
c© 2019 Stephen Skeirik

REWRITING-BASED SYMBOLIC METHODS
FOR DISTRIBUTED SYSTEM VERIFICATION

BY

STEPHEN SKEIRIK

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Doctoral Committee:

Professor José Meseguer, Chair
Professor Gul Agha
Professor Grigore Ros,u

Professor Peter Ölveczky, University of Oslo

ABSTRACT

As computer system complexity increases, new methods and logics are needed to scale up to the complexity

of practical systems without sacrificing logical precision and ease of specification. To that end, the goal of

this research project is to develop rewriting-based symbolic analysis methods that (1) can analyze systems

which need an unbounded amount of time and/or space (2) may be highly distributed (3) use modular

specification techniques so that work is never wasted (4) are generic across a possibly infinite number of

domain theories. Towards this goal, we present our research on theory-generic satisfiability and rewrite-

theory-generic specification and analysis methods, discuss prototype implementations, and consider future

directions.

ii

ACKNOWLEDGMENTS

A thesis is not merely the distillation of years of research effort. In its pages, we find a story: the meta-

morphosis of the wide-eyed student, our protagonist, into a full-fledged researcher. But like all adventurers,

our protagonist’s success depends on a broad cast of supporting characters. Though they may only appear

for a chapter, their impact is unmistakable, and as such, they must be honored for their contributions.

Firstly, I would like to thank my thesis advisor, José Meseguer, for guiding me, believing in me, and

insisting on excellence. When I first met you, you were my boss—later, you became my mentor—now, I

consider you my friend. I would also like to thank my thesis committee: Gul Agha, Grigore Ros,u, and Peter

Ölveczky for taking time from your busy schedules to support this work and for your excellent suggestions

for improvement. I am indebted to a great group of research collaborators (in alphabetical order): Rakesh

Bobba, Indranil Gupta, Raúl Gutiérrez, Si Liu, Muntasir Raihan Rahman, Camilo Rocha, Ralf Sasse, and

Andrei S, tefănescu. My thanks goes to all of the other members of the Formal Methods and Declarative

Languages Laboratory that supported me in one way or another: Musab Al-Turki, Kyungmin Bae, Andrew

Cholewa, and Fan Yang. Special thanks to my friends and officemates Liyi Li and Atul Sandur for mid-

afternoon coffee runs and late-night discussions. I am also deeply grateful for the grants that kept food on

my table, specifically, NSF grants CNS 13-19109 and CNS 14-09416, AFOSR contract FA8750-11-2-0084,

and NRL contract N00173-17-1-G002.

Secondly, I would like to thank my entire church family at the Vineyard Church of Central Illinois. I

am especially grateful to Stephen Pety and Wayne Chang for befriending me soon after arriving in Urbana-

Champaign and to all of the original members of the Wave (Wayne Chang, Jared Eakins, and Drew Randle)

for our many years together. Many thanks to all of the dear friends from both the Pety small group and as

well as the Barth/Houmes/Randle group; you were a constant joy and source of strength.

Thirdly, I would like to take a moment to thank those that supported me well before my postgraduate

research career began. To Masood Parang from the UTK College of Engineering, please accept my sincerest

thanks for finding ways to fund for me through all four years of college. To Drs. Micah Beck and Christopher

Brumgard from the UTK Dept. of Computer Science, thank you so much for letting me work with both

of you on my very first research experiences as both a high school and undergraduate student. To Kristin

Baksa at FHS, a huge thank you for jump-starting my scientific career by encouraging me to participate in

the unique high school research programs that you helped to foster which directly led to meeting Micah,

Christopher, and Masood. The rest, as they say, is history.

Fourthly, I would like to thank my dear friends and family. To Alex Paradies and Nate Henry, thank you

for many rich years of friendship and for many more to come. To my brothers: Samuel, Luke, Ian, David,

and Elijah, I adore each of your unique personalities and giftings; family has been so fun with each of you.

To my dearest sister, Hadassah, I love you and will pray for you always. To my parents: Robert and Carol,

you are the most amazing parents that a son could ever ask for. Words cannot express my gratitude to both

of you for continually investing in me since day one.

Finally, all thanks and honor be to the Father God, the Christ Jesus, and the Holy Spirit, who created all

things and who sustain all things. Let my heart ever burn for you.

iii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 PRELIMINARIES . 5
2.1 Order-Sorted Algebra . 5
2.2 Rewriting Logic . 8
2.3 Maude Syntax . 14

CHAPTER 3 PATTERN OPERATIONS . 16
3.1 Introduction . 16
3.2 The Σ ÞÑ Σ# Signature Transformation . 18
3.3 Equational Formulas in Initial Order-Sorted Algebras . 22
3.4 Pattern Operations in Initial Order-Sorted Algebras . 25
3.5 Membership Constraints as Equational Formulas . 30
3.6 Implementation and Experiments . 33
3.7 Applications and Examples . 38
3.8 Related Work and Conclusions . 48

CHAPTER 4 METALEVEL ALGORITHMS FOR VARIANT SATISFIABILITY 50
4.1 Introduction . 50
4.2 Variant Unification and Variant Satisfiability . 55
4.3 Metalevel Algorithms for Variant Satisfiability . 58
4.4 Reflective Implementation of Variant Satisfiability . 77
4.5 Related Work and Conclusions . 78

CHAPTER 5 CONSTRUCTOR-BASED REACHABILITY LOGIC 80
5.1 Introduction . 80
5.2 Constrained Constructor Pattern Predicates . 84
5.3 Constructor-Based Reachability Logic . 88
5.4 Reachability Logic’s Inference System . 98
5.5 Prototype Implementation and Experiments . 108
5.6 Related Work and Conclusions . 118

CHAPTER 6 IBOS CASE STUDY . 123
6.1 Introduction . 123
6.2 IBOS and its Security Properties . 126
6.3 Proof of IBOS Security Properties . 131
6.4 Related Work and Conclusions . 133

CHAPTER 7 CONCLUSIONS AND FUTURE WORK . 135

APPENDIX A REACHABILITY LOGIC TOOL COMMAND GRAMMAR 137

APPENDIX B AUXILIARY PROOF TECHNIQUES . 139
B.1 Introduction . 139
B.2 Proving Termination via Axiom-Compatible RPOs . 141
B.3 Proving Sufficient Completeness/Ground Convergence Hierarchically 141
B.4 Proving Completeness of Variant Unification in an FVP Subtheory 147
B.5 Proving Validity using Contextual Rewriting . 151

iv

APPENDIX C OMITTED PROOFS FROM CHAPTER 4 . 153
C.1 Auxiliary Lemmas for Section 4.3.1 . 153
C.2 Auxiliary Lemmas for Section 4.3.2 . 155

APPENDIX D OMITTED PROOFS FROM CHAPTER 5 . 157

APPENDIX E OMITTED PROOFS FROM CHAPTER 6 . 163
E.1 Introduction . 163
E.2 IBOS Convergence/Sufficient Completeness Proof Strategy 163
E.3 IBOS Convergence/Sufficient Completeness Proof Examples 164
E.4 IBOS Invariant Sufficiency Proof . 171

REFERENCES . 173

v

CHAPTER 1 INTRODUCTION

In order to allow formal methods to scale up to specify and analyze real-world distributed systems,

appropriately expressive logics and associated tools are needed. To begin with, current approaches to

verification may be inadequate. For example, engineers at Amazon Web Services found that:

“standard verification techniques in industry are necessary but not sufficient. We routinely use

deep design reviews, code reviews, static code analysis, stress testing, and fault-injection testing

but still find that subtle bugs can hide in complex concurrent fault-tolerant systems.” [1]

Furthermore, according to [2], current practitioners using formal methods still face several challenges: (i)

specification time is increased (ii) using formal method-based tooling (e.g. SMT solvers, theorem provers)

may require too much time/effort (iii) formal method-based tooling may be unable to express desired prop-

erties.

To attack challenge (i), (a) expressive and intuitive specification methods are needed with support for

good modularity properties, so that different pieces of a specification may be designed and verified and

then composed. Challenge (ii) can be addressed by (b) tightly integrating formal-methods into the entire

design/verification process; and (c) designing logics/tools with a tunable abstraction dial so that only the

minimum amount of detail necessary is used to complete a specification/verification task. Finally, challenge

(iii) can be alleviated by (d) providing composable, theory-generic methods so that practitioners are not

limited to a fixed bag of theoretical tricks, so to speak, during specification and analysis.

We believe that the combination of rewriting logic and Maude as an executable specification logic and

interpreter is a good candidate to address the three challenges above: (a) a large number of concurrent

logics/process calculi and semantic approaches may be mapped into rewriting logic (and thus Maude) with

a minimal representation distance [3],[4], (b) a wide array of tools are available directly within Maude via

the Maude Formal Environment [5]; and (c) through its use of both equations and rewrite rules as well as

strong support for parameterized modules, Maude has a built-in abstraction dial allowing for drastic state

space reductions [6]. In particular, we believe symbolic rewriting-based methods are particularly promising

approaches for specifying and analyzing real-world distributed systems. Furthermore, (d) we will show how

symbolic rewriting-based approaches to verification provide a specifier with great flexibility by supporting

reasoning about any theory subject to a few syntactic and easily checkable requirements. Aside from the

symbolic nature of our work, another recurring theme is using semantics-preserving signature and rewrite

theory transformations to shift our ground and effectively attack a problem from a new vantage point.

In this thesis we will examine three separate symbolic rewriting-based methods we have developed over the

past few years, namely: (1) order-sorted pattern operations, (2) variant satisfiability, and (3) constructor-

based reachability logic.

Pattern Operations. As a first example of the symbolic “nature” of rewriting-based methods, consider

term patterns. Term patterns are used everywhere in functional and logic programming: to define predicates

and functions, to perform automated deduction tasks like rewriting, matching, unification, resolution, and

Knuth-Bendix completion, and also as a symbolic notation to describe languages as sets of term instances,

and language operations by corresponding symbolic operations on the term patterns defining them. Such

pattern operations, including pattern intersection, union, and difference, were first systematically studied

by Lassez and Marriott in [7] and further studied in, e.g., [8, 9, 10, 11] have many applications to, e.g.,

1

machine learning, negation in logic programming, inductive theorem proving, etc... These original papers

focused primarily on the untyped case. However, for greater expressiveness, many declarative languages—

such as OBJ [12], CafeOBJ [13], and Maude [6]—support rich type disciplines, and we would like our pattern

operations to provide support for these languages. A question that we will ask and answer is: can these

untyped algorithms be lifted to the order-sorted case? In fact, we will see that the problem, as originally

formulated, is intractable, but that through a suitable signature transformation Σ ÞÑ Σ#, the problem has

a quite natural solution. In fact, this transformation is just a new method to reduce order-sorted signatures

into equivalent many-sorted signatures; using this transfer principle, we will: (a) reduce validity of a first-

order formula in an initial order-sorted algebra to the validity of an associated formula in a corresponding

many-sorted initial algebra; since the first-order theory of a many-sorted initial algebra is known to be

decidable [14, 15, 16], we obtain a new proof of decidability that is much simpler than previous attempts

[17, 18]; and (b) develop a new order-sorted algorithm for pattern operations based on the signature ΣYΣ#;

prove its correctness; show how it can be reduced to many-sorted pattern operations

Metalevel Algorithms for Variant Satisfiability. Moving beyond symbolic operations at the syntactic

level, we can consider more semantic symbolic methods. Recently, one quite popular approach is satisfiability

modulo theories (SMT). SMT solving is at the heart of some of the most effective theorem proving and

infinite-state model checking formal verification methods that can scale up to impressive verification tasks.

A current limitation, however, is its lack of extensibility : current SMT solvers support a (typically small)

library of decidable theories. Although these theories can be combined by the Nelson-Oppen (NO) [19, 20]

or Shostak [21] methods under some conditions, only the theories in the SMT solver library and their

combinations are available to the user: any other theories extending the tool must be implemented by the

tool builders.

In practice, of course, the problem a user has to solve may not be expressible by the theories available

in an SMT solver’s library. Therefore, the goal of making SMT solvers user-extensible, so that a user can

easily define new decidable theories and use them in the verification process is highly desirable. Recall that

E-unifiability is a well-known subproblem of SMT solving, namely, satisfiability in the free pΣ, Eq-algebra

TΣ{EpXq on countably many variables X, but restricted to positive (i.e., negation-free) quantifier-free (QF)

formulas. Until recently, unification tools also suffered from a lack of extensibility: such tools usually support

a small library of theories pΣ, Eq, combinable by methods similar to the NO method ([22] explicitly relates

the NO method and combination algorithms for unification). Again, the user could not extend such decidable

unifiability/unification algorithms by defining new theories and using a theory-generic algorithm. However,

true user-extensibility has now been achieved for E-unification in theories pΣ, Eq satisfying the finite variant

property (FVP) [23] thanks to variant unification based on folding variant narrowing [24]. In fact, variant

unification for user-definable FVP theories is already supported by Maude 2.7.1.

This suggests an obvious question: could variant unification be generalized to variant satisfiability, so

that, under suitable conditions on and FVP theory pΣ, Eq, satisfiability of QF formulas in the initial algebra

TΣ{E becomes decidable by a theory-generic satisfiability algorithm? This would then make satisfiability

user-extensible as desired. This question has been positively answered in [25] by giving general conditions

under which satisfiability of QF formulas in the initial algebra TΣ{E of an FVP theory pΣ, Eq is decidable.

Suppose that: (i) the convergent rewrite theory R “ pΣ, B,Rq is a so-called FVP decomposition of pΣ, Eq

(which is what it means for pΣ, Eq to be FVP), (ii) B has a finitary B-unification algorithm, and (ii) R has

an OS-compact constructor decomposition RΩ (definition in Section 4.2). Then satisfiability of QF formulas

2

in TΣ{E is decidable by a theory-generic algorithm called variant satisfiability.

However, the results in [25] do not really provide an algorithm in the full sense of the word, but rather

a theoretical skeleton on which such an algorithm can be fleshed out. Specifically, they assume that the

constructor decomposition RΩ is OS-compact, but do not provide a way to automate both the checking of

OS-compactness and the implementation of the various auxiliary functions needed for variant satisfiability

based on OS-compactness. They also use the notions of constructor variant and constructor unifier (see

Section 4.2), but give only their theoretical definitions instead of algorithms to compute them. Thus, we

will define new algorithms to check for OS-compactness as well as to computer constructor variants and

constructor unifiers. Here we see again how we can use signature transformations in order to reduce the

complex problem of computing constructor variants/unifiers into a simpler one (in this case, unification).

Constructor-Based Reachability Logic. The final symbolic method we consider in this thesis will

be constructor-based reachability logic. The main applications of reachability logic to date have been as a

language-generic logic of programs [26, 27]. In these applications, a K specification of a language’s operational

semantics by means of rewrite rules is assumed as the language’s “golden semantic standard,” and then a

correct-by-construction reachability logic for a language so defined is automatically obtained [27]. This

method has been shown effective in proving a wide range of programs in real programming languages

specified within the K Framework.

Although the foundations of reachability logic are very general [26, 27], they do not provide a straight-

forward answer to the following non-trivial questions: (1) Could a reachability logic be developed to verify

not just conventional programs, but also distributed system designs and algorithms formalized as rewrite

theories in rewriting logic [28]? And (2) if so, what would be the most natural way to conceive such a

rewrite-theory-generic logic?

Although a first step towards a reachability logic for rewrite theories was taken in [29], a few important

questions have been left unanswered. Firstly, how can we prove invariants of a distributed system? Since

invariants are the most basic safety properties, support for proving invariants is a sine qua non requirement.

We will show that the naive approach is unworkable, but by a simple theory transformation, the problem has

a quite natural solution. Another important open question is how to best take advantage of the wealth of

equational reasoning techniques such as matching, unification, and narrowing modulo an equational theory

pΣ, Eq, e.g., [30, 24], and of some recent results on decidable satisfiability of quantifier-free formulas in initial

algebras, e.g., [31, 25] to further automate reachability logic deduction. A third important issue is simplicity.

Reachability logic as originally defined has eight inference rules [26, 27]. Could a reachability logic for rewrite

theories be simpler? We will tackle head on these three questions to provide a general reachability logic

suitable for reasoning about properties of both distributed systems and programs based on their rewriting

logic semantics.

The plan of the thesis is as follows. We first review some preliminary notions; this section is labeled so

that familiar readers may skip ahead if desired. The body chapters cover:

1. order-sorted pattern term operations; boolean algebras over term patterns; term patterns as a method

to reduce order-sorted problems to many-sorted problems

2. meta-level algorithms to support a theory-generic, parameteric, and composable satisfiability method

based on the notions of variant, variant unification, and variant satisfiability

3. a new, simplified, rewrite-theory-generic semantics and proof system for constructor-based reachability

3

logic using symbolic methods developed in earlier chapters that has been mechanized and tested on

simple examples;

4. our capstone project, verification of security properties of the Illinois Browser Operating System (IBOS)

as reachability properties.

We conclude with a discussion of our current research and possible topics for future work.

4

CHAPTER 2 PRELIMINARIES

We present some preliminaries on order-sorted algebra, rewriting logic, variants, first-order equational

formulas, and order-sorted signature morphisms. The material is adapted from [28] and [32], generalizing [33].

The presentation is self-contained: we only assume familiarity with many-sorted signatures and algebras,

e.g., [34].

2.1 ORDER-SORTED ALGEBRA

Definition 2.1 An order-sorted signature is a triple Σ “ pS,ď,Σq with pS,ďq a poset and pS,Σq a many-

sorted signature. Ŝ “ S{”ď, called the set of connected components of pS,ďq, is the quotient of S under

the equivalence relation ”ď “ pď Y ěq
`. The order ď and equivalence ”ď are extended to sequences of the

same length in the usual way, e.g., s11 . . . s
1
n ď s1 . . . sn iff s1i ď si, 1 ď i ď n. Σ is called sensible (resp.

monotonic) if for any two operators f : w Ñ s, f : w1 Ñ s1 P Σ, with w and w1 of same length, we have

w ”ď w1 ñ s ”ď s1. (resp. w ě w1 ñ s ě s1). Note that a many-sorted signature Σ is the special case

in which the poset pS,ďq is discrete, i.e., s ď s1 iff s “ s1. For connected components rs1s, . . . , rsns, rss P Ŝ

f
rs1s...rsns
rss “ tf : s11 . . . s

1
n Ñ s1 P Σ | s1i P rsis 1 ď i ď n, s1 P rssu (2.1)

is the family of “subsort polymorphic” operators f for those components. For f : s1 ¨ ¨ ¨ sn Ñ s, let argspfq “

ts1, ¨ ¨ ¨ , snu and ranpfq “ s. ˝

If each connected component rss P pS contains a top element Jrss P rss such that for each s1 P rss, Jrss ě s1,

we say that Σ is topped. Similarly, if Σ is topped and for each operator f : s1 . . . sn Ñ s P Σ we have an

operator f : rs1s . . . rsns Ñ rss P Σ, we say that Σ is kind-complete. Whenever necessary, we may assume

that a signature is topped and kind-complete; when we do so, we will add a remark to that effect. Note this

involves no real loss of generality since a signature can always be topped/kind-completed in a way that is

consistent with its original meaning.

Definition 2.2 For Σ “ pS,ď,Σq an OS signature, A is an order-sorted Σ-algebra iff:

• A is a many-sorted pS,Σq-algebra A,

• whenever s ď s1, then we have As Ď As1 , and

• whenever f : w Ñ s, f : w1 Ñ s1 P f
rs1s...rsns
rss and a P AwXAw

1

, then we have Af :wÑspaq “ Af :w1Ñs1paq,

where As1...sn “ As1 ˆ . . .ˆAsn .

An order-sorted Σ-homomorphism h : A Ñ B is a many-sorted pS,Σq-homomorphism such that whenever

rss “ rs1s and a P As X As1 , then we have hspaq “ hs1paq. h is injective, resp. surjective, resp. bijective, iff

for each s P S hs is injective, resp. surjective, resp. bijective. We call h an isomorphism if there is another

order-sorted Σ-homomorphism g : B Ñ A such that for each s P S, hs ˝ gs “ 1Bs
, and gs ˝ hs “ 1As

, with

1As
, 1Bs

the identity functions on As, Bs. If Σ is topped, one can show f is an isomorphism iff f is bijective.

Order-sorted Σ-algebras and homomorphisms define a category OSAlgΣ.˝

Theorem 2.1 [32] The category OSAlgΣ has an initial algebra. Furthermore, if Σ is sensible, then the

term algebra TΣ with:

5

• if a : εÑ s then a P TΣ,s, (ε denotes the empty string),

• if t P TΣ,s and s ď s1 then t P TΣ,s1 ,

• if f : s1 . . . sn Ñ s and ti P TΣ,si 1 ď i ď n, then fpt1, . . . , tnq P TΣ,s,

is initial, i.e., there is a unique Σ-homomorphism to each Σ-algebra. ˝

For rss P pS, TΣ,rss denotes the set TΣ,rss “
Ť

s1Prss TΣ,s1 . TΣ will (ambiguously) denote: (i) the term

algebra; (ii) its underlying S-sorted set; and (iii) the set TΣ “
Ť

sPS TΣ,s. An OS signature Σ is said to

have non-empty sorts iff for each s P S, TΣ,s ­“ H. An important requirement on a sensible and monotonic

signature is regularity (or just preregularity1 [33, 6]) [33]. Regularity requires for each operator f P Σ and

sort string u P S˚ that, if the set tws P S˚ | f : w Ñ s P Σ ^ w ě uu is non-empty, then it has a smallest

element. This ensures that each Σ-term t P TΣpXq has a least sort, denoted lsΣptq, with t P TΣpXqlsΣptq and

makes order-sorted automated deduction tasks like term rewriting or unification much easier: the matching

of a term t to a variable x : s will succeed iff lsΣptq ď s. Without regularity, or preregularity, a costly

determination of all possible sorts of t is needed.

An S-sorted set X “ tXsusPS of variables, satisfies s ­“ s1 ñ Xs XXs1 “ H, and the variables in X are

always assumed disjoint from all constants in Σ. The Σ-term algebra with variables in X, TΣpXq, is the

initial algebra for the signature ΣpXq obtained by adding to Σ the variables in X as extra constants. Since

a ΣpXq-algebra is just a pair pA,αq, with A a Σ-algebra, and α an interpretation of the constants in X, i.e.,

an S-sorted function α P rXÑAs, the ΣpXq-initiality of TΣpXq can be expressed as the following corollary

of Theorem 2.1:

Theorem 2.2 (Freeness Theorem). If Σ is sensible, for each A P OSAlgΣ and α P rXÑAs, there exists a

unique Σ-homomorphism, α : TΣpXq ÝÑ A extending α, i.e., such that for each s P S and x P Xs we have

xαs “ αspxq.˝

In particular, when A “ TΣpY q, an interpretation of the constants in X, i.e., an S-sorted function σ P

rXÑTΣpY qs is called a substitution, and its unique homomorphic extension σ : TΣpXq Ñ TΣpY q is also

called a substitution. Define dompσq “ tx P X | x ­“ xσu, and ranpσq “
Ť

xPdompσq varspxσq. Given

variables Z, the substitution σ|Z agrees with σ on Z and is the identity elsewhere. A variable specialization

is a substitution ρ that just renames a few variables and may lower their sort. More precisely, dompρq is a

finite set of variables tx1, . . . , xnu, with respective sorts s1, . . . , sn, and ρ injectively maps the x1, . . . , xn to

variables x11, . . . , x
1
n with respective sorts s11, . . . , s

1
n such that s1i ď si, 1 ď i ď n.

2.1.1 First-Order Equational Formulas

The first-order language of equational Σ-formulas is defined in the usual way: its atoms are Σ-equations

t “ t1. The set FormpΣq of equational Σ-formulas is then inductively built from atoms by: conjunction

(^), disjunction (_), negation (), and universal (@x:s) and existential (Dx:s) quantification with sorted

variables x:s P Xs for some s P S. The literal pt “ t1q is denoted t ­“ t1. Given a Σ-algebra A, a formula

ϕ P FormpΣq, and an assignment α P rYÑAs, with Y “ fvarspϕq the free variables of ϕ, the satisfaction

relation A,α |ù ϕ is defined inductively as usual.

1An order-sorted signature Σ is preregular [33] iff for each Σ-term t P TΣpXq the set ts P S | t P TΣpXqsu has a least element,
denoted lsΣptq, in the poset order pS,ďq.

6

An OS equational theory is a pair T “ pΣ, Eq, with E a set of (possibly conditional) Σ-equations.

OSAlgpΣ,Eq denotes the full subcategory of OSAlgΣ with objects those A P OSAlgΣ such that A |ù E,

called the pΣ, Eq-algebras. OSAlgpΣ,Eq has an initial algebra TΣ{E [32]. Given T “ pΣ, Eq and ϕ P FormpΣq,

we call ϕ T -valid, written E |ù ϕ, iff A |ù ϕ for each A P OSAlgpΣ,Eq. We call ϕ T -satisfiable iff there exists

A P OSAlgpΣ,Eq with ϕ satisfiable in A. Note that ϕ is T -valid iff ϕ is T -unsatisfiable. The inference

system in [32] is sound and complete for OS equational deduction, i.e., for any OS equational theory pΣ, Eq,

and Σ-equation u “ v we have an equivalence E $ u “ v ô E |ù u “ v. Deducibility E $ u “ v is

abbreviated as u “E v, called E-equality.

We recall the definitions of E-unifier and E-unification algorithm below:

Definition 2.3 (Unifier, Unification Algorithm). Given an OS equational theory pΣ, Eq and a system of

Σ-equations, i.e., a conjunction φ ” u1 “ v1 ^ . . . ^ un “ vn of Σ-equations, an E-unifier of φ is a

substitution σ such that uiσ “E viσ, 1 ď i ď n.

An E-unification algorithm for pΣ, Eq is an algorithm generating for each system of Σ-equations φ and

finite set of variables W Ě varspφq a complete set of E-unifiers Unif WE pφq where each τ P Unif WE pφq is

assumed idempotent and with dompτq “ varspφq, and is “away from W” in the sense that ranpτqXW “ H.

The set Unif WE pφq is called “complete” in the precise sense that for any E-unifier σ of φ there is a τ P

Unif Epφq and a substitution ρ such that σ|W “E pτρq|W , where, by definition, α “E β for substitutions α, β

means p@x P Xq αpxq “E βpxq. Such an algorithm is called finitary if it always terminates with a finite set

Unif WE pφq for any φ. We will use the notation Unif
exp1,...,expn

E pφq as an abbreviation for Unif WE pφq, where

W “ varspφq Y
Ť

1ďiďn varspexpiq.

Note the lack of predicate symbols above is only apparent : full order-sorted first-order logic can be reduced

to order-sorted algebra and equational formulas (see [35, 36, 25]).

2.1.2 Signature Morphisms

Definition 2.4 A signature morphism H : Σ Ñ Σ1 (called a view in Maude [6]) is a monotonic function H :

pS,ďq Ñ pS1,ď1q of the underlying posets of sorts, together with a mapping H sending each f : s1 . . . sn Ñ s

in Σ to a term Hpfq P TΣ1ptx1:Hps1q, . . . , xn:HpsnquqHpsq. H defines a well-typed translation of the syntax

of Σ into that of Σ1. It inductively maps each Σ-term t to a Σ1-term Hptq by mapping x:s to x:Hpsq, and

Hpfpt1, . . . , tnqq to Hpfqtx1 :Hps1q ÞÑ Hpt1q, . . . , xn :Hpsnq ÞÑ Hptnqu, where tx1 :Hps1q ÞÑ Hpt1q, . . . , xn :

Hpsnq ÞÑ Hptnqu denotes the obvious substitution. H extends naturally to a translation of equational formulas

H : FormpΣq Ñ FormpΣ1q by mapping atoms according to H, respecting Boolean connectives, and mapping

each quantifier @x:s (resp. Dx:s) to @x:Hpsq (resp. Dx:Hpsq).

A signature inclusion, denoted Σ ãÑ Σ1, is a signature morphism that is a poset inclusion pS,ďq ãÑ pS1,ď1q

on sorts and maps each f : s1 . . . sn Ñ s to itself: more precisely, to the term fpx1:s1, . . . , xn:snq. The most

important subsignature inclusion we consider is the constructor subsignature Ω Ď Σ. ˝

A signature morphism H : Σ Ñ Σ1 induces a functor in the opposite direction |H : OSAlgΣ1 Ñ OSAlgΣ,

where for each B P OSAlgΣ1 , the algebra B |HP OSAlgΣ, called its H-reduct, is defined using H as follows:

(i) for each s P S, pB |Hqs “ BHpsq; and (ii) for each f : s1 . . . sn Ñ s in Σ, pB |Hqf is the function

λpx1 P BHps1q, . . . , xn P BHpsnqq. Hpfq : BHps1q ˆ . . . ˆ BHpsnq Ñ BHpsq defined by the term Hpfq in the

Σ1-algebra B.

7

In Goguen and Burstall’s sense, the key point about order-sorted signature morphisms is that they make

order-sorted logic an institution [37], so that truth is preserved along translations, i.e. for any B P OSAlgΣ1

and any Σ-sentence ϕ we have the equivalence:

B |ù Hpϕq ô B |H |ù ϕ (2.2)

This equivalence can be checked in several ways. For example, one can use the embedding of order-sorted

logic in membership equational logic, itself embedded in many-sorted first-order logic, as detailed in [32].

This reduces the issue to the same well-known equivalence for many-sorted first-order logic.

2.2 REWRITING LOGIC

We now recall some basic concepts about rewriting logic. Note that in this thesis, we use rewrite theories

at two levels: (a) rewrite theories provide a means to mechanize equational deduction for an OS equational

theory pΣ, Eq by orienting the equations E as rewrite rules—we focus on theories at this level in chapters

3 and 4; (b) rewrite theories provide a means to axiomatize a distributed system as a rewrite theory R, so

that concurrent computation is modeled as concurrent rewriting with the rules of R modulo the equations

of R—we focus on theories at this level in chapters 5 and 6. The survey in [28] gives a fuller account of

rewriting logic. In this thesis we use the Maude rewriting engine extensively to take our rewrite theories

and obtain concrete, executable algorithms—not mere theoretical results. We will see how Maude represents

rewrite theories in Section 2.3 of this chapter.

We use the notation for term positions, subterms, and term replacement from [38]: (i) positions in a term

viewed as a tree are marked by strings p P N˚ specifying a path from the root, (ii) t|p denotes the subterm

of term t at position p, and (iii) trusp denotes the result of replacing subterm t|p at position p by u.

2.2.1 Rewriting as Equational Deduction

Definition 2.5 (Unconditional Rewrite Theory, Rewrite Relation). An unconditional rewrite theory is a

triple R “ pΣ, B,Rq with pΣ, Bq an order-sorted equational theory and R a set of unconditional Σ-rewrite

rules, i.e., sequents lÑ r, with l, r P TΣpXqrss for some rss P pS such that each equation u “ v P B is regular,

i.e., varspuq “ varspvq, and linear, i.e., there are no repeated variables in u, and no repeated variables in v.

The one-step R,B-rewrite relation t ÑR,B t1, holds between t, t1 P T
pΣpXqrss, rss P

pS, iff there is a rewrite

rule l Ñ r P R, a substitution σ P rXÑTΣpXqs, and a term position p in t such that t|p “B lσ, t1 “ trrσsp.

Note that t P TΣpXqrss and tÑR,B t1 does not necessarily imply t1 P TΣpXqrss but only t1 P T
pΣpXqrss, where

pΣ is the kind-completion of Σ. This is because, unless further conditions are imposed on B and R, in general

we do not have lsplσq ě lsprσq, so that t1 “ trrσsp need not be a Σ-term, but in general will only be a pΣ-term.

R is called: (i) terminating iff the relation ÑR,B is well-founded; (ii) strictly B-coherent [39] iff whenever

u ÑR,B v and u “B u1 there is a v1 such that u1 ÑR,B v1 and v “B v1; (iii) confluent iff u Ñ˚
R,B v1 and

u Ñ˚
R,B v2 imply that there are w1, w2 such that v1 Ñ

˚
R,B w1, v2 Ñ

˚
R,B w2, and w1 “B w2 (where Ñ˚

R,B

denotes the reflexive-transitive closure of ÑR,B). Note that if (i)–(iii) hold, then for each pΣ-term t there is

a pΣ-term u such that t Ñ˚
R,B u and pEvq u ÑR,B v. We then write u “ t!R,B and t Ñ!R,Bt!R,B, and call

t!R,B the R,B-normal form of t, which, by confluence, is unique up to B-equality.

Below we gather some useful notions regarding equational axioms.

8

Definition 2.6 (A/C/U/ACCU Axioms). Let f be some binary operator and e some constant. U refers

to right- and/or left-identity axioms of the form fpx, eq “ x, or fpe, xq “ x for given choices of f and

e. A refers to an associativity axiom of the form fpfpx, yq, zq “ fpx, fpy, zqq for given choices of f . C

refers to a commutativity axiom of the form fpx, yq “ fpy, xq for given choices of f . Also, AC “ A Y C,

ACU “ AC Y U , and ACCU refers to any subset of ACU where f is associative only if f is commutative,

i.e. fpfpx, yq, zq “ fpx, fpy, zqq implies fpx, yq “ fpy, xq.

Recall that the notion of preregular signature ensures a least sort lsptq for each term t. How should this

notion be generalized when reasoning modulo axioms B? Intuitively we wish to have a least sort not only

for a term t, but for a B-equivalence class rtsB . B-preregularity provides such a generalization. For B any

combination of A and/or C and/or U axioms, Maude automatically checks B-preregularity in the sense

defined below.

Definition 2.7 (B-preregular Signature). Given regular and linear Σ-equational axioms B, a preregular OS

signature Σ is called B-preregular iff B can be decomposed as a disjoint union B “ B0 Z B1 such that,

orienting equations pu “ vq P B1 as rewrite rules RpB1q of the form u Ñ v, the following properties are

satisfied:

1. (B0 sort-preserving). For each u “ v P B0 and variable specialization ρ, lspuρq “ lspvρq.

2. (RpB1q is sort-decreasing). For each uÑ v in RpB1q and variable specialization ρ, lspuρq ě lspvρq.

3. The restricted rewrite theory pΣ, B0, RpB1qq is such that ÑRpB1q,B0
is terminating, strictly B0-coherent,

and confluent.

4. (Subsort polymorphism). If any typing of an operator f in a subsort-polymorphic family f
rs1s...rsns
rss

satisfies any axioms in B, then any other typing in f
rs1s...rsns
rss satisfies the exact same axioms.2

We can relate A, C and U axioms and B-preregularity as follows. To be well-behaved, A and C axioms

should be sort-preserving. Instead, U axioms may not be so, since in an identity rule, say, fpx, eq Ñ x,

variable x may have a different sort than fpx, eq; such rules should be sort-decreasing. Maude automatically

checks B-preregularity in this precise sense.

We remark briefly that the notion of B-preregular signature does indeed provide the desired notion of

least sort lsprtsBq for B-equivalence classes. This is so because, by properties (1)–(4) and the Church-Rosser

Theorem (see below), we have t “B t1 iff t!RpB1q,B0
“B0

t1!RpB1q,B0
, so that, by (1), we can unambiguously

define lsprtsBq “ lspt!RpB1q,B0
q.

We are now ready to define the notion of convergent unconditional rewrite theory and of decomposition of

an equational theory into a convergent rewrite theory.

Definition 2.8 (Convergent Unconditional Rewrite Theory, Decomposition). An unconditional rewrite the-

ory R “ pΣ, B,Rq is called convergent iff it satisfies the following properties:

1. For each lÑ r P R, l R X and varsprq Ď varsplq.

2. Σ is B-preregular, with B “ B0 ZB1.

2 For a kind-complete signature, this just means that the axioms B can always be defined with all variables in such axioms
ranging over top sorts. For simplicity in what follows we will assume that (as done automatically in Maude) the axioms B have

been extended to top sorts in the kind-completion pΣ.

9

3. (R is B-sort-decreasing). By definition this means that for each pl Ñ rq P R and substitution α we

have, lspplαq!RpB1q,B0
q ě lspprαq!RpB1q,B0

q.

4. ÑR,B is terminating, B-coherent, and confluent.

For convergent rewrite theories we slightly modify the definition of the R,B-rewrite relation t ÑR,B t1 (but

keep the same notation) to ensure it holds between Σ-terms, as opposed to the more general rewrite relation

between pΣ-terms in Def. 2.5, as follows. We say that t ÑR,B t1 holds between t, t1 P TΣpXqrss, rss P pS,

iff there is a rewrite rule l Ñ r P R, a substitution σ P rXÑTΣpXqs, and a term position p in t such that

t|p “B lσ, and t1 “ trprσq!RpB1q,B0
sp. Note that, by assumptions (2)–(3) above, trprσq!RpB1q,B0

sp is always a

well-formed Σ-term.

Orienting equations as rewrite rules provides a way to mechanize equational deduction. A key notion is

that of a decomposition. Given E, a set of Σ-equations, we let RpEq “ tu Ñ v if φ | u “ v if φ P Eu, that

is, the set of rewrite rules produced by orienting equations from left to right. A decomposition of an OS

equational theory pΣ, Eq is a convergent rewrite theory R “ pΣ, B,Rq where E “ E0 ZB and R “ RpE0q.

Note that if Σ is B-preregular with B “ B0 Z B1, then pΣ, B0, RpB1qq is a decomposition in the above

sense, since in that case one can show that RpB1q is B0-sort decreasing iff it is sort-decreasing in the sense

of Definition 2.7. More generally, whenever R “ pΣ, B,Rq with Σ B-preregular, B “ B0ZB1, and B1 “ H,

R is B-sort decreasing iff it is sort decreasing in the standard sense. A practical question is how to check in

general the B-sort decreasingness condition (3) above.

The key property of a decomposition is:

Theorem 2.3 (Church-Rosser Theorem) [40, 39] Let R “ pΣ, B,Rq be a decomposition of pΣ, Eq. Then we

have an equivalence: E $ u “ v ô u!R,B “B v!R,B.˝

If R “ pΣ, B,Rq is a decomposition of pΣ, Eq, and X an S-sorted set of variables, the canonical term

algebra CRpXq has CRpXqs “ trt!R,BsB | t P TΣpXqsu, and interprets each f : s1 . . . sn Ñ s as the function

CRpXqf : pru1sB , . . . , runsBq ÞÑ rfpu1, . . . , unq!R,BsB . By the Church-Rosser Theorem we then have an

isomorphism h : TΣ{EpXq – CRpXq, where h : rtsE ÞÑ rt!R,BsB . In particular, when X is the empty family

of variables, the canonical term algebra CR is an initial algebra, and is the most intuitive possible model for

TΣ{E as an algebra of values computed by R,B-simplification.

Quite often, the signature Σ on which TΣ{E is defined has a natural decomposition as a disjoint union

Σ “ Ω Z ∆, where the elements of CR, that is, the values computed by R,B-simplification, are Ω-terms,

whereas the function symbols f P ∆ are viewed as defined functions which are evaluated away by R,B-

simplification. Ω (with same poset of sorts as Σ) is then called a constructor subsignature of Σ. Call a

decomposition R “ pΣ, B,Rq of pΣ, Eq sufficiently complete with respect to the constructor subsignature Ω

iff for each t P TΣ we have: (i) t!R,B P TΩ, and (ii) if u P TΩ and u “B v, then v P TΩ. This ensures that

for each rusB P CR we have rusB Ď TΩ. Of course, we want Ω as small as possible with these properties.

Sufficient completeness is closely related to the notion of a protecting theory inclusion.

Definition 2.9 (Protecting, Constructor Decomposition). An equational theory pΣ, Eq protects another

theory pΩ, EΩq iff pΩ, EΩq Ď pΣ, Eq and the unique Ω-homomorphism h : TΩ{EΩ
Ñ TΣ{E |Ω is an isomorphism

h : TΩ{EΩ
– TΣ{E |Ω.

10

A decomposition R “ pΣ, B,Rq protects decomposition R0 “ pΣ0, B0, R0q iff R0 Ď R, i.e., Σ0 Ď Σ,

B0 Ď B, and R0 Ď R, and for all t, t1 P TΣ0pXq we have: (i) t “B0 t
1 ô t “B t1, (ii) t “ t!R0,B0 ô t “ t!R,B,

and (iii) CR0 “ CR|Σ0 .

RΩ “ pΩ, BΩ, RΩq is a constructor decomposition of R “ pΣ, B,Rq iff R protects RΩ and Σ and Ω have

the same poset of sorts, so that by definition of decomposition, R is sufficiently complete with respect to Ω.

Finally, Ω is called a subsignature of free constructors modulo BΩ iff RΩ “ H, so that CR0 “ TΩ{BΩ
.

The case where all constructor terms are in R,B-normal form is captured by Ω being a subsignature of

free constructors modulo BΩ. Note also that conditions (i) and (ii) are, so called, “no confusion” conditions,

and for protecting extensions (iii) is a “no junk” condition, that is, R does not add new data to CR0
, whereas

for conservative extensions (iii) is relaxed to the “no confusion” condition CR0
Ď CR|Σ0

, which is already

implicit in (i) and (ii). Therefore, protecting extensions are a stronger kind of conservative extensions.

Example 2.1 (Integers with Addition). Consider the theory of the integers with addition Z` with signature

Σ and constructor subsignature Ω. Both signatures have sorts Nat, NzNat, NzNeg, and Int, and subsorts

NzNat ă Nat and Nat NzNeg ă Int, where NzNat (resp. NzNeg) denotes the non-zero naturals (resp.

negatives). The constructor subsignature Ω has constants 0 of sort Nat and 1 of sort NzNat, and operators

` : Nat Nat Ñ Nat, ` : NzNat NzNat Ñ NzNat, and ´ : NzNat Ñ NzNeg shown in blue. The signature

Σ contains all the operators defined in Ω and adds one defined function symbol: ` : Int Int Ñ Int shown

in red. Let B be the set of ACU axioms for p`q with identity 0 and the equations E0 defining p`q be the

following (with variables i :Int, n :NzNat, and m :NzNat)

i` n`´pnq “ i (2.3)

i`´pnq ` ´pmq “ i`´pn`mq (2.4)

i` n`´pn`mq “ i`´pmq (2.5)

Then pΣ, B,Rq is a decomposition of the theory pΣ, B Y E0q with R “
ÝÑ
E0. Furthermore pΣ, B,Rq protects

the constructor decomposition pΩ, B,Hq, i.e. Σ is sufficiently complete with respect to Ω modulo B.

Variants

We now recall the key notion of a variant which answers, in a sense, two questions: (i) how can we best

describe symbolically the elements of CRpXq that are reduced substitution instances of a pattern term t?

and (ii) given an original pattern t, how many other patterns do we need to describe the reduced instances

of t in CRpXq?

Definition 2.10 (Variants). Given a decomposition R “ pΣ, B,Rq of an OS equational theory pΣ, Eq and

a Σ-term t, a variant3 [23, 24] of t is a pair pu, θq such that: (i) u “B ptθq!R,B, (ii) dompθq Ď varsptq, and

(iii) θ “ θ!R,B, that is, θpxq “ θpxq!R,B for all variables x. pu, θq is called a ground variant iff u P TΣ.

Definition 2.11 (Variant Preorder). Given variants pu, θq and pv, γq of t, pu, θq is called more general

than pv, γq, denoted pu, θq ĚB pv, γq, iff there exists a substitution ρ such that: (i) pθρq|varsptq “B γ, and (ii)

uρ “B v.

3For a discussion of similar but not exactly equivalent versions of the variant notion see [41]. Here we follow the simpler
formulation in [24], rather than the one in [23], because it is technically essential for some results to hold [41].

11

Definition 2.12 (All Variants, Complete Set of Variants). Let JtK˚R,B denote the set of all variants of t

and JtKR,B “ tpui, θiq | i P Iu denote a complete set of variants of t, that is, a set of variants such that for

any variant pv, γq of t there is an i P I, such that pui, θiq ĚB pv, γq.

Definition 2.13 (Finite Variant Property). A decomposition R “ pΣ, B,Rq of pΣ, Eq has the finite

variant property [23] (FVP) iff for each Σ-term t there is a finite complete set of variants JtKR,B “

tpu1, θ1q, . . . , pun, θnqu. Since if B has a finitary B-unification algorithm the relation pu, αq ĚB pv, βq is

decidable by B-matching, in such case we can always assume that if R “ pΣ, B,Rq is FVP, JtKR,B can

be chosen to be not only complete, but also a minimal set of most general variants, in the sense that for

1 ď i ă j ď n, pui, θiq ĞB puj , θjq ^ puj , θjq ĞB pui, θiq.

Also, given any finite set of variables W Ě varsptq we can always choose JtKR,B to be of the form JtKWR,B,

where each pui, θiq P JtKWR,B has θi idempotent with dompθiq “ varsptq, and “away from W ,” in the sense that

ranpθiqXW “ H. As for unifiers, JtKexp1,...,expn

R,B abbreviates JtKWR,B, where W “ varspφqY
Ť

1ďiďn varspexpiq.

Narrowing is a form of symbolic reduction where the term to be reduced B-unifies at some position p with

the lefthand side of a rewrite rule instead of just B-matching such lefthand side. Folding variant narrowing

is a narrowing strategy that provides an effective method to generate JtKR,B whenever B has a finitary

unification algorithm [24]. Furthermore, since JtKR,B is finite for each t whenever R is FVP, the strategy

terminates iff R is FVP.

FVP is a semi-decidable property [41], which can be easily verified (when it holds) by checking, using

folding variant narrowing, that for each function symbol f the term fpx1, . . . , xnq, with the sorts of the

x1, . . . , xn those of f , has a finite complete set of variants.

Example 2.2 (Integers with Addition, Variants). Recall the theory Z` specified in Example 2.1 and its

decomposition pΣ, B,Rq. By using folding variant narrowing one can automatically check that pΣ, B,Rq

is FVP. Thus, for any term t, we can always compute a finite and complete set of variants JtKWR,B with

W Ě varsptq. Let i and i1 be variables of sort Int and n, n1, m, and p be variables of sort NzNat. Then

for the term i` n where W Ě ti, nu, the Maude folding variant narrowing algorithm generates the following

complete set of variants Ji` nKWR,B:

pi1 ` n1, ti ÞÑ i1, n ÞÑ n1uq (2.6)

pi1, ti ÞÑ i1 `´pn1q, n ÞÑ n1uq (2.7)

pi1 ` n1, ti ÞÑ i1 `´pmq, n ÞÑ n1 `muq (2.8)

pi1 `´pmq, ti ÞÑ i1 `´pm` n1q, n ÞÑ n1uq (2.9)

pi1 ` n1 `´pmq, ti ÞÑ i1 `´pm` pq, n ÞÑ n1 ` puq. (2.10)

Note that, according to Definition 2.10, given any variant pt, θq in the list above, we have t “B pi`nqθ!R,B.

As an example, we consider the first and then the second variant. Let θ1 “ ti ÞÑ i1, n ÞÑ n1u and θ2 “ ti ÞÑ

i1 `´pn1q, n ÞÑ n1u. Then we have pi` nqθ1 “ i1 ` n1 and pi` nqθ2 “ i1 `´pn1q ` n1. But clearly, i1 ` n1 is

irreducible by rules R, while i1 `´pn1q ` n1 reduces to i1 by rule i` n`´pnq Ñ i.

12

2.2.2 Rewriting as Concurrent Computation

When mechanizing equational deduction, we are interested in an canonical term algebra CR induced by a

rewrite theory pΣ, B,Rq which is the decomposition of some equational theory pΣ, Eq where the states are

B-equivalence classes of terms (where B is restricted to ensure decidability). Instead, when using rewriting

to model general concurrent computation, we typically desire an canoncial reachability model CR, i.e., a

kind of transition system whose states are E-equivalence classes of terms defined by the decomposition of

a theory pΣ, Eq, and whose transitions are defined by rewrite rules R over such equivalence classes. Since

equations E are oriented as rules operationally, we require a second kind of coherence property between rules

and equations that we briefly touch on below.

Definition 2.14 (Rewrite Theory). A rewrite theory is a 3-tuple R “ pΣ, E Y B,Rq with pΣ, E Y Bq an

OS equational theory with E possibly conditional and R a set of possibly conditional Σ-rewrite rules, i.e.,

sequents l Ñ r if φ, with l, r P TΣpXqrss for some rss P pS, and φ a quantifier-free Σ-formula.4 We further

assume that:

1. Each equation u “ v P B is regular, i.e., varspuq “ varspvq, and linear, i.e., there are no repeated

variables in u, and no repeated variables in v. Furthermore, Σ is B-preregular.

2. The equations E, when oriented as rewrite rules ~E “ tu Ñ v if ψ | u “ v if ψ P Eu, are conver-

gent modulo B5, that is, sort-decreasing, strictly coherent, confluent, and operationally terminating as

rewrite rules modulo B [44].

3. The rules R are ground coherent with the equations E modulo B [45].

We refer to [28, 44, 45] for more details, but give here an intuitive high-level explanation of what the

above conditions mean in practice. Conditions (1)–(2) ensures that the initial algebra TΣ{EYB is isomorphic

to the canonical term algebra CΣ{E,B , whose elements are B-equivalence classes of ~E,B-irreducible ground

Σ-terms. In the context of (1)–(2), condition (3) ensures that “computing ~E,B-canonical forms before

performing R,B-rewriting” is a complete strategy. That is, if t ÑR,B t1 and u “ t!E,B , i.e., t Ñ˚
~E,B

u with

u in ~E,B-canonical form (abbreviated in what follows to u “ t!), then there exists a u1 such that uÑR,B u1

and t1! “B u1!.

Conditions (1)–(3) allow a simple and intuitive description of the initial reachability model TR [46] of R
as the canonical reachability model CR whose states are the elements of the canonical term algebra CΣ{E,B ,

and where the one-step transition relation rus ÑR rvs holds iff u ÑR,B u1 and ru1!s “ rvs. Furthermore, if

u ÑR,B u1 has been performed with a rewrite rule l Ñ r if φ P R and a ground substitution σ P rYÑTΣs,

then, assuming B-equality is decidable, checking whether condition E Y B |ù φσ holds is decidable by

reducing the terms in φσ to ~E,B-canonical form.

4Usually, φ is assumed to be a conjunction of Σ-equations. We give here this more general definition for three reasons:
(i) often, using equationally-defined equality predicates [42], a quantifier-free formula can be transformed into a conjunction of
equalities; (ii) the more general notion is particularly useful for symbolic methods; and (iii) the semantics for this more general
notion has been studied in detail in [43].

5This notion of convergence is slightly different than the previous notion in Definition 2.8; this is because of the extra
complexity of conditional equations that must be accounted for.

13

1 fmod PRES-NAT is

2 sort Bool .

3 op true : -> [ctor] .

4 op false : -> [ctor] .

5

6 sort NzNat Nat .

7 subsort NzNat < Nat .

8 op 0 : -> Nat [ctor] .

9 op 1 : -> NzNat [ctor] .

10 op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .

11 op _+_ : NzNat Nat -> NzNat [ctor assoc comm id: 0] .

12

13 var J K : Nat . var P : NzNat .

14

15 op _<=_ : Nat Nat -> Bool .

16 op _<_ : Nat Nat -> Bool .

17

18 eq J <= J + K = true [variant] .

19 eq J + P <= J = false [variant] .

20 eq J < J + P = true [variant] .

21 eq J + K < J = false [variant] .

22 endfm

23

24 mod COUNTER-EXAMPLE is

25 protecting FVP-NAT .

26

27 var N : Nat .

28

29 sort Counter .

30 op {_} : Nat -> Counter [ctor] .

31

32 rl {N + 1} => {N + 1 + 1} .

33 rl {N + 1} => {N} .

34 endm

Figure 2.1: Theory specification for a Counter.

2.3 MAUDE SYNTAX

Since this thesis is concerned with finding concrete rewriting-based logics and algorithms for doing dis-

tributed system analysis, we require a means to mechanize rewrite theories. Thankfully, the Maude rewriting

engine [6] provides such a means. Thus, before continuing, we gloss a few keywords in the Maude syntax

and describe their associated concepts. We use the module in Figure 2.1 as an example.

In Maude, the primary definitional unit is a module, which is surrounded by the keyword pair fmod/endfm

or mod/endm. The former specifies a functional module which is defined only by (ground) confluent and

(ground) operationally-terminating equations, while the latter specifies a system module, which may contain

both equations of the above form as well as potentially non-deterministic, non-terminating rewrite rules.

Generally, functional modules specify one or more data structures which are imported by potentially several

different system modules, each specifying a different system of interest.

14

As an example, consider a module specifying a counter (COUNTER-EXAMPLE) that may nondeterministi-

cally increment or decrement. The underlying functional module PRES-NAT specifies the theory of Pres-

burger natural numbers. In the above example, the keyword protecting specifies that the system module

COUNTER-EXAMPLE imports the functional module PRES-NAT in a semantics-preserving way that is precisely

described in Definition 2.9.

In Maude, a module’s syntax is specified by sort, subsort, and operator declarations using the keywords

sort, subsort, and op respectively while its semantics is specified by equation and rule declarations using

keywords eq and rl respectively.6 The variable keyword var is used to declare variables that will be

used in later rules and equations. Constructor operators, the particular symbols which form the constructor

subtheory of a given theory, are specified using the ctor attribute, which appears in optional square brackets

([]) that occur after any operator declaration.

In the example above, we have four sort declarations (Bool, NzNat, Nat, and Counter) and one subsort

declaration (NzNat ă Nat). There are 9 operator declarations: 7 constructor symbols and 2 defined symbols.

The equations in lines 18-21 ensure that the two defined symbols (< and <=), when applied to ground

arguments, always evaluate to the Bool constructors true and false. The variant attribute that appears

tagged on the right-hand side of these equations means that they also satisfy the finite variant property, so

that unification problems over equalities containing these operators are decidable. Furthermore, validity and

satisfiability of QF formulas in the initial algebra for this theory is decidable by variant satisfiability [36, 47].

Finally, the two rewrite rules on lines 32-33 define the state changes of the counter. Recall that this system

is non-terminating, since the the increment rule on line 32 can loop. The single Counter operator ({_}) is

used to mark those numbers which correspond to the current state of the counter. This is used to control

the application of these two rules; even though the sorts Nat and Counter are in bijective correspondence,

it is useful to separate the two, since we certainly do not want all numbers to non-deterministically vary.

Furthermore, this extra operator ensures that our theory is topmost.

For anyone familiar with basic functional programming, the specification in Figure 2.1 hopefully is not

difficult to read. There are, however, two unusual features that need to be mentioned. The first feature is

Maude’s support for mixfix syntax; any underbars appearing in an operator declaration (op) represent an

argument position. For example, in the operator declaration (op +), the first underbar corresponds to the

first argument while the second underbar represents the second argument, so that typed operator (op + :

Nat Nat -> Nat) applied to the arguments 0 and 1 would be written as 0 + 1 and yield a result of type Nat.

The second feature is that binary function symbols in Maude may be declared as associative, commutative,

and/or having a unit using the assoc, comm, and id: attributes respectively. These designations are not just

descriptive; any equations in which, for example, an associative-commutative operator appears, is actually

applied modulo associativity and commutativity. These features combined allow Maude to very naturally

specify equations over lists, sets, multisets, etc... at both the syntactic and semantic level.

6Note that our concept of a sort/subsort is often called type/subtype in the programming language literature.

15

CHAPTER 3 PATTERN OPERATIONS
1

3.1 INTRODUCTION

Term patterns are used everywhere in functional and logic programming: to define predicates and func-

tions, to perform automated deduction tasks like rewriting, matching, unification, resolution, and Knuth-

Bendix completion, and also as a symbolic notation to describe languages as sets of term instances, and

language operations by corresponding symbolic operations on the term patterns defining them. Such pat-

tern operations, first systematically studied by Lassez and Marriott in [7] and further studied in, e.g.,

[8, 9, 10, 11] have many applications to, e.g., machine learning, negation in logic programming, sufficient

completeness of function definitions, inductive theorem proving, and automated model building.

For greater expressiveness many declarative languages support rich type disciplines. This holds true for

both higher-order functional languages and rule-based languages. For example, OBJ [12], CafeOBJ [13], and

Maude [6] all support types, subtypes, subtype polymorphism, and —through their parameterized types—

polymorphic and dependent types. Obviously, all the above-mentioned applications of pattern operations

are also needed for these languages. What is not at all obvious —and to the best of our knowledge does not

seem to have been investigated so far— is whether the algorithms defining the Boolean algebra of pattern

operations for the untyped case in, e.g., [7, 8, 9, 10, 11] extend in a straightforward way to the more expressive

patterns now available in these richer type disciplines. The example described in Figure 3.1 clearly shows

that they do not.

The graph on the left describes an order-sorted signature [33] with two types, A and B, and a subtype

inclusion A ă B depicted by the vertical bar. f is subtype polymorphic, with two typings: f : A Ñ A,

and f : B Ñ B. We have constants a, b of respective types A, B. A pattern t, i.e., a term possibly with

variables, denotes the set (language) JtK “ ttσ | σ groundu of all its ground instances. The symbolic pattern

difference t ´ t1 denotes the language Jt ´ t1K “ JtK ´ Jt1K. In the untyped case, it is well-known [7] that

when t and t1 are linear patterns (have no repeated variables), the symbolic difference t´ t1 always denotes

a language expressible as Ju1K Y . . . Y JukK, for tu1, . . . , uku a finite set of patterns. If this were to hold in

the order-sorted case, it should hold, in particular, for Jx:B ´ y:AK, with x:B, y:A variables of sorts A,B.

Adopting the convention f0pxq “ x, we have, Jy:AK “ tfnpaq | n ě 0u, and Jx:BK “ Jy:AKY tfnpbq | n ě 0u.

Therefore, Jx :B ´ y :AK “ tfnpbq | n ě 0u. But there is no finite set of patterns tu1, . . . , uku such that

Ju1K Y . . . Y JukK “ tfnpbq | n ě 0u. Indeed, the only possible choice for a ui is ui “ b. All other choices:

ui “ a, ui “ x1:B, ui “ y1:A, ui “ fn`1px1:Bq, or ui “ fn`1py1:Aq, n ě 0, are impossible.

Figure 3.1: Failure of Pattern Operations in Order-Sorted Signatures

Is all lost? Not if we make our signature more expressive: the graph on the right of Figure 3.1 describes a

1Chapter content was originally available at https://doi.org/10.1007/s00165-017-0415-5. Reprinted with permission.

16

https://doi.org/10.1007/s00165-017-0415-5

signature where we add a new subtype B# ă B, lower the typing of b to B#, and add the typing f : B# Ñ

B#. Now Jz:B#K “ tfnpbq | n ě 0u, and we can symbolically compute the difference x:B´ y:A “ z:B#. This

example shows that the problem is insoluble as formulated, but it can be solved by a signature transformation

extending the original signature Σ. In Section 3.2 we formally define such a transformation Σ ÞÑ Σ# that

enriches a finite order-sorted signature Σ with additional sorts like the sort B# above. This is a key step

for obtaining a Boolean algebra of order-sorted patterns in Section 3.4.

But the Σ ÞÑ Σ# transformation has other far-reaching consequences. Since it is well-known that pattern

operations are intimately connected with first-order logic formulas and with negation elimination in such

formulas [8, 9, 10, 11], we should first of all ask what light can the Σ ÞÑ Σ# transformation shed on the

validity of formulas in initial order-sorted algebras. As we show in Section 3.3, it sheds a lot of light: it

makes the validity of a first-order formula in an initial order-sorted algebra equivalent to the validity of an

associated formula in an associated many-sorted initial algebra. Since the first-order theory of a many-sorted

initial algebra is well-known to be decidable [14, 15, 16], this proves the decidability of the first-order theory

of an initial order-sorted algebra. This result goes back to [17, 18], but the proof obtained through the

Σ ÞÑ Σ# transformation is considerably simpler. Furthermore, it provides a new, general transfer principle

to reduce certain order-sorted algebra problems to many-sorted algebra ones.

We put this transfer principle to work for order-sorted pattern operations in Section 3.4, where we show

that they can be reduced to operations on many-sorted Σ#-patterns. Furthermore, we have developed

and shown the correctness of an intrinsically order-sorted algorithm for pattern operations based on the

signature Σ Y Σ# that enjoys important advantages because it allows much simpler, shorter, and “user

friendlier” expression of both the pattern problems to be solved and the answers yielded by the algorithm,

and because it has considerably better performance than the many-sorted one. As reported in Section 3.6,

we have implemented this algebra of order-sorted pattern operations in Maude using reflection, and have

performed an experimental evaluation of the, indeed substantial, advantages of the algorithm performing

pattern operations at the order-sorted level of Σ Y Σ# over the one performing such operations at the

many-sorted level of Σ#.

Two additional important advantages of the order-sorted algorithm for pattern operation over the signature

ΣYΣ# are studied in detail in Sections 3.4.3 and 3.5. In Section 3.4.3 we show that the subalgebra of linear

patterns defines a very useful class of regular tree languages, which we call linear pattern languages, and

provides a computable Boolean algebra for operations on such languages, which is isomorphic to a Boolean

subalgebra of the Boolean algebra PpTΣq of tree languages L that are subsets L Ď TΣ. What this means in

practice is that there is no need to rely on tree automata operations to combine linear pattern languages:

much simpler operations, including not just the Boolean ones, but also the algebraic operations on languages

pL1, . . . , Lnq ÞÑ fpL1, . . . , Lnq associated to each f P Σ, are available in an effective way as linear pattern

operations.

A second advantage of the computable algebra of linear patterns, which we discuss in Section 3.5, is that

it provides a reduction of the problem of whether a formula ϕ with membership constraints in the expressive

language of [17, 18] is satisfied in an order-sorted initial algebra TΣ to that of whether a simpler purely

equational formula πpϕq is satisfied in the initial order-sorted algebra TΣYΣ# , eliminating again the need for

performing tree automata operations involved in ascertaining the validity of the original formula ϕ.

As already pointed out, pattern operations have been known to have many applications at the unsorted

level. The goal of this chapter is to extend such applications, and enable new ones, for more expressive

programming and formal specification languages using subtypes and subtype polymorphism. Sections 3.4.3

17

and 3.5 already discuss, as mentioned above, some new applications. To give a flavor for the wide range of

applications possible, we discuss three kinds of such applications in Section 3.7: (i) verification of sufficient

completeness for order-sorted equational programs; (ii) elimination of the otherwise feature —used in

advanced languages such as Haskell [48], ASF+SDF [49], and Maude [6] to specify the result of a function

when no other pattern definition applies to the subterm being evaluated—; and (iii) verification of invariants

of concurrent systems specified as rewrite theories [50].

Section 3.8 discusses related work and presents some conclusions.

3.2 THE Σ ÞÑ Σ# SIGNATURE TRANSFORMATION

We define a signature transformation Σ ÞÑ Σ# that will give us the key to study validity of equational

formulas in initial order-sorted algebras in Section 3.3 and pattern operations in Section 3.4. Σ is a regular

order-sorted finite signature with poset of sorts pS,ďq. As first remarked by H. Comon-Lundh in [17], an

order-sorted signature Σ is just a Σu-tree automaton, with Σu the unsorted version of Σ, set of states S, and

transitions rules: (i) fps1, . . . , snq Ñ s for each f : s1 . . . sn Ñ s in Σ, and (ii) ε-rules sÑ s1 for each s ă s1

in pS,ďq. TΣ,s is the language accepted by the accepting state s. This means that the problem of whether

TΣ,s “ H, or whether any Boolean combination of sets TΣ,s1 , . . . , TΣ,sn is empty, are problems decidable by

an emptiness check on a regular tree language.

To construct Σ# we must first define its set S# of sorts. Call s P S atomic iff s is a minimal element

in the poset pS,ďq. The key idea is to add to S new atomic sorts s# characterizing all terms whose least

sort is exactly s, where s is non-atomic. But we want s# to be non-empty. Let Ó s “ ts1 P S | s1 ă su, and

glbspsq the maximal elements of Ó s. Call s P S redundant iff TΣ,s ´
Ť

s1Pglbspsq TΣ,s1 “ H. We only add s#

to S# if s is non-atomic and irredundant. Since non-emptiness is decidable, we can effectively construct S#

as the set containing all atomic sorts in S and all new sorts s# with s P S non-atomic and irredundant.

