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Abstract

This dissertation can be coarsely divided into two parts: Chapters 1 and 2 study the problem of

the multidimensional filter bank design and data-driven adaptation, while Chapters 3 to 5 focus

on variations of optical tomography.

Chapter 1 describes a fast way to estimate the extremal values of a trigonometric polynomial

given samples from the polynomial. This work came about from a simple question: Can we

determine whether the Discrete-Time Fourier Transform of a multidimensional discrete index

signal reaches zero, given only its Discrete Fourier Transform? The answer is yes— provided that

the signal has small support and its samples do not vary too much. This property unlocks new

possibilities for the numerical design of multidimensional, multirate, perfect reconstruction

filter banks; we conclude by designing a curvelet-like filter bank.

Chapter 2 focuses on data-adaptive sparse representations; that is, a sparse representation

learned directly from the data itself. These representations are usually described as modeling

and acting on small image patches. We show that many of the existing sparse representations

can instead be thought of as filter banks, thus linking the local properties of a patch-based model

to the global properties of a convolutional model. We then use the results on trigonometric

polynomials developed in Chapter 1 as the foundation for a new algorithm to learn perfect

reconstruction filter banks that sparsify data. Our learned model outperforms local, patch-

based transform learning approaches in image denoising tasks while benefiting from additional

flexibility in the design process.

Chapter 3 marks the transition to the second family of topics in this dissertation. In this

chapter, we review a particular optical tomographic imaging: Interferometric Synthetic Aperture

Microscopy (ISAM). ISAM allows for rapid, non-invasive imaging of quasi-transparent objects in

three spatial dimensions from measurements of back-scattered light. In this modality, volumetric

images are formed by solving the inverse scattering problem using perturbative methods. The

resulting image reconstruction algorithms have efficient numerical implementations.

The usual ISAM image reconstruction algorithms are well-suited for data collected from a

single focal plane, with Tikhonov regularization, and/or if Gaussian noise is present. In these

situations a non-iterative image reconstruction algorithm is applicable. However, when an
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iterative solution is required, the perturbative ISAM model leads to artifacts in the reconstructed

image.

In Chapter 4, we present a new approximation to the ISAM forward model. This model

facilitates the combination of fast numerical algorithms and iterative image reconstruction.

We construct the singular value decomposition of our new approximate ISAM operator and

investigate the resolution of the imaging system.

In Chapter 5, we combine ISAM with imaging spectroscopy to determine spatial morphology

and chemical composition in three spatial dimensions. We assume the target has a low-rank

structure; physically, this implies the target is composed of a few distinct chemical species. We

call this the N-species approximation. We use this low-rank structure to reduce the amount of

data needed to solve the inverse scattering problem.
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Chapter 1

Bounding Multivariate Trigonometric Polynomials
with Applications to Filter Bank Design

1.1 Introduction

1.1.1 Motivation

Trigonometric polynomials are intimately linked to discrete-time signal processing, arising in

problems of controls, communications, filter design, and super resolution, among others. For

example, the Discrete-Time Fourier Transform (DTFT) converts a sequence of length n into a

trigonometric polynomial of degree n −1. Multivariate trigonometric polynomials arise in a

similar fashion, as the d-dimensional DTFT yields a d-variate trigonometric polynomial.

The extremal values of a trigonometric polynomial are often of interest. In an Orthogonal

Frequency Division Multiplexing (OFDM) communication system, the transmitted signal is

a univariate trigonometric polynomial, and the maximum modulus of this signal must be

accounted for when designing power amplifiers [1]. The maximum modulus of a trigonometric

polynomial is related to the stability of a control system in the face of perturbations [2]. The

maximum gain and attenuation of a Finite Impulse Response (FIR) filter are the maximum

and minimum values of a real and non-negative trigonometric polynomial. Unfortunately,

determining the extremal values of a multivariate polynomial given its coefficients is NP-hard

[3, 4].

An approximation to the extremal values can be found by discretizing the polynomial and

performing a grid search, but this method is sensitive to the discretization level. Instead, one

can try to find the extremal values using an optimization-based approach. However, iterative

descent algorithms are prone to finding local optima as a generic polynomial is not a convex

function. The sum-of-squares machinery provides an alternative approach: extremal values

of a polynomial can be found by solving a hierarchy of semidefinite program (SDP) feasibility

problems [2, 4, 5]. Truncating the sequence of SDPs provides a lower (or upper) bound to the

minimum (or maximum) of the polynomial. However, the size of the SDPs grows exponentially

in the number of variables, d , and polynomially in the degree, n, limiting the applicability of this
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approach.

In many applications we have access to samples of the polynomial rather than to the coeffi-

cients of the polynomial itself. Equally spaced samples of a trigonometric polynomial arise, for

instance, when computing the Discrete Fourier Transform (DFT) of a sequence. Given enough

samples, the polynomial can be evaluated at any point by periodic interpolation, and thus grid

search or optimization-based approaches can still be used; however, the previously described

issues of discretization error, local minima, and complexity remain.

In this chapter, we derive simple estimates for the extremal values of a multivariate trigono-

metric polynomial directly from its samples, i.e. with no interpolation step. For a complex

polynomial we provide an upper bound on its modulus, while for a real trigonometric polyno-

mial we provide upper and lower bounds. Upper bounds of this style have been derived for

univariate trigonometric polynomials—our work provides an extension to the multivariate case.

We describe two sample applications that benefit from our lower bound and from the extension

to multivariate polynomials.

(i) Design of Perfect Reconstruction Filter Banks.

A multi-rate filter bank in d dimensions is characterized by its polyphase matrix, H (z) ∈Cm×n ,

where each entry in the matrix is a d-variate Laurent polynomial1 in z ∈Cd [6].

Many important properties of the filter bank can be inferred from the polyphase matrix. A

filter bank is said to be perfect reconstruction (PR) if any signal can be recovered, up to scaling

and a shift, from its filtered form. The design and characterization of multirate filter banks in

one dimension is well understood, but becomes difficult in higher dimensions due to the lack

of a spectral factorization theorem [7–11]. The perfect reconstruction condition is equivalent

to the strict positivity of the real trigonometric polynomial pH (ω) = det
(
H∗(e jω)H(e jω)

)
[6, 12].

The lower bounds developed in this chapter provide a sufficient condition to verify the perfect

reconstruction property from samples of pH (ω) which are easily obtained using the DFT.

(ii) Estimating the Smallest Eigenvalue of a Hermitian Block Toeplitz Matrix with Toeplitz

Blocks.

Toeplitz matrices describe shift-invariant phenomena and are found in countless applications.

Toeplitz matrices model convolution with a finite impulse response filter, and the covariance

matrix formed from a random vector drawn from a wide-sense stationary (WSS) random process

1A Laurent polynomial allows negative powers of the argument.
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is symmetric and Toeplitz. An n ×n Toeplitz matrix is of the form

Xn =



x0 x−1 x−2 · · · x−n+1

x1 x0 x−1

x2 x1 x0
...

...
. . .

xn−1 · · · x0


,

and a Hermitian symmetric Toeplitz matrix satisfies x∗
i = x−i . Associated with Xn is the trigono-

metric polynomial 2

x̂(ω) =
n∑

k=−n
xk e jωk , −π≤ω<π,

with coefficients

xk = 1

2π

∫ π

−π
x̂(ω)e− j kωd t , k ∈Z. (1.1)

The polynomial x̂ is known as the symbol of Xn . If the symbol is real then Xn is Hermitian, and if

x̂ is strictly positive then Xn is positive definite.

A vast array of literature has examined the connections between a real symbol x̂ and the

eigenvalues of the Hermitian Toeplitz matrices Xn as n →∞; see [13, 14] and references therein.

One result of particular interest states that the eigenvalues of Xn are upper and lower bounded

by the supremum and infimum of the symbol.

The smallest eigenvalue of a Toeplitz matrix is of interest in many applications [15–17], and

there are several iterative algorithms to efficiently calculate this eigenvalue [18]. We propose

a non-iterative estimate of the smallest and largest eigenvalues of Xn by first bounding the

eigenvalues in terms of the symbol, then bounding the symbol in terms of the entries of Xn .

Shift invariant phenomena in two dimensions are described by Block Toeplitz matrices with

Toeplitz Blocks (BTTB). The symbol for a BTTB matrix is a bi-variate trigonometric polynomial,

and the bounds developed in this chapter hold in this case.

1.1.2 Notation

For a setX, letXd be the d-fold Cartesian productX× . . .×X. LetT= [0,2π] be the torus andZ be

the integers. The set {0, . . . N −1} is written [N ]. We denote the space of d-variate trigonometric

2This differs from the usual approach of describing Toeplitz matrices, wherein a Toeplitz matrix of size n is
generated according to (1.1) for an underlying symbol and the behavior as n →∞ is investigated. Here, we work
with a Toeplitz matrix of fixed size.
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polynomials with maximum component degree n as

T d
n , span

{
e j k·ω :ω ∈Td ,k ∈Zd ,‖k‖∞ ≤ n

}
,

where x · y ,
∑d

i=1 xi yi is the Euclidean inner product and ‖k‖∞ = max1≤i≤d |ki |. An element of

T d
n is explicitly given by

p(ω) =
n∑

k1=−n
. . .

n∑
kd=−n

ck1...kd e j k1ω1 . . .e j kdωd .

If the coefficients satisfy ck1,...,kd = c∗−k1,...,−kd
, then p(ω) is real for all ω and p is said to be a real

trigonometric polynomial. We denote the space of real trigonometric polynomials by T̄ d
n . For

p ∈ T d
n let ‖p‖∞ = maxω∈Td

∣∣p(ω)
∣∣. We write the set of N equidistant sampling points on T as

ΘN ,
{
ωk = k

2π

N
: k = 0, . . . , N −1

}
,

and on Td asΘd
N , given by the d-fold Cartesian productΘN × . . .×ΘN . The maximum modulus

of p overΘd
N is

‖p‖N d ,∞ , max
ω∈Θd

N

∣∣p(ω)
∣∣ .

1.1.3 Problem Statement and Existing Results

Let p ∈ T̄ d
n . Our goal is to find scalars a ≤ b, depending only on N ,d , and the N d samples{

p(ω) :ω ∈Θd
N

}
, such that

a ≤ p(ω) ≤ b.

For complex trigonometric polynomials, p ∈ T d
n , we want an upper bound on the modulus; a

lower bound on the modulus can be obtained by considering the real trigonometric polynomial

p ′ ∈ T̄ 2d
n :ω 7→ ∣∣p(ω)

∣∣2.

By the periodic sampling theorem (Lemma 1.4), trigonometric interpolation perfectly recovers

p ∈ T d
n from (2n +1)d uniformly spaced samples. A standard result of approximation theory

states [19, 20]

‖p‖∞ ≤ ‖p‖(2n+1)d ,∞

(
π+4

π
+ 2

π
log(2n +1)

)d

, (1.2)

but this becomes weak as the polynomial degree n or the dimension d of its domain increases. A

more stable estimate is obtained by using non-uniformly spaced samples. However, in many

applications the sampled polynomial is obtained using the DFT, thus providing uniformly spaced
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samples.

Our aim is to get stronger estimates by using more (uniformly spaced) samples than are re-

quired by the periodic sampling theorem. Upper bounds for univariate trigonometric polynomi-

als have been developed using this strategy. Let p ∈ Tn . Given an integer m and N = 2m > 2n +1

samples of p, Ehlich and Zeller showed [21]

‖p‖∞ ≤
(
cos

(πn

2m

))−1
‖p‖N ,∞ (1.3)

and this bound is sharp if n is a divisor of m.

Wunder and Boche developed a more flexible bound: given N ≥ 2n +1, they showed [22]

‖p‖∞ ≤
√

N +2n +1

N − (2n +1)
‖p‖N ,∞. (1.4)

Zimmermann et al. refined this bound to [1]

‖p‖∞ ≤ ‖p‖N ,∞p
1−α , (1.5)

where α= 2n/N . The quantity α−1 is almost equal to the oversampling factor N
2n+1 , and plays

the same role: α is a decreasing function of N , and for N ≥ 2n +1, we have α< 1.

The bounds (1.2) to (1.5) each have the form:

‖p‖∞ ≤C d
N ,n‖p‖N d ,∞, (1.6)

where C d
N ,n is a real, non-negative constant that depends on N ,n and, in the case of (1.2), d . In

the univariate case, Zimmermann et al. studied the optimal value of CN ,n and showed that it

depends only on N /n [1]. They also characterized extremal polynomials, for which (1.6) holds

with equality, and discussed a Remez-like algorithm to construct such polynomials for given N

and n.

1.1.4 Contributions

Our contributions can be summarized as follows: (i) we develop upper bounds of the form (1.6)

for multivariate trigonometric polynomials; these include both a multivariate extension of the

bound (1.5), as well as a tighter bound for the case of low oversampling (N ≈ 2n +1); (ii) we

specialize and strengthen the bounds for real polynomials; and (iii) we derive a lower bound for

real trigonometric polynomials.
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1.2 Statement of Main Results

In this section we collect our main results; proofs are deferred to Sections 1.3 and 1.4. For

simplicity we work with T d
n , but the results can be easily strengthened by allowing for the

component degree to vary in each of the d dimensions.

Our first task is to obtain bounds of the form (1.6) for multivariate trigonometric polynomials.

We have a pair of such bounds.

Theorem 1.1. Let p ∈ T d
n . Take N ≥ 2n +1 and set α= 2n/N . Then

‖p‖∞ ≤C d
N ,n‖p‖N d ,∞, (1.7)

where

C d
N ,n ,

(
sup
ω∈T

{ ∑
ωk∈ΘN

∣∣∣∣∣sin
(Nω

2

)
sin

(N−2n
2 (ω−ωk )

)
sin2 ((ω−ωk )/2)

∣∣∣∣∣
})d

N d (N −2n)d
(1.8)

≤ (1−α)−
d
2 . (1.9)

Further,

C d
N ,n‖p‖N d ,∞−‖p‖∞ ≤

(
dn

N
+O((dn/N )2)

)
‖p‖∞.

The bound (1.8) involves only a univariate function and can be calculated numerically. Still,

the expression is unwieldy; (1.9) is a simpler, but weaker, alternative.

We plot the behavior of CN ,n , given by (1.8) and (1.9) for the d = 1 univariate case, in Fig. 1.1.

Also shown in Fig. 1.1 are the optimal values of CN ,n for integer oversampling factors, given by

(1.3), and the values obtained using Zimmermann’s Remez-like algorithm [1].

The upper bound (1.7) with C d
N ,n given by (1.8) is nearly tight for N /(2n) < 2, whereas replacing

C d
N ,n by its upper bound (1.9) results in a weakening of (1.7) in this regime. This gap makes

(1.8) particularly attractive in the d-variate case, where the bounds are raised to the d-th power,

further increasing the gap between (1.8) and (1.9).

However, for oversampling factor greater than two, i.e. N /(2n) > 2, the difference in using (1.8)

or (1.9) becomes negligible. Both bounds coincide with the optimal value at N = 4n, and are

within roughly 10% of the optimal value for large oversampling factors. Hence, both (1.8) and

(1.9) are useful, in different oversampling regimes.

Next, we obtain a tighter estimate and a lower bound by restricting our attention to real

polynomials.
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Oversampling: N /(2n)
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Figure 1.1: Comparing upper bounds of the form (1.7) as a function of oversampling ratio, N /2n,
calculated with n = 8. Green diamonds indicate the optimal upper bound as calculated using a
Remez-type algorithm [1, Fig. 2]. Black dots denote the upper bound (1.3) at valid locations, i.e.
N = 2m > 2n +1.

Corollary 1.2. Let p ∈ T̄ d
n and take N ≥ 2n +1. Set A , maxω∈Θd

N
p(ω), B , minω∈Θd

N
p(ω) and

take C d
N ,n as in Theorem 1.1. Then,

p(ω) ≤ 1

2

(
A+B +C d

N ,n (A−B)
)

, (1.10)

p(ω) ≥ 1

2

(
A+B −C d

N ,n (A−B)
)

, (1.11)

‖p‖∞ ≤ 1

2

(
|A+B |+C d

N ,n(A−B)
)

. (1.12)

The estimates (1.10) and (1.12) coincide with (1.7) in the case that

min
ω∈Θd

N

p(ω) =− max
ω∈Θd

N

p(ω),
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and are tighter otherwise, making this refinement especially useful for non-negative polynomials.

By Theorem 1.1, C d
N ,n → 1 as N →∞. Thus as N →∞, the right-hand side of (1.11) approaches

B , and by continuity we have B = minω∈Θd
N

p(ω) → minω∈Td p(ω). Thus the bound is tight as

N →∞. In the case of A = B , the right-hand side of (1.11) is A = ‖p‖N d ,∞, and thus p(ω) > 0 so

long as the samples of p are not uniformly zero. This is expected, as otherwise the polynomial

p(ω)−‖p‖N d ,∞ ∈ T d
n would vanish on a set of N d > (2n +1)d points, which is impossible unless

the polynomial is identically zero.

A little algebra on (1.11) establishes a sufficient condition to verify the strict positivity of a

multivariate trigonometric polynomial.

Corollary 1.3. Let p ∈ T̄ d
n and N ≥ 2n +1. Set α= 2n/N . If p(ω) > 0 for all ω ∈Θd

N and

κN ,
maxω∈Θd

N
p(ω)

minω∈Θd
N

p(ω)
<

C d
N ,n +1

C d
N ,n −1

(1.13)

then p(ω) > 0 for all ω ∈Td . Furthermore, as C d
N ,n ≤ (1−α)−

d
2 , (1.13) can be replaced by the more

stringent, but easier to evaluate, condition

κN < 1+ (1−α)
d
2

1− (1−α)
d
2

. (1.14)

For p ∈ T̄ d
n with non-negative samples, we call the quantity κN in (1.13) the N-sample dynamic

range.

Corollary 1.3 provides an easy way to certify strict positivity of a real, non-negative polynomial

from its samples: simply calculate the dynamic range κN and verify that (1.13) or (1.14) holds.

These conditions are easier to satisfy (as a function of the oversampling rate) for polynomials

whose maximum and minimum sampled values are close to one another. Intuitively, if the

sampled values of a real trigonometric polynomial are strictly positive and don’t vary “too much”,

then the polynomial is strictly positive over its entire domain. For fixed n and d , the right-hand

side of (1.14) is an increasing function of N , illustrating a tradeoff: polynomials with a large

amount of variation, and thus large values of κN , require larger oversampling factors N for the

bounds to hold. Note that κN is not necessarily a monotone function of N , but is monotone in k

when choosing N = 2k . Figure 1.2 illustrates the regions for which (1.13) and (1.14) hold.
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Figure 1.2: Any p ∈ T̄ d
n with positive samples and whose N -sample signed dynamic range κN lies

in the shaded region must be strictly positive. The orange shaded region is certified using (1.14),
while the blue region uses (1.13).

1.3 Proof of Theorem 1.1

We begin by proving Theorem 1.1, which extends the upper bound (1.5) from univariate to

multivariate polynomials and provides a tighter result for the case of low oversampling. Due to

the separable nature of T d
n (e.g. T d

n is the d-fold tensor product of Tn with itself), the proof is

similar to the univariate case [1]. We consider both real and complex trigonometric polynomials.

1.3.1 Interpolation by the Dirichlet Kernel

For n = [n1, . . .nd ] ∈ [N ]d , the n-th order Dirichlet kernel is the tensor product of d kernels, each

of order ni :

Dd
n (ω),

∑
|ki |≤ni

e j k·ω =
d∏

i=1

sin 2ni+1
2 ωi

sin ωi
2

ω ∈Td ,k ∈Zd . (1.15)

If n is identical in each index (i.e. ni = n for each i ∈ [d ]) we write the kernel as Dd
n (ω). The

Dirichlet kernel is key to the periodic sampling formula.

Lemma 1.4. Let p ∈ T d
n be sampled onΘd

N . Let m be an integer with m ≥ n. If N > n +m, then

p(ω) = 1

N d

∑
ωk∈Θd

N

p(ωk )Dd
m(ω−ωk ) (1.16)

9



for all ω ∈Td .

Lemma 1.4 (e.g., [23]) is the periodic counterpart of sinc interpolation arising in the Whittaker-

Shannon interpolation formula. The bound (1.2) can be obtained from (1.16) when N = 2n +1

[20].

1.3.2 Interpolation by the de la Vallée-Poussin Kernel

A better result is obtained by oversampling (N > 2n +1) and exploiting the nice properties of

summation kernels.

Let n,m be integers with m > n and define Vd
n,m = {

l ∈Zd : n ≤ li < m
}
. The n,m-th de la

Vallée-Poussin kernel is defined as the moving average of Dirichlet kernels:

Dd
n,m(ω),

1

(m −n)d

∑
n∈Vd

n,m

Dd
n (ω)

= 1

(m −n)d

d∏
i=1

sin( m+n
2 ωi )sin( m−n

2 ωi )

sin2 (ωi /2)
. (1.17)

Taking n = 0 recovers the well-known Fejér kernel [24],

Dd
0,m = 1

md

d∏
i=1

sin2 ( m
2 ωi )

sin2 (ωi /2)
.

The Fejér kernel is used to derive the bound (1.4) [22].

Importantly, the de la Vallée-Poussin kernel inherits the reproducing property of the Dirichlet

kernel.

Lemma 1.5. For any p ∈ T d
n we have

p(ω) = 1

N d

∑
ωk∈Θd

N

p(ωk )Dd
n,m(ω−ωk )

for all ω ∈Td whenever m > n and N ≥ n +m.

Proof. Expanding the de la Vallée-Poussin kernel into a sum of Dirichlet kernels and applying

10



Lemma 1.4,

1

N d

∑
ωk∈Θd

N

p(ωk )Dd
n,m(ω−ωk )

= 1

(m −n)d

∑
n∈Vd

n,m

1

N d

∑
ωk∈Θd

N

p(ωk )Dd
n (ω−ωk )

= 1

(m −n)d

∑
n∈Vd

n,m

p(ω) = p(ω).

1.3.3 Proof of Theorem 1.1

The upper bound of Theorem 1.1 depends on estimates of
∑
ωk∈Θd

N

∣∣Dd
n,m(ω−ωk )

∣∣, which we

collect into a pair of lemmas.

Lemma 1.6. Take N ≥ 2n +1. Then, for all ω ∈Td ,

∑
ωk∈Θd

N

∣∣∣Dd
n,N−n(ω−ωk )

∣∣∣
≤

(
sup
ω∈T

∑
ωk∈ΘN

∣∣Dn,N−n(ω−ωk )
∣∣)d

(1.18)

=

(
sup
ω∈T

{ ∑
ωk∈ΘN

∣∣∣∣∣sin
(Nω

2

)
sin

(N−2n
2 (ω−ωk )

)
sin2 ((ω−ωk )/2)

∣∣∣∣∣
})d

(N −2n)d
.

Proof. First, we fix notation: for ωk ∈Θd
N and k ∈ [N ]d , we define ωki = 2πki /N . Using (1.17), we

have

∑
ωk∈Θd

N

∣∣∣Dd
n,N−n(ω−ωk )

∣∣∣ (N −2n)d

= ∑
ωk∈Θd

N

d∏
i=1

∣∣∣∣∣sin( N
2 (ωi −ωki ))sin( N−2n

2 (ωi −ωki ))

sin2 ((ωi −ωki )/2)

∣∣∣∣∣
≤

(
sup
ω∈T

∑
ωk∈ΘN

∣∣∣∣∣sin( N
2 (ω−ωk ))sin( N−2n

2 (ω−ωk ))

sin2 ((ω−ωk )/2)

∣∣∣∣∣
)d

(1.19)

=
(

sup
ω∈T

∑
ωk∈ΘN

∣∣∣∣∣sin( Nω
2 )sin( N−2n

2 (ω−ωk ))

sin2 ((ω−ωk )/2)

∣∣∣∣∣
)d

,
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where the final step follows from
∣∣sin( N

2 (ω−2πk/N ))
∣∣= ∣∣sin( Nω

2 )
∣∣ for k ∈ [N ]. The bound (1.18)

is obtained by replacing (1.19) with the definition of Dn,N−n(ω) given by (1.17).

The following lemma for univariate trigonometric polynomials is key to the derivation of (1.5).
3

Lemma 1.7. Let m > n and take N ≥ n +m. Then

∑
ωk∈ΘN

∣∣Dn,m(ω−ωk )
∣∣≤ N

(m +n

m −n

) 1
2

for all ω ∈T. In particular, taking N ≥ 2n +1 and m = N −n yields

∑
ωk∈ΘN

∣∣Dn,N−n(ω−ωk )
∣∣≤ N

(
N

N −2n

) 1
2

. (1.20)

Proof. See [1, Theorem 1].

We are now set to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Without loss of generality, assume ‖p‖N d ,∞ = 1. Then, by Lemma 1.5, we

have

∣∣p(ω)
∣∣=

∣∣∣∣∣∣ 1

N d

∑
ωk∈Θd

N

p(ωk )Dd
n,N−n(ω−ωk )

∣∣∣∣∣∣
≤ 1

N d

∑
ωk∈Θd

N

∣∣∣p(ωk )Dd
n,N−n(ω−ωk )

∣∣∣ (1.21)

≤ 1

N d

∑
ωk∈Θd

N

∣∣∣Dd
n,N−n(ω−ωk )

∣∣∣ , (1.22)

where (1.21) and (1.22) follow from the triangle inquality and Hölder’s inequality, respectively.

Now, applying Lemma 1.6, we have

∣∣p(ω)
∣∣≤ N−d

(
sup
ω∈T

∑
ωk∈ΘN

∣∣Dn,N−n(ω−ωk )
∣∣)d

(1.23)

=

(
sup
ω∈T

{ ∑
ωk∈ΘN

∣∣∣∣∣sin
(Nω

2

)
sin

(N−2n
2 (ω−ωk )

)
sin2 ((ω−ωk )/2)

∣∣∣∣∣
})d

N d (N −2n)d
,

3A multivariate extension is straightforward, but not used in the proof of Theorem 1.1 and is omitted here.

12



which implies (1.7)-(1.8). Applying the bound (1.20) of Lemma 1.7 to (1.23) yields

∣∣p(ω)
∣∣≤ (

N

N −2n

) d
2 = (1−α)−

d
2 ,

which establishes (1.9).

Finally, as N ≥ 2n + 1, by Taylor’s theorem we have

(1−α)−
d
2 = 1+ dn

N +O((dn/N )2). It follows that

C d
N ,n‖p‖N d ,∞−‖p‖∞ ≤

(
C d

N ,n −1)
)
‖p‖∞

≤
(
(1−α)−

d
2 −1

)
‖p‖∞

=
(

dn

N
+O((dn/N )2)

)
‖p‖∞,

where we have used ‖p‖N d ,∞ ≤ ‖p‖∞.

1.4 Proof of Refinement and Lower Bound for Real
Trigonometric Polynomials

We now restrict our attention to real trigonometric polynomials. We will use the shorthand

notation A , maxω∈Θd
N

p(ω) and B , minω∈Θd
N

p(ω). Note both A and B are (not necessarily

monotonic) functions of N .

The bound of Theorem 1.1 is at its tightest whenever the samples of p(ω) are centered about

zero, i.e. minω∈Θd
N

p(ω) =−maxω∈Θd
N

p(ω), and can be loose otherwise. To see this, take c > 0 and

consider the shifted polynomial p̃(ω) = p(ω)+ c. Applying Theorem 1.1 yields

‖p̃‖∞ ≤C d
N ,n‖p̃‖N d ,∞

≤C d
N ,n(‖p‖N d ,∞+ c). (1.24)

Applying the triangle inequality in advance of Theorem 1.1 results in

‖p̃‖∞ ≤ ‖p‖∞+ c ≤C d
N ,n‖p‖N d ,∞+ c,

which may be much smaller than (1.24), but presupposes knowledge of c. While we do not

know this offset, it can be estimated from the samples of p̃. This motivates our refined bound,

Corollary 1.2, which we now prove.
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Proof of Corollary 1.2. If A = B then p(ω)− A vanishes on a set of N d ≥ (2n +1)d points; thus

p(ω) is the constant polynomial p(ω) = A and (1.10) to (1.12) hold with equality.

Define q ∈ T d
n as q(ω), p(ω)− A+B

2 , which satisfies

‖q‖N d ,∞ =
∣∣∣∣A− A+B

2

∣∣∣∣= A−B

2
.

By Theorem 1.1, we have for all ω ∈Td ,

∣∣q(ω)
∣∣≤C d

N ,n
A−B

2
.

Combined with the definition of q(ω), we have

−C d
N ,n

A−B

2
≤ p(ω)− A+B

2
≤C d

N ,n
A−B

2
,

and rearranging gives (1.10) and (1.11).

Finally, we have

∣∣p(ω)
∣∣≤ ∣∣q(ω)

∣∣+ ∣∣∣∣ A+B

2

∣∣∣∣
≤C d

N ,n
A−B

2
+

∣∣∣∣ A+B

2

∣∣∣∣ ,

yielding (1.12).
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1.5 Examples

1.5.1 Univariate Example

Figure 1.3 illustrates our bounds for a randomly chosen univariate real trigonometric polynomial,

p ∈ T̄ 1
8 , given by4

p(ω), 3.9+ 1

2

(
0.4cos(ω)+1.0sin(ω)

+2.2cos(2ω)+1.9sin(2ω)−1.0cos(3ω)+1.0sin(3ω)

−0.2cos(4ω)−0.1sin(4ω)+0.4cos(5ω)+0.1sin(5ω)

+1.5cos(6ω)+0.8sin(6ω)+0.1cos(7ω)+0.4sin(7ω)

+0.3cos(8ω)+1.5sin(8ω)
)
.

(1.25)

Note that the bounds are not necessarily monotonic functions of N . We see that an oversampling

factor of 1.3, or N = 23, is enough samples to certify the strict positivity of this polynomial.

1.5.2 Trivariate Example

For simplicity, take p ∈ T̄ 3
n to be p(ω) = D3

n(ω)/(2n +1)3, where D3
n is the Dirichlet kernel (1.15)

with (uniform) degree n and the scaling is such that ‖p‖∞ = 1.

We obtain uniform samples of p(ω) over Θd
N by computing a zero-padded discrete Fourier

transform. In particular, we embed an n×n×n array of ones into an N×N×N array of zeros, and

apply the FFT algorithm to this array. We choose N to be a favorable size for the FFT algorithm,

such as a power of two. As we choose N proportional to the degree n of p, our method scales as

O(nd logn) with d = 3 in this example.

Figure 1.4 shows the estimates obtained using Corollary 1.2 as a function of N for a variety of

orders n; the true maximum value of p(ω) is 1 and the minimum can be shown to be roughly

−2/(3π) ≈−0.22. Evaluating the bounds for n = 32 and N = 512 took roughly one second on a

workstation with an Intel i7-6700K CPU and 32GB of RAM.

To draw a comparison with the sum-of-squares framework, we use the POS3POLY MATLAB

library, in particular the function min_poly_value_multi_general_trig_3_5 [25]. This func-

tion finds the minimum value of a polynomial (given its coefficients) by a solving an SDP

feasibility problem using an interior point method; the maximum value is obtained by calling

the same function on −p. The per-iteration complexity of this method is O(n4d ).

4The coefficients were drawn from a standard normal distribution and rounded to the first decimal point.
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Figure 1.3: Example of upper and lower bounds for p ∈ T̄ 1
8 given by (1.25). (a): Test Polynomial.

(b): Upper and lower bounds as a function of oversampling rate.
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Figure 1.4: Upper and lower bounds for the Dirichlet kernel of 3 variables using Corollary 1.2.

For n = 7, POS3POLY required 75 seconds to obtain the minimum value to within 3×10−3;

n = 8 required 260 seconds and found the minimum to within 2×10−3. The n = 9 case exhausted

the system memory and was too large to solved on the workstation.

This is meant to be an illustrative, but certainly not exhaustive, comparison between the

bounds presented in this chapter and the sum-of-squares framework. Sum-of-squares methods

are especially attractive if an exact solution is needed or if the polynomial has sparse coefficients,

in which case the complexity can be dramatically reduced.

1.6 Application to 2D Filter Bank Design

1.6.1 Perfect Reconstruction Filter Banks

We review a few key properties of multirate perfect reconstruction filter banks before turning to

our design algorithm; see [8, 26] for a complete overview.

An Nc channel analysis filter bank operating on d-dimensional signals consists of a collection

of Nc analysis filters hi and a non-singular downsampling matrix M ∈ Zd×d . A filter bank is

perfect reconstruction (PR) if there exists a (possibly non-unique) synthesis filter bank, consisting

of a collection of Nc synthesis filters, gi , and the upsampling matrix M , that reconstructs a signal

from its analyzed version. An analysis filter bank, along with its corresponding synthesis filter
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h1 ↓M ↑M g1

x
h2 ↓M ↑M g2

x̂

...
...

...
...

...
...

...

hNc
↓M ↑M gNc

Figure 1.5: An Nc channel multi-rate filter bank with analysis filters hi and synthesis filters gi .

bank, are illustrated in Fig. 1.5. If the filter bank is PR then x̂ = x. In what follows, a “filter bank”

indicates an analysis filter bank unless otherwise specified.

We consider finite impulse response (FIR) filters, and for simplicity, we restrict our attention to

impulse responses with a square support. A real (square) d-variate (or d-dimensional) FIR filter

h of length n is a function h :Zd →R such that h[m] = 0 if mi < 0 or mi ≥ n for any 0 ≤ i < d .

A multidimensional discrete-time signal is a function x :Zd → R. Downsampling a signal x

by a non-singular integer matrix M retains only the samples on the lattice generated by M ; that

is, integer vectors of the form v = M t . The simplest choice of downsampling matrix is M = sId ,

where the integer s ≥ 1 controls the downsampling factor and Id is the identity matrix in d

dimensions. We will refer to this as the uniform downsampling scheme.

The i -th polyphase component of a signal x is a function x̂i :Zd →R obtained by shifting and

downsampling x. In particular, x̂i [m] = x[Mm + vi ] for m ∈Zd , where vi is an integer vector of

the form M t and t ∈ [0,1)d . There are |M |, det M such integer vectors, and each generates one

polyphase component of the signal. The z-transform of the i -th polyphase component of x is

X̂ i (z) =∑
n∈Zd x[Mn + vi ]z−n , where z ∈Cd and z−n = z−n1

1 z−n2
2 . . . z−nd

d .

The polyphase decomposition of an analysis filter is defined in a similar fashion. The i -th

polyphase component of the analysis filter h is ĥk [m] = h[Mm − vi ]; note the difference in sign

when compared to the definition of x̂i .

A d-dimensional filter bank with filters {hi }Nc
i=1 and downsampling matrix M has a polyphase

matrix Ĥ(z) ∈CNc×|M | formed by stacking the polyphase components of each analysis filter into

a row vector, and stacking the Nc rows into a matrix. Explicitly,

Ĥ(z),


Ĥ 0

0 (z) Ĥ 1
0 (z) . . . Ĥ |M |−1

0 (z)

Ĥ 0
1 (z) Ĥ 1

1 (z) . . . Ĥ |M |−1
1 (z)

...
...

. . .
...

Ĥ 0
N c−1(z) Ĥ 1

N c−1(z) . . . Ĥ |M |−1
Nc−1 (z)

 ,

where Ĥ k
i (z) is the z-transform of the k-th polyphase component of the i -th filter. The entries of
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Ĥ(z) are multi-variate Laurent polynomials in z ∈Cd and become trigonometric polynomials

when restricted to the unit circle; that is, z = e jω with ω ∈Td . In a customary abuse of notation,

we write Ĥ(ω), Ĥ(e jω).

There are deep connections between perfect reconstruction filter banks and redundant signal

expansions using frames [12, 27–29]. In particular, oversampled perfect reconstruction filter

banks implement an frame expansion. Associated with a perfect reconstruction filter bank are a

pair of scalars, the upper and lower frame bounds, defined by

A , ess supω∈Td ,m=1,...|M | λn(ω),

B , ess infω∈Td ,m=1,...|M | λn(ω),

where λn(ω) is an eigenvalue of the matrix Ĥ∗(ω)Ĥ(ω). If A = B the frame is said to be tight. The

ratio A/B is the frame condition number; if A/B ≈ 1, the frame is said to be well-conditioned.

The frame bounds of a filter bank determine important numerical properties such as sensitivity

to perturbations, and the frame condition number serves a similar role as the condition number

of a matrix.

The synthesis filter bank also admits a polyphase decomposition. The i -th polyphase com-

ponent of a synthesis filter g is ĝ k [m] = g [Mm + vi ]. The synthesis polyphase matrix is of size

|M |×Nc and has entries

Ĝ(z),


Ĝ0

0(z) Ĝ0
1(z) . . . Ĝ0

|M |−1(z)

Ĝ1
0(z) Ĝ1

1(z) . . . Ĝ1
|M |−1(z)

...
...

. . .
...

Ĝ N c−1
0 (z) Ĝ N c−1

1 (z) . . . Ĝ Nc−1
|M |−1(z)

 .

If a pair of analysis and synthesis filter banks share the PR property, then Ĝ(z)Ĥ(z) = I|M |,
where I|M | is the |M |× |M | identity matrix. That is, Ĝ(z) is a left inverse for Ĥ(z). If Nc > |M |, the

filter bank is said to be oversampled, and the synthesis filter bank is not unique. A particular

choice is the minimum-norm synthesis filter bank, given by

Ĥ†(z),
(
H̃(z)Ĥ(z)

)−1
H̃(z), (1.26)

where the para-conjugate matrix H̃(z) is obtained by conjugating the polynomial coefficients of

Ĥ(z), replacing the argument z by z−1, and transposing the matrix. On the unit circle, Ĥ†(ω) =(
Ĥ∗(ω)Ĥ(ω)

)−1
Ĥ∗(ω).

