Probable

Explanation (MPE), is presented in Chapter 4.

One of the current disadvantages of the FOVE algorithm is its need to shatter (a form of preprocessing)

the entire model in advance before inference can be done. This makes the cost of answering simple queries

depending only on a fraction of the model potentially expensive. For the future, it is desirable to develop a

version of FOVE that gradually process the model until an acceptable bound on the query is obtained. For

now, we have developed such a gradual processing method, called Anytime Bounded Variable Elimination

(ABVE), in the propositional level, which we intend to eventually generalize to the first-order level. This

method is presented in Chapter 5. We then conclude in Chapter 6.

Several finer details of the framework are presented in the appendices, including a complexity analysis

in appendix E.
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Chapter 2

A Survey of First-Order Probabilistic
Inference

In this chapter we give a survey of research on probabilistic models on expressive (usually close to first-order

logic) languages. We have roughly divided this research into different stages.

The 1970s and 80s saw great interest in expert systems [RN03, BS84]. As these systems were applied to

real-world domains, coping with uncertainty became more desirable, giving rise to the certainty factors ap-

proach, which attach numbers (representing degrees of certainty) to rules that get propagated to conclusions

during inference.

Certainty factors systems did not have clear semantics, and often produced surprising and nonintuitive

results [Pea88]. The search for more clear semantics for rules gave rise, among other things, to approaches

such as Bayesian Networks. These however were essentially propositional, and thus had much less expressivity

than logic systems.

The search for clear semantics of probabilities in logic systems resulted in works such as [Nil86, Bac90,

Hal90], which laid out the basic theoretic principles supporting probabilistic logic. These approaches, how-

ever, did not include efficient inference algorithms.

Works aiming at efficient inference algorithms for first-order probabilistic inference (FOPI) can be divided

in two groups, which Pearl [Pea88] calls extensional and intensional systems. In the first one, statements in

the language are more procedural in nature, standing for licenses for propagating truth values that have been

generalized from true or false to a gray scale of varying degrees of certainty. In the second group languages,

statements work as restrictions determining which possible worlds or interpretations are valid ones. They

do not directly correspond to computing operations, nor can they typically be taken into account without

regard to other rules (that is, inference is not completely modular). Efficient algorithms have to be devised

for these languages that preserve their semantics while doing better than considering the entire model at

every step.

Among intensional models, we have further divisions regarding the type of algorithm proposed. One

group proposes inference rules similar to the ones used in first-order logic inference (for example, modus

ponens). A second one computes, in more or less efficient manners, the set of valid interpretations given a
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model. A third one uses sampling to answer queries about a model. Finally, a fourth and more prevalent

group constructs a (propositional) graphical model (Bayesian or Markov networks, for example) that answers

queries, and uses general graphical model inference algorithms for solving them.

We now present these stages in more detail.

2.1 Expert Systems and Certainty Factors

Expert systems are based on rules meant to be applied to existing facts, producing new facts as conclusions

[RN03]. Typically, the context is a deterministic one in which facts and rules are assumed to be certain.

Uncertainties from real-world applications are dealt with during the modeling stage where necessary (and

often heavy-handed) simplifications are performed.

Certainty factors were introduced for the purpose of allowing uncertain rules and facts, making for more

direct and accurate modeling. A rule A ← B : c1, with c ∈ [0, 1], indicates that we can conclude B with a

degree of certainty of c1 × c2, if A is known to be true with a degree of certainty c2. Given a collection of

rules and facts, inference is performed by propagating certainties in this fashion. There are also combination

rules for the cases when more than one rule provide certainty factors for the same literal.

A paradigmatic application of certainty factors is the system MYCIN [Sho75], an expert system dedicated

to diagnosing diseases based on observed symptoms. Clark & McCabe [CM82] describe using Prolog with

predicates containing an extra argument representing its certainty and being propagated accordingly. Shapiro

[Sha83] describes a Prolog interpreter that does the same but in a way implicit in the interpreter and language,

rather than as an extra argument.

One can see that certainty factors have a probabilistic flavor to them, but formally they are not taken to

be probabilistic. This is for good reason: should we interpret them as probabilities, the results they provide

would be incorrect in many cases. In fact Heckerman [Hec86] and Lucas [Luc01] discuss situations in which

certainty factor computations can and cannot be correctly interpreted probabilistically. One reason they

cannot is the incorrect treatment of bidirectional inference: two certainty factor rules A ← B : c and B : c

imply nothing about inference from A to B, while P (A|B) and P (B) place constraints on P (B|A). These

problems are further discussed in Pearl [Pea88].

2.2 Probabilistic Logic Semantics

The semantic limitations of certainty factors is one of the motivations for defining precise semantics for

probabilistic logics, but such investigations date from at least as far back as Carnap [Car50].
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One of the most influential AI works in this regard is Nilsson [Nil86] (a similar approach is given by

Hailperin [Hai84]). Nilsson establishes a systematic way, given a set of logic sentences and their respective

probabilities of being true, of determining the probabilities of other logic sentences of initially unknown

probabilities. To be more precise, the method determines intervals of probabilities to these novel sentences,

because in principle the original set may be consistent with an entire range of point probabilities for them.

For example, knowing that A is true with probability 0.2 and B with probability 0.6 means that A ∧ B

is true with probability in [0, 0.2], depending on whether A and B are mutually exclusive, or A → B, or

anything in between.

Formally, Nilsson’s system is based on the following linear problem:

Π = V P

0 ≤ Πj ≤ 1

0 ≤ Pi ≤ 1∑
i

Pi = 1

where Π is the vector of probabilities of the sentences in the knowledge base, P the vector of probabilities

of the possible worlds (consistent with the sentences) and V is a matrix with Vij = 1 if sentence j is true

in possible world i, and 0 otherwise. The probabilities of sentences in the knowledge base are incorporated

as constraints in this system as well, and linear programming techniques can be used to determine the

probability of novel sentences. However, as Nilsson points out, the problem becomes intractable even with

a modest number of initially given sentences, since all consistent possible worlds need to be defined and this

is an intractable problem. Therefore this framework is of mostly theoretical interest.

Placing the probabilities on the possible worlds, as does Nilsson, makes it easy to express subjective

probabilities such as “Tweety flies with probability 0.9” (that is, the sum of probabilities of all possible

worlds in which Tweety flies is 0.9). However, probabilistic knowledge can also express statistical facts

about the domain such as “90% of birds fly” (which says that, in each possible world, 90% of birds fly).

Bacchus [Bac90] provides an elaborate probabilistic logic semantics that includes both types of probabilistic

knowledge, making it possible to use both statements above, as well as statements meaning “There is a

probability of 0.8 that 90% of birds fly.” He also discusses the interplay between the two types, namely the

question of when it is correct to use the fact that “90% of birds fly” in order to assume that “a randomly

chosen bird flies with probability 0.9,” a topic that has both formal and philosophical aspects. Halpern

[Hal90] elaborates on the axiomatization of Bacchus, taking probabilities to be real numbers (Bacchus did
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not), and is often cited as a reference for this semantics with these two types of probabilities. In subsequent

work, the subjective type probability has been much more developed and used, and is also the type involved

in propositional graphical models.

Fagin, Halpern, Meggido [FHM90] present a logic to reason about probabilities, including their addition

and multiplication by scalars. Other works discussing the semantics of probabilities on first-order structures

are [Fen80, Gai64, GS82].

2.3 Extensional Approaches

Somewhat parallel to the works defining the semantics of probabilistic logic, there has been much work

proposing logic reasoning systems incorporating uncertainty in the explicit form of probabilities (as opposed

to certainty factors). These systems often stem from the fields of logic programming and deductive databases,

and fit into the category described by [Pea88] as extensional systems, that is, systems in which rules work

as “procedural licenses” for a computation step instead of a constraint on possible probability distributions.

Most of these systems operate on a collection of rules or clauses that propagate generalized truth values

(typically, a value or interval in [0, 1]).

Kiefer and Li [KL88] provide a probabilistic interpretation and a fixpoint semantics to Shapiro [Sha83].

Wüthrich [Wüt95] elaborates on their work, taking into account partial dependencies between clauses. For

example, if each of atoms a, b and c has a prior probability of 0.5 and we have two rules p← a∧b and p← b∧c,

Kiefer and Li will assume the rules independent and assign a probability 0.25 + 0.25− 0.25 ∗ 0.25 = 0.4375

to p. Wüthrich’s system, however, takes into account the fact that b is shared by the clauses and computes

instead 0.25 + 0.25− 0.53 = 0.375 (that is, it avoids double counting of the case where the two rules fire at

the same time, which occurs only when the three atoms are true at once).

One of the most influential works within the extensional approach is Ng and Subrahmanian [NS92].

Here, a logic programming system uses generalized truth values in the form of intervals of probabilities.

They define probabilistic logic program as sets of p-clauses of the form

A : µ← F1 : µ1 ∧ . . . Fn : µn,

where A is an atom, F1, . . . , Fn are basic formulas (conjunctions or disjunctions) and µ, µ1, . . . , µn are

probability intervals. A clause states that if the probability of each formula Fi is in µi, then the probability
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of A is in µ. For example, the clause

path(X, Y ) : [0.8, 0.95]← a(X, Z) : [1, 1] ∧ path(Z, Y ) : [0.85, 1]

states that, if a(X, Z) is certain (probability in interval [1, 1] and therefore 1) and path(Z, Y ) has probability

in [0.85, 1], then path(X, Y ) has probability in [0.8, 0.95]. Probabilities of basic formulas Fi are determined

from the probability intervals of their conjuncts (disjuncts) by taking into account the possible correlations

between them (similarly to what Nilsson does). The authors present a fixpoint semantics where clauses are

repeatedly applied and probability intervals successively narrowed up to convergence. They also develop a

model theory determining what models (sets of distributions on possible worlds) satisfy a probabilistic logic

program, and a refutation procedure for querying a program.

Lakshmanan and Sadri [LS94] proposes a system similar to Ngo and Subrahmanian, while keeping track

of both the probability of each atom as well of its negation. Additionally, it uses configurable independence

assumptions for different clauses, allowing the user to declare whether two atoms are independent, mutually

exclusive, or even the lack of an assumption (as in Nilsson). Lakshmanan [Lak94] separates the qualitative

and quantitative aspects of probabilistic logic. Dependencies between atoms are declared in terms of the

boolean truth values of a set of support atoms. Only later is a distribution assigned to the support atoms,

consequently defining distributions on the remaining atoms as well. The main advantage of the approach

is the possibility of investigating different total distributions, based on distributions on the support set,

without having to recalculate the relationship between atoms and support set. The algorithms works in

ways similar to Ngo and Haddawy [NH95] and Lakshmanan and Sadri [LS94], but propagates support set

conditions rather than probabilities. Support sets are also a concept very similar to the hypotheses used in

Probabilistic Abduction by Poole [Poo93] (see next section).

2.4 Intensional Approaches

We now discuss intensional approaches to probabilistic logic languages, where statements (often in the

form of rules) are interpreted as restrictions on a globally defined probability distribution. This probability

distribution is over all possible worlds or, in other words, on assignments to the set of all possible random

variables in the language. Statements typically pose constraints in the form of conditional probabilities, and

sometimes also as conditional independence relations (as mentioned in section 2.2, another possibility would

be statistical constraints, but this has not been explored in any works to our knowledge).

The algorithms in intensional approaches, when available, are arguably more complex than extensional
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approaches, since their steps do not directly correspond to the application of rules in the language and need

to respect the global distribution while being as local as possible (for efficiency reasons).

We cover four different types of intensional approaches: deduction rules, exhaustive computation of

possible worlds, sampling, and Knowledge Based Model Construction (KBMC).

2.4.1 Deduction Rules

Classical logic deduction systems often work by receiving a model specified in a particular language and

using deduction rules to derive new statements (guaranteed to be true) from subsets of previous statements.

Some work has been devoted to devising similar systems when the language is that of probabilistic logic.

This method is particularly challenging in probabilistic systems because probabilistic inference is not

as modular as classical logical inference. For example, while the logical knowledge of A ⇒ B allows us to

deduce B given that A ∧ ϕ is true for any formula ϕ, knowing P (B|A) in itself does not tell us anything

about P (B|A∧ϕ). One needs to consider the global knowledge when establishing the conditional probability

of B. Classical logic reasoning shows a modularity that is harder to achieve in a probabilistic setting.

One way of making probabilistic inference more modular is to use knowledge about conditional indepen-

dences between random variables. If we know that B is independent of any other random variable given

A, then we can calculate P (B|A ∧ ϕ) from P (B|A). This has been the approach of graphical models such

as Bayesian and Markov networks [Pea88], where independences are represented in the structure of a graph

over the set of random variables (which form its vertices).

The computation steps of specific inference algorithms for graphical models (such as Variable Elimination

[ZP94]) could be cast as deduction rules, much like in classical logic. However this is not traditionally done,

mostly because inference rules are typically described in a logic-like language and graphical models are

not. When dealing with a first-order probabilistic logic language, however, this approach becomes more

appropriate.

Luckasiewicz [Luk99] uses inference rules for solving trees of probabilistic conditional constraints over

basic events. These trees are similar to Bayesian networks, with each node being a random variable and

each edge being labeled by a conditional probability table. However, these trees are not meant to encode

independence assumptions. Besides, conditional probabilities can also be specified in intervals.

Frisch and Haddawy [FH94] present a set of inference rules for probabilistic propositional logic with

interval probabilities. They characterize it as an anytime system since inference rules will increasingly

narrow those intervals. They also provide more modular inference by allowing statements on conditional

independences of random variables, which are used by certain rules to derive statements based on local
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information.

Koller and Halpern [KH96] investigate the use of independence information for FOPI based on inference

rules. They use this notion to discuss the issue of substitution in probabilistic inference. While substitution

is fundamental to classical logic inference, it is not sound in general in probabilistic inference. For example,

inferring P (q(A)) = 1
3 given ∀P (q(X)) = 1

3 is not sound. Consider three possible worlds w1, w2, w3 containing

the three objects o1, o2, o3 each, where q(oi) is 1 in wi and 0 otherwise. If each possible world has a

probability 1
3 of being the actual world, then ∀P (q(X)) = 1

3 holds. However, if A refers to oi in each wi,

then P (q(A)) = 1. While this problem can be solved by requiring constants to be rigid designators (that is,

each constant refers to the same object in all worlds), the authors argue that this is too restrictive. Their

solution is to use information on independence. They show that when the statements ∀P (q(X)) = 1
3 and

x = A are independent, one can derive P (q(A)) = 1
3 . Finally, they discuss the topic of using statistical

probabilities as a basis for subjective ones (the two types discussed by Bacchus [Bac90] and Halpern [Hal90])

based on independences.

2.4.2 Exhaustive Computation of Possible Worlds

Another type of intensional system is the one in which the available algorithms exhaustively compute the

set of possible worlds. Therefore, these algorithms are not particularly efficient, although some use dynamic

programming techniques for speedup. The point of these works is usually to present a language with a

well-defined semantics and algorithm.

Riezler [Rie97] presents a probabilistic account of Constraint Logic Programs (CLPs) [JL87]. In regular

logic programming, the only constraint over logical variables are equational constraints coming from unifica-

tion. CLPs generalize this by allowing other constraints to be stated over those variables. These constraints

are managed by special-purpose constraint solvers as the derivation proceeds, and the failure in satisfying

a constraint determines the failure of the derivation. Probabilistic Constraint Logic Programs (PCLPs)

are a stochastic generalization of CLPs, where clauses are annotated with a probability and chosen for the

expansion of a literal according to that probability, among the available clauses with matching heads. The

probability of a derivation is determined by the product of probabilities associated to the stochastic choices.

In fact, PCLPs are a generalization of Stochastic Context-Free Grammars (SCFGs) [LY90], the difference

between them being that PCLP symbols have arguments in the form of logical variables with associated

constraints while grammar symbols do not. For this reason, PCLP derivations can fail while SCFGs will

always succeed. This presents a complication for PCLP algorithms because the probability has to be nor-

malized with respect to the sum of successful derivations only. It also makes the use of efficient dynamic
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programming techniques such as the inside-outside algorithm [Bak79] not adequate for PCLPs, forcing us to

compute all possible derivations of a query, which amounts to calculating the set of possible worlds satisfying

it. Riezler focuses on presenting an algorithm for learning the parameters of a PCLP from incomplete data,

in what is a generalization of the Baum-Welch algorithm for HMMs [Bau72].

Stochastic Logic Programs [Mug95b, Cus99] are very similar to PCLPs, restricting themselves to regular

logic programming (e.g., Prolog). This line of work is more focused on the development of an actual system on

top of a Prolog interpreter and used with Inductive Logic Programming techniques such as Progol [Mug95a].

Like Riezler, in [Cus99] Cussens develops methods for learning parameters using Improved Interative Scaling

[DPDPL97] and the EM algorithm [DLR77].

Luckasiewicz [Luk98] presents a form of Probabilistic Logic Programming that complements Nilsson’s

[Nil86] approach. Nilsson considers all possible worlds consistent with the given knowledge and builds a

linear program in order to assign probabilities to sentences. Luckasiewicz essentially does the same by using

logic programming for both determining the set of possible worlds and the linear program. Therefore, his

approach suffers from the same intractability issues faced by Nilsson’s.

Baral et al. [BGR04] use answer set logic programming to implement a powerful probabilistic logic

language. Its distinguishing feature is the possibility of specifying observations and actions, with their corre-

sponding implications with respect to causality, as studied by Pearl [Pea00]. However, the implementation,

using answer set Prolog, depends on determining all possible consistent worlds.

2.4.3 Sampling Approaches

Because building all possible worlds given a program is very expensive, approximation solutions become an

attractive alternative.

Sato [SK97] presents PRISM, a full-featured Prolog interpreter extended with probabilistic switches that

can be used to encode probabilistic rules and facts. These switches are special built-in predicates that

randomly succeed or not, following a specific probability distribution. They can be places in the body

of a clause so that that clause will succeed or not following that distribution (when the rest of the body

succeeds). Therefore, multiple executions of the program will yield different random results that can be used

as samples. A query can then be answered by multiple executions which sample its possible outcomes. Sato

also provides a way of learning the parameters of the switches by using a form of the EM algorithm [SK00].

BLOG [MMR+05] is a first-order language that, although not following the usual logic programming

notation, has similar expressiveness. It is similar in form to BUGS [STBG94], a specification language for

propositional generative models. The main distinction of BLOG is its open world assumption; it does not
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require that the number of objects in the world be set a priori, using instead a prior on this number and

also keeping track of identities of objects with different names. BLOG computes queries by sampling over

possible worlds.

2.4.4 Knowledge Based Model Construction

We now present the most prominent family of models in the field of FOPI models, Knowledge Based Model

Construction (KBMC). These approaches work by generating a propositional graphical model from a first-

order language specification that answers the query at hand. This construction is usually done in a way

specific to this query, ruling out irrelevant portions of the graph so as to increase efficiency.