We want a many-sorted signature Σ# on sorts S# such that: (i) for s an atomic sort in Σ, we have

TΣ#,s “ TΣ,s, (ii) for each s# P S# we have TΣ#,s# “ TΣ,s ´
Ť

s1Pglbspsq TΣ,s1 ; and (iii) if s, s1 P S# and

s ­“ s1, then TΣ#,sXTΣ#,s1 “ H. Thus, we will be able to represent each sort s P S as a disjoint union of sorts

in S#. That is, define the function atoms : S Ñ PpS#q inductively as follows: atomspsq “ if s is atomic

then tsu else if s is irredundant then ts#u Y atomsps1q Y . . . atomspsnq else atomsps1q Y . . . atomspsnq fi

fi, where glbspsq “ ts1, . . . , snu. It then follows from (i)–(iii) above that for any s P S we will have:

TΣ,s “
ě

s1Patomspsq

TΣ#,s1 (3.1)

This is what we want. We still have to define Σ#. For this, it is useful to decompose Σ as a “telescope”

Σ0 Ă Σ1 Ă . . .Σk´1 Ă Σ. We assume that each constant a : ε Ñ s in Σ has a single declaration of the

specified sort s. To simplify the Σ# construction we also assume, without real loss of generality, that Σ can

have “subsort overloading” but does not have any “ad-hoc overloading;” that is, if pf : s1 . . . sm Ñ sq, pf :

s11 . . . s
1
m Ñ s1q P Σ then rsis “ rs

1
is 1 ď i ď m, and rss “ rs1s. Recall the notation f

rs1s...rsms
rss for the set of

all subsort-overloaded operators f for these components. Given pf : s1 . . . sm Ñ sq P f
rs1s...rsms
rss define:

pf : s1 . . . sm Ñ sqÓ“ tpf : s11 . . . s
1
m Ñ s1q P f

rs1s...rsms
rss | s11 . . . s

1
ms

1
ă s1 . . . smsu. (3.2)

18

as its set of strictly smaller typings. Define: Σ0 “ tpf : s1 . . . sm Ñ sq P Σ | pf : s1 . . . sm Ñ sq Ó“ Hu,

and, inductively, Σn`1 “ tpf : s1 . . . sm Ñ sq P Σ | pf : s1 . . . sm Ñ sq ÓĎ Σnu. Because of the finiteness of

Σ, we get a fixpoint Σk “ Σk`1 “ Σ, giving us the above-mentioned telescope. Note that regularity of Σn,

n ě 0, follows easily by construction from the regularity of Σ. Furthermore, for any t P TΣnpXq we have

lsΣnptq “ lsΣptq. For example, for Σ a signature with sorts Nat and NzNat (non-zero naturals) with 0, s

(successor), and with ` subsort overloaded for sorts Nat and NzNat , its telescope reaches the fixpoint for

Σ1 “ Σ, as shown in Figure 3.2.

Figure 3.2: Telescope for Σ

Figure 3.3: Telescope for Σ#

We will define a telescope Σ#
0 Ď Σ#

1 Ď . . .Σ#
k´1 Ď Σ# that closely mirrors that of Σ. First of all, note

that the map atoms : S Ñ PpS#q naturally extends to a map on strings, atoms : S˚ Ñ PppS#q˚q by

defining: atomspεq “ tεu, and atomspswq “ ts1w1 | s1 P atomspsq ^ w1 P atomspwqu. Note also that the

mapping pf : s1 . . . sm Ñ sq ÞÑ s1 . . . sm defines a function arity : Σ Ñ S˚. Define Σ#
0 “ tpf : w Ñ s‚q | pf :

s1 . . . sm Ñ sq P Σ0, w P atomsps1 . . . smqu, where s‚ = if s atomic then s else s# fi. Then define Σ#
n`1

inductively as follows: Σ#
n`1 “ Σ#

n Y tpf : w Ñ s#q | pf : s1 . . . sm Ñ sq P Σn`1 ´ Σn, s irredundant , w P

atomsps1 . . . smq ´ taritypf : w1 Ñ s1q | pf : w1 Ñ s1q P Σ#
n uu. If Σk “ Σ, we define Σ#

k “ Σ# and obtain a

telescope Σ#
0 Ď Σ#

1 Ď . . .Σ#
k´1 Ď Σ# as claimed.

For example, for the above-mentioned signature Σ with 0, s, and ` subsort overloaded for sorts Nat and

NzNat , the telescope for its associated Σ# reaches its fixpoint for Σ#
1 “ Σ# as shown in Figure 3.3.2

The main properties of the Σ ÞÑ Σ# transformation are as follows:

Theorem 3.1 (Σ# Correctness). Let Σ be a regular order-sorted signature with non-empty sorts. Then:

1. Σ# is sensible

2. for s, s1 P S#, s ­“ s1 ñ TΣ#,s X TΣ#,s1 “ H

2Note that in Σ the least sort for the terms 0` sp0q and sp0q ` 0 is Nat , even though we intuitively “know” that they could
safely be typed with sort NzNat . This is because the only typing we have for ` with sort NzNat is ` : NzNat NzNat Ñ NzNat ,
which requires both arguments to have sort NzNat . In Σ# the terms 0` sp0q and sp0q`0 have both sort Nat# using respective
typings ` : Nat# NzNat Ñ Nat# and ` : NzNat Nat# Ñ Nat#. Of course, if we had declared in Σ the additional typings
` : Nat NzNat Ñ NzNat and ` : NzNat Nat Ñ NzNat , we would get the more intuitive typings ` : Nat# NzNat Ñ NzNat

and ` : NzNat Nat# Ñ NzNat in Σ#, allowing us to type both 0` sp0q and sp0q ` 0 with sort NzNat .

19

3. for each s P S, TΣ,s “
Ţ

s1Patomspsq TΣ#,s1

4. t P TΣ ^ lsΣptq “ s ô t P TΣ# ^ lsΣ#ptq “ s‚.

Proof 3.1 It is easy to prove by structural induction that any term in a sensible many-sorted signature has a

unique sort, so that (2) follows from (1). For the same reason, (1) makes Σ# trivially regular. Furthermore,

from the definition of the function atoms and (4), we can easily obtain (3). So, we only need to prove (1)

and (4). Since Σ# is sensible iff each Σ#
n is sensible, we can prove (1) by proving that Σ#

n is sensible for

each n by induction on n.

Base case: n “ 0. We can prove Σ#
0 sensible by contradiction. Suppose that we have two typings f : w‚ Ñ s‚

and f : w‚ Ñ s1‚ in Σ#
0 with s ­“ s1. By the definition of Σ0, this can only happen if f is not a constant and

we have two different subsort-overloaded typings f : uÑ s, f : u1 Ñ s1 P Σ0 and w‚ P atomspuq X atomspu1q.

By the definition of the function atoms this can only happen if we have w ď u, u1. By regularity this requires

the existence of f : w1 ÝÑ s2 in Σ with w ď w1 ď u, u1 and w1s2 ď ws,ws1. By the definition of Σ0 this can

only happen if either w1s2 “ ws and ws ă ws1, or w1s2 “ ws1 and ws1 ă ws; but in either case we cannot

have f : uÑ s, f : u1 Ñ s1 P Σ0.

Induction Step. We assume that Σ#
n is sensible and prove Σ#

n`1 sensible. Note that, by the definition

of Σ#
n`1, f : w‚ Ñ s# P Σ#

n`1 ´ Σ#
n iff there is an f : u Ñ s P Σn`1 ´ Σn with s irredundant and

w‚ P atomspuq ´ taritypf : w2 Ñ s2q | pf : w2 Ñ s2q P Σ#
n u. Therefore, since Σ#

n is sensible, a failure of

Σ#
n`1 being sensible can only happen with two different typings f : w‚ Ñ s#, f : w‚ Ñ s1# P Σ#

n`1 ´ Σ#
n .

This means that we have two different subsort-overloaded f : u Ñ s, f : u1 Ñ s1 P Σn`1 ´ Σn with w‚ P

atomspuq X atomspu1q. By the definition of the function atoms this can only happen if we have w ď u, u1.

But then regularity requires the existence of f : w1 Ñ s3 with w ď w1 ď u, u1 and w1s3 ď us, u1s1, which

forces w‚ P atomspw1q. Since w‚ R taritypf : w2 Ñ s2q | pf : w2 Ñ s2q P Σ#
n uu and w1s3 ď us, u1s1, we must

have f : w1 Ñ s3 P Σn`1 ´ Σn. But this then forces either w1s2 “ us and us ă u1s1, or w1s2 “ u1s1 and

u1s1 ă us, both contradicting f : uÑ s, f : u1 Ñ s1 P Σn`1 ´ Σn.

The proof of (4) essentially reduces to proving the following lemma:

Lemma 3.1 Let u ď w be words of equal length in S˚ such that f : w Ñ s1 P Σ, and let f : v Ñ s be the

smallest possible typing in Σ with u ď v ď w and vs ď ws1. Then, f : u‚ Ñ s‚ P Σ#.

Proof 3.2 If f : v Ñ s P Σ0, this follows from the definition of Σ#
0 . Suppose f : v Ñ s P Σn`1 ´Σn. Since

Σ has non-empty sorts, there must then be terms of smallest sort s, so that s is irredundant. Therefore, the

only way in which we can fail to have f : u‚ Ñ s‚ P Σ#
n`1 is by having some f : u‚ Ñ s2‚ P Σ#

n . But this

can only happen if there is an f : v1 Ñ s2 P Σn with u ď v1, which by regularity forces v1s2 ě vs, and, since

v1s2 ­“ vs makes v1s2 ą vs, which forces f : v Ñ s P Σn´1, contradicting f : v Ñ s P Σn`1 ´ Σn.

Using (1), which ensures that lsΣ#ptq is a well-defined function, we can now prove (4) by structural

induction. To see the pñq implication, note that the result is trivial if t is a constant, so let fpt1, . . . , tnq P

TΣ ^ lsΣpfpt1, . . . , tnqq “ s, with lsΣptiq “ si, 1 ď i ď n. By the induction hypothesis we then have

ti P TΣ# ^ lsΣ#ptiq “ s‚i , 1 ď i ď n. Furthermore, lsΣpfpt1, . . . , tnqq “ s and regularity imply that we have

an f : v Ñ s P Σ with u “ s1 . . . sn ď v and vs smallest possible with this property. But then Lemma 3.1

ensures the existence of f : u‚ Ñ s‚ P Σ#, proving fpt1, . . . , tnq P TΣ# ^ lsΣ#pfpt1, . . . , tnqq “ s, as desired.

For the pðq implication, constants are again trivial. Also let fpt1, . . . , tnq P TΣ# ^ lsΣ#pfpt1, . . . , tnqq “ s‚,

with lsΣ#ptiq “ s‚i , 1 ď i ď n. The induction hypothesis then gives us ti P TΣ ^ lsΣptiq “ si, 1 ď i ď n. Since

20

for u “ s1 . . . sn we have f : u‚ Ñ s‚ P Σ#, by the construction of Σ# we must have some f : w Ñ s1 P Σ

with u ď w, and if f : v Ñ s2 is the smallest possible typing in Σ with u ď v ď w and vs2 ď ws1,

then Lemma 3.1 ensures the existence of f : u‚ Ñ s2‚ P Σ#, and Σ# sensible forces s “ s2. Therefore,

fpt1, . . . , tnq P TΣ ^ lsΣpfpt1, . . . , tnqq “ s, as desired.

3.2.1 Variations on the Σ# Theme

Several signatures closely related to Σ and Σ# are also very useful. The most obvious is their union

ΣYΣ#, with set of operators the set-theoretic union ΣYΣ# and poset of sorts pS YS#, pď Y ă#q˚q, with

ď the order in pS,ďq, and ă#“ tps#, sq | s nonatomic and irredundantu. Σ Y Σ# is even more intuitive

than Σ#, because it refines Σ into a richer semantics-preserving signature by just adding to it the new atoms

s#, so that now the least sort of any ground term t will always be an atomic sort. This means that we

have sharpened the typing of any such t as much as possible, which is the reason for the Σ# notation. For

example, for Σ the signature on the left side of Figure 3.1, with subsort inclusion A ă B, constants a of sort

A, b of sort B, and subsort-overloaded unary operator f , ΣYΣ# is the signature depicted on the right side

of Figure 3.1.

Note that we have subsignature inclusions J : Σ ãÑ ΣYΣ# and J 1 : Σ# ãÑ ΣYΣ#. Furthermore, ΣYΣ#

enjoys very good properties, which make it an initial-semantics-preserving enrichment of both Σ and Σ#:

Lemma 3.2 ΣY Σ# is regular, TΣYΣ# |J “ TΣ, and TΣYΣ# |J 1 “ TΣ# .

Proof 3.3 Let u P pSYS#q˚ be such that there is an f : w Ñ s1 in ΣYΣ# and u ď w. If u “ u1‚, then the

construction of Σ#, Lemma 3.1, and the order pď Y ă#q˚ ensure that there is a smallest possible typing of

the form f : u1bullet Ñ s‚. Otherwise, u R pS#q˚, say, u “ s1 . . . s
‚
i1
. . . s‚ik . . . sn, with 0 ď k ă n. But then

the only f : w Ñ s1 in Σ Y Σ# with u ď w and those f : w Ñ s1 in Σ with s1 . . . si1 . . . sik . . . sn ď w, for

which there is one with smallest possible typing by the regularity of Σ. The identity TΣYΣ# |J 1 “ TΣ# follows

easily from the fact that the atomic sorts of Σ Y Σ# are precisely the sorts in S#, and the only operators

relating those sorts are exactly those in Σ#. Note also that it follows easily from Theorem 3.1 that, as sets

of terms, we have TΣYΣ# “ TΣ “ TΣ# , and that for any term in that set we have lsΣYΣ#ptq “ lsΣ#ptq.

Therefore, to prove TΣYΣ# |J “ TΣ we just have to show that for each s P S we have TΣYΣ#,s “ TΣ,s. But

since in the order pď Y ă#q˚ the atoms below any s P S are precisely the set of sorts atomspsq, the equality

lsΣYΣ#ptq “ lsΣ#ptq and (3) in Theorem 3.1 give us TΣYΣ#,s “ TΣ,s, as desired.

Two other useful signatures are Σ#
J and Σ#

c . Σ#
J is an order-sorted signature with operations those in Σ#

and with sorts SJ Y S#, where SJ “ tJrss | rss P Ŝu is the set of top sorts of each connected component

in pS,ďq. Its order is defined as the identity relation on S# Y SJ, plus the subsort inclusions s1 ď Jrss for

each s1 P atomspJrssq. We have a subsignature inclusion K : Σ#
J ãÑ ΣY Σ#. Reasoning as in Lemma 3.2 it

is easy to show that TΣYΣ# |K “ TΣ#
J

.

Σ#
c is a many-sorted version of Σ#

J . Its set of sorts is SJ Y S
#, but now s ď s1 iff s “ s1. The operations

of Σ#
c are those of Σ# plus the coercion operators tc : s1 Ñ Jrss | rss P Ŝ, s1 P atomspJrssq ´ tJrssuu, which

mimic the subsort inclusions s1 ă Jrss in Σ#
J . We then have a signature morphism H : Σ#

c Ñ Σ#
J that is

the identity on sorts and on the operators in Σ# and maps each coercion c : s1 Ñ Jrss to the term x1:s
1.

For example, for the above-mentioned signature Σ with 0, s, and ` subsort overloaded for sorts Nat and

NzNat , the signatures Σ#
J and Σ#

c are shown in Figure 3.4.

21

Figure 3.4: Signatures Σ#
J and Σ#

c

The following diagram summarizes this section:

Σ
J
ãÑ ΣY Σ# K

Ðâ Σ#
J

H
Ð Σ#

c (3.3)

3.3 EQUATIONAL FORMULAS IN INITIAL ORDER-SORTED ALGEBRAS

The main goal of this section is to reduce the validity of equational first-order formulas in an initial

order-sorted algebra to the validity of semantically equivalent formulas in an initial many-sorted algebra.

The main idea of this reduction is to exploit diagram 3.3 at the end of Section 3.2.1, which begins with an

order-sorted signature Σ and ends with a many-sorted signature Σ#
c . Like Alice in Wonderland’s Cheshire

cat’s smile, all order-sorted features vanish in the passage from Σ to Σ#
c . This reduction seems useful for at

least three reasons:

1. Its provides a new, very simple proof of the decidability of first-order formulas in initial order-sorted

algebras. A non-trivial proof of such a decidability result goes back to [17, 18], but it requires quite

complex formulas and formula transformations involving sort membership constraints based on quite

general sort expressions, whose semantics is defined using tree automata.

2. The reduction-based proof given here provides a useful new transfer principle, by which problems

with a perhaps unclear solution at the order-sorted level can be reduced to problems having a clear

solution at the many-sorted level. For example, as further explained in Section 3.4, the puzzling

anomaly about pattern operations in initial order-sorted algebras discussed in the Introduction has a

systematic solution thanks to this transfer principle.

3. Above reasons (1)–(2) embrace each other in a useful way in Section 3.5, where we show how one

can faithfully reduce the problem of whether a formula ϕ involving sort membership constraints in

the richer language of [17, 18] is valid in an initial order-sorted algebra TΣ to the same problem for a

purely equational formula πpϕq in the order-sorted algebra TΣYΣ# . Thanks to this reduction, all the

needed tree automata operations are eliminated through the translation ϕ ÞÑ πpϕq, which uses simple

pattern operations.

The main idea of the reduction is to assign to each first-order sentence ϕ in the language of a finite and

regular order-sorted signature Σ a corresponding sentence ϕ#
c in the language of the many-sorted signature

Σ#
c , and then prove that we have an equivalence TΣ |ù ϕ ô TΣ#

c
|ù ϕ#

c . To obtain such an equivalence we

22

make our way from TΣ and ϕ to TΣ#
c

and ϕ#
c by moving from left to right along the diagram 3.3. Since some

of the steps in this sequence of signature morphisms are easy consequences of the equivalence p:q in Section

2.1.2, we can quickly get such easy equivalences out of the way. Indeed, since J is a subsignature inclusion,

it is the identity on formulas, and since by Lemma 3.2 we have the equality TΣYΣ# |J “ TΣ, p:q applied

to J gives us the equivalence TΣ |ù ϕ ô TΣYΣ# |ù ϕ. On the leftmost side, p:q gives us the equivalence

TΣ#
J
|ù Hpϕ#

c q ô TΣ#
J
|H |ù ϕ#

c . The interesting twist, however, is that the unique Σ#
c -homomorphism

h : TΣ#
c
Ñ TΣ#

J
|H from the initial Σ#

c -algebra TΣ#
c

is obviously the identity on the sorts S# and maps

each term cptq P TΣ#
c ,Jrss

to the term t P TΣ#
J
,Jrss

. That is, h is bijective, and therefore a Σ#
c -isomorphism

h : TΣ#
c
– TΣ#

J
|H , which gives us the equivalence TΣ#

J
|H |ù ϕ#

c ô TΣ#
c
|ù ϕ#

c . Therefore, stringing these

last two equivalences together, we get the equivalence TΣ#
J
|ù Hpϕ#

c q ô TΣ#
c
|ù ϕ#

c . We will then be done

proving our desired equivalence TΣ |ù ϕ ô TΣ#
c
|ù ϕ#

c if we can define a mapping ϕ ÞÑ ϕ# such that

Hpϕ#
c q “ ϕ# and we show an equivalence TΣYΣ# |ù ϕ ô TΣ#

J
|ù ϕ#.

What makes the mapping ϕ ÞÑ ϕ# not entirely obvious is that Σ#
J has considerably fewer sorts than the

plentiful ΣYΣ#. In particular, we have to find a way to express equations and quantifiers involving variables

with sorts of ΣYΣ# not present in Σ#
J in the poorer language of Σ#

J . The key idea for this is to observe that

every ground Σ Y Σ#-term has an atomic least sort in S#, and that, by Theorem 3.1–(3) and Lemma 3.2,

we have the equality TΣYΣ#,s “
Ţ

s1Patomspsq TΣ#,s1 . Therefore, abbreviating t P TΣYΣ#,s to t : s, we have,

t : s ô
Ž

s1Patomspsq t : s1, which is a property expressible in the language of Σ#
J . Here is now the detailed

mapping ϕ ÞÑ ϕ# using these ideas. Without loss of generality we may assume ϕ in prenex form, that is,

ϕ “ Qϕ0, with Q a sequence of quantifiers and ϕ0 quantifier-free. The mapping ϕ ÞÑ ϕ# decomposes into a

mapping ϕ0 ÞÑ ϕ#
0 for the quantifier-free part and a mapping for the quantifiers.

We first need some notation. x:s abbreviates a sequence of variables x1 :s1, . . . , xn :sn. We can always

decompose the free variables of ϕ0 as fvarspϕ0q “ x:s, y:p, with x:s variables having non-atomic sorts,

and y:p variables having atomic sorts. Also, if x:s “ x1 : s1, . . . , xn : sn, then x:sJ denotes the variables

x:sJ “ x1 :Jrs1s, . . . , xn :Jrsns. In the same spirit, x:s “ t abbreviates the conjunction of equations x1 :

s1 “ t1 ^ . . . ^ xn :sn “ tn, and tx:s “ tu abbreviates the substitution tx1 :s1 ÞÑ t1, . . . , xn :sn ÞÑ tnu.

Given variables x:s with sorts in S, let Specpx:s, S#q, called the set of S#-specializations of x:s, be the set

Specpx:s, S#q “ tx:s “ z:q | |x:s| “ |z:q| ^ qi P atomspsiq, 1 ď i ď |x:s|u, where |x:s| denotes the length

of the sequence of variables x:s. To avoid variable capture we will always assume that the variables z:q are

fresh variables, different for each px:s “ z:qq P Specpx:s, S#q and not appearing anywhere else. Viewed as a

substitution tx:s “ z:qu, each specialization x:s “ z:q is just a variable mapping lowering the sort si of each

xi to a sort qi P atomspsiq for zi. We can now define the mapping ϕ0 ÞÑ ϕ#
0 —where fvarspϕ0q “ x:s, y:p,

with x:s variables having non-atomic sorts, and y:p variables having atomic sorts— as follows:

rϕ#
0 “

ł

px:s“z:qqPSpecpx:s,S#q

pDz:qq px:sJ “ z:q ^ pϕ0tx:s “ z:quqq. (3.4)

Note that fvarspϕ#
0 q “ x:sJ, y:p. For example, for the above-mentioned signature Σ with 0, s, and ` subsort

overloaded for sorts Nat and NzNat , if ϕ is x ` y “ y ` x, with x, y : Nat , then, assuming x1, y1 : NzNat ,

and x2, y2 : Nat#, ϕ# is:

23

pDx1, y1q x “ x1 ^ y “ y1 ^ x1 ` y1 “ y1 ` x1 _

pDx2, y2q x “ x2 ^ y “ y2 ^ x2 ` y2 “ y2 ` x2 _

pDx1, y2q x “ x1 ^ y “ y2 ^ x1 ` y2 “ y2 ` x1 _

pDx2, y1q x “ x2 ^ y “ y1 ^ x2 ` y1 “ y1 ` x2.

(3.5)

The semantic equivalence between ϕ0 and ϕ#
0 can then be expressed as follows:

Lemma 3.3 For ϕ0 as above, α P rx:sJ, y:pÑTΣ#
J
s satisfies TΣ#

J
, α |ù ϕ#

0 iff there exists β P rx:s, y:pÑTΣs

such that α “ β ˝ tx:sJ “ x:su and TΣ, β |ù ϕ0.

Proof 3.4 To see the pñq implication, note that TΣ#
J
, α |ù ϕ#

0 iff there is an px : s “ z : qq P Specpx : s, S#q

such that TΣ#
J
, α |ù pDz:qq px:sJ “ z:q ^ pϕ0tx:s “ z:quqq. For each 1 ď i ď |x : s| this forces αpxi:Jrsisq P

TΣ#,qi , and, since qi P atomspsiq, by Theorem 3.1–(3) we must have αpxi:Jrsisq P TΣ,si . This means that

there is a β P rx:s, y:pÑTΣs with β |y:p“ α |y:p, and βpxi:siq “ αpxi:Jrsisq, 1 ď i ď |x : s|, such that α “

β˝tx:sJ “ x:su. To see that TΣ, β |ù ϕ0 it is enough to reason by structural induction on the Boolean structure

of ϕ0 and show that for each equation u “ v appearing in ϕ0, assuming k “ |z:q|, we have the equivalence:

TΣ#
J
, α |y:p Ytz1:q1 ÞÑ αpx1:Jrs1sq, . . . , zk:qk ÞÑ αpxk:Jrsksqu |ù pu “ vqtx:s “ z:qu ô TΣ, β |ù u “ v. But

this is trivial, since by the definition of β we have utx:s “ z:qupα |y:p Ytz1:q1 ÞÑ αpx1:Jrs1sq, . . . , zk :qk ÞÑ

αpxk:Jrsksquq “ uβ, and vtx:s “ z:qupα |y:p Ytz1:q1 ÞÑ αpx1:Jrs1sq, . . . , zk:qk ÞÑ αpxk:Jrsksquq “ vβ.

The pðq implication can also be reduced to the case ϕ0 “ u “ v, with fvarspu “ vq “ x:s, y:p. For any

β P rx:s, y:pÑTΣs such that TΣ, β |ù u “ v, let qi “ lsΣpβpxi:siqq
‚, and let α “ β˝tx:sJ “ x:su. Then we have

utx:s “ z:qupα |y:p Ytz1:q1 ÞÑ αpx1:Jrs1sq, . . . , zk:qk ÞÑ αpxk:Jrsksquq “ uβ “ vβ “ vtx:s “ z:qupα |y:p Ytz1:

q1 ÞÑ αpx1:Jrs1sq, . . . , zk:qk ÞÑ αpxk:Jrsksquq, and therefore TΣ#
J
, α |ù pDz:qq px:sJ “ z:q ^ pϕ0tx:s “ z:quqq,

which proves TΣ#
J
, α |ù ϕ#

0 , as desired.

Since ϕ “ Qϕ0, to define ϕ# we still need to deal with the quantifiers Q. This is done inductively for

each individual quantifier as follows. If s P SX pS#YSJq, then pp@x:sq ϕq# “ p@x:sq ϕ#, and ppDx:sq ϕq# “

pDx:sq ϕ#. Otherwise, let atomspsq “ tq1, . . . , qku, then, pp@x:sq ϕq# “ p@x:Jrssq pppDz:qq
Žk
i“1 x:Jrss “ zi:

qiq ñ ϕ#q, and ppDx:sq ϕq# “ pDx:Jrss, z:qq p
Žk
i“1 x:Jrss “ zi:qiq ^ ϕ#q.

The key syntactic invariant maintained by this translation is of course that if fvarspϕq “ x:s, y:p, then

fvarspϕ#q “ x:sJ, y:p. And the key semantic invariant is that for each α P rx:sJ, y:pÑTΣ#
J
s we have TΣ#

J
, α |ù

ϕ# iff there exists β P rx:s, y:pÑTΣs such that α “ β ˝ tx:sJ “ x:su and TΣ, β |ù ϕ. For quantifier-free

formulas this has already been proved in Lemma 3.3. That this remains true after each quantification step

is easy to check and left to the reader: indeed, the above treatment of quantifiers is analogous to how in

set theory we restrict quantifiers ranging over all sets to quantifiers ranging over a given set A by defining

p@x P Aq ϕ “ p@xq px P Añ ϕq, and pDx P Aq ϕ “ pDxq px P A ^ ϕq. Our treatment is not just analogous,

but in fact a special case: we have just captured x P TΣ,s by the formula pDz:qq
Žk
i“1 x “ zi:qi. Therefore,

for any sentence ϕ (i.e., fvarspϕq “ H) we get TΣ |ù ϕ ô TΣ#
J
|ù ϕ#.

To close all the proof steps along the Cheshire cat’s sequence 3.3 we need to define the formula ϕ#
c such

that Hpϕ#
c q “ ϕ#. We can get ϕ#

c from ϕ# as follows. Since Σ#
J and Σ#

c have the same sorts, the variables

and quantifiers in ϕ# and ϕ#
c stay the same. We just replace each equation u “ v appearing somewhere

in ϕ# by the equation cpuq “ cpvq at the same position in ϕ#
c , unless: (i) Jrss is atomic (then u “ v is

left unchanged), or (ii) Jrss is non-atomic and either u or v are variables of sort Jrss, which are then left

unchanged. This gives us the desired semantic equivalence TΣ |ù ϕ ô TΣ#
c
|ù ϕ#

c .

24

Since both the technical report version [15] of Maher’s paper [14], and the disunification paper by Comon

and Lescanne [16] prove that the first-order theory of a many-sorted initial algebra TΩ is decidable —i.e.,

that there is an algorithm to decide for any formula φ whether TΩ |ù φ holds or not— we then get as a

corollary of the above equivalence the following theorem,3 already known since [17, 18], but now obtained

in a different way and with a considerably simpler proof:

Theorem 3.2 Let Σ be a finite and regular order-sorted signature. For any first-order formula ϕ P FormpΣq

the validity problem TΣ |ù ϕ is decidable. 2

3.4 PATTERN OPERATIONS IN INITIAL ORDER-SORTED ALGEBRAS

Given an order-sorted signature Σ, by a Σ-pattern we just mean a term t P TΣpXq, where we assume Xs

countably infinite for each sort s P S. We call t a pattern to emphasize that t is a symbolic description of a

language, namely the set JtK “ ttσ | σ P rXÑTΣsu of its ground instances. Similarly, a finite set of patterns

tt1, . . . , tnu is a symbolic description of the language Jt1, . . . , tnK “ Jt1K Y . . . Y JtnK. A language need not

be a set of strings. Since strings are just a special case of trees, it can be a tree language, that is, a subset

L Ď TΣ for some Σ. Therefore, PpTΣq is the set of all Σ-tree languages, and we have a function

J K : PfinpTΣpXqq ÝÑ PpTΣq : tt1, . . . , tnu ÞÑ Jt1, . . . , tnK (3.6)

sending each finite set of patterns to its associated language. Call a language L Ď TΣ a pattern language

iff L “ Jt1, . . . , tnK for some finite set of patterns tt1, . . . , tnu. The most obvious question is that of repre-

sentability : which languages L Ď TΣ are pattern languages, i.e., can be symbolically represented by some

tt1, . . . , tnu? Pattern languages are closed under finite unions by construction. Are they closed under finite

intersections? Obviously yes, since, by distributivity we can reduce the problem to the intersection of two

patterns JuKXJvK, and we have JuKXJvK “ Juσ1KY . . .YJuσnK, where tσ1, . . . , σnu “ DUnif Σpu, vq, the set of

most general disjoint order-sorted unifiers of u and v in Σ [51]; that is, before unifying u and v, we rename v

if necessary to make its variables disjoint from those of u. Are TΣ and H pattern languages? Yes: H “ JHK,
and TΣ “ Jx1 :Jrs1s, . . . , xk :JrsksK, where Ŝ “ trs1s, . . . , rsksu. So, the only missing Boolean operation is

complement. But since complement and difference are expressible in terms of each other: A “ J ´ A, and

A ´ B “ A X B, we can rephrase the question thus: are pattern languages closed under differences? In

general they are not. For example, for Σ unsorted and having a constant a and a binary f , the language

Jfpx, yqK ´ Jfpz, zqK is not a pattern language (see Prop. 4.5 in [7]). However, in the unsorted case (see

Corollary in pg. 314, [7]) Jt1, . . . , tnK ´ Jt11, . . . , t1mK is a pattern language when the ti and the t1j are lin-

ear terms, and more general cases than just sets of linear patterns also yield differences that are pattern

languages [7, 8, 9, 10, 11].

3.4.1 Many- and Order-Sorted Pattern Difference Algorithms

Since all other Boolean operations are already taken care of, all we need is a way of symbolically defining

the difference tt1, . . . , tnu´tt
1
1, . . . , t

1
mu of two finite sets of order-sorted patterns whenever this represents a

pattern language. As illustrated by the example in Figure 3.1, if we insist on remaining in the given signature

3Theorem 3.2 holds for Σ finite and regular because any such Σ can be transformed into a semantically equivalent signature
with no ad-hoc overloading (by symbol renaming) and with each connected component having a top sort (added when missing).

25

Σ this cannot be done, even for sets of linear patterns. However, we can use the Σ ÞÑ Σ# transformation

and the transfer principle from order-sorted problems to many-sorted ones discussed in Section 3.3 to obtain

a solution based on the following two simple observations:

1. As sets (not as algebras) we have TΣ “ TΣ# .

2. For any order-sorted pattern t P TΣpXq we have the language equality JtK “
Ť

px:s“z:qqPSpecpx:s,S#qJttx : s “ z : quK, where x : s “ fvarsptq.

where both (1) and (2) are simple corollaries of Theorem 3.1. This then yields a straightforward way of

representing a difference of finite sets of order-sorted Σ-patterns tt1, . . . , tnu ´ tt
1
1, . . . , t

1
mu as a difference

of finite sets of many-sorted Σ#-patterns: we just replace each ti (resp t1j) by the finite set of many-sorted

Σ#-patterns ttitx : s “ z : qu | px : s “ z : qq P Specpx : s, S#qu, where x : s “ fvarsptiq. For the example in

Figure 3.1, this method transforms the order-sorted symbolic difference tx:Bu ´ ty:Au into the many-sorted

symbolic difference: tx:A, z:B#u ´ ty:Au.

Since —with the possible exception of the treatment of finite sorts (see below), which warrants an extension

of the unsorted algorithms— the unsorted algorithms for computing the symbolic difference of two sets of

patterns have a straightforward generalization to the many-sorted case, we can just use the above reduction

to the many-sorted case and many-sorted versions of the difference algorithms in [7, 9, 10, 11] to solve the

problem of computing when possible the symbolic difference of order-sorted patterns tt1, . . . , tnu´tt
1
1, . . . , t

1
mu

as a finite set of (many-sorted) patterns.

But is this the best we can do? There can be some practical limitations, both in performance and at

the representational level. For order-sorted signatures with rich type structures a set atomspsq may have a

considerable number of sorts in S#, so that the sets ttitx : s “ z : qu | px : s “ z : qq P Specpx : s, S#qu for

each ti (resp. t1i) can become quite big, affecting performance. It also means that the representation of the

solutions to symbolic difference problems, besides being possibly quite big, may also be more verbose than

necessary. For example, in the signature in the right side of Figure 3.1, we can compute the order-sorted

symbolic difference tx :Bu ´ tbu “ tfpy :Bq, au, which is shorter and more intuitive than the equivalent

many-sorted representation tx:Bu ´ tbu “ tfpz:B#q, fpz1:Aq, au.

We present below an attractive alternative, namely, an order-sorted algorithm for computing symbolic

differences tt1, . . . , tnu ´ tt
1
1, . . . , t

1
mu in the extended order-sorted signature Σ Y Σ# that does not require

any transformation of the original problem and can significantly overcome the above limitations by yielding

simpler and shorter representations and better performance (see Section 3.6.1).

Let us describe this algorithm. First of all, thanks to the Boolean equation pAYBq´C “ pA´CqYpB´Cq,

we can decompose tt1, . . . , tnu´tt
1
1, . . . , t

1
mu as a union tt1u´tt

1
1, . . . , t

1
muY . . .Yttnu´tt

1
1, . . . , t

1
mu. Second,

thanks to the Boolean equation A ´ B “ A ´ pA X Bq we can reduce ttu ´ tt1, . . . , tnu to the equivalent

symbolic expression ttu ´ ttσ | σ P DUnif Σpt, t1q Y . . . Y DUnif Σpt, tnqu. Thus, all our symbolic difference

problems can be reduced to unions of problems of the form ttu´ttσ1, . . . , tσnu with σ1, . . . , σn substitutions

instantiating t.

The algorithm below gives priority to the easier and frequently occurring cases, using the order-sorted

extension of the more general algorithm of Lassez and Marriott [7] only when the simpler algorithms cannot

be applied. We also exploit the fact that a sort s may be finite —i.e., TΣYΣ#,s is a finite set— plus the

decidability of sort finiteness to increase the successful difference cases.

Order-Sorted Pattern Difference Algorithm

26

1. If t, tσ1, . . . , tσn are all linear terms, we apply the inference rules below.

2. Otherwise, when σ1, . . . , σn are all linear, i.e., σipxq, σipyq are linear terms not sharing any variables

when x ­“ y, we reduce to case (1) (see Section 3.4.2).

3. Otherwise, if σi is non-linear and y:s occurs more than once either in σipxq or in σipxq, σipzq, x ­“ z,

with s finite, TΣYΣ#,s “ tu1, . . . , uku, then we replace the problem ttu´ ttσ1, . . . , tσnu by the problem

ttu ´ ttσ1, . . . , tσity ÞÑ u1u, . . . , tσity ÞÑ uku, . . . , tσnu and check again the new problem.

4. Outside cases (1)–(3) above, we invoke the order-sorted version of the algorithm in [7], which is more

efficient than those in [9, 10, 11] and gives a full answer to difference problems ttu´tt1, . . . , tnu, whereas

those in [9, 10, 11] give a full answer to arbitrary Boolean combinations (see Section 3.4.2).

As shown below, Case (1) always succeeds for linear patterns, Case (2) reduces to Case (1), and Case (3)

tries to reduce to Case (1). Only when a reduction to the linear pattern Case (1) is impossible, is Case

(4) (the Lassez-Marriott algorithm) invoked. This latter algorithm, either succeeds for the given non-linear

patterns, yielding a solution tu1, . . . , umu to the pattern difference problem ttu ´ ttσ1, . . . , tσnu, or fails in

finite time, yielding an error message, which may include a partial answer.

In Case (1), where all terms t, tσ1, . . . , tσn are linear, the following rewrite rules are applied:

1. ttu ´ ttσ1, . . . , tσnu Ñ pttu ´ ttσ1uq X . . .X pttu ´ ttσnuq

2. ttu ´H Ñ ttu

3. tfpt1, . . . , tnqu ´ tfpt1σ, . . . , tnσqu Ñ

tfpt1, . . . , u, . . . , tnq | u P pttiu ´ ttiσuq, 1 ď i ď nu,

where fvarspuq are fresh variables.

4. tx:su ´ ty:s1u Ñ tz1:q1, . . . , zk:qku,

where tq1, . . . , qku “ atomspsq ´ atomsps1q

5. tx:su ´ tfpt1, . . . , tnqu Ñ

tz:qu Y
Ť

ttxp:pu ´ tfpt1, . . . , tnqtρu | ρ P SpecpY, S#q,

p “ lsΣ#pfpt1, . . . , tnqtρuqu | p P atomspsq X atomspfpt1, . . . , tnqqu

if s R S#,

where Y “ fvarspfpt1, . . . , tnqq, z:q “ z1:q1, . . . , zk:qk, tq1, . . . , qku “ atomspsq ´ atomspfpt1, . . . , tnqq,

and

atomspfpt1, . . . , tnqq “ tlsΣ#pfpt1, . . . , tnqtρuq | ρ P SpecpY, S#qu.

6. tx:su ´ tfpt1, . . . , tnqu Ñ

tu | u P Patpsq ´ tfpx:squu Y tfpx:squ ´ tfpt1, . . . , tnqu

if s “ lsΣ#pfpt1, . . . , tnqq P S
#,

where x:s “ x1:s1, . . . , xn:sn, si “ lsΣ#ptiq, and

Patpsq “ tgpx1:s1, . . . , xn:snq | g : s1 . . . sn Ñ s P Σ#u.

27

3.4.2 Correctness of the Order-Sorted Pattern Difference Algorithm

The correctness of the order-sorted pattern difference algorithm can be stated as follows.

Theorem 3.3 (Correctness). The above order-sorted pattern difference algorithm terminates either with a

finite set of patterns, or with an error message indicating an undefined or partial result; and without error

for linear patterns. Furthermore, if the pattern difference operation ttu ´ ttσ1, . . . , tσnu is defined for terms

t, tσ1, . . . , tσn and returns the set of patterns tu1, . . . , umu as its result, then

JtK´ Jtσ1, . . . , tσnK “ Ju1, . . . , umK. (3.7)

Proof 3.5 We reason by Cases (1)–(4) in the algorithm. For Case (1) (linear patterns), we can show

the correctness of rules (1)–(6) by showing that each rule exp Ñ exp1 is language-preserving, i.e., that

JexpK “ Jexp1K. For rule (1) this follows from the Boolean equation A´ pB YCq “ pA´Bq X pA´Cq. For

rule (2) this is trivial. For rule (3) this follows from the following set equalities:

Jfpt1, . . . , tnqK´ Jfpt1σ, . . . , tnσqK “
tfpt1, . . . , tnqγ | γ P rYÑTΣsu ´ tfpt1, . . . , tnqγ | γ P rYÑTΣs ^ t1γ P Jt1σK ^ . . . ^ tnγ P JtnσKu “
tfpt1, . . . , tnqγ | γ P rYÑTΣs ^ pt1γ P Jt1σK ^ . . . ^ tnγ P JtnσKqu “
tfpt1, . . . , tnqγ | γ P rYÑTΣs ^ pt1γ R Jt1σK _ . . . _ tnγ R JtnσKqu “
Ť

1ďiďntfpt1, . . . , tnqγ | γ P rYÑTΣs ^ tiγ P Jti ´ tiσKu “
Ť

u1Pptt1u´tt1σuq
Jfpu1, . . . , tnqKY . . .Y

Ť

unPpttnu´ttnσuq
Jfpt1, . . . , unqK.

For rule (4) it follows easily from (2)–(3) in Theorem 3.1. For rule (5) this follows again from (2)–(3) in

Theorem 3.1, the fact that if
Ţ

pAp is a disjoint union and if Bp Ď Ap, then
Ţ

pAp ´
Ţ

pBp “
Ţ

ppAp ´

Bpq, and also Jfpt1, . . . , tnqK “
Ţ

ρPSpecpY,S#qJfpt1, . . . , tnqtρuK. In this case, we know that Ap “ Jxp :pK
and furthermore know that Bp “ Jtfpt1, . . . , tnqtρu | ρ P SpecpY, S#q, p “ lsΣ#pfpt1, . . . , tnqtρuquK. The

correctness of rule (6) follows for each s P S# from the language equality Jx:sK “
Ţ

vPPatpsqJvK.
It is easy to prove that rules (1)–(6) terminate on any input of the form ttu´ttσ1, . . . , tσnu with all terms

linear, resulting in a combination of unions and intersections of finite sets of patterns which, by systematic

application of distributivity of X over Y and computation of symbolic X operations, results in a finite set of

ΣY Σ#-patterns denoting the same language as ttu ´ ttσ1, . . . , tσnu.

Case (2), i.e., a problem ttu´ ttσ1, . . . , tσnu where some terms are non-linear but the σi are linear can be

reduced to an intersection of cases of the form ttu ´ ttσu where σ “ tx:s “ vu is linear. Then we can apply

the single rewrite rule ttu ´ ttσu Ñ tttxi:si ÞÑ wu | xi:si P x:s, w P txi:siu ´ tviuu, which, since σ is linear,

reduces the problem to computing the differences txi:siu´tviu between linear terms. The proof of correctness

of this rule is entirely analogous to that for rule (3) of the linear case above and is left to the reader.

The correctness of the transformation in Case (3) reduces to the observation that if σpxq is non-linear but

the sort s of one the variables y occurring more than once in σipxq is finite with TΣYΣ#,s “ tu1, . . . , uku,

then JtσK “ Jtσty ÞÑ u1uKY . . .Y Jtσty ÞÑ ukuK.

In Case (4), the correctness of the Lassez-Marriott algorithm is proved in detail in [7] for the unsorted case

and has a straightforward extension to the order-sorted case when the signature is Σ Y Σ#. For references

on the complexity analysis of this algorithm and a discussion of why it is considerably more efficient than

similar algorithms in [9, 10, 11], we refer the reader to the detailed discussion by Pichler [10], where a

more general —but computationally more costly— algorithm is given which can successfully compute pattern

solutions whenever they exist for disjunctions of difference problems of the form tt1u ´ tt1σ
1
1 , . . . , t1σ

1
n1
u Y

28

. . .Yttku´ttkσ
1
k, . . . , tkσ

k
nk
u. This is a key part of more general, but also more costly, algorithms that, given

any Boolean expression Bexp involving term patterns, can decide whether JBexpK is a pattern language and

in the affirmative case can compute its pattern representation [9, 10, 11]. Instead, our algorithm —which

generalizes that of Lassez and Marriott to order-sorted patterns— can only decide if JtK´ Jt1, . . . , tnK is an

order-sorted pattern language and in the affirmative case can construct its explicit representation (see Thm.

4.1 in [7]). Since in practice many application problems can be expressed in the form ttu ´ tt1, . . . , tnu, we

consciously trade off the extra generality of the algorithms in [9, 10, 11] for the considerably greater efficiency

of the Lassez-Marriott one [7].

A last practical issue is reducing the size of solutions of Boolean operations on finite sets of order-sorted

patterns. That is, the resulting solution tt1, . . . , tnu may be bigger than necessary. This problem can be

addressed by the application of two size-reducing and language-preserving rewrite rules, namely:

1. tt1, . . . , tnu Ñ tt2, . . . , tnu if t2 ě t1, where we use associativity commutativity of set union to make

the order of t1, t2 in the set immaterial, and where, by definition,4 t ě t1 iff t1 “ tσ for some substitution

σ; that is, we can remove t1 if it is a substitution instance of t2, so that Jt1K Ď Jt2K.

2. tt1, . . . , tnu Ñ tu, t3, . . . , tnu if tuu “ lggΣYΣ#pt1, t2q ^ tuu ´ tt1, t2u “ H, where we require that

the order-sorted least general generalization of t1, t2, denoted lggΣYΣ#pt1, t2q [52], which could be a

set of terms, is actually a singleton set, and is furthermore “tight,” i.e., JuK Ď Jt1, t2K (which, since

tuu “ lggΣYΣ#pt1, t2q, implies JuK “ Jt1, t2K).

For example, the result of the difference tx :Bu ´ tbu “ tfpz :B#q, fpz1 :Aq, au for the signature Σ Y Σ#

in the right side of Figure 3.1 is reduced to tfpy:Bq, au by rule (2). There is of course a tradeoff between

performance and succinctness of the computed answer. Furthermore, interest in optimizing the computed

answer may depend on the application. More experimentation is needed to find a good balance. For example,

an optimization based on rule (1) should be more efficient than one based on both rules (1)–(2).

3.4.3 Linear Pattern Languages as Regular Tree Languages

What advantages do we gain from this algorithm? Quite substantial ones to reason effectively about

languages. Let LTΣpXq Ď TΣpXq denote the set of linear terms in TΣpXq. Note that if u P LTΣpXq then JuK
is a regular tree language. This follows from order-sorted signatures being tree automata, plus the regular

expression fact that if L1, . . . , Ln are regular languages, then fpL1, . . . , Lnq is a regular language (more

on this below). Also, PfinpLTΣYΣ#pXqq is closed under symbolic: (i) unions; (ii) intersections, because

disjoint unifiers of linear terms are linear; and (iii) differences, since rules (1)–(6) preserve linearity of

terms. Furthermore, given tt1, . . . , tnu, tt
1
1, . . . , t

1
mu P PfinpLTΣYΣ#pXqq we can use pattern differences to

decide whether Jtt1, . . . , tnuK “ Jtt11, . . . , t1muK. Indeed, Jtt1, . . . , tnuK “ Jtt11, . . . , t1muK ô tt1, . . . , tnu ”

tt11, . . . , t
1
mu, where the relation ” is defined by the equivalence: tt1, . . . , tnu ” tt

1
1, . . . , t

1
mu ô tt1, . . . , tnu´

tt11, . . . , t
1
mu “ H ^ tt11, . . . , t

1
mu ´ tt1, . . . , tnu “ H. By the homomorphism theorem for Boolean algebras,

this means that J K defines an injective homomorphism of Boolean algebras

J K : PfinpLTΣYΣ#pXqq{” Ñ PpTΣq. (3.8)

4We use the order in the same direction as in, e.g., [7], so that ě is the “more or equally general than” relation. Other
authors use ď for the same relation.

29

This is as good as it gets, since PfinpLTΣYΣ#pXqq{” is a computable Boolean algebra, where all operations

become effective. This offers an attractive, simpler alternative to tree automata to effectively perform

Boolean operations on linear pattern languages in a symbolic way.

The intimate connection between regular tree languages and the computable Boolean algebra of lin-

ear pattern languages PfinpLTΣYΣ#pXqq{” can be further clarified: not only is PfinpLTΣYΣ#pXqq{” a

computable Boolean algebra structure, it is also a computable (unsorted) Σu-algebra structure, where

Σu0 “ ta | Da : ε Ñ s P Σu, and, for n ě 1, Σun “ tf | Df : s1 . . . sn Ñ s P Σu. What an operation

f P Σun in PfinpLTΣYΣ#pXqq{” achieves in an effective, symbolic way is the regular language operation

fpL1, . . . , Lnq “ tfpt1, . . . , tnq | ti P Li, 1 ď i ď nu.

Of course, regular language operations are usually defined on PpTΣuq and they must now be relativized

to PpTΣq Ď PpTΣuq for the obvious reason that, being interested in order-sorted algebras TΣ, we do not

care about languages in PpTΣuq ´ PpTΣq, since they are meaningless from the point of view of TΣ. This

relativization is easy to achieve. Just note that the function X TΣ : PpTΣuq Q L ÞÑ pL X TΣq P PpTΣq

is a surjective homomorphism of Boolean algebras. This is easy to see since, up to isomorphism, X TΣ is

just the Boolean algebra homomorphism rjTΣ
Ñ12s : rTΣuÑ2s Ñ rTΣÑ2s associated to the inclusion function

jTΣ
: TΣ ãÑ TΣu . We have already defined for each f P Σun the operation fPpTΣu q : PpTΣuqn Ñ PpTΣuq. Its

relativization fPpTΣq : PpTΣq
n Ñ PpTΣq is defined as the function fPpTΣq : PpTΣq

n Q pL1, . . . , Lnq ÞÑ

pfPpTΣu qpL1, . . . , Lnq X TΣq P PpTΣq. Note the useful fact that the Boolean homomorphism X TΣ :

PpTΣuq Ñ PpTΣq is also a Σu-homomorphism. This is because for any f P Σun and pL1, . . . , Lnq P T
n
Σu

we always have by monotonicity pfPpTΣu qpL1 X TΣ, . . . , Ln X TΣq X TΣq Ď pfPpTΣu qpL1, . . . , Lnq X TΣq, and

the equivalence fpt1, . . . , tnq P TΣ ô fpt1, . . . , tnq P TΣ

Ź

1ďiďn ti P TΣ easily gives us the other containment

pfPpTΣu qpL1, . . . , Lnq X TΣq Ď pfPpTΣu qpL1 X TΣ, . . . , Ln X TΣq X TΣq.
To substantiate the claim that fPpTΣq can be effectively defined in the algebra PfinpLTΣYΣ#pXqq, and

therefore in PfinpLTΣYΣ#pXqq{”, in a symbolic way we can use a signature transformation Σ ÞÑ Σ2, where

Σ2 “ pS2,ď2,Σ2q extends Σ “ pS,ď,Σq as follows: S2 “ SZ Ŝ, ď2 is the smallest partial order containing

ď and the inequalities tJrss ă rss | rss P Ŝu, and Σ2 adds to Σ an operator f : rs1s . . . rsns Ñ rss for each

subsort polymorphic family f
rs1s...rsns
rss in Σ. The symbolic description of fPpTΣ2 q in PfinpLTΣ2YΣ2# pXqq is

both easy and easy to check correct: for pT1, . . . , Tnq P PfinpLTΣ2YΣ2# pXqqn we define:

fPfin pLT
Σ2YΣ2# pXqq

pT1, . . . , Tnq “ tfpt1, . . . , tnq P LTΣ2YΣ2# pXq | ti P Ti, 1 ď i ď nu (3.9)

But since we have TΣ Ď TΣ2 Ď TΣu , the homomorphism XTΣ factors as the composition p XTΣ2q; p XTΣq,
where the second factor has an easy, effective symbolic description on linear patterns as the function

Pfin pLTΣ2YΣ2# pXqq Q T ÞÑ pT X tx1:Jrs1s, . . . , xk:Jrsksuq P Pfin pLTΣYΣ# pXqq (3.10)

where Ŝ “ trs1s, . . . , rsksu. Thus, our desired, effective symbolic description of fPpTΣq in PfinpLTΣYΣ#pXqq

is the function:

Pfin pLTΣYΣ# pXqqn Q pT1, . . . , Tnq ÞÑ

pfPfinpLT
Σ2YΣ2# pXqqpT1, . . . , Tnq X tx1:Jrs1s, . . . , xk:Jrsksuq P PfinpLTΣYΣ#pXqq.

(3.11)

3.5 MEMBERSHIP CONSTRAINTS AS EQUATIONAL FORMULAS

The symbolic Boolean and Σu-operations on linear pattern languages defined in Section 3.4.3 have as

a direct consequence a useful simplification in the methods for deciding validity in an initial order-sorted

30

algebra TΣ for formulas in a richer language than that of equational formulas FormpΣq. The richer language

in question, let us call it MCFormpΣq, is Comon and Delor’s language of equational formulas with membership

constraints [18], for whose formulas they prove that validity in an initial order-sorted algebra TΣ is decidable.

Their language is untyped, but typing is achieved by a rich sublanguage of sort expressions used to define

unary membership predicates. This allows them to deal with other regular tree languages besides those

contained in TΣ. Since from the perspective of our algebra of interest TΣ we do not care about such other

languages, we give below a typed version5 of their language of formulas MCFormpΣq for Σ “ pS,ď,Σq an

order-sorted signature. It is just the extension of the first-order language FormpΣq of equational formulas

obtained by adding a countable collection of unary membership predicates of the form P ζ, where ζ is a

sort expression in a set SExp inductively defined by the grammar:

J | K | s | ζ | ζ ^ ζ | ζ _ ζ | fpζ, n. . ., ζq (3.12)

where s P S and f P Σun, n P N. The new atoms are then of the form t P ζ with t P TΣpXq. We then

close MCFormpΣq under all Boolean formula operations and under universal and existential quantification

by variables with sorts in S.

The semantic meanings JζK associated to the ζ P SExp are precisely the regular sublanguages of TΣ

generated by the corresponding Boolean operations, the operations (and constants) f P Σu, and the constants

J and K, from the regular languages TΣ,s associated to each s P S. But note that, for Σ finite and regular, all

such languages are symbolically describable in an effective way as finite sets of patterns in PfinpLTΣYΣ#pXqq.

That is, there is an effective mapping

π : SExp Q ζ ÞÑ πpζq P PfinpLTΣYΣ#pXqq (3.13)

such that JζK “ JπpζqK and having the obvious inductive definition using the Boolean operations and those

in Σu, with the base case πpsq “ tx:su for each s P S. The satisfaction of formulas ϕ P MCFormpΣq in TΣ

naturally extends that for the sublanguage FormpΣq by defining for each atom t P ζ and ground substitution

α of the variables of t, TΣ, α |ù t P ζ iff tα P JζK.
The simplification made possible by PfinpLTΣYΣ#pXqq to reduce formulas in MCFormpΣq to formulas in

the simpler language FormpΣ Y Σ#q should now be obvious. Consider a membership atom t P ζ, and its

set of patterns πpζq. If πpζq “ H, then we have TΣ |ù pt P ζ ô t ­“ tq. Otherwise, πpζq “ tu1, . . . , uku,

k ě 1, where without loss of generality we may assume that Y “ varspπpζqq is disjoint from varsptq, and

that i ­“ j ñ varspuiq X varspujq “ H. But then we have TΣYΣ# |ù pt P ζ ô pDY q t “ u1 _ . . . _ t “ ukq.

Call πpt P ζq the formula t ­“ t, resp. pDY q t “ u1 _ . . ._ t “ uk, obtained from t P ζ depending on whether

πpζq is empty or not. This defines an obvious mapping

MCFormpΣq Q ϕ ÞÑ πpϕq P FormpΣY Σ#q (3.14)

just by replacing atoms of the form t P ζ by their corresponding formulas πpt P ζq and such that we have

TΣ |ù ϕ ô TΣYΣ# |ù πpϕq.

Note that TΣ, α |ù pt P ζq ô TΣ, α |ù t P ζ. This allows us to relate quantifier-free formulas in

5The untyped language in [18] then appears in our terms as the special case of the typed language MCFormpΣ2q, where
Σ2 has a single connected component, say rss, since then TΣ2,rss “ TΣu and there is no need to explicitly type a variable as,
say, x:s because we can instead assert the membership predicate x P s for x a variable of the universal sort rss and therefore
untyped.

31

MCFormpΣq and FormpΣY Σ#q in a simple way:

Lemma 3.4 Let ϕ be a quantifier-free formula in MCFormpΣq. We can effectively associate to ϕ a quantifier

free formula πpϕq in FormpΣY Σ#q such that ϕ is satisfiable in TΣ iff πpϕq is satisfiable in TΣYΣ# .

Proof 3.6 Without loss of generality we may assume that ϕ has the DNF form:

ϕ ”
ł

iPI

p
ľ

Gi ^
ľ

Di
ľ

Ciq (3.15)

with Gi a finite set of Σ-equations, Di a finite set of Σ-disequations, and Ci a finite set of membership atoms

of the form t P ζ. Then ϕ is satisfiable in TΣ iff TΣ |ù pDXq ϕ, where X “ varspϕq. But TΣ |ù pDXq ϕ iff

TΣYΣ# |ù pDXq ϕ1, where ϕ1 ”
Ž

iPI1p
Ź

Gi ^
Ź

Di
Ź

πpCiqq, where I 1 “ ti P I | p@pt P ζq P Ciq πpζq ­“ Hu,

and where for each pt P ζq P Ci with i P I 1 all the variables Y “ varspπpζqq are disjoint from X, j ­“ j1 ñ

varspujqXvarspu1jq “ H, and also disjoint from the variables Y 1 “ varspπpζ 1qq for any other t1 P ζ 1 occurring

in ϕ. But since then the formulas πptj P ζjq “ pDYjq tj “ uj1 _ . . . _ tj “ ujkj , j P J , appearing in ϕ1 have

disjoint bound variables Yj also disjoint from X, we have the equivalences:

TΣ |ù pDXq ϕ ô TΣYΣ# |ù pDXq ϕ1 ô TΣYΣ# |ù pDpX Z
ě

jPJ

Yjqq πpϕq (3.16)

where πpϕq is the quantifier-free formula obtained from ϕ1 by replacing each πptj P ζjq “ pDYjq tj “ uj1_ . . ._

tj “ ujkj by the disjunction tj “ uj1 _ . . . _ tj “ ujkj . Therefore, ϕ is satisfiable in TΣ iff πpϕq is satisfiable

in TΣYΣ# .

This reduction of formulas in MCFormpΣq to formulas in FormpΣYΣ#q offers several simpler alternatives

for deciding the satisfiability of a formula ϕ P MCFormpΣq in an initial order-sorted algebra TΣ. On the one

hand, we can now use Theorem 3.2 in conjunction with the many-sorted decision procedures by Maher [15]

or by Comon and Lescanne [16] to decide whether TΣ |ù ϕ. On the other hand, for quantifier free formulas

ϕ P MCFormpΣq, we can use Lemma 3.4 above in conjunction with the order-sorted decision procedure

described in Theorem 8 of [36] to remain at the order-sorted level and decide TΣ |ù ϕ in a more direct way.

We illustrate this last possibility by means of a simple example.

Example 3.1 Consider the order-sorted signature ΣNAT with sorts Nat, Odd and Even, subsort inclusions

Odd, Even ă Nat, constant 0 : ε Ñ Even, and operators s : Even Ñ Odd, s : Odd Ñ Even, and

s : Nat Ñ Nat. It is easy to check that the sort Nat is redundant, so that the only atomic sorts in Σ#
NAT

are Odd and Even, and we have ΣNAT “ ΣNAT Y Σ#
NAT . Consider now the problem of deciding whether

TΣNAT |ù ϕ for ϕ the following formula in MCFormpΣNAT q:

ϕ ” p@x, yq px “ 0 ñ x ­“ spyqq ^ x P ppOdd _ Evenq ^ pOdd ^ Evenqq (3.17)

where the variables x, y have sort Nat. TΣNAT
|ù ϕ iff the following quantifier-free formula is unsatisfiable in

TΣNAT
:

px “ 0 ^ x “ spyqq _ px P ppOdd _ Evenq ^ pOdd ^ Evenqqq (3.18)

But since the system of equations x “ 0 ^ x “ spyq has no order-sorted unifiers, by Theorem 8 of [36] the

first conjunction is unsatisfiable. Consider now the set of patterns πp ppOdd _ Evenq ^ pOdd ^ Evenqqq,

32

that is,

tx:Natu ´ ppty:Odd , z:Evenuq X ptx1:Natu ´ pty1:Oddu X tz1:Evenuqqq (3.19)

Since the equation y1 :Odd “ z1 :Even has no order-sorted unifiers, we have ty1 :Oddu X tz1 :Evenu “ H.

Furthermore, because of the subsort inclusions Odd, Even ă Nat, the equations x1 : Nat “ y : Odd and

x1 :Nat “ z :Even have respective unifiers x1 :Nat ÞÑ y :Odd and x1 :Nat ÞÑ z :Even. So the above Boolean

combination of sets of patterns simplifies to

tx:Natu ´ ty:Odd , z:Evenu “ H (3.20)

and this also can be automatically computed by our tool.

In summary, therefore, πpx P ppOdd _ Evenq ^ pOdd ^ Evenqqq ” x ­“ x, which is also unsatisfiable in

TΣNAT
. Therefore, TΣNAT

|ù ϕ.

3.6 IMPLEMENTATION AND EXPERIMENTS

The algorithms described in this chapter are highly reflective, a feature that nearly all of the algorithms in

this thesis will share. They are parametric on signatures Σ and perform meta-level operations on signatures

and Σ-terms, such as order-sorted unification, matching, sort comparisons, and so on, to ultimately compute

pattern operations. Fortunately, many of these auxiliary meta-level operations are available, or can be

easily programmed, in the Maude language through its reflective features using its META-LEVEL module

[6]. In META-LEVEL, a signature Σ is meta-represented as a term Σ of sort Module, and a Σ-term t is

meta-represented as a so-called meta-term t of sort Term.

Since: (i) Maude syntax at the meta-level essentially mirrors the syntax at the object level; and (ii)

inference rules such as above rules (1)–(6) can be directly expressed as rewrite rules operating on meta-

terms, the representational distance between the theoretical description of the algorithm in Section 3.4 and

its actual meta-level implementation in Maude is relatively short.

Following the above-mentioned reflective design we have developed in Maude a tool6 that implements

both the Σ ÞÑ Σ# transformation and the order-sorted pattern operations. The tool has a user interface

through which the user can first enter order-sorted specifications and then give commands to perform pattern

operations on such specifications.

The tool’s implementation of the signature transformation Σ ÞÑ Σ# described in Section 3.2 essentially

coincides with the telescoping procedure described therein. The procedure takes a reflected signature Σ as an

argument and proceeds by non-deterministically selecting an operator f in Σ which has not been processed

and whose strictly smaller typings have all been processed.

Using the signature transformation procedure the tool also implements the order-sorted pattern operation

algorithms described in Section 3.4. The overall algorithm takes as arguments a reflected signature Σ and a

symbolic Boolean expression composed of meta-terms t representing Σ-term patterns using a mixfix syntax

where U represents union, & represents intersection, and - represents difference. A set of Boolean

equations first reduces each Boolean symbolic pattern expression to a normal form (essentially pushing

conjunctions/differences down the expression tree). A normal form is then solved using an algorithm that

deals with each symbolic difference problem according to the steps described in Section 3.4: the problem is

6The tool and examples can be downloaded online at http://maude.cs.illinois.edu/w/index.php?title=Maude_Tools:

Order-sorted_Term_Patterns.

33

http://maude.cs.illinois.edu/w/index.php?title=Maude_Tools:Order-sorted_Term_Patterns
http://maude.cs.illinois.edu/w/index.php?title=Maude_Tools:Order-sorted_Term_Patterns

first classified according to cases (1)–(4), iterating over the finite-sort transformation of case (3) if needed.

Then, either the simpler algorithm for case (1) (essentially rules (1)–(6)), or its case (2) extension (see Section

3.4.2), or the more general order-sorted extension of the Lassez-Marriott algorithm [7] are invoked. Finally,

symbolic union and intersection operations are performed to obtain either: (i) a finite set of patterns if the

algorithm computed a pattern language, or (ii) a Boolean expression containing some symbolic differences

that do not denote pattern languages otherwise.

A user interface has also been constructed in Maude which allows the user to directly enter pattern expres-

sions and theories using the Full Maude [6] syntax, obviating the need to first convert to the slightly more

complex meta-term syntax. The user interface is implemented as an extension of Full Maude using Maude’s

LOOP-MODE module [6]. The user interface provides to the user two primary commands: solve-pattern

and ms-solve-pattern to solve pattern intersections and differences in an order-sorted (resp. many-sorted)

way. After loading the tool, one can enter any input theories one wishes to reason about and give the

desired pattern operation commands. Sections 3.5 and 3.7 contain examples illustrating the use of the tool

for solving various pattern operation problems.

