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Abstract

The emerging trend of vehicle electrification is revolutionizing the transportation industry

by replacing traditional mechanical and hydraulic components with higher performing, more

reliable, and more efficient electrical components. However, the introduction of a complex

electrical network onboard mobile systems poses significant challenges for control design en-

gineers. The most notable challenge is the coordination of multi-domain and multi-timescale

system dynamics. This thesis seeks to address the challenge of coordination between the

slow battery state of charge dynamic and faster electro-mechanical dynamics for a hybrid

unmanned aerial vehicle.

The graph-based modeling framework for multi-domain systems is leveraged to capture the

interactions between relevant energy domains. Additionally, the modularity and scalability

of this modeling approach is used to develop a dynamic model for a hybrid unmanned aerial

vehicle. The system model facilities the design and development of three control architectures

of varying complexity. A baseline controller is developed for sake of comparison. A battery

state of charge bounding algorithm in integrated into a centralized model predictive controller

to provide system coordination across timescales. Lastly, an alternative model predictive

hierarchical controller is designed to provide real-time planning of the slow battery state of

charge dynamics.

The proposed models and controllers are experimentally validated on a novel hybrid elec-

tric UAV powertrain testbed. The controllers are evaluated on three core figures of merit:

performance, reliability, and efficiency. Both simulation and experimental results show that

the advanced controllers outperform the baseline in all figures of merit with a 9 − 12.5%

reduction in fuel usage.
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Chapter 1

Introduction

1.1 Motivation

The emerging trend of vehicle electrification is revolutionizing the transportation industry

by impacting the design of various types of ground, air, and water vehicles. As seen by

the trend in Figure 1.1, vehicle electrification provides an optimistic approach towards the

development of high power level vehicles [1]. This shift towards electrification has provided

various improvements on classic mechanical and hydraulic powertrains. First, electrified

vehicles are more environmentally friendly because they can better leverage renewable en-

ergy sources. Furthermore, maintenance costs tend to be lower for electrified systems since

complex mechanical and hydraulic systems are replaced by their electrical counterparts [2].

The modularity of electrical systems also provides an increasingly large design space that

better facilities mission-specific design for more capable vehicles [3]. Additionally, electrified

vehicles may have reduced sound levels, resulting in decreased noise pollution in urban areas

such as airports.

In spite of the these benefits, there are still many challenges facing electrification. In

comparison to fuel, batteries are significantly less energy dense [5]. This issue is compounded

when considering vehicle mass because batteries do not decrease in weight over the course

of a mission. In fact, weight is a significant market challenge because heavier systems

have more significant operating costs that deter widespread adoption of the technology.

For electrified aircraft, corona discharge (arcing) is more prevalent at high altitudes [6],

and therefore additional safety systems and weight must be added to the aircraft. The

most significant challenge facing electrified systems is the necessity for an onboard thermal

management system [5]. In traditional vehicles, engines and gas turbines that operate at high
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Figure 1.1: Historical and predicted trends for electrification of aircraft. Modified from [4].

temperatures are able to reject heat to ambient air. In an electrified vehicle, inefficiencies

in the electrical components generate heat. As the components’ temperatures change, so do

their electrical characteristics [7, 8]. To maintain safe operation, heat is rejected to a thermal

management system because the electronics, located inside the vehicle body, cannot directly

reject heat to ambient air [5]. The ability to understand this coupling between electrical and

thermal energy domains is key to improving not just vehicle reliability, but also the vehicle

performance and efficiency.

An aspect of the trend of electrification is hybridization. In contrast to an all electric

powertrain (Figure 1.2a), a hybrid powertrain commonly utilizes both an engine and a bat-

tery pack to provide power for the vehicle. The system can leverage the energy dense fuel

for slower transient loads while the battery is more adept at servicing the faster electrical

loads. A hybrid electric aircraft’s drivetrain has 3 architecture options: series, parallel, and

series/parallel (Figure 1.2). In a series drivetrain (Figure 1.2b), the engine is connected to

a generator to generate electrical energy and thrust is produced by an electric motor. In a

parallel configuration (Figure 1.2c), the engine, an electric motor, and main driveshaft are
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mechanically connected. In this case, the engine can provide thrust or generate electrical

energy via the motor. The electric motor can also provide thrust. A series/parallel con-

figuration (Figure 1.2d) is a combination of both series and parallel architectures. Similar

to the parallel configuration, the engine directly provides thrust, but also generates electri-

cal power via a generator. Similar to the series architecture, additional electric motors are

used to generate additional thrust. The series/parallel configuration for aircraft is similar to

the power split architecture for ground vehicles [10]. Hybridization yields an extra degree-

Battery
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Propulsor

BusBus

Motor

Electrical Connection

Mechanical Connection

(a) All electric vehicle powertrain.

Battery

Fan/

Propulsor

BusBus

Motor

Generator Engine

(b) Series hybrid vehicle powertrain.
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BusBus

Motor/ 
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Engine

(c) Parallel hybrid vehicle powertrain.

Fan/

Propulsor

BusBus

Motor

Generator Engine

Battery

Fan/

Propulsor

(d) Series/parallel hybrid vehicle powertrain.

Figure 1.2: Representations of (a) all electric, (b) series hybrid, (c) parallel hybrid, and (d)
series/parallel hybrid vehicle configurations. Electrical and mechanical connections are
listed in green and purple respectively. Note that these schematics neglect any other loads,
energy storage, or power generation connected to the bus. Modified from [9].
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of-freedom for improving the performance or efficiency of the vehicle. However, the extra

degree-of-freedom adds significant complexity to the controller that must choose when and

how to operate the engine to achieve operational gains.

Lastly, electrified vehicles are a highly complex interconnection of multi-domain systems-

of-systems. This thesis will specifically focuses on the analysis of the powertrain of a hybrid

Unmanned Aerial Vehicle (UAV). In practice, UAVs have mission-specific designs, a charac-

teristic that highlights the modularity of this class of systems; facilitating the development

of various architectures from the same set of core components. It is important to utilize

a modular modeling framework to reflect the physical system because model-based control

strategies are useful for these classes of systems. Furthermore, it is important to adhere

to a similar modular framework for controller design, such that if a new architecture was

designed, there would be seamless integration with a new controller. It is also key that the

modeling and control practices maximize computational efficiency. Reducing the necessary

demand for computation power onboard the aircraft may result is cheaper manufacturing

costs, decreased vehicle weight, and/or less heat generation.

1.2 Background

1.2.1 Current Practices

There has been a significant effort towards dynamic modeling of energy and power systems.

Through the development of dynamic system models, systems and control engineers can

rapidly evaluate various system and control architectures prior to physical implementation.

In the thermal domain, simulation tools such as Thermosys and ATTMO [11, 12] have been

used to design and evaluate refrigeration cycles for buildings and mobile systems. The MAT-

LAB Simscape toolbox [13] has been used for the design of dynamic electrical systems. For

target aircraft applications, the PowerFlow toolbox [14] couples multiple energy domains

by offering various electrical, thermal, hydraulic, and mechanical components models. The

modular tip-to-tail scope of these toolboxes makes them particularly useful for system design

and simulation. However, capturing dynamics that span a wide range of timescales in a uni-

4



fied, scalable and computationally efficient framework has not been addressed. For example,

it would be difficult to simulate a very fast millisecond time scale electrical model built in

Simscape with a slow 10-100 second time scale thermal management system designed in

Thermosys. Furthermore, extracting models from proprietary software for implementation

in a model-based controller can be very challenging if the user cannot access the underlying

model. Therefore, current modeling practices need to be improved through the development

of a multi-domain, modular, scalable, and computationally efficient modeling framework

from which a set of dynamic equations can be easily extracted.

Electrical powertrain control considers the actuation of individual components as well as

higher level coordination of the power sharing between the battery and engine/generator.

Since there exist significant losses in both the electrical and mechanical systems, system-wide

efficiency gains are achieved through coordination between energy domains. Initial control

strategies for the battery-engine/generator power share were rule-based techniques such as

thermostatic [15] and power following [16] control. Later, additional heuristics were layered

on to these baseline approaches to improve robustness and efficiency [17]. In these rule-

based state-machine-like strategies, different operating modes typically depend on distinct

thresholds. However, these control designs were sensitive so fuzzy logic rule-based strategies

were developed to improve robustness to disturbances [16, 17]. For more optimal solutions

implementable in real-time, dynamic programming (DP) has been used to determine the

optimal power share offline [18, 17]. However, the DP complexity grows exponentially with

the number of system states [19].

Model predictive control (MPC) [20] is another suitable optimal real-time control tool for

hybrid systems. In MPC, a model is used to predict system behavior over some predefined

time horizon and optimization tools determine an optimal set of inputs that are then ap-

plied to the system. In addition to hybrid vehicles [21], MPC has been applied to building

HVAC systems [22], chemical plants [23], grid power economics [24], and aircraft fuel thermal

management systems [25] (to name a few). Since optimization problems take time to solve,

application of MPC to a system with fast dynamics is challenging. This issue is compounded

when considering a centralized control approach for a system with many states and a wide

range of timescales, making it challenging to predict system behavior far into the future.
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Therefore, hierarchical MPC [4, 26, 27] approaches have been developed to address the is-

sues related with computation and long-term mission planning. At the top of a hierarchy

(Figure 1.3), a supervisor manages and optimizes vehicle performance with respect to slower

system dynamics and objectives. The supervisor passes objectives to various predictive or

regulatory controllers tailored to lower level subsystems. Each of the predictive controllers at

the lower levels only model dynamics relevant to that subsystem, thus enabling the applica-

tion of MPC to systems with both fast and slow dynamics. Two-level hierarchical MPC has

been applied to building thermal systems [28] while more complex multi-level hierarchical

MPC has been utilized in the control of an aircraft thermal and electrical system [25].

1.2.2 Scope of Thesis

The thesis considers issues related to the modeling and control of a hybrid UAVs power-

train. Specifically, this thesis addresses the multi-domain, modular, scalable, and compu-

tation issues associated with current modeling techniques. Addressing these issues facilities
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a generalizable approach to the modeling and control of a variety of energy-based systems.

Since UAVs are commonly designed for specific missions, the modular and scalable attribute

is particularly relevant here. This thesis also offers two novel control techniques to address

the concern of applying MPC algorithms to multi-timescale dynamic electro-mechanical sys-

tems. These contributions combine short-term reference tracking and disturbance rejection

with long-term mission planning. Each controller will be evaluated on the system perfor-

mance, reliability, and efficiency. Lastly, all models and controllers will be experimentally

validated on flight-ready hardware to demonstrate how simulation results translate to a

physical system.

1.3 Thesis Organization

The remainder of this thesis is as follows. Chapter 2 will introduce the generic formulation

for the dynamic graph-based modeling framework for multi-domain systems. Graph-based

models for components in a hybrid UAV powertrain are introduced, and then a novel system

composition method is described and used to develop a system model. Chapter 3 describes

the baseline, centralized MPC, and hierarchical MPC controller formulation. Chapter 4

establishes experimental validation techniques for the components and system model intro-

duced in Chapter 2. Chapter 5 provides simulation and experimental results for each control

design. Chapter 6 summarizes key contributions and outlines areas for future research.
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Chapter 2

Modeling

2.1 Background

A mathematical modeling framework must be chosen to represent the systems onboard a

hybrid UAV. To facilitate control design, the modeling framework used in this thesis should

address the following requirements:

• Energy domain agnostic - Dynamic coupling between relevant energy domains across

a large range of timescales must be captured in a unified modeling framework. By

understanding the coupling between energy domains, a controller can make better

decisions to satisfy mission objectives while maintaining safe operation.

• Modular - A full system model should be composed of various interconnected com-

ponents and systems. Since UAVs have mission-specific designs, modularity provides

flexibility in the types of systems that can by represented.

• Scalable - The modeling framework should be able to represent systems of multiple

scales. It is important to be able to represent various sizes of UAVs as well as other

types of mobile systems.

• Computationally efficient - System models must be computationally efficient for ap-

plications in real-time optimal model-based controllers.

• Variable fidelity - Depending on objectives and computational resources, the accuracy

of a model may have a large variance. The modeling framework should be able to

capture system dynamics at varying levels of complexity.
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Various modeling frameworks have been used to capture the dynamics of mobile systems.

Some of these efforts have led to the development of useful toolboxes such as Thermosys

[11], ATTMO [12], Simscape [13], PowerFlow [14], etc. While some toolboxes meet the

modularity and scalability requirement, they mostly lack the ability to capture the coupling

between energy domains in a computationally efficient manner. Furthermore, it may be

difficult to abstract a model useful for control design from proprietary software. Finite ele-

ment approaches are typically quite accurate but lack the computational efficiency required

for application in a real-time controller [29]. Bond graphs have been used to represent the

complex dynamics of multi-domain systems in a modular and causal manner [30]. However,

when modeling a large-scale system, the bond graph representation can become increas-

ingly complex [31]. Additionally, bond graphs lack many analysis tools (e.g. model order

reduction) that may facilitate advanced control design [27].

Therefore, this work chooses to employ a graph-based modeling framework to represent

the powertrain of a hybrid UAV. Based in conversation laws, the graph-based modeling

framework has been used to capture dynamics of hydraulic, thermal, electrical, and mechan-

ical systems [3, 25, 32]. Furthermore, the structure of a graph model is inherently modular

and scalable, which enables the representation of various classes of mobile systems. Initial

efforts have highlighted the computational efficiency of the framework [3, 26]. Validation

efforts have shown that graph models can adequately capture system dynamics [33, 34].

The remainder of this chapter is organized as follows. Section 2.2 outlines the basic and

multi-domain graph model formulations. Section 2.3 develops modular component models

used in the development of a hybrid UAV system model. Section 2.4 details an algorithmic

method for the development of a system scale graph model composed of various component

graph models. The UAV system graph model is described in Section 2.5. Lastly, Section 2.6

summarizes the contributions of this chapter.
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2.2 Graph-Based Modeling

2.2.1 Graph-Based Modeling Fundamentals

System interconnections are captured by a directed graph G = (V , E) of order Nv (number

of vertices) and size Ne (number of edges) [35]. The graph G consists of vertices vi ∈ V :

i ∈ [1 : Nv] and directed edges ej ∈ E : j ∈ [1 : Ne]. Each directed edge ej connects a tail

vertex vtailj to a head vertex vheadj . The set of edges entering and leaving vertex vi is denoted

by Ehead
i = {ej : vheadj = vi} and E tail

i = {ej : vtailj = vi} respectively. A notional graph is

provided in Figure 2.1.

Using conservation laws, the graph G is used to develop a dynamic system model S.

In the graph-based modeling framework, each vertex vi represents a storage element/state

variable xi and each edge ej represents the rate of transfer Pj between neighboring vertices.

The transfer rates Pj will be called “power flows” because an energy-based analysis will be

provided in the subsequent sections of this thesis. These vertices and edges are drawn as solid

circles and directed edges as seen in Figure 2.1. The edge orientation defines positive power

flow from vtailj to vheadj , but note that the flow of power is bi-directional. Using conservation
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laws, the state dynamics of of a single vertex vi of S are given by

Ciẋi =
∑

{j:ej∈Ehead
i }

Pj −
∑

{j:ej∈Etail
i }

Pj, (2.1)

where Ci ≥ 0 is the capacitance of the state xi. Each power flow Pj in the system S can be

any nonlinear function fj of the two adjacent vertex states and an input uj

Pj = fj(x
tail
j , xhead

j , uj). (2.2)

The graph-based modeling framework also captures interactions with external systems

such as the environment. These external interactions are represented by sink vertices or

source edges. Sink vertices are treated as disturbances created by neighboring states external

to the system and are represented as dashed circles as seen in Figure 2.1. Sink vertices are

denoted by vti ∈ V : i ∈ [1 : Nt] where Nt is the number of sink vertices in the graph. The

sink state xt
i is associated with sink vertex vti , but note that sink states are excluded from

the system’s state vector x. Graph vertices can be partitioned by state vertices vi ∈ V̄ : i ∈

[1 : Nv −Nt] and sink vertices vti ∈ V̄ : i ∈ [1 : Nt] where V̄ ∪ V̄ = V .

Similarly, source flows are treated as disturbances created by neighboring systems. Source

flows are represented by dashed edges (Figure 2.1) esj : j ∈ [1 : Ns] where Ns is the total

number or source flows in the graph. Here, a power flow P s
j is associated with each source

flow esj . Note that source flows are excluded from the set of graph edges es ̸∈ E . In this

thesis, source flows are not utilized when formulating graph models.

The incidence matrix M = [mij] ∈ RNv×Ne is used to describe the structure of vertex and

edge connections of a graph and is defined as

mij =


1 if vi is the tail of ej,

−1 if vi is the head of ej,

0 else.

(2.3)
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The incidence matrix can be partitioned as

M =

M̄
¯
M

with M̄ ∈ R(Nv−Nt)×Ne , (2.4)

where M̄ maps power flows P to states x and and
¯
M maps power flows to sink states xt.

Similarly, source flows P s are mapped to states x using D = [dij] ∈ R(Nv−Nt)×Ns and is

defined as

dij =

1 if vi is the head of esj ,

0 else.
(2.5)

Using the conservation equation (2.1), the full system dynamics are given by

Cẋ = −M̄P +DP s, (2.6)

where C is a diagonal matrix of the capacitances associated with the system states. Using

equation (2.2), the power flow vector P is described by

P = F (x, xt, u). (2.7)

The M and D matrices for the example graph in Figure 2.1 are provided below. In the

graph, Nv = 5, Ne = 4, Nt = 2, and Ns = 2.

M =



1 0 0 0

−1 −1 1 0

0 1 0 1

0 0 −1 0

0 0 0 −1


, D =



1 0

0 0

0 1

0 0

0 0


. (2.8)
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2.2.2 Multi-Domain Graph Models

The generic graph formulation has been applied to various physical domains. Initially,

the graph-based modeling framework was used to model and validate hydraulic and ther-

mal dynamics of various systems such as an aircraft fuel-thermal management system [27],

turbomachinery [4], and a power inverter [36]. Graphs have recently been developed for

electrical and mechanical systems in order to capture the coupling between energy domains

in a modular and scalable modeling framework. Recently, the graph model formulation has

been extended to model the powertrain of both aerial [3] and ground vehicles [32].

This chapter will expand upon the work of [3] and introduce graph models for compo-

nents and subsystems of a hybrid UAV. System dynamics will be derived by applying energy

conservation laws to the storage elements in the electrical, mechanical, and thermal energy

domains. Hydraulic dynamics will not be considered. Furthermore, the following formula-

tions will draw from parallels between electrical and mechanical systems. For example, the

RLC circuit is the electrical counterpart to the mechanical mass-spring-damper system. The

remainder of this subsection will first introduce relevant energy storage elements and their

associated dynamics. Second, methods of power transfer between elements will be discussed.

Lastly, rules for the construction of a multi-vertex and multi-domain graph model and model

simplification steps are introduced.

The electrical and mechanical system dynamics are governed by compliance (capacitors

and springs) and inertance (inductors and masses) elements, whereas thermal system dy-

namics are associated with thermal masses. These elements will be represented as vertices

in a graph model. The graph capacitance C and state dynamic ẋ for each each these ele-

ments are outlined in Table 2.1. The elements capacitance’s are electrical capacitance Ce,

inductance L, moment of inertia J , spring constants k and kτ , mass m, and thermal capac-

itance CT . The element states are voltage V , current I, torque τ , angular speed ω, force F ,

linear velocity v, and temperature T . In some instances, the graph capacitance and state of

each element may differ from what is shown. For example, charge could be used in place of

voltage (Figure 2.4). The classification of each vertex will be referred to as the vertex type

Tv.
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Table 2.1: Graph model storage elements by energy domain for linear elements.

Energy Domain Element Capacitance State Vertex Type
Thermal Thermal Mass CT T 1

Electrical Capacitor CeV V 2
Inductor LI I 3

Angular Mechanical Rotating Mass Jω ω 4
Torsional Spring 1

k τ
τ τ 5

Linear Mechanical Translating Mass mv v 6
Compression/ Tension Spring 1

k
F F 7

As mentioned previously, edges of the graph represent an exchange of energy between

energy storage elements. Between the relevant energy domains there are various physical

representations for these power flows P such as electro-magnetics, electrical resistance or

friction loss, convection, etc. Specific means of power transfer for physical systems is de-

scribed in Section 2.3. Although power flows can represent any nonlinear function, it is

useful, for analysis, to extract and aggregate common linear or nonlinear terms. The results

of this aggregation are shown below where any power flow Pj will be represented by the

following generic formulation

Pj = gj(xt, xh, uj)(c1xt + c2xh + c3xhxt + c4x
2
t + c5xhx

2
t

+c6xtuj + c7xhuj + c8xhxtuj + c9x
2
tuj + c10xhx

2
tuj

+c11x
3
t ),

(2.9)

where ck : k ∈ [1 : 11] are constant coefficients for the aggregated terms and g is any nonlinear

function of the tail state xt = xtail
j , head state xh = xhead

j , and edge input uj. Equation (2.9)

can still capture any nonlinearities through g. Note that g is commonly used to represent

look-up tables that cannot be modeled as smooth functions. In this thesis, each term in

(2.9) will be referred to as an edge type Te. Terms can be removed from the power flow

calculation for edge ei by choosing the associated constant coefficient to be zero, ck = 0.

Next, when generating a multi-vertex and multi-domain graph model, it is important to
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adhere to the following structural rules. When modeling within the electrical or mechanical

energy domains, there should be alternating compliance and inertance vertices [32]. For

example, in an electrical graph model a capacitor type vertex can only be connected to

inductor type vertices and vice versa. When coupling between electrical and mechanical

domains, there should be adjacent compliance or inertance vertices. For example, an inductor

vertex could be connected to a rotating mass type vertex.

Observe the capacitance column for the electrical and mechanical dynamics in Table 2.1.

Most of the graph capacitances are nonlinear because they are dependent on the state

variable. Although the energy based analysis is useful for constructing a multi-domain graph,

it becomes apparent that the state dynamics may not be represented in simplest form. For

example, the voltage dynamics V for a capacitor Ce in parallel with a resistor R can be

given as CeV V̇ = V 2/R. As the capacitor voltage approaches 0, the graph capacitance

approaches zero. For simulation, it is preferred to model the state dynamics in a simplified

form CeV̇ = V/R. To compensate for this issue, the generic graph formulation is altered,

which results in the modified graph formulation. Note that this vocabulary is defined in,

and specific to, this application. Modified graph properties, denoted by the superscript ‡,

parallel the properties of the generic graph. The dynamics for a modified graph are given

by

C‡ẋ = −M̄ ‡P ‡ +DP s, where (2.10a)

C‡
ii =

Cii if Tv,i = 1,

Cii/xi else.
(2.10b)

M̄ ‡ = [M̄ ‡
k ] =

[
M̄ ‡

1 M̄ ‡
2 M̄ ‡

3 M̄ ‡
4 M̄ ‡

5 M̄ ‡
6 M̄ ‡

7

]
, (2.10c)

P ‡ = [P ‡
k ] =

[
P ‡
1 P ‡

2 P ‡
3 P ‡

4 P ‡
5 P ‡

6 P ‡
7

]T
, (2.10d)
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where each partition M̄ ‡
k = [mij] of M ‡ is defined as

mij =


1 if vi is the tail of ej and Tv,i = k,

−1 if vi is the head of ej and Tv,i = k,

0 else.

(2.11)

Similarly, each partition P ‡
k = F (x, xt, u) of P ‡ is defined as

P ‡
k,j = Fj(xt, xh, uj) =



Fj(xt, xh, uj) if k = 1,

Fj(xt, · , uj)/xt if vtailj ∈ {V : Tv,i = k ̸= 1},

Fj( · , xh, uj)/xh if vheadj ∈ {V : Tv,i = k ̸= 1},

0 else.

(2.12)

for each j ∈ [1 : Ne] and i is the vertex index of vtailj or vheadj . It can be seen that, for

example, the partition P ‡
3 represents all the power flows that are a function of a current

state divided by that same current state (e.g. Pi = IV → P ‡
3,i = V ). Similarly, M̄ ‡

3 maps

the flows P ‡
3 to system’s current states. In a modified graph, the “power” flows P ‡

k are now

thermal energy, current, voltage, torque, angular velocity, force, and linear velocity flows.

Now, any power flow P ‡
k,j will be represented by the following generic formulation

P ‡
k,j = fj(xt, xh, uj)(b1xt + b2xh + b3x

2
t + b4 + b5xhxt

+b6xtuj + b7xhuj + b8x
2
tuj + b9uj + b10xhxtuj

+b11x
3
t ),

(2.13)

where bn : n ∈ [1 : 11] are constants relating to ck (from (2.9)) through (2.12). An example

detailing the construction of a multi-domain graph is provided in Appendix A.2.

16



2.2.3 System Linearization

Linear models are particularly useful to estimate local system behavior and efficiently solve

complex optimization problems. The following section will outline the linearization proce-

dure for the modified graph formulation given by (2.10a) and (2.13). Note, that with a few

simplifications, the following process still holds for a full graph.

System nonlinearities are aggregated in the modified power flow vector P ‡ = F (x, xt, u).

Therefore, (2.13) can be approximated by a first-order Taylor expansion

P ‡
k,j ≈ P ‡

k,j(x̄t, x̄h, ūj) + λt,j(xt − x̄t) + λh,j(xh − x̄h) + λu,j(uj − ūj), (2.14)

about some trajectory (x̄t, x̄h, ūj) where λt,j, λh,j, and λu,j are linearization coefficients for

flow j. The linearization coefficients are the same size as the power flow vector and are given

by

λt,j = (b1 + b6ūj)(f̄ + f̄xtx̄t) + (b2 + b7ūj)(f̄xtx̄h) + (b3 + b8ūj)(2f̄ x̄t + f̄xtx̄
2
t )

+ (b4 + b9ūj)(f̄xt) + (b5 + b10ūj)(f̄ + f̄xtx̄t)x̄h + (b11) (3f̄ x̄
2
t + f̄xtx̄

3
t ),

(2.15a)

λh,j = (b1 + b6ūj)(f̄xh
x̄t) + (b2 + b7ūj)(f̄ + f̄xh

x̄h) + (b3 + b8ūj)(f̄xh
x̄2
t )

+ (b4 + b9ūj)(f̄xh
) + (b5 + b10ūj)(f̄ + f̄xh

x̄h)x̄t + (b11) (f̄xh
x̄3
t ),

(2.15b)

λu,j = (b1x̄t + b2x̄h + b3x̄
2
t + b4 + b5x̄tx̄h + b11x̄

3
t )f̄u

+ (b6x̄t + b7x̄h + b8x̄
2
t + b9 + b10x̄tx̄h)(f̄ + f̄uūj),

(2.15c)

where f̄ = fj (x̄t, x̄h, ūj), and f̄xt , f̄xh
, and f̄xu are the derivatives of fj with respect to

the tail state, head state, and input evaluated at (x̄t, x̄h, ūj). Using (2.14), (2.10a) can be

rewritten as

C‡ẋ ≈ −M̄ ‡ (P ‡(x̄t, x̄h, ū) + λt(xt − x̄t) + λh(xh − x̄h) + λu(u− ū)
)
+DP s. (2.16)
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Simplifying (2.16) will yield

C‡ẋ ≈ A1x+ A2x
t +B1u+B2 +DP s, where (2.17a)

A1 = −M̄ ‡(λtM̄tails + λhM̄heads) ∈ RNv−Nt×Nv−Nt , (2.17b)

A2 = −M̄ ‡(λt
¯
Mtails + λh

¯
Mheads) ∈ RNv−Nt×Nt , (2.17c)

B1 = −M̄ ‡λuBu ∈ RNv−Nt×Nu , (2.17d)

B2 = −(M̄ ‡Psp(x̄t, x̄h, ū) + A1x̄+ A2x̄
t +B1ū) ∈ RNv−Nt , (2.17e)

where Mtails and Mheads are mappings from states to power flows and Bu is a mapping from

inputs to power flows. Note that xt = M̄tailsx and xh = M̄headsx. These quantities are

defined as

Mtails = repmat([mij], 1, 7)
T , where [mij] =

1 if vi is the tail of ej,

0 else.
, (2.18a)

Mheads = repmat([mij], 1, 7)
T , where [mij] =

1 if vi is the head of ej,

0 else.
, (2.18b)

Bu = repmat([bij], 7, 1), where [bij] =

1 if uj is an input to ei,

0 else.
. (2.18c)

In (2.18), the repmat(A, r, c) function duplicates matrix A by r rows and c columns. Fur-

thermore, the 7 is indicative of the total number of relevant vertex types Tv in the the graph.

For example, if one was interested in modeling only electro-thermal behaviors, the 7 becomes

a 3 (temperature, voltage, and current states).

It would be reasonable to invert the C matrix to arrive at a linear state space model.

