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Abstract

Modern augmented listening technologies, such as hearing aids, smart headphones,

and audio augmented reality platforms, perform poorly in noisy environments with

many competing sound sources. This work explores the benefits of large microphone

arrays, including novel wearable devices and distributed sensor networks, for aug-

mented listening systems. Perceptually transparent space-time remixing filters can

apply separate processing to each sound source to modify the auditory scene per-

ceived by a listener. The design parameters and performance tradeoffs of such filters

are described, with particular emphasis on the ways in which augmented listening

applications differ from machine listening and telecommunication applications. The-

oretical tools are developed for interaural cue preservation, delay-constrained array

processing, and dynamic range compression of multiple sources. Several implemen-

tation issues are considered, including acoustic channel estimation, the design of

wearable microphone arrays, the acoustic effects of the body, and models and algo-

rithms for deformable microphone arrays. Finally, the performance of the listening

system is improved by cooperative processing among many distributed devices. The

proposed system would dramatically improve the performance of listening devices in

noisy environments and enable new listening applications that are impossible with

current technology.
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Chapter 1

Augmented Listening

Throughout human history, we have used technology to help us do things that our

bodies cannot on their own. The wheel let our ancestors move things they could not

carry in their hands. Today we use airplanes to go farther and faster than our legs

can carry us. Some of mankind’s most impactful technological advances are those

that augment human senses. The microscope let scientists see the invisible world of

microbes with their own eyes, ushering in germ theory and modern medicine, and

we can use telescopes to gaze across the cosmos. At human scales, eyeglasses and

contact lenses can restore normal vision by compensating for distortion in the eyes.

Humanity has not been nearly as successful at augmenting our sense of hearing.

Our greatest engineering triumph in listening technology is arguably the stethoscope.

Many modern technologies, like motorcycles and air conditioners, actually make

hearing more difficult. Meanwhile, for hundreds of millions of people living with

hearing loss, our most advanced hearing aid technology is embarrassingly primitive.

I know because I am one of them. While hearing aids can help me to understand

a conversation in a quiet room, they are no help at all in a noisy crowd where I

need them most. Even people with normal hearing could use help in noisy listening

environments like restaurants.

The hearing aid industry has been working for generations to build the hearing

equivalent of contact lenses: small, comfortable, virtually invisible devices that can

fully restore normal sensory function. Unfortunately, most hearing loss is far more

complex than the linear optical distortion that causes nearsightedness. Sensorineural

hearing loss is highly nonlinear, and it is likely impossible to make an impaired ear

function like a healthy one. This dissertation proposes a more ambitious approach:
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Figure 1.1: Augmented listening technology modifies the auditory scene perceived
by the user, for example by suppressing unwanted sounds.

instead of trying in vain to restore normal function to an impaired ear, let us develop

technology to give any listener superhuman hearing. That is, if we cannot build

contact lenses, let us build a telescope instead.

1.1 What Is Augmented Listening?

Augmented listening refers to any technology that enhances human perception by

altering the sounds that people hear, as shown in Figure 1.1. Assistive listening

technologies such as hearing aids are an important subset of augmented listening.

But the system proposed in this dissertation can do more than just help people

with hearing loss to understand speech: augmented listening devices could help both

normal-hearing and hearing-impaired listeners to hear better in noisy situations. This

technology could also enable new augmented reality applications that deliberately

alter the user’s perceived auditory scene, for example by introducing artificial sound
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sources or replacing one signal with another.

1.1.1 The cocktail party problem

Humans’ ability to extract meaning from noisy sound mixtures is known as the cock-

tail party phenomenon [1, 2]. We use knowledge of speech patterns and rules of

acoustics to infer which sound events belong with each other and assemble those

pieces into actionable information [3]. Humans can also use spatial information to

distinguish between sounds coming from different directions [4]; for example, sounds

from the left arrive at the left ear before the right ear and they also have greater

intensity in the left ear, especially at high frequencies. In addition to time and level

differences that locate sounds on a left-right axis, our brains can use the subtle filter-

ing effects of the head and pinna to distinguish between sounds coming from the front

and back and from different elevations. We can do this even in reverberant environ-

ments where sounds arrive from multiple directions at once. But the cocktail party

phenomenon has limits: even normal-hearing people struggle in noisy, reverberant

environments with many competing sound sources. Could machines do better?

The challenge of automatically separating different speech signals from a mixture

is called the cocktail party problem. Because humans can distinguish these signals

so well, many researchers developing machine listening algorithms such as automatic

speech recognition and audio event detection have tried to imitate the function of the

auditory system. Historically, researchers used computational auditory scene analysis

[5] to classify sounds based on spectral and temporal patterns, as the auditory system

is believed to do. Many speech recognition systems incorporate multiple microphones

and use spatial information to help separate sounds [6]. More recently, researchers are

applying machine learning to imitate the pattern-matching abilities of the brain [7].

Mimicking the human auditory system is a good approach to designing machine

listening systems. It is not enough, however, if we hope to build augmented listening

systems that confer superhuman abilities. We cannot expect computer algorithms to

extract more meaning than the human brain from the same set of signals. To have

any chance of surpassing human abilities, machines must have access to information
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that humans do not. It is possible in principle that machine learning algorithms

with enormous data sets could build better models of speech and noise than humans

could learn by experience. This approach could be useful for speech in a language

that is unfamiliar to the user or for public transit systems that have distinctive noise

profiles, for example.

However, there is a simpler way for augmented listening systems to have more

information than the auditory system: humans have only two ears, but machines can

have hundreds of microphones. While it would be challenging to develop algorithms

with better-than-human signal models and pattern matching, we can already build

machines with spatial resolution that far surpasses that of our ears.

1.1.2 Spatial sound processing

Humans have remarkable spatial hearing abilities despite having just two ears. Still,

the ears cannot resolve multiple closely spaced sound sources that are far away.

To do that, we would need much larger sensor arrays, like those that have long

been used in radar, sonar, and telecommunication applications [8, 9]. Arrays can

sample signals in space to localize, separate, and enhance sound waves arriving from

different directions [10,11]. Next-generation wireless communication technology uses

massive arrays with hundreds of antennas to communicate with multiple users over

the same frequency band at the same time [12]. Today, microphone arrays are widely

used in speech recognition and teleconferencing applications, where they can isolate

the speech signal of one talker from unwanted background noise [13, 14]. Systems

with microphone arrays have been shown to perform better than single-microphone

systems on speech recognition tasks [6, 15].

Microphone arrays are also used in listening devices [16,17]. Most high-end hearing

aids include two microphones in each earpiece, and some can share data between ears

for a total of four microphones. Engineers have spent more than 30 years trying to

build listening devices with larger arrays [18–21], but none have been commercially

successful. Until recently, there were no small, inexpensive microphones that could be

built into comfortable wearable devices, nor did embedded processors have the power
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to apply complex spatial processing algorithms. Furthermore, as this dissertation will

make clear, using microphone arrays for human listening is often more complicated

than using them for machine listening applications.

1.1.3 New possibilities for augmented listening

Despite generations of failure, the time has finally come when engineers can build

superhuman listening devices. We have all the tools we need: digital microphones

smaller than a pea that can be hidden in clothing, accessories, appliances, and fur-

niture; embedded processors with advanced linear algebra accelerators; low-latency,

high-throughput, high-concurrency wireless networks; versatile cloud and edge com-

puting systems; and, crucially, a favorable economic and regulatory environment for

innovative listening technologies. The challenge before us is to develop the theory,

algorithms, and architectures to put these tools together.

This dissertation proposes a new approach to spatial signal processing for aug-

mented listening. A listening device collects sound data from microphones that

extend far beyond the ears. These arrays could be mounted on wearable accessories

such as eyeglasses or hats, they could be spread across multiple accessories all over

the body, or they could even be distributed around the room. Unlike a conventional

hearing aid that processes sounds as a mixture or a conventional array device that

tries to isolate a single source, the proposed augmented listening system attempts to

apply independent processing to each source signal and then recombine them in a

perceptually transparent way. This “remixing” process could be subtle—for example,

reducing background noise in a restaurant just enough so that the user’s conversation

partner is intelligible—or profound, such as introducing a new virtual sound source

with realistic acoustics or translating multiple speech signals into different languages.

Designing such a system is a daunting task. To enhance human hearing in the

complex, noisy, reverberant environments where listeners most need help, we must

apply the most advanced acoustic models and spatial processing methods available,

but many state-of-the-art algorithms are not designed for human listeners. To use

them in a listening system, we must reconcile the linear worlds of acoustics and array
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processing with the highly nonlinear processes of human hearing and perception. To

use microphones in wearable devices, we must account for the acoustics of the body

and for complex motion patterns. To remain perceptually transparent, the output

signals must have no more than a few milliseconds of delay and no distortion of

interaural cues. Even if these engineering challenges were solved, we know relatively

little about what sort of processing should be applied to each sound source to best

enhance the listening experience for different users and in different situations.

Microphone-array listening devices are not a new idea; they have tantalized engi-

neers for decades and inspired countless publications, including several other disser-

tations [18–20, 22–24]. Yet there has never been a commercially successful hearing

aid or similar listening device that uses a large microphone array. The primary goal

of this work is not to solve particular technical problems or develop new algorithms,

although it does do that; instead, it is to understand why past efforts have failed

and to explore the challenges that must be overcome to make ambitious augmented

listening technology a reality. Some of these challenges, such as interaural cue preser-

vation, are well-studied. Others, like delay, dynamic range compression, and body

acoustics, are characterized for the first time in the context of microphone array pro-

cessing. It is hoped that this dissertation will guide future research so that engineers

can soon, at long last, dramatically augment human hearing.

1.2 Listening Technology Today

A few years ago, there were only two kinds of device that would play sound into the

ears: headphones, which play back transmitted or recorded sound, and hearing aids,

which amplify and enhance sound in the immediate environment. The landscape

today is far more complex and changing rapidly. Figure 1.2 shows a few recent

listening products.
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Figure 1.2: There are many kinds of listening devices on the market, including
hearing aids (left), “hearables” (center), and advanced headphones (right).

1.2.1 Listening systems

Let us begin with traditional hearing aids. These devices, produced by only a handful

of large companies, cost thousands of dollars and are available only through medical

professionals. Audiologists measure the patient’s hearing profile using audiograms

and other techniques, then customize a prescription hearing aid to fit their needs.

While there are fitting guidelines, much of the process is based on experience or trial

and error. In the United States, most insurance plans do not cover hearing aids and

so there is a large market for lower-cost devices. Many companies sell hearing aids

over the internet for a few hundred dollars; these are configured using automated

software or an at-home listening test rather than an in-person exam.

Until recently, there was also a category of over-the-counter devices known as

personal sound amplification products (PSAP) [25]. Although ostensibly intended

for people without hearing loss, they were clearly targeted at people with hearing

loss who could not afford prescription hearing aids. These inexpensive devices had

few if any customization options. Following the Over-the-Counter Hearing Aid Act

of 2017, certain hearing aids can now be sold over the counter; this change will

presumably eliminate PSAPs as a distinct product category.

Even before this legal change, consumer electronics companies were developing lis-

tening devices with hearing-aid-like features. These smart headphones, which some

in the media have dubbed “hearables,” amplify and process environmental sounds

in some of the same ways as hearing aids [26]. Several companies have also tried to
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incorporate advanced augmented reality features such as intelligent noise reduction

and language translation, but to date they have had limited success. At the same

time, hearing aid companies have raced to incorporate consumer-audio features such

as Bluetooth music and call streaming, voice assistants, motion sensors, and even

fitness trackers. The previously distinct categories of consumer headphones and med-

ical hearing aids are quickly converging into a broader class of augmented listening

devices.

An important emerging product category is augmented reality headsets [27]. While

most recent attention has been on visual augmented reality, such as video overlays,

many augmented reality headsets also incorporate arrays of microphones that could

be used to alter the user’s auditory experience. They could impose new virtual

sources into the environment for mixed-reality games and remote presence applica-

tions. They could also dynamically alter sound sources in real time; the possibilities

range from the frivolous—make your friend sound like a chipmunk!—to the profound,

such as real-time translation. These bulky headsets have ample computational capa-

bilities and room for dozens of widely spaced microphones, making them attractive

platforms for the spatial processing methods developed in this work.

There are relatively few technological differences between a listening device in-

tended to correct hearing loss and one designed to enhance normal hearing. An assis-

tive device would likely provide stronger and more-frequency-selective amplification

and more-aggressive dynamic range compression. It might also choose remixing pa-

rameters to emphasize intelligibility over naturalness, for example by applying more

noise reduction. However, these differences are largely matters of degree. Therefore,

this work will rarely distinguish between hearing aids and more general augmented

listening devices.

1.2.2 Listening devices

Most hearing aids and other listening devices share a similar set of basic components

[28, 29]. One or two microphones capture incoming sound and digitize it. These

sounds are manipulated by a digital processor to generate an output signal. This
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digital output is converted back to an analog signal and presented to the listener

by a transducer known as a receiver, which usually sits inside the ear canal. The

device also includes a battery and hardware controls such as buttons and knobs.

High-end devices usually have wireless capabilities, including low-latency near-field

magnetic induction (NFMI) for exchanging data between earpieces and Bluetooth for

communicating with mobile devices. Although it is possible in principle for binaural

hearing aids to wirelessly share audio data and perform binaural beamforming, few

commercial hearing aids do so due to power constraints. Instead, the wireless link

is used to synchronize processing settings between the left and right hearing aids

several times per second.

Hearing aids come in several form factors. The most popular is a behind-the-ear

earpiece, which contains one or two microphones, a processor, and a battery, and

connects via a thin tube to a receiver in the ear canal. These are shown on the left

in Figure 1.2. Fully in-the-ear hearing aids can be used for some types of hearing

loss, but they have stricter size and power constraints. Hearing aid companies have

traditionally tried to create discreet products that users can comfortably wear all day

and that other people will not easily notice. Meanwhile, today’s high-end wireless

earbuds, like those in the center in Figure 1.2, are bulky and conspicuous; some even

consider them to be status symbols, like an expensive watch or designer eyeglasses.

These changing consumer preferences might ease the size and power constraints on

traditional hearing aids as well, allowing them to apply more ambitious processing.

1.2.3 Signal processing for listening enhancement

There are many ways that listening devices, especially hearing aids, enhance sound

for human listeners [28,30]. A typical hearing aid processing system is illustrated in

Figure 1.3.

Amplification: Hearing aids provide gain to compensate for the reduced sensitiv-

ity of hearing-impaired listeners. The cheapest off-the-shelf hearing-aid-like

devices, like the second device from the left in Figure 1.2, contain only a mi-
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Figure 1.3: Architecture of a typical modern hearing aid.

crophone, a receiver, and an amplifier.

Spectral shaping: The majority of sensorineural hearing loss is more severe at

high frequencies than at low frequencies. Hearing aids provide more gain at

frequencies where users have more hearing loss.

Feedback control: Because the microphone and receiver are only a few centimeters

apart, listening devices use echo cancellation techniques to prevent whistling

due to feedback [31]. Although feedback has historically been an important

limiting factor for hearing aids, modern feedback control systems perform well.

Because the feedback problem is largely solved, it is not addressed in this work.

Dynamic range compression (DRC): Many hearing-impaired listeners have re-

duced dynamic range compared to normal-hearing listeners. To compensate,

all advanced hearing aids perform dynamic range compression, which is a form

of automatic gain control [32–34]. The device tracks sound level over time and

increases gain when the level is low to improve audibility or decreases gain when

the level is high to prevent discomfort. Expensive hearing aids apply compres-

sion independently across many frequency bands. Dynamic range compression

is arguably the most important, most challenging, and least understood form

of signal processing that listening devices apply; compression and its problems

are the subject of Chapter 6.

Noise reduction (NR): All listeners, with or without hearing loss, have trouble

hearing in loud background noise. Over the years, engineers have devised

10



countless nonlinear processing methods for reducing background noise while

preserving a signal of interest, usually speech [35]. These range from time-

varying spectral subtraction and Wiener filtering [36] to time-frequency masks

designed by deep-learning classifiers [37]. However, while single-microphone

noise reduction methods can improve comfort, they do not help listeners to

understand speech better than they otherwise would [38,39].

Beamforming: Unlike single-microphone noise reduction methods, spatial process-

ing has been shown to improve intelligibility in noise [38]. Many hearing aids do

perform simple spatial filtering, known as beamforming, to emphasize sounds

from the front and reduce background noise [40]. Beamforming often features

prominently in hearing aid marketing materials. However, because the micro-

phones in each earpiece are just a few millimeters apart, and because of the

disturbing distortion that aggressive beamforming can introduce (see Chapter

4), hearing aids use fairly conservative spatial processing.

Scene classification: Listening devices decide what kind of environment they are

in—a home, a restaurant, a noisy train—and adjust their settings accordingly.

They might also adapt to the types of sound sources present in a space. Al-

though this work does not discuss scene classification methods, they would be

an essential component of a complete augmented listening system.

Dereverberation: It can be more difficult to hear in strongly reverberant environ-

ments. Although the author is not aware of any hearing aids that perform dere-

verberation, it has been studied extensively by signal processing researchers [41]

and it would be a useful feature of an augmented listening system. However,

dereverberation is not addressed directly in this work.

Frequency lowering: Some hearing aids have features to perform frequency com-

pression or frequency lowering, which maps higher frequencies onto lower fre-

quencies for users with severe high-frequency hearing loss [42]. It will not be

addressed in this work.
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1.2.4 Shortcomings of listening technology

Modern listening devices fall far short of their potential. Despite widespread in-

terest from both established electronics companies and new startups over the last

few years, there have been no commercially successful “hearables” products with

advanced augmented listening features. Furthermore, although hearing loss affects

about one in seven adults in the United States, fewer than 30% of people who would

benefit from hearing aids actually wear them [43]. There are two generally accepted

causes of this low adoption rate: the first is the prohibitive cost of hearing aids, which

are rarely covered by insurance in the United States, and the second is poor perfor-

mance. Anecdotally, the author has never met a single hearing aid user—outside the

hearing aid industry—who is satisfied with their hearing aids. A common complaint

is about the poor performance of hearing aids in noisy environments. Indeed, a re-

cent National Institute on Deafness and other Communication Disorders (NIDCD)

Strategic Plan for hearing and balance research highlights the need to “[i]mprove

the performance of traditional (external) hearing aids in background noise and other

real-world settings.” [43]

There are two reasons that listening devices perform so poorly in noisy environ-

ments. First, hearing aids perform nonlinear processing, including dynamic range

compression, that does not obey superposition. When applied to mixtures of sound

sources rather than single signals, these algorithms do not behave as intended. The

distortion caused by compression in multisource environments is well documented in

the hearing literature and has been observed in state-of-the-art commercial hearing

aids [44–50]. Most hearing aids process signals separately in different frequency bands

based on the assumption that signals of interest and unwanted noise have different

spectra. However, this is not true in the most challenging listening environments

where the dominant noise source is speech.

Second, most listening devices perform what is effectively single-microphone noise

reduction. Although earpieces often include multiple microphones, they are too

closely spaced to provide meaningful spatial noise reduction. It has been widely ob-

served that single-microphone noise reduction algorithms do not significantly improve
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Figure 1.4: Sensor arrays can distinguish between signals arriving from different
directions based on time differences of arrival and other signal features.

intelligibility; at best, they can improve listening comfort in some situations [38,39].

Over the last several years, the hearing aid industry has focused on quality-

of-life improvements, such as rechargeable batteries and remote-control apps, and

consumer-gadget features such as Bluetooth streaming and heart-rate tracking. Rather

than building larger devices that can perform meaningful spatial processing, they

have continued racing to build smaller and more discreet devices. Large hearing

aid companies appear to be focusing their research efforts on machine learning tech-

niques. While these methods could lead to incremental improvements in perfor-

mance, they do not provide the device with any information that the ear does not

have already; for that, we must use large microphone arrays.

1.3 Microphone Arrays

Microphone arrays, like sensor arrays more broadly, add another dimension to signal

processing by sampling signals in space. Array processing systems can manipulate

signals across space, time, and frequency to do things that would be impossible with

a single sensor.
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1.3.1 Spatial signal processing

While modern statistical array processing methods are quite complex [8–11], the basic

intuition is simple: Sound waves from different directions will arrive at the different

sensors of the array at different times, as shown in Figure 1.4. If the positions of

the microphones are known, the system can use time differences of arrival between

sensors to calculate the direction of a signal; this process is called localization.

A complementary problem, called beamforming, is to focus on signals arriving from

a target direction and suppress all others [51]. Simple delay-and-sum beamformers,

suitable for anechoic environments, apply different delays to the signals from each

microphone so that sounds arriving from the target direction interfere constructively

and are amplified. Signals from other directions may be amplified or attenuated

depending on direction and frequency. More complex filter-and-sum beamformers

can be used to control beam patterns and apply constraints to multiple directions of

arrival.

Acoustic arrays are rarely used in anechoic environments. Indeed, many of the

spaces in which augmented listening systems would be most helpful, such as restau-

rants, bars, and conference rooms, are strongly reverberant. Sound does not travel in

a direct path from each source to each microphone: it bounces off of walls, furniture,

and other surfaces. The microphones themselves may also be directional and have

nonuniform frequency responses. In these situations, we can still enhance some sound

sources and suppress others, but such a system cannot be said to form a “beam.” In

this work, such processing is referred to as space-time filtering. It will be reviewed

in Chapter 3.

The related problem of source separation deals with extracting multiple signals

from a mixture [10]. For example, a common source separation task is to recover

the speech signals of individual talkers from a recording of several people talking

at once. Space-time filters can be used to perform unmixing, but only if the spa-

tial parameters—such as locations or transfer function vectors—of the sources are

known. If they are not, they must be estimated from the mixture itself. This difficult

problem, known as blind source separation [52, 53], has vexed audio signal process-
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ing researchers for many years. Even today, there are no known methods that can

blindly separate more than a few competing sound sources in challenging real-world

environments.

1.3.2 Trends in microphone array technology

The past few years have been eventful for microphone array technology. Thanks to

low-cost, high-performance microelectromechanical-systems (MEMS) microphones,

it is now easy to embed multiple microphones into any electronic device [54]. Nearly

every audio device larger than a watch now has at least two microphones. Mean-

while, array-equipped smart speakers that perform localization and beamforming

have surged in popularity, bringing microphone arrays into millions of homes for the

first time.

There has also been significant recent interest from researchers, enthusiasts, and

industry in spatial sound capture. High-channel-count microphone arrays, which are

often spherical, can be used to capture a sound field with rich spatial information.

These spatially encoded recordings can be reproduced with realistic spatial cues in

virtual reality applications [26].

By contrast, in the more traditional array processing research fields of audio source

separation and enhancement, there has been a trend toward smaller numbers of

microphones. If there are fewer microphones than sound sources, then the source

signals cannot be perfectly separated using linear time-invariant methods. So-called

underdetermined source separation techniques rely on special properties of certain

natural sound signals, such as time-frequency sparsity, to design nonlinear separation

algorithms [55,56]. For example, a mixture of three or four speech sources can often

be separated from a single-microphone recording by splitting it into finely spaced

time intervals and frequency bands, then assigning each time-frequency component

to a single source [57].

Underdetermined methods became prominent at a time when arrays with more

than two microphones were rare. Now that large arrays are more common, these

methods are still useful because they can help to estimate acoustic channel param-
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eters and they provide extra degrees of freedom to apply additional constraints or

improve robustness to errors. They also integrate easily with data-driven composi-

tional models, such as nonnegative matrix factorization [58], and machine learning

methods, such as deep neural networks [59].

As machine learning methods have become increasingly popular among audio re-

searchers, array processing risks becoming an afterthought. In speech recognition

systems, microphone arrays are often used only for preprocessing the input to a

deep neural network [6]. Single-microphone machine learning methods have also at-

tracted significant recent attention from hearing aid researchers [37]. While there

have been some promising results, it seems unwise to invest too many resources

into single-microphone methods for human listening enhancement: the reason that

single-microphone noise reduction techniques do not improve intelligibility is not that

the algorithms are not clever enough at identifying noise; it is that humans, even

those with hearing loss, already do a good job at separating sources and extracting

information amid background noise. Any system that merely preprocesses signals

using the same information available to the brain cannot be expected to offer much

advantage.

1.3.3 Microphone array listening devices

If we hope to build listening devices that surpass normal human abilities, we should

provide them with more information than is normally available to humans. We can

do that by adding more acoustic sensors.

Microphone array hearing aids first appeared in the signal processing literature in

the late 1980s. A series of dissertations between 1989 and 1994 examined the per-

formance of fixed and adaptive directional beamformers [18–20]. These early arrays

were designed to replace the directional microphones that had long been available

for hearing aids and that were known to improve intelligibility in noise. Thus, ar-

ray designs were evaluated primarily on their directivity, that is, on their ability

to improve the signal-to-noise ratio for a sound source directly in front of the lis-

tener. Fixed analog beamformers used microphone arrays mounted on eyeglasses
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Figure 1.5: There are several possible processing configurations for listening devices
on one or two ears.

to increase the directivity of hearing aids and therefore to improve intelligibility

in noise [60–62]. Researchers compared simple delay-and-sum beamformers against

more complex “superdirective” beamformers as well as digital adaptive beamform-

ing algorithms [63–65]. Adaptive beamformers can provide better performance in

reverberant environments, but are more complex [40].

During these early stages of research, most commercial hearing aids relied on

analog processing technology. All-digital hearing aids became widespread after the

turn of the century, enabling more sophisticated adaptive beamforming technolo-

gies [21, 66, 67] and statistical beamforming methods such as the speech-distortion-

weighted multichannel Wiener filter [68]. It also became possible for hearing aids

on either side of the head to communicate with each other via a wireless link [69].

Whereas most prior research had focused on monaural systems that output processed

signals to a single ear, bilateral systems that operate independently in each ear, or

diotic systems that output the same signal to both ears, fully binaural hearing aid

systems could coordinate processing between the left and right ears [16, 70]. These

configurations are compared in Figure 1.5. Optimistic researchers anticipated that
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hearing aids would soon wirelessly stream audio data to perform binaural beam-

forming between the ears. Today, only a few state-of-the-art commercial hearing

aids perform fully binaural beamforming; due to power constraints, the majority of

wireless hearing aids only synchronize settings between earpieces.

Binaural hearing aids introduced a new challenge for array designers: preserving

the listener’s spatial awareness. Bilateral hearing aids that operate independently

can apply different gains to the signals in each ear, distorting the interaural time and

level differences that humans use to localize sounds [22]. Devices can synchronize

processing settings to better preserve these cues. However, directional beamformers,

even those designed to preserve the spatial cues of a target sound source, distort the

cues of all other sounds [71, 72]. Over the last decade, signal processing researchers

have developed many new methods to preserve interaural cues in beamformers [23,

73]. Most reduce spatial distortion by intentionally preserving parts of background

sources; these binaural background-preserving beamformers anticipate the source-

remixing space-time filters that are the focus of Chapter 4.

1.3.4 Scaling up microphone arrays

Most of the microphone array hearing aids studied in the literature have had only a

few microphones and covered an area no larger than the head. If we hope to achieve

superhuman hearing, these arrays are not nearly large enough.

To understand why, consider again the augmented vision analogy. The optical

devices that can dramatically enhance human vision, microscopes and telescopes, are

both far larger than the human eye. By the laws of optics, they have to be. There is

no pair of eyeglasses that will let us resolve bacteria or the moons of Neptune. Why

should we expect to hear a mouse across a busy street using an array no larger than

a human head?

Just as larger lens systems can focus on objects that are smaller or farther away,

larger microphone arrays have finer spatial resolution. For conventional anechoic

beamformers, there is a well-known inverse relationship between the physical extent

of the array and the width of the beam. While the space-time filters used in listening
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Figure 1.6: Large wearable microphone arrays such as the Sombrearo can provide
better spatial resolution than microphones worn on the ears.

devices are more complex to analyze, the same principle applies. The more informa-

tion they can collect about the sound field, the better they will be able to remix the

auditory scene.

One way to increase the spatial diversity of a microphone array is to place mi-

crophones on opposite sides of an acoustically opaque object, such as the torso. In

Chapter 9, it will be shown that wearable arrays that span the body perform better

than those with closely clustered microphones, such as eyeglasses. We can also in-

crease the array aperture using large wearable accessories, such as the “Sombrearo”

shown in Figure 1.6. The largest wearable array examined in this work has 80 mi-

crophones spread across the entire body.

There have been several efforts over the years to build massive-scale microphone

arrays. Over thirty years ago, a 63-microphone analog array was used to isolate

talkers in an auditorium [74]. Using digital signal processing, researchers were able to

process an array of 512 microphones [75]. A few years later, a 1020-microphone array

was used to demonstrate a novel computer architecture [76]. More recently, MEMS

microphones have enabled large-scale arrays mounted on printed circuit boards [77,

78].

Rather than build one array with a massive number of microphones, we could also
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distribute microphones throughout the environment [79]. Room-scale microphone

arrays that surround most of the sound sources in a space are more useful than

compact arrays that are surrounded by sound sources. Whereas compact arrays

rely mostly on time or phase differences between microphones, distributed arrays

also provide amplitude information [80, 81]. They can use triangulation to localize

sound sources and can focus on sounds from a region of space, rather than a general

direction [82, 83]. However, wirelessly connected devices suffer from bandwidth and

latency limitations and from sample rate mismatch [84]. Distributed microphone

arrays are the subject of Chapter 10.

1.4 Array Processing and Human Listeners

After more than 30 years of research and development, multiple dissertations, and

dozens of crowdfunding campaigns for microphone array listening devices, and de-

spite consistent evidence that spatial noise reduction can improve intelligibility, no

large-microphone-array listening device has found success outside of the laboratory.

Why not? This section explores reasons that large microphone arrays have not been

widely adopted in human listening devices and proposes a new approach to space-

time processing for augmented listening.

1.4.1 Humans are not machines

Microphone arrays have been widely successful in many machine listening applica-

tions. Spatial source separation algorithms are useful for meeting diarization [85]

and acoustic event detection [86], while directional beamformers can improve the

performance of automatic speech recognition systems. Arrays are also useful in

teleconferencing applications, where they can reduce background noise and help to

suppress feedback [87]. The vast majority of studies on microphone array listening

devices have used the same type of processing as machine listening systems: the

device attempts to completely separate all sound sources in order to focus on one
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Figure 1.7: In machine listening systems (top), a source separation or beamforming
stage performs noise reduction but may introduce distortion. In human augmented
listening systems (bottom), the auditory system itself can help to compensate for
unwanted noise.

signal of interest. If other sounds are included in the output, it is only to help reduce

error sensitivity or spatial cue distortion [88].

This full-separation approach makes sense for machine listening, as illustrated in

Figure 1.7: with a high-performance source-separation or beamforming front end,

the inference application itself does not need to account for noise. For example,

a speech recognition system could use a machine learning model trained on clean

speech rather than many different types of background noise. While these machine

listening algorithms often try to mimic the human auditory system, they do not enjoy

humans’ natural robustness to noise. In augmented listening, however, the brain is

part of the system, along with its sophisticated source-separation and information-

extraction machinery.

The auditory system does not need the listening device to completely isolate a

sound source. Even if the device could do so perfectly, it would be disturbing to

sit in a crowded restaurant and hear only one person talking. If a device introduces

distortion while trying to reduce noise, as it surely would in challenging environments,
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it might to more harm than good by confusing the auditory system’s natural pattern

recognition processes. For example, directional beamformers can distort interaural

cues, impeding the brain’s ability to distinguish sounds from different directions.

Single-microphone noise reduction methods do not distort these cues, but they have

their own problems: the artifacts introduced by nonlinear time-frequency masking

algorithms (Chapter 7) are often interpreted by the brain as a distinct, unnatural

sound stream, sometimes known as “musical noise.” Thus, poorly executed source

separation may be worse than no source separation at all.

Machine listening systems try to imitate human hearing; augmented listening sys-

tems need only supplement it.

1.4.2 Perceptual transparency

To support the auditory system’s natural analysis capabilities, the output of the

listening device should resemble a real-world sound mixture as closely as possible.

An automatic speech recognition algorithm does not need to know the direction

of a sound, the acoustics of the room, or even the timbre of the talker’s voice in

order to produce a transcription; this information can be discarded after the source-

separation or noise-reduction stage of a machine listening system. The human brain,

however, relies on this information to extract meaning from sound. To ensure that

the augmented listening system is natural and comfortable for the user, we must

apply human-specific perceptual constraints.

Spectral distortion: Certain types of space-time filters can apply different amounts

of gain to different frequencies. Conventional beamformers have flat responses

in the target direction, but frequency-dependent attenuation in other direc-

tions. Statistical space-time filters designed to minimize squared error apply

more gain at frequencies where the target signal is strong and less gain where

it is weak, which can introduce spectral coloration. Of course, some frequency-

dependent gain may be desirable, for example if the user has high-frequency

hearing loss.
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Spatial distortion: Conventional beamformers can destroy the spatial cues, such

as interaural time and level differences, of non-target sources [72]. Any sound

that is not fully removed by the beamformer will appear to come from the tar-

get direction, causing a disturbing and potentially dangerous distortion effect.

Anecdotally, it sounds like being in a long tunnel. Space-time filters can be de-

signed to preserve spatial cues at the cost of noise reduction [22–24]. Spectral

and spatial distortion are discussed in Chapter 4.

Delay: Listening device users hear both processed and unprocessed sounds at the

same time. If the delay between these signals is more than a few milliseconds, it

can cause disturbing distortion [89,90]. These effects are most pronounced for

the user’s own speech because the delay interrupts the auditory feedback path

used in speech production. Some delay is introduced by analog-to-digital and

digital-to-analog conversion, but the most important source of delay is algorith-

mic. Frequency-selective processing methods, such as equalizers, filterbanks,

and time-frequency masks, require longer delay to achieve finer frequency res-

olution. Delay constraints are the subject of Chapter 5.

A listening device could meet all three of the above perceptual constraints perfectly

by applying pure amplification with no other processing. Such a system would be

perfectly transparent, but would not be very useful. Meanwhile, a directional beam-

former followed by a single-channel noise reduction algorithm could cause significant

spectral distortion, spatial distortion, and delay. Augmented listening systems can

strike a balance between these two extremes by remixing sound sources rather than

fully separating them.

1.4.3 Sound source remixing

In a sense, the augmented listening problem is easier than many machine listening

problems because the human auditory system can do much of the work on its own.

The listening device merely needs to help. Rather than source separation or single-

target beamforming, augmented listening systems should perform source remixing,

23



F � �

F

�
� F

�

�

Figure 1.8: Instead of separating sound sources, the proposed augmented listening
system remixes them, applying different processing to each.
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Figure 1.9: Augmented listening systems can apply many different types of
processing. More aggressive processing can better enhance human listening abilities
but may sound unnatural.

as illustrated in Figure 1.8. The space-time filter applies different processing to each

source signal or group of source signals, then recombines the processed signals to form

a new mixture. This approach is inspired by sound mixing in music, television, and

film studios: each performer or instrument is recorded separately and the resulting

signals are carefully processed and combined by an expert mixing engineer. A good

mixture ensures that lyrics and dialogue are intelligible but also includes immersive

environmental sounds, special effects, and music.

The amount of processing the device should perform depends on the situation

and the user’s hearing and cognitive abilities. Users with normal hearing or mild

loss might prefer no processing at all in quiet environments; the listening device

would intervene only in especially challenging circumstances. In other situations, the
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device might need to completely remove or replace certain sound sources. Choosing

what type of processing to apply and how much to alter the signals is a tradeoff

between augmentation and naturalness, as illustrated in Figure 1.9. A similar idea

has been proposed in object-based audio systems for television broadcasts [91, 92]:

the broadcast includes separate streams for dialog, sound effects, and music, and each

listener can adjust the mixture to trade off between intelligibility and immersiveness.

Remixing also has advantages from a signal processing perspective. It will be

shown that filters that only slightly alter the levels of sound sources relative to

each other introduce less spectral and spatial distortion than more aggressive filters.

They may also be less sensitive to parameter estimation errors and require less de-

lay. There are also important advantages of remixing for nonlinear processing such

as dynamic range compression. Compression is traditionally applied after beamform-

ing, so that all sounds in a mixture experience the same gain. It has been widely

observed, however, that compression performs poorly in background noise [45] and

that it can introduce distortion when applied to mixtures of multiple sounds [46].

Applying independent compression to each signal when possible can help to mitigate

this distortion [93].

It is not yet understood what type of processing should be applied to each source.

How much should we reduce noise to ensure that a conversation partner is intelligible

for a particular listener? How much compression should we apply to different musical

instruments? How much delay and distortion can the user tolerate in a crowded

restaurant? What types of sound does the user care about and which sounds can be

safely removed? Ideally, these processing settings would be automatically determined

by classification algorithms according to each user’s hearing profile and personal

preferences. Such algorithms will require new clinical research that is beyond the

scope of this work. In the meantime, however, we can address the many engineering

challenges of source-remixing augmented listening systems.

25



1.5 Microphone Array Processing for Augmented Listening

In engineering, as in science more broadly, we often learn the most by studying

extreme cases. By building the tallest tower, the fastest plane, or the largest mi-

crophone array, we test the limits of current technologies and understand how they

could be improved in the future. While there is undoubtedly a need for incremental

progress in listening device performance, the goal of this dissertation is to demon-

strate dramatic improvements that could change the way we approach listening tech-

nology, even if they require impractically elaborate systems. This work describes an

ambitious system that, if realized, would empower a listener to independently adjust

every sound source in the environment, to hear what they want to hear how they

want to hear it.

1.5.1 Proposed system

The proposed augmented listening system is shown in Figure 1.10. The core of the

system is a wearable microphone array, which includes a minimum of two micro-

phones, one in or near the left ear and one in or near the right ear. These in-ear

microphones allow the system to produce natural-sounding mixtures as they would

have been heard by each ear. The wearable array should also include microphones

spread across the body. While most prior research on wearable arrays has focused

on eyeglasses, necklaces, and small hats, this work will show that sensors should

be spread as far apart as possible, including on the acoustically opaque torso, to

maximize spatial diversity.

To dramatically enhance human hearing beyond its normal limits, the system must

collect information not just from one listening device, but from many microphones

spread throughout the environment. Microphones are already abundant in human

spaces. Mobile devices, game systems, teleconferencing equipment, and smart appli-

ances often contain multiple microphones. Better yet, the room could be deliberately

instrumented with microphones embedded in walls, ceilings, and furniture. Differ-

ent devices may be used in different ways depending on their individual bandwidth,
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kinds of audio signal processing. The circled numbers indicate chapters that cover
each part of the system.
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latency, and synchronization with respect to the listening device. A cooperative lis-

tening network might also include other augmented listening devices, allowing users

to hear through each other’s ears.

An augmented listening system operates on several time scales. At the longest

scale, classifiers determine the listener’s environment and detect what types of sound

are present. Based on user interface controls or an automatic decision-making al-

gorithm driven by perceptual models, the system decides what kind of processing

should be applied to each sound source or group of sources.

Source separation and acoustic channel estimation algorithms also work best over

long time scales. They would likely use tens of seconds of data to learn where the

sound sources are in the room or, more generally, to learn a space-time statistical

model for each source. If any wireless devices have severe sample rate offsets or long

transmission delays, then their data can only be used at this scale. Large motion,

such as a talker or wearable-array user walking across the room, can also be tracked

on multiple-second time scales. These computational tasks would likely be delegated

to a powerful mobile device, workstation, or cloud service.

Other decisions must be made several times per second. Small motion, such as

breathing or gesturing, must be tracked quickly. The spectra of speech signals change

on time scales of tens of milliseconds, and many sparsity-based source separation

and enhancement methods adapt to these changes. Dynamic range compression

algorithms typically react to increases in signal level within a few milliseconds and to

decreases in signal level over a few hundred milliseconds. The listening device might

also incorporate audio data from distant devices with low-latency digital connections

to help track motion and short-term source spectra. Many of these tasks might be

executed on the listening device itself, perhaps with some assistance from a more

powerful mobile device.

At the shortest time scale, the listening device must process sound signals with an

input-to-output delay of a few milliseconds to avoid disturbing distortion or percep-

tible echoes. To meet this strict delay requirement, the device must perform filtering

using its own internal processor. Typically, only microphones with wired or analog

wireless connections, such as near-field magnetic induction, can be directly processed
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by the space-time filter. Faraway digital wireless devices can be used only if the de-

lay due to transmission is short compared to the acoustic propagation time between

them and the listener and if their sample clocks can be synchronized with that of

the listening device.

The binaural outputs generated by the space-time filter are carefully designed to

preserve the listener’s spatial awareness and to minimize unintended spectral distor-

tion. The filters can be adjusted to trade off between distortion, noise reduction,

delay, and motion robustness.

1.5.2 Contributions of the dissertation

Many past works on microphone array listening technology have focused on one

small piece of the overall system, such as directivity or spatial cues. But to realize

truly dramatic performance improvements and translate them to the real world, we

must bring together tools from many areas of signal processing: source separation,

event classification, causal filtering, nonlinear gain control, and distributed sensing,

to name a few. This work takes a broad approach, describing the ways in which

different tools fit into the larger system and how established ideas and methods

must be adapted for human listening. It also introduces problems that have not been

previously addressed in the literature, such as delay-constrained array processing, the

design of body-scale wearable microphone arrays, and the effects of body movement

on array performance.

This work does not attempt to solve every problem required to build a powerful

augmented listening system. There are several missing pieces that will be needed to

make the different parts of the system work together and many improvements will

be needed to improve reliability and robustness. For example, the time-frequency

methods used to implement dynamic range compression, underdetermined source

separation, and asynchronous distributed processing do not meet the strict delay

constraints of human listening. The results presented here on moving and deformable

microphone arrays are first steps toward understanding a problem that will likely take

many years to solve. This dissertation also does not include any clinical research. To
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show that the proposed augmented listening technologies really can help people to

hear better, they must ultimately be evaluated by real people. At this stage, however,

the priority is to understand the engineering challenges that must be overcome to

make augmented listening systems work better.

Many of the results in this work do not only apply to augmented listening. Results

on delay-constrained array processing could apply to many spatial signal processing

applications, even outside of audio. The acoustic channel measurement and dis-

tributed array processing methods proposed in the latter half of the dissertation

are directly applicable to machine listening problems such as speech recognition.

Wearable microphone arrays could be used for recording, telecommunication, and

machine listening applications. However, the experimental results in this work focus

on listening applications.

The technical chapters of the dissertation can be roughly divided into two parts.

Chapters 3 through 6 present theoretical and experimental analysis of array signal

processing for human listeners, emphasizing the ways in which human augmented

listening differs from machine listening. They show that many of the unique con-

straints of human listening can be met by using larger microphone arrays. The

theoretical work in this dissertation builds on the existing literature by framing au-

dio enhancement as a remixing rather than separation problem, by incorporating

delay constraints that are usually ignored in array processing, and by developing

new theory and methods for dynamic range compression. Chapters 7 through 10

deal with the implementation challenges of realizing a practical augmented listening

system in complex dynamic environments and propose novel architectures and algo-

rithms to address these challenges. This work proposes new solutions to well-studied

problems, such as a more scalable sparse model for speech mixtures and a resampling-

free method for asynchronous arrays, and introduces previously unstudied problems,

such as compensating for motion in deformable microphone arrays.
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Array signal processing for human listeners

The technical material in the dissertation begins with Chapter 3, which reviews the

mathematics of array signal processing. Space-time filter criteria are derived in both

the time and frequency domains.

Chapter 4 shows how these filter criteria must be adjusted for human listeners. A

weighted-square-error criterion is used to design a source-remixing filter that alters

the relative levels of the source signals in the enhanced mixture. The filters must be

carefully designed to avoid spectral distortion and to preserve the listener’s spatial

awareness. Such filters are well-studied for the case of a single target source of

interest; here, the analysis is extended to remixing filters, with particular attention

to the effect on filter performance of the relative levels of different source signals in

the output. This analysis is easiest in the frequency domain.

Chapter 5 moves to the time domain, applying constraints to ensure that listening

devices have imperceptible delay. Classic theoretical tools from causal signal pro-

cessing are applied to characterize the tradeoff between delay and performance for a

delay-constrained microphone array processing system. These theoretical tools pro-

vide exact expressions for squared-error performance in certain special cases, while

new experiments demonstrate delay-performance tradeoffs in a real room.

Whereas the earlier chapters focus on linear time-invariant systems, Chapter 6 in-

troduces nonlinearity in the form of dynamic range compression. Although it is used

in almost every hearing aid and many consumer-targeted listening devices, compres-

sion is poorly understood and can fail in noisy environments. This chapter presents

new mathematical analysis to explain why compression performance degrades in

noise and proposes a novel source-specific compression strategy that leverages the

spatial diversity of microphone array devices.

Implementation of an augmented listening system

The first half of the dissertation is enough to build an augmented listening system

for controlled laboratory conditions. However, the system must be able to deal with
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uncertain and constantly changing real-world conditions, especially for large arrays

that span multiple devices. Chapter 7 introduces a new set of signal processing tools:

time-varying source separation methods based on the short-time Fourier transform.

These methods exploit the sparsity of speech and other natural signals to let inference

systems do more with limited spatial information. The chapter proposes a simplified

time-varying separation method that is more computationally tractable than related

state-of-the-art methods, but that can scale well to large arrays.

Chapter 8 discusses the longstanding open problem of acoustic channel estima-

tion. To design space-time filters, either linear or nonlinear, the system must learn

how acoustic signals propagate from each source to each microphone. Traditional

blind source separation methods do not work well in the challenging environments

in which augmented listening devices would be most useful. This chapter proposes

several semi-blind methods that use prior knowledge about the sound source signals

themselves. For example, a known speech phrase can be used as a pilot signal to

estimate channel parameters in keyword-activated listening systems.

Next, Chapter 9 covers the design of wearable microphone arrays, which has been

discussed surprisingly little in the microphone array listening device literature. A

first-of-its-kind wearable microphone data set is used to study tradeoffs in sensor

placement, while a prototype embedded implementation provides insight about prac-

tical design challenges. The chapter also considers the previously unaddressed prob-

lem of small relative motion between microphones, which would occur in any wearable

array. A second-order statistical model is used to characterize the effects of such mo-

tion both theoretically and empirically. The chapter compares several motion-robust

processing strategies and demonstrates their performance experimentally using a

wearable microphone array.

Although large wearable arrays can significantly improve performance compared

to conventional earpieces, they do not quite deliver on the promise of superhuman

augmented listening abilities. Chapter 10 shows how devices spread throughout the

environment can cooperate to provide far greater performance than any listening

device could on its own. Between two different large-scale experiments, this chap-

ter combines nearly all the techniques developed in this dissertation. One experi-
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ment combines established source separation and channel measurement techniques

in a hierarchical architecture suitable for networked listening devices, while another

demonstrates a novel partially asynchronous source separation technique for moving,

independently clocked devices that does not require explicit tracking or resampling.

Finally, Chapter 11 explains how the tools developed in previous chapters can be

combined into a complete augmented listening system. It also outlines the open re-

search problems that must be addressed to achieve superhuman augmented listening.

As noted above, this dissertation is concerned with extreme listening systems un-

like any that have been built before. To study such large-scale wearable and dis-

tributed arrays, however, we need realistic data. When this project began, suitable

data sets simply did not exist. The next chapter describes how the Augmented

Listening Laboratory team developed new data sets that let us study wearable and

distributed microphone arrays with dozens or hundreds of sensors.
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Chapter 2

Data and Methods

A major impediment to research on microphone array listening devices has been a

lack of high-quality data sets. Audio data sets, including speech and other sound

source recordings and room impulse responses, are crucial for audio researchers. They

can be used to conduct controlled experiments to compare different array designs and

processing strategies. Standardized data sets are used to compare results between

research groups, for example as part of challenges like CHiME [6], REVERB [15],

and SiSEC [94].

While there is ample data for binaural head-related transfer functions [95, 96]

and one large data set for behind-the-ear earpieces [97], to the best of our knowledge

before this work there had not been any public data sets of acoustic measurements for

larger wearable microphone arrays. Similarly, while there are several high-channel-

count real-world speech data sets [6, 85, 98–100], these are intended primarily for

speech recognition applications and do not include ground-truth source recordings

or impulse responses. To fill this important gap, this dissertation presents two first-of-

their-kind data sets, one for wearable microphones (Section 2.3) and one for massive-

scale distributed microphone arrays (Section 2.4). Several smaller data sets were also

collected for particular experiments.

To evaluate the performance of listening enhancement systems, we must strike a

balance between control and realism in experiments. At one extreme, convolving

simulated [101] or measured [102] room impulse responses with prerecorded anechoic

sounds [103,104] allows us to simulate arbitrary rooms and sound mixtures and track

every reflection of every syllable through the entire system, but algorithms that work

well in simulations might not work well in the real world. At the other, audio recorded
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Figure 2.1: An array of omnidirectional lavalier microphones.

from live sound sources by microphones on live humans in uncontrolled environments

can validate the real-world performance of processing systems, but no variables can

be manipulated and performance can only be evaluated qualitatively.

The experiments in this dissertation try to strike a balance: recordings are made in

real rooms, but the sound is from loudspeakers played one-at-a-time rather than from

live talkers. These data incorporate real room acoustics, transducer nonlinearities,

and environmental noise, but allow software experiments to manipulate the number

and intensity of sound sources and the number and placement of microphones. Crit-

ically, they also let us measure the amount of each sound source in the output of the

listening device so that we can objectively quantify system performance.

2.1 Equipment and Facilities

2.1.1 Microphone arrays

Nearly all the data used in this dissertation were recorded using a set of 16 Country-

man B3 omnidirectional lavalier condenser microphones, shown in Figure 2.1. These

tiny microphones have a flat frequency response over the range of audible speech

frequencies (100 Hz–20 kHz). Unlike most lavalier microphones, this model is hard-

wired, ensuring that all microphones can be sampled synchronously by the audio

35



Figure 2.2: Mannequins are better than human subjects at standing perfectly still
for long experiments.

interface.