Many KBMC approaches use a first-order logic-like specification language, but some use different lan-

guages such as frame systems, parameterized fragments of Bayesian networks, and description logics. Some

build Bayesian networks while others prefer Markov networks (and in one case, Dependency Networks

[HCM+00]).

While KBMC approaches try to prune sections of underlying graphical models which are irrelevant to

the current query, there is still potentially much wasted computation because it may replicate portions

of the graph which require essentially identical computations. For example, a problem may involve many

employees in a company, and the underlying graphical model will contain a distinct section with its own

set of random variables for each of them (representing their properties), even though these sections all have

essentially the same structure. Often the same computation step will be applied to each of those sections,

while it is possible to perform it only once in a generalized form. Avoiding this waste is the object of Lifted

First-Order Probabilistic Inference [dSBAR05, dSBAR06], presented in chapter 3.

The most commonly referenced KBMC approach is that of Breese [Bre91, WBG92], although Horsch and

Poole [HP90] had presented a similar solution a year before. [Bre91] defines a probabilistic logic programming

language, with Horn clauses annotated by probabilistic dependencies between the clause’s head and body.

Once a query is presented, clauses are applied to it in order to determine the probabilistic dependencies

relevant to it. These dependencies are then used to form a Bayesian network. Backward inference will

generate the causal portion of the network relative to the query; forward inference creates the diagnostic

part. The construction algorithm uses the evidence in order to decide when to stop expanding the network

– there is no need to generate portions that are d-separated from the query by the evidence. In fact, this

work covers not only Bayesian networks, but influence diagrams as well, including decision and utility value

nodes.

There are many works similar in spirit to [Bre91] and differing only in some details; for example, the
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already mentioned Horsch and Poole [HP90], which also uses mostly Horn clauses (it does allow for universal

and existential quantifiers over the entire clause body though) as the first-order language. One distinction

in this work, however, is the more explicit treatment of the issue of combination functions, used to combine

distributions coming from distinct clauses with the same head. One example of a combination function

is noisy-or [Pea88], which assumes that the probability provided by a single clause is the probability of it

making the consequent true regardless of the other clauses. Suppose we have clauses A ← B and A ← C

in the knowledge base, the first one dictating a probability 0.8 for A when B is true and the second one

dictating a probability 0.7 for A when C is true. Then the combination function noisy-or builds a Conditional

Probability Table (CPT) with B and C as parents of A, with entries P (A|B,C) = {1− 0.2× 0.3, 1− 0.8×

0.3, 1− 0.2× 0.7, 1− 0.8× 0.7} = {0.94, 0.76, 0.86, 0.47} for {(B = >, C = >), (B = ⊥, C = >), (B = >, C =

⊥), (B = ⊥, C = ⊥)}, respectively.

Charniak and Goldman [GC93] expand a deductive database and truth maintenance system (TMS) in

order to define a language for constructing Bayesian networks. The Bayesian networks come from the data-

dependency network maintained by the TMS system, which is annotated with probabilities. There is also a

notion of combination functions. The authors choose not to expand logical languages, justifying this choice

by arguing that logic and probability do not correspond perfectly, the first being based on implication while

the second, on conditioning.

Poole [Poo93] defines Probabilistic Abduction, a probabilistic logic language aimed at performing abduc-

tion reasoning. Probabilities are defined only for a set of predicates, called hypotheses (which is reminiscent

of the support set in [Lak94]), while the clauses themselves are deterministic. When a problem has naturally

dependent hypotheses, one can redefine them as regular predicates and invent a new hypothesis to explain

that dependence. While deterministic clauses can seem too restrictive, one can always get the effect of

probabilistic rules by using hypotheses as a condition of the rule (like switches in Sato’s PRISM [SK97]).

The language also assumes that the bodies of clauses with the same head are mutually exclusive, and again

this is not as restrictive as it might seem since clauses with non-mutually exclusive bodies can be rewritten

as a different set of clauses satisfying this. As in other works in this section, the actual computation of

probabilities is based on the construction of a Bayesian network. In [Poo97], Poole extends Probabilistic

Abduction for decision theory, including both utility and decision variables, as well as negation as failure.

Glesner and Koller [GK95] presents a Prolog-like language that allows the declaration of facts about a

Bayesian network to be constructed by the inference process. The computing mechanisms of Prolog are used

to define the CPTs as well, so they are not restricted to tables, but can be computed on the fly. This allows

CPTs to be defined as decision trees, for example, which provides a means of doing automatic pruning of

14



the resulting Bayesian network – if the evidence provides information enough to make a CPT decision at a

certain tree node, the descendants of that node, along with parts of the network relevant to those descendants

only, do not need to be considered or built. The authors focus on flexible dynamic Bayesian networks that

do not necessarily have the same structure at every time slice.

Haddawy [Had94] presents a language and construction method very similar to [HP90, Bre91]. However,

he focuses on defining the semantics of the first-order probabilistic logic language directly, and independently

of the Bayesian network construction, and proceeds to use it to prove the correctness of the construction

method. Breese had done something similar by defining the semantics of the knowledge base as an abstract

Bayesian network which does not usually get built itself in the presence of evidence, and by showing that

the Bayesian network actually built will give the same result as the abstract one.

Koller and Pfeffer [KP97] present an algorithm for learning the probabilities of noisy first-order rules

used for KBMC. They use the EM algorithm applied to the Bayesian networks generated by the model,

using incomplete data. This works in the same way as the regular Bayesian network parameter learning

with EM, with the difference that many of the parameters in the generated networks are in fact instances of

the same parameter in a first-order rule. Therefore, all updates on these parameters must be accumulated

in the original parameter.

Jaeger [Jae97] defines a language for specifying a Bayesian network whose nodes are the extensions of

first-order predicates. In other words, each node is the assignment to the set all atoms of a certain predicate.

Needless to say, such a network would cause very inefficient inference due to the extremely large number of

values for each node. However, it has the advantage of making the semantics of the language very clear (it is

just the usual propositional Bayesian network semantics – the extension of a predicate is just a propositional

variable with a very large number of values). The author proposes, like other approaches here, to build a

regular Bayesian network (with a random variable per ground atom) for the purpose of answering specific

queries. He also presents a sophisticated scheme for combination functions, including their nesting.

Koller et al. [GFKP01, KP98] define Probabilistic Relational Models (PRMs), a sharp depart from the

logical-probabilistic models that had been proposed until then as solutions for FOPI models. Instead of

adding probabilities to some logic-like language, the authors use the formalism of Frame Systems [Min95]

as a starting point. The language of frames, similar also to relational databases, is less expressive than

first-order logic, which is to the authors one of its main advantages since first-order logic inference is known

to be intractable (which only gets worse when probabilities are added to the mix). By using a language that

limits its expressivity to what is most needed in practical applications, one hopes to obtain more tractable

inference, an argument commonly held in the Knowledge Representation community [LB87]. In fact, Pfeffer
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and Koller had already investigated adding probabilities to restricted languages in [KLP97]. In that case,

the language in question was that of description logics.

The language of Frame Systems consists of defining a set of objects described by attributes – binary

predicates relating an object to a simple scalar value – or relations – binary predicates relating an object

to another (or even self) object. PRMs add probabilities to frame systems by establishing distributions on

attributes conditioned on other attributes (in the same object, or related object). In order to avoid declaring

these dependencies for each object, this is done at a scheme level where classes, or template objects, stand

for all instances of a class. This scheme describes the attributes of classes and the relations between them.

Conditional probabilities are defined for attributes and can name the conditioning attributes via the relations

needed to reach them.
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Figure 2.1: (a) A PRM scheme showing classes of objects (rectangles), probabilistic dependencies between
their attributes (full arrows) and relationships (dashed arrows). (b) A database skeleton showing a collection
of objects, their classes and relationships. (c) The corresponding generated Bayesian network.
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As in the previous approaches, queries to PRMs are computed by generating an underlying Bayesian

network. Given a collection of objects (a database skeleton) and the relationships between them, a Bayesian

network is built with a random variable for each attribute in each object. The parents of these random

variables in the network are the ones determined by the relations in the particular database, and the CPT

filled with the values specified at the template level. An example of this process is show in fig. 2.1.

Note that the set of ancestors of attributes in the underlying network is determined by the relations

from one object to another. One could imagine an attribute rating of an object representing a restaurant

that depends on the attribute training of the object representing its chef (related to it by the relationship

chef . In approaches following first-order representations, chef would be a binary predicate, and each of its

instances a random variable. As a result, the ancestors of rating would be the attributes training of all

objects potentially linked to the restaurant by the relationship chef , plus the random variables standing for

possible pairs in the relationship cook itself, resulting in a large (and thus expensive) CPT. PRMs avoid this

when they take data with a defined structure where the assignment to relations such as cook is know; in

this case, the random variables in the relationship chef would not even be included in the network, and the

attribute rating of each object would have a single ancestor. When relationships are not fixed in advance,

we have structural uncertainty, which was addressed by the authors in [Get00]. These papers have presented

PRM learning of both parameters and structure (that is, the learning of the template level).

PRMs generate Bayesian networks, a directed graphical model that brings a notion of causality. In

relational domains it is often then case that random variables depend on each other without a clear notion of

causality. Take for example a network of people linked by friendship relationships, with the attribute smoker

for each person. We might want to state the first-order causal relationship P (smoker(X)|friends(X, Y ),

smoker(Y )) in such a model, but it would create cycles in the underlying Bayesian network (between

each pair of smoker attributes such as smoker(john) and smoker(mary)). For this reason, Relational

Markov Networks (RMNs) [TAK02] recast PRMs so they generate undirected graphical models (Markov

networks) instead of Bayesian networks. In RMNs, dependencies are stated as first-order features that

get instantiated into potential function on cliques of random variables, without a notion of causality or

conditional probabilities. The disadvantage of it, however, is that learning in undirected graphical models is

harder than in directed ones, involving a full inference step at each expectation step of the EM algorithm.

Relational Dependency Networks (RDNs) [Nev06] provide yet another alternative to this problem. They

are the first-order version of Dependency Networks (DNs) (Heckerman, [HCM+00]), which use conditional

probabilities but do not require acyclicity. Using directed conditional probabilities avoids the expensive

learning of undirected models. However, DNs have the downside of conditional probabilities being no longer
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guaranteed consistent with the joint probability defined by their normalized product. Heckerman shows that,

as the amount of training data increases, conditional probabilities in a DN will asymptotically converge to

consistency. RDNs are sets of first-order conditional probabilities which are used to generate an underlying

regular dependency network. These first-order conditional probabilities are typically learned from data

by relational learners (section 2.5). RDNs are implemented in a well-developed, public available software

package called Proximity.

Kersting and DeRaedt [KDR00] introduce Bayesian Logic Programs. This work’s motivation is to provide

a language which is as syntactically and conceptually simple as possible while preserving the expressive power

of works such as Ngo and Haddawy [NH95], Jaeger [Jae97] and PRMs [GFKP01]. According to the authors,

this is necessary so one understands the relationship between all these approaches, and also the fundamental

aspects of FOPI models.

Fierens at al [FBBR05] define Logical Bayesian Networks (LBNs). LBNs are very similar to Bayesian

Logic Programs, with the difference of having both random variables and deterministic logical literals in

their language. A logic programming inference process is run for the construction of the Bayesian network,

during which logical literals are used, but since they are not random variables, they are not included in

the Bayesian network. This addresses the same issue of fixed relationships discussed in the presentation

of PRMs, that is, when a set of relationships is deterministically known, we can create random variable

nodes in the Bayesian network with significantly fewer ancestors. In the BLPs and LBNs framework, this is

exemplified by a rule such as:

rating(X)← cook(X, Y ), training(Y ).

which has an associated probability, declaring that a restaurant X’s rating depends on their cook Y ’s

training. In Bayesian Logic Programs, the instantiations of cook(X, Y ) are random variables (just like the

instantiations of rating(X) and training(Y )). Therefore, since we do not know a priori which Y makes

cook(timpone, Y ) true, rating(timpone) depends on all instantiations of cook(timpone, Y ) and training(Y )

and has all of them as parents in the underlying Bayesian network. If in the domain at hand the information of

cook is deterministic, then this would be wasteful. We could instead determine Y such that cook(timpone, Y ),

say Y = joe, and build the Bayesian network with only the relevant random variable training(joe) as parent

of rating(timpone). This is precisely what LBNs do. In LBNs, one would define cook as a deterministic

literal that would be reasoned about, but not included in the Bayesian network as a random variable. This in

fact is even more powerful than the PRMs approach since it deals even with the situation where relationships

are not directly given as data, but have to be reasoned about in a deterministic manner.

Santos Costa et al. [CPQC03b] propose an elegant KBMC approach that smoothly leverages an already
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existing framework, Constraint Logic Programming (CLP). In regular logic programming, the only constraint

over logical variables are equational constraints coming from unification. As explained in section 2.4.2, CLP

programs generalize this by allowing other constraints to be stated over those variables. These constraints

are managed by special-purpose constraint solvers as the derivation proceeds, and the failure in satisfying

a constraint determines the failure of the derivation. The authors leverage CLP by developing a constraint

solver on probabilistic constraints expressed as CPTs, and simply plug it into an already existing CLP system.

The resulting system can also use available logic programming mechanisms in the CPT specification, making

it possible to calculate it dynamically, based on the context, rather than by fixed tables. The probabilistic

constraint solver uses a Bayesian network internally in order to solve the posed constraints, so this system

is also using an underlying propositional Bayesian network for answering queries. Santos Costa et al. point

out [Ang02] as the closest approach to theirs, with the difference that the latter keeps hard constraints

on Bayesian variables separate from probabilistic constraints. This allows hard constraints to be solved

separately. It is also different in that it does not use conditional independences (like Bayesian networks do),

and therefore inference is exponential on the number of random variables.

Markov Logic Networks (MLNs) [RD04] is a recent and rapidly evolving framework for probabilistic logic.

Its main distinctions are that it is based on undirected models and has a very simple semantics while keeping

the expressive power of first-order logic. The downside to this is that its inference can become quite slow if

complex constructs are present.

MLNs consist of a set of weighted first-order formulas and a universe of objects. Its semantics is simply

that of a Markov network whose features are the instantiations of all these formulas given the universe of

objects. The potential of a feature is defined as the exponential of its weight in case it is true. Fig. 2.2 shows

an example.

Formulas can be arbitrary first-order logic formulas, which are converted to clausal form for inference.

Converting existentially quantified formulas to clausal form usually involves Skolemization, which requires

uninterpreted functions in the language. Since MLNs do not include such functions, existentially quantified

formulas are replaced by the disjunction of their groundings (this is possible because the domain is finite).

The great expressivity of MLNs allows them to easily represent the same joint distributions represented by

other proposed FOPI models. They are also a generalization of first-order logic, to which they reduce when

weights are infinite.

Learning algorithms for MLNs have been presented from the beginning. Because learning in undirected

models is hard, MLNs use the notion of pseudo-likelihood [Bes75], an approximate but efficient method.

When data is incomplete, EM is used.
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1.1¬ Smokes(X) Ç Cancer(X)“Smoking causes cancer”

∀X Smokes(X)  ⇒ Cancer(X)

WeightClausal formEnglish / First-Order Logic

1.1¬ Friends(X,Y) Ç Smokes(X) Ç Smokes(Y)“If two people are friends either both 

smoke or neither does”

∀X ∀Y Fr(X,Y) ⇒(Sm(X) ⇔ Sm(Y))

Friends(A,A) Smokes(A) Smokes(B) Friends(B,B)

Friends(A,B)

Friends(B,A)Cancer(A) Cancer(B)

Figure 2.2: A ground Markov network generated from a Markov Logic Network for objects Anna (A) and
Bob (B) (example presented in [RD04]).

MLNs are a powerful language and framework accompanied by well-supported software (called Alchemy)

and which has been applied to real domains. The drawback of its expressivity is potentially very large

underlying networks (for example, when existential quantification is used).

Laskey [Las05] presents multi-entity Bayesian networks (MEBNs), a first-order version of Bayesian net-

works, which rely on generalizing typical Bayesian network representations rather than a logic-like language.

A MEBN is a collection of Bayesian network fragments involving parameterized random variables. As in

the other approaches, the semantics of the model is the Bayesian network resulting from instantiating these

fragments. Once they are instantiated, they are put together according to the random variables they share.

A MEBN is shown in fig. 2.3.

Laskey’s language is indeed quite rich, allowing infinite models, function symbols and distributions on

the parameters of random variables themselves. The works focus on defining this language rather than on

the actual implementation, which is based on instantiating a Bayesian network containing the parts relevant

to the query at hand. It does not provide a detailed account of this process, which can be especially tricky
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Figure 2.3: An example of a MEBN, as shown in [Las05].

in the case of infinite models.

2.5 Relational Learning

In this section we discuss some first-order models developed from a machine learning perspective.

Machine learning algorithms have traditionally been defined as classification of attribute-value vectors

[Mit97]. In many applications, it is more natural and convenient to represent data as graphs, where each

vertex represents an object and each edge represent a relation between objects. Vertices can be labeled with

attributes of its corresponding object (unary predicates or binary predicates where the second argument

is a simple value; this is similar to PRMs in section 2.4.4), and edges can be labeled (the label can be

interpreted as a binary predicate holding between the objects). This gives us the typical data structure

representations such as trees, list etc, and collections of objects in general. When learning from graphs,

we usually want to form hypotheses that explain one or more of the attributes and (or) relations (the
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targets) of objects in terms of its neighbors. Machine learning algorithms which were developed to benefit

from this type of representation have often been called relational. This is closely associated to probabilistic

first-order models, since graph data can be interpreted as a set of ground literals using unary and binary

predicates. Because the hypotheses explaining target attributes and relations apply to several objects, it

is also convenient to represent the learned hypotheses as quantified (first-order) rules. And because most

learners involve probabilities or at least some measure of uncertainty, probabilistic first-order rules provide

a natural representation option. Figure 2.4 illustrates these concepts.

joe

male

interest(baseball)

interest(computers)

school(jfk)

mary

female

interest(baskteball)

interest(computers)

larry

male

interest(baskteball)

school(fdr)
paul

male

interest(music)

school(fdr)

lissa

female

interest(music)

school(jfk)

0.9: acqt(X,Y) ⇐ school(X,Z) ÆÆÆÆ school(Y,Z)

0.7: friends(X,Y) ⇐ interest(X,Z) ÆÆÆÆ interest(Y,Z)

0.6: friends(X,Y) ⇐ school(X,Z) ÆÆÆÆ school(Y,Z)

0.55: male(X) ⇐ interest(X,baseball)

acqtfriends

friends

acqt

friends
acqt

...
male(joe), 

interest(joe,baseball),

interest(joe,computers),

school(joe,jfk),

female(lissa),

interest(lissa,music),

school(lissa,jfk),

...
acqt(joe,lissa),

acqt(lissa,joe),

friends(lissa,paul),

friends(paul,lissa),

......

acqt

friends ...

Figure 2.4: A graph structure used as input for relational learning. The same information can be represented
as a set of ground literals (right). The hypotheses learned to explain either relations or attributes can be
represented as weighted first-order clauses over those literals (below).