However, there may exist algebraic states in the graph (Cii = 0) and therefore C may be

singular. In this case, (2.17) can be rewritten as a continuous time linear differential algebraic

equation (DAE):
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ẋd

0

 = A′
1

xd

xa

+ A′
2x

t +B′
1u+B′

2 +D′P s, where (2.19a)

A′
1 =

Ā′
1,d Ā′

1,a

¯
A′

1,d ¯
A′

1,a

 =

[C‡
d]

−1Ā1,d [C‡
d]

−1Ā1,a

¯
A1,d

¯
A1,a

 , (2.19b)

A′
2 =

Ā′
2

¯
A′

2

 =

[C‡
d]

−1Ā2

¯
A2

 , (2.19c)

B′
1 =

B̄′
1

¯
B′

1

 =

[C‡
d]

−1B̄1

¯
B1

 , (2.19d)

B′
2 =

B̄′
2

¯
B′

2

 =

[C‡
d]

−1B̄2

¯
B2

 , (2.19e)

D′ =

D̄′

¯
D′

 =

[C‡
d]

−1D̄

¯
D

 . (2.19f)

The overbars and underbars signify the rows of the matrix that map to dynamic states and

algebraic states respectively. Similarly, the subscripts d and a signify the columns of A1 that

are multiplied by dynamic and algebraic states respectively. Note that there exists a unique

solution to the DAE (2.19) when
¯
A1,a is non-singular, which is assumed for the graph models

introduced in the remainder of this thesis.

Next, the system (2.19) is discretized using the Forward Euler method

ẋ =
xk+1 − xk

∆t
(2.20)

where xk is the the state vector at step k, xk+1 is the the state vector at step k + 1, and ∆t

is the step size. The linear-discrete time DAE system is given asx(k+1),d

0

 = Az1

xk,d

xk,a

+ Az2x
t
k +Bz1uk +Bz2 +DzP

s
k where, (2.21a)
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Az1 =

∆tĀ′
1,d + I ∆tĀ′

1,a

¯
A′

1,d ¯
A′

1,a

 , (2.21b)

Az2 =

∆tĀ′
2

¯
A′

2

 , (2.21c)

Bz1 =

∆tB̄′
1

¯
B′

1

 , (2.21d)

Bz2 =

∆tB̄′
2

¯
B′

2

 , (2.21e)

Dz =

∆tD̄′

¯
D′

 , (2.21f)

where I ∈ RNd×Nd and Nd is the total number of dynamic states.

In summary, we have presented the following graph model formulations: full non-linear

model (2.6) (2.9), modified non-linear model (2.10a) (2.13), continuous time linear DAE

model (2.19), and discrete time linear DAE model (2.21).

2.3 Component Modeling

The goal of the modeling efforts is to develop a graph-based model for the hybrid UAV

system architecture as described in Figure 2.2. However, it is first important to understand

the dynamics of the individual components and subsystems. This candidate powertrain

consists of a battery pack, motor, power electronics, genset, electrical bus, and auxiliary

load.

At the core of the electrical system is the main electrical bus, which appropriately dis-

tributes electrical power to four subsystems. The first subsystem is the drivetrain that

consists of power electronics, a single drive motor, and propeller. The power electronics

condition DC electrical power from the main bus to AC electrical power required to drive

the motor. A propeller fixed to the main shaft of the motor generates thrust to propel the

vehicle. Next, the auxiliary subsystem consists of power electronics and an auxiliary load.
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Figure 2.2: A series hybrid UAV architecture.

Similar to the drivetrain, the power electronics regulate the voltage applied to the auxiliary

load that represents background electrical loads, avionics, and sensors onboard the aircraft.

Third, the genset is composed of an engine, starter/generator, and power electronics. This

subsystem converts chemical potential energy of fuel to electrical energy that is utilizable by

the rest of the electrical network. Lastly, the battery is the main electrical energy storage de-

vice and can charge and discharge to meet the power demands of the vehicle. The remainder

of this section will derive graph-based models for each of the aforementioned components as

well as a simplified dynamic vehicle model. These models will serve as the modular building

blocks to model the full vehicle in Section 2.5. For visualization, the vertex color in the fol-

lowing graphs models is as follows: thermal mass (red), capacitor (green), inductor (yellow),

rotating mass (blue), and translating mass (orange).

2.3.1 Battery

Battery packs are a common choice for energy storage onboard a hybrid vehicle. In compar-

ison to turbomachinery, batteries have greater power ramp rates to meet the desired power

demand. However, batteries have strict state of charge (SOC), charge/discharge rates, and

thermal constraints to maintain safe operation. Constraint violations may cause permanent

damage to the pack or thermal runaway may ensue [37]. For control purposes, batteries are
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(a) Battery electrical equivalent circuit schematic.
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(b) Battery thermal equivalent circuit
schematic. Note that Qe = RsI

2
1 +

V 2
1

R1
+

V 2
2

R2
.

Figure 2.3: The (a) electrical and (b) thermal circuit schematics used to model battery
dynamics.

typically modeled as equivalent RC circuits [8]. Here, a battery is modeled as a 3rd-order

electrical circuit (Figure 2.3a) and 2nd-order thermal circuit (Figure 2.3b).

The energy storage elements of each circuit are analyzed to develop the graph model. In

the electrical domain, the voltage dynamics of the RC pairs and voltage source are given by

C1V1V̇1 = −V 2
1

R1

+ V1I1, (2.22a)

C2V2V̇2 = −V 2
2

R2

+ V2I1, (2.22b)

QVocv q̇ = −VocvI1, (2.22c)

where C1 and C2 are the electrical capacitance of the capacitors, V1 and V2 are the voltages

across the capacitors, R1 and R2 are the resistances of the resistors in the RC pairs, Q is

the battery capacity, q is the battery SOC, Vocv = f(q) is the open circuit voltage (OCV),

and I1 is the pack’s current demand.

In the thermal domain, the cell temperature dynamics are given by

CcṪ1 = RsI
2
1 +

V 2
1

R1

+
V 2
2

R2

− 1

Rc

(T1 − T2), (2.23a)

CsṪ2 =
1

Rc

(T1 − T2)−
1

Ru

(T2 − T3), (2.23b)
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where Rs is the series internal resistance of the battery, Cc is the heat capacity of the battery

core, Cs is the heat capacity of the battery shell, T1 is the core temperature, T2 is the surface

temperature, T3 is a surrounding fluid temperature, Rc is the internal thermal conduction

resistance, and Ru is the thermal convection resistance.

This model captures 3 types of power flows: electrical power transfer V I, power loss

through a resistor V 2/R and RI2, and thermal conduction/convection ∆T/R. The battery

graph model is provided in Figure 2.4. The graph state vector, capacitance vector, power

flow coefficients c, and property look-up coefficients f are provided below.

x =
[
q V1 V2 T1 T2

]T
, (2.24a)

C =
[
QVocv C1V1 C2V2 Cc Cs

]T
, (2.24b)

c =

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11



e1 0 1 0 0 0 0 0 0 0 0 0

e2 0 0 1 0 0 0 0 0 0 0 0

e3 0 0 1 0 0 0 0 0 0 0 0

e4 0 0 0 Rs 0 0 0 0 0 0 0

e5 0 0 0 1
R1

0 0 0 0 0 0 0

e6 0 0 0 1
R2

0 0 0 0 0 0 0

e7
1
Rc

− 1
Rc

0 0 0 0 0 0 0 0 0

e8
1
Ru

− 1
Ru

0 0 0 0 0 0 0 0 0

, (2.24c)

f =
e1 e2 e3 e4 e5 e6 e7 e8[ ]

Vocv(q) 1 1 1 1 1 1 1
. (2.24d)
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Figure 2.4: Graph model for the battery.

2.3.2 Electric Motor

Electric motors are used for electric propulsion in an aircraft’s powertrain. There are various

types of electrical motor architectures such as DC, brushless DC (BLDC) and induction type

motors [38]. Motors operate by using a varying electric current to generate a magnetic field.

The induced magnetic field interacts with a second magnetic field generated by a permanent

magnet (or another induced field) to generate torque that spins a rotor. A DC motor

has a permanent magnet in the stator (stationary part) and a field winding in the rotor.

Mechanical brushes are used to conduct DC current from the motor terminals and invert it

to an AC current in the field winding in order to generate a magnetic field. A BLDC motor

uses similar principles except the windings are located on the stator and the rotor has a

permanent magnet. In place of mechanical brushes, an electric inverter is used to generate

the AC current that induces the magnetic field. An induction motor has both a stator

winding and field winding. The stator winding, powered by an electric inverter, induces an

AC current in the field winding which induces its own magnetic field.

Brushless DC motors have become a popular choice for many mobile applications. In

comparison to the DC motor, BLDC motors have low maintenance requirements because

the do not use mechanical brushes [39]. In comparison to induction machines, BLDC motors

tend to be higher performing and more efficient [39]. In this section, a DC motor model is

introduced and then adapted to represent the BLDC motor.

24



2.3.2.1 DC Motor

A DC motor is electrically modeled as a single armature circuit, mechanically modeled as a

rotating shaft, and thermally modeled as a single thermal mass (Figure 2.5). The electrical,

mechanical, and thermal energy storage elements of Figure 2.5 are analyzed to develop the

graph model. The dynamics of each element are described by

L1I1İ1 = V1I1 −R1I
2
1 − kvI1ω1, (2.25a)

J1ω1ω̇1 = kvI1ω1 − τ1ω1 − bvω
2
1 − csω1sig(ω1), (2.25b)

CmṪ1 = R1I
2
1 + bvω

2
1 + csω1sig(ω1)−

1

Ru

(T1 − T2), (2.25c)

where L1 is the coil inductance, I1 is the motor current, V1 is the terminal voltage, R1 is

the coil resistance, kv is the motor constant, J1 is the shaft moment of inertia, ω1 is the

shaft speed, τ1 = f(ω1, v1) is the load torque, bv is the viscous friction coefficient, cs is the

static friction coefficient, Cm is the motor heat capacity, T1 is the motor temperature, T2 is a

surrounding fluid temperature, and Ru is the thermal convection resistance. Static friction

is typically modeled using the sign function sgn(ω1). However, the sign function can create

numerical issues near ω1 = 0. Instead, the sign function is approximated using a sigmoid

function

sig(ω1) =
2

1 + e−aω1
− 1 (2.26)

R1

I1, L1

V1 kv

bv, cs

ω1, J1

τ1

τe

(a) Motor electrical equivalent circuit and mechanical
schematic.

Ru

T1,

Cm

T2

Qe

(b) Motor thermal equivalent circuit
schematic. Note that
Qe = R1I

2
1 + bvω

2
1 + csω1sig(ω1).

Figure 2.5: The (a) electro-mechanical and (b) thermal schematics used to model motor
dynamics.
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where a > 0 is a smoothing coefficient.

This model captures 5 types of power flows: electrical and mechanical power transfer V I

and ωτ , power loss due to a resistor or friction RI2 and bω2, static friction loss cωsig(ω),

electro-mechanical power conversion kvIω and thermal convection ∆T/R. The DC motor

graph model is provided in Figure 2.6. The graph state vector, capacitance vector, power

flow coefficients, and property look-up coefficients are provided below.

x =
[
I1 ω1 T1

]T
, (2.27a)

C =
[
L1I1 J1ω1 Cm

]T
, (2.27b)

c =

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11



e1 0 0 1 0 0 0 0 0 0 0 0

e2 0 0 kv 0 0 0 0 0 0 0 0

e3 1 0 0 0 0 0 0 0 0 0 0

e4 0 0 0 R 0 0 0 0 0 0 0

e5 1 0 0 0 0 0 0 0 0 0 0

e6
1
Ru

− 1
Ru

0 0 0 0 0 0 0 0 0

, (2.27c)

f =
e1 e2 e3 e4 e5 e6[ ]
1 1 τ1 1 (bv + cssig(ω1)) 1

. (2.27d)

I1

T1

V1

T2

ω1 v1

e1 e2 e3

e4
e5

e6

Figure 2.6: Graph model for the motor.
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Figure 2.7: Examples of a ∆ (left) and Y (right) connected loads Aa, Ab, and Ac.

2.3.2.2 Brushless DC Motor

Brushless DC motors typically have 3 armatures connected in a delta (∆) or wye (Y) config-

uration (Figure 2.7). A detailed derivation for a direct-quadrature (dq0) BLDC motor model

using the regular Park Transformation Kr (2.28a) is found in [40]. However, that model can-

not be directly modified to fit within the graph-based modeling framework because it does

not follow conservation of energy. The following analysis parallels the derivation in [40], but

instead utilizes the power-invariant Park Transform Kp (2.28b) [41] such that the resulting

dynamics can be represented by a graph.

Kr =

√
2

3


sin(θe) sin(θe − 2π

3
) sin(θe +

2π
3
)

cos(θe) cos(θe − 2π
3
) cos(θe +

2π
3
)

1
2

1
2

1
2

 , (2.28a)

Kp =
2

3


sin(θe) sin(θe − 2π

3
) sin(θe +

2π
3
)

cos(θe) cos(θe − 2π
3
) cos(θe +

2π
3
)√

1
2

√
1
2

√
1
2

 . (2.28b)

Here Kr, Kp :
[
a b c

]
→

[
d q 0

]
map quantities in the abc reference frame to the dq0

reference frame and θe is the electrical angle of the machine.

First, it is known that the total instantaneous electrical power in abc variables Pabc is given

by

Pabc = VabcIabc = VaIa + VbIb + VcIc, (2.29)
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where Vabc =
[
Va Vb Vc

]
and Iabc =

[
Ia Ib Ic

]
are voltages and currents expressed in

abc variables. Next define, Vdq0 =
[
Vd Vq V0

]
and Idq0 =

[
Id Iq I0

]
as the voltages and

currents expressed in dq0 variables. Using the inverse of the power-invariant Park Transform,

the abc variables can be expressed in terms of the dq0 variables.

Vabc = K−1
p Vdq0, (2.30a)

Iabc = K−1
p Idq0. (2.30b)

Through algebraic manipulation and using (2.29), it is derived that the total instantaneous

electrical power in dq0 variables Pdq0 is given by

Pdq0 = Vdq0Idq0 = VdId + VqIq + V0I0 = VabcIabc = Pabc. (2.31)

For a balanced three-phase system, V0 = I0 = 0.

Next, the dynamics of each motor armature, in abc variables, parallels that given by

(2.25a)

Vabc = RIabc + λ̇abc, (2.32a)

λabc = LsIabc + Λabc, (2.32b)

Λabc = Λ


sin(θe)

sin(θe − 2π
3
)

sin(θe +
2π
3
)

 , (2.32c)

Ls =


L0 + La + Lb cos(2θe) −1

2
La + Lb cos(2θe − 2π

3
) −1

2
La + Lb cos(2θe +

2π
3
)

−1
2
La + Lb cos(2θe − 2π

3
) L0 + La + Lb cos(2θe − 2π

3
) −1

2
La + Lb cos(2θe + 2π)

−1
2
La + Lb cos(2θe +

2π
3
) −1

2
La + Lb cos(2θe + 2π) L0 + La + Lb cos(2θe +

2π
3
)

 ,

(2.32d)

where Ls is the stator inductance matrix, λabc are the armature flux linkages, Λ is the flux

linkage, L0 is self inductance, and La and Lb are mutual inductances. Because the magnetic

field is rotating, Vabc, λabc, and Ls are all sinusoidal varying parameters, which is not ideal for

28



application in a controller that may be trying to predict system behavior seconds or minutes

into the future. Therefore, the rotating reference frame abc is converted to a stationary

reference frame dq0 by applying the power-invariant Park Transform to (2.32a).

KpVabc = KpRIabc +Kpλ̇abc (2.33a)

Vdq0 = RIdq0 +Kp
d

dt

(
K−1

p λdq0

)
(2.33b)

Vdq0 = RIdq0 +KpK
−1
p λ̇dq0 +Kp

d

dt

(
K−1

p

)
λdq0 (2.33c)

Vdq0 = RIdq0 + λ̇dq0 + ωm


−λq

λd

0

 (2.33d)

where ωe is the electrical frequency. The step to (2.33b) is required to convert the flux

linkage to dq0 variables. Equation (2.33c) applies product rule since both Kp and λdq0 are

functions of time. The result is simplified in (2.33d).

Next, applying the power-invariant Park Transform to (2.32b)-(2.32d) yields

KpLsK
−1
p = Ldq0 =


Ld 0 0

0 Lq 0

0 0 L0

 (2.34a)

KpΛabc = Λdq0 = Λ


√
6
2

0

0

 (2.34b)

Kpλabc = λdq0 =


LdId + Λ

√
6
2

LqIq

L0I0

 (2.34c)

where Ld and Lq are the d and q variable inductances. Combining (2.33d) and (2.34) yields
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Vd = RId −
p

2
LωmIq + Lİd, (2.35a)

Vq = RIq +
p

2
LωmId + Lİq +

p

2

√
6

2
Λωm, (2.35b)

V0 = RI0 + L0İ0, (2.35c)

τm =
p

2

√
6

2
ΛIq, (2.35d)

where ωm = 2
p
ωe is rotor angular velocity, p is the number of pole pairs, and τm is the electro-

magnetic torque. The electro-magnetic torque is derived using the electrical dynamics and

(2.31). Note the simplification that L = Ld = Lq for a non-salient round rotor motor design

[40]. For a balanced 3-phase system, the 0-axis dynamics in the analysis of the BLDC motor

can be neglected. In the current formulation, the dq0 motor model cannot be formulated as

a graph because the p
2
LωmIdIq terms are a function of 3 states. However, it is a common

control objective to drive the d-axis current to zero during operation. Assuming the control

objective is met, the BLDC motor graph model is identical to the DC motor graph model

(defined by (2.25), (2.27), and Figure (2.6)) with the following definition changes: L1 = L,

V1 = Vq, I1 = Iq, ω1 = ωm, and kv = p
2

√
6
2
Λ (e.g. L1 for the DC model is equivalent to L in

the BLDC model).

If the reader is interested in more information, they are directed to directed to Appendix

C.2 in [38] and Chapter 3 (sections 1-4) and Chapter 4 (sections 1-5) of [40].

2.3.3 Power Electronics

Power electronics are devices used to control electrical power flows within an electrified

network. These components utilize high frequency switching semi-conducting devices to

permit or block the flow of electrical power. This thesis will consider converters and inverters

that handle DC-DC and DC-AC power conversion respectively. Converters are typically

classified into buck and/or boost categories. Buck converters will output power at a lower

voltage level than was input, whereas boost converters output power at a higher voltage level.

30



There are various inverter designs and control algorithms that impact the device efficiency

[42, 43]. Typically, an inverter uses a switching algorithm to approximate an AC waveform

as a series of square wave pulses of varying width [44]. In this section, graph models for both

a bi-directional buck-boost converter and inverter are introduced. Because 3-phase circuits

are analyzed, we will also consider the conversion between Y and ∆ connections.

2.3.3.1 Buck-Boost Converter

A bi-directional buck-boost converter electrical circuit with loss is shown in Figure 2.8. The

converter will be treated as a single lumped thermal mass (Figure 2.8c). Figure 2.9 shows

the 4 circuit model variations depending on whether the semi-conductors are conducting or

blocking and if the circuit is in buck or boost mode. For each variation, the energy storage

elements are analyzed

C1V1V̇1 = V1I1 − V1I2, (2.36a)

V2

u

I2

V2

u I2

(a) The conducting elements of the
bi-directional buck-boost converter in buck
mode.

V2

u

I2

V2

u I2

(b) The conducting elements of the
bi-directional buck-boost converter in boost
mode.

Ru

T1,

Cc

T2

Qe

(c) Thermal circuit used to model the buck-boost converter’s thermal dynamics. Note that
Qe = RLI

2
1 + uRsI

2
1 + (1− u)RDI

2
1 .

Figure 2.8: A combined bi-directional buck-boost converter circuit topology.

31



V2

V2 V2

V2I2

I2

I2

I2

V3

V3

I1, L1 I1, L1

I1, L1I1, L1

V1,

C1

V1,

C1

V1,

C1

V1,

C1

RL+Rs RL+Rs

RL+RD RL+RD

(a) The conducting elements of the
bi-directional buck-boost converter in buck
mode when the duty cycle u = 1.

V2

V2 V2

V2I2

I2

I2

I2

V3

V3

I1, L1 I1, L1

I1, L1I1, L1

V1,

C1

V1,

C1

V1,

C1

V1,

C1

RL+Rs RL+Rs

RL+RD RL+RD

(b) The conducting elements of the bi-directional
buck-boost converter in boost mode when the duty
cycle u = 1.
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(c) The conducting elements of the
bi-directional buck-boost converter in buck
mode when the duty cycle u = 0.
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(d) The conducting elements of the bi-directional
buck-boost converter in boost mode when the duty
cycle u = 0.

Figure 2.9: The bi-directional buck-boost converter partitioned depending on the 4
operating modes: (a) buck conducting, (b) boost conducting, (c) buck blocking, and (d)
boost blocking.

Buck (s = 0) :

Conducting: L1I1İ1 = V2I1 −RsI
2
1 −RLI

2
1 − V1I1,

Blocking: L1I1İ1 = −RDI
2
1 −RLI

2
1 − V1I1 − V3I1,

(2.36b)

Boost (s = 1) :

Conducting: L1I1İ1 = −RsI
2
1 −RLI

2
1 − V1I1,

Blocking: L1I1İ1 = V2I1 −RDI
2
1 −RLI

2
1 − V1I1 + V3I1,

(2.36c)

CcṪ1 = RLI
2
1 + uRsI

2
1 + (1− u)RDI

2
1 −

1

Ru

(T1 − T2), (2.36d)

where V1, V2, and V3 are the capacitor, applied, and diode forward voltages respectively,

I1 and I2 are inductor and demanded current respectively, C1 is the capacitor’s electrical
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capacitance, L1 is the inductor’s inductance, Rs is the switch resistance, RD is the diode

resistance, RL is the coil resistance, T1 is converter temperature, T2 is a surrounding fluid

temperature, Cc is the converter heat capacity, Ru is the thermal convection resistance,

s = {0, 1} denotes buck or boost mode, and u ∈ [0, 1] is the switch duty cycle. The

system conducts for time uTs and blocks for time (1−u)Ts where Ts is the switching period.

Therefore, (2.36) can be combined into

Buck: L1I1İ1 = uV2I1 − (uRs +RL + (1− u)RD) I
2
1

− (1− u)V3I1 − V1I1,
(2.37a)

Boost: L1I1İ1 = (1− u)V2I1 − (uRs +RL + (1− u)RD) I
2
1

+ (1− u)V3I1 − V1I1.
(2.37b)

Assuming the losses are independent of buck or boost mode operation, (2.37) can be com-

bined further since s = {0, 1}.

L1I1İ1 = (s+ u− 2su)V2I1 − (uRs +RL + (1− u)RD) I
2
1

+ (−1 + 2s+ u− 2su)V3IL − V1I1.
(2.38)

The sign of the current flow will determine whether the system is operated in buck or boost

mode. Therefore, s can be described as a function of I1:

s = g(I1) =

0 for I1 ≥ 0,

1 for I1 < 0.

(2.39)

The power flows, as mentioned in previous sections, are representative of electrical power

transfer V I, resistive loss RI2, and thermal convection ∆T/R. The bi-directional buck-boost

converter graph is provided in Figure 2.10. The graph state vector, capacitance vector, power

flow coefficients, and property look-up coefficients are provided below.

x =
[
I1 V1 T1

]T
, (2.40a)
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C =
[
L1I1 C1V1 Cc

]T
, (2.40b)

c =

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11



e1 0 0 1 0 0 0 0 0 0 0 0

e2 0 0 1 0 0 0 0 0 0 0 0

e3 0 0 1 0 0 0 0 0 0 0 0

e4 0 0 1 0 0 0 0 0 0 0 0

e5 0 0 0 RL +RD 0 0 0 0 Rs −RD 0 0

e6
1
Ru

− 1
Ru

0 0 0 0 0 0 0 0 0

, (2.40c)

f =
e1 e2 e3 e4 e5 e6[ ]

(g(I1) + u− 2g(I1)u) 1 1 (−1 + 2g(I1) + u− 2g(I1)u) 1 1
. (2.40d)

V1I1

T1

V2 I2

T2 V3

e1 e2 e3

e5

e6

e4

Figure 2.10: Graph model for the bi-directional buck-boost converter.

The function g(I1) is discontinuous at I1 = 0. This may result in numerically instability.

As mentioned in Section 2.3.2, the discontinuity can be smoothed by a sigmoid function.

It is important to highlight the ease of variable fidelity modeling of the converter. If one

was interested in the analysis of the oscillatory dynamics of the converter, the electrical

capacitance and inductance can be be given a physical non-zero value. If only steady-state

information is required for an analysis, the electrical capacitance and inductance values can

be defined as 0 (this results in a DAE model). This simplification may be useful depending

on the target application. For example, modeling the oscillatory behavior may be necessary

for a model-based controller with a fast update rate that seeks to regulate output voltage

while mitigating oscillations. To the contrary, a steady-state model maybe be sufficient in
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a model-based controller seeking to optimize the behavior of the converter over the course

of seconds or minutes. The variable fidelity characteristic of the graph-based modeling

framework will be useful in the design of advanced control systems.

2.3.3.2 Inverter

The circuit topology for an electrical inverter is shown in Figure 2.11. An inverter’s switching

algorithm is used to approximate a sine wave that has a q-axis voltage amplitude Vq bounded

by the inverter DC link voltage Vdc (ie. Vq <
√

3
2
Vdc) [40]. This behavior is similar to the buck

converter operation where the converter’s output voltage is less than the applied voltage. By

this observation, the inverter will be modeled with a similar structure to the buck converter.

The inverter q-axis voltage and current states V1 and I1 and temperature state T1 is given

by

C1V1V̇1 = V1I1 − V1I2, (2.41a)

L1I1İ1 = u

√
3

2
V2I1 − V1I1 − uRiI

2
1 , (2.41b)

CiṪ1 = uRiI
2
1 −

1

Ru

(T1 − T2), (2.41c)

where I2 is the q-axis current demand, V2 is the applied DC voltage, C1 and L1 are virtual

capacitances and inductances and are identically zero (see Section 2.3.8), u is the modulation

VDC B

C

A

Figure 2.11: A three-phase bridge converter circuit used to model the inverter dynamics.
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Figure 2.12: Graph model for the electrical inverter.

signal for the inverter switches, Ri is the bulk inverter loss, Ci is the thermal capacitance of

the inverter, T1 is the temperature of the inverter, T2 is a cooling fluid temperature, and Ru

is the convection resistance. The thermal dynamics are modeled after the structure defined

by Figure 2.8c where Qe = uRiI
2
2 . Similar to the BLDC motor model, this model is derived

using the power-invariant Park Transform and assumes that the d-axis currents are zero.

The inverter graph is provided in Figure 2.12. The graph state vector, capacitance vector,

power flow coefficients, and property look-up coefficients are provided below.

x =
[
I1 V1 T1

]T
, (2.42a)

C =
[
L1I1 C1V1 Cc

]T
, (2.42b)

c =

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11



e1 0 0 0 0 0 0 0
√

3
2

0 0 0

e2 0 0 1 0 0 0 0 0 0 0 0

e3 0 0 1 0 0 0 0 0 0 0 0

e4 0 0 0 0 0 0 0 0 Ri 0 0

e5
1
Ru

− 1
Ru

0 0 0 0 0 0 0 0 0

, (2.42c)

f =
e1 e2 e3 e4 e5[ ]
1 1 1 1 1

. (2.42d)
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2.3.3.3 Y and ∆ Connections

Three-phase systems can be connected in Y or ∆ configurations as seen by Figure 2.7. The

operation and analysis of these systems are similar. In electric motor applications, a wye

wound motor typically produces more torque and operates at a lower speed than its delta

wound counterpart. This is known since the applied line voltages span two phases in a wye

machine, whereas the same voltage spans one phase in a delta machine. Since the induced

motor voltage is proportional to speed (kvω), the delta wound machine can reach greater

speeds. Similar reasoning can be applied to line currents and generated torque.

Although the analysis of these systems remains the same regardless of winding configu-

ration, there is some necessary scaling to convert between wye and delta connections. As

seen in [38], (2.43) can be used to help convert between balanced three-phase wye and delta

connections.

Vab =
√
3Va∠30◦, (2.43a)

Ia =
√
3Iab∠−30◦, (2.43b)

where Vab is the line to line voltage, Va is the line to neutral voltage of a wye connection, Iab
is a phase current in a delta connection, and Ia is a line current. Note that (2.43a) applies to

wye connections and (2.43b) applies to delta connections. Furthermore, the analysis in this

thesis ignores phases angles because the AC system dynamics were converted to a stationary

reference frame. Therefore, the conversions described in (2.43) apply a scalar gain of
√
3.