Because augmented listening devices are worn by humans, a realistic data set

should use microphones affixed to human subjects. Since working with human sub-

jects requires special care (Section 2.5) and live humans introduce uncontrollable

motion and noise into recordings (Chapter 9), only some of the data used in this

dissertation was recorded using human subjects. Most wearable-microphone data

was captured using a pair of life-size plastic mannequins, shown in Figure 2.2. Be-

cause the mannequins have unnaturally small ears that do not support earpieces,

custom-made plastic ears were attached to the mannequins’ heads. These ears are

not intended to have fully realistic head-related transfer functions. In Chapter 9, we

consider how well plastic mannequins match the acoustic properties of real humans;

there do not appear to be substantial differences in acoustic transparency in the test

conditions used in this dissertation.

To simulate the electronic devices that often house microphone arrays, the research

team developed two custom array enclosures, shown in Figure 2.3.1 Every wearable

microphone array includes a pair of behind-the-ear earpieces, each of which holds

two lavalier microphones. These mimic the most popular style of hearing aids today.

A second enclosure, used for the distributed-array data set, imitates the form factor

of a smart speaker. While most commercial voice-enabled speakers use low-cost

1The author gratefully acknowledges Uriah Jones, Matthew Skarha, and Benjamin Stoehr for
their assistance in designing and producing these enclosures.
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Figure 2.3: Custom enclosures emulate behind-the-ear earpieces (left) and smart
speakers (right).

digital MEMS microphones, this prototype records from up to 16 studio-quality

microphones. The microphone slots are arranged in a circle with diameter 10 cm.

2.1.2 Playback and recording

To ensure that all audio data uses a common time scale, both playback and recording

are performed over wired connections by a 16-input, 10-output digital audio interface.

The interface is a Focusrite Scarlett 18i20 with attached Scarlett OctoPre. All data is

sampled at 48 kHz and 24 bits unless otherwise indicated. The interface is controlled

by a fanless miniature Windows computer using the Reaper digital audio workstation

software. This system is capable of simultaneously transmitting to 10 loudspeakers

and recording from 16 microphones, all using a common sample clock. The recording

system is mounted in a mobile cart that can be used to perform field recordings and

live demonstrations, as shown in Figure 2.4.

Prerecorded sound sources are played back over a set of 10 Presonus Eris E3.5

two-way studio monitors, shown in Figure 2.5. These monitors are poor analogues

for real human talkers: they have inconsistent frequency responses, relatively strong

nonlinearities, and directivity patterns that do not closely resemble those of human

talkers. The research team is actively developing full-range loudspeakers designed to

mimic the directivity of human talkers. Fortunately, the evaluation methods used

in this dissertation are not strongly affected by imperfections in the loudspeakers:
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Figure 2.4: A mobile recording cart houses a 16-input, 10-ouput digital audio
interface attached to a fanless computer. It can be used for field experiments and
live demonstrations.

Figure 2.5: Studio monitors are used to simulate human talkers.
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Figure 2.6: The Illinois Augmented Listening Laboratory features an acoustically
treated recording space.

processing systems are evaluated by comparing the processed outputs to the recorded

inputs, not to the original source data.

2.1.3 Augmented Listening Laboratory

Most of the experiments described in this dissertation were performed at the Univer-

sity of Illinois Augmented Listening Laboratory, an acoustics research space in the

Coordinated Science Laboratory. The laboratory, shown in Figure 2.6, is equipped

with a variety of microphones, loudspeakers, recording and playback devices, array

enclosures, mannequins, wearable accessories, and physical and electronic prototyp-

ing equipment used to develop novel audio devices.

The laboratory features a low-reverberation recording space treated with 8” melamine

foam wedges, 2” Auralex Studiofoam wedges, and a heavy curtain. The remainder

of the laboratory is untreated and contains many smooth, reflective surfaces. Thus,

it can be used for both low-reverberation and moderate-reverberation recordings.

Although the laboratory is quiet at high frequencies, there is intense low-frequency

noise from a mechanical room across the hall. A representative acoustic impulse

response and environmental noise spectrum are shown in Figure 2.7. Fortunately,
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Figure 2.7: Representative room impulse response (left) and background noise
spectrum (right) in the Augmented Listening Laboratory.

the noise is mostly concentrated below 100 Hz and can be removed by a highpass

filter without adversely affecting speech signals.

2.2 Experimental Methods

2.2.1 Impulse response measurements

An important component of any data set used for array processing is acoustic impulse

responses (AIRs) that describe how sound propagates from sources to microphones.

These AIRs are useful for two reasons: first, because audio acoustics is quite linear,

they can be used to simulate an acoustic mixture using arbitrary sound sources

without having to make time-consuming audio recordings. Second, AIRs can be

used to derive mathematically optimal space-time filters, as explained in Chapter

3. These ground-truth channel parameters are a useful baseline against which to

compare blind source separation methods and channel estimation methods, like those

in Chapter 8.

Acoustic impulse responses were measured using repeated linear or exponential

sweeps [105, 106] with duration at least ten seconds. Acoustic channels can also

be measured using pseudorandom noise signals such as maximum length sequences,

40



which are almost perfectly temporally uncorrelated [107].

2.2.2 Speech recordings

To ensure that the recorded sound mixtures are as similar as possible to live human

speech in the same room, we should use speech samples recorded in an anechoic

chamber. Only a few anechoic speech data sets are available. The TIMIT database

[103] is widely used, but is not freely available to the public and has a restrictive

license. Instead, the more recent experiments in this dissertation use the new VCTK

corpus, which is free and has a Creative Commons Attribution license [104]. The

corpus consists of recordings of different talkers reading individual sentences taken

from British newspapers. To create the source signals used in these experiments,

utterances from individual talkers were manually concatenated together with brief

gaps between sentences. The resulting speech clips have the pace and cadence of

radio news broadcasts. The talkers were chosen to represent a variety of genders,

timbres, and accents.

Speech clips were played from the loudspeakers in two ways. First, each speech

clip was played back from its corresponding loudspeaker by itself and recorded by

the microphones. The background noise of the room was also recorded with no

loudspeakers active. An isolated source signal as recorded by the microphones is

known as a source spatial image or simply source image [108]. These source images, or

a subset of them at specific microphones of interest, are the desired output of a source

separation algorithm. Because it is generally impossible to unambiguously recover

the sound produced by a source, separation performance is measured against the

sound as received by the array. By recording these images separately and then adding

them together to form a simulated mixture, we can control the number and intensity

of source signals in the mixture and we can compare the output of a separation

or remixing algorithm against an exact ground-truth output. Furthermore, we can

separately analyze the effect of the processing system on each source. Input and

output source images and the performance metrics that use them will be described

mathematically in Chapter 3.
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Recording sources one-at-a-time is less realistic than capturing true simultaneous

mixtures. Because each recording includes background noise, the sum of the image

signals has unnaturally amplified noise. It is also possible that the acoustics of the

room could change between recordings, for example if any people or furniture move.

To improve the realism of the experiments, recordings were also made with several

loudspeakers active simultaneously. This mixture data cannot be used directly to

quantify system performance, but it can be used to evaluate it qualitatively. Si-

multaneous recordings are especially important for moving sources and microphones

because motion cannot be exactly reproduced between recordings (Chapter 9).

2.2.3 Large arrays

Much of this dissertation is concerned with large-scale arrays that combine data from

dozens or even hundreds of microphones. Such arrays could be realized in practice

using small, inexpensive digital MEMS microphones [54] and highly parallel digi-

tal signal processing hardware [109]; the Augmented Listening Laboratory research

team is developing just such a system. For studio-quality recordings, however, it is

expensive and impractical to record from so many microphones simultaneously. In-

stead, large microphone arrays are simulated by recording source images at one set of

microphones at a time, then moving the microphones and repeating the recordings.

This process is repeated for as many microphone locations as desired.

To ensure that such recordings are realistic, it is essential that the source signals be

produced in exactly the same way during each recording. The loudspeakers must not

be moved between recordings and all playback and recording must be performed using

the same audio interface to ensure a common timescale between experiments. There

are still weaknesses of this method, however: the microphones themselves, including

their housing, enclosures, and cables, are moved between recordings, altering the

acoustics near the array. For experiments with more than two wearable-array users,

the mannequins must also be moved for some recordings, further altering the room

acoustics. Each recording captures the same prerecorded source signals produced by

the same loadspeakers, but the background noise in the room changes between takes,
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making it seem less spatially correlated than it really is. Thus, this method is most

appropriate for quiet, well-controlled laboratory environments.

2.2.4 Preprocessing

Although most data was recorded at 48 kHz, such a high sample rate is unneces-

sary for the speech data used in most experiments in this dissertation. To reduce

computational complexity, most experiments use decimated data sampled at 16 kHz.

Because the laboratory and other rooms used to collect data contain strong low-

frequency noise, and because the source image method artificially amplifies back-

ground noise, the source images are preprocessed to remove this background noise.

When microphone impulse responses are used to generate synthetic mixture data, a

highpass filter is applied to the system output before analysis to remove unreliable

signal components below about 200 Hz.

For speech recordings made with the distributed array, noise is removed using

a time-frequency generalized-singular-value-decomposition method similar to [110].

For each source image recording, the short-time-Fourier-transform vectors are pre-

whitened based on the measured space-time statistics of the background noise in the

room. These vectors are projected onto the subspace defined by their four dominant

singular vectors, then de-whitened and transformed back to the time domain. Four

singular vectors were used instead of one to preserve the diffuse components of the

source images and avoid unfairly advantaging rank-1 source separation methods. No

denoising was applied to the simultaneous mixture signals used to generate audio

examples.

2.3 Wearable Microphone Data Set

In the early phases of this research project, it was difficult to evaluate listening en-

hancement methods because there was little real-world data available for microphone-

array listening devices. Early publications [93,111,112] relied on a data set of acous-
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Figure 2.8: The human and mannequin subjects have generally similar height and
build.

tic impulse responses for behind-the-ear earpieces with three microphones each [97].

Thus, the largest array that could be simulated had six closely spaced microphones.

Many ambitious spatial processing methods, such as binaural source remixing (Chap-

ter 4), require much larger arrays. Therefore, a new data set was collected that in-

cludes over 8000 acoustic impulse responses for microphones placed all over the body

and on several wearable accessories [113]. This data set has been released to the pub-

lic under a Creative Commons Attribution license and is available on the Illinois Data

Bank, an archival service maintained by the University of Illinois Library [114].

The data set includes two subjects, one human and one mannequin, shown in

Figure 2.8. The mannequin is 183 cm tall and has a head circumference of 56 cm,

while the human is 181 cm tall with a head circumference of 61 cm. The two subjects

wore the same button-up shirt for all recordings except the experiments comparing

different outerwear, which used the mannequin only.

Test signals were generated from a total of 24 positions in a ring around the

subject. Because of limited space in the laboratory, these signals were generated by

six loudspeakers in a quarter-ring and the subject was carefully rotated four times

to capture all 24 directions of arrival. The loudspeakers sat on stands about 150 cm

above the tile floor and 200 cm away from the subject, as shown in Figure 2.9.
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Figure 2.9: Acoustic impulse responses were measured from 24 directions of arrival
around each subject. Figure adapted from [113].

Figure 2.10: Microphones were placed at 80 positions across the body.
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Figure 2.11: A total of 80 microphone positions were measured across several
wearable accessories.

The lavalier microphones were placed at 80 positions across the body, as shown

in Figure 2.10. One microphone was affixed to each ear using medical tape so that

it recorded sound just outside the ear canal. These two microphones are used as

the left and right references for all binaural processing experiments throughout the

dissertation. Another four microphones were encased in two behind-the-ear earpieces

(Figure 2.3). Ten more were clipped to eyeglasses, eight to a headband, and the

remaining 56 to the subject’s clothing.

Wearable microphone arrays might take the form of wearable accessories, such as

headphones, hats, or glasses. To help engineers and designers compare the perfor-

mance of different wearable accessories, supplemental measurements were taken with

five head-mounted accessories, each with sixteen microphones, as shown in Figure

2.11. These included over-the-ear headphones, a baseball cap, a hard hat, a hat with

a 40 cm flat brim, and a hat with a 60 cm curved brim. The latter, known as the

“Sombrearo,” is also featured in several smaller-scale data sets used throughout the

dissertation.

Although the author considers wearable microphone arrays to be quite fashionable

(see Figure 1.6 from the previous chapter), some users might prefer to hide arrays
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Figure 2.12: Recordings were made with several types of clothing covering
microphone on the torso.

under clothing. To evaluate the effects of outerwear on array performance, the torso

measurements were repeated with the microphones clipped to an undershirt and

covered by a cotton t-shirt, a cotton button-up shirt, a cotton sweatshirt, a fleece

pullover, a wool coat, and a leather jacket. The outerwear items are shown in Figure

2.12.

The acoustics of the human and mannequin bodies and the performance of different

array designs are evaluated in Chapter 9.

2.4 Distributed Microphone Data Set

To meaningfully augment normal human hearing in challenging noisy environments,

or to dramatically improve the performance of machine listening systems in those

conditions, we must use microphone arrays far larger than would fit in a wearable

accessory, even one as large as the Sombrearo. In situations with many competing

sound sources, it would be beneficial to use microphones distributed throughout the
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Figure 2.13: Smart-speaker enclosures and mannequins were spread throughout a
large conference room.

space. Although there has been significant recent research interest in distributed

arrays (see Chapter 10), and although there are several real-world speech data sets

using distributed arrays [6,100], there had not been any such data sets that provide

the ground-truth acoustic impulse responses and source spatial images necessary for

source separation and enhancement research.

To simulate large distributed arrays of wearable and smart-home devices [115], the

Augmented Listening Laboratory team collected a large data set using 10 loudspeak-

ers and 160 microphones spread throughout a large, reverberant conference room, as

shown in Figure 2.13. The data set includes impulse response measurements, back-

ground noise recordings, and 60-second speech recordings. This data set has also

been released to the public under a Creative Commons Attribution license on the

Illinois Data Bank [116].

The experiment included four wearable arrays of 16 microphones each. Eight

microphones were placed in the ears, earpieces, and eyeglasses, and eight were clipped

to different positions on the torso. To capture all four listening positions, the two

mannequins were placed in two locations each. There were also twelve smart-speaker

arrays with eight microphones each (Figure 2.3). The two smart-speaker enclosures

were placed in six positions each at the center of twelve tables. Speech signals were

produced by ten loudspeakers spread throughout the room, shown in Figure 2.14.
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Figure 2.14: Placement of mannequins, circular smart-speaker arrays, and
loudspeakers in the large conference room.

Figure 2.15: Distributed array in the Augmented Listening Laboratory.

The conference room is strongly reverberant with T60 ≈ 780 ms. Each listener is in

front of only a few loudspeakers, so that many sources have no direct acoustic path

but are instead dominated by reflections from walls and furniture. This challenging

acoustic environment reflects the adverse conditions in which augmented listening

systems are most needed, but it also makes analysis more difficult. For example,

it is difficult to evaluate interaural cues (Chapter 4) when many sources have no

direct path. Therefore, many experiments in this dissertation use a smaller data set

recorded using the same equipment in the Augmented Listening Laboratory.

This smaller data set used ten loudspeakers, three listener positions and nine

smart-speaker positions, for a total of 120 microphone channels. The sources and
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arrays were arranged throughout the treated and untreated parts of the laboratory,

as shown in Figure 2.15. The data includes impulse responses and 20-second speech

clips.

2.5 Experiments with Human Subjects

To study the design of microphone arrays for human listening enhancement, we

must conduct experiments with human subjects. Three experiments reported in this

dissertation used data collected from human subjects under protocols approved by

the University of Illinois Institutional Review Board:

1. The wearable microphone data set described in Section 2.3,

2. Recordings from wearable microphones on a single moving human, which will

be described in Chapter 9, and

3. Recordings from wearable microphones on multiple moving humans, which will

be described in Chapter 10.

These experiments used human subjects because they could not practically be com-

pleted with nonhuman analogues. In the case of the wearable microphone data set,

it was unknown whether mannequins are a reasonable acoustic analogue for real hu-

mans; in fact, part of the purpose of the experiment was to evaluate their differences.

The latter two experiments were to specifically evaluate the impact of human mo-

tion, including subtle motion such as breathing and more complex motions such as

dancing.

The protocols used to conduct these three experiments have similar procedures and

risks. Microphones were clipped onto the clothing of human subjects and sounds were

played over loudspeakers at an intensity similar to that of conversational speech. The

primary risk for participants in these studies is to their privacy: photographs and

video were taken in order to document experiments. This risk was mitigated by

obtaining separate and explicit consent to use photographs and videos in research
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materials. There was also a privacy risk to non-participants in the vicinity of the

experiment. Their privacy could be violated if their speech was accidentally captured

by the recording equipment. To mitigate this risk, recordings were performed in a

closed laboratory outside of normal business hours. All recordings that captured

conversations from neighboring laboratories were excluded from the data set.
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Chapter 3

Arrays and Spatial Filtering

Engineers struggle to replicate the function of the human auditory system. In most

ways—dynamic range, frequency resolution, source separation, speaker and speech

recognition—the human auditory system is a match for even our most advanced

sensing and computing technology [7]. There is one area, however, in which modern

technology wins handily: spatial processing. Humans have only two ears, and those

ears are right next to each other. While these two sensors provide remarkably rich

information about the three-dimensional direction of arrival of sound events [4,117],

they cannot compete with arrays of dozens or hundreds of microphones spread around

a room. This dissertation is concerned with augmenting natural human hearing using

the spatial processing at which machines excel but humans do not.

Listening machines can use microphone arrays to localize, track, separate, and fil-

ter sounds in space. When a sound arrives at a single microphone, there is often no

way to tell that sound’s direction of arrival. When a sound arrives at multiple micro-

phones, however, it will be captured by the nearest microphone first, then the next

microphone a few milliseconds later, and so on. A system with many microphones

spaced reasonably far apart from each other, known as a microphone array [13, 14],

can exploit these time differences of arrival between sensors to determine the direc-

tion of arrival of one or more sounds. The task of estimating signal direction is called

localization. It can be used by a conferencing system to point a camera at a person

talking, in machine maintenance to pinpoint a part making a sound it shouldn’t, or

a traffic camera to identify motorcycles violating noise ordinances.

A microphone array, like that shown in Figure 3.1, can also be used to isolate

sounds from a particular direction. The signals from different sensors are delayed,
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Figure 3.1: An array of microphones or other sensors can be used to process signals
spatially.

weighted, or filtered and then added together in such a way that a signal of interest is

amplified and other signals cancel out. A processing system that isolates one sound

source or focuses on all sounds from a particular direction is called a beamformer

[8, 9, 51]. Beamformers are increasingly popular in teleconferencing systems, hands-

free voice communication [87], distant speech recognition [118], including in popular

smart-home devices, and, of course, in listening devices [17]. Many of the array

processing methods proposed in this dissertation can apply to these other array

applications as well.

Arrays can do more than just beamform, however: a large enough array can be used

to separate multiple signals that each arrive along multiple reverberant paths, filter

them independently, and recombine them, possibly with multiple output channels

for multiple users or ears [10]. Such a system cannot be said to form a “beam”, so

we will use the more general terms spatial filtering and space-time filtering for more

complex processing methods. To design these filters, we need a mathematical model

for how acoustic waves propagate from one or more sound sources—such as talkers,

musical instruments, loudspeakers, or noisy appliances—to each of the microphones

in an array. We can use these acoustic channel models to design filters that process

sounds based on a variety of optimization criteria. In this chapter, we will review the

signal representations, channel models, and optimization criteria that will be used

throughout the dissertation.
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Table 3.1: Subscripts used to indicate signals in different domains/bases.

Notation Meaning Mapping

x(t) Continuous-time signal R→ R
xd[k] Discrete-time sequence Z→ R
xfb[k, b] Discrete-time filterbank sequence Z× {1, . . . , B} → R
X(Ω) Continuous-time Fourier transform of x R→ C
Xd(ω) Discrete-time Fourier transform of xd [−π, π]→ C
Xdf [f ] Discrete Fourier transform of xd {0, . . . , F − 1} → C
Xtf [k, f ] Short-time Fourier transform of xd Z× {0, . . . , F − 1} → C

3.1 Notation Used in the Dissertation

The following notation will be used throughout the dissertation:

• Continuous-index and mixed-index signals are indexed using ( ) and discrete-

index sequences are indexed using [ ].

• Lowercase letters indicate time-domain signals and sequences. Uppercase let-

ters indicate frequency- and STFT-domain signals and sequences.

• When the same letter is used for a signal in different domains/bases, they will

be distinguished by subscripts. For reference, commonly used subscripts are

tabulated in Table 3.1.

• Vectors and matrices are indicated by bold symbols.

• The complex conjugate is indicated with superscript ∗, the matrix transpose

with superscript T and the Hermitian transpose with superscript H.

• The imaginary unit is j =
√
−1.

• Italic e is the base of natural logarithms.

• Bold en is the unit vector with a 1 in position n. For example, eT2 =
[
0 1 0 · · · 0

]
.
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Figure 3.2: A listening system processes signals in continuous-time, discrete-time,
and time-frequency representations.

• The all-zero and all-one vectors/matrices are 0 and 1, respectively, and the

identity matrix is I. If it is not clear from context, the size will be indicated

by a subscript, e.g. 1M .

• The Kronecker delta function is δ[·]. The Dirac delta is δ(·). The Heaviside

step function is u(·).

• The set of real numbers is R. The set of nonnegative real numbers is R+. The

set of complex numbers is C. The set of integers is Z.

• Statistical expectation is denoted by E [·] and covariance is denoted by Cov (·).
Expectation and covariance are with respect to all random variables in the

argument unless stated otherwise.

• There is no notational distinction between random and nonrandom signals.

When signals are modeled as random processes, they will be defined as such in

the text.

3.2 Signal Representations

To analyze multimicrophone augmented listening systems, it will be helpful to work

with and convert between different representations of signals, as shown in Figure 3.2.
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3.2.1 Continuous and discrete time and frequency

The real-world inputs to and outputs from an audio processing system are continuous-

time signals. These will be denoted in the format x(t), where t is a real-valued time

variable and x is a real-valued signal measuring acoustic pressure or, in practice, an

electrical analogue of acoustic pressure.

To analyze the spectral content of signals, and to conveniently model linear time-

invariant systems such as room acoustics and many types of signal processing, it will

be convenient to work in the frequency domain. If a signal x(t) has finite energy,

then it has a continuous-time Fourier transform (CTFT) given by

X(Ω) =

∫ ∞
−∞

x(t)e−jΩt dt (3.1)

for all real-valued radian frequencies Ω. This dissertation is primarily concerned with

frequencies in the audible range, which is often stated as 20 Hz to 20 kHz (Ω = 40π

to 40000π).

Nearly all modern listening devices are digital, meaning that they operate on

quantized, discrete-time signals generated by analog-to-digital converters. We will

ignore the effects of quantization in this dissertation since they are usually orders

of magnitude smaller than the effects of the acoustic noise that we hope to address;

however, see [119, 120] for the author’s recent work on quantized array processing.

The discrete-time sequence sampled from x(t) is given by

xd[k] = x(kTs), (3.2)

for all integers k, where Ts is the sample period. If xd[k] has finite energy, then its

discrete-time Fourier transform xd[k] is

Xd(ω) =
∞∑

k=−∞
xd[k]e−jωk (3.3)

for real-valued discrete-time frequencies ω.
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Most of the experimental data presented in this dissertation is sampled at 48

kHz, so that Ts = 1/48000 sec. Because this is well above the Nyquist rate for

audible signals, it is assumed that no aliasing occurs. Sampling and reconstruction

are therefore assumed to be linear processes, which will allow us to analyze the

effects of discrete-time signal processing in continuous time. In particular, we will

use the CTFT domain to derive and analyze spatial and space-time filters that are

implemented by discrete-time digital processing.

3.2.2 Time-frequency representations

Most interesting audio signals, such as speech and music, have frequency spectra

that vary over time. For such sounds, it might not be useful to take a Fourier

transform of the entire signal. Instead, many audio applications use time-frequency

representations such as filterbanks and the short-time Fourier transform.

Many hearing aids use filterbanks to separate discrete-time signals into different

frequency bands [28]. These separated signals are

xfb[k, b] =
∞∑

τ=−∞
hd,b[τ ]xd[k − τ ] (3.4)

for b = 1, . . . , B, where k is a time index, b is a band index, and hd,b[τ ] is the unit

pulse response of the analysis filter for band b. Filterbank signals are real-valued and

processed using convolutional filters, just like time-domain signals. Many different

types of filter can be used and the bands need not be uniform.

Another popular time-frequency representation is the short-time Fourier transform

(STFT) [121–123], given by

Xtf [k, f ] =
∞∑

τ=−∞
awin(kTstep − τ)xd[τ ]e−j2πτf/F (3.5)

for frequency indices f = 0, . . . , F − 1 and time indices k, where Tstep is the number

of samples between frames and awin(τ) is an analysis window function. In the
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Figure 3.3: A spectrogram is a time-frequency representation of a signal. The
time-domain waveform is shown above the spectrogram on the same time scale.

experiments presented here, the analysis window is a raised cosine function, also

known as a Hann window:

awin(τ) =


1+cos 2πτ

L

2
if − L

2
≤ τ < L

2

0 otherwise,
(3.6)

where L is the window length, which should be less than or equal to F . The STFT

breaks the discrete-time signal into length-L frames, which usually overlap, and

applies a tapered window to suppress frequency-domain ripples. Finally, the length-

F discrete Fourier transform (DFT) is applied to each block to produce the STFT

representation.

Unlike the filterbank representation, Xtf [k, f ] is complex-valued. It is usually

processed via frequency-by-frequency complex multiplication.

The STFT is often used to analyze speech signals. Figure 3.3 shows the magnitude

of the STFT of a speech signal—the author saying “augmented listening”—with

time on one axis and frequency on the other. This visual representation is known

as a spectrogram. In many speech processing applications, such as automatic speech
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recognition, only the magnitude of the STFT is used and the phase is discarded.

In array processing, however, phase information is crucial because it encodes time

differences of arrival between nearby sensors.

The STFT can be inverted by taking the inverse DFT of each frame and adding

the overlapping blocks:

xd[τ ] =
∞∑

k=−∞
swin(kTstep − τ)

F−1∑
f=0

Xtf [k, f ]e+j2πτf/F , (3.7)

where swin(τ) is a length-F synthesis window that isolates one period of the inverse

DFT. When the analysis window is the Hann window and Tstep = L/2 (or L/4,

L/8, etc.), the synthesis window is simply a rectangle; the Hann window satisfies the

perfect reconstruction condition

∞∑
k=−∞

awin[k
L

2
− τ ] = 1 for all τ, (3.8)

so that the overlap-add step of the inverse STFT reverses the windowing process

from the forward STFT.

If the signal is altered before it is reconstructed, care must be taken to avoid tem-

poral aliasing within frames. Because multiplication in the DFT domain is equivalent

to circular convolution in the time domain, STFT processing can introduce “wrap-

around” errors. Zero-padding can help to mitigate these errors, as can using non-

rectangular synthesis windows. Furthermore, it is possible to create time-frequency

signals that are not the STFT of any time-domain signal. That is, there exist some

time-frequency signals Xtf such that x̂d = STFT−1{Xtf} but Xtf 6= STFT{x̂d}.
Finally, although the STFT and inverse STFT are linear operations, STFT-based

systems are not necessarily time-invariant because of the windowing process.
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3.3 Array Processing System

Consider an audio processing system with J outputs, such as loudspeakers or ear-

pieces, and an array of M microphone inputs, as shown in Figure 3.4.

3.3.1 Signals and sources

Let xm(t) be the continuous-time acoustic signal received by microphone m at time

t ∈ R for m = 1, . . . ,M . Define the M -dimensional vector x(t) = [x1(t), . . . , xM(t)]T .

Let xd,m[k], xfb,m[k, b], and Xtf,m[k, f ] be the discrete-time, filterbank, and STFT

representations of xm(t) and let xd[k], xfb[k, b], and Xtf [k, f ] be the discrete-time,

filterbank, and STFT representations of x(t).

In source separation [10,11,52,53], an observed signal is assumed to be composed

of a certain number of source signals. There is no one definition of what consti-

tutes a source: it could be single talker, an air conditioner, or an entire orchestra,

for example. To design a listening device, we would like to identify sound sources

that humans perceive as a single auditory stream [3]. To design a space-time filter,

meanwhile, we would like to choose sets of sounds that propagate according to a

common set of equations, such as those from directional acoustic emitters. These

perceptual and mathematical notions of “source” are not necessarily the same. As a

compromise, in this dissertation we adopt the following functional definition.

Definition 3.1. A source channel characterized by signal vector cn(t) ∈ RM is a

set of sounds that, in the ideal desired processing system, would be processed as a

single sound object. The set of all N source channel signals c1(t), . . . , cN(t) must

completely characterize the observed signal, that is,

x(t) =
N∑
n=1

cn(t). (3.9)

This decomposition property also holds in discrete time and in all linear transform

representations.
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Figure 3.4: Top: Inputs to and outputs from a space-time processing system.
Bottom: Desired effect of the remixing filter on source images c1(t), . . . , cN(t).

61



In other words, two sounds are part of a single source channel only if a hypothetical

ideal system would apply the same processing to both of them. Each source channel

could consist of an individual talker, a group of talkers, all sounds of a particular

type (bird chirps, traffic noise, music), or a catchall background noise channel, for

example. The source channel signals c1(t), . . . , cN(t) are sometimes known as source

spatial images or simply source images since they represent the response of the array

to the source signals [124].

To make the concept of a source channel more concrete, let us also define a set

of desired output images dn(t) ∈ RJ for n = 1, . . . , N , where J is the number of

outputs of the system. Each dn(t) is a processed version of its corresponding cn(t).

The overall desired output signal y(t) ∈ RJ is

y(t) =
N∑
n=1

dn(t). (3.10)

In most of the dissertation, with the exception of Chapter 6, the desired processing

will be assumed to be linear and time-invariant, even when the listening system that

implements it is not. In this case,

dn(t) =

∫ ∞
−∞

gn(v)cn(t− v) dv, n = 1, . . . , N, (3.11)

where each gn(t) is a J × M matrix of desired impulse responses. For example,

in a source-remixing system (Chapter 4), each desired impulse response might be a

scaled Dirac impulse that changes the relative level of its corresponding signal in the

mixture.

Note that the observational model (3.9) does not include a separate “noise” term:

any environmental noise, microphone self-noise, quantization error, etc., must be in-

cluded in the set of source channels. When performing directional beamforming or

spatial filtering, it is usually assumed that at least one source channel has an image

that is the convolution of a scalar signal with a vector of acoustic impulse responses

(Section 3.4.1). When performing statistical space-time filtering, it is usually as-
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sumed that all source channel signals are statistically uncorrelated with each other

(Section 3.4.2).

3.3.2 Space-time filtering

Let ŷ(t) = [ŷ1(t), . . . , ŷJ(t)]T be the J-dimensional vector of system outputs. As

with the input signals and desired outputs, these can be decomposed into N source

channels.

Definition 3.2. The output image d̂n(t) ∈ RJ is the contribution of source channel n

to the system output for n = 1, . . . , N . The set of N output images must completely

characterize the output signal such that

ŷ(t) =
N∑
n=1

d̂n(t). (3.12)

This decomposition property also holds in discrete time and all linear transform

representations.

Linear time-invariant processing

The output images are easily defined for a linear time-invariant (LTI) system. In an

LTI system, the output is given by

ŷ(t) =

∫ ∞
−∞

w(v)x(t− v) dv, (3.13)
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where w(t) is a J ×M matrix of impulse responses that completely characterize the

system. By linearity, we have

ŷ(t) =
N∑
n=1

∫ ∞
−∞

w(v)cn(t− v) dv (3.14)

=
N∑
n=1

d̂n(t), (3.15)

where

d̂n(t) =

∫ ∞
−∞

w(v)cn(t− v) dv, n = 1, . . . , N.

If the source images have Fourier transforms, then (3.13) can be expressed in the

frequency domain as

Ŷ(Ω) = W(Ω)X(Ω) (3.16)

=
N∑
n=1

W(Ω)Cn(Ω) (3.17)

=
N∑
n=1

D̂n(Ω), (3.18)

where D̂n(Ω) = W(Ω)Cn(Ω) for n = 1, . . . , N . The equivalent relationships hold for

LTI processing in discrete time.

Processing in the STFT domain is not necessarily time-invariant, but it can still

be linear:

Ŷtf [k, f ] = Wdf [f ]Xtf [k, f ] (3.19)

=
N∑
n=1

Wdf [f ]Ctf,n[k, f ] (3.20)

=
N∑
n=1

D̂tf,n[k, f ], (3.21)
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where D̂tf,n[k, f ] = Wdf [f ]Ctf,n[k, f ] for n = 1, . . . , N and Wdf [f ] ∈ CJ×M is a

matrix of complex coefficients. If negligible temporal aliasing occurs so that the

system is approximately LTI, then Wdf [f ] can be thought of as the discrete Fourier

transform of a discrete-time impulse response, as suggested by the subscript “df”.

Nonlinear processing

Many of the systems studied in this dissertation are nonlinear: the filters vary over

time in response to changes in the input signals. Because such systems do not obey

superposition, it is not obvious how to relate input signal components to output signal

components—altering one input source image could affect all N output images. In

these cases, the output image is defined as if the nonlinear system were a linear

time-varying system. For example, in the STFT domain,

D̂tf,n[k, f ] = Wdf [k, f ]Ctf,n[k, f ], n = 1, . . . , N. (3.22)

This definition is, in a sense, aspirational: a perceptually transparent listening

system should satisfy superposition, at least approximately. That is, signals that are

perceived as separate sounds before processing should also be perceived as separate

sounds after processing. Thus, this definition is useful for listening systems that

are working as they should. It fails, however, with certain types of highly nonlinear

processing. Aggressive dynamic range compression (Chapter 6) can cause different

sounds to modulate each other so much that they perceptually fuse [46]. In an

extreme case, fast-acting, many-band compression limiting distorts any input signal

into nearly white noise by forcing the signal to have a constant, flat spectrum. Other

types of nonlinear processing can introduce new, artificial sounds that are perceived

as separate auditory streams. Time-frequency masks (Chapter 7) are notorious for

introducing artifacts known as “musical noise” because they can be perceived as

musical. Thus, the concept of input and output images should be used with caution

in nonlinear systems.
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3.3.3 Performance evaluation

Source channels are defined here as groups of sounds that would be processed jointly

in an ideal system.

For each source channel n ∈ {1, . . . , N}, the error signal errn(t) is given by

errn(t) = d̂n(t)− dn(t) (3.23)

and the overall error is

err(t) = ŷ(t)− y(t) (3.24)

=
N∑
n=1

errn(t). (3.25)

The most commonly used error metric in this dissertation will be the signal-to-error

ratio, which is also referred to as the signal-to-distortion ratio in the source separation

literature [124].

Definition 3.3. The signal-to-error ratio (SER) for output signal ŷ(t) and desired

signal y(t) is given by

SER =
meant |y(t)|2

meant |ŷ(t)− y(t)|2
. (3.26)

This metric differs slightly from other commonly used metrics such as the signal-

to-noise ratio, which compares the power in a desired “target” output image to the

power in undesired “noise” output images.

Definition 3.4. The signal-to-noise ratio (SNR) for target source channel 1 and

noise source channel 2 is given by

SNR =
meant|d̂1(t)|2
meant|d̂2(t)|2

. (3.27)

The SNR does not account for distortion to the target source and does not make

sense for remixing filters, which do not distinguish between target and undesired
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source channels. However, it is useful when it is difficult to measure the desired

output image, as for moving arrays (Chapter 9).

Empirical performance evaluation

In many of the experiments presented in this dissertation, source images are used

to directly compute the SER or SNR. Microphones and loudspeakers are placed

in fixed positions in the test environment and prerecorded digital source signals

sd,1[k], . . . , sd,N [k] are played one-at-a-time from different loudspeakers. The result-

ing recordings are the sampled source images cd,1[k], . . . , cd,N [k] plus background

noise from the room. The N independent recordings are added together to give the

sampled mixture xd[k].

Because separate recordings of the source images are available, they can be used to

directly calculate the desired output images dd,n[k] for n = 1, . . . , N and therefore the

desired output yd[k]. The experimental SER can therefore be computed in discrete

time as

SER =
meank |yd[k]|2

meank |ŷd[k]− yd[k]|2
. (3.28)

Furthermore, the system under test can be applied to each source image recording

individually to generate the experimental output images d̂d,n[k] for n = 1, . . . , N .

These can be used to break down the error for each source channel and to compute

the experimental SNR. In nonlinear systems, the input-dependent filter parameters

are computed from the full mixture, fixed as a linear time-varying filter, and applied

separately to each source image. Because the ground-truth source images are avail-

able, we do not need to use the cumbersome source signal projections used in the

popular BSS-EVAL package [124], which attempts to account for unknown distor-

tion introduced by loudspeakers, microphones, and room acoustics when evaluating

separation from simultaneous mixtures.

The downside of recording source images separately is that it artificially amplifies

background noise when they are added together. It also skews the error calculations

because background noise is included as part of every source channel so that filters
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are penalized for removing the noise that they would typically be designed to sup-

press. Therefore, in many experiments the recordings are denoised using an oracle

multichannel noise-reduction filter before processing and the room background noise

is recorded separately to be used as its own source channel.

3.4 Models of Signal Propagation

One classic example of array processing is the delay-and-sum beamformer. In an

anechoic environment with signals arriving from far away, the signal components

at each sensor will be delayed versions of each other, with the delays depending

on the direction of arrival of the signal. The delay-and-sum beamformer applies

the opposite delays to the signals from each sensor, causing signals from the target

direction to add constructively. These classic beamformers are widely used in radio

frequency applications. For high-frequency, narrowband signals, time delays can be

well approximated by phase shifts and so these beamformers are also called phased

arrays.

Array processing is more complicated for audio signals, which span orders of mag-

nitude in frequency content. Although delay-and-sum beamformers are sometimes

used, they do not account for the reflections and reverberation that are common

in indoor environments where humans spend much of their time. Listening devices

must use more sophisticated models of signal propagation and more complex spatial

filters to process real-world sounds.

3.4.1 Acoustic impulse responses and transfer functions

Fortunately for designers of spatial sound processing systems, acoustic propagation

is mostly linear. If the sound sources and microphones do not move, then an acoustic

system can be well modeled by an LTI system. Suppose that each source channel

n represents a single directional sound source, such as a talker, instrument, or loud-

speaker. Then its source image is the convolution of a source signal sn(t) with a
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Figure 3.5: Acoustic impulse responses measured in the Illinois Augmented
Listening Laboratory and in a large reverberant conference room. The two AIRs
are plotted on different amplitude scales.

vector of acoustic impulse responses (AIR):

cn(t) =

∫ ∞
−∞

an(v)sn(t− v) dv, n = 1, . . . , N. (3.29)

Figure 3.5 shows sampled acoustic impulse responses from two of the data sets

used in this dissertation. One is from the acoustically treated Illinois Augmented

Listening Laboratory, which has little reverberation. It consists of a strong direct

path and a few early reflections. The other is from a large, strongly reverberant

conference room in which the loudspeaker and microphone are far apart. It has no

discernible direct path at all and a strong reverberant tail.

If sn(t) and an(t) have Fourier transforms, then (3.29) can be conveniently ex-

pressed as a vector-scalar product in the frequency domain:

Cn(Ω) = An(Ω)Sn(Ω), n = 1, . . . , N, (3.30)

where Cn(Ω), An(Ω), and Sn(Ω) are the continuous-time Fourier transforms of cn(t),

an(t), and sn(t), respectively. The vector An(Ω) is commonly called the acoustic

transfer function (ATF), although it is really a frequency response. This ATF can
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be used to design a matched-filter beamformer [125],

Wmatched(Ω) =
AH
n (Ω)

AH
n (Ω)An(Ω)

, (3.31)

which projects onto the subspace of An(Ω), preserving the source signal Sn(Ω) and

suppressing any signal not parallel to An(Ω). The delay-and-sum beamformer is a

special case of (3.31) where the ATF consists of pure time delays.

For multiple directional sources, the overall mixing process is a matrix-vector mul-

tiplication:

X(Ω) = A(Ω)S(Ω), (3.32)

where A(Ω) = [A1(Ω), . . . ,AN(Ω)] is the M × N mixing matrix, X(Ω) is the

continuous-time Fourier transform of x(t), and S(Ω) = [S1(Ω), . . . , SN(Ω)]T .

This LTI model of signal propagation, which is sometimes called the rank-1 model

because each cn(t) has a rank-1 power spectral density matrix when modeled as a

random process (Section 3.4.2), allows us to solve directly for the unknown source

signals. Specifically, if M ≥ N and the mixing matrix has full column rank for all Ω

of interest, then the signals can be perfectly separated by any unmixing filter whose

Fourier transform W(Ω) is a left inverse of A(Ω). If the ATFs are known, then we

do not need to make any assumptions about the signal statistics or content.

Relative transfer functions

In real-world spatial audio processing applications, it is rarely possible to directly

observe the source signals sn(t) or ATFs An(Ω). The system observes only the

microphones’ response to the signals. There is an ambiguity in these observations

because Cn(Ω) = Sn(Ω)An(Ω) =
(
Sn(Ω)
Q(Ω)

)
(Q(Ω)An(Ω)) for any invertible frequency

responseQ(Ω) 6= 0. It is therefore convenient to define the source signal to be equal to

source image at a designated reference microphone, for example sn(t) = eT1 cn(t). The

channel is then described by the relative transfer function (RTF) An(Ω)/eT1 An(Ω)

for eT1 An(Ω) 6= 0 [126]. Because the corresponding relative impulse response (RIR) is
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generally noncausal and infinite in length, RTFs are most useful in frequency-domain

and time-frequency-domain processing. In this dissertation, it will typically not be

necessary to distinguish between relative and absolute transfer functions and the

same notation will be used for both.

Other variations include RTFs with spatially processed references, in which case

the reference is itself the output of a space-time filter rather than a specific micro-

phone [127]. Many recent papers have used relative early transfer functions (RETF),

which represent only the perceptually important direct path and early reflections of

a signal [128]. These are useful for performing dereverberation. Although derever-

beration is not explicitly addressed in this dissertation, the techniques proposed here

could be modified to perform it by splitting the early and reverberant components

into two separate source channels and suppressing the latter.

Time-frequency models

The rank-1 model (3.30) is also commonly applied in STFT-based array processing.

If the acoustic impulse response is short compared to the DFT length of the STFT,

then

Ctf,n[k, f ] ≈ Adf,n[f ]Stf,n[k, f ], (3.33)

where Stf,n[k, f ] is the STFT of representation of the sampled source signal and

Adf,n[f ] is the DFT of the discrete-time impulse response ad,n[k]. The rank-1 model

does not hold exactly in the STFT domain because windowing introduces dependen-

cies across time frames and frequency indices. Because multiplication is performed

independently for each frequency index f , this approximation is sometimes called

the narrowband model.

Alternative models explicitly account for between-frequency effects [129] and across-

time effects [130], but they will not be used in this dissertation. A third method,

called the full-rank covariance model [131], models each source image STFT as a

random vector with a full-rank covariance matrix. Statistical processing of source

images is the subject of the next section.
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3.4.2 Statistical source models

The convolutional model of Section 3.4.1 is a useful starting point for array process-

ing, but it has limitations. Some sources are not directional, that is, their images

are not characterized by a single AIR or ATF vector. Diffuse noise, for example,

comes from many directions. Furthermore, some mixtures might not be easily sep-

arable using their spatial characteristics alone: sources might come from the same

direction but have different spectral characteristics, or there might be more sources

than sensors. In these cases, we can use information about the signals themselves—

their correlation structures or frequency spectra—to help to separate and process

the source images.

To leverage the powerful tools of statistical inference in designing space-time filters,

the signals must be modeled as random processes. Specifically, each source spatial

image cn(t) is a random function of time. Throughout the dissertation, these images

are assumed to have zero mean and to be statistically uncorrelated with each other,

that is, E [cn(t)] = 0 for all n and all t and E
[
cn1(t1)cTn2

(t2)
]

= 0 for all t1, t2, and

n1 6= n2. In the time domain, each source channel is characterized by an M ×M
matrix autocorrelation function,

rcn(τ) = E
[
cn(t)cTn (t− τ)

]
, n = 1, . . . , N. (3.34)

Let Rcn(Ω) be the corresponding power spectral density (PSD) matrix, that is, the

continuous-time Fourier transform of rcn(τ). Similarly, let rx(τ) = E
[
x(t)xT (t− τ)

]
.

Since the images are assumed to be uncorrelated with each other, the mixture auto-

correlation matrix is given by

rx(τ) =
N∑
n=1

rcn(τ). (3.35)

Let Rx(Ω) be the PSD matrix for x(t), which is similarly equal to the sum of the

Rcn(Ω)’s. For an LTI processing system, the PSDs of the output signal and output
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source images can be computed from the frequency response matrix:

Rd̂n
(Ω) = W(Ω)Rcn(Ω)WH(Ω), n = 1, . . . , N (3.36)

Rŷ(Ω) = W(Ω)Rx(Ω)WH(Ω). (3.37)

If a particular source channel has an acoustic transfer function An(Ω), then its

power spectral density matrix is given by

Rcn(Ω) = Rsn(Ω)An(Ω)AH
n (Ω), (3.38)

where Rsn(Ω) is the power spectral density of sn(t). Such a source channel is said to

be rank 1 because its PSD is a rank-1 matrix.

In the STFT domain, the power spectral density is replaced by the covariance of

the STFT samples:

RCtf,n
[k, f ] = Cov(Ctf,n[k, f ]). (3.39)

This covariance may or may not vary as a function of the time index k. For stationary

directional sources under the narrowband approximation (3.33), this covariance is the

outer product of an ATF scaled by a source power:

RCtf,n
[f ] ≈ RStf,n

[f ]Adf [k]AH
df [k], (3.40)

where RStf,n
[f ] = Cov(Stf,n[k, f ]). An advantage of the full-rank covariance model is

that it can help to compensate for the limitations of the narrowband approximation

for stationary directional sources [131]. We will see in Chapter 9 that it can also help

to model small motion of sources or microphones [132].

Statistical models allow the processing system to account for the space-time struc-

ture of signals and separate them based on their spectral as well as spatial character-

istics. For example, if a target source has ATF A1(Ω) and an undesired noise source

has PSD Rc2(Ω), then the unbiased estimator of s1(t) that minimizes noise power in

73



the output is the minimum variance distortionless response (MVDR) beamformer,

WMVDR(Ω) =
AH

1 (Ω)R−1
c2

(Ω)

AH
1 (Ω)R−1

c2
(Ω)A1(Ω)

. (3.41)

Notice that the matched filter beamformer (3.31) is a special case of (3.41) for spa-

tially uncorrelated noise (Rc2 ∝ I). Other statistical filter design criteria are dis-

cussed in the next section.

3.5 Statistical Filter Design Criteria

It is not obvious why the audio signals received by an array should be modeled as

random processes. After all, what is random about the acoustic waves that carry

speech or music? Even if these signals were truly random, they are certainly not

stationary, as implied by the use of the autocorrelation function and power spectral

density. They also do not have Gaussian distributions, meaning that the linear

estimators derived in this section do not truly minimize mean square error.

In array processing, the value of time-domain autocorrelation, frequency-domain

power spectral density, and STFT-domain covariance matrices is often not that

they accurately capture the temporal characteristics and frequency spectra of sound

signals—though this is useful for stationary sources such as appliance or engine

noise—it is that they encode the spatial structure of the signals. For example, if we

wish to design a space-time filter that isolates one directional source and suppresses

several other directional sources as well as diffuse noise, we do not need to explicitly

constrain its response to each unwanted source; we can simply add the PSD matrices

for all the unwanted channels and use the sum in place of Rc2(Ω) in (3.41). In fact,

we will do exactly that in Section 3.5.2.

For acoustically small arrays, such as those in conventional hearing aids, and espe-

cially in underdetermined scenarios with more sources than sensors, signal statistics

provide valuable information that can help to separate sources. Indeed, small arrays

can benefit from explicitly nonstationary, non-Gaussian models of source signals, as
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explained in Chapter 7. Much of this dissertation, however, is devoted to large arrays

with ample spatial diversity and many more sensors than sources. Such arrays rely

primarily on spatial information to separate and process source signals: as we will

see in Section 3.5.3, when a mixture covariance matrix is dominated by a few low-

rank sources, a minimum-mean-square-error filter approaches a linearly constrained

inverse filter that does not depend on the signal statistics. Thus, the PSD and covari-

ance matrices are a mathematical convenience for designing filters with the desired

spatial properties. In fact, in many of the experiments in this dissertation, filters are

designed assuming that all speech signals have identical long-term average spectra,

so that they rely entirely on spatial diversity.

Finally, although linear filters are suboptimal estimators for many of the non-

Gaussian signals encountered in the real world, their efficiency, ease of implementa-

tion, and ease of analysis make them attractive for use in embedded systems such

as augmented listening devices. In this section, we will derive several linear time-

invariant space-time filters based on the second-order statistics of the source images.