We now discuss three forms of relational learning: propositionalization (flattening), Inductive Logic

Programming (ILP), and FOPI learning, which can be seen as a synthesis of the two.
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2.5.1 Propositionalization

An approach to relational machine learning is that of using a relational structure for generating propositional

attribute-value vectors for each of its objects. For this reason, the approach has been called propositional-

ization. Because it transforms graph-like data into vector-like data, it is also often called flattening.

Cumby & Roth [CR00] provide a language for transforming relational data into attribute-value vec-

tors. Their concern is not forming a first-order hypothesis, however. They instead keep the attribute-value

hypothesis and transform novel data to that representation in order to classify it with propositional learn-

ers such as Perceptron. For example, in the case of fig. 2.4, a classifier seeking to learn the relation acqt

would go through the instances of that predicate and generate suitable attribute-value vectors. The literal

acqt(paul, larry) would generate an example with label acqt(X, Y ) and features male(larry), male(paul),

interest(larry, basketball), school(larry, fdr), interest(larry, basketball), school(larry, fdr) etc, as well as

non-ground ones such as male(X), male(Y ), school(X, fdr), school(Y, fdr), school(X, Z), school(Y,Z)

etc. The literal acqt(joe, lissa) would generate an example with label acqt(X, Y ) and features male(joe),

female(lissa), interest(joe, baseball), interest(joe, computers), school(joe, jfk),etc, as well as non-ground

ones such as male(X), female(Y ), school(X, jfk), school(Y, jfk), school(X, Z), school(Y, Z) etc. Note

how this reveals abstractions – the examples above share the features school(X, Z) and school(Y, Z), which

may be one reason for people being acquaintances in this domain. Should a target depend on specific objects

(say, it is much more likely for people at the FDR school to be acquainted to each other) not completely

abstracted features such as school(X, fdr) would be preferred by the classifier.

There are many different ways of transforming a graph or set of literals into attribute-value vectors for

propositional learners. Each of them will represent different learning biases. Some works in this line are

LINUS [LD93], which uses the concept of ij-determinacy (a way of restrict the generalizations of literals)

in order to construct hypothesis, 1BC [FL99] and 1BC2 [LF03], which differentiate between predicates

representing attributes or relations and construct multiset attributes for example, the set of interests among

one’s friends), and Relational Bayesian Classifier (RBC) [NJG03], which also uses multiset attribute values

with a conditional independence assumption similar to the one used in the Naive Bayes classifier.

One disadvantage of propositionalization is that it performs classification of an object at a time. This

prevents the use of possible dependencies between object labels and adds a bias. These dependencies can

be used by FOPI algorithms, which perform joint inference over all objects at once. Three of FOPI models

which have been specifically developed with this in mind are RDNs [Nev06], RMNs [TAK02] and MLNs

[RD04].
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2.5.2 Inductive Logic Programming

Inductive Logic Programming (ILP) stemmed from the logic programming community with the goal of

learning logic programs from data rather than writing them. The choice of logic programming as a hypothesis

language restricted the field to deterministic hypotheses; the later incorporation of probabilities to this

framework is one of the origins of FOPI models. However, the fact that these algorithms learn from data give

them a statistical flavor even in the deterministic case. For example, PROGOL [Mug95a] uses information-

theoretic measures for evaluating deterministic hypotheses.

A typical ILP algorithm works by forming hypotheses one clause at a time. For example, if such an algo-

rithm is trying to learn the concept mother(X, Y ), it might generate the clause mother(X, Y ) : −female(X),

since female(X) does add some predictive power to whether X is a mother, and may at a latter step re-

fine it to mother(X, Y ) : −female(X), child(Y, X). This is a top-down approach since the most general

clause is successively made more specific according to examples. Two examples of work in this line are

[Qui90, RD97]. Another approach is bottom-up, best exemplified by Progol [Mug95a], where sets of ground

literals are successively generalized in order to increase accuracy.

Some ILP algorithms use propositionalization as a subroutine that learns one rule at a time. LINUS

[LD93] transforms its data into attribute-value vectors, applies regular attribute-value learners to it, and

then transforms the attribute-value hypothesis into a clause.

Probabilistic ILP (PILP) algorithms (a specific survey can be found at [RK04]) also often grow clauses

and then estimate the probabilities (or parameters) associated with those clauses. Some learn an entire

logic program at first, and then the parameters, while others learn the parameters as soon as the clauses are

learned. In fact, PILP is simply FOPI with learning done with ILP techniques, and many of these works

have been mentioned in our FOPI section. For example, MLNs [RD04], PRMs [GFKP01, KP98] and BLPs

[KDR01] learn the structure of their models (as opposed to their parameters) through techniques similar to

those of ILP. RDNs [Nev06] use relational classifiers as a subroutine to its model learning.

2.6 Restricted First-Order Probabilistic Models

The models presented so far intended to provide a level of expressivity similar to first-order logic. At a

minimum, they provide unary and binary predicates arbitrarily applied to a collection of objects. However,

there are some probabilistic models showing some first-order aspects, but much more restricted, making

them fit for particular tasks.

One such model is Hidden Markov Models (HMMs) [Rab90], in which a sequence of pairs of random
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variables represent a state and an observation. While essentially propositional, HMMs exhibit the sharing

of parameters commonly observed in first-order models, since its parameters equally apply to all transitions

from one step to the next.

The same sharing of parameters can be observed in related models. Stochastic Context-Free Grammars

[LY90] consist of set of production rules were a nonterminal symbol is stochastically replaced by a number

of possible sequences of symbols. Again, the rules can be applied at different points and parameters are

reused. Dynamic Bayesian Networks [Mur02a] generalize HMMs in that each step is represented by a full

Bayesian network rather than just a pair of state and observations.

Other generalizations of these restricted models are Hidden Tree Markov Models [DFG03], where possible

states form a tree structure, Logical Hidden Markov Models [KDR00], where each state is represented by a

set of logical literals, and Relational Markov Models [ADW02], where each state is also represented by a set

of logical literals, but possible arguments follow a taxonomy and induce a lattice on possible literals.

Another simple generalization of propositional models is the plate notation [Bun94], which describes

graphical models with parts replicated by a set of indices, indicated by a rectangle involving that part in

a diagram. An example is shown in fig. 3.5 (a). The parameters into these parts are then also replicated.

Mjolsness [Mjo04] proposes many refinements to this type of notation. The plate notation is commonly used

as a tool for descriptions in the literature but does not have a strictly formal characterization.

2.7 Conclusion

First-order probabilistic inference has made much progress in the last twenty years. We believe the main

accomplishments have been the clarification the semantics of such languages, as well as a greater under-

standing on how several different language options relate to each other. In analyzing the works in the area

of FOPI, we can distinguish a few main options along which they seem to organize themselves. We now

make these aspects more explicit.

2.7.1 Directed vs. Undirected

The decision on using directed or undirected models carries over the the first-order case. While the in-

telligibility of directed models has favored their use in first-order proposals at first, we can observe a

current tendency to use undirected models now [RD04, dSBAR05], or at least directed models without

the acyclicity requirement [Nev06]. The reason for this shift is that cycles are even more naturally oc-

curring in first-order domains than in propositional ones. A “natural” conditional probability such as
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P (smoker(X)|friend(X, Y ), smoker(Y )) creates an underlying network with cycles. The use of undirected

models seems to be further justified by the fact that they do not rule out directed models. If the given

factors encode conditional probabilities that do not involve cycles, they will still represent the correct dis-

tribution even if interpreted as an undirected factor (this may however waste the efficiency advantages of

directionality).

2.7.2 Deterministic Relations

As mentioned in the presentations of PRMs [GFKP01, KP98] and LBNs [FBBR05], the fact that certain

relations are deterministic or given in the data may significantly decrease the size of CPTs (or factor table)

involved in a model. This is an important practical issue that needs to be kept in mind when implementing

FOPI systems.

2.7.3 The Trade-off between Language and Algorithm

Some FOPI proposals focus on rich languages that allow the user to indicate domain restrictions which can be

exploited for efficiency. Example of such systems are Ngo and Haddawy’s Probabilistic Logic Programming

[NH95], PRMs [GFKP01, KP98], LBNs [FBBR05]. Other solutions propose extremely simple yet expressive

languages, relying on inference algorithms to exploit domain structure (sometimes guided by extra-language

directives). The most typical examples are BLPs [KDR00] and MLNs [RD04].

This choice reflects a trade-off between language and inference algorithm complexities. Complex lan-

guages bring built-in optimization hints; for example, PRMs have attributes (with a value) and relations,

even though both could be regarded as binary predicates. By indicating that a binary predicate is an at-

tribute, the user implicitly indicates the most efficient ways of using it, which are distinct from the way

a relation is used. To obtain the same effect, an algorithm using only a single general notion of binary

predicates would have to either find out or be told about how to use each of them in the most efficient

manner.

Our particular view is that FOPI languages will tend to become simpler, leaving the complexities to be

dealt with by software. This reflects the evolution of programming languages, that have increasingly left

efficiency details to be dealt with by compilers and directives rather than by the language itself, leaving the

latter at a higher level.
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2.7.4 Function Symbols

Functions symbols pose complicated problems for FOPI models. If used recursively, they can create the need

to consider infinite models, preventing straightforward solutions such as creating an underlying graphical

model, or computing all possible worlds.

Since it is easier to deal with infinite models by approximation, it is perhaps not surprising that sam-

pling solutions such as PRIM [SK97] and BLOG [MMR+05] can use function symbols. Exact methods, or

guaranteed-bound approximation methods, are yet to make full use of function symbols.

Other topics that have not been much explored in the literature are the need for open worlds (only

BLOG [MMR+05], to our knowledge, uses it) and guided underlying graphical model construction, that is,

having the underlying graphical model be constructed in a way that maximizes the accuracy of an anytime

computation. This would delay the expensive construction of sections of the network that do contribute to

the answer (thus not being eliminable due to strict irrelevance) while mattering little.
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Chapter 3

Lifted First-Order Probabilistic
Inference

This chapter presents our main contribution, the FOVE algorithm for lifted FOPI inference. The FOVE

algorithm receives a first-order probabilistic model, in a language defined in section 3.2, and a query (a set

of “ground” random variables), and computes the marginal probability of the query given the model.

What distinguishes the FOVE algorithm from other FOPI algorithms is that it often performs inference

directly at the first-order level, without generating a propositional model first. This allows the algorithm

to eliminate entire classes of random variables without considering them individually, greatly increasing

efficiency in large domains where propositionalization would create a much larger model.

3.1 Propositional Markov Networks and Variable Elimination

3.1.1 Markov Networks

A Markov network is a graphical model defined on random variables V = (V1, . . . , Vn). It consists of a

collection of potential functions Φ, with each φ ∈ Φ defined on a tuple Aφ of random variables in V. These

potential functions can also be referred to as factors.

A Markov network can be represented as a graph with random variables as vertices and edges linking

random variables which are inputs to a same potential function, as illustrated in figure 3.1(a). In this rep-

resentation, potential functions apply to every maximal clique in the graph. Alternatively, we can explicitly

represent potential functions as a different type of vertex and link each random variable to the potential

functions for which it is an input, as shown in 3.1(b). This type of representation is called a factor network

and is the one we use for the remainder of the thesis.

A potential function maps each value assignment of its random variables to a non-negative real number

representing the degree of compatibility between the assigned values. This number is the potential of that

assignment given by that particular potential function.

Although a potential does not have a probabilistic meaning per se, a Markov network defines a joint
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distribution on its random variables. The probability of an assignment v to V is defined as

P (v) = 1/Z
∏
φ∈Φ

φ(aφ)

Z =
∑

v′∈V al(V)

∏
φ∈Φ

φ(aφ)

where aφ is the assignment to Aφ according to the current global assignment, and V al(V) is the set of

possible assignments to V.

We can express the above more succinctly by indicating that the probability P (v) is proportional to the

product of potentials:

P (v) ∝
∏
φ∈Φ

φ(aφ).

3.1.2 Variable Elimination

Given a Markov network and its induced joint probability, a problem of interest is that of Belief Assessment,

which consists of computing the marginal probability of a subset Q of its random variables, defined as

P (q) ∝
∑
v\q

∏
φ∈Φ

φ(aφ)

where v \ q ranges over all assignments in V al(V \Q)1. This sum is intractable in general because the size

of V al(V \Q) is exponential in the size of V \Q. A more efficient algorithm, called Variable Elimination

(VE) [ZP94] or Bucket Elimination [Dec99], takes advantage of the model’s structure and factors potential

functions out of certain summations. Given an ordering, {Vo1 , . . . , Vom}, of V \Q, we can write

P (q) ∝
∑
vo1

· · ·
∑
vom

∏
φ∈Φ

φ(aφ)

=
∏

φ∈Φ0

φ(aφ)
∑
vo1

∏
φ∈Φ1

φ(aφ) · · ·
∑
vom

∏
φ∈Φm

φ(aφ)

1Posterior probabilities given a set of observations can be computed by adding potential functions on observed random
variables that assign non-zero potentials to the observed values only
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where Φj ⊆ Φ, for j > 0, is the set of factors with Voj but none of Vok
, k > j in their inputs, and Φ0 ⊆ Φ is

the set of factors with no Voj
as input. Then, we calculate the innermost summation and form a new factor

φ′:

φ′(aφ′) =
∑
vom

∏
φ∈Φm

φ(aφ)

where Aφ′ is
(⋃

φ∈Φom
Aφ

)
\ Vom . In the next step we add φ′ to the appropriate Φj and the algorithm

resumes. It stops when only Φ0 remains, the product of which provides a marginal distribution on Q.

Graphically, VE corresponds to eliminating a random variable node from the network and collapsing its

neighboring potential functions. Figure 3.1(c) shows the resulting factor network after the elimination of

random variable sick from the network in figure 3.1(b). This continues until all random variables not in

the query are eliminated. We are then left with a network on the query alone that represents its marginal

directly.

sickepidemic(b)

(c)

weather

isolated

epidemic weather

isolated

sickepidemic(a) weather

isolated

Figure 3.1: (a) a graphical representation of a Markov network, (b) its alternative representation known as
a factor network, where squares represent factors (potential functions) on the random variables (circles) to
which they connect, and (c) the resulting factor network after the Variable Elimination of random variable
sick.
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3.2 FOPI Language, Semantics and Inference Problem

Like Markov Networks, First-Order Probabilistic Models (FOPMs) are essentially defined by a set of factors.

However, unlike them, these factors are defined over parameterized random variables, and for this reason we

call them parfactors (following [Poo03]).

Given a universe of objects over which the parameters range, we can generate regular propositional

factors from a parfactor by replacing its parameters by particular objects. A parfactor is therefore a compact

representation of a set of regular factors, and a FOPM is a compact representation of a Markov network

composed by all instantiations of all of its parfactors. Figure 3.2 shows an example of a FOPM and its

meaning.

sick(P) epidemicshospital(P)

sick(john)hospital(john)

sick(mary)hospital(mary)

.
.
.

.
.
.

epidemics

(a)

(c)

(b) sick(P) epidemicshospital(P)

P: Person

Figure 3.2: (a) a graphical representation of a first-order probabilistic model (where piled squares represent
parfactors), (b) an equivalent plate representation and (c) its grounding, where squares represent factors.

Due to the correspondence to logic concepts, we call a parameterized random variable an atom, and

a parameter a logical variable (as opposed to random variables). We also call the functors of atoms

predicates. Even though we informally refer to atoms as “parameterized random variables”, they are not,

technically speaking, random variables, but stand for classes of them. A ground atom, however, denotes a

random variable. Sometimes we call random variables ground to emphasize their correspondence to ground

atoms.

Logical variables are typed, with each type being a finite set of objects. We denote the domain, or type,

of a logical variable X by DX and its cardinality by |X|. In our examples, unless noted, all logical variables
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have the same type. Each predicate p also has its domain, Dp, which is the set of values that each of the

random variables with that predicate can take.

Formally, a parfactor g is a tuple (φg, Ag, Cg), where φg is a potential function defined over atoms Ag

to be instantiated by all substitutions of its logical variables satisfying a constraint Cg. A constraint is a

pair (F, V ) where F is an equational formula on logical variables and V is the set of logical variables to be

instantiated (some of them may not be in the formula). We sometimes denote a constraint by its formula

F alone, when the set of logical variables V is clear from context. Tautological formulas are represented

by >. For example, the parfactor (φ, (p(X), q(X, Y )), (X 6= a, {X, Y })) applies φ to all instantiations of

(p(X), q(X, Y )) by substitutions of X and Y satisfying X 6= a. We denote the set of substitutions satisfying

C by [C].

While we are neutral as to how the potential functions are actually specified, logical formulas seem to

be a convenient choice. For example, a weighted formula 0.7 : epidemic(D) ⇒ sick(P,D) might represent

a potential function φ(epidemic(D), sick(P,D)) with potential 0.7 for assignments in which the formula is

true. This allows us to specify FOPMs by sets of weighted logical formulas that are intuitive and simple to

read, and is the approach taken by Markov Logic Networks ([RD04]).

The projection C|L of a constraint C = (F, V ) onto a set of logical variables L is a constraint

equivalent to (∃L′F,L) for L′ = V \L. Intuitively, C|L describes the conditions posed by C on L alone, that

is, the possible substitutions on L that are part of substitutions in [C]. For example, (X 6= a∧X 6= Y ∧Y 6=

b, {X, Y })|{X} = (X 6= a, {X}). FOVE uses a constraint solver which is able to solve several constraint

problems, such as determining the number of solutions of a constraint and its projection onto sets of logical

variables.

In certain contexts we wish to describe the class of random variables instantiated from an atom with

constraints on its logical variables (for example, the set of random variables instantiated from p(X, Y ), with

X 6= a). We call such pairs of atoms and constraints constrained atoms, or c-atoms. The c-atoms of a

parfactor is the set of c-atoms formed by its atoms and its constraint.

Let α be a parfactor, c-atom, constraint or a set of those. We define RV (α) to be the set of (ground)

random variables specified by α, and αθ denotes the result of applying a substitution θ to α. [Cg] is also

denoted by Θg.

A FOPM is specified by a set of parfactors G and the types of its logical variables. Its semantics is a

joint distribution defined on RV (G) by the Markov Network formed by all the instantiations of parfactors.
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Thus it is proportional to the product of all instantiated parfactors:

P (RV (G)) ∝
∏
g∈G

∏
θ∈Θg

gθ

For convenience, we denote
∏

θ∈Θg
gθ by Φ(g), and

∏
g∈G Φ(g) by Φ(G). Therefore we can write the above

as P (RV (G)) ∝ Φ(G).

The most important inference task in graphical models is marginalization. For FOPMs, it takes the

following form: given a set of ground random variables Q, calculate

P (Q) ∝
∑

RV (G)\Q

Φ(G) (3.1)

where the summation ranges over all assignments to RV (G) \ Q. Posterior probabilities can be calculated

by representing evidence as additional parfactors on the evidence atoms.