For the experimental system that will be described in Chapter 4, the inverter is wye

connected and the electric machine is delta wound. The following equations are used to

convert between the wye and delta connected configuration

LY IY İY = VY IY −
√

1

3
V∆IY , (2.44a)

C∆V∆V̇∆ =

√
1

3
V∆IY − V∆I∆, (2.44b)

where C∆ = LY = are virtual capacitances and inductances (Section 2.3.8), V and I are

37



VΔ IY VY IΔ 

e1 e2 e3

Figure 2.13: Graph model for the wye to delta connection conversion.

voltages and currents respectively, and the subscripts ∆ and Y denote delta and wye states

respectively. The dynamics of (2.44) can be formulated as a graph (Figure 2.13). The graph

state vector, capacitance vector, power flow coefficients, and property look-up coefficients

are provided below.

x =
[
IY V∆

]T
, (2.45a)

C =
[
LY IY C∆V∆

]T
= 0, (2.45b)

c =

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11


e1 0 0 1 0 0 0 0 0 0 0 0

e2 0 0
√

1
3

0 0 0 0 0 0 0 0

e3 0 0 1 0 0 0 0 0 0 0 0

, (2.45c)

f =
e1 e2 e3 e4 e5[ ]
1 1 1 1 1

. (2.45d)

2.3.4 Genset

A genset is a system composed of an engine, generator, and control electronics. In a hybrid

system, an engine is used to convert the chemical potential energy of fuel to rotating mechan-

ical energy of a spinning shaft. When connected to a generator, the mechanical energy of

the shaft is converted to electrical energy that can be used to power vehicle loads or recharge

the battery pack. The amount of power produced by the engine can be varied by adjusting

the throttle or air-fuel ratio to change both engine speed and torque production. These

actuators are typically controlled by a governor designed by the engine manufacturer. The

generator can passively or actively rectify the AC current waveform induced by the rotating
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shaft. An active rectifier receives a control signal that actuates switching semiconductor

devices whereas a passive rectifier has no control input (typically achieved via mechanical

brushes). Active rectifiers can be used as an extra degree of freedom to optimize the power

production of the subsystem.

The goal of this section is to construct a model that can adequately capture the dynamics

of the genset subsystem on the testbed described in Chapter 4. The engine, as currently

configured, operates at a single speed setpoint that is tracked by the engine governor. The

generator current is actively rectified to track a current setpoint passed to the generator

controller. Although a motor model was presented in Section 2.3.2, it would prove difficult

to capture the engine and rectifier dynamics without understanding the underlying control

architecture and system inputs. Therefore, a model for the entire subsystem is abstracted

based on empirical data. Consequently, this system will not be modeled in the graph-based

modeling framework.

The genset is modeled as first-order linear dynamic system

τ İ = −I +Ku, (2.46)

where I is the generated DC current, K is an input gain, u ∈ [0, 1], and τ is the time constant

of the subsystem.

An objective of the control systems developed in Chapter 3 is to minimize fuel consump-

tion. Fuel consumption is commonly evaluated using the engine specific fuel consumption

(SFC) which is commonly characterized as complex functions of engine speed ω and torque

τ [45]. For control, a few simplifications are made. Assuming the engine operates at a

constant speed, the SFC can be re-characterized as a function of the engine power P (since

P = ωτ and ω is constant). Based on the analysis in Sections 2.3.2 and 2.3.3.2, the engine

power can be directly related to the inverter DC power assuming negligible generator and

inverter losses. Although this may be a strong assumption, the bulk inefficiency in the genset

subsystem is a result of the fuel combustion. Therefore, the engine SFC sfc is described as
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a function of the genset DC voltage V and current

sfc =

a1I
2 + a2V

2 + a3 + a4V I + a5I + a6V if I > 0,

0 if I = 0,

(2.47)

where the coefficients ai are chosen such that the resulting surface is convex (see Figure

4.31). A convex surface is required for integration into a quadratic cost function introduced

in Chapter 3. Validation of the current dynamic will be presented in Chapter 4. Full

characterization and validation of the engine torque production and fuel consumption is

outside the scope of this thesis.

2.3.5 Electrical Bus

Parallel connections between components and subsystems that operate at similar power levels

are made by electrical busbars. In practice, busbars receive and distribute electrical power

in an electrified network. In addition to facilitating parallel connections, the electrical bus

model presented in this work is also a DC-link with capacitance to mitigate current ripple in

the electrical network. This DC-link capacitance may be representative of capacitors located

elsewhere in the system.

The circuit diagram for the electrical bus model (Figure 2.14) has a couple of key features.

First, there are a variable number of components that can be connected to the bus. Second,

switches in the circuit permit components and subsystems to be disconnected from the rest of

the system. Furthermore, the inductors on the left-hand side of the schematic are necessary

such that a voltage source component can be connected directly to the bus. These inductive

elements are virtual (see Section 2.3.8) and have zero or near-zero inductance. There is a

bleed resistor in parallel with each inductor in order to dissipate stored energy when the

associated subsystem is disconnected. Also, there are multiple grounds in Figure 2.14. This

was done to make the figure compact. In reality, each branch of the bus can share the same

ground. To develop the graph model, each energy storage element is analyzed
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Figure 2.14: Electrical circuit schematic used to derive the electrical bus model dynamics.

LnInİn = unVn+1In −RI2n − unV1In ∀n ∈ [1 : N ], (2.48a)

C1V1V̇1 =
N∑

n=1

unV1In −
M∑

m=1

uN+mV1IN+m. (2.48b)

Here Ln is an inductance value, In is the current in inductor n, u ∈ {0, 1} is a switch input,

Vn is the voltage applied to inductor n, R is the bleed resistance, C1 is the capacitance of

the DC-link, and V1 is the bus voltage. The total number voltage sources and current sinks

on the bus is denoted by N and M respectively. The thermal state of the bus is not modeled

because the bleed resistors are assumed to be small. The actual value should be chosen such

that the power flow along edges e3n is less than 0.1 − 1% of the nominal power flow along

edges e3n−2 and e3n−2 (for n ∈ [1 : N ]). If modeling the thermal dynamics is of interest, it

is readily observed that the heat produced is RI2n.

The relevant modes of power transfer are electrical power transfer V I and resistive loss

RI2. The electrical bus graph is provided in Figure 2.15. The graph state vector, capacitance

vector, power flow coefficients, and property look-up coefficients are provided below.

x =
[
V1 I1 · · · IN

]T
, (2.49a)

C =
[
C1V1 L1I1 · · · LNIN

]T
, (2.49b)
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c =

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11



e1 0 0 0 0 0 0 0 1 0 0 0

e2 0 0 0 0 0 0 0 1 0 0 0

e3 0 0 0 R 0 0 0 0 0 0 0
... ... ... ... ... ... ... ... ... ... ... ...

e3N−2 0 0 0 0 0 0 0 1 0 0 0

e3N−1 0 0 0 0 0 0 0 1 0 0 0

e3N 0 0 0 R 0 0 0 0 0 0 0

e3N+1 0 0 0 0 0 0 0 1 0 0 0
... ... ... ... ... ... ... ... ... ... ... ...

e3N+M 0 0 0 0 0 0 0 1 0 0 0

, (2.49c)

fi = 1 ∀i ∈ [1 : 3N +M ]. (2.49d)

V1

I1V2 IN+1

T1

VN+1 IN

N N M

IN+M

e1

e3N-2

e2

e3N-1e3N

e3 e3N+1

e3N+M

Figure 2.15: Graph model for the electrical bus.

2.3.6 Vehicle Body Dynamics

It is necessary to understand the dynamics of an airframe to maintain stable flight. From a

power-based analysis, it is required to know how much power is necessary to generate lift and

overcome drag, gravity, and other flight disturbances. Airframes have been analyzed using
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a variety of methods. There has been some work that analyzes the 3-dimensional forces and

moments on an aircraft using Newton’s second law [46, 47]. Simpler approaches utilize force

balances on a point mass [48]. For this work, a 2D point mass analysis will suffice since the

purpose of this model is to emulate a load on the propulsion motor.

A free body diagram for a propeller driven aircraft (Figure 2.16) is used to derive the

velocity dynamics.

m1v1v̇1 = ρ
D4

4π2
CTω

2
1v1 −

1

2
ρACDv

3
1 −m1gv1 sin θ (2.50)

where m1 is the vehicle mass, v1 is the vehicle velocity along its trajectory θ, ρ is the air

density, D is the prop diameter, CT is the thrust coefficient, ω1 is the angular velocity of

the propeller, A is the effective frontal area of the aircraft, CD is the drag coefficient, and

g is gravity. In (2.50), the first term is the thrust power and the second term is power loss

to drag. Inefficiency in the propeller yields extra loss in the system since not all angular

mechanical power is converted to linear mechanical power. The power loss Ploss is given by

Ploss = (1− η)ρ
D5

4π2
Cτω

3
1 (2.51)

where η is the propeller efficiency and Cτ is the torque coefficient. In a typical analysis of

a propeller, the propeller efficiency and thrust and torque coefficients are a function of the

advance ratio J = 2πv1/(ω1D). For the sake of simplicity, these parameters are held as

constants and act as tuning variables of the model. The vehicle body graph is illustrated

Fthrust

Fdrag

Flift

Fgravity

θ 
v1

m1

Figure 2.16: Free body diagram used to derive the vehicle velocity dynamics.
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in Figure 2.17. The graph state vector, capacitance vector, power flow coefficients, and

property look-up coefficients are provided below.

x =
[
v1

]T
, (2.52a)

C =
[
m1v1

]T
, (2.52b)

c =

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11


e1 0 0 0 0 ρ D4

4π2CT 0 0 0 0 0 0

e2 m1g sin θ 0 0 0 0 0 0 0 0 0 1
2
ρACD

e3 0 0 0 0 0 0 0 0 0 0 (1− η)ρ D5

4π2Cτ

, (2.52c)

f =
e1 e2 e3[ ]
1 1 1

. (2.52d)

T1

ω1 v1

e1

e2
e3

Figure 2.17: Graph model for the vehicle body.

2.3.7 Processor Load

As mentioned earlier, the system model described in Section 2.5 will be experimentally

validated in Chapter 4. That experimental platform has multiple electronic speed controllers

(ESCs) that actuate the switching of the power electronic devices. The processing chip inside

the ESCs require power. For simplicity, the processing load P is treated as a static function

of the ESC bus voltage V1

P = a1V
2
1 + a2V1, (2.53)
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where the coefficients a1 and a2 are constants. The processor load graph is illustrated in

Figure 2.18. The graph state vector, capacitance vector, power flow coefficients, and property

look-up coefficients are provided below.

e1

V1 I1

Figure 2.18: Graph model for the processor load.

x =
[
−
]T

, (2.54a)

C =
[
−
]T

, (2.54b)

c =
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11[ ]

e1 a2 0 0 a1 0 0 0 0 0 0 0
, (2.54c)

f =
e1[ ]
1

. (2.54d)

2.3.8 Virtual Elements

Virtual elements do not have a physical representation within a system and are used to

facilitate the construction, simulation, and analysis of a multi-domain graph model. They

typically have zero or near-zero capacitance values. If near-zero, the capacitance value

should be treated as a tuning parameter chosen sufficiently small such that the other system

dynamics are not affected. As mentioned in Section 2.2.2, there must be alternating inertance

and compliance elements [32]. If there were a desire to connect two compliance or inertance

elements, a virtual element added in between would facilitate that connection. For example,

virtual inductor elements were used to develop the electrical bus model in Section 2.3.5. If

it were desired to connect the battery directly to the DC-link capacitance on the bus, there

would exist a connection between two voltage type compliance elements, which violates
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the rules for constructing a multi-domain graph. Instead, a virtual current type inertance

element is used to enable that connection.

2.3.9 Comments on Thermal System Dynamics

In the previous sections, the thermal dynamics of the components were simple and limited to

first and second-order lumped mass models. However, the thermal dynamics can be modeled

by other more complex configurations. For example, a significantly more complex thermal

circuit model with 9 temperature states for a power inverter can be found in [36]. The

ability to adapt the thermal model highlights the flexibility of the graph-based modeling

framework.

While this thesis mostly considers the electrical and mechanical system dynamics, it will

be important to couple the electro-mechanical system to a thermal system. The temperature

sink states of the components outlined in this chapter provide these hooks into more complex

thermal systems. The sink states can connect to latent heat storage modules that contain

phase change material [49], novel cooling and heat spreading devices [50], or directly to

a fluid-thermal system [25]. The modularity of the graph-based modeling framework is

particularly useful for facilitating theses interconnections of systems across energy domains.

2.4 System Composition Methods

Similar to how physical systems can be represented as an interconnection between subsystems

and components, a system graph model can be represented as an interconnection between

subsystem and component levels graphs. This scalability feature of the graph-based mod-

eling framework motivates its application to modeling energy or other conservation-based

systems. The graph framework has recently been used in design optimization problems to

size components in a pure electric automobile [51], and evaluate cooling topologies for a

fuel thermal management system [52]. In past applications, the system level graph models

were manually constructed using heuristics based on prior experience working with graphs.

Although effective, the manual process is error prone and time intensive. A manual pro-
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cess is not convenient for design optimization problems where it may be required to rapidly

generate and evaluate numerous system architectures.

This section elaborates upon the work in [3] to present methods to develop system graph

models as an interconnection of component graph models. First, background for system

development methods are introduced. Second, a novel algorithm is presented that facilities

the automatic generation of a system model.

2.4.1 Background for System Development

A set of of component graphs is described by C = {Gi : i ∈ Ng} where Ng is the total number

of component graphs and G is as described in Section 2.2. In this section, vi,j ∈ Vj : i ∈ [1 :

Nv,j], j ∈ [1 : Ng] is vertex i of component j and ei,j ∈ Ej : i ∈ [1 : Ne,j], j ∈ [1 : Ng] is edge i

of component j. Graph interconnections can be described by two interconnection types. The

first interconnection type is defined by a vertex equivalency vi,m = vj,n and will be referred

to as a Type 1 interconnection. The second interconnection type is defined by an edge

equivalency ei,m = ej,n and will be referred to as a Type 2 interconnection (this vocabulary

is defined in and specific to this thesis). Figure 2.19 provides a visual representation of

the interconnections types. Because an edge connects two vertices, a Type 2 interconnection

consists of 1 edge equivalency and 2 vertex equivalencies. Second, when the graphs represent

a dynamical system, it is necessary that each vertex equivalency includes at most one state

vertex. Otherwise, that interconnection would violate causality rules.

When interconnecting graph-based models, a Type 1 interconnection is utilized when

multiple components have the same interaction with a state or sink state. For example,

consider connecting two batteries in series as described in Figure 2.20. In electrical circuits,

components in series share the same current. This property is reflected in Figure 2.20 where

both batteries share the same current sink state v6,1 = v6,2 = v13,s.

A Type 2 interconnection is utilized when all the power along an edge leaving a state

vertex of one component is incident to an edge of a state vertex of a second component.

For example, consider connecting a converter in series with a motor. In this case, all the

electrical power leaving the converter along e3,1 should be equivalent to the electrical power
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ν1,3ν1,2

ν2,3ν2,2

ν1,1

ν2,1

ν1,s

e1,1 e1,2 e1,3

ν2,2

ν1,2

ν1,1

ν2,1

e1,1 e1,2

ν1,s

ν2,s ν4,sν3,s

ν2,s

e1,s

e2,s e3,s

e1,s

Type 1 Interconnection:

ν2,1=ν2,2=ν1,3

Type 2 Interconnection:

e1,1=e1,2

ν1,1=ν2,2

ν2,1=ν1,2

Figure 2.19: Visualization of Type 1 and Type 2 interconnection types. Note the coloration
used to denote which vertex and edge equivalencies. The subscript s denotes the system
graph.

entering the motor along e1,2 in Figure 2.21. In addition to the equivalency between edges,

note the equivalency between vertices. The current demanded by the converter (v5,1) is

a state of the motor (v1,2), and the terminal voltage of the motor (v4,2) is a state of the

converter (v2,1).

The two interconnections types are the main heuristics used when developing a system

graph model. Large systems will consist of multiple Type 1 and Type 2 interconnections.

When constructing a system model by hand it is important to record which vertices and

edges of the component graphs correspond to vertices and edges of the system graph because,

as seen in Section 2.3, there are various specific properties associated with each edge and

vertex. If these properties are not mapped properly, the resulting system dynamics will not

match the desired behavior. The algorithm presented in the next section seeks to resolve

this issue of mapping component graph to system graph properties.

2.4.2 Graph-Model Interconnection Algorithm

Various sets will be useful in the understanding the following algorithm. First, the set of

all component vertices is defined as χ := {V1 ∪ · · · ∪ Vi : i ∈ [1 : Ng]}. Similarly, the set of
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ν3,1

ν4,1 ν6,1
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ν5,1

ν2,1 ν1,1

ν3,2

ν4,2 ν6,2

ν7,2

ν5,2

ν2,2 ν1,2

ν13,s

ν1,sν2,s

ν4,sν5,s

ν11,s ν3,s

ν6,s

ν9,s

ν7,s

ν8,s

ν10,s

ν12,s

ν6,1=ν6,2

Figure 2.20: Example of a Type 1 interconnection where two batteries (represented as
graphs) are connected in series.The subscript s denotes the system graph.

all component edges is defined as Ξ := {E1 ∪ · · · ∪ Ei : i ∈ [1 : Ng]}. Recall from Section

2.2 that χ includes sink vertices and Ξ does not include source edges. Therefore, χ can be

partitioned such that χ̄ := {V̄1 ∪ · · · ∪ V̄i : i ∈ [1 : Ng]} is the set of all component state

vertices and
¯
χ = χ \ χ̄ is the set of all component sink vertices.

Next, the set of all Type 1 interconnections Λ and Type 2 interconnections Σ are defined

as

Λ := {{vi,m, · · · , vj,n} :vi,m =, · · · ,= vj,n,

i ∈ [1 : Nv,m], j ∈ [1 : Nv,n], m ∈ [1 : Ng], n ∈ [1 : Ng]}
(2.55a)

Σ := {{ei,m, ej,n} :ei,m,= ej,n,

i ∈ [1 : Ne,m], j ∈ [1 : Ne,n], m ∈ [1 : Ng], n ∈ [1 : Ng]}
(2.55b)
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Figure 2.21: Example of a Type 2 interconnection where a converter and motor
(represented as graphs) are connected in series. The subscript s denotes the system graph.

These are user-defined sets that are inputs to the algorithm. Recall that at most one

vertex in a Type 1 interconnection may be a state vertex. Next, the set Λ is partitioned

into Λ̄ :=
{
Λi : Λi ∩ V̄ ≠ {∅} , i ∈ [1 : NT1]

}
as the set of all Type 1 interconnections that

include 1 state vertex, with
¯
Λ = Λ \ Λ̄ as the set of all Type 1 interconnections that do

not include a state vertex. Here, NT1 is the number of Type 1 interconnections. Lastly,

define χ̂ := {Λi ∩ χ : i ∈ [1 : NT1]} as the set of all vertices included in an interconnection.

Similarly, Ξ̂ := {Σi ∩ Ξ : i ∈ [1 : NT2]} is the set of all edges included in an interconnection

where NT2 is the number of Type 2 interconnections.

Property mapping matrices can be developed using the various sets designed in the pre-

vious two paragraphs. The vertex property map V maps component vertex properties

Pv
i : i ∈ [1 : Ng] to system vertex properties Pv

s as defined by the connection set Λ. Similarly,

the edge property map E maps component edge properties Pe
i : i ∈ [1 : Ng] to system edge

properties Pe
s as defined by the connection set Σ. Relevant vertex and edge properties are

listed in Table 2.2. These property maps are be utilized by
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Table 2.2: Graph model vertex and edge properties.

Vertex Properties Edge Properties Both
Capacitance Power Flow

Initial Condition Edge Type Incidence Matrix
Vertex Type Input

Pv
s = V T


Pv

1

...

Pv
i

 , (2.56a)

Pe
s = E


Pe

1

...

Pe
i

 . (2.56b)

The incidence matrix, which relates edges to vertices, stores information about both edges

and vertices. Therefore, the system incidence matrix Ms can be determined by

Ms = V T


M1 0

. . .

0 Mi

E (2.57)

where Mi =

M̄i

¯
Mi

 are component incidence matrices and i ∈ [1 : Ng]. The two property

maps V and E are constructed according to the following.

V =
[
V t̄c̄ V t̄c V tc V tc̄

]
, where (2.58a)

V t̄c̄ = [vij] =

1 χi = {χ̄ \ χ̂}j ,

0 else,

(2.58b)
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V t̄c = [vij] =

1 χi ∈ Λ̄j,

0 else,

(2.58c)

V tc = [vij] =

1 χi ∈
¯
Λj,

0 else,

(2.58d)

V tc̄ = [vij] =

1 χi =
{
¯
χ \ χ̂

}
j
,

0 else.

(2.58e)

E =
[
E c̄ Ec

]
, where (2.59a)

E c̄ = [eij] =


1 Ξi =

{
Ξ \ Ξ̂

}
j
,

0 else,

(2.59b)

Ec = [eij] =

1/2 Ξi ∈ Σj,

0 else.

(2.59c)

The application of this algorithm is conducted with a sample system in Appendix A.1.

2.5 Hybrid UAV Graph-Based Model

The hybrid UAV architecture described by Figure 2.2 is modeled as a graph using the

component graph models described in Section 2.3 and the system composition methods

described in Section 2.4. The system graph-based model is shown in Figure 2.22. Table 2.3

outlines which vertices in the system graph are associated with individual components. The

parameters used in the system model are outlined in Chapter 4. In Figure 2.22, individual

components are outlined in blue to highlight the modularity of the graph-based modeling

framework.
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Figure 2.22: Full system graph model used to represent the dynamics of the hybrid UAV
architecture described by Figure 2.2. Recall the coloration of each vertex type: thermal
mass (red), capacitor (green), inductor (yellow), rotating mass (blue), and translating mass
(orange).
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Table 2.3: Component graph model state indices in the system level graph model.

Component Model Associated State Vertices
Battery 1, 2, 3, 4, 5

Electrical Bus 16, 17

Genset Sink 2

Buck-Boost Converter 12, 13, 26

Inverter 8, 9, 19

Y to ∆ Conversion 20, 21

Electric Motor 10, 22, 23

Vehicle Body 24

Virtual Elements 6, 7, 11, 14, 15, 18, 25, 27, 28

2.6 Conclusion

In this chapter the graph-based modeling framework for representing multi-domain energy-

based systems was introduced. A generic graph formulation, modified graph formulation,

and linearized system was presented in Section 2.2. Adhering to the graph framework,

electrical and mechanical component and subsystem models were formulated in terms of an

energy balance. Lastly, a novel system composition algorithm was described to facilitate the

development of a hybrid UAV system model.

Recall the 5 modeling framework requirements introduced at the start of this chapter:

energy domain agnostic, modular, scalable, computationally efficient, and variable fidelity.

Thus far, 4 of these 5 criteria have been discussed in this thesis. The graph-based modeling

framework is inherently energy domain agnostic because it is based in conservation laws.

The modular and scalable characteristic is best illustrated by the description of the modular

component graphs and their composition into the larger scale UAV system model. As illus-

trated by the buck-boost converter (but generalizable to all components), the introduction

of virtual elements provides a model with variable fidelity. The variable fidelity modeling

will facilitate the development of hierarchical controllers. Computational efficiency metrics

are not provided in this chapter. However, it will be shown that the graph model is com-
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putationally efficient in Chapter 5 when demonstrating a model-based optimal controller

operating in real-time on experimental hardware.
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Chapter 3

Controller Design

3.1 Background

The control of mobile hybrid electric systems has gained popularity with the increasing

trend of vehicle electrification. Since electrified systems have strong thermal limitations,

significant research effort has been placed in optimizing the performance of on-board cooling

systems [7, 25, 53, 54, 55, 56]. To optimize system-wide performance and efficiency, it is also

important to consider the control of the electro-mechanical vehicle powertrain. The main

losses within the electrical system result from resistances and switching losses. The engine,

which operates most efficiently in a small operating range, yields the greatest inefficiency in

the mechanical system. Deciding how and when to operate the vehicle’s engine has been a

challenge for control engineers.

As introduced in Chapter 1.1, thermostatic, rule-based, and heuristically formulated con-

trollers were initially designed where the operating mode of the engine was discretely chosen

by state thresholds [15, 16]. However, these controllers lacked robustness and provided

sub-optimal behaviors. Although still sub-optimal, fuzzy-logic rule-based controllers were

introduced to make the classical rule-based controllers more robust [16, 17]. More opti-

mal control strategies were implemented by dynamic programs and model-predictive control

strategies. Optimal system inputs can be solved a priori using a dynamic program (DP)

[17, 18], however, the complexity of the DP grows exponentially with the number of states

[19]. Additionally, dynamic programs are not robust to disturbances. Model predictive con-

trol strategies offer the benefit of being more robust to disturbances while finding optimal

inputs in real-time [25]. However, there is a large computation requirement when using

MPC since large optimization problems must be solved in real-time. The computation re-
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quirement of MPC increases as the timescale of the system dynamics decreases because the

optimization program has less time to solve.

Here, we focus on the development and comparison of a baseline rule-based controller and

two model-based optimal controllers for a hybrid electric UAV powertrain. In Section 3.2, the

embedded controllers are introduced. Section 3.3 describes baseline vehicle speed regulator

and power share controller formulations. A more optimal centralized MPC approach is

presented in Section 3.4. A hierarchical controller is formulated to manage both long and

short-term mission objectives in Section 3.5. Lastly, in advance of the experimental controller

validation in Chapter 5, the state estimation algorithm is briefly discussed in Section 3.6.

Section 3.7 summarizes the contributions of this chapter.

3.2 Embedded Controllers

We interact with the experimental platform described in Chapter 4 through two proprietary

embedded controllers: the motor speed regulator and avionic load current regulator. There-

fore we introduce augmented plant dynamics that are composed of the embedded controller

dynamics and the plant dynamics as illustrated in Figure 3.1. The signals passed to the
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Figure 3.1: Signal flow diagram for the augmented plant.
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augmented plant are the genset input ugen, genset switch σ, commanded prop speed ωref ,

and commanded avionic load current Iref . To experimentally validate the augmented plant,

it is necessary to assume a structure of the embedded controller dynamics. The following

two sections define the control architecture for the two embedded controllers.

3.2.1 Motor Speed Regulator

An initial topology of the motor speed regulator is proposed in Figure 3.2a. The control

topology is based on the motor speed control formulation presented in [40]. By observation,

the controller consists of 3 nested proportional-integral (PI) loops and 1 static rule-based

switching controller (labeled SVM). First, the outermost control loop (motor speed con-

troller) maps the motor speed tracking error to a motor torque reference. The middle control

loop is the torque/current controller. Each branch of the middle loop maps q and d-axis

current tracking error to q and d-axis voltage references respectively. Lastly, the innermost

loop is termed the voltage control loop and consists of the space vector modulation (SVM)

algorithm [40, 57]. The SVM algorithm determines a switch modulation sequence from the

d and q-axis voltage references output by the torque/current control loop.

To validate the control dynamics, two simplifications are made to the initial control topol-

ogy because there are physical limitations in the experimental hardware. First, a common

control objective for a non-salient BLDC motor is to command the d-axis current to zero.

Similar to Section 2.3.2, we assume that this control objective is achieved. Therefore, the

lower PI loop in the torque/current controller can be removed. Second, the electrical system

control dynamics are significantly faster than the mechanical system dynamics and commu-

nication rate of the experimental hardware. Therefore, the torque/current controller can

be treated as static. Applying these simplifications to the control architecture described in

Figure 3.2a yields a simplified motor speed controller composed of a single PI loop (Figure

3.2b). The following discussion analyzes the simplified control architecture.
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(a) Generic motor speed controller.

Figure 3.2: Generic (a) and simplified (b) motor speed controller block diagrams.
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Figure 3.2 (cont.): The (a) generic and (b) simplified motor speed controller block
diagrams.
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Because the d-axis currents are assumed to be identically 0, the modulation signal m of

the SVM algorithm, as described in [40], is given by

m =
Vq,i,ref√
3

2
Vdc

, (3.1)

where Vq,i,ref is the q-axis voltage reference of the inverter and Vdc is the inverter DC-link

voltage. The
√

3
2

term is a result of applying the power-invariant Park Transform. Next,

the fast electrical system control dynamics are assumed static to simplify the torque/cur-

rent controller. Treating the electrical motor dynamics (2.25) as static, the torque/current

controller is given as

Vq,m,ref = RIq,m,ref + kvω, (3.2)

where Vq,m and Iq,m are the q-axis motor voltages and currents respectively, R is the motor

coil resistance, kv is the motor constant, ω is the motor speed, and the subscript ref defines

a reference signal. In Figure 3.2b, the
√

1
3

gain between the torque/current and voltage

controllers converts the motor delta voltage reference to the inverter wye voltage reference.