3.5.1 Multichannel Wiener filter

The simplest statistical linear estimator used in array processing is the multichannel

Wiener filter (MWF), which is the linear minimum-mean-square-error estimator of

the desired output signal y(t) given the observed input signal x(t). That is, it solves

the optimization problem

wMWF = arg min
w

E
[
|y(t)− ŷ(t)|2

]
, (3.42)
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where ŷ(t) is related to w(t) and x(t) by (3.13). By the orthogonality principle, the

w(t) that minimizes (3.42) satisfies [133]

0 = E
[
(y(t)− ŷ(t)) xT (t− τ)

]
, τ ∈ R (3.43)

= E
[(

y(t)−
∫ ∞
−∞

w(v)x(t− v) dv

)
xT (t− τ)

]
, τ ∈ R (3.44)

= ryx(τ)−
∫ ∞
−∞

w(v)rx(τ − v) dv, τ ∈ R, (3.45)

where

ryx(τ) = E
[
y(t)xT (t− τ)

]
(3.46)

is the cross-correlation between the desired and observed signals. Because the source

images are assumed to be uncorrelated, (3.11) can be used to decompose the cross-

correlation in terms of the source images cn(t) and desired responses gn(t) for source

channels 1, . . . , N :

ryx(τ) =
N∑
n=1

E
[
dn(t)cTn (t− τ)

]
(3.47)

=
N∑
n=1

∫ ∞
−∞

gn(v)rcn(τ − v) dv. (3.48)

Assuming for now that the filter is allowed to be noncausal, the Wiener-Hopf

equation (3.45) can be written in the frequency domain as

Ryx(Ω) = Rŷx(Ω) (3.49)

N∑
n=1

Gn(Ω)Rcn(Ω) =
N∑
n=1

W(Ω)Rcn (Ω) , (3.50)

for all Ω of interest, where each Gn(Ω) is the continuous-time Fourier transform of

the desired response gn(t) and W(Ω) is the continuous-time Fourier transform of
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w(t). The solution is the frequency-domain noncausal MWF:

WMWF(Ω) =

(
N∑
n=1

Gn(Ω)Rcn(Ω)

)(
N∑
n=1

Rcn(Ω)

)−1

(3.51)

=
N∑
n=1

Gn(Ω)Rcn(Ω)R−1
x (Ω). (3.52)

To illustrate the behavior of the MWF, consider again the example of a single

rank-1 source c1(t) and a full-rank noise source c2(t). In this case, G1(Ω) = eT1 and

G2(Ω) = 0 for all Ω so that the filter attempts to isolate the target signal referenced

to microphone 1 and remove the noise. The MWF is

WMWF(Ω) = Rsn(Ω)eT1 A1(Ω)AH
1 (Ω)

(
Rs1(Ω)A1(Ω)AH

1 (Ω) + Rc2(Ω)
)−1

. (3.53)

Using the Woodbury identity to rearrange terms,

WMWF(Ω) = eT1 A1(Ω)
Rs1(Ω)AH

1 (Ω)R−1
c2

(Ω)

1 +Rs1(Ω)AH
1 (Ω)R−1

c2
(Ω)A1(Ω)

. (3.54)

Unlike with the MVDR beamformer (3.41), a signal component parallel to A1(Ω)

will be scaled down in order to reduce the noise component in that direction. The

amount of this attenuation may vary as a function of frequency. Thus, while this filter

achieves the minimum mean square error between the desired and actual output, it

also distorts the spectrum of the signal of interest.

3.5.2 Linear constraints

To avoid distorting the signals within certain source channels, we can use linearly

constrained filters. These also minimize mean square error, but with the additional

requirement that exactly the desired processing be applied to a certain subspace of
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input signals [9]:

wLC(t) = arg min
w

E
[
|ŷ(t)− y(t)|2

]
s.t. W(Ω)Ac(Ω) = Const(Ω), (3.55)

where Nc ≤M is the number of constraints, Ac(Ω) ∈ CM×Nc defines the constrained

subspace, and Const(Ω) ∈ CJ×Nc contains the constraint values. Typically, such

constraints are used to require error-free processing for a subset of the source channels

that have rank-1 models:

wLC(t) = arg min
w(t)

N∑
n=Nc+1

E
[∣∣∣d̂n(t)− dn(t)

∣∣∣2]
s.t. d̂n(t) = dn(t) for n = 1, . . . , Nc. (3.56)

Often, the linear constraints are applied to a set of desired source channels and the

other source channels are unwanted noise, so that dn(t) = 0 for n > Nc. This type

of LC filter is known as the linearly constrained minimum variance (LCMV) filter:

WLCMV(Ω) = arg min
W

trace
(
W(Ω)Rnoise(Ω)WH(Ω)

)
s.t. W(Ω)An(Ω) = Gn(Ω)An(Ω) for n = 1 . . . , Nc. (3.57)

If a solution exists, it is given by

WLCMV(Ω) =
[
G1(Ω)A1(Ω) · · ·GNc(Ω)ANc(Ω)

]
·
(
AH

c (Ω)R−1
noise(Ω)Ac

)−1
AH

c (Ω)R−1
noise(Ω), (3.58)

where Ac(Ω) = [A1(Ω) · · ·ANc(Ω)] and Rnoise(Ω) =
∑N

n=Nc+1 Rcn(Ω).
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A special case for Nc = 1 is the MVDR beamformer:

WMVDR(Ω) = G1(Ω)A1(Ω)
AH

1 (Ω)
(∑N

n=2 Rcn(Ω)
)−1

AH
1 (Ω)

(∑N
n=2 Rcn(Ω)

)−1

A1(Ω)
. (3.59)

These linearly constrained filters do not depend on the temporal correlations of the

constrained source channels and the signals in these channels need not be modeled

as random processes. The filters do, however, make use of the statistics of the non-

constrained channels.

Let us consider again the example of a rank-1 target source and a full-rank noise

source with G1(Ω) = eT1 and G2 = 0. The MVDR beamformer that minimizes noise

power subject to a distortionless constraint on the target is

WMVDR(Ω) = eT1 A1(Ω)
AH

1 (Ω)R−1
c2

(Ω)

AH
1 (Ω)R−1

c2
(Ω)A1(Ω)

. (3.60)

This filter applies unity gain to all signals parallel to A1(Ω). As a result, its squared

error is larger than that of the MWF. Compare the filters defined by (3.54) and (3.60).

The single-target MWF performs the same projection operation as the MVDR, but

also scales the signal amplitude. In fact, the two beamformers are parallel, and the

single-target MWF can be written as an MVDR beamformer followed by a scalar

Wiener filter:

WMWF(Ω) =
Rsn(Ω)AH

1 (Ω)R−1
c2

(Ω)A1(Ω)

1 +Rsn(Ω)AH
1 (Ω)R−1

c2
(Ω)A1(Ω)

WMVDR(Ω). (3.61)

3.5.3 Distortion weights

Clearly, there is a tradeoff between the spectral distortion affecting a target source

and the overall squared error of the output. The MVDR and MWF beamformers

represent two extremes. There is a more general class of weighted least-squares

filters that occupy the space in between. The speech-distortion-weighted multichannel
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Wiener filter (SDW-MWF) [68] solves the single-target optimization problem

wSDWMWF = arg min
w

λ1E
[∣∣∣d̂1(t)− d1(t)

∣∣∣2]+ E
[∣∣∣d̂2(t)

∣∣∣2] , (3.62)

where λ1 ≥ 0 is a distortion weight that trades off between target distortion and noise

reduction. Note that the notation here differs from that in the original formulation

[68], where the distortion weight was applied to the noise term rather than the

distortion term of the cost function.

This optimization problem can solved in the frequency domain using the PSDs of

the source images:

WSDWMWF(Ω) = arg min
W

λ1(W−G1(Ω)) Rc1(Ω) (W−G1(Ω))H+WRc2(Ω)WH

(3.63)

= λ1G1(Ω)Rc1(Ω) (λ1Rc1(Ω) + Rc2(Ω))−1 . (3.64)

For a rank-1 target source and full-rank noise source, the filter can be written

WSDWMWF(Ω) = G1(Ω)A1(Ω)
λ1Rsn(Ω)AH

1 (Ω)R−1
c2

(Ω)

1 + λ1Rsn(Ω)AH
1 (Ω)R−1

c2
(Ω)A1(Ω)

. (3.65)

If λ1 = 1, then (3.65) reduces to the MWF (3.54). If Rsn(Ω) > 0, then in the limit

as λ1 →∞, we have the MVDR beamformer (3.60).

The MSDW-MWF

This dissertation adopts a more general version of the SDW-MWF, the multiple

speech-distortion-weighted multichannel Wiener filter (MSDW-MWF) [134]:

wMSDW−MWF = arg min
w

N∑
n=1

λnE
[∣∣∣d̂n(t)− dn(t)

∣∣∣2] . (3.66)

In the frequency domain, the optimization criterion is
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WMSDW-MWF(Ω) = arg min
W

N∑
n=1

λn (W −Gn(Ω)) Rcn(Ω) (W −Gn(Ω))H (3.67)

and the solution is

WMSDW-MWF(Ω) =

(
N∑
n=1

λnGn(Ω)Rcn(Ω)

)(
N∑
n=1

λnRcn(Ω)

)−1

. (3.68)

The distortion weights λ1, . . . , λN scale the power spectral densities of their respective

source channels, causing the filter to prioritize those channels with larger weights. If

λn = 1 for all n, we have the ordinary MWF (3.54).

Large-distortion-weight limit

In the limit as λn → ∞ for some or all rank-1 sources, we have an LC filter with

linear constraints applied to those sources. For example, to obtain the LCMV

beamformer (3.58), let Rcn(Ω) = Rsn(Ω)An(Ω)AH
n (Ω) for n = 1, . . . , Nc, let λ1 =

· · · = λNc = λc and λNc+1, . . . , λN = 1, let Ac = [A1 · · ·ANc ], let Rc(Ω) =

diag(Rs1(Ω), . . . , RsNc
(Ω)), let Gn(Ω) = 0 for n = Nc +1, . . . , N , and let R̄noise(Ω) =∑N

n=Nc+1 λnRcn(Ω). Omitting the frequency variable Ω for brevity, the MSDW-

MWF (3.68) can be written as

W = [G1A1 · · ·GNcANc ]λcRcA
H
c

(
λcAcRcA

H
c + R̄noise

)−1
. (3.69)
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Applying the Woodbury identity and combining terms,

W = [G1A1 · · ·GNcANc ]λcRcA
H
c

·
(
R̄−1

noise − R̄−1
noiseAc

(
λ−1

c R−1
c + AH

c R̄−1
noiseAc

)−1
AH

c R̄−1
noise

)
(3.70)

= [G1A1 · · ·GNcANc ]

·
(
λcRc − λcRcA

H
c R̄−1

noiseAc

(
λ−1

c R−1
c + AH

c R̄−1
noiseAc

)−1
)

AH
c R̄−1

noise (3.71)

= [G1A1 · · ·GNcANc ]
(
λ−1

c R−1
c + AH

c R̄−1
noiseAc

)−1
AH

c R̄−1
noise. (3.72)

In the limit for large distortion weights on source channels 1 through Nc, we have

lim
λc→∞

WMSDW−MWF = [G1A1 · · ·GNcANc ]
(
AH

c R̄−1
noiseAc

)−1
AH

c R̄−1
noise (3.73)

= WLCMV. (3.74)

This limiting argument also applies to overdetermined mixtures with N ≤ M rank-

1 channels and negligible full-rank noise. Although the mixture PSD Rx is not

invertible in such a system, its column space includes the ATFs of interest and so

we can still analyze the MWF or MSDW-MWF by interpreting them as linearly

constrained unmixing filters.

Because it is such a general LTI filter—many commonly used filters are special

cases—the MSDW-MWF will form the basis of the proposed source-remixing system,

which is the subject of the next chapter.
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Chapter 4

Binaural Audio Source Remixing

Because the spatial processing power of microphone arrays can far exceed that of

human listeners, engineers have long tried to use microphone arrays to help humans

hear better in noisy environments [17]. Modern high-end hearing aids typically in-

clude two microphones in each earpiece, which can be used to perform directional

beamforming. Because these microphones are so closely spaced, however, they can

provide only a few decibels of noise reduction. Some new hearing aids can share

data between earpieces, allowing them to leverage a total of four microphones on

both sides of the head. Even these devices, however, provide modest improvements

at best. The larger arrays used in distant audio capture and machine listening ap-

plications could achieve higher spatial resolution than a pair of earpieces. However,

there are important differences between human and machine listening applications

and they require different array processing strategies.

In most array processing applications, from antenna arrays to smart speakers, the

goal is to steer a beam toward a single target, removing as much interference from

other sources as possible. Many microphone array listening devices reported in the

engineering literature have been designed to do the same thing: isolate a single target

source, often a talker, and suppress all others. Human listeners are not the same

as wireless modems or automatic speech recognition algorithms, however, and this

approach has several drawbacks:

• Humans do not always want to listen to only one sound source. For example, a

user might want to listen to background music during a conversation or switch

their attention between multiple talkers.
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• The listening device usually does not know which sound a human wishes to

hear. There have been recent efforts to select a target based on eye tracking

or neural sensing, but even if they successfully identified the attended source,

these methods would inhibit the listener’s ability to quickly switch attention.

• Fully suppressing all background noise would be unnatural and disturbing—

imagine watching someone’s lips moving but hearing no sound come out! It

could also be dangerous if the listener failed to hear an alarm, crash, or scream.

• Designing such a beamformer requires precise knowledge of the acoustic chan-

nel parameters, such as the source channel AIRs or correlation matrices. An

aggressive background-suppressing beamformer would be highly sensitive to

parameter mismatch, especially if the target and noise sources are close to

each other (Section 4.2.3).

• Any background noise that is not removed by the beamformer will be spectrally

distorted (Section 4.3.1). Removing only some spectral features of an interfer-

ing sound could be worse than not removing it at all because the unnatural

distortion could disrupt the auditory system’s source separation process [3].

• Any residual background sources will lose the interaural cues that allow listen-

ers to localize them (Section 4.3.1). It would seem as though every sound in

the room were coming from the same direction.

In this chapter, we will explore a different approach to array processing for listening

devices: source remixing. Instead of isolating one source and removing all others,

the system applies different filters to different sources, as illustrated in Figure 4.1.

Some sources might be amplified and others attenuated. A device could also apply

different spectral filters to speech and music, for example.

The choice of how many source channels to preserve and what processing to apply

to them are open questions, ones better addressed by clinical researchers than by

engineers. It is known that there is a tradeoff between intelligibility, or how well a

listener can understand the single source to which they are attending, and immersive-

ness, or how aware the listener is of the overall acoustic scene [92]. Different listeners
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Figure 4.1: A remixing space-time filter applies different processing to each source
channel, much like a mixing engineering processes recording tracks.

will likely choose different levels of intelligibility versus immersiveness depending on

their individual hearing and cognitive abilities and personal preferences. The pro-

cessing applied to a source will also depend on what kind of source it is: stationary

noise sources, such as air conditioners, can probably be removed completely, while a

distant human talker shouting the listener’s name should presumably be amplified.

Learning-based acoustic event detection and classification algorithms will surely help

to identify and score the importance of different sources.

While we await clinical research to understand the potential benefits of remix-

ing for listeners, we can characterize the engineering benefits of remixing for filter

design. For system designers, source remixing is advantageous over complete sepa-

ration because it eases the design constraints on the space-time filters. A filter that

is only asked to remove part of a source has an easier job than one that fully sup-

presses it. This chapter describes these quantifiable advantages of remixing for linear

time-invariant filters. Building on the extensive literature on spatial and spectral dis-

tortion in single-target binaural filters, this work explicitly analyzes the relationship

between desired responses and filter distortion for source-remixing filters. In Section

4.2, it will be shown that remixing has advantages for squared error, spectral distor-

tion, and sensitivity. Remixing filters are also essential if we hope to preserve the

interaural cues of background sources and therefore the user’s spatial awareness, as

described in Section 4.3.
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4.1 A Source-Remixing Filter

A source-remixing space-time filter attempts to alter the observed mixture to apply

a different two-output LTI filter in every source channel. For input source image

cn(t), the desired output source image is

dn(t) =

∫ ∞
−∞

gn(v)cn(t− v) dv (4.1)

for n = 1, . . . , N , where gn(v) is a 2 ×M matrix of impulse responses. The J = 2

output channels correspond to the left and right ears. By convention, output channel

1 is to the left ear and output channel 2 is to the right. If cn(t) has a Fourier

transform, then in the frequency domain

Dn(Ω) = Gn(Ω)Cn(Ω), n = 1, . . . , N, (4.2)

and the ideal output of the listening device is

y(t) =
N∑
n=1

dn(t) (4.3)

Y(Ω) =
N∑
n=1

Dn(Ω) (4.4)

=
N∑
n=1

Gn(Ω)Cn(Ω). (4.5)

While the desired responses G1, . . . ,GN can be any 2×M matrices of frequency

responses, a perceptually transparent listening device should apply the same pro-

cessing to the source images at the left and right ears. If microphone 1 is in the left
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ear and microphone 2 is in the right ear then the response matrices take the form

Gn(Ω) =

[
Gn(Ω) 0 0 · · · 0

0 Gn(Ω) 0 · · · 0

]
(4.6)

= Gn(Ω)

[
eT1

eT2

]
, (4.7)

for n = 1, . . . , N , where Gn(Ω) is a scalar desired response for source channel n. Pro-

cessing the sounds at the two ears identically ensures that they retain their original

interaural cues, as discussed in Section 4.3.

4.1.1 Weighted squared error cost function

Recall from the previous chapter that the filter output is given by

ŷ(t) =

∫ ∞
−∞

w(v)x(t− v) dv (4.8)

=
N∑
n=1

∫ ∞
−∞

w(v)cn(t− v) dv︸ ︷︷ ︸
d̂n(t)

. (4.9)

To design a filter that estimates this desired output, assume that the source chan-

nels are wide-sense stationary random processes that are mutually uncorrelated.

That is, E [cn1(t1)cn2(t2)] = 0 for all n1 6= n2 and all t1, t2. We will apply the

MSDW-MWF [134], which minimizes the weighted squared-error cost function

JMSDW−MWF = E

[
N∑
n=1

λn

∣∣∣d̂n(t)− dn(t)
∣∣∣2] , (4.10)

where λn is a distortion weight that controls the relative importance of source channel

n. If λn = 0, source n is ignored completely. In the limit as λn → ∞, the filter has

a linear constraint on source n. If λn = 1 for all n, we have the standard MWF.
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The optimization problem (4.10) has different solutions depending on the con-

straints on w. If the space-time filter is allowed to be noncausal, then it can be

readily derived and analyzed using linear algebra in the continuous-time frequency

domain. Our mathematical analysis in this chapter will use this noncausal formu-

lation (Section 4.1.2). In implementation, however, the filter must be causal with

an imperceptibly short delay and must be realizable with finite computational re-

sources. Thus, the experiments presented in this chapter will use a causal finite-

impulse-response discrete-time filter (Section 4.1.3).

4.1.2 Remixing MSDW-MWF

If the filter is allowed to be noncausal, then the cost function (4.10) can be minimized

by independently minimizing the diagonal entries of the weighted error PSD matrix,

J (Ω) =
N∑
n=1

λn (W(Ω)−Gn(Ω)) Rcn(Ω) (W(Ω)−Gn(Ω))H , (4.11)

for all frequencies Ω of interest. The solution, which will henceforth be denoted as

W with no subscript, is

W(Ω) =

(
N∑
n=1

λnGn(Ω)Rcn(Ω)

)(
N∑
n=1

λnRcn(Ω)

)−1

(4.12)

=
N∑
n=1

λnGn(Ω)Rcn(Ω)R̄−1
x (Ω) (4.13)

where R̄x(Ω) =
∑N

n=1 λnRcn(Ω) is the weighted observed signal PSD [134].

4.1.3 Discrete-time implementation

While the noncausal continuous-time filter is easy to analyze, it is not realizable,

especially in a listening device that must have imperceptible latency. Let wd[τ ] ∈
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R2×M for τ = 0, . . . , L−1 be a causal, finite-length, discrete-time filter such that the

output is

ŷd[k] =
L−1∑
τ=0

wd[τ ]xd[k − τ ]. (4.14)

The filter is chosen to be an estimator of the delayed signal yd,α[k] = yd[k − α],

where α is a time delay, in samples, that should be imperceptible to the listener.

The tradeoffs involved in choosing α are the subject of Chapter 5.

Causal discrete-time MWF

The discrete-time equivalent of the Wiener-Hopf equations (3.45) for a finite-length

filter is the system of normal equations

E
[
ŷd[k]xTd [k − `]

]
= E

[
yd,α[k]xTd [k − `]

]
, ` = 0, . . . , L− 1. (4.15)

Using wd to compute ŷd and gd to compute yd, we have

L−1∑
τ=0

wd[τ ]E
[
xd[k − τ ]xTd [k − `]

]
=

∞∑
τ=−∞

gd,n[τ−α]E
[
cd,n[k − τ ]cTd,n[k − `]

]
, (4.16)

for ` = 0, . . . , L − 1. Assuming for simplicity of notation that gd,n has length less

than or equal to L− α, the system can be expressed as a matrix equation:

[
wd[0] · · · wd[L− 1]

] N∑
n=1

rcn =
N∑
n=1

[
gd,n[−α] · · · gd,n[L− 1− α]

]
rcn , (4.17)

where

rcn =


rcn [0] rcn [1] · · · rcn [L− 1]

rcn [−1] rcn [0]
...

...
. . . rcn [1]

rcn [1− L] · · · rcn [−1] rcn [0]

 , n = 1, . . . , N. (4.18)
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The solution to (4.17) is the discrete-time causal MWF, which minimizes the overall

mean square error between yd and ŷd for a given filter length L.

Causal discrete-time MSDW-MWF

To find the discrete-time finite-length MSDW-MWF, let us scale the correlation

matrices by the distortion weights λ1, . . . , λN :

[
wd[0] · · · wd[L− 1]

] N∑
n=1

λnrcn =
N∑
n=1

λn

[
gd[−α] · · · gd[L− 1− α]

]
rcn .

(4.19)

Finally, the length-L discrete-time causal MSDW-MWF with delay α is given by

[
wd[0] · · · wd[L− 1]

]
=

N∑
n=1

λn

[
gd[−α] · · · gd[L− 1− α]

]
rcn r̄

−1
x (4.20)

where r̄x =
∑N

n=1 λnrcn is the weighted stacked correlation matrix.

Because the stacked correlation matrices have block Toeplitz structures, both the

MWF and the MSDW-MWF can be efficiently computed using the block Levinson

recursion. All experiments in this chapter are performed using the discrete-time

causal MWF with a generous filter length spanning 256 ms and delay of 16 ms. The

impact of delay on filter performance and on listener perception is the subject of

Chapter 5.

4.2 Performance and Desired Responses

The performance of a source-remixing filter depends on the choice of desired source

channel filters g1(t), . . . ,gN(t). Consider the limiting case in which g1 = g2 = · · · =
gN , that is, the same processing is to be applied to every source channel. Then we

can achieve error-free performance by choosing w = g1. It would also have zero

additional delay (α = 0), no spectral distortion, and no interaural cue distortion.
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This transparent filter would not depend on the source statistics, so it would also

have no sensitivity whatsoever to parameter mismatch. At the other extreme, we

will show that a single-target beamformer is quite sensitive to mismatch, can have

large delay, and destroys the interaural cues of background sources.

A source-remixing filter should fall somewhere in between these two extremes. In

this section, we examine the impact of the desired responses on several measures of

filter performance. More transparent filters, that is, those that alter the input signals

less, are more robust and more easily implemented than filters that perform more

aggressive processing.

4.2.1 Spectral distortion

Let us begin by considering the distortion applied to a directional source. For the

remainder of this chapter, all analysis is performed in the frequency domain and the

frequency variable Ω is omitted for brevity. First, note that the remixing filter (4.13)

can be written

W =
N∑
m=1

λmGmRcmR̄−1
x (4.21)

W = Gn −Gn

(
N∑
m=1

λmRcm

)
R̄−1

x +
N∑
m=1

λmGmRcmR̄−1
x (4.22)

W = Gn −
N∑
m=1

λm (Gn −Gm) RcmR̄−1
x . (4.23)

If source channel n has ATF An, then the response of the filter to source signal n

is

WAn = GnAn −
N∑
m=1

λm (Gn −Gm) RcmR̄−1
x An. (4.24)

The second term represents the deviation from the desired result, GnAn. It depends

on the difference in desired responses between sources, the spectra and distortion

weights of the other sources, and the spatial separation of source channel n from the
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other channels. For example, if a source channel m has ATF Am and source signal

power Rsm , then Rcm = RsmAmAH
m and the corresponding term in the summation

in (4.24) becomes

λmRsmAH
mR̄−1

x An(Gn −Gm)Am. (4.25)

Distortion is most severe when there is another source close to the target (so that

AH
mR̄−1

x An is large) with strong power (so that Rsm is large) and strict distortion

constraints (so that λm is large) but with a very different desired response (so that

Gn−Gm is large). If a source is easily separated from all others (so that AH
mR̄−1

x An

is small), for example because the array is large and well-positioned relative to the

sources, then it does not cause much distortion in the output. If all source channels

have similar desired responses, then the filter will not introduce much distortion to

any of them.

An important special case is a channel for which Gn = 0. If a filter is designed to

completely remove a source channel—as a conventional beamformer would be for all

but one source—then the filter response for that channel is

WAn =
N∑
m=1

λmGmRcmR̄−1
x An. (4.26)

The residual power of the background signal will be concentrated at frequencies

at which the background source is difficult to separate from the target source(s).

For small arrays, this often means that high frequencies will be removed while low

frequencies will remain, altering the perceived timbre of the background source.

The distortion applied to source channel n also depends on the distortion weight

λn, which affects the R̄−1
x term in (4.24). In particular, in the limit for large distortion

weights we have

lim
λn→∞

WAn = GnAn. (4.27)

However, increasing the distortion weight of one source channel to reduce its distor-

tion will increase the distortion on all other channels. We can observe this effect by

analyzing the overall error of the system.
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4.2.2 Squared error

Now consider the total error PSD at the output of the source-remixing filter:

Rerr =
N∑
n=1

(Gn −W) Rcn (Gn −W)H . (4.28)

This expression is not easily simplified because the MSDW-MWF is not a minimum-

mean-square-error estimator. However, the weighted squared-error cost function J
(4.11) can be expressed in terms of pairs of sources. Using (4.23) and the fact that

the weighted error is orthogonal to the estimate, we have

J =
N∑
n=1

λn (Gn −W) Rcn (Gn −W)H (4.29)

=
N∑
n=1

M∑
m=1

λnλm (Gn −Gm) RcmR̄−1
x Rcn (Gn −W)H (4.30)

=
N∑
n=1

M∑
m=1

λnλm (Gn −Gm) RcmR̄−1
x RcnG

H
n . (4.31)

Binaural listening device

If the desired responses G1, . . . ,GN are real-valued, then

J =
1

2

N∑
n=1

M∑
m=1

λnλm
[
(Gn −Gm) RcmR̄−1

x RcnG
T
n + (Gm −Gn) RcnR̄

−1
x RcmGT

m

]
(4.32)

=
1

2

N∑
n=1

M∑
m=1

λnλm (Gn −Gm) RcmR̄−1
x Rcn (Gn −Gm)T . (4.33)
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In a perceptually transparent listening device with Gn = Gn

[
e1 e2

]T
for n =

1, . . . , N , the weighted squared errors at the left and right ears are

J left =
1

2

N∑
n=1

M∑
m=1

λnλm |Gn −Gm|2 eT1 RcmR̄−1
x Rcne1 (4.34)

J right =
1

2

N∑
n=1

M∑
m=1

λnλm |Gn −Gm|2 eT2 RcmR̄−1
x Rcne2. (4.35)

The error can be decomposed in terms of pairs of source channels. The error con-

tribution of each source pair depends on the difference in desired responses between

channels and on the spatial similarity between the two sources. Source pairs that

are easily separated or that have similar processing applied to them contribute little

error. Distortion weights can be used to shift error between sources.

Multichannel Wiener filter

The lowest overall squared error is achieved with λ1 = · · · = λN = 1, which yields

the MWF. In that case, the error PSD is

Rerr =
N∑
n=1

M∑
m=1

(Gn −Gm) RcmR−1
x RcnG

H
n . (4.36)

For real-valued scalar desired responses,

Rleft
err =

1

2

N∑
n=1

M∑
m=1

|Gn −Gm|2 eT1 RcmR−1
x Rcne1 (4.37)

Rright
err =

1

2

N∑
n=1

M∑
m=1

|Gn −Gm|2 eT2 RcmR−1
x Rcne2. (4.38)
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4.2.3 Sensitivity to parameter mismatch

So far, we have assumed perfect knowledge of the channel parameters Rcn or An

for n = 1, . . . , N . In real systems, however, these parameters must be estimated

from observed data, for example using the methods of Chapter 8. All parameter

estimation methods are prone to error. A good filter to should be robust against

errors in parameter estimates.

For directional beamformers, which can be evaluated using SNR, a popular mea-

sure of sensitivity to parameter mismatch is the norm of the beamformer vector,

WWH where W is a row vector. To see why, consider the output SNR gain of an

MVDR beamformer:

SNRout =
WRc1W

H

WRc2W
H
. (4.39)

In [135], sensitivity was defined as the fractional change in SNR due to a small

random change in the target source statistics:

Sensitivity =
∂
∂ε

SNRout|ε=0

SNRout (4.40)

=
∂
∂ε

W(Rc1 + εRs1I)WH

WRc1W
H

(4.41)

=
Rs1WWH

WRc1W
H

(4.42)

= WWH . (4.43)

The final step follows from the distortionless property of MVDR beamformers. Un-

fortunately, this popular definition does not extend to source-remixing beamformers,

which generally do not have unity-gain constraints and are not evaluated using SNR.

Let us instead define sensitivity as the change in weighted squared error due to a

small random change in the statistics of each source.

Definition 4.1. The sensitivity of a remixing filter to an offset in the statistics of
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source channel n is given by

Sensitivityn =
∂

∂ε
J |ε=0, (4.44)

where J is computed by fixing W and replacing Rcn with Rcn + εRsnI.

Using the error expression (4.11), we find that

Sensitivityn =
∂

∂ε
λn(Gn −W)(Rcn + εRs1I)(Gn −W)H (4.45)

= λnRsn |Gn −W|2 , n = 1, . . . , N. (4.46)

For the MSDW-MWF beamformer, we can apply (4.23) to find that

Sensitivityn = λnRsn

∣∣∣∣∣
N∑
m=1

λm (Gn −Gm) RcmR̄−1
x

∣∣∣∣∣
2

, n = 1, . . . , N. (4.47)

The sensitivity to parameter errors also depends upon the pairwise differences be-

tween desired responses. Less aggressive remixing yields more robust filters.

4.2.4 Remixing experiments

The performance of the proposed source-remixing space-time filter was evaluated

using a subset of the low-reverberation distributed array data set (Section 2.4). There

were five speech sources placed around the Augmented Listening Laboratory in both

the acoustically treated and untreated parts of the room. A sixth source channel

contained spatially uncorrelated speech-shaped Gaussian noise about 20 dB below

the level of the speech sources. The desired responses were frequency-invariant scalar

gains:

[Gn(Ω)]6n=1 =
[
1.0u 0.2u 0.4u 0.6u 0.8u 0.1u

]
, (4.48)

where the exponent u was varied from 0 (fully transparent) to 1 (aggressive remixing)

to show the effect of the desired responses on filter performance. The SER reported

in the figures is averaged over the left and right outputs.
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Figure 4.2: Remixing performance for different array configurations.
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Figure 4.3: Remixing performance for different channel estimates.
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Figure 4.2 shows the SER performance of the MWF as a function of G2 = 0.2u for

different array configurations. The smallest array (M = 4) contains two microphones

in each earpiece. An 8-microphone array covers the head, including earpieces and

glasses, while a 16-microphone array also includes the torso and arms. Finally, a

distributed 48-microphone array includes 16-microphone arrays on three listeners

in different parts of the room. The results show that larger microphone arrays

outperform smaller microphone arrays by similar amounts for most combinations of

desired responses.

Now let us consider the robustness of the source-remixing filters to errors in channel

estimation. Figure 4.3 shows the performance of the 16-microphone array using

three different models for the directional sources: the ground-truth autocorrelation

matrices of the test data, measured acoustic impulse responses truncated to 64 ms,

and source channel autocorrelation functions estimated using the cooperative blind

source separation method described in [115] and Chapter 10. Somewhat surprisingly,

the SER curves are roughly parallel: parameter mismatch appears to impose a nearly

constant penalty, in dB, on the SER for most sets of desired responses. Further

mathematical analysis will be required to understand this result.

4.3 Interaural Cue Preservation

When designing remixing filters that preserve the listener’s awareness of multiple

sound sources, we must take care to preserve the spatial characteristics of those

signals [23, 24]. Humans use interaural cues, especially interaural phase differences

(IPDs) and interaural level differences (ILDs), to localize sounds. As shown in Figure

4.4, sounds arriving from the left will reach the left ear before they reach the right

ear. At low frequencies, this time difference produces a frequency-dependent phase

shift between the left and right ears. At higher frequencies, sounds from the left will

also be more intense in the left ear than in the right because they are attenuated by

the head. The opposite is true for sounds arriving from the right.

In addition to the IPDs and ILDs that encode left/right position, the direction-
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Figure 4.4: Humans localize sounds using interaural time and level differences.

dependent spectral shaping effects of the head, shoulders, and pinna, known as head-

related transfer functions (HRTF), help humans to distinguish directions of arrival

in three dimensions [117].

Interaural cues are not only useful for localization: they also help the auditory

system to assign sound events in a mixture to the correct sources and to separate

competing sounds from different directions. This benefit is known as spatial release

from masking and is a crucial component of the cocktail party phenomenon [2, 3].

The farther an interference source is from the sound source of interest, the less it

affects the intelligibility of the target.

Because humans can use interaural cues to naturally separate sound sources, it

is important that listening devices preserve these cues. Otherwise, our attempts to

improve intelligibility in noise might actually make it worse. Spatial filters do not

automatically preserve interaural cues, and the beamformers used in teleconferencing

and speech recognition applications typically do not account for spatial cue distor-

tion. In these systems, the array processing algorithm needs to know where the sound

sources are, but spatial information is irrelevant for later processing. In a listening

application, sound sources are spatially processed twice: once by the listening device

and again by the human listener. Therefore, they should retain their interaural cues

at the output of the listening device.

In this section, we will show why conventional single-target beamformers distort

spatial cues and describe several previously proposed spatial filters that better pre-

serve a listener’s spatial awareness. We will analyze the effects of the source-remixing
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space-time filter on interaural cues and demonstrate its performance using real-world

audio recordings from a wearable microphone array.

4.3.1 Binaural beamformers

Mathematically, the ILD and IPD can be defined in terms of the interaural transfer

function:

Definition 4.2. The input and output interaural transfer functions (ITF) for source

channel n are given by

ITFin
n =

eT2 Cn

eT1 Cn

(4.49)

ITFout
n =

eT2 D̂n

eT1 D̂n

. (4.50)

For full-rank source channels, the direction of the vector Cn is not fixed and the

ITF is therefore signal-dependent. The ITF is more meaningful for source channels

that are well characterized by a single ATF An. Then we have

ITFin
n =

eT2 An

eT1 An

(4.51)

ITFout
n =

eT2 WAn

eT1 WAn

. (4.52)

The ILD and IPD can both be derived directly from the logarithm of the ITF.

Definition 4.3. The interaural level difference (ILD), in decibels, is the magnitude

of the ITF on a decibel scale:

ILDn = 20 log10 |ITFn| (4.53)

=
20

ln 10
Real [ln ITFn] . (4.54)
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Definition 4.4. The interaural phase difference (IPD), in radians, is the angle of

the ITF:

IPDn = ∠ITFn (4.55)

= Imag [ln ITFn] . (4.56)

Diotic space-time filter

Let us begin our analysis with a diotic space-time filter that presents the same

processed signal to both ears. That is eT2 W = eT1 W. The output ITF is

ITFout
n =

eT2 WCn

eT1 WCn

(4.57)

= 1 (4.58)

for all n = 1, . . . , N . Thus, ILDout
n = 0 and IPDout

n = 0 for all source channels. Such

a beamformer destroys all spatial cues of all sources. Each source would sound like

it is coming from inside the listener’s head.

Binaural single-target beamformer

To preserve the listener’s spatial awareness, a binaural listening device should pro-

duce different outputs at the left and right ears. Early cue-preserving binaural

beamformers were designed to isolate a single target source and preserve its spa-

tial cues [71,72].

Assume that the target is source channel 1 and all other channels are unwanted
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noise. From (4.7), the desired responses should be

G1 =

[
G1 0 0 · · · 0

0 G1 0 · · · 0

]
(4.59)

= G1

[
eT1

eT2

]
, (4.60)

and G2 = · · · = GN = 0. The single-target SDW-MWF with this desired response

is

W = λ1G1Rc1R̄
−1
x (4.61)

= λ1G1

[
eT1

eT2

]
Rc1R̄

−1
x . (4.62)

For a rank-1 target source with ATF A1, the output ITF is

ITFout
1 =

λ1G1Rs1e
T
2 A1A

H
1 R̄−1

x A1

λ1G1Rs1e
T
2 A1AH

1 R̄−1
x A1

(4.63)

=
eT2 A1

eT1 A1

(4.64)

= ITFin
1 . (4.65)

This beamformer perfectly preserves the interaural cues of the target source.

Now consider the response to any other source image Cn that is not fully removed

by the left beamformer (eT1 WCn 6= 0):

ITFout
n =

λ1G1Rs1e
T
2 A1A

H
1 R̄−1

x Cn

λ1G1Rs1e
T
1 A1AH

1 R̄−1
x Cn

(4.66)

=
eT2 A1

eT1 A1

(4.67)

= ITFin
1 . (4.68)

Every signal that is not fully removed by the beamformer is perceived as coming
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from the direction of the target source [72]. This spatial distortion is disturbing to

listeners. In the author’s experience, it sounds like listening in a tunnel.

Binaural filters with constraints on background sources

To address this tunnel effect, researchers proposed several filters that intentionally

preserve background sources with their original interaural cues. The simplest of

these, which has been called the binaural SDW-MWF-η filter [88, 136, 137], mixes

the beamformer output with the unprocessed input:

WSDW−MWF−η = (1− η)WSDW−MWF + η

[
eT1

eT2

]
. (4.69)

This approach perfectly preserves the interaural cues of the target while improving

the cues of the background sources, as we will show in the next section. It was

shown in listening tests that the modified filter partially restored spatial release from

masking that was damaged by a conventional beamformer [137].

Later proposals explicitly constrained the response of the filter to one or more

background sources. For a binaural listening device with M total microphones,

we can perfectly preserve the binaural cues of up to M spatially distinct rank-1

source channels by applying distortionless constraints to them, that is, by creating

an LCMV beamformer [138]. For such a source channel, the output of the binaural

LCMV beamformer is, by constraint,

WLCMVAn = Gn

[
eT1

eT2

]
An, n = 1, . . . , n∗. (4.70)

Thus, its output ITFs are identical to the input ITFs for those sources. In [139], the

desired responses G1, . . . , Gn∗ of the constrained background sources were chosen to

maximize overall SNR for the target source.

A drawback of the binaural LCMV beamformer for conventional hearing aids is

that it requires more microphones than a single-target beamformer. Adding more mi-
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crophones to each earpiece is costly. Furthermore, because those microphones would

be so close to each other, the LCMV constraint matrix would be poorly conditioned

and therefore highly sensitive to parameter mismatch and diffuse noise. To relax

these constraints without adding more microphones, it was proposed in [73, 140] to

reduce the number of constraints by constraining only the ITF itself and not the

absolute response in each ear. This beamformer, known as the joint binaural LCMV

(JBLCMV), solves the optimization problem

WJBLCMV = arg min
W

WRnoiseW
T (4.71)

s.t.
eT2 WAn

eT1 WAn

=
eT2 An

eT1 An

, n = 1, . . . , n∗. (4.72)

A drawback of the JBLCMV is that it allows arbitrary spectral distortion of each

source as long as the same distortion is applied in each ear. For mixtures of many

sources, the ITF constraints can be satisfied only by a transparent filter, that is, by

W ∝
[
e1 e2

]T
. Such a filter would apply no spatial processing at all.

For sparse signals such as speech, it is likely that only one or two sound sources

are audible at a given time and frequency. Thus, a device can preserve the interaural

cues of more sources than microphones using a time-varying, nonlinear filter that

constrains only the active source(s) for each time-frequency sample. A time-varying

system proposed by the author [112] is described in Chapter 7. Another proposal

used a time-frequency mask [141]. With these time-varying methods, care must be

taken not to introduce temporal artifacts such as musical noise.

The SDW-MWF-η, binaural LCMV, JBLCMV, and other LTI space-time filters

proposed in the literature all improve the listener’s spatial awareness by intentionally

preserving a portion of the background sources that a conventional beamformer would

remove. It seems that the more transparent the listening system—that is, the more

similar the desired responses of the source channels—the less the distortion of the

sources’ interaural cues. We can explicitly study this relationship by analyzing the

proposed source-remixing filter.
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4.3.2 Interaural cues for the source-remixing filter

Now let us analyze the interaural cue distortion of the proposed source-remixing

MSDW-MWF. The spatial transparency of the filter depends on the spatial diversity

of the array, the choice of desired responses for the different source channels, and the

distortion weights.

Suppose that a source channel n can be well characterized by an ATF An. Then,

substituting (4.23) into (4.52), the interaural cues at the output are

ITFout
n =

eT2 WAn

eT1 WAn

(4.73)

=
eT2 GnAn + eT2

∑N
m=1 λm (Gm −Gn) RcmR̄−1

x An

eT1 GnAn + eT1
∑N

m=1 λm (Gm −Gn) RcmR̄−1
x An

. (4.74)

If the desired response matrices satisfy (4.7), then

ITFout
n =

Gne
T
2 An +

∑N
m=1 λm (Gm −Gn) eT2 RcmR̄−1

x An

GneT1 An +
∑N

m=1 λm (Gm −Gn) eT1 RcmR̄−1
x An

. (4.75)

For rank-1 sources, the matrix products in the summations simplify to

eT2 RcmR̄−1
x An = Rsm(AH

mR̄−1
x An)eT2 Am (4.76)

eT1 RcmR̄−1
x An = Rsm(AH

mR̄−1
x An)eT1 Am. (4.77)

The ratio of these products is the input ITF of source channel m. Thus, the output

ITF can be thought of as a mixture of the ITFs of the individual source channels

[88]. From (4.75), we can find several conditions under which the presence of source

channel m does not affect the interaural cues of source channel n in the filter output:

1. λm or Rsm is zero so that the filter ignores channel m,

2. An is parallel to Am so that the ITFs are the same,

3. An is perfectly spatially separable from Rcm so that RcmR̄−1
x An = 0,
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4. Gm = Gn so that the filter need not separate channels m and n, or

5. λn →∞ so that both the left and right output images are distortion-free.

The interaural cues of a target source are most impacted by powerful interference

sources that are far enough from the source of interest that they have different

interaural cues but near enough that they are difficult to separate from it. The

penalty can be reduced by making the desired processing more similar between source

channels or by increasing the distortion weight of the target. However, increasing the

distortion weights for one source will affect the interaural cues for all other sources.

Spatial distortion can also be improved by using a larger array that is better able to

separate the source channels and process them independently.

First-order approximation

The errors in the ILD and IPD are the real and imaginary parts, respectively, of the

logarithm of ITFout
n /ITFin

n . If Gn and ITFin
n are nonzero, then the ITF error can be

written

ln
ITFout

n

ITFin
n

= ln
1 +

∑N
m=1 λm

Gm−Gn
Gn

eT2 RcmR̄−1
x An

eT2 An

1 +
∑N

m=1 λm
Gm−Gn
Gn

eT1 RcmR̄−1
x An

eT1 An

. (4.78)

Using the first-order approximation ln (1 + u) ≈ u for both the numerator and de-

nominator, the logarithmic ITF error is

ln
ITFout

n

ITFin
n

≈
N∑
m=1

λm
Gm −Gn

Gn

(
eT2 RcmR̄−1

x An

eT2 An

− eT1 RcmR̄−1
x An

eT1 An

)
. (4.79)
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If every source channel were well approximated by a rank-1 PSD Rcn ≈ RsnAnA
H
n

for n = 1, . . . , N , then the ILD and IPD errors would be

∆ILDn ≈
20

ln 10

N∑
m=1

λmRsmReal

[
Gm −Gn

Gn

AH
mR̄−1

x An

(
eT2 Am

eT2 An

− eT1 Am

eT1 An

)]
(4.80)

∆IPDn ≈
N∑
m=1

λmRsmImag

[
Gm −Gn

Gn

AH
mR̄−1

x An

(
eT2 Am

eT2 An

− eT1 Am

eT1 An

)]
. (4.81)

Thus, spatial distortion depends on the power and distortion weight of each interfer-

ing source, the relative difference in desired responses between sources, the spatial

separability of the sources, and the difference in interaural cues between source chan-

nels.

Next, let us consider several special cases that illustrate the effect of the remixing

filter on interaural cues.

Single target source

Suppose that G1 = 1 for a directional source with ATF A1 and G2 = G3 = · · · =

GN = 0, that is, that the filter is a beamformer directed at a particular source. Then

for any source channel n, the output cues are

ITFout
n =

λ1Rs1e
T
2 A1A

H
1 R̄−1

x An

λ1Rs1e
T
1 A1AH

1 R̄−1
x An

(4.82)

=
eT2 A1

eT1 A1

(4.83)

= ITFin
1 . (4.84)

This is the “tunnel effect” described in the previous section.
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Identical desired responses

Now consider a system that only has two desired responses: G1 for source channel

1 with ATF A1 and G2 = G3 = · · · = GN for all other source channels. This is the

SDW-MWF-η beamformer [88, 136, 137], which adds a fraction of the unprocessed

input signal to the output of a single-target beamformer. For the target source,

(4.75) becomes

ITFout
1 =

G1e
T
2 A1 +

∑N
m=2 λm (G2 −G1) eT2 RcmR̄−1

x An

G1eT1 A1 +
∑N

m=2 λm (G2 −G1) eT1 RcmR̄−1
x An

(4.85)

=
G1e

T
2 A1 + (G2 −G1) eT2

(∑N
m=2 λmRcm

)
R̄−1

x An

G1eT1 A1 + (G2 −G1) eT1

(∑N
m=2 λmRcm

)
R̄−1

x An

(4.86)

=
G1e

T
2 A1 + (G2 −G1) eT2

(
R̄x − λ1Rc1

)
R̄−1

x An

G1eT1 A1 + (G2 −G1) eT1
(
R̄x − λ1Rc1

)
R̄−1

x An

(4.87)

=
eT2 A1

eT1 A1

(4.88)

= ITFin
1 . (4.89)

For an interference source with ATF An, n > 1, we have

ITFout
n =

G2e
T
2 An +

∑N
m=1 λm (Gm −G2) eT2 RcmR̄−1

x An

G2eT1 An +
∑N

m=1 λm (Gm −G2) eT1 RcmR̄−1
x An

(4.90)

=
G2e

T
2 An + λ1Rs1 (G1 −G2) AH

1 R̄−1
x Ane

T
2 A1

G2eT1 An + λ1Rs1 (G1 −G2) AH
1 R̄−1

x AneT1 A1

. (4.91)

The cues of the target source are not distorted, but the cues of the background

sources are corrupted by those of the target. As observed in [88], if the gain applied

to the background noise is the same as that applied to the target, then the interaural

cues of all sources are preserved perfectly.
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Figure 4.5: Interaural cue preservation for a binaural source-remixing filter with
different desired responses.

4.3.3 Experiments

The interaural cue preservation of the source-remixing filter was analyzed using the

same experimental setup as in Section 4.2.4. The experimental ITFs of the five

directional sources were measured in the STFT domain using their sample cross-

correlations [88]:

ITFin
n [f ] =

∑
k eT1 Ctf,n[k, f ]CH

tf,n[k, f ]e2∑
k eT1 Ctf,n[k, f ]CH

tf,n[k, f ]e1

(4.92)

ITFout
n [f ] =

∑
k eT1 D̂tf,n[k, f ]D̂H

tf,n[k, f ]e2∑
k eT1 D̂tf,n[k, f ]D̂H

tf,n[k, f ]e1

, (4.93)

for n = 1, . . . , 5. The experimental ILD and IPD errors were computed from the

ITFs using the absolute values of (4.53) and (4.55), respectively, and averaged over

the five directional sources.

Figure 4.5 shows the performance of earpieces with M = 4 total microphones for

four sets of target responses:

1. A transparent filter with unity gain on the five speech sources and 20 dB
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Figure 4.6: Interaural cue preservation for a binaural source-remixing filter with
different microphone configurations.

attenuation on the noise channel,

2. A mild remixing filter with gains 1.0, 0.8, 0.7, 0.6, and 0.5 on the speech

channels and 20 dB attenuation on the noise channel,

3. An aggressive remixing filter with gains 1.0, 0.4, 0.3, 0.2, and 0.1 on the speech

channels and 20 dB attenuation on the noise channel, and

4. A single-target beamformer with G1 = 1 and G2 = · · · = G6 = 0.

As expected, the transparent filter has negligible interaural cue distortion, the single-

target beamformer severely distorts the background sources, and the two remixing

filters fall in between. The distortion is relatively mild at frequencies below a few

hundred hertz; these wavelengths are much larger than a human head and so the

ILD and IPD of all sources are close to zero.

A larger wearable array should be able to apply complex remixing to more sources

than a small earpiece-based array can. Figure 4.6 shows the ILD and ITD distortion

for the “aggressive” remixing responses with arrays of different sizes. The four-

microphone earpiece array does not have enough degrees of freedom to preserve the
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interaural cues of all five directional sources. The 8-microphone head-mounted array

does better, and the 16-microphone whole-body array produces little distortion in

any of the source channels.

4.4 Summary and Future Directions

The design of source-remixing filters requires a tradeoff between audio enhancement—

removing and altering different sound sources to improve intelligibility—and robust-

ness. Filters that alter the signal less, that is, that apply similar desired responses

to the different source channels, cause less spectral distortion and less interaural cue

distortion and do not require as much accuracy in estimating channel parameters.

They also sound more immersive and natural to the listener.

A full understanding of this tradeoff will require new clinical research. The choice

of desired responses will depend on the nature of the sources, the preferences of

the individual, and the characteristics of the environment. In most cases, listening

devices should likely adopt a “do no harm” approach: alter the sources as little as

possible while achieving a desired perceptual outcome. For example, in a speech

enhancement mode, a hearing aid might reduce background noise just enough to

ensure intelligibility according to the listener’s individual hearing profile. Applying

more processing than necessary—that is, using very different Gn’s—risks introducing

unnecessary spectral and spatial distortion, delay, and sensitivity to the system. In

quiet environments in which the auditory system can fully separate all the sound

sources of interest, a listening device might not apply any spatial processing at all.