The FOVE algorithm makes the simplifying assumption that the set of instantiations of any pair of

c-atoms in either the model or the query are either identical or disjoint. In other words, we can have

c-atoms (p(X), X 6= a),(p(Y ), Y 6= a) and p(a) in a model, but not p(Y ) and p(a), for example, because

RV (p(a)) ⊂ RV (p(Y )) but RV (p(a)) 6= RV (p(Y )). When a model and query do not satisfy this condition,

they need to be shattered. Shattering is explained in section 3.6.2.

3.3 The First-Order Variable Elimination (FOVE) Algorithm

Computing (3.1) directly is intractable since it would take exponential time in the number of random

variables in RV (G) \Q. This is the case even for the propositional case, which is the reason why algorithms

have been developed that take advantage of independences represented in the model in order to compute

marginals more efficiently. One of these algorithms is Variable Elimination (VE) ([ZP94]). First-Order

Variable Elimination (FOVE) is a first-order generalization of Variable Elimination. While VE eliminates

a random variable at a time, FOVE eliminates a c-atom, or set of c-atoms, at each step. By eliminating a

c-atom, we implicitly eliminate all of its instantiations at the same time. Let E be a set of c-atoms to be

eliminated from a FOPM with a set G of parfactors. Let GE , G¬E ⊆ G be the sets of parfactors depending

and not depending on E, respectively. Then

∑
RV (G)\Q

Φ(G) =
∑

(RV (G)\RV (E))\Q

Φ(G¬E)
∑

RV (E)

Φ(GE)
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We later show operations computing a parfactor g′ such that
∑

RV (E) Φ(GE) = Φ(g′). Once we have g′,

the right-hand side of the above is equal to

∑
(RV (G)\RV (E))\Q

Φ(G¬E)Φ(g′) =
∑

(RV (G)\RV (E))\Q

Φ(G¬E ∪ {g′}) =
∑

RV (G′)\Q

Φ(G′)

where G′ = G¬E ∪ {g′}. In other words, we have reduced the original marginalization to a smaller instance

that does not include RV (E). This is repeated until only Q is left.

A crucial difference between VE and FOVE is elimination ordering. VE eliminates random variables

according to an ordering given a priori. In FOVE, eliminating certain c-atoms may require eliminating some

other c-atoms first, so it may be the case that some c-atoms are not eliminable at all times (these conditions

will be clarified later). Because parfactors and c-atoms are sometimes changed and reorganized during the

algorithm, it is not a simple matter to choose an ordering in advance. Instead, the elimination ordering is

dynamically determined.

Before we move on explaining the operations for calculating
∑

RV (E) Φ(GE) = Φ(g′), we mention that, in

fact, they only calculate
∑

RV (E) Φ(g) for a single parfactor g. This is not a problem because the operation

of fusion, covered in section 3.6.1, calculates g such that Φ(g) = Φ(G) for any set of parfactors G.

3.3.1 Counting Elimination

We first show counting elimination on a specific example and later generalize it. Consider the summation

∑
RV (p(X))

∏
X,Y

φ(p(X), p(Y ))

where p is a boolean predicate. (Note that the X used under the summation is not the same X used by the

product. RV (p(X)) is shorthand for all assignments over the set {p(X) : X ∈ DX}, so X is locally used. In

fact, we could have written RV (p(Y )), or even RV (p(Z)), to the same effect. We choose to use X or Y to

make the link with the atom in the parfactor more obvious.)

Counting elimination is based on the following insight: because a parfactor will typically only evaluate

to a few different potentials, large groups of its instantiations will evaluate to the same potential. So the

summation is rewritten

∑
RV (p(X))

φ(0, 0)|(0,0)|φ(0, 1)|(0,1)|φ(1, 0)|(1,0)|φ(1, 1)|(1,1)|
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where |(v1, v2)| indicates the number of possible choices for X and Y so that p(X) = v1 and p(Y ) = v2

given the current assignment to RV (p(X)). These partition sizes can be calculated by a combinatorial, or

counting, argument. Assume we know ~Np, a vector of integers that indicates how many random variables

in RV (p(X)) are currently assigned a particular value, that is, ~Np,i = |{r ∈ RV (p(X)) : r = i}| for each

i ∈ Dp. Naturally,
∑

i
~Np,i = |RV (p(X))|. Then there are ~Np,v1 possible values for X (so that p(X) = v1)

and ~Np,v2 distinct possible values for Y (so that p(Y ) = v2), so |(v1, v2)| = ~Np,v1
~Np,v2 .

We take advantage of the fact that the values |(v1, v2)| do not depend on the particular assignments to

RV (p(X)), but only on ~Np. This allows us to iterate over the groups of assignments with the same ~Np and

do the calculation for the entire group. We also take into account the group size, which is provided by the

binomial coefficient of ~Np,
(|RV (p(X))|

~Np,0

)
(or, equivalently,

(|RV (p(X))|
~Np,1

)
). We then have

∑
~Np

(|RV (p(X))|
~Np,0

) ∏
(v1,v2)

φ(v1, v2)
~Np,v1

~Np,v2

which has a number of terms linear in |RV (p(X))|, as opposed to the previous exponential number.

Figure 3.3 shows the input and output, in plate notation, of the counting elimination of RV (sick(P ))

from a parfactor on epidemic, sick(P1), sick(P2).

sick(P1)

epidemic

P1: Person

epidemic

(a)

(b)

sick(P2)

P2: Person

Figure 3.3: Plate representation of counting elimination (a) before and (b) after. Note that the grounding
of sick(P1) and sick(P2) is the same, which is not standard in plate representation.

Counting elimination is not a universal method. The counting argument presented above requires that
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there be little interaction between the logical variables of atoms. If a parfactor is on p(X, Y ), q(X, Z), for

example, the counting argument does not work because the choices for (X, Z) depend on the particular X

chosen for p(X); we can no longer compute number of choices using counters alone but need to know the

particular assignment to RV (p(X)). Generally, under counting elimination choices for one atom cannot

constrain the choices for another atom (there are exceptions to this rule, as for example just-different atoms,

presented in ([dSBAR06])).

We now give the formal account of counting elimination, starting by some preliminary definitions.

First, we define the notion of independent atoms given a constraint. Intuitively, this happens

when choosing a substitution for the logical variables of one atom does not change the possible choices of

substitutions for the other atom. Let X̄1 and X̄2 be two sets of logical variables such that X̄1 ∪ X̄2 ⊆ V .

X̄1 is independent from X̄2 given C if, for any substitution θ2 ∈ [C|X̄2
], C|X̄1

⇔ (Cθ2)|X̄1
. X̄1 and X̄2 are

independent given C if X̄1 is independent from X̄2 given C and vice-versa. Two atoms p1(X̄1) and p2(X̄2)

are independent given C if X̄1 and X̄2 are independent given C.

Finally, we define multinomial counters. Let a be a c-atom with domain Da. Then the multinomial

counter of a ~Na is a vector where ~Na,j indicates how many instantiations of a are assigned the j-th value

in Da. The multinomial coefficient ~Na! = ( ~Na,1+···+ ~Na,|Da|)!

~Na,1!... ~Na,|Da|!
is a generalization of binomial coefficients and

indicates how many assignments to RV (a) exhibit the particular value distribution counted by ~Na.

Counters can be applied to sets of c-atoms with the same general meaning. The set of multinomial

counters for a set of c-atoms A is denoted ~NA, and the product
∏

a∈A
~Na! of their multinomial coefficients

is denoted ~NA!.

Theorem 1 (Counting Elimination). Let g be a shattered parfactor and E = {E1, . . . , Ek} be a subset of

Ag such that RV (E) is disjoint from RV (Ag \E), A′ = Ag \E are all ground, and where each pair of atoms

is independent given Cg. Then

∑
RV (E)

∏
θ∈Θg

φ(Agθ) =
∑
~NE

~NE !
∏

v∈DE

φ(v,A′)#(v, ~NE)

where #(v, ~NE) =
k∏

i=1

~NEi,vi
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Proof.

∑
RV (E)

Φ(g) =
∑

RV (E)

∏
θ∈Θg

φ(Agθ)

=
∑

RV (E)

∏
v∈DE

φ(v,A′)|{θ∈Θg:Agθ=v}|

=
∑

RV (E)

∏
v∈DE

φ(v,A′)#(v, ~NE)

=
∑
~NE

~NE !
∏

v∈DE

φ(v,A′)#(v, ~NE)

Counting elimination brings a significant computational advantage because iterating over assignments is

exponential in |RV (E)| while doing so over groups of assignments is only polynomial in it.

It is important to notice that E must contain all non ground c-atoms in g. Also, if all c-atoms in g are

ground, E can be any subset of them and we will have a simple propositional summation, the same used in

VE (counters over 1-random variable c-atoms reduce to ordinary assignments).

3.3.2 Inversion

Counting elimination requires a parfactor’s atoms to be independent given its constraints. In particular,

logical variables shared between atoms may render them dependent on each other. In some of these cases, the

operation of Inversion can be applied. In fact, even in cases in which counting elimination can be applied,

it is advantageous to apply Inversion first, if possible, for efficiency reasons.

Let us consider a couple of examples before we formalize Inversion. Consider the following, where D

assumes a value from a set of diseases {d1, . . . , dn} and P assumes a value from a set of people {p1, . . . , pm}:

∑
RV (sick(D,P ))

∏
D,P

φ1(epidemics(D), sick(D,P ))φ2(sick(D,P ), hospital(P ))

(by abbreviating the predicate names and using fusion (section 3.6.1) to create a single parfactor)

=
∑

RV (s(D,P ))

∏
D,P

φ(e(D), s(D,P ), h(P ))

=
∑

s(d1,p1)

∑
s(d1,p2)

· · ·
∑

s(dn,pm)

φ(e(d1), s(d1, p1), h(p1))φ(e(d1), s(d1, p2), h(p2)) . . . φ(e(dn), s(dn, pm), h(pm))

37



(by observing that φ(e(di), s(di, pj), h(pj)) depends on s(di, pj) only)

=
∑

s(d1,p1)

φ(e(d1), s(d1, p1), h(p1)) · · ·
∑

s(dn,pm)

φ(e(dn), s(dn, pm), h(pm))

(by observing that only φ(e(di), s(di, pj), h(pj)) depends on s(di, pj))

=
( ∑

s(d1,p1)

φ(e(d1), s(d1, p1), h(p1))
)

. . .
( ∑

s(dn,pm)

φ(e(dn), s(dn, pm), h(pm))
)

=
∏
D,P

∑
s(D,P )

φ(e(D), s(D,P ), h(P ))

(by observing that only the summation is the same for all D,P )

=
∏
D,P

φ′(e(D)).

Inversion works by establishing a one-to-one correspondence between parfactor instantiations and sum-

mations. If the summation were on the instantiations of e(D), such correspondence would not be possible

because there would be less summations (n of them) than parfactor instantiations (n ∗m of them).

Figure 3.4 illustrates why inversion elimination is faster than regular VE. If we have two parfactors,

one on epidemic and sick(P ) and another on sick(P ) and some hospital, regular VE will eliminate each

of the (possibly many) instances of sick(P ). Inversion elimination, on the other hand, will apply a single

elimination step on the sick(P ) instead.

It is illuminating to note that, in the context of plate graphical models [Bun94], inversion elimination is

the same as eliminating a random variable inside an innermost plate. This is exemplified in figure 3.5.

Even if we have the same number of summations and parfactor instantiations, we may not have the

one-to-one correspondence that allows factoring out. For example, we cannot use Inversion on p(X, Y ) for

a parfactor on p(X, Y ), p(Y,X) because for any pair of objects oi, oj , neither of the parfactor instantiations

p(oi, oj) and p(oj , oi) can be factored out of the innermost of
∑

p(oi,oj)
and

∑
p(oj ,oi)

.

In the Inversion example above, the resulting inner summation was propositional. Inversions resulting

in propositional summations were called Inversion Elimination in ([dSBAR05, dSBAR06]). In the next

example, the inner summation is one computed by counting elimination.
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sick(p1)

epidemic

(a)

(b)

sick(p2)

sick(p100000)

epidemic ...
sick(P)

some_hospital

some_hospital

Figure 3.4: Regular VE needs to eliminate each of the instances of sick(P ) (a), while Inversion Elimination
eliminates sick(P ) in a single step.

Suppose we want to calculate

∑
RV (p(X,Y ))

∏
X,Y,Z

φ(p(X, Y ), p(X, Z))

=
∑

RV (p(X,Y ))

∏
X

∏
Y,Z

φ(p(X, Y ), p(X, Z))

=
∑

RV (p(o1,Y ))

· · ·
∑

RV (p(on,Y ))

∏
Y,Z

φ(p(o1, Y ), p(o1, Z)) · · ·
∏
Y,Z

φ(p(on, Y ), p(on, Z))

=
( ∑

RV (p(o1,Y ))

∏
Y,Z

φ(p(o1, Y ), p(o1, Z))
)

. . .
( ∑

RV (p(on,Y ))

∏
Y,Z

φ(p(on, Y ), p(on, Z))
)

=
∏
X

∑
RV (p(X,Y ))

∏
Y,Z

φ(p(X, Y ), p(X, Z))

Because X is now bound before the summation, it works as a constant (whose exact identity is irrelevant),

and so it is not included in the counting argument. The counting argument now involves only Y and Z and

is actually very similar to our original counting argument example. For that reason, the above is equal to∏
X φ′(), for φ′ the result of counting elimination.

Inversions resulting in counting elimination problems only invert on a subset of the parfactor’s logical
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sick(D,P)

epidemics(D)

hospital(P)
P: Person

D: Disease

epidemics(D)hospital(P)

P: Person D: Disease

(a)

(b)

Figure 3.5: Inversion elimination corresponds to the elimination of a random variable schema in an innermost
plate in a plate graphical model, here represented by (a) before and (b) after the elimination. Models with
crossing plates are exemplified in [Las05].

variables. For this reason, they have been called Partial Inversions in our previous work. Note however

that, since propositional sums are a trivial case of counting elimination, both Inversion operations can be

unified into one. This is what we do in the formalization below.

Uniform Solution Counting Partition (USCP)

Before we present the theorem formalizing Inversion, we touch a last issue. Consider the inversion of X

resulting in the expression

∏
X

∑
RV (p(X,Y ))

∏
Y 6=X,Z 6=X,Y 6=a,Z 6=a

φ(p(X, Y ), p(X, Z)).

The summation can be done by counting elimination since X is bound. However, it will depend on

|RV (p(X, Y ))|, but that depends on whether X = a or not. One needs to split the expression accord-

ing to cases X = a and X 6= a:

( ∑
RV (p(a,Y ))

∏
Y 6=a,Z 6=a

φ(p(a, Y ), p(a, Z))
)
×

( ∏
X 6=a

∑
RV (p(X,Y ))

∏
Y 6=X,Z 6=X,Y 6=a,Z 6=a

φ(p(X, Y ), p(X, Z))
)

and then proceed as usual.
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In general, one needs to consider the uniform solution counting partition (USCP). of the inverted

logical variables with respect to an original constraint system. The USCP UL(C) of a set of logical variables

L with respect to a constraint C is a set of constraints {C1, . . . , Ck} such that {[Ci]}i forms a partition of

[C|L] and

∀i · ∀θ′, θ′′ ∈ [Ci] · |[Cθ′]| = |[Cθ′′]|,

that is, the number of solutions for the constraint conditioned on L is the same for each of the components

Ci.

A more complete treatment of USCPs is given in appendix A.

Inversion Formalization

Theorem 2 (Inversion). Let g be a shattered parfactor, L a set of logical variables and E a set of c-atoms

such that RV (E) and RV (Ag \ E) are disjoint. If

∀ek, el ∈ E · ∀θi, θj ∈ [Cg|L] · θi 6= θj ⇒ RV (ekθi) ∩RV (elθj) = ∅. (3.2)

then

∑
RV (E)

Φ(g) =
∏

C∈UL(Cg)

Φ(gC)

where gC is the parfactor (φg′ , Ag′ , C∧Cg′), using g′ defined by the recursive computation g′θ =
∑

RV (Eθ) Φ(gθ),

for θ an arbitrary element of [C] (by the definition of USCP, it does not matter which).

Proof. Let E = {e1, . . . , en}, [Cg|L] = {θ1, . . . , θm}. Below, we decompose Cg into the part w.r.t. L and the
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remaining logical variables:

∑
RV (E)

Φ(g) =
∑

RV (E)

∏
θ∈Θg

φ(Agθ)

=
∑

RV (E)

∏
θ∈[Cg|L]

∏
θ′∈[Cgθ]

φ(Agθθ
′)

=
∑

RV (e1)

· · ·
∑

RV (en)

∏
θ∈[Cg|L]

∏
θ′∈[Cgθ]

φ(Agθθ
′)

=
∑

RV (e1θ1)

· · ·
∑

RV (enθ1)

· · ·
∑

RV (e1θm)

· · ·
∑

RV (enθm)

( ∏
θ′∈[Cgθ1]

φ(Agθ1θ
′)

)
. . .

( ∏
θ′∈[Cgθm]

φ(Agθmθ′)
)

=
( ∑

RV (e1θ1)

· · ·
∑

RV (enθ1)

∏
θ′∈[Cgθ1]

φ(Agθ1θ
′)

)
. . .

( ∑
RV (e1θm)

· · ·
∑

RV (enθm)

∏
θ′∈[Cgθm]

φ(Agθmθ′)
)

=
∏

θ∈[Cg|L]

∑
RV (e1θ)

· · ·
∑

RV (enθ)

( ∏
θ′∈[Cgθ]

φ(Agθθ
′)

)
=

∏
θ∈[Cg|L]

∑
RV (Eθ)

( ∏
θ′∈[Cgθ]

φ(Agθθ
′)

)
=

∏
C∈UL(Cg)

∏
θ∈[C]

∑
RV (Eθ)

Φ(gθ) =
∏

C∈UL(Cg)

∏
θ∈[C]

Φ(gCθ) =
∏

C∈UL(Cg)

Φ(gC).

Condition 3.2 is used to ensure the summations on
∑

RV (e1θ1)
· · ·

∑
RV (enθm) are indeed distinct. It

implies ∀θi, θj ∈ [Cg|L] · θi 6= θj ⇒ RV (Eθi)∩RV (Eθj) = ∅, which ensures that the innermost products are

on distinct sets of random variables and can therefore be factored out as shown.