The subsequent analysis of the PI loop shows that there will be zero steady state track-

ing error. Neglecting nonlinear losses, static friction, and the shaft load, the shaft speed

dynamics and controller output are given by

Jω̇ = τ − bω, (3.3a)

τref =

(
Kp,ω +

1

s
KI,ω

)
(ωref − ω) , (3.3b)

where τ is the motor torque, J is the shaft inertia, Kp,ω and KI,ω are the proportional

and integral gains for the motor speed controller respectively, and b is the viscous friction

constant. The fast electrical dynamics permit the assumption that the commanded motor

torque is always achieved at each update of the speed controller. Therefore, the transfer
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function from desired motor speed to plant motor speed is given by

ω

ωref

=

Kp,ω

J
s+

KI,ω

J

s2 +
b+Kp,ω

J
s+

KI,ω

J

. (3.4)

There are two free parameters, so the poles of the second-order system described by (3.4)

can be placed arbitrarily. The placement of the poles will be experimentally validated in

Chapter 4.

3.2.2 Current Regulator

The buck-boost converter requires a control loop to regulate the output voltage or current.

Although only current regulation is considered in this thesis, similar methods can be applied

to voltage regulation operation. The switching duty cycle for current regulation is determined

via a single PI loop as shown in Figure 3.3.

u
PlantIref +

–

I

,

,

I I

p I

K
K

s
+

Figure 3.3: Current regulator block diagram.

3.3 Baseline Control Formulation

The baseline controller is composed of a vehicle speed and power share controller. The

vehicle speed controller generates a speed reference that is passed to the embedded motor

speed regulator. The power share controller generates an input and switch that is passed

directly to the plant. The interactions between the baseline controller and augmented plant

are illustrated in Figure 3.4.
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Figure 3.5: Block diagram for the vehicle speed regulator.

3.3.1 Vehicle Speed Regulator

The vehicle speed regulator is a PI loop that generates a motor speed reference based on

the vehicle speed tracking error (Figure 3.5). Neglecting constant loss due to gravity, the

vehicle speed dynamics and feedback law are given by
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mv̇ = C1ω
2 − C2v

2, (3.5a)

ω2
ref =

C2

C1

v2 +

(
Kp,v +

1

s
KI,v

)
(vref − v) , (3.5b)

where C1 = ρ D4

4π2CT and C2 = 1
2
ρACD are as described in Section 2.3.6, v is the vehicle

speed, m is the vehicle mass, and Kp,v and KI,v are the proportional and integral gains for

the vehicle speed controller. Notice the feedforward term C2

C1
v2 used to linearize the system

dynamics. To show that there will be zero steady-state tracking error, notice that the motor

angular speed and controller dynamics are fast in comparison to the vehicle linear velocity

dynamics. Therefore, assume that the commanded angular speed is achieved, ω = ωref . The

transfer function from desired to plant vehicle speed is given by

v

vref
=

C1Kp,v

m
s+

C1KI,v

m

s2 +
C1Kp,v

m
s+

C1KI,v

m

. (3.6)

Similar to the motor speed controller, there are two free parameters so the poles of the

second-order system described by (3.6) can be arbitrarily placed. Because the linear velocity

dynamics are considerably slower that the motor speed dynamics, the poles of the vehicle

speed controller should be slower than the poles of the motor speed controller (10-100x

slower).

Lastly, a rapid change in the propeller speed reference can yield high currents in the

propulsion subsystem. To adhere to physical system limitations, a 2nd-order low-pass filter

with cutoff frequency ωc and damping ratio ζ is applied to the the reference signal passed

to the vehicle speed controller. This low-pass filter maps v∗ref to vref .

3.3.2 Power Share Controller

The power share in a hybrid system is the ratio of engine/generator power to the total load

power. In this work, the power share controller determines how much power is required
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from the genset. Simple power share controllers are typically formatted as state machines

where the operating mode is dependent on the battery state of charge and the system’s total

electrical load. The state machine thresholds are designed using rules and heuristics.

Control objectives for power share controllers are commonly categorized into charge deplet-

ing or charge sustaining strategies [58]. A charge depleting strategy will prioritize discharging

the battery pack while relying on the engine to provide the remaining power necessary to

meet vehicle objectives. If a charge depleting strategy is implemented, the engine should be

appropriately sized to be able to provide peak load power. In a charge sustaining strategy it

is more common for the engine to provide most of the demanded system power such that the

battery state of charge does not deplete significantly over a mission. Because the engine for

the experimental hybrid system described in Chapter 4 cannot independently provide peak

power, a charge sustaining power share controller is developed.

Charge sustaining mechanisms are typically categorized into 4 approaches: state chang-

ing, threshold changing, power changing, and emergency handling [17]. A state changing

approach switches between operating rules as a direct function of the battery state of charge.

A threshold changing approach utilizes state of charge dependent thresholds that then gov-

ern the operating state of the state machine. A power changing approach characterizes

the demanded genset power as a function of battery state of charge. Emergency handling

rules help ensure that system constraints are not violated. The state machine in this thesis

implements each of the charge sustaining mechanisms so examples will be provided in the

following discussion.

The power share controller state machine is described in Figure 3.6. The load power is

the sum of the propulsive load, avionic load, and processor load represented by the power

flows along edges 35, 39, and 41 (respectively) of the system graph described in Figure 2.22.

Similarly, the battery and genset power is the value of edges 11 and 12 (respectively) of the

system graph. Because each of the power flows operate at the same voltage level (vertex

17), the power based analysis can be simplified to a current based analysis. Therefore, the

horizontal axis of the state machine is labeled with total load current Iload instead of total

load power. The vertical axis is labeled with the battery state of charge q. The following

discussion outlines the operating modes of the state machine.
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σ = 0

Id = 0

Id = 0 if σ = 0

Id = I* if σ = 1

σ = 1

Id = I*

ρ = 1

Id = I*

Id = 0 if ρ = 0

Id = Iload+Ic,max 

if ρ = 1

ρ = 1

Id = Iload+Ic,max

Id = Ie,max

Id = I

σ = 1ρ = 0 σ = ρ = 1

T1 T2I* Ie,max Iload

q

q

q

q̂

q

q̌ 

Figure 3.6: State machine representation of the power share controller. I† is defined by the
second case in (3.9c). The shading indicates a single state of the state machine. For
example, the darkest grey sections all indicate that Id = Ic,max. The striping indicates that
the presence of multiple states in that region. Figure inspired by [17].

The relevant power share parameters are battery state of charge q, the battery state of

charge upper and lower bounds q̄ and
¯
q, the commanded genset current I, the desired genset

current Id, the total system load Iload, the optimal genset current I∗, the max genset current

Ie,max, and max battery charge current Ich. The genset’s optimal state is given by the state

that minimizes engine specific fuel consumption. These parameters are physical states or

constraints of the system. Note that the genset input ugen is given by ugen = I/K where K

is defined in 2.46.

For loads less than the sum of the optimal genset current and max battery charge current
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(Iload < I∗), the control strategy is

σ(t) =


1 if T1(t) ≤ Iload(t) and q(t) ∈ [

¯
q, q̄],

0 if q(t) ≥ q̄,

σ(t−1) else,

, (3.7a)

ρ(t) = 0, (3.7b)

Id(t) =

 0 if σ(t) = 0,

I∗ if σ(t) = 1,

, (3.7c)

T1(t) = (I∗) sat
(
q(t)−

¯
q

q̂ −
¯
q

)1

0

, (3.7d)

where σ is a binary input variable representing whether the engine is ‘on’ (1) or ‘off’ (0),

ρ is a binary variable governing an operating mode, T1 is a changing threshold defined by

(3.7d), and q̂ ∈ (
¯
q, q̄] is a parameter that biases the slope of threshold T1. Here, the genset

is operated at its most efficient state whenever it is turned on. The variable threshold T1

is implemented to bias the point at which the engine is turned ‘on’. As seen in Figure 3.6,

if the load is large, the engine will turn ‘on’ at a higher SOC to sustain battery charge.

Together, (3.7a) and (3.7c) are examples of a state changing approach since the demanded

current changes as a function of the state σ. Furthermore, (3.7d) is an example of a threshold

changing mechanism because of the dependence on the pack SOC.

For loads where Iload ∈ [I∗, Ie,max), the control strategy is

σ(t) = 1, (3.8a)

ρ(t) =


1 if T2(t) ≤ Iload and q(t) ∈ [

¯
q, q̄],

0 if q(t) ≥ q̄,

ρ(t−1) else,

, (3.8b)

Id(t) =

 I∗ if ρ(t) = 0,

Iload(t) + Ich if ρ(t) = 1,

, (3.8c)
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T2(t) = (I∗) + (Ie,max − I∗) sat
(
q(t)− q̌

q̄ − q̌

)1

0

, (3.8d)

where T2 is a variable SOC dependent threshold, and q̌ ∈ [
¯
q, q̄) is a parameter used to bias

the slope of threshold T2. For this section of the state machine, the goal is to operate the

engine at its most efficient state or recharge the battery. To maintain a higher pack SOC,

the threshold T2 biases the engine to recharge the pack at greater SOC when the system load

is large. Similar to (3.7), (3.8b) and (3.8c) are an example of a state changing mechanism

and (3.8d) is an example of a threshold changing rule.

Lastly, when Iload ≥ Ie,max, the control strategy is

σ(t) = 1, (3.9a)

ρ(t) = 1, (3.9b)

Id(t) =


I∗ if , q(t) > q̄

I∗ + (Ie,max − I∗) sat
(
q̄ − q(t)

q̄ − q̃

)1

0

, if q(t) ∈ [
¯
q, q̄],

Ie,max if q(t) <
¯
q,

(3.9c)

where q̃ ∈ [
¯
q, q̄) biases the commanded current production. The objective of this mode is to

operate efficiently only at high pack SOC and at max current otherwise. Here, the second

case of (3.9c) is an example of a power changing mechanism.

Three emergency handling methods are necessary to maintain safe operation

I(t) = sat (Id(t))p0 where p = min{Ie,max, Iload + Ich}, (3.10a)

Id(t) = Ie,max if q(t) <
¯
q, (3.10b)

Id(t) = Ie,max if Iload > Ib,max + I∗. (3.10c)

Equation (3.10a) saturates the command current such that the pack is not charged at exces-

sive rates. This saturation is commonly active at low loads. Equation (3.10b) demands max

current if the pack state of charge decreases below its lower limit. Equation (3.10c) demands

max current if the load exceeds the sum of the battery max discharge rate Ib,max and opti-
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mal genset current. Note that (3.10b) and (3.10c) should be unlikely operating modes. To

prevent high frequency switching between operating states, a dwell time on operating mode

is implemented (Figure 3.7), where Tdw is the dwell time before a new mode can be selected,

x̃k is the chosen state machine operating mode, and xk is the actual operating state machine

operating mode.

Is t > Tdw + t0?

xk = xk– 1

Input kx

Output xk

Is wait = 1?

wait = 1 wait = 0 t0 = t

1Is ?k kx x −=

k kx x=

no yes

yes

no no

yes

Figure 3.7: Decision tree for the dwell time algorithm.

This power share control formulation has 4 tuning variables: q̂, q̌, q̃, and Tdw. The variables

q̂ and q̌ bias the threshold at which the engine should be turned ‘on’ to charge the pack. If

q̂ and q̌ are large, the battery will be charged to a higher SOC. However, there is a trade-off

that the engine may be used more while operating less efficiently. A similar trade-off occurs

when tuning q̃. The dwell time parameter Tdw is used to mitigate high frequency mode

switching and should be tuned based on operating conditions and component specifications.
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3.4 Centralized Model Predictive Controller

3.4.1 Model Predictive Control Description

A model predictive controller uses information about system dynamics and objectives to

forecast a sequence of inputs that optimize system behavior across a time horizon [20]. A

system model and optimization program are central to the formulation of a model predictive

controller. The model is used to predict system state trajectories as a response to an in-

put sequence calculated by an optimization program. Assuming full-state feedback at each

controller call, the initial system states and objectives over the horizon are input to the op-

timization program that solves for the optimal set of inputs at each step in the horizon. The

inputs at the first step in the horizon are applied to the plant. The controller’s horizon N

and time step ∆t govern the time horizon of the predicted state trajectory and are typically

treated as tuning variables. In practice ∆t typically has an upper limit associated with the

timescale of the fastest system dynamic. Additionally, the choice of N is dependent on the

available computational power, model accuracy, required disturbance preview.

3.4.2 Controller Formulation

The centralized model predictive controller is responsible for coordination between both em-

bedded controllers and the operating mode of the engine. The proposed controller topology

is shown in Figure 3.8. The predictive controller is passed the current measured or estimated

system state and mission information (mission objectives, known disturbances, etc.). Similar

to the baseline controller, the mission objectives include a desired vehicle velocity and avionic

load current. Note that the predictive controller receives future mission information as well,

whereas the baseline controller does not. Known disturbances are represented by sink states

of the graph model. In this work, the only time-varying sink state is the genset current (sink

vertex 2) with dynamics modeled outside the graph framework. The centralized controller

outputs are the genset mode (‘on’ or ‘off’), the genset input sequence, motor speed state

trajectory, and avionic load current trajectory. As mentioned in Section 3.4.1, only the first

index of the input sequence or state trajectory is passed to the augmented plant. Lastly, the
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Figure 3.8: Signal flow diagram for the centralized controller design. Embedded controller
descriptions in Section 3.2. Centralized MPC controller description in Section 3.4.2.

signal flow diagram (Figure 3.8) looks like a two-level hierarchical controller. However, recall

that the embedded controllers and plant are combined into the augmented plant. Therefore,

this controller is centralized with respect to the augmented plant.

A challenge of the application of MPC to hybrid electric systems is the ability to plan for

both fast and slow mission objectives in a computationally efficient and accurate manner [17].

Because an electro-mechanical system has many fast dynamics, it is typical to choose a fast

update rate for the controller. However, a fast update rate inherently limits the controller’s

capability for real-time long-term mission planing. To compensate for this limitation, an

SOC planning algorithm is developed to provide a time-varying lower bound to the model

predictive controller. The lower SOC bound is designed to represent a conservative estimate

of how much battery charge is required to complete mission objectives for H seconds into

the future.

The lower SOC bound is developed with a priori knowledge of the mission and a static

analysis of part of the graph model. The drivetrain and avionic load are the main power
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consuming subsystems in the vehicle model (assuming the processor load is negligible).

Assuming that the demanded velocity vref and avionic load Iref profiles are statically tracked,

the propulsion power Pprop and avionic load power PLP are given by

Pprop =
1

2
ρACDv

3
ref −mgvref sin (θ), (3.11a)

PLP = VLP Iref , (3.11b)

where the parameters in (3.11a) are defined in Section 2.3.6 and VLP is the operating voltage

of the avionic load (treated as a disturbance in the graph model). Assuming some minimum

efficiency for the propulsion ηprop and avionic load subsystems ηLP , the total system load

is Pload = Pprop

ηprop
+ PLP

ηLP
. Pload represents the sum of the power flows along edges 35 and 39

(respectively) of the system graph (Figure 2.22). Next, assume the battery voltage dynamics

are negligible with an upper bound on the battery series resistance Rs and a lower bound on

the battery open-circuit voltage Vocv. A system of equations can be developed by applying

conservation laws to the bus voltage state Vbus (vertex 17) and battery current state Ibat

(vertex 6)

VbusIbat = Pload − ĪgenVbus, (3.12a)

VbusIbat = VocvIbat −RsI
2
bat, (3.12b)

where Īgen = b1Vbus + b2 is the max genset current as a linear function of the bus voltage.

The max genset current is used to study a “worst-case” operating condition. The system

of equations can be solved by substitution and has two solutions. Only one solution yields

plausible values for Vbus and Ibat. Using the valid solution, the time-varying lower SOC

bound
¯
q(t) is given by

¯
q(t) =

¯
q +

∫ t+H

t
sat(Ibat)∞0 dτ

Q
(3.13)

where
¯
q is the static minimum SOC and Q is the battery capacity. The preview horizon

is treated as a tuning parameter for the algorithm. A long preview horizon may yield a

more conservative controller whereas a short preview horizon may yield a more aggressive
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controller. Lastly, recall the mention of minimum or maximum values for the open-circuit

voltage, battery series resistance, and subsystem efficiency parameters. Choosing these

parameters in this manner yields a max-lower SOC bound for the static system under the

aforementioned assumptions.

Next, the non-linear plant dynamics described by (2.10) are not appropriate for real-time

optimization methods because non-linear optimization can be too computationally expen-

sive. Therefore, a discrete linear system model (2.21) is used in the optimization formulation.

The non-linear system is re-linearized at every time step to improve the controller perfor-

mance over a large state space. Because the genset operating mode is treated as a binary

input, a discrete switched linear model with two modes is implemented. Assuming the non-

linear graph model does not have source flow edges, the augmented discrete switched linear

model dynamics are given byx(k+1),d

0

 = Aσ
z1

xk,d

xk,a

+ Aσ
z2x

t
k +Bσ

z1uk +Bσ
z2 (3.14)

where the superscript σ denotes a switched analogue to the matrices presented in (2.21).

Note that the augmented model combines the discrete linear dynamics of the graph model

and the genset model.

The optimization problem is formulated using the following mixed-integer quadratic pro-

gram (MIQP):

Jk =Λx ∥rk+1 − xk+1∥22 + Λs ∥sk∥22 + Λb ∥bk∥22 + Λsfcsfck+ (3.15a)

+Λdx ∥xk+1 − xk∥22 + Λdu ∥uk − uk−1∥22 + Λσ ∥σk − σk−1∥22 , (3.15b)

minimize
u,s,b,σ

J =
N∑
k=1

Jk, (3.15c)

73



subject to

∀k ∈ [1 : N ]

x(k+1),d

0

 = Aσ
z1xk + Aσ

z2x
t
k +Bσ

z1uk +Bσ
z2, (3.15d)

¯
x− sk+1 ≤ xk+1 ≤ x̄+ sk+1, (3.15e)

sk+1 ≥ 0, (3.15f)

¯
xk+1 − bk+1 ≤ xk+1, (3.15g)

bk+1 ≥ 0, (3.15h)

¯
u ≤ uk ≤ ū, (3.15i)

u0 − δu ≤ uk ≤ u0 + δu, (3.15j)

σk = {0, 1}. (3.15k)

Note that the index at k = 0 denotes then current system state at the controller call.

The decision variables of the optimization problem are the system input sequence u =

[u1, · · · , uN ], slack variables s = [s1, · · · , sN+1] and b = [b1, · · · , bN+1], and switch state

sequence σ = [σ1, · · · , σN+1]. Note that the switch state is binary (3.15k) and allowed to

change across the horizon. Equations (3.15a) and (3.15b) are a quadratic cost function

composed of seven separate costs (the sfc term is quadratic 2.47). First, there is state

tracking cost Λx ≥ 0 associated with states x tracking reference r. Second and third, there

are slack penalties Λs ≥ 0 and Λb ≥ 0. Fourth, there is a fuel cost Λsfc ≥ 0 associated with

the genset. Fifth and sixth, there is cost associated with the rate of change of states Λdx ≥ 0

and inputs Λdu ≥ 0. Lastly, there is a switching cost Λσ that penalizes switching the engine

‘on’ or ‘off’. Note that Λx, Λs, Λb, Λdx, and Λdu are diagonal matrices of appropriate size.

Equation (3.15d) is the discrete switched linear state dynamics. Equations (3.15e) and

(3.15g) enforce constant and time varying softened state constraints with lower bounds
¯
x and

upper bound x̄. The inclusion of positive slack variables (3.15f) and (3.15h) ensure feasibility

of the optimization problem by softening state constraints. Equation (3.15i) provides hard

constraints on system inputs with lower and upper bound
¯
u and ū. Lastly, equation (3.15j)
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bounds the deviation from the previously applied input u0 by δu. Bounding the input biases

the state dynamics to stay near the linearization point and therefore improves the controller

prediction.

3.5 Hierarchical Model Predictive Controller

3.5.1 Hierarchical Controller Description

A notional example of a hierarchical controller is shown in Figure 3.9 [26, 59]. In this

framework, a supervisor at the vehicle level predicts and optimizes system behavior with

respect to slower system dynamics and objectives. This information is passed down in the

hierarchy to various controllers that are tuned to regulate the behavior of specific systems

and subsystems. These lower level controllers update faster than the upper level controllers.

The combined long preview of the upper level controllers and short-preview of the lower

level controllers enables coordination between both fast and slow systems dynamics. This

inherent ability to effectively coordinate system behavior across timescales is a key merit of

the hierarchical control framework.

3.5.2 Controller Formulation

As mentioned previously, a challenge with the application of MPC to fast dynamic electro-

mechanical systems is its ineffectiveness to achieve long-term real-time mission planning

while regulating fast system dynamics. In the previous section, an algorithm was introduced

to plan a lower-bound for a fast updating centralized MPC. Recall that the algorithm is

designed to run before the mission start. The motivation for the hierarchical controller is to

provide an optimal alternative to the SOC bounding algorithm that can run in real-time.

The structure of the hierarchical controller is shown in Figure 3.10. The predictive con-

trollers at each level of the hierarchy have knowledge of the full plant dynamics. Here,

mission information is passed to an MPC algorithm designed with a long mission preview

that outputs a desired vehicle speed, avionic load current, and lower bound for the battery
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Figure 3.9: Example of a hierarchical control framework where each node at each level of
the hierarchy represents a controller. Modified from [27].

SOC. These outputs are passed to the lower level MPC which calculates a desired propeller

speed, avionic load current, and genset input. The lower level MPC plans over a shorter

mission preview in comparison to the upper level controller to better regulate the fast system

dynamics. The outputs of the lower level MPC (propeller speed, avionic load current, genset

command) are passed to the embedded controllers.

Various methods can be used to pass information from upper to lower level controllers.

The simplest method is to downsample the output sequence o = [o1, · · · , oN ] from the upper

level controller at even intervals of the lower level controller’s update rate. The downsampled

sequence can then be passed as mission information to the lower level controller. A second

option is to augment the upper level controller’s output sequence with the current system

state xk to yield o′ = [xk, o
′
1, · · · , o′N ]. Next, interpolate between consecutive points in o′,

downsample the interpolated set at the update rate of the lower level controller, and then

pass the resulting sequence as mission information into the lower level controller. More

complex methods based on these principles can be developed. In this work, the upper level

MPC passes information to the lower level MPC via the first method and the lower level
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MPC passes information to the embedded controllers via the second method.

The precise mathematical control formulation for the upper and lower level controllers

is identical to that of the centralized controller described by (3.15). For completeness, the

control formulation is repeated below and the reader is directed to Section 3.4 for variable

descriptions.

Jk =Λx ∥rk+1 − xk+1∥22 + Λs ∥sk∥22 + Λb ∥bk∥22 + Λsfcsfck+ (3.16a)

+Λdx ∥xk+1 − xk∥22 + Λdu ∥uk − uk−1∥22 + Λσ ∥σk − σk−1∥22 , (3.16b)

minimize
u,s,b,σ

J =
N∑
k=1

Jk, (3.16c)

subject to

∀k ∈ [1 : N ]

x(k+1),d

0

 = Aσ
z1xk + Aσ

z2x
t
k +Bσ

z1uk +Bσ
z2, (3.16d)

¯
x− sk+1 ≤ xk+1 ≤ x̄+ sk+1, (3.16e)

sk+1 ≥ 0, (3.16f)

¯
xk+1 − bk+1 ≤ xk+1, (3.16g)

bk+1 ≥ 0, (3.16h)

¯
u ≤ uk ≤ ū, (3.16i)

u0 − δu ≤ uk ≤ u0 + δu, (3.16j)

σk = {0, 1}. (3.16k)
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Figure 3.10: Signal flow diagram for the hierarchical control design. Embedded controller
descriptions in Section 3.2. Centralized MPC controller description in Section 3.5.2.

3.6 State Estimation

The controllers of the previous sections require full-state feedback for hardware implementa-

tions. Full-state knowledge is typically obtained using an observer which estimates unknown

states using sensor measurements. Figure 3.11 describes the decentralized observer developed

in this work. The battery observer estimates the 5 battery states x̂bat and is formulated as

a Central Difference Kalman Filter (CDKF) [60, 61]. The CDKF is a version of sigma-point

Kalman Filtering that maintains the non-linear form of the model to improve estimation

accuracy. The system observer estimates the remaining system states x̂sys and is formulated

as an Extended Kalman Filter (EKF) [61]. The EKF uses a linearized version of the system

model to estimate states. The CDKF and EKF algorithms are provided in Appendix C.

78



Controller

Sensor Information

System 

EKF

Battery 

CDKF

baty sysy

ˆ
batx ˆ

sysx

Figure 3.11: Signal flow diagram for the observer. The signals ỹ represent sensor
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3.7 Conclusion

In review, this chapter introduced 2 controller models, 3 control designs, and an observer.

The embedded controllers described in Section 3.2 are modeled as PI controllers and will be

experimentally validated in Chapter 4. The first control design is a decentralized controller

(Section 3.3) consisting of a vehicle speed regulator and power share controller. The power

share controller was formulated to sustain the battery pack state of charge. Then a central-

ized model predictive controller was described in Section 3.4. Long term mission planning

was integrated in the centralized control design through a time-vary bound on the battery

state of charge. As an alternative, a hierarchical controller was developed (Section 3.5) to

conduct real-time planning for the battery state of charge. The advanced control designs

that provide state of charge bounds are unique contributions of this work. Lastly, the state

estimation structure was introduced.
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Chapter 4

Model Validation

4.1 Background

The baseline and model-based control algorithms described in Chapter 3 will be experimen-

tally validated and evaluated to highlight improvements in both performance and efficiency

in Chapter 5. To evaluate the advanced model-based controllers on experimental hardware,

it is necessary to have a validated system model. Previous validation efforts have been done

to individual components such as batteries, motors, etc. [8, 62, 63, 64]. This chapter will

aggregate efforts developed by other researchers as well as introduce new validation methods.

The goal is that this thesis can provide comprehensive procedures to validate the electrical

and mechanical dynamics of a hybrid electric unmanned aerial vehicle.

Section 4.2 will provide a description of the experimental hardware. The battery model

validation procedure and analysis will be introduced in Section 4.3. The motor parameter

identification process will be described in Section 4.4. The inverter and its control dynamics

are validated in Section 4.5. The DC-DC conversion power electronics losses are identified

in Section 4.6. Genset characterization is accomplished in Section 4.7. The processor load

model is validated in Section 4.8. System wide open-loop validation results are described in

Section 4.9. The chapter contributions are summarized in Section 4.10.

4.2 Testbed Description

The novel POETS hybrid electric UAV powertrain testbed (Figure 4.1) is used to facilitate

the model validation process. A schematic is provided in Figure 4.2. The system model

described in Figure 2.2 was modeled after the architecture of the experimental platform.
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Table 2
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Electronic Load

(a) Setup for the hybrid electric UAV powertrain testbed.
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(i) (ii)

(b) Detailed labeling for the hybrid electric UAV powertrain testbed components. (i) Labels the
components on Table 1 and (ii) labels the components on Table 2.

Figure 4.1: An (a) overhead perspective of the full testbed and a birds-eye view of (b.i)
table 1 and (b.ii) table 2.
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Figure 4.2: Layout schematic of the experimental testbed shown in Figure 4.1.
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Before describing the testbed subsystems, it is first important to understand the operation

and purpose of the 3 electronic speed controllers (ESCs) located on the testbed. Although

each ESC has the same circuit topology, they all have different operating modes and control

strategies. Each speed controller consists of a single DC-link capacitor and two three-phase

bridge converter circuits (Figure 4.3). The DC-link capacitor helps regulate the bus voltage.

The three-phase bridge converter is versatile and can represent a 3-phase DC-AC inverter,

a 3-phase AC-DC active rectifier, or 3 independent DC-DC bi-directional buck-boost con-

verters. When operating as a 3-phase device connected to an electric machine, the control

objectives are to either regulate shaft speed or torque. A sensorless position algorithm is used

to estimate motor position and a space vector modulation algorithm is used to command

the switching devices. When operating as a buck-boost converter, the control objectives are

to regulate output voltage or current (similar to the operation of a programmable power

supply). Each DC channel can operate at up to 60A at 45V. If operating as a buck-boost

converter, additional filtering is required at the ESC output (see Figure 2.8). Filters are

located in 2 filter boxes on the testbed (circuit diagram in Figure 4.4). The speed controllers

and filter boxes were designed by PC Krause and Associates (PCKA). Note that although

the ESCs are referred to as “speed controllers”, they have multiple operating modes and ap-

plications beyond speed regulation. The naming and operation of each ESC on the testbed

is highlighted in Table. 4.1.