This principle of avoiding distortion might explain the conservative array process-

ing in modern commercial hearing aids: with their limited spatial diversity, they

cannot provide meaningful spatial gain without also causing the tunnel effect or

other perceptible distortion. In the author’s experience with recent “hearables”

products that perform binaural beamforming, strong spatial processing does sound

disturbingly unnatural, but can make speech intelligible in noisy environments where

it would otherwise be impossible to communicate. Space-time remixing filters with
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large wearable arrays could provide the advantages of both approaches: they have

enough spatial resolution to meaningfully suppress strong background noise, but they

have enough degrees of freedom to ensure that those attenuated noise sources sound

natural. Mathematically, large arrays produce smaller values of the spatial correla-

tion term RcnR̄
−1
x Rcm , which appears in some form in the expressions for spectral

distortion, interaural cue distortion, squared error, and sensitivity. To improve remix-

ing performance even further in challenging environments, we can use time-varying

filters that track changes in source spectra on syllabic time scales (Chapter 7). We

can also use distributed arrays (Chapter 10) that extend human sensory capabilities

beyond the body.

There is one critical perceptual constraint that was not analyzed in this chapter:

delay. It too depends on the choice of desired responses for different source channels

and on the spatial separability of source images. It is the subject of the next chapter.
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Chapter 5

Delay-Constrained Array Processing

5.1 Delay in Listening Devices

In the last chapter, we saw that there are important differences between the space-

time filters used for human listening and the conventional beamformers used in ma-

chine listening and telecommunication applications. While the preservation of inter-

aural cues in array processing has received significant attention from signal processing

researchers—it was the subject of three recent doctoral theses!—there is another de-

sign constraint that remains largely unexplored: delay. Unlike most other audio

processing applications, listening devices have severe constraints on delay, that is,

on the time between when a sound event reaches the microphone and when it is

reproduced by the receiver.

This chapter, which is an extension of the author’s work in [142], explores the

tradeoffs between delay and performance for array-based listening devices. How

much performance must we give up to maintain imperceptible delay? Can large

arrays be used to apply more powerful filters than small arrays for a given delay

constraint? Finally, what do these tradeoffs look like in real rooms with wearable

and distributed microphone arrays?

5.1.1 Effects of delay on human listeners

When humans listen through hearing aids or other listening devices, the output of

the listening device is not the only signal they perceive. As shown in Figure 5.1,
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Listening device

Direct acoustic path

Figure 5.1: Listening devices introduce delay into processed sound signals. The ear
receives a mixture of processed and unprocessed sound.

the processed output of the device is mixed with sound that enters the ear directly.

Depending on the delay between them, this mixing can result in spectral distortion

or even perceptible echoes.

Delay is most critical for the user’s own speech, part of which is transmitted

through the skull rather than the ear canal. A delay in the listener’s own speech,

called delayed auditory feedback, can interfere with speech production. One study

showed that normal-hearing listeners can notice delays in their own speech as short

as 3–5 ms [90] and find delays of 10 ms objectionable. Other studies have found

that listeners with simulated hearing loss can tolerate longer delays on their own

speech; with mild hearing loss, users rated delays of 20–30 ms disturbing and speech

production was affected after 30 ms [89, 143]. Similar results were observed for

subjects with real hearing loss, with disturbance decreasing with degree of hearing

loss at most frequencies [144].

For external sound sources, the relative intensity of the processed and unprocessed

sounds depends on the sound source and listening device. A study with closed-fitting

devices, which physically block sound from entering the ear canal, found that normal-

hearing listeners find delays of 9 ms disturbing and that speech comprehension is

affected after 15 ms [145]. Many modern hearing aids, especially for users with mild

to moderate hearing loss, have open fittings: the ear tip includes a vent that allows

external acoustic pressure waves to propagate directly to the ear canal. Open-fitting

aids are more comfortable but cannot provide as much gain due to feedback through

the vent. It was found that with open-fitting hearing aids, delays as short as 3 to 5

ms were considered disturbing [146].
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These studies have shown that distortion due to delay is most severe when direct

and processed sounds have similar intensity. Thus, greater delay is tolerated with

greater amplification [146]. Similarly, users with mild and severe low-frequency hear-

ing loss are less disturbed by delay than users with moderate low-frequency loss, for

whom direct and processed sounds would have similar intensity [144]. There appears

to be no significant effect on delay tolerance from reverberation or dynamic range

compression [143]. Users find delay more disturbing when it varies across frequency,

as it might when hearing aids provide more amplification at high frequencies or pro-

cess sound using nonuniform filterbanks [145]. These nonuniform delays can alter

the timbre of the sound, distort temporal cues such as stop consonants, and interfere

with spectral grouping in auditory scene analysis.

In addition to the direct and processed sound signals, the user also perceives visual

information, such as moving lips, that the brain attempts to synchronize with sound

information. Audio-visual fusion is affected by delays greater than about 80 ms [147].

There remains much to be discovered about the perceptual effects of delay in listen-

ing devices. For example, could listeners tolerate more delay in noisy environments

in exchange for greater noise reduction? These open problems are discussed further

in Section 5.5.

5.1.2 Sources of delay

The delays introduced by a listening device fall into two categories. The first, which

could be called hardware delay, depends on the implementation details of the elec-

tronic processing system. Nearly all listening devices today use digital signal pro-

cessing: a continuous-time signal is captured by a microphone, sampled, quantized,

and transmitted to a digital processor. There is delay associated with this analog-

to-digital conversion process, usually less than 1 ms. A similar delay is required to

convert the processed digital signal back to an analog electrical signal that drives

the receiver. There is also a processing delay required to execute the computer in-

structions that analyze the digitized input signal and produce a digital output signal.

The amount of this delay depends on the algorithms used and the capabilities of the
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processor. Using more powerful hardware can reduce hardware delay.

The second type of delay is algorithmic delay, which is a mathematical property

of the space-time filter itself. To estimate the output y(t) at time t, a filter would

benefit from knowledge of both present and future values of x(t). But real-world

systems must be causal : they can only use information about the present and past,

not about the future. For LTI space-time filters, causality requires that

w(τ) = 0 for all τ < 0. (5.1)

Because a real-world system cannot observe future values of the input, it instead

estimates past values of the output. That is, ŷ(t) is not an estimate of y(t) but of

y(t−α), where α is the algorithmic delay of the filter. In this work, it is assumed that

the delay α is uniform across frequency, although in real devices delay is sometimes

frequency-dependent.

While hardware delay can be reduced by using more advanced electronic circuits,

algorithmic delay is a fundamental property of the estimation problem. The more

information is available to the filter, the better it can perform estimation. Filters

with longer delays have finer frequency resolution, for example. The tradeoff between

delay and performance is especially pronounced if the listening device uses time-

frequency representations. Filterbanks with more bands require more delay in order

to separate signals into narrower frequency ranges. Similarly, STFTs with finer

frequency resolution use longer frame sizes, which introduce greater delays.

Because hardware delay is not fundamental to the listening-enhancement inference

problem and is often negligible compared to algorithmic delay in advanced listening

devices, we will not explicitly consider hardware delay in this dissertation. In this

chapter, we will characterize the fundamental tradeoff between algorithmic delay and

squared-error performance for LTI space-time filters.
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5.1.3 Low-delay processing for listening devices

Most of the analysis of Chapters 3 and 4 was performed in the continuous-time

frequency domain. Filters derived in the frequency domain are noncausal in general:

they are allowed to look at the entire past and future of a signal in order to make

the best possible estimate. Noncausal filters are easy to derive and analyze in the

frequency domain, but they cannot be implemented in practice.

Similarly, much of the literature on microphone array processing, including later

chapters of this dissertation, process signals in the STFT domain [10, 11]. STFT-

domain filters are designed from covariance matrices in much the same way that

CTFT-domain filters are designed from power spectral densities. They can therefore

be thought of as noncausal filters. In practice, the minimum algorithmic delay of any

STFT-based algorithm is equal to its frame size: the system must capture an entire

frame of samples before it can compute the first sample of the corresponding output

frame. For speech separation, typical STFT frame sizes are 50–60 ms [57,108]. This

choice maximizes the sparsity of speech signals in the time-frequency domain, making

them easier to separate and recognize. However, it is an order of magnitude larger

than the delay tolerated by a human listener.

Signal processing researchers have proposed methods to reduce the algorithmic

delay of filters used in hearing aids. Several authors have proposed nonlinear-phase

filterbanks for low-delay hearing aid processing [148,149]. There has also been some

recent work to reduce the latency of time-frequency-domain single-microphone audio

enhancement methods, including nonnegative matrix factorization [150] and deep

neural networks [37, 151, 152]. However, the algorithmic delay of these methods is

still fundamentally limited by the frame size of the STFT.

Despite the importance of delay to human listeners, most recent research on mi-

crophone array processing for listening devices has used frequency-domain and time-

frequency-domain beamformers, which can have unacceptably long delays. However,

causal microphone array processing has long been studied in the context of echo can-

cellation and dereverberation [41, 153–155]. This chapter takes a similar approach,

formulating the space-time filter optimization problems of the previous chapter in
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the time domain and imposing a causality constraint to explicitly control delay.

5.2 Causal Space-Time Filtering

In this chapter, delay-constrained filtering is posed as a causal estimation problem:

Given the observed signals from the infinite past to time t, what is the desired output

at time t − α? Such problems are well understood in the scalar case [133, 156, 157],

while in the multivariate case we have cumbersome theoretical tools [158, 159] but

little useful insight.

To impose a delay constraint, we must modify the remixing filter from Chapter 4

in two ways. First, introduce a delay α to the desired processing response:

g(α)
n (τ) = gn(τ − α), n = 1, . . . , N. (5.2)

Denote the corresponding desired output by

yα(t) =
N∑
n=1

∫ ∞
−∞

gn(v − α)cn(t− v) dv (5.3)

and the filter output by

ŷα(t) =

∫ ∞
−∞

wα(v)x(t− v) dv (5.4)

where wα(τ) is the filter designed to estimate yα(t) from x(t). Second, require that

the space-time filter be causal:

wα(τ) = 0 for τ < 0. (5.5)

Note that yα(t) = y0(t− α), but the same is not true of wα(t) in general.

Although α is described as a delay, it is possible for α to be negative. Such a

filter would be a space-time linear predictor. We could implement such a system
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using microphones that are closer to the source than the listener is; for example, a

long-distance telephone call has α� 0. In augmented listening, one would typically

choose α to be a small positive number, such as a few milliseconds.

5.2.1 Causal multichannel Wiener filter

Let us begin with the traditional least-squares problem: let λn = 1 for all n =

1, . . . , N so that wα(τ) is a causal multichannel Wiener filter. Assume that x(t) is

a zero-mean, wide-sense stationary random process. To find the linear minimum-

mean-square-error filter satisfying the causality constraint (5.5), we must solve the

causal Wiener-Hopf equation [156]:

ryαx(τ) =

∫ ∞
0

wα(v)rx(τ − v) dv, 0 < τ <∞, (5.6)

where ryαx(τ) = E
[
yα(t)xT (t− τ)

]
. The mean square error of the resulting filter is

J (α) = E
[
|yα(t)− ŷα(t)|2

]
(5.7)

= trace (rerr(0)) (5.8)

= trace

(
ry(0)−

∫ ∞
0

ryαx(t)wT
α(t)dt

)
. (5.9)

Our goal is to find wα(τ) and show how J (α) depends on the spatial and spectral

correlation structure of the signals.

If x(t) were an uncorrelated noise process so that rx(τ) = δ(τ)I, then (5.6) would

be trivial: wα(τ) = ryαx(τ) for τ ≥ 0. Since it is not, proceed by first whitening the

input signal. To begin, decompose Rx(Ω) into its spectral factors [158]:

Rx(Ω) = F(Ω)FH(Ω), (5.10)

where F(Ω) ∈ CM×M is the frequency response of a causal filter that has a causal

inverse. These factors are guaranteed to exist wherever Rx(Ω) is invertible, although
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they may be difficult to compute [160]. Now, F−1(Ω) is the frequency response of

a causal whitening filter for x(t). Denote the whitened signal by z(t). The causal

multichannel Wiener filter w̃α(τ) that estimates yα(t) from z(t) is the solution to

ryαz(τ) =

∫ ∞
0

w̃α(v)rz(τ − v) dv, 0 < τ <∞ (5.11)

=

∫ ∞
0

w̃α(v)Iδ(τ − v) dv, 0 < τ <∞ (5.12)

= w̃α(τ), 0 < τ <∞, (5.13)

where ryαz(τ) = E
[
yα(t)zT (t− τ)

]
. The filter is therefore

w̃α(τ) =

ryαz(τ), if τ ≥ 0

0 otherwise.
(5.14)

The causal Wiener filter is then

wα(τ) =

∫ ∞
0

ryαz(τ − v)f(v) dv, τ > 0. (5.15)

Since the whitening operation is invertible, the minimum mean square error for

estimating yα(t) from x(t) using wα is the same as the minimum mean square error

for estimating yα(t) from z(t) using w̃α:

J (α) = trace

(
ry(0)−

∫ ∞
0

ryαz(τ)w̃T
α(τ) dτ

)
. (5.16)
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Substituting (5.14) into (5.16), the error covariance is given by

rerr(0) = ry(0)−
∫ ∞

0

ryαz(τ)rTyαz(τ) dτ (5.17)

= ry(0)−
∫ ∞

0

ry0z(τ − α)ry0z(τ − α) dτ (5.18)

= ry(0)−
∫ ∞
−α

ry0z(τ)rTy0z
(τ) dτ (5.19)

= ry(0)−
∫ ∞
−∞

ry0z(τ)rTy0z
(τ) dτ︸ ︷︷ ︸

Error of noncausal filter

+

∫ −α
−∞

ry0z(τ)rTy0z
(τ) dτ︸ ︷︷ ︸

Causality penalty

. (5.20)

The first term is the error covariance of a noncausal MWF. Its trace will be denoted

Jmin. Time-reversing the integral in the second term, the causal multichannel Wiener

filter error is

J (α) = Jmin + trace

∫ ∞
α

rTzy0
(τ)rzy0(τ) dτ. (5.21)

For a single-output filter (J = 1), the error penalty would be the cross-correlation

energy |rzy0(τ)|2 for τ > α. Notice that as α→ −∞, the error covariance approaches

ry(0), the covariance of the target signal; that is, the best the system can do is guess.

As α increases, the error decreases monotonically until it approaches Jmin, the error

of the noncausal filter.

5.2.2 Causal MSDW-MWF

Now let us consider the performance of the causal source-remixing MSDW-MWF

from the previous chapter. As before, assume that the source images cn(t), n =

1, . . . , N , are wide-sense-stationary zero-mean random processes that are uncorre-

lated with each other. Each source image has matrix correlation function rcn(τ) =

E
[
cn(t)cTn (t− τ)

]
. The sum of these source correlations is the overall input correla-

tion rx(τ), which is assumed to have full rank.

We seek a linear time-invariant filter wα(τ) that minimizes the weighted cost
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function

JMSDW−MWF(α) =
N∑
n=1

λnE
[∣∣∣dn,α(t)− d̂n,α(t)

∣∣∣2] . (5.22)

The derivation proceeds slightly differently from that for the causal MWF because

the spectral factors of the weighted PSD are not whitening filters in general. Consider

the distortion-weighted cost function in the frequency domain:

JDW(Ω) =
N∑
n=1

λn (W(Ω)−Gn(Ω)) Rcn(Ω) (W(Ω)−Gn(Ω))H (5.23)

= W(Ω)R̄x(Ω)WH(Ω)−W(Ω)R̄H
yx(Ω)− R̄yx(Ω)WH(Ω) + R̄y(Ω),

(5.24)

where the weighted PSD matrices are

R̄x(Ω) =
N∑
n=1

λnRcn(Ω), (5.25)

R̄yx(Ω) =
N∑
n=1

λnGn(Ω)Rcn(Ω), and (5.26)

R̄y(Ω) =
N∑
n=1

λnGn(Ω)Rcn(Ω)GH
n (Ω). (5.27)

To proceed, we must find a spectral factorization of the weighted signal PSD:

R̄x(Ω) = F(Ω)FH(Ω), (5.28)

where as before F(Ω) ∈ CM×M is the frequency response of a causal filter that has a

causal inverse. Then, completing the square in (5.24), we have
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JDW(Ω) =
(
W(Ω)F(Ω)−R̄yx(Ω)F−H(Ω)

) (
W(Ω)F(Ω)−R̄yx(Ω)F−H(Ω)

)H
+ R̄y(Ω)− R̄yx(Ω)R̄−1

x (Ω)R̄H
yx(Ω︸ ︷︷ ︸

Noncausal minimum weighted error

). (5.29)

If W is allowed to be noncausal, then the first term can be set to zero by choosing

W(Ω) = R̄yx(Ω)R̄−1
x (Ω) (5.30)

=
N∑
n=1

λnGn(Ω)Rcn(Ω)R̄−1
x (Ω), (5.31)

for all Ω of interest. This is the noncausal MSDW-MWF from the previous chapter.

For a causal filter with delay α, the cost function cannot be minimized indepen-

dently for different frequencies. Instead, consider the overall error

J (α) =

∫ ∞
−∞

trace (JDW(Ω))
dΩ

2π
(5.32)

= Jmin +

∫ ∞
−∞

∣∣Wα(Ω)F(Ω)− R̄yαx(Ω)F−H(Ω)
∣∣2 dΩ

2π
(5.33)

= Jmin +

∫ ∞
−∞

∣∣∣[Wα(Ω)F(Ω)− R̄yαx(Ω)F−H(Ω)
]

+

∣∣∣2 dΩ

2π

+

∫ ∞
−∞

∣∣∣[R̄yαx(Ω)F−H(Ω)
]
−

∣∣∣2 dΩ

2π
, (5.34)

where [·]+ and [·]− denote the causal and anticausal parts, respectively. Because

W and F are both constrained to be causal, we can set the causal term to zero by

choosing

Wα(Ω) =
[
R̄yαx(Ω)F−H(Ω)

]
+

F−1(Ω) (5.35)

=

[
e−jΩα

N∑
n=1

λnGn(Ω)Rcn(Ω)F−H(Ω)

]
+

F−1(Ω). (5.36)
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The anticausal term of (5.34) is the excess weighted error due to causality:

∆J (α) =

∫ ∞
−∞

∣∣∣[R̄yαx(Ω)F−H(Ω)
]
−

∣∣∣2 dΩ

2π
(5.37)

=

∫ ∞
−∞

∣∣∣∣∣
[
e−jΩα

N∑
n=1

λnGn(Ω)Rcn(Ω)F−H(Ω)

]
−

∣∣∣∣∣
2

dΩ

2π
. (5.38)

Let rdnz(τ) be the inverse CTFT of Gn(Ω)Rcn(Ω)F−H(Ω). Then by Parseval’s rela-

tion,

J (α) = Jmin +

∫ 0

−∞

∣∣∣∣∣
N∑
n=1

λnrdnz(τ − α)

∣∣∣∣∣
2

dτ (5.39)

= Jmin +

∫ −α
−∞

∣∣∣∣∣
N∑
n=1

λnrdnz(τ)

∣∣∣∣∣
2

dτ, (5.40)

= Jmin +

∫ −α
−∞
|r̄y0z(τ)|2 dτ, (5.41)

= Jmin +

∫ ∞
α

|r̄zy0(τ)|2 dτ, (5.42)

where r̄y0z(τ) =
∑N

n=1 λnrdnz(τ). Notice that this expression reduces to (5.21) when

λn = 1 for n = 1, . . . , N .

5.2.3 Performance of delay-constrained remixing filters

Clearly, the achievable performance of the causal filter depends on the shape of the

cross-correlation function between the whitened input and the desired output: ry0z(τ)

for the MWF or r̄y0z(τ) for the MSDW-MWF. Unfortunately, it is not obvious how

to characterize this function in the time domain.

To make these error expressions more concrete, consider the case where the desired

responses are all scalar gains with a single output channel:

gn(τ) = gnδ(τ)eT1 , n = 1, . . . , N. (5.43)

124



Then the weighted cross-correlation function is

r̄y0z(τ) =
N∑
n=1

λngne
T
1 rcnz(τ). (5.44)

The weighted error is

J (α) = r̄y(0)−
∫ ∞
−α

r̄y0z(τ)r̄Ty0z(τ) dτ (5.45)

=
N∑
n=1

λng
2
ne

T
1 rcn(0)e1 −

N∑
n=1

N∑
m=1

λnλmgngm

∫ ∞
−α

eT1 rcnz(τ)rTcmz(τ)e1 dτ. (5.46)

To write the first term in a form similar to the second, observe that

rcn(0) =

∫ ∞
0

rcnz(τ)fT (τ) dt (5.47)

=
N∑
m=1

λm

∫ ∞
0

rcnz(τ)rTcmz(τ) dτ, (5.48)

where f(τ) is the inverse CTFT of the spectral factor F(Ω). Therefore, if α > 0, we

have

J (α) =
N∑
n=1

N∑
m=1

λnλmgn(gn − gm)

∫ ∞
−α

eT1 rcnz(τ)rTcmz(τ)e1 dτ (5.49)

=
1

2

N∑
n=1

N∑
m=1

λnλm(gn − gm)2

∫ ∞
−α

eT1 rcnz(τ)rTcmz(τ)e1 dτ. (5.50)

This form of the error expression closely resembles the noncausal MSDW-MWF error
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from (4.35). In fact, in the limit as α→∞, we have

Jmin =
1

2

N∑
n=1

N∑
m=1

λnλm(gn − gm)2

∫ ∞
−∞

eT1 rcnz(τ)rTcmz(τ)e1 dτ (5.51)

=
1

2

N∑
n=1

N∑
m=1

λnλm(gn − gm)2

∫ ∞
−∞

eT1 Rcn(Ω)R̄−1
x (Ω)Rcm(Ω)e1

dΩ

2π
, (5.52)

which is the total error from (4.35). The penalty due to causality is

∆J (α) = −1

2

N∑
n=1

N∑
m=1

λnλm(gn − gm)2

∫ ∞
α

eT1 rTzcn(τ)rzcm(τ)e1 dτ. (5.53)

From this form of the expression, we can see that the required delay of the filter in-

creases if there is a pair of sources with different gains for which −eT1 rTzcn(τ)rzcm(τ)e1

has significant energy for large positive values of τ . Unfortunately, it is difficult to

say much in general about these cross-correlation functions. We can, however, derive

meaningful exact expressions for J (α) for certain special cases.

5.3 Exact Results for Special Cases

Despite the complexity of multivariate spectral factorization, it is possible to find

exact expressions for J (α) in certain special cases. To simplify the already unwieldy

calculations in this section, set λn = 1 for n = 1, . . . , N . Distortion weights can

always be incorporated by scaling the corresponding source correlations.

5.3.1 Plane wave in uncorrelated noise at a uniform linear array

Consider anM -input, single-output listening device withN = 2 source channels. The

target source is a plane wave arriving at a uniform linear array with time difference

126



of arrival τ ,

c1(t) =


s1(t)

s1(t− τ)
...

s1(t− (M − 1)τ)

 , (5.54)

where s1(t) is temporally uncorrelated. The second source is spatially and temporally

uncorrelated noise with power spectral density σ2 > 0:

Rc2(Ω) = σ2I. (5.55)

Assume that the desired response reproduces the plane wave alone at the first mi-

crophone:

G1(Ω) =
[
1 0 · · · 0

]
and (5.56)

G2(Ω) =
[
0 0 · · · 0

]
for all Ω. (5.57)

The input power spectral density is given by

Rx(Ω) =


σ2 + 1 e+jΩτ · · · e+jΩ(M−1)τ

e−jΩτ σ2 + 1 e+jΩ(M−2)τ

...
. . .

...

e−jΩ(M−1)τ e−jΩ(M−2)τ · · · σ2 + 1

 . (5.58)

A convenient spectral factor of Rx is the lower triangular matrix

F(Ω) =


b1 (σ2 + 1) 0 · · · 0

b1e
−jΩτ b2 (σ2 + 2) 0
...

. . .

b1e
−jΩ(M−1)τ b2e

−jΩ(M−2)τ bM (σ2 +M)

 , (5.59)
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where

bm =

√
σ2

(σ2 +m) (σ2 +m− 1)
, m = 1, . . . ,M. (5.60)

Meanwhile, the cross-correlation between the input and desired output is

Rxy0(Ω) =


1

e−jΩτ

...

e−jΩ(M−1)τ

 . (5.61)

The whitened cross-correlation function is therefore

rzy0(t) =


b1

b2δ(t− τ)
...

bMδ(t− (M − 1)τ)

 , (5.62)

which yields an output mean square error from (5.21) of

J (α) =
σ2

σ2 +M
+

M∑
m=1

b2
mu ((m− 1)τ − α) (5.63)

=
σ2

σ2 +
∑M

m=1 u (α− (m− 1)τ)
. (5.64)

The error is reduced for each microphone that the plane wave reaches within time α

of reaching the reference microphone, as shown in Figure 5.2. Notice that when τ < 0,

that is, when the source signal reaches the other microphones before the reference

microphone, it is possible to achieve near-minimum-mean-squared-error performance

with α < 0, even though the signal is temporally unpredictable. Because the spatial

correlation of the plane wave is so strong, it is spatially predictable. This example

illustrates one of the ways in which large arrays, and especially distributed arrays,

can help to reduce delay in a listening device: when some microphones are closer to
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Figure 5.2: Mean square error as a function of delay for a plane wave incident on a
uniform linear array of ten elements in uncorrelated noise. The time scale is
arbitrary.

the sound sources than the listener’s ears are, they can help to predict the signals

before they reach the ears.

5.3.2 Two plane waves in uncorrelated noise at two microphones

Next consider two temporally uncorrelated plane waves incident on M = 2 mi-

crophones with time differences of arrival τ1 and τ2 6= τ1, again with uncorrelated

background noise. Suppose that we wish to isolate c1(t) and suppress the second

plane wave c2(t) and the noise c3(t). That is, g1(t) = eT1 δ(t) and g2 = g3 = 0. Then

we have

Rx(Ω) =

[
2 + σ2 e+jΩτ1 + e+jΩτ2

e−jΩτ1 + e−jΩτ2 2 + σ2

]
and (5.65)

Rxy0(Ω) =

[
1

e−jΩτ1

]
. (5.66)

The determinant of Rx(Ω) can be written

detRx(Ω) = γ−1
∣∣1− γe−jΩ(τ1−τ2)

∣∣2 , (5.67)
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where γ is a scalar that depends only on σ2. Thus, F−1 (Ω) always includes a term

of the form (
1− γe+jΩ|τ1−τ2|)−1

, (5.68)

which results in an infinite-duration rzy0(t) and exponential decay of J (α).

We can apply (5.21) to find an exact expression for the squared error of this filter,

which takes different forms depending on the signs of τ1 and τ2:

J (α) =

Jmin +
u(t0−α)+q21γu(t1−|τ1−τ2|−α)+q22f(t1)

σ2+2
, if τ1τ2 > 0

Jmin +
√
γu(t0 − α) + f(t0 − |τ1|) + γf(t1), if τ1τ2 ≤ 0,

(5.69)

where

t0 = min(0, τ1), (5.70)

t1 = max(0, τ1, τ2, τ1 − τ2), (5.71)

f(t) = γ1+2 max(0,b(α−t)/|τ2−τ1|c+1)/(1− γ2), and (5.72)

(q1, q2) =


(0, 0), if |τ1| = |τ2|
(σ2 + 1, γσ2 + γ − 1), if |τ1| < |τ2|
(1, σ2 + 1− γ) if |τ1| > |τ2|.

(5.73)

The shape of the delay-error curve depends on the directions of arrival of the two

plane waves and which microphones they reach first. Figure 5.3(a) shows these four

cases. As in the earlier example, the signal can be predicted even with α < 0 when

the target reaches another microphone before the reference microphone (far/near and

far/far). However, after all sources have reached all microphones, the error decays

faster as a function of α when the sources are closely spaced (near/near and far/far).

This is somewhat counterintuitive since more widely spaced sources are generally

easier to separate. However, because of the denominator polynomial from (5.68),

J (α) decays as roughly γ2α/|τ2−τ1| , so more narrowly spaced sources have lower

error for large α.

Figure 5.3(b) shows the same scenario for speech-shaped sources. The temporal

130



predictability of the sources both reduces the overall error and smooths the delay-

error curves.

5.4 Experimental Results

The results for the exact examples in Section 5.3 suggest that the delay-performance

J (α) curve for an array should depend on several factors:

1. The aperture of the array around the listener, because sources will reach remote

microphones before the listener. A larger aperture should shift the error curve

to the left.

2. The spatial separability of the signals, which depends on both the number of

sources and microphones and their geometry. A larger array should shift the

error curve downward.

3. The temporal separability of the signals, which depends on their spectra. Spec-

trally distinct sources can be separated without an array, but the delay depends

on the spectral distance between them.

The exact results in the previous section are for infinite-bandwidth signals in an

anechoic environment with isotropic sensors. To determine whether the predicted

trends apply in real rooms, several experiments were conducted using wearable and

distributed microphone arrays. The experiments in this section use the discrete-time

causal MWF from Section 4.1.3, where the delay α was given in samples instead of

in seconds.

5.4.1 Separation based on spatial diversity

First, the causal MWF was used to separate speech and speechlike signals recorded

in the Augmented Listening Laboratory with microphone arrays of varying aperture.

These experimental results were reported in [142]. The experimental setup is shown
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Figure 5.3: Error power as a function of delay for a plane-wave target source and
plane-wave interferer incident upon a pair of microphones in uncorrelated noise.
The legend indicates the direction of arrival of the target/interference sources
relative to the reference microphone. (a) Uncorrelated sources. (b) Speech-shaped
sources. Figure adapted from [142].
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?

60 cm 120 cm

Target source

Figure 5.4: Left: Recording setup. Circles are microphones and squares are
loudspeakers. Right: Hat-mounted microphone array. Figure reproduced
from [142].

in Figure 5.4. Each array contains eight microphones: two in the ears of a mannequin

head and six spread in a circle of radius 30 cm (on a hat), 60 cm (on stands), or 120

cm (on stands). The reference microphone is that in the left ear. Discrete-time filters

were designed based on measured acoustic impulse responses to isolate the source

indicated by the ? and attenuate all others. To ease the computational burden of

time-domain processing, the signals were downsampled to 16 kHz. The filters had

length L = 2048 samples (128 ms).

Figure 5.5 shows the results for four 20 s speech clips from the modified VCTK

corpus [104]. The space-time filters were designed assuming that the four sources

were stationary with the same long-term average spectrum. That is, the filters used

only the spatial diversity between sources and not spectral differences between them.

As the radius of the array increases, the error curves move downward and to the left.

Note that the SER improves abruptly when the sound reaches the microphones,

and increases very little after α = 0. That is because the sources are modeled as

spectrally identical, so the space-time filter is separating sources primarily in space

rather than time.
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Figure 5.5: SER performance as a function of delay for the laboratory speech
isolation experiment shown in Figure 5.4. Figure adapted from [142].

5.4.2 Separation based on space-time statistics

To evaluate the effects of temporal predictability, the experiment was repeated with

four synthetic stationary sounds designed to imitate different vowel sounds from dif-

ferent talkers. The filter was designed based on windowed autocorrelation sequences

since the synthesized sounds, produced by the Vocaloid music software, are actually

periodic and deterministic. The source isolation performance of the filter is shown in

Figure 5.6. Since the filter can now separate the signals both spatially and spectrally,

the overall performance is better, especially for the two-microphone array.

This experiment may be relevant to the time-varying methods discussed in Chapter

7, which generate different filters in different time frames according to the chang-

ing short-time spectra of sound signals, especially speech. Filters that use spectral

diversity between sources, like those in Figure 5.6, require far more delay than the

spatial-only filters of Figure 5.5. The plot suggests, however, that microphone array

listening devices could offer substantial benefits for filter delay: the eight-microphone

wearable array has the same performance at α = 0 ms as the binaural array at α = 10

ms, which would be perceptible to some listeners. Further research is required to

realize these delay benefits in time-varying methods.
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Figure 5.6: SER performance as a function of delay for synthetic speechlike sounds.
Figure adapted from [142].

5.4.3 Distributed array

In the largest array characterized in [142], the distance from the farthest microphone

to the listener was less than two meters. Furthermore, there was relatively little

reverberation. In larger rooms, sound may propagate for tens of milliseconds from a

source to a listener and may reverberate for hundreds of milliseconds. To understand

delay-performance tradeoffs in larger rooms, several source-remixing space-time fil-

ters were designed using the large conference room data set of Section 2.4. The

sources were the five loudspeakers closest to the listener plus additive speech-shaped,

spatially uncorrelated Gaussian noise. The 128 ms filter length used in the labora-

tory was found to be a performance bottleneck in this large, reverberant room, so

the filter length was doubled to 256 ms (L = 4096 at 16 kHz).

Figure 5.7 shows source-remixing performance as a function of delay for the “ag-

gressive” remixing profile from the previous chapter (gains of 1.0, 0.1, 0.2, 0.3, and

0.4 for the talkers and 0.1 for the noise source). The filters were designed using

identical long-term average speech spectra for all sources, so the sources cannot be

separated based on their temporal spectra. Several different arrays were evaluated:

the ears alone (M = 2), a wearable array with earpieces and eyeglasses (M = 8), the

wearable array plus the ears of the other three listeners in the room (M = 14), and
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Figure 5.7: SER performance as a function of delay for a source-remixing filter with
five speech sources and additive noise in a large, reverberant conference room with
distributed microphone arrays.

the wearable array plus one microphone from each other listener and smart-speaker

array in the room (M = 26).

All arrays show steep improvement between negative and positive delay, that is,

when sound reaches the ears. Because the filters assume identical spectra between

sources, it is impossible to temporally predict the output. The larger arrays, how-

ever, can predict the signals spatially. The 26-microphone distributed array, which

includes microphones near each source, can effectively predict the sound at the ears

a few milliseconds in advance, which could be valuable in a system with significant

hardware delay.

The 2- and 8-microphone wearable arrays, which have microphones a few centime-

ters apart, benefit little from delay larger than a few milliseconds. The distributed

arrays, meanwhile, show improving performance even after tens of milliseconds as

sounds reach more distant microphones and reverberate around the room. There

was no such benefit in Figure 5.5 because the sound sources in that experiment

surrounded the microphone arrays and the room had little reverberation.
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Figure 5.8: SER performance of a source-remixing filter in a large reverberant
conference room for different sets of desired responses.

5.4.4 Source remixing

In Section 5.2.3, an equation was derived for the delay-performance curve as a func-

tion of the desired responses g1, . . . ,gN of a remixing filter. The shape of J (α)

depends on the temporal concentration of energy in the pairwise cross-correlations

between the generative matrix functions that predict the source spatial images from

the whitened input—not exactly an intuitive result! To understand the impact of

the desired responses on delay-performance curves in a realistic augmented-listening

scenario, the distributed-array experiment was repeated with different combinations

of scalar desired responses. These are the same responses as in Section 4.3.3: trans-

parent (1, 1, 1, 1, 1, 0.1), mild (1, 0.5, 0.6, 0.7, 0.8, 0.1), aggressive (1, 0.1, 0.2, 0.3,

0.4, 0.1), and single-target (1, 0, 0, 0, 0, 0).

Figure 5.8 shows the performance-delay results for these different remixing re-

sponses with a small wearable array and with a large distributed array. For positive

delays, the results are consistent with those in the previous sections: the performance

of the small array is mostly flat after a few milliseconds, while the large array con-

tinues to improve; the distance between SER curves for different sets of responses is

relatively constant as a function of delay. For negative delays, however, the ordering
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of the curves is reversed: the single-target beamformer performs best and the trans-

parent filter performs worst. In this experiment, the “target” source is farther from

the listener than the “interference” sources, but all sources are located near at least

one remote microphone. The single-target beamformer therefore has more advance

information about its desired output than the transparent filter does.

5.5 Delay Constraints and Augmented Listening

Unlike hardware delay, which can be reduced by using more-expensive electronics,

algorithmic delay is a seemingly inescapable fact of mathematics: to produce a better

estimate, a filter needs more information about a signal, including its future values.

To provide this information in a single-microphone device, we must introduce a delay

to the filter. Array processing offers an escape hatch: instead of increasing the filter’s

temporal delay, we can increase its spatial aperture. Remote microphones can provide

information about “future” values of signals by observing them near their sources,

several milliseconds before they reach the user’s ears. They can also reduce the need

for this future information by separating signals spatially rather than spectrally.

The theoretical and experimental results in this chapter suggest that, in order

to achieve good performance with imperceptible delay, microphone-array listening

devices should have apertures as large as possible. A small wearable device, even if

it has many more microphones than a conventional earpiece, observes sound signals

only a millisecond or two before the ears. A distributed array, meanwhile, could

capture them tens of milliseconds in advance. A listening device assisted by dozens

of other devices spread throughout a room could, in principle, enhance sounds with

zero total delay.

Could such a system be implemented in practice? The analysis and experiments in

this section assume stationary sound sources, linear time-invariant acoustic channels,

synchronous sampling, and linear time-invariant processing. The real world is not so

well-behaved. In the following chapters, we will see how nonlinear and time-varying

filters can help to deal with perceptual nonlinearity (Chapter 6), signal nonstation-
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arity (Chapter 7), source and array motion (Chapter 9), and asynchronicity between

devices (10). These chapters all use the short-time Fourier transform, which has a

fixed algorithmic delay. To realize the delay benefits of large arrays in real-world

systems, new methods must be developed that combine the sparsifying properties

of the STFT with the low delay of time-domain filters. The synthetic-vowel ex-

periments of Section 5.4.2 suggest that such methods should be possible. Indeed,

spectral separation methods stand to benefit significantly from large arrays because

their performance depends strongly on delay.

There are also important unanswered questions about delay and human perception

that could inform the design of augmented listening systems. Most of the research

that has been reported in the literature has focused on comprehension of a single

talker in a controlled environment. We know that the maximum tolerable delay for a

listener depends on the style of listening device (closed or open) and on the listener’s

hearing ability. There are many factors that have not yet been studied, including:

1. Can listeners tolerate more delay in noisy environments? That is, can the

benefits of noise reduction outweigh the distortion caused by delay?

2. Can listeners tolerate more or less delay for distant sound sources than for

nearby sound sources?

3. Does delay have different impacts on perception for different types of sound,

such as speech and nonspeech?

4. Are there detrimental perceptual effects if different sound sources are delayed

by different amounts?

With more detailed knowledge of the effects of delay on perception and intelligibility,

a listening system could choose a delay or set of delays that balances the benefits

of processing with the detrimental impact of delay for a given listener, source, and

environment.
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Chapter 6

Dynamic Range Compression

Many hearing aid users, including the author, have observed that in loud noise, they

hear better with their unaided ears than with hearing aids. In the environments

where they need the most help, their assistive devices make the problem worse. This

behavior is caused, at least in part, by a form of nonlinear processing used in every

advanced hearing aid and known as dynamic range compression (DRC) [32–34]. As

the name implies, DRC systems map the wide dynamic range of real-world sounds

to the narrower dynamic range of a listener, processing system, or storage medium,

as shown in Figure 6.1. Compression makes loud sounds quieter and quiet sounds

louder; thus, it is a form of time-varying, input-dependent nonlinear amplification.

Because it is nonlinear, DRC does not obey the superposition principle and can cause

distortion when applied to a mixture of multiple signals. While this distortion has

been documented extensively by clinical researchers, there has been little work on

DRC in the signal processing literature. This work introduces new mathematical

tools to characterize the effect of noise on DRC and describes a novel approach to

compression, introduced by the author in [93], that attempts to modify the dynamic

range of each source channel independently.

Dynamic range compression should be familiar to anyone who has listened to

recorded music. Mixing engineers use compression to increase the perceived loudness

of certain musical styles [161]. So-called side-chain compression can be used to lower

the loudness of one track when another is active, for example to “duck” music under

vocals. In certain genres, especially electronic music, side-chain compression is widely

used to produce intentional distortion effects. This unnatural “pumping” sound is

entertaining on a Daft Punk album, but is an unwelcome distraction when it happens
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Figure 6.1: Dynamic range compression (DRC) maps the wide dynamic range of an
input signal onto a narrower output dynamic range.

in hearing aids.

Hearing aids use DRC in a different way: to mimic the function of a healthy ear.

The healthy human hearing system is highly nonlinear, performing automatic gain

control within different frequency bands as it translates mechanical pressure waves

to nerve impulses [7]. Listeners with hearing loss often have reduced dynamic range

compared to normal-hearing listeners: the lower threshold of hearing is higher, but

the upper threshold of pain remains the same. In certain types of hearing loss,

damage to the outer hair cells of the cochlea results in a recruitment effect that can

be modeled as a dynamic range expander—the opposite of a compressor—causing

perceived loudness to increase more quickly as a function of intensity than it normally

would [33]. Hearing aids compensate for reduced dynamic range and for recruitment

by applying compression in different frequency bands.

In previous chapters, we have derived listening systems as the solutions to inverse

problems. We can treat DRC the same way. Figure 6.2 shows two different inverse

problems to which DRC is a solution. The model on the left is motivated by the

auditory system: a dynamic range expander models the recruitment phenomenon in

an impaired ear, and the DRC system in a listening device compensates for it. The

model on the right is reversed: there is an imaginary desired sound source that has a
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Device Recruitment Expander Device

Figure 6.2: Dynamic range compression can be viewed as the solution to either of
two inverse problems: an expander on the listener side, modeling loudness
recruitment due to hearing loss (left), or an expander on the source side, modeling
a source with undesired dynamic range (right).

comfortable dynamic range, but it is made too loud by an imaginary expander. The

DRC system undoes this expansion to recover the comfortable source. For a single

sound source, these models are largely equivalent. An advantage of the model on the

left is that it explicitly models hearing impairment so that the system attempts to

restore normal function. The model on the right is not directly motivated by human

hearing, but it offers a significant advantage when there are multiple sources present,

as we will see in Section 6.3.

6.1 Dynamic Range Compression of a Single Source

A dynamic range compression system has several key parts, shown in Figure 6.3.

First, the signal may or may not be split into different frequency bands. Within each

band, an envelope detector tracks the amplitude or power of the signal, with nonlinear

behavior that helps the system react quickly to sudden loud sounds. A compression

function maps the amplitude or power of the input to the desired amplitude or power

of the output. Finally, a time-varying amplifier applies gain or attenuation to bring

the signal to the desired output level.
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Figure 6.3: A dynamic range compression system consists of an envelope detector,
a compression function, and a time-varying amplifier.

6.1.1 Filterbank

A key difference between music compression and hearing aid compression is that

music compression is often applied to the signal as a whole or to a small number of

frequency bands [161]. Hearing aid DRC systems typically operate independently,

or at least partially independently, in several different frequency bands [34].1 There

are a few reasons that hearing aids use multiple bands:

1. Hearing aid DRC systems attempt to mimic the gain control functions of

a healthy ear. The nonlinearities of the ear have been observed to operate

roughly independently on tones separated by more than the so-called critical

bandwidth, which varies with frequency [33]. This can be crudely modeled as

a set of DRC systems operating on the bands of a nonuniform filterbank.

2. If desired signals and undesired noise are in different frequency bands, then a

change in the level of one signal will not cause distortion in the other. This

across-source modulation effect is the subject of Section 6.2. Because many

real-world sounds have broad spectra, however, it would be more reliable to

use spatial source separation methods, as proposed in Section 6.3.

3. The number of channels in a hearing aid is featured prominently in hearing

aid marketing materials, and more expensive hearing aids typically have more

1In the hearing aid industry and literature, these are called “channels.” Here I use “bands” to
avoid confusion with microphone channels or source channels.
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Figure 6.4: An envelope detector tracks the level of the signal over time. It
typically responds faster to increases in level (attack time) than to decreases in
level (release time).

channels. However, it is a matter of controversy whether there is any clinical

benefit to using more than a few channels [32, 162].

Let xfb[k, b] for b = 1, . . . , B be the B-band filterbank representation of the sequence

xd[k]. These bands may be uniform or nonuniform and may or may not overlap.

The filterbanks used in hearing aids typically mimic the critical bands of the cochlea.

These are roughly linearly spaced at low frequencies and logarithmically spaced at

higher frequencies [7].

6.1.2 Envelope detection

The envelope detector is responsible for tracking the level of the signal over time,

as illustrated in Figure 6.4. Level is typically defined in terms of either amplitude

or power; here we use power. As shown in the figure, a DRC envelope detector

typically reacts more quickly to increases in signal level than to decreases. The

quick reduction in gain following level increases, known as the attack time, protects

listeners from sudden loud sounds. The slow increase in gain following decreases,

characterized by the release time, prevents excessive distortion during brief pauses

in speech. The attack and release times are defined in ANSI S3.22 [163] to be the

times required for the output envelope to change by 31 dB following a large change

in input level. In hearing aids, attack times are typically just a few milliseconds

while release times vary from tens to hundreds of milliseconds [164]. Note that in a
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multiband DRC system, the time constants must be carefully chosen based on the

bandwidth of the filterbank. If the gains within each band change too quickly, they

can generate unwanted out-of-band distortion products [165].

Let vx[k, b] ∈ R+ be the output of the envelope detector applied to xfb[k, b]. Enve-

lope detection can be implemented in several ways. In the idealized model of Section

6.2, we will consider the envelope to be the instantaneous variance of a random pro-

cess. In real systems, the envelope detector typically performs nonlinear smoothing

of the signal level. A representative envelope detector, which is used in the ex-

periments presented in this chapter, is the following nonlinear single-tap recursive

filter [28, 161]:

vx[k, b] =

βavx[k − 1, b] + (1− βa) |xfb[k, b]|2 , if |xfb[k, b]|2 > vx[k − 1, b]

βrvx[k − 1, b] + (1− βr) |xfb[k, b]|2 , otherwise,
(6.1)

for b = 1, . . . , B, where βa and βr are constants that determine the attack and release

times.

6.1.3 Time-varying gain

A dynamic range compression system controls dynamic range using a time-varying

gain in the signal path. Let vy[k, b] be the envelope of the desired output sequence

yfb[k, b] in band b. It is given by the compression function Cb, which relates input

power to output power:

vy[k, b] = Cb (vx[k, b]) , b = 1, . . . , B. (6.2)

Assume that vx[k, b] > 0 for all k, b. The desired filter unit pulse response at time

index k and band b is then

gfb[`; k, b] =

√
vy[k, b]

vx[k, b]
δ[`], b = 1, . . . , B, (6.3)
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Figure 6.5: The compression function relates the level of the input signal to the
level of the output signal. The slope of the compression curve on a log-log scale is
the inverse of the compression ratio.

so that the output,

yfb[k, b] =
∞∑

`=−∞
gfb[`; k, b]xfb[k − `, b], b = 1, . . . , B, (6.4)

has the desired envelope. Since there is only one source channel in a conventional

DRC system, wfb[`; k, b] = gfb[`; k, b] and ŷfb[k, b] = yfb[k, b].

6.1.4 Compression function

The change in dynamic range of a signal processed by a DRC system in band b is

determined by the compression function Cb(v). The function may or may not be

different in different bands. A typical “knee-shaped” compression function is shown

in Figure 6.5. It features a linear region in which gain is constant with input level and

a compressive region characterized by a compression ratio (CR), which is the inverse

of the slope on a log-log scale. For example, in a 3:1 compression system, the output

level increases by 1 dB for every 3 dB increase in input level. For a compressor with

constant compression ratio CR, the compression function has the form

C(v) = g2
0v

1/CR, (6.5)
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where g2
0 is a constant gain factor that shifts the compression curve vertically. Thus,

in a 3:1 compression region, the output level will be proportional to the cube root of

the input level.

While these power-law compression functions are commonly used, many other

compression functions are possible. Cascaded feedback systems can be used to design

smoothly curved compression functions with roughly logarithmic shapes [7], while

digital signal processing can be used to implement arbitrary functions. To help with

our analysis, let us adopt the following definition of a compression function:

Definition 6.1. A function C(v) is a compression function if it is concave, nonneg-

ative, and nondecreasing for all v > 0.

The amount of compression applied to a signal is often described by the compres-

sion ratio. Though the CR is usually used to describe compression curves that are

piecewise linear on a log-log scale (corresponding to piecewise power-law compression

functions), it can be extended to more general compression functions. Since the CR

can be infinite—in a limiter, for example—it is more convenient to work with its

inverse, defined here as the compression slope.

Definition 6.2. For all points v at which a compression function C(v) is differen-

tiable, the compression slope CS(v) is the slope of C(v) on a log-log scale:

CS(v) =
d

du
ln C(eu)|u=ln v (6.6)

=
C ′(eu)
C(eu) e

u|u=ln v (6.7)

=
C ′(v)

C(v)
v. (6.8)

For example, if C(v) = g2
0v

α, then CS(v) = α.
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Figure 6.6: When one compressor is applied to a mixture of multiple sources, a
change in the level of one source causes distortion in the envelopes of the other
sources. Figure adapted from [93].

6.2 Dynamic Range Compression and Noise

Dynamic range compression in hearing aids is useful for improving intelligibility in

a quiet room. Unfortunately, the DRC systems used today do not work well when

there are multiple signals present.

It has been widely observed that noise has adverse effects on the performance of

dynamic range compression [44–46, 48–50]. For example, consider a single speech

source in stationary background noise. At low signal-to-noise ratios, the envelope

detector follows the noise rather than the signal of interest, rendering the compressor

ineffective [45], as shown in Figure 6.6. Meanwhile, at high signal-to-noise ratios,

compression amplifies the quieter noise sounds and attenuates the louder speech

sounds, reducing the overall signal-to-noise ratio at the output [45, 48, 49]. These

effects have been observed in recent commercial hearing aids and shown to adversely

affect speech comprehension [48].