Note that, following the usual convention for Full Maude [6], both theory declarations and commands

are enclosed in parentheses () and that commands are ended with a period before the closing parenthesis

(.). Also note that, thanks to Maude’s mixfix syntax capabilities, pattern syntax at the tool interface level

is almost identical to that used internally by the library. The syntax for variables is the usual name:sort

notation, so that X:B is a variable named X which has sort B. The ms-solve-pattern command (not shown

above), first reduces the pattern to all of its many-sorted instances and solves each of them using the

many-sorted pattern algorithm.

3.6.1 Experimental Comparison of the Many- and Order-Sorted Difference Algorithms

We conducted experiments comparing our order-sorted pattern operations algorithm to its many-sorted

reduction. To ground our discussion, we work in a module COMPLEX-RAT adapted from [33] that defines

the signature of complex numbers. As further explained below, our experiments show that, on average, the

many-sorted reduction requires about 1,000 times as many rewrites as the order-sorted algorithm, with the

median being 55 times as many rewrites.

The COMPLEX-RAT example is a moderate size one, yet a significant illustration of what we take it to be the

main lesson we can draw from these experiments: if the sort hierarchies are almost flat, there is no reason to

expect any substantial advantages in using the order-sorted algorithm besides the obvious greater simplicity

and “user friendliness” gained from expressing both the pattern problems and their solutions in a way as

close as possible to the original language of the user. However, as sort hierarchies grow bigger —which is a

very common case in large Maude specifications because they heavily use many instances of parameterized

data types introducing many subsort inclusions— the very substantial advantages in both performance,

simplicity of the questions and answers, and user friendliness already apparent in the COMPLEX-RAT example

should become even more dramatic.

In general, a complete experimental comparison is impossible, since there are infinitely many signatures,

each typically generating an infinite set of term patterns up to renaming. Thus, our goal with these experi-

ments is not any kind of “proof,” but rather to provide evidence that in non-toy examples our order-sorted

algorithm is both more expressive and more performant.

For greater generality in comparing these two algorithms, we might have randomly generated signatures

34

fmod NAT-SIG is

sorts Nat NzNat Zero .

subsorts Zero NzNat < Nat .

op 0 : -> Zero .

op s_ : Nat -> NzNat .

op _+_ : Nat Nat -> Nat .

op _+_ : NzNat Nat -> NzNat .

op _+_ : Nat NzNat -> NzNat .

op _*_ : Nat Nat -> Nat .

op _*_ : NzNat NzNat -> NzNat .

endfm

fmod INT-SIG is

protecting NAT-SIG .

sorts Int NzInt .

subsort Nat < Int .

subsorts NzNat < NzInt < Int .

op -_ : Int -> Int .

op -_ : NzInt -> NzInt .

op _+_ : Int Int -> Int .

op _*_ : Int Int -> Int .

op _*_ : NzInt NzInt -> NzInt .

endfm

fmod RAT-SIG is

protecting INT-SIG .

sorts Rat NzRat .

subsort Int < Rat .

subsorts NzInt < NzRat < Rat .

op _/_ : Rat NzRat -> Rat .

op _/_ : NzRat NzRat -> NzRat .

op -_ : Rat -> Rat .

op -_ : NzRat -> NzRat .

op _+_ : Rat Rat -> Rat .

op _*_ : Rat Rat -> Rat .

op _*_ : NzRat NzRat -> NzRat .

endfm

fmod COMPLEX-RAT is

protecting RAT-SIG .

sorts Cpx Imag NzImag NzCpx .

subsort Rat < Cpx .

subsort NzRat NzImag < NzCpx .

subsorts NzCpx < Imag < Cpx .

subsorts Zero < Imag .

op _i : Rat -> Imag .

op _i : NzRat -> NzImag .

op -_ : Cpx -> Cpx .

op -_ : NzCpx -> NzCpx .

op _+_ : Cpx Cpx -> Cpx .

op _+_ : NzRat NzImag -> NzCpx .

op _*_ : Cpx Cpx -> Cpx .

op _*_ : NzCpx NzCpx -> NzCpx .

op _/_ : Cpx NzCpx -> Cpx .

op _# : Cpx -> Cpx .

op |_|^2 : Cpx -> Rat .

op |_|^2 : NzCpx -> NzRat .

endfm

Figure 3.5: COMPLEX-RAT Signature

35

from the space of all order-sorted signatures and further randomly generated terms in each signature. While

this might seem more convincing, the majority of random signatures would never be used for any practical

purpose. Thus, in our experiments we have favored practicality of examples over generality and have focused

on the above signature COMPLEX-RAT which is part of an algebraic specification of the complex rational

numbers. This signature —adapted from [33]— or very similar ones have been used in actual programming

and verification tasks. Furthermore, it displays a substantial degree of subsorting, which will let us usefully

compare the two algorithms (since they are essentially the same in the many-sorted case).

After fixing a signature, there is still the matter of generating terms to be inputs to the difference algo-

rithms. In COMPLEX-RAT, we generated a set T of random terms via the following process: Given a desired

term depth n ą“ 0, let a counter i be set to 0. While i ă n, randomly select a non-constant operator for

each open node in the term tree (the empty tree is open by default) and increment i. For each open node

where i “ n, randomly select a variable with 70% probability or a constant operator with 30% probability.

For the experiments in this section, we set 0 ď n ď 2.

Given a set of terms T randomly generated as above, we computed all pairs pt1, t2q P T
2 and further

generated the pattern operations Jt1K´ Jt2K. Finally, these pattern operations can be input into our order-

sorted algorithm as well as their many-sorted transformed versions. The metric used for comparison is

the number of rewrites as counted by the Maude rewrite engine used to implement these two algorithms.

This metric is useful because it is invariant across different implementations and lets us abstract away from

implementation differences.

The many-sorted transformed version of a problem was obtained by applying the sharpening transfor-

mation of Section 3.3 to the signature COMPLEX-RAT and to the pattern operation to be solved. Since

many-sorted signatures are just a special case of order-sorted signatures, we can plug the transformed in-

puts into our order-sorted algorithm and it will compute results in a strictly many-sorted way. In general,

since the transformation of an order-sorted difference problem into a many-sorted one described in Section

3.4 causes each order-sorted term to be expanded into a set of many-sorted ones, we can expect that the

order-sorted difference algorithm will perform better, especially in cases with deep subsorting and multiple

variables. Another side effect of this transformation is that answer sizes will likely be larger, since each

order-sorted term may expand into several many-sorted ones.

In all, we computed roughly a thousand term difference problems using both our order-sorted algorithm

and the many-sorted transformed problem and algorithm. On the whole, in the signature COMPLEX-RAT, with

a thousand difference problems containing terms ranging from size zero to two, the many-sorted algorithm

on average needed about 1,000 times as many rewrites as our order-sorted algorithm, with the median being

55 times as many rewrites.

Each dot in Figure 3.6 represents a randomly chosen difference problem among the (roughly) thousand

ones we generated. The dot’s x-coordinate gives the number of rewrites needed to solve the problem using the

order-sorted algorithm, while its y-coordinate gives the corresponding number of rewrites when the problem

is reduced to a many-sorted one and the many-sorted algorithm is used. Note the difference in scale: the

x-axis continues until 70,000 rewrites while the y-axis goes all the way to 800,000 rewrites.

Actually, the full graph of the data would scale the axes even further, so for formatting purposes some of

points were removed and included in the table in Figure 3.7. If included in Figure 3.6, the difference in scale

would become so great that the graph would become almost useless as a visual representation of the data.

To better understand what is happening with these outlier points, we consider two examples: the outlier

with the maximum x-value and the corresponding one with the maximum y-value.

36

Figure 3.6: Rewrites Used by Order-Sorted vs. Many-Sorted Algorithm

OS Rewrites MS Rewrites
23103 35811474
24937 49010016
53823 1233545932
69359 12619028
69765 14073907001
76389 21151931
78891 23954195214
86061 29805843801
91952 155444847
98377 5105671052
125465 12175065031
152156 152431926
192685 479356113
233652 713057516
340468 15062845092
664733 2618219

Figure 3.7: Experimental Data Outliers

37

The maximum x-value reported in our data set is 664733, with 2618219 the corresponding y-value

and 2618219{664733 « 4 the smallest y/x ratio in Figure 3.7. The operation in question is t-C:Cpxu ´

t-(R:Rat*0)u. Here, because of the deep sorting and unifiability of the terms, the order-sorted algorithm

must consider many possible operators that C could instantiate into that do not unify with R:Rat*0. On

the other hand, since there are only two variables, the many-sorted expansion does not generate as many

patterns as when the problem contains many variables.

Alternatively, we may consider the maximum y-value: 29805843801, with 86061 its corresponding x-value

and 29805843801{86061 « 346334 the largest y/x ratio in Figure 3.7. In this case, the pattern operation is

given by:

tR1:Rat*R2:Ratu ´

t((N1:Nat+N2:Nat)*(N3:Nat+N4:Nat))*((N5:Nat+N6:Nat)+s(0))u
(3.21)

As predicted above, this particular operation with eight variables expands into a huge number of cases—

1,323 separate cases in fact. Furthermore, each case may require several levels of descent to verify how the

terms overlap. In summary, the data collected from our experiments show that for real signatures of interest

even small input terms may create a huge difference in performance when choosing between the many-sorted

and order-sorted algorithms.

3.7 APPLICATIONS AND EXAMPLES

In Sections 3.4.3 and 3.5 we have already discussed applications to, respectively, regular tree language

operations, and to reducing the problem of deciding the satisfiability of a formula with memberships con-

straints in an initial order-sorted algebra to the simpler problem of deciding such satisfiability for a simpler

equational formula without such constraints. Here, to give a flavor for the wide range of applications possible,

we consider three different ones: (i) sufficient completeness checking for equational order-sorted programs;

(ii) elimination of the otherwise feature (used in several languages like Haskell, ASF+SDF, and Maude)

for such programs; and (iii) invariant verification.

3.7.1 Checking Sufficient Completeness

The pattern operation algorithms presented in this chapter can be used to analyze the sufficient complete-

ness of an equational program in order-sorted equational logic, provided its equations satisfy some conditions,

further explained below, that allow an analysis based on term differences. In particular, the conditions in

question are always satisfied when the equations are left-linear, i.e., their lefthand sides do not have repeated

variables.

We illustrate the ideas with a simple example of addition and multiplication in the natural numbers. We

first explain the notion of sufficient completeness and how term differences can settle sufficient completeness

problems. We assume acquaintance with the following notions: (i) order-sorted rewrite rule l Ñ r, and

rewrite relation ÑR associated to a set R of such rules; and (ii) termination of the ÑR relation. For more

details about these notions see, e.g., [6].

The sufficient completeness problem goes back to Guttag’s thesis [53]. It arose as the question of whether

in an equational program pΣ, Eq defining several recursive functions each such function has been fully defined

by the equations E, where for execution purposes each equation t “ t1 in E is oriented from left to right

38

as a rewrite rule t Ñ t1. More generally, this problem can be posed for a terminating rewrite-rule-based

program pΣ, Rq as follows: we split the order-sorted signature Σ as a disjoint union ΩZ∆, where ∆ are the

so-called defined symbols, and Ω the (claimed to be) constructor symbols for the rules R. Whether or not

the operators in Ω can rightfully be called constructor symbols for R is precisely the sufficient completeness

problem, so that both notions (constructors and sufficient completeness) stand or fall together. To simplify

the exposition we assume that each subsort-polymorphic family of function symbols f
rs1s...rsns
rss in Σ is fully

included in either Ω or ∆.

Definition 3.1 Under the above assumptions on pΣ, Rq and the decomposition Σ “ Ω Z∆, let IrrR Ă TΣ

denote the subset of those ground Σ-terms that are irreducible by the rules R, i.e., t P IrrR iff pEq u s.t. tÑR

u. Then we call theory pΣ, Rq sufficiently complete with respect to Ω iff IrrR Ď TΩ. Likewise, we then call

Ω a constructor subsignature for the rules R. Ω is called a subsignature of free constructors for R iff

IrrR “ TΩ.

Since pΣ, Rq is assumed terminating, this means that each ground Σ-term t always evaluates to a construc-

tor term, capturing the idea that the symbols in ∆ have been fully defined by the rules R. Note that the

expression “free constructor subsignature” is well chosen, since in this case no term in TΩ can be rewritten,

so that TΩ is an initial algebra. For example, the operators 0 and s define a free constructor subsignature

for the natural number addition rules n`0 Ñ n and n`mÑ spn`mq, but, while remaining constructors,7

they are no longer free if we add the equation spspnqq “ n, since then IrrR “ t0, sp0qu.

Sufficient completeness can be boiled down to the following equivalent property, expressed in the lemma

below, whose easy proof is left to the reader:

Lemma 3.5 Let pΣ, Rq be a terminating rewrite rule program with Σ “ ΩZ∆ a decomposition into construc-

tors and defined symbols. Then pΣ, Rq is sufficiently complete with respect to Ω iff for each f : s1 . . . sn Ñ s

in ∆ and each ui P TΩ,si X IrrR, 1 ď i ď n, fpu1 . . . unq R IrrR.

To cast the sufficient completeness problem as a symbolic term difference problem we use Lemma 3.5 above

and define a simple signature transformation Σ ÞÑ Σ∆ as follows: the poset of sorts of Σ∆ extends the poset

pS,ďq of Σ by adding to each connected component rss of Σ a new sort drss with drss ą Jrss. The operators

of Σ∆ are those of Ω plus for each f
rs1s...rsns
rss Ď ∆ an operator f : drs1s . . . drsns Ñ drss. Note that for each

s P S we then have TΣ∆,s “ TΩ,s. What this achieves, is that for any f : s1 . . . sn Ñ s in ∆ the ground

instances of the Σ∆-term fpx1:s1, . . . , xn:snq always instantiate the variables x1:s1, . . . , xn:sn by constructor

terms. To simplify the exposition let us assume —this assumption can be omitted but a somewhat more

complex formulation is then needed— that for each defined symbol f there is an f : s1 . . . sn Ñ s with

7 Note that the issue of whether Ω is a constructor subsignature is independent of whether the rules R have been defined
following the so-called constructor discipline, where ∆ is defined as those f such that there is some rule in R of the form
fpu1, . . . , unq Ñ v, Ω is defined as Σ´∆, and for each rule fpu1, . . . , unq Ñ v in R the terms u1, . . . , un are required to be Ω-
terms. The independence can be shown by the following three observations: (i) if R consists of the single rule n`mÑ spn`mq
with Σ “ t0, s,`u unsorted, then R follows the constructor discipline with Ω “ t0, su, but Ω is not a signature of constructors for
R in our sense, since sufficient completeness fails; (ii) the rules R “ tn` 0 Ñ n, n`mÑ spn`mq, pn`mq`k Ñ n`pm`kqu
do not follow the constructor discipline, yet Ω “ t0, su is a (free) constructor signature for R in our sense; and (iii) for
R “ tn ` 0 Ñ n, n `m Ñ spn `mq, spspnqq “ nu the constructor discipline totally breaks down, because according to it we
would have ∆ “ t`, su and Ω “ t0u, and all rules would violate such discipline. But choosing Ω “ t0u as a subsignature of
constructors is nonsense: the correct signature of (non-free) constructors (in our sense) is Ω “ ts, 0u, which of course violates
the constructor discipline but is sufficiently complete. What can rightfully be said is that: (a) if R is defined following the
constructor discipline, which defines a decomposition Σ “ Ω Z∆, and (b) the rules R are sufficiently complete (in our sense)
with respect to that Ω, then (c) Ω is a subsignature of free constructors for R.

39

1 fmod NATS is

2 sorts Nat NzNat Zero .

3 subsorts Zero NzNat < Nat .

4 op 0 : -> Zero [ctor] .

5 op s_ : Nat -> NzNat [ctor] .

6 op _+_ : Nat Nat -> Nat .

7 op _*_ : Nat Nat -> Nat .

8 vars N M : Nat .

9 eq N + 0 = N .

10 eq (s N) + (s M) = s s (N + M) .

11 eq N * 0 = 0 .

12 eq (s N) * (s M) = s (N + (M + (N * M))) .

13 endfm

Figure 3.8: Maude NATS Specification

s1 . . . sns biggest possible among the typings of operators in f
rs1s...rsns
rss Ď ∆. Define Rf “ tl Ñ r P R | l “

fpu1 . . . unq s.t. ui P TΩpXq, 1 ď i ď nu.

Then, it is immediate that if we can show that the symbolic difference of Σ∆-patterns tfpx1:s1, . . . , xn:

snqu ´ tl | l Ñ r P Rfu equals H, then for each ui P TΩ,si X IrrR, 1 ď i ď n, fpu1 . . . unq R IrrR and

therefore, by Lemma 3.5, assuming R terminating, pΣ, Rq is sufficiently complete with respect to Ω. Note

that if IrrR “ TΩ, the emptiness of this symbolic difference is a necessary and sufficient condition for the

sufficient completeness of a terminating pΣ, Rq.

Consider the Maude specification of the natural numbers in Figure 3.8. In a Maude specification each

operator is preceded by the keyword op, and each operator which is a constructor is declared with the ctor

attribute. In all, there are two defined operators and two constructors. For a further review of of Maude

syntax, see Section 2.3.

To achieve the Σ ÞÑ Σ∆ transformation, in the above signature NATS, we would add a new top sort dNat

and change the type of defining operators, giving the signature:

1 fmod NATS-DELTA is

2 sorts dNat Nat NzNat Zero .

3 subsorts Zero NzNat < Nat < dNat .

4 op 0 : -> Zero [ctor] .

5 op s_ : Nat -> NzNat [ctor] .

6 op _+_ : dNat dNat -> dNat .

7 op _*_ : dNat dNat -> dNat .

8 vars N M : Nat .

9 eq N + 0 = N .

10 eq (s N) + (s M) = s s (N + M) .

11 eq N * 0 = 0 .

12 eq (s N) * (s M) = s (N + (M + (N * M))) .

13 endfm

Figure 3.9: Maude NATS∆ Specification

40

To check that + is sufficiently complete we perform the query:

tN + Mu ´ ptN + 0u Y ts N + s Muq (3.22)

in the transformed signature Σ∆ (of course itself internally transformed into Σ∆ Y Σ#
∆), which yields the

solution set:

t0 + s Ku (3.23)

This pattern represents an infinite set of constructor instances of the + operator for which + is not defined.

Indeed, if we check the function definition on lines 9-10 of Figure 3.9, we have covered the cases where the

second input is a zero and where both inputs are non-zero, but not the case where the first input is zero and

second non-zero! Using the above information, adding the equation solves the issue:

eq 0 + s N = s N . (3.24)

We can now compute in the transformed signature the difference: tN + Mu ´ ptN + 0u Y ts N + s Mu Y

t0 + s Nuq which is indeed empty.

In the same way, we can check the sufficient completeness of * by performing in Σ∆ the symbolic

difference:

tN * Mu ´ ptN * 0u Y ts N * s Muq (3.25)

which yields the result set:

t0 * s Ku (3.26)

Reviewing our multiplication definition on lines 11-12 of Figure 3.9, we see that we have made the same

mistake we did before when defining addition. Again, a single new equation completes the definition:

eq 0 * s N = 0 . (3.27)

Happily, the symbolic difference below is also now empty:

tN * Mu ´ ptN * 0u Y ts N * s Mu Y t0 * s Nuq (3.28)

Let NATS-FIXED be the modified module which extends NATS by adding these additional equations. The

above check means that we have now reduced the sufficient completeness of NATS-FIXED to proving that its

equations, oriented as rewrite rules, are terminating.

Two final observations seem worth making:

1. Note that if we were to add to NATS-FIXED an equation that does not follow the constructor discipline,

such as (N + M)+ K = N +(M + K) with K also of sort Nat, then, provided we show that termination

of the equations still holds, sufficient completeness would still hold. This is because: (i) the above

equation does not belong to the set R` of rules defining ` whose lefthand sides’ immediate subterms

are all constructor terms; and (ii) only lefthand sides of rules in R` need to be used in the sufficient

completeness check.

2. Note that if, instead, we were to add to NATS-FIXED the equation s s N = N, provided that we show

that termination of the equations still holds, sufficient completeness would still hold. This is because

41

1 fmod CL-SYNTAX is

2 sorts Constant Name CL .

3 subsorts Name Constant < CL .

4 ops S K I : -> Constant [ctor] .

5 op __ : CL CL -> CL [ctor gather (E e)] .

6 op x : -> Name [ctor] .

7 op ,_ : Name -> Name [ctor] .

8 endfm

9

10 fmod CL is including CL-SYNTAX .

11 vars U V W : CL .

12 eq S U V W = (U W) (V W) .

13 eq K U V = U .

14 eq I U = U .

15 endfm

Figure 3.10: Maude CL Theory

the equation s s N = N only involves constructors, and therefore does not belong to the sets R` or

R˚, whose lefthand sides are the only ones used in the sufficient completeness check.

3.7.2 Eliminating the otherwise Feature

Various rule-based functional languages, such as Haskell [48], ASF+SDF [49], and Maude [6], offer the

convenient feature of specifying the result of a function when none of the patterns in the lefthand sides of

the rewrite rules defining such a function can be applied to the subterm being evaluated. In such a case,

the programmer can specify how the function should be evaluated using the otherwise feature. This is

very convenient and efficient for programming purposes, but it has a main drawback: the otherwise feature

is really an extra-logical feature. This makes formal reasoning about programs using it quite challenging:

unless an equivalent program not using the feature can replace the original program, formal tools typically

cannot reason about such programs. To the best of our knowledge this problem has remained unsolved so

far. This section is significant not only for illustrative purposes, but also because it provides a solution to this

long-standing problem when the equational programs defining a function f using the otherwise construct

are left-linear, or are at least such that the pattern difference tfpx1, . . . , xnqu ´ tfpu
i
1, . . . , u

i
nquiPI , with the

fpui1, . . . , u
i
nq, i P I, the lefthand sides defining f and not using the otherwise feature, can be computed (is

defined) using the pattern difference algorithm.

The use and convenience of the otherwise feature can be best illustrated with an example. Consider the

following Maude specification of combinatory logic, where we specify its syntax in the module CL-SYNTAX

and then its semantics in the module CL. Note that an infinite supply of names: x ,x ,,x and so on is

provided by the subsort Name. The left associative parsing of the application operator is specified in Maude

with the gather (E e) attribute.

We may wish to do some formal reasoning about combinatory logic requiring, in particular, characterizing

the set of CL terms in normal form. This can be done by means of a predicate has-redex, so that t is in

normal form iff has-redexptq = false. Defining the positive case of has-redex is easy, but the negative

case, when rules do not apply, is harder. Here the otherwise feature shines:

42

1 fmod CL-REDEX is protecting CL-SYNTAX .

2 protecting BOOL-OPS .

3 op has-redex : CL -> Bool .

4

5 var N : Name . var C : Constant . vars U V W : CL .

6

7 eq has-redex(N) = false .

8 eq has-redex(C) = false .

9 eq has-redex(S U V W) = true .

10 eq has-redex(K U V) = true .

11 eq has-redex(I U) = true .

12 eq has-redex(U V) = has-redex(U) or has-redex(V) [owise] .

13 endfm

Figure 3.11: Maude CL has-redex Predicate

This is great. But remember that we wanted to use has-redex to do some formal reasoning about CL,

so it becomes crucial to know that the definition of has-redex is correct. At the very least we would, for

example, like to know that the specification CL-REDEX is confluent, terminating, and sufficiently complete.

But CL-REDEX is not an equational theory, so such questions cannot even be posed. In what follows we show

how this impasse can be overcome.

Consider the following general method to define a function f using the otherwise feature. For simplicity

assume that the subsort-polymorphic family of function symbols f
rs1s...rsns
rss in the order-sorted signature Σ is

fully included in the subsignature ∆ of defined function symbols, and that there is a biggest possible typing

f : s1 . . . sn Ñ s for f (these two assumptions are not essential, but they will simplify the exposition). The

function definition we then assume for f decomposes into two sets of equations: Esf “ tfpu
i
1, . . . , u

i
nq “ riuiPI ,

the standard equations for f , where we assume that all terms uik are constructor terms in the constructor

subsignature Ω, and Eof “ tfpv
j
1, . . . , v

j
nq “ qj rowisesujPJ , the otherwise equations, where we also assume

that all vjk are constructor terms. That is, we assume that f has been defined following the constructor

discipline explained in Footnote 7, but using also the otherwise feature.

Recall now the signature transformation Σ ÞÑ Σ∆ used for sufficient completeness checking. In Σ∆ f has

the typing f : drs1s . . . drsns Ñ drss, and all terms in the original sorts of Σ are now constructor terms. The

semantics of the [owise] feature can now be made precise: the equations in Eof should only be applied to

terms in the set of Σ∆-terms that are instances of the set of patterns difference:

tfpx1:s1, . . . , xn:snqu ´ tfpu
i
1, . . . , u

i
nquiPI (3.29)

Let tfpwl1, . . . , w
l
nqulPL be such a set difference. Then an equation fpvj1, . . . , v

j
nq “ qj rowises will apply to

a term iff such a term is an instance of such a set of patterns and also of fpvj1, . . . , v
j
nq. But this exactly

means that we can obtain a semantically equivalent version of our program by keeping Esf untouched, and

replacing Eof “ tfpv
j
1, . . . , v

j
nq “ qj rowisesujPJ by the set of standard equations:

Eo.sf “
ď

jPJ

tfpvj1, . . . , v
j
nqα “ qjα | α P

ď

lPL

DUnif Σ∆
pfpvj1, . . . , v

j
nq, fpw

l
1, . . . , w

l
nqqu (3.30)

Let us apply this method to our CL-REDEX example. We first construct the pattern problem corresponding

43

1 fmod CL-REDEX-EQ is

2 pr CL-SYNTAX .

3 pr BOOL-OPS .

4 op has-redex : CL -> Bool .

5

6 vars N : Name . var C : Constant .

7 vars U V W X Y : CL .

8

9 eq has-redex(N) = false .

10 eq has-redex(C) = false .

11 eq has-redex(S U V W) = true .

12 eq has-redex(K U V) = true .

13 eq has-redex(I U) = true .

14 eq has-redex(N U) = has-redex(N) or has-redex(U) .

15 eq has-redex(N U V) = has-redex(N U) or has-redex(V) .

16 eq has-redex(N U V W) = has-redex(N U V) or has-redex(W) .

17 eq has-redex(K U) = has-redex(K) or has-redex(U) .

18 eq has-redex(K U V W) = has-redex(K U V) or has-redex(W) .

19 eq has-redex(I U V) = has-redex(I U) or has-redex(V) .

20 eq has-redex(I U V W) = has-redex(I U V) or has-redex(W) .

21 eq has-redex(S U) = has-redex(S) or has-redex(U) .

22 eq has-redex(S U V) = has-redex(S U) or has-redex(V) .

23 eq has-redex((X Y) U V W) = has-redex((X Y) U V) or has-redex(W) .

24 endfm

Figure 3.12: Maude CL has-redex Predicate: Equational Definition

to the has-redex function. But note that by inference rule (3) of Case (1) of the order-sorted pattern

difference algorithm, for a unary function symbol f , if ttu ´ ttσ1, . . . , tσnu “ tu1, . . . , umu, then tfptqu ´

tfptqσ1, . . . , fptqσnu “ tfpu1q, . . . , fpumqu. Therefore, we can reduce the problem to computing the pattern

difference:

tU Vu ´ ptI Uu Y tK U Vu Y tS U V Wu Y tCu Y tNuq (3.31)

where U,V, and W are of sort CL, C is of sort Constant, and N is of sort Name. After passing the query to the

tool, we obtain the pattern set:

tI U Vu Y tI U V Wu Y tK Uu Y tK U V Wu Y

tS Uu Y tS U Vu Y tN Uu Y tN U Vu Y tN U V Wu Y t(X Y) U V Wu
(3.32)

where X and Y are also of sort CL. Given this set of result patterns, we can construct the corresponding

expanded equational module in Figure 3.12.

Note that some of the expanded calls to has-redex are redundant, since we can prove that they will

always reduce to true/false. For example, since we have has-redex(I U) = true, we get has-redex(I

U V) = true. The general point is that the righthand sides of the equations in the above module can be

simplified by means of other equations in the module. In this way, we get the equivalent, simpler specification:

Since this transformed module is purely equational, we can use standard analysis techniques for equational

modules, for example the Maude Sufficient Completeness Checker, Church-Rosser Checker, and Termination

44

1 fmod CL-REDEX-EQ-SIMPL is

2 pr CL-SYNTAX .

3 pr BOOL-OPS .

4 op has-redex : CL -> Bool .

5

6 vars N : Name . var C : Constant .

7 vars U V W X Y : CL .

8

9 eq has-redex(N) = false .

10 eq has-redex(C) = false .

11 eq has-redex(S U V W) = true .

12 eq has-redex(K U V) = true .

13 eq has-redex(I U) = true .

14 eq has-redex(N U) = has-redex(U) .

15 eq has-redex(N U V) = has-redex(U) or has-redex(V) .

16 eq has-redex(N U V W) = has-redex(U) or has-redex(V) or has-redex(W) .

17 eq has-redex(K U) = has-redex(U) .

18 eq has-redex(K U V W) = true .

19 eq has-redex(I U V) = true .

20 eq has-redex(I U V W) = true .

21 eq has-redex(S U) = has-redex(U) .

22 eq has-redex(S U V) = has-redex(U) or has-redex(V) .

23 eq has-redex((X Y) U V W) = has-redex((X Y) U V) or has-redex(W) .

24 endfm

Figure 3.13: Maude CL has-redex Predicate: Simplified Equational Definition

45

1 mod R&W is

2 sorts Nat Config .

3 op 0 : -> Nat .

4 op s : Nat -> Nat .

5 op <_,_> : Nat Nat -> Config .

6

7 vars R W : Nat .

8

9 rl [1] : < 0, 0 > => < 0, s(0) > .

10 rl [2] : < R, s(W) > => < R, W > .

11 rl [3] : < R, 0 > => < s(R), 0 > .

12 rl [4] : < s(R), W > => < R, W > .

13 endm

Figure 3.14: Maude Readers/Writers Theory

Tool. After running these tools, we found the transformed module is sufficiently complete, confluent, and

terminating.

3.7.3 Invariant Specification and Verification

In the semantic framework of rewriting logic [50], a concurrent system can be specified as the initial model

TR of a rewrite theory R “ pΣ, E,Rq, where pΣ, Eq is an equational theory specifying the system states,

and R are rewrite rules specifying the system’s concurrent transitions. Consider, for example, the following

high-level specification in Maude of a protocol for the readers-writers problem, where access of readers, resp.

writers, to a shared resource is kept track of by a pair of counters < r, w >, with r the current number of

readers and w the current number of writers accessing the shared resource.

Maude’s mod, resp. endm, keyword introduces, resp. ends, the specification of a rewrite theory R “ pΣ, E,Rq
with equations E specified by the eq keyword, and rules R specified by the rl keyword. In this module

E “ H, and R consists of the above four rules. The system’s initial state is the state < 0, 0 >. Two key

correctness properties that we would like to verify about this protocol are:

1. Mutual Exclusion: readers and writers should never access the resource simultaneously.

2. One Writer: At most one writer should access the resource at any time.

Although extremely simple, the above system is infinite state, making explicit-state model checking veri-

fication of properties (1)-(2) impossible. Several model checking and/or deductive verification methods can

of course be used. For example, in Chapter 12.4 of [6] an equational abstraction [54] making the system

finite-state is used, so that explicit-state model checking becomes possible. The issue to be investigated here

is whether the pattern algebra we have presented in this chapter could provide an alternative, easy to use

method to verify invariants. of an infinite-state system, such as the above properties (1)-(2) in our example.

Here is an easy method of this nature that can be applied to any rewrite theory involving only rules, i.e.,

R “ pΣ,H, Rq, and such that the rules R are topmost [6], meaning that: (i) there is a chosen State sort for

states (in this example the Config sort), and (ii) all rules in R have sort State and are applied to the entire

46

state (technically, this is expressed by the syntactic requirement that any proper subterm of a term of sort

State can never be of sort State, which is obviously the case for terms of sort Config in our example). What

needs to be verified about an invariant Q is that: (i) initial states in a set I of initial sates satisfy Q, and

(ii) any state reachable from an initial state also satisfies Q.

The method is as follows:

1. Specify Q and I by respective sets of pattens.

2. Verify symbolically that I Ď Q.

3. Verify also symbolically for each rule l Ñ r in R and substitution θ that if lθ satisfies Q, then rθ

satisfies Q.

The method is of course inductive, in that it only requires that the invariant is maintained for one-step

transitions. Steps 1-2 are straightforward using the techniques of this chapter. I is typically given with the

problem, but there is plenty of freedom in practice to choose a suitable Q. Since, intuitively, an invariant

is a safety property stating that “something bad will never happen,” the “weakest” possible invariant, i.e.,

the one satisfied by the largest possible number of states, is the negation of such a bad state of affairs. One

can of course “strengthen” the invariant Q, so that a smaller set of states satisfy Q. In our example, the

weakest possible invariant Q comprising properties (1)–(2) is precisely the pattern set:

txn,myu ´ txspxq, spyqy, xx1, spspy1qqyu (3.33)

where the variables n,m, x, y, x1, y1 all have sort Nat. Step 3 is also easy to describe in detail. If Q is

described by the set of patterns tu1, . . . , uku and R “ tli Ñ riuiPI , what we need to check symbolically is

the set containment:
ď

iPI

triθ | θ P
ď

1ďjďk

DUnif ΣYΣ#pli, ujqu Ď tu1, . . . , uku (3.34)

Let us apply this method to our readers-writers example. Firstly, we must compute invariant Q. Inputting

pattern expression 3.33 into the tool, we obtain:

< M:Nat, 0 > U < 0, s(0) > (3.35)

Now we check simultaneously: (i) that the initial pattern < 0, 0 > is a subset of invariant Q and

(ii) that the righthand sides of each rule instantiated by unifiers between Q and each lefthand side are

a subset of Q. Computing all of the unifiers between Q and the lefthand sides of rules r1s–r4s expands

into eight unification problems. For brevity we only show the unifiers computed for each rule: r1s : id,

r2s : tR ÞÑ 0, W ÞÑ 0u, r3s : id, r4s : tR ÞÑ R, W ÞÑ 0u. Thus, we obtain the corresponding righthand side

instances: r1s : < 0, s(0) >, r2s : < 0, 0 >, r3s : < s(R), 0 >, r4s : < R, 0 >. Finally, we need to check

each of the patterns in (i)–(ii) is a subset of Q or, alternatively, that their union is a subset of Q. To check

that such a union (call it P) is contained in Q, we can use our tool to check that the set difference P ´ Q

equals H as follows:

Thus, we established the pattern containment, as required. We will revisit these ideas in chapters 5 and 6

and expand on the ideas here. For now, we just provide the intuition that often a constructor pattern alone

47

(solve-pattern({ < 0,0 > } U { < 0,s(0)> } U { < 0,0 > } U

{ < s(R:Nat),0 > } U { < R:Nat,0 > }) -

({ < M:Nat,0 > } U { < 0,s(0)> }) .)

Result: mt

Figure 3.15: Tool Output for Invariant Pattern Problem

is not sufficient to describe invariants of complex systems; this will require us to move to the richer setting

of constrained constructor patterns.

3.8 RELATED WORK AND CONCLUSIONS

On pattern operations the most closely related work is [7, 8, 9, 10, 11] and references there. On equational

formulas in initial algebras the most closely related work is [14, 15, 16, 17, 18, 36] and references there. On

regular languages and tree automata techniques the most comprehensive work is probably [55]; there are

also important uses of tree automata technique in [18]. The relationships to work in these three areas have

been discussed in detail in previous sections. We summarize them below.

Regarding pattern operations, the main new contributions in relation to work in [7, 8, 9, 10, 11] are in

extending that work from the untyped setting to languages with types, subtypes, and subtype polymorphism.

As explained in the Introduction, this extension is non-trivial, because it fails rather badly for an arbitrary

order-sorted signature Σ and requires the new idea of the signature transformation Σ ÞÑ Σ#.

Regarding equational formulas in initial algebras, the main new contributions in relation to work in

[14, 15, 16, 17, 18, 36] is in providing two useful new reductions: (i) from the validity problem for an

equational formula in an initial order-sorted algebra to the corresponding validity problem for an equational

formula in an initial many-sorted algebra; and (ii) from validity problem for a formula with membership

constraints in an initial order-sorted algebra to the corresponding validity problem for an equational formula

in an initial order-sorted algebra. In particular, reduction (ii) provides a simpler way to deal with both

validity and satisfiability problems for formula with membership constraints in an initial order-sorted algebra

and makes available the techniques in [36] for quantifier-free formulas.

Regarding regular languages and tree automata, the main new contributions in relation to work in [55, 18]

are in identifying the class of linear pattern languages (essentially co-extensive with the sort expressions in

[18]) and in showing that the usual operations on regular tree languages performed so far by tree automata

do have, for linear pattern languages, the considerably simpler alternative of being performed as pattern

operations with no recourse to any tree automata operations. A finer point, not apparent from this remark,

is that, since tree automata and order-sorted signatures are la même chose, when tree automata operations

are viewed as operations on order-sorted signatures, they can wreak havoc on the finer, yet essential, prop-

erties of order-sorted signatures, such as regularity or preregularity, which are crucial for efficient symbolic

computation with order-sorted terms. This means that the advantage of completely replacing tree automata

operations by pattern operations for linear pattern languages are not just those of a simpler, more direct

method —not requiring any detour through automata and special tools to do so— but also those of always

remaining within an order-sorted signature enjoying all the desired properties.

To conclude, we have shown that the untyped algorithms for pattern operations break down when per-

forming the order-sorted pattern operations needed in current declarative languages supporting subtypes and

subtype polymorphism, and have shown that such operations can be defined using a signature transformation

48

Σ ÞÑ Σ#. We have also shown that this transformation yields new insights and a new, quite simple proof of

the known decidability of the first-order theory of an initial order-sorted algebra. Furthermore, these results

extend the many well-known applications of pattern operations to the richer order-sorted setting and open

up new applications such as those discussed in Section 3.7. We plan to work on various other applications

and to further advance the current implementation to make it part of the Maude formal tool environment.

49

CHAPTER 4 METALEVEL ALGORITHMS FOR VARIANT SATISFIABILITY
1

4.1 INTRODUCTION

SMT solving is at the heart of some of the most effective theorem proving and model checking formal

verification methods that can scale up to impressive verification tasks. A current limitation, however, is its

lack of extensibility : current SMT solvers support a (typically small) library of decidable theories. Although

these theories can be combined by the Nelson-Oppen (NO) [19, 20] or Shostak [21] methods under some

conditions, only the theories in the SMT solver library and their combinations are available to the user: any

other theories extending the tool must be implemented by the tool builders.

In practice, of course, the problem a user has to solve may not be expressible using only the theories

available in an SMT solver’s library. Therefore, the goal of making SMT solvers user-extensible, so that a

user can easily define new decidable theories and use them in the verification process is highly desirable,

because it widens the range of decidable subproblems of a verification problem.

Recall that E-unifiability is a well-known subproblem of SMT solving, namely, satisfiability in the free

pΣ, Eq-algebra TΣ{EpXq on countably many variables X, but restricted to positive (i.e., negation-free)

quantifier-free (QF) formulas. Until recently, unification tools also suffered from a lack of extensibility:

such tools usually support a small library of theories pΣ, Eq, combinable by methods similar to the NO

method ([22] explicitly relates the NO method and combination algorithms for unification). Again, the user

could not extend such decidable unifiability/unification algorithms by defining new theories and using a

theory-generic algorithm. However, true user-extensibility has now been achieved for E-unification in the-

ories pΣ, Eq satisfying the finite variant property (FVP) [23] thanks to variant unification based on folding

variant narrowing [24]. In fact, variant unification for user-definable FVP theories is already supported by

Maude 2.7.1.

This suggests an obvious question: could variant unification be generalized to variant satisfiability, so that,

under suitable conditions on an FVP theory pΣ, Eq, satisfiability of QF formulas in the initial algebra TΣ{E

becomes decidable by a theory-generic satisfiability algorithm? This would then make satisfiability user-

extensible as desired. This question has been positively answered in [25, 36] by giving general conditions

under which satisfiability of QF formulas in the initial algebra TΣ{E of an FVP theory pΣ, Eq is decidable.

However, the results in [25, 36] do not really provide an algorithm in the full sense of the word, but rather

a theoretical skeleton on which such an algorithm can be fleshed out. The goal of the present chapter is to

design and prove correct several subalgorithms that are absolutely essential in order to obtain a complete

variant satisfiability algorithm. We then also present a Maude implementation of the variant satisfiability

algorithm and its subalgorithms using the reflective capabilities of Maude’s META-LEVEL module. In Section

4.1.1 below we first summarize some of the key concepts from [25, 36]. Then, in Section 4.1.2, we summarize

the variant satisfiability algorithm and subalgorithms presented in this chapter.

4.1.1 Variant Satisfiability in a Nutshell

Variant-based satisfiability [25, 36] is a theory-generic decision procedure that applies to the following,

easily user-specifiable infinite class of equational theories pΣ, E YBq:

1Chapter content was originally available at https://doi.org/10.1016/j.jlamp.2017.12.006. Reprinted with permission.

50

https://doi.org/10.1016/j.jlamp.2017.12.006

1. Σ is an order-sorted [33] signature of function symbols, supporting types, subtypes, and subtype

polymorphism;

2. the equations E Y B have the finite variant property [23] (more on this below), where B is a set of

equational axioms—such as commutativity and/or associativity commutativity and/or identity—that

have a finitary unification algorithm; and

3. pΣ, E Y Bq protects a constructor subtheory pΩ, EΩ Y BΩq—that is each ground Σ-term is EΩ Y BΩ-

equal to a ground Ω-term—and furthermore pΩ, EΩ YBΩq is an OS-compact theory [25, 36] (more on

this below).

The procedure can then decide satisfiability in the initial algebra TΣ{EYB , that is, in the algebraic data type

specified by pΣ, E YBq. Conditions (1)–(3) above apply to a useful infinite class of user-definable algebraic

data types.

The notions of variant and of OS-compactness mentioned above are defined in detail in Section 4.2. Here

we give some key intuitions about each notion. Given Σ-equations EYB such that the equations E oriented

as left-to-right rewrite rules are confluent and terminating modulo the equational axioms B, a variant of a

Σ-term t is a pair pu, θq where θ is a substitution, and u is the canonical form of the term instance tθ by

the rewrite rules E modulo B. Intuitively, the variants of t are the fully simplified patterns to which the

instances of t can reduce. Some simplified instances are of course more general (as patterns) than others.

E Y B has the finite variant property (FVP) if any Σ-term t has a finite set of most general variants. We

can first illustrate FVP by its absence:

Example 4.1 (Peano Addition). The theory pΣ, Eq with Σ “ t0, s,`u and E “ tx ` 0 “ x, x ` spyq “

spx ` yqu the addition equations (so here B “ H), is not FVP, since px ` y, idq, pspx ` y1q, ty ÞÑ spy1quq,

pspspx` y2qq, ty ÞÑ spspy2qquq, . . ., ps
npx` ynq, ty ÞÑ snpynquq, . . ., are all incomparable variants of x` y.

Here is a very simple, yet interesting, example of an FVP theory:

Example 4.2 (Presburger Arithmetic). This is a theory pΣ, EYBq where Σ has two sorts, Nat and Truth.

Nat has constants 0 and 1 and a binary function symbol `, Truth has constants K and J, and we have order

predicates ą , ě : Nat Nat Ñ Truth defined by the equations E “ t1 `m ` n ą n “ J,m ą m ` n “

K,m`n ě m “ J, n ě 1`m`n “ Ku. The equations B “ tn`m “ m`n, pn`mq`k “ n`pm`kq, n`0 “ nu

are the associativity and commutativity axioms for ` with identity 0. This specification is FVP. For example,

the term n ą m has three variants: pn ą m, idq, pJ, tn ÞÑ m` n1 ` 1uq, and pK, tm ÞÑ n` n1uq.

Of course, Presburger arithmetic is decidable. The variant satisfiability algorithm, however, is specification-

dependent. Since we have seen that Peano addition is not FVP, variant satisfiability will not apply to a

specification of Presburger arithmetic extending Peano addition with ą and ě. But it does apply to the

specification in Example 4.2. Let us further explain why Example 4.2 satisfies condition (2). FVP intuitively

means (more on this in [23, 41]) that, given any term, we can give a bound on the number of rewrite steps

required to reduce to canonical form any of its instances by irreducible substitutions. This is clearly the case

for Example 4.2, since all terms of sort Nat are irreducible, and all terms of sort Truth are either irreducible

or reducible in just one rewrite step. By contrast, in Example 4.1 there is no bound on the number of

rewrite steps needed to reduce to canonical form any instance px` yqσ of the term x` y by an irreducible

substitution σ. Furthermore, Example 4.2, besides trivially satisfying condition (1), also satisfies condition

51

(3) as we now explain. The equations E fully define ą and ě. Therefore, the subsignature Ω of Σ obtained

by removing ą and ě, gives us a protecting subtheory inclusion pΩ, Bq Ă pΣ, EYBq. The key property then

ensuring decidability of quantifier-free (QF) formulas in TΣ{EYB is that the constructor subtheory pΩ, Bq

is OS-compact. Roughly speaking (see Section 4.2 for a precise definition) this means that B-equality is

decidable and that a conjunction of Ω-disequalities
Ź

i ui ­“ vi where all the variables range over infinite

sorts in TΩ{B (in our example over the sort Nat) is satisfiable in TΩ{B iff for each i we have ui ­“B vi, where

“B denotes provable B-equality. In fact, it is proved in [25, 36] that for B any combination of associativity

and/or commutativity and/or identity axioms, except associativity without commutativity, any pΩ, Bq is

OS-compact, and that then QF satisfiability in TΩ{B is decidable.

The key idea of variant satisfiability is to reduce satisfiability of QF formulas in TΣ{EYB to satisfiability

of semantically equivalent Ω-formulas in TΩ{BΩ
(in Example 4.2, B “ BΩ, but generally B Ě BΩ). This

reduction is achieved as follows. Since any QF formula can be put in disjunctive normal form and a

disjunction is satisfiable in TΣ{EYB iff one of the disjuncts is, it is enough to decide satisfiability of a

conjunction of Σ-atoms of the form
Ź

G^
Ź

D, where G is a set of equalities and D a set of disequalities.

Then the variant satisfiability algorithm proceeds as follows:

• Equation Elimination.
Ź

G^
Ź

D is semantically equivalent to disjunction
Ž

αPUnif Ω
EYBp

Ź

Gq

Ź

Dα,

where the FVP property is exploited to effectively compute the so-called constructor E Y B-unifiers

of the conjunction of equations
Ź

G.

• Constructor Variant Computation. Each conjunction of Σ-disequalities
Ź

Dα so obtained is se-

mantically equivalent to a disjunction of the form
Ž

j

Ź

D1j , where each
Ź

D1j is a so-called constructor

variant of
Ź

Dα. That is, a variant of
Ź

Dα for the equations E Y B when we view conjunction ^

and disequality ­“ as new, free function symbol, such that
Ź

D1j is an Ω-formula.

• OS-Compact Satisfiability Check. After instantiating variables in finite sorts, by OS-compactness

each such
Ź

D1j , say with
Ź

D1j “
Ź

i ui ­“ vi, can be automatically checked by checking ui ­“B vi.

We can illustrate this algorithm by proving the linear order property of ě, i.e., the formula m ě n “

J _ n ě m “ J. This is equivalent to proving m ě n ­“ J ^ n ě m ­“ J unsatisfiable. In this case, we

do not need to eliminate any equalities, so we can proceed to the second step of Constructor Variant

Computation. There are three such constructor variants, namely, pJ ­“ J^J ­“ J, tn ÞÑ muq, pJ ­“ J^K ­“

J, tm ÞÑ 1`n`kuq, pJ ­“ J^K ­“ J, tn ÞÑ 1`m`kuq. Since all are unsatisfiable, m ě n “ J_n ě m “ J

is a theorem of Presburger arithmetic.

4.1.2 The Variant Satisfiability Algorithm and its Subalgorithms

So, isn’t the variant satisfiability algorithm summarized above already defined? As pointed out earlier,

the answer is no: the algorithm’s main skeleton is indeed defined in [25, 36]; but three essential components

of the algorithm are not. The main three missing components, or subalgorithms, are:

1. Constructor Variants Algorithm. The constructor variants of a term are variants that are constructor

terms. Their definition is given in [25]; but no algorithm is given there to compute a complete finite set

of constructor variants of a given term. This problem is easy for Example 4.2, because there we can

easily syntactically distinguish constructor terms from terms having defined symbols (in Example 4.2

52

the only defined symbols are ą and ě). But the problem is considerably more subtle when, by subsort

polymorphism, a symbol is simultaneously a constructor for some typings and a defined symbol for

other typings. This is illustrated by our running example (Example 4.3 presented later in this section),

where ` has two constructor typings, namely, ` : Nat Nat Ñ Nat and ` : NzNat NzNat Ñ NzNat ,

with subsort inclusions NzNat ă Nat ă Int of non-zero naturals into naturals, and of naturals into

integers, but where ` : Int Int Ñ Int is not a constructor, but a function defined by the three

equations listed in Example 4.3.

2. Constructor Unification Algorithm. For the exact same reasons, although the notion of constructor

unifier is defined in [25], no unification algorithm is given there to compute a finite complete set of

constructor unifiers of a unification problem. This is again easy when no function symbols have both

constructor and defined symbol typings and no axioms in B can make a non-constructor term equal

to a constructor term; but it is considerably more subtle when a symbol can be both a constructor for

some typings and a defined symbol for other typings.

3. Auxiliary OS-Compactness Algorithms. Although the notion of OS-compact theory is defined in [25],

and the theorem that all theories of the form pΩ, Bq with B any combination of associativity and/or

commutativity an/or identity axioms, except associativity without commutativity, is also proved there,

what are missing are algorithms to: (i) automatically check that a constructor subtheory is OS-compact;

(ii) automatically compute which sorts in TΩ{B are finite and which are infinite; (iii) for finite sorts, to

automatically compute a canonical representative t1 P rtsB for each B-equivalence class in a finite sort;

and (iv) decide satisfiability of a QF Ω-formula in TΩ{B .

Without these three missing components, the variant satisfiability algorithm is only partially defined

and cannot be implemented. The main goal of this chapter is to: (a) define such subalgorithms; (b)

prove them correct, and (c) derive a reflective meta-level implementation of them and of the entire variant

satisfiability algorithm using Maude’s META-LEVEL module. Components (1)–(3) above have themselves

other sub-components. The entire hierarchy of subalgorithms developed in this chapter is summarized in

the tree below:

Figure 4.1: Variant Satsifiability Subalgorithm Hierarchy

Blocks highlighted in green represent the new algorithmic contributions of this chapter, while blocks

highlighted in yellow represent existing algorithms already available: folding variant narrowing and variant

unification are available in Maude 2.7.1, and the tree automata check for the freeness of constructors Ω

modulo axioms B is available in the CETA library underlying Maude’s SCC tool [56, 57].

53

A few remarks can be appropriate to clarify in which sense the above algorithms are metalevel algorithms.

The sense is the obvious one: we could just as well have described them, in different but equivalent words, as

theory-generic algorithms: they are not defined for a fixed theory, say as associative-commutative unification

is, but for an infinite class of theories. This necessarily means that they must be described at the meta-level

of order-sorted equational logic. This is of course harmless and in a sense transparent at the theoretical

level: we do this all the time. For example, syntactic unification, or congruence closure are likewise metalevel

algorithms in this precise sense, since they are both generic on the signature Σ. Therefore, this places no

special demands on the theoretical definition and proof of the algorithms: we can use standard mathematical

notation. The reason why we emphasize the algorithms’ metalevel nature is that, as further explained in

Section 4.4, we can exploit the fact that both order-sorted equational logic and rewriting logic are reflective

[58], and that their reflection is efficiently reified in Maude’s META-LEVEL module [6], to easily derive a

reflective Maude implementation of these algorithms by defining them as metalevel functions extending

Maude’s META-LEVEL module.

Chapter Overview. The main contributions of this chapter are: (i) the design of all the subalgorithms

needed to have a full definition of the variant satisfiability algorithm; (ii) proofs of correctness for these

subalgorithms; and (iii) a reflective Maude implementation of variant satisfiability. More concretely, all the

subalgorithms marked in green in the above hierarchy are defined, proved correct, and implemented as exten-

sions of Maude’s META-LEVEL module. These subalgorithms plus existing folding variant narrowing, variant

unification, and freeness modulo checking algorithms are the building blocks for our Maude implementation

of variant satisfiability.

In this section, we make heavy use of the preliminaries on rewriting as equational deduction in Section

2.2.1; please refer liberally if needed. In this chapter, we assume all rewrite theories are unconditional, in

sense of Definition 2.8 or 2.5.

Example 4.3 (Integers with Addition). The running example in this chapter is the theory of integers with

addition Z`. The signature Σ and constructor subsignature Ω are specified in Figure 4.2 below. Both

signatures have sorts Nat, NzNat, NzNeg, and Int, and subsorts NzNat ă Nat and Nat NzNeg ă Int, where

NzNat (resp. NzNeg) denotes the non-zero naturals (resp. negatives). The constructor subsignature Ω has

constants 0 of sort Nat and 1 of sort NzNat, and operators ` : Nat Nat Ñ Nat, ` : NzNat NzNat Ñ

NzNat, and ´ : NzNat Ñ NzNeg shown in blue. The signature Σ contains all the operators defined in Ω and

adds one defined function symbol: ` : Int Int Ñ Int shown in red. Let B be the set of ACU axioms for

p`q with identity 0 and the equations E0 defining p`q be the following (with variables i : Int, n :NzNat, and

m :NzNat)

i` n`´pnq “ i (4.1)

i`´pnq ` ´pmq “ i`´pn`mq (4.2)

i` n`´pn`mq “ i`´pmq (4.3)

Then pΣ, B,Rq is a decomposition of the theory pΣ, B Y E0q with R “
ÝÑ
E0. Furthermore pΣ, B,Rq protects

the constructor decomposition pΩ, B,Hq, i.e. Σ is sufficiently complete with respect to Ω modulo B.

54

Figure 4.2: Signatures Σ and Ω for theory Z`

Finally, we explain how Figure 4.2 corresponds to Z`. For each sort s P S, there is a circle which bears its

name; for each subsort ps, s1q P păq, there is a solid black line drawn from sort s to sort s1. Finally, for each

operator f , there are lines drawn from its argument sorts s1, ¨ ¨ ¨ , sn that merge into one arrow entering its

output sort s. Since constants have no argument sorts, they are just arrows entering a sort. In the sequel,

constructor operators (resp. defined operators) will be drawn in red (resp. blue).

4.2 VARIANT UNIFICATION AND VARIANT SATISFIABILITY

Folding variant narrowing [24] can be used as part of an E-unification algorithm, called variant unification,

whenever theory pΣ, Eq has a decomposition R “ pΣ, B,Rq and B has a finitary unification algorithm [24].

Definition 4.1 Let Σ^ denote the signature Σ extended to represent the language Σ-equations, i.e. let Σ^

denote ΣJ extended by adding:

1. fresh sorts Lit and Conj with a subsort inclusion Lit ă Conj and a binary conjunction operator

^ : Lit Conj Ñ Conj , and

2. for each connected component rss P xSJ with top sort Jrss, binary operators “ : Jrss Jrss Ñ Lit and

­“ : Jrss Jrss Ñ Lit.

Given R “ pΣ, B,Rq, let R^ “ pΣ^, B,Rq. Note that, since we are just adding free constructors in fresh

new sorts, R^ is FVP iff R is FVP.

Theorem 4.1 (Variant Unification). [25] For R “ pΣ, B,Rq an FVP decomposition of pΣ, Eq, where B

has a finitary B-unification algorithm, let φ be a system of Σ-equations viewed as a Σ^-term of sort Conj .

Then, for any finite set W of variables W Ě varspφq, the set VarUnif WE pφq of variant E-unifiers of φ away

from W is by definition the set:

tpθγq|varspφq | pφ
1, θq P JφKWR,B ^ γ P UnifW,θB pφ1q ^ pφ1γ, pθγq|varspφqq P JφK˚R,Bu (4.4)

Furthermore, the generation of VarUnif WE pφq by folding variant narrowing of φ followed by B-unification

always terminates with a finite set of unifiers, thus providing a finitary E-unification algorithm.

As already summarized in Section 4.1.1, variant satisfiability [25, 36] extends the variant unification

Theorem 4.1 above to a general method to decide satisfiability for any QF equational Σ-formula in TΣ{EYB .

Essentially, the method outlined in [25] divides the process of deciding the satisfiability of a conjunction of

literals
Ź

G^
Ź

D with G equalities and D disequalities into three main steps:

1. Equation Elimination. The conjunction of equations
Ź

G is removed by computing its set Unif Ω
Ep

Ź

Gq

of constructor unifiers, thus obtaining a semantically equivalent formula
Ž

αPUnif Ω
Ep

Ź

Gq

Ź

Dα.

55

2. Constructor Variant Computation. Reduce the satisfiability of
Ź

Dα in TΣ,E to an equisatisfiable

problem in the constructor subtheory pΩ, EΩq’s initial algebra TΩ,EΩ using the constructor variants of
Ź

Dα.

3. OS-Compact Satisfiability Check. Assuming pΩ, EΩq belongs to the class of OS-compact equa-

tional theories for which satisfiability in the initial algebra is decidable, check whether any of the

constructor variants
Ź

D1 of
Ź

Dα is satisfiable in TΩ,EΩ .

Technically, the constructor unifier notion is not needed by the proofs; however, it provides an important

gain in efficiency by throwing out unnecessary unifiers which are otherwise redundant. We first define the

notions constructor variant and constructor unifier below and then show how they are used.

Definition 4.2 (Constructor Variant). [25] Let R “ pΣ, B,Rq be a decomposition of pΣ, Eq, and let RΩ “

pΩ, BΩ, RΩq be a constructor decomposition of R. Then an R,B-variant pu, θq of a Σ-term t is called a

constructor R,B-variant of t iff u P TΩpXq. Let JtKΩ
R,B denote a complete set of constructor variants of a

term t, i.e. for each constructor variant pv, βq of t there is a pw,αq P JtKΩ
R,B and a substitution γ such that

v “B wγ, and β “B pαγq|varsptq. Similarly, let JtKΩ,W
R,B denote a complete set of constructor variants “away

from W” as explained in Definition 2.13.

Definition 4.3 (Constructor Unifier, Constructor Variant Unifier). An R,B-normalized E-unifier θ of uni-

fication problem φ ” u1 “ v1 ^ . . . ^ un “ vn is a constructor E-unifier of φ iff terms puiθq!R,B , pviθq!R,B P

TΩpXq, 1 ď i ď n.

If there exists a variant E-unifier α of φ and substitution β where θ “B αβ, we call θ a constructor variant

unifier. Let VarUnif Ω,W
E pφq denote a complete set constructor variant unifiers of a system of equations φ

with W Ě varspφq, i.e., for each constructor variant unifier θ of φ there is a ρ P VarUnif Ω,W
E pφq and a

substitution γ such that θ|W “B pργq|W .

Example 4.4 (Integers with Addition, Constructor Variants/Unifiers). Recall the theory Z` from Example

2.2. Even though we do not have an algorithm (yet) to compute JtKΩ,W
R,B for a term t, we can still manually

compute these sets; we will show how they are generated in Section 4.3.2. The notions of constructor vari-

ant and constructor unifier become more subtle when, due to order-sortedness, a same subsort-polymorphic

operator f has some typings that are constructors and some other typings that are defined functions. Con-

sider now the term y ` z with y, z variables of sort Int. By folding variant narrowing, it is easy to show

y ` z has twelve variants in general, but to simplify the example, we focus on its most simple variant, i.e.

u “ py ` z, idq with id the identity substitution. Note that u is not a constructor variant in Z`, and

there are variants less general than py ` z, idq that are constructor variants. A complete set of construc-

tor variants less general than py ` z, idq is: (i) py1, ty ÞÑ y1, z ÞÑ 0uq, (ii) pz1, tz ÞÑ z1, y ÞÑ 0uq, and (iii)

py1` z1, ty ÞÑ y1 :Nat , z ÞÑ z1 :Natuq. Likewise, let φ be the equation w “ y` z, with w, y, z of sort Int. Then

tw ÞÑ y ` zu is a trivial Z`-unifier of φ, but not a constructor unifier. A complete set VarUnif Ω,W
E pφq of

constructor Z`-unifiers of φ less general than tw ÞÑ y` zu is given by the unifiers: (i) tw ÞÑ y, z ÞÑ 0u, (ii)

tw ÞÑ z, y ÞÑ 0u, and (iii) tw ÞÑ y1 ` z1, y ÞÑ y1 :Nat , z ÞÑ z1 :Natu. Similarly, we show how to generate these

unifiers in Section 4.3.2.

Theorem 4.2 below states that constructor unifiers are enough.

56

Theorem 4.2 (Completeness of Constructor Unifiers). [25] Let R “ pΣ, B,Rq be a decomposition of pΣ, Eq,

and RΩ “ pΩ, BΩ, RΩq a constructor decomposition of R, and let φ ” u1 “ v1 ^ . . . ^ un “ vn be a system

of Σ-equations with Y “ varspφq. Then: (i) if δ P rYÑTΩs is a R,B-normalized ground E-unifier of φ, then

there is a constructor E-unifier θ of φ away from W and a substitution γ such that δ|W “B pθγq|W (ii)

TΣ{E |ù pDY q φ iff φ has a constructor E-unifier.

Theorem 4.3 shows how to reduce satisfiability in the initial algebra TΣ{E to satisfiability in the algebra

TΩ{EΩ
. This reduction alone does not yet ensure decidability.

Theorem 4.3 (Descent Theorem). [25] Let pΣ, Eq be an OS equational theory having a decomposition

R “ pΣ, B,Rq and protecting a constructor subtheory pΩ, EΩq with constructor decomposition RΩ. Then, a

QF Σ-conjunction of disequalities φ is satisfiable in TΣ{E iff there is a constructor variant pφ1, θq of φ such

that φ1 is satisfiable in TΩ{EΩ
.

To obtain decidability, we still need to decide satisfiability in the algebra TΩ{EΩ
. For that, we turn to

OS-compact theories. The relevant notions are defined below.

Definition 4.4 (E-Consistent). Call a Σ-disequality u ­“ v E-consistent iff u ­“E v. Likewise, call a

conjunction
Ź

iPI ui ­“ vi of Σ-disequalities E-consistent iff for each i P I, ui ­“ vi is E-consistent.

Definition 4.5 (OS-Compactness). [25] An equational theory pΣ, Eq is called OS-compact iff: (i) for each

sort s in Σ we can effectively determine whether TΣ{E,s is finite or infinite, and, if finite, can effectively

compute a representative ground term repprusq P rus for each rus P TΣ{E,s (ii) “E is decidable and E has

a finitary unification algorithm; and (iii) any E-consistent finite conjunction
Ź

D of Σ-disequalities whose

variables all have infinite sorts is satisfiable in TΣ{E.

All of the pieces are now in place to describe the algorithm’s main stages.

4.2.1 Variant Satisfiability Algorithm

Let (i) theory pΣ, Eq protect pΩ, EΩq (ii) pΣ, Eq have an FVP decomposition R “ pΣ, B,Rq that protects

a constructor decomposition RΩ “ pΣ, B,RΩq of pΩ, EΩq (iii) there be a finitary B-unification algorithm

(iv) pΩ, EΩq be OS-compact (v) φ be a QF equational Σ-formula. To decide satisfiability of φ in TΣ{E , our

algorithm applies a series of satisfiability-preserving transformations:

1. Apply disjunctive normal form (DNF) transformation such that φdnf ”
Ž

iPIp
Ź

jPJ u
1
j “ v1j^

Ź

kPK u
2
k ­“

v2kq.

2. For i P I, compute constructor unifiers Θ “ Unif Ω,W
E p

Ź

jPJ u
1
j “ v1jq with W Ě varspφdnf q. Then let

φneg ”
Ž

θPΘp
Ź

kPK u
2
kθ ­“ v2kθq!R,B . By Theorem 4.2, φneg is satisfiable iff φdnf is.

3. For each θ P Θ, compute Φ ” J
Ź

kPK u
2
kθ!R,B ­“ v2kθ!R,BKΩ,W

R,B . By Theorem 4.3, φneg is satisfiable in

TΣ{E iff there is a variant φvar P Φ with φvar satisfiable in TΩ{EΩ
.

4. For each φvar P Φ, generate Φinf where each variable x : s P varspφvar q with s finite is replaced by a

set of its unique representatives. By OS-compactness, this process will terminate.

57

5. Since each φinf P Φinf is a conjunction of Ω-disequalities of infinite sorts, by OS-compactness, check

EΩ-consistency to decide satisfiability in TΩ{EΩ
.