The testbed is composed of 5 distinct subsystems. The Energy Storage System (ESS)

consists of a battery pack and battery management system (BMS). The battery is a 16S7P

pack composed of Samsung 18650 cells. Battery pack information and operating limits are

summarized in Table 4.2. The BMS provides continuous monitoring of the cells during

operation, measures pack voltage, and can passively balance the cells through resistors. A

Table 4.1: The electronic speed controller names, subsystem placement (Figure 4.2), and
control objective(s).

ESC Name Hybrid Brake DCDC
Subsystem Drivetrain Genset Braking DCDC

Regulated State Speed Speed or Torque Torque Current
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Figure 4.3: Dual three-phase bridge converter circuit topology internal to the testbed ESCs.
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Figure 4.4: Three parallel low-pass RLC filter circuits internal to the testbed filter boxes.

relay and fuse are integrated to protect the battery pack and a shunt resistor is used to

measure the pack current.

As mentioned in Chapter 2, the genset consists of an internal combustion engine, starter/

generator (S/G), and the hybrid speed controller. The internal combustion engine is a Briggs

and Stratton 19N1 engine rated at ∼7kW. An internal governor regulates a constant engine

speed determined by a lever that cannot be adjusted during a mission at present. The
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Table 4.2: Battery pack information and operating limits.

Chemistry Lithium Nickel Cobalt
Aluminum Oxide

Cell Type Samsung INR18650-30Q

Pack Size 16S7P

Voltage Limits (Min-Max) 40-67.2V

Max Continuous Discharge Current 105A

Standard Charge Current 10.5A

Max Charge Current 28A

Rated Capacity 21Ah

Measured Pack Capacity Discharge: 21.33Ah
Charge: 22.38Ah

governor is proprietary to the manufacturer and is not described in this thesis. The engine

is connected to the S/G by a belt-pulley system. The S/G is a 16 pole outrunner brushless

DC motor (BLDC) developed by Neu Motors. The S/G is controlled as a starter in speed

control mode when the engine is “off”. When the engine is “on”, the S/G is controlled as

a generator in torque control model. Since the governor regulates the shaft speed, it is

necessary that the S/G switches to a torque control mode so that the two controllers do not

fight to regulate the same state. One branch of the hybrid ESC controls the S/G. Depending

on the engine operating state, the three-phase bridge converter will operate as an inverter

or active rectifier.

The drivetrain consists of a propulsion (prop) motor and the hybrid ESC. The propulsion

motor is a 16 pole outrunner brushless DC motor developed by Neu Motors. The second

branch of the hybrid ESC operates as an inverter in speed control mode to regulate the

prop’s shaft speed.

The braking subsystem consists of a dynamometer (dyno or brake), brake speed controller,

a filter box, high power load bank, low power battery pack, and power supply. The dyno is

a 16 pole outrunner brushless DC motor (BLDC) developed by Neu Motors and is coupled

to the prop motor by a shaft coupling. The dynamometer is controlled by one branch of the

load ESC operating as an active rectifier in torque control mode. Together, the dynamometer
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and ESC are used to emulate the propeller load of an actual aircraft. The second branch of

the load ESC is a buck-boost converter. The control objective of the buck-boost converter

is to draw as much DC current as the dyno is producing. In other words, the DC-link bus

DC current should be identically zero. The high power load bank is composed of twelve 1Ω

power resistors configured in a 2S6P pattern to generate a 1
3
Ω equivalent resistance. The low

power battery pack and power supply provide DC power to the ESC. The low power battery,

a 5S1P pack of lead-acid batteries, increases the capacitance of the DC-link inside the ESC

to prevent voltage fluctuations as a result of large current spikes. The power supply will

provide power if the battery voltage starts to decrease. A protection diode blocks current

flow into the power supply and a shunt resistor measures the battery current.

The voltage steps (or DCDC) subsystem is composed of a load, DCDC speed controller,

and filter box. Together, the voltage step ESC and filter box create three independent bi-

directional buck-boost converters. In this thesis, a programmable electronic load is connected

to one of the converter outputs to emulate aircraft avionics. Shunt resistors are used to

measure the DC current draw of the DCDC speed controller and the current output of each

buck-boost converter.

The testbed is directly controlled by LabVIEW running on a desktop PC with a 4.2GHz

Intel i7 Processor and 16GB of RAM. Each ESC provides measurements or estimates of

internal states (e.g. voltages, currents, speeds, etc.). External shunt measurements are

recorded using a National Instruments CompactDAQ (cDAQ) with NI-9205 and NI-9403

cards installed. At a rate of 10Hz, LabVIEW communicates with the ESCs via a Controller

Area Network (CAN) bus, the BMS via RS-232, the cDAQ via USB, and MATLAB via the

User Datagram Protocol (UDP). An example of the testbed control GUI is shown in Figure

4.5. A complete parts list and computer specifications are provided in Appendix D.

86



Control 

Panel

Signal 

Information

Communication Updates

Figure 4.5: Example of the LabVIEW GUI used to control the testbed.

4.3 Battery Pack Validation

4.3.1 Experimental Setup

This thesis identifies the electrical battery parameters using a current pulse test [8]. The

concept of this test is to excite the battery dynamics using a current pulse and then analyze

the resulting relaxation of the voltage dynamics once the pulse is removed. A schematic

of the experimental setup is outlined in Figure 4.6 and the test equipment is shown in

Table 4.3. The BMS measures pack voltage, but redundant voltage measurements are also

reported by the power supply and electronic load via voltage sense pins connected to the

battery terminals. System actuation and data acquisition is handled by LabVIEW, which

samples the system at 1Hz.

Conditioning cycles are used to relax the battery pack voltage dynamics before the start

of the current pulse test. The following steps were used to condition the battery pack. Note

that charge rates are indicated in terms of C-rate. The C-rate is the charge/discharge rate

defined by the battery current divided by the current required to fully charge/discharge the

battery in one hour. For example, if a battery has a 5Ah capacity and is being charged at
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1A, its C-rate is C/5 and it would take 5 hours to charge from empty to full.

Conditioning Cycle Procedure:

1. Start the pack at full charge.

2. Connect the electronic load and start a constant current-constant voltage (CC-CV)

discharge cycle at a C/21 rate (1A) and 40V.

3. Stop the CV portion of the discharge cycle by disconnecting the load when the pack

current is less than 100mA and let the system rest for 3 hours.

4. Connect the power supply and start a CC-CV charge cycle at a C/21 rate and 67.2V.

5. Stop the CV portion of the charge cycle by disconnecting the power supply when the

pack current is less than 100mA and let the system rest for 3 hours.

6. Repeat steps (2)-(5)

The CV voltage limits correspond the voltage limits of the battery pack and the 100mA

cut-off current is recommended by the manufacturer. The current pulse test should directly

follow the conditioning cycles so that the battery dynamics are not re-excited. The current

pulse waveform described in the test procedure below has magnitude 7A, period 189min,

and duty cycle ∼0.048.

Current Pulse Test Procedure:

1. Start the pack at full charge, begin data acquisition, and let the pack rest for 30

minutes.

2. Connect the electronic load and discharge the pack at C/3 for 9 minutes.

3. Disconnect the electronic load and let the pack dynamics relax for 180 minutes.

4. Repeat steps (2)-(3) until the pack voltage reaches 40V.

5. Start a 40V CV discharge cycle.
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6. Stop the CV portion of the discharge cycle by disconnecting the load when the pack

current is less than 100mA and let the system rest for 240 minutes.

7. Repeat steps (2)-(6) except using the power supply to charge the pack. Step (5) should

read “Start a 67.2V CV charge cycle”.

Note that the sign of the current changes depending on whether the battery is being charged

or discharged. The physical test setup is shown in Figure 4.7. Because a test chamber was

not available, the battery was tested in a 3ft pit for safety. A thermal camera provided tem-

perature feedback to check safe thermal operation, but was used only for safety precautions.

No thermal validation efforts are presented in this thesis.

Battery 

Pack Power 

Supply

Electronic 

Load

Shunt 

Resistor

Protection 

DiodeRelay

Relay

cDAQ Chassis

NI-9205 NI-9403

cDAQ Chassis

NI-9205 NI-9403
24V Power 

Supply

Step Up 

Relays

Control 

Computer

Control 

Computer

Figure 4.6: Battery pulse test circuit schematic.
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Table 4.3: Current pulse test equipment.

Item Part Used Purpose
Battery 16S7P Battery Pack This is the device under test.

Shunt Resistor Rideon
RSA-20-100 Measures pack current.

Power Supply Magna-Power
XR400-10.0 Controls the battery pack charge cycle.

Electronic Load Hewlett Packard
6050A Controls the battery pack discharge cycle.

24V Power Supply BK Precision
9129B Powers the step-up relays.

Relay (x2) Potter and Brumfield
PRD-3DJ0-24

Enables switching between charge a
discharge cycles.

Protection Diode Vishay
VS-T40HF-10

Prevents current flow into the power
supply.

Step Up Relays (x2) Winford Relay Board
RLY204 Steps up voltage for the relays.

DAQ cDAQ Chassis with
9205 and 9403 Cards

Data acquisition for the shunt resistor
and controls the step up relays.

BMS TI Evaluation Board
bq76PL455A-Q1

Measures pack voltage and monitors
cell health.
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Figure 4.7: Battery pulse test physical setup of Figure 4.6.

4.3.2 Data Analysis Methods

As defined in Section 2.3.1, the battery has 7 electrical parameters to identify: Vocv, Q, Rs,

R1, R2, C1, and C2. The total capacity is taken as the integral of the pack current

Q =

∫ T

0

I1dt, (4.1)

where I1 is the pack current and T is the total test time. The battery OCV curve is obtained

as the steady-state voltage value of each relaxation period. In practice, approximately the

last 60 data points of each relaxation period were averaged to determine the open circuit

voltage at each SOC. The series resistance Rs was determined using Ohm’s Law

Rs = ∆V/I1. (4.2)

Here I1 is the magnitude of the current pulse and ∆V is the instantaneous pack voltage

change that results from the current step change. Figure 4.8 shows a single pulse with the

OCV and instantaneous voltage change labeled.

The RC pair values are obtained using optimization methods. Assuming the voltage
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Figure 4.8: The battery voltage resulting from a single current pulse and relaxation period.
The instantaneous voltage change ∆V , open circuit voltage Vocv are labeled, and pulse and
relaxation periods are labeled.

dynamics of the RC pairs are zero by the end of the relaxation periods, the voltage state of

the first RC pair at the end of a current pulse tpulse is given by

V1(tpulse) = I1R1

(
1− e

−tpulse
R1C1

)
. (4.3)

Using (4.3) as an initial condition, the voltage state of the first RC pair during the relaxation

period is given by

V1(t) = I1R1

(
1− e

−tpulse
R1C1

)(
1− e

−t
R1C1

)
. (4.4)

These trajectories can be solved using frequency domains methods or by the state transi-

tion matrix. Since the RC pair voltages share the same dynamics, the relaxation voltage

trajectory Vrelax is

Vrelax(t) = I1R1

(
1− e

−tpulse
R1C1

)(
1− e

−t
R1C1

)
+ I1R2

(
1− e

−tpulse
R2C2

)(
1− e

−t
R2C2

)
, (4.5)
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Figure 4.9: A comparison of downsampled and raw data for the relaxation voltage
resulting from a current pulse. The instantaneous voltage change has been removed and
the response has been moved to the origin.

To simplify the optimization problem, the data is downsampled and the relaxation periods

resulting from each current pulse are isolated from the rest of the data set and moved to the

origin (Figure 4.9).

The nonlinear grey-box model estimation tool in the System Identification Toolbox in

MATLAB was used to identify the RC pair values. The optimization problem is setup as

follows:

minimize
x

N∑
k=1

(Vdata[k]− Vrelax[k])
2

subject to Equation 4.5,

¯
x ≤ x ≤ x̄.

(4.6)

where Vdata is experimentally obtained data, x =
[
R1 R2 C1 C2

]
, and

¯
x and x̄ are highly

conservative upper and lower bounds for each parameter used to constrain the search space.

For example
¯
x = 0 and x̄ = 107.
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4.3.3 Results

The measured pack capacity between charge and discharge cycles are shown in Table 4.2.

These values are slightly greater than the value reported by the battery datasheet. The

differentiation in measured capacity is likely a result of the BMS, which is powered by

the battery pack. Although the instantaneous BMS power draw is small, the total energy

demand over a three day test may be significant.

The pack open circuit voltage and internal resistance curves are shown in Figure 4.11.

The shape of the OCV curve is expected for this particular pack chemistry. Similarly, the

exponential decay of the internal resistance as a function of SOC is expected as reported

elsewhere in the literature [8].

The RC pair values for pack are shown in Figure 4.11. The general shape of the resistance

and capacitance curves is somewhat consistent with results of another cell in the literature

[8]. Some work has characterized the R and RC pair values as exponential or polynomial

functions. Here, the OCV, R, and RC pair values are left as look-up tables (approximate

linear behavior between samples). Two comparisons between the model and experimental

data are shown Figure 4.10. By observation, the model matches the data well.
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Figure 4.10: Two comparisons of the downsampled experimental data and model during a
relaxation period.
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Figure 4.11: The battery open circuit voltage, internal resistance, and RC pair values as a
function of state of charge for charge and discharge cycles.

95



4.4 Motor Validation

This section will describe the 4 tests used to validate the BLDC motor model: the voltage

step, backdrive, friction, and coastdown tests [62]. Note that the following results are iden-

tified for a ∆ wound motor. If characterizing a Y wound motor, the same procedures can

be used with slight modifications to the analysis. Similarly, this set of tests can also be used

to characterize a brushed DC motor. The identified motor parameters are summarized in

Table 4.4.

Table 4.4: Propulsion motor and drivetrain parameters.

Propulsion Motor
Parameter Value Standard Deviation

Coil Resistance
[mΩ] 29.2 0.26

Coil Inductance
[µH] 48.7 0.80

Motor Constant
[mNm/A] 123.8 0.53

Drivetrain (Propulsion Motor, Coupling, and Dynamometer Motor)
Parameter Value Standard Deviation

Viscous Friction Constant
[Nm− s/rad] 0.360× 10−3 −

Static Friction Constant
[Nm] 0.228 −

Shaft Inertia
[kg/m2] 2.73× 10−3 0.08× 10−3
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4.4.1 Voltage Step Test

4.4.1.1 Experimental Setup

The voltage step test is used to identify the motor’s coil resistance R and inductance L

as described in Section 2.3.2. Because the motor windings are modeled as RL branches,

the concept of this test is to excite only the electrical dynamics and analyze the first-order

dynamic response. The experimental setup schematic is shown in Figure 4.12 and necessary

test equipment is listed in Table 4.5. When choosing components, the resistor value should

be of the same order of magnitude as the expected motor resistance, which can be estimated

using a ohmmeter. The relay should have a fast switch-open time such that the motor

dynamics are not impacted by relay’s time constant. Lastly, the motor shaft should be

braked during this test to isolate the motor’s electrical dynamics. Fixing the motor shaft

can be achieved by mechanically braking the shaft or aligning the magnetic poles of the

motor stator and rotor such that a DC current does not rotate the shaft. The pole alignment

method was done in this thesis. The voltage step test procedure is defined below.

Procedure:

1. Connect the resistor across two of the motor terminals as shown in Figure 4.12.

2. Set the power supply current limit to 3A, close the relay, and let the current dynamics

reach steady state.

3. Open the relay and use the oscilloscope to capture and save the resulting current

waveforms.

4. Repeat steps (2) and (3) for current limits Ilim = [3 : 8]A in 1A increments (6 trials).

5. Repeat steps (2)-(4) for each connection combination between resistor and motor ter-

minals. There are 3 combinations in total (18 total trials).

Note the power supply was set in current limiting mode with small current limits to prevent

damage to the motor coils. The physical test setup is shown in Figure 4.13.

97



Table 4.5: Voltage step test equipment.

Item Part Used Purpose

Test Motor Propulsion Motor
Neu 8038-105 This is the device under test.

Shunt Resistor 0.01Ω Resistor Used to measure motor terminal voltage.

Power Supply Kiethley
2260B-80-27 Provides power to the motor.

Relay Potter and Brumfield
T9AP5D52-24 Used to create a step in terminal voltage.

Oscilloscope Tektronix
MSO 4034B Reads and saves current waveforms.

Current Probes (x2) Tektronix
TCP0030A Measures branch currents.

Power 

Supply

Shunt 

Resistor

Relay

Oscilloscope

Test Motor

(1 Terminal 

is open)

Current 

Probe x2

Figure 4.12: Wiring diagram for the motor voltage step test.
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Test Motor (white 

terminal is open)

Current Probe 1 

(To Oscilloscope)

Current Probe 2

(To Oscilloscope)

Shunt 

Resistor

Relay

Connectors to 

Power Supply

Figure 4.13: The physical test setup for the motor voltage step test of Figure 4.12.

4.4.1.2 Data Analysis Methods

The motor resistance and inductance values are determined using the grey-box model esti-

mation tool in MATLAB. Since the motor shaft does not rotate during this test, the circuit

current dynamics I Figure (4.14) are given by

2

3
Lİ = V −

(
2

3
R +Rs

)
I (4.7)

where V is the voltage across the shunt resistor Rs. The shunt resistor voltage is calculated

using the current measurement and Ohm’s law. The grey-box model estimation optimization

problem is setup as follows:

minimize
x

N∑
k=1

(Idata[k]− I[k])2

subject to Equation 4.7,

¯
x ≤ x ≤ x̄,

(4.8)
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where Idata is experimentally obtained current data from the current probe connected to the

motor terminals, x =
[
R L

]
, and

¯
x and x̄ are conservative upper and lower bounds for

each parameter used to constrain the search space.

4.4.1.3 Results

A comparison between the model and experimental data is shown in Figure 4.15 and, by ob-

servation, the quality of the model is sufficient for control design. The average and standard

deviation for the resulting coil resistance and inductance are given in Table 4.4.

Rs

2
R

3

2
L

3

Test Motor

Shunt 

Resistor

Figure 4.14: Equivalent circuit for the voltage step test.
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Figure 4.15: A comparison of experimental and model line currents from the voltage step
test.
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Table 4.6: Backdrive test equipment.

Item Part Used Purpose

Test Motor Propulsion Motor
Neu 8038-105 This is the device under test.

Drive Motor Dynamometer Motor
Neu 8038-105 Spins test motor at a constant speed.

Coupling ZeroMax
SC055R

Mechanically connects test and drive
motor shafts.

Speed Controller Hybrid ESC Spins drive motor at constant speed.

Power Resistors (x3) 200W 50Ω Resistors Used to measure motor terminal voltage.

Power Supply Kiethley
2260B-80-27 Provides power to the speed controller.

Oscilloscope Tektronix
MSO 4034B Reads and saves voltage waveforms.

Voltage Probe Tektronix
THDP0200 Measures terminal voltages.

4.4.2 Backdrive Test

4.4.2.1 Experimental Setup

The backdrive test is used to identify the machine’s motor constant kv. The concept of this

experiment is to spin the test motor at a constant speed and measure the generated voltage.

The experimental setup schematic is shown in Figure 4.16 and necessary test equipment is

provided in Table 4.6. Note that the second voltage probe in Figure 4.17 is a redundant

measurement. The test motor and drive motor are mechanically coupled using a shaft

coupling. The power resistors should be rated for the expected power generated by the test

motor. The experimental procedure for the backdrive test is provided below.

Procedure:

1. Turn on the power supply.

2. Command the drive motor to 500rpm and let the shaft speed reach steady state.
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3. Use the oscilloscope to capture and save the voltage waveform generated by the test

motor.

4. Repeat steps (2) and (3) for steady state speed values ωss = [500 : 5000]rpm in 500rpm

increments (10 trials).

4.4.2.2 Data Analysis Methods

The motor constant is calculated by

kv = p

√
6

2

Vpk

ωe

, (4.9)

where p is the number of motor poles pairs, Vpk is the measured peak voltage across the power

resistor, and ωe is the electrical frequency of the measured voltage signal. The number of

pole pairs can be obtained from a datasheet or calculated as the nearest whole number

ratio between electrical and mechanical motor frequencies. The electrical frequency can be

calculated by hand or a Fourier analysis. Note that Vpk

ωe
is commonly referred to as the

motor’s flux linkage [38].

MMM MMM

Power 

Supply

Oscilloscope

w/ Voltage Probe

Test Motor

Coupling

Speed 

Controller
Drive Motor

Delta Connected 

Resistor Bank
Control 

Computer

Control 

Computer

Figure 4.16: Experimental setup for the motor backdrive test.
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Figure 4.17: Physical experimental setup for the backdrive test of Figure 4.16.

4.4.2.3 Results

The results of a single trial is shown in Figure 4.18. The average motor constant and

standard deviation between all trails is provided in Table 4.4. By observation of the standard

deviation, the results are consistent across all trails.

4.4.3 Friction Test

4.4.3.1 Experimental Setup

The friction test is used to identify the machine’s static and viscous friction coefficients c

and b. Since the propulsion motor is coupled to the dynamometer on the testbed, this test

actually characterizes the total friction on the shaft. The concept of this test is to drive
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Figure 4.18: The resulting generated voltage waveform from the backdrive test for a single
trial. The maximum and minimum generated voltages are labeled.

the motor and various shaft speeds with no applied load. In this case, friction is the only

resistive force acting on the shaft. The experimental setup schematic is shown in Figure

4.19 and the necessary test equipment is listed in Table 4.7. LabVIEW records the q-axis

motor current Iq and rotor speed ω reported by the hybrid ESC. The friction test procedure

is provided below.

Procedure:

1. Connect the battery and start data acquisition.

2. Command the test motor to 2000rpm and let the system reach steady state.

3. Collect steady state data for 10 seconds.

4. Repeat steps (2) and (3) for steady state speed values ωss = [2000 : 4750]rpm in

250rpm increments (12 trials).

Note that a more robust test procedure would use a power supply in place of a battery pack.

However, when the system is under no mechanical load, the pack current draw is small and

the battery essentially operates as a constant voltage source.
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Figure 4.19: Experimental setup for the motor friction test.

Table 4.7: Friction test equipment.

Item Part Used Purpose

Test Motors
Propulsion and

Dynamometer Motors
Neu 8038-105

This is the system under test.

Coupling ZeroMax
SC055R Mechanically connects test motors shafts.

Speed Controller Hybrid ESC Spins drive motor at a constant speed.

Power Supply Battery Pack Provides power to the speed controller.

4.4.3.2 Data Analysis Methods

At steady state, under no external mechanical load, (2.25a) simplifies to

kvIq = bω + c. (4.10)

Because the motor constant, q-axis current, and rotor speed are known/measured, the fric-

tion coefficients can be calculated using a linear fit of torque (kvIq) versus rotor speed. The

viscous friction coefficient is the slope of the fit and the static friction coefficient is the

y-intercept of the fit.
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Figure 4.20: Friction torque versus shaft speed from the friction test.

4.4.3.3 Results

The resulting fit of torque versus speed data is shown in Figure 4.20 and by observation the

fit is good. The viscous and static friction coefficients are reported in Table 4.4.

4.4.4 Coastdown Test

4.4.4.1 Experimental Setup

The coastdown test characterizes the total inertia J of both electric machines and the shaft

coupling. In comparison to the voltage step test, the concept of the coastdown test is to

isolate the mechanical dynamics by electrically disconnecting the motor. The experimental

setup schematic is shown in Figure 4.21 and the necessary test equipment is listed in Table

4.6. LabVIEW reads the encoder output to report motor position and speed data. The test

procedure is outlined below.
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Procedure:

1. Connect the test motor to the speed controller via the quick disconnects.

2. Start data acquisition and command the motor to 1500rpm. Let the system reach

steady state speed.

3. Once at steady state, simultaneously disconnect the three motor cables from the speed

controller. In the setup described in Figure 4.21, the banana cables were aggressively

pulled apart to create a clean step change.

4. Let the motor speed decrease to 0rpm, end data acquisition, and save the trial data.

5. Repeat steps (1)-(4) for steady state speed values ωss = [1500 : 4500] rpm in 500 rpm

increments (7 trials).

Table 4.8: Coastdown test equipment.

Item Part Used Purpose

Test Motors
Propulsion and

Dynamometer Motors
(Neu 8038-105)

This is the system under test.

Coupling ZeroMax
SC055R Mechanically connects test motors shafts.

Speed Controller Hybrid ESC Spins drive motor at constant speed.

Power Supply Battery Pack Provides power to the speed controller.

Rotary Encoder US Digital
E3-1024-625-IE-H-D-B Measures shaft speed.

Quick Disconnects 3 Banana Cables Used to electrically disconnect the
drive motor.

DAQ cDAQ Chassis
with 9403 Card Reads the encoder output.
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Figure 4.21: Experimental setup for the motor coastdown test.

4.4.4.2 Data Analysis Methods

The resulting angular speed dynamics ω when the motor terminals are opened at time t0

is given by (4.11a). Using integration or frequency domain methods, the resulting speed

trajectory is provided by (4.11b).

Jω̇ = −bω − c, ω(t0) = ω0, (4.11a)

ω = (ω0 +
c

b
)e−

b
J
t − c

b
, (4.11b)

ln
(
ω +

c

b

)
= − b

J
t+ ln

(
ω0 +

c

b

)
. (4.11c)

By observation, the transformed state trajectory (4.11c) is given in the form of a linear

equation with slope m = −b/J . Therefore, a linear fit is applied to the linear region of the

transformed angular speed data recorded by the encoder. The motor inertia is given by

J = − b

m
. (4.12)
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Figure 4.22: The experimental data and linear fit for each trial of the motor coastdown test.

4.4.4.3 Results

Raw data and the corresponding linear fit for each trial is provided in Figure 4.22 and by

observation the fits are good. The average shaft inertia and standard deviation between all

trials is reported in Figure 4.4.

4.5 Inverter and Controller Dynamics Validation

4.5.1 Experimental Setup

Inverter losses and control gains are identified simultaneously because the inverter only

operates with closed loop control. As seen by the inverter and controller analysis of Sections

2.3.3.2 and 3.2.1, there are a total of 3 parameters to identify: the inverter loss Ri and

controller control gains Kp,ω and KI,ω. As seen by Figure 4.23, the testbed’s ESS, drivetrain,

and braking subsystems are connected to conduct the test. A drive profile of 20 random
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steady state speed and load torque commands is developed using band-limited white noise

(Figure 4.24). White noise is used to generate a sufficiently rich data set. LabVIEW is used

to save the relevant measurements reported by the ESCs. The test procedure is described

below.
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Figure 4.23: Experimental setup for the inverter and controller dynamic parameter
identification test.
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Figure 4.24: Shaft speed and load torque commands used to identify the inverter losses and
control gains.
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Procedure:

1. Begin data acquisition and use LabVIEW to pass the speed and load profiles to the

ESCs.

2. When the profile ends, stop data acquisition and save the test data.

4.5.2 Data Analysis Methods

The grey-box model estimation tool is used to identify the 3 unknown parameters. From

the analysis provided in Section 2.3.3.2, the plant dynamics are given by

Lİq,m = Vq,m −RIq,m − kvω, (4.13a)

Jω̇ = kvIq,m − bω − c− τ, (4.13b)

Vq,i = m

√
3

2
Vdc −mRiI

2
q,i, (4.13c)

Idc = m

√
3

2
Iqi , (4.13d)

Iq,i =
√
3Iq,m, (4.13e)

Vq,m =
√
3Vq,i, (4.13f)

(4.13g)

where I and V are current and voltage states respectively, ω is the shaft speed, L and J

are motor coil inductance and shaft inertia respectively, R is the motor resistance, kv is the

motor constant, b and c are viscous and static friction constant, τ is the motor load torque,

the subscript q denotes a q-axis value, the subscripts m and i denote a motor and inverter

quantity respectively, and the subscript dc denotes a DC-link value. Note that (4.13a) and

(4.13b) and are the motor dynamics, (4.13c) and (4.13d) are the inverter “dynamics”, and

(4.13e) and (4.13f) convert between wye and delta values. Using equations (3.1), (3.2), (3.3b)

and the controller description in Section 3.2.1, the control dynamics are defined as

e = ωref − ω, (4.14a)
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τref =

(
Kp,ωe+

∫
KI,ωe dt

)
, (4.14b)

Vq,i,ref =
1√
3

(
R

kv
τref + kvω

)
, (4.14c)

m =
Vq,i,ref√
3

2
Vdc

, (4.14d)

where e is the error signal, ωref is the commanded motor speed, τref is the calculated torque

reference, Vq,i,ref is the voltage reference, and m is the inverter modulation signal.