Performance is also impacted by multiple sources of speech or other highly non-

stationary sounds. A sudden increase in the level of one sound causes the gain

applied to all sounds to decrease. This distortion has been called co-modulation [44]
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or across-source modulation [46] in the hearing literature. Anecdotally, the author’s

hearing aids produce severe distortion in response to loud applause, which is a series

of wideband impulsive sounds at irregular intervals.

Although the mechanisms behind compression reduction, signal-to-noise ratio re-

duction, and across-source modulation appear obvious intuitively, they have never

been rigorously analyzed mathematically. In this section, we will prove that, for an

idealized DRC system, noise and compression interact in two adversarial ways. First,

noise reduces the compression applied to a signal of interest and, second, compression

reduces the output signal-to-noise ratio for a rapidly varying source in slowly varying

noise. We will also consider the interaction between two time-varying sources. The

results in this section are reported here for the first time.

6.2.1 The effective compression function

Distortion between signals in mixtures is caused by the nonlinear behavior of dynamic

range compression. There are two sources of nonlinearity in DRC systems: the peak-

tracking behavior of the envelope detector, that is, the different speeds of adaptation

to increases and decreases in signal level, and the level-dependent gain defined by the

compression function. While the dynamics of the envelope tracker are important,

here we restrict our attention to the compression function that is the defining feature

of DRC.

Consider a scalar sequence xd[k] that is a mixture of two source channels, xd[k] =

cd,1[k] + cd,2[k]. For simplicity of notation, we restrict our attention to a single band

and omit the band index b in this section; the analysis presented here applies to

compression in general and does not depend on filterbank structure. To facilitate

mathematical analysis of the compression function applied to such a mixture, assume

that the envelope obeys the superposition property vx[k] = vc1 [k] + vc2 [k]. This is

true, for example, if cd,1[k] and cd,2[k] are uncorrelated zero-mean random processes

and vx[k] is a linear transformation of the sequence E [x2
d[k]] = E

[
c2

d,1[k]
]
+E

[
c2

d,2[k]
]
.

Note that this idealized envelope detector does not exhibit the peak-tracking behavior

of (6.1).
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The gain applied at each sample time k is determined by the mixture level vx[k]:

gd[`; k] =

√
C(vx[k])

vx[k]
δ[`]. (6.9)

=

√
C(vc1 [k] + vc2 [k])

vc1 [k] + vc2 [k]
δ[`]. (6.10)

Thus, the envelope of the output component due to source channel 1 is

vd̂1 [k] =
C(vc1 [k] + vc2 [k])

vc1 [k] + vc2 [k]
vc1 [k]. (6.11)

We can therefore define the effective compression function Ĉ(v1|v2) for a target source

with envelope v1 in the presence of an interfering source with envelope v2.

Definition 6.3. The effective compression function Ĉ(v1|v2) applied to v1 in the

presence of v2 is given by

Ĉ(v1|v2) =
C(v1 + v2)

v1 + v2

v1, (6.12)

where C(v) is the compression function applied to the mixture envelope v1 + v2.

The output envelopes for the two channels are then vd̂1 [k] = Ĉ(vc1 [k]|vc2 [k]) and

vd̂2 [k] = Ĉ(vc2 [k]|vc1 [k]). We can understand the behavior of DRC in the presence of

noise by analyzing this effective compression function. First, let us prove that that

for a broad class of compression functions, Ĉ(v1|v2) is concave in v1 and convex in

v2.

Theorem 6.1. If C(v) is concave and nonnegative and C(v)/v is convex for all v > 0,

then Ĉ(v1|v2) is concave in v1 and convex in v2.
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Proof. Starting with the definition and letting v1 = λx+ (1− λ)y,

Ĉ(λx+ (1− λ)y|v2) =
C(λx+ (1− λ)y + v2)

λx+ (1− λ)y + v2

(λx+ (1− λ)y) (6.13)

= C(λ(x+ v2) + (1− λ)(y + v2))

− v2
C(λ(x+ v2) + (1− λ)(y + v2))

λ(x+ v2) + (1− λ)(y + v2)
(6.14)

≥ λC(x+ v2) + (1− λ)C(y + v2)

− v2

(
λ
C(x+ v2)

x+ v2

+ (1− λ)
C(y + v2)

y + v2

)
(6.15)

= λ
C(x+ v2)

x+ v2

x+ (1− λ)
C(y + v2)

y + v2

(6.16)

= λĈ(x|v2) + (1− λ)Ĉ(y|v2). (6.17)

Therefore Ĉ(v1|v2) is concave in v1.

Similarly, letting v2 = λx+ (1− λ)y,

Ĉ(v1|λx+ (1− λ)y) =
C(v1 + λx+ (1− λ)y)

v1 + λx+ (1− λ)y
v1 (6.18)

=
C(λ(v1 + x) + (1− λ)(v1 + y))

λ(v1 + x) + (1− λ)(v1 + y)
v1 (6.19)

≤ λ
C(v1 + x)

v1 + x
v1 + (1− λ)

C(v1 + y)

v1 + y
v1 (6.20)

= λĈ(v1|x) + (1− λ)Ĉ(v1|y). (6.21)

Therefore Ĉ(v1|v2) is convex in v2.

The condition that C(v)/v be convex is satisfied by many smooth compression

functions, including the popular power-law compression function (6.5) with CR ≥ 1.

It is violated by some piecewise functions. Note that if C is a linear function, that

is, a fixed gain, then Ĉ(v1|v2) is linear in v1 and does not vary with v2. For strictly

concave compression functions, such as cube-root or logarithmic compression, the

output power of one source decreases as the power of the other source increases.
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This behavior is the origin of the across-source modulation effect in DRC systems.

6.2.2 Noise reduces effective compression ratio

It has been observed in the hearing aid literature that DRC is less effective in noisy

environments [45]. This phenomenon is readily apparent for negative signal-to-noise

ratios: the gain of the system is determined primarily by the noise and the dynamics

of the signal are largely ignored. However, it can be shown that any level of noise in

the mixture will reduce the compression applied to the signal of interest.

From the effective compression function, we can find the effective compression

slope that the system applies to each source.

Definition 6.4. If Ĉ(v1|v2) is differentiable with respect to v1, then the effective

compression slope ĈS(v1|v2) is given by

ĈS(v1|v2) =
∂

∂u
Ĉ(eu|v2)|u=ln v1 (6.22)

=
∂
∂v1
Ĉ(v1|v2)

Ĉ(v1|v2)
v1. (6.23)

Let us now prove that this effective compression slope is larger (less compressive)

than the nominal compression slope CS(v1 + v2), which implies that noise reduces

the effective compression ratio of a DRC system.

Theorem 6.2. If a compression function C(v) is differentiable at v = v1 + v2, then

its effective compression slope satisfies

ĈS(v1|v2) ≥ CS(v1 + v2), (6.24)

with equality if the compression function is linear or if v2 = 0.

Proof. First, because C(v) is concave and nonnegative for v > 0, we have

C(v)− vC ′(v) ≥ 0 (6.25)
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for all v at which C is differentiable, with equality if C is linear.

Let vx = v1 + v2. From the definition of the effective compression slope,

ĈS(v1|v2) =
∂
∂v1
Ĉ(v1|v2)

Ĉ(v1|v2)
v1 (6.26)

=
vx
C(vx)

(C ′(vx)v1 + C(vx)
vx

− C(vx)v1

v2
x

)
(6.27)

=
C ′(vx)
C(vx)

v1 + 1− v1

vx
(6.28)

=
C ′(vx)
C(vx)

vx −
C ′(vx)
C(vx)

v2 +
v2

v1 + v2

(6.29)

= CS(vx) +
v2

vxC(vx)
(C(vx)− vxC ′(vx)) (6.30)

≥ CS(vx) (6.31)

with equality if C is linear. It is clear from (6.30) that equality also holds if v2 = 0.

Equation (6.30) illustrates that the impact of noise on the compression slope is

stronger at lower signal-to-noise ratios, as one would expect. This analysis does not

account for the nonlinear dynamics of the envelope detector, however. To verify that

the predicted relationship holds with a realistic DRC system, an experiment was

conducted using a speech signal from the VCTK database [104] in varying levels of

white Gaussian noise. The DRC system has a constant compression ratio of 3:1, an

attack time of 10 ms, a release time of 50 ms, and 6 mel-spaced filterbank bands,

which are roughly linearly spaced at low frequencies and logarithmically spaced at

high frequencies.

Figure 6.7 shows theoretical and experimental effective compression functions for

the speech signal, that is, values of vd̂1 [k, b] plotted against vc1 [k, b]. Each effective

compression function transitions from linear gain to the nominal compression func-

tion near the noise level: speech signal components that are well above the noise

level are compressed correctly, while those below the noise level are amplified with

constant gain determined by the noise level. The empirical envelope points do not
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Figure 6.7: Effective compression function of a speech source in varying amounts of
white Gaussian noise using a 3:1 compressor. The dashed curve is the nominal
compression function, the solid curves are the theoretical effective compression
functions, and the plotted points are samples of empirical input and output
envelopes. The labels show the noise power; the average level of the speech signal is
0 dB.
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lie exactly on the predicted effective compression functions because the nonlinear

envelope detector does not obey the superposition property. However, the points do

follow the curves closely, especially at low levels where the noise dominates and the

effective compression function is nearly linear.

This effect has been documented in the hearing aid literature as well. In [45],

the effective compression ratio applied to speech was found to decrease in strong

background noise.

6.2.3 Compression reduces signal-to-noise ratio for
constant-envelope noise

The detrimental interaction between compression and noise goes both ways: not

only does noise reduce the effectiveness of compression, compression can make noise

worse. This effect can be motivated by comparing dynamic range compression with

classic noise reduction algorithms [35]. In many noise reduction algorithms, such as

spectral subtraction and Wiener filtering, time frames with large signal levels are

assumed to be dominated by a signal of interest, such as speech, while periods with

low levels are considered noise. Gain is increased for high-level intervals and reduced

for low-level intervals, resulting in a dynamic range expansion system. A compression

system, meanwhile, amplifies the quieter periods and attenuates the louder signal of

interest, reducing the overall average signal-to-noise ratio.

To characterize this effect mathematically, let us adopt a commonly used assump-

tion from the speech enhancement literature: that the signal of interest is highly

nonstationary while the unwanted noise is mostly stationary on the time scale of the

algorithm. That is, let vc1 [k] vary arbitrarily with time and fix vc2 [k] = v̄2 for all k.

Since the envelopes are proportional to signal power, the average input signal-to-noise

is given by

SNRin =
meankvc1 [k]

meankvc2 [k]
, (6.32)
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and the average output signal-to-noise ratio is given by

SNRout =
meankvd̂1 [k]

meankvd̂2 [k]
(6.33)

=
meankĈ(vc1 [k]|vc2 [k])

meankĈ(vc2 [k]|vc1 [k])
. (6.34)

If the compression function were linear, such as a static gain, the input and output

SNRs would be identical. For a concave compression function with convex gain

function, we can prove that the output SNR is lower than the input SNR.

Theorem 6.3. If C(v) is a compression function and C(v)/v is convex for all v > 0,

vc1 [k] > 0 for all k, and vc2 [k] = v̄2 > 0 for all k, then

SNRout ≤ SNRin (6.35)

with equality if vc1 [k] is constant or C is linear.

Proof. Since vc2 [k] is fixed, the output SNR can be written

SNRout =
meankĈ(vc1 [k]|v̄2)

meankĈ(v̄2|vc1 [k])
. (6.36)

The numerator is the mean over k of a concave function of vc1 [k]. By Jensen’s

inequality, we have

meankĈ(vc1 [k]|v̄2) ≤ Ĉ(meankvc1 [k]|v̄2), (6.37)

with equality when C is linear or vc1 [k] is constant. Similarly, the denominator is the

mean of a convex function of vc1 [k]. Again applying Jensen’s inequality,

meankĈ(v̄2|vc1 [k]) ≥ Ĉ(v̄2|meankvc1 [k]), (6.38)

with equality when C is linear or vc1 [k] is constant. Let v̄1 = meankvc1 [k]. Since the
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Figure 6.8: Signal-to-noise ratio at the output of a DRC system for mixtures of
speech and white Gaussian noise at different compression ratios.

numerator and denominator are both strictly positive, we have

SNRout ≤
Ĉ(v̄1|v̄2)

Ĉ(v̄2|v̄1)
(6.39)

=
v̄1C(v̄1 + v̄2)/(v̄1 + v̄2)

v̄2C(v̄1 + v̄2)/(v̄1 + v̄2)
(6.40)

=
v̄1

v̄2

(6.41)

= SNRin, (6.42)

with equality when C is linear or vc1 [k] is constant.

To demonstrate this effect in a realistic compression system, a speech signal from

the VCTK database was mixed with varying amounts of white Gaussian noise. The

mixtures were compressed using a knee-shaped compression function like that shown

in Figure 6.5 with different compression ratios in the compression region. The attack

time was 10 ms, the release time was 50 ms, and there were 6 mel-spaced filterbank

bands. The input and output SNRs were computed using the time-domain signals

rather than the filterbank envelopes used in the proof.

The results are shown in Figure 6.8. Since this noise has a steady envelope, it
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Figure 6.9: Signal-to-noise ratio at the output of a 3:1 DRC system for mixtures of
speech and different types of noise.

should closely match the results of Theorem 6.3. At low input SNRs, the effective

compression function is more linear and the SNR is largely unchanged. At high input

SNRs, the output SNR is reduced by the compressors, with higher compression ratios

causing greater reduction in SNR. This effect of greater SNR reduction at greater

compression ratios has also been observed in the hearing aid literature [45].

6.2.4 Compression and time-varying noise

Theorem 6.3 only applies to constant-envelope noise. Other noise types may exhibit

higher or lower SNR when compressed. If the target and noise sources both vary

significantly over time but have different average levels, it is reasonable to expect that

the louder source would receive less gain on average and the quieter source would

receive more gain on average, pushing the long-term ratio between them closer to

one. Mathematical analysis of this interaction is more complex than in the constant-

envelope-noise case; however, we can study the empirical effects of compression on

different types of noise.

Figure 6.9 shows the output SNR as a function of input SNR for different types

of noise with the same 3:1 compressor. The other parameters are the same as in
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the previous section. The output SNR for white Gaussian noise is always lower

than the input SNR, as predicted by Theorem 6.3. For babble noise—a mixture of

several talkers from the VCTK dataset—the SNR is slightly improved at low input

SNRs. It is still worse than the input at high input SNRs, though better than white

noise. When the noise source is another speech signal comparable to the target, there

is substantial SNR improvement at low SNRs and degradation at high SNRs: the

compressor makes the two average source powers more similar to each other.

These results align well with experiments that have been conducted in commercial

hearing aids. In [48], the input-output SNR curve of a commercial hearing aid was

measured for speech in stationary noise, modulated noise, and other speech. These

measured curves correspond closely to those in Figure 6.9 for white noise, babble,

and speech. These effects were shown to be stronger at higher compression ratios.

The impact of compression on intelligibility for nonstationary noise remains un-

clear. Some studies have suggested that compression improves intelligibility for mod-

ulated noise but not for constant-envelope noise [32,50], perhaps because of improve-

ments in average SNR. However, this SNR improvement comes at a price: the sources

modulate each other’s envelopes, distorting temporal patterns that may contribute

to intelligibility. Two signal envelopes that are jointly compressed become negatively

correlated; this across-source modulation effect has been shown to negatively impact

intelligibility in normal-hearing listeners [46].

6.2.5 Empirical metrics of compression performance

The results above use an idealized envelope detector based on statistical expectation.

It cannot be implemented in the real world. To quantify the interaction between

compression and noise in realistic experiments, we will adopt two empirical metrics

from the hearing aid literature and one from the speech enhancement literature.

The effective compression ratio (ECR) [45] measures the overall average compres-

sion ratio applied to a source by comparing the dynamic range of the output to the

dynamic range of the input. This metric is useful for compression functions with

regions of constant compression ratio, such as power-law functions.
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Definition 6.5. The effective compression ratio ECRn between an input envelope

vcn [k, b] and output envelope vd̂n [k, b] is given by

ECRn = meanb

{
log (maxk vcn [k, b]/mink vcn [k, b])

log
(
maxk vd̂n [k, b]/mink vd̂n [k, b]

)} , (6.43)

where the max and min operations exclude the largest and smallest 5% of envelope

samples. If the compression curve does not have a constant compression ratio, then

envelope samples that fall outside the constant-ratio range of the curve are also

excluded.

Note that the envelope detector used to compute the ECR can be different from

the envelope detector of the DRC system. Generally, the ECR is smaller than the

nominal compression ratio because of the smoothing effects of the envelope detector.

Next, the across-source modulation coefficient (ASMC) [46] measures the degree

to which two source channels alter each other’s envelopes.

Definition 6.6. The across-source modulation coefficient ASMCn,p between source

channels n and p is given by

ASMCn,p = meanb

{
corrk

{
log max

(
vd̂n [k, b],

v̄n[b]

20

)
, log max

(
vd̂p [k, b],

v̄p[b]

20

)}}
,

(6.44)

where corrk is the sample correlation coefficient across time indices and log v̄n[b] =

meankvd̂n [k, b].

The across-source modulation coefficient was found to be correlated with intelligi-

bility for human listeners [46].

In addition to these empirical metrics from the hearing aid literature, we can

adopt a commonly used speech enhancement metric known as log-spectral distortion

(LSD), which is more perceptually relevant than squared error [166].

Definition 6.7. The log-spectral distortion of the output envelope vd̂n with respect
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Figure 6.10: The proposed multiple-source compression system aims to apply
different compression settings to each source channel.

to the desired envelope vd̂n is given by

LSDn = meank,b
{∣∣10 log10 vdn [k, b]− 10 log10 vd̂n [k, b]

∣∣} . (6.45)

6.3 Dynamic Range Compression of Multiple Sources

The across-source modulation effects described above occur when two or more sources

are processed by the same nonlinear system. If instead each source was processed

by a separate DRC system, as shown in Figure 6.10, these interactions could be

avoided. As a further advantage, each source could be compressed in a different way:

for example, music could be processed with longer release times than other signals

and background noise could be limited to a barely audible level. The source-specific

DRC systems could be followed by an overall DRC that keeps the mixture at a

comfortable level.

It should be emphasized that the proposed system is not directly motivated by

models of human hearing; there is, to the best of the author’s knowledge, no evi-

dence that healthy human ears apply separate compression to each sound source.

This approach has never been studied clinically and it is unclear whether or how

much it would benefit hearing aid users. However, there are reasons to expect that
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it would be beneficial for both hearing-impaired and normal-hearing users. In music

mixing, compression is typically applied to individual musical instruments or tracks

instead of or in addition to overall mixes. Advanced modern hearing aids change

their compression settings in different environments and for different source types,

such as speech and music, suggesting that different source types should be com-

pressed in different ways. These hearing aids also often have adaptive features that

alter compression settings when there are multiple sources present. For example, it

was recently proposed to change compression time constants within time-frequency

bins based on a speech presence classifier [167]. The system applies fast-acting com-

pression to speech and slow-acting compression to noise, thus improving the effective

compression ratio.

There is a need for clinical research into how hearing-impaired and normal-hearing

listeners respond to independent compression of multiple sources and how source-

specific compression should be combined with overall-mixture compression. In the

meantime, we can develop signal processing methods to implement a multisource

compression system using a multimicrophone listening device. This section describes

a multimicrophone, multisource compression system proposed by the author in [93]

and presents new experiments based on the wearable array data set.

6.3.1 Multisource compression in multimicrophone listening
enhancement

While there have been single-microphone approaches proposed for applying inde-

pendent compression to different sources [167], it would be advantageous to use the

source-separating power of multimicrophone systems. Consider again the inverse

problems illustrated by Figure 6.2 and imagine that there are multiple sound sources

mixed together. When the expander is on the listener side, as is typically assumed

for hearing aid signal processing, the resulting DRC system applies the same com-

pression to every source. The model on the right allows us to imagine different

expanders on every source, as illustrated in Figure 6.11. This figure also includes an

expander on the listener side, allowing us to model recruitment as well as the ranges
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Figure 6.11: The notional multisource compression system solves the inverse
problem shown above. Each source is associated with a different dynamic range
expander. The listener may also have an expander modeling recruitment.

of individual sources.

Our goal is to reproduce the mixture as it would have been perceived with no

expanders. That is, each desired source image dd,n[k] is the clean source image cd,n[k]

compressed by its source-specific compressor as perceived by the left and right ears.

The proposed multisource, multimicrophone compression system is shown in Figure

6.12. We can recover the desired compressed source images using a time-varying

version of the space-time filter introduced in previous chapters.

Let cfb,n[k, b] be the filterbank representation of the source image for source channel

n in band b for n = 1, . . . , N and b = 1, . . . , B. Let V (·) be a measure of instantaneous

power for the M -dimensional source image that satisfies V (ac) = a2V (c), such as

V (c) = cTc, V (c) =
∣∣eT1 c

∣∣2, or V(c) = max
(∣∣eT1 c

∣∣2 , ∣∣eT2 c
∣∣2). The latter might be

useful for binaural hearing aids in which the gain is synchronized in the left and right

earpieces. The experiments presented here use the power in the left ear only. Using

the recursive envelope detector from (6.1), the true envelope associated with source

channel n is

vcn [k, b] =

βa,nvcn [k − 1, b] + (1− βa,n)V (cfb,n[k, b]) , if V (cfb,n[k, b]) > vcn [k − 1, b]

βr,nvcn [k − 1, b] + (1− βr,n)V (cfb,n[k, b]) , otherwise,

(6.46)
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Figure 6.12: The proposed multisource compression system estimates the envelopes
of each source and adjusts the target gains of the spatial filters accordingly.

for n = 1, . . . , N and b = 1, . . . , B. Notice that the attack and release constants

can be different for each source channel. A listener would likely prefer different

compression parameters for speech and music, for example. In practice, the true

envelopes are not available and must be estimated from the mixture using source

separation methods; the experiments in the next section use the output powers of

fixed MVDR beamformers for each source channel.

Now, the desired source channel output envelopes are

vdn [k, b] = Cb,n (vcn [k, b]) , b = 1, . . . B and n = 1, . . . , N. (6.47)

The compression functions can also be different for each source channel. To preserve

interaural cues in a binaural listening device, we should apply the same gains to the

left and right outputs. Thus, the desired unit pulse response matrices are

gfb,n[`; k, b] =

√
vdn [k, b]

vcn [k, b]
δ[`]

[
eT1

eT2

]
, b = 1, . . . B and n = 1, . . . , N. (6.48)
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The desired output of the listening device is then

yfb[k, b] =
N∑
n=1

∞∑
`=−∞

gfb,n[`; k, b]cfb,n[k − `, b] (6.49)

=
N∑
n=1

dfb,n[k, b], b = 1, . . . B. (6.50)

Unlike in the scalar case, it will generally be impossible to achieve this desired

output exactly. Instead, the desired gains are used to design a time-varying filter

wd[`; k] that yields the output

ŷd[k] =
∞∑

`=−∞
wd[`; k]xd[k − `] (6.51)

=
N∑
n=1

d̂d[k]. (6.52)

The filter coefficients must be chosen so that ŷd[k] ≈ yd[k]. In this work, we use

the MSDW-MWF based on using the time-varying target gains computed from the

compression function:

wd[`; k] = arg min
w

N∑
n=1

λnE
[(

d̂d[k]− dd[k]
)2
]
, (6.53)

where λn are speech distortion weights. One could imagine other filters that explicitly

trade off between compression performance, noise reduction, distortion, and other

criteria; these are a subject for future work.

The implementation presented here uses a MSDW-MWF in the short-time Fourier

transform domain. The output at each time index k and frequency index f is given

by:

Ŷtf [k, f ] = Wdf [k, f ]Xtf [k, f ]. (6.54)

The space-time filter coefficients are recomputed for every time-frequency frame
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Table 6.1: Multisource compression results. For SER and ECR, higher numbers are
better. For LSD, lower is better. For ASMC, numbers closer to zero are better.
Table adapted from [93].

Two speakers Speech and noise Five speakers

SER ECR ASMC LSD SER ECR ASMC LSD SER ECR ASMC LSD

Ideal DRC ∞ 1.76 0.01 0.0 ∞ 1.76 0.05 0.0 ∞ 1.62 0.01 0.0
Conventional DRC 11.0 1.27 −0.20 9.7 −2.7 1.36 −0.61 11.8 −2.7 1.11 −0.10 12.1

Ground-truth MWF 16.3 1.73 −0.02 6.3 3.9 1.36 −0.47 12.6 6.8 1.24 −0.03 10.5
Ground-truth LCMV 16.4 1.75 -0.02 4.3 0.09 1.51 -0.68 8.0 1.5 1.57 -0.11 6.0

Mismatch MWF 9.2 1.61 -0.07 6.6 3.1 1.32 −0.44 13.6 −1.1 1.23 −0.04 11.3
Mismatch LCMV 8.9 1.61 -0.07 4.6 0.3 1.48 -0.67 9.0 -4.3 1.36 -0.09 7.3

based on the target gains:

Wdf [k, f ] =

(
N∑
n=1

λnGdf,n[k, f ]RCtf,n
[k, f ]

)(
N∑
n=1

λnRCtf,n
[k, f ]

)−1

, (6.55)

where RCtf,n
[k, f ] = Cov(Ctf,n[k, f ]) and Gdf,n[k, f ] is the discrete Fourier transform

of gd,n[`; k]. The source covariance matrices are computed using time-invariant rank-

one transfer function models scaled by the estimated source envelopes:

R̂Ctf,n
[k, f ] = v̂Ctf,n

[k, f ]Âdf [f ]ÂH
df [f ]. (6.56)

6.3.2 Experiments with different mixture types

In [93], a multisource dynamic range compression system was implemented using

the STFT-domain filter described above and its performance was compared to that

of a conventional compressor using the metrics from Section 6.2.5 as well as SER

(3.26). The simulations were performed using measured impulse responses from bin-

aural behind-the-ear earpieces with three microphones each (M = 6) in a reverberant

courtyard [97]. Those impulse responses were convolved with 20 second speech clips

from the TIMIT corpus [103] and processed by six algorithms: an ideal multisource

compressor with a priori knowledge of the source channel signals, a conventional
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compressor applied to the mixtures at the two reference microphones, time-varying

MWF (λn = 1) and LCMV (λn → ∞) filters designed using ground truth acous-

tic impulse responses, and time-varying filters designed using mismatched impulse

responses, which were measured on the same head dummy but in a different room.

The last experiment is the most realistic since it accounts for channel estimation

errors. For all multichannel filters, the source channel envelopes and the magni-

tudes of the time-frequency covariance matrices were estimated from the outputs of

time-invariant MVDR filters. All experiments were repeated for 100 combinations of

speech clips.

Table 6.1 shows results for three compression problems. In the first, two speech

sources were each to be independently compressed with a target ratio of 5:1. Both

the ground truth and mismatched beamformers did well at separating these sources,

which were far apart from each other in the room. All multimicrophone systems

outperformed the conventional compressor on all three envelope metrics, although

the mismatched beamformer had a lower SER.

In the second scenario, a single speech source was to be compressed at 5:1 and an

approximately isotropic speech-shaped noise source was to be removed completely.

Because there was only one directional source, acoustic channel mismatch had little

effect on beamformer performance. The MWF beamformers improved SER sub-

stantially, but at the cost of target source distortion, which adversely affected the

envelope metrics. The LCMV reduced noise less, but better compressed the target

source. The ASMC is less meaningful for this experiment because the noise was not

compressed.

In the final scenario, one foreground speech source was lightly compressed at 3:1

with +20 dB gain and four background speech sources were heavily compressed at 6:1

with no gain. Because there are five sources and six closely spaced microphones, the

SER is sensitive to parameter mismatch. As before, the MWF was more effective

at separating the signals and reducing across-source modulation effects while the

LCMV produced more accurately compressed envelopes, as measured by the LSD

and ECR.

The experiments show that multimicrophone processing can improve compression
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Figure 6.13: Multisource compression performance using different wearable
microphone arrays. The plots show the quartiles of the metrics over 100 trials with
different source configurations.

performance in the presence of multiple sources. For all experiments, at least one

system achieved better noise reduction and compression performance than the con-

ventional single-microphone system. Compression performance appears to be sensi-

tive to the choice of distortion weights, with large weights prioritizing compression

fidelity and small weights favoring noise reduction.

6.3.3 Experiments with different array configurations

The six-microphone earpiece array demonstrated in the previous section can improve

performance with simple mixtures of two sources, but it did not work as well with five.
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To realize the benefits of multisource compression for more challenging mixtures, we

need to use larger arrays. The five-source experiment was repeated using the new

wearable microphone data set [113] (Section 2.3). To simulate parameter mismatch,

the impulse responses used to design the filters were truncated versions of those used

to generate the mixtures.

Because the more powerful array is better able to separate sources, in this updated

experiment the source covariance matrices were not updated between STFT frames

as in (6.56); that is, the sources were separated based on their spatial characteristics

alone. The target gains, however, were varied from frame to frame to implement

the compression function. The source signals were taken from the VCTK corpus

and randomly assigned to N = 5 of 24 directions of arrival for each of 100 trials.

They were processed by either a conventional scalar compressor, a 6-microphone

array comprising the ears and earpieces, a 16-microphone array on the ears and

eyeglasses, a 32-microphone array including earpieces, glasses, headband, and collar,

and a 64-microphone array covering the entire upper body.

The results are shown in Figure 6.13. The performance on all metrics improves

as the number of microphones increases. The greatest performance improvement is

between the conventional compressor and the earpiece array. There are diminish-

ing returns as the array size increases. It appears that the performance bottleneck

in this algorithm is the envelope estimation step. Because this experiment used a

beamformer to recover the signal envelopes, any residual interference in the beam-

former output contributes to across-source modulation. More sophisticated envelope-

tracking algorithms will likely improve performance significantly.

6.3.4 Future directions

The analysis and experiments presented here show that dynamic range compres-

sion does not work well in noisy environments and that spatial signal processing

can help improve its performance. There is more work to be done to characterize

the interaction between noise and compression, especially with time-varying signals

and nonlinear envelope-detection dynamics. The proposed multisource compression

169



system can also be improved with new source separation algorithms designed to esti-

mate smooth envelopes rather than the signals themselves. The beamformers could

also be implemented in the filterbank rather than STFT domain.

The multisource compression framework must also be studied from a clinical and

psychoacoustic perspective. If all sound sources could be compressed separately, what

kind of compression settings should be applied to each source? The sources need not

be compressed completely independently. In music production, the compression gain

applied to one source is sometimes based on the envelope of a second source:

vdn [k, b] =
Cb,n,p

(
vcp [k, b]

)
vcp [k, b]

vcn [k, b]. (6.57)

This technique, known as side-chain compression, can be used to “duck” instruments

when they would interfere with vocals or to create distortion in response to drum

hits. A related technique was recently proposed to maintain a prescribed dialogue-

to-background ratio in television broadcasts [91].

In general, we can compute target envelope powers for each source channel based on

the envelopes of all N source channels, and possibly based on other information such

as scene classification. For example, in a cocktail party setting, we might dynamically

alter mixing ratios so that the listener hears as much background speech as possible

while ensuring the intelligibility of a conversation partner. Ideally, such a time-

varying objective system would be based on psychoacoustic models and personalized

for each user.

The ability to compress multiple sources independently may be the single greatest

benefit of large arrays for listening devices. Arrays will allow listening systems to

reliably apply different compression characteristics to different sources, helping to

improve the quality, intelligibility, and comfort of the resulting mixture. By applying

compression independently, they will avoid the harmful distortion effects caused by

across-source modulation. With further development, multisource compression could

dramatically transform the way listening devices are designed and allow listeners to

hear better even in challenging noisy environments.
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Chapter 7

Time-Varying Space-Time Filters

The theory of space-time filtering developed in Chapters 3, 4, and 5 was for linear

time-invariant filters. Such filters are appropriate when the inference problem is sta-

tionary. In the real world, however, acoustic sources and environments are constantly

changing. We have already seen one example of a time-varying audio enhancement

problem: in Chapter 6, the desired responses vary as a function of time to alter the

dynamic range of the processed signals. In this chapter, we consider the problem in

which the temporal statistics of the source signals change over time. A third source

of nonstationarity, motion of sources and microphones, will be introduced in Chapter

9.

This chapter provides an overview of time-varying methods from the audio source

separation and enhancement literature and considers their application to augmented

listening. Because most of these methods are designed for small numbers of mi-

crophones and sound sources, they do not scale well in challenging environments

or benefit from the spatial diversity afforded by the large arrays considered in this

work. The author previously proposed two new models that can scale better with

large numbers of sources and microphones: a hypothesis-testing source activity de-

tector [168] and a high-low model for source activity [112]. New analysis considers

the performance of binary masks and the proposed nonlinear spatial filters for the

source-remixing application, including interaural cue preservation.
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7.1 Time-Varying Methods

Most signals to which humans would care to listen, such as speech, music, animal

sounds, and alarms, are nonstationary, meaning that their spectral distributions

change over time. In conversational speech, for example, the spectrum of the speech

signal changes several times per second. This variation is what allows sound to

convey useful information, but it also makes audio signals more difficult to analyze

mathematically. While we could take the Fourier transform of an entire sentence of

speech, it would not accurately represent the spectral content at any given moment.

Long-term average spectra are useful for large arrays that can process signals based

on spatial diversity alone. In single-microphone systems and smaller arrays, however,

we must use time-varying methods.

To analyze nonstationary sounds, engineers use time-frequency representations, es-

pecially the short-time Fourier transform (STFT). Recall from Section 3.2.2 that the

STFT is a sequence of discrete Fourier transforms of overlapping windowed frames:

Xtf [k, f ] =
∞∑

τ=−∞
awin(kTstep − τ)xd[τ ]e−j2πτf/F , (7.1)

where awin(τ) is a tapered analysis window.

For the remainder of this chapter, all signals will be in the STFT domain and all

filters will be in the discrete frequency domain. The subscripts tf and df will be

omitted.

7.1.1 Sparsity and W-disjoint orthogonality

The STFT allows us to visualize the time-varying statistics of speech and other

natural sounds. But the STFT is more than just a visualization tool: it turns out

that the STFT is a sparse basis for these sound signals. That is, when we take the

STFT of a speech signal, most of the energy of the signal is concentrated in a small

fraction of time-frequency samples. The degree of sparsity depends on the frame

length used for the transform: for typical speech signals, the STFT is most sparse
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Figure 7.1: A small fraction of time-frequency indices contain most of the energy in
a speech signal. Each inset shows the spectrogram with lower-energy samples
removed. Figure adapted from [168].

with a frame length of about 60 ms [57,169].

Figure 7.1 shows the concentration of energy in the STFT of a speech recording.

For this sample, if all time-frequency samples with instantaneous power less than

10 dB below the long-term average are removed (top inset), the remaining 18% of

samples contain 99% of the signal energy and the speech signal has perceptual quality

comparable to that of the original. The strongest 1% of signal samples (bottom right

inset) contain 77% of the signal energy. The signal reconstructed from these samples

is severely distorted but still intelligible.

Sparsity is a useful property in its own right: for example, the STFT is often

used for feature extraction in machine learning methods such as speech recognition.

But parsimony alone is not the reason that nearly every speech separation algorithm

uses the STFT. Different speech signals, especially if they are from different talkers,

tend to concentrate their energy in different time-frequency samples. This property,

known as W-disjoint orthogonality [57, 170], ensures that for speech mixtures with

a few different talkers, it is rare that more than one speech signal has significant

energy at the same time and the same frequency.

W-disjoint orthogonality can be stated mathematically as follows. Let Sn[k, f ]

be the STFT of source signal n for source channels n = 1, . . . , N . Then at every
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time-frequency index [k, f ] there exists an n∗[k, f ] ∈ {1, . . . , N} such that

∣∣Sn∗[k,f ][k, f ]
∣∣2 � |Sn[k, f ]|2 , n 6= n∗[k, f ]. (7.2)

Assuming that the acoustic channels are not too different between source channels,

we can then approximate the observed mixture by the source image of the dominant

source channel at each time-frequency index:

X[k, f ] ≈ Cn∗[k,f ][k, f ]. (7.3)

7.1.2 Time-frequency masks

The observation that speech signals overlap little in the STFT domain gave rise to

the method that has dominated audio source separation research for more than a

decade: the time-frequency mask. The idea follows directly from (7.3): to recover

most of the energy of source image n, keep all the observed signal samples X[k, f ]

for which n∗[k, f ] = n and discard the rest:

Cn[k, f ] ≈

X[k, f ], if n∗[k, f ] = n,

0, otherwise.
(7.4)

Binary mask

This estimation procedure can also be interpreted as a time-varying scalar STFT-

domain filter:

Ĉn[k, f ] = Wn[k, f ]X[k, f ], (7.5)

where the mask Wn[k, f ] is given by

Wn[k, f ] =

1, if n∗[k, f ] = n

0, otherwise.
(7.6)

174



Because this scalar filter takes values of either 0 or 1, it is known as a binary mask.

The ideal binary mask [171], generated from prior knowledge of the source images,

is widely used as an oracle estimator to benchmark blind source separation algorithms

[169]. It works well as long as the sources truly are sparse and there are only a few

sources in the mixture. In practice, however, the mask must be estimated by a

classifier. When the classifier makes errors, each estimated source signal is mixed

with haphazardly distributed time-frequency samples from other sources. These

erroneous samples do not necessarily obey the temporal or harmonic structure of

their original source signal, so they can produce unnatural and disturbing distortion.

Soft mask

Time-frequency masks need not be binary. A soft mask is one that takes values

between 0 and 1. Such masks can achieve higher performance with fewer artifacts,

but they cannot be computed with a simple hard-decision classification. One popular

choice is the estimated posterior probability:

Wn[k, f ] = Pr (n∗[k, f ] = n | X[k, f ]) , n = 1, . . . , N. (7.7)

Another is the scalar Wiener filter, which uses estimates R̂Sn [k, f ] of the instanta-

neous source variance:

Wn[k, f ] =
R̂Sn [k, f ]∑N
m=1 R̂Sm [k, f ]

, n = 1, . . . , N. (7.8)

These soft masks are similar to the binary mask in that the masks for the different

source channels sum to unity.

7.1.3 Classification methods

Much of the audio source separation research from the past decade has focused on

methods to separate speech mixtures using time-frequency masks. These methods
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differ primarily in how they generate masks.

Single-microphone classification methods

Time-frequency masks are often applied to single-microphone source separation.

With no spatial information, these classifiers must rely exclusively on the proper-

ties of the sound signals themselves. If the sources are dissimilar, such as different

musical instruments, they can be separated using compositional models, which de-

compose the magnitude spectra into different components that are assigned to differ-

ent sources [58]. For example, nonnegative matrix factorization decomposes an F×K
matrix of STFT magnitudes into two low-rank matrices of spectral patterns and tem-

poral activation sequences [172,173]. Data-driven methods, meanwhile, use classifiers

trained on large data sets to assign source labels to each time-frequency sample. Re-

cently, many researchers have applied deep neural networks to classify time-frequency

samples [37,152,174]. Deep learning methods have also been combined with nonneg-

ative matrix factorization [59]. In the recent Signal Separation Evaluation Campaign

(SiSEC 2018), learning-based methods outperformed oracle binary mask estimators

in separating vocal and instrument tracks from music recordings [175].

Multimicrophone classification methods

Compositional models are useful for separating different types of signals: speech

from music, for example, or guitar from drums. While there have been promising

recent results in separating multiple speech signals using elaborate machine learning

models, in general it is difficult to separate two similar types of signals using single-

microphone methods. If a microphone array is available, and if the two similar signals

arrive from different directions, then spatial information can be used to classify the

dominant source at each time-frequency index.

The celebrated degenerate unmixing estimation (DUET) method, one of the first

methods to use binary masks for source separation, is inspired by the human auditory

system: it assigns each time-frequency index to a single source channel based on phase
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and level differences between a pair of microphones [57, 176]. It has been extended

to multiple microphones using subspace methods [177, 178] and pairwise time and

level differences [179, 180]. The masks can also be soft, meaning that they apply a

gain between 0 and 1 rather than a binary value.

Masks and array processing

Time-frequency-masking methods, even those that use multiple microphones for clas-

sification, do not take full advantage of the spatial diversity afforded by microphone

arrays. A simple way to combine spatial processing with mask-based processing is

to apply a scalar time-frequency mask to the output of a time-invariant beamformer.

For example, a single-target time-varying multichannel Wiener filter can be imple-

mented using a time-invariant MVDR beamformer and a time-varying scalar Wiener

postfilter. Binary masks are also a popular choice for postfiltering.

The W-disjoint orthogonality property only applies to mixtures of a few sources. If

there are many sources present, or if not all the source signals are sparse, then there

may be more than one active source at each time-frequency index. With arrays, the

sparse model can be extended to account for more than one active source at each

time-frequency index [111,181–184].

7.1.4 The local Gaussian model

Time-frequency masks are useful for mixtures of small numbers of sparse sources, but

they do not work as well when there is significant overlap between source spectra.

They also do not benefit from all the degrees of freedom afforded by large microphone

arrays. Instead of assigning each time-frequency index to a single source, we can

leverage sparsity by incorporating time-varying source statistics into the design of a

space-time filter. This method is often referred to as the local Gaussian model [11].

Under the local Gaussian model, the covariance RCn [k, f ] of each source image

STFT is an unknown parameter, which could be random or nonrandom, and the
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time-frequency samples of each source image are conditionally complex Gaussian

random variables:

Cn[k, f ] | RCn [k, f ] ∼ CN (0,RCn [k, f ]) . (7.9)

These samples are also usually assumed to be conditionally independent of each

other across time, frequency, and source channels. This conditionality is important

because the marginal distribution of most interesting sounds in the STFT domain

is not Gaussian and the time-frequency samples of a given source image are not

independent of each other.

If the time-varying covariance matrices are known, then the minimum-weighted-

mean-square-error estimate of the desired output is the MSDW-MWF designed using

those covariances:

Ŷ[k, f ] =
N∑
n=1

λnGn[k, f ]RCn [k, f ]

(
N∑
m=1

λmRCm [k, f ]

)−1

X[k, f ]. (7.10)

It would seem that we have not gained much by applying the local Gaussian

model: at each time-frequency index, instead of estimating the MN complex val-

ues of Cn[k, f ] for n = 1, . . . , N , we must estimate the M2N complex values of

RCn [k, f ]. Therefore, the local Gaussian model is often combined with constraints

on the possible values of RCn . For example, if the signal due to source channel n is

relatively spatially coherent and if the sound source and microphones do not move,

then RCn [k, f ] can be modeled as the product of a fixed spatial covariance matrix

R̄n[f ] and a time-varying source signal variance RSn [k, f ] [131]:

RCn [k, f ] = RSn [k, f ]R̄n[f ], n = 1, . . . , N. (7.11)

Now we need only estimate N nonnegative parameters at each time-frequency index.

These parameters can be estimated using models of the underlying source signals

Sn[k, f ]. For example, compositional models such as nonnegative matrix factorization

[173] are useful for mixtures of dissimilar sources, such as speech and music.
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7.2 Source Activity Mask

Binary time-frequency masks are usually used to assign each time-frequency index to

a single source channel according to the W-disjoint orthogonality model. The masks

created for each source channel are then disjoint. With this method, mixtures of

few sources will have dense masks applied to each source, while mixtures of many

sources will have sparse masks. As illustrated in Figure 7.1, the density of the time-

frequency mask affects the distortion applied to the target source. There is a tradeoff

between distortion and interference rejection. As with the speech distortion weights

introduced to space-time filters (Section 3.5.3), we can make this tradeoff explicit by

applying a tuning parameter to our time-frequency mask.

To better control the tradeoff between interference and distortion, and to apply

masks to mixtures with more than a few competing sound sources, the author pro-

posed replacing the dominant-source classifier with a source activity detector [168],

similar to the voice activity detectors often used in speech recognition [185]. That

is, instead of asking “which source is dominant at [k, f ]?” we can ask “is source n

active or inactive at [k, f ]?” The ideal mask acts as a source activity detector, that

is, it takes the value 1 when the signal is large and 0 when it is small:

Wn[k, f ] =

1, if |Sn[k, f ]|2 ≥ γ[f ]

0, otherwise,
(7.12)

where γ is a tuning parameter that determines the tradeoff between distortion and

interference rejection. The advantage of this definition is that it is independent of

the other sources in a mixture, so it is suitable for mixtures of large numbers of

sources. Based on informal listening tests, γ[f ] should be on the order of the long-

term average power of the signal at each frequency. Larger values provide greater

interference rejection but more distortion of the source signal.
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7.2.1 Generalized likelihood ratio test

To generate a source activity mask, we can no longer use the N -state classifiers

introduced in the previous section. Instead, for each source channel n for which we

wish to generate a mask, we must solve a hypothesis testing problem:

H1 : X[k, f ] = Cn[k, f ] + Z[k, f ] (7.13)

H0 : X[k, f ] = Z[k, f ], (7.14)

where Z[k, f ] =
∑

m 6=n Cm[k, f ] contains all other interference and noise signals. If

the statistics of Z[k, f ] were known, then we could use a generalized likelihood ratio

test, which treats Cn[k, f ] as a nonrandom unknown parameter. The test statistic is

Tn(X[k, f ]) = log
supC6=0 Pr(X[k, f ]|Cn[k, f ] = C)

Pr(X[k, f ]|Cn[k, f ] = 0)
. (7.15)

Using a rank-1 model for Cn[k, f ] and a full-rank Gaussian model for Z[k, f ], the

likelihood ratio is

Tn(X[k, f ]) =
1

2

∣∣AH
n [f ]R−1

Z [f ]X[k, f ]
∣∣2

AH
n [f ]R−1

Z [f ]An[f ]
. (7.16)

The mask is given by

Wn[k, f ] =

1, if Tn(X[k, f ]) ≥ γ̄[f ]

0, otherwise,
(7.17)

where γ̄[f ] is a tuning parameter that controls the tradeoff between probability of

missed detection (target distortion) and probability of false alarm (interference). It

is related to γ[f ] from (7.12) but also considers the noise distribution.

Notice that the statistic is the signal-to-noise ratio at the output of an MVDR

beamformer in the direction of An. For a large array that can perfectly suppress

interference sources, the mask will be quite dense. For smaller arrays, it will be more

conservative. Figure 7.2 shows the receiver operating characteristic (ROC) curve

parameterized by γ̄ for a speech signal in stationary noise.
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Figure 7.2: Experimental ROC curve for detection of a speech signal in white
Gaussian noise at different input SNRs. Figure adapted from [168].

7.2.2 Nonstationary hypothesis test

The generalized likelihood ratio test is appropriate for detecting a nonstationary sig-

nal in stationary noise with known statistics. In speech mixtures, however, both the

target signal and interference signals are nonstationary. Therefore, the author pro-

posed to use multiple hypothesis tests, one for each interference source channel [168].

Each test compares the hypothesis that target source channel n and interference

source channel m are both present against the hypothesis that only interference

channel m is present:

H1,m : X[k, f ] = Cn[k, f ] + Cm[k, f ] + Z0[k, f ] (7.18)

H0,m : X[k, f ] = Cm[k, f ] + Z0[k, f ], (7.19)

where Z0[k, f ] is diffuse stationary noise that ensures the mixture covariance has full

rank. To pass the overall hypothesis test, the sample must pass all N − 1 of these

pairwise hypothesis tests for m 6= n. That is, the test statistic is

Tn(X) =
1

2
min
m 6=n

∣∣AH
n [f ](RCm [f ] + RZ0 [f ])−1[f ]X[k, f ]

∣∣2
AH
n [f ](RCm [f ] + RZ0 [f ])−1An[f ]

. (7.20)

The outcome of the hypothesis test will be most affected by source channels m that

are difficult to separate from the target channel n.
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Figure 7.3: ROC curves for source activity detection in speech mixtures. The
dashed curves show the generalized likelihood ratio test (7.16) and the solid curves
show the nonstationary hypothesis test (7.20). Figure adapted from [168].

Figure 7.3 shows the ROC curves for this nonstationary hypothesis test compared

to a conventional generalized likelihood ratio test for mixtures of different numbers

of speech signals. For small numbers of sources, the two methods have similar per-

formance, but for mixtures of many sources, the nonstationary hypothesis test out-

performs the stationary test. Further results and experimental details are available

in [168].

7.3 High-Low Space-Time Filter

Time-frequency masks and the full-rank local Gaussian model represent opposite

extremes in terms of separation power and computational complexity. A time-varying

space-time filter can apply all its spatial degrees of freedom and also take advantage

of signal sparsity to improve separation performance. Such filters are unsuitable

for arrays with many microphones, however, because they must estimate too many

parameters and perform expensive computations to calculate an entirely new filter

at each time-frequency index. Masks, meanwhile, must make only one decision at

each time-frequency index and they are trivial to apply to the signal, but they do

not scale well to large numbers of sources and microphones.

In this section, a compromise method is proposed. The high-low model, like the
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Figure 7.4: Distribution of dominant and non-dominant instantaneous
time-frequency sample powers for a mixture of eight quasi-anechoic speech signals.
The mean overall power of the signal is 0 dB.

W-disjoint orthogonality model, has only one state parameter at each time-frequency

index. However, it still includes all N signals at all indices, whether they are active

or not. Thus, when the sources are easily separated spatially, for example if the

array is large, it reduces to a conventional space-time filter. When they are more

difficult to separate spatially, it behaves more like a mask. Variations of this model

have appeared in several previous works by the author [111,112,186].

7.3.1 High-low model

The high-low model is similar to other local Gaussian models in that it assumes

that the covariance of source image time-frequency sample Cn[k, f ] is the product

of a time-invariant spatial covariance matrix R̄n[f ] and a time-varying scalar source

variance RSn [k, f ]:

RCn [k, f ] = RSn [k, f ]R̄n[f ], n = 1, . . . , N. (7.21)
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However, under the high-low model, RSn [k, f ] can take only one of two values:

RSn [k, f ] =

Rhigh,n[f ], if n∗[k, f ] = n,

Rlow,n[f ], otherwise,
(7.22)

where Rhigh,n[f ] and Rlow,n[f ] are the assumed source spectra when source channel

n is dominant and non-dominant, respectively.