A filter bank is perfect reconstruction if and only if its polyphase matrix has full column rank on
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the unit circle [6,12]. As the matrix Ĥ∗(ω)Ĥ(ω) is positive semidefinite, the perfect reconstruction

property holds if and only if the trigonometric polynomial

pH (ω), det
(
Ĥ∗(ω)Ĥ(ω)

)
is strictly positive. This property is key to our proposed filter bank design algorithm.

The degree of pH (ω) depends on the filter length and the downsampling matrix. To illustrate,

we bound from above the degree of pH (ω) when using separable downsampling. After downsam-

pling by M = sId , a FIR filter of length n retains at most ceil(n/s) entries along each dimension;

thus the polyphase component Ĥ k
i (ω) has maximum component degree n′ , ceil(n/s)−1. Note

that Ĥ k
i (ω) contains only negative powers of ω; that is,

Ĥ k
i (ω) ∈ span

{
e− j k·ω :ω ∈Td ,k ∈Zd , n′ ≤ ki ≤ 0

}
.

As such, the trigonometric polynomials (Ĥ k
i (ω))∗Ĥ l

i (ω) remain in T d
n′ and the entries of the

matrix Ĥ∗(ω)Ĥ(ω) are in the same space.

At worst, the determinant includes the product of |M | = sd polynomials of degree n′, and so

pH ∈ T̄ d
m with

m ≤ sd (ceil(n/s)−1). (1.27)

Taking n = 12, s = 2 and d = 2, we have pH ∈ T 2
20.

1.6.2 Filter Bank Design: Analysis

The simplest multidimensional PR filter banks apply a 1D PR filter bank independently to each

signal dimension; for example, in 2D, to the horizontal and vertical directions. These separable

filters are written as a product of multiple 1D filters and suffer from limited directional sensitivity.

The design and construction of non-separable multidimensional filter banks is difficult due to the

lack of a spectral factorization theorem [9]; indeed, directly verifying the perfect reconstruction

condition for a 2D filter bank is equivalent to determining the minimum value of a trigonometric

polynomial and is thus NP-hard [3, 4].

Some 2D PR filter banks, such as curvelets, have been hand-designed [30, 31]. Other design

methods include variable transformations applied to a 1D PR filter bank [8, 26], modulating a

prototype filter [26], invoking tools from algebraic geometry [10], or by solving an optimization

problem [32, 33].

Optimizing a filter bank subject to the PR condition is a semi-infinite optimization problem:

we have a finite number of design variables, namely the filter coefficients, and the resulting
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polyphase matrix must be positive semidefinite over Td .

One approach is to carefully parameterize the filter bank architecture in such a way that

guarantees the PR property [9, 33]. A different approach is to relax the PR condition to near PR,

and minimize the resulting reconstruction error using an iterative algorithm [32].

We use a different approach: we relax the semi-infinite problem into a finite one, then use

Corollary 1.3 to certify that the solution of the relaxed problem is also a solution to the original

problem. In particular, we design the filter bank such that pH (ω) is strictly positive over the finite

collection of sampling points Θd
N . Corollary 1.3 tells us that if the bounds (1.13) or (1.14) are

satisfied, then pH (ω) is strictly positive over all of Td , and the filter bank is thus PR.

We design our filter banks with an eye toward the bounds of Corollary 1.3: we want the

maximum and minimum sampled values of pH (ω) to be close to one another, so that the bounds

(1.13) and (1.14) are satisfied for smaller values of N .

Our filter design approach is highly flexible. It applies to arbitrary filter lengths, any non-

singular decimation matrix, and will design PR filter banks in any number of dimensions. For

simplicity we focus on designing real, 2D filter banks (d = 2) but our approach can be modified

for d-dimensional complex filters.

We begin by specifying the number of channels, Nc , downsampling matrix M , and filter size.

We require that Nc ≥ |M | so that the PR condition can hold. For simplicity, we use downsampling

of the form M = sI2, but our method can design filter banks using non-separable (e.g., quincunx)

downsampling matrices. We also constrain each filter to be of size n ×n, although this can be

easily relaxed.

With these parameters set, we calculate the maximum degree m of pH (ω) using (1.27). Next,

we select the number of sampling points, N , to use during the design process. The conditions of

Corollary 1.3 require we take N ≥ 2m +1, but in practice we take N > 4m so that we can tolerate

larger values of κN while still certifying the perfect reconstruction property.

The i -th n ×n filter will be written hi , and we group the filters into a tensor H ∈RNc×n×n . The

Discrete-Time Fourier Transform of the i -th filter is

hi (ω) = ∑
m∈[n]2

hi [m]e jω·m ω ∈T2,

and the squared magnitude response of hi is |hi (ω)|2.

Our goal is to design a perfect reconstruction filter bank where the magnitude response of

the i -th channel matches a desired real and non-negative magnitude response Di (ω) for ω ∈T2.

We use a weighted quadratic penalty that measures the discrepancy between the magnitude

response of a candidate filter and the Di at the 2D-DFT samplesΘ2
N . Our filter design function is
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written

f (H ,D),
Nc∑

i=1

∑
ω∈Θ2

N

Wi (ω) ·
∣∣∣∣∣ĥi (ω)

∣∣2 −Di (ω)
∣∣∣2

,

where we have introduced weighting functions Wi (ω) to control the importance given to the

passband, transition band, and stop band. If Di is not specified for some i , we take Wi (ω) to be

uniformly zero; then hi does not contribute to f (H ,D) but may contribute to the PR property of

the filter bank.

We emphasize that other choices of a design function are possible; for instance, one could

use a minimax criterion and minimize the maximum deviation between ĥi (ω) and Di (ω). In

Chapter 2 of this thesis we use a similar approach to learn signal-adapted undecimated perfect

reconstruction (analysis) filter banks under a sparsity-inducing criterion [34].

In some cases, the filter design function alone may promote perfect reconstruction filter

banks—for instance, when designing a non-decimated (M = Id ) filter bank where the desired

magnitude responses satisfy a partition-of-unity condition. In general, though, this term is not

enough. We add an additional regularization term to encourage filter banks that can be certified

as perfect reconstruction using Corollary 1.3. Our regularizer is given by

R(H),α
Nc∑

i=1
‖hi‖2

F + ∑
ω∈Θ2

N

βpH (ω)2 −γ log pH (ω),

where the non-negative scalars α,β,γ are tuning parameters. The first term prohibits the filter

norms from becoming too large. The second and third terms apply the function ω 7→ pH (ω)2 −
log pH (ω) for each ω ∈Θ2

N . The negative logarithm barrier function becomes large when pH (ω)

goes to zero and the quadratic part discourages large values of pH (ω).

Together, these terms ensure the matrix Ĥ(ω) is left invertible and well-conditioned for each

ω ∈Θ2
N . They also ensure pH (ω) does not grow too large over the sampling set. These properties

ensure pH (ω) is strictly positive and does not vary too much over Θ2
N ; thus, by Corollary 1.3,

R(H) promotes well-conditioned perfect reconstruction filter banks. We emphasize that this

regularizer, as well as the filter design function, are only computed over on the discrete setΘ2
N ;

passage to the continuous case is handled by Corollary 1.3.

Our designed filter bank is the solution to the optimization problem

min
H∈C

f (H ,D)+R(H),

where the constraint set C reflects any additional constraints on the filters, e.g. symmetry.

This minimization can be solved using standard first order methods such as gradient descent.
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The main challenge is calculating the gradient of log(pH (ω)), which is unwieldy for all but the

shortest filters. A finite-difference approximation to the gradient can suffice, but we have had

success using the reverse-mode automatic differentiation capabilities of the autograd5 and

Pytorch6 Python packages. Our algorithm is implemented in Pytorch and runs on an NVidia

Titan X GPU.

1.6.3 Experiment: Design of a Curvelet-Like Filter Bank

Our goal is to design a filter bank that approximates the discrete curvelet filter bank. Our

desired magnitude responses are obtained from the frequency space tiling illustrated in Fig. 1.6;

each channel should have a pass-band corresponding to a cell in this tiling. As the magnitude

frequency response of a real filter is symmetric, e.g.
∣∣ĥ(ω1,ω2)

∣∣ = ∣∣ĥ(−ω1,−ω2)
∣∣, 17 filters are

needed for the desired partitioning. We use uniform downsampling by a factor of 2, that is,

M = 2I2. The filter bank is roughly 4× oversampled.

The weighting functions Wi (ω) were set to 1. We set β = 10 and α = γ = 1. We used 5000

iterations of the Adam optimization algorithm with a learning rate of 10−2 [35]. The optimization

completed in under one minute for all tasks.

We designed two filter banks; one with 8×8 filters and the other with 11×11 filters. We used

N = 64 for both cases. The final filter banks and their magnitude responses are shown in Fig. 1.7.

We tested two methods to initialize the algorithm. In the first method, we take an N×N inverse

DFT of the desired magnitude response, Di , and extract the n ×n central region of the resulting

impulse response. Our second method is a simple random initialization. Both methods perform

equally well in our design task.

We use Corollary 1.3 to verify the final filter banks are perfect reconstruction. For our filter bank

with 8×8 filters, the bound (1.27) indicates pH ∈ T̄ 2
12. Our sufficient condition in Corollary 1.3 for

strict positivity requires κ64 ≤ 4.4, with κN given by (1.13). We computed pH (ω) over all points in

Θ2
64, and used these values to compute κ64. We found κ64 = 1.3 for the designed filter bank, and

thus the filter bank is perfect reconstruction. When using 11×11 filters, we have pH ∈ T̄ 2
20. This

filter bank too is perfect reconstruction, as κ64 = 1.8 ≤ 2.2.

5https://github.com/HIPS/autograd
6http://pytorch.org/
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Figure 1.6: Desired tiling of frequency space.

(a) (b)

Figure 1.7: Optimized 17 channel filter bank. The left column of each subfigure shows the filter
impulse response. The right column shows the magnitude frequency response, with ω= 0
located at the center of each blue box. (a) 17 channel filter bank with 8×8 filters. (b) 17 channel
filter bank with 11×11 filters.
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1.6.4 Filter Bank Design: Synthesis

Our filter design problem has focused exclusively on the analysis portion of the filter bank, but

in many applications the synthesis filter bank is equally important.

We focus on the oversampled case, i.e. Nc > |M |. The choice of synthesis filter bank is not

unique. We have already seen one possible choice- the minimum-norm synthesis filter bank

(1.26), which can be obtained explicitly once the analysis filter bank has been designed. In

general, the minimum-norm synthesis filter bank consists of infinite impulse response (IIR)

filters [12, 36].

In many applications, IIR filters are not practical—only FIR filters can be used, and short FIR

filters are especially desirable from a computational perspective.

Fortunately, the redundancy of an oversampled filter bank affords us design flexibility. Sharif

investigated when a generic7 one-dimensional oversampled PR analysis filter bank admits a

synthesis filter bank with short FIR filters. He found that almost all sufficiently oversampled PR

analysis filter banks have such a synthesis filter bank, and obtained bounds on the minimum

synthesis filter length [37]. The bounds depend only on the number of channels, downsampling

factor, and analysis filter length, but not on the filter coefficients themselves.

We have a few options if a FIR synthesis filter bank is desired. The simplest solution is to trun-

cate the (IIR) minimum-norm synthesis filters to a particular length. Indeed, a well-conditioned

PR analysis filter bank has minimum-norm synthesis filters with coefficients that exhibit decay

exponentially with filter length, implying that the minimum-norm synthesis filter bank can be

well-approximated by FIR filters [38].

A second option is to use tools from algebraic geometry to find an FIR synthesis filter bank, if

one exists [39].

We adopt a third option: we incorporate the desire for an FIR synthesis filter bank directly

into the design problem. We add an additional set of FIR filters, denoted
{

gi
}Nc

i=1, to the design

parameters. The synthesis filters need not be the same length as the analysis filters. Our goal is

for the polyphase matrix associated with the synthesis filter bank, Ĝ(ω), to be a left inverse of the

analysis polyphase matrix. This condition is represented by the constraint

Ĝ(ω)Ĥ(ω) = I|M |. (1.28)

In practice, we solve an unconstrained problem using the quadratic penalty method: we penalize

the distance between Ĝ(ω)Ĥ(ω) and I|M | for each ω ∈Θ2
N using the Frobenius norm [40]. Our

7A “generic” filter bank is one that is drawn at random; i.e. not a pathological choice.
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modified design problem is given by

min
H ,G∈C

f (H ,D)+R(H)+λ ∑
ω∈Θ2

N

‖Ĝ(ω)Ĥ(ω)− I|M |‖2
F . (1.29)

We again use a first-order method, but now increase λ as a function of the iteration number so

as to ensure Ĝ(ω) is a left inverse of Ĥ(ω).

As before, our new regularizer is evaluated only over Θ2
N , not T2. For fixed, finite filter lengths,

the entries of Ĝ(ω)Ĥ(ω) are real trigonometric polynomials of bounded degree, and we can use

the bounds of Corollary 1.2 to either ensure the constraint (1.28) holds over T2 or to estimate

and bound the amount that the constraint has been violated.

1.6.5 Experiment: Filter Bank Design with FIR Synthesis Filters

We repeat the design experiment from Section 1.6.3 using the new objective function (1.29). As

before, we use 17 channels and take M = 2I2, leading to a roughly 4× oversampled filter bank.

We work with 11×11 filters. We used 5000 iterations of the Adam optimization algorithm with a

learning rate of 10−2, and set the parameter λ := log2(i ) at iteration i .

Figure 1.8 collects the design results. Figure 1.8a shows the 11×11 analysis filters embedded

into a larger 40× 40 region. This is done to facilitate comparison with the minimum-norm

synthesis filters, shown in Fig. 1.8b. The minimum-norm synthesis filters exhibit fast decay,

as expected for a well-conditioned filter bank. The designed FIR synthesis filters, the
{

gi
}Nc

i=1,

are shown in Fig. 1.8c. These filters have no discernible structure. However, we computed

‖Ĝ(ω)Ĥ(ω)− I|M |‖2
F < 10−7 for each ω ∈Θ2

128, this is a synthesis filter bank for Ĥ. Indeed, passing

the standard barbara test image through the pair of analysis and synthesis filter banks yielded a

reconstruction peak signal to noise ratio (PSNR) of more than 80 dB.

Figure 1.9 illustrates the coefficient decay properties of the minimum-norm synthesis filters.

We show the square root of the absolute value of the filter coefficients to compress the dynamic

range of the image. We see the expected exponential decay of filter coefficients associated with a

well-conditioned filter bank [38].

1.7 Conclusion

We have proposed a fast and simple method to estimate the extremal values of a multivariate

trigonometric polynomial directly from its samples. We have extended an existing upper bound

from univariate to multivariate polynomials, and developed a strengthened upper bound and
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(a) (b) (c)

Figure 1.8: Analysis and synthesis filters for filter bank designed in Section 1.6.5. (a) Designed
11×11 analysis filters embedded into 40×40 filter. (b) Minimum-norm synthesis filters,
obtained using (1.26). The filters exhibit fast coefficient decay; see Fig. 1.9. (c) Designed 16×16
FIR synthesis filters.

new lower bound for real trigonometric polynomials. The lower bound provides a new sufficient

condition to certify global positivity of a real multivariate trigonometric polynomial.

We applied these results to the design of multidimensional perfect reconstruction filter banks,

and demonstrated the construction of filter banks with both FIR and IIR synthesis filters. Future

work will apply these results to the design of data-adaptive sparsifying filterbanks.
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Figure 1.9: Square-root of absolute value of filter coefficients from one of the filters in Fig. 1.8a.
Left: Minimum-norm synthesis filter exhibits fast coefficient decay, can be approximated with
FIR filter. Right: FIR analysis filter.
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Chapter 2

Learning Filter Bank Sparsifying Transforms

2.1 Introduction

Countless problems, from statistical inference to geological exploration, can be stated as the

recovery of high-quality data from incomplete and/or corrupted linear measurements. Often,

recovery is possible only if a model of the desired signal is used to regularize the recovery

problem.

A powerful example of such a signal model is the sparse representation, wherein the signal of

interest admits a representation with few non-zero coefficients. Sparse representations have

traditionally been hand-designed for optimal properties on a mathematical signal class, such

as the coefficient decay properties of a cartoon-like signal under a curvelet representation [30].

Unfortunately, these signal classes do not include the complicated and textured signals common

in applications; further, it is difficult to design optimal representations for high-dimensional data.

In light of these challenges, methods to learn a sparse representation, either from representative

training data or directly from corrupted data, have become attractive.

We focus on a particular type of sparse representation, called transform sparsity, in which the

signal x ∈ RN satisfies W x = z +η. The matrix W ∈ RK×N is called a sparsifying transform and

earns its name as z ∈RK is sparse and ‖η‖2 is small [41]. Of course, a W that is uniformly zero

satisfies this definition but provides no insight into the transformed signal. Several algorithms

have been proposed to learn a sparsifying transform from data, and each must contend with this

type of degenerate solution. The most common approach is to ensure that W is left invertible,

so that W x is uniformly zero if and only if x is uniformly zero. Such a matrix is a frame for Rn .

In principle, we can learn a sparse representation for any data represented as a vector, in-

cluding data from genomic experiments or text documents, yet most research has focused on

learning models for spatio-temporal data such as images. With these signals it is common to

learn a model for smaller, possibly overlapping, blocks of the data called patches. We refer to this

type of model as a patch-based model, while we call a model learned directly at the image level

an image-based model. Patch-based models tend to have fewer parameters than an unstructured
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image-based model, leading to lower computational cost and reduced risk of overfitting. In

addition, an image contains many overlapping patches, and thus a model can be learned from a

single noisy image [42].

Patch-based models are not without drawbacks. Any patch-based W learned using the usual

frame constraints must have at least as many rows as there are elements in a patch, i.e. W

must be square or tall. This limits practical patch sizes as W must be small to benefit from a

patch-based model.

If our ultimate goal is image reconstruction, we must be mindful of the connection between

extracted patches and the original image. Requiring W to be a frame for patches ignores this

relationship and instead requires that each patch can be independently recovered. Yet, neighbor-

ing patches can be highly correlated—leading us to wonder if the patch-based frame condition

is too strict. This leads to the question at the heart of this chapter: Can we learn a sparsifying

transform that forms a frame for images, but not for patches, while retaining the computational

efficiency of a patch-based model?

In this chapter, we show that existing sparsifying transform learning algorithms can be viewed

as learning perfect reconstruction filter banks. This perspective leads to a new approach to

learn a sparsifying transform that forms a frame over the space of images, and is structured as

an undecimated, multidimensional filter bank. We call this structure a filter bank sparsifying

transform. We keep the efficiency of a patch-based model by parameterizing the filter bank in

terms of a small matrix W . In contrast to existing transform learning algorithms, our approach

can learn a transform corresponding to a tall, square, or fat W . Our learned model outperforms

earlier transform learning algorithms while maintaining low cost of learning the filter bank and

the processing of data by it. Although we restrict our attention to 2D images, our technique is

applicable to any data amenable to patch-based methods, such as 3D imaging data.

The rest of the chapter is organized as follows. In Section 2.2 we review previous work on

transform learning, analysis learning, and the relationship between patch-based and image-

based models. In Section 2.3 we develop the connection between perfect reconstruction filter

banks and patch-based transform learning algorithms. We propose our filter bank learning

algorithm in Section 2.4, describe denoising algorithms in Section 2.5, and present numerical

results in Section 2.6. In Section 2.7 we compare our learning framework to the current crop of

deep learning inspired approaches, and conclude in Section 2.8.
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2.2 Preliminaries

2.2.1 Notation

Matrices are written as capital letters, while general linear operators are denoted by script capital

letters such as A. Column vectors are written as lower-case letters. The i -th component of a

vector x is xi . The i , j -th element of a matrix A is Ai j . We write the j -th column of A as A:, j ,

and Ai ,: is the column vector corresponding to the transpose of the i -th row. The transpose

and Hermitian transpose are AT and A∗, respectively. Similarly, A∗ is the adjoint of the linear

operator A. The n ×n identity matrix is In . The n-dimensional vectors of ones and zeros

are written as 1n and 0n , respectively. For x ∈ RN , the diagonal matrix ddiag(x) ∈ RN×N has

the entries of x along its diagonal. The convolution of signals x and y is written x ∗ y . For

vectors x, y ∈ RN , the Euclidean inner product is 〈x, y〉 = ∑N
i=1 xi yi and the Euclidean norm is

written ‖x‖2. The vector space of matrices RM×N is equipped with the inner product 〈X ,Y 〉 =
trace

(
X T Y

)
; the Frobenius norm is written ‖X ‖F . When necessary, we indicate the vector space

on which the inner product is defined; e.g. 〈x, y〉RN .

2.2.2 Transform Sparsity

Recall that a signal x ∈RN satisfies the transform sparsity model if there is a matrix W ∈RK×N

such that W x = z +η, where z is sparse and ‖η‖2 is small. The matrix W is called a sparsifying

transform and the vector z is a transform sparse code. Given a signal x and sparsifying transform

W , the transform sparse coding problem is

argmin
z

1

2
‖W x − z‖2

2 +νψ(z) (2.1)

for a sparsity promoting functional ψ. Exact s-sparsity can be enforced by selecting ψ to be the

indicator function over the set of s-sparse vectors. We recognize (2.1) as the evaluation of the

proximal operator of ψ, defined as

proxψν (t ) = argmin
z

1

2
‖t − z‖2

2 +νψ(z),

at the point t =W x. Transform sparse coding is often cheap as the proximal mapping of many

sparsity penalties can be computed cheaply and in closed form. For instance, when ψ(z) = ‖z‖0,

then z = proxψν (W x) is computed by setting zi = [W x]i whenever |[W x]i |2 > ν2, and setting

zi = 0 otherwise. This operation is called hard thresholding.
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Several methods have been proposed to learn a sparsifying transform from data, including

algorithms to learn square transforms [41], orthonormal transforms [43], structured transforms

[44], and overcomplete transforms consisting of a stack of square transforms [45,46]. Degenerate

solutions are prevented by requiring the rows of the learned transform to constitute a well-

conditioned frame. In the square case, the transform learning problem can be written

min
W,Z

1

2
‖W X −Z‖2

F +ψ(Z )+ 1

2
‖W ‖2

F −µ log |detW |, (2.2)

where X is a matrix whose columns contain training signals and ψ is a sparsity-promoting

functional. The first term ensures that the transformed data, W X , is close to the matrix Z ,

while the second term ensures that Z is sparse. The remaining terms ensure that W is full

rank and well-conditioned [41]. Square sparsifying transforms have demonstrated excellent

performance in image denoising, magnetic resonance imaging, and computed tomographic

reconstruction [47–50].

2.2.3 Analysis Sparsity

Closely related to transform sparsity is the analysis model. A signal x ∈RN satisfies the analysis

model if there is a matrixΩ ∈RK×N , called an analysis operator, such thatΩx = z is sparse. The

analysis model follows by restricting η= 0K in the transform sparsity model.

A typical analysis operator learning algorithm is of the form

min
Ω

ψ(ΩX )+ J (Ω), (2.3)

where X are training signals,ψ is a sparsity promoting functional, and J is a regularizer to ensure

the learned Ω is informative. In the Analysis K-SVD algorithm, the rows of Ω are constrained

to have unit norm, but frame constraints are the most common [51]. Yaghoobi et al. observed

that learning an analysis operator with q > K rows while using a tight frame constraint resulted

in operators consisting of a full rank matrix appended with q −K uniformly zero rows. They

instead proposed a uniformly-normalized tight frame (UNTF) constraint, wherein the rows of Ω

have equal `2 norm and constitute a tight frame [52–54].

Hawe et al. utilized a similar set of constraints in their GeOmetric Analysis operator Learning

(GOAL) framework [55]. They constrained the learnedΩ to the set of full column rank matrices

with unit-norm rows and solved the optimization problem using a manifold descent algorithm.

Transform and analysis sparsity are closely linked. Indeed, using a variable splitting approach

(e.g. Z =ΩX ) to solve (2.3) leads to algorithms that are similar to transform learning algorithms
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[52–54]. The relationships between the transform model, analysis model, and noisy variations

of the analysis model have been explored [41]. We focus on the transform model because

the proximal interpretation of sparse coding fits nicely within a filter bank interpretation (see

Section 2.3.8).

2.2.4 From Patch-Based to Image-Based Models

A link between patch-based and image-based models can be made using the Field of Experts

(FoE) model proposed by Roth and Black [56]. They modeled the prior probability of an image as

a Markov Random Field (MRF) with overlapping “cliques” of pixels that serve as image patches.

Using the so-called product of experts framework, a model for the prior probability of an image

patch is expressed as a sparsity-inducing potential function applied to the inner products

between multiple “filters” and the image patch. A prior for the entire image is formed by taking

the product of the prior for each patch and normalizing.

Continuing in this direction, Chen et al. proposed a method to learn an image-based analysis

operator using the FoE framework using a bi-level optimization formulation [57]. This approach

was recently extended into an iterated filter bank structure called a Trainable Nonlinear Reaction

Diffusion (TNRD) network [58]. Each stage of the TNRD network consists of a set of analysis

filters, a channelwise nonlinearity, the adjoint filters, and a direct feed-forward path. The filters,

nonlinearity, and feed-forward mixing weights are trained in a supervised fashion. The TNRD

approach has demonstrated state of the art performance on image denoising tasks.

The TNRD and FoE algorithms are supervised and use the filter bank structure only as a

computational tool. In contrast, our approach is unsupervised and uses the theory of perfect

reconstruction filter banks to regularize the learning problem.

Cai et al. developed an analysis operator learning method based on a filter bank interpretation

of the operator [59]. The operator can be thought to act on images, rather than patches. Their

approach is fundamentally the same as learning a square, orthonormal, patch-based sparsifying

transform [43]. In contrast, our approach does not have these restrictions: we learn a filter bank

that is a frame for images, and corresponds to a tall, fat, or square patch-based transform.

These methods fall under the analysis paradigm. In Section 2.3 we show that patch-based

analysis models naturally induce a image-based model. In contrast, synthesis patch-based

models do not directly lead to an image based model. Figueiredo studied this dichotomy

between patch-based synthesis and analysis priors and proposed a method for image-based

denoising using patch-based synthesis methods [60].

Image-based modeling using synthesis sparsity can be implemented in an entirely different
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manner by imposing shift-invariance properties on the synthesis dictionary [61–64]. Briefly, the

goal of Convolutional Dictionary Learning (CDL) is to find a set of filters, {di }Nc
i=1, such that the

training signals can be modeled as y =∑Nc
i=1 di ∗ai , where the ai are sparse. Here, y is an image,

not a patch. The filters di are required to have compact support so as to limit the number of free

parameters in the learning problem. The desired convolutional structure can be imposed by

writing the convolution in the frequency domain, but care must be taken to ensure that the di

remain compactly supported. For further details, see the recent reviews [63, 64].

Finally, Muramatsu et al. proposed an approach for the design of multidimensional, multirate,

nonseparable, overlapped linear phase perfect reconstruction synthesis filter banks [65–67]. We

will refer to a dictionary designed in this manner as a (synthesis) Non-Separable Oversampled

Lapped Transforms (NSOLT). Despite using the synthesis sparsity model, the NSOLT design

problem shares more in common with our proposed filter bank sparsifying transform learning

than the usual CDL problem. We further discuss the NSOLT structure in Section 2.3.4 after the

language of polyphase matrices has been established. Differences between NSOLT and our

proposed method are discussed in Section 2.4.4.

In the next section, we show that patch-based analysis and transform models, in contrast to

synthesis models, are naturally endowed with a convolutional structure.

2.3 From Patch-Based Transforms to Filter Banks

In this section, we illustrate the connections between patch-based sparsifying transforms and

multirate finite impulse response (FIR) filter banks. The link between patch-based analysis

methods and convolution has been previously established, but used only as a computational

tool [56, 57, 59, 68, 69]. Our goal is to illustrate how and when the boundary conditions, patch

stride, and a patch-based sparsifying transform combine to form a frame over the space of

images.

2.3.1 Frames, Patches, and Images

A set of vectors {ωi }M
i=1 in Rm is a frame for Rm if there exists 0 < A ≤ B <∞ such that

A‖y‖2
2 ≤

M∑
j=1

∣∣〈y,ωi 〉
∣∣2 ≤ B‖y‖2

2
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for all y ∈Rm [28]. Equivalently, the matrix Ω ∈RM×m , with i -th row given by ωi , is left invertible.

The frame bounds A and B correspond to the smallest and largest eigenvalues ofΩTΩ, respec-

tively. The frame is tight if A = B , and in this case ΩTΩ = AIn . The condition number of the

frame is the ratio of the frame bounds, B/A. The ωi are called frame vectors, and the matrixΩ

implements a frame expansion.

Consider a patch-based model using K ×K (vectorized) patches from an N ×N image. We

call RK 2
the space of patches and RN×N the space of images. In this setting, transform learning

algorithms find a W ∈RNc×K 2
with rows that form a frame for the space of patches [41, 43–46].

We can extend this W to a frame over the space of images as follows. Suppose the rows of

W form a frame with frame bounds 0 < A ≤ B . Let R j :RN×N →RK 2
be the linear operator that

extracts and vectorizes the j -th patch from the image, and suppose there are M such patches.

So long as each pixel in the image is contained in at least one patch, we have

‖x‖2
F ≤

M∑
j=1

‖R j x‖2
2 ≤ M‖x‖2

F

for all x ∈RN×N . Letting w i =Wi ,: denote the i -th row of W , we have for all x ∈RN×N

M∑
j=1

Nc∑
i=1

∣∣∣〈w i ,R j x〉
∣∣∣2 ≥

M∑
j=1

A‖R j x‖2
2 ≥ A‖x‖2

F ,

M∑
j=1

Nc∑
i=1

∣∣∣〈w i ,R j x〉
∣∣∣2 ≤ B

M∑
j=1

‖R j x‖2
2 ≤ MB‖x‖2

F .

Because 〈w i ,R j x〉
RK 2 = 〈R∗

j w i , x〉RN×N , it follows that the collection
{
R∗

j w i
}Nc ,M

i=1, j=1
forms a

frame for the space of images with bounds 0 < A ≤ MB . Thus, every frame over the spaces of

patches corresponds to a frame over the space of images. Next, our goal is to determine when

the patch extraction operators and the transform, W , form a frame for the space of images but

not the space of patches.

2.3.2 Patch-Based Sparsifying Transforms as Filter Banks

We consider two ways to represent applying the transform W ∈RNc×K 2
to the image x ∈RN×N .

The usual approach is to form the patch matrix X ∈RK 2×M 2
with j -th column R j x, as illustrated

in Fig. 2.1a. We call the spacing between adjacent extracted patches the stride and denote it by s.

The extracted patches overlap when s < K and are disjoint otherwise. We assume the stride is the

same in both horizontal and vertical directions and evenly divides N . The number of patches,
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Figure 2.1: (a) Construction of the patch matrix X ∈R4×4 from 2×2 patches of x ∈R3×4 using
periodic boundary conditions and a stride of 2. Note that the vectorized patch is “flipped” from
the natural ordering; i.e., the top-left pixel in the patch is the final element of the vector. (b)
Obtaining the impulse response hi from w i .

M 2, depends on the boundary conditions and patch stride; e.g. M 2 = N 2/s2 if periodic boundary

conditions are used. The patch matrix for the transformed image is W X ∈RNc×M 2
.

Our second approach eliminates patches and their vectorization by viewing W X as the output

of a multirate filter bank with 2D FIR filters and input x. Let

H :RN×N →RNc ⊗RM×M

be this filter bank operator, which transforms an N ×N image into a three-dimensional array

formed as a stack of Nc output images, each of size M ×M .

We build H from a collection of downsampled convolution operators. For i = 1,2, . . . Nc , we

define the i -th channel operator Hi :RN×N →RM×M such that [Hi x]a,b = [hi ∗x]sa,sb . The stride

s dictates the downsampling level, and the patch extraction boundary conditions determine the

convolution boundary conditions; in particular, if periodic boundary conditions are used, then

Hi implements cyclic convolution. The impulse response hi is obtained from the i -th row of W

as R∗
1 w i . This matrix consists of a K ×K submatrix embedded into the upper-left corner of an

N ×N matrix of zeros as illustrated in Fig. 2.1b. 1

Finally, we construct H by “stacking” the channel operators: H = ∑Nc
i=1 ei ⊗Hi , where ei is

the i -th standard basis vector in RNc and ⊗ denotes the Kronecker (or tensor) product. With

this definition, y =Hx =∑
ei ⊗Hi x =∑

ei ⊗ yi . The filter bank structure is illustrated in Fig. 2.2.

We refer to H constructed in this form as a filter bank sparsifying transform. The following

1In the case of cyclic convolution, R∗
1 w i is exactly the impulse response of the i -th channel, but only the non-

zero portion of R∗
1 w i is the impulse response when using linear convolution. In a slight abuse of terminology, we

call R∗
1 w i the impulse response in both instances.
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...
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R∗
1 w Nc ↓sI

HNc x

H

Figure 2.2: Analysis filter bank H generated by a sparsifying transform W and stride length s.

proposition links W X and Hx.

Proposition 2.1. Let X ∈RK 2×M 2
be a patch matrix for image X , and let W ∈RNc×K 2

. The rows of

W X can obtained by passing x through the Nc channel, 2D FIR multirate analysis filter bank H
and vectorizing the channel outputs.

A proof for 1D signals is given in Appendix A.1. The proof for 2D is similar, using vector indices.

Proposition 2.1 connects the local, patch-extraction process and the matrix W to a filter bank

operator that acts on images. Unlike convolutional synthesis models, patch-based analysis

operators naturally have a convolutional structure.

Next, we investigate connections between the frame properties of H and the combination

of W and the patch extraction scheme. Our primary tool is the polyphase representation of

filter banks [7, 8]. Consider the image x as a 2D sequence x[n1,n2] for 0 ≤ n1,n2 ≤ N −1. The

z-transform of the (a,b)-th polyphase component of x is z-transform X̂a,b(z) =∑
n1,n2 x[n1 · s +

a,n2 · s +b]z−n1
1 z−n2

2 of the shifted and downsampled sequence, where z = [z1, z2] ∈C2 and 0 ≤
a,b ≤ s−1. The polyphase representation for the sequence x is formed by stacking the polyphase

components in lexicographical order into a single X̂ (z) = [
X0,0(z), . . . , Xs−1,s−1(z)

]T ∈Cs2
.

The filter bank H has a polyphase matrix Ĥ(z) ∈ CN c×s2
formed by stacking the polyphase

representations of each channel into a row, and stacking the Nc rows. Explicitly,

Ĥ(z) =


Ĥ 0

0,0(z) Ĥ 0
0,1(z) . . . Ĥ 0

s,s(z)

Ĥ 1
0,0(z) Ĥ 1

0,1(z) . . . Ĥ 1
s,s(z)

...
...

. . .
...

Ĥ Nc−1
0,0 (z) Ĥ Nc−1

0,1 (z) . . . Ĥ Nc−1
s,s (z)

 ,

where Ĥ i
a,b(z) is the (a,b)-th polyphase component of the i -th filter in H. The entries of Ĥ (z) are,

in general, bi-variate polynomials in z = [z1, z2]. The output of the filter bank, y =Hx, can be
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written in the polyphase domain as Ŷ (z) = Ĥ (z)X̂ (z), where the i -th element of the vector Ŷ (z) is

the z-transform of the i -th output channel.

Many important properties of H are tied to its polyphase matrix. An analysis filter bank H is

said to be perfect reconstruction (PR) if there is a (synthesis) filter bank G such that GH= I , or in

the polyphase domain Ĝ(z)Ĥ(z) = I . A filter bank is PR if and only if Ĥ(z) is full column rank on

the unit circle [12]. A filter bank is said to be orthonormal if H∗H= I , that is, the filter bank with

analysis section H and synthesis section H∗ is an identity mapping on RN×N . In the polyphase

domain, this corresponds to

Ĥ∗(z−1)Ĥ(z) = I , (2.4)

where the star superscript denotes Hermitian transpose and z−1 = [z−1
1 , z−1

2 ] [7, 29]. A matrix

satisfying (2.4) is paraunitary, and Ĥ∗(z−1) is the paraconjugate of Ĥ(z).

A PR filter bank implements a frame expansion over the space of images, and an orthonormal

filter bank implements a tight frame expansion over the same space [27, 70]. The frame vectors

are the collection of the shifts of the impulse responses of each channel, and are precisely the

collection
{
R∗

j w i
}

discussed in Section 2.3.1. The link between patch-based transforms and filter

banks does not directly lead to new transform learning algorithms, as the characterization and

construction of multidimensional PR filter banks is hard due to the lack of a multidimensional

spectral factorization theorem [8–11].

Next, we study we illustrate the connections between patch-based sparsifying transforms and

perfect reconstruction filter banks as a function of the stride length. We show that in certain

cases the PR condition takes on a simple form.

2.3.3 Perfect Recovery: Non-Overlapping Patches

Consider s = K , so that the extracted patches do not overlap. Applying the sparsifying transform

W to non-overlapping patches is an instance of a block transform [71]. Block transforms are

found throughout in signal processing applications; for example, the JPEG compression algo-

rithm. Block transforms are viewed as a decimated FIR filter bank with uniform downsampling

by K in each dimension, consistent with Proposition 2.1.

It is informative to view patch-based transform learning algorithms through the lens of block

transformations. Because we downsample by K in each dimension, and the filters are of size

K ×K , the polyphase matrix Ĥ(z) is constant in (independent of) z and is equal to W . This gives

a direct connection between the PR properties of H, which acts on images, and W , which acts

on patches. Patch-based transform learning algorithms enforce either invertibility of W (in

the square case) or invertibility of W T W (in the overcomplete case), and thus H is PR. If W is
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orthonormal, so too is H.