Note that condition 3.2 is equivalent to

∀ek, el ∈ E · ∀θi, θj ∈ [Cg|L] · θi 6= θj ⇒ ¬∃θ · ekθiθ = elθjθ

⇔ ∀ek, el ∈ E · ∀θi, θj ∈ [Cg|L] · θi = θj ∨ ¬∃θ · ekθiθ = elθjθ

⇔ ∀ek, el ∈ E · ∀θi, θj ∈ [Cg|L] · ¬(θi 6= θj ∧ ∃θ · ekθiθ = elθjθ)

⇔ ∀ek, el ∈ E · ∀θi, θj ∈ [Cg|L] · ¬(∃θ · θi 6= θj ∧ ekθiθ = elθjθ)

⇔ ∀ek, el ∈ E · ¬(∃θi, θj ∈ [Cg|L] · ∃θ · θi 6= θj ∧ ekθiθ = elθjθ)

⇔ ∀ek, el ∈ E · ¬(∃L1, L2 · Cgθ1|L1
∧ Cgθ2|L1

∧ ∃θ · L1 6= L2 ∧ ekθ1θ = elθ2θ)

⇔ ∀ek, el ∈ E · ¬(∃L1, L2 · ∃θ · Cgθ1|L1
∧ Cgθ2|L1

∧ L1 6= L2 ∧ ekθ1θ = elθ2θ)

where θ1 and θ2 are one-to-one mappings from L to standardized apart tuples of logical variables L1 and L2
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respectively. This is equivalent to the formula

Cgθ1|L1
∧ Cgθ2|L1

∧ L1 6= L2 ∧ ekθ1 = elθ2

being not satisfiable, for all atoms ek, el ∈ E, which the constraint solver can decide.

3.3.3 Propositionalization

When no lifted operation can be applied in order to calculate
∑

RV (E) Φ(g), one can resort to regular

propositionalization. In this case, a regular propositional algorithm is applied to the propositional graphical

model formed by the set of all instantiations of g. In fact, if g is the fusion of a set of parfactors GE , it is

better to instantiate the parfactors in GE directly (that is, not to use the fused parfactor), since this will

keep them separated and better represent independences in the model, which can be used by the algorithm

for greater efficiency.

3.3.4 The Algorithm

Figure 3.6 shows the main pseudocode for FOVE. The algorithm consists of successively choosing eliminations

(E, {L1, . . . , Lk}), consisting of a collection of atoms E to eliminate after performing a series of inversions

based on sets L1, . . . , Lk of logical variables. A possible way of choosing eliminations is presented in figure

3.7. It is presented separately from the main algorithm for clarity, but because these two phases have many

operations in common, actual implementations will typically integrate them more tightly.

There are potentially many ways to choose eliminations. The one we present starts by choosing an atom

and checking if its inversion will produce a propositional summation, since this is the most efficient case. If

not, we successively add atoms to E until GE forms a parfactor where all atoms with logical variables are

part of E (because counting elimination requires it). Then, for efficiency and to avoid shared logical variables

between atoms, we try to determine as many inversions as possible, coded in the sequence L1, . . . , Lk, to be

done before counting elimination (or explicit summation when counting cannot be done).

A complexity analysis of FOVE is provided in appendix E.

3.4 An Empirical Example

We use the implementation available at http://l2r.cs.uiuc.edu/~cogcomp to compare average run times

between lifted and propositional inference (which produce the exact same results) for two different models
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FUNCTION FOVE (G, Q)
G a set of parfactors, Q ⊆ RV (G), G shattered against Q (section 3.6.2).

1. If RV (G) = Q, return G.
2. (E, {L1, . . . , Lk})← CHOOSE-ELIMINATION(G, Q).
3. gE ← fs(GE) (fusion, section 3.6.1).
4. G′ ← ELIMINATE(gE , E).
5. Return FOVE (G′ ∪G¬E , Q).

FUNCTION ELIMINATE (g,E, {L1, . . . , Lk})
1. If k = 0 (no inversion)

return SUMMATION-WITHOUT-INVERSION (g,E).
2. E1 ← {e ∈ E : LV (e) ∩ L1 6= ∅} (get inverted atoms).
3. Return

⋃
C1∈UL(Cg) ELIMINATE-GIVEN-UNIFORMITY(g,E1, C1, {L2, . . . , Lk}).

FUNCTION ELIMINATE-GIVEN-UNIFORMITY (g,E1, C1, {L2, . . . , Lk})
1. Choose θ1 ∈ [C1] (bind inverted logical variables arbitrarily).
2. G′ ← ELIMINATE (gθ1, E1θ1, {L2, . . . , Lk}).
3. G′′ ←

⋃
g′θ1∈G′(φg′ , Ag′ , C1 ∧ Cg′).

4. Return
⋃

g′′∈G′′ SIMPLIFICATION(g′′) (simplification, section 3.6.3).

FUNCTION SUMMATION-WITHOUT-INVERSION (g,E)
1. If E = {E1, . . . , Ek} atoms are independent given Cg and Ag \ E is ground

return (
∑

~NE

~NE !
∏

v φg(v,Ag \ E)#(v, ~NE), Ag \ E,>) (counting, section 3.3.1).
2. Return (

∑
RV (E)

∏
θ∈Θg

φg(Agθg), Ag \ E,Cg) (propositional elimination).

Notation:
• LV (α): logical variables in object α.
• gθ: parfactor (φg, Agθ, Cgθ).
• UL(Cg): USCP of L with respect to Cg (section 3.3.2).
• C|L: constraints projected to a set of logical variables L.
• GE : subset of parfactors G which depend on RV (E).
• G¬E : subset of parfactors G which do not depend on RV (E).
• #(v, ~NE) = #(v, ~NE) =

∏k
i=1

~NEi,vi

• >: tautology constraint.

Figure 3.6: The FOVE algorithm.

while increasing the number of objects in the domain. The first one, (I) in figure 3.8, answers the query

P (p) from a parfactor on (p, q(X)) and uses inversion elimination only. The inference in (II) answers query

P (r) from a parfactor on (p(X), p(Y ), r) and uses counting elimination only. In both cases propositional

inference starts taking very long before any noticeable variation in lifted inference run times.

3.5 Applicability of Lifted Inference

As explained in the previous sections, the lifted operations of FOVE are not always applicable, each of them

requiring certain conditions to be satisfied in advance. Therefore a natural question is to what kinds of

FOPMs we can apply FOVE in an exclusively lifted manner.

It is not clear at this point whether it is possible to tell in advance if a FOPM can be solved with lifted
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FUNCTION CHOOSE-ELIMINATION (G, Q)
1. Choose e from AG \Q.
2. g ← fs(Ge) (fusion, section 3.6.1).
3. If LV (e) = LV (g) and ∀e′ ∈ Ag RV (e′) 6= RV (e)

return ({e}, LV (e)) (inversion eliminable).
4. E ← {e}.
5. While E 6= non-ground atoms of GE

E ← E ∪ non-ground atoms of GE .
6. Return (E,GET-SEQUENCE-OF-INVERSIONS(fs(GE))).

FUNCTION GET-SEQUENCE-OF-INVERSIONS (g)
1. If there is no L1 set of invertible logical variables in g (inversion, section 3.3.2)

return ∅.
2. Choose θ1 ∈ [Cg|L1 ].
3. {L2, . . . , Lk} ← GET-SEQUENCE-OF-INVERSIONS(gθ1).
4. Return {L1, L2, . . . , Lk}.

Figure 3.7: One possible way of choosing an elimination.

operations alone. The main reason for this is that lifted operations will be applied to parfactors resulting

from previous operations, so we do not know them in advance. It may be that two parfactors satisfying the

lifted operations conditions fuse to form one which does not.

It is possible, however, to run the algorithm symbolically, without performing the actual numerical

computations, in order to determine the time they will take. In fact, this same method can be used in

order to choose the best elimination ordering. This is analogous to performing VE in propositional graphical

models without computing the actual numerical values so as to determine the best elimination ordering.

As a summarization, the conditions for applying lifted operations to eliminate a set RV (E) from a

parfactor g are the following: for counting elimination, the atoms in g must be independent given its Cg; for

inversion on L ⊆ LV (g),

∀ek, el ∈ E · ∀θi, θj ∈ [Cg|L] · θi 6= θj ⇒ RV (ekθi) ∩RV (elθj) = ∅.

When lifted operations do not apply, FOVE uses non-lifted operations to calculate
∑

RV (E) GE . These

non-lifted methods could be propositionalization, sampling etc, but with the advantage of being restricted

to a subset of the model only.
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(I) Inversion elimination
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(II) Counting elimination
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Figure 3.8: (I) Average run time for answering query P (p) from a parfactor on (p, q(X)), using inversion
elimination, with domain size |X| being gradually increased. (II) Average run time for answering query P (r)
from a parfactor on (p(X), p(Y ), r), using counting elimination, with domain size |X| = |Y | being gradually
increased.

3.6 Auxiliary Operations

3.6.1 Fusion

We have assumed in section 3.3 that we have operations to calculate
∑

RV (E) Φ(GE), but elimination oper-

ations calculate
∑

RV (E) Φ(g), for g a single parfactor. Fusion bridges this gap by computing, for any set of

parfactors G, a single parfactor fs(G) such that Φ(G) = Φ(fs(G)).

Fusion works by replacing the constraints of all parfactor in the set by a single, common constraint

which is the conjunction of them all. This guarantees that all parfactors get instantiated by the same set

of substitutions on a single set of logical variables, which allows their products (in the expression for Φ(G))

to be unified under a single product. Note that not all parfactors contain all the logical variables, and will

be instantiated to the same ground factor by distinct substitutions (those agreeing on the logical variables

present in the parfactor, but disagreeing on some of the others). In other words, some of the parfactors will

have their number of instantiations increased by this unification. For this reason, we also exponentiate the

potential function to the inverse of how many times the number of instantiations was increased, keeping the

final result the same as before.

This is illustrated in the example below:

(∏
D,P

φ1(e(D), s(D,P ))
)(∏

D′

φ2(e(D′))
)

=
∏

D,P,D′

φ1(e(D), s(D,P ))φ
1

|D,P |
2 (e(D′))

=
∏

D,P,D′

φ3(e(D), s(D,P ), e(D′)).
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(note that logical variables in different parfactors must be standardized apart.) Formally, we have the fusion

theorem below.

Theorem 3 (Fusion). Let G be a set of parfactors. Define CG =
∧

g∈G Cg, ΘG = [CG] and AG =
⋃

g∈G Ag.

Let fs(G) be the parfactor (
∏

g∈G φ
|Θg|/|ΘG|
g , AG, CG). Then Φ(G) = Φ(fs(G)).

Proof.

Φ(G) =
∏
g∈G

∏
θ∈Θg

φg(Agθ) =
∏
g∈G

∏
θ∈ΘG

φg(Agθ)|Θg|/|ΘG|

=
∏

θ∈ΘG

∏
g∈G

φg(Agθ)|Θg|/|ΘG| =
∏

θ∈ΘG

φfs(G)(AGθ) = Φ(fs(G))

While the above is correct, it is rather unnatural to have e(D) and e(D′) be distinct atoms. If a set of

logical variables has the same possible substitutions, like D and D′ here, we can do something better:

(∏
D,P

φ1(e(D), s(D,P ))
)(∏

D′

φ2(e(D′))
)

=
(∏

D

∏
P

φ1(e(D), s(D,P ))
)(∏

D′

φ2(e(D′))
)

=
∏
D′′

((∏
P

φ1(e(D′′), s(D′′, P ))
)(

φ2(e(D′′))
))

=
∏
D′′

(∏
P

φ1(e(D′′), s(D′′, P ))φ2(e(D′′))
1
|P |

)
=

∏
D′′,P

φ1(e(D′′), s(D′′, P ))φ
1
|P |
2 (e(D′′))

=
∏

D′′,P

φ3(e(D′′), s(D′′, P )).

Formally, this process is similar to Inversion with respect to D′′. However, it does require the additional

previous step of unifying distinct logical variables (but with identical sets of possible substitutions) into a

single one first (in the example, D and D′ are replaced by D′′). For lack of space we omit the details of this

improvement.

A more complete treatment of fusion is given in appendix B.

3.6.2 Shattering

In section 3.3 we mentioned the need for shattering, which we now discuss in more detail. This need arises

from c-atoms representing overlapping, but not identical, classes of random variables. Consider the following
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marginalization over parfactors g1 and g2 with potential functions φ1 and φ2 respectively:

∑
RV (p(X,Y ))

(∏
X,Y

φ1(p(X, Y ), q)
) ∏

Y

φ2(p(a, Y ))

If we pick E = p(a, Y ), GE = {g1, g2}. However, only some instantiations of g1 depend on p(a, Y ) (the ones

with X = a). Moreover, the operations we later talk about require any pair of c-atoms in GE to represent

either identical classes of random variables, or those classes to be disjoint. This is violated by RV (p(a, Y ))

being a subset of RV (p(X, Y )). Picking E = p(X, Y ) also violates this requirement.

The solution is to split parfactor g1 into two different parfactors. The union of instantiations of

(φ1, (p(X, Y ), q), X 6= a) and (φ1, (p(a, Y ), q),>) is identical to the set of instantiations of g1, so the sum-

mation can be simply rewritten as

∑
RV (p(X,Y ))

( ∏
X,Y :X 6=a

φ1(p(X, Y ), q)
)(∏

Y

φ1(p(a, Y ), q)
) ∏

Y

φ2(p(a, Y ))

=
∑

RV (p(X,Y ):X 6=a)

( ∏
X,Y :X 6=a

φ1(p(X, Y ), q)
) ∑

p(a,Y )

(∏
Y

φ1(p(a, Y ), q)
) ∏

Y

φ2(p(a, Y ))

Now E = p(a, Y ) satisfies the operations’ requirements. Picking E = p(X, Y ), X 6= a would work equally

well.

Splitting parfactors is done by pairwise comparisons of atoms of same predicate. We split parfactors

g1 = (φ1, A1, C1) and g2 = (φ2, A2, C2) around atoms a1 ∈ A1 and a2 ∈ A2 by replacing them by parfactors

(φ1, A1, C1 ∧ a1 = a2), (φ1, A1, C1 ∧ a1 6= a2), (φ2, A2, C2 ∧ a1 = a2) and (φ2, A2, C2 ∧ a1 6= a2), after

standardizing apart their logical variables. In fact, we only need to keep those whose constraint is satisfiable.

(This is why g2 does not need to be broken in the example above – that would only produce itself and another

parfactor with zero instantiations.) In particular, if RV (a1) = RV (a2), we end up obtaining the original

parfactors.

The uniformity requirement is met by shattering the FOPM in advance, that is, by successively splitting

the parfactors of each pair of c-atoms, including the query atoms, until no overlapping non-identically

grounded pair remains. The query atoms need to be involved in shattering because if a c-atom includes

query and non-query random variables, it needs to be split so that the non-query ones can be eliminated.

As pointed out by [Poo03], splitting parfactors resembles the role of unification in first-order resolution,

which determines the conditions for two atoms to match. In probabilistic inference, however, we are interested
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not only in the overlapping of atoms but also in the residual parfactors that originate from the matching.

The reason for this difference is that the number of instantiations of a parfactor matters for the final joint

distribution. In regular resolution, the original clauses are kept because their redundancy with the clauses

resulting from resolution makes no difference, while here we need to discount them and replace the originals

with the non-matching cases.

A more complete treatment of shattering is given in appendix C.

3.6.3 Irrelevant Logical Variable Simplification

Inversion often produces parfactors with constraints with logical variables not present in its atoms. The first

Inversion example produces the expression below. We can simplify it by observing that the actual value

of Y is irrelevant inside the product. Only the number |Y | of possible values for Y will make a difference.

Therefore we can write

∏
XY

φ′(p(X)) =
∏
X

φ′(p(X))|Y | =
∏
X

φ′′(p(X)).
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Chapter 4

Lifted Most Probable Explanation

The previous chapter introduced FOVE for solving the problem of marginalization of certain random vari-

ables in a FOPI model. Marginalization is arguably the most important probabilistic inference problem, but

another important one is that of finding the Most Probably Explanation (MPE) [Pea88]. In this problem,

we seek the assignment to the random variables in a model with the maximum probability. This chapter

explains what is involved in solving the same problem for FOPI models.

4.1 Lifted Assignments

In propositional probabilistic models, assignments to random variables can be seen as formulas with equality

on those random variables. For example, alarm = false ∧ earthquake = true can be regarded as an

assignment. The formal link between assignment and formula is that the former satisfies the latter. A total

assignment (that is, one with a value for each and all random variables in the model) can be represented by

a formula which is satisfied only by that total assignment.

While the same is true for first-order models, that is, we can represent individual assignments by formulas

that test the value for each random variable in the model, we are often interested in sets of assignments with

identical behavior with respect to the model. The reason is that first-order models may contain classes of in-

terchangeable random variables. For example, in a model defined by a single parfactor φ(epidemic, sick(P )),

the assignment epidemic = false, sick(john) = true, sick(P ) = false for P 6= john and the assignment

epidemic = false, sick(mary) = true, sick(P ) = false for P 6= mary are equally likely because all random

variables instantiated from sick(P ) are interchangeable. In fact, any pair of assignments to RV (sick(P ))

with the same number of true and false values will be equally likely. What matters is the distribution of

values assigned to RV (sick(P )), rather than the individual assignments. This distribution corresponds to

the concept of a counter ~Nsick(P ) in counting elimination.

Therefore, we define the notion of lifted assignments in first-order models. Lifted assignments correspond

to sets of interchangeable assignments, that is, assignments that only vary with respect to interchangeable
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random variables. As with regular propositional assignments, lifted assignments can also be represented by

a formula with equality. These formulas, however, are first-order and can be quantified. In order to quantify

distributions over sets of exchangeable random variables, we introduce a special existential quantifier.

Its general form is [∃n(v)
v∈D L : C] ϕ(v), which means that, for every v ∈ D, there are n(v) substitutions for

logical variables L satisfying constraint C for which ϕ(v) holds. When the constraint is the most general >,

we simply write ∃n(v)
v∈D L ϕ(v).

An example of this existential quantifier is [∃n(v)
v∈{false,true}P : P 6= julie] sick(P ), for n(true) = 57 and

n(false) = 42 (we assume the domain of P to have size 100, including julie), which declares that 57 random

variables in RV (sick(P )), P 6= julie are assigned true and 42 are assigned false.

For the particular case where D contains a single value v and n(v) = |[C]|, we simply write [∀L : C] ϕ,

or ∀L ϕ when C = >. We call it a universal quantifier.

4.2 The mpe Operator

In the Most Probable Explanation inference problem (MPE) we must identify some assignment to random

variables with maximum potential:

Maximum Potential of G = max
RV (G)

Φ(G)

The expression above is very similar to
∑

RV (G) Φ(G). In propositional probabilistic inference, a common

way of solving this problem is to use Variable Elimination, but replacing summations by maximizations. The

maximizing assignment can then be trivially obtained as a side effect of maximizations, although it is not

explicitly represented in the expression above.

The solution to the MPE problem is the assignment generating the above maximum potential:

MPE of G = arg max
RV (G)

Φ(G)

Here, however, one cannot simply replace
∑

by arg max in the algorithm. The reason for that is there

is a nesting of summations. An inner summation results in a real number representing a potential, which is

also the argument to the next summation. The operator arg max, on the other hand, has a potential as an

argument but results in an assignment, which cannot be the argument to the next arg max. In other words,
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one can write

Marginal of G =
∑

RV (G)

Φ(G) =
∑
r1

∑
r2

· · ·
∑
rn

Φ(G)

where RV (G) = {r1, . . . , rn} but not

MPE of G = arg max
RV (G)

Φ(G) = arg max
r1

arg max
r2

. . . arg max
rn

Φ(G) (undefined!)