The grey-box model identification optimization problem is posed as

minimize
x

N∑
k=1

(Idc,data[k]− Idc[k])
2 + (ωdata[k]− ω[k])2

subject to Equation 4.13,

Equation 4.14,

¯
x ≤ x ≤ x̄,

(4.15)

where Idc,data and ωdata are the DC current and speed data reported by the hybrid ESC,

and x =
[
Rs Kp KI

]
, and

¯
x and x̄ are conservative upper and lower bounds for each

parameter used to constrain the search space.

4.5.3 Results

The model is validated using a different drive profile than described in Figure 4.24 because

we want to show that the model predicts system behavior outside the state-space that is

was characterized in. A comparison between the experimental and model motor speed and

DC-link currents is shown in Figure 4.25. By observation, most of the steady state and

transient behavior matches well. These results are sufficient for application in a model

based controller. The estimated parameter values are shown in Table 4.9.
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Figure 4.25: Comparison of experimental and model data for motor shaft speed and
inverter DC current draw. The 2nd and 4th plots magnify sections of the 1st and 3rd plots
to better highlight the transient behavior.
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Table 4.9: Propulsion motor inverter loss and speed controller gains

Inverter Loss
[mΩ]

Proportional Gain
[-]

Integral Gain
[-]

80.8 0.96 1.50

4.6 Buck-Boost Converter Validation

4.6.1 Experimental Setup

There are three buck-boost converter channels on the testbed. The procedure for identifying

the three parameters (input loss Ru, constant loss Rc, diode forward voltage Vd) of each

channel is identical. The testbed is setup with the ESS and DCDC subsystems connected as

shown in Figure 4.26 and the test equipment is listed in Table 4.10. Similar to 4.24, a voltage

profile of 12 random voltage and current load commands is developed using band-limited

white noise (Figure 4.27). LabVIEW is used to save the relevant measurements reported by

the ESC and the shunt resistor. The test procedure is listed below.

Procedure:

1. Begin data acquisition and use LabVIEW to pass the voltage profile to the voltage

step ESC.

2. When the profile ends, stop data acquisition and save the test data.

Table 4.10: Buck-boost converter identification test equipment.

Item Part Used Purpose

Buck Boost Converter DCDC ESC
and Filter Box This is the system under test.

Power Supply Battery Pack Provides power to the voltage step ESC.

Resistor Bank 1600W 1Ω
Equivalent Resistor Load for the voltage steps system.
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Figure 4.26: Experimental setup for the buck boost converter parameter identification test.
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Figure 4.27: Voltage command used to identify the buck-boost converter losses.

4.6.2 Data Analysis Methods

The (approximately) steady state portion of each voltage step reference is analyzed using

the grey-box model estimation tool. The output voltage state of the converter, as it was

described in Section 2.3.3.1, is

Vout = uVdc − (1− u)Vd − uRuIout −RcIout, (4.16)
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where Vout and Iout are the output voltage and current of the converter, u is the converter

duty cycle, Vdc is the DC-link voltage, Vd is the diode forward voltage, and Ru = Rs−RD and

Rc = RL+RD are as defined in Section 2.3.3.1. The grey-box model estimation optimization

problem is defined as

minimize
x

N∑
k=1

(Vout,data[k]− Vout[k])
2

subject to Equation 4.16,

¯
x ≤ x ≤ x̄,

(4.17)

where x =
[
VD Ru Re

]
, Vout,data is the voltage across the resistor bank and

¯
x and x̄ are

conservative upper and lower bounds for each parameter used to constrain the search space.

The voltage is calculated using the resistor bank resistance and measured current.

4.6.3 Results

Once characterized, the model is validated using a load profile that differs from the profile

voltages and currents for each channel are described in Figure 4.27. By observation the

model is sufficient for its intended use. The identified parameters for each channel are

provided in Table 4.11, where it is observed that there are some differences in channel losses.

However, the losses across channels are of the same order of magnitude, so the result should

be sufficient for control design.

In Section 4.5, the speed control gains of the inverter were identified. In the analysis of

the inverter controller 3.2.1, it was assumed that the electrical control dynamics are fast

enough (faster than the DAQ 10Hz sampling rate) to be treated as static. The same concept

is applied here. However, instead of entirely neglecting the electrical controller dynamics,

control gains are hand tuned such that the system dynamics settle in less than 0.1 seconds

(10Hz). The control gains for the buck-boost converter control loops are provided in Table

4.12.
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Figure 4.28: Comparison of experimental and model output data for the buck boost
converter.

Table 4.11: Voltage step ESC and filter box identified losses.

Channel Forward Voltage
[mV ]

Constant Loss Rc

[mΩ]
Input Loss Ru

[mΩ]
A 397 24 24

B 587 19 29

C 475 20 27
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Table 4.12: Estimated buck-boost current regulator control gains.

Proportional Gain
[-]

Integral Gain
[-]

3.91× 10−5 0.21

4.7 Genset Validation

4.7.1 Experimental Setup

The genset is entirely characterized by the its input gain K, time constant τ , and fuel

consumption coefficients ai as described in Section 2.3.4. The experimental setup is shown

in Figure 4.29. In this test, the genset is commanded to produce a specified amount of

current and then the propulsion subsystem is actuated such that the battery current is zero.

This process is repeated for multiple bus voltages. The test procedure is described below.
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Figure 4.29: Experimental setup for the genset parameter identification test.
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Procedure:

1. Charge or discharge the battery such that the bus voltage reaches approximately 50V.

2. Start the genset and command the genset to produce 5A.

3. Command the prop motor speed or dyno motor torque such that the battery current

is approximately 0A.

4. Collect steady state data for approximately 30 seconds.

5. Repeat steps (2)-(4) for desired genset currents Id = [5 : 70]A in 5A increments. Note

that the engine has an upper limit on power production so larger commanded currents

may not be feasible. In those cases, just move to step (5).

6. Turn off the genset.

7. Repeat steps (1)-(6) for bus voltages V = [50 : 65]V in 2.5V increments.

4.7.2 Data Analysis Methods

Due to ripple in the engine torque and controller tuning, the resulting genset current is

highly periodic. This phenomenon is best illustrated by Figure 4.30 where, for a constant

commanded current, there is about a 10A peak-to-peak variation in the actual genset current.

For this reason, the “steady state” for each command is averaged over the 30 second data

acquisition interval. The subsequent analysis utilizes the averaged values.

As mentioned previously, the engine has an upper limit on its power production. This

translates to a non-constant upper limit on the achievable genset current because the bus

voltage changes between trials. The current upper limit Īd is assumed linear in the opera-

tional domain and is a function of the bus voltage

Īd = b1V + b0, (4.18)

where b = {b1, b0} are constants. Since Īd was determined for each bus voltage, the coeffi-

cients b can be determined by linear least squares.
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Next, it is desirable to command a control signal u ∈ [0, ū] instead of Id. The commanded

currents are normalized by the max commanded current resulting from (4.18)

u =
Id

max
(
Īd (V )

) ∀ V ∈ [50 : 65]. (4.19)

The bounds on V are required because data was collected on a closed domain. Additionally,

the bounding coefficients b should be scaled such that (4.18) can be described by ū(V )

instead of Īd(V ).

It must be checked that the desired/commanded genset current is physically achieved.

Assuming that the steady state genset current is a linear function of the input I = Ku, a

linear fit is applied to the experimental data. Notice that K is indeed the control gain.

Lastly, the SFC coefficients must be determined. Based on the experimental data, the

max genset power is approximately 3.3kW. The genset SFC is assumed to be minimized at

approximately 75% max genset power with a minimum SFC of 200g/kW-h. Additionally, the

engine SFC is assumed to be maximized at 0kW with a maximum SFC of 600g/kW-h. Based

on these two assumptions, a quadratic and convex surface can be generated to represent the

genset SFC.
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Figure 4.30: A comparison the the experimental and average genset current values at a
57.5V bus voltage.
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4.7.3 Results

The results of each genset fit are highlighted in Figure 4.31. By observation of the top plot

of Figure 4.31, the fit is sufficient. It also becomes obvious how the max genset DC current

changes as a function of the bus voltage. The genset model parameters are listed in Table

4.13. The time constant was hand tuned to best fit transient data because0 a steady-state

analysis was used to characterize the genset.
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Figure 4.31: The genset current and specific fuel consumption maps.
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Table 4.13: Experimentally characterized parameters for the genset model.

Input Gain
[A]

Input Bound
Coefficients

SFC
Coefficients

Time Constant
[s]

-63.3
{
b1 = −15.1× 10−3

b0 = 1.76

}


a1 = 0.197
a2 = 0.089

a3 = 1.50× 103

a4 = 0.247
a5 = −31.7
a6 = −21.0


0.5

4.8 Processor Load Validation

The processor load is experimental validated by removing the system battery and connecting

a power supply to the main bus. The power supply is commanded to 9 steady state voltages

(V = [45 : 65]V in 2.5V increments) and the steady state current is recorded. A linear

fit characterizing the processor load as a function of the bus voltage is applied to resulting

data points. The resulting fit in shown in Figure 4.32. The characterized processor load

coefficients as described in Section 2.3.7 are {a1, a2} = {−5.2× 10−3, 0.71}.

45 50 55 60 65 70
0.35

0.4

0.45

0.5
Experimental Data
Linear Fit

Figure 4.32: A linear fit relating the ESC bus voltage to the ESC processor load.
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4.9 Open-Loop System Validation

The full system model without vehicle body dynamics is experimentally validated in open-

loop. The experimental system is passed the random set of prop speed, load current, load

torque, and genset input commands shown in Figure 4.33. The same set of inputs are

passed to the system model and states are compared in Figure 4.34. By observation, the

model dynamics match the experimental data very well. There appears to be some error in

the battery voltage, however, the error may be the result of poor initial conditions for the

model. Additionally, the genset model does not capture the startup transient at 50 seconds.

Neglecting the transient should be sufficient for control design because the startup dynamics

are less than 0.5 seconds. Lastly, there is a small amount of steady state mismatch in the

load current state. Overall, the modeling error is small and this model should be sufficient

for control design.
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Figure 4.33: Random set of open-loop inputs used for the system model validation process.
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Figure 4.34: A comparison between open-loop experimental and model data for 6 selected
states.

4.10 Conclusion

This chapter provided a description, characterization methods, and validation efforts for the

hybrid electric UAV powertrain testbed. First, a description of the testbed, its subsystems,

and communication methods was provided. The testbed description was followed by char-

acterization methods for individual components and subsystems on the testbed (battery,

motor, inverter, converter, genset, and processor load). These characterization methods
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utilized analytic solutions and optimization programs to identify parameters. The fully

characterized system model was validated against experimental data with good matching

between states.
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Chapter 5

Controller Results and Discussion

5.1 Background

The experimentally validated system model in Chapter 4 was used to tune the control al-

gorithms designed in Chapter 3. After the controllers are verified in simulation, they are

experimentally validated on the experimental hardware. This two-step process facilities rapid

control development and demonstrates that the hardware can be operated safely. Addition-

ally, the experimental validation step is necessary to show that simulation results translate

well to a physical system and that the controllers are capable of operating in real-time.

The remainder of this chapter will demonstrate the results of executing this two-step

control design process. Controller evaluation metrics are presented in Section 5.2. In Section

5.3, the parameters and mission profile for each control formulation are described. The

simulation results of the three control designs are compared and evaluated in Section 5.4.

Lastly, Section 5.5 provides the experimental validation results for each controller

5.2 Figures of Merit

Each controller design will be evaluated on 3 quantitative metrics and 1 qualitative metric.

The metrics and their purpose are described below.

• Performance - In this work, performance is described as the controller’s ability to meet

mission objectives. Numerically, performance is represented by taking the 2-norm of

the difference between the desired reference and the actual system state,

P = ∥xref − x∥22 . (5.1)
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• Reliability - Reliability is a safety metric defined as the largest constraint violation for

the battery state of charge and current. Reliability is important to control design to

preserve the longevity of the system. This metric is evaluated by taking the infinity

norm of all violations.

R = ∥s∥∞ (5.2)

where s is the slack term of a state as described in (3.15).

• Efficiency - The efficiency metric describes the fuel consumption of the genset sub-

system. Minimizing fuel consumption has a positive environmental impact and can

potentially increase range. Numerically, the fuel consumption is quantified by

E =

∫ T

0

sfcPgendt, (5.3)

where T is the total mission time, sfc is the fuel consumption of the genset subsystem,

and Pgen is the instantaneous power of the genset subsystem.

• Adaptability - Adaptability is a qualitative metric used to describe how well a control

design can be adapted to a new system architecture or mission. Adaptability is impor-

tant because UAVs are often reconfigured for mission-specific designs [3]. If a controller

is not well-adaptable, a new controller would have to designed for each iteration of the

system architecture or change of mission.

5.3 Mission and Controller Parameters

Each controller is evaluated against the same mission profile with the same state and input

bounds. The mission profile consists of a vehicle velocity and avionic load profile and is

described by Figure 5.1. The velocity profile consists of a take-off, cruise, dash, and loiter

segments. The avionic load profile can be described by the sum of two separate loads

operating at 40V. The first load is a constant 12.5A load plus a 15A pulse load (120s period)

representative of the base system power and communication requirements. The second load

is a 20A load that starts at the onset of the loiter mission segment and could represent the
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Figure 5.1: The mission vehicle velocity and avionic load profile.

main payload. The concept of the mission is that the unmanned vehicle flies to a specific

location, collects or communicates data, and then leaves.

The state and input bounds for all control designs are provided in Table 5.1. The battery

state of charge, battery current, and input bounds are physical constraints of the system.

Note that the inverter input is constrained to the range of [0.30, 0.70] to prevent the opti-

mization program from choosing unreasonable inputs. This conservative range was chosen

based on closed-loop evaluation of the system model. The prop speed upper bound is a phys-

ical limitation of the hardware. However, the lower bound is imposed because the model

loses accuracy below that threshold. At low speeds, d-axis current is injected into the motor

which violates one of the modeling assumptions (Section 2.3.2.2). The inverter and con-

verter lower state bounds are required because regeneration is not enabled on the physical

hardware. The vehicle speed constraint is used to prevent the optimizer from predicting a

negative vehicle velocity in a fringe case.
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Table 5.1: State and input bounds for all control designs for the system described in
Chapter 2.

State/Input Description Lower Bound Upper Bound
State 1 Battery SOC [-] 0.3 0.9
State 6 Battery Current [A] -10.5 105
State 8 Inverter Current [A] 1 1000
State 12 Converter Current [A] 1 1000
State 18 Inverter DC Current In [A] 1 95
State 23 Prop Speed [rpm] 1500 5000
State 24 Vehicle Speed [m/s] 1 100
Input 6 Inverter Input [-] 0.30 0.70
Input 7 Converter Input [-] 0.01 0.99
Input 8 Genset Input [-] 0 1

Table 5.2: Baseline controller parameters (0.2 second update interval).

Power Share Controller
q̂
[-]

q̌
[-]

q̃
[-]

Dwell Time
[s]

0.4 0.4 0.5 30

Vehicle Speed Regulator
Proportional Gain

[-]
Integral Gain

[-]
Damping Ratio

[-]
Cutoff Frequency

[rad/s]

1.03× 105 4.49× 105 1 0.06

5.3.1 Baseline Controller

The baseline controller is composed of the power share controller and vehicle speed regulator.

Each controller has 4 tuning parameters and their respective values are shown in Table 5.2.

The baseline controller has an update interval of 0.2 seconds.

5.3.2 Centralized Controller

The centralized controller is tuned by varying the time-step, control horizon, controller

weightings in the cost function ((3.15a) and (3.15b)), and by adjusting the preview horizon

of the time-varying state bound. Each cost and the associated state is tabulated in Table 5.3.
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The time step and prediction horizon of the controller is 3 seconds and 15 steps respectively

(45 second preview). Two sets of time-vary state bounds are generated with preview horizons

of 4 and 10 minutes (Figure 5.2) in which the 10 minute bound is more conservative and

weighted less than the 4 minute bound. The conservatism is apparent from Figure 5.2 in

which the 10 minute preview bound is always greater than or equal to the 4 minute preview

bound. By utilizing two bounds with different cost function weightings, the controller can

be tuned to better plan the battery state of charge. Additionally, the inverter and converter

inputs are required to stay within a δ = 0.1 tube in reference to (3.15j).

Table 5.3: Centralized controller cost function weightings (3 second time-step, 15 step
horizon).

State Description Cost

Reference Tracking State 24 Vehicle Speed 35
State 27 Avionic Load Current 75

State Constraints

State 1 Battery SOC 106

State 6 Battery Current 10
State 8 Inverter Current 1
State 12 Converter Current 1
State 18 Inverter DC Current In 104

State 23 Prop Speed 100
State 24 Vehicle Speed 1

TV State Constraints State 1 10 Minute Preview 103

State 1 4 Minute Preview 106

Derivative Costs
State 23 Prop Speed 5
State 24 Vehicle Speed 250
Input 8 Engine Input 250

Miscellaneous N/A Fuel Cost 1600
N/A Switching Cost 600
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Figure 5.2: A 10 and 4 minute time-varying battery SOC state bound for the mission
described in Figure 5.1. The lower bound with no preview is shown for comparison.

5.3.3 Hierarchical Controller

The hierarchical controller is tuned by varying the time-step, prediction horizon, and cost

function weightings of the two model predictive controllers described by (3.16). The time-

step and prediction horizon for the upper level controller is 60 seconds and 10 steps (10

minute preview), while the time-step and prediction horizon for the lower level controller is

3 seconds and 15 steps (45 second preview) (Table 5.4). The preview horizon of the upper

level controller was chosen to match the long preview horizon of the time-varying state bound

of the centralized controller. The preview horizon of the lower level controller was chosen

for similar reasons. Again, the inverter and converter inputs are required to stay within a

δ = 0.1 tube (3.16j) at the lower level. The tube constraint is ignored at the upper level.

Note that the lower level and centralized controller cost function weightings are nearly

identical. The only difference between the two control designs is the implementation of the

battery state of charge planning. Also see that the upper level controller is tuned to only

track references while respecting the battery SOC bound and minimizing fuel consumption.

The inclusion of additional control objectives may degrade the controller performance.
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Table 5.4: Hierarchy upper and lower level controller cost function weightings. Upper level
time horizon is 30 second time-step, 20 step horizon. Lower level time horizon is 3 second
time-step, 15 step horizon.

State Description Lower Level
Cost

Upper Level
Cost

Reference Tracking State 24 Vehicle Speed 35 104

State 27 Avionic Load Current 75 5× 103

State Constraints

State 1 Battery SOC 106 106

State 6 Battery Current 10 0
State 8 Inverter Current 1 0
State 12 Converter Current 1 0
State 18 Inverter DC Current In 104 0
State 23 Prop Speed 100 0
State 24 Vehicle Speed 1 0

TV State Constraints State 1 SOC Bound 103 N/A

Derivative Costs
State 23 Prop Speed 5 0
State 24 Vehicle Speed 250 0
Input 8 Engine Input 250 0

Miscellaneous N/A Fuel Cost 1600 10
N/A Switching Cost 600 104

5.4 Simulation Results

First, the reference tracking (performance objective) results for each controller are compared

in Figure 5.3. By observation, each controller can successfully track state references. The

proactive nature of the centralized and hierarchical controllers can be observed in the vehicle

speed plot comparisons.

The battery state of charge and battery current states are compared in Figure 5.4 to

evaluate the reliability of each control design. Each controller was able to maintain the

battery state of charge within the predefined state bounds. The baseline controller had

a single major battery current state violation at approximately 2100s when the avionic

load current had a large step decrease. The violation is a result of the reactive nature
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(a) Simulated vehicle velocity tracking result for each control design.
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(b) Simulated avionic load current tracking result for each control design.

Figure 5.3: The simulated (a) vehicle velocity and (b) avionic load current tracking results
for each control design.

133



of the baseline controller since the dynamic genset takes time to decrease its power output.

However, the state violation is small in magnitude and time. The centralized and hierarchical

controllers have significantly smaller current state violations. The violation is likely non-zero

because of the relatively small penalty on that slack variable in the controller parameters.

Table 5.5 lists the reliability metric for each controller.

The evaluation of the fuel consumption (and genset operation) is best described by Figure

5.5. Note that the minimum SFC is 200 g/kW − h. It is apparent the baseline controller

operates the genset aggressively in comparison to the centralized and hierarchical controllers

because the genset current is consistently higher and the SFC is commonly operated away

from optimal. In contrast, the centralized and hierarchical controllers are more conservative

when using the genset. This is illustrated by the SFC traces where the advanced control

designs maintain the genset near optimal operation for most of the mission. Lastly, observe

that the advanced control designs decrease the genset current output at approximately 1100,

1500, 2100, and 2750 seconds. The controllers anticipate a large decrease in the total system

load (decrease in vehicle speed or avionic load) and decreases the genset current output

such that the battery is not charged at high rates. The baseline controller has constraint

violations because it lacks this anticipatory behavior. The fuel consumption of each control

design is outlined in Table 5.5.

Overall, each controller performs as designed. The baseline controller is more conserva-

tive in utilizing the battery in order to sustain the pack at a higher charge whereas the

centralized and hierarchical controllers better utilize the full depth of charge of the battery.

Figure 5.6 and Table 5.5 compare each control design based on the performance, reliabil-

ity, and efficiency figures of merit. By observation, both the centralized and hierarchical

controllers use 88% (12.5% improvement) of the fuel used by the baseline controller while

exhibiting significant improvements in both speed tracking and minimizing the current con-

straint violations. When comparing the hierarchical and centralized designs, the hierarchical

is marginally more economical. This improvement is a result of the over-conservative nature

of the time-varying SOC bound implemented in the centralized controller. Because the hi-

erarchy determines the bound in real-time using a dynamic model, it can better calculate

an appropriate lower bound. However, it is important to note the hierarchical controller is
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(a) Simulated battery state of charge state trajectory for each control design. The time-vary state
bounds are grey in the hierarchical result because the hierarchy does not have knowledge of those
bounds.

Figure 5.4: The simulated (a) battery SOC and (b) current state trajectories for each
control design.
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(b) Simulated battery current state trajectory for each control design.

Figure 5.4 (cont.): The simulated (a) battery SOC and (b) current state trajectories for
each control design.

using a linearized model of a non-linear system so the bound output by the upper level in the

hierarchy may not provide any guarantees. Furthermore, even though the upper level of the

hierarchy is not given explicit knowledge of the time-varying SOC bound, it still manages to

predict that the battery needs to recharge before the dash segment. This is best illustrated

by Figures 5.4a and 5.5 where the genset begins to ramp up to recharge the battery at

approximately 2200 seconds. The average (and max) computation time of the centralized

controller is approximately 0.29 (max 0.66) seconds. The average (and max) computation

times of the hierarchy upper and lower level controllers are 0.23 (max 0.37) and 0.30 (max

0.39) seconds. By observation, the controllers are running orders of magnitude faster than

real-time. Although more complexity could be added to the control designs, it may be ad-

vantageous to maintain a lower computation cost such that the controllers could be run on

cheaper or lower power processors.
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Figure 5.5: Simulation comparison of the genset current and SFC for each control design.

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Baseline Centralized Hierarchical

Figure 5.6: Relative comparison between each control design on the figures of merit for the
simulated system. The battery SOC constraint violation was neglected because all
controllers respected that constraint.
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Table 5.5: Figure of merit comparison for each simulated control design.

Figure of Merit State Baseline Centralized Hierarchy

Performance Vehicle Speed [m/s] 4.1× 105 1.3× 105 1.2× 105

Avionic Load [A] 1.0× 105 1.1× 105 1.1× 105

Reliability Battery SOC [−] 0 0 0
Battery Current [A] -9.5 -1.1 -1.9

Efficiency Fuel Consumption [kg] 626.6 549.1 547.8

Lastly, we claim that the baseline controller is less adaptable than either advanced control

design. The baseline controller works well for this architecture, but may not be suitable for

other vehicle architectures. For example, this system has a large battery pack (approximately

6kW) and a small genset (approximately 3kW). Because the genset cannot provide peak

power, the power share controller must be charge sustaining. Whereas if the genset was large

enough to provide peak power, a charge depleting strategy may be more optimal and a new

controller would need to be developed. With the advanced control architectures, a simple

re-tuning of the same control design would suffice. Furthermore, as already mentioned, the

centralized control design was adapted to a hierarchical design by changing only the battery

SOC coordination algorithm. Lastly, we claim that the hierarchical design is more adaptable

than the centralized design. Although not shown, if objectives change during the mission,

the hierarchy can adapt by calculating new SOC bounds while the centralized controller

SOC bounds would not update. The modularity and adaptability aspect is quite useful

when designing large distributed controllers.

This work presented two methods for integrating long-term mission planning into a fast

updating predictive controller design: the time-varying SOC bound algorithm and hierarchi-

cal controller. To prove that long-term mission planning is required for these hybrid systems,

the centralized controller from Section 3.4 is re-evaluated. However, in this evaluation, the

centralized controller uses only the “No Preview” trace shown in Figure 5.2. The results are

illustrated in Figure 5.7. By observation, the controller fails the mission at approximately

2600 seconds because it chooses to prematurely decrease the vehicle velocity in order to

respect the battery state of charge constraint.
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(a) Simulated centralized controller reference tracking result.
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(b) Simulated centralized controller battery SOC and current trajectory.

Figure 5.7: The simulated (a) tracking and (b) constrained state results for the centralized
controller without knowledge of the time-varying SOC bound.
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Figure 5.8: The structure of the hardware-in-the-loop setup for the hybrid electric UAV
powertrain testbed.

5.5 Experimental Results

The experimental system is operated via a hardware-in-the-loop (HIL) setup best described

by Figure 5.8. As mentioned in Chapter 4, the control computer communicates with the

testbed’s ESCs at a rate of 10Hz. At every update, the control computer sends prop speed,

avionic load current, genset, and load torque commands to the ESCs and receives sensor

data. The sensor data is immediately communicated to MATLAB (via UDP) which is

running the controller, observer, and vehicle body dynamics. The simulated vehicle body

dynamics block is input the instantaneous prop speed and outputs a load torque which is

sent back to LabVIEW. Measurement information is passed to the observer which estimates

the system states. State information is passed to the controller which determines prop speed,

avionic load current, and genset commands which are sent back to LabVIEW to be applied to

the testbed. To run in real-time, the controllers are run using MATLAB parallel processing.
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The controllers are formulated using YALMIP [65] and solved using Gurobi [66].

Each control design was experimentally validated using the testbed described in Chapter

4. In addition to the figures of merit, it is important to see that the controllers make similar

operating decisions when translated to experimental hardware. First, the performance of

each controller is demonstrated in Figure 5.9. By observation, each controller adequately

tracks references. The reliability of each controller is illustrated by Figure 5.10. Similar to

the simulated result, each controller maintains the battery within state bounds but there

are some battery current violations.

Lastly, the efficiency of each control design is demonstrated in Figure 5.11. Note that

the estimated genset current is shown here for clarity. Again, the experimental results

compare well to the simulated results. The baseline controller aggressively utilizes the engine

while the advanced controllers are more conservative. In the advanced control designs, the

controller still chooses to decrease the genset current output before large decreases in system

load. The main difference between experimental and simulated results is the centralized

controller decision to turn off the engine in anticipation of the decrease in vehicle speed at

approximately 1150 seconds. In this scenario the cost to turn off the engine was likely lower

than the cost to operate the engine at a higher SFC due to imperfect estimation or slightly

different state trajectories.
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(a) Experimental vehicle velocity tracking result for each control design.
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(b) Experimental avionic load current tracking result for each control design.

Figure 5.9: The experimental (a) vehicle velocity and (b) avionic load current tracking
results for each control design.
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(a) Experimental battery state of charge state trajectory for each control design. The time-vary
state bounds are grey in the hierarchical result because the hierarchy does not have knowledge of
those bounds.

Figure 5.10: The experimental (a) battery SOC and (b) current state trajectories for each
control design.
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(b) Experimental battery current state trajectory for each control design.

Figure 5.10 (cont.): The experimental (a) battery SOC and (b) current state trajectories
for each control design.
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Figure 5.11: Experimental comparison of the genset current and SFC for each control
design.
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Table 5.6: Figure of merit comparison for each experimental controller validation.

Figure of Merit State Baseline Centralized Hierarchy

Performance Vehicle Speed [m/s] 4.1× 105 1.7× 105 1.3× 105

Avionic Load [A] 2.2× 105 1.3× 105 1.1× 105

Reliability Battery SOC [−] 0 0 0
Battery Current [A] -8.9 -2.0 -1.5

Efficiency Fuel Consumption [kg] 575.5 521.9 528.7
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Figure 5.12: Relative comparison between each control design on the figures of merit for
the experimental system. The battery SOC constraint violation was neglected because all
controllers respected that constraint.