2.3.4 Perfect Recovery: Partially Overlapping Patches

Next, consider patches extracted using a stride 1 < s < K . While W X is no longer a block

transformation, it is related to a lapped transformation [71]. Lapped transforms aim to reduce

artifacts that arise from processing each block (patch) independently by allowing for overlap

between neighboring blocks. Many lapped transforms, such as the lapped orthogonal transform,

the extended lapped transform, and the generalized lapped orthogonal transform [72], enjoy

both the PR property and efficient implementation.

Lapped transforms were designed for signal coding applications. The number of channels in

the filter bank is decreased as the degree of overlap increases, so that the number of transform

coefficients using a lapped transform is the same as using a non-lapped transform. While

redundancy may be undesirable in certain coding applications, it aids the solution of inverse

problems by allowing for richer and more robust signal models [73]. We allow the stride length

to decrease while keeping the number of channels fixed, and interpret W X as a “generalized”

lapped transform. When the stride is less than K , W no longer corresponds to the polyphase

matrix of the filter bank H; instead, the polyphase matrix Ĥ(z) will contain high-order, 2D

polynomials. While the filter bank may still be PR, the PR property is not directly implied by

invertibility of W .

We can learn a PR generalized lapped transform by enforcing the more restrictive PR condi-

tions for non-overlapping patches, that is, invertibilty of W T W . When s = 1, this technique is

equivalent to cycle spinning, which was developed to add shift-invariance to decimated wavelet

transforms [74]. When 1 < s < K , we can interpret Hx as cycle spinning without all possible

shifts.

Muramatsu et al. proposed a different method to learn a PR synthesis non-separable over-

sampled lapped transform (NSOLT) [65–67]. The filter bank is designed such that each channel

consists of linear phase filters; thus each channel consists of either symmetric or anti-symmetric

filters.

Further, the filter bank is parameterized by a certain lattice structure that implicitly ensures

the NSOLT implements a tight-frame expansion and is thus PR. This lattice structure leads to

a particular factorization of the (paraunitary) polyphase matrix; in two dimensions, we have

Ĥ(z) = G1(z1)G2(z2)H0, where Gi (zi ) is a univariate polynomial matrix of specified order and

H0 is constant in z. Each of these matrices is further parameterized to lead to a tractable

optimization problem; see [67] for details.
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Patch-based sparsifying transforms and NSOLTs are both parameterized in terms of a polyphase

matrix, and thus lead to filter banks with compactly supported filters. This is in stark contrast

to the usual convolutional dictionary learning problems, where variable splitting methods are

often used to obtain both a convolutional structure and compactly supported filters.

2.3.5 Perfect Recovery: Maximally Overlapping Patches

Finally, consider extracting maximally overlapping patches by setting s = 1. The resulting

filter bank H is undecimated and the Gram operator H∗H is shift invariant. As there is no

downsampling, the polyphase representations of x and y are the z-transforms of the sequences

x and y . The polyphase matrix of H is the column vector Ĥ(z) = [Ĥ1(z), . . . ĤNc (z)]T where Ĥi (z)

is the z-transform of hi =R∗
1 w i .

An undecimated linear convolution filter bank is PR if and only if its filters have no common

zeros on the unit circle; i.e., each frequency must pass through at least one channel of the filter

bank [12]. When evaluated on the unit circle the z-transform becomes the Discrete Time Fourier

Transform (DTFT), defined for h ∈RK×K as

Ĥ(ω) =
K−1∑
n1=0

K−1∑
n2=0

h[n1,n2]e− jω1n1 e− jω2n2 ,

whereω= [ω1,ω2] with ω1,ω2 ∈ [0,2π). Now, the polyphase matrix is full rank on the unit circle

if and only if

ϕ(ω),
Nc∑

i=1

∣∣Ĥi (ω)
∣∣2 > 0 ∀w1, w2 ∈ [0,2π), (2.5)

where ϕ(ω) is the DTFT of the impulse response of H∗H and is an even, real, non-negative, 2D

trigonometric polynomial with maximum component order K −1. Explicitly,

ϕ(ω) =
K−1∑

n1=−K+1

K−1∑
n2=−K+1

h̃[n1,n2]cos(ω1n1)cos(ω2n2),

where the impulse response of h̃ is H∗H is the sum of the channel-wise autocorrelations; that is,

h̃[n1,n2] =
Nc∑

i=1

∞∑
l1=−∞

∞∑
l2=−∞

hi [l1, l2]hi [l1 −n1, l2 −n2].

Direct verification of the PR condition (2.5) is NP-hard for K ≥ 2, underlining the difficulty

of multidimensional filter bank design [3, 4]. We sidestep the difficulty of working with (2.5)

by developing the PR condition when image patches are extracted using periodic boundary
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conditions. The resulting filter bank implements cyclic convolution. Afterwards, we show that

under certain conditions, the PR property of a cyclic convolution filter bank implies the PR

property of a linear convolution filter bank constructed from the same filters.

2.3.6 Periodic Boundary Conditions / Cyclic Convolution

If image patches are extracted using periodic boundary conditions, the channel operators

Hi : RN×N → RN×N implement cyclic convolution and are diagonalized by the 2D Discrete

Fourier Transform (DFT). Let F be the orthonormal 2D-DFT operator such that

(Fhi )[k] = N−1
K−1∑
n1=0

K−1∑
n2=0

hi [n1,n2]e− j
2πk1n1

N e− j
2πk2n2

N

for k = [k1,k2] and 0 ≤ k1,k2 < N ; that is, the length N 2D-DFT of the filter hi padded with N −K

zeros in each dimension. Define Di ∈CN×N →CN×N as the operator that multiplies pointwise

by Fhi : for u ∈ CN×N , we have (Di u)(k) = (Fhi )(k) ·u(k). The cyclic convolution operator Hi

has eigenvalue decomposition F∗DiF . We can use this channel-wise decomposition to find the

spectrum of H∗H.

Lemma 2.1. The N 2 eigenvalues of the undecimated cyclic analysis-synthesis filter bank H∗H
are given by

∑Nc
i=1 |(Fhi )[k]|2 for k = [k1,k2] and 0 ≤ k1,k2 < N .

Proof. We have

H∗H=
Nc∑

i=1
(ei ⊗Hi )∗(ei ⊗Hi ) =

Nc∑
i=1

H∗
i Hi

=F∗
(

Nc∑
i=1

D∗
i DiF

)
=F∗DF ,

where (Du)[k] =∑Nc
i=1 |(Fhi )[k]|2 ·u[k].

The quantity |(Fhi )[k|]2 is the squared magnitude response of the i -th filter evaluated at the

DFT frequency k, and the eigenvalues of H∗H are the sum over the Nc channels of these squared

magnitude responses. As the DFT consists of samples of the DTFT, by Lemma 2.1 and (2.5), the

eigenvalues of H∗H can be seen to be samples of the trigonometric polynomial ϕ(ω) over the

setΘN =
{(

2πk1
N , 2πk2

N

)
: 0 ≤ k1,k2 < N

}
.

Recall that H implements a frame expansion only if the smallest eigenvalue of H∗H is strictly

positive [28]. We have the following PR condition for cyclic convolution filter banks.
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Corollary 2.2. The undecimated cyclic filter bank H implements a frame expansion for RN×N if

and only if
∑Nc

i=1 |(Fhi )[k]|2 > 0 for 0 ≤ k1,k2 < N . If H implements a frame expansion, the upper

and lower frame bounds are mink
∑Nc

i=1 |(Fhi )[k]|2 and maxk
∑Nc

i=1 |(Fhi )[k]|2.

Whereas the PR condition for a linear convolution filter bank must hold over the unit circle,

the PR condition for cyclic convolution filter bank involves only the N 2 DFT frequencies.

The factorization H∗H=F∗DF also provides an easy way to compute the (minimum norm)

synthesis filter bank H† that satisfies H†H= I. We have H† = (H∗H)−1H∗, and the necessary

inverse is given by (H∗H)−1 =F∗D−1F .

2.3.7 Return to Linear Convolution

We now want to link the PR conditions for cyclic and linear convolution filter banks. The

inequalities of Chapter 1 provide the tool we need. Recall that we showed that the minimum

value of a real, multivariate trigonometric polynomial can be lower bounded given sufficiently

many uniformly spaced samples of the polynomial, provided that the polynomial does not vary

too much over the sampling points.

With ϕ(ω) is defined by (2.5), then κN is the frame condition number of a cyclic convolution

filter bank operating on N ×N images.

Corollary 1.3 is the link between PR properties of cyclic and linear convolution filter banks we

desired, and we have the following PR condition for linear convolution filter banks.

Corollary 2.3. Let HC be an undecimated cyclic convolution filter bank with K ×K filters that

operates on N ×N images, with frame condition number κN . Let H be a linear convolution filter

bank constructed from the same filters as HC . Then H is PR if κN ≤ N
K−1 −1.

Proof. This follows immediately from Corollary 1.3. Set d = 2 and n = K −1 in (1.14).

Corollary 2.3 states that well-conditioned PR cyclic convolution filter banks, with filters that

are short relative to image size N , are also PR linear convolution filter banks.

The PR conditions of Corollaries 2.2 and 2.3 are significantly more general than the patch-

based PR conditions. For example, W ∈ RNc×K 2
can be left-invertible only if Nc ≥ K 2. The PR

conditions of Corollaries 2.2 and 2.3 have no such requirements; indeed, a single channel “filter

bank” can be PR. Our PR conditions are easy to check, requiring only the 2D DFT of Nc small

filters.
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Figure 2.3: Analysis-synthesis filter bank generated by sparsifying transform W and separable
sparsity penalty ψ. Here, hi =R∗

1 w i , the impulse response h̄i is the flipped version of hi , and g
is the impulse response for the filter (H∗H)−1.

2.3.8 The Role of Sparsification

We have interpreted the transformed image patches W X as the output of a filter bank. The

sparse matrix Z in (2.1) can be viewed as passing the filter bank output through a nonlinear

function implementing proxψν (W X ). This interpretation is particularly appealing whenever

ψ is coordinate-wise separable, meaning ψ(z) =∑
i ψ(zi ). Then the transform sparse code for

the j -th channel depends only on the j -th filtered channel and is given by proxψν
(
H j x

)
. The

resulting nonlinear analysis-synthesis filter bank is illustrated in Fig. 2.3. If the input signal x is

indeed perfectly sparsifiable by the filter bank (i.e., Hx = proxψν (Hx)), then the output of the

analysis stage is invariant to the application of the nonlinearity and the entire system functions

as an identity operator.

We can replace the usual soft or hard thresholding functions by exotic nonlinearities, such

as the firm thresholding function [75] or generalized p-shrinkage functions [76]. These nonlin-

earities have led to marginally improved performance in image denoising [57] and compressed

sensing [77]. Alternatively, we can abandon the interpretation of the nonlinearity as a proxi-

mal operator and instead learn a custom nonlinearity for each channel, either in a supervised

setting [58, 78] or in an unsupervised setting with a Gaussian noise model [79].

Filter bank sparsifying transforms share many similarities with convolutional autoencoder

(CAE) [80]. Both consist of a filter bank followed by a channelwise nonlinearity. However, in

the case of a CAE, the “decoder” H† is typically discarded and the output of the “encoder”,

proxψν (Hx), is passed into additional layers for further processing.
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2.3.9 Principal Component Filter Banks

The previous sections have shown that transform learning can be viewed as adapting a filter

bank to sparsify our data. A similar problem is the design of principal component filter banks

(PCFB). Let C denote a set of orthonormal filter banks, such as Nc -channel filter banks with

downsampling matrix M , and let x be a given input signal. A filter bank HP is said to be a PCFB

for the class C and the input x if, for any H ∈C and all m = 1, . . . , Nc ,

m∑
i=1

a2
i ≥

m∑
i=1

b2
i (2.6)

where ai and bi are the `2 norms of the i -th channel of HP x and Hx, respectively [81]. A PCFB

provides compaction of the output energy into lower-indexed channels, and thus minimal `2

error when reconstructing a signal from m < M filtered components. The existence and design

of PCFBs in 1D is well studied [82]. However, the design of multidimensional FIR PCFBs is again

made difficult due to the lack of a multidimensional spectral factorization theorem, although

suboptimal algorithms exist [83, 84].

There are superficial similarities between the design of PCFBs and transform learning, es-

pecially when W is restricted to be square and orthonormal. The sparsity of the transformed

signal implies a form of energy compaction. However, we impose no constraints on location

of non-zero coefficients and thus the learned transform is unlikely to satisfy the majorization

property (2.6). Further, an orthogonal W matrix induces an orthogonal filter bank only if non-

overlapping patches are used. The PCFB for such a block transformation is known to be the

Karhunen-Loeve transformation of the data [85], from which the learned transform can differ

substantially [41]. Conversely, the energy majorization property (2.6) does not imply sparsity of

the channel outputs, and a PCFB will not, in general, be a filter bank sparsifying transform.

2.4 Learning a Sparsifying Filter Bank

We briefly review methods to incorporate an adaptive sparsity model in the solution of inverse

problems. We consider two paradigms: in the “universal” paradigm, our sparsifying transform H
is learned off-line over a set of training data. In the “adaptive” paradigm, the transform is learned

during the solution of the inverse problem, typically by alternating between a signal recovery

phase and a transform update phase. For synthesis dictionary learning it has been reported that

the adaptive method typically works better for lower noise levels while the universal method

shines in high noise [42]. In both paradigms, we learn sparsifying transform by minimizing a
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function that is designed to encourage “good” transforms.

2.4.1 Problem Formulation

We now develop a method to learn an undecimated filter bank sparsifying transform that takes

advantage of the flexibility granted by the PR conditions of Corollaries 2.2 and 2.3. Let x be

a training signal, possibly drawn from a set of training signals. We wish to learn a filter bank

sparsifying transform that satisfies four properties:

(D1) Hx should be sparse

(D2) H should be left invertible and well conditioned

(D3) H should contain no duplicated or uniformly zero filters

(D4) H should have few degrees of freedom

Properties (D1) – (D3) ensure our transform is “good” in that it sparsifies the training data, is a

well-behaved frame over the space of images, and is not overly redundant. Property (D4) ensures

good generalization properties under the universal paradigm and prevents overfitting under the

adaptive paradigm.

As with previous transform learning approaches, we satisfy (D1) by minimizing 1
2‖Hx − z‖2

2 +
νψ(z) where ψ is a sparsity-promoting functional. The first of term is called the sparsification

error, as it measures the distance between Hx and its sparsified version, z.

We satisfy (D4) by writing the action of the sparsifying transform on the image as W X , where

W ∈RNc×K 2
and X is formed by extracting and vectorizing K ×K patches with unit stride. This

parameterization ensures that we have the desired filter bank structure, and that the learned

filters are compactly supported and have only Nc K 2 free parameters.

This is a key difference between convolutional analysis-based methods, such as ours, and

synthesis-based convolutional dictionary learning; learning a convolutional dictionary requires

careful parameterization to get both the desired convolutional structure and filters of compact

support.

We emphasize that W X and Hx are equivalent modulo a reshaping operation. Both expres-

sions should be thought of independently of the computational tool used to calculate the results;

W X can be implemented using Fourier-based fast convolution algorithms, just as Hx can be

implemented by dense matrix-matrix multiplication. We further elaborate on this point in

Section 2.4.3. We choose to write the filter bank application as W X so that we can express the
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sparsification error directly in terms of W ; in particular, we have

f (W, Z , x) = 1

2
‖W X −Z‖2

F , (2.7)

where the j -th row of Z ∈RNc×N 2
is the sparse code for the j -th channel output. We can learn a

transform over several images by summing the sparsification error for each image.

We promote transforms that satisfy (D2) through the penalty 1
2

∑Nc
j=1‖W j ,:‖2

2− logdetH∗H. The

log determinant term ensures that no eigenvalues of H∗H become zero, while the `2 norm term

ensures that the filters do not grow too large. This penalty can be written as
∑N 2

j=1λi − logλi ,

where the λi are the eigenvalues of H∗H as given by Lemma 2.1. Our proposed penalty serves

the role of the final two terms of the patch-based objective (2.2). The key difference is that the

patch-based regularizer acts on the singular values of W , while the proposed regularizer acts on

the singular values of H.

To satisfy (D4) we write the eigenvalues λi in terms of the matrix W . Let F ∈CN 2×N 2
denote the

matrix that computes the N ×N orthonormal 2D-DFT for a vectorized signal, and let F̄ ∈CN 2×K 2

represent the N ×N 2D-DFT of a zero-padded and vectorized K ×K signal. The i -th column of

F̄W T contains the (vectorized) 2D-DFT of the i -th filter. Then λi =∑Nc
j=1

∣∣F̄W T
∣∣2
i , j , and

logdetH∗H=
N 2

F∑
i=1

log

(
Nc∑
j=1

∣∣F̄W T
∣∣
i , j

)
,

where the absolute value and squaring operations are taken pointwise. We can reduce the

computational and memory burden of the algorithm by using smaller NF ×NF DFTs, provided

that Corollary 2.3 implies the corresponding linear convolution filter bank is PR. We take NF = 4K ,

which is suitable for filter banks with condition number less than 3.

Similar to earlier work on analysis operator learning [52–54], we found that our tight frame

penalty often resulted in transforms with many uniformly zero filters. We prevent zero-norm

filters by adding the log-barrier penalty
∑Nc

j=1− log
(‖W j ,:‖2

2

)
. The combined regularizer is written

as

J1(W ) = 1

2

Nc∑
i=1

‖Wi ,:‖2
2 −

N 2
F∑

i=1
log

(
Nc∑
j=1

∣∣F̄W T
∣∣2
i , j

)
−

Nc∑
i=1

log
(‖Wi ,:‖2

2

)
. (2.8)

The following proposition (proved in Appendix A.2) indicates that J1 promotes filter bank trans-

forms that satisfy (D2).

Proposition 2.2. Let W ] be a minimizer of J1, and let H be the undecimated cyclic convolution
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filter bank generated by the rows of W ]. Then H implements a uniformly normalized tight frame

expansion over the space of images, with filter squared norms equal to 2(1+N 2
F /Nc ) and frame

constant 2(1+Nc /N 2
F ).

Finally, we would like to discourage learning copies of the same filter. To that end, we define

the coherence between rows i and j of W as

Γi , j (W ),
〈Wi ,:,W j ,:〉

‖Wi ,:‖2‖W j ,:‖2
.

One option is to apply a log barrier to the squared coherence between each pair of filters [55]:

J2(W ) = ∑
1≤i< j≤Nc

− log
(
1− (

Γi , j (W )
)2

)
. (2.9)

This penalty works well whenever the filters have small support (K ≤ 8). For larger filters, we

observed the algorithm often learned filters with disjoint support that are shifted versions of one

another. These filters do not cause a large value in (2.9), yet provide no advantage over a single

filter. We modify our coherence penalty to discourage filters that differ by only a linear phase

term by applying (2.9) to the squared magnitude responses of our filters. This coherence penalty

naturally promotes zero-mean filters, as the coherence between two non-zero-mean filters can

be reduced simply by removing their mean.

Our learning problem is written as

min
W,Z

f (W, Z , x)+µJ1(W )+λJ2 (W )+νψ(Z ). (2.10)

The scalar µ> 0 controls the strength of the UNTF penalty and should be large enough that the

learned filter bank is well conditioned, so that approximating the eigenvalues using NF ×NF

DFTs remains valid. The non-negative scalar parameters λ and ν control the emphasis given to

the coherence and sparsity penalties, respectively.

2.4.2 Optimization Algorithm

We use an alternating minimization algorithm to solve (2.10). In the sparse coding step, we fix

W and solve (2.10) for Z . In the second stage, called the transform update step, we update our

transform W by minimizing (2.10) with fixed Z . We use superscripts to indicate iteration number,

and we take H(k) to mean the filter bank generated using filters contained in the rows of W (k).
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The sparse coding step reduces to

Z (k+1) = argmin
Z

1

2
‖W (k)X −Z‖2

F +νψ(Z )

with solution Z (k+1) = proxψν
(
H(k)x

)
. Next, with Z (k+1) fixed, we update W by solving

W (k+1) = argmin
W

f (W, Z (k+1), x)+µJ1(W )+λJ2 (W ) . (2.11)

Unlike the square, patch-based case, we do not have a closed-form solution for (2.11) and we

must resort to an iterative method. The limited-memory BFGS (L-BFGS) algorithm works well in

practice. The necessary gradients are

∇W f (W, Z , x) = 2W X X T −2X Z T , (2.12)

∇W logdetH∗H= 2W F̄∗ ddiag
(∣∣F̄W T

∣∣2
1Nc

)−1
F̄, (2.13)

∂

Wr,s

Nc∑
i=1

log
(‖Wi ,:‖2

2

)= 2Wr,s

‖Wr,:‖2
2

,

∂J2(W )

∂Wr,s
=

Nc∑
i=1,i 6=r

Wi ,s[W W T ]i ,r −Wr,s[W W T ]2
i ,r ‖Wr,:‖−2

2

‖Wi ,:‖2
2 · ‖Wr,:‖2

2 − [W W T ]2
i ,r

.

2.4.3 Computational Considerations

The primary bottleneck in using L-BFGS to solve (2.11) is the line search step, which requires

multiple evaluations of the objective function (2.10) with fixed Z . The cost of this computation

is dominated by evaluation of (2.7). With X and Z fixed, we precompute and store the small

matrices G = X X T and Y = X Z T . The sparsification residual is evaluated as

trace
(
W T W G

)−2 · trace(W Y )+‖Z‖2
F

and requires only small matrix-matrix products.

In the patch-based case, evaluating W X using dense matrix multiplication requires

O(Nc K 2N 2) floating point operations (FLOPS). The filter bank structure of H naturally leads to

efficient calculation of Hx through the use of Fourier-based convolution methods. For simplicity,

we will restrict our attention to radix-2 FFT algorithms and assume that both K and N are powers

of 2.

The usual Fourier-based circular convolution methods require adding zeros until both signals

are of the same size. In our case, we must extend each row of W to be of length N . Passing the
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Figure 2.4: Number of multiplications needed to apply a square filter bank (Nc = K 2) to a
512×512 image using Fourier and patch-based methods.

input signal through a single filter will require O(Nc N 2 log N ) FLOPS, representing a K 2/log(N )

reduction over the patch-based case. For the typical sizes of N = 512 and K = 8, this is roughly a

factor of 7. Importantly, using convolution to evaluate Hx does not require explicitly forming

or storing the matrix X . The number of multiplications needed to apply the analysis filter bank

using patch-based and Fourier approaches is plotted in Fig. 2.4

We also use convolution to accelerate calculation of (2.12). The first term, X X T , is just the

circular correlation of x evaluated at the first K shifts in each direction and can be calculated

using FFTs at a cost of O(N 2 log(N )). In contrast, evaluating this gradient using a dense matrix

multiply involving the image patch matrix scales as O(K 4N 2). Thus the filter bank interpretation

yields a savings of K 4/log(N ). For typical sizes of N = 512 and K = 8, this is a 450× reduction in

order. However, this term remains constant throughout the iterations and must be computed

only once.

Computing the product X Z T is more complicated. The matrix Z , while sparse, has no fixed

sparsity pattern or common structure. We must compute the product with each row of Z

independently using convolution. This requires a forward FFT of length N for x and for each

of the Nc rows of Z , the necessary elementwise products, and finally the inverse FFT of these

products. All told, this operation will scale like O(Nc N 2 log(N )). In contrast, directly using dense

matrix multiplication scales as O(Nc K 2N 2). Unlike X X T , this term must be calculated each

time z is updated.

The dominant computation in evaluating J1(W ) is that of F̄W T . This requires Nc separate

2D-DFTs of size NF ×NF , at a cost of O(Nc N 2
F log NF ).

Similarly, calculating the gradient of J1(W ) is dominated by the cost of (2.13). We first compute
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Table 2.1: Computational cost for function and gradient computation.

Penalty Evaluation Gradient

f (W, Z , x) O(Nc N 2 log(N )) O(Nc K 4 +Nc N 2 log(N ))

J1(W ) O
(
Nc N 2

F log(NF )+N 2
F K 2 +Nc K 2

)
O(K 4Nc + (Nc +K 2)N 2

F log(NF )

J2(W ) O
(
N 2

c K 2
)

O(Nc K 4)

F̄W T . Then, we require the multiplication of an N 2
F ×N 2

F diagonal matrix by the N 2
F ×K 2 matrix F̄

at a cost ofO(N 2
F K 2). Next, we take K 2 separate NF ×NF 2D inverse FFTs, followed by the product

of Nc ×K 2 and K 2 ×K 2 matrices. Together, ∇W J1(W ) scales as O(K 4Nc + (Nc +K 2)N 2
F log(NF )).

The cost of evaluating J2(W ) and ∇J2(W ) is O(N 2
c K 2) and O(Nc K 4), respectively. These costs are

summarized in Table 2.1.

For many choices of ψ, the sparse coding step is cheap. For instance, when ψ is the `0 norm,

we need only to pass over each element of Hx and set to zero all entries that are less than the

given threshold. This operation will cost O(Nc N 2).

The necessary function and gradient evaluations consist of basic linear algebra operations,

such as matrix-matrix products, and elementwise function evaluations, such as log(·) or |·|2. As

such, our algorithm is easy to implement on a graphics processing unit (GPU).

As noted, we can implement the action of the filter bank, Hx, using Fourier convolution

methods, direct convolution methods, or using the patch-based multiplication W X . The best

choice depends on computational platform (CPU vs. GPU), filter size, and dimensionality of

training data. While Fourier methods likely win on a CPU, patch-based multiplication is well

suited for GPU-based implementations. Finally, note that we can limit the amount of memory

consumed by the algorithm by applying the filter bank in a channel-by-channel (or row-by-row)

fashion. This is useful when learning a transform for higher-dimensional data, as the matrix W X

may not fit in memory- for d-dimensional data the matrix W X is of size Nc N d , while a single

row of W X is of size N d .

2.4.4 Comparison With NSOLT

The closest analogue to our proposed filter bank design algorithm is the Non-Separable Over-

sampled Lapped Transform (NSOLT), as described in Section 2.3.4. We briefly draw distinc-

tions between our proposed filter bank learning algorithm and the design of multidimensional

NSOLTs.

An immediate difference is that the NSOLT structure is proposed for use as a synthesis filter

bank. This is not a meaningful distinction, though, as the designed NSOLT implements a tight
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Algorithm 1 Filter Bank Sparsifying Transform Learning

INPUT: Image x, Initial transform W (0)

1: Z (0) ← proxψν
(
H(0)x

)
2: k ← 0
3: repeat
4: W (k+1) ← argminW f (W, x, Z (k))+µJ1(W )+λJ2(W )
5: Z (k+1) ← proxψν

(
H(k+1)x

)
6: k ← k +1
7: until Halting Condition

frame expansion, and thus the adjoint of the NSOLT is itself a paraunitary analysis filter bank

with compactly supported FIR filters [12].

The true differences between our approach and the design of NSOLTs lie in the structure of the

filter bank. First, our algorithm is only applicable to undecimated filter banks, while NSOLTs can

incorporate downsampling. Second, our approach can learn any undecimated PR filter bank

with compactly supported FIR filters, whereas the NSOLT framework can learn only a subset of

paraunitary filter banks. This difference manifests itself in both the structure and optimization of

the filter banks. Our filter banks are unstructured, and use special regularizers to ensure the PR

property holds. In our approach, the frame bounds are indirectly controlled through the penalty

parameter µ. In contrast, the NSOLT uses a particular lattice form that implicitly guarantees the

learned filter bank is paraunitary.

Further, NSOLTs are designed using a combination of symmetric and anti-symmetric impulse

responses to ensure the filter bank is linear phase [65–67]. This constraint limits the ability

of individual NSOLT channels to capture structures which are not strictly symmetric or anti-

symmetric, such as edges that are not strictly horizontal, vertical, or at an angle of 45 degrees.

Our undecimated filter banks do not have this restriction.

2.5 Application to Image Denoising

A preliminary version of our filter bank transform learning framework has been applied in an

“adaptive” manner for magnetic resonance imaging [86]. Here, we restrict our attention to image

denoising in the “universal” paradigm: we use a pre-trained sparsifying filter bank, H to recover a

clean image x∗ from a noisy copy, y = x∗+e, where e ∼N (0,σ2IN ). We consider two algorithms

for image denoising.
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Algorithm 2 Iterative Denoising With Filter Bank Transform

INPUT: Noisy signal y , Learned filter bank transform H
1: k ← 0
2: repeat
3: z(k+1) ← proxψν

(
Hx(k)

)
4: x(k+1) ← (H∗H+λr I )−1(H∗z(k) +λr y)
5: k ← k +1
6: until Halting Condition

2.5.1 Iterative Denoising

Our first denoising method is to solve a regularized inverse problem using a transform sparsity

penalty, written as

min
x,z

λr

2
‖y −x‖2

2 +
1

2
‖Hx − z‖2

2 +νψ(z),

where λr > 0 controls the regularization strength. We solve this problem by alternating mini-

mization: we update z for fixed x, and then update x with z fixed. This procedure is summarized

as Algorithm 2. The eigenvalue decomposition of Lemma 2.1 provides an easy way to compute

the necessary matrix inverse for cyclic convolution filter banks. For linear convolution filter

banks, we use Lemma 2.1 to implement a circulant preconditioner [16].

Algorithm 2 has three key parameters. The regularization parameter λr reflects the degree

of confidence in the noisy observations y and should be chosen inversely proportional to the

noise variance. The sparsity of the transform sparse code is controlled by ν. The value of ν when

denoising an image need not be the same as ν during the learning procedure and should be

proportional to σ. The choice of both ν and λr depends on the final parameter: the number of

iterations used during denoising. Empirically, we’ve found that using ceil {σ ·255/10} iterations

works well.

2.5.2 Denoising by Transform-Domain Thresholding

We also consider a simpler algorithm, inspired by the transform domain denoising techniques

of old. We can form a denoised estimate by passing y through the system in Fig. 2.3; that is,

computing

H†proxψν
(
Hy

)
. (2.14)

This approach simplifies denoising by eliminating two parameters from Algorithm 2: the number

of iterations and λr .

Denoising in this manner is sensible because of the properties we have imposed onH. Noise in
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Figure 2.5: Training images.

the signal will not be sparse in the transform domain and thus will be reduced by the nonlinearity.

In contrast, the image will be sparse in the transform domain, and significant components will

pass through the nonlinearity with little change. The left-inverse is guaranteed to exist, and as

H must be well-conditioned, any noise remaining after the nonlinearity will not be strongly

amplified by H†. Finally, if H has low coherence, the transformed noise He will not be correlated

across channels, suggesting that a channelwise nonlinearity is sufficient. A multi-channel

nonlinearity may be beneficial if the transform is coherent.

UnlessH implements a tight frame expansion, the minimum norm synthesis filters comprising

H† will not be compactly supported; indeed, if H is a linear convolution filter bank, then the

minimum-norm synthesis filter bank will have infinite duration impulse response filters [12].

Fortunately, if H is well-conditioned, then the minimum-norm synthesis filters will have an

exponentially decaying impulse response and can thus be well approximated by FIR filters [38].

Alternatively, one can search for a (non-minimum-norm) left inverse of H that consists of FIR

filters [37].

2.6 Experiments

We implemented GPU versions of our algorithms using NumPy 1.11.3 and SciPy 0.18.1. Our

code interfaces with Python through PyCUDA [87] and scikits-cuda [88], and we conducted

experiments on an NVidia Maxwell Titan X GPU.

We conducted training experiments using the five training images in Fig. 2.5. Each image, in

testing and training, was normalized to have unit `2 norm. Unlike many patch-based methods,

we do not subtract the DC (mean) value of the image prior to training. Unless otherwise specified,

our transforms were learned using 1000 iterations of Algorithm 1 with parameters µ = 3.0,

λ= 7×10−4, and ν= 5.5×10−3. Sparsity was promoted using an `0 penalty, for which the prox

operator corresponds to hard thresholding. For each filter bank, we compute the coherence

between each pair of squared magnitude filter responses and report the largest value; that

is, max1≤i< j<Nc Γi , j (
∣∣F̄W T

∣∣2
). The initial transform H(0) must be feasible, i.e. left-invertible.

Random Gaussian and DCT initializations work well in practice. We learned a 64-channel
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(a) (b)

Figure 2.6: Comparing initializations for 64-channel filter bank with 8×8 filters. (a) DCT
initialization; maximum coherence: 0.9 (b) Random initialization; maximum coherence: 0.85.
The filters in (b) have been ordered to match those in (a).

filter bank with 8×8 filters using these initializations. The learned filters are shown in Fig. 2.6.

The evolution of the objective function and sparsification error are shown in Fig. 2.7. The

learned filters appear similar, reach nearly the same objective value, and perform equally well in

sparsifying the data set.

Additional examples of learned filters and their magnitude frequency responses are shown

in Fig. 2.8. We show a subset of channels from a filter bank consisting of 16×16 filters and 128

channels. This transform is 2× under-complete if viewed as a patch-based transform. The ability

to choose longer filters without increasing the number of channels is a key advantage of our

framework over patch-based transform learning.

2.6.1 Image Denoising

We investigate the denoising performance of the filter bank sparsifying transforms as a function

of number of channels, Nc , and filter size, K , using our two algorithms. We refer to Filter Bank

Sparsifying Transform (FBST) with Nc channels and K ×K filters as FBST-Nc -K .

We evaluate our filter bank learning formulation using 64, 128, and 256 channels with 8×8

and 16×16 filters. During the denoising stage, we set ν= 10−4×0.1σ and λr was adjusted for the

particular noise level.

We also evaluate image denoising using filters learned with the square, patch-based transform

learning algorithm [41]. We used 8×8 and 16×16 image patches to learn a patch-based transform

W . We used the rows of W to generate an undecimated filter bank and used this filter bank to

denoise using Algorithm 2 and (2.14). The filter bank implements cyclic convolution and image

54



100 101 102 103

Iteration

1400

1500

1600

1700

1800

1900

2000
Objective

Random DCT

200 500 1000

1491.3

1491.5

100 101 102 103

Iteration

20

30

40

50

60
Sparsification

Random DCT

200 500 1000

17.0

17.5

Figure 2.7: Plots of objective function (2.10) and sparsification error 1
2‖Hx − z‖2

2 while training
the filter banks shown in Fig. 2.6.

(a) (b)

Figure 2.8: Examples of learned 16×16 filters. (a) Filter impulse responses; (b) Magnitude
frequency responses. The zero frequency (DC) is located at the center of each small box.
Maximum coherence of learned filter bank: 0.88.
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patches are extracted using periodic boundary conditions. Following the convention used to

denote filter bank sparsifying transforms, we refer to a Patch-Based Sparsifying Transform (PBST)

with K ×K patches as PBST-K 2-K . We keep the number of channels Nc = K 2 explicit to facilitate

comparison with filter bank sparsifying transforms. Observe that for a given K , FBST-K 2-K

and PBST-K 2-K differ only in the regularizer and learning algorithm used; in particular, both

transforms have the same number of design parameters. All sparsifying transforms were trained

under the “universal” paradigm using all possible (maximally overlapping) patches extracted

from the set of images shown in Fig. 2.5.

We also include comparisons with 2D NSOLTs trained using the SaivDr2 MATLAB package.

The NSOLTs were trained using the images shown in Fig. 2.5. We investigate denoising perfor-

mance as a function of polyphase order, downsampling ratio, and number of channels. We refer

to an NSOLT with downsampling matrix 2I , 48 channels, and polyphase order 4 as NSOLT-2-48-4.

We consider only NSOLTs with an identical number of symmetric and antisymmetric channels,

thus NSOLT-2-48-4 has 24 symmetric and 24 anti-symmetric channels.

Image denoising using NSOLTs is accomplished by solving argminx‖y−x‖2/2+λ‖Hx‖1, where

H denotes the NSOLT operator and λ is tuned for best denoising performance on an image-by-

image basis. The optimization problem itself was solved using FISTA [89]. We also attempted

denoising by using Algorithm 2 with an `0 penalty, but found that `1 + FISTA gave the best results.

We used two tree levels for each NSOLT.

While our main interest is comparing the denoising performance of FBST versus PBST, we

also compare against several competing image denoising methods. These are divided into two

camps. The first group includes two methods based on non-local self-similarity: BM3D [90] and

WNNM [91].

The second group includes a handful of MRF learning-based methods. These can be inter-

pereted as either patch-based analysis or convolutional analysis models and are thus local in

nature. We include EPLL-GMM [92], the Field of Experts (FoE) [56, 93], and the Cascade of

Shrinkage Fields (CSF) [78]. While these methods have a convolutional structure– indeed, FoE

and CSF are closely related to our nonlinear analysis-synthesis filter bank– they must be trained

in a supervised in nature and do not impose any perfect reconstruction property on the resulting

filters. We use the default parameters in the FoE and CSF packages. For FoE, we use 3×3 filters.

For CSF we use 5×5 and 7×7 filters; in both cases, we use five stages with 25 channels. We

trained the CSF to operate at our noise levels.

Finally, we include the recent STROLLR denoising algorithm, which uses both square patch-

based transform learning and non-local self-similarity [94, 95]. STROLLR is an unsupervised

2Available: https://github.com/msiplab/SaivDr
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method and the transform learning step uses the “adaptive” paradigm. We used 8×8 patches,

resulting in a 64×64 sparsifying transform.

Our metric of interest is the peak signal-to-noise ratio (PSNR) between the reconstructed

image x and the ground truth image x∗, defined in decibels as PSNR = 20log10(N 2/‖x−x∗‖2). We

evaluate the denoising performance of our algorithm on the grayscale barbara, man, peppers,

baboon and boat images.