The high-low model is a generalization of the “on-off” model implicit in binary

masks. The behavior of the filter depends on the relative values of Rlow,n[f ] and

Rhigh,n[f ]. If Rlow,n[f ] = 0 for all n, then it is equivalent to the W-disjoint orthog-

onality model (7.3). If Rhigh,n[f ] = Rlow,n[f ] for all n, then the source images are

modeled as wide-sense stationary and the resulting filter is time-invariant.

In the experiments presented in this work, Rhigh,n[f ] and Rlow,n[f ] are 20 dB apart

for all speech sources. This choice is based on empirical experiments with mixtures

of speech signals. Figure 7.4 shows the histogram of instantaneous time-frequency

sample power relative to long-term average power for dominant and non-dominant

sources in a mixture of eight speech signals from the VCTK corpus [104]. That is, the

curve on the right shows the histogram of
∣∣Sn∗[k,f ][k, f ]

∣∣2 /meank |Sn[k, f ]|2 and the

curve on the left shows the histogram of |Sn[k, f ]|2 /meank |Sn[k, f ]|2 for n 6= n∗[k, f ].

The method can be easily adapted for more than one simultaneous “high” source,

but a previous study found only marginal improvement using two sources instead of

one [111] at a cost of much higher computational complexity. Such a model would

be most useful for large spaces with many distributed sources and arrays, in which

the system would need to use more complex filtering methods anyway.
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Ŷ[k, f ]

Figure 7.5: Using the high-low model, the time-varying space-time filter switches
between several time-invariant filters.

7.3.2 Discrete-state space-time filter

The STFT-domain MSDW-MWF for the local Gaussian model with scalar source

variances and time-invariant desired responses is

W[k, f ] =
N∑
n=1

λnRSn [k, f ]Gn[f ]R̄n[f ]

(
N∑
n=1

λnRSn [k, f ]R̄n[f ]

)−1

. (7.23)

This filter can take one of N values depending on the “high” source:

W[k, f ] = W(n∗[k,f ])[f ] where (7.24)

W(n)[f ] =

(
λnRhigh,n[f ]Gn[f ]R̄n[f ] +

∑
m6=n

λmRlow,m[f ]Gm[f ]R̄m[f ]

)

×
(
λnRhigh,n[f ]R̄n[f ] +

∑
m6=n

λmRlow,m[f ]R̄m[f ]

)−1

. (7.25)

Thus, the filtering algorithm could be implemented by switching between N time-

invariant filters based on the output of a classifier, as shown in Figure 7.5. Notice

that the high and low variances are always multiplied with the speech distortion
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weights. They play a similar role in allocating the degrees of freedom of the array

toward particular sources; in fact, an earlier version of the high-low model used

high and low distortion weights rather than high and low variances [112]. The two

formulations are mathematically identical and differ only in interpretation.

The advantage of the high-low filter is that it devotes its degrees of freedom to the

sources that are most active, but it does not completely ignore inactive sources. To

illustrate this behavior, let us return to our favorite running example from Chapter

3, the single-target beamformer with R̄1[f ] = A1[f ]AH
1 [f ], G1[f ] = eT1 and G2[f ] =

· · · = GN [f ] = 0. If source channel 1 is the dominant source channel at index [k, f ],

that is, if n∗[k, f ] = 1, we have

W[k, f ] = λ1Rhigh,1[f ]eT1 A1[f ]AH
1 [f ]

(
λ1Rhigh,1[f ]A1[f ]AH

1 [f ]

+
N∑
n=2

λnRlow,n[f ]R̄n[f ]

)−1

(7.26)

= eT1 A1[f ]
AH

1 [f ]
(∑N

n=2 λnRlow,n[f ]R̄n[f ]
)−1

λ−1
1 R−1

high,1[f ] + AH
1 [f ]

(∑N
n=2 λnRlow,n[f ]R̄n[f ]

)−1

A1[f ]
(7.27)

≈ eT1 A1[f ]
AH

1 [f ]
(∑N

n=2 λnRlow,n[f ]R̄1[f ]
)−1

AH
1 [f ]

(∑N
n=2 λnRlow,n[f ]R̄1[f ]

)−1

A1[f ]
. (7.28)

Because the assumed power of source image 1 is much higher than that of the others,

the filter is approximately an MVDR beamformer.

Now suppose that n∗[k, f ] = 2 so that an interference source is dominant. Then

we have

W[k, f ]=
eT1 A1[f ]AH

1 [f ]
(
λ2Rhigh,2[f ]R̄2[f ]+

∑N
n=3 λnRlow,n[f ]R̄n[f ]

)−1

λ−1
1 R

−1
low,1[f ]+AH

1 [f ]
(
λ2Rhigh,2[f ]R̄2[f ]+

∑N
n=3 λnRlow,n[f ]R̄n[f ]

)−1

A1[f ]
.

(7.29)
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If the noise source is diffuse so that R̄2[f ] has full rank, then

W[k, f ] ≈ eT1 A1[f ]
λ1Rlow,1[f ]

λ2Rhigh,2[f ]
AH

1 [f ]R̄−1
2 [f ], (7.30)

and the filter strongly attenuates the signal, much like a mask. If, however, the

interference source is also directional, the filter can direct a null toward source channel

2 without strongly attenuating source channel 1.

For a large array with M > N , if all of the nonstationary source channels have

rank-1 models and if the diffuse noise is much weaker than the directional sources,

the discrete-state MSDW-MWF degenerates to a time-invariant LCMV beamformer.

This result follows the same derivation as the large-distortion-weight limit from Sec-

tion 3.5.3. In this case, the state of each source channel is irrelevant because they

can be perfectly separated using spatial information.

At the other extreme, if M = 1, the discrete-state filter becomes

W [k, f ] =


λ1Rhigh,1[f ]

λ1Rhigh,1[f ]+
∑N
n=2 λnRlow,n[f ]

, if n∗[k, f ] = 1

λ1Rlow,1[f ]

λn∗[k,f ]Rhigh,n∗[k,f ][f ]+
∑
n 6=n∗[k,f ] λnRlow,n[f ]

otherwise.
(7.31)

This filter is a soft mask that is close to 1 when the target source is dominant and

close to 0 when it is not.

These limiting cases show that the high-low model scales well with different ar-

ray sizes. In underdetermined or single-microphone mixtures, it takes advantage of

source sparsity and resembles a time-frequency mask. If there is ample spatial di-

versity so that sources can be separated by their spatial characteristics alone, then

it does not need to use sparsity and resembles a linearly constrained time-invariant

filter. Between these two extremes, it takes advantage of signal sparsity without

ignoring inactive sources.
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7.3.3 Maximum likelihood state estimation

The high-low filter could be used with any classifier, including state-of-the-art com-

positional models and machine-learning methods. However, since the focus of this

dissertation is on array processing, the experiments in this chapter use a multimi-

crophone classifier that does not require complex models of the source signals.

Let us treat n∗[k, f ] as an unknown parameter to be estimated. Under the lo-

cal Gaussian high-low model, the log-likelihood of the observation X[k, f ] given

n∗[k, f ] = n∗ is

ln pn∗ [k, f ] = −XH [k, f ]

(
Rhigh,n∗ [f ]R̄n∗ [f ] +

∑
m 6=n∗

Rlow,m[f ]R̄m[f ]

)−1

X[k, f ]

− ln det

(
πRhigh,n∗ [f ]R̄n∗ [f ]

∑
m 6=n∗

Rlow,m[f ]R̄m[f ]

)
, n∗ = 1, . . . , N.

(7.32)

The maximum likelihood state estimate n̂∗[k, f ] is the n∗ that maximizes (7.32) at

each [k, f ].

A simpler alternative uses the rank-1 on-off model to compute a maximum likeli-

hood estimate [178]:

ln pn∗ [k, f ] = −

∥∥∥X[k, f ]− An∗ [f ]AH
n∗ [f ]

AH
n∗ [f ]An∗ [f ]

X[k, f ]
∥∥∥2

Rhigh,n∗ [f ]

− ln det
(
πRhigh,n∗An∗ [f ]AH

n∗ [f ]
)
, (7.33)

for n∗ = 1, . . . , N. If the source channels have similar high and low variances, then

this is effectively a nearest-neighbor classifier based on the RTFs.
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Table 7.1: Computational complexity for each time-frequency sample.

Filter multiplications Estimator/classifier

Static filter M None
Binary mask 1 Hard-decision
Soft mask N Soft-decision
Discrete-state filter M Hard-decision
LGM filter NM2 Soft-decision

7.3.4 Computational complexity

Time-varying methods can offer better remixing performance for challenging mix-

tures, but they can also be computationally demanding. Table 7.1 compares the

computational requirements of several STFT-domain remixing methods. The short-

time Fourier transform and its inverse can be efficiently implemented using the fast

Fourier transform, which has complexity F logF .

A time-invariant space-time filter performs M complex multiply-accumulates to

generate each time-frequency output sample. A binary mask is trivial to implement:

it multiplies each sample by Gn∗[k,f ][f ]. A soft mask requires N complex multi-

plications for each output sample. The discrete-state filter has the same amortized

complexity as the time-invariant filter because the N possible sets of filter coefficients

can be computed in advance and only one is used for each sample. Local Gaussian

models that allow arbitrary source variances have the highest filtering complexity

because the filter itself must be recomputed for each sample.

Most of the complexity of time-varying methods comes from the classifiers and

estimators used to update the filter or mask coefficients. The binary mask and

discrete-state classifier are easiest to implement because they make hard decisions.

The maximum likelihood classifier (7.32) requires N quadratic multiplications with

an M ×M matrix. The nearest-neighbor classifier is less demanding. Soft masks

and local-Gaussian-model-based filters require estimating the posterior probabilities

of source activity or the instantaneous variance of each source channel. The composi-
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tional models, expectation-maximization algorithms, or machine-learning classifiers

that are typically used with these methods tend to dominate the complexity of the

system.

Complex time-varying methods are most appropriate for systems with few micro-

phones. They become prohibitively expensive for large M . However, in systems with

large spatial diversity, there is less need for sparse signal models.

7.4 Time-Varying Filters for Augmented Listening

Time-varying methods were developed for underdetermined systems with more sources

than sensors. Because not all sources must be considered at all time-frequency in-

dices, time-varying methods can use their available degrees of freedom more effi-

ciently. In underdetermined source separation, these are used to apply constraints

to more source channels. In augmented listening systems with extra perceptual con-

straints, those degrees of freedom can also be applied to reducing spectral and spatial

distortion, improving robustness to parameter mismatch and motion, and, perhaps,

to reducing delay. These advantages could be useful even in nominally overdeter-

mined scenarios with large wearable microphone arrays. This section is an extension

of the author’s work in [112] with new mathematical analysis.

While time-varying methods are attractive for augmented listening applications,

they must be applied with caution: they are more computationally demanding than

time-invariant methods and they can cause disturbing distortion when they perform

poorly. Time-frequency methods also have inherently large delay due to the frame-

based processing of the STFT.

7.4.1 Source remixing with time-frequency masks

There have been many proposals to apply time-frequency masks to listening devices.

Setting aside the issue of algorithmic delay, how effective are time-frequency masks

in a source-remixing application?

190



Let Wn[k, f ] be any scalar mask designed to isolate source channel n from the

mixture. Applying the desired remixing responses, the overall array output is

Ŷ[k, f ] =
N∑
n=1

Wn[k, f ]Gn[f ]X[k, f ]. (7.34)

Thus, the overall space-time filter at each time-frequency index is

W[k, f ] =
N∑
n=1

Wn[k, f ]Gn[f ]. (7.35)

Spectral distortion

For any source image sample Cn[k, f ], the output image is

D̂n[k, f ] =
N∑
m=1

Wm[k, f ]Gm[f ]Cn[k, f ]. (7.36)

For a binary mask, the processing applied to every source image is the desired

response of the dominant source:

D̂n[k, f ] = Gn∗[k,f ][f ]Cn[k, f ], n = 1, . . . , N. (7.37)

The overall error covariance is then

Rerr[k, f ] =
N∑
n=1

(
Gn∗[k,f ][f ]−Gn[f ]

)
RCn [k, f ]

(
Gn∗[k,f ][f ]−Gn[f ]

)H
. (7.38)

If the classifier works perfectly, then this filter should still be perceived as transparent

by the listener: in the auditory system, the strongest sound source “masks” other

sounds at the same time and frequency, so the processing applied to those weaker

sources will not be perceived. If the classifier makes errors, however, the distortion

could be severe. A recent perceptual study has found that source-remixing algorithms
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for music have higher perceptual quality—fewer artifacts and less distortion—when

the gains applied to the different sources are similar [187].

Spatial distortion

Now let us consider the spatial distortion of a binaural source-remixing mask with

Gn[f ] = Gn[f ]
[
e1 e2

]T
for n = 1, . . . , N . For any source image sample Cn[k, f ],

the output image is

D̂n[k, f ] =
N∑
m=1

Wm[k, f ]Gm[f ]Cn[k, f ] (7.39)

=

(
N∑
m=1

Wm[k, f ]Gm[f ]

)[
eT2 Cn[k, f ]

eT1 Cn[k, f ]

]
. (7.40)

Because the same scalar processing is applied at both ears, there is no distortion to

the interaural transfer function:

ITFout
n [k, f ] =

eT2 Cn[k, f ]

eT1 Cn[k, f ]
= ITFin

n [k, f ]. (7.41)

Scalar time-frequency masks are perfectly spatially transparent! However, they

can introduce severe spectral distortion if the classifier does not work well or if there

are so many sound sources that W-disjoint orthogonality does not apply.

7.4.2 Spectral and spatial distortion of the high-low filter

Now let us consider the spectral and spatial distortion of the high-low filter. Consider

the response of the filter to rank-1 source channel n. From (4.24), the response is

W[k, f ]An[f ] = Gn[f ]An[f ]−
N∑
m=1

λm (Gn[f ]−Gm[f ])RSm [k, f ]R̄m[f ]R̄−1
x [k, f ]An[f ],

(7.42)
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where

R̄x[k, f ] =
N∑
n=1

λnRSn [k, f ]R̄n[f ]. (7.43)

This filter can achieve less spectral distortion than a scalar mask because R̄−1
x [k, f ]

adapts to block the dominant source at each time and frequency.

There is a similar effect on the interaural cues. If Gn[f ] = Gn[f ]
[
e1 e2

]T
for all

n, then from (4.75) we have

ITFout
n [k,f ]=

Gn[f ]eT2 An[f ]+
N∑
m=1

λm (Gm[f ]−Gn[f ])eT2RSm [k,f ]R̄m[f ]R̄−1
x [k,f ]An[f ]

Gn[f ]eT1 An[f ]+
N∑
m=1

λm (Gm[f ]−Gn[f ])eT1RSm [k,f ]R̄m[f ]R̄−1
x [k,f ]An[f ]

.

(7.44)

The discrete-state filter adapts to block the interaural cues of the active source from

mixing with those of the inactive sources, providing lower spatial distortion than a

fixed space-time filter for sparse signals.

7.4.3 Experiments with underdetermined mixtures

The high-low model was applied to binaural source remixing in [112]. The time-

varying filter was tested with up to eight speech sources using unity distortion

weights, the high-low source model, and a nearest-neighbor source activity classifier

[178]. The performance of the proposed method was compared with that of a time-

invariant multichannel Wiener filter, a binary mask using the same nearest-neighbor

classifier, and the interaural-cue-constrained filtering method (“JBLCMV”) proposed

in [138] and [73], which constrains the interaural transfer functions (eT2 D̂n(Ω)/eT1 D̂n(Ω))

but not the spectral distortion (Dn(Ω)− D̂n(Ω)) of the source images.

The desired processing response was unity gain for a target source channel, 20 dB

attenuation for all other speech channels, and complete attenuation of a diffuse noise

channel. The 20-second speech samples were taken from the TIMIT database [103]

and convolved with impulse responses from binaural hearing aid earpieces [97]. All
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Figure 7.6: Comparison of different binaural source remixing methods with M = 4
microphones in an anechoic environment. Figure reproduced from [112].

results are averaged over 50 trials with randomly selected speech samples and ap-

proximately isotropic white noise. The experimental IPD and ILD error are weighted

by the ground truth source powers in each time-frequency bin to avoid penalizing

distortion during speech pauses.

Figure 7.6 shows the performance of the tested methods as a function of the

number of speech sources in an anechoic environment using ground truth channel

parameters. The top plot shows the average interaural phase difference error averaged

over the background sources. The interaural level difference error is not shown as

it has the same shape. The MWF has the largest error since it does not explicitly

constrain spatial cue distortion. The interaural-cue-constrained filter has essentially

zero interaural phase difference error. The mask, which does not perform spatial

projection, also has low error. The proposed method falls in between. Notably, the

error does not increase significantly with the number of sources.
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Table 7.2: Comparison of binaural remixing methods for five speech sources in a
reverberant environment. The filters in the top half were designed using ground
truth impulse responses and the filters in the bottom half used erroneous impulse
responses. Table adapted from [112].

Filter
Foreground
SER (dB)

Background
SER (dB)

Background
IPD err (rad)

Background
ILD err (dB)

True
params

Static MWF 12.4 −0.8 0.86 5.08
JBLCMV 15.4 −8.9 0.46 3.21
Binary mask 13.8 3.2 0.10 0.82
High-low 17.6 5.5 0.45 2.90

Wrong
params

Static MWF 3.7 −8.6 1.23 7.20
JBLCMV 0.9 −15.5 1.16 6.80
Binary mask 12.9 1.9 0.11 0.93
High-low 8.6 −0.5 0.96 5.95

The lower plot shows the signal-to-noise ratio (SNR) for the first source channel,

which would be around 15 dB for an ideal remixing filter. Here the interaural-cue-

constrained filter performs the worst: for large N , the only filter that simultaneously

satisfies interaural transfer function constraints on all sources is a passthrough filter;

that is, for large N it does nothing at all. The two time-varying filters, the mask

and the high-low filter, leverage the sparsity of the sources to achieve the highest

performance. The high-low filter performs slightly better than the mask because it

can filter in space; with a larger array, it would likely perform even better.

This experiment also suggested that the high-low filter causes less spectral distor-

tion and is more robust to channel mismatch. Table 7.2 shows the signal-to-error

ratios for the foreground and background source output images and the average IPD

and ILD error of the background sources. The source images were generated using

impulse responses from a reverberant courtyard (T60 ≈ 900 ms). The results on the

top half of the table use these ground truth impulse responses, while the results on

the bottom half use filters designed with anechoic measurements with similar an-

gles of arrival. The proposed method achieves the lowest spectral distortion. The

interaural-cue-constrained method severely distorts the spectra of the background

195



sources even though it preserves their interaural cues. The performance of the pro-

posed method degrades less with erroneous parameters compared to the other two

spatial filtering methods, although it is less robust to error than the mask.

7.4.4 Role of time-varying methods in augmented listening

Time-varying methods were originally developed for applications where there are

only one or a few microphones. Conventional hearing aids are certainly one such

application: they have only two or four closely spaced microphones. In noisy envi-

ronments with many sound sources—where their users need them the most—they

cannot hope to process so many sources with time-invariant methods. As demon-

strated in the previous section, nonstationary models and time-varying algorithms

can leverage sparsity to apply more aggressive processing to more sources than would

be possible with a time-invariant filter.

Are clever nonstationary models and time-varying source separation algorithms

enough to dramatically improve the performance of conventional hearing aids in

challenging conditions? Could they enhance normal human hearing to superhuman

levels? Of course not; if we give our system the same information available to the

ears, we would be lucky to even come close to human performance. The premise

of this work is that to realize dramatic improvements in listening systems, we must

use massive-scale microphone arrays. Massive arrays would have ample degrees of

freedom to separate sources and apply perceptual constraints; why, then, do we need

time-varying methods?

As we will see in the following chapters, time-varying methods are useful for more

than just underdetermined mixtures. The real world is nonstationary: talkers walk

around, wearable microphone arrays bend and twist, and sample clocks drift over

time. Time-varying methods, especially the local Gaussian model, can help to ad-

dress these real-world challenges.
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Chapter 8

Source-Informed Acoustic Channel Estimation

To design space-time filters that can spatially separate and remix sound sources, we

need to know the parameters of the acoustic channel, that is, how sounds propagate

from a source to each microphone of an array. These channel parameters take dif-

ferent forms depending on the type of processing for which they will be used. The

simplest directional beamformers use a far-field anechoic model: each sound source

is characterized by a single direction of arrival, which determines the source sig-

nal’s time differences of arrival between microphones. Most environments in which

humans need help hearing, such as restaurants and convention halls, are strongly re-

verberant, so space-time filters are designed using M -dimensional acoustic-transfer-

function (ATF) or relative-transfer-function (RTF) vectors that characterize more

complex acoustic paths including reflections, reverberation, and frequency-selective

devices and materials. The most general time-invariant channel model applied in this

dissertation is the full-rank spatial covariance model, which uses an M2-dimensional

correlation or power spectral density matrix for each source channel.

Blind acoustic channel estimation is a difficult task, even in controlled environ-

ments where nothing moves and the number of sound sources and geometry of the

microphone array are known. In more realistic conditions, with unknown numbers

of moving, nonstationary sources and unknown array geometry, it is virtually im-

possible to learn the acoustic channel parameters blindly. While there is reason for

optimism that blind source separation and acoustic channel estimation performance

can improve with larger arrays and new machine-learning methods, we should look

beyond blind methods to build practical augmented listening systems. This chapter

reviews established approaches to acoustic channel estimation and introduces two
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new methods, based on the author’s work in [188] and [189], that exploit varying

degrees of prior knowledge about the source signals to improve performance.

8.1 Acoustic Channel Estimation

8.1.1 Direct measurement

The most reliable way to learn the parameters of an acoustic channel—and the only

way to learn non-relative ATFs—is to measure them directly. If sn(t) is a known

source signal from rank-1 source channel n, then the source image is given by

cn(t) =

∫ ∞
−∞

an(v)sn(t− v) dv, (8.1)

where an(v) is the acoustic impulse response vector of the channel. If it were possible

to observe the source image cn(t) directly, then the acoustic transfer function could

be readily computed in the frequency domain:

An(Ω) =
Cn(Ω)

Sn(Ω)
, (8.2)

for all Ω at which Sn(Ω) is nonzero.

If we are able to choose the probe signal sn(t), we should use a signal that covers

all frequencies of interest. Popular choices include linear and exponential sweeps

[105,106] and pseudorandom noise [107].

In practice, the source signal sn(t) is rarely known exactly. Fortunately, the ab-

solute ATFs are not necessary for building augmented listening systems that are

referenced to the ears; we only need the relative transfer functions. If the noise-free

source image cn(t) is known, then the RTF relative to microphone 1 is given by

Cn(Ω)

eT1 Cn(Ω)
, (8.3)
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for all Ω at which the reference microphone spectrum is nonzero.

8.1.2 Subspace methods

Direct measurement of ATFs or RTFs requires that we have access to the true source

images c1, . . . , cN . But if we knew those signals, we would not need to design a

space-time filter in the first place. We need the images to estimate the ATFs and

the ATFs to estimate the images, a chicken-and-egg problem. Thus, we must make

additional assumptions about the source signals in order to estimate the acoustic

channel parameters.

Consider a mixture of a single high-power rank-1 target source and low-power

diffuse background noise. In the frequency domain, the power spectral density of the

mixture is

Rx(Ω) = Rs1(Ω)A1(Ω)AH
1 (Ω) + Rc2(Ω). (8.4)

If the signal-to-noise ratio is large, then A1 should be parallel to the principal eigen-

vector of Rx. Let U(Ω) be the principal eigenvector, that is, the solution to

Rx(Ω)U(Ω) = λU(Ω) (8.5)

for the largest value of λ. Then the estimated RTF is

Â1(Ω) =
U(Ω)

eT1 U(Ω)
. (8.6)

We can obtain a better estimate of the RTF by explicitly accounting for the chan-

nel statistics using the covariance whitening method [110, 190]. Let U(Ω) be the

generalized eigenvector that satisfies

Rx(Ω)U(Ω) = λRc2(Ω)U(Ω) (8.7)
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for the largest value of λ. Then the RTF estimate is

Â1(Ω) =
Rc2(Ω)U(Ω)

eT1 Rc2(Ω)U(Ω)
. (8.8)

Of course, this method requires that we obtain an estimate of the noise covariance

Rc2(Ω). For a nonstationary speech target in stationary noise, this can be obtained

using a classifier that labels time-frequency samples as predominantly speech or

noise [126].

8.1.3 Blind source separation

If the mixture is more complicated than a single speech source in low-level noise,

then we must add yet more assumptions about the source signals in order to separate

them and identify the channel. The problem of separating similar signals based on

assumptions about their structure or statistics is known as blind source separation

(BSS) [11,53,191].

Many BSS techniques rely on the time-frequency sparsity and orthogonality of

speech signals, as described in Chapter 7. Classification-based methods like DUET

and its variants often use clustering algorithms to assign spatial features to different

sources [178,180,182,192]. Other methods rely on specific non-Gaussian probability

distributions or other sparsity assumptions [55,56].

Another class of BSS algorithms relies on statistical independence between source

signals. Independent component analysis (ICA) separates convolutional mixtures

in the STFT domain by assuming statistical independence between the signals in

different source channels [193–195]. This independence, which is a stronger condition

than uncorrelatedness, can be enforced using higher-order instantaneous statistics,

temporal correlations, and non-Gaussianity. ICA uses iterative updates within each

frequency band to produce an unmixing filter, Wdf [f ] ∈ CN×M , that estimates a set
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of statistically independent scalar source signals:
Ŝ1[k, f ]

...

SN [k, f ]

 = Wdf [f ]Xtf [k, f ]. (8.9)

ICA has several weaknesses for the augmented listening application. The ICA

update rule operates on a square N × N unmixing filter. If M > N , then the data

must be projected onto a lower-dimensional subspace, for example using principal

component analysis; the algorithm therefore does not take full advantage of spatial

diversity for large arrays. It also has a frequency-domain scale ambiguity, meaning

that it estimates an arbitrarily filtered version of the signals. To recover the RTFs,

we can take the pseudoinverse of W and normalize it so that its first entry is 1.

Finally, because it operates on each frequency band independently, ICA suffers from

a permutation ambiguity between frequencies. That is, the same source signal might

be assigned to different outputs for different frequency indices.

8.1.4 Independent vector analysis

To avoid the permutation ambiguity in ICA, a related method called independent

vector analysis (IVA) performs iterative updates jointly across frequency bands. The

blind source separation experiments in this dissertation, which appear in Chapter 10,

use a variant called auxiliary-function IVA (AuxIVA) [196]. It uses a set of simple

update rules. At each iteration, a weighted covariance matrix estimate is computed

as

R̂n[f ] = meank
G′(Pn[k])

Pn[k]
Xtf [k, f ]XH

tf [k, f ], where (8.10)

Pn[k] =

√√√√F−1∑
f=0

|eTnWdf [f ]Xtf [k, f ]|2, (8.11)
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for n = 1, . . . , N , where G is a contrast function and G′(p) = d
dp
G(p). In [196]

and the implementation used in this dissertation, G(P ) = P, so R̂n[f ] is the sample

covariance scaled by the root-mean-square filter output power across frequencies.

The unmixing matrix is updated according to

eTnWdf [f ]← eTn

(
Wdf [f ]R̂n[f ]

)−1

(8.12)

eTnWdf [f ]← eTnWdf [f ]√
eTnWdf [f ]R̂n[f ]WH

df [f ]en

, (8.13)

for n = 1, . . . , N . These iterations are repeated until convergence.

In an augmented listening system designed to reproduce sounds as received by the

ear, the converged filter must be normalized so that Wdf [f ]Adf,n[f ] ≈ eT1 Adf,n[f ]

for all n of interest. The unmixing filter can also be used to estimate the relative

transfer functions, which can then be used to design other space-time filters.

Although the performance of blind source separation algorithms is improving

steadily, there are no known algorithms that can reliably separate more than a few

sources in complex real-world environments. To learn the channel parameters we

need for space-time filtering, we cannot rely on purely passive estimation techniques.

Instead, we can actively gather information on the acoustic channel.

8.2 In Situ Channel Measurement From Pilot Signals

To characterize the achievable performance of microphone array augmented listening

devices, it would be helpful to bypass the acoustic channel estimation bottleneck. If

the blind acoustic channel estimation problem were solved tomorrow, how well could

augmented listening devices work? So far, the results presented in this dissertation

have used either synthetic mixtures or carefully controlled experiments in which

sound sources are collected one at a time to form a set of ground truth data [108,

169]. However, experiments would be more realistic if the acoustic channels could

be measured in the field and in real time. To perform these real-life experiments, we
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can use pilot signals emitted from beacons placed on or near the sound sources, as

proposed by the author in [188].

8.2.1 Wearable beacons

In wireless communication systems, transmission channels are never blindly esti-

mated: they are measured using known sequences of symbols. Likewise, we can

measure an acoustic channel by transmitting a known signal over it. Suppose that

a sound source of interest, assumed to be source channel 1, has relative impulse

response a1(t). Source channel 2 is the pilot, which has relative impulse response

a2(t). Source channel 3 contains all other signals and is treated as noise. If the bea-

con is located next to the source of interest, then a1(t) ≈ a2(t). Note that because

these are relative rather than absolute impulse responses, the impulse response of

the transducer itself, that is, the spectral distortion it applies to the pilot signal, is

irrelevant. The observed sampled signal is

x(t) =

∫ ∞
v=−∞

(a1(v)s1(t− v) + a2(t)s2(t− v)) dv + c3(t) (8.14)

≈
∫ ∞
v=−∞

a1(v) (s1(t− v) + s2(t− v)) dv + c3(t). (8.15)

If the pilot signal is uncorrelated with the noise channel, then the relative impulse

response can be estimated using cross-correlation. The pilot signal should occupy

the same spectrum as the signal of interest to ensure that the acoustic channel is

identifiable. The accuracy of the estimate depends on the signal-to-noise ratio, the

length of the impulse response, and the length of the pilot signal. The relative impulse

response is noncausal in general and must be windowed to a reasonable length. Figure

8.1 shows the signal-to-error ratio achieved by an MVDR filter designed using relative

impulse responses of different lengths, which were estimated using linear sweeps of

different duration. The mixtures were simulated using TIMIT speech [103] and

behind-the-ear earpiece impulse responses [97]. For best performance, the impulse

response should be long compared to the reverberation time of the room and the
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Figure 8.1: Simulated signal-to-error ratio for an MVDR beamformer designed
using different impulse response estimates. There were three simulated speech
sources in a reverberant office (T60 = 300 ms) with an overall input SNR of about 0
dB. Figure reproduced from [188].

sweep should be long compared to the impulse response.

8.2.2 Real-room measurements

To validate the beacon idea in a real room, a plastic mannequin was fitted with

a small battery-powered stereo loudspeaker, as shown in Figure 8.2. Several other

loudspeakers were spread around the then-untreated laboratory to play back noise.

The data was recorded by a circular MEMS microphone array designed to imitate

the microphone layout of a popular commercial smart speaker. First, the AIRs were

measured using ten-second sweeps in quiet. Then, one channel of the loudspeaker

played speech from the TIMIT database and one channel played a 100 ms sweep

repeated every second. The pilot and speech sources were just a few centimeters

apart. Noise images from the other loudspeakers were recorded separately and mixed

with the speech-and-pilot recording.

Three single-target MVDR beamformers were designed based on the different chan-

nel estimates:

1. The AIRs measured from the pilot signal alone,

2. The AIRs estimated from the pilot signal in the noisy mixture, and
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Figure 8.2: Speech and pilot signals were generated by a portable loudspeaker
affixed to a plastic mannequin and recorded using a circular MEMS microphone
array. Figure reproduced from [188].

Table 8.1: Image response (dB) for MVDR beamformers.

Pilot signal Speech signal Noise signal

Measured AIRs −0.2 −0.5 −9.9
Estimated AIRs +1.3 +1.9 −6.1
Anechoic AIRs −17.8 −24.8 −35.9
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3. An anechoic model based on time differences of arrival.

The results are shown in Table 8.1. Rather than overall SNR or SER, the table shows

the change in power of each source image:

Image responsen = 10 log10

∑
k

∣∣∣d̂d,n[k]
∣∣∣2∑

k |eT1 cd,n[k]|2
, n = 1, . . . N. (8.16)

The MVDR beamformer should have a response of 0 dB for the target source. The

beamformer designed from the measured pilot signals did have a nearly distortionless

response for the pilot and speech sources and attenuated the background noise by

more than 9 dB. The system designed using the in situ pilot signals distorted the

target signals by about 2 dB and provided slightly less noise reduction. The anechoic

model, which a beamformer might use if it could not measure the reverberant AIRs

of the channel, did a good job attenuating noise but also severely distorted the target

signal.

The results show that it would be advantageous to use pilot signals emitted by

beacons worn by talkers to calibrate augmented listening systems. Such a system

would be impractical for most real-world applications, however.

8.2.3 Inaudible pilot signals

Because audible pilot signals are annoying and disruptive, the beacon method is only

suitable for laboratory experiments. It could be applied to real listening systems if

the pilot signals were inaudible, for example, if they were in the near-ultrasonic

range. Unfortunately, if the AIR is allowed to be any signal, then inaudible pilot

signals provide no information whatsoever about the channel in the audible range.

If we hope to use inaudible pilot signals, then we must adopt a parametric model of

the channel. For example, we can use them to measure time differences of arrival.

In Chapter 9, near-ultrasonic pseudorandom noise signals from five loudspeakers

are used to track the positions of microphones in a deformable array as they move. A

similar method could be used to estimate time-difference-of-arrival parameters of an
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Figure 8.3: In a keyword-activated system, acoustic channel parameters are
measured using the keyword utterance as a pilot signal. Figure adapted from [189].

acoustic channel, which could be used to design a crude filter. The results of Table 8.1

show that anechoic models are not suitable for reverberant environments, but they

can be useful for initializing convolutional blind source separation algorithms [197].

8.3 Channel Estimation from Speech Keywords

It is not always possible to measure acoustic channel parameters using a deterministic

source that is colocated with a sound source of interest. What if we could use the

unknown source signal itself as a pilot? For speech signals, we often know a great

deal about the possible values that the signal can take. The human vocal system

can only produce a limited set of sounds [198]. If we restrict our attention to an

individual language, the set of valid speech signals is even narrower. In fact, in

certain applications, the system has prior knowledge of the specific word that was

uttered.

In this section, we consider a channel estimation method, first proposed by the

author in [189], designed for keyword-activated systems. In these systems, which

include voice assistants embedded in array-equipped electronic devices, every user

command begins with a known word or phrase, such as “Alexa,” “Cortana,” “OK

Google,” or “Hey Siri”. The activating phrase, known as a keyword or hotword, is

followed by a question or command to which the system must respond. Although

they often contain microphone arrays, voice-activated devices struggle to understand

commands in noisy and reverberant environments. If the system had a good estimate
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of the RTF between the user and the array, it could better isolate the user’s speech

from unwanted noise.

Keyword-activated devices have an advantage over other machine listening systems

because part of the signal of interest is known in advance. The proposed acoustic

channel estimation method, shown in Figure 8.3, uses the activating keyword as a

pilot signal to learn the relative transfer function between the user and the array.

This RTF is used to design a single-target beamformer that isolates the rest of the

user’s question or command from background noise.

8.3.1 System overview

In a typical voice-assistant system, a microphone array continuously captures data

and applies an on-device keyword spotting algorithm, usually a machine-learning

classifier, that detects utterances of the keyword [199]. When the keyword is detected,

the rest of the processor is activated or data is transmitted to a cloud service for

further analysis. In this work, it is assumed that the keyword-spotting algorithm

works perfectly and that it identifies the time interval in which the keyword is uttered.

The proposed system is developed in the time-frequency domain. Let Ctf,1[k, f ]

be the STFT-domain source image of the target source, including the keyword. Let

Ctf,2[k, f ] be the STFT of all other signals, which are treated as unwanted noise. In

this proof-of-concept experiment, speech is enhanced by a time-invariant minimum-

power-distortionless-response (MPDR) beamformer:

Wdf [f ] =
eT1 Adf,1[f ]AH

df,1R
−1
Xtf

[f ]

AH
df,1[f ]R−1

Xtf
[f ]Adf,1[f ]

. (8.17)

The MPDR beamformer is identical to the MVDR beamformer if the channel is

estimated correctly, but is known to be more sensitive to channel estimation errors.

This is a liability in practice, but it is useful for evaluating the performance of

acoustic channel estimation algorithms. It also does not require explicit estimation

of RCtf,2
[f ], which is difficult to measure because voice assistants are not permitted
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Figure 8.4: The proposed algorithm uses a template database to fit a
time-frequency mask to the keyword utterance, then applies the mask to the array
recording to isolate the keyword from background noise. The RTFs are computed
from the estimated keyword image. Figure adapted from [189].

to capture audio before the keyword is uttered. Instead, the beamformer uses the

sample covariance of Xtf [k, f ] over the keyword interval.

The goal is to estimate the discrete-frequency relative transfer function Adf,1[f ] at

all frequencies f for which there is important speech content. The proposed RTF

estimation algorithm, shown in Figure 8.4, works as follows:

1. The keyword-spotting algorithm identifies the keyword and the time interval

in which it is uttered.

2. A pattern-matching algorithm identifies the closest match to the uttered key-

word from a database of keyword utterances.

3. The STFT of the nearest template is time-warped to align with the STFT of

the recorded utterance.

4. The time-warped template is used to design a time-frequency mask.

5. The mask is applied to each of the M microphone recordings to remove back-

ground noise.

6. The masked signal is used to estimate the RTF from the talker to the array.
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8.3.2 Template matching

Template matching has been used for decades in small-vocabulary speech recog-

nition [200]. One channel of the observed recording is compared against a set of

templates P`[k, f ], ` = 1, . . . , L, from a database. Because the same word can be

uttered at different rates, each template STFT is stretched or compressed in time to

better match the recording. The best-fitting template index ˆ̀∈ {1, . . . , L} and the

corresponding time-warping pattern κ̂[k] can be found by solving the optimization

problem

min
`,κ[k]

∑
k

Cost
(
eT1 Xtf [k, 0], . . . , eT1 Xtf [k, F − 1];P`[κ[k], 0], . . . , P`[κ[k], F − 1]

)
,

(8.18)

where κ[k] is constrained to be nondecreasing. In the experiments presented here,

the cost function is Euclidean distance between Mel frequency cepstral coefficients of

each pair of frames. The optimization problem (8.18) can be solved using dynamic

programming [200]. The warped template is given by

P̂ [k, f ] = Pˆ̀[κ̂[k], f ], k = 1, . . . , K. (8.19)

Next, the warped template is used to generate a time-frequency mask:

Wmask
df [k, f ] =

1, if
∣∣∣P̂ [k, f ]

∣∣∣ > γ[f ]

0, otherwise,
(8.20)

where γ[f ] is a frequency-dependent tuning parameter that trades off noise reduction

for target signal distortion. Here, γ was chosen so that about 10% of time-frequency

samples are preserved within each frequency band.
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8.3.3 Relative transfer function estimation

Next, the time-frequency mask is applied to each microphone recording to remove

background noise:

Ĉtf,1[k, f ] = Wmask
df [k, f ]Xtf [k, f ], k = 1, . . . , K. (8.21)

If the speech keyword is sufficiently sparse, then Ĉtf,1[k, f ] should be approximately

parallel to the target RTF:

Ĉtf,1[k, f ] ≈ Adf,1[f ]Stf,1[k, f ] (8.22)

From these masked microphone signals, we compute the sample spatial covariance

of the source images:

R̂Ctf,1
[f ] = meankĈtf,1[k, f ]ĈH

tf,1[k, f ]. (8.23)

The estimated RTF Âdf,1[f ] is the principal eigenvector of R̂Ctf,1
[f ]. This method is

similar to covariance whitening, except that the mask takes the place of the whitening

filter.

8.3.4 Experiments

The experiments for the keyword-based acoustic channel estimation algorithm did

not use the laboratory equipment described in Chapter 2. Instead, acoustic impulse

responses were measured in a real living room (T60 ≈ 400 ms) using an array ofM = 7

MEMS microphones designed to imitate the array layout of a popular commercial

smart speaker. Four loudspeakers were placed on a sofa, chair, table, and television

stand two meters away from the array, which rested on a coffee table, as shown in

Figure 8.5.

The test signals were generated by concatenating ten-second speech samples from

the TIMIT database [103] with keywords from the crowdsourced Google spoken
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32 mm

Figure 8.5: A smart-speaker-like microphone array was used to capture sound from
four sources in the living room of a small apartment. Figure reproduced from [189].
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Figure 8.6: Spectrograms of two keyword utterances. Figure reproduced from [189].

212



−20 0 20
0

0.5

1

Input SNR (dB)

R
T
F

E
rr
o
r
(r
a
d
ia
n
s)

Ideal mask

Go

Sheila

Go Marvin

Yes Sheila

−20 0 20
Input SNR (dB)

Estimated mask

Go

Sheila

Go Marvin

Yes Sheila
G
o

S
to
p

R
ig
h
t

Y
es

M
a
rv
in

Z
er
o

H
a
p
p
y

S
h
ei
la

G
o
M
a
rv
in

Y
es

S
h
ei
la

0

0.5

1

R
T
F

er
ro
r
(r
a
d
ia
n
s)

G
o

S
to
p

R
ig
h
t

Y
es

M
a
rv
in

Z
er
o

H
a
p
p
y

S
h
ei
la

G
o
M
a
rv
in

Y
es

S
h
ei
la

Figure 8.7: RTF vector estimation error, in radians, for different keywords. Top:
RTF error versus input SNR. Bottom: RTF error at 0 dB SNR. Figure adapted
from [189].

commands data set [201]. The spectrograms of two keyword samples are shown

in Figure 8.6. The speech signals were convolved with the four measured impulse

responses and added to background noise recorded in the living room, which was

primarily appliance and ventilation noise. Note that the keyword is spoken by a

different talker in a different environment than the rest of the sample. While the

TIMIT samples are anechoic, the keywords were generated by thousands of talkers

in different environments, some with strong noise and distortion. A set of L = 500

keyword utterances with relatively high perceptual quality were manually selected

to form the template-matching database. Another 100 were used as a test set.

Figure 8.7 shows the angle between true and estimated RTF vectors, averaged

across all frequencies, for different keywords. The plots on the left show RTFs esti-

mated using the ground-truth ideal binary mask, while the plots on the right show
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input SNR. Figure adapted from [189].

RTFs estimated using the proposed method. Longer keywords provide better esti-

mates than short keywords. There seems to be a significant benefit from keywords

that contain sibilants, such as “yes” and “Sheila,” presumably because they provide

more information about high frequencies.

Next, consider the performance of the overall system. Figure 8.8 shows the perfor-

mance of the MPDR beamformer designed using the estimated RTFs. The proposed

method is compared against both an oracle binary mask, which selects the strongest

sound source at each time-frequency index, and no mask; the latter method simply

selects the dominant eigenvector of the observed mixture at each frequency. The

proposed method provides a benefit of roughly 20 dB over the fully blind method.

The oracle mask performs better still, suggesting that there is room for improve-

ment in the pattern-matching algorithm. There is less variation between keywords

in the overall performance of the system, perhaps because most speech energy is

concentrated at low frequencies where all the keywords have significant support.

These experiments show that known speech can improve the performance of keyword-

activated machine listening systems. What about human augmented listening? It

should be possible to apply the same principle to listening devices under certain

conditions. For example, a headset could detect someone saying the user’s name and

automatically focus attention on them, while using the utterance as a pilot signal to

learn the acoustic channel.
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Chapter 9

Wearable Microphone Arrays

To build listening systems with better-than-human spatial perception, we must use

microphone arrays that extend beyond the human ears. Humans have two acoustic

sensors; thanks to recent advances in microphone and embedded-processing tech-

nology, listening devices could soon have hundreds. The previous chapters have

explained the signal processing advantages of large microphone arrays and explored

the unique challenges of array processing for listening devices. To actually build such

a system, however, we must answer some basic questions: How many microphones

do we need? Where should we put them? Can they go under clothes? What kind of

microphone should we use? What if the user moves around?

It is surprising that these questions have gone unaddressed for so long; engineers

have been building wearable microphone arrays for many years. A 1992 study of

beamforming hearing aids compared the performance of microphone arrays on dif-

ferent parts of the body, but used only two microphones [64]. A five-microphone

array mounted on eyeglasses—a perennially popular form factor—was introduced

the following year [61]. New eyeglass-based designs continue to appear regularly

in the literature [202] and are a constant presence on crowdfunding websites. In

2001, Widrow and Luo built a six-microphone array worn on the chest [21]. Helmet-

mounted arrays with up to 32 microphones have been proposed for military appli-

cations [203, 204]. A dissertation from 2009 considered the design of head-mounted

microphone arrays based on acoustic modeling of the head [203].

Until recently, large wearable arrays were laboratory curiosities; the technology did

not exist to build practical wearable arrays with more than a few microphones. It is

now feasible—or at least plausible—to build wearable microphone arrays with dozens
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or even hundreds of microphones. New digital microelectromechanical-systems (MEMS)

microphones are inexpensive, energy-efficient, and smaller than a pea. They can

communicate directly with embedded processing hardware, which is now powerful

enough to perform complex array processing in real time. MEMS microphone arrays

are already being integrated into commercial wearable devices such as headphones

and watches. However, these wearable arrays have been designed to fit into existing

devices wherever convenient.

How would we design a wearable microphone array with the best possible spatial

signal processing performance? For the last two years, the Augmented Listening

Laboratory team has been developing prototypes of wearable microphone arrays with

more ambitious designs, from discreet vests that can be hidden under a shirt to the

enormous Sombrearo. These prototypes use digital MEMS microphones that could

eventually be embedded into sleek accessories and a programmable logic platform

that can perform real-time augmented-listening processing. They have also created

a first-of-its-kind database of acoustic impulse responses for wearable microphones.

These proof-of-concept prototypes and the new data set can help researchers to

understand design constraints, tradeoffs, and best practices for wearable microphone

arrays.

This chapter is based on the author’s work on wearable microphone array design

in [113] and on motion-robust array processing in [132].

9.1 Design and Construction

We begin our discussion of wearable arrays with the nuts and bolts—or rather, with

the clocks and amplifiers—of microphone array design. An augmented listening

device needs several components, as shown in Figure 9.1: microphones to capture

sound, electronics to amplify and digitize the microphone signals, a processor to

enhance those signals, and a pair of receivers to play them back to the listener.
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Figure 9.1: System architecture of an array-based digital augmented listening
device.

9.1.1 Microphones

Today, engineers are spoiled for choice when selecting microphones for audio enhance-

ment systems. Figure 9.2 shows a few of the different types of microphone available

in the Augmented Listening Laboratory, from a large-diaphragm condenser micro-

phone used for high-quality vocal recording to the tiny digital MEMS microphones

found in nearly all modern consumer electronics.

Studio-quality microphones can be divided into two categories: condenser micro-

phones, which are sensitive but fragile and require a power supply, and dynamic

microphones, which are passive and durable but less responsive to quiet sounds.

Dynamic microphones are generally used for live sound applications, such as con-

certs, while condenser microphones are used in the controlled environment of the

studio. Consumer audio devices, such as mobile phones and headsets, historically

used inexpensive low-voltage electret condenser microphones. Today, however, they

are dominated by microelectromechanical-systems (MEMS) microphones.

Analog MEMS microphones have similar electroacoustical properties to traditional

consumer-grade condenser microphones, but are much smaller and have lower cost
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Figure 9.2: From left to right: A large-format cardioid condenser microphone, a
dynamic vocal microphone, an omnidirectional lavalier microphone, and a MEMS
microphone.

and power requirements. These microphones can be reflow-soldered directly onto

printed circuit boards alongside other electronics in a compact device. Newer digi-

tal MEMS microphones have built-in analog-to-digital converters and can interface

directly with digital processors. While most of the experiments in this disserta-

tion use studio-quality condenser microphones, a commercial device would almost

certainly use digital MEMS microphones. Indeed, most of the recent large em-

bedded microphone arrays reported in the literature are based on MEMS micro-

phones [54, 77,78,109].

All microphone types are available with different directivity patterns. In voice

capture applications, most microphones are directional: they amplify sound from

the direction of the talker or performer and attenuate sound from other directions.

The directivity profile of a directional microphone varies with frequency. The vast

majority of microphones used in the array processing literature, meanwhile, are om-

nidirectional: they have similar responses to signals from all directions at all frequen-

cies in their range. Omnidirectional microphones are attractive for array processing

because the frequency and directional responses of the array can be altered using

signal processing.

As we will show in Section 9.2, the directivity of a microphone changes when it

is worn by a human or mannequin. The body, especially the torso, blocks sound

from the opposite side, making the microphone more directional than it would be

in free space. While this directivity would harm the beam pattern of a delay-and-
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Figure 9.3: Embedded devices often transmit audio in pulse density modulation
(PDM) format.

sum beamformer designed for anechoic far-field signals, it is actually an advantage

for statistical space-time filters. Different microphones capture different information

about the sound field, which is helpful when there are sound sources surrounding the

body. Although only omnidirectional microphones are used in this dissertation, it is

plausible that directional microphones could offer similar performance benefits.

9.1.2 Sensing architecture

A typical signal path is shown in Figure 9.1. The analog signals captured by the

microphones must be sampled and quantized. The analog-to-digital converters could

be in dedicated parts or they could built into the processor or the microphones

themselves. The processed signals are converted back to analog and then presented

to the user by a pair of transducers known as receivers. High-end hearing aids use

balanced armature receivers, which provide excellent performance in a tiny package,

but are more expensive than the transducers found in many consumer headphones.

To perform array processing, which depends strongly on phase relationships be-

tween microphone signals, it is critical that all audio inputs and outputs share a

common sample clock. A difference of just a few parts per million in the sample

rate between microphones would seriously harm the performance of an array [205].

Thus, all microphones attached to a device should be wired to the same clock signal

generated by a single crystal. Digital MEMS microphones require two clock signals

from the processor: a sample clock and a bit clock.