Overall, the controller results translated well to experimental hardware. Figure 5.12 and

Table 5.6 compare each control design on the figures of merit. Similar to the simulation

results, it is observed that while consuming less fuel, the advanced control designs are more

capable at reference tracking and minimizing constraint violations. Here, the advanced

controllers use about 91% (9% improvement) of the fuel consumed by the baseline design.

It is also especially important to note the effect of mission planning for the centralized and

hierarchical control designs. Focusing on Figures 5.10a and 5.11, the centralized controller

chooses to increase the genset current output once it enters the time-varying state bound.

Although less pronounced, the hierarchical controller increases the genset output to sustain
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pack charge once it has preview of the dash segment. A comparison of the figures of merit is

listed in Table 5.6. Note that this comparison is included for sake of completeness and that

the reader should be aware that there is some variation in the system state initialization (ex:

battery SOC). For example, experimentally, the centralized controller consumes less fuel.

However, close inspection of Figure 5.10a would indicate that the centralized controller also

started at a higher state of charge and would require less fuel to complete the mission.

5.6 Conclusion

This chapter experimentally validated the control designs introduced in Chapter 3 on the

experimental platform described in Chapter 4. After the mission and controller parameters

were tabulated, simulation results were used to verify the control designs. Simulation re-

sults illustrated that the advanced controllers consumed approximately 12.5% less fuel with

improved reference tracking and less significant constraint violations in comparison to the

baseline design. Furthermore, a brief case study was used to highlight the importance of in-

tegrating long term mission planning in the control design. These controllers were validated

on the experimental hardware where it was observed again that the advanced controllers

yielded a higher performing, more reliable, and more efficient system. The simulated results

translated well to experiments.
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Chapter 6

Conclusion and Future Work

6.1 Summary of Research Contributions

The increasing trend of electrification has been motivated by the promise of more capable

and efficient mobile systems. Novel control algorithms must be developed to accommodate

this increasingly large and complex class of vehicles. This thesis utilizes a graph-based

modeling framework and predictive control strategies to rapidly design and evaluate model-

based controllers for a hybrid unmanned aerial vehicle. The models and controllers are also

experimental validated on a novel hybrid electric UAV powertrain testbed.

Chapter 2 introduces an adaptation of the graph-based modeling framework to capture

interactions between electrical, mechanical, and thermal system dynamics. A desired system

architecture was described and graph-based models for each component and subsystem were

formulated. A novel system composition method was introduced to facilitate the develop-

ment of system-level graph models from a set of core component graph models. Lastly, the

composition algorithm was used to develop a hybrid UAV system model. This model was

used to facilitate control design in Chapter 3.

Chapter 3 focused on control design. First, models of the testbed embedded controllers

were introduced. A baseline controller consisting of a PI vehicle speed regulator and rule-

based power share controller were developed. The power share controller was developed to

sustain pack charge because the genset could not provide peak power. Two advanced control

designs were developed that address challenges of the application of model predictive control

to hybrid electric systems with multi-timescale dynamics. Both advanced controllers utilized

the same controller to regulate faster system dynamics. Long time horizon mission planning

for the centralized controller was implemented via a battery SOC bounding algorithm that
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runs prior to mission start. The hierarchical controller planned the battery SOC in real-time

via a model predictive controller with a long time horizon.

Chapter 4 introduces a novel hybrid electric UAV powertrain testbed and highlights exper-

imental validation of the component, system, and controller models described in Chapters 2

and 3. The main contribution of this chapter is a detailed aggregation of system identifica-

tion methods for components of a hybrid system. The results show good validation between

the system model and experimental hardware.

Chapter 5 provides simulated and experimental controller validation results. The simu-

lation results show that both advanced control designs offer comparable or better system

performance and reliability in comparison to the baseline. Most notable is the advanced

controllers’ 12.5% improvement in fuel economy over the baseline design. These simulated

results were validated on the experimental hardware where it was observed that the advanced

control designs offer significant improvements over the baseline design in fuel economy, reli-

ability, and similar performance. Although the hierarchical and centralized controllers were

similar in terms of performance, reliability, and efficiency, we claimed that the hierarchical

design in more adaptable. The increased adaptability of the hierarchical controller makes it

more robust to real-time changes in mission objectives.

6.2 Future Work

This thesis provides a satisfactory analysis of the dynamics and control for the application

to a hybrid UAV. However, future work should consider the control of more complex system

dynamics with a theoretic emphasis on controller robustness.

6.2.1 Electro-Thermal Interactions

This work mainly considered the electro-mechanical powertrain dynamics. However, it is

well known that the dynamics of the electro-mechanical system is strongly influenced by the

thermal system state. To provide a more complete analysis of mobile energy systems, the

coupling and coordinated control of both energy domains must be considered. Although
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mostly neglected in this work, the thermal dynamics of the component models in Chapter 2

will provide means to couple electro-mechanical and thermal systems.

6.2.2 All Electric Operation

Switching between all electric and hybrid operation is a unique ability inherent to hybrid

electric systems. There may be specific locations or times during a mission when an aircraft

may prefer all electric operation such as near crowded urban areas so as to minimize pollution

or noise. However, if electric propulsion is required for a specific mission segment there must

exist some minimum battery energy available. Calculating the minimum SOC and planning

and optimal trajectory to reach that state is particularly challenging.

6.2.3 Controller Robustness

A formal analysis of controller robustness is a necessary step in control design. Although

aircraft missions are thoroughly planned a priori, mission objectives may suddenly change

and there are still unknown flight conditions (e.g. wind speeds). Some analysis is required to

show that an aircraft will successfully complete a mission in the presence of such disturbances.
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Appendix A

Multi-Domain Graph Development

A.1 System Composition

A motor controlled by a converter is a simple example highlighting the composition process

of a multi-domain graph model. The graphs of each component described in Sections 2.3.2

and 2.3.3.1 are repeated below with updated vertex and edge labels useful for the following

discussion (Figure A.1). Let G1 = (V1, E1) and G2 = (V2, E2) be defined as the component

graphs for the converter and motor respectively. The incidence matrix for each graph model

is given by

M1 =



−1 1 0 1 1 0

0 −1 1 0 0 0

0 0 0 0 −1 1

1 0 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 0 −1


, (A.1a)

M2 =



−1 1 0 1 0 0

0 −1 1 0 1 0

0 0 0 −1 −1 1

1 0 0 0 0 0

0 0 −1 0 0 0

0 0 0 0 0 −1


. (A.1b)
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Figure A.1: The (i) buck-boost converter and (ii) motor graph models.

The state vector, capacitance vector, power flow coefficient, and property look-up coefficient

vector for each component were defined in Sections 2.3.2 and 2.3.3.1. The following discussion

will step through the processes described in Section 2.4.

We aim to develop a system graph model for a motor controlled by a converter. Assume

that both components exist in the same ambient environment. Because the converter is

electrically connected to the motor, it should be intuitive that the electrical power out of

the converter along edge e3,1 should be equivalent to the electrical power entering the motor

along edge e1,2. Similarly, the components are placed in the same ambient environment so

they should share the same ambient temperature or cooling state (vertices v7,1 and v6,2).

Based on the description in Section 2.4, we have a set of 2 component graphs C = (G1,G2).

The set of graph vertices and edges are defined by

V1 = {v1,1, v2,1, v3,1, v4,1, v5,1, v6,1, v7,1} , (A.2a)

E1 = {e1,1, e2,1, e3,1, e4,1, e5,1, e6,1} , (A.2b)

V2 = {v1,2, v2,2, v3,2, v4,2, v5,2, v6,2} , (A.2c)

E2 = {e1,2, e2,2, e3,2, e4,2, e5,2, e6,2} , (A.2d)
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The component graph vertex and edges sets are combined according to Section 2.4.2.

χ = {v1,1, v2,1, v3,1, v4,1, v5,1, v6,1, v7,1, v1,2, v2,2, v3,2, v4,2, v5,2, v6,2} , (A.3a)

χ̄ = {v1,1, v2,1, v3,1, v1,2, v2,2, v3,2} , (A.3b)

¯
χ = {v4,1, v5,1, v6,1, v7,1, v4,2, v5,2, v6,2} , (A.3c)

Ξ = {e1,1, e2,1, e3,1, e4,1, e5,1, e6,1, e1,2, e2,2, e3,2, e4,2, e5,2, e6,2} . (A.3d)

Next, the user defined connection sets Λ and Σ are developed based of the desired system

model. Based on the previous discussion, there is one edge equivalency and three vertex

equivalencies. The edge equivalency is apparent since the power leaving the converter is

equivalent to the power entering the motor. Two of the vertex equivalencies result from

the edge connection and the third vertex equivalency is a result of the shared ambient

temperature state. Mathematically these equivalencies are defined by

Λ = {{v2,1, v4,2} , {v5,1, v1,2} , {v7,1, v6,2}} , (A.4a)

Σ = {{e3,1, e1,2}} . (A.4b)

The final preparatory step is to partition Λ, χ, and Ξ.

Λ̄ = {{v2,1, v4,2} , {v5,1, v1,2}} , (A.5a)

¯
Λ = {{v7,1, v6,2}} , (A.5b)

χ̂ = {v2,1, v5,1, v7,1, v4,2, v1,2, v6,2} , (A.5c)

Ξ̂ = {e3,1, e1,2} , (A.5d)

(A.5e)

Now, according the definitions of (2.58) and (2.59) in Section 2.4.2, the vertex and edge

property map partitions are developed.
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V t̄c̄ =


1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0



T

, (A.6a)

V t̄c =

0 1 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0

T

, (A.6b)

V tc =
[
0 0 0 0 0 0 1 0 0 0 0 0 1

]T
, (A.6c)

V tc̄ =


0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0


T

, (A.6d)

E c̄ =



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1



T

, (A.6e)

Ec =
[
0 0 1

2
0 0 0 1

2
0 0 0 0 0

]T
. (A.6f)

The partitioned vertex and edge property maps can be combined according to (2.58) and

(2.59) and the resulting system level incidence matrix Ms is calculated using (2.57). The

system graph is shown in Figure A.2. Equation (2.56) can be used to map other component

properties to system properties.
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Ms =



−1 1 1 1 0 0 0 0 0 0 0

0 0 0 −1 1 0 0 0 0 0 0

0 0 0 0 0 −1 1 0 1 0 0

0 0 0 0 0 0 0 −1 −1 1 0

0 −1 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 1 0 0 −1

0 0 0 0 −1 0 0 0 0 −1 0

1 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 0 0 0



, (A.7)

ν5,s ν6,s ν3,s ν10,sν1,sν8,s

ν9,s ν2,s ν7,s ν4,s

e1,s e2,s

e3,s e4,s

e5,s e10,s

e7,s

e8,s

e11,s

e9,s

e6,s

Figure A.2: The graph model for a motor controlled by a converter in a shared ambient
environment.

A.2 Modified Graph Formulation

The previous section described the process to develop a system model in the generic graph

formulation. However, the model must be transformed into the modified graph formulation

before it can be used for control design. The purpose of this section is to illustrate how a

generic graph model can be transformed into a modified graph model. We could reuse the

converter-motor example to describe the process. However, it is a large system and that may

lead to some confusion. Instead we opt for a simpler two state system described by Figure

A.3 with the following graph properties.
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x3=V1 x4=V2x1=I1

x2=T1

1 1 1 3P u x x= 2 4 1P x x=

2

3 1P Rx=

Figure A.3: A sample graph used to illustrate the process of developing a modified graph
model. The states and power flows are defined in the figure.

x =
[
I1 T1

]T
, (A.8a)

C =
[
L1I1 CT

]T
, (A.8b)

c =

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11


e1 0 0 0 0 0 0 0 1 0 0 0

e2 0 0 1 0 0 0 0 0 0 0 0

e3 0 0 0 R 0 0 0 0 0 0 0

, (A.8c)

f =
e1 e2 e3[ ]
1 1 1

. (A.8d)

The incidence matrix (2.4) and power flow vector (2.9) for this system are given by

M =


−1 1 1

0 0 −1

1 0 0

0 −1 0

 (A.9a)

P =


F1(x

tail
1 , xhead

1 , u1) = u1x1x3

F2(x
tail
2 , xhead

2 , 0) = x4x1

F3(x
tail
3 , xhead

3 , 0) = Rx2
1

 (A.9b)
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For simplicity, only consider the thermal domain (Tv = 1), voltage domain (Tv = 2), and

current domain (Tv = 3). The vertex type vector for this system is Tv =
[
3 1 2 2

]T
.

It follows from (2.10b) and (2.11) that the modified capacitance and incidence matrix are

given by

C‡ =

L1I1
I1

0

0 CT

 =

L1 0

0 CT

 (A.10a)

M ‡ =

︷ ︸︸ ︷M ‡
1 ︷ ︸︸ ︷M ‡

2 ︷ ︸︸ ︷M ‡
3




0 0 0 0 0 0 −1 1 1

0 0 −1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 −1 0 0 0 0

(A.10b)

Next, the generic power flow vector can be converted to the modified power flow vector

by utilizing (2.12).

P ‡ =



F1(x
tail
1 , xhead

1 , u1)

F2(x
tail
2 , xhead

2 , 0)

F3(x
tail
3 , xhead

3 , 0)

F1(x
tail
1 , xhead

1 , u1)/x
tail
1

F2(x
tail
2 , xhead

2 , 0)/xhead
2

0

F1(x
tail
1 , xhead

1 , u1)/x
head
1

F2(x
tail
2 , xhead

2 , 0)/xtail
2

F3(x
tail
3 , xhead

3 , 0)/xtail
3



=



u1x1x3

x4x1

Rx2
1

u1x1

x1

0

u1x3

x4

Rx1



P ‡
1

P ‡
2

P ‡
3

. (A.11)

Based on the modified power flow equation (2.13), the modified power flow coefficients are

given by
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b =

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11



e1,1 0 0 0 0 0 0 0 0 0 1 0

e1,2 0 0 0 0 1 0 0 0 0 0 0

e1,3 0 0 R 0 0 0 0 0 0 0 0

e2,1 0 0 0 0 0 0 1 0 0 0 0

e2,2 1 0 0 0 0 0 0 0 0 0 0

e2,3 0 0 0 0 0 0 0 0 0 0 0

e3,1 0 0 0 0 0 1 0 0 0 0 0

e3,2 0 1 0 0 0 0 0 0 0 0 0

e3,3 R 0 0 0 0 0 0 0 0 0 0

, (A.12)

where edge ei,j corresponds to the modified power flow P ‡
i,j. The combination of (A.10) and

(A.11) provide sufficient information to utilize the model for control design.
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Appendix B

Runge-Kutta 4 Discretization

Runge-Kutta 4 (RK4) is the fourth-order variation of the more generalized Runge-Kutta

method [67]. For the following initial value problem

ẋ = f(t, x), x(t0) = x0, (B.1)

the RK4 algorithm is as follows

xn+1 ≈ xn +
k1
6

+
k2
3

+
k3
3

+
k4
6
, (B.2a)

tn+1 = tn +∆t, (B.2b)

k1 = ∆tf(tn, xn), (B.2c)

k2 = ∆tf(tn +
∆t

2
, xn +

k1
2
), (B.2d)

k3 = ∆tf(tn +
∆t

2
, xn +

k2
2
), (B.2e)

k4 = ∆tf(tn +∆t, xn + k3), (B.2f)

(B.2g)

for step size ∆t and index n ∈ {0, 1, 2, . . .}. Note the approximation in (B.2a) because there

exist higher order terms O(∆t5).

We seek to discretize the continuous time linear DAE system. Consider the RK4 dis-

cretization of the state dynamics defined in (2.19a)

x(k+1),d

0

 = Ar1

xk,d

xk,a

+ Ar2x
t
k +Br1uk +Br2 +DrP

s
k where, (B.3a)

164



Ar1 =

P (
Ā′

1,d

)
Q
(
Ā′

1,a, Ā
′
1,d

)
¯
A′

1,d ¯
A′

1,a

 , (B.3b)

Ar2 =

Q (
Ā′

2, Ā
′
1,d

)
¯
A′

2

 , (B.3c)

Br1 =

Q (
B̄′

1, Ā
′
1,d

)
¯
B′

1

 , (B.3d)

Br2 =

Q (
B̄′

2, Ā
′
1,d

)
¯
B′

2

 , (B.3e)

Dr =

Q (
D̄′, Ā′

1,d

)
¯
D′

 , (B.3f)

P (Z) =
1

6

(
6∆tZ + 3∆t2Z2 ++∆t3Z3 +

1

4
∆t4Z4

)
+ I, (B.3g)

Q(Y, Z) =
1

6

(
6∆tY + 3∆t2Y Z ++∆t3Y Z2 +

1

4
∆t4Y Z3

)
. (B.3h)

where I ∈ RNd×Nd and Nd is the total number of dynamic states.
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Appendix C

Observer Algorithms

C.1 Definitions

In this section we define terminology and notation useful for the following Kalman filtering

algorithms. First, the following algorithms will utilize the same general state-space model

xk = f (xk−1uk−1, wk−1, k − 1) , (C.1a)

yk = h (xk, uk, vk, k) , (C.1b)

where k is the time index, x ∈ RN is the state vector, u is the input vector, w is the

process noise/disturbance, y is the output vector, and v is the sensor noise. The notation

ai|j indicates the numerical value of variable a at index i given information at index j. An

estimate of variable a is signified with a tilde ã. The operator E(a) is the expected value of

variable a. We assume additive, zero-mean, process and sensor noise with covariance Q and

R (i.e. wk ∼ N(0, Q) and vk ∼ N(0, R)) . The error covariance is defined by the matrix P.

C.2 Central-Difference Kalman Filter Algorithm

A central-difference Kalman filter is easy to tune since there is a single tuning parameter h.

The choice of h defines the following five weightings used in the algorithm,

γ = h, (C.2a)

α
(m)
0 =

h2 −N

h2
, (C.2b)
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α
(m)
j =

1

2h2
, (C.2c)

α
(c)
0 =

h2 −N

h2
, (C.2d)

α
(c)
j =

1

2h2
, (C.2e)

where N = dim{x} and j ∈ [1 : 2N ]. See that α(m) and α(c) are vectors. From [61], the

default value for h is typically
√
3. In this work h = 1.2. The following algorithm reiterates

the central-difference Kalman filter as described in [60, 61].

Algorithm:

1. Initialization:

Initialize the state estimate and error covariance.

x̃0|0 = E (x0) , (C.3a)

P0|0 = E
((

x0 − x̃0|0
) (

x0 − x̃0|0
)T)

. (C.3b)

2. Calculate Sigma Points: Repeat steps (2)-(6) for k ∈ {1, 2, . . .}.

Calculate the sigma points X

Xk−1|k−1 =
[
x̃k−1|k−1 x̃k−1|k−1 + γ

√
Pk−1|k−1 x̃k−1|k−1 − γ

√
Pk−1|k−1

]
(C.4)

where the matrix square root can be implemented via Cholesky Factorization. Note

that X ∈ RN×(1+2N).

3. Time Update (Prediction) Step:

Predict the system sigma point state using the process model (C.1a). Then update

the system state estimate and error covariance.

X ′
k|k−1 = f

(
Xk−1|k−1, uk−1, 0, k − 1

)
, (C.5a)

x̃k|k−1 =
2N∑
i=0

α
(m)
i X ′

i,k|k−1, (C.5b)
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Pk|k−1 =
2N∑
i=0

α
(c)
i

(
X ′

i,k|k−1 − x̃k|k−1

) (
X ′

i,k|k−1 − x̃k|k−1

)T
+Q. (C.5c)

4. Sigma Point Augmentation:

Based on the literature, any 1 of the following 3 equations can be used to augment

the sigma point states. Note that if the third option is chosen, N → 2N and the

weightings α should be recalculated.

Xk|k−1 = X ′
k|k−1, (C.6a)

Xk|k−1 =
[
x̃k|k−1 x̃k|k−1 + γ

√
Pk|k−1 x̃k|k−1 − γ

√
Pk|k−1

]
(C.6b)

Xk|k−1 =
[
X ′

k|k−1 X ′
0,k|k−1 + γ

√
Q X ′

0,k|k−1 − γ
√
Q
]
. (C.6c)

5. Output Estimation Step:

The sigma point output Y is calculated using the measurement model (C.1b). Then

estimate the system output.

Yk|k−1 = h
(
Xk|k−1, uk, 0, k

)
, (C.7a)

ỹk|k−1 =
2N∑
i=0

α
(m)
i Yi,k|k−1. (C.7b)

6. Measurement Update (Correction) Step:

The observer gain Lk is calculated and used to update the state estimate and error

covariance. Here, x̃k|k is the state estimate output by the observer at time index k.

Uk =
2N∑
i=0

α
(c)
i

((
Yi,k|k−1 − ỹk|k−1

) (
Yi,k|k−1 − ỹk|k−1

)T)
+R, (C.8a)

Vk =
2N∑
i=0

α
(c)
i

((
Xi,k|k−1 − x̃k|k−1

) (
Yi,k|k−1 − ỹk|k−1

)T)
, (C.8b)

Lk = VkU
−1
k , (C.8c)

x̃k|k = x̃k|k−1 + Lk

(
yk − yk|k−1

)
, (C.8d)
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Pk|k = Pk|k−1 − LkUkK
T
k . (C.8e)

C.3 Extended Kalman Filter Algorithm

The extended Kalman filter (EKF) is an adaptation of the linear Kalman filter (LKF) for

nonlinear systems in which the nonlinear system is linearized at each update. The algorithm

is provided below [61].

Algorithm:

1. Initialization:

Initialize the state estimate and error covariance.

x̃0|0 = E (x0) , (C.9a)

P0|0 = E
((

x0 − x̃0|0
) (

x0 − x̃0|0
)T)

. (C.9b)

2. Time Update (Prediction) Step: Repeat steps (2) and (3) for k ∈ {1, 2, . . .}.

Linearize the nonlinear process model (C.1a), predict the system state, and update

the error covariance.

A =
∂f

∂x

∣∣∣∣
x=x̃k−1|k−1,u=uk−1,w=0,k=k−1

, (C.10a)

x̃k|k−1 = f
(
x̃k−1|k−1, uk−1, 0, k − 1

)
, (C.10b)

Pk|k−1 = APk−1|k−1A
T +Q. (C.10c)

3. Measurement Update (Correction) Step:

Linearize the measurement model (C.1b), calculate the observer gain Lk, and correct

the state estimate and error covariance.

C =
∂h

∂x

∣∣∣∣
x=x̃k|k−1,u=uk,v=0,k=k

, (C.11a)
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Lk = Pk|k−1C
T
(
CPk|k−1C

T +R
)−1

, (C.11b)

x̃k|k = x̃k|k−1 + Lk

(
yk − h(x̃k|k−1, uk, 0, k)

)
, (C.11c)

Pk|k = (I − LkC)Pk|k−1. (C.11d)
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Appendix D

Testbed Parts List

This section lists the hardware on the hybrid electric UAV powertrain testbed in Tables D.1

and D.2. The powertrain components are shown in Figure D.1 and a complete view of the

testbed is shown in Figure D.2.

(a) (b) (c) (d) (e)

(f) (g) (i)

Figure D.1: The components that compose the testbed powertrain. Shown above are the
(a) battery pack, (b) electronic speed controller, (c) low power battery pack, (d) engine
with starter/generator, (e) load bank, (f) propulsion/dynamometer motor, (g) filter box,
and (f) (top) power supply and (bottom) electronic load.
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Table D.1: The UAV testbed powertrain parts list.

Component Manufacturer Details
Battery Pack Custom 16S7P Samsung 18650 Cells

Low Power
Battery Pack Expert Power 5S1P EXP1270 Lead Acid Cells

https://bit.ly/2RyIIMI

Hybrid ESC PC Krause
and Associates -

Brake ESC PC Krause
and Associates -

DCDC ESC PC Krause
and Associates -

Filter Box (x2) PC Krause
and Associates -

Propeller Motor Neu Motors Series 8038-105
https://bit.ly/2sRBWHE

Brake Motor Neu Motors Series 8038-105
https://bit.ly/2sRBWHE

Starter/Generator
Motor Neu Motors Series 8038-140

https://bit.ly/2sRBWHE

Power Resistors (x12) TE Connectivity 1Ω 2S6P
https://bit.ly/2E0zFfK

Engine Briggs and Stratton 19N1 Series
https://bit.ly/2s7OEBX

Power Supply Magna-Power 4kW Rating (XR400-10.0 Series Supply)
https://bit.ly/2LAnTgk

Electronic Load NH Research 3kW Rating (4700-3-TP Series)
https://bit.ly/2LCKadh
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Table D.2: The UAV testbed sensing and controls parts list.

Component Manufacturer Details

BMS Texas Instruments bq76PL455A-Q1 Evaluation Board
https://bit.ly/36hhApE

CompactDAQ National Instruments 4 slots (cDAQ-9174)
https://bit.ly/353scbH

Voltage Input Module National Instruments Reads shunt resistors (NI-9205)
https://bit.ly/2P021wO

Digital I/O Module National Instruments Controls relays (NI-9403)
https://bit.ly/2RyJwkI

High Current Shunt (x2) Rideon 200A rating (RSB-200-100)
https://bit.ly/2PkviBe

Low Current Shunt (x4) Rideon 100A rating (RSB-100-100)
https://bit.ly/2qxXV5I

USB to CAN Adapter Intrepid Control
Systems

Facilitates CAN communication
https://bit.ly/2YvlkBg

Control Computer Dell 7th Gen Intel Core i7 with 8GB RAM

Emergency

Stop

Testbed

Control

Computer

Figure D.2: Additional photo showing the testbed with the control computer.
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Appendix E

MATLAB Code

The author has selected to share some code that he believes may be useful to other re-

searchers. This code includes functions for battery parameter identification , optimal con-

troller development, and motor frequency identification.