The papers [25, 36] contain many examples of commonly used theories that have FVP specifications whose

constructor decompositions are OS-compact. A first method to show OS-compactness is both very simple

and widely applicable to constructor decompositions of FVP theories; it generalizes a similar result in [31]

for the unsorted and AC case:

Theorem 4.4 [25] If Ω is a free signature of constructors modulo BΩ, axioms BΩ are subsort-polymorphic,

and BΩ Ď ACCU , then theory pΩ, BΩq is OS-compact and satisfiability of QF Ω-formulas in TΩ{BΩ
is

decidable.

We now formally define the kinds of theories our algorithm supports:

Definition 4.6 Call equational theory pΣ, Eq simple iff (i) Σ and E are finite (ii) pΣ, Eq decomposes into

R “ pΣ, B,Rq (iii) R is FVP, (iv) B Ď ACCU and is subsort-polymorphic, and (v) R protects a constructor

decomposition RΩ “ pΩ, BΩ,Hq, i.e., theory pΣ, Eq protects pΩ, BΩq, a subsignature of free constructors

modulo BΩ.

Since simple theories have FVP decompositions, finitary B-unification algorithms, and OS-compact con-

structor decompositions, by the above algorithm, satisfiability of QF equational Σ-formulas in TΣ{E – CR

is decidable. In the next section, we will see how the finiteness assumptions are used. Recall again the

hierarchy of subalgorithms already shown in Figure 4.1. Blocks highlighted in green represent the new al-

gorithmic contributions of this chapter, while blocks highlighted in yellow represent existing algorithms. As

already explained in Section 4.1.2, none of the algorithms in the green blocks existed prior to this work.

Their definition and proof of correctness is the subject of Section 4.3.

4.3 METALEVEL ALGORITHMS FOR VARIANT SATISFIABILITY

For simple OS equational theories pΣ, Eq, solving variant satisfiability problems has been condensed in

Section 4.2 down into two phases. The first phase is steps (1)-(3) in the high-level algorithm, which reduce

satisfiability of a conjunction of Σ-literals in TΣ{E – CR to satisfiability of a conjunction of Ω-disequalities

in TΩ{BΩ
– CRΩ

. Then the second phase corresponds to steps (4)-(5) in the high-level algorithm, which

decide satisfiability of conjunctions of Ω-disequalities in CRΩ
when pΩ, BΩq is OS-compact.

At a theoretical level we have a skeleton of a high-level algorithm for variant satisfiability. But at a

concrete, algorithmic level several important questions, essential for obtaining an actual algorithm, remain

unresolved: (a) how can we automatically check a theory is OS-compact and then decide satisfiability of

equational formulas in that theory? (b) how can we compute constructor variants and constructor variant

unifiers? (c) how can we prove that the auxiliary algorithms answering questions (a)-(b) are correct? and

(d) how can we implement both the main algorithm and the auxiliary algorithms in a correctness-preserving

manner?

Let us begin with question (c). The algorithm skeleton sketched in Section 4.2 is theory-generic and

therefore manipulates metalevel entities like operators, signatures, terms, equations, and theories. Likewise,

the checks for OS-compactness and the computation of constructor variants and constructor unifiers are

problems fully expressible in terms of such metalevel entities. Therefore, both for mathematical clarity and

58

for simplicity of the needed correctness proofs, the definitions of the auxiliary algorithms should be carried

out at the metalevel of equational and rewriting logic. As already explained in Section 4.3, this just means

that they should be expressed in standard logical notation, not for a fixed theory, but for theories in general.

This brings us to question (d), which has a simple answer: since both equational and rewriting logic are

reflective [58], once we have defined and proved correct at the metalevel the auxiliary algorithms solving

questions (a)-(b), we can derive correct implementations for them by meta-representing them at the logic’s

object level as equational or rewrite theories. In fact, as further explained in Section 4.4, this can be carried

out in Maude by defining suitable meta-level theories extending the META-LEVEL module [6].

The previous paragraphs lead us to the main contributions of the present chapter. We answer question

(a) and part of (c) in Section 4.3.1 by defining and proving correct at the metalevel a method to check if a

theory is OS-compact and to decide satisfiability of formulas in such a theory. We answer question (b) and

the other part of (c) in Section 4.3.2 by defining and proving correct at the meta-level a method to compute

constructor unifiers and constructor variants.

Furthermore, for improved efficiency we also provide an optimized version of constructor variant and

unifier generation in Section 4.3.3; and discuss also the method of descent maps in the sense of [25]—

which can both increase efficiency and widen the scope of decidable theories—and some specific descent

maps currently supported in Section 4.3.4. Finally, we answer question (d) by meta-representing both the

auxiliary algorithms (proved correct in this section), and the main algorithm (already proved correct in

[25, 36]) in Section 4.4.

4.3.1 OS-Compactness and Satisfiability

In this section we present a high-level description of the algorithms needed to check that an equational

theory pΩ, BΩq is OS-compact and check if a conjunction of Ω-disequalities is satisfiable in TΩ{BΩ
. Note

that the conditions checked are sufficient to prove OS-compactness in many practical cases, but they do not

cover every possibility.

As shown in Theorem 4.4, a sufficient condition for a theory pΩ, BΩq to be OS-compact is for it to have

a decomposition of the form RΩ “ pΩ, BΩ,Hq where (i) BΩ Ď ACCU and (ii) axioms BΩ are subsort-

polymorphic. Thus, a sufficient condition is to require: (1) BΩ to be a set of subsort-polymorphic ACCU

axioms, and (2) Ω to be a signature of free constructors modulo BΩ. Fortunately, both of these subgoals

are quite simple to check. Goal (1) can be solved by iterating over each axiom and applying a case analysis

against its structure. The Maude language used by our implementation implicitly lifts axioms to subsort-

polymorphic versions so we can elide this particular check. Goal (2) can be solved by an application of

propositional tree automata (PTA) modulo ACCU axioms. In particular, if the rules R in R are linear and

unconditional, then constructor freeness modulo B can be translated into a PTA emptiness problem; see

[59] for further details.

The more challenging task still remains. Assuming that our theory pΩ, BΩq meets the conditions of

Theorem 4.4, we still need to decide if a conjunction of Ω-disequalities is decidable. This corresponds to

steps (4)-(5) in the high-level algorithm at the end of Section 4.2. We start with step (5) since it is simpler.

At this stage, we have a conjunction of Ω-disequalities where the sort of each variable is infinite. The formula

will be satisfiable iff it is BΩ-consistent. BΩ-consistency of a conjunction of Ω-disequalities
Ź

kPK uk ­“ vk is

easy to check: since Ω is a signature of free constructors modulo BΩ, we just need to check that uk ­“BΩ vk

for each k P K. Since BΩ Ď ACCU and since equality modulo associativity, commutativity, and unit axioms

59

is clearly decidable, this process will terminate.

To complete this subsection, we just need to provide a way to compute step (4) in the high-level algorithm.

This reduces into two requirements: (a) given a sort s, we need to check if the set TΩ{BΩ,s is finite or infinite;

(b) if finite, we need a function that computes a unique representative repprtsBΩq for each equivalence class

of terms rtsBΩ P TΩ{BΩ,s. These two requirements are addressed in the two subsections below. For ease of

presentation, we start by addressing (b) since its solution is used to solve (a). But first, we need a lemma

and a few definitions.

Lemma 4.1 (Non-emptiness Checking). Given Ω “ ppS,ďq, F q, we define ΩM “ SZt*uZt , u an unsorted

signature. Then (a) we can deterministically construct a rewrite theory RM (see full definition in Appendix

C.1) over signature ΩM such that p@s P Sq TΩ,s ‰ H ô RM $ s Ñ` * (b) checking RM $ s Ñ` * is

decidable (c) given axiom set B, TΩ{B,s ‰ H iff TΩ,s ‰ H.

Proof 4.1 See Appendix C.1.

Definition 4.7 (Bisimilarity, Local Equitermination). Given binary relations R1 Ď S1 ˆ S1, and R2 Ď

S2 ˆ S2, we write R1 – R2 iff R1 and R2 are bisimilar. Given S Ď S1 X S2, we say R1 and R2 are locally

equiterminating over S and write R1
S
ÐÑ R2 iff for all s P S, pR1, sq terminates iff pR2, sq terminates where,

by definition, pR, sq terminates iff there is no infinite R-path starting from s.

By Lemma 4.1, if S Z F is finite, all sets defined in Definition 4.8 are computable.

Definition 4.8 (Restrictions, Sort Signature). Given signature Ω “ ppS,ďq, F q the non-empty restriction

of a set of sorts/operators and a signature are given by SĄH “ ts P S | TΩ{B,s ‰ Hu, FĄH “ tf :

s1 ¨ ¨ ¨ snÑ s P F | ts1, . . . , snu Ď SĄHu, and ΩĄH “ ppSĄH,ă|SĄHq, FĄHq respectively. Given F Ď F 1, the

operator restriction of a signature is defined by Ω|F 1 “ ppS,ăq, F 1q. The sort signature SΩ is defined by

SΩ “ ppS,ăq, ts : Ñ rss | s P Suq.

Finite Sort Representative Generation.

Here we require a method that can compute a unique representative repprtsBΩ
q for each rtsBΩ

P TΩ{BΩ,s

whenever |TΩ{BΩ,s| ă ℵ0. Our general strategy is to show how an Ω-term parser can be seen as a certain

kind of ground rewrite theory over the signature Ω, and thus, term generation is simply the inverse theory

obtained by reversing the direction of the rewrite rules. Then, by applying the term generation rewrite

theory modulo axioms BΩ, we can obtain the unique representative repprtsBΩq.

Recall any order-sorted signature Ω can be viewed as a tree automaton such that the tree automaton

accepts a term t in final state s iff t P TΩ,s [17]. It has long been known that tree automata are very

simple ground rewrite theories [60]. Since (i) tree automata recognizable languages are a strict subset of all

context-free languages and (ii) context-free grammar production rules can easily be seen as rewrite rules,

this result is not surprising. Definition 4.9 shows how to construct a ground rewrite theory which parses

Ω-terms from order-sorted signature Ω.

Definition 4.9 RP pΩq “ pΩ̂ĄH Z SΩ,H, RP q where RP is the smallest rewrite relation RP “ RP,S Z

RP,NC ZRP,C such that:

(a) sÑ s1 P RP,S if s ă s1

60

(b) fps1, ¨ ¨ ¨ , skq Ñ s P RP,NC if f : s1 ¨ ¨ ¨ sk Ñ s P FĄH ^ k ě 1

(c) cÑ s P RP,C if c : Ñ s P FĄH

Note that, even though ΩĄH Ď Ω, we do not lose completeness for parsing, since any sort in s P S{SĄH

necessarily satisfies TΩ,s “ H. Furthermore, it is straightforward to show that Ω Z SΩ is sensible and

preregular iff Ω is sensible and preregular and p@s P SĄHq t P TΩ,s ô tÑ`
RP

s.

We now turn to term generation.

Definition 4.10 Let RGpΩq “ pΩ̂ĄH Z SΩ,H, RGq with RG “ R´1
P . Since RP “ RP,S ZRP,NC ZRP,C we

will use the following notation RG,S “ R´1
P,S, RG,NC “ R´1

P,NC , and RG,C “ R´1
P,C .

Again, by only considering ΩĄH Ď Ω, we do not lose completeness for term generation. We immediately

obtain the following corollary.

Corollary 4.1 p@s P SĄHq t P TΩ ô sÑ!
RG

t

Furthermore, if |TΩ,s| ă ℵ0 and Ω has no empty sorts, this process will always terminate. Note that we

can apply the rules RG modulo BΩ. Then the set ReppTΩ{BΩ,sq “ trepprtsq | rts P TΩ{BΩ,su is exactly the set

ReppTΩ{BΩ,sq “ tt | sÑ
!
RG,BΩ

tu.

Example 4.5 (Integers with Addition, Term Generation). Consider the theory Z` defined in Example 4.3.

We define the sort generation rewrite theory RGpΩq. Since Ω has no empty sorts, ΩĄH “ Ω. We must

also kind-complete Ω; we add a fresh top sort sort called rInts and operators ` : rInts rInts Ñ rInts,

´ : rInts Ñ rInts, and constants 0, 1 obtain new typings in rInts. We also add fresh constants Nat, NzNat,

NzNeg, and Int of sort rInts. Our set of rewrite rules contains:

NzNat Ñ 1

Nat Ñ 0

NzNat Ñ NzNat `NzNat

Nat Ñ Nat `Nat

NzNeg Ñ ´pNzNatq

Int Ñ NzNeg

Int Ñ Nat

Nat Ñ NzNat

Figure 4.3: Term Generation Rewrite Rules for Z`

We did not include a production rule for the operator ` : Int Int Ñ Int since that is not a constructor. To

generate the term 1`1, we could use the rewrite sequence Nat Ñ NzNat Ñ NzNat `NzNat Ñ 1`NzNat Ñ

1` 1.

Finite Sort Classification.

We devise an algorithm to check if |TΩ{BΩ,s| ă ℵ0 in two phases: (1) we first show how to decide |TΩ,s| ă

ℵ0 and (2) we then use this as a subroutine in an approximate algorithm to check |TΩ{BΩ,s| ă ℵ0 when

BΩ “ ACCU . In our implementation, if the approximate algorithm fails to classify some s as either infinite

or finite, the user must manually check sort finiteness and provide this information to the tool.

61

Note that using RG we already trivially obtain a semi-decidable algorithm for (1): compute SĄH via RM ;

if s P SĄH, then return yes; otherwise compute tt P TΩ,s | sÑ
!
RG

tu; if the process terminates, then return

yes. Of course, an efficient, decidable algorithm would be preferable. Nevertheless, RG is not too far from

our desired decidable solution.

To solve (1), our strategy is as follows: (i) give sufficient conditions so that termination of RG corresponds

to sort finiteness in Ω, (ii) define a rewrite system RF and give sufficient conditions to prove termination of

RF , (iii) show RF terminates if and only if RG terminates, (iv) and finally, present a decidable rewriting-

based algorithm characterize when RF terminates. To ease the exposition, proofs of some lengthier and less

interesting lemmas are in the Appendix.

Lemma 4.2 If |S| ` |F | ă ℵ0 then pRG, sq is non-terminating iff |TΩ,s| “ ℵ0

Proof 4.2 See Appendix C.1. ˝

Definition 4.11 Let RF pΩq “ pSĄH,H, RF q where RF “ RF,S Y RF,NC is the smallest rewrite relation

such that:

(a) s1 Ñ s P RF,S if s ă s1

(b) s1 Ñ s P RF,NC if f : s1 ¨ ¨ ¨ sn Ñ s1 P FĄH ^ tsu Ď ts1, ¨ ¨ ¨ , snu

Note that we only consider SĄH and FĄH, because, implicitly, any sort s P S{SĄH trivially satisfies

|TΩ,s| ă ℵ0 and any operator f P F {FĄH cannot contribute meaningfully to building a term t P TΩ,s. Before

we complete the main proof, we prove a lemma and add an additional definition.

Lemma 4.3 Given |SĄH| ă ℵ0 and s P SĄH, then the following are equivalent:

1. pRF , sq is non-terminating

2. pDs1 P SĄHq sÑ
˚
RF

s1 Ñ`
RF

s1

3. there is an infinite RF -rewrite path s ÑRF
s1 ÑRF

s2 ¨ ¨ ¨ ÑRF
sn ÑRF

¨ ¨ ¨ and s1 P SĄH occurring

infinitely often in the sequence

Proof 4.3 Obviously, (3) implies (2), since if s1 occurs infinitely often, we must have s Ñ˚
RF

s1 Ñ`
RF

s1.

Also, (2) implies (1) since s Ñ˚
RF

s1 Ñ`
RF

s1 Ñ`
RF

s1 Ñ`
RF
¨ ¨ ¨ is a non-terminating sequence. Finally, (1)

implies (3), since |SĄH| ď ℵ0, which forces some s1 P SĄH to occur infinitely often in any infinite sequence.

˝

Example 4.6 (Integers with Addition, Checking Finiteness). Consider the theory Z` defined in Example

4.3. We define the sort finiteness classification theory RF pΩq. Since Ω has no empty sorts, SĄH “ S, which

defines the states in our theory. We will be done when we add the rules RF . For each subsort in the subsort

relation, we add one rule. For each unique argument sort for non-constant operators, we also add one rule.

Thus, obtain the two sets RF,S and RF,NC on the left and right side below respectively.

At this point, we see that for each sort s P S, pRF pΩq, sq reaches a cycle, which implies pRF pΩq, sq is non-

terminating. However, in the presence of axioms B, we cannot yet decide whether any set TΩ{B,s is finite

or infinite.

62

Int Ñ NzNeg

Int Ñ Nat

Nat Ñ NzNat

NzNat Ñ NzNat

Nat Ñ Nat

NzNeg Ñ NzNat

Figure 4.4: Finiteness Checking Rewrite Rules for Z`

Definition 4.12 Let Ω “ ppS,ăq, NC Z Cq have non-constants and constants NC and C respectively.

Define R‹
GpΩq “ pΩĄH|NC Z SΩ,H, RG,‹q such that RG,‹ “ RG,S ZRG,NC .

Observe that R‹
G is identical to RG except that R‹

G contains neither constants nor rewrite rules over

constants. Now we are ready to prove the main theorem, namely, the local equitermination of RF and RG
over SĄH.

Theorem 4.5 RF SĄH
ÐÑ RG

Proof 4.4 Our proof proceeds in two parts: (a) RF – R‹
G and (b) R‹

G

SĄH
ÐÑ RG. This is sufficient since

bisimilarity of rewrite theories clearly preserves termination and, in particular, local equitermination.

We first prove the bisimilarity RF – R‹
G. Let H Ď pSĄH ˆ TΩ|NCZŜ

q be a relation where ps, tq P H iff

s Ĳ t. To prove RF – R‹
G, we show that given two arrows, we can find another two arrows to make the

diagrams below commute.

s s1

t t1

RF

H H

RG,‹

s s1

t t1

RF

H H

RG,‹

(4.5)

Suppose s Ĳ t. If ps, s1q P RF then ps, s1q P RF,S or ps, s1q P RF,NC . Assume ps, s1q P RF,S. Then s1 ă s in

ΩĄH. But then, by definition, ps, s1q P RG,S. Thus, trss ÑRG,‹
trs1s and s1 Ĳ trs1s, as required. Alternatively,

assume ps, s1q P RF,NC . Then Df : s1 ¨ ¨ ¨ sn Ñ s1 P FĄH with tsu Ď ts1, . . . , snu. But then, by definition,

ps1, fps1, ¨ ¨ ¨ , snqq P RG,NC . Thus, trss ÑRNC
G

trfps1, ¨ ¨ ¨ , snqs and s1 Ĳ trfps1, ¨ ¨ ¨ , snqs. Since we used only

definitional equivalences, the other direction follows symmetrically.

To prove R‹
G

SĄH
ÐÑ RG, given s P SĄH, we must show pR‹

G, sq terminates iff pRG, sq terminates. To begin,

note RG “ RG,‹ Z RG,C . Thus, if RG,‹ is non-terminating, RG must also be non-terminating. To see the

other direction, note RG,C always terminates since each rule has the form sÑ c P C and constants cannot

be rewritten. We proceed by proving the contrapositive. Thus, assume RG,‹ terminates. By Lemma 4.4

below, s Ñn
RG

t iff s Ñi
RG,‹

t1 Ñj
RG,C

t with n “ i ` j. Since RG,‹ and RG,C are terminating and finitely

branching, there are maximum bounds on the size of i and j, say, imax and jmax respectively. But then any

rewrite path sÑn
RG

t necessarily has n ď imax ` jmax ; thus pRG, sq is terminating. ˝

Lemma 4.4 p@n P Nq sÑn
RG

tô rpDi, j P Nq sÑi
RG,‹

t1 Ñj
RG,C

t^ n “ i` js

Proof 4.5 See Appendix C.1.

Thus, according to Lemmas 4.2 and 4.3 and Theorem 4.5, pRF , sq will generate a rewrite path containing

a cycle iff |TΩ,s| “ ℵ0. To complete the proof, for any s P S, we just need to characterize when pDs1 P

63

SĄHq sÑ
˚
RF

s1 Ñ`
RF

s1 holds. Thus, define the set of cycle sorts by cypSĄHq “ ts P SĄH | sÑ
`
RF

su. This

set can be computed by search, since the sort set and rules are both finite. Then, we immediately obtain

the following theorem characterizing infinite sorts:

Theorem 4.6 @s P SĄH |TΩ,s| “ ℵ0 iff
Ž

s1PcypSĄHq
RF $ sÑ˚ s1

Proof 4.6 By Lemmas 4.2 and 4.3 and Theorem 4.5, obtain |TΩ,s| “ ℵ0 iff the formula pDs1 P SĄHq sÑ
˚
RF

s1 Ñ`
RF

s1 holds. But by definition, any s1 which satisfies the formula satisfies s1 P cypSĄHq, so reduce to

Ds1 P cypSĄHq sÑ
˚
RF

s1. Since S is finite by assumption, cypSĄHq is finite. So, reduce to
Ž

s1PcypSĄHq
sÑ˚

RF

s1, which holds iff
Ž

s1PcypSĄHq
RF $ sÑ˚ s1 holds, as required. ˝

To solve goal (2) of this subsection, we use the algorithm from Theorem 4.6 as a subroutine in an approx-

imate algorithm to check |TΩ{BΩ,s| ă ℵ0 when BΩ “ ACCU . Since TΩ{B,s is a set of B-equivalence classes

rts, each containing at least one t1 P rts with t1 P TΩ,s, if |TΩ,s| ă ℵ0, then TΩ{B,s ă ℵ0. Nevertheless, in

general, it may be the case that |TΩ{B,s| ă ℵ0 but |TΩ,s| “ ℵ0.

Example 4.7 (Checking Finiteness Modulo B). Let Ω “ ppta, bu, tpa, bquq, 0 :Ñ a, 1 :Ñ b, ` : a a Ñ

a, ` : b bÑ bq and B contain a unit axiom for 0 over p`q. Then |TΩ,a| “ |TΩ,b| “ ℵ0 but |TΩ{B,a| “ 1 and

|TΩ{B,b| “ ℵ0.

Under some conditions on B, our methods can also check finiteness of term equivalence classes TΩ{B,s. The

two lemmas below define some easy cases.

Lemma 4.5 Suppose B is a set of associativity and/or commutativity axioms, |Ω| ă ℵ0, and that Ω is

B-preregular. Then |TΩ{B,s| ă ℵ0 iff |TΩ,s| ă ℵ0.

Proof 4.7 Since Ω is B-preregular, all axioms in B are sort preserving. Then obtain rusB P TΩ{AC,s iff

rusB Ď TΩ,s, proving pðq. To show pñq, note that for any combination of associativity and/or commutativity

axioms, rusB is a finite set. Since TΩ{B,s is finite, then TΩ,s is a finite union of finite sets and thus finite. ˝

Let set of unit axioms U have unit elements e1 :Ñ s1, ¨ ¨ ¨ en :Ñ sn in Ω. Then define Ω´U “ Ω´ te1 :Ñ

s1, ¨ ¨ ¨ en :Ñ snu.

Lemma 4.6 Let B0 be a set of associative and/or commutative axioms and U a set of unit axioms in Ω,

B “ B0 Z U , |Ω| ă ℵ0, and Ω “ ppS,ăq, F q be B-preregular. If |TΩ´U,s| “ ℵ0, then |TΩ{B,s| “ ℵ0.

Proof 4.8 We can orient a unit axiom fpx, eq “ x as a rewrite rule fpx, eq Ñ x, so that the set U becomes

a set of rewrite rules RpUq. In this way the theory pΩ, B0 Z Uq can be decomposed as a convergent rewrite

theory pΩ, B0, RpUqq. Observe TΩ´U{B0
Ď CRU

and CRU
– TΩ{B. By Lemma 4.5, |TΩ´U,s| “ ℵ0 iff

|TΩ´U{B0,s| “ ℵ0. Thus, ℵ0 “ |TΩ´U,s| “ |TΩ´U{B0,s| ď |CRB ,s| “ |TΩ{B,s|. Since |TΩ{B,s| ď ℵ0, obtain

|TΩ{B,s| “ ℵ0, as required. ˝

Example 4.8 (Integers with Addition, Checking Finiteness Modulo B). Consider the theory Z` defined in

Example 4.3. By applying Lemmas 4.6 and then 4.5 above, we conclude for each sort s P S, the term set

TΩ,s is infinite. To see this, note when the identity axiom/element is removed, the set of terms can be shown

infinite by applying Lemma 4.5 and observing for each s P S, pRF pΩq, sq can reach a cycle.

64

4.3.2 Constructor Variants and Constructor Unifiers

We first show how to compute a complete set of constructor variants JtKΩ,W
R,B of a term t (see Definition 4.2)

and then show how to use this method to compute a complete set constructor variant unifiers VarUnif Ω,W
B pφq.

Recall that a constructor variant is just an variant pt, θq such that t P TΩpXq. Thus, JtKΩ,W
R,B can be computed

in two steps: (1) computing a complete set of variants JtKWR,B (2) for each variant pt1, θq P JtKWR,B , compute a

complete set of its constructor instances, i.e. a set of instances “away from W” InstΩ,W
B pt1q “ tt1η1, ¨ ¨ ¨ , t

1ηnu

where for any other instance t1α P TΩpXq with α P rvarpt1q Ñ TΩpXqs and ranpαq XW “ H, there exists

two substitutions γ and ηi with α|W “B ηiγ|W . Note that (1) can be solved via folding variant narrowing,

so we tackle (2) by a reduction to a B-unification problem via a signature transformation Σ ÞÑ Σc. In this

transformed signature, the instances InstΩ,W
B pt1q correspond exactly to the solutions of a single B-unification

problem.

The signature transformation Σ ÞÑ Σc splits into two steps: (i) we define an extension of the sort poset

pS,ăq of Σ and Ω in Definition 4.13 and (ii) use that in Definition 4.14 to define Σc as well as several other

intermediate signatures. Recall we assume Σ (and thus Ω) are finite; otherwise these transformations would

not be effective.

Sensibility and Preregularity of Σc.

This subsection is dedicated to proving that the Σ ÞÑ Σc transformation preserves term sort information,

sensibility, and preregularity modulo B. These three conditions together ensure that Σc terms are (i) always

well-typed and (ii) have a unique least typing modulo axioms B that is less than or equal to its original typing

in the sort poset of Σ. While these conditions are important in themselves as matter of understandability,

they additionally enable us to have much more efficient B-unification algorithms, e.g. if we want to B-unify

t “ x : s, we need only check whether t’s least sort is a subsort of s. We complete our proof in three

steps: (a) we provide sufficient conditions for sensibility and preregularity to be preserved, (b) we prove that

sensibility and preregularity are preserved, and (c) we lift the proof in (b) to show that preregularity modulo

B is preserved.

Definition 4.13 A constructor sort refinement of pS,ăq is defined by the following: (a) a set Sc “ S Z SÓ

with c : S Ñ SÓ a bijection, (b) a relation păcq the smallest strict order where: (i) p@s, s1 P Sq s ă s1 ô

rs ăc s1 ^ cpsq ăc cps1qs and (ii) p@s P Sq cpsq ăc s, and (c) functions p‚q : Sc Ñ S and p‚q : Sc Ñ SÓ where:

s‚ “

$

&

%

s if s P S

c´1psq otherwise
and s‚ “

$

&

%

s if s P SÓ

cpsq otherwise.
(4.6)

We let păcq also ambiguously denote its extension to strings of sorts pScq˚. Also, note that păq Ď păcq by

definition and functions p‚q and that p‚q have unique homomorphic extensions to free monoid homomorphisms

denoted by: p‚q : pScq˚ Ñ S˚ and p‚q : pScq˚ Ñ pSÓq˚. Likewise, p‚q and p‚q have unique extensions to

powersets, p‚q : PpScq Ñ PpSq and p‚q : PpScq Ñ PpSÓq. Lastly, p‚q|pSÓq˚ and p‚q|S˚ are bijective by

definition and lift into poset and powerset isomorphisms.

Definition 4.14 Given Σ “ ppS,ăq, F q and Ω “ ppS,ăq, FΩq where Ω Ď Σ and pSc,ăc, p‚q, p‚qq is a

constructor sort refinement of pS,ăq, define the sets F ÓΩ “ tf : w‚ Ñ s‚ | f : w Ñ s P FΩu, X
Ó “ tXsusPSÓ ,

and Xc “ X ZXÓ. Define the signatures below as follows:

65

Signature Sort Poset Operators Variable Sorts
ΩpXq pS,ăq FΩ S
ΣpXq pS,ăq F S

Σ`pXcq pSc,ăcq F Sc

ΩcpXcq pSc,ăcq FΩ Z F
Ó

Ω Sc

ΣcpXcq pSc,ăcq F Z F ÓΩ Sc

ΩÓpXcq pSc,ăcq F ÓΩ Sc

ΩÓpXÓq pSc,ăcq F ÓΩ SÓ

ΩÓ‚pXÓq pSÓ,ăc |SÓq F ÓΩ SÓ

Table 4.1: Constructor Sort Refinement Signatures Overview

Call ΣcpXcq and ΩÓpXcq the constructor sort refinements of Σ and Ω.

We can summarize Definition 4.14 in Figure 4.5 below where each arrow is a signature inclusion. The

signature decorations are intended to be suggestive of the transformation: Σ` extends the subsort relation;

Σc copies each constructor; ΩÓ shifts constructors below; and finally ΩÓ‚ shifts constructors below and discards

sorts S by applying p‚q.

ΣpXq Σ`pXcq ΣcpXcq

ΩpXq ΩcpXcq ΩÓpXcq ΩÓpXÓq ΩÓ‚pXÓq

Figure 4.5: Constructor Sort Refinement Signatures Inclusion

Example 4.9 (Integers with Addition, Constructor Sort Refinement). In the signature Int shown in Figure

4.6, the defined operators F ´ FΩ are shown in blue, the constructors FΩ are shown in red, and the shifted

constructors modified by applying p‚q F
Ó

Ω are shown in green. The sorts and subsort arrows shown above the

dashed line define pS,ăq; similarly, those below the dashed line define pSÓ,ăc |SÓq. The union of both defines

pSc,ăcq. In the sequel, constructor sort refinement diagrams will use this same color-coding scheme.

Remark 4.1 Note that p‚q and p‚q naturally extend into signature morphisms. The sort mapping is either

p‚q or p‚q. For t P TΣcpXcq, the term mappings are:

t‚ “

$

’

’

’

&

’

’

’

%

x :ps‚q if t “ x :s P Xc

a if t “ a P TΣc

fpt‚1, ¨ ¨ ¨, t
‚
nq if t “ fpt1, ¨ ¨ ¨, tnq P TΣcpXcq

(4.7)

t‚ “

$

’

’

’

&

’

’

’

%

x :ps‚q if t “ x :s P Xc

a if t “ a P TΣc

fpt1‚ , ¨ ¨ ¨, tn‚q if t “ fpt1, ¨ ¨ ¨, tnq P TΣcpXcq

(4.8)

Term mappings p‚q and p‚q naturally extend to substitutions θ P rXc Ñ TΣcpXcqs such that, for each

px, tq P θ, px‚, t‚q P θ‚ and px‚, t‚q P θ‚. In particular, note (i) p‚q : ΩpXq Ñ ΩÓ‚pXÓq is a signature

66

Figure 4.6: Overview of generated signatures for Int

isomorphism with inverse p‚q (ii) p‚q : ΣcpXcq Ñ ΣpXq is a signature morphism (iii) as sets of terms,

TΩÓpX
Óq “ TΩÓ‚

pXÓq and TΩ “ TΩÓ “ TΩÓ‚
.

Our first goal in this subsection is to show that term sorting, sensibility, and preregularity are all preserved

by constructor sort refinement, i.e., refinement in the sense that all existing sort information is preserved

and only new sort information is added. Note that we trivially have preservation of term sorts by Remarks

4.1(i)-(iii) above since p@s P Sc @t P TΣcpXcqsq t
‚ P TΣpXqs‚ ^ s ďc s‚, the function p‚q specializes to the

identity when t P TΣpXq, and thus we have p@s P Sq t P TΩÓ‚,s‚
ô t P TΩ,s. Thus, it is enough to prove

preservation of sensibility and preregularity. However, the example below shows our current assumptions

are too weak, i.e., the extended signature may not be preregular.

Example 4.10 (Preregularity Violations). Consider signature Σ1 and its constructor subsignature Ω1 (resp.

signature Σ2 constructor subsignature Ω2) shown above the dashed line on the left (resp. right) side of Figure

4.7. While Σ1 and Ω1 (resp. Σ2 and Ω2) are preregular, constructor sort refinement Σc1pX
cq (resp. Σc2pX

cq)

is not. To witness this, consider the defined operator f (in blue), the lowered constructor f (in green), and

a variable x of sort A‚ (shaded gray). The term fpxq has typings A and B‚ (resp. A and C‚) using these

operators, but neither sort is minimal.

Figure 4.7: Preregularity violations for signatures (from left to right) Σ1{Ω1 and Σ2{Ω2

Note that in Σ1 the violation occurred when a constructor f had a subsort-overloaded defined operator

f below. In practice, this is a very bad idea, since defined symbols should be “evaluated away” while

67

constructors should remain. However, Σ2 shows that restricting subsort-overloading is not enough. In Σ2,

the defined symbol f is not a subsort-overloaded version of the constructor f , and yet Σc2pX
cq still fails to

be preregular. The invariant violated by both examples is that Ωi is not preregular below Σi for i P t1, 2u,

in the sense that, in the signature Σi, when a term had a constructor typing, that typing was not minimal.

For example, let y be a variable of sort A. In Σ1, fpyq has a constructor typing in sort B, but the defined

typing A occurs below. Similarly, in Σ2, fpyq has a constructor typing C, but the defined typing A occurs

below. In order to formally specify our new invariant , we will need some additional notation.

Let Σ “ ppS,ăq, F q and tyΣ : TΣ Ñ F be defined by tyΣpcq “ tc :Ñ s P F u and tyΣpfpt1, ¨ ¨ ¨, tnqq “ tf :

s1 ¨ ¨ ¨ sn Ñ s P F | ti P TΣsi
u. Additionally, let tyΣ : F ˆ S˚ Ñ F denote the function tyΣpf, wq “ tf : w1 Ñ

s P F | w ď w1u. Finally let pP,�q be an arbitrary poset and
Ź

I denote the greatest lower bound of I in

pP,�q, if it exists. Then min� : PpP q Ñ P Z tHu is the function:

min�pIq “

$

&

%

Ź

I if pD
Ź

Iq ^
Ź

I P I

H otherwise.
(4.9)

Definition 4.15 (Preregular Below). Assume Σ “ ppS,ăq, F q has the subsignature Ω “ ppS,ăq, FΩq. Ω

is preregular below Σ (written Ω ă Σ) iff Ω and Σ are preregular and p@w P S˚q tyΩpf, wq ‰ H ñ

minăptyΣpf, wqq P tyΩpf, wq where pF,ăq is the poset such that pf : w Ñ sq ă pg : w1 Ñ s1q ô s ă s1.

Example 4.11 (Integers with Addition, Preregularity Below). Recall the constructor sort refinements for

theory Int shown in Figure 4.6. It is easy to check that Ω ă Σ; since the only overloaded operator is p`q,

it is enough to consider all the typings of the term x ` y where variables x, y have any sort S and check,

in each case, if a constructor typing exists, then the minimal typing is a constructor typing. For example,

suppose x, y both have sort NzNeg. Then there is no constructor typing, so the condition vacuously holds. If

x, y both have sort Nat, then x` y has constructor typing Nat and defined typing Int, but Nat ă Int.

The syntactic notion of preregular below specified in Definition 4.15 is useful algorithmically because it

is easily checkable for any finite signature Σ. However, there is an equivalent semantic, term-based notion2

that is both easier to state and to use in formal proof. Lemma 4.7 shows how the syntactic notion implies

the semantic notion (the other direction is left as an exercise for the reader).

Lemma 4.7 (Preregular Below, Semantic Version) Suppose that Ω ă Σ. Then Ω and Σ are preregular and

p@t P TΣq t P TΩ ñ lsΩptq “ lsΣptq.

Proof 4.9 Follows by definition; see Appendix C.2.

We now prove constructor sort refinements ΩÓpXcq and ΣcpXcq preserve sensibility and preregularity iff Ω

and Σ are sensible and Ω ă Σ. Note that, by definition, for any signature Σ, we have lsΣptq “ minăptyΣptqq

for the poset pF,ăq and to prove Σ is preregular it is enough to show p@t P TΣq lsΣptq ‰ H. We will need

three lemmas. However, to preserve the logical flow of the argument, we state them here and give proofs

in Appendix C.2. Lemma 4.8 states that only considering operators at the level of connected components

preserves sensibility and is used to prove preservation of sensibility.

Lemma 4.8 Σ “ ppS,ăq, F q is sensible iff pΣ “ pppS,Hq, pF q is sensible where f : rs1s ¨ ¨ ¨ rsns Ñ rs0s P pF iff

Df : s11 ¨ ¨ ¨ s
1
n Ñ s10 P F with s1i P rsis for 0 ď i ď n.

2Preregularity as defined previously was also semantic, i.e. based on properties of TΣ.

68

Lemmas 4.9 and 4.10 show how typings are preserved among various intermediate signatures and are used

in proving preservation of preregularity.

Lemma 4.9 p@t P TΩÓpX
cq{Xcq tyΩÓpXcqptq “ tyΩÓpXÓqptq “ tyΩÓ‚pXÓq

ptq.

Lemma 4.10 p@t P TΣcpXcq{Xcq tyΣ`pXcqptq “ tyΣpXqpt
‚q.

We are now ready to prove that the constructor sort refinements preserve both preregularity sensibility:

Theorem 4.7 If Ω ă Σ and Ω and Σ are sensible, then the constructor sort refinements ΣcpXcq “ ppSc,ăc

q, F c ZXcq and ΩÓpXcq “ ppSc,ăcq, F ÓΩ ZX
cq are both sensible and preregular.

Proof 4.10 Note that proving Σc is sensible implies ΣcpXcq is sensible, which implies ΩÓpXcq is sensible.

Then note that xΣc – pΣ and signature isomorphism preserves sensibility, and finally apply Lemma 4.8.

We now prove that ΩÓpXcq is preregular. By abuse of language, let X also denote the signature ppS,ăq, Xq.

Then note p@t P TΩÓpX
cqq tyΩÓpXcqptq “ tyΩÓpXÓqptqZtyXptq and ΩÓpXÓqXX “ H. Thus, by Lemma 4.9, we

obtain that p@t P TΩÓpX
cq{Xcq tyΩÓpXÓqptq “ tyΩÓ‚pXÓq

ptq. Thanks to the facts above, lsΩÓpXcq “ lsΩÓ‚pXÓq
Z

lsX . By signature isomorphism ΩÓ‚pXÓq – ΩpXq, this is equivalent to lsΩÓpXcq “ p‚q; lsΩpXq; p‚q Z lsX ,

where semicolon denotes in-order function composition. Since X is preregular by definition and ΩpXq by

assumption, lsΩÓpXcq satisfies p@t P TΩÓpX
cqq lsΩÓpXcqptq ‰ H, as required.

We now prove ΣcpXcq is preregular. First let t P Xc. Then t P X Z XÓ. If t “ x : s P X then

lsΣcpXcqpx :sq “ lsΣpXqpx :s‚q “ s. Similarly, if t “ x : s P XÓ, lsΣcpXcqpx :sq “ lsΩpXqpx :s‚q‚ “ s.

Now let t P TΣcpXcq{Xc. Note tyΣcpXcqptq “ tyΩÓpXcqptq Z tyΣ`pXcqptq, i.e., the type of non-variable t is

from F ÓΩ or F and lsΣcpXcqptq “ minăptyΩÓpXcqptq Z tyΣ`pXcqptqq. Suppose t P TΩÓpX
Óq{XÓ. By Lemma 4.9

and ΩÓ‚pXÓq – ΩpXq, we obtain tyΩÓpXcqptq “ tyΩÓ‚pXÓq
ptq “ tyΩpXqpt

‚q‚. By Lemmas 4.7 and 4.10, we can

obtain the chain of equalities minăptyΩpXqpt
‚qq “ minăptyΣpXqpt

‚qq “ minăptyΣ`pXcqptqq. But then note

that we have the chain of equalities lsΣcpXcqptq “ minăptyΩpXqpt
‚q‚ Z tyΩpXqqpt

‚qq “ lsΩpXqpt
‚q‚. Finally,

assume that t P TΣcpXcq{TΩÓpX
cq. Then we obtain tyΩÓpXcqptq “ H and lsΣcpXcqptq “ minăptyΣ`pXcqptqq “

minăptyΣpXqpt
‚qq “ lsΣpXqpt

‚q by Lemma 4.10. Thus, we have p@t P TΣcpXcqq lsΣcpXcqptq ‰ H, as required.

˝

Corollary 4.2 The functions lsΩÓpXcq and lsΣcpXcq are defined by:

@t P TΣcpXcq lsΣcpXcqptq “

$

&

%

lsΩpXqpt
‚q‚ if t P TΩÓpX

Óq

lsΣpXqpt
‚q otherwise

(4.10)

@t P TΩcpXcq lsΩÓpXcqptq “ lsΣcpXcqptq (4.11)

We now extend the above result to show that B-preregularity is preserved. The results below apply

to all known of combinations of axioms that the Maude rewriting engine supports (which includes several

state-of-the-art B-unification and B-matching algorithms) and infinitely many more.

Remark 4.2 Recall the kind-completion operator p̂ q we introduced in the preliminaries. Given a signature

Σ “ ppS,ăq, F q, the signature pΣ also contains, for each connected component of sorts rss P S{ă, a top

sort Jrss, and for each operator f : s1 ¨ ¨ ¨ sn Ñ s, a top operator, f : Jrs1s ¨ ¨ ¨ Jrsns Ñ Jrss. By an

abuse of notation, we let p̂ q : Σ Ñ pΣ denote the signature morphism that maps each sort s to Jrss, each

69

f : s1 ¨ ¨ ¨ sn Ñ s to f : Jrs1s ¨ ¨ ¨ Jrsns Ñ Jrss, and therefore each term tpx1 : s1, ¨ ¨ ¨ , xn : snq P TΣpXq to

tpx1 :Jrs1s, ¨ ¨ ¨ , xn :Jrsnsq P TΣ̂p
pXq. This signature morphism extends to sets E of Σ-equations, resp. sets

of Σ-rewrite rules in the obvious sense: E Q pu “ vq ÞÑ pû “ v̂q P pE, resp. R Q pu Ñ vq ÞÑ pû Ñ v̂q P pR.

Note that, by the subsort-polymorphic nature of the axioms B, as explained in Footnote 2, we have that Σ is

B-preregular if and only if pΣ is pB-preregular, i.e. for any u, v P TΣpXq, we have u “B v ô u “
pB v.

In this chapter, given theory pΣ, Eq, we assume that it has a decomposition pΣ, B,Rq and that there

exists a constructor decomposition pΩ, BΩ, RΩq where pΣ, B,Rq protects pΩ, BΩ, RΩq. Recall the definition

of decomposition requires that Σ is B-preregular and Ω is BΩ-preregular. We impose a very weak requirement

on such axioms which we define below:

Definition 4.16 Let Ω and Σ be signatures such that Ω Ď Σ and let Σ be B-preregular. By B-preregularity,

the theory pΣ, Bq decomposes into pΣ, B0, RpB1qq where B0 is sort-preserving and RpB1q is sort-decreasing.

We say axioms B respect constructors iff for any u “ v P B and sort specialization ρ, u “ v P B1 ñ ruρ P

TΩpXq ñ vρ P TΩpXqs and u “ v P B0 ñ ruρ P TΩpXq ô vρ P TΩpXqs. In words, if an axiom can apply to

a constructor term as an equation or as a rule, then the result is a constructor term.

Theorem 4.8 Let (a) pΩ, BΩq Ď pΣ, Bq be a conservative theory extension, i.e. p@u, v P TΩpXqq u “BΩ

v ô u “B v (b) ΣpXq be B-preregular and ΩpXq be BΩ-preregular, and (c) axioms B respect constructors.

Then ΣcpXcq is B-preregular and ΩÓpXcq is BΩ-preregular.

Proof 4.11 By Remark 4.2 above and assumption (b), we know that signature {ΣpXq is pB-preregular and
{ΩpXq is xBΩ-preregular. Unpacking the definition of preregularity, observe decompositions p{ΣpXq,xB0, {RpB1qq

and p{ΩpXq, yBΩ0 ,
{RpBΩ1q such that pB “ xB0 Z xB1 and xBΩ “ yBΩ0 Z

{RpBΩ1q where {RpB1q and {RpBΩ1q are

sort-decreasing and xB0 and yBΩ0 are sort-preserving.

By Theorem 4.7, ΣcpXcq and ΩÓpXcq are preregular. By Remark 4.2 above, we must show that {ΣcpXcq

is pB-preregular and {ΩÓpXcq is xBΩ-preregular. By definition of preregularity, this is equivalent to showing

decompositions p {ΣcpXcq,xB0, {RpB1qq and p {ΩÓpXcq, yBΩ0 ,
{RpBΩ1q exist and satisfy appropriate sort-decreasing

and sort-preserving requirements. Since ΣcpXcq and ΩÓpXcq are sort refinements of ΣpXq and ΩpXq, the

meaning of the kind-completion operator p̂ q is well-defined and identical in all signatures, so the above

definition is unambiguous. Thus, we will be done if we can show {RpB1q is sort-decreasing and xB0 is sort-

preserving for ΣcpXcq (since that implies the corresponding fact given {RpBΩ1q and yBΩ0 for ΩÓpXcq holds by

conservativity). Thus, we need only show {RpB1q is sort-decreasing and xB0 is sort-preserving in ΣcpXcq for

each sort specialization ρ.

Recall that by Corollary 4.2 p@t P TΣcpXcqq lsΣcpXcqptq “ lsΣpXqpt
‚q and that p@t P TΩÓpX

cqq lsΩÓpXcqptq “

lsΩpXqpt
‚q whenever t R TΩÓpX

Óq. Thus, it is enough to consider, for sort specializations ρ where ranpρq Ď

XÓ, whether axioms xB0 are sort-decreasing and rules {RpB1q are sort-preserving. Letting u “ v P xB1, we

first prove {RpB1q is sort-decreasing by case analysis

(i) Let uρ R TΩÓpX
Óq. By Corollary 4.2, lsΣcpXcqpuρq “ lsΣpXqpuρ

‚q. Since ΣcpXcq is a sort refinement

of ΣpXq, lsΣcpXcqpvρq ď lsΣpXqpvρ
‚q, as required.

(ii) Let uρ P TΩÓpX
Óq. Observe any sort specialization ρ P rX Ñ XÓs can be decomposed into ρ “ α; p‚q

with substitution α P rX Ñ Xs and where the substitution p‚q lifts into signature isomorphism p‚q :

ΩpXq Ñ ΩÓ‚pXÓq. Then uα P TΩpXq and by assumption (c), vα P TΩpXq. Furthermore, by assumption

70

(b), lsΩpXqpuαq ě lsΩpXqpvαq and additionally, varspuq “ varspvq, i.e. axioms are always regular. By

axiom regularity and signature isomorphism p‚q, lsΩÓ‚pXÓq
puα; p‚qq ě lsΩÓ‚pXÓq

pvα; p‚qq. Apply Lemma

4.9 (i.e. p@t P TΩÓpX
cq{Xcq tyΩÓpXcqptq “ tyΩÓ‚pXÓq

ptq) and the definition of the least sort function to

obtain lsΩÓpXcqpuα; p‚qq ě lsΩÓpXcqpvα; p‚qq.

Letting u “ v P xB0, we will be done if we prove axioms xB0 are sort-preserving. We proceed by cases:

(i) Let uρ R TΩÓpX
Óq. By Remark 4.1(iii), note uρ R TΩÓ‚

pXÓq. Then since signature isomorphism

p‚q : ΩpXq Ñ ΩÓ‚pXÓq has inverse p‚q, uρ‚ R TΩpXq. By assumption (c), we know vρ‚ R TΩpXq. By

Corollary 4.2, lsΣcpXcqpuρq “ lsΣpXqpuρ
‚q and lsΣcpXcqpvρq “ lsΣpXqpvρ

‚q. Then, by assumption (b),

observe lsΣpXqpuρ
‚q “ lsΣpXqpvρ

‚q, as required.

(ii) Let uρ P TΩÓpX
Óq. We must show that lsΣcpXcqpuρq “ lsΣcpXcqpvρq. The argumentation proceeds as in

case (ii) above by decomposing ρ “ α; p‚q. Then lsΩpXqpuαq “ lsΩpXqpvαq holds by the sort-preserving

requirement of B-preregularity, and finally we obtain lsΩÓpXcqpuα; p‚qq “ lsΩÓpXcqpvα; p‚qq by regularity,

signature isomorphism, Lemma 4.9, and the definition of the least sort function, completing the proof.˝

The following corollary lifts the result above to decompositions.

Corollary 4.3 Let rewrite theory R “ pΣ, B,Rq be convergent with constructor decomposition RΩ “

pΩ, BΩ, RΩq and Ω ă Σ and let axioms B respect constructors. Then Σc and ΩÓ are sensible and B-

preregular.

Proof 4.12 Note that protecting a constructor decomposition implies that pΣ, Bq is a conservative extension

of pΩ, BΩq. Then apply Theorem 4.8.

Computing a Complete Set of Constructor Instances.

We have shown that, under mild conditions, the Σ ÞÑ Σc transformation preserves sensibility and B-

preregularity. Thus, B-unification will be well-defined in our new signature. We now move to prove the

main theorem of this section, which shows how InstΩ,W
B ptq, a complete set of constructor instances of a

term t modulo B may be obtained by solving a unification problem in ΣcpXcq. We first collect a number of

essential facts relating TΩpXq to TΩÓpX
Óq that we use in the proof.

Lemma 4.11 Suppose that α, β P rXÑTΩpXqs, α
1, β1 P rXÓÑTΩÓpX

Óqs, and θ, γ P rXc Ñ TΣcpXcqs. Let

idÓ P rXc Ñ XÓs where idÓpx : sq “ x : s‚. Then:

(a) pα‚q
‚ “ α^ pα‚q‚ “ α

(b) p@t, t1 P TΩpXqq t “B t1 ô t‚ “B t1‚ ^ p@t, t
1 P TΩÓpX

Óqq t “B t1 ô t‚ “B t1‚

(c) rα “B β ô α‚ “B β‚s ^ rα1 “B β1 ô α1‚ “B β1‚s

(d) p@t PTΣcpXcqq t‚ “ tpidÓq ^ pidÓq‚ “ id

(e) p@t PTΣcpXcqq ptθq‚ “ t‚pθ‚q ^ ptθq
‚“ t‚pθ‚q ^ pθγq‚ “ θ‚pγ‚q ^ pθγq

‚“ θ‚pγ‚q

Proof 4.13 Both (a) and (b) follow immediately since TΩÓ‚
pXÓq “ TΩÓpX

Óq and by isomorphism p‚q :

ΩÓ‚pXÓq Ñ ΩpXq. Then (c) is an immediate application of (b). Finally, (d) and (e) have easy structural

induction proofs. ˝

71

We now give a precise construction of InstΩ,W
B using B-unification in ΣcpXcq.

Theorem 4.9 Suppose ΣpXq and ΩpXq are sensible and B-preregular, Ω ă Σ, and B respects constructors.

Then (a) @t P TΣpXqs @t
1 P TΩpXqs1 with s ”ă s1, W “ varsptq Z tx : cpsqu, W‚ “ varsptq‚ Z tx : cpsqu,

α P rvarsptq Ñ TΩpXqs, ranpαq X W “ H, varspt1q X W “ H, and x R varsptq, we have tα “B t1 iff

Dη P Unif WB pt “ x : cps1qq and Dθ P rX Ñ TΩpXqs such that η‚θ|W “B α and (b) the complete set of

constructor instances of t modulo B is defined by InstΩ,W
B ptq “ ttpη‚q | η P Unif WB pt “ x : lsΣpXqptq‚qu.

Proof 4.14 We first prove (a). Let β “ α‚ Z tpx :s1‚, t
1
‚qu. Then observe:

tα “B t1 ô ptαq‚ “B t1‚ (4.12)

ô t‚pα‚q “B t1‚ (4.13)

ô t‚β “B x :s1‚β (4.14)

ô Dη1 P Unif W‚B pt‚ “ x :s1‚q Dθ
1 P rXÓ Ñ TΩÓpX

Óqs η1θ1|W‚ “B β (4.15)

which follow by Lemma 4.11 and because B respects constructors so tα P TΩpXq. Let id be the identity

substitution. Observe that x :ps1‚q‚ “ x :s1‚. Then by Lemma 4.11, obtain:

η1 P Unif W‚B pt‚ “ x :s1‚q ô η1 P Unif W‚B pt‚ “ x :ps1‚q‚q (4.16)

ô η1 P Unif W‚B ptpidÓq “ x :s1‚pid
Ó
qq (4.17)

ô idÓη1 P Unif WB pt “ x :s1‚q (4.18)

as well as:

η1θ1|W‚ “B β ô pη1θq‚|W “B β‚ (4.19)

ô η1‚pθ1‚q|W “B β‚ (4.20)

ô η1‚pθ1‚q|varsptq “B α ^ η1‚pθ1‚qpxq “B t1. (4.21)

Now let η “ idÓη1 and θ “ θ1‚. Then we can derive equalities η‚θ “ pidÓη1q‚θ “ pidÓq‚pη1‚qθ “ idpη1‚qθ “

η1‚pθ1‚q as required. Finally pbq is an immediate application of paq. ˝

Computing Constructor Variants and Constructor Variant Unifiers.

Using Theorem 4.9, we show in Corollary 4.4 below how to compute constructor variants. We then apply

this result to terms in the signature Σ^ to see how to also compute constructor variant unifiers.

Corollary 4.4 Let pΣ, B,Rq be convergent and protect constructor decomposition pΩ, BΩ, RΩq where Ω ă Σ
and B respects constructors. Given any t P TΣpXq, we have:

JtKΩ,W
R,B “ tpt1pη‚q, pθη‚q|varsptqq P JtK˚R,B | pt

1, θq P JtKW,xR,B ^ η P UnifW,x,t
1

B pt1 “ x : lsΣpXqpt
1q‚qu (4.22)

is a complete set of most general constructor variants of t.

Proof 4.15 Apply Corollary 4.3. Note that the requirement pt1pη‚q, θη‚q P JtK˚R,B in the above definition

of JtKΩ,W
R,B is equivalent to requiring t1pη‚q “ t1pη‚q!R,B ^ pθη

‚q|varsptq “ pθη
‚q|varsptq!R,B. Note also that, by

Theorem 4.9, JtKΩ,W
R,B is by construction a set of constructor variants of t. So we just need to show that it is

72

complete. Let pu, γq be a constructor variant of t. Then, by completeness of JtKW,xR,B there is a pt1, θq P JtKW,xR,B

and a substitution ρ such that (i) pθρq|varsptq “B γ, and (ii) t1ρ “B u. But, since u P TΩpXq, by Theorem 4.9

there is substitution η P Unif W,x,t
1

B pt1 “ x : lsΣpXqpt
1q‚q and a substitution δ such that η‚δ|W “B ρ, proving

that pt1pη‚q, pθη‚q|varsptqq ĚB pu, γq, as desired. ˝

Let us now see how, by applying Theorem 4.9, computing a complete set of constructor variant unifiers

becomes simple. Recall that any unification problem φ is a Σ^-term in TΣ^pXqConj . Then a complete set

of constructor variant unifiers is defined by:

VarUnif Ω,W
E pφq“tαpη‚q |α PVarUnif WE pφq ^ η PUnif W,φαB ppφαq!R,B“x :Conj ‚qu. (4.23)

Example 4.12 (Integers with Addition, Constructor Variants/Unifiers). Recall the constructor variants

and unifiers for the theory Z` we examined in Example 4.4. We can easily check that the ACU axioms for

Z` respect constructors. Consider again the term x ` y with x, y variables of sort Int that has a complete

set of twelve variants. Its most simple variant is u “ px` y, idq where id is the identity substitution. Recall

u is not a constructor variant in Z`, because ` : Int Int Ñ Int is a defined symbol; however, p`q

has typings which are constructors. We apply the method shown in Corollary 4.4 to compute a complete

set of constructor variants less general than u, by solving the B-unification problem Unif W,x,y,zB py ` z “

x : lsΣpXqpy ` zq‚q “ Unif W,x,y,zB py ` z “ x : Int‚q in the signature ΣcpXcq. Thus, we obtain the set: (i)

py1, ty ÞÑ y1, z ÞÑ 0uq, (ii) pz1, tz ÞÑ z1, y ÞÑ 0uq, and (iii) py1 ` z1, ty ÞÑ y1 : Nat , z ÞÑ z1 : Natuq. Likewise, let

φ be the equation w “ y` z, with w, y, z of sort Int. Then tw ÞÑ y` zu is a trivial Z`-unifier of φ, but not

a constructor unifier. We can compute a complete set of constructor unifiers less general than tw ÞÑ y ` zu

by computing the B-unification problem Unif W,x,y,zB ppw “ y ` zq “ x : Conj ‚q in the signature pΣ^qcpXcq.

Thus, we obtain (i) tw ÞÑ y, z ÞÑ 0u, (ii) tw ÞÑ z, y ÞÑ 0u, and (iii) tw ÞÑ y1 ` z1, y ÞÑ y1 :Nat , z ÞÑ z1 :Natu.

4.3.3 Optimizing Constructor Variant and Unifier Generation

Constructor variant and constructor unifier generation can be substantially optimized for two reasons:

(i) a variant pt1, θq P JtKW,xR,B may already be a constructor variant, so in such case there is no need for an

additional unification step; and (ii) some variants pt1, θq P JtKW,xR,B may never have constructor instances, and

this can be syntactically detected, so in that case we need not waste time failing in unification efforts. To

better characterize those cases where there is no hope for a variant pt1, θq to have any constructor instances

we make further assumptions about the regular and linear axioms B “ B0 Z B1 which apply in many

cases of interest and in particular in any combinations of A, C and U axioms. We assume that B can be

decomposed as a union B “
Ť

fPΣBf where Bf “ Bf,0 Z Bf,1, and where, as required, the axioms in Bf,0

are sort-preserving and the rules in RpBf,1q are sort decreasing and furthermore: (i) if pu “ vq P Bf,0 both

u and v are not variables and f is the only function symbol appearing anywhere in u and v, and (ii) if

puÑ vq P RpBf,1q, then v is a variable x and u is of the form u “ fpu1, . . . , unq where, besides x, the only

other symbols appearing in u are f and possibly some constants in a set of constants Cf .

Instead of characterizing the set of terms t1 that cannot have a constructor term as an instance, let us

characterize those that might do so. They are exactly the Σ1-terms where Σ1 “ rΩ Z tf P pΣ ´ rΩq Z Cf |

Bf,1 ­“ Hu, where rΩ includes all operators in the same subsort-overloaded family of Ω, i.e., we add to Ω its

non-constructor typings if any. That this choice of Σ1 is correct follows from the following lemma:

73

Lemma 4.12 Let t P TΣpXq ´ TΣ1pXq. Then there is no u P TΩpXq and substitution σ such that tσ “B u.

Proof 4.16 Suppose t P TΣpXq ´ TΣ1
pXq and let u P TΩpXq and σ be such that tσ “B u. This means

that ptσq!RpB1q,B0
“B0

u!RpB1q,B0
. Since u!RpB1q,B0

is a constructor term and the regular axioms in B0 are

symbol- and sort-preserving, this means that all symbols in ptσq!RpB1q,B0
must be in Ω. But this is impossible,

since: (i) there must be a g P Σ´ Σ1 occurring in t and therefore in tσ, and (ii) such a g cannot disappear

either by application of symbol-preserving axioms in B0 nor by application of symbol-erasing rules in some

pu Ñ vq P RpBf,1q for some f P Σ1, since the only symbols any such rule can erase form a term after

rewriting it are exactly f and some constants in Cf , none of which symbols in Σ´ Σ1. ˝

Thus, obtain the following optimized description of the constructor variants:

JtKΩ,W
R,B “

!

pt1, θq P JtKW,xR,B | t P TΩpXq
)

Y

!

pt1pη‚q, pθη‚q|varsptqq P JtK˚R,B |

pt1, θq P JtKW,xR,B ^ t
1
P TΣ1pXq ´ TΩpXq ^ η P UnifW,x,t

1

B pt1 “ x : lsΣpXqpt
1
q‚q

)

(4.24)

Likewise, the following is an optimized description of constructor unifiers:

VarUnif Ω,W
E pφq“

!

α PVarUnifWE pφq | pφαq!R,B P TΩ^pXq
)

Y

!

αpη‚q | α PVarUnifWE pφq ^

pφαq!R,B P TΣ^1
pXq ´ TΩ^pXq ^ η PUnifW,φαB ppφαq!R,B“x :Conj ‚q

)

(4.25)

Further optimizations are possible making the computation of constructor variants and constructor unifiers

even easier in common cases. For example, when Ω “ rΩ (all symbols subsort-overloaded with symbols in Ω

are constructors), and for each f P Σ´ Ω we have Bf,1 “ H, then Σ1 “ Ω and we obtain:

JtKΩ,W
R,B “ tpt1, θq P JtKW,xR,B | t P TΩpXqu (4.26)

Similarly, we also obtain:

VarUnif Ω,W
E pφq“ tα PVarUnif WE pφq | pφαq!R,B P TΩ^pXqu. (4.27)

That is, when Σ1 “ Ω, the computation of constructor variants, resp. constructor unifiers, is just a process

of filtering them as a subset of the overall set of variants (resp. variant unifiers), essentially by syntactic

checks.

4.3.4 Descent Maps

There are two ways in which the methods presented in this chapter may be insufficient to prove satisfiability

of QF formulas in the initial algebra of an order-sorted equational theory having an FVP decomposition R:

74

1. At the theoretical level, R may lack an OS-compact constructor decomposition, so that the methods

presented here cannot be applied to R.

2. At the practical level, even ifR has an OS-compact constructor decomposition amenable to the methods

and algorithms presented here, directly checking satisfiability of QF formulas in R may be quite

inefficient. This can happen because: (i) B-unification itself may generate a large number of unifiers;

and (ii) there may also be a large number of variant R,B-unifiers of a given unification problem ϕ.

Faced with any of these theoretical and/or practical limitations, the following notion of a descent map,

presented in [25], may provide a way out of such limitations:

Definition 4.17 A descent map is a triple pR, ‚,Dq where R and D are decompositions of order-sorted

equational theories, and R conservatively extends D, and where ‚ is a total computable function, ϕ ÞÑ ϕ‚,

mapping each QF formula ϕ in the theory decomposed by R into a corresponding QF formula ϕ‚ in the

theory decomposed by D and such that CR |ù D ϕ ô CD |ù D ϕ
‚, where D ϕ denotes the existential closure

of ϕ.

Limitation (1) can be overcome when R lacks an OS-compact constructor decomposition but D has one.

And limitation (2) can be overcome because solving satisfiability in CD of the QF formula ϕ‚ may be

considerably more efficient than solving satisfiability in CR of the original formula ϕ. Since descent maps

form a category and therefore can be composed, suitable compositions of such maps can greatly help in

solving limitations (1) and (2). Furthermore, they can substantially extend the theoretical and practical

reach of the variant satisfiability methods presented in this chapter.

In experimenting with the current implementation of the variant-satisfiability algorithms described in

Section 4.4 for solving SMT problems for various automated deduction applications, we have found descent

maps to be quite helpful in overcoming type (1) and (2) limitations, specifically in the context of Presburger

arithmetic,3 for the following reasons: (i) the simplest FVP specifications Z`,ą,ě, resp. N`,ą,ě, of Pres-

burger arithmetic for the integers (resp. the naturals) fail to have OS-compact constructor decompositions

[25]; (ii) solving satisfiability of QF formulas by variant satisfiability in the initial algebras of Z`,ą,ě, or

even just in that of Z` (the Abelian group of the integers) is quite inefficient due to a usually large number

of variants modulo ACU ; whereas (iii) solving satisfiability of QF formulas by variant satisfiability in the

initial algebra of N` (the Abelian monoid of the integers) is much more efficient, since, being free modulo

ACU and OS-compact, it essentially reduces to computing ACU unifiers, which, although expensive for

large terms, is efficiently supported by Maude 2.7.1.