Table 2.2 collects the reconstruction PSNR for each test image, in addition to the mean PSNR

for the entire test set. The best value is written in bold with gray shading; the second-best value

is shaded gray with no bold. Here, FBST-64-8 indicates a 64-channel filter bank with 8×8 filters

where we denoise using transform domain thresholding (2.14), while FBST-128-16-I indicates

the use of a 128-channel filter bank with 16×16 filters and denoising using the iterative Algorithm

2.

When averaged over the entire test set, FBST-64-8 outperforms PBST-64-8 by between 0.2−0.3

dB. As the only difference in these two transforms is the regularizer used during learning, we

attribute this improvement to the change from a patch-based to an image-based point of view.

Using 1000 iterations to learn a 196-channel filter bank with 16×16 filters with Algorithm

1 took roughly five minutes on our GPU. In contrast, using the same GPU to learn a square

256×256 patch-based transform over the same data took less than one minute. This illustrates

the efficiency of the closed-form transform update step in the patch-based case [43]. Our

slower learning algorithm is offset by the ability to choose Nc < K 2, and this leads to faster

application of the learned transform. Comparing FBST-128-16-I and PBST-256-16-I, the image-

based transform outperforms the patch-based transform by up to 0.3 dB despite containing half

as many channels.

Table 2.2 shows that, on average, FBST performs slightly better than the MRF-based methods

(EPLL/CSF/FoE), but worse than non-local methods, especially for σ= 30. Note that STROLLR

is competitive with the other non-local methods. Combining the flexibility of our proposed

filter bank sparsifying transforms with STROLLR is left for future work. NSOLT gives the lowest

denoising performance. We conjecture that the linear phase constraints severely limit the

representation power of the NSOLT. Further, it is difficult to train a large NSOLT: training NSOLT-

2-24-2 required several days on our workstation.

The performance of shorter or longer filters is dependent on the image. For most images, the

8×8 filters performed as well or better than the longer filters, but we see significant improvement

when using long filters on barbara. The MRF-based methods perform poorly on this image,

with the FBST-I methods gaining well over a full dB of PSNR improvement. In contrast, the MRF

methods outperform FBST on man.

Increasing the number of channels beyond the filter size K 2 provides marginal improvement.
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Table 2.2: Reconstruction PSNR for test images averaged over 10 noise realizations. The column
mean reports the mean PSNR over the set of test images. The highest PSNR in each column
shaded gray and in bold; the second highest result is shaded gray. FBST-128-16 indicates a filter
bank sparsifying transform with 128 channels and 16×16 filters and denoised according to
(2.14). The -I suffix indicates denoising with the iterative Algorithm 2. CSF7×7 indicates a
cascaded shrinkage field with 7×7 filters. FoE3×3 denotes the Field of Experts using 3×3 filters.
NSOLT-2-48-2 indicates an NSOLT with downsampling by 2, 48 channels, and polyphase order 2.

σ 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30
Input PSNR 28.1 22.1 18.6 28.1 22.1 18.6 28.1 22.1 18.6 28.1 22.1 18.6 28.1 22.1 18.6

Method mean baboon barbara man peppers
WNNM 33.8 30.6 28.8 30.7 26.7 24.6 35.4 32.2 30.3 34.2 30.7 28.9 34.8 32.6 31.1
BM3D 33.6 30.4 28.6 30.5 26.5 24.4 35.0 31.7 29.8 34.0 30.6 28.8 34.8 32.5 31.0

STROLLR 33.6 30.4 28.6 30.5 26.6 24.7 35.1 31.9 29.9 33.8 30.5 28.7 34.8 32.4 30.9
EPLL 33.3 29.9 28.1 30.5 26.6 24.6 33.6 29.7 27.5 33.9 30.6 28.8 34.6 32.3 30.6

CSF5×5 33.1 29.7 27.7 30.3 26.3 24.1 33.4 29.3 26.8 33.8 30.4 28.6 34.6 32.0 30.3
CSF7×7 33.1 29.7 27.7 30.4 26.3 24.2 33.4 29.3 26.8 33.7 30.4 28.6 34.6 32.1 30.3
FOE3×3 32.8 29.1 27.1 30.1 25.9 23.7 32.6 28.1 25.5 33.5 30.0 28.2 34.3 31.5 29.8

PBST-64-8 33.1 29.5 27.5 30.3 26.0 23.8 34.0 30.0 27.8 33.4 29.8 28.0 34.4 31.7 29.9
PBST-256-16 33.3 29.7 27.7 30.4 26.1 23.9 34.2 30.3 28.0 33.6 30.0 28.0 34.6 31.9 30.1
PBST-64-8-I 33.2 29.8 27.8 30.3 26.1 24.1 34.1 30.3 28.0 33.6 30.1 28.3 34.6 32.0 30.4

PBST-256-16-I 33.4 29.9 27.9 30.4 26.4 24.2 34.2 30.5 28.2 33.8 30.2 28.4 34.7 32.2 30.5
FBST-64-8 33.3 29.8 27.8 30.3 26.1 23.9 34.4 30.5 28.2 33.7 30.1 28.2 34.5 31.9 30.2

FBST-128-8 33.3 29.8 27.8 30.4 26.1 24.0 34.3 30.5 28.3 33.7 30.1 28.3 34.6 31.9 30.2
FBST-196-8 33.3 29.8 27.8 30.4 26.2 24.0 34.3 30.5 28.2 33.7 30.2 28.2 34.5 31.9 30.1
FBST-64-16 33.3 29.8 27.8 30.2 26.0 23.9 34.5 30.8 28.6 33.5 30.0 28.1 34.4 31.9 30.1

FBST-128-16 33.3 29.9 28.0 30.3 26.1 24.0 34.6 31.0 28.8 33.6 30.1 28.2 34.6 32.0 30.4
FBST-196-16 33.4 30.0 28.0 30.3 26.1 24.0 34.7 31.1 29.0 33.6 30.1 28.2 34.6 32.0 30.4
FBST-64-8-I 33.4 30.0 28.1 30.4 26.3 24.2 34.4 30.7 28.5 33.8 30.3 28.5 34.7 32.2 30.6

FBST-128-8-I 33.4 30.0 28.1 30.4 26.4 24.3 34.3 30.7 28.5 33.8 30.3 28.4 34.7 32.2 30.6
FBST-196-8-I 33.4 29.9 28.0 30.5 26.4 24.2 34.3 30.6 28.3 33.8 30.3 28.4 34.6 32.1 30.5
FBST-64-16-I 33.4 30.1 28.1 30.4 26.3 24.2 34.6 31.1 29.0 33.6 30.3 28.5 34.7 32.2 30.6

FBST-128-16-I 33.4 30.1 28.3 30.4 26.4 24.3 34.7 31.2 29.2 33.7 30.2 28.5 34.7 32.3 30.7
FBST-196-16-I 33.5 30.2 28.3 30.4 26.3 24.4 34.8 31.4 29.3 33.7 30.3 28.4 34.7 32.3 30.8
NSOLT-4-12-2 30.3 26.0 23.8 29.1 24.3 21.9 30.1 25.7 23.4 30.5 26.6 24.5 31.2 27.1 24.9
NSOLT-2-12-2 30.9 26.8 24.7 29.3 24.6 22.4 30.8 26.4 24.2 31.3 27.3 25.3 32.0 28.3 26.2
NSOLT-4-12-4 31.0 26.8 24.7 29.3 24.6 22.4 30.9 26.5 24.3 31.3 27.3 25.3 32.1 28.4 26.3
NSOLT-4-24-2 30.8 26.6 24.5 29.2 24.5 22.3 30.9 26.7 24.4 31.0 27.0 25.0 31.8 27.9 25.9
NSOLT-4-24-4 31.1 27.0 24.9 29.3 24.7 22.5 31.0 26.7 24.4 31.4 27.6 25.6 32.2 28.6 26.6
NSOLT-2-12-4 29.9 25.6 23.4 28.9 24.1 21.7 29.8 25.4 23.2 30.1 26.0 24.1 30.8 26.6 24.5
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For low noise, denoising by transform-domain thresholding and iterative denoising using Al-

gorithm 2 perform equally well. As the noise level increases, the iterative denoising algorithm

outperforms the simpler thresholding scheme.

2.6.2 Learning on a Subset of Patches

One advantage of patch-based formulation is that the model can be trained using a large set

images by randomly selecting a few patches from each image. We can use the same approach

when learning a sparsifying filter bank: the data matrix X in (2.7) is formed by extracting and

vectorizing patches from many images. We can no longer view W X as a convolution.

We learned a transform using 200,000 randomly extracted patches from the training images

in Fig. 2.5. The learned transform performed nearly identically to a transform learned using all

patches from the training images.

2.6.3 Image Adaptivity

To test the influence of the training set, we learned a filter bank using 2562 patches of size 8×8

chosen at random from the 200 training images in the BSDS300 training set [96]. The learned

filter bank consists of Gabor-like filters, much like filter banks learned from the images in Fig. 2.5.

Gabor-like filters are naturally promoted by the regularizers J1 and J2: their narrow support in

the frequency domain leads to low coherence, and their magnitude responses can tile frequency

space leading to a well-conditioned transform. As expected, all but one filter has zero-mean.

We wondered if we have regularized our learning problem so strongly that the data no longer

plays a role. Fortunately, this is not so: Fig. 2.9 illustrates a 64 channel filter bank of 16×16 filters

learned from a highly symmetric and geometric image. The learned filters include oriented

edge detectors, as in the natural image case, but also filters with a unique structure that sparsify

the central region of the image. Note that most of our learned filters in Figs. 2.8 and 2.9 are

not strictly symmetric or antisymmetric, and thus cannot be captured by individual NSOLT

channels.

2.7 Remarks

Adaptive analysis/transform sparsity based image denoising algorithms can be coarsely divided

into two camps: supervised and unsupervised. In both cases, one learns a signal model by

minimizing an objective function.
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(a) (b) (c)

Figure 2.9: Adaptivity of filters. (a) Training image; (b) Learned filter impulse responses. (c)
Magnitude frequency responses. Zero frequency (DC) is located at the center of each small box.
Maximum coherence of learned filter bank: 0.75.

In the supervised case, this minimization occurs over a set of training data. In a denoising

application one typically corrupts a clean input with noise, passes it through the denoiser, and

uses the difference between the clean and denoised signal to adapt various components of

the denoising algorithm: the analysis operator, thresholding parameters, mixture weights, the

number of iterations, and so on. It is not necessary to regularize the learning procedure to

preclude degenerate solutions, such as a transform of all zeros; such a transform would not

perform well at the denoising task, and thus would not be learned by the algorithm [56, 57, 68].

In the unsupervised case, the objective function has two components. The first is a surrogate

for the true, but unavailable, metric of interest. In this chapter, we use the combination of

sparsity and sparsification error to act as a surrogate for reconstruction PSNR. The second part

of the objective is a regularizer that prevents degenerate solutions, as discussed in Sections 2.2.2

and 2.2.3. Even in the “universal” case, our learning is essentially unsupervised, as the learning

process is not guided by the denoising PSNR.

The TNRD algorithm [58] is a supervised approach that resembles iterative denoising using

Algorithm 2, but where the filter coefficients, nonlinearities, and regularization parameter are

allowed to vary as a function of iteration. However, the TNRD approach has no requirements

that the filters form a well-conditioned frame or have low coherence; “poor” filters are simply dis-

couraged by the supervised learning process. Denoising with the TNRD algorithm outperforms

the learned filter bank methods presented here.

One may ask if it is necessary that the learned transform be a frame. Indeed, the matrix to be

inverted when denoising using Algorithm 2 is full-rank even if the filter bank itself is not perfect

reconstruction. The proposed regularizer, while less restrictive than previous transform learning
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regularizers, may still overly constrain the set of learnable sparsifying transforms. However, our

highly regularized approach has a benefit of its own. Whereas the TNRD algorithm is trained on

hundreds of images, and can take upwards of days to train, our algorithm can be applied to a

single image and requires only a few minutes. The tradeoff offered by the TNRD algorithm is

acceptable for image denoising tasks, as massive sets of natural images are publicly available

for use in machine learning applications. However, such data sets may not be available for new

imaging modalities, in which case a tradeoff closer to that offered by our filter bank learning

algorithm may be preferred. Finding a balance between our highly regularized and unsupervised

approach and competing supervised learning methods is the subject of ongoing work.

2.8 Conclusions

We have developed an efficient method to learn sparsifying transforms that are structured as

undecimated, multidimensional perfect reconstruction filter banks. Unlike previous transform

learning algorithms, our approach can learn a transform with fewer rows than columns. We

anticipate this flexibility will be important when learning a transform for high-dimensional data.

Numerical results show our filter bank sparsifying transforms outperform existing patch-based

methods in image denoising. Future work might fully embrace the filter bank perspective and

learn filter bank transforms with various length filters and/or non-square impulse responses.
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Chapter 3

Interferometric Synthetic Aperture Microscopy

3.1 Introduction

In this chapter, we review Interferometric Synthetic Aperture Microscopy (ISAM). This material

is the starting point for Chapters 4 and 5.

ISAM is a noninvasive, scattering-based imaging modality that reconstructs the 3D spatial

distribution of a target from interferometric measurements using a two-dimensional (planar)

scanning geometry.

ISAM is closely linked to Optical Coherence Tomography (OCT). In OCT, the target is illumi-

nated with focused, broadband light. This light interacts with the target and is scattered back

into the instrument. The instrument is scanned along a two-dimensional planar trajectory,

and the experiment is repeated at each point. OCT relies on a pencil-beam approximation to

the illumination beam, resulting in a loss of transverse resolution away from the focal plane.

The pencil-beam approximation results in an tradeoff between depth-of-field and transverse

resolution, as highly focused beams do not satisfy the pencil-beam approximation.

The combination of OCT and highly focused beams is known as Optical Coherence Microscopy

(OCM). OCM requires volumetric scanning (that is, 3D spatial scanning) in addition to broadband

measurements to obtain appreciable depth of field.

The ISAM forward model removes the pencil-beam approximation and models the diffraction

of the illuminating field away from the focal plane. By solving the inverse scattering problem,

ISAM obtains depth-invariant resolution without the need for volumetric scanning.

3.2 Notation

Here, and in the rest of this thesis, we write the set of integers {1,2, . . . , N } as [N ] and the imaginary

unit as i. Linear mappings between Hilbert spaces are written in calligraphic font, e.g. A. The

adjoint of A is written A∗. Finite-dimensional vectors are denoted by lower-case bold letters, e.g.
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x ∈CN . Finite-dimensional matrices and tensors are written using upper-case bold letters. We

adopt Matlab-style indexing notation: given a matrix A ∈CN×M , its i -th row is A[i , : ], the j -th

column is A[ : , j ], and i , j -ith element is A[i , j ]. We denote the vector vec(A) ∈CN M is formed by

stacking the columns of A into a single vector (i.e., row-major ordering). The range, null space,

and rank of a matrix A are written range{A} ,null {A}, and rank{A}. Given x ∈ CN , the diagonal

matrix diag(x) ∈CN×N has the entries of x along its main diagonal. Similarly, given a set of N ×M

matrices A1, . . . ,AL , the matrix blkdiag(A1, . . . ,AL) ∈CLN×LM is block-diagonal with the collection

of Ai along its block diagonal.

The transpose (resp. Hermitian transpose) of a matrix is written AT (resp. AH). The `p norm

of x ∈ CN is ‖x‖p =
(∑N

j=1

∣∣x[ j ]
∣∣p

)1/p
. For vectors in R2 or R3 we use the shorthand |r | = ‖r‖2.

The N ×N identity matrix is IN , and the vector [1,1, . . .1]T ∈ RN is written 1N . The tensor (or

Kronecker) product between matrices A and B is A⊗B.

Let X be a (nonempty) set. L2(X ) denotes the Hilbert space of functions with domain X that

are square integrable functions with respect to the Lebesgue measure. The inner product on

L2(X ) is 〈 f , g 〉L2(X ) =
∫

X f g∗dµ where µ is the Lebesgue measure. The norm on L2(X ) is written

‖ f ‖L2(X ). The space of functions with p continuous derivatives and domain X is written C p (X ).

3.3 ISAM Forward Model

Throughout this dissertation, we restrict our attention to the scalar field model. We model the

sample through its complex refractive index, n(r,k0) = nb +δn(r,k0) where nb is the refractive

index of the background medium and δn is the perturbation due to the sample; for simplicity,

we take nb = 1. Here, r = (x, y, z) = (r‖, z), where r‖ are the transverse dimensions and z indicates

the axial dimension. We assume that δn is (spatially) supported in the bounded region Γ⊂R3.

The free-space wavenumber k0 is related to temporal angular frequency ω by k0 =ω/c, where

c is the speed of light in free space. The real part of the complex refractive index is the ratio

between c and the phase velocity in the medium, while the imaginary part indicates attenuation

due to propagation through the target.

Under the first Born approximation, which applies for semi-transparent or weakly scattering

objects, the obtained measurements are linear in the complex susceptibility η, n2 −1; we will

work with the susceptibility rather than the refractive index. Note that η is also supported on Γ.

In the context of spectroscopy, the “spectrum” of a sample usually refers either to its complex

refractive index or only to the imaginary part of the refractive index. Consider a homogeneous

medium with refractive index n(k0) = nr (k0)+ iκ(k0). The real part, nr (k0), has mean value
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Figure 3.1: Comparing the complex refractive index and complex susceptibility.

greater than one and the imaginary part, κ(k0), is non-negative. Relating η(k0) to n(k0), we have

η(k0) = n(k0)2 −1 = nr (k0)2 −κ(k0)2 −1+2inr (k0)κ(k0).

Unlike the refractive index, the mean value of the real part of η(k0) may be less than one and can

be negative. The imaginary part of η(k0) remains non-negative. A comparison of n(k0) and η(k0)

is shown in Fig. 3.1.

The ISAM imaging geometry is shown in Fig. 3.2. We consider a confocal point scanning

system where the illuminating aperture serves as the detection aperture.

The aperture is located in the plane z = 0. With the aperture positioned at (r(o)
‖ ,0), the sample

is illuminated by a broadband Gaussian beam focused to a point r(o) = (r(o)
‖ , zF ) within the

sample. The illuminating field interacts with the sample, and a portion of the light is scattered

backwards and is collected through the aperture. The aperture is raster scanned (either optically

or mechanically) along the transverse coordinates r(o)
‖ . At each point the scattered field is

measured interferometrically, from which we use standard techniques to recover the complex

(phase-resolved) measurements. In this thesis, we ignore the interferometric aspects of data

acquisition and work directly with the phase-resolved measurements.

The illuminating field, ui (r,k0), takes the form of a Gaussian beam centered at r(o)
‖ and focused

to a depth zF within the sample. In the focal plane, the transverse Fourier transform of ui is a

Gaussian function:

ĝ (k‖,k0) = ρ(k0)

2π

∫
ui (r‖, zF ,k0)e−ik‖·r‖ d2r||

= ρ(k0)

k0NA
exp

{
−

∣∣k‖
∣∣2

(k0NA)2

}
, (3.1)

where ρ(k0) is the power spectrum of the broadband illuminating source. We assume that
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η(r,k0)

zz = 0 zF

Figure 3.2: Geometry and notation for the scattering problem under consideration. The
illuminating aperture is located at (r(o)

‖ ,0). The incident field emerges from the aperture and is
focused to the plane z = zF . The incident beam interacts with the sample, η, and the
backscattered light (red) is collected through the aperture to produce the measurement
S(r(o)

‖ ,k0, zF ).

ρ(k0) is supported on the interval [ka ,kb]. The scalar NA denotes the numerical aperture of the

illumination system, defined to be the sine of the angle at which the Gaussian beam falls to e−1

of its maximum value [97].

Under the first Born approximation, the measured data is a linear function of η; we have

S(r(o)
‖ , zF ,k0) =

Ï
A(r(o)

‖ − r‖, z − zF ,k0)η(r‖, z,k0) dz d2r‖, (3.2)

or, after taking a Fourier transform along the scanning dimension r(o)
‖ ,

Ŝ(k‖, zF ,k0) = 1

2π

∫
S(r(o)

‖ , zF ,k0)e−ik‖·r(o)
‖ d2r (o)

‖ =
∫

Â(k‖, z − zF ,k0)η̂(k‖, z,k0)dz. (3.3)

We call the function Â the ISAM kernel. Explicitly,

Â(k‖, z,k0),
∣∣ρ(k0)

∣∣2

∫
Ω(k‖,k0)

ĝ (k′
‖,k0)ĝ (k‖−k′

‖,k0)

kz(k′
‖,k0)

e
i
(
kz

(
k′
‖,k0

)
+kz

(
k‖−k′

‖,k0

))
(z−zF )

d2k ′
‖, (3.4)

where

kz(k‖,k0),
√

k2
0 −

∣∣k‖
∣∣2

and the setΩ(k‖,k0),
{

k′
‖ ∈R2 :

∣∣∣k‖−k′
‖
∣∣∣≤ k0,

∣∣∣k′
‖
∣∣∣≤ k0

}
⊂R3 restricts the integral to propagat-

ing modes.
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3.4 Approximations to the ISAM Kernel

Next, we discuss the ISAM inverse problem—recovery of the object η from measurements of the

form (3.3).

First, note that ρ(k0) in (3.4) ensures that Â(k‖, z,k0) vanishes for any k0 ∉ [ka ,kb]. Further,

Ω(k‖,k0) is empty for
∣∣k‖

∣∣ > 2k0 and so Â(k‖, z,k0) vanishes for all
∣∣k‖

∣∣ > 2kb . This is a conse-

quence of the diffraction limit [98].

Previous work solved the ISAM inverse problem using a perturbative approach [99–102]. The

ISAM kernel is replaced by a simpler approximation and the simplified problem is solved exactly.

The pioneering work on ISAM uses an approximation that is only valid for low NA systems

with narrowband illumination [99]. The approximated inverse problem can be solved in exact

form using efficient numerical methods.

The primary goal of ISAM is to correct depth-dependent defocusing effects. This correction is

especially important as the NA increases. In this sense, the requirement of low NA in Section 3.4.1

is unsatisfying—the approximation fails in the large NA regime, where we expect to gain the most.

Later work used more sophisticated approximations that are valid for high NA and broadband

systems [100, 102]. The resulting inverse problem can be solved approximately using the same

efficient numerical methods.

While the latter approach is more general, our work in Chapter 4 is closely related to the

low NA, narrowband formulation. Next, we describe these two varieties of approximate ISAM

formulations.

3.4.1 ISAM Kernel: Low NA and Narrowband Illumination

First, it is assumed that the system has a low numerical aperture. In this case, the Gaussian

functions ĝ (k‖,k0) in (3.4) decay quickly in k‖, and the integrand is effectively zero unless k‖ and

k′
‖ are much less than ka . In this regime, we can invoke the paraxial approximation, and replace

the complex phase terms in (3.4) by the quadratic approximation

kz
(
k‖,k0

)≈ k0 −
∣∣k‖

∣∣2

2k0
. (3.5)

It is further assumed that the bandwidth of the illuminating source is much lower than its central

wavenumber, i.e.

|kb −ka |¿ kb +ka

2
,µ.

This is the so-called narrowband approximation.
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After invoking the paraxial and narrowband approximations, the ISAM kernel has a simple

form:

Âp (k‖, z − zF ,k0), Hp (k‖,k0)ζp (z − zF )e iφp (k‖,2k0)(z−zF ),

where

χ
(
k‖,k0

)
,

1,
∣∣k‖

∣∣≤ k0 & ka ≤ k0 ≤ kb

0, otherwise,

Hp (k‖,k0), k0ĝ

(
k‖
2

,k0

)2

χ
(
k‖,k0

)
ζp (z),

(
1+ i

NA2

2
µz

)−1

φp
(
k‖,k0

)
,

(
k0 −

∣∣k‖
∣∣2

2k0

)
,

and the subscript p denotes use of the paraxial approximation.

3.4.2 ISAM Kernel: Asymptotic Approximations

The low-NA requirement can be replaced by a pair of asymptotic approximations. We present

only the relevant results; for details, see [100].

The first approximation is valid when |z − zF |¿ 1/(k0NA2). Here, the complex phase term of

the integrand in (3.4) is slowly varying, and the integrand is dominated by the product

ĝ
(
k′
‖,k0

)
ĝ

(
k‖−k′

‖,k0

)
. As ĝ is isotropic in its first argument, this product is concentrated around

k′
‖ ≈ k‖/2. The complex phase can be linearized about this point to obtain a tractable integral.

Ultimately, the approximate kernel in the near-focus region is

Ân(k‖, z,k0) = π

kz
(
k‖,2k0

) ĝ

(
k‖
2

,k0

)2

e ikz(k‖,2k0)z .

The second approximation is valid when |z − zF | À 1/(k0NA2). In this region, the integrand is

highly oscillatory and can be estimated using the method of stationary phase. To first order, the

asymptotic behavior of Â(k‖, z − zF ,k0) is determined by the value of the integrand at the critical

points of the phase; i.e., locations where

∇k‖
(
kz

(
k′
‖,k0

)+kz
(
k‖−k′

‖,k0
))= 0.

In a fortuitous turn of events, the critical points are k′
‖ = k‖/2; the same as the linearization point
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in the near-focus case. The approximate kernel in the far-from-focus region is

Â f (k‖, z,k0) = π

4
e iπ4

kz
(
k‖,2k0

)
k0

1

|z| ĝ

(
k‖
2

,k0

)2

e ikz(k‖,2k0)z .

Note the similarity between the near-focus and far-from-focus approximations; in particular,

the exponential term is the same in both regions. To make the connection explicit, define the

phase function

φa
(
k‖,k0

)
, kz

(
k‖,2k0

)
,

where we use the subscript a to associate φa with the pair of asymptotic approximations. Define

Hn(k‖,k0),
π

kz
(
k‖,2k0

) ĝ

(
k‖
2

,k0

)2

χ
(
k‖,k0

)
H f (k‖,k0),

π

4
e iπ4

kz
(
k‖,2k0

)
k0

ĝ

(
k‖
2

,k0

)2

χ
(
k‖,k0

)
ζn(z), 1

ζ f (z), |z|−1 .

The subscripts n and f indicate “near-focus” and “far-from-focus”, respectively. Now, we can

write the approximate ISAM kernels as

Ân(k‖, z,k0) = Hn(k‖,k0)ζn(z)e iφa(k‖,k0)z ,

Â f (k‖, z,k0) = H f (k‖,k0)ζ f (z)e iφa(k‖,k0)z .

Following the approach described in [100], we can form a unified approximation by defining the

piecewise functions

ζa(z),

ζn(z − zF ) |z − zF |¿ 1
k0NA2

ζ f (z − zF ) |z − zF |À 1
k0NA2

Ha(k‖,k0),

Hn(k‖,k0) |z − zF |¿ 1
k0NA2

H f (k‖,k0) |z − zF |À 1
k0NA2 ,

and writing the approximate kernel as

Âa(k‖, z − zF ,k0), Ha(k‖,k0)ζa(z − zF )e i(φa (k‖,k0)(z−zF ). (3.6)

Strictly speaking, Ha and depends on z−zF and ζa depends on k0, as these quantities determine

the transition between the near-focus and far-from-focus regimes. We will return to this point in
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Section 3.6.1.

Note that (3.6) and the narrowband/low-NA approximation (3.5) share the same functional

form. While Ha and ζa are differ significantly from the paraxial versions Hp and ζp , the phase

functions are closely related—indeed, φp can be obtained from φa by way of the quadratic

approximation (3.5).

3.5 Projection-Slice Interpretation

The paraxial and asymptotic approximations result in approximate ISAM kernels with similar

forms. For now, we ignore the distinction between the two types of approximate models, and

instead assume the ISAM kernel can be approximated in the form

Â(k‖, z − zF ,k0) ≈ H(k‖,k0)ζ(z − zF )e i(φ(k‖,k0)(z−zF ). (3.7)

This form provides tremendous insight into the nature of the ISAM imaging.

Consider a single, fixed focal plane; this is the usual setting for ISAM imaging. For the remain-

der of this section we move the dependence on the focal plane to a subscript; that is, we have

ŜzF (k‖,k0) = Ŝ(k‖, zF ,k0).

Define the weighted susceptibility

ξ̂zF (k‖, z,k0), ζ(z − zF )η̂(k‖, z,k0).

Inserting the generic approximate ISAM kernel (3.7) into the measurement equation (3.4) yields

ŜzF (k‖,k0) ≈ H(k‖,k0)
∫
ζ(z − zF )η̂(k‖, z,k0)e iφ(k‖,k0)(z−zF )dz

= H(k‖,k0)
∫
ξ̂zF (k‖, z,k0)e iφ(k‖,k0)(z−zF )dz

= H(k‖,k0)e iφ(k‖,k0)zF ˆ̂ξzF

(
k‖,−φ(

k‖,k0
)

,k0
)

, (3.8)

where the double hat indicates a 3D Fourier transform with respect to r = (x, y, z).

Equation (3.8) is a generalized projection-slice theorem: the ISAM data is approximately the

bandlimited Fourier transform (with respect to r) of the weighted susceptibility evaluated on

a three-dimensional surface parameterized by k‖ and k0. By varying k‖ and k0, we are able to

observe a 3D slice of the four-dimensional function ˆ̂ξzF (k‖,kz ,k0) constrained to the surface

V,
{

(kx ,ky ,kz ,k0) :
√

k2
x +k2

y +k2
z = 2k0, kz < 0, k2

x +k2
y ≤ 4(k0NA)2, ka ≤ k0 ≤ kb

}
.
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Figure 3.3: Observable Fourier components for a target with two spatial and one spectral
dimensions. The intersection of V with a plane of constant k0 becomes an arc of constant radius
when projected onto the (kx ,kz) plane.

The sampling surface for a target with two spatial dimensions, i.e. r = (x, z), is illustrated in

Fig. 3.3; that we can only observe kz < 0 is due to the backscattering geometry. As defined, V

contains only the Fourier components above the e−2 cutoff frequency of ĝ (k‖/2,k0)2; this is an

arbitrary choice as ĝ decays smoothly in
∣∣k‖

∣∣.
We cannot recover an arbitrary object given ISAM data at a single focal plane. Even analytic

continuation is not possible in this setting, as such methods require data over a four-dimensional

volume element and we are restricted to a three-dimensional surface [103]. If we were to scan

along zF in addition to r(o)
‖ , we could further simplify by taking a Fourier transform along zF . The

measurements would be of the form ˆ̂S(k‖,kz ,k0) = ˆ̂A(k‖,kz ,k0) ˆ̂η(k‖,kz ,k0), where the double hat

indicates the 3D Fourier transform with respect to r. Now, η can be recovered using a standard

deconvolution procedure. Unfortunately, this approach is not desirable due to the amount of

data required. This problem is the focus of Chapter 5 of this thesis.

The situation is simplified if η is not a function of k0; such an object is said to be non-dispersive.

This is one of the key assumptions on which ISAM, optical coherence tomography, diffraction

tomography, and reflection tomography are built [104–106]. In this case, the measurements are

related to a 3D slice of the 3D target η(x, y, z). The observable Fourier components are

B,
{

(kx ,ky ,kz) :
√

k2
x +k2

y +k2
z = 2k0, kz < 0, k2

x +k2
y ≤ 4(k0NA)2, ka ≤ k0 ≤ kb

}
.

The region B is called the optical passband of the ISAM imaging system. Strictly speaking, we

observe the Fourier components of the weighted susceptibility on B, but this distinction is

usually ignored; we return to this point in Section 3.6.1. Only a non-dispersive (weighted) object

whose spatial Fourier transform is supported on B can be perfectly imaged by the ISAM system
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with a single focal plane. Otherwise, ISAM is able to recover, at best, a spatial bandpass version

of the original target. In the visualization of Fig. 3.3, B is the “shadow” of V on the plane k0 = 0.

3.6 Filtered Back Projection for ISAM

We restrict our attention to the case of a non-dispersive object and data acquired from a single

focal plane; this is the usual setting for ISAM imaging. In this case, the exact ISAM measurement

equation (3.3) reduces to

ŜzF (k‖,k0) =
∫

Â(k‖, z − zF ,k0)η̂(k‖, z)dz. (3.9)

Observe that (3.9) is a “diagonal” relationship in k‖, as can be expected due to the transverse shift

invariance property of the imaging system. For each k‖, (3.9) is a Fredholm integral equation of

the first kind and can be solved with standard numerical methods; e.g. the method of moments,

the Galerkin method, and the projection method, among others [107, 108].

Solving the perturbed ISAM problem using the approximations described in Sections 3.4.1

and 3.4.2 leads to fast reconstruction algorithms. In the non-dispersive case, the projection-slice

relationship (3.8) reduces to

ŜzF (k‖,k0) = H(k‖,k0)e iφ(k‖,k0)zF ˆ̂ξzF

(
k‖,−φ(

k‖,k0
))

. (3.10)

Stated again, the measurements are the filtered and bandlimited 3D Fourier transform of the

weighted susceptibility evaluated at coordinates (k‖,φ(k‖,k0)). This suggests a straightforward re-

construction technique: simply undo the filtering, take an appropriate inverse Fourier transform,

and then unweight the reconstructed weighted susceptibility. This reconstruction algorithm is

similar to the generalized filtered backprojection algorithm developed for diffraction tomogra-

phy [106, 109].

As the ISAM imaging operator has a large nullspace, we must apply some form of regulariza-

tion. In our case, we must apply a regularized inverse to the linear operator H : (H f )(k‖,k0) =
H(k‖,k0) f (k‖,k0). One option is to use a Tikhonov regularized inverse. We introduce the scalar

regularization parameter λ> 0 and set

(H† f )(k‖,k0) = f (k‖,k0)

H(k‖,k0)+λ .
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Applying the Tikhonov regularized filter, we have

Ŝ′
zF

(k‖,k0) = ŜzF (k‖,k0)

λ+H(k‖,k0)
e−iφ(k‖,k0)zF

= H(k‖,k0)

λ+H(k‖,k0)
ˆ̂ξzF

(
k‖,−φ(

k‖,k0
))

.

Next, we must take an inverse Fourier transform. In the usual ISAM imaging scenario, we

acquire discrete data that is uniformly sampled in k‖ and k0. To apply fast numerical methods,

we first resample the data to be uniformly spaced in k‖ and kz =φ(k‖,k0) and then apply a 3D

inverse Fast Fourier Transform (FFT) with respect to k‖ and kz .

For a fixed value of k‖ and viewed as a univariate function of k0,φ is one-to-one for k0 ∈ [ka ,kb],

and thus invertible on this interval. We must resample the data at an evenly spaced grid of kz

according to k0 = φ−1(k‖,kz). If we are using the asymptotic approximations described in

Section 3.4.2, then φ(k‖,k0) =
√

4k2
0 −

∣∣k‖
∣∣2 and we must apply the coordinate transformation

k0 7→ 1

2

√
k2

z +
∣∣k‖

∣∣2.

We have

Ŝ′′
zF

(k‖,kz) = Ŝ′
zF

(k‖,φ−1(k‖,kz))

= H(k‖,φ−1(k‖,kz))

λ+H(k‖,φ−1(k‖,kz))
ˆ̂ξzF

(
k‖,kz

)
.

Note that this resampling operation arises in a variety of synthetic aperture tomographic imaging

modalities: in seismic imaging it is known the Stolt mapping [110], in Synthetic Aperture Radar

(SAR) it is known as the ω−k algorithm [111, 112], and also arises as a step in the synthetic

aperture focusing technique in ultrasound imaging [113]. Alternatives to the use of interpolation

and inverse FFT have been developed for these similar imaging problems. Algorithms based on

gridding or the non-uniform FFT provide user-controllable accuracy bounds. Interpolation-free

approaches have also been proposed. See, e.g., [114–116] and the references within.

After taking the inverse Fourier transform of the resampled data, we have a filtered version of

the weighted susceptibility

S′′(r) = (h ∗ξzF )(r),

where ∗ denotes three-dimensional convolution with respect to r and the filter h is given by

h(r) =
∫
χB(k)

H(k‖,φ−1(k‖,kz))

λ+H(k‖,φ−1(k‖,kz))
e ik·rd3k
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Algorithm 3 Fourier Inversion for ISAM

INPUT: ISAM data ŜzF (k‖,k0); Regularization parameter λ
OUTPUT: Object estimate η̃(r)

1: Ŝ′
zF

(k‖,k0) = ŜzF (k‖,k0)/
(
H(k‖,k0)+λ)

. Apply (regularized) inverse filter
2: Ŝ′′

zF
(k‖,kz) = ŜzF

(
k‖,k0 =φ−1(k‖,kz)

)
. Resample

3: S′′
zF

(r) = η̃(r)ζ(z − zF ) . 3D Inverse FFT
4: η̃(r) = η̃(r)/ζ(z − zF ) . Compensate for signal decay

and χB denotes the indicator function for the optical passband.

The resolution of the ISAM system depends on the size of the optical passband. In realistic

imaging scenarios the filter h varies much faster than the slowly varying weighting function, ζ. If

the object consists of small, well-separated scatterers, it is reasonable to make the approximation

(h ∗ξzF )(r) = (
h ∗ (ζ(z)η(r))

)
(r) ≈ (h ∗η)(r)ζ(z).

Finally, we can remove the effect of ζ(z) by simple division, or by performing a regularized

inversion such as (ζ(z)+τ)−1 for some τ> 0.

This Fourier inversion algorithm is summarized in Algorithm 3.

3.6.1 Remarks

The ISAM Fourier inversion algorithm relies on approximating the ISAM kernel in the form (3.10).

The key aspect is that the variables k0 and z interact only in the complex exponential term.