The reason behind this problem is that MPE has to consider the potentials while keeping track of

the assignments maximizing them. To solve this, we introduce a new operator that manipulates pairs of

potentials and assignments, the mpe operator.

For any real function f and variable q, we define the application of mpe to a real-valued function

as

mpe
q

f(q) =
(
max

q′
f(q′), q = arg max

q′
f(q′)

)
.

The result of mpe is a pair of the maximum value of f(q) and the maximizing assignment to q, represented

by a formula with equality. We call such a pair p a potential-assignment pair, or pa-pair, and its components

are pP and pA respectively. Let φ(q) be a function returning potential-assignment pairs. Then we define

the application of mpe to a pa-pair-valued function as

mpe
q

φ(q) =
(
max

q′
φP(q′), [q = arg max

q′
φP(q′)] ∧ φA(q)

)
,

that is, if given a function that provides pa-pairs, mpe returns a pair maximizing that potential for q, with an

assignment represented by the conjunction of maximizing assignment to q and whatever assignment φA(q)

is.

Note how the mpe operator has the effect of eliminating a variable. The first component of the resulting

pa-pair does not contain the variable anymore, since it maximizes it away. The second component records

the maximizing argument, while keeping whatever other records of previous eliminations there were, by

conjunction. The effect we obtain is that, as the mpe operator is applied, we maximize variables away, while

recording the maximizing assignments in the second component.

52



The mpe operator can then replace
∑

in the VE and FOVE algorithms, since we can write

MPE of G = mpe
RV (G)

Φ(G) = mpe
r1

mpe
r2

. . .mpe
rn

Φ(G)

4.3 FOVE for MPE

Once we have the mpe operator and parfactors that map to pa-pairs rather than simply potentials, we

can use the FOVE algorithm to solve MPE by replacing
∑

by mpe and having an empty query (so that

the maximization occurs over all random variables). The use of mpe guarantees that maximization is

being performed and that elimination operations produce parfactors returning maximizing pa-pairs with

assignments to previously eliminated variables.

On inspecting the FOVE algorithm, however, one can see that summation is not the only operation

performed on potentials and potential functions. Potentials are also multiplied by other potentials, and

repeated multiplication gives rise to exponentiation at points. Also, for counting elimination, we convert

potential functions having value tuples as arguments (parfactors’ potential functions) to potential functions

having counters as arguments. Therefore, in order to run the algorithm on pa-pairs and pa-pairs functions,

we need to show how to perform products on pa-pairs, as well as how to convert pa-pair functions on value

tuples to pa-pair functions on counters.

4.3.1 Pa-Pair Products

Product over pa-pairs is straightforward. The product of reals is kept for the potential component of the

pair, while conjunction is used for the formula component. For r and s pa-pairs, r × s = (rPsP, rA ∧ sA).

The pa-pair product contributes in forming universally quantified lifted assignments because universal

quantification is a form of conjunction. Assume that g is a parfactor on p(X), q(X, Y ) with marginals given

by φP and φA defining assignments on a previously removed r(X, Y ) by a function f . We can invert X, Y

and obtain (ellipsis (. . . ) is used to avoid repetition of long segments)

mpe
q(X,Y )

Φ(g) = mpe
q(X,Y )

∏
X,Y

(
φP

g (p(X), q(X, Y )), r(X, Y ) = f(p(X), q(X, Y ))
)

=
∏
X,Y

mpe
q(X,Y )

(
φP

g (p(X), q(X, Y )), r(X, Y ) = f(p(X), q(X, Y ))
)

=
∏
X,Y

(
max

q(X,Y )
φP

g (p(X), q(X, Y )), q(X, Y ) = arg max
q(X,Y )

φP
g (. . . ) ∧ r(. . . ) = f(. . . )

)
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(by defining appropriate φ′ and f ′)

=
∏
X,Y

(
φ′P(p(X)), q(X, Y ) = f ′(p(X)) ∧ r(. . . ) = f(. . . )

)

(because the marginal depends only on p(X) and the pa-pair product results in the conjunction of lifted

assignments)

=
∏
X

(
φ′P(p(X))|Y |, ∀Y q(X, Y ) = f ′(p(X)) ∧ r(. . . ) = f(. . . )

)
=Φ(g′)

for some appropriate parfactor g′ = (φg′ , {p(X)}, Cg′).

The interpretation of this lifted assignment is that, for the X in question, it is true that, for every Y ,

q(X, Y ) is assigned f ′(v) and r(X, Y ) is assigned f(v, q(X, Y )) = f(v, f ′(v)).

In general, universally quantified lifted assignments are formed at the point of the algorithm where a

parfactor g has an irrelevant subset L of logical variables so that we have

∏
θL∈[Cg|L]

∏
θ∈[Cg|LV (g)\L]

(
φP(Agθ), φA(Agθ)

)
=

∏
θ∈[C|LV (g)\L]

(
(φP)|[Cg|L]|(Agθ), [∀L : Cg|L]φA(Agθ)

)

4.3.2 Conversion to Potential Functions on Counters

We now show the conversion of pa-pair functions on value tuples to pa-pair functions on counters by example

and in general. In the following, mpe is over RV (p(X)), which is the same as RV (p(Y )):

mpe
p(X)

∏
X 6=Y

(
φP(p(X), p(Y )), r(X, Y ) = f(p(X), p(Y ))

)

(by expressing the product as the number of times φ is applied to each possible argument v)

= mpe
p(X)

( ∏
v∈Dp(X),p(Y )

φP(v)#(v, ~Np(X)), [∃#(v, ~Np(X))

v∈Dp(X),p(Y )
XY : X 6= Y ] r(X, Y ) = f(v)

)

54



(by grouping assignments on RV (p(X)) by ~Np(X))

= mpe
~Np(X)

( ∏
v∈Dp(X),p(Y )

φP(v)#(v, ~Np(X)), [∃#(v, ~Np(X))

v∈Dp(X),p(Y )
XY : X 6= Y ] r(X, Y ) = f(v)

)

(by defining appropriate f ′ and f ′′)

= mpe
~Np(X)

(
f ′( ~Np(X)), f ′′( ~Np(X))

)

(by applying the definition of mpe)

=
(

max
~Np(X)

f ′( ~Np(X)), ~Np(X) = arg max
~Npp(X)

f ′( ~Npp(X)) ∧ f ′′( ~Np(X))
)

(by defining an appropriate parfactor g′ = (φ′, ∅,>))

=
(
φ′P(), φ′A())

)
= Φ(g′).

g′ is a constant parfactor returning the maximum potential and the lifted assignment formed by the

distribution of values on p(X) (represented by ~Np(X)) maximizing f ′, and, for each v ∈ Dp(X),p(Y ), there

are #(v, ~Np(X)) pairs (X, Y ) satisfying X 6= Y such that r(X, Y ) is assigned f ′′(v).

In general, existentially quantified lifted assignments are formed at the point of the algorithm where a

parfactor g is rewritten as a function of counters, so that we have

∏
θ∈[Cg]

(
φP

g (Agθ), φA
g (Agθ)

)
=

( ∏
v∈DAg

φP
g (v)#(v, ~NAg ),∃#(v, ~NAg )

v∈DAg
φA

g (v)
)

With these operations defined, FOVE can be used to solve the MPE problem.

4.4 Example

We now illustrate MPE inference with partial inversion in a simple business domain. We want to express

the fact that some companies establish partnerships, and it will often be the case that, for each product in
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question, one of the partners is a retail company while the other is not. We can write

φ1(partners(P,C1, C2)), C1 6= C2.

φ2(partners(P,C1, C2), retail(C1), retail(C2)), C1 6= C2.

where φ1 and φ2 are parfactors with appropriate potential functions for the desired dependencies. φ1

performs the role of a “prior” (although such a notion is not precise in an undirected model as this). If there

are 15 companies in the domain, our implementation (available at http://l2r.cs.uiuc.edu/~cogcomp/)

produces a lifted assignment that can be read as

“for all products, there are 8 retail companies and 7 non-retail companies. 56 pairs of companies are partners

and the rest is not”.

It is interesting to note that the numbers above do not depend on the particular potentials, but only on

the assignments made more likely by each parfactor. This suggests that FOVE can be further developed to

take advantage of MPE being an easier problem than Belief Assessment, avoiding the iteration over counters

and instead deducing the maximum one from the parfactor structure alone. This would make MPE’s time

complexity completely independent from the domain size.
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Chapter 5

Blanket Bound

An important feature of logical systems is the fact that the model is analyzed during inference only until

the answer to a current query is found. Therefore, very large knowledge bases do not have to be thoroughly

processed for every query, and simple queries may be answered in relatively short time.

A first-order probabilistic model should do no worse when processing a deterministic knowledge base,

that is, it should restrict itself to the relevant part of the model for the current query only. This means, in

the case of a VE-like algorithm, not to eliminate all random variables, but only those necessary for answering

the query. Besides, almost-deterministic models should also reflect this property with graceful degradation.

One of the main current disadvantages of the FOVE algorithm is the need to shatter the entire model in

advance, regardless of the query. A gradual processing of the model, shattering parfactors only as necessary,

would be more desirable. To achieve that, however, we need to be able to use a partial evaluation of the

model. While a partial evaluation cannot in general provide an answer, it can provide a bounded answer.

So we expect to extend FOVE to gradually process and shatter a model and derive bounds as a result.

This chapter presents Blanket Bound, a notion that is a first step towards that goal. We have so far

developed it for the propositional case only, with the intention of generalizing it to the first-order case and

FOVE.

5.1 Introduction

Graphical models (of which Bayesian and Markov models are examples) represent a joint probability distri-

bution on a set of random variables by representing dependencies between them. This is done by a set of

factors, or potential functions, functions on subsets of variables indicating the relative compatibility of their

assignments. The most common inference task in graphical models is calculating the marginal probability of

a subset of variables, which can be solved by the Variable Elimination (VE) algorithm (described in [DR03]),

among others. VE works by eliminating each of the non-query random variables in a way that preserves

marginal probabilities, until a model on the query only is left, and from which its marginal probability is
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easily determined. Each variable is eliminated by summing it out from all factors having it as an parameter,

obtaining a new factor without it that replaces them.

Graphical models are a probabilistic generalization of deterministic logical propositional clausal theories,

since both factor and clause determine dependencies among subsets of variables. VE can be seen as a

generalization of resolution, the main inference technique for clausal theories, since resolution takes clauses

involving a variable and computes a new clause without it.

Because of the determinism involved in resolution, typically the truth value of a proposition can be

determined without considering all clauses in the theory. Consider the model in figure 5.1(a) and a clausal

stating that errands is true if any of its parents is true. Then if we know that groceries is true, resolution

will indicate that errands is true without ever processing the other variables. This contrasts with VE on a

graphical model: consider the almost deterministic case in which errands is a noisy-or node with coefficient

0.9 for each parent (that is, its probability is 0, 0.9, 0.99 and 0.999 for 0, 1, 2 and 3 parents set to true,

respectively), and that we know that groceries is true. Then, even though the model is very similar to the

deterministic case, the exact marginal probability of errands depends on all variables and a probabilistic

inference algorithm will have to consider the entire model in order to calculate it. So a slight change from

a deterministic to a similar probabilistic model makes it necessary to consider the entire model, when only

a fraction of it had to be considered before.

Intuitively, this abrupt change seems wasteful and a more graceful degradation would be expected. While

such graceful degradation is not possible with respect to an exact solution (since it does depend on the entire

model), it is possible with respect to partial ones: knowing groceries to be true does not solve the entire

problem but solves most of it, since it determines that the marginal on errands cannot be less than 0.9

regardless of other variables. So there is a graceful degradation as a model goes from deterministic to

almost deterministic, in the sense that evaluating the relevant part of a model goes from producing an exact

solution to an almost exact solution. However, exact probabilistic inference algorithms such as VE cannot

take advantage of this because they do not involve approximation in the first place.

In order to derive useful information from the immediate neighborhood of a query, we have developed

a way to calculate lower and upper bounds on the marginal probability of a query based on its immediate

neighborhood only. This bound, which we call blanket bound, reproduces for graphical models the logical

inference quality of drawing inferences without examining the entire model. This bound calculation and its

properties are the main contributions of this chapter. We see it as an improvement of the technique known

as bound propagation [LK03], which also seeks to compute bounds on marginals from their separators from

the rest of the network. Our bound is optimal given the separators, and therefore does as well or better than
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bound propagation, while being much simpler to compute. We further discuss this relationship in section

5.7.

We also present an algorithm, which we call Anytime Bounded VE (ABVE) that exploits this graceful

degradation. As opposed to VE, ABVE can gradually eliminate variables and maintain, at any time, lower

and upper bounds on the query’s marginal probability. For deterministic models, this will result in exact

solutions as soon as the truly relevant variables are considered, as opposed to having to eliminate all non-

query variables. This makes ABVE a more adequate generalization of logical inference than VE.

ABVE is an anytime algorithm, that is, an algorithm that can be interrupted at any point and still

return a useful solution. The more time given to an anytime algorithm, the better the solution becomes,

thus providing a flexible tradeoff between time and accuracy. The benefits of anytime algorithms have been

pointed out by several authors [HSC89, FH94]. The main one is that inference will be useful even if there is

insufficient time for computing an exact solution, an important scenario given the complexity of graphical

models inference. Moreover, ABVE is a bounded approximation algorithm since it returns guaranteed bounds

on the solution. These guarantees are important. For example, they allow us to use bounded approximation

to solve decision problems exactly, since in order to choose between two different actions we only need to

know that the expected utility of one of them is larger than the other, and this can be done with bounds

alone.

While ABVE provides the benefits of all anytime bounded approximation algorithms, we believe it goes

beyond them in two important aspects due to its mirroring of logical resolution. First, it does not need

to have the entire graphical model available in advance. Its evaluation starts at the query’s vicinity and

expands from there. At any step, it will never have used factors beyond this boundary. This is crucial

in applications in which the model is constructed dynamically [WBG92, Mur02b], since this can be quite

expensive. Second, it offers a bridge between deterministic resolution and graphical.models inference.

We present the necessary graphical network background in section 5.2, how to calculate the blanket bound

on a marginal probability in section 5.3, describe the ABVE algorithm in section 5.4, discuss preliminary

empirical evaluation in section 5.5. In section 5.6 we show that bounds vary monotonically as the algorithm

progresses. We discuss related work and future directions in sections 5.7 and 5.8.

5.2 Factor Networks

We develop our algorithm for factor networks, a type of graphical model that can represent both Markov

and Bayesian networks [Pea88]. A factor network (of which figure 5.1(b) shows an example) is a graph with
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errands

groceries
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groceries
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library

(a) (b)

Figure 5.1: (a) Structure of logical or Bayesian models representing a variable errands and its multiple
causes. (b) A factor network corresponding to the Bayesian network as in (a). The squares represent factors
(or potential functions) applied to its neighboring random variables.

two types of nodes: random variable nodes X = (X1, . . . , Xn) and factor nodes Φ = φ1, . . . , φm. Edges are

always between a variable node and a factor node. Each variable X has a discrete domain DX . We define

ΦY ⊆ Φ to be the set of factors neighboring any of the variables in Y, and Φ¬Y to be its complement, and

V ar(Φ) to be the random variables which are parameters in the factors of Φ.

An assignment is a partial function from random variables to values in their domains. DY denotes the

set of assignments to a set of variables Y. Assignments are usually denoted as the small letter version of

their corresponding variables, or even set expressions; y is an assignment to Y , y to Y and y\z to Y\Z. For

notation clarity, we assume set difference (\) to always be left associative, that is, x \y \q means (x \y) \q.

A factor node φ is a function on assignments to its neighboring variables Aφ ⊂ X. It maps each

assignment aφ on Aφ to a non-negative real number φ(aφ), called the potential of aφ. The potential

represents the degree of compatibility between the values in the assignment.

We extend potential functions in the following way. If Y ⊆ X, φ(y) = φ(y|aφ
), where y|aφ

is the

assignment on Y ∩Aφ which agrees with y. That is to say, extra inputs to φ are ignored.

For any set of factors Φ, Φ(x) denotes the function
∏

φ∈Φ φ(x).

Although a potential does not necessarily have a probabilistic meaning per se, a factor network defines a

joint distribution on its random variables. A joint distribution on X is defined as P (x) for each assignment

x to X:

P (x) =
1
Z

∏
φ∈Φ

φ(x) =
1
Z

Φ(x)

where Z =
∑

x′
∏

φ∈Φ φ(x′) =
∑

x′ Φ(x′), a normalization constant. We denote this more simply as

P (x) ∝ Φ(x).
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Factor networks can represent both Markov networks (with each factor representing the potential function

on a clique of random variables in the network), and Bayesian networks (with each factor representing a

conditional probability). Figure 5.1(b) shows a factor network equivalent to a Bayesian network implementing

the errands example.

5.2.1 Inference

The most important inference problem in graphical models is that of calculating the marginal probability of

a set of random variables Q. This is calculated as

P (q) ∝
∑
x\q

Φ(q,x \ q)

Calculating this summation directly is exponential on the number of variables and therefore intractable.

Variable Elimination (VE) (described in [DR03]) seeks to compute it in a more efficient manner. It works

by eliminating each non-query variable Y ∈ X \Q in the following way, where Y denotes the singleton {Y }:

P (q) ∝
∑
x\q

Φ(x) =
∑

x\y\q

Φ¬Y(x \ y)
∑
y

ΦY(x \ y,y)

=
∑

x\y\q

Φ¬Y(x \ y)φ(x \ y)

=
∑

x\y\q

(Φ¬Y ∪ {φ})(x \ y) =
∑

x\y\q

Φ′(x \ y),

where Φ′ does not involve Y as a parameter, so the final expression above does not involve Y. By repeating

this process for all non-query variables, we end up with a model providing the query’s marginal probability.

This will typically be much cheaper than the original summation (depending on the network’s connectivity).

5.3 The Blanket Bound on Marginal Probability

From the above description of VE it is clear that we only obtain a solution after all non-query variables

are eliminated. Depending on the model size, this may take too long for some applications, even those in

which a bound of the marginal probability would be enough or at least helpful, as illustrated in the errands

example in the introduction.

We now present a method for deriving lower and upper bounds on P (q) based solely on ΦQ, the imme-

diate neighboring factors of Q. We first need some definitions: let P(Y) be the set of possible probability
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distributions on any Y ⊆ X and NQ (the neighboring variables of Q) the set of variables which occur in

ΦQ but are not part of Q. Note that NQ is the Markov blanket of Q, and for this reason we can this bound

the blanket bound.