In [25] three descent maps are defined: (i) N`,ą,ě
lit2at δ0
ÝÑ N`, reducing natural Presburger arithmetic

satisfiability to satisfiability in the Abelian monoid of the naturals; (ii) an entirely similar map Z`,ą,ě
lit2at δ0
ÝÑ

Z`, reducing integer Presburger arithmetic satisfiability to satisfiability in the Abelian group of the integers;

and (iii) Z`
v´
ÝÑ N`, reducing satisfiability in the Abelian group of the integers to satisfiability in the Abelian

monoid of the naturals. These three maps ease limitations of type (1) and/or (2). Furthermore, it is shown in

Theorems 14–15 of [25] that the descent maps (i)–(ii) can be modularly extended to FVP theory combinations

3 This does not exclude the possibility of using not only descent maps, but also well-known domain-specific SMT solving
algorithms for Presburger arithmetic. However, the applications we have experimented with, in which variant satisfiability
algorithms are used, almost never involve just Presburger arithmetic alone. For such applications, the less efficient use of theory-
generic variant satisfiability algorithms is compensated for by the trivial way in which various FVP theories can be combined by
theory union, as opposed to by a more complex Nelson-Oppen theory combination infrastructure [19, 20]. Experimenting with
such trade-offs between domain-specific and theory-generic algorithms and their various forms of composition is an important
topic for future research.

75

where N`,ą,ě, resp. Z`,ą,ě, is a subspecification of a larger FVP theory. Although not explicitly treated

in [25], descent map (iii) has a natural extension to a descent map (iv) Z`,ą,ě
v´
ÝÑ N`,ą,ě, so that we get

the following diagram of descent maps:

Z`,ą,ě Z`

N`,ą,ě N`

lit2at δ0

v´ v´

lit2at δ0

Figure 4.8: Z`,ą,ě to N` Descent Maps

We have implemented in Maude maps (i) and (iv) as meta-level functions and, as further explained in

Section 4.5, have used those maps effectively in a considerable number of reachability logic verification tasks.

4.3.5 Variant Satisfiability Examples

At this point, we can put together all of the results in the previous sections to provide a concrete algorithm

for solving variant satisfiability problems for simple theories (see Definition 4.6). We give two more extensive

examples here.

Example 4.13 (Integers with Addition, Transitivity). Recall our running example Z` originally defined in

Example 4.3 and let us prove transitivity of păq, i.e. the quantifier-free formula φ ” pi ă j^ j ă kq ñ i ă k

where i, j, k :Int. Even though our theory does not contain the operator păq, this property is still expressible

in the theory Z` via descent maps (see Section 4.3.4 for details). This happens in two steps: (i) we

exploit the fact i ă k ô i ğ k to obtain φ1 ” pi ă j ^ j ă kq ñ i ğ k (ii) we rewrite the formula as

φ2 ” pi ` l “ j ^ j `m “ kq ñ i ‰ k ` a where l,m : NzNat and a : Nat. Because of the duality between

validity and satisfiability in FOL, it is sufficient to prove φ2 is unsatisfiable. Our first step is to desugar

the pñq operator to obtain i ` l ‰ j _ j ` m ‰ k _ i ‰ k ` a. We then apply the negation and check

unsatisfiability of i ` l “ j ^ j `m “ k ^ i “ k ` a which amounts to checking if any constructor variant

unifiers exist; but there are none, so the original formula is valid.

Here we provide another example which illustrates more clearly the advantages of the variant satisfiability

technique, as well as makes use of the methods

Example 4.14 (Direct Theory Combination). Consider the theory NatList with signatures Ω and Σ and

their constructor sort refinements defined as in Figure 4.9. It is easy to show that Ω and Σ are B-preregular

for B a set of ACU axioms on p`q with identity 0, Ω ă Σ, and that B respects constructors. Thus, B-

unification is well-defined in the extended signature ΣcpXcq. Furthermore, by applying Lemmas 4.5 and 4.6,

it is easy to show that s P S{tBoolu ô |TΩ,s| “ ℵ0. Let n,m :Nat and l :List. In addition to axioms B, our

theory also contains the following equations E0:

n`m ă n “ ff (4.28)

n ă n`m` 1 “ tt (4.29)

hdpn : lq “ n (4.30)

tlpn : lq “ l (4.31)

76

Figure 4.9: NatList signature and constructor sort refinement

Then R “ pΣ, E0 Y Bq has a decomposition pΣ, B,Rq where R “ ~E0 which protects the constructor decom-

position pΩ, B,Hq. By folding-variant narrowing, it is easy to show that R is FVP. Clearly, pΣ, Eq is finite.

Thus, pΣ, Eq is a simple theory and we can perform reasoning in it using variant satisfiability. Observe

that this theory is an amalgamation of the theory of natural Presburger arithmetic and the theory of lists.

However, due to the highly general nature of the variant satisfiability method, no Nelson-Oppen combination

methods are required; we can reason directly in the theory pΣ, Eq.

Suppose we wish to show φ ” hdplq ă hdpl1q “ b^ l “ l1^ b ‰ b1^ b1 ‰ tt is unsatisfiable where l, l1 :NeList

and b, b1 : Bool. This formula is already in DNF, so we first compute a complete set of constructor variant

unifiers VarUnif Ω,W
E phdplq ă hdpl1q “ b^ l “ l1q, which in our case, is the singleton α “ tb ÞÑ ff , l ÞÑ l1, l

1 ÞÑ

l2u where l1, l2 : NeList. We then compute φ1 ” pb ‰ b1 ^ b1 ‰ ttqα!R,B “ ff ‰ b1 ^ b1 ‰ tt. At this point,

we need to compute a complete set of constructor variants of φ1. In this case, we see that the most general

constructor variant is pφ1, idq, since all terms are constructors. Next, we must compute the set of terms

inhabiting each variable of finite sort. The only such variable is b1; our algorithm generates the two new

formulas ff ‰ tt ^ tt ‰ tt and ff ‰ ff ^ ff ‰ tt. Since the theory pΩ, Bq is OS-compact, we can solve these

formulas by checking for E-consistency. Clearly, neither is E-consistent; thus, the formula is unsatisfiable.

4.4 REFLECTIVE IMPLEMENTATION OF VARIANT SATISFIABILITY

Here we describe our reflective Maude implementation of all the above metalevel algorithms. The complete

codebase, with binaries and examples, can be downloaded from the Maude website: http://maude.cs.

illinois.edu/tools/var-sat/.

We have already pointed out that both order-sorted equational logic and rewriting logic are reflective [58].

What this precisely means is that the metalevel of the logic, including theories and deduction, can be reified,

i.e., reflected at the object level by means of a so-called universal theory. For rewriting logic this means that:

(i) there is a finitary universal rewrite theory U such that any finitely presented rewrite theory R (including

U itself) and any term t in R can be represented as respective terms R and t in U , and (ii) for any formula

tÑ t1 in R, its provability in R can likewise be represented as a formula R $ tÑ t1 in U , and (iii) we have

an equivalence:

R $ tÑ t1 ô U $ R $ tÑ t1 (4.32)

77

http://maude.cs.illinois.edu/tools/var-sat/
http://maude.cs.illinois.edu/tools/var-sat/

so that U can faithfully simulate deduction in any finitary rewrite theory (including itself). Of course,

simulating deductions in U can be quite inefficient. However, we can exploit the above equivalence by

using it in the (ñ) direction to greatly increase the efficiency of many deductions in U by performing them

directly in the simulated theory R. This is exactly the approach taken in Maude’s META-LEVEL module,

which efficiently implements various useful functions expressible in U by performing them directly in the

simulated theory R. Since equational logic is a sublogic of rewriting logic, all the above remarks apply

likewise to equational theories and equational deduction.

Note that our metalevel algorithms and sub-algorithms can greatly benefit from a reflective implementa-

tion. This is not only because they are obviously theory-generic on the equational FVP theory decomposition

R on which we want to decide QF satisfiability, but also because virtually all subalgorithms make crucial use

of theory and/or signature transformations such as, for example, the R ÞÑ R^, Σ ÞÑ Σc, and Ω ÞÑ RP pΩq
transformations, to mention just three. Such transformations are easy to define by reflection as extensions

of Maude’s META-LEVEL module. Specifically, they can be equationally defined as functions of sort Module,

whose elements are terms of the form R meta-representing rewrite theories4 R
In summary, therefore, by using Maude’s META-LEVEL module we can easily write functions over meta-

level constructs to obtain a reflective implementation of our algorithms in a fairly direct way. Essentially,

the reflective implementation of the variant satisfiability algorithm and its subalgorithms follows the outline

sketched in Section 4.3. The only missing exception is that the finite sort checks for theories with unit

axioms have not been implemented yet. The algorithm takes as input a reflected FVP decomposition R
and a conjunctive QF formula φ “

Ź

G ^
Ź

D in R, and returns a boolean indicating whether or not the

formula is satisfiable in the initial model of the decomposition R. Thanks to mixfix parsing, we can use a

more natural notation to write φ as:

u1 ?= v1 /\ ¨ ¨ ¨ /\ uk ?= vk /\ u11 != v11 /\ ¨ ¨ ¨ /\ u1l != v1l (4.33)

where each ui, vi and u1j , v
1
j for 1 ď i ď k and 1 ď j ď l is a meta-term.

4.5 RELATED WORK AND CONCLUSIONS

We have presented the meta-level sub-algorithms needed to obtain a full-fledged variant satisfiability

algorithm, proved them correct, and derived a Maude reflective implementation. Correctness has been

the main concern, but efficiency has also been taken into account. Much work remains ahead. A crucial

next step is experimentation. We have initiated such an experimentation by using the Maude reflective

implementation of variant satisfiability as a key component to mechanize a new version of reachability logic

for rewrite theories developed in [61], which further advances reachability logic ideas in [26, 29]. We have

been able to verify various reachability properties for a substantial number of examples using the variant

satisfiability algorithm as a backend procedure, as the next chapter will also attest. This is already helping us

optimize the performance of the main algorithm and its subalgorithms, which has been an explicit theme in

Sections 4.3.3–4.3.4. Further work is needed to experimentally evaluate our algorithm in a more systematic

way. As pointed out in Footnote 3, this should also involve comparison with domain-specific algorithms when

those are available, including a comparison of the trade-offs between different kinds of theory combination

methods. Such comparisons will require developing new theory combination infrastructure not yet available

4A signature Σ can be viewed as a theory Σ with no axioms and meta-represented as Σ in the same way.

78

in our implementation (besides of course theory unions for FVP theories, which are fully supported already).

The most closely-related work is [25, 36], for which it provides the first full-fledged algorithm and im-

plementation. Other related topics include folding variant narrowing [24], the FVP [23], and unsorted

compactness [31]. Of course, this work occurs in the larger context of decidable satisfiability algorithms

and the vast literature on SMT solving, e.g., [62, 63, 64, 65, 66, 62, 67, 68, 69], and additional references in

[25, 36]. Finally, the literature on Maude’s reflective algorithms and tools, e.g., [70, 6] is also closely related.

79

CHAPTER 5 CONSTRUCTOR-BASED REACHABILITY LOGIC
1

5.1 INTRODUCTION

The main past applications of reachability logic have been as a language-generic logic of programs [71, 26,

27]. In these applications, a K specification of a language’s operational semantics by means of rewrite rules is

assumed as the language’s “golden semantic standard,” and then a correct-by-construction reachability logic

for a language so defined is automatically obtained [27]. This method has been shown effective in proving a

wide range of properties of programs in real programming languages specified within the K Framework.

Although the original foundations of reachability logic are very general [26, 27], such foundations do

not provide a straightforward answer to the following non-trivial questions: (1) Could a reachability logic

be developed to verify not just conventional programs, but also distributed system designs and algorithms

formalized as rewrite theories in rewriting logic [50, 28]? And (2) if so, what would be the most natural way

to conceive such a rewrite-theory-generic logic? Since K specifications are just conditional rewrite theories

[4], a satisfactory answer to questions (1)–(2) would move the verification game from the level of verifying

code to that of verifying both code and distributed system designs. Since the cost of design errors can be

several orders of magnitude higher than that of coding errors, questions (1) and (2) are of practical software

engineering interest.

Although a first step towards a reachability logic for rewrite theories has been taken in [29], as explained

in Section 5.6 and below, that first step still leaves several important questions open. The most burning

one is: how can we prove invariants of a distributed system? Since invariants are the most basic safety

properties, support for proving invariants is a sine qua non requirement. As explained below and in Section

5.3.1, if we apply the standard foundations of reachability logic—so that the logic’s transition relation is

instantiated to the given theory’s rewrite relation—the whole enterprise collapses before what we call the

invariant paradox : we cannot verify in this manner any invariants of a never-terminating system such as,

for example, a mutual exclusion protocol.

A second, important open question is how to best take advantage of the wealth of equational reasoning

techniques such as matching, unification, and narrowing modulo an equational theory pΣ, Eq, e.g., [72, 73, 74,

75, 76, 77, 24, 78], as well as recent results on decidable satisfiability (and validity) of quantifier-free formulas

in initial algebras, e.g., [14, 16, 31, 79, 18, 80, 81, 82, 83, 84, 36] to automate as much as possible reachability

logic deduction. In this regard, the very general foundations of standard reachability logic—which assume

any Σ-algebra A with a first-order-definable transition relation—provide no help at all for automation. As

shown in this chapter and its prototype implementation, if we assume instead that the model in question is

the initial reachability model TR of a rewrite theory R satisfying reasonable assumptions, large parts of the

verification effort can be automated.

A third important issue is simplicity. Reachability logic has eight inference rules [26, 27]. Could a

reachability logic for rewrite theories be simpler? The main goal of this chapter is to tackle head on these

three open questions to provide a general reachability logic and a prototype tool suitable for reasoning about

properties of both distributed systems and programs based on their rewriting logic semantics.

What all this really means requires some further explanations about both rewriting logic and reach-

1A previous version of the chapter content was originally available at https://doi.org/10.1007/978-3-319-94460-9_12; the
current version will be published in a forthcoming issue of the journal Fundamenta Informaticae. Reprinted with permission.

80

https://doi.org/10.1007/978-3-319-94460-9_12

ability logic. Rewriting logic is a system specification logic ideally suited for specifying concurrent sys-

tems. Instead, reachability logic is a property specification logic, where reachability properties of con-

current systems previously specified as rewrite theories can be defined and reasoned about. The pair

pRewriting Logic,Reachability Logicq is what is called a tandem in [85], where the left-side logic is used

to specify the systems of interest, and the right-side logic to specify and verify relevant properties of those

systems. The point of a well-designed tandem is that the property specification logic systematically ex-

ploits many features of the system specification logic to increase the effectiveness of verification. This is

exactly what the constructor-based version of reachability logic we present here does by exploiting features

of rewriting logic.

5.1.1 Rewriting Logic in a Nutshell

A distributed system can be designed and modeled as a rewrite theory R “ pΣ, E,Rq [50, 28] in the fol-

lowing way: (i) the distributed system’s states are modeled as elements of the initial algebra TΣ{E associated

to the equational theory pΣ, Eq with function symbols Σ and equations E; and (ii) the system’s concurrent

transitions are modeled by rewrite rules R, which are applied modulo E. Let us consider the QLOCK [86]

mutual exclusion protocol, explained in detail in Section 5.1.5 and used later as a running example. QLOCK

allows an unbounded number of processes, which can be identified by numbers. Such processes can be in

one of three states: “normal” (doing their own thing), “waiting” for a resource, and “critical,” i.e., using

the resource. Waiting processes enqueue their identifier at the end of a waiting queue (a list), and can

become critical when their name appears at the head of the queue. A QLOCK state can be represented as

a tuple ă n | w | c | q ą where n, resp. w, resp. c, denotes the set of identifiers for normal, resp. waiting,

resp. critical processes, and q is the waiting queue. QLOCK can be naturally modeled as a rewrite theory

R “ pΣ, E,Rq where Σ contains operators to build natural numbers, multisets of natural numbers, like n, w,

and c, and lists of natural numbers like q, plus the above tupling operator. The equations E include axioms

such as the associativity-commutativity of multiset union, and the associativity of list concatenation, and

identity axioms for H and nil . QLOCK’s behavior is specified by a set R of five rewrite rules. For example,

the rule w2c below specifies how a waiting process i can pass from waiting to critical

w2c : ă n | w i | c | i ; q ą Ñ ă n | w | c i | i ; q ą .

Figure 5.1: QLOCK Example Rewrite Rule

5.1.2 Reachability Logic in a Nutshell

Reachability logic allows us to reason about the reachability properties of a concurrent system specified

by rewrite theory R. The constructor-based reachability logic we present in this chapter is theory generic

in the precise sense that, as we explain in Section 5.4, its inference rules do not depend at all on the given

theory R: the reachability properties of any rewrite theory R in a wide class of so-called suitable theories

can be reasoned about in our logic using the same inference rules. Such genericity is not enjoyed by other

verification logics. For example, Hoare logic is not language generic: a different inference system must be

hand-crafted and proved sound with respect to an operational semantics for each different programming

language L.

81

A reachability formula has the form AÑf B, where A and B are state predicates. Consider the easier to

explain case where the formula has no parameters, i.e., varspAqXvarspBq “ H. We interpret such a formula

in the initial reachability model TR of a rewrite theory R “ pΣ, E,Rq, whose states are E-equivalence

classes rus of ground Σ-terms, and where a state transition rus ÑR rvs holds iff R $ u Ñ v according to

the rewriting logic inference system [50, 28] (computation = deduction). As a first approximation, AÑf B

is a Hoare logic partial correctness assertion of the form2 tAuRtBu, but with the slight twist that B need

not hold on a terminating state, but just somewhere along the way. Therefore, B should not necessarily

be called a “postcondition,” but, more generally a midcondition. More precisely, A Ñf B holds in TR iff

for each state ru0s satisfying A and each terminating sequence ru0s ÑR ru1s . . . ÑR run´1s ÑR runs, i.e.,

Eu pun ÑR uq, there is a j, 0 ď j ď n, such that rujs satisfies B. A key question is how to choose a good

language of state predicates like A and B. Here is where the potential for increasing the logic’s automation

resides.

As an example of state predicates A and B with parameters, i.e., varspAq X varspBq ‰ H, consider a

counter system, whose states are built using a state constructor x y : Nat Ñ State. The rewrite theory

specifying the counter’s behavior has two rewrite rules: xn`1y Ñ xny, and xn`1y Ñ xn`1`1y, i.e., a non-

zero counter can increase or decrease by one unit. For n,m variables of sort Nat, consider the reachability

formula xn ` 1y | n ` 1 ą m Ñf xmy | J, which is parametric on m. This reachability formula uses a

so-called constrained constructor pattern xn`1y | n`1 ą m to specify its precondition, and another xmy | J

specifying its midcondition. It states that, on all terminating paths, a non-zero counter of the form xn` 1y

will pass through all states of the form xmy such that m ă n ` 1 on its way to the terminating state x0y.

For this formula to have the desired semantics, the value of variable m occurring in its precondition and its

midcondition must of course be the same. We can reduce the parameterized case to the unparameterized one

by considering this parametric formula as the infinitary conjunction of all the unparameterized instances

where the parameter m has been instantiated to a concrete number. Correct deductive reasoning about

parameterized reachability formulas requires special handling of parameters.

We call our proposed logic constructor-based because our choice is to make A and B positive (only _

and ^) Boolean combinations of what we call constrained constructor patterns of the form u | ϕ, where u

is a constructor term3 and ϕ a quantifier-free (QF) Σ-formula. The state predicate u | ϕ holds for a state

ru1s P TΣ{E iff there is a ground substitution ρ such that ru1s “ ruρs and TΣ{E |ù ϕρ. This is crucially

important, because the initial algebra of constructor terms is typically much simpler than the initial pΣ, Eq-

algebra TΣ{E , and this can be systematically exploited for matching, unification, narrowing, and satisfiability

purposes to automate large portions of reachability logic’s inference system.

5.1.3 The Invariant Paradox

This is all very well, but how can we prove invariants in such a reachability logic? For example, we would

like to prove that for QLOCK a mutual exclusion invariant holds. But, paradoxically, we cannot! The simple

reason is that QLOCK, like many other protocols, never terminates, that is, has no terminating sequences

whatsoever. But this has the ludicrous trivial consequence that QLOCK’s initial reachability model TR
vacuously satisfies all reachability formulas A Ñf B. This of course means that it is in fact impossible to

prove any invariants using reachability logic in TR. But it does not mean that it is impossible using some

2The notation tAuRtBu, and the relation to Hoare logic are explained in Section 5.3.2.
3That is, a term in a subsignature Ω Ď Σ such that each ground Σ-term is equal modulo E to a ground Ω-term.

82

other reachability model. In Section 5.3.1 we give a systematic solution to this paradox by means of a simple

theory transformation allowing us to prove any invariant in the original initial reachability model TR by

proving an equivalent reachability formula in the initial reachability model of the transformed theory.

5.1.4 Chapter Overview

Section 5.2 greatly increases the logic’s potential for automation by making state predicates constructor-

based. Reachability logic itself is introduced in Section 5.3. A systematic methodology to prove invariants

by means of reachability formulas is developed in Section 5.3.1. The semantic relations of reachability logic

to Hoare logic and to LTL are explained in Section 5.3.2. Rewriting logic’s inference system, with just

three inference rules (plus some auxiliary rules), and the proof of its soundness are presented in Section

5.4. A proof of concept of our approach is given by means of a prototype tool implemented in the Maude

rewriting logic system and a suite of experiments verifying various properties of distributed system designs

and imperative programs in Section 5.5. Related work and conclusions are discussed in Section 5.6. Proofs

are relegated to Appendix D. The tool’s command grammar is specified in detail in Appendix A.

5.1.5 A Running Example

Consider the following rewrite theory R “ pΣ, E Y B,Rq modeling a dynamic version of the QLOCK

mutual exclusion protocol [86], where pΣ, Bq defines the protocol’s states, involving natural numbers, lists,

and multisets over natural numbers. Σ has sorts S “ tNat ,List ,MSet ,NeMSet ,Conf ,State,Predu with

subsorts Nat ă List and Nat ă NeMSet ă MSet and also the set of operators F “ t0 : Ñ Nat , s : Nat Ñ

Nat , nil : Ñ List , ; : List List Ñ List , H : Ñ MSet , : MSet MSet Ñ MSet , : NeMSet NeMSet Ñ

NeMSet , | | | : MSet MSet MSet List Ñ Conf , ă ą : Conf Ñ State, tt : Ñ Pred , ff : Ñ Pred , dupl :

MSet Ñ Pred , dupl : NeMSet Ñ Predu, where any underscores denote operator argument placement. The

axioms B are the associativity-commutativity of the multiset union with identity H, and the associativity

of list concatenation ; with identity nil . The equations in E are duplps u uq “ tt and duplpHq “ ff , They

define the dupl predicate by detecting a duplicated non-empty multiset u in the multiset s u u (where s could

be empty). dupl is false for the empty multiset, and is not true (but not explicitly defined to be false) in all

other cases not covered by the equation duplps u uq “ tt . The states of QLOCK are B-equivalence classes

of ground terms of sort State.

QLOCK [86] is a mutual exclusion protocol where the number of processes is unbounded. Furthermore,

in the dynamic version of QLOCK presented below, such a number can grow or shrink. Each process is

identified by a number. The system configuration has three sets of processes (normal, waiting, and critical)

plus a waiting queue. To ensure mutual exclusion, a normal process must first register its name at the end

of the waiting queue. When its name appears at the front of the queue, it is allowed to enter the critical

section. The first three rewrite rules in R below specify how a normal process i first transitions to a waiting

process, then to a critical process, and back to normal. The last two rules in R specify how a process can

dynamically join or exit the system.

where φ ” duplpn iw cq ‰ tt , i is a number, n, w , and c are, respectively, normal, waiting, and critical

process identifier sets, and q is a queue of process identifiers. It is easy to check that pΣ, E Y Bq satisfies

the finite variant property—it has only a single predicate dupl—and that R “ pΣ, E Y B,Rq satisfies sub-

requirements (1)–(3) of Definition 2.14. Note that join makes QLOCK an open system in the sense explained

83

n2w : ă n i | w | c | q ą Ñ ă n | w i | c | q ; i ą

w2c : ă n | w i | c | i ; q ą Ñ ă n | w | c i | i ; q ą

c2n : ă n | w | c i | i ; q ą Ñ ă n i | w | c | q ą

join : ă n | w | c | q ą Ñ ă n i | w | c | q ą if φ

exit : ă n i | w | c | q ą Ñ ă n | w | c | q ą

Figure 5.2: QLOCK Rewrite Rules

above.

5.2 CONSTRAINED CONSTRUCTOR PATTERN PREDICATES

Given an OS equational theory pΣ, EYBq, the atomic state predicates appearing in the constructor-based

reachability logic formulas of Section 5.3 will be pairs u | ϕ, called constrained constructor patterns, with u

a term in a subsignature Ω Ď Σ of constructors, and ϕ a quantifier-free Σ-formula. Intuitively, u | ϕ is a

pattern describing the set of states that are EΩ Y BΩ-equal to ground terms of the form uρ for ρ a ground

constructor substitution such that TΣ{EYB |ù ϕρ. Therefore, u | ϕ can be used as a symbolic description of

a, typically infinite, set of states in the canonical reachability model CR of a rewrite theory R.

We are now ready to define constrained constructor pattern predicates and their semantics. In what

follows, X will always denote the countably infinite S-sorted set of variables used in the language of Σ-

formulas.

Definition 5.1 (Constrained Constructor Pattern Predicate) Let theory pΩ, BΩ, ~EΩq be a construc-

tor decomposition of pΣ, B, ~Eq. An s-sorted atomic constrained constructor pattern predicate is an ex-

pression u | ϕ with u P TΩpXqs and ϕ a QF Σ-formula. The set PatPredpΩ,Σqs of s-sorted constrained

constructor pattern predicates contains K, all s-sorted atomic constrained constructor pattern predicates,

and is closed under disjunction (_) and conjunction ()̂. Let PatPredpΩ,Σq “
Ť

sPS PatPredpΩ,Σqs. Capi-

tal letters A,B, . . . , P,Q, . . . range over PatPredpΩ,Σq. The semantics of a constrained constructor pattern

predicate A is the subset JAK Ď CΣ{E,B defined inductively as follows:

1. JKK “ H

2. Ju | ϕK “ trpuρq!sBΩ
P CΣ{E,B | ρ P rXÑTΩs ^ CΣ{E,B |ù ϕρu.

3. JA_BK = JAKY JBK

4. JA^BK = JAKX JBK.

Note that for any constructor pattern predicate A, if σ is a (sort-preserving) bijective renaming of variables

we always have JAK “ JAσK.

Example 5.1 (Pattern Predicate Example) Recall that QLOCK states have the form ă n | w | c | q ą

with n, w, c multisets of process identifiers and q an associative list of process identifiers. From the five

rewrite rules defining QLOCK, it is easy to prove that if ă n | w | c | q ą Ñ˚ ă n 1 | w 1 | c1 | q 1 ą and nw c

84

is a set (has no repeated elements), then n1 w1 c1 is also a set. Of course, it seems very reasonable to assume

that these process identifier multisets are, in fact, sets, since otherwise we could, for example, have a process

i that is both waiting and critical at the same time. We can rule out such ambiguous states by means of the

pattern predicate ă n | w | c | q ą | duplpn w cq ‰ tt.

Now that we have explained our notion of constrained constructor pattern predicate, it is worth pausing for

a moment to explain why they do play a crucial role in the constructor-based reachability logic that we shall

define in Sections 5.3 and 5.4. The answer is simple: they support symbolic reasoning about reachability. Why

so? For six reasons: (i) the constructor subtheory pΩ, EΩ YBΩq is often much simpler than the equational

theory pΣ, E YBq; (ii) in particular, in practice pΩ, EΩ YBΩq almost always has the finite variant property

(FVP) [23, 24] and therefore, assuming a BΩ-unification algorithm, it has a EΩ YBΩ-unification algorithm

computable by folding variant narrowing [24]; (iii) as we shall show in Lemma 5.5, under mild conditions

the rewrite theory R can be transformed into a semantically equivalent rewrite theory R̂ whose rewrite rules

have the form l Ñ r if φ, with l and r Ω-terms, and φ a QF Σ-formula; (iv) but this means that we can

symbolically describe possibly infinite sets of states by means of constructor pattern predicates; (v) it also

means that we can effectively symbolically describe how such sets of states are transformed by transitions

with the rules lÑ r if φ in R̂ using narrowing techniques [78, 87] based on EΩYBΩ-unification (for more on

this, see the explanation of the Step@ inference rule in Section 5.4); and (vi) as explained below, many logical

and set-theoretic operations on constructor pattern predicates can also be effectively symbolically described

by corresponding constructor pattern predicates. The overall effect of (i)–(vi) is that in constructor-based

reachability logic large parts of the formal reasoning process can be automated by symbolic methods.

5.2.1 Constrained Constructor Pattern Operations

Let A, B, and C be pattern predicates. In the remainder of this section, we define the following operations

and show how they can be automated:

1. Pattern subsumption: to show that JAK Ď JBK

2. Over-approximating a complement: finding B where JBK Ě pJu | JKzJu | φK)

3. Pattern intersection: finding C where JCK “ JA^BK

4. Parameterized pattern subsumption: subsumption with shared variables

5. Parameterized pattern intersection: intersection with shared variables.

These operations will help in automating our reachability logic inference system.

Pattern Subsumption. Given constructor patterns u | ϕ and v | ψ, where, without loss of generality, we

assume that varspu | ϕq X varspv | ψq “ H, we are seeking a symbolic sufficient condition to check that

Ju | ϕK Ď Jv | ψK. The key intuition is that if the term u is an instance modulo EΩ Y BΩ of the term v by

some substitution β and TΣ{EYB |ù ϕñ pψβq, then such a set containment will hold. However, since: (i) u

can be an instance of v in several ways, and (ii) we could consider not just one v, but a family tviuiPI , this

intuition can be further generalized in two ways. First, we can ask the more general question of when the

pattern u | ϕ is an instance, not of a single pattern v | ψ, but of a finite family tvi | ψiuiPI of such patterns.

85

Second, we can capture all the ways that u can be an instance of some vi by defining, for a set Y of variables

called parameters (not needed now, so assume Y “ H for the moment, but needed later):

matchpu, tviuiPI , Y q ” tpi, βq | β P rvarspviqzY Ñ TΩpXqs ^ u “EΩYBΩ viβu (5.1)

as a complete set of (parameter-preserving) EΩ Y BΩ-matches of u against the vi. Since these matching

substitutions are defined up to EΩYBΩ-equality, it is enough to choose a representative matching substitution

β in each equivalence class rβsEΩYBΩ
. That is, we should think somewhat more abstractly of the elements

of matchpu, tviuiPI , Y q as pairs pi, rβsEΩYBΩ
q.

Then we can generalize our intuition of u | ϕ being an instance of v | ψ by defining the notion that

the family of patterns tvi | ψiuiPI (thought of as a disjunction
Ž

iPI vi | ψi) subsumes u | ϕ , denoted

u | ϕ Ď
Ž

iPI vi | ψi, iff TΣ{EYB |ù ϕ ñ
Ž

pi,βqPmatchpu, tviuiPI ,Hq
ψiβ. The fact that, indeed, if this

symbolic condition holds, we have a set containment of the form Ju | ϕK Ď J
Ž

iPI vi | ψiK follows (for the

case Y “ H) from the more general Lemma 5.2 later in this section. Computationally, subsumption is a

relatively cheap,4 sufficient condition to check a set inclusion of the form Jv | ψK Ď J
Ž

iPI ui | ϕiK, but of

course it is not a necessary condition. For example, if x , y is a pairing operator forming pairs of natural

numbers in Peano notation, we have an inclusion Jxn,my | JK Ď Jxx, 0y | J _ xy, spzqy | JK, but of course

xn,my | J Ę xx, 0y | J _ xy, spzqy | J. Nevertheless, a simple “inductive” instantiation of the variable m

by 0 and spkq can yield a proof by subsumption for the above set inclusion.

Over-Approximating Complements. It follows trivially from the semantics of pattern predicates that

for any QF Σ-formula ϕ we always have an inclusion Ju | ϕK Ď Ju | JK. The reason why negation has been

excluded from the above definition of pattern predicates is that the naive assumption that we would have a

set-theoretic equality Ju | JKzJu | ϕK “ Ju | ϕK is false in general, even assuming that varspϕq Ď varspuq.

We always have Ju | JK “ Ju | ϕKY Ju | ϕK, but in general we only have Ju | JKzJu | ϕK Ď Ju | ϕK.
For a simple example, consider sorts Elt and MSet with subsort inclusion Elt ă MSet , constants a, b, c

of sort Elt , an associative-commutative multiset union operator , and variables x, y of sort Elt . Then,

enclosing multisets in parentheses for clarity, so that, e.g., the multiset a, b, b, c is denoted pa, b, b, cq, we

have:

Jx, y, z | x ­“ yK “ tpa, b, cq, pa, a, bq, pa, a, cq,

pb, b, aq, pb, b, cq, pc, c, aq, pc, c, bqu
(5.3)

Jx, y, z | x “ yK “ tpa, a, aq, pb, b, bq, pc, c, cq, pa, a, bq, pa, a, cq,

pb, b, aq, pb, b, cq, pc, c, aq, pc, c, bqu
(5.4)

Jx, y, z | JKzJx, y, z | x ­“ yK “ tpa, a, aq, pb, b, bq, pc, c, cqu. (5.5)

4 This remark should be taken with several grains of salt. The matching involved can be quite cheap in practice if EΩ “ H

and BΩ consists of axioms such as associativity or associativity-commutativity and the terms involved are not too large. It is
still possible and automatable in Maude when axioms BΩ are like that, and EΩYBΩ has the finite variant property [23, 24]; but
it will be more expensive. In general, the validity check ϕñ

Ž

pi,βqPmatchpu, tviuiPI ,Hq
ψiβ may not be cheap and may even be

undecidable, since it is an inductive property. However: (i) this check is automatable in Maude when EYB has the finite variant
property and EΩYBΩ is OS-compact [25, 88]; and (ii) even though the inductive validity of ϕñ

Ž

pi,βqPmatchpu, tviuiPI ,Hq
ψiβ

is generally undecidable, in practice the use of simplification techniques and of user-provided lemmas, to be later discharged as
proof obligations, can nevertheless suffice for proving it. To begin with, the Boolean equivalences

Añ B ” pAq _B ” pAq _B _B ” pA^ Bq ñ B (5.2)

make such simplification techniques more effective by checking instead the equivalent inductive validity of pϕ ^
Ź

pi,βqPmatchpu, tviuiPI ,Hq
 ψiβq ñ

Ž

pi,βqPmatchpu, tviuiPI ,Hq
ψiβ, which has a stronger condition.

86

Nevertheless, the set identity Ju | ϕK Y Ju | ϕK “ Ju | JK gives us the set containment Ju | JKzJu |
ϕK Ď Ju | ϕK. Therefore, Ju | ϕK gives us a cheap, symbolic way to over-approximate the set difference

Ju | JKzJu | ϕK.
More generally, the powerset of u-pattern-definable subsets of Ju | JK of the form Ju | ϕK is obviously closed

under finite unions,
Ť

1ďiďnJu | ϕiK “ Ju | ϕi _ . . . _ ϕnK. Likewise, it is closed under finite intersections
Ş

1ďiďnJu | ϕiK “ Ju | ϕi ^ . . . ^ ϕnK (were without loss of generality we assume for 1 ď i ă j ď n that

pvarspϕiqzvarspuqq X pvarspϕjqzvarspuqq “ H). But since Ju | ϕKzJu | ψK “ Ju | ϕK X pJu | JKzJu | ψKq, we

can symbolically define the over-approximated set difference Ju | ϕKzzJu | ψK by means of the equality:

Ju | ϕKzzJu | ψK “def Ju | ϕKX Ju | ψK “ Ju | ϕ^ ψK (5.6)

assuming again that pvarspϕqzvarspuqqX pvarspψqzvarspuqq “ H. Such computationally cheap set difference

over-approximations are exploited by reachability logic’s inference system (see Section 5.4).

Intersecting Patterns by Unification. Note that, assuming that EΩ Y BΩ has a finitary unification

algorithm, any constrained constructor pattern predicate A is semantically equivalent to a finite disjunction
Ž

i ui | ϕi of constrained constructor patterns. This is because: (i) by (3)–(4) in Def. 5.1 we may assume A

is in disjunctive normal form; and (ii) it is easy to check that Jpu | ϕq ^ pv | φqK =
Ť

αPUnif EΩYBΩ
pu,vqJuα |

pϕ ^ φqαK, where we assume without loss of generality that varspu | ϕq X varspv | φq “ H, and that all

variables in ranpαq are fresh.

Parametrized Intersections. In the above discussion of intersections it was assumed that the variables in

the two constructor patterns are disjoint. But this may not always be what we want. Consider constrained

patterns u | ϕ and v | φ with Y “ varspu | ϕq X varspv | φq. The sharing of variables Y may be intentional

as parameters common to both u | ϕ and v | φ. Using the algebraic notation N “ t0, sp0q, spsp0qq, . . .u,

this can be illustrated by two patterns describing triples of natural numbers, namely, x0, y, zy | J and

xx, spyq, sp0qy | J with shared parameter y. We can view these patterns parametrically as describing the

N-indexed families of sets: ttx0, n, zy | z P NuunPN and ttxx, spnq, sp0qy | x P NuunPN. Then their N-indexed

intersection ttx0, n, zy | z P Nu X txx, spnq, sp0qy | z P NuunPN “ tHunPN can then be symbolically described

by K, because the terms x0, y, zy and xx, spyq, sp0qy have no unifier, although by renaming xx, spyq, sp0qy to

xx, spy1q, sp0qy they can be unified into the term x0, spy2q, sp0qy, so that Jx0, y, zy | JKX Jxx, spyq, sp0qy | JK “
Jx0, spy2q, sp0qy | JK.

This suggests that if u | ϕ and v | φ are pattern predicates with shared parameters Y “ varspu |

ϕqX varspv | φq, we can consider them as describing parameterized families of sets tJpu | ϕqρKuρPrYÑTΩs and

tJpv | φqρKuρPrYÑTΩs. We can then define their Y -parameterized conjunction as the pattern predicate

pu | ϕq ^Y pv | φq “
ł

αPUnif EΩYBΩ
pu,vq

pu | ϕ^ φqα (5.7)

where, to avoid any variable capture, all variables in ranpαq are assumed fresh.

To emphasize that this models a Y -parameterized intersection, we then use the notation, Jpu | ϕq ^Y pv |
φqK “ Ju | ϕKXY Jv | φK. The specific sense in which pu | ϕq^Y pv | φq symbolically models the parameterized

intersection of the families of sets tJpu | ϕqρKuρPrYÑTΩs and tJpv | φqρKuρPrYÑTΩs can be made precise as

follows:

Lemma 5.1 For u | ϕ and v | φ pattern predicates, with Y “ varspu | ϕq X varspv | φq, the following set

87

identity holds:
ď

ρPrYÑTΩs

Jpu | ϕqρKX Jpv | φqρK “ Ju | ϕKXY Jv | φK. (5.8)

Parametrized Containments. The notion of set containment also makes sense for indexed families of

sets. For example, given N-indexed families of sets: ttxspspxqq, n, sp0qy | x, y P NuunPN and ttxspx1q, n, spy1qy |

x1, y1 P NuunPN, we say that the first is contained in the second, denoted ttxspspxqq, n, sp0qy | x, y P NuunPN Ď
ttxspx1q, n, spy1qy | x1, y1 P NuunPN iff, by definition,

@n P N txspspxqq, n, sp0qy | x, y P Nu Ď txspx1q, n, spy1qy | x1, y1 P Nu, (5.9)

which is actually the case for this example. In reachability logic applications we will often encounter the

case of two pattern predicates u | ϕ and
Ž

iPI vi | ψi for which their shared variables Y “ varspu | ϕq X

varsp
Ž

iPI vi | ψiq are indeed parameters, so that the semantic meaning of their set containment is the

containment of a parametric family of sets, i.e.,

@ρ P rYÑTΩs Jpu | ϕqρK Ď Jp
ł

iPI

vi | ψiqρK. (5.10)

To distinguish this notion of set containment from the standard one, where we may always rename u |

ϕ and
Ž

iPI vi | ψi so that varspu | ϕq X varsp
Ž

iPI vi | ψiq “ H, we write it as follows: Ju | ϕK ĎY
J
Ž

iPI vi | ψiK. Under these assumptions, there is a natural notion of Y -parameterized subsumption of

u | ϕ by
Ž

iPI vi | ψi, denoted u | ϕ ĎY
Ž

iPI vi | ψi, namely, such subsumption holds iff TΣ{EYB |ù

ϕñ
Ž

pi,βqPmatchpu, tviuiPI ,Y q
ψiβ. As for the unparameterized case, a parameterized subsumption u | ϕ ĎY

Ž

iPI vi | ψi provides a relatively efficient, symbolic way of checking the parameterized inclusion Ju | ϕK ĎY
J
Ž

iPI vi | ψiK. Indeed, we have:

Lemma 5.2 Given pattern predicates u | ϕ and
Ž

iPI vi | ψi with common parameters Y , if TΣ{EYB |ù ϕñ
Ž

pi,βqPmatchpu, tviuiPI ,Y q
ψiβ, then Ju | ϕK ĎY J

Ž

iPI vi | ψiK.

The notions of parameterized intersection and parameterized containment will be used in Section 5.3.1

to reason about parameterized invariants and co-invariants, and in Section 5.4 to perform inferences in

reachability logic.

5.3 CONSTRUCTOR-BASED REACHABILITY LOGIC

The constructor-based reachability logic we shall define is a logic to reason about reachability properties of

the canonical reachability model CR of a topmost rewrite theory R, where “topmost” captures the intuitive

idea that all rewrites with the rules R in R happen at the top of the term. Many rewrite theories of

interest, including theories specifying distributed object-oriented systems and rewriting logic specifications

of (possibly concurrent) programming languages, can be easily specified as topmost rewrite theories by a

simple theory transformation (see, e.g., [78]). Besides satisfying the requirements in Definition 2.14, R
should also satisfy the requirements in Definition 5.2 below.

Definition 5.2 (Suitable Rewrite Theories) We say a rewrite theory R “ pΣ, E YB,Rq satisfying the

requirements in Definition 2.14 is suitable for reachability analysis or just suitable iff it satisfies the following

additional conditions:

88

1. pΣ, E YBq has a decomposition pΣ, B, ~Eq and a constructor decomposition pΩ, BΩ, ~EΩq such that: (i)

the equations EΩ YBΩ are regular and there is a finitary EΩ YBΩ-unification algorithm5 and (ii) the

axioms BΩ are linear.

2. Σ has a sort State, the top sort of a connected component rStates, and R is topmost for sort State in

the sense that: (i) for rules l Ñ r P R, l and r have sort State and (ii) for any u P TΩpXqState and

any non-empty position p in u, u|p R TΩpXqState .

3. All rules pl Ñ r if ϕq P R have l P TΩpXq and are unforgetful,6i.e. they satisfy varsplqzpvarsprq Y

varspφqq “ H.

Requirements (1)–(3) in Definition 5.2 ensure that in the canonical reachability model CR if rus ÑR rvs

holds, then the R,B-rewrite uÑR,B u1 such that ru1!s “ rvs happens at the top of u, i.e., uses a rewrite rule

l Ñ r if ϕ P R and a ground substitution σ P rYÑTΩs, with Y the rule’s variables, such that u “BΩ
lσ

and u1 “ rσ. In the sequel, we assume that all rewrite theories satisfy the requirements in Definition 5.2,

i.e., are suitable for reachability analysis. We are now ready to define the formulas of our constructor-based

reachability logic for suitable theories R.

Definition 5.3 (Reachability Formulas) Let R “ pΣ, E Y B,Rq be suitable. Recall the notion of an

s-sorted constrained pattern predicate PatPredpΩ,Σqs in Definition 5.1. A reachability formula then has

the form: A Ñf B, with A,B P PatPredpΩ,ΣqState , where pΩ, BΩ, ~EΩq is the constructor decomposition of

pΣ, B, ~Eq assumed in Definition 5.2. By definition, the parameters Y of A Ñf B are the variables in the

set Y “ varspAq X varspBq, and AÑf B is called unparameterized iff Y “ H.

The presentation of reachability logic in [27] considers two different semantics: (i) a one-path semantics,

which we denote R |ù1 A Ñf B, and (ii) an all-paths semantics, which we denote R |ù@ A Ñf B. Since

the all-paths semantics is the most general and expressive, and the one-path semantics applies mostly to

sequential systems, in this chapter we focus on the all-paths semantics.

The reachability logic in [26, 27] is based on terminating sequences of state transitions and is such that

all reachability formulas are vacuously true when there are no terminating states. Our purpose is to extend

reachability logic so as to be able to verify properties of general distributed systems specified as rewrite

theories R which may never terminate. For this, as further explained in Section 5.3.1, we extend the rewrite

theory R into a closely-related theory Rstop which does have terminating states. This allows a useful

interpretation of reachability formulas, which have a non-vacuous meaning in Rstop and indirectly also a

new meaning (the desired one) in the original non-terminating theory R. Furthermore, we can generalize

the satisfaction relation R |ù@ A Ñf B to a relativized satisfaction relation R |ù@T A Ñf B, where T is a

constrained pattern predicate such that JT K is a subset of the set of terminating states.

The following terminological clarification may help the reader. In the canonical reachability model CR of

a rewrite theory R we call a finite or infinite sequence of ÑR-transitions maximal iff it cannot be extended.

5This is always guaranteed in practice if pΩ, BΩ, ~EΩq is FVP and BΩ has a finitary unification algorithm.
6Call a rule l Ñ r P R forgetful if it is not unforgetful. In the rewriting specification of an asynchronous fault-tolerant

communication protocol where the state is specified as a multiset of objects (network nodes) and messages, the dropping of
messages by the faulty environment can be modeled by the forgetful rule M Ñ null , where null is the empty multiset. For
technical reasons, in reachability logic deduction it is useful to assume that all rewrite rules are unforgetful. But this entails
no real loss of generality: any forgetful rule l Ñ r if φ P R with varsplqzpvarsprq Y varspφqq “ tx1, . . . xnu can be replaced by
the semantically equivalent unforgetful rule: lÑ r if φ^ x1 “ x1 ^ . . .^ xn “ xn. For example, M Ñ null can be replaced by
M Ñ null if M “M .

89

This can happen in exactly two ways; either: (i) the sequence is infinite, and is then called non-terminating,

or (ii) the sequence is a finite sequence rus Ñ˚
R rvs but it cannot be extended, i.e., pErwsq rvs ÑR rws, and is

then called terminating. R itself is called never terminating iff all maximal sequences in CR are infinite, and

terminating iff they are all finite. In general, of course, CR may have both terminating and non-terminating

sequences.

Definition 5.4 (T -Terminating Sequence) Let TermR denote the set of terminating states for theory

R, i.e., TermR “ trus P CR,State | pErvsq rus ÑR rvsu. If JT K Ď TermR, call rus Ñ˚
R rvs a T -terminating

sequence iff rvs P JT K. For reachability analysis purposes, we require that T can be specified as a pattern

predicate of the form T “
Ž

i ti | χi, with varspχiq Ď varsptiq.

In all the examples we present, the relation |ù@T is the standard relation |ù@, i.e., JT K “ TermR; but even in

the standard case, giving an explicit specification of the set of terminating states is very useful for deduction

purposes. Constructor-based techniques such as those proposed in [59] can be used to characterize the set

TermR of terminating states by means of a pattern predicate T in many cases. In the relative case, where

we just have an inclusion JT K Ď TermR, we need to show that the containment JT K Ď TermR holds, which

can often be achieved by showing, using unification and narrowing techniques, that no state rws P JT K can

be rewritten at all by the rules in R.

Definition 5.5 (Semantics of Reachability Formulas) Given T with JT K Ď TermR, the all-paths sat-

isfaction relation R |ù@T u | ϕÑf
Ž

jPJ vj | φj asserting the satisfaction of the formula u | ϕÑf
Ž

jPJ vj |

φj in the canonical reachability model CR of a suitable rewrite theory R is defined as follows:

For u | ϕÑf
Ž

jPJ vj | φj unparameterized, R |ù@T u | ϕÑf
Ž

jPJ vj | φj holds iff for each T -terminating

sequence ru0s ÑR ru1s . . . run´1s ÑR runs with ru0s P Ju | ϕK there exist k, 0 ď k ď n and j P J such that

ruks P Jvj | φjK. For u | ϕ Ñf
Ž

jPJ vj | φj with parameters Y , R |ù@T u | ϕ Ñf
Ž

jPJ vj | φj holds if

R |ù@T pu | ϕqρÑf p
Ž

jPJ vj | φjqρ holds for each ρ P rYÑTΩs.

Since a constrained pattern predicate is equivalent to a disjunction of atomic ones, we can define satisfac-

tion on general reachability logic formulas as follows: R |ù@T
Ž

1ďiďn ui | ϕi Ñ
f A iff

Ź

1ďiďnR |ù@T ui |

ϕi Ñ
f A, assuming same parameters Yi “ varspui | ϕiq X varspAq, i.e., Yi “ Yi1 for 1 ď i ă i1 ď n.

R |ù@T AÑf B is a path-universal partial correctness assertion: If state rus satisfies precondition A, then

midcondition B is satisfied somewhere along each T -terminating sequence from rus, generalizing a Hoare

formula tAuRtBu, where B is understood not just as a “midcondition,” but as a “postcondition” satisfied

by final states. To be consistent with the Hoare logic meaning of postconditions (see Section 5.3.2 for a

generalized Hoare logic), we reserve the term postcondition for a midcondition B in a reachability formula

AÑf B such that JBK Ď JT K.

Implicit Quantification in Reachability Formulas. Implicit in the above definition of satisfaction is

the different way in which variables are quantified. It may be worthwhile making this explicit to clarify the

implicit universal and existential quantifications involved in a (seemingly unquantified) reachability formula

u | ϕÑf
Ž

jPJ vj | φj . Let U “ varspu | ϕq, Z “ varsp
Ž

jPJ vj | φjq, and Y “ U XZ. Then, all variables in

U (and in particular all parameters in Y) are universally quantified, and all variables in ZzY are existentially

quantified, in the sense that R |ù@T u | ϕÑf
Ž

jPJ vj | φj holds iff:

90

@γ P rUÑTΩs s.t. TΣ,EYB |ù ϕγ

@ ru0s ÑR ru1s . . . run´1s ÑR runs s.t. ru0s “ rpuγq!s ^ runs P JT K

Dk P N, 0 ď k ď n, Dj P J Dτ P rZzYÑTΩs

s.t. ruks “ rpvjpγ|Y Z τqq!s P Jpvj | φjqγ|Y K. (5.11)

Parameter Instantiation. Assume again a reachability formula u | ϕÑf
Ž

jPJ vj | φj with U “ varspu |

ϕq, Z “ varsp
Ž

jPJ vj | φjq, and parameters Y “ U X Z. In deductive reasoning, such a formula, and other

formulas related to it, are often instantiated by a substitution α whose domain is a subset of U and whose

range is disjoint from U Y Z. Then, α respects the formula’s parameters in the expected way:

Lemma 5.3 (Parameter Instantiation Lemma). Under the above assumptions on u | ϕÑf
Ž

jPJ vj | φj, for

any substitution α such that dompαq Ď U and ranpαqX pU YZq “ H, the formula pu | ϕÑf
Ž

jPJ vj | φjqα

has parameters varspαpY qq.

Three simple classes of reachability formulas, called, respectively, trivial, vacuous, and T -consistent, play

an important role in reachability logic deduction:

Definition 5.6 (Trivial, Vacuous, T -consistent) Given a rewrite theory R with terminating states T

specified by the pattern predicate T “
Ž

i ti | χi, a reachability formula u | ϕÑf
Ž

jPJ vj | φj, whose variables

are without loss of generality assumed disjoint from those in T , and with (possibly empty) parameters Y is

called:

1. trivial iff Ju | ϕK ĎY J
Ž

jPJ vj | φjK.

2. vacuous iff Ju | ϕK “ H

3. T -consistent iff p@iqp@α P UnifEΩYBΩ
pu, tiqqJpu | ϕ^ χiqαK ĎvarspαpY qq Jp

Ž

jPJ vj | φjqαK.

A trivial reachability formula u | ϕ Ñf
Ž

jPJ vj | φj is called so because all states in its precondition have

already reached the midcondition, and therefore R |ù@T u | ϕ Ñf
Ž

jPJ vj | φj trivially holds in 0 rewrite

steps. A reachability formula whose precondition is empty is vacuously valid. Note that vacuousness is

a special case of triviality. The meaning of a T -consistent formula can be best clarified by its negation:

u | ϕÑf
Ž

jPJ vj | φj will be T -inconsistent iff there is a ground substitution ρ of the parameters Y and a

final state rws P Jpu | ϕqρKX JT K such that rws R Jp
Ž

jPJ vj | φjqρK. Therefore, T -consistency is a necessary

condition for validity. It is also a sufficient condition when the states in the precondition are terminating

states:

Lemma 5.4 If u | ϕ Ñf
Ž

jPJ vj | φj with parameters Y is T -consistent and Ju | ϕK Ď TermR, then

R |ù@T u | ϕÑf
Ž

jPJ vj | φj.

Recall that in requirement (3) for a suitable rewrite theory R we assumed unforgetful topmost rewrite

rules of the form l Ñ r if φ with l P TΩpXq. For symbolic reasoning purposes it will be very useful to

also require that r P TΩpXq. This can be done without any real loss of generality by means of a theory

91

transformation7 R ÞÑ R̂ defined as follows. If R “ pΣ, EYB,Rq, then R̂ “ pΣ, EYB, R̂q, where the rules R̂

are obtained from the rules R by transforming each lÑ r if φ in R into the rule lÑ r1 if φ^ θ̂, where: (i)

r1 is the Ω-abstraction of r obtained by replacing each length-minimal position p of r such that t|p R TΩpXq

by a fresh variable xp whose sort is the least sort of t|p, (ii) θ̂ “
Ź

pPP xp “ tp, where P is the set of all

length-minimal positions in r such that t|p R TΩpXq. Note that the transformation R ÞÑ R̂ preserves all

suitable theory requirements (1)–(3). Its key semantic property can be expressed as follows:

Lemma 5.5 The canonical reachability models CR and CR̂ are identical.

5.3.1 Invariants, Co-Invariants, and Never-Terminating Systems

The notion of an invariant makes sense for any transition system S, that is, for any pair S “ pS,ÑSq

with S its set of states and ÑSĎ S ˆ S its transition relation. Given a set of “initial states” S0 Ď S, the

set ReachSpS0q of states reachable from S0 is defined as ReachSpS0q “ ts P S | pDs0 P S0q s0 Ñ
˚
S su, where

Ñ˚
S denotes the reflexive-transitive closure of ÑS . An invariant is a safety property about S with initial

states S0 and can be specified in two ways: (i) by a “good” property P Ď S, the invariant, that always holds

from S0, i.e., such that ReachSpS0q Ď P , or (ii) as a “bad” property Q Ď S, the co-invariant, that never

holds from S0, i.e., such that ReachpS0q X Q “ H. Obviously, P is an invariant iff SzP is a co-invariant.

Sometimes it is easier to specify an invariant positively, as P , and sometimes negatively, as its co-invariant

SzP .

Invariants and co-invariants are much easier to prove if they are inductive. This can be expressed in terms

of the notion of an S-stable set. For S “ pS,ÑSq a transition system, U Ď S is S-stable iff for each s, s1 P S,

ps P U ^ sÑS s
1q ñ s1 P U . An invariant P (resp. a co-invariant Q) for initial states S0 is inductive iff P is

S-stable (resp. Q is S´1-stable, where S´1 “ pS, pÑSq
´1q). Equivalently, the following are equivalent:

1. P is an inductive invariant (resp. Q is an inductive co-invariant) for S0.

2. S0 Ď P and P is S-stable (resp. S0 XQ “ H and Q is S´1-stable).

3. S0 Ď P and P “ ReachSpP q (resp. S0 XQ “ H and Q “ ReachS´1pQq).

All this is particularly relevant for the transition system pCR,State ,ÑRq associated to the canonical model

CR of a rewrite theory R. Here is an obvious question with a non-obvious answer. Suppose we have specified

a distributed system as the canonical model CR of a suitable rewrite theory R. Suppose further that we

have specified constrained pattern predicates S0 and P (resp. and Q) and we want to prove that JP K (resp.

JQK) is an invariant (resp. co-invariant) of the system pCR,State ,ÑRq from JS0K. Can we characterize such

invariant, resp. co-invariant, property by means of reachability formulas and use the inference system of

Section 5.4 to try to prove such formulas?

Suppose R specifies a never-terminating system, i.e., a system such that TermR “ H. Many distributed

systems are never-terminating. For example, QLOCK and other mutual exclusion protocols are never-

terminating. Then the set TermR “ H, and R |ù@T A Ñf B holds vacuously for all reachability formulas

AÑf B and no reachability formula can characterize an invariant (resp. co-invariant) over R.

Nevertheless, reachability logic can indeed meaningfully reason about invariants and co-invariants of dis-

tributed systems, regardless of whether they are terminating, sometimes terminating, or never terminating.

7An even more general theory transformation R ÞÑ RΩ
Σ1,l,r

, used in some of the examples of Section 5.5, is presented in
[43, 87].

92

We just need to first perform a simple theory transformation. To ease the exposition, we explain the trans-

formation in case Ω has a single state constructor, say, x , . . . , y : s1, . . . , sn Ñ State. Extending to multiple

constructors is straightforward.

Invariant Theory Transformation. The theory transformation has the form R ÞÑ Rstop , where Rstop is

obtained from R by just adding: (1) a new state constructor operator r , . . . , s : s1, . . . , sn Ñ State to Ω,

and (2) a new rewrite rule stop : xx1:s1, . . . , xn:sny Ñ rx1:s1, . . . , xn:sns to R. Also, let r s denote the pattern

predicate rx1:s1, . . . , xn:sns | J. Likewise, for any atomic constrained pattern predicate B “ xu1, . . . , uny | ϕ

we define the pattern predicate rBs “ ru1, . . . , uns | ϕ and extend this notation to any union Q of atomic

predicates.

Since x , . . . , y : s1, . . . , sn Ñ State is the only state constructor, we can assume without loss of generality

that any atomic constrained pattern predicate inR is semantically equivalent to one of the form xu1, . . . , uny |

ϕ. Likewise, any pattern predicate will be semantically equivalent to a union of atomic predicates of such

form, called in standard form. Here is the main theorem:

Theorem 5.1 (Invariants) For S0, P PPatPredpΩ,Σq constrained pattern predicates in standard form with

varspS0q X varspP q “ H, JP K is an invariant of pCR,State ,ÑRq from JS0K iff Rstop |ù
@
r s
S0 Ñ

f rP s.

The notion of a parametric invariant can be reduced to the unparameterized one: if Y “ varspS0q X

varspP q, then JP K is an invariant of pCR,State ,ÑRq from JS0K with parameters Y iff Rstop |ù
@
r s
S0 Ñ

f rP s.

That is, iff JPρK is an (unparameterized) invariant of pCR,State ,ÑRq from JS0ρK for each ρ P rYÑTΩs. In

this way, just by dropping the unparametricity requirement varspS0q X varspP q “ H from the theorem’s

statement, Theorem 5.1 extends seamlessly to a reachability logic characterization of parametric invariants.

Example 5.2 (Specifying Invariants for QLOCK) As an example, we consider how to specify invari-

ants as reachability formulas using the QLOCK specification from Sections 5.1.5 and 5.2. Note that not only

is QLOCK nonterminating: it is also never terminating. Thus, specifying any invariants as reachability

formulas in the original theory is impossible. However, by applying the R ÞÑ Rstop theory transformation

and Theorem 5.1, we can specify invariants by reachability formulas. Define the set of initial states con-

taining only normal processes by the pattern predicate S0 “ ă n 1 | H | H | nil ą | duplpn1q ­“ tt. Since

QLOCK states have the form ă n | w | c | q ą, mutual exclusion means |c| ď 1, which is expressible by the

pattern predicate ă n | w | H | q ą_ă n | w | i | i ; q ą. We need also to ensure our multisets are actu-

ally sets. Thus, we define the constructor pattern predicates P1 “
`

ă n | w | H | q ą|duplpn wq ‰ tt
˘

and

P2 “
`

ă n | w | i | i ; q ą | duplpn w iq ‰ tt
˘

, so that the pattern predicate P “ P1 _ P2 specifies mutual

exclusion. By Theorem 5.1, QLOCK ensures mutual exclusion from JS0K iff Rstop |ù
@
r s
S0 Ñ

f rP s where

here rP s is rP1s _ rP2s, i.e.
`

r n | w | H | q s | duplpn wq ‰ tt _ r n | w | i | i ; q s | duplpn w iq ‰ tt
˘

.

As pointed out above, proving inductive invariants is much easier than proving non-inductive ones. The

following theorem provides a precise characterization of parametric invariants in reachability logic. Of the

three equivalent characterizations we have given of inductive invariants, it uses Characterization (3). This

theorem can, for example, be applied to prove the mutual exclusion of QLOCK.

Theorem 5.2 (Parametric Inductive Invariants) Let S0, P P PatPredpΩ,Σq both be constrained pat-

tern predicates in standard form with varspS0q X varspP q “ Y . Then JP K is a parametric inductive in-

variant of pCR,State ,ÑRq from JS0K with parameters Y iff: (i) JS0K ĎY JP K (see Section 5.2.1), and (ii)

93

Rstop |ù
@
r s
P Ñf rPσs, where σ is a sort-preserving bijective renaming of variables such that σ is the identity

on Y and varspP q X varspPσq “ Y .

This leaves still open the question of whether reachability logic could directly express Characterization

(2) of inductive invariants in terms of stable sets. The answer is yes, provided we assume without loss of

generality, thanks to Lemma 5.5, that R “ R̂ and we use a slightly different theory transformation. Namely,

we use the transformation R ÞÑ Rstop1 , where Rstop1 is the theory obtained from Rstop by replacing

the rules R from R “ R̂ by the set of rules rRs obtained by replacing each rule l Ñ r if φ in R by

the rule l Ñ rrs if rφs where, by convention, (i) if the constructor term r has the from xv1, . . . , vny,

then rrs “ rv1, . . . , vns and rφs “ φ, and (ii) otherwise, r must be a variable S of sort State, and then

rrs “ rx1, . . . , xns, where the variables x1, . . . , xn are fresh of the input sorts s1, . . . , sn for r , . . . , s, and

where rφs “ φ^ S “ xx1, . . . , xny. The proof of the following corollary uses Characterization (2) and, being

totally analogous to, and even simpler than, that of Theorem 5.2 is left to the reader.

Corollary 5.1 (Parametric Inductive Invariants) Assume R “ R̂ and also let S0, P P PatPredpΩ,Σq

be constrained pattern predicates in standard form with varspS0q X varspP q “ Y . Then JP K is a parametric

inductive invariant from JS0K with parameters Y for pCR,State ,ÑRq iff: (i) JS0K ĎY JP K (see Section 5.2.1),

and (ii) Rstop1 |ù
@
r s
P Ñf rPσs, where σ is a sort-preserving bijective renaming of variables such that σ is

the identity on Y and varspP q X varspPσq “ Y .

What is attractive about Corollary 5.1 is that Rstop1 is a very simple theory: in Rstop1 all R-terms of

sort State terminate and all their associated terminating sequences have length 1. It is also useful to point

out that the parametric inclusion JS0K ĎY JP K is semantically equivalent to Rstop1 |ù
@
r s
rS0s Ñ

f rPσs, since

this will allow us to use the Subsumption inference rule in Section 5.4 to discharge this proof obligation.

Let us now turn to the case of inductive co-invariants. Suppose we have specified constrained pattern

predicates S0 and Q and we want to prove that JQK is an inductive co-invariant of the system pCR,State ,ÑRq

from JS0K. Can this property be characterized by some reachability formula or formulas? More generally, can

we characterize in reachability logic when Q is a parametric inductive co-invariant from JS0K? Parametric

co-invariants are entirely analogous to parametric invariants. Given constrained pattern predicates S0, Q P

PatPredpΩ,Σq in standard form, with Y “ varspS0q X varspQq, we call Q a parametric co-invariant in

pCR,State ,ÑRq for initial states JS0K with parameters Y iff for each ρ P rYÑTΩs JQρK is an (unparameterized)

co-invariant in pCR,State ,ÑRq for initial states JS0ρK. The key idea to characterize inductive co-invariants

in reachability logic is to use the rules of R backwards. Assume, without loss of generality thanks to Lemma

5.5, that R “ R̂. Then, if R “ pΣ, EYB,Rq, define R´1 “ pΣ, EYB,R´1q, where R´1 “ tr Ñ l if ϕ | plÑ

r if ϕq P Ru. Then, if R satisfies the suitability conditions (1)–(3) and, assuming the rules R´1 are ground

coherent8 with the equations E modulo B and have been made unforgetful if necessary by adding trivial

equalities for the forgotten variables to their conditions, then R´1 also satisfies the suitability conditions

(1)–(3). Here is the main theorem characterizing parametric inductive co-invariants in reachability logic (the

unparameterized case is the case Y “ H):

Theorem 5.3 (Parametric Inductive Co-invariants) Assume R “ R̂ and let S0, Q P PatPredpΩ,Σq

be constrained pattern predicates in standard form with varspS0q X varspQq “ Y . Then JQK is a parametric

8Ground coherence of R´1 may be problematic because, while a rule’s lefthand side l is assumed to be a constructor term,
that assumption does not hold in general for its righthand side r. However, its does if we assume (without loss of generality

thanks to Lemma 5.5) that R “ R̂. Coherence-type critical pairs almost never arise in practice between a constructor-based

rule and equations E. Therefore, assuming R “ R̂, the ground coherence assumption for R´1 is very reasonable.