It is helpful to frame this in terms of an operator factorization. Define the ISAM operator

A : L2(R3) → L2(R3) which uses the exact ISAM kernel;

(AzFη)(k‖,k0),
∫ ∞

−∞
Â(k‖, z − zF ,k0)η(k‖, z)dz,

as well as the approximate ISAM operator ÃzF which uses (3.10) as its integration kernel;

(ÃzFη)(k‖,k0),
∫

H(k‖,k0)ζ(z − zF )e i(φ(k‖,k0)(z−zF )η(k‖, z)dz.
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Additionally, define the operators FzF ,H,VzF : L2(R3) → L2(R3)

(FzFη)(k‖,k0), (2π)−
3
2

∫ ∞

−∞
e−iφ(k‖,k0)(z−zF )η(k‖, z)dz,

(H f )(k‖,k0), (2π)
3
2 H(k‖,k0) f (k‖,k0),

(VzFη)(k‖, z), ζ(z − zF )η(k‖, z).

Now, ÃzF =HFzFVzF . Each of these operators is easy to (pseudo)invert—H and VzF require only

division, and FzF is unitary.

This factorization follows directly the approximations used in the narrowband and paraxial

regime. However, there are difficulties when using the asymptotic approximations described in

Section 3.4.2. In this case, Ha and ζa depend on both k0 and z, as the transition between the

near-focus and far-from-focus approximations depends on |z − zF |k0NA2. We can reconcile this

difficulty in a few ways. One option is to redefine Ha as the average of Hn and H f , and to define

ζa(z) =

ζn(z − zF ) |z − zF |¿ 1
µNA2

ζ f (z − zF ) |z − zF |À 1
µNA2 ,

(3.11)

where µ = (kb +ka)/2 is the central illuminating wavenumber. This approach is suitable for

reconstruction using Algorithm 3. However, it results in catastrophic reconstruction errors when

used in model-based iterative reconstructions, as we will discuss Section 3.7. This challenge

motivates the low-rank approximation approach we present in Chapter 4.

There is a final option to reconcile the effects of Ha and ζa : simply ignore them. As pointed

out by the authors in several publications, the resampling from k0 to kz is the most important

step in the Fourier inversion algorithm. It is this step that compensates for defocusing away

from the focal plane, and is thus responsible for the property of depth-invariant resolution.

Note that traditional OCT reconstruction is based on the inverse Fourier transform of (3.10);

that is, the effect of φ(k‖,k0) is ignored. This is the root cause of defocusing effects, and is why

OCT is traditionally limited to low-NA systems.

The effect of each step in the ISAM Fourier inversion algorithm is illustrated in Fig. 3.4;

horizontal and vertical profiles through the reconstructions are shown in Fig. 3.5. The OCT

reconstruction shows a clear loss of transverse resolution away from the focal plane; this is

expected, as the mean confocal parameter for this system is ≈ 2.7 µm. Figure 3.4(b) is the

reconstruction using only the resampling step. The reconstruction exhibits the desired depth-

invariant transverse spatial resolution, however the loss of signal intensity away from the focal

plane is evident. Figure 3.4(c) is the reconstruction with H−1. Increasing the regularization
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Figure 3.4: All units µm. Comparing reconstruction methods when applied to point targets.
Point scatterers are located at z − zF = 0,10, . . . ,50 µm. System NA = 0.3; ka = 6.6,kb = 10 rad−1.
(a) OCT reconstruction exhibits strong defocusing artifacts. Transverse resolution is lost away
from the focal region. (b) Reconstruction using resampling only. Transverse resolution is
uniform for all depths. (c) Inverting the effect of H(k‖,k0) further improves transverse
resolution. (d) Compensating for beam decay away from focus.

parameter results in a loss of spatial resolution, but also reduces ringing. Finally, Fig. 3.4(d)

shows the effect of applying V−1
nF

; here, we used the hybrid weighting function (3.11). The 1D

profile taken at x = 0 is shown in Fig. 3.5. Note the difference in recovered scatterer amplitude.

Only the scatterer at z − zF = 0 is in the near-focus regime.

3.7 Sampling, Discretization, and Reconstruction

Thus far, we have discussed the ISAM inverse problem in the continuous setting. To adopt the

language of Myers and Barrett, this is the continuous to continuous (CC) setting: the object and
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Figure 3.5: One-dimensional profiles of the magnitude of reconstructed objects shown in
Fig. 3.4. Each profile was normalized to have unit magnitude at (x, z) = (0, zF ).

data are viewed as functions, and the data is related to the object via an integral operator [117].

Of course, in practical imaging problems we do not acquire a continuum of data. Data is only

measured at a finite collection of points. There are a variety of ways to attack such continuous to

discrete (CD) inverse problems. See, e.g., [117–120] for an overview of these methods. A common

approach is to solve the (possibly regularized) CC problem and to use numerical methods

to discretize the solution. An immediate example is the application of the Fourier inversion

algorithm to sampled data.

In portions of Chapter 4, and all of Chapter 5, we use a different approach to solve the ISAM

inverse problem (3.9). We project the inverse problem into a finite dimensional space and

use numerical methods to solve the finite dimensional problem; this is sometimes called the

projection method [107, 117]. This approach does not use the approximations discussed in

Section 3.4; instead, the unapproximated ISAM kernel (3.4) is used in the forward model (3.9).
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Next, we discuss the problems of sampling, discretization, and variational image reconstruction.

3.7.1 Sampling

The instrument acquires samples of the spatial-domain measurement equation (3.2). We assume

the object is (spatially) supported in a region Γ⊂ R3; here, we take Γ= [0,Lx]× [0,Ly ]× [0,Lz].

We write the number of samples as Ni and the discretization or sampling interval as ∆i for

i = x, y, z,k. We obtain measurements at the transverse aperture locations r(o)
‖ = (nx∆x ,ny∆y )

for integers nx ,ny . The parameters are chosen to cover Γ, i.e. Ni∆i = Li holds for i = x, y, z.

For simplicity, we assume the sampling parameters are the same along the x and y directions:

Nx = Ny , ∆x =∆y , and Lx = Ly = Nx∆x . The wavenumber is sampled uniformly over the interval

[ka ,kb] with sampling interval ∆k ; the nk -th measurement wavenumber is k0,i , ka +nk∆k . We

acquire data at NF focal planes, written
{

zF,i : i = 1,2, . . . NF
}

, where NF = 1 for the standard ISAM

problem. The same sampling parameters are used at each focal plane; in particular, the set of

sampled wavenumbers does not change.

We choose the sampling parameters as we would for a standard, single-species ISAM problem.

The necessary sampling intervals can be motivated using the approximate forward models.

Using these models model, it can be shown that “point spread function”
∣∣A(r‖,k0, z)

∣∣ (approx-

imately) decays like a Gaussian in
∣∣r‖∣∣. We take Lx and Ly large enough to safely neglect

the unmeasured data. Moreover, for fixed zF the measurements Ŝ(k‖,k0, zF ) are bandlim-

ited to [−kb sinNA,kb sinNA]; we sample along the transverse dimension at intervals ∆x ,∆y <
π/(kb sinNA). Finally, the combination of uniform sampling in r(o)

‖ and k0 leads to a non-uniform

sampling of the Fourier transform of the object: samples are obtained at uniform locations along

the k‖ axis but at nonuniform locations along the kz axis. To avoid aliasing, we require that the

maximum distance between samples on the kz axis is less than π/Lz [121, 122].

3.7.2 Discretization and Block-Diagonal Matrix Structure

Given Nx ×Ny spatial samples and Nk wavenumber samples of (3.2), we take the 2D Discrete

Fourier Transform (DFT) with respect to the transverse coordinates and write the result as the

tensor Ŝ ∈CNx×Ny×Nk×NF . We continue to assume Nx = Ny with Nx an even integer. The 2D-DFT

coordinate q‖ = (qx , qy ) is an integer vector with 0 ≤ qx , qy ≤ Nx −1. We obtain the continuous

77



l = γ
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ÂnF [q‖,nz ,k0]

Figure 3.6: Unfolding the tensor ÂnF [q‖,nz ,nk ] into a block-diagonal matrix.

Fourier coordinate kx from the DFT coordinate kx as

kx(qx) =
2πqx/Lx qx < Nx/2

2π(qx −Nx)/Lx otherwise,

and the same holds for qy and ky . We define k‖(q‖) = (
kx(qx),ky (qy )

)
. We use the reindexing

function

γ :Z2 →Z γ(q‖) = qx +Nx qy ,

to identify the 2D-DFT index q‖ with the integer γ(q‖).

The discretized ISAM measurement model is

Ŝ[q‖,nk ,nF ] =
Nz−1∑
nz=0

ÂnF [q‖,nk ,nz]η̂[q‖,nz] (3.12)

η̂ ∈CNx×Ny×Nz is the discretized (non-dispersive) susceptibility to be imaged, and

ÂnF [q‖,nk ,nz], Â(k‖(q‖),ka +nk∆k , Nz∆z − zF,nF ).

We can write (3.12) as a matrix-vector product with a certain block structure. We use a

superscript to denote a submatrix or vector formed for particular value of q‖. For each nF ∈ [NF ]

and l = γ(q‖), define Âl
nF

∈CNk×Nz and η̂l ∈CNz by

Âl
nF

= ÂnF [γ−1(l ) : , : ]

η̂l = η̂[γ−1(l ), : ].

Now, we have

Ŝ[γ−1(l ), : ,nF ] = Âl η̂l .
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Let ŝnF ∈CNx Ny Nk be the vector of measurements acquired at the nF -th focal plane,

ŝnF = vec
(
Ŝ[ : , : ,nF ]

)
,

and define

ÂnF , blkdiag

({
Âl

nF

}Nx Ny−1

l=0

)
∈CNx Ny Nk×Nx Ny Nz .

This construction is illustrated in Fig. 3.6. In an abuse of notation, we use η̂ to denote the

vectorized version of the tensor η̂[q‖,nz]; equivalently, it is the stacking of the
{
η̂l } into a single

vector

η̂= vec
(
η̂[:, :]

)=


η̂1

...

η̂Nx Ny−1

 .

With this definition in place, the (vectorized) measurements from the nF -th focal plane is

ŝnF = ÂnF η̂. (3.13)

The matrix-vector product (3.13) is the discretized form of (3.3), assuming η is non-dispersive.

The diagonal nature of A when expressed in the transverse Fourier domain is manifest in the

block-diagonal structure of ÂnF . Finally, we can incorporate data from multiple focal planes

by stacking the appropriate data vectors and matrices. In particular, we define the stacked

measurement vectors

s̄ =


ŝ1

...

ŝNF

 ∈CNx Ny Nk NF

and the stack of ISAM matrices as

Ā =


Â1

...

ÂNF

 ∈CNx Ny Nk NF×Nx Ny Nz .
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Figure 3.7: Forming Ā by stacking the ÂnF . Here, shaded rows correspond to the second focal
plane.

Now can write the multifocal ISAM measurement equation

s̄ = Āη̂.

The stacking procedure to generate Ā is illustrated in Fig. 3.7.

3.7.3 Model-Based Reconstruction

We conclude this chapter by discussing the use of optimization-based approaches to solve the

discretized ISAM inverse problem. Our task is to recover the (discretized) susceptibility η̂ from

measurements s̄ acquired at one or more focal planes. We begin by assuming a single focal plane,

NF = 1; we drop the nF subscript of 1 and write our forward model as ŝ = Âη̂.

We pose the ISAM reconstruction problem as the variational minimization problem

min
η̂

L(Âη̂, ŝ)+R(η̂),

where L : CNx Ny Nk ×CNx Ny Nk → R is a measures the discrepancy between the data, ŝ, and the

image of a candidate object η̂ under the forward model Â. The functional L is often called a

data fidelity penalty. If we adopt a statistical viewpoint, L is the negative log likelihood of the

data, ŝ. Thus we can incorporate knowledge of the data statistics into the reconstruction process,

and account for effects such as additive noise, shot noise, background signal, and more [123].

This often comes at the cost of a difficult, nonlinear optimization problem [123–125]. A simpler

choice, and one that may lead to tractable optimization problems, is to choose

L(Âη̂, ŝ),
1

2
‖ŝ− Âη̂‖2

2,
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leading to the penalized least squares problem

min
η̂

1

2
‖ŝ− Âη̂‖2

2 +λR(η̂). (3.14)

The functional R :CNx Ny Nz →R regularizes the inverse problem and encodes any constraints

or a priori assumptions regarding η̂. Tikhonov regularization corresponds to R(η̂) = ‖η̂‖2
2. Alter-

natively, solutions that are sparse in a transform domain are obtained by setting R(η) = ‖Cη‖1,

where C is a sparsifying transform, e.g. finite differences or the wavelet transform. The non-

negative scalar λ balances the influence of the data fidelity and regularization terms.

In most cases, the optimization problem (3.14) cannot be solved in closed form and an iterative

solution is required. Tikhonov regularization is a notable exception. In this case, (3.14) reduces

to the solution of the linear system

(ÂHÂ+λI)η̂= ÂHŝ, (3.15)

where I is the Nk Nx Ny ×Nk Nx Ny identity matrix. Due to the special structure of Â, this can

be (approximately) solved in closed form using a discretized version of the Fourier inversion

algorithm.

Later, we arrive at variations of the ISAM problem for which the equivalent of (3.15) cannot

be solved in closed form. In these cases, an iterative solution is required as the Gram matrix

ÂHÂ ∈ CNk Nx Ny×Nk Nx Ny is too large to store, much less invert. The conjugate gradient (CG)

algorithm works well in practice. CG requires only matrix-vector products with ÂH and Â. For

these methods to be successful, the implementation of ÂH and Â must be accurate.

Many sparsity-promoting regularizers are non-differentiable. In this case, proximal methods

such as FISTA [89] or the Alternating Direction Method of Multipliers (ADMM) [126–128] are

attractive. This class of algorithms decomposes the problem (3.14) into a sequence of simpler

subproblems. The solution of a linear system similar to (3.15) is often a key ingredient of such

algorithms.
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Chapter 4

Non-Asymptotic ISAM

4.1 Introduction

We begin by showing that, under the paraxial (low NA) approximation, the ISAM kernel can be

written as the product of two terms: an oscillatory term with phase that is linear in z, and a second

term that is smooth and well-approximated as the sum of a small number of separable functions.

If only a single term is retained, our approach coincides with earlier work for ISAM in the

narrowband and paraxial regime. The higher-order terms become appreciable as the bandwidth

increases and the narrowband approximation is violated. The separated approximation is the

starting point for our two main contributions.

First, we study the spectrum of a perturbed ISAM operator using our factored kernel. We

show that the left singular functions of this operator satisfy a certain Sturm-Liouville differential

equation.

Second, we use our approximate kernel to develop fast and accurate numerical methods to

compute the action of the ISAM operator and its adjoint. Our proposed algorithm requires

O(N ) storage and applying the forward operator scales requires O(N 3 log N ) FLOPS, in contrast

to dense matrix methods that require O(N 4) storage and FLOPS. While the derivation and

theoretical analysis of our algorithm is performed under the paraxial approximation, numerical

evidence suggests the algorithm is accurate even when the paraxial approximation fails to hold.

We retain the speed of earlier asymptotic algorithms while retaining enough accuracy to use

iterative reconstruction methods.

4.2 Separable Approximation of Â(k‖,k0, z)

With the exception of Section 4.4, we consider the single focal plane case. By translating the

coordinate system we can take zF = 0. We adopt the notation from the Chapter 3. We assume

the source power spectrum
∣∣ρ(k0)

∣∣2 is supported on [ka ,kb].
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First, we derive an approximation to the ISAM kernel (3.4) of the form

Â(k‖,k0, z) ≈ H(k‖,k0)W (k0, z)e iφ(k‖,k0)z , (4.1)

and then further approximate this function as

Â(k‖,k0, z) ≈ H(k‖,k0)w1(k0)ζ1(z)e iφ(k‖,k0)z . (4.2)

Our approximated kernel (4.2) has the same functional form as the narrowband, paraxial kernel

defined by Ralston et al. [99]; however, the details of the approximations differ.

We take ρ(k0) =
√

k0 for k0 ∈ [ka ,kb] and zero otherwise. To begin, observe that the Gaussian

function (3.1) can be written as a separable function in kx and ky . In particular, define

ĝ1(kx ,k0),

√
ρ(k0)

k0NA
exp

{
− |kx |2

(k0NA)2

}

ĝ (k‖,k0) = ρ(k0)

k0NA
exp

{
−

∣∣k‖
∣∣2

(k0NA)2

}
= ĝ1(kx ,k0)ĝ1(ky ,k0).

For sufficiently small NA, the Gaussian functions decay fast enough in
∣∣k‖

∣∣ that the numerator

of the integrand decays to zero well before the singularity at
∣∣k‖

∣∣2 = k2
0 ; thus, we can extend the

limits of integration to ±∞. Under the paraxial approximation, we replace the kz terms in the

exponential of (3.4) by the quadratic approximation

kz
(
k‖,k0

)≈ k0 −
k2

x +k2
y

2k0
= k0 −

∣∣k‖
∣∣2

2k0
,

while in the denominator of (3.4) we retain only the leading term. Thus, under the paraxial

approximation, the kernel is given by

Â(k‖,k0, z) =
∫ ∞

−∞

g (k′
‖,k0)g (k‖−k′

‖,k0)

k0
exp

{
iz

(
2k2

0 −
k ′2

x + (kx −k ′
x)2 +k ′2

y + (ky −k ′
y )2

2k0

)}
d2k ′

‖.

= e i2k0z

k0
I1(kx ,k0, z)I1(ky ,k0, z),
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where I1(kx ,k0, z) is the one-dimensional integral

I1(kx ,k0, z) =
∫ ∞

−∞
g1(k ′

x ,k0)g1(kx −k ′
x ,k0)exp

{
−iz

k ′2
x + (kx −k ′

x)2

2k0

}
dk ′

x

= ρ(k0)

k0NA

∫ ∞

−∞
exp

{
−

(
1

k2
0NA2 + iz

2k0

)
(k ′2

x + (kx −k ′
x)2)

}
dk ′

x

= ρ(k0)

√
π

2

√
1

1+ i
2 NA2k0z

exp

{
− k2

x

2k2
0NA2 − i

k2
x

4k0
z

}
,

and we have used the well-known Gaussian convolution identity
∫

e−τ(x−y)2
e−τy2

dy =
√

π
2τe− τ

2 x2
.

Recall ρ(k0) =
√

k0 and the shorthand
∣∣k‖

∣∣=√
k2

x +k2
y . Continuing,

Â(k‖,k0, z) = e i2k0z ρ(k0)2

k0
I1(kx ,k0, z)I1(ky ,k0, z)

= e iπ2 2k0z

(
1

1+ i
2 NA2k0z

)
exp

{
−

k2
x +k2

y

2k2
0NA2

}
exp

{
−i

k2
x +k2

y

4k0
z

}

= π

2

(
1

1+ i
2 NA2k0z

)
exp

{
−

∣∣k‖
∣∣2

2k2
0NA2

}
exp

{
i

(
2k0 −

∣∣k‖
∣∣2

4k0

)
z

}
.

We obtain the desired form (4.1) by defining the scalar

γ,
NA2

2

and functions

H(k‖,k0),
π

2
exp

{
−

∣∣k‖
∣∣2

2k2
0NA2

}
,

W (k0, z),
1

1+ iγk0z
(4.3)

φ(k0,k‖), 2k0 −
∣∣k‖

∣∣2

4k0
.

Before continuing, note that W (k0, z) can be written in the magnitude and phase form

W (k0, z) = 1

1+ iγk0z
= 1√

1+k2
0 z2γ2

e−i arctan(γk0z).

The phase term is known as the Gouy phase [98], and represents a phase shift of π as the focused

Gaussian beam passes through the focal plane. This term is roughly ±π/2 for any distance greater
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Figure 4.1: W (k0, z) for NA = 0.2. The Gouy phase shift is evident in argW (k0, z).

than one Rayleigh range, |z| > 1/(k0NA2). The magnitude and phase of W (k0, z) for NA = 0.2 is

illustrated in Fig. 4.1.

4.2.1 Rank-one Approximation to W (k0, z)

We have approximated Â as the product of three terms: H , which is purely real; W , which has

nonlinear phase but is smooth; and e iφ(k‖,k0)z , which is oscillatory but has linear phase in z.

Next, we form a separable, or rank-one, approximation to W (k0, z) for k0 ∈ [ka ,kb] and z ∈R. In

particular, we want

W (k0, z) ≈ w1(k0)ζ1(z), (4.4)

where w1 ∈ L2([ka ,kb]) and ζ1 ∈ L2(R).

Define the operator W : L2(R) → L2([ka ,kb]) with kernel W (k0, z) by

(W f )(k0) =
∫ ∞

−∞
W ∗(k0, z) f (z)dz.
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Observe that the kernel satisfies

‖W ‖2
L2([ka ,kb ]×R) =

∫ ∞

−∞
dz

∫ kb

ka

dk0 |W (k0, z)|2 = π

γ
log

(
kb

ka

)
<∞ (4.5)

implying W is of Hilbert-Schmidt type and thus has a singular value decomposition. The leading

singular functions of W provide the best separable approximation to W (k0, z) in the L2 sense.

Unfortunately, these functions are not easy to compute; instead, we will find a function that

is almost the leading left singular function. We make the ansatz that W (k0, z) can be well

approximated by its value at some wavenumber ka ≤µ≤ kb and

ζ1(z),

√
γµ

π
W (µ, z) =

√
γµ

π

1

1+ iγµz
.

This choice satisfies
∫ ∞
−∞ |ζ1(z)|2 dz = 1. In the spirit of the singular value decomposition, define

the function w =Wζ1; explicitly,

w1(k0) = (Wζ1)(k0) =
√
γµ

π

∫ ∞

−∞

(
(1− iγk0z)(1+ iγµz)

)−1 dz

=
√
γµ

π

∫ ∞

−∞

(
1+γ2z2k0µ

)−1
dz

=
√
πµ

γ

2

µ+k0
.

Note that w1(k0) is real-valued. To avoid carrying around an additional scalar, we will not nor-

malize w1 to have unit norm. Our rank-one approximation to W (k0, z) is given by w1(k0)ζ1(z).

The following proposition establishes that the best approximation to W (k0, z) occurs at the

geometric mean of kb and ka .

Proposition 4.1. The approximation error ‖W −w1ζ1‖L2[ka ,kb ]×R) is minimized at µ? =√
kakb ,

and the corresponding relative approximation error is

‖W −w1ζ1‖2
L2([ka ,kb ]×R)

‖W ‖2
L2([ka ,kb ]×R)

= 1−
4
(

kb
ka

−1
)

(
1+

√
kb
ka

)2
log

(
kb
ka

) . (4.6)

Proof. See Appendix B.2.

The (relative) approximation error (4.6) depends only on the ratio of the maximum and

minimum illumination wavenumbers, kb and ka . This quantity is plotted as a function of the

ratio kb/ka in Fig. 4.2. Interestingly, the NA does not affect the relative approximation error. Note
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Figure 4.2: Relative approximation error (4.6) as a function of kb/ka .

that this result should be interpreted within the region of validity of the paraxial approximation,

which is dependent on NA.

4.2.2 Beyond the Narrowband Regime: Rank r Approximation

For high-bandwidth systems the approximation can be improved by using a higher-order sepa-

rable approximation, i.e.

W (k0, z) =
r∑

j=1
w j (k0)ζ j (z). (4.7)

We call (4.7) a rank r approximation, as we take the w j and ζ j to be the left and right singular

functions of W , respectively. An analytic expression for the higher-order singular functions may

be possible using the variational characterization of the eigenfunctions of WW∗ and W∗W , but

this is beyond the scope of this work.

The first three singular functions of W with ka = 1/2,kb = 1 are shown in Fig. 4.3. The singular

functions were found numerically by forming a discretized approximation to W , denoted W ∈
C512×4000, with Wi , j =W (ka + i (ka −kb)/1024,−2000+ j ) and performing the SVD.

The singular value ratios of W for various kb are shown in Fig. 4.4. As expected, the singular

values decay quickly for kb ≈ ka , indicating that more terms of (4.7) are necessary in the high-

bandwidth regime. Still, by including more terms, our approximation remains accurate even

when the narrowband assumption fails.

Proposition 4.1 stands in contrast to the original paraxial, narrowband approximation of

Ralston et al. [99]. They chose µ= (ka +kb)/2, i.e. the arithmetic (rather than geometric) mean.

Note, however, that their formulation of ISAM is scaled somewhat differently than ours, due

to a different normalization for the Gaussian functions. Their equivalent of W (k0, z) carries an
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Figure 4.3: Left and right singular functions of W, the discretized form of W , with NA = 0.2.
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case, ka = 1/2.

additional k2
0 scaling compared to (4.3), and this influences the optimal approximation point.

The optimum point is not easily determined using their scaling.

4.2.3 Beyond the Paraxial Approximation

Our analysis has been performed under the paraxial approximation. This approximation is

necessary to have tractable integrals that lead to the factored form Â(k‖,k0, z) (4.1).

Recall from Section 3.4 that the when the asymptotic approximations are used, the ISAM

kernel has a similar functional form to our (4.4). The primary difference is the behavior of the

ζ(z) function and the phase function. In both the near and far from focus regimes, the term that

has linear phase in z is given by e i
√

4k2
0−|k‖|2z .

We postulate that (4.1), where φ(k‖,k0) =
√

4k2
0 −

∣∣k‖
∣∣2 and with W given by (4.3), is a good

approximation to the ISAM kernel even when the paraxial approximation fails. We do not have a

proof of this claim, although numerical evidence suggests it to be true.

To test this claim, we numerically calculated Â(k‖ = 0,k0, z) for NA = 0.5 at k0 = 1/2 and k0 = 1

by evaluating the ISAM kernel integral (3.4). This is well beyond the paraxial approximation.

According to our claim, we have Â(0,k0, z) =W (k0, z)e i2k0z . To isolate W (k0, z), we multiplied

by e−i2k0z . In Fig. 4.5 we plot the resulting function as well as our prediction, W (k0, z). There is

excellent agreement between the prediction and the obtained function, leading us to believe the

methods in this chapter apply beyond the paraxial approximation.

We postulate that (4.1) is a good approximation for all k‖, not just
∣∣k‖

∣∣ = 0. To test this

89



claim, we repeated the test using k‖ = (0.3,0). According to the claim, we have Â(k‖,k0, z) =
H(k‖,k0)W (k0, z)e i

√
4k2

0−|k‖|2z . We isolate W (k0, z) by dividing by H(k‖,k0) and multiplying by

e i
√

4k2
0−|k‖|2z . We plot the result in Fig. 4.6. Again, there is good agreement between the prediction

and the obtained function.
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Figure 4.5: W (k0, z) and the “demodulated” function Â(0,k0, z)e−i2k0z .

4.3 Singular Value Decomposition

4.3.1 Motivation and Related Work

We turn our attention to the study of the singular system of the ISAM operator, assuming the

ISAM kernel is given by (4.2).

The singular value decomposition of a “imaging operator” provides tremendous insight into

the capabilities of the imaging system. The singular system provides a characterization of the

nullspace of the imaging operator— the components to which the imaging system is inherently
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Figure 4.6: W (k0, z) and the “demodulated” function Â(k‖,k0, z)e−i
√

4k2
0−|k‖|2z/H(k‖,k0),

calculated using k‖ = (0.3,0).

blind [117, 129–131]. Range conditions can be used to reduce noise and perturbations in mea-

sured data [132, 133]. Oscillation properties of the singular functions provide a way to define the

“resolution” of an imaging system [120, 134–136].

Fix a value of k‖ and define the approximate ISAM operator Ãk‖ : L2(R) → L2([ka ,kb]), which

uses the rank-one approximation (4.4); we have

(Ãk‖ f )(k0) = H(k‖,k0)w1(k0)
∫ ∞

−∞
e iφ(k‖,k0)zζ1(z) f (k‖, z)dz.

We will show that Ãk‖ is compact and thus has a countable, discrete spectrum. The singular

system of Ãk‖ is the set of triples
{
σk‖, j ,uk‖, j , vk‖, j

}∞
j=1

. The non-negative scalars σk‖, j are the

singular values. The singular values are ordered such that σk‖,1 ≥ σk‖,2, . . . ≥ 0. The functions

uk‖, j ∈ L2([ka ,kb]) are called the left singular functions, and vk‖, j ∈ L2(R) are the right singular
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functions. The singular system satisfies the relations

(Ãk‖vk‖, j )(k0) =σk‖, j uk‖, j (k0) (4.8)

(Ã∗
k‖uk‖, j )(z) =σk‖, j vk‖, j (z). (4.9)

The left and right singular functions form orthonormal sets in L2([ka ,kb]) and L2(R), respec-

tively. We include any singular functions with singular values equal to zero in our definition of the

singular set; thus the left and right singular vectors form orthonormal bases for their respective

spaces. Moreover, the set of uk‖, j with non-zero singular value forms an orthonormal basis for

the range of Ãk‖ . Similarly, the set of vk‖, j with non-zero singular value forms an orthonormal

basis for the range of Ã∗
k‖ For this reason, the left and right singular functions are often called

“data-space” and “object-space” singular functions, respectively.

Applying Ãk‖ to both sides of (4.9) yields

(Ãk‖Ã
∗
k‖uk‖, j )(k0) =σ2

k‖, j uk‖, j ,

that is, the left singular vectors are eigenvectors Ãk‖Ã∗
k‖ with eigenvalue σ2

k‖, j . We use this

relation to study the singular system of Ãk‖ . We find the left singular functions by solving this

eigenvalue problem, and then obtain the right singular functions via (4.8).

In what follows, we we drop the k‖ from the subscript of the singular values and functions

when it is clear that only a single k‖ is under consideration.

4.3.2 The Gram Operator

We begin by constructing the Gram operator, Ãk‖Ã∗
k‖ . The kernel of this operator is

(Ãk‖ Ã∗
k‖)(k0,k ′

0) = H(k‖,k0)H(k‖,k ′
0)w1(k0)w1(k ′

0)
∫ ∞

−∞
|ζ1(z)|2 e i(φ(k‖,k0)−φ(k‖,k ′

0))zdz.

Concentrating on the integral;

∫ ∞

−∞
e i(φ(k‖,k0)−φ(k‖,k ′

0))z |ζ1(z)|2 dz =
∫ ∞

−∞
exp

{
iz

(
2k0 −

∣∣k‖
∣∣2

4k0
−2k ′

0 +
∣∣k‖

∣∣2

4k ′
0

)}
|ζ1(z)|2 dz

= γµ

π

∫ ∞

−∞
exp

{
iz

(
8k0k ′

0 +
∣∣k‖

∣∣2

2k0k ′
0

(k0 −k ′
0)

)}
(1+γ2µ2z2)−1dz

= exp

{
− ∣∣k0 −k ′

0

∣∣
γµ

(
2+

∣∣k‖
∣∣2

4k0k ′
0

)}
,
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where we have used the fact that µ,γ,k0,k ′
0 are each non-negative and the Fourier transform pair

∫ ∞

−∞
e−iωz

1+ z2
dz =πe−|ω|.

All together, we have

(Ãk‖ Ã∗
k‖)(k0,k ′

0) = H(k‖,k0)w1(k0)exp

{
− ∣∣k0 −k ′

0

∣∣
γµ

(
2+

∣∣k‖
∣∣2

4k0k ′
0

)}
H(k‖,k ′

0)w1(k ′
0).

We introduce two additional operators to make the factorization clear. First, define the function

G̃k‖(k0,k ′
0) = exp

{
− ∣∣k0 −k ′

0

∣∣
γµ

(
2+

∣∣k‖
∣∣2

4k0k ′
0

)}
, (4.10)

along with the integral operator G̃k‖ : L2([ka ,kb]) → L2([ka ,kb]),

(G̃k‖ f )(k0) =
∫ kb

ka

G̃k‖(k0,k ′
0) f (k ′

0)dk ′
0.

Define the function dk‖(k0) ∈ L2([ka ,kb]) by

dk‖(k0), H(k‖,k0)w1(k0),

and a “diagonal” operator Dk‖ : L2([ka ,kb]) → L2([ka ,kb]) that scales the input by dk‖ ; that is,

(Dk‖ f )(k0) = H(k‖,k0)w1(k0) f (k0).

The function dk‖ is continuous, real-valued, non-negative, bounded, and square-integrable; the

operator Dk‖ is bounded and self-adjoint. Using these operators, we have

Ãk‖Ã
∗
k‖ =Dk‖G̃k‖Dk‖ .

Proposition 4.2. The operators G̃k‖ and Ãk‖Ã∗
k‖ are both self-adjoint, Hilbert-Schmidt and thus

compact.

Proof. See Appendix B.3.

By the spectral theorem, the eigenfunctions of both Ãk‖Ã∗
k‖ and G̃k‖ (including those corre-

sponding to eigenvalues of zero) form an orthonormal basis for L2([ka ,kb]) [120, Theorem 3.19].

The eigenfunctions corresponding to the non-zero eigenvalues form a basis for the range of the
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operator.

Next, we show that the eigenfunctions of G̃k‖ are the solution to a certain Sturm-Liouville

differential equation. The eigenfunctions of Ãk‖Ã∗
k‖ are more challenging. Unfortunately, an

eigendecomposition of G̃k‖ does not directly lead to an eigendecomposition of Dk‖G̃k‖Dk‖ . Sup-

pose we find the eigendecomposition for G̃k‖ , say, UT U∗ where U is unitary and T is diagonal.

Then Dk‖G̃k‖Dk‖ =Dk‖UT U∗Dk‖ , but the operator Dk‖U∗ is, in general, not unitary.

Still, an eigendecomposition of G̃k‖ is useful, especially when coupled with the nice properties

of our diagonal operators. Using Lemma B.4, if λn is the n-th eigenvalue of G̃k‖ then the n-th

eigenvalue of Dk‖G̃k‖Dk‖ , say ξn , is bounded between

λn inf
ka<k0<kb

H(k‖,k0)w1(k0) ≤ ξn ≤λn sup
kb<k0<ka

H(k‖,k0)w1(k0). (4.11)

Moreover, we can get a generalized eigendecomposition for Ãk‖Ã∗
k‖ . We assume D−1

k‖ exists;

otherwise, either 0 is the only point in the spectrum, or, owing to the monotonacity of the scaling

function, we can restrict our attention from L2[ka ,kb] to a region L2[k ′,kb] where the inverse

exists. Now, suppose ϕ is an eigenfunction of G̃k‖ with eigenvalue λ; we have G̃k‖ϕ = λϕ. Let

ψ=D−1
k‖ ϕ. Then we have

Ãk‖Ã
∗
k‖ψ=Dk‖G̃k‖Dk‖D

−1
k‖ ϕ=λDk‖ϕ=λDk‖Dk‖ψ, (4.12)

which is similar to the finite dimensional generalized eigenvalue problem Ax =λBx.

4.3.3 Conversion to a Sturm-Liouville Eigenvalue Problem

The following theorem identifies the eigenfunctions of G̃k‖ with the solution of a certain Sturm-

Liouville (SL) ordinary differential equation.

Theorem 4.1. Let f ∈ L2[ka ,kb] be an eigenfunction of G̃k‖ with eigenvalue λ. Define

p(k0),
2NA2µk2

0∣∣k‖
∣∣2 +8k2

0

. (4.13)
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Then f is the unique solution to the regular Sturm-Liouville problem

− d

dk0

(
p(k0)

d f

dk0

)
+ 1

p(k0)
f = 2

λ
f , (4.14)

f (ka)−p(ka) f ′(ka) = 0, (4.15)

f (kb)+p(kb) f ′(kb) = 0 (4.16)

over the interval [ka ,kb].

Proof. See Appendix B.3.1.

The eigenvalue problem (4.14), with boundary conditions (4.15) and (4.16), is the simplest

type of a SL problem. The function p(k0) is in C 1([ka ,kb]) and does not change sign, the problem

is over a finite interval [ka ,kb], and the boundary conditions are separated. Such a problem is

called a regular, self-adjoint Sturm-Liouville problem.

Consider the differential operator L : C 2[ka ,kb] →C 2[ka ,kb]

L f ,− d

dk0

(
p(k0)

d f

dk0

)
+ 1

p(k0)
f .

Theorem 4.1 states that the eigenfunctions of L are also eigenfunctions as G̃k‖ , and the eigen-

values of L are inversely proportional to those of G̃k‖ . Indeed, if the domain of L is restricted to

functions that satisfy the boundary conditions (4.15) and (4.16), we have that L and G̃k‖ are the

inverse of one another. Put another way, G̃k‖ is the Green’s function for the SL problem (4.14)

to (4.16).

The approach we have taken— obtaining the singular system of a linear operator by tran-

sitioning to the analysis of a SL eigenvalue problem— brings to mind the seminal work of

Slepian, Landau and Pollak [137–141]. They sought to find eigenfunctions of a certain integral

operator, related to space-and-frequency limited Fourier measurements. They found a cer-

tain well-studied SL differential operator that commutes with their integral operator, and thus

obtained the eigensystem by analyzing the resulting differential equation.

The following result is a direct application of standard results on regular, self-adjoint SL

problems; e.g. [142, Theorem 4.3.1]. We say two sequences
{

fn
}

and
{

gn
}

are asymptotically

equivalent as n →∞ if limn→∞
fn
gn

= 1.

Corollary 4.2. Let f be an eigenfunction of G̃k‖ with eigenvalue λ.

(P1) The eigenvalues of G̃k‖ are countable, real, and can be ordered λ1 >λ2 > . . . > 0.

(P2) The (normalized) eigenfunctions of G̃k‖ form an orthonormal basis for L2[ka ,kb].
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(P3) The eigenvalues λn are asymptotically equivalent to n−2 as n →∞.

(P4) The n-th eigenfunction has exactly n −1 zeros in [ka ,kb].

Properties (1−3) are expected and can be deduced from properties of compact, self-adjoint

integral operators [143]. Property (4), however, is new, and has implications to the resolution of

the imaging system.

In general, the solutions to the SL problem described in Theorem 4.1 cannot be given in closed

form. Fortunately, the eigenvalue problem can be easily solved numerically using established

methods, such as SLEIGN2 [144].