Consider the following:

P (q) ∝
∑
x\q

Φ(x) =
∑
nq

∑
x\q\nq

ΦQ(q,nq) Φ¬Q(x \ q)

=
∑
nq

ΦQ(q,nq)
∑

x\q\nq

Φ¬Q(x \ q)

=
∑
nq

ΦQ(q,nq) φ(nq)

∝
∑
nq

ΦQ(q,nq) p(nq) (p ∈ P(NQ))

More explicitly,

P (q) =

∑
nq ΦQ(q,nq) p(nq)∑

q′
∑

nq ΦQ(q′,nq) p(nq)
= f(p),

which is to say that P (q) is a function on p, a probability distribution on NQ. Note that this function

depends only on summations over Q and NQ, and on factors in ΦQ so, given p, it is much more tractable

than the full marginalization calculation. However, we do not know what p is, and its value depends on the

much more expensive summation on Φ¬Q.

Suppose for a moment that we could sidestep this expensive summation and instead directly range over

all the infinite possible values of p. This would allow us to observe how P (q) varies as a result and obtain

lower and upper bounds for it. Even without knowing what the true value of p is, we would already have a

measure of information on P (q).

Fortunately, this method is actually possible because f is a quotient of linear functions on p, and therefore

monotonic on p, and because p is a probability distribution with clear extremes. As a result, the extrema

of P (q) will necessarily correspond to the extrema of p itself, of which there is a finite number only.

Let us consider this situation graphically. If NQ has n possible assignments, P(NQ) forms a convex

polytope of dimension n − 1 embedded in Rn. This polytope has n vertices, each of them corresponding

to the distribution in which a certain assignment has probability 1. Figure 5.2 shows P(NQ) for NQ with

three assignments.

When nq is a vertex of p, p(nq) = 1 and p(nq′) = 0 for assignments nq′ 6= nq. This simplifies the
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(0,0,1)

(1,0,0)

(0,1,0)

Figure 5.2: P(NQ) for NQ with three assignments.

calculation of P (q):

P (q) =

∑
nq ΦQ(q,nq) p(nq)∑

q′
∑

nq ΦQ(q′,nq) p(nq)
=

ΦQ(q,nq)∑
q′ ΦQ(q′,nq)

It is important to note that these are the best possible bounds based on ΦQ, since we can, for each of

the lower and upper bounds, build a model for which the marginal will be equal to it.

5.3.1 Performing Bound Propagation

If we already have bounds P−(nq) and P+(nq) over NQ, they correspond to the vertices of an inner

polytope which is a subset of P(NQ). In this case we can use the function f to calculate bounds on Q that

take these bounds into account:

P+(q) = max
p∈V

f(p)

V = {P s(nq) : nq ∈ DNQ, s ∈ {−,+}}

This allows us to perform bound propagation in exactly the same manner as [LK03], but with much

simpler computations, since their method requires constructing and solving a linear programming problem.

Determining bounds on P (Q) from bounds on P (NQ) can also be used as the basis for a message passing

algorithm in which messages are not exact, but bounded themselves, either from incomplete evaluation or

from a model specification which has been bounded from the beginning.

5.4 The Anytime Bounded VE Algorithm

We devise the ABVE algorithm which calculates bounds on the query when the query neighborhood changes

as a result of variable elimination. It always keeps a valid bound on the query marginal and can be interrupted
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at any time. This allows us to run VE as usual or to stop as soon as the bounds reach a satisfactory width,

providing an anytime algorithm that in some situations can prove much more effective than VE alone.

ABVE can use an efficient elimination ordering and update the query bounds only when a query neigh-

borhood node is eliminated, or it can give preference to eliminating variables in the neighborhood so as

to obtain sooner query bounds. The latter however may sacrifice performance since it may yield a worse

elimination ordering. In fact, a tradeoff exists between ordering efficiency and sooner bounds, so methods

for picking the next eliminated variable can be devised to take it into account.

We show in section 5.6 that the bounds always get tighter after the elimination of some variable in

NQ (naturally, they are unchanged when other variables are eliminated). The algorithm stops when it is

interrupted or NQ becomes empty (since this means that either we are left with the query alone or that

query is disconnected from the rest of the model, allowing us to calculate its marginal independently from

it). In the latter case the bound provided by ΦQ will have width zero and represent the exact solution.

5.5 Experiments

We examine the behavior of ABVE empirically by using random networks over 60 binary random variables

with sparse connectivity of 2 per node and potentials limited to [α, 1 − α], for α ∈ {0, 0.05, . . . , 0.25}. We

also use two types of 10 by 10 grid of binary random variables: conjunction grids, with potential 0.9 between

neighbors both equal to 1 and 0.5 otherwise, and equality grids, or Ising model, with potential 0.9 for

neighbors with equal values and 0.1 for neighbors with different values. We apply both ABVE and VE to

these networks. The graph in figure 5.3 shows the tightening of the average bound interval widths vs. the

time it took to reach it, as a percentage of the exact calculation time taken by VE. For the random networks,

ABVE typically reaches a bound width of around 0.3 in a short time, decreasing it to about 0.2 by the time

of exact calculation. Because ABVE is more restricted in its ordering choices, it takes much longer to reach

the exact solution than VE. However, the experiments show that it reduces most of the uncertainty about

the marginal probability in only 3% of the time taken to calculate the exact solution. This indicates ABVE

not as a substitute of VE, but as a method to quickly obtain guaranteed bounds on the solution. Note that

the larger α is, the tighter bounds get. This is not surprising since a larger α will create factors that locally

restrict the query to a greater extent. For the grid networks, there is a stark contrast between the two

types. The bounds immediately narrow to almost 0 for the conjunction grid but practically do not change

in the Ising model. Again this is not surprising, because the factors in the conjunction grid have narrower

potential ranges and therefore provide strong local information. In the Ising model, each variable depends
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to a large extent on the specific values of its neighbors, which by their turn depend on their neighbors and

so on. The interactions are not as local and any algorithm using local factor neighborhood alone will not be

able to perform well on this model. Our implementation selects efficient elimination orderings by the greedy

min-weight method [Kja93] (that is, selecting the variable whose elimination will create the factor with the

least number of assignments). VE is free to select any variables but the ABVE chooses them from the query

neighborhood only in order to narrow the bound as soon as possible.
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Figure 5.3: Average interval width of bounds vs. computation time over random and grid networks (see
section 5.5).

5.6 Bound Updates

An important question is whether eliminating a variable in NQ and recalculating the bounds may result in

worse bounds. We show that this is not so.

Theorem 4. Let P+(q) be a bound on P (q) for a set of variables Q with neighboring variables NQ in

a factor network Φ, and let P+′
(q) be the bound on P (q) in a factor network resulting from the variable

elimination of Y ⊆ NQ from Φ. Then P+′
(q) ≤ P+(q).

Proof. Figure 5.4 shows the groups of random variables and factors involved in the situation described. Let

• Φ1 be the factors in ΦQ without any variable in Y as a parameter,

• Φ2 be the factors in ΦQ with part of Y as parameters,

• Φ3 be the factors not in ΦQ,

• Φ4 be all other factors,

• W1 be NQ \Y,
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• W2 be all variables not in NQ neighboring Y,

• W3 be all other variables,,

• φ′ be the factor formed by the elimination, that is, φ′(q,w1,w2) =
∑

y Φ2(q,y,w1)Φ3(y,w1,w2).

Note that our convention of factors ignoring extra parameters is used here. A factor connected to variables

in Y and W2 but not W1 can be included i Φ3 because it will ignore any variables from W1.

Q

φ1

W2

YW1

φ2

φ3

NQ

Q

φ1

W2W1

φ’

NQ’

W3

φ4

W3

φ4

Figure 5.4: Groups of variables and factors before and after the elimination of Y.

Q’s neighboring variables in the new network are NQ′ = W = W1 ∪W2.

According to the blanket bound

P+′
(q) = max

nq′

φ1(nq′,q)φ′(nq′,q)∑
q′ φ1(nq′,q′)φ′(nq′,q′)

= max
w

φ1(w1,q)φ′(w,q)∑
q′ φ1(w1,q′)φ′(w,q′)

For convenience, we define φ5 = φ1φ2 and write

φ1(w1,q)φ′(w1,q) = φ1(w1,q)
∑
y

φ2(w1,y,q)φ3(y,w2)

=
∑
y

φ5(w1,y,q)φ3(y,w2),

and

P+′
(q) = max

w

∑
y φ5(w1,y,q)φ3(y,w2)∑

q′
∑

y φ5(w1,y,q′)φ3(y,w2)

= max
w1

∑
y φ5(w1,y,q)φ6(y)∑

q′
∑

y φ5(w1,y,q′)φ6(y)
(by picking max w2)
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By dividing both numerator and denominator by the constant
∑

y′ φ6(y′), we obtain a probability distribu-

tion p on Y.

= max
w1

∑
y φ5(w1,y,q)p(y)∑

q′
∑

y φ5(w1,y,q′)p(y)

Because p is a distribution,
∑

y φ5(w1,y,q)p(y) ≤ maxy φ5(w1,y,q). And because the quotient of linear

functions are monotonic,

≤ max
w1

maxy φ5(w1,y,q)∑
q′ maxy φ5(w1,y,q′)

= max
w1,y

φ5(w1,y,q)∑
q′ φ5(w1,y,q′)

= max
nq

φ1(nq,q)φ2(nq,q)∑
q′ φ1(nq,q′)φ2(nq,q′)

= P+(q)

5.7 Related Work

Approximate inference in graphical models is NP-hard [DL93], but many algorithms have been developed

for it nonetheless using many different techniques. Variational models [JGJS99] approximate a distribution

by assuming it is similar in behavior to a simpler one. Sampling methods [DL97] simulate the model and

estimate probabilities from the observed sequences. Search-based methods [Poo96] gradually evaluate parts

of the assignment space of a model, seeking the most relevant ones and often deriving bounds from them.

Some methods rely on ignoring dependencies when factors grow too large [DR03, Lar03]. [LW96] goes

from coarser to finer value space granularity in the model in order to derive increasingly better bounds.

[Poo98] uses the inner structure of factors to simplify them and ignores finer distinctions in order to make

computation cheaper. [HSC89] uses Pearl’s [Pea88] cutset conditioning method in order to split a model

into polytrees (which require linear time computation only) and then evaluate the most likely ones first

in order to derive bounds. The aforementioned [LK03] uses linear programming on constraints posed by

neighboring regions of the query in order to derive bounds (but may not converge to the exact solution).

[BD06] combines both [HSC89] and [LK03].

Inspired by [Nil86], an entire line of research seeks to perform probabilistic inference via inference rules

not unlike logical ones [FHM90, FH94] and often produce partial, bounded results.

Some works are based on the assumption that the initial probabilities will be specified within an interval

only or via constraints (credal sets) [Luk99, FZ98]. Therefore, it is natural for them to deal with bounds

that get tighter with further processing. However, they differ from our work in the sense that they are based

on an model intrinsically involving bounds to start with.
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Several of the methods above [DR03, Lar03, HSC89, BD06, Poo96, Poo98] are anytime bounded approx-

imation algorithms like ABVE, but the ideas involved differ significantly. Due to this, ABVE can be seen as

an orthogonal and complementary rather than alternative method to them. Because of its conceptual and

implementational simplicity, it can be integrated and compounded with them, bringing the benefits of its

own approximation technique, and dependence on the query neighborhood only.

5.8 Future Directions

Many future directions regarding the blanket bound and ABVE remain to be taken. An important theoretical

contribution would involve the use of some measure of maximum skewness of factors, or a measure of their

determinism, to provide an analytical prediction of bound tightening as a function of distance from the

query. Also, the algorithm currently picks an arbitrary neighbor to be eliminated, but we believe heuristics

can be designed for selecting them so that bounds are more efficiently tightened.

We intend to apply ABVE to applications in which graphical models are dynamically built from a

relational, or first-order, specification, making the link to logical inference even closer. Another step in this

direction is to investigate the possibility of eliminating a variable from only a pair of factors at a time, as

done in logical resolution, as opposed to doing it from all factors having that variable as a parameter.

5.9 Conclusion

We presented an optimal marginal probability bound based on the neighboring factors of a query, and

an anytime bounded approximation probabilistic inference algorithm that, in a way analogous to logical

inference, takes advantage of the fact that certain parts of a graphical model are more relevant and can

greatly bound inference results. While useful as an approximation method in itself, ABVE is distinguished

from other approximated probabilistic inference methods by requiring knowledge of the query neighborhood

only in order to derive bounds on its marginal probability. This is also analogous to logical inference that

only considers clauses immediately related to the query. This is particularly useful in large graphical models

which are dynamically built or stored away, since they can be gradually processed until a satisfactory bound

is found. Besides its practical benefits, ABVE contributes to the better understanding of the relation between

logical and probabilistic inferences.
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Chapter 6

Conclusion

Intuitive descriptions of models very often include first-order elements. When these models are probabilistic,

the dominant approach has been that of grounding the model to a propositional one and solving it with

a regular propositional algorithm. This strategy loses the explicit representation of the model’s first-order

structure, which can be used to great computational advantage, and which is computationally hard to

retrieve from the grounded model.

We have presented FOVE, a first-order generalization of the popular Variable Elimination propositional

inference algorithm. Like VE, FOVE successively eliminates random variables from the model by summing

them out while taking advantage of independences for efficiency. Unlike VE, FOVE directly manipulates

first-order representations, eliminating c-atoms that stand for potentially large sets of random variables at

once. This can in some cases exponentially (in the domain size) speed inference up.

We have also presented the necessary modifications for FOVE to solve the MPE problem, another im-

portant problem in probabilistic inference.

FOVE requires a preprocessing step (shattering, presented in Chapter 3) over the entire model before

inference. In certain situations this may render inference more expensive than it needs to be. We have

presented the first step towards a more gradual processing of the model with the Anytime Bounded Variable

Elimination method in Chapter 5. The method is currently propositional but has been develop with the

purpose of future expansion to first-order.

6.1 Future Directions

There are several possible directions for further development of FOVE. One of the main ones is the incor-

poration of function symbols, both uninterpreted and therefore subject to the probability distribution (the

color of objects, for example) and interpreted (summation over integers), which will greatly increase its

expressivity and applicability.

In applications involving evidence over many objects (for example, the facts about all the words in an

69



English document), shattering may take a long time because all parfactors have to be checked against it. The

large number of objects involved may create the need for numerous parfactor splittings. This is unfortunate

because often only some objects are truly relevant to the query. For example, analyzing only some words

and phrases in a document will often be enough to determine its subject. Therefore a variant of FOVE that

does only the necessary shattering, guided by the inference process, is of great interest.

It is also interesting to think of FOVE from a logical programming point of view. In logic programming,

the result of an inference is the binding of logical variables to values satisfying a goal. This could be brought

to FOVE by allowing queries that are not ground (for example, sick(P )), and obtaining the query marginals

as a function of logical variable bindings (for example, P (sick(john)) = 0.3, P (sick(mary)) = 0.4 etc). We

could also simply ask for the most likely binding of logical variables in a query.

Currently, FOVE operates on domains with a fixed, known number of objects. An interesting research

direction is that of adopting an open world assumption, as BLOG ([MMR+05]) does.

Finally, lifted FOVE operations do not cover all possible cases and explicit summation may be required

at times, so increasing their coverage is an important direction.

In spite of its current limitations, FOVE is already applicable, and especially useful in domains with

a large number of objects about which we have identical knowledge. More importantly than that, it is a

general framework to be expanded and help close the gap between logic and probabilistic reasoning.
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Appendix A

Uniform Solution Counting Partition

In operations such as partial inversion and alignment of parfactors, we may need to calculate |[C ′θ]| for each

θ ∈ [C]. for C,C ′ two constraint systems.

For example, let C be X 6= a and C ′ be Y 6= a∧Y 6= b. We may need to calculate the number of solutions

of (Y 6= a ∧ Y 6= b)θ for each θ ∈ [C]. This is a trivial case in which the answer is |Y | − 1 regardless of θ.

However, more complicated cases arise when variables in C ′ depend on variables in C. For C ≡ X 6= a

and C ′ ≡ Y 6= a, Y 6= X, |[C ′θ]| does depend on the particular θ: it is |Y | − 1 when θ assigns a to X

and |Y | − 2 otherwise. We are therefore motivated to find a set of constraint systems C1, . . . , Cn such that

[C1], . . . , [Cn] is a partition of [C], such that every θ ∈ Ci induces the same solution size of |[C ′θ]|.

This motivates the following definition:

Definition 1 (Uniform solution counting partition). Let C,C ′ be two constraint systems. The uniform

solution counting partition of C with respect to C ′ is a set of constraint systems {C1, . . . , Ck} where

{[C1], . . . , [Ck]} is a partition of [C] and

∀i ∈ {1, . . . , k} · ∀θ′, θ′′ ∈ [Ci] · |[C ′θ′]| = |[C ′θ′′]|.

In fact, it is also necessary to define the same concept with respect to a set of constraint systems:

Definition 2 (Uniform solution counting partition for a set of constraint systems). Let C be a constraint

system and C a set of constraint systems. The uniform solution counting partition of C wrt C is a set of

constraint systems {C1, . . . , Ck} where {[C1], . . . , [Ck]} is a partition of [C] and

∀i ∈ {1, . . . , k}∀C ′ ∈ C · ∀θ′, θ′′ ∈ [Ci] · |[C ′θ′]| = |[C ′θ′′]|.

The specifics of obtaining these partitions depends on the constraint language used.
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Appendix B

Fusion

We now explain how a set of parfactors G can be replaced by a single, equivalent parfactor.

Definition 3. Let G be a set of parfactors. The fusion of G, fs(G), is defined as the parfactor (φ′, AG, CG),

with φ′(AGθ) =
∏

g∈G φg(Agθ)|Θg|/|ΘG| for any θ ∈ ΘG.

Theorem 5. For any set of parfactors G, Φ(G) = Φ(fs(G)).

Proof.

Φ(G) =
∏
g∈G

∏
θ∈Θg

φg(Agθ) =
∏
g∈G

∏
θ∈ΘG

φg(Agθ)|Θg|/|ΘG|

=
∏

θ∈ΘG

∏
g∈G

φg(Agθ)|Θg|/|ΘG|

=
∏

θ∈ΘG

φ′(AGθ) = Φ(fs(G))

The crucial step is the one in which we replace each original set of constraint solutions Θg by the global

constraint solution set ΘG. When this happens, each original instantiation of a parfactor is now instantiated

|ΘG|/|Θg| many times more than before, but the power |Θg|/|ΘG| preserves the original potential value.

B.0.1 Parfactor Alignment

The fusion method above, while correct, may sometimes create fused parfactors which are unnecessarily

complex, as the following example shows.

Example B.0.1. Given parfactors g1 = (φ1, {p(X, W )}, X 6= v1) and g2 = (φ2, q(Y,Z), Y 6= v1, Z 6= vn),

with X, W, Y, Z with domain D = {v1, . . . , vn}, the fused parfactor is on atoms p(X, W ), q(Y,Z), with a

number of instantiations equal to roughly |D|4.

However, through a technique we call alignment, one can obtain an equivalent but simpler parfactor.

Alignment exploits the fact that, sometimes, a subset of logical variables in the parfactors being fused are
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defined on the same domain and can be unified, decreasing the number of logical variables in the fused

parfactor. In this example, we can align the variables X and Y :

( ∏
X 6=v1,W

φ1(p(X, W ))
)( ∏

Y 6=v1,Z 6=vn

φ2(q(Y, Z))
)

=
(∏

W

φ1(p(v2,W ))
)
. . .