94

inductive co-invariant in pCR,State ,ÑRq for initial states JS0K with parameters Y iff: (i) JS0KXY JQK “ H
(see Section 5.2.1), and (ii) pR´1qstop |ù

@
r s
Q Ñf rQσs, where σ is a sort-preserving bijective renaming of

variables such that σ is the identity on Y and varspQq X varspQσq “ Y .

In complete analogy with Corollary 5.1 we get the following corollary in terms of Characterization (2),

whose proof simplifies and follows closely that of Theorem 5.3 and is left to the reader.

Corollary 5.2 (Parametric Inductive Co-invariants) Assume R “ R̂ and let S0, Q P PatPredpΩ,Σq

be constrained pattern predicates in standard form with varspS0q X varspQq “ Y . Then JQK is a parametric

inductive co-invariant in pCR,State ,ÑRq for initial states JS0K with parameters Y iff: (i) JS0KXY JQK “ H
(see Section 5.2.1), and (ii) pR´1qstop1 |ù

@
r s
QÑf rQσs, where σ is a sort-preserving bijective renaming of

variables such that σ is the identity on Y and varspQq X varspQσq “ Y .

5.3.2 Relationships to Hoare Logic and Universally Quantified LTL

It is both natural and helpful to compare reachability logic to other property logics such as Hoare logic

or linear time temporal logic (LTL). Let us begin with Hoare logic [89].

Relationship to Hoare Logic. A Hoare logic is traditionally associated to a programming language; but

the desired comparison should apply not just to programming languages but to any systems specifiable by

topmost rewrite theories. This suggests defining Hoare logic in this more general setting.

Definition 5.7 (Hoare Logic) Let R “ pΣ, E Y B,Rq be a suitable theory, and let Ω be its constructor

subsignature. A Hoare triple for R is then a triple of the form:

tAu R tBu (5.12)

where A,B P PatPredpΩ,ΣqState . Let Y “ varspAq X varspBq. By definition, when Y “ H, a Hoare

triple tAu R tBu is satisfied by the initial reachability model TR, denoted TR |ù tAu R tBu, iff for each

rus P JAK and each terminating sequence rus ÑR!rvs, rvs P JBK. If Y ­“ H, then TR |ù tAu R tBu iff

TR |ù tAρu R tBρu for each ρ P rXÑTΩs.

Since the rewriting logic semantics of a programming language L can be specified by a topmost rewrite

theoryRL, the standard Hoare logic for L becomes the special case where in the above notation we represent a

Hoare triple tϕu p tψu as the Hoare triple txp : inity | rϕu RL txskip : Sy | rψu, where init is the initial program

state, of sort ProgState, skip is the empty program continuation, and where configurations of a program (or,

more generally, a continuation) p and a program state S are represented as pairs xp : Sy. Explaining how the

QF ΣL-formulas rϕ and rψ are derived from the original ϕ and ψ is essentially straightforward, but becomes

complicated by the regrettable systematic confusion of program variables with mathematical variables in ϕ

and ψ. This can be best illustrated with an example. Consider the Hoare triple tn ě 0u x := n ; factp

ty “ n!u, which specifies that a factorial program factp with its variable x initialized to the integer n ě 0

will have upon termination the value n! stored in its variable y. For RL this can be expressed as the Hoare

triple txx := n ; factp : inity | n ě 0u RL txskip : Sy | Srys “ n!u, where S is a variable of sort ProgState

and Srvs is an auxiliary function extracting the value in state S of program variable v. Of course, conversely,

a Hoare triple tAu R tBu has also in a sense a standard interpretation, since we can view R as a program

in a rewriting logic language with user-definable data types such as Maude.

95

The comparison with reachability logic is now straightforward: Hoare logic is essentially a sublogic of

reachability logic, namely, in a Hoare triple tAu R tBu, since B is a postcondition, we may assume without

loss of generality that JBK Ď JT K “ TermR. Then, tAu R tBu is just syntactic sugar for the reachability

formula A Ñf B. Of course, the Hoare triple tAu R tBu is parametric with parameters Y iff A Ñf B is

so. Indeed, we then have:

TR |ù tAu R tBu ô R |ù@ AÑf B. (5.13)

When the above comparison is applied to programming languages (see also [90]), it can be easy to miss

the obvious, namely, the two crucial advantages that reachability logic has in this comparison. Besides being

more general than Hoare logic and having abilities comparable to those of separation logic [91] to express

and verify—through matching modulo associative-commutative axioms B—the properties of heap-intensive

programs, the two crucial advantages of reachability logic are that:

1. unlike Hoare logic, reachability logic is language-generic; that is, instead of having to tailor a differ-

ent Hoare logic for each different programming language, the need for language-specific Hoare rules

completely evaporates:9 only reachability logic’s few inference rules (see Section 5.4), which are rewrite-

theory-generic and, a fortiori, programming-language-generic, are needed; and

2. there is no need whatsoever for defining a so-called axiomatic semantics and proving it correct with

respect to an operational semantics, which is crucially needed in the Hoare logic approach: all that

is needed is the simple, theory-generic semantics of reachability logic given in Definition 5.5, which

reduces it to the, again simple and generic, rewriting logic semantics of the rewrite theory RL defining

the semantics of language L [92, 4].

It is even quite possible to miss the obvious pragmatic consequences of advantages (1)–(2). Developing a

Hoare logic axiomatic semantics for a real programming language, say, Java or C, as opposed to a toy one,

is a big effort requiring careful formalization and typically resulting in a large number of Hoare rules. But,

relatively speaking, this is actually the easiest part of the job. The real challenge is to prove that such an

axiomatic semantics is correct with respect to an operational semantics. This can be a daunting task, and

sometimes even an impossible one due to the absence of a complete operational semantics for the language in

question. For example, not until [93] was a complete operational semantics for C given, as a rewrite theory

expressed in K. As a consequence, some Hoare logics are never proved correct, so their trustworthiness

becomes anybody’s guess. The fact that in reachability logic a single semantic object, namely the rewrite

theory RL, is needed, and that this semantic object is executable, becomes a big pragmatic advantage.

Relationship to LTL. The comparison with LTL requires making explicit the atomic predicates and

the Kripke structure KR associated to a suitable rewrite theory R “ pΣ, E Y B,Rq on which the com-

parison is based. The atomic predicates are PatPredpΩ,ΣqState , and KR is the Kripke structure KR “

pCΣ{E,B,State , pÑRq
‚, LRq, where the relation pÑRq

‚ is the totalization of the one-step rewrite relation and

LR is the labeling function:

CΣ{E,B,State Q rus ÞÑ tA P PatPredpΩ,ΣqState | rus P JAKu P PpPatPredpΩ,ΣqStateq. (5.14)

Note the useful fact that KR can give semantics not only to propositional LTL formulas ϕ, but also to

universal quantifications p@Y qϕ of propositional LTL formulas ϕ, where Y is a (possibly empty) finite set

9See [27] for strong evidence about the advantages of the language-generic nature of reachability logic applied to programming
languages within the K framework.

96

of variables typed in the signature Σ of R. Indeed, we can define, for each rus P CΣ{E,B,State ,

KR, rus |ùLTL p@Y qϕ ôdef @ρ P rYÑTΩs KR, rus |ùLTL ϕρ. (5.15)

The comparison with LTL then becomes straightforward: reachability logic is essentially a sublogic of

quantified LTL: a reachability formula A Ñf B with parameters Y is syntactic sugar for the LTL formula

p@Y q AÑ p3pBq_2enRq, where if R “ tli Ñ ri if ϕiuiPI , then enR is the “enabledness” pattern predicate

enR “
Ž

iPI li | ϕi. Indeed, we have:

R |ù@ AÑf B ô KR |ùLTL p@Y q AÑ p3pBq _2enRq. (5.16)

Of course, when the semantics of A Ñf B is relativized to a pattern predicate T of terminating states, we

get instead the LTL formula p@Y q AÑ p3pBq _2 T q.

Note that, thanks to the results in Section 5.3.1, reachability logic can also express universal LTL safety

formulas of the form: p@Y q A Ñ 2B (with A,B P PatPredpΩ,ΣqState and Y “ varspAq X varspBq), since

we have:

Rstop |ù
@
r s AÑ

f rBs ô KR |ùLTL p@Y q AÑ 2B. (5.17)

Furthermore, reachability logic can also express universal LTL stability formulas of the form: p@Y q B Ñ©B,

which are very useful for specifying and proving parametric inductive invariants. Indeed, we have:

Rstop1 |ù
@
r s B Ñ

f rBs ô KR |ùLTL p@Y q B Ñ©B. (5.18)

While constructor-based reachability logic can only express an (admittedly quite useful) subset of (quan-

tified) LTL properties, this is compensated for by other advantages. For example, as shown in Section 5.4,

reachability logic enjoys a built-in notion of circularity that is very useful for reasoning about repetitive

behavior in systems. As another example, since Kripke models have no native notion of constructor, the

symbolic methods extensively exploited in this chapter cannot be used as generic (quantified) LTL proof

methods for arbitrary Kripke structures. However, an interesting question for future research is how the

symbolic proof methods presented in this chapter could be extended to a bigger fragment of LTL for Kripke

structures of the form KR.

In summary, we can close our comparisons with Hoare logic and with quantified LTL by remarking that:

1. In comparison with Hoare logic, constructor-based reachability logic amounts to a vast generalization

of an already highly expressive logic in three different dimensions: (i) from programming languages

to rewrite theories which can specify both programming languages and distributed system designs;

(ii) from language-specific Hoare logics that have to be hand crafted and proved sound for each pro-

gramming language to a rewrite theory generic logic whose soundness is proved once and for all; and

(iii) from pre-post condition properties to considerably more general and expressive pre-mid condition

properties.

2. In comparison with quantified LTL the key point is that, not only are safety properties such as paramet-

ric invariants of the form p@Y q AÑ 2B and parametric stability properties p@Y q B Ñ©B supported,

but so are also parametric eventuality properties such as p@Y q A Ñ p3pBq _ 2enRq, stating that all

terminating paths starting at A eventually reach B for each ground instantiation of the parameters Y .

97

5.4 REACHABILITY LOGIC’S INFERENCE SYSTEM

We present our inference system for all-path reachability logic, parametric on a suitable rewrite theory

R with unforgetful rules R “ tlj Ñ rj if φjujPJ such that lj , rj P TΩpXq, j P J . Variables of rules in R

are always assumed disjoint from variables in reachability formulas; this can be ensured by renaming. The

inference system has three proof rules: (i) the Subsumption proof rule discharges trivial formulas (recall

Definition 5.6) by means of vacuousness or subsumption checks; (ii) the Step@ proof rule allows taking one

step of (symbolic) rewriting along all paths according to the rules in R; and (iii) the Axiom proof rule allows

the use of a trusted reachability formula to summarize multiple rewrite steps, and thus to handle repetitive

behavior.

The proof rules derive sequents of the form rA, Cs $T u | ϕÑf
Ž

i vi | ψi, which are always checked

for T -consistency, where A and C are finite sets of T -consistent reachability formulas and T is a pattern

predicate defining a set of T -terminating ground states. Formulas in A are called axioms and those in C are

called circularities. We furthermore assume that in all reachability formulas u | ϕ Ñf
Ž

i vi | ψi we have

varspψiq Ď varspviqYvarspu | ϕq for each i. According to the implicit quantification of the semantic relation

|ù@T this means that any variable in ψi is either universally quantified and comes from the precondition u | ϕ,

or is existentially quantified and comes from vi only. This property is an invariant preserved by the three

inference rules.

Proofs always begin with a set C of T -consistent formulas that we want to simultaneously prove, so that

the proof effort only succeeds if all formulas in C are eventually proved. C contains the main properties we

want to prove as well as any (as yet unproved) auxiliary lemmas that may be needed to carry out the proof.

We can also use an additional set L of already proved, and therefore valid, lemmas as axioms that are always

available for use. In such case, the initial set of goals we want to prove is rL, Cs $T C, which is a shorthand

for the set of goals trL, Cs $T u | ϕÑf
Ž

i vi | ψi
ˇ

ˇ pu | ϕ Ñf
Ž

i vi | ψiq P Cu. Thus, we start only with

the already proved lemmas L as axioms, but we shall be able to also use all the formulas in C as axioms in

their own derivation after taking at least one step with the rewrite rules in R using the Step@ rule.

A very useful feature of the inference system is that sequents rL, Cs $T u | ϕÑf
Ž

i vi | ψi, whose

formulas C have been postulated (as the conjectures we want to prove) but not yet justified, are transformed

by Step@ into sequents of the form rLY C, Hs $T u1 | ϕ1 Ñf
Ž

i v
1
i | ψ

1
i, where now the formulas in C can

be assumed valid, and can be used in derivations with the Axiom rule.

Example 5.3 (Conjectures for QLOCK’s Mutual Exclusion) By Theorem 5.2, the mutual exclusion

of QLOCK can be verified as an inductive invariant by: (i) using pattern subsumption to check the triv-

ial inclusion JS0K Ď JP K, and (ii) proving Rstop |ù@
r s
P Ñf rPσs, where σ is a sort-preserving bijec-

tive renaming of variables such that varspP q X varspPσq “ H. For QLOCK, we had the initial state

S0 “ ă n | H | H | nil ą | duplpnq ­“ tt and invariant defined by pattern predicate P “ P1 _ P2 where

P1 “
`

ă n | w | H | q ą | duplpn wq ‰ tt
˘

and P2 “
`

ă n | w | i | i ; q ą | duplpn w iq ‰ tt
˘

. Since P

is a disjunction, in our inference system, the formula P Ñf rPσs naturally splits into two corresponding

reachability formulas P1 Ñ
f rPσs and P2 Ñ

f rPσs shown below:

ă n | w | H | q ą |ψ Ñf ră n 1 | w 1 | i 1 | i 1 ; q 1ą |ϕ1 _ă n 1 | w 1 | H | q 1ą |ψ1s (5.19)

ă n | w | i | i ; q ą |ϕÑf ră n 1 | w 1 | i 1 | i 1 ; q 1ą |ϕ1 _ă n 1 | w 1 | H | q 1ą |ψ1s (5.20)

where ϕ “ duplpn w iq ‰ tt, ψ “ duplpn wq ‰ tt, and ϕ1, ψ1 are their obvious renamings. More generally,

98

if our invariant is of the form P “
Ž

iPI Pi, then we have initial formulas to be proved C “ tPj Ñ
f

Ž

iPI rPiσsujPI .

Recall from Definition 5.6 that a T -inconsistent formula is invalid. Therefore, proof goals or subgoals

involving any such formulas are nonsense. Before explaining in detail our inference system we explain the

requirement of restricting all inferences to T -consistent goals. This is an invariant of the inference system

that is assumed and that must be ensured before applying any inference rule. To maintain this invariant,

our implementation—indeed, any implementation—must perform a T -consistency check before applying any

inference step.

The Importance of Checking T -Consistency. Since any T -inconsistent formula is invalid and would

therefore invalidate any further proof attempts based on it, all formulas in C and any further sequents

derived by the inference system are always checked for T -consistency using parameterized subsumption, and

if the check can show the formula T -inconsistent, the user is immediately notified, and the proof search is

abandoned.

However, since, as noted in Section 5.2, not all set containments between pattern predicates can be checked

by parameterized subsumption, as soon as a reachability formula u | ϕ Ñf
Ž

jPJ vj | φj is encountered

such that: (i) the set intersection Ju | ϕK X JT K cannot be shown to be empty, and (ii) any of the set

containments Jpu | ϕ ^ χjqαK ĎvarspαpY qq Jp
Ž

jPJ vj | φjqαK in the definition of T -consistency cannot be

established by parameterized subsumption, the formula is declared T -dubious. In our implementation these

T -dubious formulas are immediately indicated to the user, who is then given two options: (a) to continue

the proof effort leaving the check of either: (i) the emptiness of Ju | ϕK X JT K, or (ii) the set inclusions

Jpu | ϕ ^ χjqαK ĎvarspαpY qq Jp
Ž

jPJ vj | φjqαK as a proof obligation to be subsequently discharged, or (b)

abandon the proof search in case the T -dubious formula is deemed to be T -inconsistent. In summary:

All formulas ever encountered or produced by the inference system should be automatically checked

for T -consistency, so that if they are shown or deemed to be T -inconsistent, the proof search is

abandoned; otherwise, the proof obligations essential for showing the T -consistency of a T -dubious

formula are displayed and must be later discharged by the user.

The reasons for performing the T -consistency check on reachability goals can be explained as follows.

Any reachability goal is either T -consistent or T -inconsistent. But if it is T -inconsistent, it is then invalid.

Therefore, detecting T -inconsistent goals is very useful for three complementary reasons:

1. Since all goals in any correct proof tree must be valid and therefore T -consistent, checking that all

generated goals are T -consistent is a very useful invariant to be maintained along the proof search.

For this reason, as explained later, T -consistency is made into a basic requirement of any proof goal

and any correct proof tree. Indeed, the T -consistency requirement on proof trees is explicitly used in

the proof of Theorem 5.4.

2. As shown by an example in Section 5.4.2, the Axiom inference rule is so powerful that, if unwisely

used, it can generate invalid, and indeed T -inconsistent, subgoals from valid ones.10 This is a further

reason to always check that all goals are T -consistent.

10This of course can happen for many perfectly correct inference rules where some formulas have to be guessed. For example,
to prove an implication Añ C we may apply a chain inference rule by guessing a middle formula B to try to reduce the proof
of Añ C to that of the subgoals Añ B and B ñ C. But a bad choice of B may make either Añ B or B ñ C invalid, while
the original goal A ñ C may be perfectly valid. As we shall see, when using the Axiom rule, the “middle formulas” guessed
are instances of patterns in the midcondition of the chosen axiom formula.

99

3. As soon as a T -inconsistent goal is detected, no proof of the original set of goals is possible; therefore,

the user should be immediately notified and the proof search should be stopped.

Let us first explain the Subsumption inference rule. Its purpose is to discharge goals that are trivial

formulas in the sense of Definition 5.6, and therefore valid. It is a conditional rule of the form:

Subsumption

rA, Cs $T u | ϕÑf
Ž

i vi | ψi
(5.21)

subject to the condition of showing that u | ϕÑf
Ž

jPJ vj | ψj is a trivial formula by either: (i) showing that

ϕ is unsatisfiable11 in TΣ{EYB (the vacuousness subcase), or (ii) checking the parameterized subsumption

condition u | ϕ ĎY
Ž

jPJ vj | ψj , where Y are the formula’s parameters. As explained in Section 5.3, param-

eterized subsumption is a sufficient condition for proving the parametric inclusion Ju | ϕK ĎY J
Ž

jPJ vj | ψjK,
and therefore the formula’s triviality. But checking either unsatisfiability of ϕ in TΣ{EYB or a parameterized

subsumption may sometimes require the use of formula simplification techniques and user-provided lemmas

as explained in Footnote 4. In particular, the application of this extremely useful inference rule may some-

times fail for a formula where the containment Ju | ϕK ĎY J
Ž

jPJ vj | ψjK actually holds. To remedy this

limitation, the Split, Case Analysis and Substitution auxiliary rules explained in Section 5.4.1 can be

invoked to help achieve a successful application of Subsumption.

Before explaining the Step@ proof rule we introduce some notational conventions associated to a reacha-

bility formula u | ϕÑf
Ž

i vi | ψi with parameters Y .

Let R “ tlj Ñ rj if φjujPJ . We define:

unifypu | ϕ1, Rq ” tpj, αq | α P UnifEΩYBΩ
pu, ljqu (5.22)

a complete set of EΩ YBΩ-unifiers12 of a pattern u | ϕ1 with the lefthand-sides of the rules in R.

Consider now the rule:

Step@
Ź

pj,αqPunifypu|ϕ1, RqrAY C, Hs $T prj | ϕ1 ^ φjqαÑf
Ž

ipvi | ψiqα

rA, Cs $T u | ϕÑf
Ž

i vi | ψi
(5.23)

where the above conjunction symbol abbreviates a set of goals13 that need to be proved as hypotheses, and

where ϕ1 ” ϕ ^
Ź

pi,βqPmatchpu, tviu,Y q
 pψiβq. This inference rule allows us to take one step with the rules

in R. The following remarks can help clarify this inference rule’s meaning:

11If R’s equational theory pΣ, EYBq is FVP and has an OS-compact constructor subtheory pΩ, EΩYBΩq, variant satisfiability

makes satisfiability of quantifier-free formulas in TΣ{EYB decidable [25]. In general, however, we can only assume ~E convergent
modulo B, so that satisfiability of a QF formula ϕ in TΣ{EYB becomes in general undecidable. Likewise, the, in general
undecidable, checking of satisfiability/validity in TΣ{EYB also arises for constraints involved in the application of the Axiom
rule: such checks must be either replaced by safe but incomplete checks, or, under user control, become explicit proof obligations
to be discharged by an inductive theorem prover backend.

12Without loss of generality, all EΩ Y BΩ-unifiers will be assumed to: (i) have as their domain exactly the variables of the
terms that they unify, and (ii) introduce fresh variables, i.e., all variables in ranpαq will be new variables, different from all
other variables in the formulas that originated the need for unification. We call this the freshness assumption on unifiers.
Furthermore, we also assume that the rules R have been renamed with fresh variables, so that, after renaming, the rules R do
not share any variables with the sequent rA, Cs $T u | ϕÑf

Ž

i vi | ψi appearing in the Step@ rule.
13Recall that all goals, to be properly so called, must be checked for T -consistency. Therefore, both the hypothesis goals and

the conclusion are assumed T -consistent. The inference rule’s application is automatically blocked, so that the proof process
cannot be continued, if it generates a T -inconsistent goal.

100

1. Note that, from the definitions of matchpu, tviu, Y q and of parameterized subsumption in Section 5.2,

it follows easily that we have a parametric inclusion:

Ju | ϕ^
ł

pi,βqPmatchpu, tviu,Y q

ψiβK ĎY J
ł

i

vi | ψiK (5.24)

and that, by definition of ϕ1, we have a union decomposition:

Ju | ϕK “ Ju | ϕ^
ł

pi,βqPmatchpu, tviu,Y q

ψiβKY Ju | ϕ1K. (5.25)

But since states in the left subset have already reached J
Ž

i vi | ψiK, it is enough for us to prove the

sequent rA, Cs $T u | ϕ1 Ñf
Ž

i vi | ψi.

2. Also, since u | ϕ Ñf
Ž

i vi | ψi has been checked T -consistent, a fortiori u | ϕ1 Ñf
Ž

i vi | ψi is T -

consistent, and therefore it holds iff it does for all T -terminating sequences of length 1 or more starting

in a state in ru0s P Ju | ϕ1K. That is, ru0s has an R-successor ru1s in such a sequence.

3. But using constrained narrowing (in the sense of [87]) of u | ϕ1 with the (possibly conditional) rules

R modulo EΩ Y BΩ, we can symbolically compute the new set of preconditions tprj | ϕ
1 ^ φjqα |

pj, αq P unifypu | ϕ1, Rqu obtained by one-step transitions from states in u | ϕ1 with the rules R.

Therefore, instead of proving the sequent rA, Cs $T u | ϕ1 Ñf
Ž

i vi | ψi, it is enough for us to prove

the conjunction of sequents in the upper part of the Step@ rule.

Note the crucial fact that, for the new goals generated by Step@, the formulas in C are added to A, so

that from now on they can be used by Axiom.

Axiom
Ź

jrA, Cs $T v1jα | ϕ^ ψ
1
jαÑ

f
Ž

i vi | ψi

rA, Cs $T u | ϕÑf
Ž

i vi | ψi
(5.26)

where pu1 | ϕ1 Ñf
Ž

j v
1
j | ψ

1
jq P A has parameters Y 1, and the substitution α has dompαq “ varspu1 |

ϕ1q “ U 1 and ranpαq Ď varspu | ϕq “ U and is such that u “EΩYBΩ u1α and TΣ{EYB |ù ϕ ñ ϕ1α.

That is, the matching substitution α gives us a subsumption u | ϕ Ď u1 | ϕ1, and therefore an inclusion

Ju | ϕK Ď Jpu1 | ϕ1qαK. We assume that u | ϕÑf
Ž

i vi | ψi and u1 | ϕ1 Ñf
Ž

j v
1
j | ψ

1
j do not share variables,

which can always be guaranteed by renaming. This inference rule is subject to the additional parameter

preservation conditions that, for Z “ varsp
Ž

i vi | ψiq and Y “ U X Z, (i) Y “ varspαpY 1qq, and (ii) for

each j, Y “ varsppv1j | ψ
1
jqαqXvarsp

Ž

i vi | ψiq. This is required for correct implicit quantification. Axiom

allows us to use a trusted formula in A to summarize multiple transition steps. Since ϕ is stronger than ϕ1α,

for each j we add ϕ to pv1j | ψ
1
jqα (the result of using axiom u1 | ϕ1 Ñf

Ž

j v
1
j | ψ

1
j). To find the matching

substitution α more easily, in automatic applications of Axiom we require that varspϕ1q Ď varspu1q, so that

all the variables in varspϕ1q are matched. However, this syntactic requirement is not always met in practice

(see Section 5.4.2 for an example). The fully general application of Axiom can be performed by a user

command that provides the required matching substitution α instantiating u1 | ϕ1.

Proof Trees, Closed Goals, and Provability. Given an initial set of T -consistent sequents rL, Cs $T C,
with L valid reachability formulas in the theory R, a T -consistent sequent rA, C1s $T u | ϕÑf

Ž

i vi | ψi

is called a subgoal of this initial set of sequents iff either: (i) it is one of the sequents in the initial set, or (ii)

101

it is one of the hypothesis sequents obtained by repeated application of the above Step@ and Axiom rules.

Therefore, rA, C1s must be either rA, C1s “ rL, Cs, or rA, C1s “ rL Y C,Hs. We call any such subgoal closed

if a proof tree can be built with such a subgoal as its root such that each of its leaves can be closed by a

Subsumption inference step. Finally, we say that R proves rL, Cs $T C if all the goals in the initial set of

goals rL, Cs $T C have been closed. Recall that this is an all-or-nothing requirement: all the original goals

C must be closed for them to be (collectively) proved. Note, finally, that a T -dubious goal can be used for

building up a proof tree only if the additional proof obligations required to show that it is T -consistent have

themselves been closed, i.e., if it has been actually shown to be a T -consistent goal. In summary, therefore,

all subgoals of any closed goal and the closed goal itself are always, by definition, T -consistent.

The soundness of the Subsumption, Step@, and Axiom inference rules is now the theorem:

Theorem 5.4 (Soundness) Let R be a rewrite theory, and C a finite set of T -consistent reachability for-

mulas. If R proves rL, Cs $T C and R |ù@T L, then R |ù@T C.

5.4.1 The Split, Case Analysis and Substitution Auxiliary Rules

Auxiliary Rules as Deduction Modulo. All auxiliary rules presented in this section are rules of the

form:
G
G1

(5.27)

where G and G1 are semantically equivalent sets of goals, in the sense that R |ù@T G ô R |ù@T G1. Since

all auxiliary rules transform some goals into semantically equivalent ones, they do not affect the soundness

of the inference system. Their specific role is to facilitate the application of the three inference rules of

reachability logic, particularly of the Subsumption and Axiom rules. They can be best understood as

endowing reachability logic with deduction modulo [94] capabilities. That is, we can view the semantic

equivalence R |ù@T G ô R |ù@T G1 as an equivalence relation G ” G1, so that we can apply the three

reachability logic rules modulo such goal equivalences. The classical analogue in first-order theorem proving

is the application of inference rules, for example in a sequent calculus, modulo Boolean equivalences (see,

e.g., [94, 95, 96]). The key point of deduction modulo is that the original inference rules are not changed,

but deduction is rendered much more effective by allowing them to be applied modulo the given semantic

equivalences.

A key reason why the auxiliary rules presented below are particularly useful is that the symbolic methods

used in the application of the Subsumption, Step@, and Axiom rules provide only sufficient conditions

for verifying certain semantic requirements. For example, in the application of the Subsumption rule, the

parameterized subsumption check u | ϕ ĎY
Ž

jPJ vj | ψj is a sufficient condition for proving the parametric

semantic inclusion Ju | ϕK ĎY J
Ž

jPJ vj | ψjK. The point is that such a check may fail for a goal G1 as given,

but may succeed for a semantically equivalent goal (or set of goals) G thanks to an auxiliary rule.

The following Split rule is an auxiliary proof rule that uses a Σ-formula equivalence ϕô ψ_φ to split a

goal into two. Split is a validity-preserving rule transforming a set G of reachability logic goals to be proved

(understood as a conjunction) into a semantically equivalent set of goals G1, so that R |ù@T G ô R |ù@T G1.
This means that Split does not affect soundness.

102

Split
rA, Cs $T u | ψ Ñf A rA, Cs $T u | φÑf A

rA, Cs $T u | ϕÑf A
(5.28)

subject to the conditions: (i) TΣ{EYB |ù ϕô ψ_φ, and (ii) (parameter preservation) varspu | ϕqXvarspAq “

varspu | ψq X varspAq “ varspu | φq X varspAq.

Lemma 5.6 In the above Split rule, R |ù@T G ô R |ù@T G1, where G is the premise and G1 the conclusion.

A very common use of the Split rule in our examples is to use an always valid equivalence ϕô ppϕ^φq_

pϕ^ φqq to split the precondition u | ϕ depending on whether an additional condition φ holds or not. This

still leaves open the question of when it would be advantageous to use the Split rule and with what choice

of φ. One attractive possibility is to use Split to increase success in application attempts for the Axiom

rule. Suppose that we have tried to apply Axiom with a substitution α such that u “EΩYBΩ u1α, but the

condition TΣ{EYB |ù ϕ ñ pϕ1αq does not hold. Suppose, however, that ϕ ^ pϕ1αq is satisfiable in TΣ{EYB ,

and that varspu | ϕqXvarsp
Ž

i vi | ψiq “ varspu | ϕ^ pϕ1αqqXvarsp
Ž

i vi | ψiq. In such a case, we can first

apply Split to split u | ϕÑf
Ž

i vi | ψi into u | ϕ^ pϕ1αq Ñf
Ž

i vi | ψi and u | ϕ^ pϕ1αq Ñf
Ž

i vi | ψi,

and then apply Axiom (checking parameter preservation) to close the first of these two reachability goals.

Another very common use of the Split rule is to use a semantic QF formula equivalence TΣ{EYB |ù ϕô ψ

to replace a goal u | ϕ Ñf
Ž

i vi | φi by the equivalent goal u | ψ Ñf
Ž

i vi | φi. This corresponds to the

special case of splitting on the equivalence TΣ{EYB |ù ϕ ô pψ _ Kq, so that the second goal becomes

vacuous and is automatically discharged. In this special case the parameter preservation condition can

be relaxed to just requiring varspu | ϕq X varspAq “ varspu | ψq X varspAq. In general we may not

have varspu | ϕq X varspAq “ varspu | Kq X varspAq, but this is immaterial: let tx1, . . . xnu “ varspu |

ϕq X varspAqzvarspu | Kq X varspAq; if we care to do so, we can replace K by the semantically equivalent

formula
Ź

1ďiďn xi ­“ xi.

A second, also validity-preserving, auxiliary rule is a Case Analysis rule. It allows us to reason by

cases by decomposing a variable x:s of sort s into a complete covering of it by constructor patterns. Call

tu1, . . . , uku Ď TΩpXqs a pattern set for sort s iff TΩ,s “
Ť

1ďiďktuiρ | ρ P rXÑTΩsu. We assume throughout

that i ­“ i1 ñ varspuiq X varspui1q “ H, and that all variables in the pattern set are fresh variables not

appearing in any current goal.

Case Analysis
Ź

1ďiďkrA, Cs $T pu | ϕqtx:s ÞÑ uiu Ñ
f Atx:s ÞÑ uiu

rA, Cs $T u | ϕÑf A
(5.29)

where x:s P varspuq and tu1, . . . , uku is a pattern set for s.

Lemma 5.7 In the above Case Analysis rule, R |ù@T G ô R |ù@T G1, where G is the premise and G1 the

conclusion.

A third auxiliary rule is the Substitution rule, which makes it possible to solve a conjunction of equalities
Ź

i wi “ w1i in a reachability formula’s precondition u |
Ź

i wi “ w1i ^ ϕ and apply the substitutions solving

the conjunction to the formula’s midcondition, provided a finitary unification algorithm can be used to solve

them. This will be the case if a subtheory pΣ1, E1 Y B1q Ď pΣ, E Y Bq can be found having a finitary

E1 Y B1-unification algorithm and such that TΣ{EYB |Σ1 – TΣ1{E1YB1
and

Ź

i wi “ w1i is a conjunction of

Σ1-equations. Substitution is the conditional inference rule:

103

Substitution
Ź

αPUnifE1YB1
p
Ź

i wi“w1iq
rA, Cs $T uα | ϕα^ pαÑf p

Ž

jPJ vj | φjqα

rA, Cs $T u |
Ź

i wi “ w1i ^ ϕÑ
f
Ž

jPJ vj | φj
(5.30)

subject to the above-mentioned conditions on pΣ1, E1 Y B1q and
Ź

i wi “ w1i, and where if dompαq “

tx1, . . . , xku then pα ” x1 “ αpx1q ^ . . . ^ xk “ αpxkq, with the same freshness assumptions as in Footnote

12 for the unifiers α P UnifE1YB1
p
Ź

i wi “ w1iq.

Lemma 5.8 In the above Substitution rule, R |ù@T G ô R |ù@T G1, where G is the premise and G1 the

conclusion.

The proof of Lemma 5.8, given in Appendix D, uses the following lemma, which is of general interest and

is also proved in Appendix D, as an auxiliary lemma:

Lemma 5.9 (Instance Lemma). Suppose R |ù@T u | ψ Ñf
Ž

jPJ vj | φj with parameters Y , and let β be

a substitution whose domain V is contained in varspu | ψq and where the variables in ranpβq are all fresh.

Then R |ù@T pu | ψqβ Ñf p
Ž

jPJ vj | φjqβ

Goal Subsumption Simplification. The above Instance Lemma justifies the following, validity-preserving,

goal subsumption simplification: whenever in an unclosed proof tree two subgoals of the form:

rA, Cs $T u | ϕÑf
ł

jPJ

vj | φj rA, Cs $T uβ | ψ Ñf p
ł

jPJ

vj | φjqβ (5.31)

appear in two different leaves of the partial proof tree, with, say, Y the parameters of the more general

subgoal, β satisfying the conditions in the Instance Lemma 5.9, varspuβ | ψq X varspp
Ž

jPJ vj | φjqβq “

varsppu | ϕqβq X varspp
Ž

jPJ vj | φjqβq “ varspβpY qq, and TΣ{EYB |ù ψ ñ pϕβq. Then, in order to close

the entire proof tree, only the more general goal rA, Cs $T u | ϕÑf
Ž

jPJ vj | φj as well as any other leaf

nodes, but excluding the instance leaf subgoal rA, Cs $T uβ | ψ Ñf p
Ž

jPJ vj | φjqβ, need to be closed.

The correctness of this goal subsumption simplification then follows from the Instance Lemma plus the

fact that the above requirements ensure a parameterized inclusion Juβ | ψK ĎvarspβpY qq Jpu | ϕqβK, and

therefore the implication pR |ù@T pu | ϕqβ Ñf
Ž

jPJpvj | φjqβq ñ pR |ù@T uβ | ψ Ñf
Ž

jPJpvj | φjqβq.

5.4.2 A Simple Example

The following very simple example of a counter system illustrates the use of goal subsumption and of the

Split, Case Analysis and Substitution rules. It also illustrates some possible pitfalls when applying

the Axiom rule.

Recall from the Introduction the counter system whose states are of the form xny, with n a natural number.

We can specify this counter system as a rewrite theory R with three sorts, Nat , Bool , and Counter , a

constructor signature Ω with constants 0, 1 and binary operator ` of sort Nat , constants J,K of sort

Bool , and a cell constructor x y : Nat Ñ Counter . The signature Σ extends Ω with defined functions

ą,ě: Nat Nat Ñ Bool . The axioms B “ BΩ are the associativity-commutativity of addition ` and the

identity axiom n` 0 “ n. The equations E define the predicates ą and ě as follows: n`m` 1 ą n “ J,

n ą n `m “K, n `m ě n “ J, n ě n `m ` 1 “K. This equational theory is FVP. Furthermore, since

its constructor subtheory pΩ, BΩq is decidable by variant satisfiability, satisfiability of QF Σ-formulas in

104

TΣ{EYBΩ
is also decidable [25]. The rewrite rules R defining the semantics of this simple counter system are:

xn` 1y Ñ xny and xn` 1y Ñ xn` 1` 1y. That is, a non-zero counter can be incremented or decremented

by one unit. Its set of terminating states, of sort Counter , can be characterized by the pattern formula

T “ x0y | J.

Note that this system is non-terminating. However, it satisfies the partial correctness reachability formula

xny | J Ñf x0y | J, which is actually in the Hoare logic fragment and can be proved as follows. We start

with the sequent

rH, txny | J Ñf x0y | Jus $T xny | J Ñ
f x0y | J (5.32)

Note that x0y cannot match xny, so we are unable to strengthen the constraint on our precondition by

overapproximated difference performed as part of the Step@ rule. Since precondition term xny is the most

general possible, the most general unifiers with our two rewrite rules is just the mapping n ÞÑ n` 1. Using

these unifiers, by the Step@ rule we get the sequents:

rtxny | J Ñf x0y | Ju, Hs $T xn
1y | J Ñf x0y | J (5.33)

rtxny | J Ñf x0y | Ju, Hs $T xn
2 ` 1` 1y | J Ñf x0y | J (5.34)

But, by goal subsumption, only the first, more general goal needs to be proved. Applying Axiom to the

more general subgoal we get the subgoal

rtxny | J Ñf x0y | Ju, Hs $T x0y | J Ñ
f x0y | J (5.35)

which can be immediately closed by the Subsumption rule, thus proving the partial correctness property

R |ù@T xny | J Ñf x0y | J.

Another general property of this counter system is that from a positive counter xn` 1y any other counter

holding a smaller number will be eventually reached along any terminating sequence. This can be specified

by means of the reachability formula xn`1y | n`1 ą mÑf xmy | J, parametric on m, which can be proved

as follows. We start with the sequent

rH, txn` 1y | n` 1 ą mÑf xmy | Jus $T xn` 1y | n` 1 ą mÑf xmy | J (5.36)

Applying the Step@ rule we get the sequents:

rtxn`1y | n`1 ą mÑf xmy | Ju, Hs $T xn
1y | n1 ` 1 ą mÑf xmy | J (5.37)

rtxn`1y | n`1 ą mÑf xmy | Ju, Hs $T xn
2`1`1y | n2`1 ą mÑf xmy | J (5.38)

Note that for β “ tn1 ÞÑ n2 ` 1 ` 1u we get TΣ{EYB |ù n2 ` 1 ą m ñ ppn1 ` 1 ą mqβq, which can be

automatically proved in Maude using variant satisfiability. Therefore, by goal subsumption, only the first

goal needs to be closed. But since t0, k`1u is a pattern set for the sort Nat , we can use the Case Analysis

auxiliary rule to decompose the first goal into the subgoals:

rtxn`1y | n`1 ą mÑf xmy | Ju, Hs $T x0y | 0` 1 ą mÑf xmy | J (5.39)

rtxn`1y | n`1 ą mÑf xmy | Ju, Hs $T xk`1y | k`1`1 ą mÑf xmy | J (5.40)

105

Applying Split to the first subgoal with equivalence TΣ{EYB |ù 0 ` 1 ą m ô m “ 0, which can be

automatically proved by variant satisfiability, we obtain:

rtxn` 1y | n` 1 ą mÑf xmy | Ju, Hs $T x0y | m “ 0 Ñf xmy | J (5.41)

Then Substitution lets us solve the constraint m “ 0 with tm ÞÑ 0u, giving:

rtxn` 1y | n` 1 ą mÑf xmy | Ju, Hs $T x0y | m “ 0 Ñf x0y | J (5.42)

which is trivially subsumed by Subsumption. This closes the first subgoal.

Using the equivalence TΣ{EYB |ù k`1`1 ą mô pk`1 ą m_m “ k`1q, which can also be automatically

proved by variant satisfiability, we can use the Split auxiliary rule to split the second subgoal into the two

subgoals:

rtxn` 1y | n` 1 ą mÑf xmy | Ju, Hs $T xk ` 1y | m “ k ` 1 Ñf xmy | J (5.43)

rtxn` 1y | n` 1 ą mÑf xmy | Ju, Hs $T xk ` 1y | k ` 1 ą mÑf xmy | J (5.44)

Then, the first of these subgoals can be closed by applying Substitution followed by Subsumption; and

the second subgoal can be closed by applying Axiom followed by Subsumption. This finishes the proof of

the desired property R |ù@T xn` 1y | n` 1 ą mÑf xmy | J.

Getting Nowhere with the Axiom Rule. The Axiom rule is very powerful. But its power must be used

wisely. Unwise applications of Axiom can produce invalid subgoals which can never be closed, so we get

nowhere that way. The reason is easy to explain. Axiom is a very powerful “seven league boots” inference

rule that, under appropriate parameter preservation conditions, can apply an axiom A Ñf B such that

JCK Ď JAαK to a goal C Ñf D with C ” u | ϕ to “fast forward” and reduce the proof of C Ñf D to

that of14 pBαq ^ ϕ Ñf D. But, of course, the Axiom rule implicitly assumes in its hypothesis that the

midcondition pBαq ^ ϕ will happen before (or simultaneously with) the midcondition D. But this need not

be the case in general and can, if Axiom is applied unwisely, produce invalid subgoals that can never be

closed.
We can illustrate this undesirable phenomenon by an unwise application of Axiom. Suppose that we get

into our heads the idea that, to prove the property R |ù@T xn` 1y | n` 1 ą mÑf xmy | J, we will be better
off using the already proved partial correctness property R |ù@T xny | J Ñf x0y | J as an axiom. That is, we
start with the sequent:

“

xny | J Ñf x0y | J
(

,

xn` 1y | n` 1 ą mÑf xmy | J
(‰

$T xn` 1y | n` 1 ą mÑf xmy | J (5.45)

Then, one application of Axiom yields the sequent:

“

xny | J Ñf x0y | J
(

,

xn` 1y | n` 1 ą mÑf xmy | J
(‰

$T x0y | n` 1 ą mÑf xmy | J (5.46)

But R��|ù
@

T x0y | n` 1 ą mÑf xmy | J, since this formula is parameterized by m, and, therefore, if it were

valid, we should in particular have for ρ “ tm ÞÑ 1u that R |ù@T x0y | n` 1 ą 1 Ñf x1y | J. But of course it

is impossible to rewrite the counter state x0y to the counter state x1y. That is, this application of Axiom

gets us nowhere. Note, furthermore, that in this example JT K “ tx0yu “ Jx0y | n ` 1 ą 1K. But of course

x0y R Jx1y | JK “ tx1yu. Therefore, the derived goal x0y | n` 1 ą mÑf xmy | J is T -inconsistent.

14We are abusing notation a little for the sake of conciseness. pBαq is really a disjunction of pattern predicates, and what
the notation pBαq ^ ϕ abbreviates is the conjunction of ϕ with each formula in each of those pattern predicates.

106

Two simple guidelines for the application of Axiom can be drawn from this last frustrated proof attempt

and the prior successful applications of Axiom:

1. Given a goal AÑf B P C, with B ” v | ψ, call a goal C Ñf D a descendant of AÑf B if C Ñf D has

been obtained from A Ñf B by successive applications of the Step@ rule. Given C ” u | φ, the fact

that Axiom can be applied to the descendant C Ñf D using the “ancestor” axiom AÑf B because

JCK Ď JAαK will often be linked to the fact that in the resulting goal pBαq ^ ϕ Ñf D, midcondition

D is just a substitution instance of B by the same chain of substitutions that were used to obtain C.

Thus, D is likely to subsume the precondition pBαq^ϕ, resulting in a successful application of Axiom

followed by Subsumption. This reasoning can be generalized to ancestors of the form AÑf B with

B ”
Ž

j vj | ψj .

2. It is always a bad idea to apply a formula A Ñf B as an axiom to another formula C Ñf D when

B is a postcondition but D is not so: this is what got us into trouble in the above frustrated proof

attempt. Axioms with postconditions should only be applied to formulas having also a postcondition.

5.4.3 Revisiting QLOCK

In the same vein as for the counter example, here we revisit QLOCK, bringing our entire example together

to obtain a bird’s eye view of the mathematical proof. We will not explicitly list all intermediate states,

since the larger number of rules as well as list/multiset unification generate many tens of descendants.

Instead, we will describe such states more abstractly by explaining which rules can narrow which goals,

which vacuous goals are closed by Subsumption, and how the axioms are applied. Recall from the note in

Section 5.4 that we needed to prove in the rewrite theory R of QLOCK that the following sequents hold:

(a) rH, Cs $T P1 Ñ
f
Ž

jPI P
1
j and (b) rH, Cs $T P2 Ñ

f
Ž

jPI P
1
j , where C “ tPi Ñf

Ž

jPI P
1
juiPI and

I “ t1, 2u. As a convenience to the reader, we expand out the two formulas below:

ă n | w | H | q ą |ψ Ñf ră n 1 | w 1 | i 1 | i 1; q 1 ą |ϕ1 _ă n 1 | w 1 | H | q 1 ą |ψ1s (5.19)

ă n | w | i | i ; q ą |ϕÑf ră n 1 | w 1 | i 1 | i 1; q 1 ą |ϕ1 _ă n 1 | w 1 | H | q 1 ą |ψ1s (5.20)

where ϕ “ duplpn w iq ‰ tt , ψ “ duplpn wq ‰ tt , and ϕ1, ψ1 are their obvious renamings. By abuse of

notation, let P1 and P2 refer to both the goal preconditions as well as the entire formula/sequents to be

proved.

To begin the proof, we first apply the Step@ rule. The goal P1 has 12 successors while P2 has 14. The

discrepancy lies in the fact that, since goal P2 has a non-empty set of processes in its critical section, the rule

c2n is enabled. For all other rules, the successors generated for P1 and P2 are entirely analogous. Note that

most rules have multiple successors; this occurs due to the flexibility of ACU and AU unification, so that any

rule that contains a multiset variable underneath a multiset union operator/list variable underneath a list

concatenation operators generates two variants: one for the non-empty and empty multiset/list respectively.

After generating the successors of goals P1 and P2, one of two things will happen. A successor of goal

P2 generated by the w2c rule will immediately be closed by Subsumption because it is vacuous—adding

an extra critical process to the critical process set violates the dupl predicate constraint. For all other

successors, they are now an instance of one of our two original invariant patterns, allowing us to apply the

Axiom rule. Since the original goals have no parameters, the structure of invariants of the form P Ñf rPσs

107

and the Axiom rule force all the successors to be immediately ready to be subsumed by the Subsumption

rule. Recall that each axiom will generate two successors—one corresponding to the P1 case and another to

the P2 case—doubling the amount of proof goals that are ultimately closed by Subsumption.

To give a flavor for how the proof process proceeds, we consider the successors of the P2 goal by the c2n

rule. For convenience, we recall the c2n rule below:

c2n : ă n | w | c i | i ; q ą Ñ ă n i | w | c | q ą (5.47)

The precondition of goal P2 is ă n | w | i | i ; q ą | duplpn w iq ‰ tt . By the Step@ rule, unify the pre-

condition term of P2 and left-hand side of c2n via most general unifier α “ tc ÞÑ H, q ÞÑ q 1u. By rewriting

the precondition of P2α by c2n, obtain K “ ă n i | w | H | q 1 ą|duplpn w iq ‰ tt (in our implementation,

this unification proceeds slightly differently due to A/U unification; see Sec. 5.5.2).

At this point, our sequent will be of the form rC, Hs $T K Ñf
Ž

jPI P
1
j , and we can apply the Axiom

rule with P1 P C. To see this, note that the precondition of P1, ă n | w | H | q ą | duplpn wq ‰ tt covers

our goal by the substitution n ÞÑ n i, q ÞÑ q1, where we have to prove the validity of the implication

duplpn w iq ‰ tt ñ duplpn w iq ‰ tt , which is a tautology.

5.5 PROTOTYPE IMPLEMENTATION AND EXPERIMENTS

We have implemented the reachability logic proof system in Maude [6]. We exploit the fact that rewrit-

ing logic is reflective, so that concepts such as terms, rewrite rules, signatures, and theories are directly

expressible as data in the logic. This is supported by Maude’s META-LEVEL library [6]. Our prototype

tool takes as input (i) a reflected rewrite theory R “ pΣ, E Y B,Rq and (ii) a set of reachability formulas

C “ tAi Ñf BiuiPI to be simultaneously proved.

The state of a reachability proof is represented as a set of proof sequents with associative-commutative

union, as defined in Section 5.4, plus some global state information (for example, the theory R). Given goal

set C, the initial proof state will be

rH, Cs $T Ai Ñ
f Bi

(

iPI
, that is, one sequent for each goal in C. Given

the simplicity of the proof system, we need only perform a very simple proof search strategy: until there

are no pending goals, we first apply Axiom as much as possible and then apply Step@ if possible. Before

every Step@ and Axiom application, we greedily try to the apply the Substitution rule to simplify goals

and the Subsumption rule to discharge them. At the same time, we also perform T-consistency checks

so that errors can be reported to the user as early as possible. Currently, aside from Substitution, the

other derived rules must be applied manually—in a future version of the tool we will investigate heuristics to

further guide auxiliary proof rule application. Note that the simple strategy just outlined cannot distinguish

between appropriate and inappropriate uses of the Axiom rule; instead, for any sequent, we allow the user

to control which reachability formulas will be tried as axioms by selecting some subset A1 Ă A of possible

axioms.

We of course need to mechanize the three proof rules, all the auxiliary rules, and the T -consistency checks.

Internally, the action of each proof rule is specified as an equationally-defined function, while the policy

is specified by a single non-deterministic rewrite rule, which arbitrarily selects an active goal to advance

according to the strategy specified above. Proof rule application on a goal is controlled by a simple strategy

language. Currently, there are only limited commands to interact with the strategy language—in particular,

to select the set of axioms that applies to a particular goal. In a future version, there will be additional

108

commands to modify the proof strategies for any particular goal.

Our implementation further requires a finitary BΩ-unification algorithm as well as an inductive validity

backend that tries to answer inductive validity questions of the form TΣ{EYB |ù ϕ for ϕ a QF Σ-formula.

Maude can perform unification modulo commutativity and associativity/commutativity with or without

identity and in many cases associativity without commutativity. Our tool has infrastructure to support

various user-selectable pluggable backends to try to check inductive validity. The application of the backends

is syntax-driven in the sense that they are associated to some subtheory pΣ1, E1YB1q of pΣ, EYBq and are

applied whenever the formula to be verified falls into the subsignature Σ1. Any requirements on subtheory

pΣ1, E1YB1q for utilizing these backends are proof obligations for the user. Currently, we have implemented

two such backends.

Decidable Case. (pΣ1, E1YB1q “ pΣ, EYBq). If the validity of QF Σ-formulas in TΣ{EYB is decidable by

variant satisfiability, we use a variant satisfiability-based backend using techniques in [25, 88]. This allows

us to handle any suitable rewrite theory R “ pΣ, E YB,Rq such that the equational theory pΣ, E YBq has

a convergent decomposition satisfying the finite variant property [23] and protects a constructor subtheory

which we assume consists only of axioms BΩ of the above-described form. Note that this means that both

validity and satisfiability of QF formulas in the initial pΣ, EYBq-algebra TΣ{EYB are decidable [36]. The

only exception is the case when BΩ includes associativity without commutativity axioms for some operators

unless (as is the case for the QLOCK example) such associative-only operators do not appear in constraints.

Undecidable Case. When pΣ, E Y Bq does not have the finite variant property, but still protects a

constructor subtheory consisting only of axioms BΩ of the above-described form, pΣ, EYBq will still protect

an FVP subspecification pΣ1, E1 Y B1q with decidable inductive validity (in the worse case, just pΩ, BΩq

itself). In this case, we provide a second backend that extends the variant-satisfiability one and therefore

becomes a decision procedure for the inductive validity of QF Σ1-formulas. Outside the Σ1-formula case, it

applies various heuristics based on clause simplification to try to answer inductive validity questions about

QF Σ-formulas. Future versions of the tool will add other decision procedures and more powerful automated

inductive theorem proving routines to further automate this kind of inductive reasoning.

In addition to the issue of proof representation, several other issues must be addressed. First, to ensure

correct applications of unification, we uniquely rename all variables in rules in the theory R and in goals C.
Second, recall that we assume that the rewrite theory R has been Ω-abstracted as R̂. Therefore, we have

automated the Ω-abstraction as well. Third, an important practical consideration during any tool develop-

ment is a user interface that is flexible and usable enough to express real theories and problems that users

may wish to reason about. To that end, we have developed a FULL-MAUDE-based user interface [97] in Maude

that provides commands to input goals and invariants, solve pattern predicate subsumption/intersection

queries, and specify theories plus the corresponding terminating state pattern predicates of interest. The

full command grammar is given in Appendix A.

In the following subsections we illustrate how to use the tool by way of complete examples that are

executable using our prototype Maude implementation. Recall that our implementation requires two main

arguments: (i) a reflected rewrite theory R “ pΣ, E Y B,Rq and (ii) a set of reachability formulas C “
tAi Ñ

f BiuiPI to be simultaneously proved. Generally, the user of the tool will spend some time thinking

about the best way to specify a system design as a rewrite theory R “ pΣ, E Y B,Rq in Maude, since

a well-specified problem can be both more readable and easier to verify. To that end, we show complete

examples written in a style that we believe is both easy to read and to verify.

109

5.5.1 Counter Proof Example

Though mathematically and syntactically simple, the counter example shown in subsection 5.4.2 illustrates

how each of the proof rules can be used. Below we present a Maude specification of a rewrite theory R
specifying such a counter. Later we will see how to verify reachability formulas over this theory.

1 fmod PRES-NAT is

2 sort Bool .

3 op true : -> Bool [ctor] .

4 op false : -> Bool [ctor] .

5

6 sort NzNat Nat .

7 subsort NzNat < Nat .

8 op 0 : -> Nat [ctor] .

9 op 1 : -> NzNat [ctor] .

10 op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .

11 op _+_ : NzNat Nat -> NzNat [ctor assoc comm id: 0] .

12

13 var J K : Nat . var P : NzNat .

14

15 op _<=_ : Nat Nat -> Bool .

16 op _<_ : Nat Nat -> Bool .

17

18 eq J <= J + K = true [variant] .

19 eq J + P <= J = false [variant] .

20 eq J < J + P = true [variant] .

21 eq J + K < J = false [variant] .

22 endfm

23

24 mod COUNTER is

25 protecting PRES-NAT .

26

27 var N : Nat .

28

29 sort Counter .

30 op {_} : Nat -> Counter [ctor] .

31

32 rl {N + 1} => {N + 1 + 1} .

33 rl {N + 1} => {N} .

34 endm

Figure 5.3: Theory specification for Counter.

Note the two rewrite rules on lines 32-33 define the state changes of the counter. Recall that this system

is non-terminating, since the counter increment rule on line 32 can loop. For more details on Maude syntax,

see the primer in Section 2.3.

Now that we have presented the rewrite theory to be analyzed as a Maude specification, we can use our

tool to perform reachability logic verification over it. To do so, we first load the file that contains our theory

specification, then load the file that contains our prototype implementation definition, and then type out the

commands that make up the proof script. Since the loading commands are always relative to the filesystem

layout, and are commands given directly to the Maude interpreter, not to our prototype tool, we do not

110

display them below.

Partial Correctness Property of Counter.

As a first example, consider the proof script for proving the partial correctness property of the counter

theory shown in Figure 5.4 with the associated output shown inline, as if the commands were typed directly

into the terminal.

All proof scripts for our implementation are divided into two parts: a header, which initializes the proof

state, followed by a body beginning with the command start-proof (here on line 14) that contains the

actual commands that drive the prover engine to do something. Furthermore, there are three grammatical

requirements that every command in our grammar obeys: (1) it is written inside parentheses; (2) it is

terminated with a period (.) before the closing parenthesis; (3) any object theory term is written wrapped

by another pair of parentheses; however, identifiers such as module, rule, and goal names need not be

wrapped. All lines that are not wrapped in parentheses are tool output.

1 (select COUNTER .)

2 Set module to COUNTER

3 (use tool varsat for validity on PRES-NAT .)

4 Loaded function varsat for validity

5 (def-term-set ({0}) | true .)

6 Added terminating state:

7 {0} | true

8 (declare-vars (N:Nat) .)

9 Declared variable(s):

10 { N:Nat }

11 (add-goal partial-correctness : ({N}) | true => ({0}) | true .)

12 Added goal(s):

13 [partial-correctness : {N:Nat} | true => {0} | true]

14 (start-proof .)

15 Started proof:

16 [1 | {N:Nat} | true => {0} | true]

17 (auto .)

18 Auto Results:

19 [13 | {&2:Nat} | true => {0} | true]

20 [14 | {1 + 1 + &2:Nat} | true => {0} | true]

21 (subsume 14 by 13 .)

22 Goal 14 subsumed by 13 via matching

23 (auto .)

24 Proof Completed.

Figure 5.4: The proof script for the partial correctness property of Counter.

In the proof header, the first command is always select; this specifies the object theory R that we will

be reasoning about. The rest of the commands in the header can usually be supplied in any order. The use

tool command on line 3 instructs the tool that the backend to be used when trying to solve validity problems

for formulas in the PRES-NAT theory is the variant satisfiability backend (this works because PRES-NAT has

a decidable satisfiability problem).

The def-term-set command specifies a set of patterns that define the terminating states for the given

111

theory. Here, the only terminating state is the zero counter, since the decrement and increment rules assume

that the counter is non-zero. Since we can directly express this pattern as the term {0} without constraints,

we express the terminating state via the pattern ({0}) | true, with true the constraint that always holds.

The declare-vars command specifies the sort of each declared variable. In this way, we need not later

mention a variable’s sort when it is used. This command is not strictly needed, but it makes complex goals

easier to input.

The most important header command is add-goal, which adds a reachability formula to our set C “
tAi Ñ

f BiuiPI of reachability formulas to be proved. Recall that in the partial correctness example, the

formula to be proved was xny | J Ñf x0y | J. The tool’s notation has only minor syntactic differences; the

most important of which is all terms must be wrapped in parentheses.

Finally, we arrive at the proof body. Here, there are only two interesting commands so far: auto and

subsume. The main proof command is auto which applies the default proof strategy to all goals. The

subsume command must be invoked manually and uses one goal to subsume another, according to the goal

subsumption simplification, which is justified by Lemma 5.9. Note that the structure of this tool-based proof

follows logically the original high-level proof. The first application of auto applies the Step@ rule, since the

Axiom rule is not enabled yet, generating two successors. We then use the goal subsumption simplification

to close one of these goals. The second invocation of the auto command applies the Axiom rule and closes

the second goal using the Subsumption rule.

Eventual Decrease of Counter.

As a second example, we prove that from any starting state, on all terminating paths (of which there are

infinitely many), the counter will always pass through each natural number in the subsequence of numbers

smaller than itself on its way to zero. The proof script with inline output is shown in Figure 5.5. This script

is slightly more complicated than our first example; this is not surprising, since the high-level proof also

required more steps to finish. Note that the proof header is identical to our previous example, except for

an extra variable declaration and a different goal to be proved. Recall that any object theory terms that

appear in any goal must be wrapped by parentheses, including any terms in the constraint.

Here, we see that the proof body exactly follows the high-level outline shown in Subsection 5.4.2. The

auto and subsume commands on lines 17 and 23 apply the Step@ rule followed by a goal subsumption

simplification in a way completely analogous to the previous proof. This is followed by the application of

the Case Analysis auxiliary rule, two applications of two different variants of the Split rule, concluding

with a second invocation of auto that applies the Substitution and Subsumption rules to close goals

17 and 18 and the Axiom and Subsumption rules to close goal 19. Finally, as mentioned above, the tool

automatically checks T -consistency and issues a warning on line 18 for a T -dubious goal, which here is no

problem because the goal is immediately subsumed.

Let us look at these commands in more detail. The case command on line 25 corresponds to a Case

Analysis application on a single variable in the named goal; currently, proving that the pattern covers

the intended sort is a proof obligation that must be manually verified by the user. A future version of

the tool will include automatic coverage checks when possible. The replace command on line 29 takes a

goal identifier and a formula and replaces the original constraint of a goal precondition with the supplied

formula; it exactly corresponds to the variant of the Split rule that replaces a constraint using the pattern

φ “ ψ_K. The split by and command on line 32 corresponds exactly to the fully general Split rule that

112

1 (select COUNTER .)

2 Set module to COUNTER

3 (use tool varsat for validity on PRES-NAT .)

4 Loaded function varsat for validity

5 (def-term-set ({0}) | true .)

6 Added terminating state:

7 {0} | true

8 (declare-vars (N:Nat) U (M:Nat) U (K:Nat) .)

9 Declared variable(s):

10 { K:Nat, M:Nat, N:Nat }

11 (add-goal count-red : ({N + 1}) | (M < N + 1) = (true) => ({M}) | true .)

12 Added goal(s):

13 [count-red : {1 + N:Nat} | true = M:Nat < 1 + N:Nat => {M:Nat} | true]

14 (start-proof .)

15 Started proof:

16 [1 | {1 + N:Nat} | true = M:Nat < 1 + N:Nat => {M:Nat} | true]

17 (auto .)

18 Warning: [9 | {&3:Nat} | true = M&4:Nat < 1 + &3:Nat => {M&4:Nat} | true]

19 may have terminated

20 Auto Results:

21 [13 | {&3:Nat} | true = M&4:Nat < 1 + &3:Nat => {M&4:Nat} | true]

22 [14 | {1 + 1 + &3:Nat} | true = M&4:Nat < 1 + &3:Nat => {M&4:Nat} | true]

23 (subsume 14 by 13 .)

24 Goal 14 could not be automatically subsumed; check subsumption manually

25 (case 13 on &3:Nat by (0) U (K + 1) .)

26 Case rule generated:

27 [15 | {0} | true = M&4:Nat < 1 + 0 => {M&4:Nat} | true]

28 [16 | {1 + K:Nat} | true = M&4:Nat < 1 + 1 + K:Nat => {M&4:Nat} | true]

29 (replace 15 by (M&4:Nat) = (0) .)

30 Split rule generated:

31 [17 | {0} | 0 = M&4:Nat => {M&4:Nat} | true]

32 (split 16 by (M&4:Nat < K:Nat + 1) = (true) and (K:Nat + 1) = (M&4:Nat).)

33 Split rule generated:

34 [18 | {1 + K:Nat} | M&4:Nat = 1 + K:Nat => {M&4:Nat} | true]

35 [19 | {1 + K:Nat} | true = M&4:Nat < 1 + K:Nat => {M&4:Nat} | true]

36 (auto .)

37 Proof Completed.

Figure 5.5: Eventual Decrease of Counter Proof Script.

113

performs a replacement of the form φ “ ψ _ ρ. When attempting either kind of Split, the tool attempts a

validity check to show that the formulas are semantically equivalent, printing a warning if it cannot verify

the equivalence.

5.5.2 QLOCK Proof Example

Next let us use our tool to prove that mutual exclusion is an invariant for QLOCK. We describe a Maude

specification of QLOCK in Figures 5.6 and 5.7 and then show the proof script (without inline output) in

Figure 5.8. As before, we separate our example into two modules: an underlying functional module called

QLOCK-STATE imported by the system module QLOCK.