Modern digital microphones provide data in one of three formats, all of which

support transmitting more than one microphone signal on the same wire:
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Pulse code modulation (PCM): each audio sample is a binary-coded integer.

Under the ubiquitous Inter-IC Sound (I2S) protocol, the bits of the left and

right samples are transmitted during the high and low periods of the sample

clock signal.

Pulse density modulation (PDM): the transmitted bits are the output of a noise-

shaping one-bit analog-to-digital converter [206]. In audio devices, the over-

sampling ratio is usually 64. Higher-amplitude signals have more frequent 1’s

and lower-amplitude signals have more frequent 0’s, as shown in Figure 9.3.

The PDM signals must be decimated by the processor to recover the PCM

signals used for signal processing.

Time division multiplexing (TDM): a form of PCM with more than two chan-

nels per wire. Samples from different channels are interleaved in time. Unlike

stereo PCM, which usually follows the I2S standard, there is no standard pro-

tocol for multichannel.

Despite the lack of standardization, TDM digital microphones are an attractive choice

for large-scale microphone arrays because many microphones can be connected to a

single port on the processor.

In most commercial products that use digital MEMS microphone arrays, such as

smart speakers, mobile phones, and gaming systems, the microphones are all mounted

to the same printed circuit board. In a large-scale wearable array, the microphones

would be much farther apart. Care must be taken to ensure that clock and data

signals are preserved over long wire connections.

9.1.3 Signal processing

Once the audio signals from the microphones have been digitized and transmitted

to the processor, they must be processed to produce a pair of output signals. Em-

bedded audio systems vary widely in their computational requirements. Since audio

sample rates are relatively slow compared to modern microprocessor clock speeds, it
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is possible to build simple audio systems using low-power microcontrollers. More so-

phisticated processing, such as many-channel space-time filtering and time-frequency

algorithms, require more powerful processors. High-end hearing aids typically use

custom integrated circuits. A mid-range off-the-shelf hearing-aid chip might include

a digital signal processor core, a set of dedicated hardware filterbanks, a few micro-

controllers, analog amplifiers, and wireless communication interfaces.

No hearing aids or consumer audio devices on the market today contain as many

microphones as the arrays considered in this dissertation. To build systems that

can support dozens of microphones, we need a highly parallel architecture. The

undergraduate students in the Augmented Listening Laboratory have developed an

architecture based on the Intel DE-1 SoC system-on-chip platform, which includes

a field programmable gate array (FPGA) and a mobile-class applications processor.

The programmable logic supports a large number of I2S microphone interfaces and

a set of finite-impulse-response filters that process the received signals and produce

low-latency stereo outputs. The data is also stored in memory accessible to the

applications processor, which can interface with the user or other devices to update

filter parameters. The architecture, shown in Figure 9.4, draws on the open-source

Pyramic project [109].

It remains to be seen whether a mobile-class processor can perform the high-

dimensional processing required for powerful augmented listening. Fortunately, most

of the algorithms described in this dissertation rely on repeated multiplication of large

matrices. That is, they require the same type of hardware as deep neural networks,

for which the computing industry is racing to build efficient processors. Between

continued improvements to digital microphone technology and the increasing avail-

ability of highly parallel embedded processing, it will soon be possible to perform

sophisticated signal processing on large microphone arrays using a battery-powered

wearable device.
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Figure 9.5: Wearable microphone array prototypes.
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9.1.4 Array form factors

One of the most important decisions in designing a wearable microphone array is

where to place the microphones. The best-studied sensor arrays are uniform linear

arrays, which can be easily analyzed mathematically for narrowband signals arriving

from far away in an anechoic environment. Thus, some of the earliest microphone

arrays proposed for hearing aids were linear arrays placed on eyeglasses [61]. Of

course, audio signals have wide bandwidth and a listener’s face is certainly not an

anechoic environment, so there is no need to use a linear form factor for a wearable

microphone array. Circular arrays are also popular because they have many axes

of symmetry that simplify beamformer design. They are often used in tabletop

teleconferencing devices and smart speakers. Because the human head is roughly

circular, several researchers have designed arrays that encircle the head on helmets

[203,204,207].

Wearable-array form factors have been motivated as much by convenience and

aesthetics as by signal-processing performance. Hearing-aid manufacturers sacrifice

performance and battery life to squeeze their products into tiny, discreet packages.

These companies believe, perhaps correctly, that consumers are embarrassed to wear

hearing aids. If it really is important that listening devices be discreet, then we

should consider array designs that can be concealed under clothing.

The Augmented Listening Laboratory design team has experimented with several

wearable-array designs, as shown in Figure 9.5. The first working prototype was

on a construction helmet. The team is also developing a pair of headphones and a

vest that can be worn under clothing. However, these proof-of-concept prototypes

do not address the fundamental question of where microphones should be placed to

maximize spatial signal processing performance. To do that, the team used studio-

quality lavalier microphones to measure wearable microphone impulse responses all

over the body. We can use this data to study performance tradeoffs and formulate

design guidelines for wearable microphone arrays.
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Figure 9.6: Interaural level differences from the wearable microphone-database and
from an anechoic HRTF database [96]. Figure adapted from [113].

9.2 Acoustic Effects of the Body

To design high-performance wearable microphone arrays, we must understand the

acoustic effects of the body. The wearable-microphone database [113] (Section 2.3)

includes measurements for 80 locations on the body and an additional 80 positions

on various wearable accessories from 24 angles of arrival. Measurements were per-

formed on both a human subject and a plastic mannequin. We can use this data to

understand the acoustic effects of the body and of clothing on wearable microphones.

9.2.1 Head-related transfer functions

The acoustics of some parts of the human body have been studied extensively: the

head and ears. Head-related transfer functions (HRTF) describe how sound propa-

gates into the ear canal from different directions of arrival [117]. The shaping effects

of the pinna allow humans to localize sound not only on a left-right axis, but also

front-back and up-down. There are large databases of head-related transfer functions

captured in anechoic conditions [95,96].

Figure 9.6 shows the average interaural level differences between the microphones

in the left and right ears for contralateral sources. The human and mannequin data
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microphone response for sources from different directions for several wearable
microphones. Figure adapted from [113].

from the wearable-microphone data set is compared with that from the MIT-KEMAR

database [96]. Although the wearable-microphone data set was not collected in a

fully anechoic chamber, the interaural level difference is similar at low and middle

frequencies. The plastic mannequin head is slightly more transparent than the human

head, but is likely similar enough to be useful for proof-of-concept experiments.

9.2.2 Attenuation by the body

We can also study transfer-function-magnitude differences across other parts of the

body. Because the body blocks sound transmission, especially at high frequencies, it

causes omnidirectional microphones to have directional responses. Figure 9.7 shows

the effective directivity, averaged across all frequencies, of microphones on the chest,

head, and shoulder. The head, a popular location for wearable arrays, provides the

least directivity. The most effective is the torso, which attenuates contralateral sound

by more than 10 dB.

These attenuation effects are frequency-dependent. Figure 9.8 compares the atten-

uation of the chest and torso as a function of frequency. The body has little effect at

low frequency, but significantly attenuates higher-frequency sound. The figure also
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Figure 9.8: Attenuation by the body for sources and microphones on opposite sides
of the torso. Figure adapted from [113].

compares the attenuation effects of the human and mannequin subjects. The sub-

jects’ bodies, especially the torsos, cause similar attenuation. These results suggest

that inexpensive plastic mannequins are suitable acoustic substitutes for real human

users in wearable-microphone experiments.

9.2.3 Effects of clothing

Some users might prefer to conceal a wearable microphone array under clothing.

To assess the performance of a concealed microphone array, measurements of the

16 microphones on the middle and upper torso were repeated with several types of

outerwear. The attenuation due to clothing is shown in Figure 9.9. The cotton t-

shirt, cotton dress shirt, fleece pullover, and cotton sweatshirt cause little attenuation

except at high frequencies. A microphone array worn under these articles would likely

function well, especially because large arrays are most useful at lower frequencies that

cannot be resolved by small head-mounted arrays. The wool coat and leather jacket,

however, cause severe attenuation above 500 Hz. A wearable array would likely not

be useful underneath heavy winter outerwear.

Research on head-related transfer functions has shown that clothing, especially

eyeglasses and hats, also affects acoustic transfer functions to the ear. So do large
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Figure 9.9: Attenuation due to clothing for the 16 microphones on the middle and
upper torso. Figure adapted from [113].

curly hairstyles. However, these differences do not appear to affect human localiza-

tion abilities [117,208–210].

9.3 Beamforming Performance of Wearable Arrays

To compare the performance of different wearable-microphone-array designs, the

measured impulse responses were used to simulate mixtures of six VCTK speech

sources and spatially uncorrelated noise. The impulse responses were windowed to

32 ms to simulate parameter estimation errors and the windowed responses were used

to design MVDR beamformers, referenced to the left ear, for each source channel.

For each array, the experiment was repeated for 100 combinations of six randomly

selected directions of arrival.

9.3.1 Number of microphones

Wearable microphone arrays can support many more microphones than conventional

earpieces. Figure 9.10 shows the mean SNR improvement over the 100 trials of

MVDR beamformers using different numbers of microphones. Every array includes
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Figure 9.10: Performance of MVDR beamformers with different numbers of
microphones. Figure adapted from [113].

the two microphones in the ears. Arrays with more microphones tend to outper-

form arrays with fewer microphones, but microphone location also matters. The

18-microphone array on the ears and torso outperforms an array of nearly twice as

many microphones on the head and neck. The torso blocks more high-frequency

sound than the head, providing more spatial diversity, and the microphones are

spread farther apart, helping to separate low frequencies.

Figure 9.11 shows mean SNR improvement as a function of frequency for a few

of the tested arrays. The wearable arrays are most effective at high frequencies,

where wavelengths are small compared to the spacing between microphones and the

body effectively blocks contralateral sound sources. The limiting factor in overall

performance appears to be low-frequency sound, which is difficult to separate even

with a body-scale array.

9.3.2 Microphone placement

Clearly, the placement of microphones affects the performance of the array. Figure

9.12 compares different array designs that all use M = 18 microphones: two in the

ear and sixteen on different body parts or wearable accessories. Small accessories

worn on the head, including the baseball cap and headphones, perform worst. This
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Figure 9.13: In deformable microphone arrays, such as wearable arrays,
microphones can move relative to each other. Figure reproduced from [132].

is bad news for wearable-array designers who would like to add more microphones to

existing audio accessories. The enormous Sombrearo, shown in the bottom row, has

excellent performance. Similar performance can be achieved without an ostentatious

accessory by spreading microphones across a large area on the user’s body.

9.4 Modeling Small Microphone Motion

Experiments with wearable microphone arrays suggest that for best performance,

microphones should be spread across the body. Arrays that cover the head, torso,

arms, and legs provide the best spatial diversity for source separation and remixing.

There is a serious problem with these body-scale arrays, however: humans move! As

the user walks, looks around, gestures, or even just breathes, the microphones will

move not only relative to the sound sources, but also relative to each other. This

intra-array motion changes the phase differences that are critical to all forms of array

processing.
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9.4.1 Deformable microphone arrays

A deformable array is one in which the sensors can move relative to each other [132],

as illustrated in Figure 9.13. This deformation is in contrast to the rigid motion

of, say, an eyeglass-mounted array, and to motion of sound sources. Deformable

arrays are more difficult to model than rigid arrays because they have more degrees

of freedom in their motion.

Tracking and isolating moving sources, while still a challenging problem, has been

studied extensively. Most methods combine a technique for localizing sound sources,

such as steered response power or multiple signal classification, with a tracking algo-

rithm, such as a Kalman or particle filter [211–216]. Sparse signal models (Chapter

7) can help to improve performance in noisy mixtures [217–220]. Others have applied

blind source separation algorithms that adapt over time [221,222].

There has been much less work on deformable microphone arrays. Robotics re-

searchers have studied microphone arrays mounted on movable structures. In [223],

a set of movable arms adaptively repositioned microphones to improve their beam-

forming performance. In [224], microphones along a hose-shaped robot were used to

estimate its posture as it moved. Moving wearable arrays were studied in [186] as

part of an asynchronous distributed array, which is discussed in Chapter 10. This

part of the chapter is based on [132], which elaborates on the time-invariant full-rank

model of motion introduced briefly in [186].

When microphones exhibit large motion, such as when a wearable-array user walks

across a room, we have little choice but to explicitly track their positions. But what

about smaller motion, such as nodding or breathing? Is there a way to compensate

for small deformations using time-invariant methods rather than computationally

expensive and error-prone tracking algorithms?

9.4.2 Statistical model of deformation

Small changes in sensor position resemble acoustic channel estimation errors, which

have been studied in the context of robust beamforming. As explained in Section
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4.2.3, parameter mismatch can be modeled as a random, uncorrelated perturbation to

the power spectral density matrix of a source channel. Such errors can be addressed

using derivative constraints [225], norm constraints [135], or distortionless constraints

within a region of space around the target [83, 226]. These methods amount to

widening the beam pattern to improve robustness at the expense of noise reduction.

A similar tradeoff should apply to deformation: if the motion were small enough

that the array could still tell different source channels apart, then there would be no

need to explicitly track the microphone positions. How small is small enough? Let

us consider the effects of motion on the second-order statistics of the array signals,

that is, on the covariance matrices used to design linear time-invariant filters.

Since we will be comparing time-varying and time-invariant methods, we will an-

alyze signals in the STFT domain. Assume that the motion is slow enough that the

effects of Doppler can be neglected and the microphone positions are approximately

constant within each time frame. The state of the microphones in each time frame

k is denoted θ[k] ∈ X , where X is a set of states that represent different microphone

positions and orientations. While X should properly be thought of as a continuous

set, in the state-tracking implementation used in these experiments it is discretized

into a manageable number of states.

To simplify our analysis, let us ignore the nonstationarity of the signals themselves;

that is, assume that any variations in the STFT source-image covariance matrices

RCtf,n
[k, f ] are due to motion alone. Nonstationary signal models are the subject of

Chapter 7 and are applied to deformable arrays in Chapter 10. Let R̃Ctf,n
[f ; θ] be

the source-image covariance matrix for source channel n in array state θ. Then the

time-varying source-image covariance matrices are given by

RCtf,n
[k, f ] = R̃Ctf,n

[f ; θ[k]], n = 1, . . . , N. (9.1)

The long-term average statistics of the source channels, denoted R̄Ctf,n
[f ], can be

computed if we have a prior distribution pθ on θ:

R̄Ctf,n
[f ] =

∫
X
pθ(θ)R̃Ctf,n

[f ; θ] dθ, n = 1, . . . , N. (9.2)
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In the experiments presented here, long-term average statistics are computed di-

rectly from sample statistics of training data, so that the state space and its prior

distribution are never explicitly defined.

9.4.3 Quantifying the effects of deformation

To analyze the effects of deformation, we would like to know how different two sets

of source channel statistics are from each other. That is, how different is R̃Ctf,1
[f ; θ1]

from R̃Ctf,1
[f ; θ2]? Are they more different from each other than R̃Ctf,1

[f ; θ1] is from

R̃Ctf,2
[f ; θ1]? If so, we might need to explicitly track the state of the array as it moves.

Under the rank-1 model, we could simply measure the angle between the acoustic

transfer function vectors Adf,1[f ; θ1] and Adf,1[f ; θ2]. But the rank-1 model does not

apply to all source channels, and the ensemble covariance matrix R̄Ctf,n
[f ] surely has

rank greater than 1. Instead, consider the Kullback-Leibler divergence between two

zero-mean complex Gaussian distributions with covariances R1 and R2 [227]:

Div(R1,R2) =
1

2

[
trace

(
R1R

−1
2 − I

)
− ln

det R1

det R2

]
. (9.3)

The term R1R
−1
2 is familiar from our analysis of the squared-error performance of

full-rank multichannel Wiener filters in Chapter 4. For non-parallel rank-1 covariance

matrices, the divergence is infinite. If the two matrices are identical, it is zero.

Although the source-image STFTs do not have Gaussian distributions in general,

the Gaussian divergence is a useful way to quantify how different two distributions

are from each other for the purposes of linear least-squares estimation.

9.4.4 Effect of deformation on a far-field array

Consider a set of N far-field source signals incident on an array of M isotropic sensors.

Suppose for simplicity that the source signals all have power RStf,n
[k, f ] = 1. Under

the narrowband model, the STFT covariance matrices of a rigid (nonmoving) array
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are

Rrigid
Ctf,n

[f ] = Arigid
df,n [f ](Arigid

df,n [f ])H (9.4)

=


e−jΩf τn,1

...

e−jΩf τn,M

[e+jΩf τn,1 · · · e+jΩf τn,M

]
, (9.5)

for n = 1, . . . , N , where Ωf is the continuous-time frequency corresponding to discrete

frequency index f and τn,m is the time delay of arrival for source n and channel m.

If the microphone positions are perturbed so that each τn,m is shifted by an amount

∆n,m(θ), then the new acoustic transfer functions are

Adf,n[f ; θ] =


e−jΩf (τn,1+∆n,1(θ))

...

e−jΩf (τn,M+∆n,M (θ))

 , n,= 1, . . . , N, (9.6)

so that the (m1,m2) entry of each covariance matrix is

RCtf,n,m1,m2 [f ; θ] = e−jΩf (τn,m1−τn,m2+∆n,m1 (θ)−∆n,m2 (θ)) (9.7)

= Rrigid
Ctf,n,m1,m2

[f ]e−jΩf (∆n,m1 (θ)−∆n,m2 (θ)) (9.8)

for n = 1, . . . , N . If the offsets ∆n,m(θ) have independent and identical Gaussian

distributions with zero mean and variance σ2, then using the moment-generating

function for Gaussian random variables, the (m1,m2) entry of the ensemble covari-

ance matrix for source n is given by

R̄Ctf,n,m1,m2 [f ] = Eθ
[
RCtf,n,m1,m2 [f ; θ]

]
(9.9)

= Rrigid
Ctf,n,m1,m2

E
[
e−jΩf (∆n,m1 (θ)−∆n,m2 (θ))

]
(9.10)

=

Rrigid
Ctf,n,m1,m2

[f ], if m1 = m2,

Rrigid
Ctf,n,m1,m2

[f ]e−Ω2
fσ

2

, if m1 6= m2.
(9.11)
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Because all off-diagonal elements are scaled by the same amount, we have

R̄Ctf,n
[f ] = e−Ω2

fσ
2

Rrigid
Ctf,n

[f ] + (1− e−Ω2
fσ

2

)I. (9.12)

Substituting (9.12) into (9.3) and applying the Sherman-Morrison formula, it can

be shown that the Gaussian divergence between two far-field source-image covari-

ances with independent and identically distributed Gaussian offsets is

Div(R̄Ctf,1
[f ], R̄Ctf,2

[f ]) =
M2 −

∣∣∣(Arigid
df,1 [f ])HArigid

df,2 [f ]
∣∣∣2

2
(
eΩ2

fσ
2 − 1

)(
eΩ2

fσ
2 − 1 +M

) . (9.13)

From this expression, we can see that the ensemble second-order statistics of the two

source channels become more similar to one another as

1. their unperturbed acoustic transfer functions become more similar, for example

because the sound sources are closer together,

2. the uncertainty σ2 due to motion increases, and

3. the frequency Ωf increases.

Deformation should have little impact if Ωfσ is small, that is, if the amount of motion

is small compared to a wavelength. At low audible frequencies where wavelengths are

meters long, the deformation of a wearable array should have virtually no effect. At

high audible frequencies where wavelengths are just a few centimeters, small motion

could strongly degrade performance.

9.4.5 Experimental measurements

The effects of motion were analyzed experimentally using two deformable micro-

phone arrays, shown in Figure 9.14. The first comprised twelve lavalier microphones

hanging on cables from a pole as it was rotated back and forth by hand. The micro-

phones swing by several millimeters relative to each other, but the overall motion is
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Figure 9.14: Two deformable arrays were measured in the laboratory: a set of 12
microphones hanging from a pole and a 12-microphone wearable array. Figure
reproduced from [132].

one-dimensional. The second was a wearable array on a human subject. Twelve mi-

crophones were affixed to the ears, chest, shoulders, and elbows. The subject moved

in different patterns. In order from most to least motion, the patterns are:

1. Dancing: moving the hips, arms, and head, but not the legs (because the floor

squeaks),

2. Gesturing: moving the head and arms to simulate an animated conversation,

and

3. Standing still: making a concerted effort to stand as still as possible.

A fourth experiment was conducted with the same wearable array configuration on

a mannequin. Unlike the human subject, the mannequin can stand perfectly still

without breathing.

Five loudspeakers were positioned around the arrays about 45◦ apart in a half-

circle. To track the state θ[k] over time, each loudspeaker continuously emitted a

different deterministic near-ultrasonic pilot signal. Time differences of arrival were

computed between each loudspeaker and microphone and the vectors of these time

differences were clustered into several discrete states. This tracking procedure allows

us to directly measure the true state of the array rather than estimate it from the

data that we are trying to process.
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Figure 9.15: Gaussian divergence between different source channels for the two
arrays. Figure adapted from [132].

To calibrate the arrays, bandlimited noise was played sequentially from each loud-

speaker as the microphones were moved in consistent patterns. The ensemble covari-

ance R̄Ctf,n
[f ] for each source channel n was computed from the sample covariance

over the full recording. The state-dependent covariance matrices R̃Ctf,n
[f ; θ] were

computed using the measured states for each time frame.

Figure 9.15 shows the average Gaussian divergence between ensemble covariances

R̄Ctf,n
[f ] for the central loudspeaker and the four other loudspeakers. The wearable

array provides better spatial diversity than the linear array because it covers a large

area and includes the acoustically opaque human torso. Motion has little effect at

125 Hz because the microphones move much less than one wavelength. The penalty

due to motion increases at higher frequencies, as predicted.

Figure 9.16 compares the Gaussian divergence between different pairs of covari-

ance matrices for the linear array. The smallest divergence, shown by the curve

with triangular markers, is between the ensemble covariance matrices of different

source channels, Div(R̄Ctf,n
[f ], R̄Ctf,3

[f ]). The plot shows the average for the four

outer loudspeakers with respect to the central loudspeaker (channel 3). The curve

with circular markers is the divergence between two states for the central source:

Div(R̃Ctf,3
[f ; θ1], R̃Ctf,3

[f ; θ2]), where θ1 and θ2 represent opposite ends of the range

of motion, about 90◦ apart. The curve with square markers shows the average diver-
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Figure 9.16: Divergence between sources and states for the hanging linear array.
Figure adapted from [132].

gence between the outer and central sources in a single state, Div(R̃Ctf,n
[f ; θ], R̃Ctf,3

[f ; θ]).

As expected, it is easier to distinguish between different source channels when the

state of the array is known than when it is unknown. Furthermore, the states are

more different from each other for a single source than the sources are on average,

suggesting that state tracking is necessary for this amount of motion.

9.5 Motion-Tolerant Processing for Deformable Arrays

9.5.1 Time-invariant and time-varying methods

Deformation has different effects on the second-order statistics of a mixture signal

depending on the amount of motion and on frequency. In this section, two processing

methods are compared: a time-varying filter that tracks the state of the array and

a time-invariant filter that accounts for all possible states. Both are multichannel

Wiener filters designed to isolate a single source channel; the signal-to-error-ratio

results are averaged across the five speech sources produced by the loudspeakers.

Given a state estimate θ̂[k], which in this experiment is provided by measurements

of near-ultrasonic pilot signals, the time-varying STFT-domain MWF for source

238



channel n is

Wdf,n[k, f ] = eT1 R̃Ctf,n
[f ; θ̂[k]]

(
N∑
m=1

R̃Ctf,m
[f ; θ̂[k]]

)−1

. (9.14)

Meanwhile, the time-invariant MWF is given by

Wdf,n[f ] = eT1 R̄Ctf,n
[f ]

(
N∑
m=1

R̄Ctf,m
[f ]

)−1

. (9.15)

The time-invariant filter is far less computationally complex and would not introduce

artifacts from rapid time variation. However, the ensemble second-order statistics of

the source channels are only useful if the amount of deformation is small.

9.5.2 Evaluation of moving-array performance

Deformable arrays present unique challenges in quantifying array performance. For

most other experiments in this dissertation, we can generate realistic audio mixtures

by recording sources separately and then adding their source spatial images. We can

then compare the processed output of a filter against a ground-truth recording. This

method works because the microphones and loudspeakers are in the same positions

throughout the experiment. With a deformable array, however, the microphones

cannot move in the same way for two or more recordings. Therefore, we must take

a different approach.

To provide a consistent ground-truth target signal, the deformable arrays were

supplemented with a nonmoving microphone used as the reference (m = 1). The

experiments used eleven sets of recordings: five 20-second clips of pseudorandom

noise, one from each loudspeaker, were used to measure the second-order statistics

of the source channels. Five 20-second VCTK speech clips were then played one-at-

a-time and recorded at the nonmoving reference microphone; these were used as the

ground-truth output images d1, . . . ,d5. Finally, the five speech samples were played

back simultaneously from the loudspeakers; it is this mixture data that is actually
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processed by the filters.

The human subject attempted to move in similar patterns throughout the exper-

iment so that the set of states and time spent in each state was similar between

recordings. However, each recording has a unique motion pattern for the non-fixed

microphones. Because this modified experiment is especially sensitive to ambient

noise, the loudspeakers were amplified to a higher level than usual and the human

subject was provided with extra hearing protection during the recordings.

Beamformer performance is evaluated using the signal-to-error ratio improve-

ment over the unprocessed signal. The SER improvement is computed in the time-

frequency domain and averaged over the five speech sources:

∆SER[f ] =
1

5

5∑
n=1

10 log10

∑
k

∣∣eT1 Xtf [k, f ]−Dtf,n[k, f ]
∣∣2∑

k |Wdf,n[k, f ]Xtf [k, f ]−Dtf,n[k, f ]|2
. (9.16)

To evaluate performance qualitatively, the wearable-array experiment was repeated

using binaural beamformers referenced to the left and right ears. Because the ears

move differently during every recording, there is no binaural ground truth recording

against which to compare the processed output.

Because the nonmoving reference microphone is relatively far from the arrays, it is

likely that the quantitative results reported here are worse than they would be with

a reference microphone in the deformable array. Researchers may need to develop

new methods to better measure performance with moving and deformable arrays.

9.5.3 Time-varying filtering with a linear array

For the swinging linear array of hanging microphones, the pilot signals provide time-

difference-of-arrival vectors that correspond to different angles of rotation; thus, it is

straightforward to define and track a set of states for different positions. Figure 9.17

compares the beamforming performance of the time-varying and time-invariant pro-

cessing methods. The performances of the two methods are identical when the pole

is not moving. The time-varying algorithm outperforms the time-invariant beam-
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Figure 9.17: Time-invariant (dashed curves) and time-varying (solid curves)
beamforming performance with a swinging linear array. Figure adapted from [132].

former at all other motion levels. The penalty due to deformation increases with the

range of motion. Low frequencies, for which the array provides little benefit anyway,

are largely unaffected by motion. At the highest tested frequencies, any motion at

all destroys the performance of the time-invariant beamformer. The time-varying

method also suffers at high frequencies, but still provides some beamforming gain.

The motion-tracking experiment was also performed with a wearable array on a

human subject. Unfortunately, even with the aid of ultrasonic pilot signals, the mo-

tion of the human was too complex to track reliably. Even simple motions require

a huge number of states so that the covariances in each state could not be reliably

estimated. Further research will be necessary to apply explicit motion tracking to

wearable microphone arrays. However, a time-varying method was successfully ap-

plied to a distributed array of multiple moving humans; it is described in Chapter

10.

9.5.4 Time-invariant filtering with a wearable array

Although it was not possible to explicitly track motion in the wearable-array exper-

iment, it provides some insight about the viability of time-invariant processing for

deformable microphone arrays. The time-invariant beamformer (9.15) accounts for
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Figure 9.18: Time-invariant beamforming performance with a wearable array with
different amounts of motion. The solid curves show the proposed full-rank
covariance model and the dashed curves show a conventional rank-1 beamformer.
Figure adapted from [132].

motion by incorporating uncertainty about the array state into a full-rank covariance

matrix. Figure 9.18 compares the performance of the proposed full-rank-covariance

model of deformation to a conventional rank-1 beamformer, which was computed

from the principal eigenvectors of the empirical covariance matrices.

The full-rank model outperforms the rank-1 model even for the nonmoving man-

nequin. The full-rank covariance matrix might better model parameter estimation

errors and reverberation that are not captured by the narrowband rank-1 model [131].

At higher frequencies, the full-rank model does appear to help compensate for the

uncertainty due to motion. However, these benefits are not especially impressive for

gesturing and dancing: at the highest tested frequencies, the full-rank model merely

matches the performance of a single-microphone Wiener filter, which would provide

about 8 dB of gain for this five-source mixture. The rank-1 beamformer, meanwhile,

performs worse than no beamformer at all.

These experiments demonstrate that motion is a serious problem for wearable

microphone arrays. While low frequencies are mostly unaffected and full-rank models

can help compensate for deformation at mid-range frequencies, even tiny motion due

to breathing is enough to seriously harm performance at high frequencies. To ensure
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good high-frequency performance, at least part of the wearable array should have

rigidly connected, closely spaced microphones.

9.6 Wearable Array Design

We can draw several conclusions from the experiments in this chapter. The perfor-

mance of a wearable microphone array depends on several factors:

Separation between microphones: When microphones are farther from each other,

the phase responses of different source channels tend to be more different, mak-

ing the signals easier to separate and remix.

Body coverage: When microphones are on opposite sides of the body, the magni-

tude responses of different source channels tend to be more different, especially

at high frequencies.

Deformation: When microphones move relative to each other, as they do if they

are on different parts of the body, the high-frequency performance of the array

suffers.

Array designers are faced with contradictory criteria. To ensure good high-frequency

performance, they should make sure to have microphones surrounding the body,

especially the torso. However, those microphones would not be rigidly connected to

each other, which would impair high-frequency performance.

Perhaps the challenge of deformation explains the persistent popularity of microphone-

array eyeglasses: although they have small aperture and provide little magnitude

diversity, they are rigidly connected to the ears. Eyeglasses or headphones should

perform well for frequencies above several kilohertz if there are just a few sound

sources in front of the listener. To process lower frequencies and more challenging

mixtures, however, an augmented-listening system would need a larger array. The

better-performing Sombrearo is also rigidly connected to the head and provides much

greater separation between microphones than eyeglasses do, making it an excellent
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proof of concept. However, a 60 cm hat may not be practical or socially acceptable

in all listening environments.

A possible solution is to use several compact, rigid subarrays placed on differ-

ent parts of the body, perhaps underneath clothing. The individual subarrays would

have good high-frequency performance for sources on the same side of the body, while

the collective deformable array could better process lower frequencies and separate

sources on different sides of the body. There are challenges with this distributed

approach, however. The microphones within each subarray would not move relative

to each other, but they could move relative to other subarrays and, critically, the

listener’s ears. A linear time-invariant filter referenced to the ears could not use

high-frequency data from the other subarrays directly. Furthermore, the different

subarrays would need to communicate with each other, either over a wired connec-

tion that could be cumbersome for wearers or over a wireless connection that could

introduce synchronization issues. Distributed processing with multiple moving and

asynchronous subarrays is the subject of Chapter 10.

Much remains to be learned about wearable arrays. How do the acoustics of the

body depend on variables such as body shape and size? An expanded wearable-

microphone data set should include multiple human subjects as well as more source

directions and acoustic environments. Researchers would also benefit from experi-

mental data on the array-wearer’s own speech, which is difficult to simulate using

mannequins and loudspeakers. We must also consider non-speech noises generated

by the body itself, which may have relatively high levels for microphones in certain lo-

cations on the body. Although clothing does not seriously attenuate external sounds,

it might generate severe noise when it rubs against microphones. The challenging

problem of deformable-microphone-array processing remains largely unexplored. Fi-

nally, of course, there is the question of what wearable-array designs users would be

willing to wear and to be seen wearing.

It is anyone’s guess what the wearable microphone arrays of tomorrow will look

like. They could be built into discreet vests worn under clothing or embedded in

other wearable electronics such as eyeglasses, headphones, and watches. It is even

possible that after this dissertation is published, giant microphone-covered hats will
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become the latest fashion trend. Ideally, augmented-listening systems will aggregate

data from a combination of conventional earpieces, electronic accessories, purpose-

built wearable arrays, and external devices, including both deformable and rigid

arrays, to provide the best possible spatial diversity and therefore the best listening

experience.
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Chapter 10

Cooperative Processing with Multiple Devices

This dissertation has shown that large microphone arrays have many benefits for

augmented listening: with greater spatial diversity, we can process more sources

with less distortion and lower delay, preserve the listener’s spatial awareness, and

compensate for the detrimental effects of nonlinear processing in noise. Large wear-

able microphone arrays can perform better than conventional earpieces for mixtures

of several sources. Wearable arrays may not be enough, however, in the most chal-

lenging environments where there are many sound sources, where the parameters

of the acoustic channel are difficult to estimate, and where the arrays may deform

and move over time. If multiple devices spread throughout the environment could

cooperate and share data, the distributed system would have far more information

about the sound sources than any one device. A room-scale array could surpass

the normal listening abilities of the human auditory system, delivering augmented

listening experiences that would be impossible with a single device.

This chapter reviews recent work on distributed and asynchronous array process-

ing and describes a hierarchical approach to cooperative processing using listening

devices and other microphones in a space. This framework is realized in two sets

of algorithms and original experiments that highlight different challenges: one, pro-

posed by the author in [115], uses a massive-scale array to perform source separation

and estimate acoustic channel parameters which are then used by a wearable device

for real-time audio enhancement. Another, proposed by the author in [186], shares

parameters between devices that may move relative to each other and have slightly

different sample clocks.
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Figure 10.1: Multiple devices distributed throughout an environment could
cooperate to track, separate, and enhance sound sources.

10.1 Room-Scale Microphone Arrays

Today, human environments are filled with microphone-equipped devices. Mobile

phones, smart appliances, telecommunication equipment, security systems, and wear-

able devices often contain multiple microphones. Many of these microphones—

particularly those in wearable devices worn by distant talkers—would be much closer

to sound sources than a user’s wearable array would be. Rather than the sound

sources surrounding the microphone array, the microphones would be interspersed

with the sound sources, as shown in Figure 10.1, providing far more spatial resolu-

tion. Such arrays can be used to triangulate source positions or to “spotform” and

isolate sounds from a region of space rather than a direction of arrival [82, 83].

To demonstrate the potential performance of a massive-scale array in a challenging

environment, consider the distributed-array data set described in Section 2.4. Ten

loudspeakers and a total of 160 microphones are spread throughout a large, reverber-

ant conference room across 4 mannequin listeners and 12 tabletop devices. Figure

10.2 shows the performance of single-target multichannel Wiener filters based on

different array configurations. Each causal binaural filter is computed from ground-

truth source-image statistics. The earpieces alone are nearly useless and even a

large-area wearable array offers only a few decibels of improvement. Reasonable per-
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Figure 10.2: Average single-target SER for different array configurations using the
distributed array data set from Section 2.4.

formance can be obtained with 40 microphones spread throughout the room. The

full 160-microphone array successfully blocks unwanted speech sources so that the

limiting factor is diffuse background noise.

This experiment performed coherent space-time filtering using microphones from

many distributed devices. However, a listening device might not be able to use the

signals from remote arrays directly for real-time filtering. Depending on the wireless

protocols used to transmit the data and the distance of the remote array, the signals

might or might not arrive in time to be used in a causal filter. Furthermore, each

device likely uses its own sample clock circuit and the samples rates of these clocks

could differ from each other by a few samples per second—enough to distort the

intermicrophone phase differences that are critical for array processing. Finally, the

devices may move relative to each other. The most useful information about speech

signals would come from microphones worn by human talkers, which would neces-

sarily have independent clocks, wireless connections, and motion ambiguity. Other

devices, such as appliances, might have fixed locations and more-reliable network

connections. In this chapter, we explore cooperative processing methods for com-

bining information from these heterogeneous devices to improve the performance of

augmented listening systems.
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10.1.1 Distributed processing

Distributed microphone array processing, along with distributed sensing more broadly,

have been studied extensively in recent years. Many researchers have proposed dis-

tributed computing methods for networks of devices [79, 228]. In a decentralized

system, that is, one without a centralized processing hub, each device must perform

a different part of the overall calculation. In these problems, there is typically limited

bandwidth between devices—for example, because they are part of a wireless sensor

network—so that they must choose what data to transmit. Bandwidth-constrained

beamforming for wireless binaural hearing aids was considered in [70]. A more gen-

eral method, suitable for large arrays, applies linear dimensionality reduction so that

each device only transmits as many audio signals as there are target sources [229,230].

Crucially, each device need not estimate every individual source signal, only a sub-

space that contains those source signals, and each device might have a different set

of target sources.

In a distributed array, some devices are closer to some sound sources than others.

Thus, a distributed system can assign different sources to different devices to improve

the efficiency of source separation, beamforming, or other spatial processing. In

[231], a clustering algorithm is used to determine which microphones are near which

sources. In [232], sources are assigned to individual devices within a network and

separated using independent component analysis. In [233], devices cooperate across a

network to calculate ICA updates. Clustering-based methods take advantage of large

differences in source image magnitude between widely separated devices [81, 234].

An advantage of magnitude features is that different devices do not require perfectly

synchronized sample rates.

10.1.2 Asynchronous arrays

One important obstacle to cooperative array processing is synchronization. Every

analog-to-digital converter is driven by a sample clock, which is typically derived from

a crystal oscillator. In audio devices, clocks are usually accurate within several parts
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per million [205,235,236], which is accurate enough for nearly all audio applications—

except array processing. Array signal processing methods, including beamforming,

localization, and source separation, rely on time differences of arrival on the scale of

fractions of a millisecond to distinguish sources from different directions. Sample rate

mismatch between devices can cause these time differences of arrival to drift, harming

the performance of the filter or other spatial processing algorithm. Distributed arrays

made up of microphones with different sample clocks are known as asynchronous

arrays.

Most research into asynchronous array processing has focused on estimating sample

rate differences between devices and resampling recorded signals onto a common time

scale. Small sample rate offsets can be approximated by time-varying linear phase

shifts in the STFT domain [205] and compensated using opposite phase shifts [205].

Other methods model phase drift of intermicrophone coherence and apply time-

domain resampling [84, 236]. The method used for the baseline experiments in this

chapter splits the difference, estimating sample rate offsets in the STFT domain but

correcting for them in the time domain [235].

Resampling-based methods are suitable for offline processing of prerecorded sig-

nals, but they are difficult to apply to real-time processing. Furthermore, sample

rate estimation is strongly sensitive to motion [205,237], as will be shown in Section

10.3. There are a few proposed methods that do not require sample rate estima-

tion. In [80, 81], clustering methods and nonnegative matrix factorization are used

to generate time-frequency masks, which do not depend on phase differences between

devices. In the method proposed in [186] and described in Section 10.4, a sparsity-

based nonlinear filtering algorithm uses phase information only within synchronous

subarrays, then aggregates likelihood features between devices.

10.1.3 Hierarchical processing

A further challenge in cooperative array processing is latency. As explained in Chap-

ter 5, listening devices must process sound within just a few milliseconds to avoid

disturbing distortion. A key conclusion of that chapter is that large-scale distributed
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Figure 10.3: A cooperative processing system operates on multiple scales of
distance, time, and computational complexity.

arrays can reduce delay—possibly to zero!—by observing source signals several mil-

liseconds before they arrive at the listener’s ears. However, this benefit requires a

low-latency wireless link. The Bluetooth standard that is widely used for consumer

audio devices today has latency of several tens of milliseconds, making it unsuitable

for such a network. Future wireless technologies may have much lower latency. In

practice, different remote devices will likely have different latencies with respect to

the listener’s device. Similarly, some devices might have synchronous sample clocks

and others might not, and different devices may have different bandwidths and com-

putational capabilities.

To address this heterogeneity in the cooperative listening system, we can use a

hierarchical processing architecture, shown in Figure 10.3. The microphones in the

network are divided into two categories: local microphones that can be used for syn-

chronous causal filtering, for example those within the listening device, and remote

microphones that provide useful information but cannot be used for filtering because

they have high-latency or low-bandwidth connections or because of relative motion

or sample rate mismatch. Only local microphones are used to perform filtering and

generate the output presented to the user. The remote microphones are used to learn

about the parameters of the system and generate or adapt the local filters.
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Processing tasks are also divided into a hierarchy according to time scales and

computational demands. The space-time filters that generate the output have strict

delay constraints and must be implemented on the listening device itself. Fortu-

nately, these filters are not computationally intensive. In the laboratory prototype

described in Section 9.1, binaural outputs are generated by finite impulse response

filters implemented in programmable logic. This processing level might also include

filterbanks or Fourier analysis and synthesis for time-frequency processing.

At the other extreme, blind source separation or acoustic channel estimation algo-

rithms operate on time scales of tens of seconds. They may be too computationally

demanding to run on an embedded device, but because the channel parameters do

not vary too quickly, they could be executed on an external device or even on a cloud

service. These long-term parameter-estimation algorithms can aggregate data from

the entire distributed array. They might also integrate non-audio data from cameras

or other sensors and interface with the users of the system.

Depending on the algorithms used, there may also be a third intermediate level

of the cooperative processing hierarchy. This level operates on time scales of tens to

hundreds of milliseconds so that it can track short-term changes in signal spectra,

apply dynamic range compression, or track small motion in deformable microphone

arrays. It is responsible for computing and updating the filter coefficients used by the

delay-constrained space-time filter. It could be implemented on the listening device

itself or an external processor. This level may or may not have access to data from

the full array, depending on the capabilities of the devices.

The remainder of this chapter describes two examples of cooperative processing

that highlight different challenges. In Section 10.2, we consider a fully synchronous,

nonmoving array in a large, reverberant room. The local device performs causal

linear time-invariant filtering using only its local microphones. The local filters are

designed using channel estimates from noncausal blind source separation algorithms

and data from the entire array. This system includes the lowest and highest levels

of the hierarchy in Figure 10.3. In Section 10.4, we consider a different problem:

the acoustic channel parameters are known and the devices can share complete data

in real time, but they have uncertain sample rate offsets and the arrays can move
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Figure 10.4: Remote devices are used to perform source separation and to estimate
slowly varying acoustic channel parameters. Only local microphones are used for
real-time listening enhancement. Figure adapted from [115].

relative to each other. Data from remote arrays cannot be used directly for space-

time filtering because of phase ambiguities, so information from these asynchronous

devices is aggregated to determine the state of a nonlinear filter based on the high-low

model. This second problem illustrates the lower and middle levels of the hierarchy.

Further work will be required to integrate these methods and demonstrate a complete

end-to-end cooperative listening system.

10.2 Cooperative Listening Enhancement with Room-Scale

Arrays

Human environments are increasingly filled with network-connected, microphone-

equipped devices. In this section, we consider a large, reverberant room with a large

number of talkers but an even larger number of microphone arrays. These distributed

devices can cooperate to achieve better spatial-processing performance than any one

device alone. This section is based on the author’s work in [115].
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10.2.1 Hierarchical source separation and enhancement

A typical room might have a combination of nonmoving audio devices, such as smart

speakers and telecommunication equipment, and moving devices, such as mobile

phones and wearable accessories. Fixed devices are more useful for sound source

localization, separation, and tracking because they can leverage prior information

about their microphones’ locations and the acoustics of the environment. However,

a listening device must rely primarily on its local microphones for filtering to achieve

imperceptible delay and to preserve interaural cues.

A cooperative listening enhancement system can combine the strengths of local

and remote devices, as shown in Figure 10.4. All microphones in the network are

used to estimate acoustic channel parameters, in this case the discrete-time source-

image correlation matrices rcd,n [`] for n = 1, . . . , N , for the microphones of the local

array. These matrices are used to compute binaural discrete-time causal multichannel

Wiener filters (Section 4.1.3).

10.2.2 Source separation with a room-scale array

A room-scale distributed array has the advantage that many microphones are much

closer to the sources than the listener is. These nearby microphones enjoy a higher

signal-to-noise ratio and direct-to-reverberant ratio. Some source separation meth-

ods, such as [231,232], leverage this spatial diversity by assigning different sources to

different subsets of microphones. Here, these nearby microphones are used as refer-

ence signals. Let m∗n be the microphone closest to sound source n for n = 1, . . . , N∗,

where N∗ ≤ N is the number of directional sound sources. Assume that the dis-

tributed array is large enough that each source has a unique nearest microphone. Let

S̃tf,n[k, f ] = eTm∗nCtf,n[k, f ] be the source signal as received by the nearest microphone

for directional sources n = 1, . . . , N∗.

Let Ŝtf,n[k, f ] be an estimate of the nearest-microphone source image for n =

1, . . . , N∗. These estimates are generated using all the microphones of the distributed

array. Performing blind source separation on such a large scale remains an open
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problem. The experiments in the next section compare three methods:

1. The unprocessed mixture at the nearest microphone, Ŝtf,n[k, f ] = eTm∗nXtf [k, f ],

2. The output of the AuxIVA blind source separation method [196] (Section 8.1.4)

initialized with the nearest-microphone estimate, and

3. An ideal linear unmixing filter designed from the ground-truth source images.

10.2.3 Local array statistics

Using these STFT-domain reference signal estimates, the second-order statistics of

the source images at the local array can be estimated:

R̂S̃tf,n
[f ] = meank|Ŝtf,n[k, f ]|2 (10.1)

R̂Xtf,localS̃tf,n
[f ] = meankXtf,local[k, f ]Ŝ∗tf,n[k, f ] (10.2)

R̂Xtf,local
[f ] = meankXtf,local[k, f ]XH

tf,local[k, f ]. (10.3)

These statistics provide narrowband rank-1 models for the directional sources.

Specifically, the discrete-frequency transfer function for source channel n relative to

the nearest microphone to source n (not relative to an in-ear microphone) is given

by

Âdf,local,n[f ] = R̂Xtf,localS̃tf,n
[f ]R̂−1

S̃tf,n
[f ]. (10.4)

At this point, the sampled relative impulse responses âd,local,n[k] can be windowed to

exclude late reverberation.

The relative (early) transfer functions and empirical source statistics are used to

estimate the rank-1 discrete-frequency power spectral density matrices of the local

source images:

R̂cd,local,n [f ] = Âdf,local,n[f ]R̂S̃tf,n
[f ]ÂH

df,local,n[f ], n = 1, . . . , N. (10.5)

255



Figure 10.5: A distributed array of 160 microphones is spread among 10
loudspeakers in a large, reverberant conference room.

The statistics of the remaining diffuse noise sources are assumed to be measured in

advance, for example when the room is empty.

Applying the inverse discrete Fourier transform yields length-F estimates of the

discrete-time correlation matrices rcd,local,n [τ ] for n = 1, . . . , N . These in turn are

used to compute the causal discrete-time filter wd, derived in Section 4.1.3, that

estimates the desired output from the local microphone signals xd,local[k]:

ŷ[k] =
L∑
`=0

wd[`]xd,local[k − `]. (10.6)

10.2.4 Experimental setup

The cooperative source separation and listening enhancement system is demonstrated

using the large distributed array data set of Section 2.4. The local microphones are

the 16 microphones on a wearable array, which covers the ears, eyeglasses, torso,

and wrists. The full distributed array has up to 160 microphones spread across 12

smart-speaker enclosures and 4 wearable arrays. There are 10 loudspeakers spread

throughout the room facing different directions. Each loudspeaker has at least one

microphone-array device within about one meter in front of it, as shown in Figure

10.5. The loudspeakers play VCTK speech samples from different talkers.
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Mixtures were generated with a variable number of speech source images plus a

recording of diffuse background noise in the room, which was primarily from the

ventilation system. The noise is stronger than the speech sources below 100 Hz and

about 20 dB weaker than them at higher frequencies. Source separation and acoustic

channel estimation were performed using a 16-second mixture. The source separation

algorithm has prior knowledge of the total number of sources and the index of the

nearest microphone to each source, but no other information about the source or

microphone geometry.

The estimated source statistics were used to design causal FIR enhancement filters

with length 128 ms and delay 16 ms. The relative early impulse responses were

windowed to length 32 ms; changes in the REIR length do not appear to have a

strong effect on performance. The resulting enhancement filters were tested on a

mixture of different 16-second speech samples from the same talkers as the training

data.

Because the filters are designed to enhance only the early parts of the source images

and exclude late reverberation, it is difficult to compute a ground-truth target output

for this experiment. Therefore, performance is evaluated using signal-to-noise ratio

improvement, denoted ∆SNR, for each of 2N∗ single-target binaural beamformers,

one for each ear and each directional source:

SNRin
n,j = 10 log10

∑
k

∣∣eTj cd,n[k]
∣∣2∑

k

∣∣∣∑m 6=n eTj cd,m[k]
∣∣∣2 (10.7)

SNRout
n,j = 10 log10

∑
k

∣∣∣eTj d̂d,n[k]
∣∣∣2∑

k

∣∣∣∑m 6=n eTj d̂d,m[k]
∣∣∣2 (10.8)

∆SNRn,j = SNRout
n,j − SNRin

n,j, (10.9)

for j = 1, 2 and n = 1, . . . , N∗. The experiment was repeated for each of the four

listeners for a total of 8N∗ performance measurements for each set of sources.
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Table 10.1: Source separation performance (dB SNR improvement).

Ideal IVA

Array M N∗ = 4 7 10 N∗ = 4 7 10

Reference 10 13 12 10 5 4 3
Wearable 64 25 26 23 8 7 3
Tabletop 96 23 23 21 7 6 5
All mics 160 23 24 23 8 7 6

0 10 20 30

N∗ = 10
Nearest N∗ = 7

N∗ = 4

N∗ = 10
IVA N∗ = 7

N∗ = 4

N∗ = 10
Ideal N∗ = 7

N∗ = 4

SNR improvement (dB)

Figure 10.6: Listening enhancement performance of the local causal space-time
filters designed using different acoustic channel estimation methods. The quartile
statistics are shown over 8N∗ source-ear combinations. Figure adapted from [115].