4.3.4 How Does the Leading Eigenvalue Vary With k‖?

We are interested in the behavior of the eigenvalues of G̃k‖ as a function of k‖ and the imaging

parameters kb ,ka , and NA. Brown et al. developed bounds for eigenvalues of regular, self-

adjoint Sturm-Liouville problems based on a combination of Soblev inequality and the Prüfer

transformation. Translating their results to our problem, we have [145, Theorem 2.3 and Remark

2.3]

(n −1)2 ≤ 1

4

(∫ kb

ka

1

p(k0)
dk0

)(∫ kb

ka

max

{
2

λn
− 1

p(k0)
,0

}
dk0

)
for n ≥ 2,

and for n = 1,

1 ≤ 1

4

(∫ kb

ka

1

p(k0)
dk0

)(∫ kb

ka

max

{
2

λ1
− 1

p(k0)
,0

}
dk0

)
. (4.17)

The inequality (4.17) gives insight into how the leading eigenvalue, behaves as function of the

system parameters. The right side is non-zero if 2p(k0) > λk‖,1 for at least one k ∈ [ka ,kb]. As

p(k0) is monotone increasing, the right side is non-zero if and only if

λ1 ≤ 2p(kb) = 2NA2(ka +kb)k2
b∣∣k‖

∣∣2 +8k2
b

.

Thus the leading eigenvalue is a decreasing function of
∣∣k‖

∣∣2 and is O
(∣∣k‖

∣∣−2
)
. Interestingly,

changing NA affects all leading eigenvalues uniformly; there is no coupling between
∣∣k‖

∣∣2 and

NA. We must be careful to remember that this behavior describes the eigenvalues of G̃k‖ , not

Ãk‖ ; indeed, we know from (4.11) that the leading eigenvalue of Ãk‖ is O
(
e−|k‖|2/NA2

)
.

Next, we describe two special cases in which the eigenfunctions can be found in closed

form. First, we consider the special case of k‖ = 0; afterwards, we return to the narrowband

approximation.
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4.3.5 Special Case: G̃0

The eigenvalue problem is considerably simplified when
∣∣k‖

∣∣= 0. In this case, the coefficient

function p(k0) reduces to

p(k0) = NA2µ

4
;

i.e., a constant function of k0. The SL problem becomes (4.14) becomes

−NA2µ

4
f ′′+

(
4

NA2µ
− 2

λ

)
f = 0, (4.18)

f (ka)− NA2

4
f ′(ka) = 0,

f (kb)+ NA2

4
f ′(kb) = 0.

Theorem 4.3. The n-th (unnormalized) eigenfunction of G̃0 is

fn(k0) =


cos(τn (k0 −kmid)) where τn =− 4

µNA2 cot

(
τn

ka −kb

2

)
> 0 n odd;

sin(τn (k0 −kmid)) where τn = 4

µNA2 tan

(
τn

ka −kb

2

)
> 0 n even ,

where τn > τi for i = 1, . . . ,n −1 and kmid , (kb +ka)/2. The n-th eigenvalue is

λn = 8µNA2

16+τ2
nµ

2NA4 . (4.19)

Proof. See Appendix B.4.

As the eigenvalues are determined by the solution of a transcendental equation, we cannot

write them in closed form. However, we can bracket each solution of the transcendental equation

into intervals of width π/(kb −ka), thus providing upper and lower bounds for each eigenvalue.

Corollary 4.4. The eigenvalues of G̃0 satisfy

16(kb −ka)2(kb +ka)NA2

(n +1)2π2NA4(ka +kb)2 +64(kb −ka)2
≤λn ≤ 64(kb −ka)2(kb +ka)NA2

n2π2NA4(ka +kb)2 +64(kb −ka)2
.

Proof. The result follows by combining the interval bounds of Lemma B.3 with (4.19).
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4.3.6 Special Case: Approximate Eigenfunctions in the Narrowband Regime

In general, the solutions of SL problem (4.14) cannot be expressed in closed form. However, the

solutions to a closely related problem can be written in closed form. We simplify the problem

by linearizing the coefficient function p(k0) about the point k = µ and solve the resulting SL

eigenvalue problem. Let p̃(k0) denote the linearization of p(k0) about k =µ. We have

p(k0) = p̃(k0)+O
(
(k0 −µ)2) ,

thus p̃(k0) is a good approximation to when
∣∣k0 −µ

∣∣ is small; this is the narrowband regime. The

linearized function p̃(k0) is given by

p̃(k0),
2µ3NA2(8µ2 − ∣∣k‖

∣∣2)

(8µ2 + ∣∣k‖
∣∣2)2

+ 4µ2NA2
∣∣k‖

∣∣2

(8µ2 + ∣∣k‖
∣∣2)2

k0

=β
(
α+2

∣∣k‖
∣∣2 k0

)
,

where we introduced scalars

α, 8µ3 −µ ∣∣k‖
∣∣2 ,

β,
2µ2NA2(

8µ2 + ∣∣k‖
∣∣2

)2 .

Spectral properties of perturbed Sturm-Liouville problems have been studied. In the case

of regular, self-adjoint problems with separated boundary conditions, such as the problem

considered in Theorem 4.5, the n-th eigenvalue is a continuous function of p̃ and 1/p̃. Under

minor additional conditions the eigenvalue is also a continuous function of the boundary

conditions [142, Section 4.4] [146]. These results imply the linearized problem is a good surrogate

for the true eigenvalue problem.

Theorem 4.5 (Solutions to Linearized Sturm-Liouville Differential Equation). Let f̃ , λ̃ be such

that

− d

dk0

(
p̃(k0)

d f̃

dk0

)
+ 1

p̃(k0)
f̃ = 2

λ̃
f̃ (4.20)

f̃ (ka)− p̃(ka) f̃ ′(ka) = 0,

f̃ (kb)+ p̃(kb) f̃ ′(kb) = 0.
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There exist unique scalars c1,c2 such that

f̃ (k0) = c1 J

 1

β
∣∣k‖

∣∣2 ,
1∣∣k‖
∣∣2

√√√√2(α+2
∣∣k‖

∣∣2 k0)

βλ̃

+ c2Y

 1

β
∣∣k‖

∣∣2 ,
1∣∣k‖
∣∣2

√√√√2(α+2
∣∣k‖

∣∣2 k0)

βλ̃

 , (4.21)

where J (n, x) is the n-th order Bessel function of the first kind, and Y (n, x) is the n-th order Bessel

function of the second kind.

Proof. See Appendix B.5.

Unlike the case of
∣∣k‖

∣∣= 0, we cannot say that c1 6= 0 implies c2 = 0 and vice versa. By standard

properties of regular, self-adjoint Sturm-Liouville problems, there are only countably many

choice of λ̃ for which the function (4.21) can satisfy the boundary conditions [142, Theorem

4.3.1]. Fortunately, λ̃ can be easily determined by numerical methods by way of the Prüfer

transformation [147, Section 4.3.5].

Still, we can get some insight from the form of the solution (4.21). The eigenvalues must decay

to zero as n tends to infinity. For sufficiently small λ̃, we can use the large argument asymptotic

expansion of Bessel functions, namely [148, Equations 10.17.3, 10.17.4]. We combine the leading

order of the large-argument expansion with the quadratic approximation

√
α+2

∣∣k‖
∣∣2 k0 =

√
8µ3 +µ ∣∣k‖

∣∣2 +
∣∣k‖

∣∣2√
8µ3 +µ ∣∣k‖

∣∣2
(k0 −µ)+O

(
(k0 −µ)2) ,

which is accurate in the narrowband regime. We obtain

J

 1

β
∣∣k‖

∣∣2 ,
1∣∣k‖
∣∣2

√√√√2(α+2
∣∣k‖

∣∣2 k0)

βλ̃

∼
(

2βλ̃

α+2k0
∣∣k‖

∣∣2

) 1
4

cos

c2 + (k0 −µ)√
λ̃β

(
8µ3 +µ ∣∣k‖

∣∣2
)
,

Y

 1

β
∣∣k‖

∣∣2 ,
1∣∣k‖
∣∣2

√√√√2(α+2
∣∣k‖

∣∣2 k0)

βλ̃

∼
(

2βλ̃

α+2k0
∣∣k‖

∣∣2

) 1
4

sin

c2 + (k0 −µ)√
λ̃β

(
8µ3 +µ ∣∣k‖

∣∣2
)


as λ̃ tends to zero. Here, c1 and c2 are constants that do not depend on λ̃. Note (α+2k0
∣∣k‖

∣∣2)−1/4

is slowly varying, especially compared to the oscillatory trigonometric terms, and can be ne-

glected whenever
∣∣k‖

∣∣ is small. All together, these approximations imply that the high-order

eigenfunctions of G̃k‖ are well-approximated by trigonometric functions.
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Table 4.1: Parameters for eigenvalue examples.

ka 0.5 rad ·µm−1 Lx 402.1 µm Lz 3217 µm

kb 1 rad ·µm−1 Nx 128 Nz 4096

Nk 384 ∆x π µm ∆z 0.25π µm

NA 0.2

4.3.7 Examples

We demonstrate the results of this section using numerical examples. We want to compare

the eigensystem found by solving the Sturm-Liouville problem against the eigensystem of the

integral operators G̃k‖ and left singular functions of Ãk‖ .

We compute the solution to the Sturm-Liouville using SLEIGN2 [144]. We calculated the

eigensystem and singular system of discretized approximations to G̃k‖ and Ãk‖ . We formed a

matrix containing samples of the corresponding kernels and then computed the SVD of this

matrix. The discrete version of G̃k‖ was formed by sampling (4.10). Importantly, we formed the

discretized approximation to Ak‖ using the exact ISAM kernel (3.3); that is, Ak‖ was not formed

using the paraxial approximation. The discretization parameters are listed in Table 4.1.

As Ãk‖Ã∗
k‖ =Dk‖G̃k‖Dk‖ , we should have G̃k‖ =D−1

k‖ Ãk‖Ã∗
k‖D

−1
k‖ if Dk‖ is invertible. However,

as Ak‖ is not formed using the paraxial approximation, we do not have Ak‖A∗
k‖ =Dk‖G̃k‖Dk‖ .

We use the difference between D−1
k‖ Ak‖A∗

k‖D
−1
k‖ and G̃k‖ to evaluate robustness to the paraxial

approximation.

First, we consider the case k‖ = 0. We compare the eigenvalues predicted by solving the Sturm-

Liouville problem (4.18) with the eigenvalues of G̃0 and those of D−1
0 A0A∗

0D−1
0 . The eigenvalues

are plotted in Fig. 4.7. The eigenvalues of G̃0 coincide with those found using SLEIGN2. The first

five eigenvalues of G̃0 are lower than the corresponding eigenvalues of D−1
0 A0A∗

0D−1
0 .

The eigenfunctions of G̃0 and A0A∗
0 are shown in Fig. 4.8. As expected, the eigenfunctions of

G̃0 are sinuosidal. The generalized eigenfunction relationship (4.12) is demonstrated in Fig. 4.9.

Clearly, D0D0u0,15(k0) ≈A0A∗
0 u0,15(k0).

Next, we consider k‖ = (0.15,0). In this case, we also computed the eigensystem using the

linearized approximation discussed in Section 4.3.6. The eigenvalues of G̃k‖ and D−1
k‖ Ak‖A∗

k‖D
−1
k‖ ,

along with the eigenvalues found using the Sturm-Liouville solution, are shown in Fig. 4.10. The

eigenvalues found by solving linearized Sturm-Liouville problem are in agreement with the non-

linearized form and with the eigenvalues of G̃k‖ . The eigenfunctions are shown in Fig. 4.11; the

linearized and non-linearized versions are in good agreement. Although the first eigenfunction

of G̃k‖ does not look particularly sinusoidal, the 6th and 16th do. This is in agreement with the

previous section. The eigenfunctions of Ak‖A∗
k‖ are markedly different. However, Fig. 4.12 shows
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Figure 4.7: Eigenfunctions of G̃0 computed according to Theorem 4.3 and discretized
approximations to G̃0 and A0A∗

0 . Here, k‖ = (0.15,0).

the generalized eigenfunction relationship (4.12) still holds.

4.4 Numerical Methods

We now turn our attention to the practical implications of our rank-r approximation to the

weighting function (4.7). We begin discussing the application of the forward ISAM operator, A,

and its adjoint, A∗. We then apply our algorithm to the task of multi-focal ISAM reconstruction.

4.4.1 Forward and Adjoint Operators

Let f ∈ L2(R) be a compactly supported, non-dispersive object.

We define an approximate ISAM operator Ã : L2(R3)×L2(R3) that uses our rank-r approxima-

tion to W (k0, z);

(Ã f )(k‖,k0) =
r∑

j=1
H(k‖,k0)w j (k0)

∫ ∞

−∞
ζ j (z) f (k‖, z)e iφ(k‖,k0)zdz. (4.22)

The adjoint of this operator is

(Ã∗ϕ)(k‖, z) =
r∑

j=1
ζ∗j (z)

∫ kb

ka

H(k‖,k0)w j (k0)ϕ(k‖,k0)e−iφ(k‖,k0)zdz. (4.23)

Evaluation of (4.22) and (4.23) requires only pointwise multiplication, vector addition, and the
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Figure 4.8: Selected eigenfunctions of G̃0 and A0A∗
0 .

computation of the Fourier transform at unevenly spaced locations; in particular, we need the

Fourier transform variable at locations kz =φ(k‖,k0). This final task can be accomplished using

Non-Uniformly spaced FFT (NUFFT) or Unevenly Spaced FFT (USFFT) algorithms [149–151],

but for simplicity we apply a zero-padded FFT and use linear interpolation to determine the

Fourier transform at the desired locations.

The proposed algorithm for the forward operator is given in Algorithm 4 and the proposed

algorithm for the adjoint is listed in Algorithm 5.

Note that care must be taken with the resampling steps of Algorithms 4 and 5. The resampling

step used in the adjoint operation must be adjoint to the interpolation step used in the forward

operator. The resampling operation in the application of Algorithm 5 should be anterpolation,

rather than interpolation.
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Figure 4.9: Demonstrating the generalized eigenfunction relationship (4.12).
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Figure 4.10: Eigenfunctions of G̃k‖ computed according to (4.14), (4.20), and discretized
approximations to G̃k‖ and Ak‖A∗

k‖ . Here, k‖ = (0.15,0).
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Algorithm 4 Application of the Forward Operator Using Rank-r Approximation

INPUT: η̂(k‖, z)
OUTPUT: ϕ(k‖,k0) = (Ãη̂)(k‖,k0)

1: for i ← 1,r do
2: ξ j (k‖, z) ← ζ j (z)η̂(k‖, z) .Depth weighting
3: Zero-pad ξ j (k‖, z)
4: ϕ′

j (k‖,kz) ← ∫
ξ j (k‖, z)e−ikz zdz . Apply 1D FFT

5: ϕ j (k‖,k0) ← w j (k0)ϕ′(k‖,kz =φ(k‖,k0)) . Interpolate and Scale
6: end for
7: ϕ(k‖,k0) ←∑r

j=1ϕ j (k‖,k0)

Consider the (unapproximated) ISAM operator, with action A : L2(R3)×L2(R3)

(Aη)(k‖,k0) =
∫ ∞

−∞
Â(k‖,k0, z)η(k‖, z)dz. (4.24)

We discussed the discretization of (4.24) into a matrix-vector product in Section 3.7.2. Suppose

we discretize the spatial domain to N points along each of the x, y and z dimensions, and

suppose obtain N wavenumber measurements. Let η̂ ∈CN 3
be the discretization of η; we take

η̂ to be in the transverse Fourier domain. Let Â ∈ CN 3×N 3
be the matrix such that Âη̂ is the

discretized form of A f . As we discussed, the transverse shift invariance of the ISAM operator

leads to a block-diagonal matrix in the transverse (discrete) Fourier domain. Thus Âη̂ can

be implemented as N 2 separate dense matrix-vector multiplications; one for each of the N 2

transverse Fourier modes. Each of these matrices is of size N ×N . We must store N 4 elements,

and applying the forward operator will require O(N 4) FLOPS. If η̂ is not already in the transverse

Fourier domain, the forward operator requires an additional 2D-FFT, but this does not change

the storage requirements or the order of computation required.

While the block-diagonal structure of Â is helpful (compare to storing N 6 elements and O(N 6)

FLOPS), it remains a computationally challenging problem. For a modest problem size of

N = 256 the direct matrix-vector approach requires ≈ 34 GB of storage (assuming 32-bit complex

numbers), although storage needs can be reduced somewhat by exploiting circular symmetry.

Moreover, each matrix element requires evaluating a two-dimensional oscillatory integral, and

thus cannot be easily computed on-the-fly.

In contrast, our proposed method requires only O(N ) storage and applying the forward opera-

tor requires O(N 3 log N ) FLOPS.
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Algorithm 5 Application of the Adjoint Operator Using Rank-r Approximation

INPUT: ϕ(k‖,k0)
OUTPUT: f (k‖, z) = (Ã∗ϕ)(k‖, z)

1: for i ← 1,r do
2: % j (k‖,k0) ← H(k‖,k0)w j (k0)ϕ(k‖,k0) . Scale
3: %′j (k‖,kz) ← %′j (k‖,kz =φ(k‖,k0)) . Anterpolate

4: f j (k‖, z) ← ζ j (z)
∫
%′j (k‖,kz)e ikz zdz . Apply 1D Inverse FFT and Scale

5: end for
6: f (k‖, z) ←∑r

j=1 f j (k‖, z)

4.4.2 Application: Multifocal ISAM

We consider the task of image reconstruction from ISAM data acquired at multiple focal planes.

As discussed in Chapter 3, ISAM provides depth-invariant resolution.

By solving the linearized scattering problem, ISAM obtains depth-invariant resolution; how-

ever, the signal-to-noise ratio (SNR) can be expected to fall off like |z − zF |−1, ultimately limiting

the depth of field. This can be seen as an effect of the function ζa(z − zF ) in the asymptotic

approximation (3.11) [152] .

To obtain higher SNR and larger depth of field, Yang et al. proposed an extension of ISAM that

utilizes data from NF ≥ 1 focal planes [153]. Their algorithm initially treats the data from each

focal plane as independent and applies the Fourier inversion algorithm. The final reconstruction

is the weighted average of the NF independent reconstructions.

We propose a different method: we pose image reconstruction as the solution of a penalized

least squares problem. The resulting optimization problem must be solved using iterative

methods, even when Tikhonov regularization is used. We demonstrate that using asymptotic

approximate kernel (3.6) in combination with multiple focal planes and an iterative algorithm

leads to catastrophic errors.

Let
{

ŝnF

}NF
nF=1 be the collection of ISAM measurements, where ŝnF corresponds to the nF -th

focal plane.

Similarly,
{

ÂnF

}NF

i=1 is the collection of ISAM matrices. At this point, we do not specify how

products with ÂnF are computed; we will consider both dense matrix multiplication using the

unapproximated kernel, and Algorithms 4 and 5. We stack the ŝnF and ÂnF into s̄ ∈CNx Ny Nk NF

and Ā ∈CNx Ny Nk NF×Nx Ny Nz .

We want to solve the Tikhonov-regularized least squares problem,

min
η̂

1

2
‖s̄− Āη̂‖2

2 +λr ‖η̂‖2
2,
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Table 4.2: Parameters for image reconstruction examples.

Nx 512 Lx 512.0 µm ∆x 1.0 µm

Nz 1536 Lz 1536.0 µm ∆z 1.0 µm

Nk 512 ka 0.5 rad ·µm−1 kb 1.0 rad ·µm−1

NA 0.2 λmin 6.3 µm−1 λmax 12.6 µm−1

NF 2 zF [−225,225] µm

where ‖·‖2 is the `2 norm and λr > 0 is the scalar regularization parameter.

The normal equations are (
ĀHĀ+λr I

)
η̂= ĀHs̄,

or in expanded form, (
NF∑

nF=1
ÂH

nF
ÂnF +λr I

)
η̂=

NF∑
nF=1

ÂH
nF

ŝnF . (4.25)

We solve the linear system (4.25) using the Conjugate Gradient (CG) algorithm. CG requires only

products with Ā and ĀH.

We consider three methods to apply the ISAM forward operator. First, we use dense matrix

multiplication, where ÂnF is the discretized version of the exact ISAM kernel as described in

Section 3.7.2. We refer to this as the “exact approach”. Second, we consider the use of the

asymptotic kernel (3.6). To reconcile the coupling between k0 and z, as discussed in Section 3.6.1,

we use the hybrid approach (3.11). In this case, the forward and adjoint operators are applied

using Algorithms 4 and 5. We call this the “asymptotic approach”. Finally, we use the proposed

low-rank factorization of W (k0, z) given by (4.7) in combination with Algorithms 4 and 5. We call

this the “rank-r ” approach.

We implement our algorithms on a NVidia 1080 Ti GPU using a combination of Python and

CUDA [87, 88].

4.4.3 Experiments

Our simulation is restricted to two spatial dimensions, (x, z). Our phantom consists of 16 point

scatterers lying on the x = 0 spaced 50 µm apart, covering a total of 750 µm. We use two focal

planes, located at ±225 µm. The system remaining system parameters are listed in Table 4.2.

We generated data according to the exact forward model (3.9). We model the point scatterers
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as a sum of Dirac delta functions,

η(r‖, z) =∑
j
δ(3) (r‖− r||, j , z − z j

)
η̂(k‖, z) =∑

j
e ir||, j ·k‖δ(z − z j ).

Inserting this form into (3.9) and applying the sifting property of the delta function yields our

measurements,

Ŝ(k‖, zF ,k0) =
∫

Â(k‖, z − zF ,k0)
∑

j
e ir||, j ·k‖δ(z − z j )dz

=∑
j

Â(k‖, z j − zF ,k0)e ir||, j ·k‖ .

We obtain Â(k‖, z j −zF ,k0) at the necessary locations by evaluating (3.4) using numerical quadra-

ture.

We applied 1000 CG iterations with λr = 300. The magnitude of the reconstructed images

are shown in Fig. 4.13. Figure 4.13(a) shows the result using the “exact” approach. This serves

as our baseline for further comparisons. The point targets are correctly localized and they

appear to have uniform magnitude. This is validated in Fig. 4.14, where we plot the profile of the

reconstruction along x = 0. For clarity, we show only z > 0. The “exact” reconstruction shows

some amplitude nonuniformity near the focal plane (z = 225). Figure 4.13(b) shows the result

using the “asymptotic” approach. This reconstruction is clearly incorrect. The bright artifacts

occur near z =±170; this is where we switch from the near-focus to far-from-focus regimes. We

do not include these results in Fig. 4.14.

Figure 4.13(c) shows the results using the rank-r approach with r = 1; this is our proposed

modification of the narrowband and paraxial approximation from the original ISAM paper [99].

The results are much better than the asymptotic case, but upon examining the 1D profiles in

Fig. 4.14, we see the amplitude fluctuates up to 20%. Note that in this experiment, ka = 0.5 and

kb = 1. This is not a good fit for the narrowband approximation, which holds for (kb −ka)/ka ≈ 1.

Finally, Fig. 4.13(d) shows the result using the rank-r approach with r = 2. The results are in

close agreement with the “exact” case. This demonstrates that a higher-order approximation to

W is useful in extending the approximation beyond the narrowband regime.
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Figure 4.13: Modulus of reconstructed point targets from data acquired at two focal planes.
System parameters listed Table 4.2. The red dashed lines denote the location of the two focal
planes. All reconstructions used Tikhonov regularization with λ= 102. (a) Reconstruction using
the exact ISAM kernel. (b) Reconstruction using the asymptotic approximate ISAM kernel
described in Section 3.4.2. (c) Reconstruction using the rank-one approximation (4.4) with one
term (r = 1). (d) Reconstruction using the rank-r approximation (4.7) with two terms (r = 2).
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Figure 4.14: Top : Horizontal profiles of the modulus of reconstructed point targets shown in
Fig. 4.13. Profiles taken at x = 0. For clarity, we show only the halfspace z > 0. Bottom: Zooming
in to the behavior of the reconstructed peaks. The dashed lines follow connect the reconstructed
peaks to highlight the difference between the reconstructions with r = 2 and the exact kernel.
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Chapter 5

Composition-Aware Spectroscopic Tomography

5.1 Introduction

Chemically specific imaging provides quantitative information about the distribution of chem-

icals within a target. This may be accomplished through the use of exogenous chemicals or

molecular staining to improve contrast when the target is imaged with visible light. For many

applications, these application of these dyes cannot be introduced in situ, and the agents are

often damaging to the target.

Vibrational spectroscopy with mid-infrared light presents a solution [154]. Absorption of

mid-infrared light depends on chemical composition. The underlying chemistry of a target can

be determined, non-invasively, by illuminating the object with mid-infrared light and recording

an absorption spectrum.

In principle, mid-infrared spectroscopy can provide chemically specific, spatially resolved

imaging in three spatial dimensions using a confocal scanning strategy: the target would be

scanned point-by-point in three spatial dimensions, and an absorption spectrum would be

measured at each point [155, 156]. For a target with two spatial dimensions, this is feasible- a

typical data set of 1024 spectral samples over a 1024×1024 pixel grid requires on the order an

of hour of acquisition time and generates roughly 25 GB of data. Scanning along a third spatial

dimension (depth) makes imaging even a single target impractical: the resulting dataset would

require over 25 terabytes of storage and roughly a month of acquisition time.

The key challenge in jointly measuring structural and chemical information is dimensionality:

with no constraints, the target can vary in three spatial and one spectral dimension. Existing

imaging modalities explicitly or implicitly rely on simple signal models to reduce the dimension-

ality of the target and allow for practical imaging.

Optical Coherence Tomography (OCT) and Interferometric Synthetic Aperture Microscopy

(ISAM) are scattering-based imaging modalities that reconstruct the 3D spatial distribution of a

target by ignoring spectral variation, although limited spectral information can be recovered at

the expense of spatial resolution by way of time-frequency analysis [157–159].
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Fourier Transform Infrared (FTIR) spectroscopy, a workhorse of academic and industrial labs

worldwide, neglects all spatial variation within the target—thus reducing the target to a single

dimension. An extension, FTIR microspectroscopy, provides spatially and spectrally resolved

measurements but requires the target to be very thin with only transverse heterogeneities.

Unmodeled spatial variations in the target cause scattering and diffraction, ultimately distorting

the measured spectra [155, 156].

We propose an approach that bridges these two extremes and allows for practical, chemically

specific imaging. We call this spectroscopic tomography. Rather than finely scanning the focus

through the axial dimension of the target, we acquire data at a small number of en-face focal

planes. The target is recovered by solving the linearized scattering problem. A low-dimensional

model is used to regularize the inverse problem: we model the target as the linear combination

of a finite number of distinct chemical species. This is called the N -species approximation. We

develop a set of algebraic conditions for unique recovery and examine the conditioning of the

inverse problem. Reconstructions from synthetic phantom data illustrate the promise of the

model.

Preliminary research in this direction considered this problem, and the N -species model,

with sample variation in one spatial dimension [160]. Their simulated results involve several

unrealistic assumptions, leading to results of unrealistically high quality. We extend this work

in several directions: we (i) use a non-asymptotic forward model; (ii) demonstrate material-

resolved reconstruction of samples with two spatial dimensions (one transverse and depth,

easily extended to three spatial dimensions) from data that is not generated according to the

first Born approximation; and (iii) refine the conditions for recovery of a sample consisting of

N -species from interferometric scattering experiments.

In Section 5.2 we describe our measurement model. Section 5.3 describes the N -species

model in greater detail. We discuss the sampling and discretization procedure in Section 5.4.

We investigate the inverse problem in Section 5.5, and demonstrate the method by performing

numerical reconstructions from simulated measurements in Section 5.6.

5.1.1 Notation

We write the set of integers {1,2, . . . , N } as [N ] and the imaginary unit as i. Finite-dimensional

vectors are denoted by lower-case bold letters, e.g. x ∈ CN . Finite-dimensional matrices and

tensors are written using upper-case bold letters. We adopt Matlab-style indexing notation:

given a matrix A ∈ CN×M , its i -th row is A[i , : ], the j -th column is A[ : , j ], and i , j -th element

is A[i , j ]. We denote the vector vec(A) ∈ CN M is formed by stacking the columns of A into a
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single vector (i.e., row-major ordering). The range, null space, and rank of a matrix A are written

range{A} ,null {A}, and rank{A}. Given x ∈CN , the diagonal matrix diag{x} ∈CN×N has the entries

of x along its main diagonal. Similarly, given a set of N × M matrices A1, . . . ,AL, the matrix

blkdiag(A1, . . . ,AL) ∈CLN×LM is block-diagonal with the collection of Ai along its block diagonal.

The transpose (resp. Hermitian transpose) of a matrix is written AT (resp. AH). The `p norm

of x ∈ CN is ‖x‖p =
(∑N

j=1

∣∣x[ j ]
∣∣p

)1/p
. For vectors in R2 or R3 we use the shorthand |r | = ‖r‖2.

The N ×N identity matrix is IN , and the vector [1,1, . . .1]T ∈ RN is written 1N . The tensor (or

Kronecker) product between matrices A and B is A⊗B.

5.2 Forward Model: Interferometric Synthetic Aperture
Microscopy

Our forward model is described in detail in Chapter 3. To review, we model our sample through its

complex susceptibility η(r‖,k0). Here, r = (x, y, z) = (r‖, z), where r‖ are the transverse dimensions

and z indicates the axial dimension. We assume that η is (spatially) supported in the bounded

region Γ⊂R3. The free-space wavenumber is k0. Importantly, we do not assume the object is

non-dispersive.

In the transverse Fourier domain, our measurements are of the form

Ŝ(k‖, zF ,k0) =
∫

Â(k‖, z − zF ,k0)η̂(k‖, z,k0)d z, (5.1)

where Â is the unapproximated ISAM kernel given by (3.4). We do not use the approximate

formulations described in Section 3.4 or Chapter 4. However, we use the insight provided by

these approximations as a guide; in particular, the projection-slice interpretation described in

Section 3.5 informs our sampling procedure and helps to establish fundamental limits of the

imaging system.

5.3 The N -Species Model

5.3.1 The Model

The fundamental problem of spectroscopic tomography is the dimensionality of the sample:

an arbitrary sample can vary in four dimensions (three spatial and one spectral). As discussed

in Section 3.5, measurements of the form (5.1) acquired at a single focal plane can be related
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to the Fourier transform of the sample along a three-dimensional surface. Acquiring a fourth

dimension of data—in our case, by scanning in three spatial and one spectral dimension—is

prohibitively expensive.

Existing imaging modalities use simplified signal models to reduce the dimensionality of the

sample and allow for practical imaging. We have seen that ISAM assumes is either non-dispersive

or has (known) spatially invariant dispersion characteristics. In this case, the susceptibility is

of the form η(r,k0) = p(r)h(k0), where p(r) captures the spatial density of the target and h(k0)

characterizes the wavelength-dependent dispersion characteristics. If h(k0) is known, only p(r)

must be determined—thus reducing the problem to recovery of a three-dimensional object.

Diffraction tomography, reflection tomography, and optical coherence tomography also assume

non-dispersive targets. Conversely, Fourier Transform InfraRed (FTIR) spectroscopy of a bulk

medium assumes that the sample is spatially homogeneous, so that η(r,k0) = h(k0). An extension,

FTIR microscopy, models the sample as a thin absorbing screen; thus η(r,k0) = η(r‖,k0), a three-

dimensional object.

These examples severely restrict the class of samples that can be imaged. We propose a model

that is more expressive than these examples while still allowing practical imaging.

Definition 5.1 (The N -species model [160]). An object, described by a susceptibility η(r,k0), is

said to satisfy the N -species model if

η(r,k0) =
Ns∑

ns=1
pns (r)hns (k0). (5.2)

The function pns (r) captures the spatial variation of the ns-th species and is called the spatial

density. If species ns is not present at location r, then pns (r) = 0. The complex function hns models

the wavelength-dependent properties of the ns-th species and is called the spectral profile.

The N -species model, introduced in [160], is a rank Ns approximation to a general susceptibil-

ity. A similar decomposition has been applied to magnetic resonance spectroscopic imaging; in

this context, it is called the Partially Separable (PS) function model [161–164]. A similar model is

used for material decomposition in X-ray tomography [165, 166].

The N -species model (5.2) is physically justifiable. The susceptibility of a linear, isotropic,

dielectric medium is a well-modeled by a sum of Lorentzian functions [167]; that is,

η(r,k0) = p(r)

(
σ0(r)+

Nl−1∑
n=1

σn(r)

ν2
n(r)−k2

0 − iγn(r)k0

)
, (5.3)

where Nl is the number of Lorentzian functions, νn is called the resonance frequency, σn is the

oscillator strength and γn is the damping constant. These quantities depend on the electron
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binding characteristics of the medium. The spatial density is defined as p(r), %(r)e2(mε0)−1,

where %(r) is the electron density of the medium, ε0 is the permittivity of free space, and e,m are

the electron charge and mass, respectively.

A single-species model, based on (5.3), has been used to compensate for dispersion effects

in multispectral intensity-only diffraction tomography [168]. It is assumed that the electron

binding characteristics of the medium are uniform within the medium; only the electron density

% is position dependent. We extend this to the multiple-species regime. Suppose the object

η comprises Ns distinct materials. For ns ∈ [Ns], let %ns be the electron density of the ns-th

chemical, and define

pns (r),


%ns (r)e2

mε0
, if species ns present at location r,

0, otherwise.

As the electron binding characteristics are spatially invariant by assumption, we omit the spatial

dependence of the parameters σns ,n ,γns ,n , and νns ,n ; here, the subscript ns ,n associates the

parameter with n-th Lorentzian function for the ns-th material. By defining

hns (k0),σns ,0 +
Nl ,ns −1∑

n=1

σns ,n

ν2
ns ,n −k2

0 − iγns ,nk0
, (5.4)

we can write the complete susceptibility in the desired form (5.2).

5.3.2 Spectroscopic Tomography with the N -Species Model

Inserting the N -species model (5.2) into the linearized forward model (3.3), we have

Ŝ(k‖,k0, zF ) =
Ns∑

ns=1
hns (k0)

∫ ∞

−∞
Â(k‖, z − zF ,k0)p̂ns (k‖, z)dz. (5.5)

At a given focal plane, the measurements are the sum of Ns independent ISAM experiments,

each on a non-dispersive object p̂ns (k‖, z) and each weighted by the spectral profile hns (k0). In

what follows, we study inverse problem associated with spectroscopic optical tomography: we

wish to recover an object that satisfies the N -species model from measurements of the form

(5.5).

We know that in the single species case, the inverse problem can be solved from data acquired

at single focal plane—this is the usual ISAM problem. On the other hand, an arbitrary sample

can be recovered by finely scanning in all three spatial dimensions (i.e., along r(o)
‖ and zF ) and
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acquiring a spectrum at each point, but this is infeasible as described in Section 5.1.

The N -species model is a middle ground between a single species object and an arbitrary one.

Our goal is to show that the number of measurements required to solve the inverse problem

also lies in a middle ground between these two extremes: in particular, we hope that an object

satisfying the N -species model can be recovered using NF ≈ Ns focal planes.

We divide the inverse problem into three distinct cases.

(P1) Known Spectra. Assume the spectral profiles
{
hns

}Ns
ns=1 are fixed and known. Our task

reduces to a linear inverse problem—recovery of the
{

p̂ns

}Ns
ns=1 from measurements of the

form (5.5).

(P2) Spectra from a Dictionary. Assume the target comprises at most Ns chemical species,

but the spectral profiles are drawn from a (known) dictionary of some Ms > Ns possible

spectra. The inverse problem can be phrased as either a linear inverse problem over the

entire dictionary, or as a nonlinear problem where the solution is constrained to lie in a

union of subspaces.

(P3) Fully Blind. Both the
{
hns

}Ns
ns=1 and

{
p̂ns

}Ns
ns=1 are unknown and must be recovered from

measurements of the form (5.5). This is a bilinear inverse problem in hns and pns .

In this chapter, we limit our attention to cases (P1) and (P2). Our analysis is based on a discretized

form of (5.5) wherein all quantities are replaced by finite-dimensional versions, resulting in a

so-called “discrete-to-discrete” inverse problem [107, 117]. Next, we describe our sampling and

discretization procedure.

5.4 Sampling and Discretization of the Forward Model

5.4.1 Sampling

The instrument acquires samples of the spatial-domain measurement equation (3.2). We assume

the object is (spatially) supported in a region Γ⊂ R3; here, we take Γ= [0,Lx]× [0,Ly ]× [0,Lz].

We write the number of samples as Ni and the discretization or sampling interval as ∆i for

i = x, y, z,k. We obtain measurements at the transverse aperture locations r(o)
‖ = (nx∆x ,ny∆y )

for integers nx ,ny . The parameters are chosen to cover Γ, i.e. Ni∆i = Li holds for i = x, y, z.

For simplicity, we assume the sampling parameters are the same along the x and y directions:

Nx = Ny , ∆x =∆y , and Lx = Ly = Nx∆x . The wavenumber is sampled uniformly over the interval

[ka ,kb] with sampling interval ∆k ; the nk -th measurement wavenumber is k0,i , ka +nk∆k . We
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acquire data at NF focal planes, written
{

zF,i : i = 1,2, . . . NF
}

. The same sampling parameters are

used at each focal plane; in particular, the set of sampled wavenumbers does not change.

We choose the sampling parameters as we would for a standard, single-species ISAM problem.