Due to the fact that associative unification is, in general, infinitary, we make a few tweaks to the QLOCK

signature Σ and rewrite rules R to ensure that Maude’s associative unification algorithm will work.15 Thus,

the signature Σ1 of the Maude module QLOCK is identical to the signature Σ except for the list constructor

which has an extra sort NeList with subsorts Nat ă NeList ă List , two constructors nil : Ñ List , ; :

NeList NeList Ñ NeList , and where: (a) the original list concatenation operator ; : List List Ñ List is no

longer a constructor; (b) the operator ; only uses built-in associativity axioms; and (c) the built-in identity

axiom designation is replaced by a pair of equations explicitly defining the identity axiom. The set of rewrite

rules R1 of the QLOCK module are slightly more verbose than the rules R in the original specification. Since we

are no longer matching modulo associativity and identity, but only modulo associativity, more patterns are

needed. Specifically, the rules n2w , w2c, and c2n now have two versions, corresponding to nil and non-nil

List substitutions.

Note that, unlike COUNTER, the module QLOCK has the conditional rule join; Maude requires conditional

rewrite rules to be declared with the crl keyword. Finally, recall that in order to prove invariants, we extend

our theory with a stop rule; this is done in the module QLOCK-stop, which is the specific instance for this

example of the general theory construction Rstop presented earlier.

Let us now describe the proof script in Figure 5.8. After replacing associativity plus identity matching

patterns by associativity-only ones, the proof script proceeds as we would expect. In fact, inputting the goals

and applying auto is enough. Note the new command use strat on lines 31-33. This command selects

which axioms to use when applying the Axiom rule to a goal and its descendants; it is necessary because

each goal corresponding to one of the patterns in the disjunct P 1 may reach any of the others via one of the

rewrite rules.

Finally, we complete the proof script with two applications of auto. The first auto command applies the

Step@ rule, generating 30 successors from the three initial goals. The second auto closes each generated

goal either by: (a) failing to satisfy the condition on the w2c rule and being removed by the vacuousness

check; or (b) applying the Axiom rule followed by the Subsumption rule.

15Specifically, we require that: (1) associative symbols do not also have identity axioms; (2) associative lists to be unified do
not share variables of the list sort (see [98]).

114

1 fmod QLOCK-STATE is

2 sorts Nat MSet NeList List Pred .

3 subsort Nat < MSet .

4 subsort Nat < NeList < List .

5

6 op 0 : -> Nat [ctor] .

7 op s_ : Nat -> Nat [ctor] .

8 op __ : MSet MSet -> MSet [ctor assoc comm id: mt] .

9 op mt : -> MSet [ctor] .

10 op nil : -> List [ctor] .

11 op _;_ : List List -> List [assoc] .

12 op _;_ : NeList NeList -> NeList [ctor assoc] .

13 op tt : -> Pred [ctor] .

14 op dupl : MSet -> Pred [ctor] .

15

16 var N : Nat . var S : MSet . var L : List .

17 eq dupl(N N S) = tt [variant] .

18 eq L ; nil = L [variant] .

19 eq nil ; L = L [variant] .

20 endfm

Figure 5.6: Theory Specification for the QLOCK State

1 mod QLOCK is pr QLOCK-STATE .

2 sort Conf State .

3 op _|_|_|_ : MSet MSet MSet List -> Conf [ctor] .

4 op <_> : Conf -> State [ctor] .

5

6 var I W C : MSet . var L : NeList . var M N : Nat . var CNF : Conf .

7 --- n2w

8 rl < I M | W | C | L > => < I | W M | C | L ; M > .

9 rl < I M | W | C | nil > => < I | W M | C | M > .

10 --- w2c

11 rl < I | W N | C | N ; L > => < I | W | C N | N ; L > .

12 rl < I | W N | C | N > => < I | W | C N | N > .

13 --- c2n

14 rl < I | W | C M | N ; L > => < I M | W | C | L > .

15 rl < I | W | C M | N > => < I M | W | C | nil > .

16 --- exit/join

17 rl < I M | W | C | L > => < I | W | C | L > .

18 crl < I | W | C M | L > => < I M | W | C | L >

19 if dupl(I M) =/= tt .

20 endm

21

22 mod QLOCK-stop is pr QLOCK .

23 op [_] : Conf -> State [ctor] .

24 rl < CNF:Conf > => [CNF:Conf] .

25 endm

Figure 5.7: Theory Specification for the QLOCK Example

115

1 (select QLOCK-stop .)

2 (use tool varsat for validity on QLOCK-STATE .)

3 (def-term-set ([C:Conf]) | true .)

4 (declare-vars (I:MSet) U (I’:MSet) U (W:MSet) U (W’:MSet) U

5 (N:Nat) U (M:Nat) U (N’:Nat) U (M’:Nat) U

6 (Q:List) U (NQ:NeList) U (Q’:List) .)

7 (def-term-set ([C:Conf]) | true .)

8

9 (add-goal mutex1 : (< I | W | mt | Q >) |

10 (dupl(I W)) =/= (true)

11 =>

12 ([I’ | W’ | N’ | M’ ; NQ]) | (N’) = (M’) \/

13 ([I’ | W’ | N’ | M’]) | (N’) = (M’) \/

14 ([I’ | W’ | mt | Q’]) | true .)

15

16 (add-goal mutex2a : (< I | W | N | M >) |

17 (dupl(I W N)) =/= (true) /\ (N) = (M)

18 =>

19 ([I’ | W’ | N’ | M’ ; NQ]) | (N’) = (M’) \/

20 ([I’ | W’ | N’ | M’]) | (N’) = (M’) \/

21 ([I’ | W’ | mt | Q’]) | true .)

22

23 (add-goal mutex2b : (< I | W | N | M ; Q >) |

24 ((dupl(I W N)) =/= (true) /\ (N) = (M))

25 =>

26 ([I’ | W’ | N’ | M’ ; NQ]) | (N’) = (M’) \/

27 ([I’ | W’ | N’ | M’]) | (N’) = (M’) \/

28 ([I’ | W’ | mt | Q’]) | true .)

29

30 (start-proof .)

31 (on 1 use strat mutex1 mutex2a mutex2b .)

32 (on 2 use strat mutex1 mutex2a mutex2b .)

33 (on 3 use strat mutex1 mutex2a mutex2b .)

34 (auto .)

35 (auto .)

Figure 5.8: QLOCK Mutual Exclusion Proof Script

116

5.5.3 Other Examples

To validate the feasibility of our approach we also verified properties for a collection of examples. Table

5.1 summarizes these experiments; it is subdivided into sections based on the kind of example, i.e., com-

munication protocols, mutual exclusion algorithms, programs written in a simple imperative programming

language IMP, and examples that do not belong in any of the other categories. For complete details, refer

to http://maude.cs.illinois.edu/tools/rltool/.

Table 5.1: Examples Verified by the Tool

Example Decidable Goals Leaves Lemmas Auto

Simple Comm. Protocol No 1 2 0 Yes
Fault-Tolerant Comm. Protocol Yes 6 21 N/A Yes

Dijkstra’s Mutex Algorithm Yes 3 218 N/A Yes
QLOCK Yes 4 71 N/A No
Unbounded Lamport’s Bakery Yes 11 827 N/A No
Readers/Writers Problem Yes 2 5 N/A Yes
Fixed-Size Token Ring Yes 3 7 N/A Yes

IMP Factorial Function No 1 5 1 Yes
IMP Fibonacci Function No 1 5 1 Yes
IMP Multiplication Function No 1 5 1 No
IMP Remainder Function No 1 10 0 No

Bank Account No 1 7 2 Yes
Non-Deterministic Choice Yes 1 5 N/A No
Counter Eventual Decrease No 1 4 0 No
Counter Partial Correctness No 1 2 0 No
List Sorting Element Preservation No 1 5 0 Yes

For each example the table shows whether satisfiability of quantifier-free formulas in the initial algebra

defined by the equational part of the example theory is decidable or not as far as the equational formulas

involved in the property to be verified and in rule conditions are concerned.16 The table also shows the

number of initial goals/invariants, the number of leaves in the proof tree, the number of inductive lemmas

needed for verifying examples in undecidable theories, and whether the built-in strategy can find a proof

(aside from finding necessary circularities), i.e. whether the user needed to manually apply a derived rule to

complete the proof. Below, we briefly describe each example and property verified in the table above.

We defined two order-preserving communication protocols assuming a single sender, receiver, and channel:

(1) a simple communication protocol that is not fault-tolerant with a unidirectional channel as well as (2) a

fault-tolerant protocol with a bidirectional channel that uses acknowledgments to confirm that messages are

received. For the simple protocol, we verified that the final state contains the message sent in the correct

order, so that the sequence number corresponds correctly to that of messages sent; the undecidability comes

from the fact that counting sequence numbers of a set of messages requires non-FVP recursive equations.

For the fault-tolerant protocol, we verified that the message sent is received in the correct order. Note that

in-order message reception reduces to an equality check over an associative list of naturals.

We also defined five classic mutual exclusion algorithms. In each case the reachability goal proved was

always the invariant stating that the mutual exclusion algorithm never allows two or more processes to

16For example, in the QLOCK specification, due to the use of an associativity axiom for queues, decidable satisfiability of
arbitrary quantifier-free formulas in the initial algebra of QLOCK cannot be ensured by variant satisfiability methods. But is
ensured by variant satisfiability for equational formulas whose equations only involve terms of sorts either MSet or Pred .

117

http://maude.cs.illinois.edu/tools/rltool/

enter the critical section at the same time. For each of these algorithms the system in question was never-

terminating and thus required the techniques introduced in Section 5.3.1 to carry out the proof.

Additionally, we defined a rewrite theory that specifies the semantics of a simple programming language

we call IMP. Its expressions range over two data types: booleans and natural numbers. The supported

operations are addition, subtraction, multiplication, boolean negation, and boolean conjunction; expressions

are side-effect free. Variables all have the natural number type, share a global namespace, and must be

declared before the program body executes. Supported statements include assignment, if-statements, and

while-loops. Note that, since IMP does not have dynamic memory allocation, heap-based reasoning is not

needed.

We wrote four functions in IMP and verified their correctness: multiplication, factorial, remainder, and

the function that returns the n-th element of the Fibonacci sequence. In each case, the property verified is

that the IMP function implements the same function as one equationally defined in Maude. Since each of the

functions verified is inherently recursive, verifying their correctness is generally undecidable. An interesting

feature of the tool-based proofs for these IMP programs is that, even though there are few leaves in the

proof tree, the depth of the proof trees is considerably longer than for other examples, because the program

must be unfolded through many steps before reaching a state captured by one of our loop invariants.

Finally, we verified a few other examples that do not fit in any of the previous categories, including the

two counter examples discussed in Subsection 5.4.2. We also gave a specification of a bank account that

allows deposits and withdrawals to nondeterministically occur, where each withdrawal occurs in two steps:

the withdrawal is initiated and, at some later time, the withdrawal is completed. For this bank account

specification we proved the invariant that a bank account where the pending withdrawals are initially less

than the balance will never overdraft later. We defined an algorithm that takes a multiset of natural numbers

and nondeterministically throws numbers away and proved that this algorithm, when supplied with a non-

empty multiset as its starting state, will always reach a singleton contained in the original set. Finally, we

defined a list sorting specification and proved that the multiset of elements belonging to the partially sorted

list remains invariant.

5.6 RELATED WORK AND CONCLUSIONS

5.6.1 Related Work

Reachability logic [90, 99, 26, 27] is a language-generic approach to program verification, parametric

on the operational semantics of a programming language. Both Hoare logic and separation logic can be

naturally mapped into reachability logic [90, 99]. This work, based on our earlier work in [100], extends

reachability logic from a programming-language-generic logic of programs to a rewrite-theory-generic logic

to reason about both distributed system designs and programs, based on their rewriting logic semantics.

This extension is non-trivial and requires a number of new concepts and results, including: (i) relativization

of terminating sequences to a chosen subset JT K of terminating states; (ii) solving the “invariant paradox,”

to reason about invariants and co-invariants of possibly non-terminating systems, and characterizing such

invariants by means of reachability formulas through a theory transformation; and (iii) making it possible

to achieve higher levels of automation by systematically basing the state predicates on positive Boolean

combinations of constrained constructor patterns of the form u | ϕ with u a constructor term.

In contrast, standard reachability logic [26, 27] uses matching logic, which assumes a first-order modelM

118

and its satisfaction relation M |ù ϕ as the basis of the reachability logic proof system, and further assumes

a matching-logic-definable transition relation on M. As discussed in Section 5.2, we choose TΣ{EYB as

the model and ÑR for transitions, rather than some general M with definable transitions, and systemati-

cally exploit the isomorphism TΣ{EYB |Ω – TΩ{EΩYBΩ
, allowing us to use unification, matching, narrowing,

and satisfiability procedures based on the typically much simpler initial algebra of constructors TΩ{EΩYBΩ
.

This has the advantage that we can explicitly give the complete details of our inference rules (e.g., how

Subsumption checks for subsumption, or Step@ ensures that states have at least a successor), instead of

relying on a general satisfaction relation |ù on some M with definable transitions. The result is a sim-

pler inference system with only three rules (instead of the eight in reachability logic). On the practical

side, reachability logic has been previously implemented as part of the K framework, and has only been

instantiated with operational semantics of programming languages and used for the purpose of program

verification. In particular, the implementation in K has several hand-crafted heuristics for reasoning about

specific features of programming languages, such as dynamically allocated memory (the “heap”). In spite of

the fact that similar heuristics have not yet been added to the current prototype described in Section 5.5, the

potential for automation of the constructor-based reachability logic approach has been demonstrated by the

tool’s capacity to prove relevant properties for a representative suite of distributed system designs, including

various distributed system designs and algorithms as well as programs in a simple imperative programming

language. Of course, this is a proof of concept: improving the tool by adding reasoning heuristics, e.g.,

attempting to guess inductive axioms for loops, as well as more powerful inductive validity checking support

will be crucial to scale up to bigger applications.

As mentioned in the Introduction, we have been inspired by the work in [29]. We agree on the common goal

of making reachability logic rewrite-theory-generic, but differ on the methods used and their applicability.

Main differences include: (1) The authors in [29] do not give an inference system but a verification algorithm

manipulating goals, which makes it hard to compare both logics. (2) The theories to which the methods

in [29] apply seem more restricted than the ones presented here. Roughly, (see their Assumption 3)

[29] assumes restrictions akin to those imposed in [101] to allow “rewriting modulo SMT,” which limits the

equational theories pΣ, Eq that can be handled. (3) Matching is used throughout in [29] instead of unification.

This means that, unless a formula has been sufficiently instantiated, no matching rule may exist, whereas

unification with some rule is always possible in our case. (4) No method for proving invariants is given in

[29]; our solving of the “invariant paradox” provides such a method.

Three recent further developments that add coinductive reasoning capabilities to reachability logic are also

worth mentioning, namely: (1) Moore’s Ph.D. dissertation [102]; (2) the coinductive approach by Lucanu

et al. in [103]; and (3) the coinductive approach to reachability logic by Ciobâcă and Lucanu in [104]. The

closest to our work are the approaches in [103] and, even more so, [104]. The approach in [103] adopts a

semantic framework for models similar to the already-discussed work in [26, 27], i.e., state properties are

specified using matching logic and assume a given first-order logic model. In this regard, the already discussed

model theoretic differences between our work and that in [26, 27], as well as the associated advantages and

disadvantages, seem to be essentially the same as for [103]. However, an important contribution of the work

in [103] is its coinductive semantics and justification for circular co-inductive reasoning. The relationship to

our work is that the circular coinduction inference rule in [103] roughly corresponds to our Axiom rule, where

formulas that have become available as circularities provide a kind of “seven league boots” to advance the

proof process and eventually finish it. Perhaps the work closest to ours in the coinductive approach is that

of Ciobâcă and Lucanu in [104]. At a very high level, it seems fair to say that regarding the models assumed,

119

the kinds of reachability properties proved, and the state predicates and inference systems proposed, the

approach in [104] and ours are quite close. Of course, one important difference is that, to achieve essentially

the same objectives, their semantic approach uses coinductive reasoning, whereas ours, particularly in the

proof of our Soundness Theorem 5.4, uses inductive or, more precisely, minimal counter-example reasoning.

There are however other substantial differences:

(i) rewriting, as in our case, is based on conditional rules with formulas as constraints in conditions; but in

[104] the topmost requirement is dropped, as is also the possibility of matching and rewriting modulo

axioms B, except for the fact that, using “built-in constraints” in an (expected to be decidable) reduct

model on built-in sorts, one could achieve the effect of rewriting modulo such a built-in decidable reduct

model;

(ii) their reachability formulas are less general than ours: in our notation their formulas have the form

u | ϕÑf v | ψ, i.e., only atomic patterns predicates can be used, but as our QLOCK example shows,

having disjunctions of atomic pattern predicates in midconditions is very useful in practice;

(iii) although the inference systems are relatively close, they are not in a one-to-one correspondence:

(a) their [axiom] rule corresponds to the subcase of our Subsumption rule that discharges vacuous

formulas,

(b) their [subs] and rder@s rules roughly correspond to the effect of our Step@ and Subsumption rules

(which in [100] were combined into a single Step@ ` Subsumption rule); but this comes with

a slight twist: their [subs] rule does the job of our Subsumption rule and, roughly, that of the

formula ϕ1 in our Step@ rule, whose purpose is to restrict the (in their sense “derived”) goals after

one rewriting step to states not already subsumed by the precondition,

(c) their [circ] rule and our Axiom rule basically agree with each other.

Another area of related work is that of deductive proofs of safety properties, particularly of invariants,

for systems specified in rewriting-based languages such as CafeOBJ [13] and Maude [6]. The two main

approaches that have been developed in this area are:

1. The CafeOBJ approach to the specification of transition systems and the verification of their invariants

using either so-called proof scores (which can use CafeOBJ itself or Maude directly as a theorem

prover in the spirit of, say, [105]) as in, e.g., [106], or by direct use of an inductive theorem prover

or a combination of standard inductive theorem proving and score-based theorem proving as in, e.g.,

[107, 108]. An important feature of this approach, illustrated in the proof-score case but also applicable

to the standard inductive theorem proving or mixed approaches is that both proofs of invariants

and of purely equational inductive verification conditions associated to both invariants and inductive

properties of algebraic data types can be carried out.

2. The Invariant Analyzer (InvA) Maude-based approach to the deductive verification of invariants and

other safety properties of a concurrent system specified as a topmost rewrite theory [109, 110, 111].

The key ideas in the InvA approach include: (i) the proof of an invariant is inductively reduced to

proving that all one-step transitions with the rules R preserve the invariant; (ii) using unification and

narrowing symbolic techniques, the proof that each system transition preserves the invariant is reduced

to proving purely equational inductive verification conditions in the underlying algebraic data type of

120

states (that is, in TΣ{EYB if the rewrite theory has the form R “ pΣ, EYB,Rq); and (iii) an inductive

theorem prover (in this case Maude’s ITP) is used to discharge the generated verification conditions.

Generally speaking, although technically the CafeOBJ-based and Maude-based approaches are different

and not directly comparable, their main goals, namely, the deductive verification of transition systems with

emphasis on their safety properties, are quite close and these two approaches have stimulated each other. In

comparison with constructor-based reachability logic, the following remarks can be made: (i) the verification

of invariants in constructor-based reachability logic is closely related to both invariant verification in InvA

and in the CafeOBJ-based tools (very roughly speaking, in reachability logic, the equational verification

conditions in these two other approaches are replaced by the symbolic methods and side conditions involved

in applying the reachability logic inference rules); (ii) of course, the more general reachability properties,

including in particular the Hoare logic partial correctness properties, do not have a counterpart in the

CafeOBJ-based and InvA approaches; (iii) the use of pattern predicates in reachability logic seems to be new:

in the other two approaches state predicates are typically specified by Boolean predicates; we conjecture that

pattern predicates and their associated symbolic techniques should also be quite useful in future developments

of the InvA and Cafe-OBJ approaches; and (iv) last but not least, in [106], besides proving invariants of

transition systems, a new method for proving leads to properties using proof scores is also presented. Such

properties are liveness temporal logic properties beyond the usual safety properties. This is quite intriguing,

and suggests investigating whether leads-to properties could also be verified in a future version of reachability

logic.

Finally, there is also a close connection between this work and other rewriting-based symbolic methods,

including: (i) unification modulo FVP theories [24]; (ii) decidable satisfiability (and validity) of quantifier-

free formulas in initial algebras [14, 16, 31, 79, 18, 80, 81, 82, 83, 84, 36]; (iii) narrowing-based reachability

analysis [78, 87]; (iv) narrowing-based proof of safety properties [109, 111]; (v) patterns and constrained

patterns [80, 87]; and (vi) rewriting modulo SMT [101]. Exploiting such connections, particularly with

[24, 36, 47, 87], has been essential to achieve the goals of this chapter.

5.6.2 Conclusions

In conclusion, this chapter advances the goal of making reachability logic available as a rewrite-theory-

generic verification logic. The goals of wide applicability, invariant verification, simplicity, and mechanization

of inference rules have been substantially advanced, but much work remains ahead. The feasibility of the

approach has been validated with our prototype implementation using a suite of representative examples.

They show that, both for reasoning about distributed protocols and algorithms and for proving properties of

programs in conventional languages, the verification approach presented here seems promising and feasible

in practice. However, the examples are relatively small, and the prototype tool implementation should be

further improved, automated, and endowed with more powerful backends for inductive validity checking.

Hand in hand with this, both the proof methods and the tool capabilities should be stressed by means of

more substantial case studies, both of distributed system designs and of programming language verification.

At the foundational level, several problems deserve further research, including: (i) a relative completeness

proof for a suitable future version of constructor-based reachability logic; (ii) investigation of additional

temporal logic properties that could be expressed in reachability logic; a case in point is that of the leads-to

properties already discussed in connection with the work in [106]; and (iii) how to exploit modularity and

121

parameterization at the level of rewriting logic specifications (in the sense of parameterized rewrite theories)

to make reachability logic proofs as modular, generic and reusable as possible.

All this, together with reaching a mature tool implementation, are among our current goals for the near

future.

122

CHAPTER 6 IBOS CASE STUDY

6.1 INTRODUCTION

In the previous chapter, we saw in Sections 5.2 and 5.3 how several techniques, such as exploiting the

good properties of the canonical term algebra and constrained constructor pattern predicates support our

proof system’s algorithmic description and automatability. However, these claims do not hold much weight

practically unless they can be substantiated by a suite of relevant case studies demonstrating the practical

effectiveness of the logic. Though Chapter 5 presented many examples, they are not substantial enough

to be anything more than toys. In this chapter, we rectify this situation by presenting a significantly

more substantial case study involving the verification of several security properties for the Illinois Browser

Operating System (IBOS).

Rationale and Origins. Web browsers have in fact become operating systems for a myriad of web-based

applications. Given the enormous user base and the massive increase in web-based application areas, browsers

have for a long time been a prime target for security attacks, with a seemingly unending sequence of browser

security violations. One key reason for this problematic state of affairs is the enormous size (millions of lines

of code) and sheer complexity of conventional browsers, which make their formal verification a daunting

task. An early effort to substantially improve browser security by formal methods was jointly carried out by

researchers at Microsoft Research and the University of Illinois at Urbana-Champaign (UIUC), who formally

specified Internet Explorer (IE) in Maude [6], and model checked that formalization finding 13 new types of

unknown address bar or status bar spoofing attacks in it [112]. Those vulnerabilities were all corrected in

IE before [112] was published. But the research in [112] just uncovered some kinds of possible attacks, and

the sheer size and complexity of IE made full verification unfeasible. This stimulated a team of systems and

formal methods researchers at UIUC to ask the following question: could formal methods be used from the

very beginning in the design of a secure browser with a very small trusted code base (TCB) whose design could

be verified? The answer given to this question was the Maude-based design, model checking verification, and

implementation of the IBOS Browser cum operating system, [113, 114, 115, 116], with a 42K line trusted

code base (TCB), several orders of magnitude smaller than the TCBs of commodity browsers.

Why this Work. As further explained in Section 6.4, only a model checking verification of the IBOS

security properties relying on a hand-proof abstraction argument for its full applicability was possible at the

time IBOS was developed [115, 116, 115, 110]. A subsequent attempt at a full deductive verification of IBOS

in [110] had to be abandoned due to the generation of thousands of proof obligations. In retrospect, this is

not surprising for two reasons: (1) Many of the symbolic techniques needed to scale up the IBOS deductive

verification effort, including variant unification and narrowing [24], order-sorted congruence closure module

axioms [117], and variant-based satisfiability [25, 88], did not exist at the time. In the meantime, those

symbolic techniques have been developed and implemented in Maude. (2) Also missing was a program logic

generalizing Hoare logic for Maude specifications in which properties of concurrent systems specified in Maude

could be specified and verified. This has been recently addressed with the development of a constructor-based

reachability logic for rewrite theories in [100], which extends prior reachability logic research on verification

of conventional programs using K in [90, 99, 26, 27]. In fact, what has made possible the deductive proof

of the IBOS security properties presented in this chapter is precisely the combination of the strengths from

(1) and (2) within the reachability logic theorem prover that we have developed for carrying out such a

123

proof. Of course, implicit in both (1) and (2) are two important proof obligations: (a) Both our symbolic

reasoning and reachability logic engines take as input a rewrite theory R. However, like most efficiently

scalable verification methods, these methods are not sound for any arbitrary R. Thus, we require methods

to validate that the input theory R is suitable for symbolic reachability analysis, i.e., ground convergent

and sufficiently complete. (b) [115, 116, 115] proved that the IBOS formalization satisfies certain security

properties which are specifiable an invariant I0. Our analysis uses a slightly modified invariant I that is also

inductive (as explained in Section 6.1.2). Thus, we require that I is at least as strong as or stronger than

I0 to ensure that our security property specification does not miss any cases covered by prior work. Unlike

prior work, both requirements (a) and (b) are now fully checked as explained in Appendix E. Last but not

least, as we further explain in Section 6.4, the IBOS browser security goals remain as relevant and promising

today as when IBOS was first developed, and this work bring us closer to achieving those goals.

Main Contributions include: (A) The first full deductive verification of the IBOS browser as explained

above. (B) A general modular proof methodology for scaling up reachability logic proofs of object-based

distributed systems that has been invaluable for verifying IBOS, but has a much wider applicability to

general distributed system verification. (C) A substantial and useful case study that can be of help to other

researchers interested in both browser verification and distributed system verification. (D) A reachability

logic prover, which in the course of this research has evolved from the original prototype reported in [100]

to a first prover version to be released in the near future.

Chapter Overview.

The notion of object-based rewrite theories and a recap of invariant verification in reachability logic

are presented in the preliminaries. IBOS, its rewriting logic Maude specification, and the specification of

its security properties are explained in Section 6.2. The deductive proof of those IBOS properties and

the modular proof methodology used are described in Section 6.3. Section 6.4 discusses related work and

concludes the chapter.

6.1.1 Object-Based Rewrite Theories

Most distributed systems, including the IBOS browser, can be naturally modeled by object-based rewrite

theories. We give here a brief introduction and refer to [118, 6] for more details. The distributed state of

an object-based system, called a configuration, is modeled as a multiset or “soup” of objects and messages

built up by an associative-commutative binary multiset union operator (with juxtaposition syntax) :

Conf Conf Ñ Conf with identity null . The sort Conf has two subsorts: a sort Object of objects and

a sort Msg of messages “traveling” in the configuration from a sender object to a receiver object. The

syntax for messages is user-definable, but it is convenient to adopt a conventional syntax for objects as

record-like structures of the form: x o | a1pv1q, . . . , anpvnqy, where o is the object’s name or object identifier,

belonging to a subsort of a general sort Oid , and a1pv1q, . . . , anpvnq is a set of object atributes of sort Att

built with an associative-commutative union operator , : Atts Atts Ñ Atts, with null as identity element

and with Att ă Atts. Each ai is a constructor operator ai : si Ñ Att so that the data value vi has sort si.

Objects can be classified in object classes, so that a class C has an associated subsort C .Oid ă Oid for its

object identifiers and associated attribute constructors ai : si Ñ Att , 1 ď i ď n. Usually, a configuration

may have many objects of the same class, each with a different object identifier; but some classes (e.g.,

the Kernel class in IBOS) are singleton classes, so that only one object of that class, with a fixed name,

124

will apear in a configuration. Another example in the IBOS specification is the singleton class Display .

The single display object represents the rendering of the web page shown to the user and has the form:

ă display | displayContentpDq, activeTabpWAq ą, where the activeTab attribute constructor contains a

reference to the web process that the user has selected (each tab corresponds to a different web process)

and the displayContent constructor encapsulates the web page content currently shown on the display. Not

all configurations of objects and messages are sensible. A configuration is well-formed iff it satisfies the

following two requirements: (i) unique object identifiers: each object has a unique name different from all

other object names; and (ii) uniqueness of object attributes: within an object, each object attribute appears

only once; for example, an object like ă display | displayContentpDq, activeTabpWAq, activeTabpWA’q ą is

nonsensical.

The rewrite rules R of an object-based rewrite theory R “ pΣ, EYB,Rq have the general form lÑ r if φ,

where l and r are terms of sort Conf . Intuitively, l is a pattern describing a local fragment of the overall

configuration, so that a substitution instance lσ describing a concrete such fragment (e.g., two objects, or an

object and a message) can be rewritten to a new subfragment rσ, provided the rule’s condition φσ holds (see

Section 6.2.1 for an example rule). Classes can be structured in multiple inheritance hierarchies, where a

subclass C 1 of class C, denoted C 1 ă C, may have additional attributes and has a subsort C 1.Oid ă C .Oid for

its object identifiers. By using extra variables Attrsj of sort Atts for “any extra attributes” that may appear

in a subclass of any object oj in the left-hand side patterns l of a rule, rewrite rules can be automatically

inherited by subclasses [118]. Furthermore, a subclass C 1 ă C may have extra rules, which may modify both

its superclass attributes and its additional attributes.

An object-based rewrite theory R “ pΣ, E Y B,Rq can be easily be made topmost as follows: (i) we add

a fresh now sort State and an “encapsulation operator,” say, t u : Conf Ñ State, and (ii) we trasform each

rule lÑ r if φ into the rule tl Cu Ñ tr Cu if φ, where C is a fresh variable of sort Conf modeling “the rest

of the configuration,” which could be empty by the identity axiom for null .

6.1.2 Proving Inductive Invariants [100, 119].

For a transition system Q “ pQ,ÑQq and a subset Q0 Ď Q of initial states, a subset I Ď Q is called

an invariant for Q from Q0 iff for each a P Q0 and b P Q, a Ñ˚
Q b implies b P I, where Ñ˚

Q denotes the

reflexive-transitive closure of ÑQ. A subset A Ď Q is called stable in Q iff for each a P A and b P Q, aÑQ b

implies b P A. An invariant I for Q from Q0 is called inductive iff I is stable. We instantiate this generic

framework to prove invariants over a topmost rewrite theory R “ pΣ, E Y B,Rq with pΣ, B, ~Eq convergent

and sufficiently complete with respect to pΩ, BΩq and consider the transition system induced by R over sort

State, i.e., pCΣ{EYB,State ,ÑRq.

To prove an invariant I from Q0 over R, we use a simple theory transformation mapping topmost theory

R to a theory Rstop having a fresh operator r s and a rule stop : cp~xq Ñ rcp~xqs for each constructor c of sort

State. Then, by Corollary 1 in [100], to prove I is an invariant from Q0 over R we prove Q0 Ď I and that the

reachability formula Iσ Ñf rIs holds over R, where: (i) Iσ is a renaming of I with varspIq X varspIσq “ H

and (ii) if I “ pu | ϕq then rIs “ prus | ϕq. If I is inductive and I “ u | ϕ, the proof of Iσ Ñf rIs proceeds

as follows:

1. The initial sequent is rH, Iσ Ñf rIss $rs Iσ Ñ
f rIs.

2. Apply the Step rule; based on which rule ζ : lÑ r if φ was used, obtain:

125

(a) if ζ is stop, rIσ Ñf rIs,Hs $rs rIσs Ñ
f rIs;

(b) otherwise,
Ź

αPUnifBΩ
pu,lqrIσ Ñ

f rIs,Hs $rs pr | ϕ^ φqαÑ
f rIs.

3. For case (2a), apply Subsumption. For case (2b), apply zero or more derived rules to obtain sequents

of the form: rIσ Ñf rIs,Hs $rs AÑ
f rIs.

4. Since I is assumed inductive, we have JAK Ď JIσK. Thus, apply Axiom to derive rIσ Ñf rIs,Hs $rs

rIs Ñf rIs.

5. Finally, apply Subsumption.

Since all the IBOS security properties are invariants, all our proofs follow steps (1)–(5) above.

6.2 IBOS AND ITS SECURITY PROPERTIES

One important security principle adopted by all modern browsers is the same-origin policy (SOP). SOP

isolates web apps from different origins, where an origin is represented as a tuple of a protocol, a domain

name, and a port number. For example, if a user loads a web page from origin (https,mybank.com,80) in one

tab and in a separate tab loads a web page from origin (https,mybnk.com,80), i.e., a spoofed domain that

omits the ‘a’ in ‘mybank,’ any code originating from the spoofed domain in the latter tab will not be able

to interact with the former tab. SOP also ensures that asynchronous JavaScript and XML (AJAX) network

requests from a web app are routed to its origin. Unfortunately, browser vendors often fail to correctly

implement the SOP policy [120, 121].

The Illinois Browser Operating System (IBOS) is an operating system and web browser that was designed

and modeled in Maude with security and compatibility as primary goals [113, 114, 116]. Unlike commodity

browsers, where security checks are implemented across millions of lines of code, in IBOS a small trusted

computing base of only 42K code lines is established in the kernel through which all network interaction is

filtered. What this means in practice is that, even if highly complex HTML rendering or JavaScript inter-

pretation code is compromised, the browser still cannot violate SOP (and several other security properties

besides). The threat model considered here allows for much of the browser code itself to be compromised

while still upholding the security invariants we describe below.

In the following subsections we provide a general overview of the IBOS browser, how is formally specified

as a rewriting logic theory in Maude, how the SOP can be concretely understood for this system, and how

the SOP and other IBOS security properties can be formally specified as invariants.

6.2.1 IBOS System Specification

IBOS System Design. The Illinois Browser Operating System is an operating system and web browser

designed to be highly secure as a browser while maintaining compatibility with modern web apps. It was

built on top of the micro-kernel L4Ka::Pistachio [122, 123], which embraces the principles of least privi-

lege and privilege separation by separating operating subsystems into separate daemons that communicate

through the kernel via checked inter-process communication (IPC). IBOS directly piggybacks on top of this

micro-kernel design by implementing various browser abstractions, such as the browser chrome and network

connections, as separate components that communicate using L4ka kernel message passing infrastructure.

Figure 6.1 gives an overview of the IBOS architecture; as an explanatory aid we highlight a few key objects:

126

Figure 6.1: IBOS System Architecture [116].

• Kernel. The IBOS kernel is built on top of the L4Ka::Pistachio micro-kernel which, as noted previ-

ously, can check IPC messages against security policies.

• Network Process. A network process is responsible for managing a network connection (e.g., HTTP

connections) to a specific origin. It understands how to encode and decode TCP datagrams and

Ethernet frames and can send and receive frames from the network interface card (NIC).

• Web Application. A web application represents a specific instance of a web page loaded in a

particular browser tab (e.g., when a link is clicked or a URL is entered into the address bar). Web

applications know how to render HTML documents. As per SOP, each web page is labeled by its

origin.

• Browser UI. The browser user inferface (UI) minimally includes the address bar and the mouse

pointer and extends to any input mechanism.

• Display. The display represents the rendered web app shown to the user; it is blank when no web

app has loaded. For security, it cannot modify the UI.

IBOS System Specification in Maude. We present an overview of the IBOS formal executable specifi-

cation as a Maude rewrite theory, which closely follows previous work [116, 115, 110]. We model IBOS as an

object-based rewrite theory (see Section 6.1.1). We use italics to write Maude rewrite rules and CamelCase

for variable or sort names. Some objects of interest include the singleton objects kernel, ui, and display

(in classes Kernel, UI, and Display, respectively). We also have non-singleton classes WebApp and NetProc

representing web apps and network processes in IBOS, respectively.

As a further aid to the reader and a complement to the graphical overview of IBOS in Figure 6.1, we

rewrite this graphical figure using our formal specification. Said another way, we provide in Figure 6.2 a

representative state (e.g., a ground term) of the transition system pCΣ{EYB,State ,ÑRq where R is the Maude

rewrite theory specifying IBOS. To improve readability, we write each object attribute on a separate line.

Let us make a few high-level remarks about the figure. In our specification, urls are encoded as numbers

wrapped by constructor urlp. . .q. In IBOS, to enforce SOP as well as other security policies, both browser

frames and network connections must be tracked. Each browser frame is represented by an object of class

WebApp, while each network connection is represented by an object of class NetProc. The kernel manages

process state by internal metadata tables webAppInfo where each web app is tagged by its origin and

netProcInfo where each network connection is tagged by its origin web app and destination server. When

a new web app is created, the kernel automatically creates a corresponding network process between the

127

webapp and its origin server. Since the kernel is responsible for creating network connections, it records the

next fresh network process identifier in nextNetProc.

The kernel ’s secPolicy attribute stores its security policy. Each policy consists of a sender, a receiver, and

a message type. Any message not explicitly allowed by the policy is dropped. In the policy, the special Oids

network and webapp represent a policy allowing any network process or webapp to send a particular kind of

message to its corresponding webapp or network process, respectively. In the figure, the kernel is preparing

to forward a message from webappp0 q to its corresponding network process networkp0 q asking to fetch an

item from the web app’s origin urlp15 q.

Aside from the kernel, the system has a few other distinguished objects. The display object tracks the

content currently shown on the screen in displayContent ; to do that, it should know which web app is the

activeTab. The ui (user interface) contains the list of commands given by the user during some usage session

in its toKernel attribute. The webappmgr (web app manager) is responsible for spawning new web apps;

in our model, it just records the next fresh web app identifier in attribute nextWebApp. Finally, the nic

(network interface card) has two attributes for ingoing and outgoing data. In our model, we identify urls

and their loaded content. To model network latency, outgoing messages in nic-out are queued up in nic-in

in a random order.

Of course, we also have objects representing web apps and network connections. In the figure, webappp0 q’s

rendered content is blank. However, it is currently loading its content from its origin url(15); its request to

fetch data from its corresponding network process is currently being handled by the kernel. Currently, its

toKernel and fromKernel IPC message queues are blank because it is not performing any other communi-

cation at this time. There is also a corresponding network process network(0); it has two direct-memory

access (DMA) buffers mem-in and mem-out that are used as I/O channels between itself and the network

card driver. Like web apps, network processes also have two IPC message queues. Finally, a network process

also stores which web app its received data should be sent back to.

As a second example, let us consider the specification of the change-display rewrite rule shown in Figure 6.3.

This rule involves the display object and the WebApp designated as the display’s activeTab. In our model,

the rendered attribute of a web app represents its current rendering of the HTML document located at its

origin. When the web app is first created, its rendered attribute has the value about-blank, i.e., nothing has

yet been rendered. Thus, this rule essentially states that, at any time, the displayed content can be replaced

by currently rendered HTML document of the active tab, only if it is different from the currently displayed

content.

Our IBOS browser specification contains 23 rewrite rules and is about 850 lines of Maude code; it is

available at http://maude.cs.illinois.edu/tools/ibos.

6.2.2 IBOS Security Properties Specification

We first describe at a high level the security properties that we will formally specify and verify. The

key property that we verify is the same-origin policy (SOP), but we also specify and verify the address bar

correctness (ABC) property. Our discussion follows that of [116, 115], based on invariants P1-P11:

P1 The kernel must route network requests from web page instances to the proper network process.

P2 The kernel must route Ethernet frames from the network interface card (NIC) to the proper network

process.

128

http://maude.cs.illinois.edu/tools/ibos

ă kernel | addrBarpurlp15 qq,
handlingpmsgpwebappp0 q,networkp0 q,FETCH -URL, urlp15 qqq
nextNetProcp1 q,
webAppInfoppipwebappp0 q, urlp15 qqq,
netProcInfoppipnetworkp0 q, urlp15 q, urlp15 qqq,
secPolicyppolicypwebapp,network ,FETCH -URLq,

policypnetwork ,webapp,RETURN -URLq,
policypui ,webapp,NEW -URLq,
policypui ,webapp,SWITCH -TABqq ą

ă display | displayContentpabout-blankq,
activeTabpwebappp0 qq ą

ă ui | toKernelpmsgpui ,webapp,NEW -URL, urlp25 qqq ą
ă webappmgr | nextWebAppp1 q ą
ă nic | nic-inpemtpyq,

nic-outpemptyq ą
ă webappp0 q | URLpurlp15 qq,

renderedpabout-blankq,
loadingptrueq,
toKernelpemptyq,
fromKernelpemptyq ą

ă networkp0 q | mem-inpemptyq,
mem-outpemptyq,
returnTopwebappp0 qq,
toKernelpemptyq,
fromKernelpemptyq ą

Figure 6.2: Representative IBOS System State

xdisplay | displayContentpDq, activeTabpWAq,Attsy xWA | renderedpD1q,Atts1y Conf
(

Ñ

xdisplay | displayContentpD1q, activeTabpWAq,Attsy xWA | renderedpD1q,Atts1y Conf
(

if D ‰ D1

Figure 6.3: change-display rule

129

P3 Ethernet frames from network processes to the NIC must have an IP address and TCP port that matches

the origin of the network process.

P4 HTTP data from network processes to web page instances must be from acceptable origins.

P5 Network processes for different web page instances must remain isolated.

P6 The browser chrome and web page content displays are isolated.

P7 Only the current tab can access the screen, mouse, and keyboard.

P8 All components can only perform their designated functions.

P9 The URL of the active tab is displayed to the user.

P10 The displayed web page content is from the URL shown in the address bar.

P11 All configurations are well-formed, i.e., non-duplication of Oids and Atts.

We define same-origin policy as SOP “
Ź

1ďiď7 Pi; address-bar correctness is specified as ABC “ P10.

Note that P9^P10 ñ P7. Since P5, P6, and P8 follow directly from the model design, it is sufficient to prove
Ź

iPI Pi for I “ t1, 2, 3, 4, 9, 10u. Invariant P11 is new to our current formalization, but is implicitly used in

prior work; it forbids absurd configurations, e.g., having two kernels or a WebApp that has two URLs (see

Section 6.1.1). Due to its fundamental relation to how object-based rewrite theories are defined, we need P11

in the proof of all other invariants. As an example of how these invariant properties can be formalized in

our model as constrained pattern predicates, we show how the ABC invariant can be specified in our system

below:

txkernel | addrBarpUq,Attsy

xdisplay | displayContentpU 1q,Atts 1y Conf u | U 1 � U (6.1)

where U 1 � U ôdef pU
1 ‰ about-blank ñ U “ U 1q, i.e., the display is either blank or its contents’ origin

matches the address bar. Note that, for simplicity, in our model, we identify displayed content with its origin

URL. As a second example, consider how to formalize invariant P9:

xkernel | addrBarpUq,Attsy

xdisplay | activeTabpWAq,Atts1y

xWA | URLpU2q,Atts2y Conf
(

| U � U2 (6.2)

i.e., the address bar must match the URL of the active tab, unless the address shown is about-blank, i.e.,

nothing is shown. Finally, P11 has a trivial encoding: tConf u | WF pConf q, where WF : Conf Ñ Bool

is the well-formedness predicate. Our specification has 200 lines of Maude code to specify the pattern

predicates used in our invariants and another 900 lines of code specifying all of the auxiliary functions and

predicates. As stated in the Introduction, we additionally must prove that (a) the IBOS system specification

extended by our security property specification is suitable for symbolic reachability analysis; (b) our ABC

and SOP invariants are at least as strong as the corresponding invariants in prior work [116, 115] ABC0 and

130

SOP0. Proof obligation (a) can be met by using techniques for proving ground convergence and sufficient

completeness of conditional equational theories while proof obligation (b) is typicially demonstrated by

proving an implication, e.g., SOP ñ SOP0. We have carried out full proofs of (a) and (b); see more details

in Appendix E. Note that, given (a) holds, our theory trivially meets all of the suitability requirements for

reachability analysis given in Definition 5.2. Finally, see http://maude.cs.illinois.edu/tools/ibos/ for

a complete listing of the invariant patterns SOP and ABC.

6.3 PROOF OF IBOS SECURITY PROPERTIES

In this section, due to space limitations, we give a high-level overview of our proof methodology for

verifying the SOP and ABC properties for IBOS, and show a subproof used in deductively verifying ABC.

Each proof script has roughly 200 lines of code and another 20 to specify the reachability logic sequent being

proved. The full script is available at http://maude.cs.illinois.edu/tools/ibos/.

Modular Proof Methodology. In this subsection we survey our modular proof methodology for proving

invariants using reachability logic and comment on how we exploit modularity in three key ways. By

“proof methodology”, we mean the common principles underlying how to structure and efficiently carry out

formal proofs. By “modularity”, we mean the ability to compose complex specifications from simple and

independent reusable pieces. Therefore, modularity is a key principle to scale up formal proofs beyond toy

examples.

Most of the IBOS proof effort was spent strengthening an invariant I into an inductive invariant Iind ,

where I is either SOP or ABC. Typically, Iind is obtained by iteratively applying the proof strategy given in

Section 6.1.2. In each round, assume candidate I 1 is inductive and attempt to complete the proof. If, after

applying the Step rule (and possibly some derived rules), an application of Axiom is impossible, examine

the proof of failed pattern subsumption JAK Ď JI 1K in the side-condition of Axiom. If pattern formula

C (possibly using new functions and predicates defined in theory ∆) can be found that might enable the

subsumption proof to succeed, try again with candidate I 1 ^ C. In parallel, our system specification R is

enriched by extending the underlying convergent equational theory E to EY∆ to obtain the enriched rewrite

theory R∆.

The first kind of modularity we exploit is rule modularity. Recall that any reachability logic proof begins

with an application of the Step rule. Since Step must consider the result of symbolically rewriting the

initial sequent with all possible rewrite rules, we can equivalently construct our proof on a “rule-by-rule”

basis, i.e., if R “ pΣ, E Y B, tlj Ñ rj if φjujPJq, we can consider |J | separate reachability proofs using

respective theories Rj “ pΣ, EYB, tlj Ñ rj if φjuq for j P J . Thus, we can focus on strengthening invariant

I 1 for each rule j P J separately.

Another kind of modularity that we can exploit is subclass modularity. Because we are reasoning in an

object-based rewrite theory, each rule mentions one or more objects in one or more classes, and describes how

they evolve. Recall from Sect. 6.1.1 that subclasses must contain all of the attributes of their superclass, but

may define additional attributes and have additional rewrite rules which affect them. The upshot of all this

is that if we refine our specification by instantiating objects in one class into some subclass, any invariants

proved for the original rules immediately hold for the same rules in the refined specification. Because of

rule modularity, we need only prove our invariants hold for the newly defined rules. Furthermore, among

those newly defined rules, all non-interfering rules trivially satisfy any already proved invariants, where

131

http://maude.cs.illinois.edu/tools/ibos/
http://maude.cs.illinois.edu/tools/ibos/

non-interfering rules do not directly or indirectly influence the state of previously defined attributes.

Lastly, we exploit what we call structural modularity. Since our logic is constructor-based and we assume

that BΩ-matching is decidable, by pattern matching we can easily specify a set S of sequents to which we

can apply the same combination of derived proof rules. This is based on the intuition that syntactically

similar goals typically can be proved in a similar way. More concretely, given a set of reachability formulas

S and pattern p P TΩpXq, we can define the subset of formulas Sp “ tpu | ϕq Ñf B P S | Dα P rX Ñ

TΩpXqs pα “BΩ uu. Although the simplified example below does not illustrate structural modularity, we

have heavily exploited this principle in our formal verification of IBOS.

Address Bar Correctness Proof Example. Here we show a snippet of the ABC invariant verification,

namely, we prove that the invariant holds for the change-display rule by exploiting rule modularity as noted

above. As mentioned in our description of invariant P11, well-formedness is required for all invariants.

Therefore, we begin with ABC ^ P11 as our candidate inductive invariant, which, as mentioned in Sect. 2,

normalizes by disjoint BΩ-unification to the invariant:

xkernel | addrBarpUq,Attsy

xdisplay | displayContentpU 1q,Atts1y Conf
(

| U 1 � U ^WF p. . .q (6.3)

where for brevity . . . expands to the entire term of sort Conf wrapped inside operator t u, i.e., the entire

configuration is well-formed. Recall the definition of the change-display rule in Section 6.2.1. We can see

that our invariant only mentions the kernel and display processes, whereas in rule change-display the value

of displayContent depends on the rendered attribute of a WebApp, i.e., the one selected as the activeTab.

Clearly, our invariant seems too weak. How can we strengthen it? The reader may recall P9, which states “the

URL of the active tab is displayed to the user.” Thus, by further disjoint BΩ-unification, the strengthened

invariant ABC^ P11 ^ P9 normalizes to:

xkernel | addrBarpUq,Attsy xdisplay | displayContentpU 1q, activeTabpWAq,Atts1y

xWA | URLpU2q,Atts2y Conf
(

| U 1 � U ^ U � U2 ^WF p. . .q (6.4)

This new invariant is closer to what we need, since the pattern now mentions the particular web app we

want. Unfortunately, since our invariant still knows nothing about the rendered attribute, at least one

further strengthening is needed.

At this point, we can enrich our theory with a new predicate stating that the rendered and URL attributes

of any WebApp always agree1. Let us declare it as R : Conf Ñ Bool. We can define it inductively over

configurations by:

RpxWA | renderedpUq,URLpU 1q,Attsy Conf q “ U � U 1 ^ RpConf q (6.5)

RpxP | Attsy Conf q “ RpConf q if WApP q (6.6)

Rpnoneq “ J (6.7)

1Note that, in a very real sense, this requirement is at the heart of the SOP, since it means that any WebApp has indeed
obtained content from its claimed origin.

132

where WA : Oid Ñ Bool ambiguously denotes a predicate that holds iff an Oid refers to a web app.

Intuitively, it says that whatever a WebApp has rendered is either blank or has been loaded from its URL.

The strengthened invariant becomes:

xkernel | addrBarpUq,Attsy xdisplay | displayContentpU 1q, activeTabpWAq,Atts1y

xWA | URLpU2q,Atts2y Conf
(

|

U 1 � U ^ U � U2 ^WF p. . .q ^Rp. . .q (6.8)

where, as before, the . . . represents the entire term of sort Conf enclosed in t u. Now, all of the required rela-

tionships between variables in the rewrite rule seem to be accounted for. Uneventfully, with the strengthened

invariant ABC ^ P11 ^ P9 ^R, the subproof for the change-display rule now succeeds.

6.4 RELATED WORK AND CONCLUSIONS

Related Work on IBOS Verification. In this chapter, we have presented the first fully formalized

deductive verification of SOP and ABC for IBOS. Note that in [116, 115], SOP and ABC were also verified.

Their approach consisted of a hand-written proof that any invariant counter-example must appear on some

trace of maximum length n plus bounded model checking showing that such counterexamples are unreachable

on all traces of length n. In [110], an attempt was made to deductively verify these same invariants via the

Maude invariant analyzer. In that work, a few basic invariants were proved, but unfortunately, due to the

generation of thousands of proof obligations, not including any property listed in Sect. 6.2.2. Compared to

that previous work, this chapter presents the first full deductive verification of the IBOS security properties.

Related Work on Browser Security. In terms of computer technology, the same-origin policy is quite

old: it was first referenced in Netscape Navigator 2 released in 1996 [124]. As [121] points out, different

browser vendors have different notions of SOP. Here, we situate IBOS and our work into this larger context.

Many papers have been written on policies for enforcing SOP with regards to frames [125], third-party scripts

[126, 127], cached content [128], CSS [129], and mobile OSes [130]. Typically, these discussions assume that

browser code is working as intended and then show existing policies are insufficient. Instead, IBOS attacks

the problem taking a different tack: even if the browser itself is compromised, can SOP still be ensured?

What the IBOS verification demonstrates is that —by using a minimal trusted computing base in the kernel,

implementing separate web frames as separate processes, and requiring all IPC to be kernel-checked— one

can in fact enforce the standard SOP notions, even if the complex browser code for rendering HTML or

executing JavaScript is compromised. Although our model does not treat JavaScript, HTML, or cookies,

explicitly, since it models system calls which are used for process creation, network access, and inter-process

communication, code execution and resource references can be abstracted away into the communication

primitives they ultimately cause to be invoked, allowing us to perform strong verification in a high-level

fashion. [131] surveys many promising lines of research in the formal methods web security landscape. Prior

work on formal and declarative models of web browsers includes [132] as well as the executable models

[133, 134]. Our work complements the Quark browser design and implementation of [135]: Quark, like

IBOS, has a small trusted kernel (specified in Coq). In addition to proving tab non-interference and address

bar correctness theorems similar to our own, the authors use Coq code extraction to produce a verified,

functional browser. Unlike Quark, whose TCB includes the underlying OS (e.g., the linux kernel) and Coq

133

code extraction and compilation tools, the TCB of the IBOS browser consists of only 42K lines of C/C++

code.

Related Work on Reachability Logic. Our work on constructor-based reachability logic [100] builds upon

previous work on reachability logic [90, 99, 26, 27] as a language-generic approach to program verification,

parametric on the operational semantics of a programming language. Our work extends in a non-trivial

manner reachability logic from a programming-language-generic logic of programs to a rewrite-theory-generic

logic to reason about both distributed system designs in Maude, and imperative programs based on their

rewriting logic semantics. Our work in [100] was also inspired by the work in [29], which for the first

time consider reachability logic for rewrite theories, but went beyond [29] in several ways, including more

expressive input theories and state predicates, and a simple inference system as opposed to an algorithm. Also

related to our work in [100], but focusing on coinductive reasoning, we have the recent work in [102, 103, 104],

of which, in spite of various substantial differences, the closest to our work regarding the models assumed,

the kinds of reachability properties proved, and the state predicates and inference systems proposed is the

work in [104].

Conclusions and Future Work. We have presented a full deductive proof of the SOP and ABC properties

of the IBOS browser design, as well as a prover and a modular reachability logic verification methodology

making proofs scalable to substantial proof efforts like that of IBOS. Besides offering a case study that can

help other distributed system verification efforts, this work should also be seen as a useful step towards

incorporating the IBOS design ideas into future fully verified browsers. The web is alive and evolving;

HTML and JavaScript standards as well as web browser designs must adapt to meet business and consumer

requirements. These evolutions necessitate that formal approaches adapt and scale to increasingly rich

applications and connected environments. Looking towards the future of IBOS, two goals stand out: (i)

extending the design of IBOS to handle some recent extensions of the SOP, e.g., cross-origin resource sharing

(CORS) to analyze potential cross-site scripting (XSS) and cross-site request forgery attacks (XSRF) [136],

and to check for incompatible content security policies (CSP) [137] in relation to SOP; by exploiting subclass

and rule modularity, the verification of an IBOS extension with such new functionality could reuse most

of the current IBOS proofs, since extra proofs would only be needed for the new, functionality-adding

rules; and (ii) exploiting the intrinsic concurrency of Maude rewrite theories to transform them into correct-

by-construction, deployable Maude-based distributed system implementations, thus closing the gap between

verified designs and correct implementations. Our work on IBOS takes one more step towards demonstrating

that a formally secure web is possible in a connected world where security is needed more than ever before.

134

CHAPTER 7 CONCLUSIONS AND FUTURE WORK

From pattern operations to extensible satisfiability methods to reachability logic, we have seen increasingly

powerful and sophisticated rewriting logic-based symbolic methods and tools for reasoning about distributed

system specifications in rewriting logic. We believe that these developments detailed above provide further

evidence that rewriting logic is particularly well-suited for specifying and analyzing distributed systems.

The skeptic may claim that the methods and tools described above are mere theoretical constructs without

practical backing. To that objection, we note that all of the (meta-)algorithms sketched in the pages above

have already been implemented using the Maude rewrite engine and have already been used in various case

studies [80, 35, 36, 25, 88, 100], in addition to the as-of-yet unpublished IBOS case study in this thesis.

Given the reflective nature of rewriting logic, these (meta-)algorithms can all be implemented in rewriting

logic itself (this also has the advantage of allowing quite simple correctness proofs!).

As we stated in the Introduction, we further believe that combination of rewriting logic and Maude as

an executable specification logic and interpreter is a good candidate to address the various challenges faced

by the practitioner designing real-world distributed systems. In particular, the techniques described in this

thesis have several important qualities that let us scale up to complex problems:

1. the methods presented provide theory-generic and rewrite-theory-generic reasoning capabilities;

2. in particular, our variant-satisfiability framework makes SMT solving decidable for a broad and para-

metric class of theories;

3. constructor patterns and constrained constructor pattern predicates provide a powerful method to cap-

ture state predicates where techniques like pattern operations, B-matching, B-unification, and rewriting

modulo B can be aggressively exploited for state simplification;

4. constructor-based reachability logic parameterized over a rewrite theory provides an elegant solution

to deductively verify reachability claims as well as inductive invariants in an initial reachability model ;

5. for complex reachability logic proofs, we can easily exploit modularity at every level of specification—at

the system specification level when designing rewrite theories, at the property specification level when

defining equational theories, and at the proof level when constructing proofs of reachability claims.

This thesis is the culmination of several years worth of effort. Since the various chapters build on each

other, it has the pleasing effect that different ideas can “cross-pollinate” and provides an easy path to stress

test our algorithms. This cross-pollination has resulted in several improvements to our ideas:

1. our variant satisfiability algorithm has been optimized for the common case where the set of defined

symbols has no subsort-overloadings that are constructors;

2. we have developed powerful theory-generic heuristics to extend our satisfiability techniques to unde-

cidable theories;

3. our capstone project, the verification of security properties of the the Illinois Browser Operating System

[116] led to many improvements in the user-interface of the reachability logic tool as well as new proof

methodologies.

135

Nevertheless, there is of course more work to be done. The future work can be subdivided into two

categories: tooling improvements and theory extensions. Let us discuss each in turn.

In terms of tooling improvements, several attractive possibilities include:

1. discharging more trivial proof obligations automatically, e.g. that a set of terms covers a sort for the

Case rule;

2. deeper integration of the various tools in the Maude ecosystem, enabling workflows where, e.g. the

reachability logic tool can invoke an inductive theorem prover if needed to discharge proof obligations

that it could not automatically prove;

3. extending our reachability logic tool so that it can generate proof objects, providing a much easier path

to both proof visualization and certification.

In terms of theoretical advancements, we would like to explore:

1. constructor-based reachability logic meta-theorems that describe the class of liveness properties that

can be expressed and verified as well as expressing the required fairness assumptions;

2. advanced techniques for reasoning about concurrent, imperative programming languages in our reach-

ability logic framework;

3. additional heuristics for handling undecidable theories that integrate well with our existing techniques;

4. lifting our reachability logic framework to reason over parameterized theories.

To summarize, what has been achieved in this thesis is:

1. the development of several new symbolic reasoning techniques such as:

(a) order-sorted pattern operations,

(b) meta-level algorithms for variant satisfiability, and

(c) constructor-based reachability logic; and

2. the first mechanized, general, deductive framework for verifying reachability claims in rewriting logic,

including:

(a) the tool implementation;

(b) its modular proof methodology, and

(c) case studies demonstrating the tool’s effectiveness culminating in the IBOS case study.

The implications and potential applications are as varied as the kinds of rewrite theories one can imagine.

Aside from obvious system modeling applications for both academic and industrial researchers, we also

envision wide-ranging uses for education. Since rewriting logic embeds many other semantic frameworks and

logics of interest, solving reachability claims over generic rewrite theories provides a powerful and general

framework to explore these systems as well as designing new ones.

136

APPENDIX A REACHABILITY LOGIC TOOL COMMAND GRAMMAR

Here we provide a BNF grammar of the commands which can be given as inputs to our prototype Maude

tool. In the grammar, boldface words represent themselves (i.e. terminals) while xwords in angle bracketsy

represent non-terminals. A nonterminal surrounded by square brackets, e.g., rxnumberys, represents an

optional argument. BNF grammar alternatives are separated by vertical bars (|). Whenever we use a

reserved symbol as a terminal, we surround it in double quotes, e.g. “|”. The horizontal lines delimit

the three basic categories of commands: (i) proof setup, (ii) adding invariants and adding goals, and (iii)

applying proof steps or simple proof strategies.

xouter-cmdy ::= (xinner-cmdy .)
xinner-cmdy ::= select xmodule-namey

| declare-vars xvar-sety
| def-term-set xpattern-formy
| use tool xtool-namey for validity on xmodule-namey
| start-proof

| inv xgoalnamey to xop-idy [with xvar-sety] on xpattern-formy
| add-goal xgoalnamey : xreach-formy

| auto [xnumbery]
| auto*
| list-goals
| focus xgoal-idy
| case xgoal-idy on xvar-namey using xterm-sety
| split xgoal-idy by xeqformy [and xeqformy]
| replace xgoal-idy by xeqformy
| subsume xgoal-idy by xgoal-idy
| on xgoal-idy use strat xgoal-name-sety

Figure A.1: Reachability Tool Command Grammar

Category (i) commands let the user select a module defining a rewrite relation we wish to reason over,

initialize a tool backend, to declare variables which can be used in commands of type (i) and (iii), and to

start/stop proofs. The commands in category (ii) are also straightforward: inv takes a bracket operator-id

prsq, a set of shared variables V , and a pattern form P and adds a goal to be solved of the form Pσ Ñf rP s

where σpvq “ v ô v P V ; we can also use the lower-level add-goal command to add goals directly, i.e.

reachability formulas. Finally, type (iii) commands let the user apply the default strategy using the auto

command for one or more steps as well as applying the case analysis derived rule using case and split

derived rules using split and replace. Focusing on a goal eliminates all other goals from the proof state;

obviously, this is unsound. The intent, however, is not to continue the proof process, but to restart it after

such focusing. The focus command enables the user to focus attention on some proof goals that seem to

lead to looping so that, for example, the proof can be restarted with some additional lemmas (e.g., some

strengthened invariants) to help its completion, or some bug in the original set of goals may be detected.

The use strat command allows the user to select the set of axioms that will be tried when applying the

Axiom rule to the specified goal as well as any of its descendants.

The grammar below defines the syntactic categories used by tool commands. Some non-terminals are

marked as special. These non-terminals are handled by built-in parsers as part of the Maude runtime.

137

xreach-formy ::= xpattern-formy => xpattern-formy
xpattern-formy ::= xpattern-formy \/ xpattern-formy

| xtermy “|” xeqformy
xeqformy ::= xeqformy \/ xeqformy | xeqformy /\ xeqformy

| xtermy = xtermy | xtermy =/= xtermy
xterm-sety ::= (xtermy) xterm-sety | (xtermy)
xvar-sety ::= (xvar-namey) xvar-sety | (xvar-namey)
xgoal-name-sety ::= xgoal-namey xgoal-name-sety | xgoal-namey
xgoal-idy ::= xnaty
xgoal-namey ::= special
xop-idy ::= special
xmodule-namey ::= special
xtool-namey ::= special
xvar-namey ::= special
xtermy ::= special
xnaty ::= special

Figure A.2: Reachability Logic Tool Command Grammar Syntactic Categories

138

APPENDIX B AUXILIARY PROOF TECHNIQUES

B.1 INTRODUCTION

Throughout this thesis, we have been building a theoretical framework for reasoning about constrained

terms and reachability between them. Recall that reachability logic reasoning requires reasoning at two

levels simultaneously: (i) reasoning about reachable states using narrowing over some rewrite theory R; and

(ii) reasoning about satisfiablity and validity of accumulated constraints in R’s underlying equational theory

E . In Chapters 4 and 5, we present systems of type (ii) and (i) respectively. This led to our capstone project

in Chapter 6, specifying the same-origin policy invariant for IBOS and then verifying that it holds using

reachability logic. The point that we wish to emphasize here is that systems of type (i) crucially depend

on ever more powerful and efficient systems of type (ii) in order to scale up to more complex theories. Our

IBOS case study is no exception to this rule. In fact, due to the complexity of this case study, we will need

additional type (ii) equational reasoning techniques not previously discussed. The purpose of this appendix

is to enrich our theoretical toolkit developed thus far with all these additional techniques, enabling us to tie

up all loose ends and nail down all proofs, especially those in Appendix E.

Rewriting and Induction. When it comes to equational reasoning, before we jump to advanced techniques,

we have to start with the basics. In particular, reasoning in an arbitrary conditional equational theory

E “ pΣ, E Y Bq is typically hopeless whenever the equivalence classes involved are large. Instead, we can

mechanize equational deduction via rewriting using a rewrite theory R “ pΣ, B, ~Eq, where the equations E

are oriented as rewrite rules. That such a theory is convergent (which intuitively can be understood as the

combination of both confluence and termination modulo B) implies rewriting with ~E modulo B is a sound

and complete method for checking E Y B-equality. Since mature rewrite engines (e.g. Maude, CafeOBJ,

etc.) exist, what is needed is a method for checking whether a theory R really is convergent, or at least

ground convergent, i.e., convergent for ground terms.