E.1 Battery Parameter Identification Functions

1 %% Battery Identification
2 % this code uses current pulse data to fully characterize a second order
3 % battery model. All that is required is the experiments time vector,
4 % battery voltage, and battery current. The code (for the most part)
5 %automates the process of calculating all 7 battery parameters from the
6 %single data set. Some thresholding/tuning of the code is required, but
7 %those tuning knobs are specifically listed in the code.
8

9 % developed by Christopher T. Aksland at the University of Illinois at
10 % Urbana−Champaign (5/1/2019)
11 %%
12 clear all
13 close all
14

15 load dataAll
16

17 plotTest = 0; % set to 1 plot raw data
18 plotSplit = 0; % set to 1 to plot split data
19 plotOCV = 0; % set to 1 to plot OCV curves
20 plotR = 0; % set to 1 to plot internal resistance curves
21 plotDyn = 0; % set to 1 to plot data with the initial voltage change ...

removed
22

23 plotSample = 0; % set to 1 to check gradient sampled data
24 runOpt = 1; % run optimization section of the code
25 plotFit = 1; % set to 1 to plot RC fits
26 plotRC = 0; % set to 1 to plot RC curves
27
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28 TestTime = data(:,1);
29 Current = data(:,2);
30 Voltage = data(:,3);
31

32 %% Reduce out voltage steps from internal resistance
33 %this block of code finds all voltage changes from the first edge of the ...

step
34 cnt = 0; %how many edges are count
35 pSt = zeros(100,1); % stores start point
36 pEn = zeros(100,1); % stores end point
37 thresh = .07; % [V] HAND TUNED threshold for determining if the voltage ...

change is a consequence of a pulse
38 for i = 2:length(Voltage)−1 % cycle through voltage data
39 sn = sign(i − TestTime(end)); %denotes whether the cycle is charge ...

or discharge
40 dV = Voltage(i+1) − Voltage(i); % voltage between next and current ...

data point
41 if (abs(dV) > thresh) && (dV*sn > 0) % if the change is greater than ...

a threshold, store the current and next data points
42 cnt = cnt + 1;
43 pSt(cnt) = i;
44 pEn(cnt) = i+1;
45 if cnt > 1
46 if pSt(cnt) == pEn(cnt−1)
47 pEn(cnt−1) = i+1;
48 cnt = cnt −1;
49 end
50 end
51 end
52 end
53 % removes excess zeros
54 rem = 2; %remove points from end
55 pSt = pSt(1:cnt−rem);
56 pEn = pEn(1:cnt−rem);
57 pdV = Voltage(pEn) − Voltage(pSt);
58

59 %this block of code is mostly same as above however it applies to the ...
second step

60 %edge. the only change is that a secondary threshold is used. The secondary
61 %threshold is associated with the voltage change from the previous ...

section of code
62 %ie. the voltage change from the rising edge of 1 pulse should be similar
63 %in magnitude to the voltage change from the falling edge of the previous
64 %pulse
65 cnt = 0;
66 p = 1;
67 rSt = zeros(100,1);
68 rEn = zeros(100,1);
69 rdV = zeros(100,1);
70 i = 1;
71 while i < length(Voltage)−1
72 sn = sign(i − TestTime(end));
73 dV = Voltage(i+1) − Voltage(i);
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74 if (abs(dV) > thresh) && (dV*sn < 0)
75 cnt = cnt + 1;
76 rSt(cnt) = i;
77 rEn(cnt) = i+1;
78 if cnt > 1
79 if rSt(cnt) == rEn(cnt−1)
80 rEn(cnt−1) = i+1;
81 cnt = cnt −1;
82 end
83 end
84 end
85 i = i+1;
86 end
87 rem = 0; %remove points from end
88 rSt = rSt(1:cnt−rem);
89 rEn = rEn(1:cnt−rem);
90 rEn(end) = rEn(end)−1; % manual edit
91 rdV = Voltage(rEn) − Voltage(rSt);
92

93 % reshape data to fit into a single vector
94 St = reshape([pSt,rSt]',2*length(pSt),1);
95 En = reshape([pEn,rEn]',2*length(pEn),1);
96

97 % plot results
98 if plotTest == 1
99 plot(TestTime,Voltage,'linewidth',2)

100 % plot(Voltage,'linewidth',2)
101 hold on
102 plot(TestTime(St),Voltage(St), 'o','MarkerEdgeColor','r','linewidth',2)
103 plot(TestTime(En),Voltage(En), 'o','MarkerEdgeColor','g','linewidth',2)
104 ylabel('Voltage [V]')
105 xlabel('Time [s]')
106 axis([0 TestTime(end) 40 70])
107

108 % figure
109 % plot(TestTime,Current)
110 % for i = 1:18
111 % line([St(2*i−1)−1 St(2*i−1)−1],[0 −7],'Color',[1 0 0])
112 % line([St(2*i+1)−1 St(2*i+1)−1],[0 −8],'Color',[0 1 0])
113 % line([St(i) St(i)],[0 −7],'Color',[1 0 0])
114 % end
115 end
116

117 %% Split up curves
118 % this code splits up the raw data by each distinct 'period' this is
119 % relatively simple because the previous section found the starting point
120 % for each 'period'. The data is divided at those points
121 pFin = 217197; %HAND TUNED. index for the last point in the final 'good' ...

relaxtion curve (unused)
122 sect{1} = [TestTime(1:St(1)) Voltage(1:St(1))]; %gets first section
123 for i = 1:2*cnt−1 %split intermediate sections
124 sect{i+1} = [TestTime(St(i):St(i+1)) Voltage(St(i):St(i+1))];
125 end
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126 sect{2*cnt+1} = [TestTime(St(2*cnt):pFin) Voltage(St(2*cnt):pFin)]; %get ...
last relaxation section

127 sect{2*cnt+2} = [TestTime(pFin:end) Voltage(pFin:end)]; %rest of data ...
(unused)

128

129 % plot results
130 if plotSplit == 1
131 figure
132 for i = 1:2*cnt+2
133 plot(sect{i}(:,1),sect{i}(:,2),'linewidth',2)
134 hold on
135 end
136

137 plot(TestTime(St),Voltage(St),'o','MarkerEdgeColor','r')
138 hold on
139 plot(TestTime(En),Voltage(En),'o','MarkerEdgeColor','g')
140 ylabel('Voltage [V]')
141 xlabel('Time [s]')
142 axis([0 TestTime(end) 40 70])
143 end
144

145 %% Get OCV Curve
146 capD = sum(abs((Current(1:end−1)+Current(2:end)) ...

.*(TestTime(1:end−1)−TestTime(2:end)))) /(2*3600); % HAND TUNED ...
battery capacity from discharge

147

148 SOC_D = linspace(0,1,21);
149

150 Q = zeros(100,1);
151 Q(1) = sum(abs((Current(1:St(1)−2)+Current(2:St(1)−1)) ...

.*(TestTime(1:St(1)−2)−TestTime(2:St(1)−1))))/(2*3600);
152 for i = 1:length(St)/2−1
153 Q(i+1) = sum(abs((Current(St(2*i−1)−1:St(2*i+1)−2) ...

+Current(St(2*i−1):St(2*i+1)−1)) ...
.*(TestTime(St(2*i−1)−1:St(2*i+1)−2) ...
−TestTime(St(2*i−1):St(2*i+1)−1)))) /(2*3600); % HAND TUNED ...
battery capacity from discharge

154 end
155 Q = Q(1:cnt);
156 i = i+1;
157 Q(end+1) = sum(abs((Current(St(2*i−1)−1:pFin−1)+Current(St(2*i−1):pFin)) ...

.*(TestTime(St(2*i−1)−1:pFin−1)−TestTime(St(2*i−1):pFin)))) ...
/(2*3600); % HAND TUNED battery capacity from discharge

158 Q(end+1) = sum(abs((Current(pFin:end−1)+Current(pFin+1:end)) ...
.*(TestTime(pFin:end−1)−TestTime(pFin+1:end)))) /(2*3600); % HAND ...
TUNED battery capacity from discharge

159 % sum(Q)
160 del = cumsum(Q);
161 del(1) = 0;
162 SOC_D = 1 − del/capD;
163 SOC_D = fliplr(SOC_D');
164 SOC_D(1) = 0;
165

177



166 pts = 60; %HAND TUNED how many data points are averaged
167 for i = 1:cnt + 1
168 OCV(i) = mean(sect{2*i−1}(end−pts:end)); %average steady state ...

section of each curve
169 end
170 OCV(i+1) = mean(sect{end}(end−pts:end));
171 OCV = fliplr(OCV);
172

173 % plot results
174 if plotOCV == 1
175 figure
176 plot(SOC_D,OCV,'linewidth',2)
177 hold on
178 ylabel('OCV [V]')
179 xlabel('SOC')
180 end
181

182 %% Find series Resistances
183 I = 7; %"HAND TUNED" may differ depending on test
184 Rs_relax = fliplr((abs(rdV)/I)'); % determine R_s during relatxtion period
185 % Rs_step = abs(pdV)/I; % determine R_s during pulsed period
186

187 % plot results
188 if plotR == 1
189 figure
190 plot(SOC_D(2:end−1),Rs_relax,'Color','b')
191 % hold on
192 % plot(SOC_D(3:end),Rs_step,'Color','r')
193 xlabel('SOC []')
194 ylabel('Rs [Ohm]')
195 % legend('Relax Discharge','Pulse Discharge')
196 end
197

198

199 %% Create Section for only dynamic region
200 % this section removes the intial voltage change from the raw data. this
201 % will make the optimization better
202 sect_dyn = cell(1,length(sect)); %stores dynamic data
203 sect_dyn{1} = sect{1};
204 del = En−St; %denotes how many data points need to be removed from the ...

raw data
205 for i = 2:length(sect)−1;
206 sect_dyn{i} = [sect{i}(1+del(i−1):end,1) sect{i}(1+del(i−1):end,2)]; ...

%modify data
207 %plot results
208 if 0
209 figure
210 plot(sect{i}(:,1),sect{i}(:,2))
211 hold on
212 plot(sect_dyn{i}(:,1),sect_dyn{i}(:,2))
213 end
214 end
215 sect_relax = cell(1,length(sect)/2); %stores dynamic data
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216 sect_dyn_relax = cell(1,length(sect)/2); %stores dynamic data
217

218 for i = 1:length(sect)/2;
219 sect_relax{i} = sect{2*i−1}; %stores dynamic data
220 sect_dyn_relax{i} = sect_dyn{2*i−1}; %stores dynamic data
221

222 if plotDyn == 1
223 figure
224 plot(sect_relax{i}(:,1),sect_relax{i}(:,2))
225 hold on
226 plot(sect_dyn_relax{i}(:,1),sect_dyn_relax{i}(:,2))
227 end
228 end
229

230 %% Downsampling Sampling
231 % Optimizing with large data sets is taxing. a gradient sampling method is
232 % used. regular sample is ineffective because the data has varying
233 % timescales. filtering is not ideal because it can add too much phase
234 % shift (also it still yields too many data points for optimization)
235 % Ammendment: greybox models only solve with uniformly sampled data, so ...

just
236 % use 'downsample()'
237 VThresh = .025; %HAND TUNED threshold for voltage change
238 tThresh = 400; %HAND TUNED threshold for change in index (ie if the ...

voltage doesn't change much, sample every x points)
239 sect_gs = cell(length(sect_relax),1); %stores sampled data
240 sect_gs{1} = sect_dyn_relax{1};
241

242 for i = 2:length(sect_relax);
243 % sect_gs{i} = gradientSample(sect_dyn_relax{i},VThresh,tThresh); % ...

gradient sample DONT USE
244 sect_gs{i} = [downsample(sect_dyn_relax{i}(:,1),100), ...

downsample(sect_dyn_relax{i}(:,2),100)]; % sample data
245 % plot results
246 if plotSample == 1
247 figure
248 plot(sect_dyn_relax{i}(:,1),sect_dyn_relax{i}(:,2))
249 hold on
250 scatter(sect_gs{i}(:,1),sect_gs{i}(:,2),'linewidth',2)
251 end
252 end
253

254 %% Get Pulse Width
255 % get width of each current pulse. self explanatory hopefully
256 % plot(TestTime,Current)
257 % hold on
258 % scatter(TestTime(St),Current(St))
259

260 t_pulse = zeros(length(sect_gs),1);
261 t_r = zeros(length(sect_gs),1);
262 I_avg = zeros(length(sect_gs),1);
263

264 t_pulse(1) = 0;
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265 t_r(1) = TestTime(St(1));
266 I_avg(1) = 0;
267

268 for i = 1:length(sect_gs) − 2
269 t_pulse(i+1) = TestTime(St(2*i)) − TestTime(St(2*i−1));
270 I_avg(i+1) = mean(Current(St(2*i−1):St(2*i)));
271 t_r(i+1) = TestTime(St(2*i+1)) − TestTime(St(2*i));
272 end
273 i = i+1;
274 t_pulse(end) = TestTime(St(2*i)) − TestTime(St(2*i−1));
275 I_avg(end) = mean(Current(St(2*i−1):St(2*i)));
276 t_r(end) = TestTime(pFin) − TestTime(St(2*i));
277

278

279 %% Get RC Pairs
280 param = cell(1,length(sect_gs)); % stores parameters
281 V_save = cell(length(sect_gs),1);
282

283 LB = [.0000001 .0000001 1 100]; %HAND TUNED lower bounds for RC pairs ...
[R1 R2 tau1 tau2] (avoid 0)

284 UB = [1 1 500 10000]; %HAND TUNED upper bounds for RC pairs [R1 R2 tau1 ...
tau2]

285

286 load param_D
287 param{1} = [.0378;.1897; 22.944; 887.7172];
288

289 if runOpt == 1;
290 for i = 2:length(sect_gs) %loop for each relaxation period
291 tdata = sect_gs{i}(1:end,1) − sect_gs{i}(1,1); %time data for ...

the period brought to the origin
292 ydata = sect_gs{i}(1:end,2) − sect_gs{i}(1,2); %voltage data for ...

the period brough to the origin
293 sn = −1; % denotes charge or discharge (1)
294

295 % stores relavant data to the optimization problem in OPT
296 Opt.tdata = tdata;
297 Opt.ydata = ydata;
298 Opt.cnt = length(Opt.tdata); %unused
299 Opt.t_pulse = t_pulse(i);
300 Opt.I = −sn*abs(I_avg(i));
301 Opt.LB = LB;
302 Opt.UB = UB;
303 Opt.lv = 1;
304 Opt.lx = .75;
305 Opt.x0 = param{i−1};
306

307 [R1 R2 tau1 tau2] = RC_Fit_opt(Opt,1);
308 param{i} = [R1;R2;tau1;tau2];
309

310 % get fitted soltion V and plot results to compare
311 V = R1*Opt.I*(1−exp(−Opt.t_pulse/tau1)) ...

*(1−exp(−Opt.tdata/tau1)) + ...
R2*Opt.I*(1−exp(−Opt.t_pulse/tau2)) *(1−exp(−Opt.tdata/tau2));
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312 V_save{i} = [Opt.tdata,V];
313 if plotFit == 1
314 figure
315 plot(sect_dyn_relax{i}(1:end,1) − sect_dyn_relax{i}(1,1), ...

sect_dyn_relax{i}(1:end,2) − sect_dyn_relax{i}(1,2))
316 hold on
317 scatter(Opt.tdata,Opt.ydata)
318 hold on
319 plot(Opt.tdata,V,'linewidth',2)
320 xlabel('Time [s]')
321 ylabel('Voltage [V]')
322 if sign(sn) < 0
323 legend('Raw Data','Sampled ...

Data','Fit','location','SouthEast')
324 else
325 legend('Raw Data','Sampled ...

Data','Fit','location','NorthEast')
326 end
327 end
328 i
329 end
330 end

1 function [R1, R2, tau1, tau2] = RC_Fit_opt( Opt,plotResult)
2 % This function sets up and solves a grey box identifcation problem for
3 % battery identification
4 % Opt: Structure containing relevant data for the optimization program
5

6 % developed by Christopher T. Aksland at the University of Illinois at
7 % Urbana−Champaign (5/1/2019)
8

9 %% %%%%%%%%% Optimization Setup %%%%%%%%%%%%
10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11 % sample rate/ time step
12 ts = (Opt.tdata(2)−Opt.tdata(1));
13

14 % creates data file. shouldn't need to change
15 z = iddata(Opt.ydata, [], ts, 'Name', 'Experimental'); %create data file ...

for optimizaiton
16 z.Tstart = 0; %start time
17

18 % file name for code describing the model structure. this is a .m file
19 FileName = 'RC_Fit';
20

21 % Model orders [ny nu nx]. [number of matched states, "inputs", and states]
22 Order = [1 0 0];
23

24 % Initial parameters.
25 Parameters = [Opt.x0;Opt.I;Opt.t_pulse];
26

27 % Initial states
28 InitialStates = [];
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29

30 % Denotes our model is a continuous time system. don't change
31 Ts = 0;
32

33 % creates non−linear greybox object
34 nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts, 'Name', ...

'Fit');
35 nlgr.SimulationOptions.Solver = 'ode23tb';
36 nlgr.Parameters(1).Name = 'R1';
37 nlgr.Parameters(2).Name = 'R2';
38 nlgr.Parameters(3).Name = 'tau1';
39 nlgr.Parameters(4).Name = 'tau2';
40 nlgr.Parameters(5).Name = 'I';
41 nlgr.Parameters(6).Name = 't_pulse';
42 % nlgr.SimulationOptions.AbsTol = 1e−2;
43 % nlgr.SimulationOptions.RelTol = 1e−2;
44

45 %% %%% Setup Constraints and Test Initial Guesses %%%
46 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
47

48 % bounds for regularized optimization variables
49 for i = 1:4 %
50 nlgr.Parameters(i).Minimum = Opt.LB(i);
51 nlgr.Parameters(i).Maximum = Opt.UB(i);
52 end
53 nlgr.Parameters(5).Fixed = 1;
54 nlgr.Parameters(6).Fixed = 1;
55

56 % plot response with given initial guesses
57 if 0
58 figure
59 % optSim = compareOptions('InitialCondition',IC_x);
60 % compare(z, nlgr,optSim);
61 compare(z, nlgr);
62 end
63

64 %% %%%%%%%%%%%%%% Optimization %%%%%%%%%%%%%%
65 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
66

67 opt = nlgreyestOptions('Display', 'on'); % opens window to provide ...
optimization updates

68 opt.SearchMethod = 'lm'; % type 'help nlgreyestOptions' to look up other ...
search methods

69 opt.SearchOption.MaxIter = 20; %max iteration count
70

71 % call optimizer
72 nlgr = nlgreyest(z, nlgr, opt);
73

74 % plot true and fitted response
75 if plotResult
76 figure
77 compare(z, nlgr);
78 end
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79

80 R1 = nlgr.Parameters(1).Value;
81 R2 = nlgr.Parameters(2).Value;
82 tau1 = nlgr.Parameters(3).Value;
83 tau2 = nlgr.Parameters(4).Value;
84

85 end

1 function [ dx, y ] = RC_Fit( t, x, u, R1, R2, tau1, tau2, I, t_pulse, ...
varargin )

2 %this function calulates the battery volatge dynamics for application in
3 %the grey box identification tool
4

5 % developed by Christopher T. Aksland at the University of Illinois at
6 % Urbana−Champaign (5/1/2018)
7

8 % voltage trajectories
9 V1 = R1*I*(1−exp(−t_pulse/tau1))*(1−exp(−t/tau1));

10 V2 = R2*I*(1−exp(−t_pulse/tau2))*(1−exp(−t/tau2));
11

12 % Output
13 dx = [];
14 y = V1 + V2;
15

16 end

E.2 Model Predictive Controller Formulation Function

1 function [ Output ] = Controller_Gen( Input )
2 % this function formulates the controller as an optimization program using
3 % YALMIP. The variable Input is a structure containing controller
4 % parameters. The optimization program is stored as the function
5 % "Controller". Call Controller to solve the optimization.
6

7 % developed by Christopher T. Aksland at the University of Illinois at
8 % Urbana−Champaign (9/1/2019)
9

10 Output = Input;
11

12 %% Decision Variables
13 x_ = sdpvar(repmat(Output.Nv, 1, Output.horizon+1), ...

ones(1,Output.horizon+1));
14 u_ = sdpvar(repmat(Output.Nu, 1, Output.horizon), ...

ones(1,Output.horizon));
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15 s_ = sdpvar(repmat(length(Output.ind_x_bounds), 1, Output.horizon), ...
ones(1,Output.horizon));

16 stv_ = sdpvar(repmat(length(Output.ind_x_bounds_tv), 1, ...
Output.horizon), ones(1,Output.horizon));

17

18 u0_ = sdpvar(repmat(Output.Nu, 1, 1), ones(1,1));
19 sv_ = sdpvar(repmat(Output.Nsv, 1, Output.horizon), ...

ones(1,Output.horizon));
20 xref_ = sdpvar(repmat(length(Output.ind_x_ref), 1, Output.horizon), ...

ones(1,Output.horizon));
21 xbnd_ = sdpvar(repmat(length(Output.ind_x_bounds_tv), 1, ...

Output.horizon), ones(1,Output.horizon));
22 temp_ = sdpvar(repmat(Output.Nsv−1, 1, Output.horizon), ...

ones(1,Output.horizon));
23

24 Az_ = sdpvar(Output.Nv,Output.v_tot,'full');
25 B1z_ = sdpvar(Output.Nv,Output.Nu,'full');
26 B2z_ = sdpvar(repmat(Output.Nv, 1, 1), ones(1,1));
27

28 Ie_ = sdpvar(repmat(1, 1, Output.horizon+1), ones(1,Output.horizon+1));
29 ue_ = sdpvar(repmat(1, 1, Output.horizon), ones(1,Output.horizon));
30 ue0_ = sdpvar(repmat(1, 1, 1), ones(1,1));
31 ubnd_ = sdpvar(repmat(1, 1, 1), ones(1,1));
32

33 m_ = binvar(repmat(2,1,Output.horizon),ones(1,Output.horizon)); % ...
Binary variable for mode selection

34 m0_ = binvar(repmat(2,1,1),ones(1,1)); % previous switch state
35 SFCJ_ = sdpvar(repmat(1, 1, Output.horizon), ones(1,Output.horizon));
36 V_bus = sdpvar(repmat(1, 1, Output.horizon), ones(1,Output.horizon));
37

38 %% Objective Function
39 objs = 0;
40 for k = 1:Output.horizon
41

42 %state tracking
43 objs = objs + norm((Output.l_v*(x_{k+1}(Output.ind_x_ref) − ...

xref_{k})),2)^2;
44

45 %slack penalty
46 objs = objs + norm(Output.l_s*s_{k},2)^2;
47 %slack penalty for time varying bounds
48 objs = objs + norm(Output.l_s_tv*stv_{k},2)^2;
49

50 %rate of change of state penalty
51 objs = objs + norm(Output.l_dx*(x_{k+1}(Output.ind_x_dx) − ...

x_{k}(Output.ind_x_dx)),2)^2;
52

53 %fuel cost penalty (note the normalizing term Output.Eng.maxE(2))
54 SFCJ_{k} = [−Ie_{k+1} V_bus{k} m_{k}(2)]*Output.Eng.S*[−Ie_{k+1} ...

V_bus{k} m_{k}(2)]';
55 objs = objs + Output.l_f*SFCJ_{k}/Output.Eng.SFC_max;
56 end
57
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58 %switching penalty
59 objs = objs + Output.l_m*(norm(m_{1}(1)−m0_(1),2))^2;
60 %rate of change of input penalty
61 objs = objs + norm(Output.l_du*(ue_{1} − ue0_),2)^2;
62 for k = 2:Output.horizon
63 objs = objs + norm(Output.l_du*(ue_{k} − ue_{k−1}),2)^2;
64 objs = objs + Output.l_m*(norm(m_{k}(1)−m_{k−1}(1),2))^2;
65 end
66

67 %% Constraints
68 cons = [];
69

70 for k = 1:Output.horizon
71

72 % dynamic states
73 cons = [cons, x_{k+1}(Output.dyn) == ...

Az_(1:Output.Ndyn,:)*[x_{k}(Output.dyn);x_{k+1}(Output.alg); ...
sv_{k}] + B1z_(1:Output.Ndyn,:)*u_{k} + B2z_(1:Output.Ndyn)];

74 % algebraic states
75 cons = [cons, 0 == Az_((Output.Ndyn+1):end,:)*[x_{k}(Output.dyn); ...

x_{k+1}(Output.alg);sv_{k}] + B1z_((Output.Ndyn+1):end,:)*u_{k} + ...
B2z_((Output.Ndyn+1):end)];

76

77 % % rate of change of state constraints
78 % for i = 1:length(Output.ind_x_dx_cons) %bounded states
79 % cons = [cons, −Output.x_dx_cons(i) ≤ ...

((x_{k+1}(Output.ind_x_dx_cons(i)) − ...
x_{k}(Output.ind_x_dx_cons(i)))/Output.dt) ≤ Output.x_dx_cons(i)];

80 % end
81

82 % other constrains
83 cons = [cons, s_{k} ≥ 0]; %slack
84 cons = [cons, stv_{k} ≥ 0]; %slack
85 for i = 1:length(Output.ind_x_bounds) %bounded states
86 cons = [cons, Output.x_min(i)−s_{k}(i) ≤ ...

x_{k+1}(Output.ind_x_bounds(i)) ≤ Output.x_max(i)+s_{k}(i)]; ...
%should be ≤ or ≥ %understand why slack is included

87 end
88 for i = 1:length(Output.ind_x_bounds_tv) %time varying bounded states
89 cons = [cons, xbnd_{k}(i)−stv_{k}(i) ≤ ...

x_{k+1}(Output.ind_x_bounds(1))]; %should be ≤ or ≥ ...
%understand why slack is included

90 end
91

92 % all input constraints
93 if k > 1
94 cons = [cons; sum(m_{k}) == 1];
95

96 %bounded inputs
97 for i = 1:length(Output.u_min)
98 cons = [cons, Output.u_min(i) ≤ ...

u_{k}((Output.ind_u_bounds(i))) ≤ Output.u_max(i)]; ...
%should be ≤ or ≥
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99 end
100

101 %constant inputs
102 for i = 1:length(Output.u_cons)
103 cons = [cons, 1 == u_{k}((Output.ind_u_cons(i)))]; %should ...

be ≤ or ≥

104 end
105

106 %rate of change of inputs
107 for i = 1:length(Output.ind_u_∆)
108 cons = [cons, u0_(Output.ind_u_∆(i))−Output.u_∆(i) ≤ ...

u_{k}(Output.ind_u_∆(i)) ≤ ...
u0_(Output.ind_u_∆(i))+Output.u_∆(i)];

109 end
110

111 % Engine Model Constraints
112 % in mode 1, engine input is zero and current production is 0
113 % cons = [cons, implies(m_{k}(1), [ue_{k} == 0, Ie_{k+1} == 0 ])];
114 cons = [cons, implies(m_{k}(1), [ue_{k} == 0])];
115 % in mode 2, engine input and current production is free
116 % cons = [cons, implies(m_{k}(2), [0 ≤ ue_{k} ≤ 1, 0 == ...

Output.Eng.A1_z*Ie_{k+1} + Output.Eng.B1_z*ue_{k}])];
117 cons = [cons, implies(m_{k}(2), [0 ≤ ue_{k} ≤ 1])];
118 % constrain engine to sink state vetex
119

120 end
121

122 % engine state dynamics and sink state equivalence
123 cons = [cons, 0 == Output.Eng.A1_z*Ie_{k+1} + Output.Eng.B1_z*ue_{k}];
124 cons = [cons, Ie_{k+1} == sv_{k}(2)];
125

126

127 % bus voltage for SFC implies statement
128 cons = [cons, implies(m_{k}(1), [V_bus{k} == 0])];
129 cons = [cons, implies(m_{k}(2), [V_bus{k} == ...

x_{k+1}(Output.Eng.x_V)])];
130

131 % % % % big−M matrix constraints
132 % % % cons = [cons, −101 ≤ Ie_{k+1} ≤ 1];
133 % % % cons = [cons, −101 ≤ x_{k+1}(Output.Eng.x_V) ≤ 100];
134 % % % cons = [cons, −1 ≤ ubnd_ ≤ 2];
135 % % % cons = [cons, −1 ≤ ue_{k} ≤ 2];
136 % % % cons = [cons, −10000 ≤ V_bus{k} ≤ 10000];
137

138 end
139

140 % bound the engine input
141 for k = 2:Output.horizon
142 cons = [cons, 0 ≤ ue_{k} ≤ ubnd_];
143 end
144

145 % constrain the switch to stay constant over the horizon
146 for k = 2:Output.horizon−1
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147 cons = [cons, m_{k}(1) == m_{k+1}(1)];
148 end
149

150

151 %account for input delay on continuous plant
152 cons = [cons, u_{1} == u0_];
153 cons = [cons, ue_{1} == ue0_];
154 cons = [cons, m_{1} == m0_];
155

156 % opts = sdpsettings('solver','gurobi'); %,'quadprog.TolFun',1e−16
157 opts = sdpsettings('solver','gurobi','gurobi.TimeLimit',Output.dt*.9); ...

%,'quadprog.TolFun',1e−16
158

159 % replace/remove the sink vertex information relating to the engine ...
current since

160 % the engine current is now chosen by the controller
161 % temp = cell(1,Output.horizon);
162 for k = 1:Output.horizon
163 cons = [cons, temp_{k} == sv_{k}([1,3:end])];
164 end
165 Output.Controller = optimizer(cons,objs,opts, ...

{x_{1}(:),u0_,temp_{:},xref_{:},Az_,B1z_,B2z_,Ie_{1}(:),m0_, ...
ubnd_,ue0_,xbnd_{:}}, [x_,u_,s_,Ie_,ue_,m_,sv_,stv_]);

166

167 end

E.3 Motor Frequency Identification Function

1 function [ DataOut, f_n ] = filterData( DataIn, res, n, fc_adj )
2 % this code was used to get frequency for the motor ID process by applying
3 % a fast fourier transform to the experimental data. The fft provides
4 % frequency data. This frequency data yields motor shaft speed and helps
5 % the design process for a zero−phase filter.
6

7 % DataIn: Data that should be filtered
8 % res: resolution for the FFT
9 % n: order of butterworth filter

10 % fc_adj: a cutoff frequency is found from the FFT. use this to adjust the
11 % the cutoff frequency of the filter
12 % this code finds the dominant frequency of a waveform using the FFT. A low
13 % pass butterworth filter is used to remove signal noise.
14

15 % developed by Christopher T. Aksland at the University of Illinois at
16 % Urbana−Champaign (5/1/2018)
17

18 L = length(DataIn(:,1)); % length of datset
19 T = DataIn(end,1) − DataIn(1,1); %total sample time
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20 F = 1/T;
21

22 Y=fft(DataIn(:,2),L*res); % fast fourier transform, res impacts ...
resolution of the output (large res = more accurate)

23 P2 = abs(Y/L); %two sided frequency response
24 P1 = P2(1:(L/2+1));
25 P1(2:end−1) = 2*P1(2:end−1); % one sided frequency response
26 f = F*(0:(L/2))/res; %frquecy assocaited with P1
27 mod = 9;
28 [¬,i] = max(P1(1+mod:end)); % get index of greatest amplitude frequency
29 i=i+mod;
30 f_n = f(i); %get frequency associated with
31 fc = f_n*fc_adj; %cutoff frequnnecy for filter
32 fs = L/(1/F); %sampling frequency
33 [b,a] = butter(n,fc/(fs/2)); %make filter
34 % DataF = filter(b,a,DataIn(:,2)); %filer data
35 DataF = filtfilt(b,a,DataIn(:,2)); %zero phase filter data
36

37 DataOut = [DataIn(:,1) DataF];
38 %
39 % figure
40 % plot(f,P1)
41 end
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