The necessary sampling intervals can be motivated using the approximate forward model stud-

ied in Chapter 4. Under this model, it can be shown that “point spread function”
∣∣A(r‖,k0, z)

∣∣
(approximately) decays like a Gaussian in

∣∣r‖∣∣. We take Lx and Ly large enough to safely ne-

glect the unmeasured data. Moreover, for fixed zF the measurements Ŝ(k‖,k0, zF ) are bandlim-

ited to [−kb sinNA,kb sinNA]; we sample along the transverse dimension at intervals ∆x ,∆y <
π/(kb sinNA). Finally, the combination of uniform sampling in r(o)

‖ and k0 leads to a non-uniform

sampling of the Fourier transform of the object: samples are obtained at uniform locations along

the k‖ axis but at nonuniform locations along the kz axis. To avoid aliasing, we require that the

maximum distance between samples on the kz axis is less than π/Lz [121, 122].

5.4.2 Discretization

Given samples of (3.2), we take the 2D Discrete Fourier Transform (DFT) with respect to the

transverse coordinates and write the result as the tensor Ŝ ∈ CNx×Ny×Nk×NF . We continue to

assume Nx = Ny with Nx an even integer. The 2D-DFT coordinate q‖ = (qx , qy ) is an integer

vector with 0 ≤ qx , qy ≤ Nx −1. We obtain the continuous Fourier coordinate kx from the DFT

coordinate kx as

kx(qx) =
2πqx/Lx qx < Nx/2

2π(qx −Nx)/Lx otherwise,
(5.6)

and the same holds for qy and ky . We define k‖(q‖) = (
kx(qx),ky (qy )

)
.

The discretized N -species measurement model is

Ŝ[q‖,nk ,nF ] =
Ns∑

ns=1
hns [nk ]

Nz−1∑
nz=0

ÂnF [q‖,nk ,nz]P̂ns [q‖,nz], (5.7)

where hns ∈ CNk and P̂ns ∈ CNx×Ny×Nz are the discretized spectral profile and spatial density

corresponding to the ns-th species, respectively, and

ÂnF [q‖,nk ,nz], Â
(
k‖(q‖),ka +nk∆k , Nz∆z − zF,nF

)
.

Additionally, we gather the Fourier transforms of the discrete spatial densities into P̂ ∈CNx×Ny×Nz×Ns
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Figure 5.1: The various unfoldings of the discretized spatial densities with Ns = 2. Here, block
color indicates the value of q‖. Species 1 is marked with a star, while species 2 is indicated with a
circle.

and spectral profiles into H ∈CNk×Ns , with

P̂[q‖,nz ,ns] = P̂ns [q‖,nz]

H[nk ,ns] = hns [nk ].

5.4.3 Block-Matrix Form of N -Species Forward Model

With the spectral profiles fixed, the measurements Ŝ are a linear function of the spatial densities.

Thus we can write (5.7) as a matrix-vector product, where the vector depends only on the spatial

densities. The resulting matrix has a block-diagonal structure which is key to our analysis of the

discretized inverse problem.

Exploring this structure requires slicing and reshaping the tensors Ŝ, ÂnF , and P̂ into a variety

of forms. We introduce additional notation to represent these derived quantities; the various

forms of P̂ are illustrated in Fig. 5.1. Recall upper-case bold letters refer to matrices or tensors

and lower-case bold letters refer to vectors. We use a bar to denote objects that have been

“stacked” or vectorized. Subscripts are used to slice a tensor with respect to the last index: e.g.

ŝnF represents all measurements from the nF -th focal plane, while hns and P̂ns are the spectral

profile and spatial density for the ns-th species. A superscript indicates a submatrix or vector

formed for particular value of q‖. We use the reindexing function

γ :Z2 →Z γ(q‖) = qx +Nx qy ,
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to identify the 2D-DFT index q‖ with the integer γ(q‖). Let l = γ(q‖) and define

ŝl
nF

, Ŝ[γ−1(l ), : ,nF ] ∈CNk

Âl
nF

, ÂnF [γ−1(l ), : , : ] ∈CNk×Nz

p̂l
ns
, P̂[γ−1(l ), : ,ns] ∈CNz .

Further, define the diagonal matrix Dns , diag
(
hns

) ∈CNk×Nk . Now, for fixed l = γ(q‖) and nF ,

(5.7) is equivalent to

ŝl
nF

=
Ns∑

ns=1
Dns Âl

nF
p̂l

ns
. (5.8)

The collection of (5.8) for nF ∈ [NF ] can be written as a single linear system. Define the vectors

p̄l , vec
(
P̂[γ−1(l ), : , : ]

)= [(p̂l
1)T, . . . , (p̂l

Ns
)T]T ∈CNs Nz

s̄l , vec
(
Ŝ[γ−1(l ), : , : ]

)= [(ŝl
1)T, . . . , (ŝl

NF
)T]T ∈CNF Nk ,

which contain the spatial densities for each species and measurements for all focal planes,

respectively, and the block matrixΦl ∈CNF Nk×Ns Nz by

Φl ,


D1Âl

1 . . . DNs Âl
1

...
. . .

...

D1Âl
NF

. . . DNs Âl
NF

 . (5.9)

Each block-row of Φl corresponds to the l = γ(q‖) transverse Fourier component of measure-

ments taken at a single focal plane, and the ns-th block-column corresponds to the ns-th species.

With these definitions in place, we have

s̄l =Φl p̄l . (5.10)

Equation (5.10) is the discretized N -species forward model at a single transverse Fourier fre-

quency q‖ = γ−1(l ).

We can form an analogous linear system that describes the forward model for all q‖. We stack
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l = γ
(q‖)

nz

k0

ÂnF

Â0
nF

Â1
nF

ÂnF [q‖,nz ,k0]

Figure 5.2: Unfolding the tensor ÂnF [q‖,nz ,nk ] into a block-diagonal matrix.

Dns

Dns

D̄ns ÂnF D̄ns ÂnF

Dns Â1
nF

Â1
nF

Figure 5.3: Constructing the scaled ISAM matrices at a single focal plane.

the
{

p̄l
}Nx Ny−1

l=0 and
{

s̄l
}Nx Ny−1

l=0 into vectors p̄ and s̄; explicitly1

p̄, [(p̄0)T, . . . , (p̄Nx Ny−1)T]T ∈CNx Ny Nz Ns

s̄, [(s̄0)T, . . . , (s̄Nx Ny−1)T]T ∈CNx Ny Nk N f .

Now, we form the block-diagonal matrixΦ

Φ, blkdiag

({
Φ̂l

}Nx Ny−1

l=0

)
∈CNx Ny Nk NF×Nx Ny Nz Ns .

Finally, we can write the vectorized form of the N -species forward model (5.7) as

s̄ =Φp̄.

We callΦ the N -species measurement matrix. The block-diagonal structure ofΦ illustrates the

decomposition of range{Φ} into the direct sum of Nx Ny invariant subspaces,

range{Φ} = range
{
Φ1}⊕ . . .⊕ range

{
ΦNx Ny

}
, (5.11)

where each subspace corresponds to one of the Nx Ny transverse Fourier frequencies q‖.

It exhibits a block structure that is similar toΦl . In a bit of overloaded notation, let ÂnF be the

1Note that p̄ is not vec(P), as vec(·) is defined with row-major ordering.
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D̄1Â1

D̄1Â2

D̄2Â1

Φ1

Φ2 D̄2Â2

Permute

Φ

Figure 5.4: Row and column permutations bring the N -species measurementΦ into a
block-matrix form similar to that ofΦl . Here, color indicates the value of k0 and q‖. Stars and
circles denote species 1 and 2, respectively. Rows with solid (resp. wave-patterned) blocks
correspond to measurements at the first (resp. second) focal plane. The blocksΦ1 andΦ2 are
given by (5.9).

block-diagonal matrix ÂnF = blkdiag
({

Âl
nF

}Nx Ny−1

l=0

)
; see Fig. 5.2. With this definition, we have

vec

(
Nz−1∑
nz=0

ÂnF [ : , : ,nz]p̂ns [ : ,nz]

)
= ÂnF vec

(
P̂ns

)
.

This is the discretized analogue of (3.3), with the added constraint that the target is non-

dispersive. We call ÂnF the ISAM matrix, as it models the action of ISAM on a discretized

spatial density. We must also define D̄ns = INx NY ⊗Dns , that has Nx Ny repeated copies of hns

along its diagonal; see Fig. 5.3. There exist permutation matricesΠ1,Π2 such that

Π1ΦΠ2 =


D̄1Â1 D̄2Â1 . . . D̄Ns Â1

...
...

. . .
...

D̄1ÂNF D̄2ÂNF . . . D̄Ns ÂNF

 .

This relationship is illustrated in Fig. 5.4.

5.4.4 Construction using Khatri-Rao product

We briefly discuss an alternate construction ofΦl that connects the N -species inverse problem

to a broad range of related problems. We discuss these connections in Section 5.5.2.
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Definition 5.2. The row-wise Khatri-Rao product of matrices A ∈Cm×n1 and B ∈Cm×n2 is

A¯B =


A[1, : ]⊗B[1, : ]

...

A[m, : ]⊗B[m, : ]

 ∈Cm×n1n2 ,

i.e. each row of A¯B is the Kronecker product of the corresponding rows of A and B.

We use the Khatri-Rao product to constructΦl . The first block-row ofΦl is H¯Âl
1. To obtain all

block-rows ofΦl , we first stack the
{

Âl
nF

}NF

nF=1
into the matrix Āl , [(Âl

1)T . . . (Âl
NF

)T]T ∈CNF Nk×Nz .

Next, stack NF copies of H into H̄, (1TNF
⊗H) = [HT, . . . ,HT]T ∈CNF Nk×Ns . Now,Φl = H̄¯ Āl . The

complete matrixΦ can be constructed using row and column permutations.

5.5 The N -Species Inverse Problem

5.5.1 Preliminaries: The Single Species Case

Under the N -species model (5.7), the measurements at each focal plane are modeled as the sum

of Ns independent ISAM experiments; thus, the ISAM matrices ÂnF set fundamental limits on

what can be imaged. Stated plainly, if a spatial density lies in the null space of ÂnF , then it will

generate no measurement and thus cannot be imaged using the proposed method.

We have investigated the spectral properties of the continuous ISAM operator in Chapter 4.

We are now interested in the properties of the discretized ISAM matrices.

Recall that the continuous formulation of Chapter 4 ignored the assumption that the suscepti-

bility is compactly supported; however, the effects of compact support (or of a finite simulation

volume) will be evident in the discretized setting.

A careful study of the spectral properties of Âl
nF

is beyond the scope of this work. Instead, we

combine a numerical study of these matrices with intuition obtained from the projection-slice

interpretation of ISAM.

We computed the singular values of Âl
nF

in the case of one transverse dimension, x, using the

computational parameters listed in Table 5.1. The singular values are shown in Fig. 5.5, where

kx is determined from qx = γ−1(l ) using (5.6). While we do not form Âl
nF

using the approximate

kernel, the approximate kernel provides intuition for the behavior seen here. The largest singular

values die off quickly as kx increases, as expected due to the function Hk‖,k0 in (3.7). Moreover,

for |kx | > 2kb , ISAM matrix is uniformly zero due to χ(k‖,2k0).
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Table 5.1: Parameters for point target simulations.

Nx 192 Lx 423.6 µm ∆x 2.2 µm

Nz 384 Lz 282.4 µm ∆z 0.7 µm

Nk 384 k 0.4 rad · µm−1 kb 1.1

re 60 λmin 5.9 µm−1 λmax 15.4 µm−1

NF 3 zF [70,140,211] µm NA 0.4

According to the approximate forward model, for kx = 0 we obtain the (bandlimited) Fourier

transform of the (compactly supported) weighted susceptibility. The eigenvalue spectrum of

space-and-frequency limited Fourier operators has been studied, beginning with a series of

papers by Slepian, Landau, and Pollak [139–141, 169, 170]. In the discrete case, the eigenvalue

and singular value spectrum of space-and-frequency limited Discrete Fourier Transform (DFT)

matrices have been studied; such matrices are submatrices formed by consecutive rows and

columns of a DFT matrix [171–173]. The singular values of a space-and-frequency limited DFT

matrix are divided into three distinct regions: (1) a region wherein the singular values are near

one; (2) a transition region where the singular values decay exponentially; and (3) the remaining

singular values are nearly zero. The number of singular values in the first region is called the

effective rank and is written re . A direct application of Slepian-Pollak theory predicts [139, 173]

re = 2(kb −ka)

2π/Lz
= Lz

π
(kb −ka). (5.12)

For fixed k‖, the approximate ISAM operator can be viewed as a space-and-frequency limited

Fourier operator with additional weighting in the spatial domain by υ(z) and in the frequency

domain by ϑ
(
k‖,k0

)
. For each k‖ the operator is space-limited to a region of length Lz ; this is

due to assumption that η is compactly supported. Moreover, the operator is frequency-limited

to the optical passband B. In the discretized setting, only A0
nF

can be viewed as a (diagonally

scaled) DFT matrix, as for q‖ 6= 0 the resulting Fourier transform is not uniformly sampled.

We can use the theory of space-and-frequency limited DFT matrices to understand the be-

havior of the spectrum of Â0
nF

as shown in Fig. 5.5. The singular values are broken into three

regions: in the first region, the singular values decay exponentially, albeit at a rate slower than

in the second region. The transition between the first and second regions still occurs at re . In

the case of the parameters used in Fig. 5.5, we have re = 60, and the change in behavior at re

is evident. The case of kx 6= 0 is more complicated as the resulting Fourier transform is not

uniformly sampled.

Recall that B is the set of observable Fourier components of the weighted susceptibility, ν(z −
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Figure 5.5: Left: Singular values of Âl
nF

. The coordinate kx is obtained from γ−1(l ) using (5.6).
Right: singular values for kx = 0 and kx = 1. The vertical line marks the rank estimate (5.12). The
focal plane is located at zF = 140 µm. The remaining system parameters are listed in Table 5.1.
The units of kx are µrad)−1.

zF )p̂(k‖, z). A common practice in ISAM imaging is to ignore the axial weighting function and

treatB as the observable Fourier components of the unweighted susceptibility (see, e.g. [100,101]).

This is a reasonable approximation of the imaging system. To justify the approximation, note

that ν(z) is strictly positive and slowly varying; thus the Fourier transform of the weighted and

unweighted susceptibilities are roughly supported on the same set.

Using the same line of reasoning, we assume that null
{

Âl
nF

}
is invariant to the choice of focal

plane zF . This is reasonable when the focal planes are close to one another. Note that this is an

implicit assumption in previous work on multi-focal ISAM [153].

5.5.2 Algebraic Conditions for a Unique Solution to (P1)

We return to the inverse problem under the N -species model, starting with (P1). In the discretized

form of (P1), the hns are fixed and known. The discretized forward model is s̄ =Φp̄. As the hns

are fixed and known, the matrixΦ is completely determined, and recovery of p̄ is a linear inverse

problem. Without additional constraints on the spatial densities, the existence and uniqueness

of a solution is determined entirely by Φ. In this section, we establish algebraic conditions

for existence and uniqueness of a solution in terms of the ISAM matrices,
{

ÂnF

}NF

nF=1, and the

chemical spectra,
{

hns

}Ns
ns=1. Earlier work on this problem claimed that NF ≥ Ns and linear

independence of the hns is necessary and sufficient for unique recovery of the spatial densities

p̂ns within the optical passband [160]. While necessary, we show these two conditions are not

sufficient.

We use the invariant subspace decomposition ofΦ given by (5.11) to reduce the problem to the

study of the “one-dimensional” problem s̄l =Φl p̄l for l ∈ {
0, . . . , Nx Ny −1

}
, withΦl given by (5.9).
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In what follows, the index l is fixed. We analyze the system independently for each transverse

Fourier mode. The results can be applied block-by-block to pass to the full matrixΦ.

For each focal plane, the ISAM matrix Âl
nF

is of size Nk × Nz , where Nk is the number of

wavenumber samples and Nz is the (axial) length of the discretized spatial density. Per Sec-

tion 5.5.1, we assume the null space of Âl
nF

is invariant to the choice of focal plane, thus for fixed

l each matrix has the same rank. Let r , rank
{

Âl
nF

}
for nF ∈ [NF ]. We write the shared nullspace

of the ISAM matrices as Nl ⊆CNz ; we have

Nl , null
{

Âl
nF

}
for nF ∈ [NF ].

The optical passband is
(
Nl

)⊥
. Define the subspace

N̄l ,Nl ×Nl . . .×Nl = span
{

p̄l = [(p̂l
1)T, . . . , (p̂l

Ns
)T]T

∣∣∣ p̂l
ns

∈Nl ,ns ∈ [Ns]
}
⊆CNs Nz

of block vectors where each block is in Nl . The subspace
(
N̄l

)⊥
consists of block vectors where

each block lies in the optical passband,
(
Nl

)⊥
. In an abuse of notation, we refer to both

(
Nl

)⊥
and

(
N̄l

)⊥
as “the optical passband”.

Using the N -species model, the measurements are a weighted sum of ISAM experiments; thus

any objects that lie in N̄l will also be in null
{
Φl

}
. If an object cannot be imaged using ISAM, it

cannot be imaged usingΦl . We must consider uniqueness modulo N̄l ; our goal is to establish

conditions such that these are the only objects that cannot be imaged using Φl . In this case,

the N -species model does not introduce additional ambiguity and each species is correctly

identified. We do no worse using the N -species model than if we were able to image the spatial

densities independently using the ISAM system.

Let us pause to consider the geometry of a simple case: two species and a single focal plane.

Here, Φl = [D1Âl
1,D2Âl

1] and s̄l =Φl p̄l = D1Âl
1p̂1 +D2Âl

1p̂2. Clearly, if p̂l
1 and p̂l

2 are each in Nl ,

then s̄l = 0. Suppose the hns are non-zero for each index; then Dns is full rank. Using the formula

for the rank of a partitioned matrix,

rank
{
Φl

}
= rank

{
[D1Âl

1,D2Âl
1]

}
= rank

{
[D1Âl

1]
}
+ rank

{
[D2Âl

1]
}
−dim

(
range

{
D1Âl

1

}
∩ range

{
D2Âl

1

})
= 2r −dim

(
range

{
D1Âl

1

}
∩ range

{
D2Âl

1

})
.

The last term captures the interplay between the Dns and Âl
1. We want to find conditions

under which this intersection is trivial. As we assume Dns is full rank, we can instead ask when

range
{

Âl
1

}∩ range
{

D−1
1 D2Âl

1

}
is trivial. Loosely speaking, when is multiplication by a diagonal
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matrix enough to perturb a subspace out of alignment with itself?

Next, we define our notion of uniqueness modulo the ISAM nullspace.

Definition 5.3. The solution to s̄l = Φl p̄l is said to be unique within the optical passband if

Φl x =Φl y =⇒ x−y ∈ N̄l . Equivalently, there is a unique p̄l ∈ (
N̄l

)⊥
such that s̄l =Φl p̄l .

This definition sets up an equivalence relation on the spatial densities: we treat two spatial

densities as equivalent if their difference lies in N̄l , the null space of the ISAM matrices. This is

the component to which we are inherently are blind even in the single species case.

Next, we cast the problem into a form where we implicitly work in the optical passband
(
N̄l

)⊥
.

Let Vl ∈CNz×r be a basis for
(
Nl

)⊥
. We introduce a new set of matrices: the restricted ISAM matrix

B̂l
nF

, Âl
nF

Vl ∈CNk×r is the restriction of Âl
nF

to the subspace
(
Nl

)⊥
. Clearly, B̂l

nF
has full column

rank. Similarly, INF ⊗Vl is a basis for
(
N̄l

)⊥
. We define the restricted N -species matrix

Φ̃l ,Φl (INF ⊗Vl ) ∈CNF Nk×Ns r .

The question of unique recovery (within the optical passband) is determined entirely by this

matrix, as stated in the following result.

Lemma 5.1. Let Φl ∈CNF Nk×Ns Nz and rank
{

Âl
nF

}= r for nF ∈ NF . The following statements are

equivalent:

(C1) There is a unique p̄l ∈ (
N̄l

)⊥
such that s̄l =Φl p̄l

(C2) null
{
Φl

}= N̄l

(C3) rank
{
Φ̃l

}= Nsr

Proof. See Appendix C.2.

We can construct the restricted N -species matrix Φ̃l using the Khatri-Rao product. Let B̄l ∈
CNF Nk×r be the matrix formed by stacking the restricted ISAM matrices B̂l

nF
into a single block

column: B̄l , [(B̂l
1)T, . . . , (B̂l

NF
)T]T. Recall H̄ = (1TNF

⊗H) = [HT, . . . ,HT] ∈CNF Nk×Ns . Now,

Φ̃l =Φl (INF ⊗Vl ) =


D1Âl

1Vl . . . DNs Âl
1Vl

...
. . .

...

D1Âl
NF

Vl . . . DNs Âl
NF

Vl

=


D1B̂l

1 . . . DNs B̂l
1

...
. . .

...

D1B̂l
NF

. . . DNs B̂l
NF

= H̄¯ B̄l , (5.13)

mirroring the construction ofΦl in Section 5.4.4.

In what follows, we establish necessary and sufficient conditions for uniqueness within the

optical passband.
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Theorem 5.2 (Necessary Condition for Uniqueness). The solution to s̄l =Φl p̄l is unique within

the optical passband only if

(N1) Nk NF ≥ Nsr

(N2) The spectral profiles are linearly independent (rank{H} = Ns)

(N3) No row of B̄l is orthogonal to all remaining rows

(N4) For every subset J ⊂ [Nk ] with Ns ≤ |J | < Nsr /NF and rank
{

HJ
}= Ns , we have rank

{
HJ c }≥

Ns − NF
r |J |

(N5)
∑Nk

i=1 rank

{[
B̂l

1[i , : ]T, . . . , B̂l
NF

[i , : ]T
]T}

≥ Nsr

Proof. See Appendix C.3.

Let us pause to interpret these conditions.

In the single-species case, (N1) reduces to Nk ≥ r ; i.e. we must measure enough wavenumbers

such that the single-species ISAM problem is well-posed. Interestingly, (N1) does not require that

NF ≥ Ns : recovery of Ns species is possible from a single focal plane, provided the measurements

are oversampled in wavenumber. This behavior can be seen in the numerical experiments

described in Section 5.5.3

Condition (N2) is unsurprising. If the spectral profiles are linearly dependent, the N -species

representation of a susceptibility is not unique and the spatial densities cannot be uniquely

determined.

Condition (N3) is less transparent, but can be argued to hold by the underlying physics. If (N3)

is violated, there must be an object that scatters at only one of the measured wavenumbers and

is non-scattering for the rest. In the continuous setting, scattered fields are analytic functions of

k0; thus if an object is non-scattering over an interval of wavenumbers, it must be non-scattering

for all k0 [103, 174]. In the discretized setting we lose the analytic properties of scattered waves.

In our experience, however, condition (N3) holds.

Condition (N4) requires the spectral profiles to be sufficiently diverse: linear independence

is not enough. As an example, consider Ns = 2, NF = 1, and take h1 = [1,1, . . . ,1]T and h2 =
[2,1, . . . ,1]T. These spectra are linearly independent, but D1Âl

1 and D2Âl
1 differ by only one

row; thus rank
{
Φ̃l

} ≤ r +1, failing (C3) of Lemma 5.1. Spectral diversity is necessary to push

range
{

D1Âl
1

}
out of alignment with range

{
D2Âl

1

}
. “Good” spectral profiles are not too concen-

trated on any small set of indices.

The final condition, (N5), is a requirement on the diversity of measurements comprising the

restricted ISAM matrices. When Nk NF = Nsr , (N5) requires that the collection of measurement
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Figure 5.6: Comparing (N5) and Theorem 5.3 for NF = 2 and r = 4. Color indicates the value of
k0. (a) The matrix B̄l . Rows with solid (resp. wave-patterned) blocks correspond to
measurements at the first (resp. second) focal plane. (b) Condition (N5) requires that the sum of
the ranks of each 2×4 block of the same color must be at least 4Ns . (c) A possible partitioning of
the rows of B̄l as described in Theorem 5.3. If both C1 and C2, as defined in (5.14), have full rank
for generic chemical species the solution to s̄l =Φl p̄l is unique within the optical passband with
probability one.

vectors corresponding to a given wavenumber be linearly independent: each new focal plane

must provide new and informative measurements. This partitioning is illustrated in Fig. 5.6.

Next, we establish a sufficient condition for unique recovery within the optical passband. First,

we note that no conditions on B̄l or H independently are sufficient to ensure there is a unique

solution within the optical passband. Consider again the two-species, one focal plane case:

Φ̃l = [D1B̂l
1,D2B̂l

1], with Di = diag(hi ). Suppose h1 is fixed and choose vectors w,v ∈Cr such that

no entry of B̂l
1v is zero. Set h2 = (D1B̂l

1w)/(B̂l
1v) where the division is taken elementwise. With

this construction, D2B̂l
1v = D1B̂l

1w, and thus rank
{
Φ̃l

}≤ 2r −1, failing (C3) of Lemma 5.1.

These spectral profiles were carefully chosen to make Φ̃l lose rank. Fortunately, we are unlikely

to encounter such objects in practice. The following definition makes this argument precise.

Definition 5.4. A property that depends on the spectral profiles H ∈CNk×Ns is said to hold generi-

cally, or for generic H, if the set for which it fails to hold has Lebesgue measure zero and is nowhere

dense in CNk×Ns .

If a property that holds generically, it holds with probability one if the spectral profiles are

drawn independently from a distribution that is absolutely continuous with respect to the

Lebesgue measure in CNk×Ns ; for instance, when the entries of H are drawn i.i.d. from the

Gaussian distribution. Moreover, the property exhibits a degree of robustness: if it holds for a

particular H′, then it holds in an open ball around H′ and will continue to hold given sufficiently

small perturbations to H′.

Theorem 5.3 (Sufficient Condition for Uniqueness). Suppose Nk ≥ r and NF ≥ Ns . Let r = NF m

for an integer m. If there exists a collection {Ji ⊂ [Nk ]}NF
i=1 of disjoint sets, each of cardinality
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|Ji | = r /NF , such that

Ci ,


B̂l

1[Ji , : ]
...

B̂l
NF

[Ji , : ]

 ∈Cr×r (5.14)

is full rank for each i ∈ [NF ], then for generic H the solution to s̄l = Φl p̄l is unique within the

optical passband.

Proof. See Appendix C.4.

An illustration of the matrices Ci is shown in Fig. 5.6(c). Note that the necessary condition (N5)

coincides with the sufficient condition of Theorem 5.3 in the case of Nk = NF = r = Ns , which is

the limit of scanning confocal spectroscopic acquisition discussed in Section 5.1.

Theorem 5.3 can be stated in terms of a more familiar, but more restrictive, property on B̄l .

Definition 5.5. The Kruskal (row) rank of a matrix X ∈ Cn×m , written krank{X}, is the largest k

such that every set of k rows of X are linearly independent. The matrix X is said to have full Kruskal

rank if krank{X} = max{n,m}.

Corollary 5.4. If B̄l ∈CNk NF×r has full Kruskal rank, then for generic H the solution to s̄l =Φl p̄l

is unique within the optical passband.

The Khatri-Rao structure of Φ provides a link between the N -species inverse problem and

topics in tensor factorization, communications, and sensor networks, among others [175–181].

For example, the rank and Kruskal rank of the Khatri-Rao product has implications for the

uniqueness of certain tensor factorizations. Properties of the Khatri-Rao product are an active

area of research. For generic matrices X and Y, it is known that krank{X¯Y} = krank{X}krank{Y} .

Bhaskara et al. provide bounds on the smallest singular value of the Khatri-Rao product of

random matrices [180]. Recent work has investigated the restricted isometry property of the

Khatri-Rao product of random matrices [176–178].

These results do not directly apply to our problem. We are interested in properties of Φ̃l =
H̄¯ B̄l . As B̄l is determined by the physics and imaging geometry, we cannot choose this matrix

generically or randomly. Even H̄ cannot be chosen generically, as H̄ = (1TNF
⊗H); only the matrix

H can be chosen generically. Translating new results on the Khatri-Rao product to our setting

remains a topic for further investigation.

130



5.5.3 Stability And Conditioning of (P1)

The results of Section 5.5.2 tell us that the solution to s̄l =Φl p̄l is almost always unique, but say

little about the stability of the problem. We must always deal with “noisy” measurements– not

just instrumentation noise, but also “noise” due to modeling error, e.g. multiple scattering and

spatial-spectral coupling not captured by the N -species model.

In this section, we numerically investigate the behavior of the singular values of the N -species

matrixΦ for the case three-species case (Ns = 3) in two spatial dimensions. We use the computa-

tional parameters listed in Table 5.1, except for NA and NF , which vary. The singular values of the

ISAM matrix formed using these computational parameters were investigated in Section 5.5.1

and plotted in Fig. 5.5.

We computed the singular values of each block-matrixΦl (5.9) and plot the results in Fig. 5.7.

Recall as a function of kx is determined from qx = γ−1(l ) using (5.6). As expected, higher

transverse spatial frequencies are present as NA increases. Only the first NF re singular values

are appreciable. The low-frequency components achieve rank 3re for NF = 3, and adding focal

planes improves the conditioning of Φ. Note that even in the case of a single focal plane, the

3re -th singular value ofΦ0 is non-zero; as previously discussed, NF ≥ Ns is not necessary for a

unique solution.

We investigated the singular values of the block corresponding to kx = 0 for a variety of

chemical species and a varying number of focal planes. We used a library of 20 experimentally

acquired chemical spectra2 provided through the IARPA SILMARILS project. We randomly

selected three species from the library, formed Φ0, and computed the singular values of this

matrix. We scaledΦ0 to have unit spectral norm. This procedure was repeated for 200 realizations.

The resulting singular values are plotted in Fig. 5.8; the borders of the shaded region are the best

and worst realizations for each choice of NF .

We repeated the same procedure using random spectral profiles. The real part of the spectral

profile was drawn i.i.d. from the standard normal distribution and the imaginary part was

chosen uniformly over [0,1]. The results are plotted in Fig. 5.8. Clearly, these un-physical spectra

lead to better conditioned Φ0, and there is little difference in the best and worst realizations.

Study of the system using random spectral profiles may lead to a useful upper bound on system

performance.

2These include caffeine, acetaminophen, warfarin, monosodium glutamate (MSG), sucrose, naproxen, potassium
chlorate, polyvinylidene fluoride (PVDF), aspartame, lactose, melatonin, ethylenediaminetetraacetic acid (EDTA),
creatine, diazepam, biotin, fructose, pectin, glycine, beta carotene, hydroxypropyl cellulose.
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Figure 5.7: Singular values ofΦl . The coordinate kx is obtained from γ−1(l ) using (5.6). Three
species are present: caffeine, acetaminophen, and warfarin. System parameters listed in
Table 5.1.

5.5.4 Algebraic Conditions for (P2)

We now focus on the case (P2), wherein the target comprises Ns chemical species drawn from a

“dictionary” of Ms > Ns possible spectra. This problem can be viewed as an instance of (P1), in

which case Theorem 5.2 requires that number of focal planes is chosen such that NF Nk ≥ Msr .

This is undesirable if Ms is much larger than Ns . This approach ignores the constraint that only

Ns chemicals are present in the sample; by incorporating this side information, we relax our

condition on NF . This structure is known as block sparsity.

Definition 5.6. The block vector p̄l = [p̂T
1 , . . . , p̂T

2 , p̂T
Ms

]T is said to be block-K sparse if the set{
i : ‖p̂i‖2 > 0

}
has cardinality at most K .

Block sparsity is a natural fit for our problem; we define the ns-th block to be the ns-th spatial
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Figure 5.8: Singular values ofΦ0 for various combinations of chemical species. The shaded area
lies in between the best and worst realizations. System parameters listed in Table 5.1. Top:
singular values using experimentally acquired spectral profiles. Bottom: singular values using
random Gaussian spectral profiles.

density p̂ns , corresponding to the ns-th species in the dictionary. Note that block sparsity does

not require the blocks themselves (i.e., the
{

p̂ns

}Ns
ns=1) to be sparse.

Conditions for unique recovery of block-sparse vectors have been studied [182–185]. Eldar and

Mishali [184] developed a straightforward condition for unique recovery that suits our needs:

Lemma 5.5. [184, Proposition 1] There is a unique block-Ns sparse solution to s̄l =Φl p̄l if and

only ifΦl v 6= 0 for any non-zero v that is block-2Ns sparse.

We can easily translate Lemma 5.5 into our setting.

Theorem 5.6 (Unique recovery with block-sparsity). For generic H, there is a unique block-Ns

sparse vector p̄l consistent with measurements s̄l =Φl p̄l if NF ≥ 2Ns and B̄l contains 2Ns disjoint

sets of rank
{

B̄l
}

linearly independent rows.

Proof. Take NF ≥ 2Ns . Let v be a block-2Ns sparse vector with Γ = [γ1, . . . ,γ2Ns ]T indexing

the 2Ns non-zero blocks of v. Let ΦΓ ∈CNF Nk×2Ns Nz be the restriction of Φ to the 2Ns columns
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indexed by Γ, and let vΓ ∈C2Ns Nz be the non-zero elements of v. By Theorem 5.3,ΦΓ is generically

full column rank; and genericallyΦv =ΦΓvΓ 6= 0. Applying Lemma 5.5 completes the proof.

5.5.5 Computational Recovery

In the single-species case, the approximate form of the ISAM operator allows for the use of the

non-iterative Fourier inversion algorithm Algorithm 3, as described in Section 3.6. This does not

carry over to the multi-species case.

We recover the collection of spatial densities P̂ by solving the penalized least squares problem

argmin
P̂

1

2
‖s̄−Φp̄‖2

2 +λr R(P̂). (5.15)

The first term is known as the data fidelity term. It ensures the observed data s̄ and “re-imaged”

solution Φp̄ are consistent. More sophisticated data fidelity terms can be used to model the

effects of shot noise, background signal, and more [123], but these are beyond the scope of this

work.

The functional R :CNx×Ny×Nz×Ns →R regularizes the inverse problem and encodes any con-

straints or a priori assumptions regarding the spatial densities. Tikhonov regularization corre-

sponds to R(P̂) =∑Ns
ns=1‖p̂ns‖2

2. Alternatively, solutions that are sparse in a transform domain are

obtained by setting R(P̂) =∑Ns
ns=1‖Cp̂ns‖1, where C is a sparsifying transform, e.g. a wavelet trans-

form. Finally, the mixed `1/`2 norm
∑Ns

ns=1‖p̂ns‖2 encourages solutions that are block-sparse;

that is, solutions with a minimal number of active species. The non-negative scalar λr balances

the influence of the data fidelity and regularization terms.

The method used to solve (5.15) depends on the chosen regularizer. In the case of Tikhonov

regularization, (5.15) reduces to the solution of the linear system

(ΦHΦ+λr I)p̄ =ΦHs̄, (5.16)

where I is the NF Nk Nx Ny ×NF Nk Nx Ny identity matrix. The matrixΦHΦ ∈CNF Nk Nx Ny×NF Nk Nx Ny

is too large to store, much less invert, an iterative solution is required. The conjugate gradient

(CG) algorithm works well in practice. CG requires only matrix-vector products withΦ andΦH.

These matrices are not explicitly formed; only the coefficients ÂnF [q‖,nk ,nz] are precomputed

and stored. Similarly, the Nx Ny Nk ×Nx Ny Nk matrices D̄ns are not formed; only the spectral

profiles are stored, and products with D̄ns are computed by elementwise multiplication. We

compute the matrix-vector products withΦ in a block-wise fashion. The vector ȳ =Φp̄ consists
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of Nx Ny blocks ȳl
nF

, where l = γ(q‖) ∈ {
0, . . . , Nx Ny −1

}
, nF ∈ [NF ], and

ŷl
nF

=
Ns∑

ns=1
Dns Âl

nF
p̂l

ns
.

Assuming the spatial densities are already in the transverse Fourier domain, computing products

with the N -species matrix Φ ∈ CNF Nk Nx Ny×Ns Nz Nx Ny in this way requires O(Nx Ny Nz NF Nk Ns)

FLOPS, rather than O(N 2
x N 2

y Nz NF Nk Ns) FLOPS required if we ignore the block structure inΦ.

Similarly, w̄ =ΦHȳ consists of blocks ŵl
ns

with ns ∈ Ns , where the block is computed as

ŵl
ns

=
NF∑

nF=1
(Âl

nF
)HDH

ns
ŷl

nF
.

Many sparsity-promoting regularizers are non-differentiable. In this case, proximal methods

such as FISTA [89] or the Alternating Direction Method of Multipliers (ADMM) [126–128] are

attractive. This class of algorithms decomposes the problem (5.15) into a sequence of simpler

subproblems. The solution of a linear system similar to (5.16) is often a key ingredient of such

algorithms.

5.6 Simulations

We now describe two simulations used to validate the proposed approach. For simplicity, we

consider only two spatial dimensions: one transverse (x) and one axial (z).

Preliminary work on the N -species model suffers from three unrealistic assumptions [160].

The simulations used unrealistic wavelength ranges, leading to nearly complete coverage of

Fourier space. This removes the large null space present in AnF and simplifies the reconstruction

problem. Secondly, the phantoms used satisfied the N -species model exactly; no spectral

noise was considered. Finally, the synthetic data used in the simulations was generated data

using the asymptotic approximation to the ISAM operator (3.6), and thus under the first Born

approximation. This neglects multiple scattering, absorption, and the discrepancy between

the exact and approximate ISAM models. As a consequence, the simulations present an overly

optimistic view of the proposed imaging modality.

We generate synthetic data using accurate physical models and system parameters. Our

synthetic data includes multiple scattering and absorption effects—only the inversion is per-

formed under the Born approximation. Further, our simulated targets do not precisely follow

the N -species model; instead, there are position-dependent spectral variations within each
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Figure 5.9: Spectral profiles for the five chemicals used in point scattering simulations.

species. In particular, we simulate an object of the form η(r,k0) =∑Ns
ns=1 pns (r)hns (r,k0), where

hns (r,k0) = hns (k0)+ens (r,k0) and ens (r,k0) ∼ CN (0,ξns ) is a circular complex Gaussian random

variable [186].