(∏
W

φ1(p(vn,W ))
) ( ∏

Z 6=vn

φ2(q(v2, Z))
)
. . .

( ∏
Z 6=vn

φ2(q(vn, Z))
)

=
(∏

W

φ1(p(v2,W ))
)( ∏

Z 6=vn

φ2(q(v2, Z))
)
. . .

(∏
W

φ1(p(vn,W ))
)( ∏

Z 6=vn

φ2(q(vn, Z))
)

=
∏

X 6=v1

(∏
W

φ1(p(X, W ))
)( ∏

Z 6=vn

φ2(q(X, Z))
)

=
∏

X 6=v1

∏
W,Z 6=vn

φ1(p(X, W ))|[W ]|/|[W,Z 6=vn]|φ2(q(X, Z))|[Z 6=vn]|/|[W,Z 6=vn]|

=
∏

X 6=v1

∏
W,Z 6=vn

φ3(p(X, W ), q(X, Z))

=
∏

X 6=v1,W,Z 6=vn

φ3(p(X, W ), q(X, Z))

which is the potential of a parfactor with about |D|3 instantiations. X and Y have been aligned.

Note that it is important that the number of solutions of W ∧ Z 6= vn does not depend on the current

value of X, allowing us to define a function φ3 that is the same under any X. This condition will be enforced

in the formalization below.

Definition 4 (Fusion with alignment). Let G be a set of parfactors.

A fsa tuple of G is a tuple (X, θ·→X) where

• X is a set of logical variables (possibly empty), called the normal set,

• θ·→X is a function from each g ∈ G to a one-to-one substitution θg→X

based on which we define, for convenience,

• Xg = Dom(θg→X)

• C ′
g ≡ Cgθg→X (the normalized constraint of g)

such that
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1. there is a constraint system CX such that Cg|Xg
θg→X ⇔ CX for all g ∈ G;

2. the uniform solution counting partition (appendix A) of CX wrt C ′
g is {CX}, for each g ∈ G. That is,

∀g ∈ G∀θ′, θ′′ ∈ CX · |[C ′
gθ

′]| = |[C ′
gθ

′′]|;

3. the uniform solution counting partition of CX wrt
∧

g∈G C ′
gθX is {CX}, where θX is any element of

[CX].

If G has a fsa tuple (X, θ·→X), then we define fsa(G,X, θ·→X), the fusion with alignment of G wrt

(X, θ·→X), as the parfactor (φ′, A′, C ′) where

A′ =
⋃
g∈G

Agθg→X

φ′(A′) =
∏
g∈G

φg(Ag)
|[C′

gθX|]/|[
V

g′∈G C′
g′θX]|

C ′ = CX ∧
∧
g∈G

C ′
gθX

where θX is any element of [CX].

In Example B.0.1, the fsa tuple used was

• X = {X}

• θ1→X = {(X, X)}

• θ2→X = {(Y, X)}

with CX ≡ X 6= v1.

Theorem 6. Let G be a set of parfactors. If G has a fsa tuple (X, θ·→X), then Φ(G) = Φ(fsa(G,X, θ·→X)).

Proof. Let A′, φ′, C ′ be as in Definition 4.

Φ(G)

=
∏
g∈G

∏
θ∈[Cg]

φg(Agθ)

=
∏
g∈G

∏
θXg∈[Cg|Xg

]

∏
θ∈[CgθXg ]

φg(AgθXg
θ)
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(by normalizing all Xg to X)

=
∏
g∈G

∏
θX∈[CX]

∏
θ∈[Cgθg→XθX]

φg(Agθg→XθXθ)

=
∏
g∈G

∏
θX∈[CX]

∏
θ∈[C′

gθX]

φg(A′θXθ)

(since [CX] does not depend on g)

=
∏

θX∈[CX]

∏
g∈G

∏
θ∈[C′

gθX]

φg(A′θXθ)

(by replacing each [C ′
gθX] by the conjunction of all of them, and because of conditions 2 and 3 in Definition

4)

=
∏

θX∈[CX]

∏
g∈G

∏
θ∈[
V

g′∈G C′
g′θX]

φg(A′θXθ)|[C
′
gθX|]/|[

V
g′∈G C′

g′θX]|

(since that conjunction does not depend on the particular g)

=
∏

θX∈[CX]

∏
θ∈[
V

g′∈G C′
g′θX]

∏
g∈G

φg(A′θXθ)|[C
′
gθX|]/|[

V
g′∈G C′

g′θX]|

=
∏

θX∈[CX]

∏
θ∈[
V

g′∈G C′
g′θX]

φ′(A′θXθ)

=
∏

θ∈[CX∧
V

g′∈G C′
g′θX]

φ′(A′θ)

=
∏

θ∈[C′]

φ′(A′θ)

= Φ(fsa(G,X, θ·→X))
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Appendix C

Shattering

The elimination of atoms requires certain conditions guaranteed by the fact that the set of parfactors having

been shattered against the query. Shattering is an extension of notions discussed in [Poo03].

Definition 5 (Shattering). A set of parfactors is shattered if, for every pair of atoms (p, q) in G, their

groundings RV (p) and RV (q) are either identical or disjoint.

Example C.0.2. Parfactors (φ1, p(X, a),>) and (φ2, p(b, Y ), Y 6= d) are not shattered because RV (p(X, a))

and RV (p(b, Y )) overlap but are not identical, violating (1).

The algorithm in figure C.1 shatters a set of parfactors against a query. It works by repeatedly identifying

pairs of improper pairs and breaking parfactors into equivalent sets of parfactors whose sets of instantiations

are the same as the original ones, but inducing proper pairs. This is done by, through unification, determining

the conditions for the groundings of improper pairs to coincide or not, and breaking the parfactors along

these conditions. After this, unified atoms are normalized (see Appendix D).

Example C.0.3. If we have parfactor (φ2, p(b, Y ), Y 6= d) and query p(b, c), p(b, Y ) and p(b, c) are an im-

proper pair. Their most general unifier (MGU) is Y = c, so we can break the parfactor into (φ2, p(b, Y ), Y 6=

d∧ Y = c) and (φ2, p(b, Y ), Y 6= d∧ Y 6= c) which can be normalized as (φ2, p(b, Y ), Y = c) = (φ2, p(b, c),>)

and (φ2, p(b, Y ), Y 6= d ∧ Y 6= c).
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FUNCTION SHATTER(G,Q)
G a set of parfactors, Q a set of atoms.

1. If there exists an improper atom pair p, q in AG ∪Q
(a) For each r ∈ {p, q}

If r comes from parfactor g
i. g′ ← NORMALIZE(φg, Ag, Cg ∧MGU(p, q)).
ii. g′′ ← NORMALIZE(φg, Ag, Cg ∧ ¬MGU(p, q)).
iii. G← (G \ {g}) ∪ {g′, g′′}.

(b) Return SHATTER(G, Q).
2. Return G.

FUNCTION NORMALIZE (g)
g a parfactor.

1. If there exists a pair of atoms p, q in Ag such that Cg ⇒ p = q
replace q by p in g.

2. Return NORMALIZE(g).

Figure C.1: Shattering algorithm.
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Appendix D

Parfactor Normalization

At several points it is convenient to have parfactors represented in a normalized form that does not involve

constraint systems with logical variables which are not present in the atoms, or with unnecessary equalities.

Example D.0.4. Below are two parfactors and their normalized versions:

Parfactor Normalized parfactor

(φ, {p(X), q(Y )}, X 6= Y, Z 6= a) (φ|[Z 6=a]|, {p(X), q(Y )}, X 6= Y )

(φ, {p(X), q(Y )}, X = Y ) (φ, {p(X), q(X)},>)

Definition 6 (Cleaned-up parfactor). Let g be a parfactor. The cleaned-up version of g is denoted cl(g).

If the uniform solution counting partition of Cg |LV (Ag) wrt Cg is {Cg |LV (Ag)} (section A), cl(g) is defined

as the parfactor (φ|[Cgθ]|
g , Ag, C|LV (Ag)) where θ is an arbitrary element of [C|LV (Ag)]. Otherwise, cl(g) is

defined as g itself.

Theorem 7. Let g be a parfactor. Then Φ(g) = Φ(cl(g)).

Proof.

Φ(g) =
∏

θ∈[Cg]

φ(Agθ)

=
∏

θ∈[Cg|LV (A)]

∏
θ′∈[Cgθ]

φ(Agθθ
′)

=
∏

θ∈[Cg|LV (A)]

∏
θ′∈[Cgθ]

φ(Agθ)

=
∏

θ∈[Cg|LV (A)]

φ|[Cgθ]|(Agθ)

=
∏

θ∈[Cg|LV (A)]

φcl(g)(Agθ)

= Φ(cl(g))
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Definition 7 (Equalizing substitution and equalization). Let O be some total ordering of terms in which

constant terms are always greater than any logical variable. Let C be a constraint system. For each variable

X ∈ LV (C), let root(X) be the term t such that t is the maximal term (according to O) satisfying X ≤ t

and (ϕ(C)⇒ X = t). The equalizing substitution of C, denoted θ=,C , is the composition of all substitutions

of each logical variable X ∈ LV (C) by root(X).

Let g be a parfactor such that LV (Cg) = LV (Ag) (that is, it is a cleaned-up parfactor). The equalization

of g, denoted g=, is the parfactor (φg, A
′, Cg|LV (A′)), where A′ = Agθ=,Cg

.

Theorem 8. Let g be a parfactor. Then Φ(g) = Φ(g=).

Proof.

Φ(g) =
∏

θ∈[Cg]

φg(Agθ)

(because each replacement (X, root(X)) in θ=,C is such that ϕ(C) ⇒ X = root(X), θ must map both X

and root(X) to the same value, so replacing Ag by A′ does not change anything)

=
∏

θ∈[Cg]

φg(A′θ)

(by projecting onto LV (A′))

=
∏

θ′∈[Cg|LV (A′)]

∏
θ′′∈[Cgθ′]

φg(A′θ′θ′′)

(because LV (A′) does not contain logical variables in the domain of θ′′)

=
∏

θ′∈[Cg|LV (A′)]

∏
θ′′∈[Cgθ′]

φg(A′θ′)

(because the identity of θ′′ is now irrelevant)

=
∏

θ′∈[Cg|LV (A′)]

φg(A′θ′)|[Cgθ′]|
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(because LV (Cg) = LV (A), all logical variables in LV (Cg) \ LV (A′) must have a root in LV (A′) and are

therefore constrained once θ′ has been chosen, so |[Cgθ
′]| = 1)

=
∏

θ′∈[Cg|LV (A′)]

φg(A′θ′)

= Φ(g=)

Example D.0.5 (Equalization). Let g be the parfactor

(φ, {p(X), q(Y ), r(Z), s(U), t(V )}, X = Y ∧ Y = Z ∧ Z = a ∧ U = V ∧ U 6= b).

Using an alphabetical ordering of logical variables,

g= = (φ, {p(a), q(a), r(a), s(V ), t(V )}, V 6= b).

Definition 8 (Normalization). Let g be a parfactor. The normalization of g, denoted normal(g), is defined

as cl(g)=.

Theorem 9. Let g be a parfactor. Then Φ(g) = Φ(normal(g)).

Proof. This proof follows immediately from Theorems 7 and 8. The condition posed by the latter that

LV (Ccl(g)) = LV (Acl(g)) is satisfied since Ccl(g) = Cg|LV (Ag).
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Appendix E

Complexity Analysis

In this chapter, we develop a complexity analysis of FOVE. We do this by first calculating the complexity

of each operation, and combining them into a general FOVE complexity.

This analysis is a relatively superficial one that must be taken as a potentially very large overestimate,

since it does not take into account possible amortizations between many operations. Better analyses remain

a future research direction.

E.1 Individual Operation Complexities

Let us analyze the complexity of individual operations summing out a set of c-atoms E from a parfactor g,

with a = |Ag|, e = |E|, r = maxA∈Ag |RV (A)|, c the size of Cg and d = maxA∈Ag |DA|.

E.1.1 Propositionalization

Because it not always possible to use lifted inference operations in FOVE, sometimes we have to resort to

propositionalization of segments of a model. In these cases, the cost is exponential in the tree width of the

segment, and can be as high as exponential in the number of ground random variables in it.

E.1.2 Counting Elimination

Counting Elimination starts by verification of atom independence. This requires the solving of satisfiability

of a constraint for each pair of atoms in E, and therefore takes time O(e22c).

Counting elimination also requires the calculation of |RV (A)| for each atom A in E. Each of these

calculations can be done in time O(2c), so this takes O(e2c) for all atoms in E.

Counting elimination proper iterates over ~NE , the multinomial counter of atoms in E. These counters

correspond to lifted assignment to these atoms (see Chapter 4). Therefore, there will be as many multinomial

counters for an atom A as there are lifted assignments on it. A lifted assignment on A can be seen as a

multiset of cardinality RV (A) drawn from a set of DA possible elements. The number of such multisets is the

81



multiset coefficient
〈 |DA|
|RV (A)|

〉
, equal to

(|DA|+|RV (A)|−1
|DA|

)
, which is O((|DA|+ |RV (A)|−1)min(|DA|,|RV (A)|−1)).

Therefore nested iteration over all of them is O
((

(d + r − 1)min(d,r−1)
)a

)
.

In each multinomial iteration, one needs to compute the multinomial coefficient ~NE ! and calculate the

product of φg(v)#(v, ~NE) for all assignments v to Ag. While the calculation of an individual multinomial

coefficient is expensive, we can obtain the current coefficient from the previous one by a constant-time

incremental update. The calculation of φg(v) and #(v, ~NE) are lookups of the potential table of φg and the

current multinomial ~NE , indexed by the current assignment v. Again this can be done in constant time per

iteration of v by keeping a pointer to the current position of each of those tables, and updating the pointer

at each iteration of v. So this part of the cost is simply the number of values of v, O(da).

Therefore, the complexity of a single counting elimination operation is

O
(
e2c + e22c +

(
(d + r − 1)min(d,r−1)

)a
da

)
.

E.1.3 Inversion

The complexity of Inversion is best done while analyzing two distinct cases. If we invert on all logical

variables in g, the operation starts by a straightforward propositional summation, since all logical variables

will be bound and all atoms will be propositional. This, like propositional VE, requires time da. The check

for whether we can invert on all logical variables is cheap, consisting in identifying an atom containing

all logical variables in the parfactor. After that we eliminate spurious logical variables from the constraint

system and calculate the resulting reduction in the number of groundings, which involves solving a constraint

system, and takes time O(2c).

If on the other hand a partial Inversion is performed, we have a sequence of m distinct inversions

that result in a Counting Elimination problem (if it resulted in a propositional summation, we could have

combined all inversions into a single complete one to start with). We now proceed in analyzing this case.

The first step consists in selecting the set of logical variables on which to base it, and performing the

inversion proper by binding these logical variables and calculating the resulting summation as a FOVE

subproblem.

While there are good heuristics for selecting the set of logical variables to be inverted (for example, logical

variables shared among atoms must be inverted), in general this selection involves 2|LV (g)|, which is bounded

by 2c. For each of these sets, a check of condition 3.2 is necessary, which involves solving a constraint system

for each pair of atoms in the eliminated atoms E. Therefore the selection of logical variables costs O(e222c).

Once a set of logical variables satisfies condition 3.2, Inversion is performed by binding those variables and
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repeating the process until Counting Elimination is possible. At this point one needs to calculate the size of

groundings for each atom with bounded logical variables, which will cost O(e2c). The number of Inversions

m is bounded by |LV (g)| and therefore by c, so the total cost of this type of sequence of Inversions is O(ce2c).

Therefore, a sequence of partial inversions with counting elimination at the end costs

O
(
e222c + c e2c + e22c +

(
(d + r′ − 1)min(d,r′−1)

)a
da

)

where r′ is the maximum grounding set size after the inverted variables are bound.

E.1.4 Shattering

Before Inversion and Counting Elimination can be applied to a set of parfactors, we need to make sure they

are shattered, that is, their atoms’ groundings either do not intersect or are identical.

While the algorithm in appendix C is the simplest to understand and implement, it is better to consider

a modification in order to analyze its complexity. Instead of actually splitting parfactors as shattering is

performed, we can instead incrementally compare pairs of c-atoms A1 and A2 with respective constraints C1

and C2 and solve constraints C1 ∧C2, C1 ∧¬C2 and ¬C1 ∧C2. These constraints determine the constraints

of c-atoms deriving from A1 and A2 if their respective parfactors were to be split against each other. Once

we do that, we can bring in a third atom A3 associated to its own region C3, and compare this region to the

three already determined ones. This could produce a maximum of total 9 regions. It is easy to see that the

maximum total number of splittings is 3 + · · ·+ 3n−1 = 3(3n−1−1)
2 , where n is the total number of atoms in

the entire model.

Once this process is completed, and assuming we keep track of all regions into a c-atom’s original atom

has been split to, we can then split the original parfactors into a set of shattered parfactors.

As an implementation side note, we point out that many of these splittings would actually be unnecessary.

For example, if a new region R is identical to a previous region S, we already know it will not intersect with

other regions S′ that originated from the same splitting as S, since they will not intersect at all. Taking this

into account makes the analysis more complex and we leave it to future research.

Each splitting requires solving a constraint, which has cost dependent on the size of this constraint.

Because successive splittings can make constraints larger than any original constraint, we need to estimate

what maximum size a constraint can be during this process. A safe bound to this size is the size of the

conjunction formed from the set of of all original constraints and their negations, since every constraint

derived in the process will necessarily be equivalent to a conjunction of a subset of them (although typically
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it will be a simplified and smaller form). Let k be this size. Then the cost of shattering is O( 3(3n−1−1)
2 2k)

E.2 The FOVE Algorithm Complexity

Before analyzing the complexity of the FOVE algorithm, it is worthwhile recalling how the complexity of

the propositional Variable Elimination algorithm is determined. Each variable elimination step has a cost

exponential in the number of random variables it involves (its clique size). Given an elimination ordering,

the cost of the algorithm is exponential in the largest clique size during elimination, and this clique size is

called the induced tree width of the model. We define the tree width of a model as its minimum induced tree

width.

For FOVE, the same reasoning takes place; different operation orderings will yield different costs. How-

ever in this case the costs are very different functions depending on the type of operation. One can then

define a parameter analogous to induced tree width expressing the maximum cost given an ordering, and

another, analogous to tree width, expressing the cost of the best ordering.

Differently from the tree width measure, however, is the fact that our measures are overestimates, whereas

a propositional model cannot be solved exactly in time less than exponential on its tree width. Finding

narrower bounds for FOVE’s cost is a much more complex problem to be tackled in future research.

While determining the smallest tree width of graph is an intractable problem, one can run the propo-

sitional VE algorithm without numerical computations in order to select a good ordering. This method is

extendable to FOVE – one can run it without the actual iterations for determining numerical values in order

to determine the cost of a given ordering, and thus choose a good one.
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