10.2.5 Experimental results

First, consider the performance of the source separation algorithm at estimating

s̃n(t). Table 10.1, which is adapted from [115], shows the average SNR improvement

of ŝn compared to the unprocessed mixture at the reference microphone for different

array sizes. The source separation algorithm used either the 10 nearest microphones

only, the 64 wearable microphones only, the 96 tabletop microphones only, or all 160

microphones together. There is a clear benefit to using arrays with M � N for both

the ideal and blind source separation methods.

Figure 10.6 shows the SNR improvement of the causal 16-microphone enhance-

ment filters for different channel-estimation methods and different numbers of direc-
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Figure 10.7: Relationship between source separation performance and listening
enhancement performance. Each point represents a combination of one sound
source, one ear, and one acoustic channel estimation method. Figure adapted
from [115].

tional sources. The statistics are shown over all 8N∗ source-ear combinations. For

each experiment, the lower SNR-improvement values generally correspond to distant

source-listener pairs and higher SNR-improvement values are for sources close to and

facing the listener.

Using the unprocessed remote microphone signals as references, the listening de-

vices can improve SNR by around 5–10 dB. Using blind source separation to help

design the filters provides about 5 dB further improvement. An ideal room-scale

separation filter provides another 5 dB, showing that there is room for improvement

in the blind source separation algorithm.

The listening enhancement filters are designed to isolate the reference signals iden-

tified by the source separation algorithm. The system’s enhancement performance

is therefore limited by the performance of the separation algorithm. Figure 10.7

shows the SNR performance of the causal space-time listening filter as a function of

the SNR performance of the source separation algorithm. Each point represents one

combination of the ten target source signals and eight ears. There is a clear positive

relationship between the separation SNR and enhancement SNR. There are diminish-

ing returns for the ideal signal estimate; the limiting factors might be reverberation
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and noise.

These experiments show that, given a good estimate of the reverberant channel

parameters, wearable microphone arrays can perform high-quality delay-constrained

spatial processing even in large, reverberant rooms with many distant sound sources.

Furthermore, remote microphones can help to estimate these channel parameters

even if they are not used directly in the resulting filters. However, more work is

required to develop scalable blind source separation techniques that work with large

numbers of sources and microphones.

10.3 Deformable and Asynchronous Arrays

The large-scale experiment in the previous section shows that distributed microphone

arrays can enhance human listening even in the most challenging environments with

strong reverberation and many competing sound sources. However, the arrays used

in that experiment were all perfectly synchronized and did not move. To realize the

benefits of cooperative array processing, we must also account for motion and syn-

chronization issues. Although they seem to be unrelated problems, synchronization

and motion both result in a relative phase ambiguity between microphones and so

they have related, though not identical, solutions.

10.3.1 Sample rate offsets in the time-frequency domain

If the devices in a distributed microphone array are connected wirelessly, then each

device most likely has its own sample clock generated by an internal circuit and

crystal. Suppose that the nominal sample period is Ts, so that the ideal sampled

signal x̃d,m at each microphone m would be

x̃d,m[k] = xm(kTs), m = 1, . . . ,M. (10.10)
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In reality, each microphone has a true sample period Tm for m = 1, . . . ,M . The

actual sampled signals are therefore

xd,m[k] = xm(kTm), m = 1, . . . ,M. (10.11)

The nominal and true samples are related to each other by a Doppler shift, which

warps the time axis and therefore the frequency spectrum. Let Xtf,m[k, f ] and

X̃tf,m[k, f ] be the STFTs of xd,m and x̃d,m, respectively. Because of the sample rate

offset, the k and f indices of the two STFTs correspond to different time intervals

and different continuous-time frequencies. If the offset is large, then STFT-domain

array processing is effectively impossible.

If the offset is small, as offsets between audio devices typically are, then the effect

can be modeled linearly in the STFT domain [205,235]. Assume that the sample rate

offset is much smaller than the analysis bandwidth of the discrete Fourier transform,

that is, | 1
Tm
− 1

Ts
| � 2π

FTs
, so that each frequency index f ∈ {0, . . . , F −1} corresponds

to nearly the same continuous-time frequency for all microphones and the continuous-

time duration of the STFT windows differ by much less than a sample period between

microphones. Suppose that the time scales are coarsely synchronized—say, within

a few samples—so that the continuous-time intervals corresponding to each STFT

window index k are nearly the same for each microphone. Then the sampled and

nominal-scale STFTs are approximately related by a phase shift

Xtf,m[k, f ] ≈ ejαm[k,f ]X̃tf,m[k, f ], m = 1, . . . ,M. (10.12)

If the STFT-domain samples of the observed signals are regarded as zero-mean

random variables that do not depend on the α’s, then the cross-correlation between

microphone signals is

RXtf,mXtf,`
[k, f ] = E [Xm[k, f ]X∗` [k, f ]] (10.13)

≈ E
[
ej(αm[k,f ]−α`[k,f ])X̃tf,m[k, f ]X̃∗tf,`[k, f ]

]
(10.14)

= E
[
ej(αm[k,f ]−α`[k,f ])

]
RX̃tf,mX̃tf,`

[k, f ]. (10.15)
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The next step depends on whether we view the α’s as deterministic parameters that

can be measured or as random parameters that contribute to the uncertainty in the

system.

10.3.2 Estimating sample rate offsets

The time-scaling effect of a small sample rate offset can be modeled as time-varying

time shifts of STFT frames. Assuming a common time origin at k = 0, the phase

shift αm[k, f ] is approximately linear [205,235]:

αm[k, f ] ≈ 2πkfTstepTs

F

(
1

Ts

− 1

Tm

)
, (10.16)

where Tstep is the step size, in samples, between frames and F is the length of the

discrete Fourier transform.

In the most-studied version of the asynchronous array processing problem, the

sources and microphones do not move and the source signals have at least approx-

imately stationary long-term statistics. Then from (10.15) and (10.16), the cross-

correlation between microphone signals is

RXtf,mXtf,`
[k, f ] ≈ e−j

2πkfTstepTs
F

∆m,`RX̃tf,mX̃tf,`
[f ], (10.17)

where ∆m,` = 1
Tm
− 1

T`
.

The phase of this cross-correlation varies predictably as a function of time and

frequency. Thus, it can be estimated from the sample cross-correlation between

observed microphone signals. In [84], ∆m,` is derived from the rate of change of the

phase of the coherence between microphone signals. In [205], the STFT samples

are modeled as Gaussian random variables and ∆m,` is obtained by a maximum

likelihood estimator.

The resampling experiments presented here use the two-step correlation maximiza-

tion method of [235], which combines ideas from [205] and [84]. First, the sample

rate offset is coarsely estimated by applying compensatory linear phase shifts in the
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Figure 10.8: Estimated sample rate offset of a handheld recorder relative to a
studio interface. The offset is estimated using the method of [235]. Figure adapted
from [186].

STFT domain and maximizing the sample correlation coefficient:

∆̂coarse
m,` = arg max

∆
meanfCorrk

(
Xm[k, f ], X`[k, f ]e−j

2πkfTstepTs
F

∆
)
. (10.18)

Because the STFT-domain offset model (10.17) is only an approximation, the signal

is resampled in the time domain using Lagrange interpolation [84]. The estimation

process is then repeated once more on the resampled signal to obtain a fine estimate

of the sample rate offset.

10.3.3 Sample rate offsets and relative motion

In a distributed array of devices that rarely move, such as the tabletop smart-speaker

enclosures from the distributed array data set, it should be possible to reliably esti-

mate the devices’ relative sample rates by analyzing long recordings of background

noise. That is an important advantage of distributed room-scale arrays for cooper-

ative augmented listening: the sensor network can include fixed microphone arrays

with known geometry.

The task is more difficult for deformable arrays, that is, arrays in which devices
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can move relative to each other. The time-stretching effect caused by a difference

in sample rates is mathematically identical to the time-stretching effect of constant-

velocity motion, either of the microphones or of the sound sources. It has been

observed that sample rate offset estimation is more difficult for moving sound sources

[205, 235]. It is also challenging if the microphones move relative to each other, as

they would in a wearable microphone array [186].

To demonstrate the impact of relative motion, the estimation algorithm of [235]

was evaluated using two independently clocked microphone arrays in a cocktail-party

scenario with several speech sources. One array of lavalier microphones was sampled

by the studio interface. The second device was a handheld stereo recorder with its

own internal clock. First, the recorder was placed next to the other microphone array.

Next, it was placed on the other side of the room. Finally, it was carried around

the room in a haphazard path at walking speed. Figure 10.8 shows the estimated

sample rate offset as a function of sample length. The algorithm converges with just

a few seconds of data if the microphones do not move, regardless of their locations.

However, it fails to converge at all when the handheld array is moving.

It was recently proposed to estimate sample rate offsets with moving sound sources

by identifying time frames during which the sources are stationary and using only

those frames for estimation [237]. A similar approach could be applied to deformable

microphone arrays, especially if some of the microphones are known to be fixed.

However, cooperative array processing would be easier if the system could avoid

estimating sample rate offsets at all.

10.3.4 Second-order statistics of asynchronous arrays

Suppose that the relative phase between two microphones m and ` is unknown, either

because of sample rate offsets or because the microphones can move relative to each

other. The most pessimistic model of this phase uncertainty is that the phase offsets

αm[k, f ] and α`[k, f ] are independent random variables uniformly distributed on

[0, 2π]. This model is probably overly pessimistic at low frequencies, but is reasonable

for deformable microphone arrays at high frequencies, as demonstrated in Chapter
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9. It is also useful for real-time embedded systems that do not have the time or

computational resources to estimate and compensate for sample rate offsets.

If the α’s are independent uniform random variables, then from (10.15), the cross-

correlation between the sampled STFTs is

RXtf,mXtf,`
[k, f ] = E

[
ej(αm[k,f ]−α`[k,f ])

]
RX̃tf,mX̃tf,`

[k, f ] (10.19)

= 0 (10.20)

for m 6= `. That is, the unknown phase offsets cause the microphone signals to

become uncorrelated with each other.

This relationship also applies to the correlation matrices of source images. If every

microphone pair had a random phase offset, then every RCtf,n
[k, f ] would become a

diagonal matrix. Consider a monaural-output MSDW-MWF designed using diagonal

source-image covariance matrices:

Wdf [k, f ] =
N∑
n=1

λnGdf,n[k, f ]eT1 RCtf,n
[k, f ]

(
N∑
m=1

λmRCtf,m
[k, f ]

)−1

(10.21)

=

∑N
n=1 λnGdf,n[k, f ]eT1 RCtf,n

[k, f ]e1∑N
n=1 λne

T
1 RCtf,n

[k, f ]e1

eT1 . (10.22)

This is simply a scalar weighted Wiener filter applied to the first microphone; it does

not use the other microphones at all.

If the sound signals had Gaussian marginal distributions, then independent ran-

dom phase offsets would make the microphone signals statistically independent and

therefore remote microphones would provide no information at all. Fortunately, most

of the sounds about which listeners might care, such as speech, are not Gaussian.

While random phase offsets make the microphone signals uncorrelated and therefore

useless to a linear estimator, the signals are not independent: they are, after all,

mixtures of the same source signals. Even if the phases are unreliable, we can obtain

useful information from the signal magnitudes. To do so, however, we must apply

nonlinear methods.
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Figure 10.9: In a partially asynchronous array, each device has multiple
microphones that share a common sample clock. Figure adapted from [186].

10.4 Cooperative Nonlinear Processing for Partially

Asynchronous Arrays

It is often difficult or impossible to estimate the relative sample rates of different

devices. It is also computationally expensive to correct these small sample rate off-

sets. What if we could use information from remote microphones without estimating

sample rate offsets and without resampling the recorded signals? If we cannot rely

on phase information, then such methods must be nonlinear. Researchers have previ-

ously proposed nonlinear asynchronous source separation methods that rely on STFT

magnitudes. For example, in [80], nonnegative matrix factorization is applied to the

magnitudes of signals from microphones near the different sources. For sparse signals,

the devices can share statistics that are used to determine source activity [186,234].

Most asynchronous processing methods proposed in the literature, both resampling-

based and magnitude-based, assume that each individual microphone has an inde-

pendent clock. However, most modern electronic devices contain at least two micro-

phones. These devices form partially asynchronous arrays [186] that include groups

of microphones, each with a common sample clock, as shown in Figure 10.9. Thus,

while there are phase uncertainties between groups, phase-coherent processing can

be applied within each group.

The method desribed here was originally developed by the author to compensate

for sample rate offsets [186], but it also applies to relative motion. The microphones

within each group are either rigidly connected or only slightly deformable, but the
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Figure 10.10: A hierarchical asynchronous source separation system estimates
time-varying source spectra using the entire distributed array, but separation filters
act on local microphones only. Figure adapted from [186].

groups can move relative to each other. In the experiments presented here, the

distributed array suffers from both sample rate offsets and relative motion.

10.4.1 Hierarchical time-frequency processing with the local
Gaussian model

To combine phase-coherent information from the listener’s local array with asyn-

chronous information from remote arrays, let us apply the spatially stationary local

Gaussian model from Section 7.1.4:

RCtf,n
[k, f ] = RStf,n

[k, f ]R̄n[f ], n = 1, . . . , N, (10.23)

where RStf,n
[k, f ] is the time-varying scalar source power, which is the same for all

devices, and R̄n[f ] is the long-term spatial correlation matrix for source channel n.

Because of random phase offsets, R̄n[f ] is block diagonal. Under the local Gaussian

model, therefore, the received signals are conditionally independent between devices

given RStf,1
, . . . , RStf,N

.

To account for deformation of the arrays, each block of R̄n[f ] is allowed to have
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full rank. This model is useful for motions that have small effects on the relative

phases between the microphones within each device but large effects on the relative

phases between devices. In the experiments presented here, R̄n[f ] will be estimated

using either training data or a blind source separation method.

To estimate the time-varying covariance matrices at each [k, f ], the cooperative

system must find an estimate R̂Stf,n
[k, f ] of the shared power parameter for each

source channel. The time-varying covariances are used to design a time-varying

space-time filter

Wdf [k, f ] =
N∑
n=1

λnR̂Stf,n
[k, f ]Gn[k, f ]R̄n[f ]

(
N∑
n=1

λnR̂Stf,n
[k, f ]R̄n[k, f ]

)−1

.

(10.24)

Because R̄n is block diagonal for all n, if Gn is nonzero only for rows corresponding

to local microphones—which would be the case for an interaural-cue-preserving lis-

tening device—then Wdf is also nonzero only for local microphones. That is, remote

microphones are not directly processed by the space-time filters; instead they are

used to estimate parameters that are used by the local filters, as shown in Figure

10.10.

10.4.2 Source activity classification with the high-low model

Remote microphones are used to estimate the instantaneous source spectra R̂Stf,n
[k, f ].

There are many possible approaches to estimating these spectra, including compo-

sitional models and learning-based classifiers. To take advantage of the distributed

array, however, we should use a spatial classifier. In [234], the instantaneous spec-

tra are estimated using the expectation maximization algorithm based on posterior

probability estimates computed by each device. Here we describe a similar approach

using the high-low model introduced in Section 7.3 [186].

Under the local Gaussian model with high and low source states, the log-likelihood
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Table 10.2: Signal-to-error ratios, in dB, of several source-image-estimation
methods on the SiSEC ASY data set. Table adapted from [186].

Filter Sampling N = 3 N = 4

Unprocessed −3.0 −5.0
Local array only 0.7 0.3

Time-invariant MWF Not resampled 2.1 0.1
Time-invariant MWF Resampled 8.2 2.9
Cooperative method Not resampled 5.5 2.2
Cooperative method Resampled 5.5 2.2

of state n∗ for sample [k, f ] is given by

ln Pr(Xtf [k, f ]|n∗) = −XH
tf [k, f ]

(
Rhigh,n∗ [f ]R̄n∗ [f ] +

∑
n 6=n∗

Rlow,n[f ]R̄n[f ]

)−1

Xtf [k, f ]

− ln det

(
πRhigh,n∗ [f ]R̄n∗ [f ] + π

∑
n6=n∗

Rlow,n[f ]R̄n[f ]

)
.

(10.25)

Because each R̄n[f ] is block-diagonal, that is, because the signals at each device

are modeled as conditionally independent given n∗, the overall log-likelihood can

be written as a sum of individual log-likelihoods for each local array. Thus, each

device need only transmit log-likelihood statistics for each source channel, not full

audio data. The likelihoods can be used to either select a single state with maximum

likelihood or compute a posterior probability to weight the state estimates.

10.4.3 Experimental results on the SiSEC ASY data set

The proposed cooperative asynchronous source separation method was applied to

the 2018 Signal Separation Evaluation Campaign (SiSEC) asynchronous source sep-

aration (ASY) task [175]. Four talkers were recorded using four handheld recorders,

each with two microphones and an independent sample clock. Because the talkers
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do not move and processing is performed offline, it is possible to estimate the sample

rates of the devices and resample the signals to a common time scale.

The proposed partially asynchronous method is compared against a baseline method

that does perform resampling. It combines a few algorithms used by participants in

SiSEC ASY 2015 [94], which used the same data set as SiSEC ASY 2018. First,

the sample rate offsets are estimated using two-stage correlation maximization [235]

and the signals are resampled using Lagrange interpolation [84]. Next, the resam-

pled signals are separated using offline independent vector analysis [196]. The same

offline blind source separation algorithm is used to estimate the acoustic channel

parameters used for the cooperative nonlinear method. While it would be difficult

to perform sample rate estimation and resampling in real time on an augmented

listening device, those tasks could be performed by a fusion center that can store

several seconds or minutes of data.

The estimated acoustic channel parameters were used to design separate eight-

output, single-target filters to estimate the source images for each source channel, as

required by the SiSEC criteria. That is, the filter targeting source n has Gn[f ] = I

for that source channel and zero for all others. Table 10.2 shows the signal-to-error

ratio (in SiSEC terminology, this would be the “signal-to-distortion ratio,” or SDR)

achieved by the baseline and proposed algorithms, with and without a resampling

step. The resampled time-invariant filter performs best out of all methods because it

can perform fully coherent processing on all eight microphones. However, it performs

poorly if the signals are not resampled. The cooperative nonlinear method has

slightly worse performance than the resampled eight-microphone filter, but because

it does not rely on phase relationships between recording devices, it is unaffected by

the sample rate offset. Although it requires synchronization for the offline channel

estimation step, the online part of the filter can operate directly on the sampled data

without performing costly interpolation.
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Figure 10.11: Three moving human listeners with wearable microphone arrays
cooperate to separate sound from eight loudspeakers. Figure adapted from [186].
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Figure 10.12: Single-target binaural enhancement performance using three moving
wearable arrays. Figure adapted from [186].
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10.4.4 Experimental results with moving wearable arrays

Partially asynchronous processing is also useful when devices can move relative to

each other, as they would in any system involving wearable arrays. These arrays

would typically have different sample rates but, unlike in the SiSEC ASY data set,

their motion would make them difficult to synchronize. Furthermore, the phase

ambiguities caused by deformation are similar to those caused by sample rate offsets.

To demonstrate the potential of nonlinear cooperative methods for multiple moving

arrays, the proposed algorithm was evaluated in a cocktail-party scenario with up

to eight simultaneous speech sources and three moving human listeners. Because

there are no known blind source separation or acoustic channel estimation methods

suitable for moving microphones, the acoustic channel parameters were measured

using training data in a similar way to the deformable-array experiments in Chapter

9.

The experimental setup is shown in Figure 10.11. Eight loudspeakers produced 20-

second speech clips from the VCTK data set. Each listener wore an eight-microphone

array with one sensor in each ear and six around the 60-cm brim of the Sombrearo.

During each recording, the listeners slowly nodded and turned their heads back and

forth. The three listeners were simulated by a single human subject who moved to

a new location in between recordings; thus, the data do not fully reflect the acoustic

effects of the bodies of three human listeners. The source images were recorded in-

dependently and without a fixed external reference microphone. The human subject

attempted to move in a similar pattern throughout the experiment, but the mo-

tion patterns do differ between source images. Although the resulting mixtures are

physically impossible, because the source images are modeled as uncorrelated, their

statistics can still be described by the ensemble spatial covariance matrices R̄n[f ].

These matrices were estimated using 5 seconds of speech data for each source. The

remaining 15 seconds were used to create the test mixtures. Simulated sample rate

offsets of ±0.3 Hz were applied to two of the three arrays.

As in the SiSEC experiment, the system generated single-target source-image es-

timates for each source channel. However, because this experiment uses listening de-
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vices, images were only estimated for the left and right ears, not for the microphones

on the hat. The results are shown in Figure 10.12 for four filters: a time-invariant

filter using the ears only (M = 2), a time-invariant filter using a single wearable

array (M = 8), a cooperative nonlinear filter using the ears from all three listeners

(M = 6), and a cooperative filter using all 24 microphones. For mixtures of many

sources, the ears alone can do little better than guess. The full hat performs slightly

better. However, the large number of sources and the motion of the array make it

difficult for any one array to separate the sources.

The cooperative method performs better than the static filters, even with a smaller

total number of microphones, because the microphones spread around the room can

provide better spatial information. For example, the listener in the upper left corner

of Figure 10.11 would have trouble distinguishing between the three sources on the

right side of the diagram. However, the other two listeners are better positioned to

decide which of those sources is active at a given time and frequency. By pooling

their observations, they can better understand the state of the sound sources. Fur-

thermore, because the listeners move independently, their redundant observations

can resolve ambiguities caused by motion. The time-varying method based on the

high-low model lets each individual array make the most of its limited degrees of

freedom while benefiting from the spatial diversity of the full array.

10.5 Cooperative Processing for Augmented Listening

Devices

This chapter presented different approaches to cooperative array processing that

highlight the advantages and challenges of distributed arrays. Room-scale arrays can

outperform individual listening devices, even large wearable arrays, because they are

spread around and among sound sources. In the conference-room experiment, micro-

phones in front of each sound source act as high-SNR, low-reverberation references

that help to estimate channel parameters and separate sources. In the moving-array

experiment, devices spread around the room have different abilities to resolve clusters
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Table 10.3: Types of cooperative processing.

Latency Deformation Synchronization Bandwidth Cooperative method

High – – –
Parameter estimation only
(Section 10.2)

Low
Fixed

Synchronous
High

Fully coherent processing
(Section 10.1)

Low
Distributed processing algo-
rithms (Section 10.1.1)

Asynchronous
High

Offset estimation and resam-
pling (Section 10.3)

Low Cooperative nonlinear
processing (Section 10.4)

Moving – –

of sound sources, so they can pool their observations to make better decisions. The

distributed devices also provide redundancy that helps to reduce uncertainty due to

motion.

Cooperative array signal processing is more complex than space-time filtering with

a single static array. Different processing tasks require different amounts of data,

computational resources, and delay and may be distributed over multiple devices

with different capabilities. In both the conference-room and SiSEC experiments, the

acoustic channel parameters were measured using offline, computationally expensive

blind source separation algorithms that aggregate data from the full array. This

step would best be implemented by a high-bandwidth, high-compute fusion center,

possibly hosted by a cloud service. Meanwhile, each listening device produces its

own output signal from causal, low-delay filters acting on its local microphones but

incorporates information from the rest of the array.

The amount and type of cooperation used to perform listening enhancement de-

pend on the capabilities of the system: there are different cooperative processing

strategies for different combinations of latency, bandwidth, synchronization, and de-

formation, as shown in Table 10.3. If the remote devices cannot provide real-time

data to the listening device, as in the conference-room experiment of Section 10.2,
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then those microphones can be used only to estimate slowly varying acoustic channel

parameters.

If the latency of the communication link is lower than the propagation time of the

acoustic signal, then recorded data could be used directly by the listening device. In a

low-latency, high-bandwidth, fully synchronous, nonmoving system, all microphones

would be considered local and the space-time filter could operate on the entire room,

as in the fully coherent experiment in the introduction of Section 10.1. If bandwidth

is limited, then the distributed array processing algorithms of 10.1.1 can be used

to compress the transmitted data. If the devices use different sample rates but do

not move and have ample computational capabilities, then the sample rates can

be estimated and the signals resampled, as in the asynchronous array processing

literature summarized in Section 10.3. If the devices cannot be resampled or if they

move relative to each other, then they can share statistical information used to infer

the states of sparse source signals, as proposed in Section 10.4.

Cooperative array processing is most useful if it can take advantage of microphone

arrays already present in a space. These will necessarily have different capabilities

and can be used in different ways to assist a listening device. For example, in-

frastructural devices such smart appliances, security systems, and teleconferencing

equipment have fixed locations, known geometry, and high bandwidth, and their

sample rates could be synchronized with each other. These arrays are therefore ideal

for localization and blind source separation. Wearable and mobile devices would be

more difficult to synchronize, suffer from motion and deformation, and may have

limited bandwidth and computational capabilities; but, because they are typically

much closer to human talkers, they would provide valuable information about speech

signals. Further research is required to understand the advantages and challenges of

processing speech from a talker who is wearing a microphone array.

The work in this chapter has touched on only a few of the possibilities of cooper-

ative array processing. Room-scale microphone arrays should dramatically improve

the performance of blind source separation algorithms in noisy and reverberant envi-

ronments, but highly scalable BSS algorithms remain to be developed. Distributed

arrays, especially those with a combination of fixed and moving devices, could be
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the key to tracking the state of deformable devices. Furthermore, to realize the

benefits of cooperative processing in public spaces, devices from different vendors

and different users must share data with each other. There are therefore important

compatibility and privacy issues that must be addressed.

In a few years, it may be possible for an augmented listening device user to walk

into a crowded room and connect with dozens of other listening devices and in-

frastructural arrays already in the space. With access to hundreds of distributed

microphones, the listener could focus on any sound or combination of sounds they

choose, even if those sounds come from the opposite end of the room. The user

could listen to signals that would be hopelessly inaudible to the unaided ear or to a

conventional listening device. It could be cooperative processing, rather than wear-

able arrays, machine-learning models, or clever sparse algorithms, that will finally

enhance human hearing far beyond its normal limits.
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Chapter 11

Developing Augmented Listening Systems

In the first half of this dissertation, we saw that large microphone arrays can help

listening devices to meet the unique demands of human listening enhancement ap-

plications. Larger arrays have more degrees of freedom with which to preserve the

spectral balance and interaural cues of multiple sound sources in complex mixtures.

They can apply independent dynamic range compression to different source channels,

reducing the distortion effects that plague commercial hearing aids. Large-aperture

microphone arrays can achieve the same level of performance with lower delay than

smaller devices, and distributed microphone arrays can enhance sound with zero

delay by capturing sound well before it reaches a listener.

With recent advances in technology, it is now possible to build large wearable

microphone arrays that cover the entire body, not just the head. As audio devices

proliferate in human environments, there are ample microphones that could be in-

corporated into a distributed array. However, as explained in the second half of

the dissertation, large-scale wearable and distributed arrays are difficult to realize in

practice. They suffer from sample rate mismatch and relative motion, which create

phase uncertainty and interfere with spatial processing. Therefore, remote micro-

phones cannot be used directly by a linear time-invariant filter. Instead, distributed

devices can be used for parameter estimation and tracking or for nonlinear coop-

erative processing. Both of these methods assist the listening device in performing

real-time filtering with its own local microphones.

This chapter summarizes the major results of the dissertation and synthesizes them

into a set of design principles, research priorities, and next steps that will help us to

realize better-than-human performance in augmented listening technology.
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11.1 Performance Tradeoffs and Design Principles

Any engineering system is characterized by design tradeoffs. This dissertation has

characterized several signal processing tradeoffs, while there are many perceptual

tradeoffs that must be studied by hearing specialists.

11.1.1 The listening experience

When we use binoculars to look at something far away, we cannot see over as wide

an area; we trade field of view for magnification. Similarly, a listening device can be

used to amplify distant sounds at the expense of other sounds. When we define the

desired responses of a remixing filter or multisource compressor, we make a tradeoff

between augmentation and naturalness.

At one extreme is a single-target beamformer that isolates one sound source of in-

terest as much as possible; this approach was used in early microphone array hearing

aid work in the 1990s and early 2000s. If the goal is to improve the intelligibility

of one talker in a noisy environment, this system will achieve that, but at a cost.

It circumvents the auditory system’s natural scene analysis abilities and destroys

potentially useful information about the environment. At the other extreme is pure

amplification, which preserves information from other sounds but helps very little in

noisy environments.

This dissertation proposed a compromise: apply different processing to different

sound sources depending on the user’s listening objectives. The listener could explic-

itly adjust the desired processing, for example using a slider that trades off between

augmentation and naturalness. With new perceptual research, engineers could design

algorithms that tune the processing automatically in different environments based

on the listener’s hearing profile and preferences.

The user might also explicitly choose between different listening modes. For ex-

ample, some modes might be:

Everyday enhancement: This mode emphasizes transparency and comfort. Most

sounds are minimally processed. Unimportant background noise, such as an
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airplane engine or air conditioner, is attenuated. Compression is applied only

to limit uncomfortably loud sounds.

Conversation mode: This mode attenuates background noise just enough so that

a target talker remains intelligible. This mode could include side-chain com-

pression that ducks noise sources when the target talker is active.

Bubbleforming: Suitable for a crowded restaurant or a conference poster session,

this mode preserves all sound sources within a meter or two of the listener and

attenuates most others.

Augmented reality: Virtual sound sources are added to the environment or certain

sound sources are replaced, for example by translating them to a different

language. Other sounds in the environment are preserved.

The specific desired responses applied to each source channel would be determined

based on a classifier that decides what kind of signal it is and whether the user

should care about it. The system will also use customized perceptual models. For

example, hearing-impaired listeners require a higher signal-to-noise ratio for speech

to be intelligible.

Some settings might be adjusted automatically using artificial intelligence features.

For example, a distant talker who would otherwise be attenuated could gain the

listener’s attention by saying their name. A speech recognition and natural language

processing system could also analyze the suppressed speech signals to determine if

they might contain important information, such as a shouted warning.

11.1.2 Signal processing design

Performance objectives

When designing space-time filters for microphone array listening devices, we must

trade off between several performance objectives. Each objective can be improved
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at the expense of the others, with overall performance depending on the available

degrees of freedom of the system.

Spectral distortion: A change in the frequency spectrum of sound sources, espe-

cially background sources, due to frequency-selective processing. In underde-

termined mixtures, less distortion of one source implies more distortion of other

sources.

Spatial distortion: A change in the interaural cues of sound sources. Constraints

on spectral distortion also help to reduce spatial distortion, but the reverse is

not true.

Across-source modulation: When performing dynamic range compression, the

degree to which a change in the level of one source affects the level of other

sources. It is large when signals are compressed jointly.

Error sensitivity: Degradation in filter performance due to erroneous estimates of

acoustic channel parameters or signal statistics. Beamformers that are more

directive are also more sensitive to error.

Motion sensitivity: Degradation in filter performance due to deformation or mo-

tion of the microphones in an array. It is mathematically similar to error

sensitivity.

Delay: Total hardware and algorithmic delay between a sound arriving at the ear

and being played back through the receiver. Greater frequency selectivity re-

quires greater algorithmic delay.

Artifacts: Nonlinear processing can introduce disturbing artifacts, sometimes called

musical noise, when filters change too quickly.

Design parameters

We can trade off between these different performance metrics by adjusting the design

parameters of the filter:
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Desired responses: If the desired responses to different sources are more similar

to each other, most of the performance metrics listed above will improve, but

the system might provide less benefit to the user.

Distortion weights: The distortion weights of the MSDW-MWF directly trade off

between spectral and spatial distortion of different source channels.

Filter lag: The estimation lag designed into the causal space-time filter directly

tunes the delay of the system. Larger lag provides better squared-error perfor-

mance.

Model order: A full-rank spatial covariance or power-spectral-density model im-

proves sensitivity to error and deformation compared to a rank-one model but

does not distinguish as strongly between different source channels. A motion-

tracking filter can either use a few states with broad statistics or many states

with narrow statistics.

Sparsity: In nonlinear systems, the threshold level of the source activity detector

or the ratio between high and low variance states of the high-low model can

be used to adjust the degree of nonlinearity in the system. Both methods

automatically become more linear as the spatial diversity of the array improves.

Providing additional information

These tradeoffs are quite restrictive for conventional listening devices with few mi-

crophones. To improve all of the listed performance objectives at once, we must

provide the system with more information by adding more microphones.

We can add more microphones to the listening device by using wearable micro-

phone arrays that cover the body. With more spatial degrees of freedom, the filter

can apply distortion constraints to more sound sources or increase the rank of each

source’s statistical model. Microphones spread across the body provide amplitude

diversity that is less affected by motion and modeling errors.
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We can use cooperative processing between multiple devices to further improve

spatial resolution. Remote microphones are especially effective at reducing delay

because they can capture sound sources before they reach the listener. They also

help to reduce acoustic parameter estimation errors because they enjoy higher signal-

to-noise ratios and direct-to-reverberant ratios for distant sound sources. Nonlinear

cooperative processing can help to compensate for uncertainty due to relative motion

and sample rate mismatch.

11.1.3 Listening device design

There are further tradeoffs in the design of the listening device itself, including be-

tween aesthetics and performance. The experiments in this work show that larger

microphone arrays offer better performance. Large wearable devices, such as the

Sombrearo, provide better spatial resolution than smaller wearables like eyeglasses.

Conventional hearing aid earpieces, designed to be discreet, cannot perform mean-

ingful spatial processing. The industry’s emphasis on invisibility appears to be out

of step with consumer trends, especially among young technology enthusiasts who

would be the target market for an augmented listening system designed for normal-

hearing people. These consumers happily wear bulky, ostentatious audio gadgets; an

elegant and stylish wearable array might appeal to them, even if it is quite large.

Microphones can also be spread across the body. Because the body is effective at

blocking sound, sensors spread around the torso provide excellent spatial diversity.

Experiments suggest that these microphones could be placed under clothing, which

may be more cosmetically acceptable than external accessories for some users. How-

ever, this work did not address potential problems due to noise when clothing rubs

against hidden microphones.

Microphones spread across the body are also vulnerable to relative motion. A

body-scale deformable array is only useful at low frequencies, where acoustic wave-

lengths are much longer than the scale of motion between microphones. One solution

is to design several rigid microphone arrays worn on different parts of the body. Ear-

pieces, eyeglasses, and hats move rigidly with the head and so can be used directly
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for space-time filtering referenced to the ears. Microphone arrays embedded in vests,

belts, watches, and other wearable accessories might move relative to the head, but

could be used directly for filtering at low frequencies. At high frequencies, they

can be used as part of a nonlinear cooperative algorithm. To support cooperative

processing with other listening devices, a wearable array could include a directional

microphone pointed toward the user’s mouth.

A large wearable listening device could have far more computational power than

the tiny chips embedded in traditional hearing aids. Statistical space-time filtering

is highly parallel and would benefit from specialized computing hardware, but could

be implemented on a digital signal processor with many signal inputs. To ensure

that sample clocks remain synchronized and to reduce latency, microphones should

be physically wired to the processor wherever possible. Short-range analog wireless

technology such as near field magnetic induction could also be used for wearable

devices.

11.1.4 System architecture

To describe the design of the overall listening system, let us return to the system

architecture proposed in Chapter 1, which is reproduced in Figure 11.1. Having

analyzed each piece in depth throughout the dissertation, we can now describe how

the pieces fit together.

Cooperative processing network

To realize the most ambitious listening experiences proposed above, such as sound

source replacement or bubbleforming, the system must have far greater spatial di-

versity than could be achieved with a wearable array. We have seen that cooperative

processing between devices can provide that diversity. The role of each device in the

distributed network depends on its bandwidth, latency, motion, and synchronization.

Some common devices that might be included are:
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Real-time filter

Binaural output

Filter design

Short-term tracking

Long-term
param. estimation

Compression

User interface

Wearable microphone array

Remote devices

Figure 11.1: The proposed augmented listening system.

Other listening devices: An obvious starting point for cooperative processing is

to connect multiple wearable listening devices together. Each device would

have similar specifications and capabilities, ensuring compatibility. A major

advantage of wearables for cooperative processing is that they are positioned

directly next to speech signals. A wearable array that includes microphones

on the face or chest would have an excellent signal-to-noise ratio and direct-

to-reverberant ratio for the wearer’s speech. Signals from remote wearable

arrays are the most difficult to process, however, because wearable devices are

wireless—meaning that they must have mismatched sample rates—and because

humans move constantly.

Existing devices: An opportunistic system could leverage audio devices already in

a space, such as smart speakers, appliances, gaming and conferencing systems,

intercoms, and security cameras. While these devices may be wireless, they

move infrequently, and therefore it would be possible to learn their sample
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rates over time. Their positioning within the environment is arbitrary, but

could also be learned over time to improve performance, especially for sound

source localization and tracking.

Infrastructure: To achieve exceptional augmented listening performance, a space

could be deliberately instrumented with hundreds of microphones. For exam-

ple, small microphone-array tiles could be embedded into walls, ceilings, and

furniture at deliberately chosen locations. In this setup, the sensors could

be hard-wired to a powerful central processing node, allowing the system to

perform fully synchronous source separation with known array geometry.

In a cooperative system, existing devices or infrastructural arrays would be best

suited to perform source separation and to track moving sound sources, while wear-

ables would provide perceptual transparency to listeners.

Parameter estimation

The distributed array and powerful computing resources are used to track slowly

varying system parameters such as acoustic channel statistics and to identify and

classify sound sources. Rapidly varying parameters could be tracked either by the

listening device itself or by a remote device with a high-bandwidth, low-latency

connection to the listening device.

In a fully integrated system, short-term parameter estimation would unify the

source activity classifier or detector used in sparse methods with the envelope detector

used in dynamic range compression. Short-term spectral estimates would be used

both to allocate the filter’s degrees of freedom most efficiently and to determine the

time-varying desired processing to be applied to different sources. Further work is

required to unify these two types of processing. In particular, compression systems

typically have attack times much shorter than the sparsity-maximizing STFT window

size of 60 ms; the release times, meanwhile, are much longer.

These short-term parameter estimates are used to update the coefficients of a

causal space-time filter. Because the STFT has too much delay for real-time listening
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enhancement, new methods are required to incorporate time-frequency sparsity into

delay-constrained systems.

11.2 The Future of Listening Technology

Although hearing aids are a well-established technology, the broader category of

augmented listening is just beginning to emerge. Listening devices could change

radically in the future as they both incorporate and influence future technologies.

11.2.1 Missing pieces and future features

Some of the methods developed in this dissertation are not yet fully compatible with

each other. In particular, further research is required to implement time-varying

methods with strict delay constraints. The results of Chapter 5 suggest that large

arrays should be able to operate with lower delay because they have less need for

spectral selectivity. Ideally, time-varying methods would automatically adjust the

degree of sparsity that they model and therefore the delay that they require based

on the available spatial resolution of the array.

New perceptual models are needed to help set parameters including target de-

lay, compression ratios, and the relative gain applied to each source channel. These

models would need to account for the user’s hearing profile and the acoustic envi-

ronment. For example, it is likely that hearing-impaired listeners in loud noise can

tolerate more delay but require more noise suppression than normal-hearing listen-

ers in quiet. Similarly, detailed models of intelligibility could be used to implement

side-chain compression that attenuates noise only at times and frequencies where it

would mask a signal deemed more important.

This dissertation contained no analysis or experiments involving the listener’s own

speech. Poor processing of the listener’s speech, such as a long time delay, can impair

speech production. In a cooperative array, wearable devices could help to capture

speech and transmit information to remote listeners. It is difficult to study own-

286



speech processing in the laboratory because mannequins do not have loudspeakers,

loudspeakers do not have ears, and real humans cannot be used for repeatable ex-

periments. The Augmented Listening Laboratory team is developing head-shaped

loudspeakers with ears that could be used for controlled own-speech experiments.

An augmented listening system will need to identify sound sources and decide

which source or sources the user wishes to hear, perhaps using machine learning

algorithms. For example, a natural extension of the keyword-based acoustic channel

measurement technique in Chapter 8 is a customizable keyword-spotting algorithm

that detects the user’s name and focuses on that speech source. A user might also

configure a listening device to always amplify—or suppress—the speech of a specific

talker.

11.2.2 Role of future technologies

There are several emerging technologies that could impact the design and perfor-

mance of augmented listening systems. The most immediately applicable may be

augmented reality (AR) systems, which can provide the listening system with non-

audio information about the user’s environment. Object detection and motion track-

ing could be used to follow talkers as they move. Even better, the motion tracking

that is essential for visual AR and VR systems could be used to track the position of a

head-mounted microphone array relative to sound sources. In fact, some augmented

reality headsets already include microphone arrays.

Many other technologies will help to build better cooperative array processing

systems. Next-generation wireless systems should support large numbers of nearby

devices with greater bandwidth and lower latency than today’s wireless networks.

These could facilitate truly massive-scale distributed microphone arrays with low

enough latency to be used in delay-constrained listening devices. Similarly, high-

speed, low-latency networks will allow the listening device to offload intensive pro-

cessing to powerful cloud or edge computing devices. Distributed sensing and com-

puting would enable demanding source separation techniques that would be impos-

sible on an earpiece.
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Augmented listening systems would also benefit from new microphone technolo-

gies. Digital MEMS microphones already have time-division-multiplexing features

that permit several microphones to be daisy-chained together and connected to a

single port. In the future, thin-film microphone arrays could be embedded into walls

or tabletops [238] to create instrumented rooms. Wearable devices would also benefit

from yet-to-be-invented microphones that could be embedded directly into fabric.

Finally, while machine learning alone is not enough to improve human hearing, new

advances in machine learning could complement the spatial information provided by

large microphone arrays. For example, learning-based models of speech can improve

the performance of sparse source activity classifiers. Acoustic event classification

and natural language processing can help a listening device to decide which sound

sources might be of interest to a listener. Learning-based algorithms could also use

feedback from a listener to customize processing parameters for them.

11.2.3 Research priorities

This work has identified several open research problems that must be addressed in or-

der to realize powerful augmented listening systems. First, as explained above, signal

processing researchers must develop ways to implement time-frequency processing in

delay-constrained systems and to integrate it with dynamic range compression.

Another urgent problem for wearable devices is to design array processing meth-

ods that are robust to deformation. In Chapter 9, it was proposed to model small

motion using a full-rank spatial covariance matrix. However, there are many other

possible approaches to designing time-invariant filters that are robust to deforma-

tion. For larger motion, we will need time-varying methods that explicitly track

the relative positions of sources and microphones. Large cooperative arrays—which

could include fixed devices with known geometry—will likely help to track larger

motion. In augmented reality platforms or instrumented rooms, the system could

take advantage of multimodal data, for example from video, lidar, or inertial sensors.

Large distributed arrays could also help with arguably the greatest impediment to

superhuman augmented listening: learning acoustic channel parameters. While many
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array signal processing researchers are devoting research resources to bandwidth-

constrained distributed computing algorithms, there are no known blind source sep-

aration algorithms that can scale to leverage hundreds of microphones, even with

unlimited bandwidth and perfect synchronization. The new data sets developed as

part of this work may help other researchers to investigate massive-scale source sep-

aration. Researchers should also consider network latency alongside bandwidth as a

critical constraint in wireless sensor networks for delay-constrained applications.

One topic that was not addressed in this work, but that will be critical to real-

world success of augmented listening systems, is privacy. The audio remixing system

developed here assumes that a user might want to listen to any sound source, even

from a great distance. There are obvious privacy concerns in building a system that

can listen from across a room. Even if the goal is to suppress those distant sounds,

the system would need access to potentially sensitive signals from remote devices. A

cooperative listening system would be more practical if there were privacy-preserving

inference algorithms [239] that could perform acoustic channel estimation without

having direct access to signal content.

To understand what types of processing should be applied by the listening de-

vice, new clinical studies must be performed. System designers need to understand

tradeoffs between delay and intelligibility or quality in noisy and reverberant envi-

ronments. While most intelligibility studies focus on a single talker in noise, the

proposed remixing system could preserve multiple sound sources; little is known

about how humans can attend to multiple talkers in noisy conditions, and it is not

clear how such a study would be designed. Finally, of course, the proposed system

must eventually be validated using clinical trials.

11.3 Broader Applications of This Work

Some of the challenges addressed in this work, such as dynamic range compression

and interaural cue preservation, are unique to human augmented listening. Most,

however, are not. Some challenges, such as delay constraints and deformation, are es-
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pecially pronounced for augmented listening but are relevant to many signal process-

ing applications. Many of the topics addressed in the second half of the dissertation,

including time-varying methods and channel estimation, are problems facing spatial

audio capture in general rather than listening technology specifically. The results

presented here could be useful in many applications beyond augmented listening.

11.3.1 Machine listening

Machine listening algorithms perform a similar function as the human auditory sys-

tem: they extract actionable information from audio recordings. Thus, any process-

ing that can help a human listener to hear better in noisy environments would also

be useful for machine listening. The primary difference is that machine listening

algorithms do not have the intrinsic scene analysis abilities of the human brain, so

systems that perform automatic speech recognition or sound event classification of-

ten rely on single-target spatial filters rather than perceptually transparent remixing

filters. These filters do not have the stringent delay, distortion, dynamic range, and

spatial constraints that listening filters do.

One method in this work, acoustic channel estimation from speech keywords, is

specifically designed for speech recognition applications. It can be used by keyword-

activated voice assistants to improve performance in noisy or reverberant conditions

where today’s products do not function well. The method could be extended to work

with customizable keywords or large-vocabulary speech recognition.

Array-based machine listening systems could benefit from many of the nonlinear

processing methods proposed in the second half of the dissertation. The source ac-

tivity detector and high-low model of Chapter 7 offer scalable alternatives to the

binary masks used by many single-channel source separation algorithms. The coop-

erative asynchronous source separation system proposed in Chapter 10 would benefit

any distributed processing system that relies on ad hoc arrays of devices with differ-

ent sample rates. Unlike many state-of-the-art asynchronous methods, it does not

require precise sample rate estimation or resampling.
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11.3.2 Array signal processing

Array signal processing is used for many non-audio applications. Arrays could be

made of antennas or ultrasonic transducers, for example. Spatial audio processing

differs from other types of array signal processing in some ways: audio signals have

much wider relative bandwidth than most radio frequency signals, and many in-

teresting sound signals such as speech exhibit time-frequency sparsity. While some

nonlinear source separation methods are tailored to audio, the results related to

linear time-invariant filters can apply to any sensor array.

The theoretical results on delay-performance tradeoffs in Chapter 5 apply to any

space-time filter, regardless of the signal type. Delay-constrained spatial filtering

could be relevant to ultra-low-latency wireless communication systems, for example.

The analysis of deformable microphone arrays in Chapter 9 could apply to any sensor

array on a flexible substrate, such as antenna arrays in bendable mobile devices or

wearable accessories.

The cooperative processing systems described in Chapter 10 could apply to a vari-

ety of wireless sensor networks. Mobile, smart-home, and internet-of-things devices

are rapidly proliferating in homes, workplaces, and public spaces. Next-generation

wireless networks will eliminate many of the bandwidth and latency constraints that

limit these networks today, but they will still be subject to uncertainty due to mo-

tion and synchronization. These networks could benefit from partially asynchronous

cooperative processing.

11.3.3 Wearable technology

The market for wearable electronics has expanded rapidly over the last several years.

While there have been more failures than successes in the marketplace, wearable

audio devices have been consistently popular. Devices that can capture and analyze

the acoustic scene around a user have many applications beyond augmented listening.

Wearable microphone arrays could be used to do high-resolution spatial-audio

recordings. Dense microphone arrays, often spherical, are used to capture and spa-
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tially encode sound for virtual reality experiences. Wearable arrays with many mi-

crophones could capture similar data, and they have an advantage over standalone

arrays: they include microphones in or near the ears, allowing them to capture real

binaural audio.

Microphone arrays are already integrated into some augmented reality headsets.

They are used to localize and analyze sound events and to associate them with

physical objects. Larger wearable arrays would allow AR systems to more precisely

localize and separate sounds. The wearable microphone array data set should help

AR researchers and developers to devise new applications that take advantage of

high-resolution spatial sound capture.

11.4 A Telescope for the Ears

Engineers have long dreamed of building devices that can augment human hearing

the way that microscopes and telescopes augment human vision. Yet we have never

been able to improve upon the remarkable capabilities of the human ear. Using large

microphone arrays with far greater spatial resolution than the ears, superhuman

hearing may finally be possible.

Early microphone arrays failed because they were not much larger than the head,

so they provided little information that was not already available to the ears. They

also tried to apply single-target beamforming methods that are poorly suited to the

auditory system. The space-time filters proposed here can supplement rather than

replace humans’ natural auditory scene analysis functions, providing a more natural

listening experience. Filter designers can use the theoretical tools developed in this

work to analyze tradeoffs among delay, distortion, and dynamic range.

To improve the performance of listening systems, device designers must move

beyond conventional hearing aid earpieces—and researchers must move beyond eye-

glasses! The design principles discussed in this work will help designers to develop

novel form factors with microphones spread all across the body. The wearable listen-

ing devices of tomorrow could be discreet vests worn under clothing or ostentatious
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fashion accessories protruding from the body. The wearable microphone data set col-

lected as part of this work will help engineers and designers to simulate and analyze

these new devices.

To achieve dramatically better performance than current technology, listening de-

vices can cooperate with each other and with other devices in the environment. While

much more work is required, the experiments presented here show that room-scale

microphone arrays are useful in challenging environments where a single listening de-

vice would be hopelessly outmatched. The data set collected as part of this work will

help source separation researchers to develop scalable algorithms for massive-scale

arrays.

The goal of this work was to show that by taking a radically different approach to

listening technology, we can provide listening experiences that conventional devices

never could. Microphone arrays can do more than just beamform; they can seamlessly

alter a listener’s auditory experience. There is much more work to be done before

superhuman augmented listening technology is a part of daily life, but it is hoped

that this work will inspire researchers and engineers to reimagine what listening

devices can be. If we change the way that we approach listening technology, then we

can change the way that humans experience the world.
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