The minimization problem (5.15) is solved on an NVidia Titan X GPU using a combination of

Python and CUDA [87, 88].

5.6.1 Point Targets

We formed a spectral library of five chemicals using refractive index data provided through the

IARPA SILMARILS project. The corresponding spectral profiles are plotted in Fig. 5.9. The target

consisted of 50 point scatterers. Each point scatterer is associated to one chemical species; only

three species (out of the five possible) are present. We do not know a priori which chemicals are

present.

We generated measurements using the Foldy-Lax model, which includes multiple scattering

effects [109]. Data was generated at three focal planes in a 420×280 µm volume according to the

parameters in Table 5.1. The source power spectrum was flat over [ka ,kb]. This combination

of parameters—three active species, three focal planes, and a library of five possible species—

corresponds to the case of (P2).

To assess the deviation from the single scattering model, we generated two sets of measure-

ments using the same target. The first set of measurements, denoted s, uses the Foldy-Lax

method and incorporates multiple scattering. The second, sB , is generated using the Born ap-
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Figure 5.10: Reconstructions of point scatterers described in Section 5.6.1.

proximation and thus includes only single scattering events. The ratio ‖s−sB‖2/‖sB‖2 indicates

that more than 20% of the energy in s comes from multiple scattering events.

We performed two sets of simulations: the first using Tikhonov regularization and the second

using sparsity-promoting regularization. In the latter case, motivated by the spatial-domain

sparsity of the target, we set R(P) = ∑5
ns=1‖pns‖1. In the Tikhonov case, we performed 300

iterations of conjugate gradient on the normal equations with λr = 10−5. In the case of `1

regularization, we used 2000 iterations of the FISTA algorithm with λr = 10−3. Both cases

terminated in under one minute.

The magnitude of the reconstructed spatial densities are shown in Fig. 5.10. Recall that the

surface of observable Fourier components is restricted to kz < 0. As such, any linear reconstruc-

tion method (e.g., Tikhonov-regularized least squares) will produce a complex-valued image; we

display only the magnitude and squared magnitude of the recovered signal. For visualization

purposes we have projected the point-target phantom onto the optical passband. In both cases,

the reconstructed targets are correctly spatially localized and identified with the correct species.

The Tikhonov regularized reconstruction consists of the point scatterers sitting on top of

a “noisy” background. The background is primarily due to multiple scattering effects and

spectral variations which are not captured by our forward model. This background term is
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distributed across all five possible species; however, the recovered point scatterers are associated

to the correct species. The background is eliminated when viewing the squared modulus of the

reconstruction.

The `1 regularized reconstruction suppresses the background term. There is nearly perfect

agreement between the true target and the reconstructed target, despite taking data at only

three, rather than five, focal planes. The sparsity of the target, coupled with the `1 regularization,

successfully eliminates artifacts due to multiple scattering.

For visualization purposes we map the three active species to the red, green, and blue channels

of an RGB image. The filtered phantom, Tikhonov, and filtered `1 reconstructions are shown in

Fig. 5.11.

5.6.2 Cell Phantom

Next, we evaluated the ability to image extended targets. Our target is the cellular phantom

shown in Fig. 5.12, which comprises three chemical species. Our spectral library contains five

total species.

We generated synthetic measurements by solving the Lipmann-Schwinger equation (see,

e.g., [109]) using the using the Multi-Level Fast Multipole Algorithm (MLFMA) [187]. The data

is not generated under the Born approximation, and thus includes multiple scattering and

absorption phenomenon not captured using our forward model. We use a version of the MLFMA

specialized for simulating two spatial dimensions3 [188, 189].

3We thank Mert Hidayetoglu for providing the MLFMA code.
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Table 5.2: Parameters for cell phantom simulation.

Nx 256 Lx 150.0 µm ∆x 0.6 µm

Nz 256 Lz 150.0 µm ∆z 0.6 µm

Nk 256 ka 0.7 rad ·µm−1 kb 2.1 rad ·µm−1

re 67 λmin 3.0 µm−1 λmax 9.0 µm−1

NF 3 zF [54,75,96] µm NA 0.5

We generated measurements for only three focal planes; the relevant computational parame-

ters are listed in Table 5.2. We used synthetic spectral profiles: each hns is generated according

to (5.4) where Nl = 100 and the remaining parameters are randomly chosen. In particular,

σi ,n ∼ Unif[0,0.1], ki ,n ∼ Unif[1.2π,4.4π], γi ,n ∼ Unif[2π×10−3,4π×10−2], where Unif[a,b] is

the uniform distribution over the interval [a,b]. The spectral profiles are plotted in Fig. 5.13.

The first-order Born approximation is valid only if the total phase change between the incident

field and the field inside the sample is less than π—this implies that the object should be either

weakly scattering or small in spatial extent [190, 191]. The proposed phantom is neither. To

investigate the effect on scattering strength on the reconstructed images, we generated synthetic

measurements for the scaled object δη(r(o),k0) where 0 < δ≤ 1. By reducing δ, we reduce the

scattering strength and eventually fall into a regime where the first-order Born approximation

holds.

We used Tikhonov regularization with λr = 1×10−4 and 500 iterations of the conjugate-

gradient algorithm. The resulting reconstructions are shown in Fig. 5.14. The top row illustrates

the projection of the phantom onto the optical passband; this serves as the “gold standard” for

our Tikhonov-regularized reconstructions. The remaining rows are the reconstructed images. As
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Figure 5.13: Spectral profiles for cell phantom, plotted for δ= 1.

expected, only the edges of the phantom that are nearly perpendicular to the optical axis are

visible. The reconstructed images deteriorate as δ increases, particularly at the rear edge of each

feature. However, the correct species is identified in each case; negligible energy is deposited

into Species 4 and 5. Figure 5.15 maps each species into a single channel of an RGB image. The

edges are assigned to the correct species.

Figure 5.16 illustrates the influence of the regularization parameter λr . Noise dominates the

reconstruction when λr is too small. When λr is too large, there is no chemical identification-

the recovered spatial densities are nearly identical for each species.

5.7 Conclusions

We have considered the problem of chemically specific and spatially resolved tomographic

imaging from interferometric measurements. We require the target to be the linear combination

of a finite number of distinct chemical species given data at a small number of en-face focal

planes.

We developed necessary and sufficient conditions for unique recovery of a target satisfying

this model. Linear independence of the chemical spectra is not sufficient—additional spectral

diversity is required.

In this chapter, we assume the chemical spectra were either known or drawn from a library of

possible spectra. We proved that in the latter case, the number of required focal planes scales
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reconstructed species to one RGB channel.
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with the number of chemicals present in the sample, not the total number in the library. Future

work will consider extension fully blind problem.

Our approach requires interferometric (phase-resolved) measurements and solves the lin-

earized scattering problem. This extension to intensity-only measurements and the removal of

the Born approximation are two avenues for future work.

Phaseless, intensity-only diffraction tomography has been demonstrated by modifying the

acquisition scheme [168, 192, 193] and by optimization-based approaches [194]. Advances in

high performance computing [188, 189, 195] and deep learning [196–198] have facilitated the

solution of large scale inverse scattering problems without linearization. In some cases, solving

the nonlinear inverse scattering problem overcomes the “missing cone” effect that hampers our

reconstruction of extended targets. However, thus far, these approaches have only considered

non-dispersive objects. Extension of these methods to spectroscopic tomography within the

N -species approximation is an exciting area of future work.
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Appendix A

Proofs from Chapter 3

A.1 Proof of Proposition 2.1

We explicitly show the link between filter banks and applying a sparsifying transform to a patch

matrix. We assume a 1D signal x ∈RN to simplify notation. The extension to multiple dimensions

is tedious, but straightforward.

Proof. Let W ∈ RNc×K be a given transform, and let w i indicate the i -th row of this matrix.

Suppose we extract patches with a patch stride of s and we assume s evenly divides N . The j -th

column of the patch matrix X ∈RK×M is the vector [xs j+K−1, xs j+K−2, . . . , xs j ]T . The number of

columns, M , depends on the boundary conditions used. Linear and circular convolution are

obtained by setting xi = 0 or xi = xN−i−1, respectively, when i < 0. For cyclic convolution, we

have M = N /s. The i , j -th element of the sparsified signal W X is

[W X ]i , j =
K∑

k=1
Wi ,k Xk, j =

K∑
k=1

Wi ,k xs j+K−1−i

= (w i ∗x)[s j +K −1].

Thus the i -th row of W X is the convolution between the filter with impulse response w i and

signal x, followed by downsampling by a factor of s, and shifted by K −1. The filter bank has Nc

channels with impulse responses given by the rows of W . The shift of K −1 can be incorporated

into the definition of the patch extraction procedure. For 1D signals, the “first” patch should be

[xK−1, . . . x0]T , while for 2D signals, the lower-right pixel of the “first” patch is x[0,0].

A.2 Proof of Proposition 2.2

Proof. The function J1(W ) in (2.8) acts only on the magnitude responses of the filters in H. Let

V ,
∣∣F̄W T

∣∣2 ∈ RN 2
F×Nc . The sum of the i -th column of V is equal to the norm of the i -th filter
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and, by Lemma 2.1, the eigenvalues of H∗H are equal to the row sums of V . Thus, V is generated

by a UNTF if and only if the row sums and column sums are constant.

Let V ] be a stationary point of J1. For each 1 ≤ r ≤ N 2
F and 1 ≤ s ≤ Nc , we have

∂

∂Vr,s
J1(V ]) = 1

2
− 1∑Nc

j=1 V ]
r, j

− 1∑N 2
F

i=1 V ]
i ,s

= 0. (A.1)

Note that J1(V ) = +∞ if either a row or column of V is identically zero, so V ] is a minimizer

only if there is at least one non-zero in each row and column of V ]. Subtracting ∂
∂Vr ′,s

J1(V ]) from

∂
∂Vr,s

J1(V ]) yields
∑Nc

j=1 V ]
r, j =

∑Nc
j=1 V ]

r ′, j , a. Similarly, subtracting ∂
∂Vr,s

J1(V ]) from ∂
∂Vr,s′

J1(V ])

yields
∑N 2

F
i=1 V ]

i ,s =
∑N 2

F
i=1 V ]

i ,s′ , b. As the row and column sums are uniform for each r and s, we

conclude V ] is a UNTF. Next, we have

N 2
F∑

i=1

Nc∑
j=1

V ]
i , j =

N 2
F∑

i=1

(
Nc∑
j=1

V ]
i , j

)
= N 2

F a

=
NC∑
j=1

N 2
F∑

i=1
V ]

i , j

= Nc b,

from which we conclude b = N 2
F

Nc
a. Substituting into (A.1), we find

a = 2

(
1+ Nc

N 2
F

)
, b = 2

(
N 2

F

Nc
+1

)
,

and this completes the proof.
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Appendix B

Proofs from Chapter 5

B.1 Lemmata

Lemma B.1. Let d ∈ L2(I ) be a bounded, real valued, positive, and continuous function over the

(possibly infinite) interval I = [a,b]. Define the “diagonal” multiplication operator D : L2(I ) →
L2(I ) by (D f )(x) = d(x) f (x). Then

min
x∈I

d(x) · ‖ f ‖L2(I ) ≤ ‖D f ‖L2(I ) ≤ max
x∈I

d(x) · ‖ f ‖L2(I ).

Moreover, D−1 exists and is given by (D−1g )(x) = g (x)/d(x), and

‖ f ‖L2(I )

maxx∈I d(x)
≤ ‖D−1 f ‖L2(I ) ≤

‖ f ‖L2(I )

minx∈I d(x)
.

Theorem B.2 (Variational Characterization of Eigenvalues of a Compact, Self-Adjoint Operator).

Let A : H → H be a compact, self-adjoint operator on a Hilbert space H equipped with inner

product 〈·, ·〉. Let λ1 ≥λ2 ≥ . . . be the eigenvalues of A listed in non-increasing order and repeated

with multiplicity. Assume that at least n eigenvalues exist. Let U be a subspace of H. Then

λn = max
dimU=n

min
x∈U
x 6=0

〈Ax, x〉
〈x, x〉 = min

dimU=n−1
max
x∈U⊥
x 6=0

〈Ax, x〉
〈x, x〉 .

Lemma B.3. The trancendental equation

τ= µNA2

4
tan

(
τ

ka −kb

2

)
(B.1)

has exactly one solution in the interval
[
π(2n+1)
kb−ka

, 2π(n+1)
kb−ka

]
, and

τ=−µNA2

4
cot

(
τ

ka −kb

2

)
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has exactly one solution in the interval
[

2πn
kb−ka

, π(2n+1)
kb−ka

]
.

Proof. We prove the first claim; the second follows from similar arguments.

Let n be a positive integer. Recall µ,NA2 are positive. We have

lim
τ→ 2π(n+1/2)

kb−ka

tan

(
τ

ka −kb

2

)
=∞

lim
τ→ 2π(n+1)

kb−ka

tan

(
τ

ka −kb

2

)
= 0,

and µNA2

4 tan
(
τ

ka−kb
2

)
is continuous and monotone decreasing for π(2n+1)

kb−ka
≤ τ≤ 2π(n+1)

kb−ka
. As the

function τ 7→ τ is monotone increasing, there is one solution to (B.1) on this interval.

Lemma B.4. Let −∞ < a < b < ∞. Let G : L2[a,b] → L2[a,b] be a self-adjoint and Hilbert-

Schmidt. Let d ∈ L2([a,b]) be a real valued, bounded, positive, and continuous function. Define

D : L2[a,b] → L2[a,b] by (D f )(x) = d(x) f (x).

Let the eigenvalues of G be λ1 ≥ λ2 . . ., listed in non-increasing order and repeated with mul-

tiplicity, and let γ1 ≥ γ2 . . . be the eigenvalues of DGD be listed in an identical fashion. Then γn

satisfies

λn ·
(

min
x∈[a,b]

d(x)

)2

≤ γn ≤λn ·
(

max
x∈[a,b]

d(x)

)2

.

Proof. Let 〈·, ·〉 denote the inner product on L2[a,b] and set ‖x‖2 = 〈x, x〉. Using Lemma B.1 and

Theorem B.2, we have

γn = max
dimU=n

min
x∈U
x 6=0

〈DGDx, x〉
‖x‖2

= max
dimU=n

min
x∈U
x 6=0

〈GDx,Dx〉
‖x‖2

= max
dimU=n

min
v∈U
v 6=0

〈Gv, v〉
‖D−1v‖2

≥ max
dimU=n

min
v∈U
v 6=0

〈Gv, v〉
‖v‖2

(
min

x∈[a,b]
d(x)2

)

=λn

(
min

x∈[a,b]
d(x)2

)
.
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For the upper bound,

γn = min
dimU=n−1

max
x∈U⊥
x 6=0

〈DGDx, x〉
‖x‖2

= min
dimU=n−1

max
x∈U⊥
x 6=0

〈GDx,Dx〉
‖Dx‖2

‖Dx‖2

‖x‖2

≤ min
dimU=n−1

max
x∈U⊥
x 6=0

〈GDx,Dx〉
‖Dx‖2

(
max

x∈[a,b]
d(x)2

)

=λn

(
max

x∈[a,b]
d(x)2

)
.

Lemma B.5. Let a,b ∈R. Two linearly independent solutions to

−x2 f ′′−x f ′+
(

a2

4
− b2

4
x

)
f = 0

are

J
(
a,b

p
x
)

,

where J (a, x) is the Bessel function of the first kind and of order a, and

Y
(
a,b

p
x
)

,

where Y (a, x) is the Bessel function of the second kind and of order a.

Proof. The change of variables u = b
p

x yields Bessel’s equation,

−u2 d2 f

du2
−u

d f

du
+ (

a2 −u2) f = 0,

which has linearly independent solutions J (a,u) and Y (a,u).

B.2 Proof of Proposition 4.1

Proof. First, set σ= ‖w‖L2[ka ,kb ]; we have

σ2 ,
∫ kb

ka

|w(k0)|2 dk0 = 4µπ

γ

(
1

ka +µ
− 1

kb +µ
)
= 4πµ

γ

kb −ka

(ka +µ)(kb +µ)
.
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Expanding ‖W −wν‖2
L2([ka ,kb ]×R)

and using (4.5) and ‖ν‖L2(R) = 1,

‖W −wν‖2
L2[ka ,kb ]×R) =

∫ ∞

−∞

∫ kb

ka

|W (k0, z)−w(k0)ν(z)|2 dk0dz

= ‖W ‖2
L2([ka ,kb ]×R) +‖w‖2

L2([ka ,kb ])‖ν‖2
L2(R) −2Re

(∫ kb

ka

∫ ∞

−∞
w(k0)W ∗(k0, z)ν(z)dzdk0

)
= π

γ
log

(
kb

ka

)
+σ2 −2Re

(∫ kb

ka

|w(k0)|2 dk0

)
= π

γ
log

(
kb

ka

)
−σ2,

thus we can choose µ to maximize σ instead. To that end,

∂

∂µ
σ2 = 4π

γ

(kb −ka)(kakb −µ2)

(ka +µ)2(kb +µ)2
,

thus µ? =√
kakb is a stationary point. Additionally,

∂2

∂µ2
σ2

∣∣∣
µ=µ? =

8π

γ

(ka −kb)(k2
akb − (µ?)3 +kakb(kb +3µ?))

(ka +µ?)3(kb +µ?)3

= 8π

γ

(ka −kb)(ka +kb +2
√

kakb)

(ka +
√

kakb)3(kb +
√

kakb)3
< 0,

thus µ? maximizes σ2.

B.3 Proof of Proposition 4.2

Proof. The kernel of Gk‖ is real valued and symmetric; thus Gk‖ is self-adjoint. Moreover, we have

∫ kb

ka

∫ kb

ka

∣∣Gk‖(k,k ′)
∣∣2 dkdk ′ =

∫ kb

ka

∫ kb

ka

∣∣∣∣∣exp

{
− ∣∣k −k ′∣∣

γµ

(
2+

∣∣k‖
∣∣2

4kk ′

)}∣∣∣∣∣
2

dkdk ′

≤
∫ kb

ka

∫ kb

ka

exp

{−4
∣∣k −k ′∣∣
γµ

}
dkdk ′

=
(
γµ

2
(kb −ka)+ γ2µ2

8

(
e

−4
γµ (kb−ka ) −1

))
<∞,
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and thus Gk‖ is Hilbert-Schmidt. As Dk‖ and Gk‖ are self-adjoint, Ãk‖Ã∗
k‖ =Dk‖Gk‖Dk‖ is self-

adjoint. Further, the kernel of Ãk‖Ã∗
k‖ satisfies

∫ kb

ka

∫ kb

ka

∣∣(Ãk‖ Ãk‖)(k,k ′)
∣∣2

dkdk ′ =
∫ kb

ka

∫ kb

ka

∣∣∣∣∣dk‖(k)exp

{
− ∣∣k −k ′∣∣

γµ

(
2+

∣∣k‖
∣∣2

4kk ′

)}
dk‖(k ′)

∣∣∣∣∣
2

dkdk ′

≤ ‖dk‖‖4
∞

Ï kb

ka

∣∣Gk‖(k,k ′)
∣∣2 dkdk ′

<∞,

and thus the operator is Hilbert-Schmidt.

B.3.1 Proof of Theorem 4.1

Proof. Let f be an eigenfunction of Gk‖ with eigenvalue λ> 0. We will use direct computation to

show that the pair ( f ,λ) satisfy (4.14) to (4.16).

We begin by introducing some additional notation. Define the scalars

δ,
2

γµ
= 4

NA2µ

τ,

∣∣k‖
∣∣2

4γµ
=

∣∣k‖
∣∣2

2µNA2 ,

so that G̃k‖(k, t ) in (4.10) and p(k) in (4.13) can be written

G̃k‖(k, t ) = e−δ|k−k‖|+τ|k−1−t−1|

p(k) = k2

δk2 +τ .

It is convenient to work with q = 1/p; explicitly,

q(k),
1

p(k)
= δ+ τ

k2
.

Define the functions

L1(k, t ), eδ(t−k)+τ(k−1−t−1)

L2(k, t ), eδ(k−t )+τ(t−1−k−1)
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so that the kernel of G̃k‖ (4.10) can be written in piecewise form as

G̃k‖(k, t ) = e−δ|k−t |−τ∣∣ 1
k − 1

t

∣∣
= L1(k, t ) ·1t≤k +L2(k, t ) ·1t>k .

Note that L1(k,k) = L2(k,k) and G̃k‖(k, t ) is continuous in k and t . The following derivatives will

be useful:

∂

∂k
L1(k, t ) =−q(k)L1(k, t )

∂

∂k
L2(k, t ) = q(k)L2(k, t ).

Let g = G̃k‖ f ; explicitly,

g (k) =
∫ kb

ka

G̃k‖(k, t ) f (t )dt =
∫ k

ka

L1(k, t ) f (t )dt +
∫ kb

k
L2(k, t ) f (t )dt . (B.2)

Next, we must calculate g ′ and g ′′. Differentiating with respect to k, we have

g ′(k) = d

dk

∫ k

ka

L1(k, t ) f (t )dt + d

dk

∫ kb

k
L2(k, t ) f (t )dt

= L1(k,k) f (k)+
∫ k

ka

∂

∂k
L1(k, t ) f (t )dt −L2(k,k) f (k)+

∫ kb

k

∂

∂k
L2(k, t ) f (t )dt

=−q(k)
∫ k

ka

L1(k, t ) f (t )dt +q(k)
∫ kb

k
L2(k, t ) f (t )dt . (B.3)

We compute the derivative of each term in (B.3) independently;

d

dk

(
q(k)

∫ k

ka

L1(k, t ) f (t )dt

)
=−2τ

k3

∫ k

ka

L1(k, t ) f (t )dt +q(k)
d

dk

∫ k

ka

L1(k, t ) f (t )dt

=−2τ

k3

∫ k

ka

L1(k, t ) f (t )dt +q(k)

(
f (k)−q(k)

∫ k

ka

L1(k, t ) f (t )dt

)
= q(k) f (k)−

(
2τ

k3
+q(k)2

)∫ k

ka

L1(k, t ) f (t )dt (B.4)

d

dk

(
q(k)

∫ kb

k
L2(k, t ) f (t )dt

)
=−2τ

k3

∫ kb

k
L2(k, t ) f (t )dt +q(k)

d

dk

∫ kb

k
L2(k, t ) f (t )dt

=−2τ

k3

∫ kb

k
L2(k, t ) f (t )dt +q(k)

(
− f (k)+q(k)

∫ kb

k
L2(k, t ) f (t )dt

)
=−q(k) f (k)+

(
−2τ

k3
+q(k)2

)∫ k

ka

L2(k, t ) f (t )dt . (B.5)
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Combining (B.4) and (B.5) and simplifying using (B.3) yields

g ′′(k) = d

dk

(
q(k)

∫ k

ka

L1(k, t ) f (t )dt

)
+ d

dk

(
q(k)

∫ kb

k
L2(k, t ) f (t )dt

)
=−2q(k) f (k)+q(k)2g (k)− 2τ

k3

1

q(k)
g ′(k). (B.6)

By assumption f is an eigenfunction of G̃k‖ with eigenvalue λ. Thus g = G̃k‖ f =λ f , g ′ =λ f ′, and

g ′′ =λ f ′′. Thus by (B.6), f ′′ must satisfy the differential equation

λ f ′′(k) =−2q(k) f (k)+λq(k)2 f (k)− 2τ

k3

1

q(k)
λ f ′(k).

Recall that p(k) = 1/q(k). Simplifying and rearranging yields,

−p(k) f ′′(k)− 2τ

k3
p(k)2 f ′(k)+ f (k)

p(k)
= 2

λ
f (k). (B.7)

Note p ′(k) = 2τp2(k)/k3; thus (B.7) is equivalent to

−p(k) f ′′(k)−p ′(k) f ′(k)+ f (k)

p(k)
= 2

λ
f (k),

which is easily converted to the desired Sturm-Liouville equation

− d

dk

(
p(k) f ′(k)

)− f (k)

p(k)
= 2

λ
f (k).

Finally, we show that f satisfies the mixed boundary conditions (4.15) and (4.16). Recall g =λ f ,

g ′ =λ f ′, and p = 1/q . By (B.2) and (B.3) we have

λ f (k) =
∫ k

ka

L1(k, t ) f (t )dt +
∫ kb

k
L2(k, t ) f (t )dt (B.8)

λp(k) f ′(k) =−
∫ k

ka

L1(k, t ) f (t )dt +
∫ kb

k
L2(k, t ) f (t )dt . (B.9)

Evaluating (B.8) and (B.9) at k = ka yields

λ f (ka) =
∫ kb

ka

L2(ka , t ) f (t )dt

λ f ′(ka) = 1

p(ka)

∫ kb

ka

L2(ka , t ) f (t )dt .
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thus

λ
(

f (ka)−p(ka) f ′(ka)
)= 0,

and as λ 6= 0, we must have f (ka)−p(ka) f ′(ka) = 0, establishing (4.15). Similarly, evaluating (B.8)

and (B.9) at k = kb yields

λ f (kb) =
∫ kb

ka

L2(kb , t ) f (t )dt

λ f ′(kb) =− 1

p(kb)

∫ kb

ka

L2(kb , t ) f (t )dt

and thus

λ
(

f (kb)−p(kb) f ′(kb)
)= 0,

establishing the boundary condition (4.16).

B.4 Proof of Theorem 4.3

Proof. Suppose f is an eigenfunction of G̃0 with non-zero eigenfunction λ. Set

δ= 1

p(k)
= 4

NA2µ

and rewrite the ODE (4.18) as

− f ′′+
(
δ2 − 2δ

λ

)
f = 0 (B.10)

subject to boundary conditions

f (ka)−δ−1 f ′(ka) = 0 (B.11)

f (kb)+δ−1 f ′(kb) = 0. (B.12)

First, we show that δ2 − 2δ/λ < 0. Let λ1 be the largest eigenvalue of G̃0. Specialized to the

problem at hand, the inequality (4.17) can be written

1 ≤ δ

4
(kb −ka)

(∫ kb

ka

max

{
2

λ1
−δ,0

}
dk

)
,

which is non-zero only if λ1 ≤ 2/δ. As 0 <λ<λ1, we have δ2 −2δ2/λ< 0, as desired.
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Define kmid = (ka +kb)/2 and set

τ,

√
2δ

λ
−δ2. (B.13)

Two linearly independent solutions to (B.10) cos(τ(k −kmid)) and sin(τ(k −kmid)), so any f

satisfying (B.10) can be written in the form f (k) = A cos(τ(k −kmid))+ sin(τ(k −kmid)). Next, we

show that f satisfying the boundary conditions (B.11) and (B.12) and A 6= 0 must have B = 0 and

vice versa.

Suppose A 6= 0; without loss of generality we can take A = 1. The boundary conditions (B.11)

and (B.12) become

(δ−Bτ)cos
(τ

2
(ka −kb)

)
+ (Bδ+τ)sin

(τ
2

(ka −kb)
)
= 0 (B.14)

(δ+Bτ)cos
(τ

2
(ka −kb)

)
+ (−Bδ+τ)sin

(τ
2

(ka −kb)
)
= 0.

Solving (B.14) for B yields

B = δcos
(
τ
2 (ka −kb)

)+τsin
(
τ
2 (ka −kb)

)
τcos

(
τ
2 (ka −kb)

)−δsin
(
τ
2 (ka −kb)

) ,

while solving (B.14) for B yields

B =−δcos
(
τ
2 (ka −µ)

)+τsin
(
τ
2 (ka −µ)

)
τcos

(
τ
2 (ka −µ)

)−δsin
(
τ
2 (ka −µ)

) .

Thus B =−B and we must have B = 0. The same argument for B = 1 implies A = 0.

Next, we show that τ and δ (and thus λ) are roots of a trancendental equation. Suppose f

satisfies (B.10) to (B.12) with A = 1. As f satisfies the boundary conditions, we have

δcos
(τ

2
(ka −kb)

)
+τsin

(τ
2

(ka −kb)
)
= 0,

and thus

τ=−δcot
(τ

2
(ka −kb)

)
.

If B = 1, we have

τcos
(τ

2
(ka −kb)

)
−δsin

(τ
2

(ka −kb)
)
= 0,
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and thus

τ= δ tan
(τ

2
(ka −kb)

)
.

Finally, given τ and δ, we obtain λ from (B.13) as

λ= 2δ

τ2 +δ2
= 8µNA2

16+τ2µ2NA4 .

B.5 Proof of Theorem 4.5

Proof of Theorem 4.5. Expand (4.20) and simplify:

−p̃(k) f̃ ′′− p̃ ′(k) f̃ ′+
(

1

p̃(k)
− 2

λ̃

)
f̃ = 0

−β(α+2
∣∣k‖

∣∣2 k) f̃ ′′−2β
∣∣k‖

∣∣2 f̃ ′+
(

1

β(α+2
∣∣k‖

∣∣2 k)
− 2

λ̃

)
f̃ = 0

−(α+2
∣∣k‖

∣∣2 k) f̃ ′′−2
∣∣k‖

∣∣2 f̃ ′+
(

1

β2(α+2
∣∣k‖

∣∣2 k)
− 2

βλ̃

)
f̃ = 0. (B.15)

Make the change of variables u =α+2
∣∣k‖

∣∣2 k. We have

d f̃

dk
= 2

∣∣k‖
∣∣2 d f̃

du
d2 f̃

dk2
= 4

∣∣k‖
∣∣4 d2 f̃

du2
;

thus (B.15) becomes

−u2 d2 f̃

du2
−u

d f̃

du
+

((
1

2β
∣∣k‖

∣∣2

)2

− 2

4β
∣∣k‖

∣∣4
λ̃

)
f̃ = 0. (B.16)

The solution to (B.16) is obtained using Lemma B.5 with a = (β
∣∣k‖

∣∣2)−1 and b = ∣∣k‖
∣∣−2

√
2
βλ̃

.
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Appendix C

Proofs from Chapter 6

C.1 Rank Bounds for the Khatri-Rao Product

The following lemma regarding the rank of the Khatri-Rao product will prove useful:

Lemma C.1. Given A ∈Cm×n1 and B ∈Cm×n2 , rank{A¯B} ≤ min(m, rank{A}rank{B}).

Proof. As A¯B ∈Cm×n1n2 , we have rank{A¯B} ≤ min(m,n1n2). Note that A¯B contains a subset

of rows of the matrix A⊗B. As the rank of the Kronkecker product is equal to the product of the

ranks of A and B (e.g., [199]), we have rank{A¯B} ≤ rank{A⊗B} = rank{A}rank{B}.

C.2 Proof of Lemma 5.1

Proof. (C1) =⇒ (C2): Let p̄l ∈ (
N̄l

)⊥
be the unique solution to s̄l =Φl p̄l . Let x ∈ null

{
Φl

}∩(
N̄l

)⊥
.

NowΦl (p̄l +x) =Φl p̄l = s̄l . As x+ p̄l ∈ (
N̄l

)⊥
, by (C1) x = 0. Thus (C1) =⇒ (C2).

(C2) =⇒ (C3): Recall Φ̃l = Φl (INF ⊗Vl ) ∈ CNF Nk×Ns r . As INF ⊗Vl is a basis for
(
N̄l

)⊥
, and

null
{
Φl

}= N̄l by assumption, Φ̃l x = 0 if and only if x = 0; thus null
{
Φ̃l

}= {0}. By the rank nullity

theorem, rank
{
Φ̃l

}= Nsr .

(C3) =⇒ (C1): Suppose ∃u,v ∈ (
N̄l

)⊥
such that Φl u = Φl v. As INF ⊗Vl is a basis for

(
N̄l

)⊥
,

there are unique vectors x,y such that u = (INF ⊗Vl )x and v = (INF ⊗Vl )y. Now 0 =Φl (u−v) =
Φ̃l (x−y) =⇒ x = y as Φ̃l is full column rank; thus u = v, completing the proof.

C.3 Proof of Theorem 5.2

Proof. Here, we suppress the superscript l . By Lemma 5.1, it suffices to show that the proposed

conditions are necessary for Φ̃ to have rank Nsr . (N1) follows as Φ̃ can have rank Nsr only if

Nk NF ≥ Nsr .
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We show (N2) by contradiction; suppose rank{H} = q < Ns . By construction rank
{

H̄
} =

rank{H}. Thus by Lemma C.1, rank
{
Φ̃

}≤ rank
{

H̄
}

rank
{

Āl
}≤ r q < Nsr .

For (N3), suppose the first row of B̂ is orthogonal to the remaining Nk NF rows. Let x be

a column vector formed from first row of B̂ and let e1 , [1,0, . . . ,0] ∈ CNk NF ; by construction,

B̂x = e1. Set α=∑Ns
j=2 h j [1]/h1[1]; then

Φ̃ [−αxT,xT, . . . ,xT]T = diag

{
Ns∑
j=2

h j −αh1

}
e1 = 0,

and so rank{Φ} ≤ Nsr −1.

To show (N4), suppose there is a subset J with |J | ≥ Ns such that H[J , : ] ∈ C|J |×Ns is rank Ns

and the remaining rows, H[J c , : ] ∈CNk−|J |×Ns has rank q < Ns . Define Φ̃J ∈CNF |J |×Ns r to be the

rows of Φ̃ involving the rows of H indexed by J ; that is,

Φ̃J =


H[J , : ]¯ B̂1[J , : ]

...

H[J , : ]¯ B̂NF [J , : ]

 ,

and construct Φ̃J c ∈CNF (Nk−|J |)×Ns r using the rows indexed by J c . As both B̂[J , : ] ∈CNF |J |×r and

B̂[J c , : ] ∈CNF (Nk−|J |)×r have rank at most r , by Lemma C.1, we have

rank
{
Φ̃

}≤ rank
{
Φ̃J}+ rank

{
Φ̃J c

}
≤ min(NF |J | , Nsr )+min

(
NF (Nk −|J |), qr

)
,β.

Our goal is establish conditions such that β ≥ Nsr . This is clearly true, regardless of q , when

NF |J | ≥ Nsr . When |J | < Nsr /NF , we have

β= NF |J |+min
(
NF (Nk −|J |), qr

)
.

Suppose NF (Nk −|J |) < qr ; then β= NF Nk ≥ Nsr where the inequality follows from condition

(N1). Otherwise, if NF (Nk −|J |) ≥ qr , then β= NF |J |+qr and q ≥ Ns −NF |J |/r implies β≥ Nsr .

To show (N5), for each i ∈ [Nk ] we define the index set Ji = {i , i +Nk , . . . , i + (NF −1)Nk }; now,

Φ̃Ji = (1TNF
⊗H̄[Ji , : ])¯B̄[Ji , : ] =


h1[i ]B̂1[i , : ] h2[i ]B̂1[i , : ] . . . hNs [i ]B̂1[i , : ]

...
...

...

h1[i ]B̂NF [i , : ] h2[i ]B̂NF [i , : ] . . . hNs [i ]B̂NF [i , : ]

 ∈CNF×Ns r .
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Now, rank
{
Φ̃

} ≤ ∑Nk
i=1 rank

{
Φ̃Ji

} ≤ ∑Nk
i=1 rank

{
B̂[Ji , : ]

}
, where the final inequality follows from

Lemma C.1 and rank
{

(1TNF
⊗H[Ji , : ])

}
= 1. Setting this upper bound to Nsr gives the statement.

C.4 Proof of Theorem 5.3

Proof. We omit the superscript l . It suffices to prove the case where Φ̃ is square, Nk = r and

NF = Ns . Then rank
{
Φ̃

} ∈CNs r×Ns r = Nsr if and only if

θ(H), detΦ̃= det[H̄¯ B̄] 6= 0.

Now, θ(H) is a multivariate polynomial in the entries of H whose coefficents depend only on the

entries of B̄. Thus θ(H) is either identically zero or its zero set is an affine algebraic set and thus

a nowhere dense set of measure zero. It suffices to show θ(H) 6= 0 for a single choice of H (see,

e.g., [200–202] and references therein).

We can permute the rows of Φ̃ such that the first Nk rows are indexed by J1, the next Nk rows

by J2, and so on. In particular, there is a permutation matrixΠ ∈CNk Ns×Nk Ns such that (c.f. (5.13))

ΠΦ̃=



D1[J1, J1]B̂1[J1, : ] . . . DNF [J1, J1]B̂1[J1, : ]
...

...

D1[J1, J1]B̂NF [J1, : ] . . . DNF [J1, J1]B̂NF [J1, : ]

D1[J2, J2]B̂1[J2, : ] . . . DNF [J2, J2]B̂1[J2, : ]
...

. . .
...

D1[JNF , JNF ]B̂NF [JNF , : ] . . . DNF [JNF , JNF ]B̂NF [JNF , : ]


=



ĎJ1
1 C1 . . . ĎJ1

NF
C1

ĎJ2
1 C2 . . . ĎJ2

NF
C2

...
. . .

...

Ď
JNF
1 CNF . . . Ď

JNF
NF

CNF

 ,

where, in an abuse of notation, we write ĎJ
l = (1TNF

⊗Dl [J , J ]).

Next, we specify our choice of H. By assumption, r = Nk = mNF for some integer m. For each

i ∈ [Ns], we set hi [Ji ] = 1m and set remaining coordinates are set to zero. With this construction,

Ď
J j

i = Im if i = j ; otherwise, Ď
J j

i = 0m . Now

ΠΦ̃=



C1 0m . . . 0m

0m C2 . . . 0m

...
...

. . .
...

0m 0m . . . CNF

 ,
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that is, Φ̃ is similar to a block diagonal matrix. As each block along the diagonal is full rank by

assumption, Φ̃ is full rank.
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