On top of that, to reasonably support induction, we additionally require that our theory pΣ, E Y Bq is

sufficiently complete with respect to (or protects) a constructor subtheory pΩ, BΩq Ď pΣ, E Y Bq. This

essentially amounts to three facts: that Σ and Ω have the same sort poset, BΩ Ď B, and TΣ{EYB |Ω –

TΩ{BΩ
. Sufficient completeness allows us to perform induction by doing case analysis on constructors alone.

Typically, the language of constructors is much simpler than the full theory, leading to huge gains in both

efficiency and clarity. As is the case above, doing case analysis by constructors is a relatively simple affair; the

difficulty lies in finding methods for checking sufficient completeness of a theory with respect to a constructor

subtheory.

Given that rewriting-based techniques and constructor induction have been widely known and used for

decades, one might assume that these matters of checking convergence (or at least ground convergence) and

sufficient completeness are totally solved. In actuality, scaling up existing techniques to complex equational

theories, especially when some equations in E are conditional, is a highly non-trivial matter. In practice, it

seems people either give up on proving convergence or sufficient completeness at all or else rely on one-shot,

ad-hoc proof techniques. Ideally, we would like a principled approach to proving convergence and sufficient

completeness, that is, both (a) sufficiently general, so that it can be applied to complex theories of interest;

and (b) respects modularity, so that the proof effort scales linearly with theory size. In this appendix we

provide a partial answer to this question by: (i) recalling existing techniques for proving termination using

139

recursive path orders (RPO); (ii) presenting a proof system for proving ground convergence and sufficient

completeness hierarchically.

Variant Unification. A powerful technique for equational reasoning involves exploiting the finite variant

property (or FVP, see Definition 2.13). When a theory is FVP, all well-formed terms in that theory have

a finite number of most general variants.When a theory is FVP and sufficiently complete with respect

to a subtheory pΩ, BΩq with decidable unification, we can immediately decide unifiability by the variant

unification algorithm. In addition to theories, by abuse of notation, we say that a term is FVP whenever

it has a finite number of most general variants. In a similar fashion, we say a conjunction of equalities φ is

variant solvable whenever a complete set of unifiers for φ may be computed by variant unification. Clearly, a

conjunction of equalities φ in an FVP theory that protects a subtheory with decidable unification is variant

solvable. A surprising and interesting fact is that φ may be variant solvable even when it only has an FVP

subtheory. In this appendix, we describe conditions (which can often be discharged automatically) under

which variant unification of an equality in an FVP subtheory is complete with respect to the entire theory,

so that such conjunctions of such equalities are variant solvable in an FVP subtheory.

Contextual Rewriting. The final technique that we will address in this appendix is contextual rewriting,

i.e. contextual rewriting in the intial model of an equational theory pΣ, E Y Bq. This technique applies

mainly when doing validity checking in the quantifier-free fragment of equational logic. In that case, we can

always reduce formulas to conjunctive normal form (CNF) so that our formula has the form:

pΣ, E YBq |ù
ľ

i

”´

ł

k
ui,k ‰ vi,k

¯

_

´

ł

j
ui,j “ vi,j

¯ı

(B.1)

or equivalently:

pΣ, E YBq |ù
ľ

i

”´

ľ

k
ui,k “ vi,k

¯

ñ

´

ł

j
ui,j “ vi,j

¯ı

(B.2)

This second form suggests a possible reasoning technique, that is, to apply the theorem of constants and

deduction theorem to transform our problem into the equivalent problem:

ľ

i

”

pΣZ Vi, E YB Y tui,k “ vi,kukq |ù
´

ł

j
ui,j “ vi,j

¯ı

(B.3)

where Vi “ varsptui,k “ vi,kukq and ti is identical to ti except with all variables in Vi are replaced by

corresponding fresh constants. This is widely known to be sound for equational reasoning [32]. The com-

plication arises when we want to mechanize reasoning in the combined theory pΣ Z Vi, E Y tui,k “ vi,kukq

by rewriting. In particular, the combined theory is often non-confluent and non-terminating ! This leaves

us with two options: we either give up and try to make do without confluence and termination, or more

ideally, we recover analogues of these properties under additional assumptions. In this appendix we describe

how equipping our input theory pΣ, E Y Bq with a B-compatible and total recursive path ordering (RPO)

enables us to at least recover termination of the combined theory.

Auxiliary Proof Techniques Overview. In summary, in this appendix we will cover the following

techniques:

1. proving termination via axiom-compatible RPOs (recursive path orderings);

2. hierarchically proving ground convergence and sufficient-completeness;

140

3. giving conditions for provable completeness of variant-unification in an FVP subtheory ;

4. using contextual rewriting for validity checking.

Since these techniques represent very recent research and are not central to our core advances in the thesis,

a full proof of soundness of the techniques is left for papers in preparation.

Finally, before we survey these additional techniques, we first limit the scope of the kinds of theories

we consider. As we have seen in the preliminaries, a fully general rewrite theory is incredibly flexible. In

practice, a simpler subset of rewrite theory features is already quite enough for specifying many theories of

interest. Here we codify this simpler subset in the notion of a standard rewrite theory.

Definition B.1 An order-sorted conditional equational theory E “ pΣ, E Y Bq is called a standard equa-

tional theory over constructor signature Ω whenever: (1) Ω Ď Σ; (2) the axioms B are a combination

of associativity, commutativity, and identity; (3) each equation fp~tq “ v if φ P E, when oriented as a

rule fp~tq Ñ v if φ P ~E, is standard, i.e., it satisfies p~t P TΩpXq
˚q ^ pfp~tq P TΩpXq ñ v P TΩpXqq ^

φ is a Σ-Conjunction ^ varspvq Y varspφq Ď varsp~tq. A rewrite theory of the form R “ pΣ, B, ~Eq is a

standard rewrite theory when it is derived by orientating the equations in a standard equational theory

pΣ, E Y Bq, but where the conditions remain conjunctions of equalities. Let ER be the standard equational

theory corresponding to R whenever R is ground convergent, i.e., sort-decreasing, ground confluent, and

ground operationally terminating.

B.2 PROVING TERMINATION VIA AXIOM-COMPATIBLE RPOS

It is well-known that conditional rewrite theories can be proved terminating via recursive path orderings

(RPOs). What is less well-known is that RPOs can be automatically lifted to symbols with any combination

of associativity or commutativity axioms, due to a result by A. Rubio [138]. This result, combined with

a semantics-preserving transformation that allows unit axioms to be entirely removed from a theory from

[139], leads to a general procedure for proving termination in theories with associative, commutative, and

unit symbols. These ideas have been mechanized in the Maude Termination Assistant [140], which we used

to great effect in our IBOS case study.

B.3 PROVING SUFFICIENT COMPLETENESS/GROUND CONVERGENCE HIERARCHICALLY

B.3.1 Introduction to Sufficient-Completeness and Ground Confluence Checking

A recurring theme in this thesis is the usage of pattern predicates (possibly with constraints) to reason

about terms in initial models of equational theories. In this section, we continue in our tradition of utilizing

constrained pattern predicates to reason about proving sufficient completeness and ground convergence in

a hierarchical fashion. This description leads to two obvious questions: (i) in what sense are we reasoning

hierarchically; and (ii) how do constrained terms relate to proof obligations for sufficient completeness or

ground convergence? To answer question (i), we refer back to similar hierarchical reasoning that was already

used in Chapter 3 in the proof of correctness of the sort-sharpening Σ ÞÑ Σ# signature transformation. There

we redefined signature Σ as a “telescope” of signatures Σ0 Ă Σ1 Ă ¨ ¨ ¨ Ă Σ and then inductively built the

new signature Σ#
0 Ă Σ#

1 Ă ¨ ¨ ¨ Ă Σ#. In a similar fashion, here we will break down a standard rewrite theory

141

R “ pΣ, B,Rq into an inductive telescope of rewrite theories R0 Ă R1 Ă ¨ ¨ ¨ Ă R and inductively verify

sufficient completeness and ground convergence of theory Ri`1 assuming that Ri is sufficiently complete

and ground convergent. The paper [141] is an important precursor to our work, which used hierarchical

techniques for proving confluence.

Given that we have already presented RPO methods for proving termination, we will assume here that

R has already been proved ground operationally termianting. This means in our inductive step, we need

only to verify that Ri`1 is sufficiently complete and confluent assuming that Ri is sufficiently complete and

ground convergent. Thus answering question (ii) requires reviewing standard techniques to prove sufficient

completeness and ground confluence.

Standard Techniques for Proving Sufficient Completeness [59]

To prove sufficient completeness of a theory R “ pΣ, B, ~Eq, we first subdivide the symbols of our signature

Σ into disjoint sets of constructor and defined symbols, which we will respectively denote Ω and ∆. The

sufficient completeness problem asks whether the set IrrR of ground irreducible terms modulo axioms B is

contained in the constructor term algebra TΩ. To check sufficient completeness for such a rewrite theory R
with respect to a constructor subsignature Ω, we must show that for each f : s1 ¨ ¨ ¨ sn Ñ s P ∆ and for each

ground instance fpt1, ¨ ¨ ¨ , tnq, there exists a constructor term u P TΩ such that R $ fpt1, ¨ ¨ ¨ , tnq Ñ
` u.

However, assuming we have already proved operational termination of R, it is sufficient to prove that for

each defined symbol f : s1 ¨ ¨ ¨ sn Ñ s P ∆ and all possible substitutions δ P rtx1 : s1, ¨ ¨ ¨ , xn : snu Ñ TΩ,Bs,

there exists a term u P TΣ such that R $ fpx1 :s1, ¨ ¨ ¨ , xn :snqδ Ñ
1 u, i.e. applying each ground constructor

substitution enables the defined symbol take at least one rewrite step. For each defined symbol, there are a

number of defining rules, i.e. given f : s1 ¨ ¨ ¨ sn Ñ s P ∆, the defining rules for f is the set of rules of the

form Rf “ tfpt1 ¨ ¨ ¨ tnq “ v if φ P Ru. By definition, an instance fpx1 : s1, ¨ ¨ ¨ , xn : snqδ will be able to take

one rewrite step iff there exists a defining rule l Ñ r if φ P Rf such that lα “ fpx1 : s1, ¨ ¨ ¨ , xn : snqδ and

TΣ{EYB |ù φα.

Standard Techniques for Proving Ground Confluence [45]

To prove that a theory R “ pΣ, B,Rq where Σ “ ppS,ăq, F q is ground confluent, we typically prove the

theory is both terminating as well as ground locally confluent and sort-decreasing. Since we have already

covered proving termination with RPOs, we focus here on how to prove ground local confluence and sort-

decreasingness. Let us first define some notation. Given a term t, let Posptq denote the set of positions in

the term. Further let lsptq denote the least sort of t in signature Σ. Given terms t and t1, let t Ó t1 be the

joinability relation for R, i.e. t Ó t1 iff there exists a term w such that t Ñ˚
R,B w ˚

R,BÐ t1. Let us redefine

the set of possibly conditional rules R as the I-indexed set R “ tli “ ri if φiuiPI . For simplicity, assume the

variables used in each rule are pairwise disjoint, which can always be assured by renaming. To prove ground

local confluence, we must show that each conditional critical pair is ground joinable.

Definition B.2 Given i, j P I, p P Pospliq, and σ P Unif Bplip , ljq, a conditional critical pair is a tuple:

pφi ^ φjqσ ñ plirrjspqσ Ó riσ. A conditional critial pair φ ñ t Ó t1 is called ground joinable iff for each

ground solution τ of the condition φ, we have tτ Ó t1τ .

Using known contextual rewriting techniques (which despite the same name, are somewhat different from

142

the techniques we present below), we can use assumptions φ in addition to theory R to prove joinability of

t Ó t1. Unfortunately, complex, conditional critical pairs may still fail to become provably ground joinable

even using the additional assumptions φ.

To prove ground sort-decreasingness, it is sufficient to prove that for each rule and sort specialization of

that rule, the rule is sort-decreasing. Given a rule l Ñ r if φ with X “ varsplq, a sort specialization is a

substitution σ P rX Ñ Y s such that for each x :s P X, x :s ÞÑ y :s1 where s1 ă s. A sort specialization of a

rule is sort-decreasing if and only if for all sort specializations σ, lsplσq ě lsprσq. Since for this thesis, we

will not require new techiques for proving sort-decreasingness, we do not pursue this matter further here.

Sufficient Completeness and Local Confluence Problems as Constrained Terms

We now return to question (ii) posed at the beginning of this section: in what sense can ground local

confluence or sufficient completeness proof obligations be understood as operations on constrained terms?

Let us first consider the method of proving sufficient completeness that we presented above. The attentive

reader will recall that this is equivalent to the constrained pattern predicate subsumption problem:

Jfpx1 :s1, ¨ ¨ ¨ , xn :snqK Ď
ď

lÑr ifφ PRf

Jl | φK (B.4)

Of course, this is just a generalization of the same result we saw in Section 3.7, i.e. if the defining

rules for f are all unconditional, the theory has no axioms, and each left-hand side is linear, we can use

pattern operations to prove sufficient completeness! Unfortunately, often these assumptions fail to hold.

The question becomes: how can we generalize our methods for verifying sufficient completeness when these

assumptions fail to hold?

Now, consider the method presented above to prove ground local confluence, i.e. that all conditional

critical pairs are ground joinable. By enriching our signature Σ with a fresh symbol p Ó q, a conditional

critical pair φñ t Ó t1 can be viewed as a constrained term or pattern predicate in the signature ΣY t Ó u

of the form pt Ó t1q | φ. Though this observation alone does not seem to provide much benefit, as we will

see, by viewing all of our proof obligations as contrained pattern predicates, we gain the ability to transform

and simplify these different kinds of proof obligations in a simple, intuitive, and uniform fashion.

B.3.2 Hierarchical Proof System for Ground Convergence and Sufficient Completeness

We now are ready to present our hierarchical proof system for proving ground convergence and sufficient

completeness where, as stated earlier, we have already used standard, non-hierarchical methods to prove

termination and sort-decreasingness. There are two key ideas at work here which correspond to the two

key questions that we posed at the beginning of this section. The first key idea is that, we are actually

proving ground convergence and sufficient completeness of the entire theory R via an inductive telescope

of theories, where we prove ground convergence and sufficient completeness at each level by assuming the

previous level is ground convergent and sufficiently complete. The upshot of this is that we have the full

power of inductive equational reasoning for any fragment of our theory below. The second key idea is that,

if our proof obligations look like constrained pattern predicates, we can, as a matter of course, use sound

constrained pattern predicate transformation techniques to transform a constrained pattern predicate into

a set of simpler predicates. Even if the original proof obligation was impossible to prove, the transformed

143

version may often be proved trivially. As before, we must solve two specific problems here: (i) how can we

usefully redefine theory R as an inductive telescope of theories R0 Ď R1 Ď ¨ ¨ ¨Rk´1 Ď R; (ii) how can we

utilize (a) the assumption that Ri is ground convergent and sufficiently complete and (b) our constrained

term representation in proving that Ri`1 is ground convergent and sufficiently complete? We answer these

questions in turn.

Call-Graph Stratification

We answer question (i) via a definition, that is, the call-graph stratification of a theory R “ pΣ, EYB,Rq
over a constructor subtheory pΩ, BΩ, RΩq. However, to present this definition, we first must survey a few

related concepts.

Definition B.3 Given a set Σ, the set of strings over Σ is defined as the monoid Σ˚. The empty string is

the identity element denoted by ε. String x is called a substring of s, written x Ď s, whenever s “ wxy and

w, y P Σ˚. The letters in a string is the set letpsq “ tx P Σ | x Ď su. Note that a total order păq P PpΣ2q

can be lifted to a total order on Σ˚ by sorting on length and then using a lexicographic construction.

Definition B.4 A directed graph over a set of vertices V is a pair pV,Eq Ď pV, V ˆ V q. Let G “ pV,Eq

be a graph. Then we let verticespGq “ V and edgespGq “ E. G has a path p P V ˚ whenever, assuming

u, v P V , uv Ď pñ pu, vq P E. A path is a cycle iff it is of the form vpv P V ˚ where v P V . A directed graph

is acyclic (also called a directed acyclic graph or DAG) iff it has no cycles. Observe any DAG has at least

one strict and total topological ordering pătopq on V where pu, vq P E ñ u ătop v.

Every graph can be transformed by a collapse operation into a DAG. For the definition of the collapse

operation, we first define a mapping operation for sets of pairs.

Definition B.5 Given a universe U with V Ď U , we define: (a) the map operation for singletons rV ÞÑ s P

rU ˆ U Ñ U s where urV ÞÑ αs “ if u P V then α else u fi; (b) the set-of-pairs-lifting of the map operation

where if E Ď U2 and pu, vq P E, then the resulting set is defined by purV ÞÑ αs, vrV ÞÑ αsq P ErV ÞÑ αs.

We now define how to collapse a cycle and the DAG generated by a directed graph.

Definition B.6 Given a graph G “ pV,Eq where V has total order păq, let cyclepGq be the set of all cycles

in G. Let c be the maximum element in cyclepGq and further let L “ letpcq and L “ tLu. The maximum

cycle-collapsed graph collapsepGq “ pLZ pV ´ Lq, ErL ÞÑ Lsq.

Note that, when collapsing a cycle in a graph G “ pV,Eq, a new vertex is added which itself is a set of

deleted vertices. This means that, after collapsing a cycle, we still know which vertices were in the cycle;

only their relative ordering information is discarded.

Definition B.7 The DAG generated by a finite graph G can be characterized by the solution to the recursive

equation:

dagpGq “

$

&

%

G if cyclepGq “ H

dagpcollapsepGqq otherwise.
(B.5)

The function terminates because the value of the function f mapping graphs to N defined by fpGq ÞÑ

|cyclepGq| strictly decreases on each recursive call.

144

At this point, we have finished defining the necessary mathematical framework. We now are apply these

concepts to define the non-constructor call graph for a theory.

Definition B.8 Given an order-sorted signature ∆, let ∆ms denote the corresponding many-sorted signature

which erases subsort distinctions, and given Γ Ď ∆ms, let Γ# Ď ∆ denote the expansion of many-sorted

operators into corresponding subsort-overloaded operator families in ∆.

Definition B.9 Given a signature Σ with a constructor subsignature Ω and defined symbols ∆ “ Σ ´ Ω,

the defined symbols in a term t P TΣ, written def ptq, is the set of symbols in ∆ that occur at any position in

t. Similarly, given a conjunction of Σ-equalities G “
Ź

i ui “ vi, the defined symbols in G, written def pGq,

is the set of symbols
Ť

i

`

def puiq Y def pviq
˘

.

Definition B.10 Given a standard rewrite theory R “ pΣ, B,Rq over Ω where ∆ “ Σ ´ Ω, the non-

constructor call graph callpRq is a directed graph p∆ms, Eq defined by the following rule pg, fq P E ô
“

fp~tq Ñ u if φ P R^ fp~tq R TΩ ^ g P def puq Y def pφq
‰

.

In fact, the graph we are primarily interested in is dagpcallpRqq. Since this graph is a DAG, it has at least

one associated topological ordering. Note that the vertices in this graph are non-empty sets of many-sorted

operators, i.e. elements of the set Pp∆msq´H, that represent subsort-overloaded families of defined function

symbols.

Definition B.11 Given a standard rewrite theory R, call any topological order corresponding to dagpcallpRqq
a definitional order pădefq. Since the definitional order is total, we may write its elements as an increasing

sequence, e.g. ∆ms
1 ădef ∆ms

2 ¨ ¨ ¨ ădef ∆ms
k . For each 1 ď i ď k, let ∆i “ p∆

ms
i q#, i.e. the sequence mapped

onto its order-sorted lifting.

The definitional order has several interesting properties. It exactly describes when a subsort-overloaded

family depends on another set, and every non-singleton element corresponds to a mutually defining set of

non-constructor operator families. However, it is clear from practice that the ∆i sequence may actually be

too coarse, in that proving sufficient completeness or ground convergence for more general operators may

depend on proving those same properties for less general operators. Finding the right heuristics for soundly

and automatically splitting operator-overloaded families is left for future work.

In any case, the definitional order provides the backbone for our inductive telescope.

Definition B.12 A call-graph stratification of a standard rewrite theory R over a constructor theory RΩ is

an inductive telescope corresponding to a definitional order:

Ω ă ∆1 ă ∆2 ¨ ¨ ¨ ă ∆k´1 ă ∆k

RΩ “ R0 Ď R1 Ď R2 ¨ ¨ ¨ Ď Rk´1 Ď Rk “ R (B.6)

where if Ri “ pΠi, Bi, Riq, we let Ri`1 “ pΠi Z∆i`1, Bi Z B∆i`1
, Ri Z R∆i`1

q such that B∆i
(resp. R∆i

)

is the set of axioms (resp. defining rules) for all symbols in ∆i.

Hierarchical Proof Strategy and Object Theory

Using this telescope of theories, we will inductively prove that R is both ground convergent and sufficiently

complete. At this point we are ready to tackle question (ii) posed above: how can we utilize (a) the assump-

tion that Ri is ground convergent and sufficiently complete and (b) our constrained term representation in

145

the proving that Ri`1 is ground convergent and sufficiently complete (equivalently, ground locally confluent

and sufficiently complete when termination and sort-decreasingness have already been proved)?

Definition B.13 A hierarchical proof strategy for sufficient completeness and ground convergence is defined

as an application of the strategy below:

1. Prove operational termination and sort-decreasingness of R using standard methods.

2. Prove R0, i.e. RΩ, is ground locally confluent if needed.

3. For each 1 ď i ď k, assuming Ri´1 is sufficiently complete and ground convergent:

(a) first prove sufficient completeness of symbols ∆i in Ri,

(b) then prove ground local confluence of symbols ∆i in Ri.

Given the proof strategy outlined above, the proof system we have in mind actually breaks down into two

separate proof systems, one for sufficient completeness and another for ground local confluence. Due to their

common representation, they share several structural rules. In fact, these structural rules are analogues of

the auxiliary rules presented in Section 5.4.1.

Of course, as is the case in all of our proof systems presented upto this point, we define our proof system

at the meta-level of rewriting logic, i.e. our proof system is takes a rewrite theory as input R and then

determines whether it is ground convergent and sufficiently complete. An important question that we need

to address in the construction of our hierarchical system is, when proving the ground convergence/sufficient

completeness of Ri, in which object theory should we reason about Ri’s ground convergence/sufficient

completeness proof obligations? The choice is more subtle than it it first appears for the simple reason that,

because we have not yet verified Ri is sufficiently complete, our sorts in signature Πi are now “polluted”

by the defined symbols ∆i. We cannot perform case analysis or induction on these polluted sorts in the

standard sense, since they both require sufficient completeness for ∆i, the very property we are trying to

prove! The way out of this mess is to not reason in Ri directly, but rather on its ∆-kind-lifting.

Definition B.14 Given a call-graph stratification for R and index i ` 1, Ri`1’s ∆-kind-lifting, R∆
i`1, is

equivalent to Ri`1 except that defined symbols ∆i`1 are only added at the kind-level.

Hierarchical Proof System Initial Goals and Rules

As we apply the hierarchical proof strategy in Def. B.13 at each level in step 3(a)-(b), we first generate an

initial set of proof obligations. This set of proof obligations corresponds to a proof forest, such that, if each

proof tree in the forest is closed, the corresponding property (sufficient completeness or local confluence) is

proved for theory Ri. We define the initial proof obligation set below in the obvious way.

Definition B.15 For theory level Ri with i ‰ 0, we have an initial sufficient completeness (resp. ground

local confluence) proof goal set SCpiq (resp. GLCpiq) defined by:

pfpx1 :s1, ¨ ¨ ¨xn :snq | Jq P SCpiq ô f : s1 ¨ ¨ ¨ sn Ñ s P ∆i ^ f maximal in ∆i (B.7)

GLCpiq “MCP pR∆i
, Ri´1q YMCP pR∆i

, R∆i
q (B.8)

146

where MCP pR1, R2q is a set of constrained terms corresponding to the most general set of critical pairs

between any rule in R1 and R2. As an optimization, note that if (a) no subsort-overloaded symbol is shared

at the top of a left-hand side of both R1 and R2 and (b) no axiom can modify the root of a term, then the

set MCP pR1, R2q is immediately empty.

At long last, in Table B.1 we present our proof system rules based on terms constrained by conjunctions

of equalities. The rules should be understood to apply modulo (a) the commutativity axiom for equality

“ and (b) the associativity, commutativity, and unit axioms for conjunction ^ with unit J. Note that

applying our rules modulo axioms greatly simplifies the presentation of the rules, e.g., the Substiution rule

has particularly elegant representation. Also note that two rules specific to the ground local confluence proof

system are directly pulled from [45]; a complete explanation and justification of those rules can be found

there. Recall that we are viewing ground confluence proof obligations as terms in the enriched signature

Σ Z p Ó q; in this theory, the shared rules become applicable. Finally, as mentioned above, we leave a

complete soundness proof as future work.

B.4 PROVING COMPLETENESS OF VARIANT UNIFICATION IN AN FVP SUBTHEORY

Given (a) a standard rewrite theory R that is not FVP with an FVP subtheory Q, i.e. Q “ pΓ, B,Qq Ď
pΣ, B,Rq “ R, and (b) a conjunction of Σ-equalities φ, under what conditions is φ variant solvable in FVP

subtheory Q, i.e., has a complete set of variant unifiers in EQ, so that UnifER
pφq “ UnifEQ

pφq? Note that we

do not require that R protects Q, but even if that were so, it would only guarantee completeness of variant

unification if φ were a conjunction of Γ-equalities.

To simplify the problem, we assume that R already satisfies our executability conditions, i.e., it is suf-

ficiently complete and ground convergent. Q must be convergent, as it is FVP, but we do not require it

to be sufficiently complete. Furthermore, here we will only seek conditions which are sufficient to prove

completeness of the variant unification.

The intuition we wish to apply here is, given some defined symbol f P ∆ and its set of defining rules

Rf “ tfp~tq Ñ u if φ P Ru, a subset of these rules Qf Ď Rf , when considered alone, may obviously generate

a finite set of variants.

Example B.1 Suppose we are specifying a theory R of finite binary relations on natural numbers, i.e. the

finite relations which are a subset of N ˆ N. Assume our theory has sorts Bool ,Nat ,Pair ,NeRel, and Rel

with subsorts Pair ă NeRel ă Rel where sort Bool has constants J and K, sort Nat has constant 0 and

the successor function s, there is a boolean-valued natural number equality predicate p„q, the sort Pair has

the natural number pairing operator p , q, the sort NeRel has juxtaposition p q as an AC relation union

operator, and the sort Rel has constant H. Also assume the FVP idempotency equations A,A “ A and

A,A,A1 “ A,A1 where A,A1 are variables with sort NeRel. Then, by abuse of notation using the standard

numeric syntax, we may write relation terms such as:

p0, 1q p1, 2q p0, 2q (B.9)

p0, 1q p1, 0q p0, 0q (B.10)

An operation we may wish to define is an irreflexivity test, i.e., irrpAq iff Epn, nq P A. This operation is

147

Table B.1: Proof System for Sufficient Completeness/Ground Convergence of Ri‰0

Name Rule Condition

Shared Rules

Case Analysis

Ź

~aPM pu | φqr~x{~as

pu | φq

~x “ x1 :s1 ¨ ¨ ¨xn :sn
JMK “ TΩs1

ˆ ¨ ¨ ¨ ˆ TΩsn

varspMqXvarspu | φq“H

Generalization
pv | ψq

pu | φq

Dα . vα “Bi
u

ERi´1 |ù φñ ψα

Simplification
pu | φ^ t!Ri´1

“ t1q

pu | φ^ t “ t1q
t P TΠi´1pXq

Split

Ź

ϕPΦpu | φ^ ϕq

pu | φq

Φ is set of Πi-Formulas
TRi

|ù
Ž

Φ ô J

Substitution

Ź

θPΘpu | φqθ

pu | φ^ ψq
UnifERi´1

pψq “ Θ

Sufficient Completeness Rules

Closure
pu | φq

uÑ v if φ P R∆i

Ground Local Confluence Rules

Trivial Joinability
pt Ó t | φq

Context Joinability
ps Ó t | φq

Du . sÑ˚

RiYφ,Bi
u

tÑ˚

RiYφ,Bi
u

Unfeasibility
ps Ó t | φq

Du “ v P φ . Dt1, t2 .
uÑ˚

RiYφ,Bi
t1

uÑ˚

RiYφ,Bi
t2

t1 ‰Bi
t2

pt1, t2q“pt1, t2q!Ri

148

definable with our given syntax by the recursive conditional equations:

irrp pn, nq A q “ K (B.11)

irrp pn, nq q “ K (B.12)

irrp pn,mq A q “ irrpAq if n „ m “ K (B.13)

irrp pn,mq q “ J if n „ m “ K (B.14)

irrp H q “ J (B.15)

The rules Rirr clearly are not FVP; they have unbounded recursion. However, if we consider the first two

equations as the set Qirr, then for those rules, the irreflexivity test is FVP.

The problem with Ex. B.1 is, of course, that the information that Qirr is FVP alone does nothing for

us. Completeness of variant unification clearly requires a sufficiently complete theory, but any guarantee of

sufficient completeness is lost when we decide to arbitrarily throw away defining rules.

The key point that we present in this section is that, even though R is not FVP, certain conjunctions

of equalities may be variant solvable in an FVP subtheory. For example, as we later prove, the variant

unification of any instance of equality irrpAq “ K is complete in FVP subtheory Q, so that the undecidable

variant unification problem UnifER
pirrpAq “ Kq can be solved by merely considering the decidable variant

unification problem UnifEQ
pirrpAq “ Kq.

We can state our desired result formally.

Definition B.16 Suppose we are considering a convergent and sufficiently complete standard rewrite theory

R “ pΣ, B,Rq that protects an FVP subtheory with signature Γ. A conjunction of Σ-equalities is variant

solvable iff each equality is variant solvable. A Σ-equality φ ” pu “ vq is variant solvable if (a) φ is also a

Γ-equality (trivially true when R itself is FVP); (b) u “ fp~tq, ~t P TΓpXq
˚, Dp P fvp-constraintspf,Rq and

substitution α such that v “ pα.

In Ex. B.1, unsurprisingly, the function fvp-constraintspirr,Rq “ tKu. Intuitively, the set of fvp constraints

for a symbol f consists of a set of constructor patterns tp1, ¨ ¨ ¨ , pku, such that, givenQ is an FVP subtheory of

R generated by deleting badly behaved rules from Rf , the unifiers for Unif EQ
pfp~tq “ piq “ Unif ER

pfp~tq “ piq

for 1 ď i ď k.

Of course, the question then is, how can we compute a set of fvp-constraints and an FVP subtheory with

complete variant unification for a given function symbol f? Armed with a clearer intuition, we now proceed

to provide a set of conditions which enable this somewhat surprising result. Along the way, we will define a

number of related concepts.

Firstly, we state some defintions related to call graphs (see Def. B.4 and B.10).

Definition B.17 Given a rewrite theory R “ pΣ, B,Rq, we can unconditionalize R and obtain uncondpRq “
pΣ, B, tlÑ r | plÑ r if φq P Ruq.

Definition B.18 Suppose R “ pΣ, B,Rq is standard and sufficiently complete with respect to a constructor

subsignature Ω and where ∆ “ Σ´ Ω. Let EU “ edgespcallpuncondpRqqq Ď edgespcallpRqq “ E. Let f P ∆.

Then we say that f is: (a) self-recursive whenever callpRq has a cycle fwf P p∆mq˚; (b) immediately

self-recursive whenever pf, fq P E and tail-recursive if additionally fp~tq Ñ fp~uq if φ P Rf ; (c) essentially

149

self-recursive whenever pg, fq P EU ñ g “ f and essentially tail-recursive if additionally fp~tq Ñ v if φ P

Rf ñ rpv “ fp~uq^~u P T˚Ωq_v P TΩs; and (d) totally self-recursive whenever pg, fq P E ñ g “ f and totally

tail-recursive if additionally all occurences of f in Rf are at a topmost position.

A key notion we will exploit is that of an essentially tail-recursive function f ; such functions ensure the

rewrite relation satisfies a particular invariant that we will examine below.

Definition B.19 Suppose rewrite theory R “ pΣ, B,Rq is ground convergent and sufficiently complete with

respect to a constructor subsignature Ω and protects a FVP subtheory on signature Γ. Then (a) term

t P TΣpXq is FVP iff t P TΓpXq; (b) term fp~tq P TΣpXq is FVP below iff ~t P TΓpXq
˚; (c) term fp~tq P TΣpXq

has constructors below iff ~t P TΩpXq
˚.

We now present the promised invariant: suppose as above that f is essentially tail-recursive and addi-

tionally assume fp~tq P TΣpXq has constructors below. Then it must be the case that if fp~tq Ñ˚
R,B t1, then

t1 “ fp~uq with constructors below or else t1 is a constructor. As we will see, this invariant greatly simplifies

reasoning about the evaluation of f .

Definition B.20 Suppose R “ pΣ, B,Rq is a standard rewrite theory that is ground convergent and suf-

ficiently complete with respect to subsignature pΩ, BΩq. Suppose f P Σ is essentially tail-recursive. The

defining rules for f can be partitioned into Rf “ Rfin,f ZRrec,f where:

1. final rules Rfin,f have the form fp~tq Ñ u if φ where u P TΩpXq; and

2. recursive rules Rrec,f have the form fp~tq Ñ fp~uq if φ with ~u P TΩpXq
˚.

Note that narrowing by unconditional final rules always terminates (assuming we are performing unification

modulo a theory with a finitary unification algorithm).

In Ex. B.1, we observe that irr is an essentially tail-recursive function with uncondtional final rules. Note

that functions or predicates that select or project an element out of a set or list often have this structure.

Lemma B.1 Suppose R “ pΣ, B,Rq is standard and sufficiently complete with respect to pΩ, BΩq and

protects an FVP subtheory Q “ pΓ, B,Qq. Let f be essentially tail-recursive, and let Rfin,f “ R`f ZR
´
f , with

rules in R`f unconditional, such that:

1. if fp~tq Ñ p P R`f and fp~uq Ñ w if φ P R´f , then for α P UnifBΩ
pp “ wq, R & φα;

2. if fp~tq Ñ fp~uq if φ P Rrec,f and fp~wq Ñ p P R`f and α P UnifBΩ
pfp~uq “ fp~wqq,

then fp~tqα must be rewritable by a positive rule assuming φα.

Then fvp-constraintspf,Rq Ď TΩpXq is given by p P fvp-constraintspf,Rq ô fp~tq Ñ p P R`f , and R has an

FVP subtheory Q` “ pΓZ tfu, B,QZR`f q where if ~t P TΓpXq
˚ then:

Unif EQ`
pfp~tq “ pq “ Unif ER

pfp~tq “ pq (B.16)

Proof. To complete the proof, we must show that Unif EQ`
pfp~tq “ pq “ Unif ER

pfp~tq “ pq for p P

fvp-constraintspf,Rq and ~t P TΓpXq
˚. Since ~t P TΓpXq

˚, apply folding variant narrowing to generate a

set of most general constructor variants. Thus, without loss of generality, let ~t P TΩpXq
˚. Now consider any

150

unifier α P Unif ER
pfp~tq “ pq. Since p P TΩpXq is in normal form and fp~tq R TΩpXq, any unifier α must

result from a rewrite fp~tqαÑ!
R,B u with u P TΩpXq with u “BΩ pα. Proceed by induction on the length of

the rewrite path fp~tqαÑ!
R,B u.

Base case: Let fp~tqαÑ1
R,B u with u P TΩpXq. By definition, we must use some rule Rfin,f . By assumption,

if fp~tqα Ñ1
R´f ,B

u then UnifBΩ
pu “ pq “ H which is a contradiction. Thus, we must have fp~tqα Ñ1

R`f ,B
u,

validating Unif EQ`
pfp~tq “ pq “ Unif ER

pfp~tq “ pq.

Inductive case: Suppose if fp~tq Ñn
R,B u with u P TΩpXq, then pB.16q holds. By definition of uni-

fication modulo equations, pB.16q implies fp~tq Ñ1
R`f ,B

u. Now we must prove that pB.16q holds when

fp~tqα Ñn`1
R,B u with u P TΩpXq. By transitivity of rewriting and definition of essentially tail-recursive, this

means fp~tqα Ñ1
Rrec,f,B

fp~vq Ñn
R,B u with ~v P TΩpXq. But note fp~vq Ñn

R,B u is an instance of our inductive

hypothesis, and thus satisfies pB.16q. But this implies fp~vq Ñ1
R`f ,B

u by the observation above. Then by

assumption on rewrite fp~tqα Ñ1
Rrec,f,B

fp~vq with a rule in Rrec,f, we must have a rule fp~sq Ñ p1 P R`f that

can rewrite fp~tqα, so that fp~tqα Ñ1
R`f ,B

u1 with u1 P TΩpXq. Furthermore, by confluence of R, a rewrite

with any rule R´f is impossible. ˝

Note that, for Ex. B.1, the required conditions of Lemma B.1 are easily checkable.

B.5 PROVING VALIDITY USING CONTEXTUAL REWRITING

We now explore contextual rewriting, our final auxiliary proof technique explored in this appendix. Recall

from the Introduction that contextual rewriting is a technique for proving validity of clauses, i.e., by using

the CNF transformation, we consider problems of the form:

pΣ, E YBq |ù
ľ

i

”´

ľ

k
ui,k “ vi,k

¯

ñ

´

ł

j
ui,j “ vi,j

¯ı

(B.2)

This form suggests a possible reasoning technique, that is, to apply the theorem of constants and deduction

theorem to transform our problem into the equivalent problem:

ľ

i

”

pΣZ Vi, E YB Y tui,k “ vi,kukq |ù
´

ł

j
ui,j “ vi,j

¯ı

(B.3)

As we mentioned earlier, the problem is, if pΣ, E Y Bq is a standard equational theory and pΣ, B, ~Eq is

a standard rewrite theory that is ground convergent, when we consider the new standard rewrite theory,

pΣZ Vi, B, ~E Y tui,k Ñ vi,kukq, any guarantees of convergence are immediately lost. Thus, even though the

equational reasoning is sound, it is likely hopelessly inefficient. The question becomes: how can we recover

good executability properties for this theory so that we can mechanize execution via efficient rewriting-based

methods? Here we essentially combine two existing techniques: (a) recursive path orders (RPOs) and (b) a

congruence closure algorithm.

As a starting point, assume that R “ pΣ, B, ~Eq is a standard rewrite theory that is ground convergent.

Let us additionally add the requirement that we have labelled each subsort-overloaded operator family

f : rs1s ¨ ¨ ¨ rsns Ñ rss P Σ with a unique number which defines an RPO, which we denote by pąq. Finally,

we require that this RPO is compatible with the rewrite relation induced by equations E, i.e., Ñ~E,B .

151

Now, let us denote the ground congruence closure modulo B of a set of ground equations G using ordering

pąq by CCBpG,ąq. By definition of congruence closure, pΣ Z Vi, B Y CCBptui,k “ vi,kuk,ąqq must be

a ground convergent theory. Furthermore, pΣ Z Vi, B, ~E Y CCBptui,k Ñ vi,kuk,ąqq, while possibly non-

confluent, is at least a terminating theory, since all rules in ~E and in CCBptui,k Ñ vi,kuk,ąq are compatible

with well-founded order pąq. This means that we can consider the problem:

ľ

i

”

pΣZ Vi, B, ~E Y CCBptui,k “ vi,kuk,ąqq |ù
´

ł

j
ui,j “ vi,j

¯ı

(B.17)

where any equality ui,j “ vi,j , though not necessarily checkable by arbitrary rewriting, is checkable via: (i) a

computable search of normal forms of both ui,j and vi,j using the rewrite relation Ñ!
~EYCCBptui,k“vi,kuk,ąq,B

;

(ii) a cheap B-equality check between normal forms. This gives a computable and sound method to check

the validity of each clause.

Of course, in this dicussion, one important detail has been omitted; since we are rewriting modulo B, we

must compute congruence closure modulo B as well. Fortunately, due to recent work in [117], this is now

possible.

152

APPENDIX C OMITTED PROOFS FROM CHAPTER 4

C.1 AUXILIARY LEMMAS FOR SECTION 4.3.1

C.1.1 Sort Emptiness

In the first part of this appendix we develop an algorithm that checks if a sort s P S satisfies TΩ,s “ H

by performing rewriting in the theory RM over the set PpSq. The initial state is the sort we wish to check

for non-emptiness. We then trace the operator declarations in reverse to see which sorts are needed to build

operators inhabiting the argument sort. The end result of this subsection is the proof of Lemma 4.1.

Definition C.1 Let RM pΩq “ pΩM , ACI,RM q where:

(1) ΩM “ S Z t*u Z t , u (an unsorted signature)

(2) ACI “ tx,y “ y,xu Y tpx,yq,z “ x,py,zqu Y tx,x “ xu

(3) RM is the smallest rewrite relation such that:

(a) ps, s1q P păq ñ s1 Ñ s P RM

(b) c : Ñ s P F ñ sÑ * P RM

(c) f : s1 ¨ ¨ ¨ sk Ñ s P F ^ k ě 1 ñ sÑ s1, ¨ ¨ ¨ ,sk P RM

In this subsection, let pÑq Ď TΩM
ˆ TΩM

abbreviate p“ACI ;ÑRM
;“ACIq. We further let pÑ0q “ p“ACIq,

pÑn`1q “ pÑq; pÑnq, pÑ˚q “
Ť

ně0pÑ
nq, and also pÑ`q “

Ť

ną0pÑ
nq.

Lemma C.1 Let a1, . . . , ak, k ě 1 be a ground ΩM -term, so that ai P SZt*u, i.e., a1, . . . , ak is a multiset.

If a1, . . . , ak Ñ
n *, then for each nonempty submultiset B Ď a1, . . . , ak there is an m ď n such that B Ñm *.

Proof C.1 By induction on n.

Base Case. If n “ 0 we must have ai “ *, 1 ď i ď k, and the result follows trivially.

Induction Step. Suppose the result true for n and let a1, . . . , ak Ñ
n`1 *. Since rewriting takes place modulo

ACI we may assume without loss of generality that i ­“ j ñ ai ­“ aj. Then we must have some ai P S, a

rule ai Ñ D in RM , and rewrites

a1, . . . , ak Ñ a1, . . . , ai´1, D, ai`1, . . . , an Ñ
n *. (C.1)

Note that a1, . . . , ai´1, D, ai`1, . . . , an may have repeated elements. We now reason by cases on B Ď

a1, . . . , ak. If ai R B, then B Ď a1, . . . , ai´1, D, ai`1, . . . , an and the result follows trivially by the induction

hypothesis. If B “ ai, B
1 (where by convention B1 could be empty), then B Ñ D,B1 and we have an inclusion

D,B1 Ď a1, . . . , ai´1, D, ai`1, . . . , an so the result follows again trivially by the induction hypothesis. ˝

Lemma C.2 @s P S rTΩ,s ‰ Hô sÑ` *s

Proof C.2 pñq. Let s P S with TΩ,s ‰ H. Pick any t P TΩ,s and proceed by structural induction on t.

Base case. [t “ c]: Suppose c : Ñ s2 P F is a constant. Since c P TΩ,s, we know s2 ď s. If s2 “ s, then

153

directly apply rule s Ñ * generated by declaration c : Ñ s2 P F . If s2 ă s, we will have an additional rule

sÑ s2, which we can apply followed by sÑ *. In either case, obtain sÑ` *.

Induction Step. [t “ fpt1, ¨ ¨ ¨ , tnq]: Since t “ fpt1, ¨ ¨ ¨ , tnq P TΩ,s, we have Df : s1 ¨ ¨ ¨ sk Ñ s2 P F with

s2 ď s where ti P TΩ,si for i P k. If s2 “ s, then directly apply rule sÑ s1, ¨ ¨ ¨ ,sk generated by declaration

f : s1 ¨ ¨ ¨ sk Ñ s2 P F . Since ti P TΩ,si for i P k, we know that TΩ,si ‰ H. Thus, by inductive hypothesis,

obtain that si Ñ
` * for i P k. By transitivity, we have s2 Ñ` *, ¨ ¨ ¨ ,*. By idempotency, obtain s2 Ñ` *.

If s2 ă s, we will have an additional rule s Ñ s2 we can apply followed by s2 Ñ` *. In either case, obtain

sÑ` *.

pðq. Suppose towards a contradiction the set S1 “ ts P S | TΩ,s “ H ^ s Ñ` *u is non-empty. For each

s P S1 these is an mpsq P N with sÑmpsq * and mpsq smallest possible with that property. Pick s0 P S
1 with

mps0q smallest among such mpsq. We now have two cases to consider: mps0q “ 1 or mps0q ą 1. Suppose

mps0q “ 1. Then s0 Ñ *. But this can only happen if there is a c : Ñ s0 P F . But then c P TΩ,s0 and

TΩ,s0 ‰ H, a contradiction. Thus, assume mps0q ą 1. Again, there are two possibilities: s0 Ñ s1 Ñmps0q´1 *

or s0 Ñ s1, ¨ ¨ ¨ ,sk Ñ
mps0q´1 *. If s0 Ñ s1 Ñmps0q´1 *, since mps0q is smallest possible in S1, we must have

s1 R S1 and therefore TΩ,s1 ‰ H. But this rewrite can only occur if s1 ă s0. Thus, TΩ,s1 Ď TΩ,s0 , so that

TΩ,s0 ‰ H, a contradiction. If s0 Ñ s1, ¨ ¨ ¨ ,sk Ñ
mps0q´1 *, by Lemma C.1 for each 1 ď i ď k we have

si Ñ
mi * for some mi ď mps0q ´ 1. Therefore, TΩ,si ‰ H, 1 ď i ď k. But the rewrite s0 Ñ s1, ¨ ¨ ¨ ,sk

can only occur if there is an f : s1 ¨ ¨ ¨ sk Ñ s0 P F . But given any ti P TΩ,si , 1 ď i ď k, we can construct

fpt1, ¨ ¨ ¨ , tkq P TΩ,s0 . Thus, TΩ,s0 ‰ H, a contradiction. ˝

The main result of this subsection is essentially an application of Lemma C.2.

Lemma 4.1 (Non-emptiness Checking, p. 60) Given signature Ω “ ppS,ďq, F q with |S|` |F | ď ℵ0, we

define ΩM “ S Z t*u Z t , u an unsorted signature. Then (a) we can deterministically construct a rewrite

theory RM over signature ΩM such that p@s P Sq TΩ,s ‰ Hô RM $ sÑ` * (b) checking RM $ sÑ` * is

decidable (c) given axiom set B, TΩ{B,s ‰ H iff TΩ,s ‰ H.

Proof C.3 To prove (a), apply Lemma C.2. To prove (b), note that whenever the condition |S| ` |F | ă ℵ0

holds, then |PpSq| ` |RM | ă ℵ0 by construction. Thus, we have a finite number of states and rules in a

ground rewrite theory, rendering the problem decidable by exhaustive state search. Finally, to prove (c), note

that, TΩ{B,s is just an equivalence relation over TΩ,s. Thus, TΩ{B,s “ H iff TΩ,s “ H.

As a result of this section, note that the set of sorts SĄH Ď S is computable; thus, we obtain that FĄH

and ΩĄH are computable as well.

C.1.2 Sort Finiteness

Lemma C.3 If |S| ` |F | ă ℵ0 then pRG, sq is non-terminating iff |TΩ,s| “ ℵ0

Proof C.4 By construction of RG, |RG| “ |păq| ` |F | ă |S|
2 ` |F | ă ℵ0. Viewing possible rewrite paths

starting from s as forming a tree, observe that the tree branches finitely, since each term has finite positions

and possible rewrites. Suppose pRG, sq is terminating. Then, by König’s Lemma, the tree of rewrites must be

finite and therefore there is a finite number of final states, so that |TΩ,s| ă ℵ0. Otherwise, if pRG, sq is non-

terminating, we have an infinite path s ÑRG
t1 ÑRG

t2 ÑRG
¨ ¨ ¨ tn ÑRG

¨ ¨ ¨ . Since |RG| ă ℵ0, DR Ď RG

that repeats infinitely often. Since RG “ RG,S Z RG,C Z RG,NC and RG,S Z RG,C terminates (because

154

acyclicity/finiteness of păq and because only S-terms can be rewritten), we must have RXRG,NC ‰ H. But

note that, if |t| is the size of t viewed as a tree, then if t ÑRG,SZRG,C
t1, we must have |t| “ |t1|, whereas

if t ÑRG,NC
t1, we must have |t| ă |t1|, so that t|ti|uiPN is a sequence such that |ti| Ñ 8. Also note that

by the definition of RG, all sorts s1 occurring as a subterm of ti belong to SĄH “ ts1, ¨ ¨ ¨ , smu, so that

we can choose terms u1 P TΩ,s1 , ¨ ¨ ¨ , um P TΩ,sm . We can then regard SĄH as a set of variables and view

σ “ ts1 ÞÑ u1, ¨ ¨ ¨ , sm ÞÑ unu as a substitution. But, by definition of RG, this gives us an infinite sequence

ttiσuiPN of terms where for each i P N, tiσ P TΩ,s and |tiσ| ě |ti|. Therefore, |tiσ| Ñ 8, and since TΩ,s

contains terms of unbounded size, we have |TΩ,s| “ ℵ0. ˝

Lemma 4.4 (p. 63) @n P N rrsÑn
RG

ts ô rDi, j P N rsÑi
RG,‹

t1 Ñj
RG,C

t^ n “ i` jsss

Proof C.5 To begin, recall RG “ RG,‹ ZRG,C and note the following equivalence for s P SĄH, n P N, and

t P TΩ:

sÑn
RG

t

ô

Dl1, l2,m1,m2 P N Dt1, t2, t3, tiv P TΩ

trpsÑl1
RG,‹

t1 Ñl2
RG,C

tq _ psÑm1

RG,‹
t2 ÑRG,C

t3 ÑRG,‹
tiv Ñm2

RG
tqs ^

l1 ` l2 “ m1 `m2 ` 2 “ nu

(C.2)

That is, either all the applications of rules in RG,C occur at the end, or there is at least one such application

before a rule in RG,‹. Since the first case already fits the desired form, we need only consider the second

case. Note all rules in RG have the form S Q sÑ t P TΩZSΩ . RG,C rules in particular have the form sÑ c

for c P F . Thus, if a RG,C rule is applied to trssp at position p, a RG,‹ rule cannot later also be applied at

p. Now suppose sÑm1

RG,‹
t2 ÑRG,C

t3 ÑRG,‹
tiv Ñm2

RG
t. Then, t2 “ t2rs1, s2sp,q with p, q disjoint positions

and:
s t2rs1, s2s t2rc, s2s

t2rs1, us t2rc, us

RG,‹

˚

RG,‹

RG,C

RG,‹

RG,C

(C.3)

for any c P C and u P TΩZSΩ , the diagram above commutes. We complete the proof by induction on m2, the

number of rewrites occurring after the first RG,C rule followed by a RG,‹ rule. Suppose m2 “ 0. Then we can

commute the RG,‹ and RG,C arrows as above, to obtain a rewrite chain of the form s Ñm1`1
RG,‹

v ÑRG,C
t,

for some v P TΩZSΩ , as required. Now suppose m2 ą 0. Again, we commute the two arrows to obtain

sÑm1`1
RG,‹

v1 ÑRG,C
v2 Ñ

m2

RG
t. We apply our induction hypothesis to obtain sÑm1`1

RG,‹
v1 Ñ

k1

RG,‹
v3 Ñ

k2

RG,C
t

with k1 ` k2 “ m2 which is equivalent to sÑm1`k1`1
RG,‹

v3 Ñ
k2

RG,C
t and m1 ` k1 ` k2 ` 1 “ m1 `m2 ` 1 “ n,

as required. ˝

C.2 AUXILIARY LEMMAS FOR SECTION 4.3.2

In these proofs, we always assume pSc,ăcq is a constructor sort refinement of pS,ăq. In Lemma 4.7, we

require two simple lemmas which are left as an exercise to the reader. Let Σ be an arbitrary signature. Then

(1) if Σ is preregular and fpt1, ¨ ¨ ¨, tnq P TΣ then tyΣpfpt1, ¨ ¨ ¨, tnqq “ tyΣpf, lsΣpt1q ¨ ¨ ¨ lsΣptnqq with n ě 0

and (2) t P TΣ ô tyΣptq ‰ H.

155

Lemma 4.7 (Preregular Below, Semantic Version, p. 68) Suppose that Ω ă Σ. Then Ω and Σ are

preregular and p@t P TΣq t P TΩ ñ lsΩptq “ lsΣptq.

Proof C.6 Since Ω is preregular, let t “ fpt1, ¨ ¨ ¨, tnq P TΩ,s with si “ lsΩptiq for 1 ď i ď n and let

w “ s1 ¨ ¨ ¨ sn (by abuse of notation, when n “ 0, let f P TΩ,s be a constant and w “ nil). By definition,

since the types of each ti is minimal, any typing of f must satisfy f : w1 Ñ s1 P tyΩpf, wq with s1 ď s.

Since Ω is preregular, Ds2 P S with s2 “ lsΩptq. This can happen iff Df : w2 Ñ s2 P tyΩpf, wq such that

f : w2 Ñ s2 “ minăptyΩpf, wqq, w ď w2, and s2 ď s.

Now observe that since Ω ă Σ and t P TΩ, we have tyΩpf, wq ‰ H. Thus, minăptyΣpf, wqq P tyΩpf, wq.

Since tyΩpf, wq Ď tyΣpf, wq then we must have pDf : w2 Ñ s2 P F q with f : w2 Ñ s2 “ minăptyΩpf, wqq “

minăptyΣpf, wqq. But then by the argument above, lsΩptq “ lsΣptq “ s2.˝

Lemma C.4 p@t P TΩÓpX
cq{Xcq tyΩÓpXcqptq “ tyΩÓpXÓqptq “ tyΩÓ‚pXÓq

ptq

Proof C.7 The base case where t “ c P TΩÓpX
cq{Xc, a constant, is trivial, so suppose t “ fpt1, ¨ ¨ ¨ , tnq.

There are two cases: either for each 1 ď i ď n, we have varsptiq Ď XÓ or not. If not, tyΩÓpXcqptq “

tyΩÓpXÓqptq “ tyΩÓ‚pXÓq
ptq “ H since these three signatures share the same non-variable operators F ÓΩ whose

arity is contained in pSÓq˚. Otherwise, by induction hypothesis, for 1 ď i ď n, we have tyΩÓpXcqptiq “

tyΩÓpXÓqptiq “ tyΩÓ‚pXÓq
ptiq, and since operators F ÓΩ are shared, we have tyΩÓpXcqptq “ tyΩÓpXÓqptq “ tyΩÓ‚pXÓq

ptq.

˝

Lemma C.5 p@t P TΣcpXcq{Xcq tyΣ`pXcqptq “ tyΣpXqpt
‚q

Proof C.8 The case where t “ c P TΣcpXcq{TΩÓpX
cq, a constant, is trivial, so suppose t “ fpt1, ¨ ¨ ¨ , tnq. By

definition, Df : s1 ¨ ¨ ¨sn Ñ s P F with si P S, ti : s1i, and s1i ď
c si for 1 ď i ď n. But p‚q : pS,ăcq Ñ pS,ăq—

also p‚q : Σ`pXcq Ñ ΣpXq Ď Σ`pXcq—is a poset/signature morphism, so s1‚i ď s‚i “ si, t
‚
i P TΣpXq,

and tyΣ`pXcqptq “ tyΣ`pXcqpt
‚q. Also note tyΣ`pXcq|TΣpXq

“ tyΣpXq, since f : s1 ¨ ¨ ¨sn Ñ s P F Y Xc with

s1 ¨ ¨ ¨ sn P S
˚ iff f : s1 ¨ ¨ ¨sn Ñ s P F YX. But t‚ P TΣpXq, thus tyΣ`pXcqptq “ tyΣ`pXcqpt

‚q “ tyΣpXqpt
‚q, as

required. ˝

Lemma C.6 Σ “ ppS,ăq, F q is sensible iff pΣ “ pppS,Hq, pF q is sensible where we define pF as the set

f : rs1s ¨ ¨ ¨ rsns Ñ rs0s P pF iff Df : s11 ¨ ¨ ¨ s
1
n Ñ s10 P F with s1i P rsis for 0 ď i ď n.

Proof C.9 Given a tuple of sorts w “ s1 ¨ ¨ ¨ sn, let rws “ rs1s ¨ ¨ ¨ rsns. To see pñq, suppose if f : w Ñ s, f :

w1 Ñ s1 P F and w ”ď w1 then s ”ď s1. But note w ”ď w1 iff w,w1 P rws and s ”ď s1 iff s, s1 P rss. To

see pðq, assume f : rws Ñ rss, f : rw1s Ñ rs1s P pF and rws ”ď rw
1s then rss ”ď rs

1s. But note rws ”ď rw
1s

iff rws “ rw1s and rss ”ď rs
1s iff rss “ rs1s since in pΣ, pďq “ H. Then assume towards a contradiction that

Df : w1 Ñ s1, f : w2 Ñ s2 P F with w1 ”ď w2 and s1 ıď s2. But then w1, w2 P rw1s “ rw2s and s1 P rs1s

and s2 P rs2s with rs1s ‰ rs2s, a contradiction.

156

APPENDIX D OMITTED PROOFS FROM CHAPTER 5

Proof of Lemma 5.1

Proof D.1 The show the Ě part, let α P Unif EΩYBΩ
pu, vq and τ P rpvarsppu | ϕqαq Y varsppv | φqαqqÑTΩs

be such that ruατ !s P Jpu | ϕ ^ φqαK. Then, for ρ “ pατq|Y we have ruατ !s P Jpu | ϕqρK X Jpv | φqρK, as

desired.

To show the Ď part, let rws P Jpu | ϕqρKX Jpv | φqρK for some ρ P rYÑTΩs. Note that varspu | ϕqY varspv |

φq “ Y Z varsppu | ϕqρq Z varsppv | φqρq. Therefore, we have disjoint substitutions τ P rvarsppu | ϕqρqÑTΩs

γ P rvarsppv | φqρqÑTΩs such that rws “ rpupρ Z τqq!s “ rpvpρ Z γqq!s and TΣ{EYB |ù pϕ ^ φqpρ Z τ Z γq.

But this means that there is a substitution α P Unif EΩYBΩ
pu, vq and a ground substitution δ P rpvarsppu |

ϕqαq Y varsppv | φqαqqÑTΩs such that ρ Z τ Z γ “EΩYBΩ pαδq|varspu|ϕqYvarspv|φq, and therefore, that rws “

ruαδ!s P Jpu | ϕ^ φqαK, as desired. 2

Proof of Lemma 5.2

Proof D.2 We have to prove that if TΣ{EYB |ù ϕñ
Ž

pi,βqPmatchpu, tviuiPI ,Y q
ψiβ, then for each ρ P rYÑTΩs

we have Jpu | ϕqρK Ď Jp
Ž

iPI vi | ψiqρK. Indeed, if rws P Jpu | ϕqρK there is a ground substitution τ P rXÑTΩs

such that rws “ rpuρτq!s and TΣ{EYB |ù ϕρτ . But since TΩ Ď TΣpXq, we can view ρτ as a composed

substitution ρτ P rXÑTΩs, and therefore TΣ{EYB |ù
Ž

pi,βqPmatchpu, tviuiPI ,Y q
ψiβρτ . That is, there is a pair

pj, γq P matchpu, tviuiPI , Y q such that TΣ{EYB |ù ψjγρτ , and, since by construction, u “EΩYBΩ
vjγ and ρ

and γ have disjoint domains, using again the containment TΩ Ď TΣpXq, we have an identity of composed

substitutions γρτ “ ργτ , and therefore rws “ rpuρτq!s “ rpvjγρτq!s “ rpvjργτq!s with TΣ{EYB |ù ψjργτ .

Therefore, rws P Jpvj | ψjqρK Ď Jp
Ž

iPI vi | ψiqρK, as desired. 2

Proof of Lemma 5.3

Proof D.3 First of all note that varspαpY qq “ pY zdompαqq Z ranpα|Y q. Let U0 “ UzY and Z0 “ ZzY , so

that U0 X Z0 “ H. We then can derive equalities varspαpUqq “ pU0zdompαqq Z ranpαq Z pY zdompαqq, and

varspαpZqq “ Z0 Z ranpα|Y q Z pY zdompαqq. Therefore, by the disjointness of U0, Z0, and ranpαq, we get,

varspαpUqq X varspαpZqq “ pY zdompαqq Z ranpα|Y q “ varspαpY qq, as desired. 2

Proof of Lemma 5.4

Proof D.4 Since Ju | ϕK Ď TermR and JT K Ď TermR, R |ù@T u | ϕ Ñf
Ž

jPJ vj | φj iff for each

ρ P rYÑTΩs and each rws P Jpu | ϕqρK, if rws P JT K then rws P Jp
Ž

jPJ vj | φjqρK. But this is exactly what

the T -consistency of u | ϕÑf
Ž

jPJ vj | φj ensures. 2.

Proof of Lemma 5.5.

Proof D.5 If rus ÑR rvs corresponds to the topmost R,B-rewrite uÑR,B u1, performed with a rewrite rule

l Ñ r if φ P R and a ground substitution σ P rYÑTΣs, with Y the rule’s variables, and such that u “BΩ
lσ,

u1 “ rσ, and ru1!s “ rvs, this is also a rewrite with the rule l Ñ r1 if φ ^ θ̂, by extending σ to the fresh

variables XP “ txp | p P P u with the assignments xp ÞÑ prσq|p, so that we have rus ÑR̂ rvs.

Conversely, if rus ÑR̂ rvs corresponds to the topmost R̂, B-rewrite uÑR,B w, performed with rewrite rule

l Ñ r1 if φ ^ θ̂ in R̂ and ground substitution ρ P rY Z XPÑTΣs, so that w “ r1ρ and rw!s “ rvs, then we

can perform a corresponding rewrite with rule l Ñ r if φ P R and substitution ρ|Y , because TΣ{EYB |ù φρ.

Furthermore, since TΣ{EYB |ù θ̂ρ, we must have rw!s “ rprρq!s “ rvs, so that rus ÑR rvs. 2

157

Proof of Theorem 5.1.

Proof D.6 A state rxu1, . . . , unysBΩ P CR,State is reachable from JS0K iff rru1, . . . , unssBΩ is reachable from

JS0K in CRstop . Therefore, JP K is an invariant of pCR,State ,ÑRq from JS0K iff Rstop |ù
@
r s
S0 Ñ

f rP s. 2

Proof of Theorem 5.2.

Proof D.7 We need to show that (i) and (ii) in the theorem’s statement hold iff for each ρ P rYÑTΩs we

have: (i1) JS0ρK Ď JPρK, and (ii1) ReachRpJPρKq “ JPρK. Since (i) is equivalent to (i1) holding for each

ρ, we just need to show that (ii) holds iff (ii1) holds for each ρ. But this follows easily from the earlier

remarks explaining the implicit universal and existential quantification in reachability logic formulas, plus

the two crucial observation that: (a) in the pattern formula P Ñf rPσs the pattern predicate rPσs is a

postcondition, and (b) in Rstop a terminating sequence from ru0s P JPρK always has the form:

ru0s ÑR ru1s . . . run´1s ÑR runs ÑRstop
rrunss (D.1)

for n ě 0 (where, by convention, if un “ xun1
, . . . , unk

y, then runs abbreviates run1
, . . . , unk

s), thus putting in

one-to-one correspondence such sequences with elements runs P ReachRpJPρKq reachable from a ru0s P JPρK,

and, since P Ñf rPσs holds on such a sequence, showing that rrunss P JrPσρsK “ JrPρσsK “ JrPρsK and

therefore that runs P JPρK, as desired. 2

Proof of Theorem 5.3.

Proof D.8 The proof is completely analogous to that of Theorem 5.2. We need to show that (i) and

(ii) in the theorem’s statement hold iff for each ρ P rYÑTΩs we have: (i1) JS0ρK X JQρK “ H, and (ii1)

ReachR´1pJQρKq “ JQρK. As before, (i) holds iff (i1) does for each ρ. The proof that (ii) is equivalent to (ii1)

holding for each ρ is entirely analogous to that in Theorem 5.2 and is left to the reader. 2

Proof of Theorem 5.4.

Proof D.9 We begin by introducing the following auxiliary notation

Definition D.1 Let u | ϕ Ñf
Ž

i vi | ψi be a T -consistent reachability formula with parameters Y . By

definition, R |ù
@,n
T u | ϕ Ñf

Ž

i vi | ψi iff for each ru0s “ ruρ!s P Ju | ϕK and for each T -terminating

sequence ru0s ÑR ru1s ÑR . . . ÑR rums with m ď n, there exist j, 0 ď j ď m, τ and i such that

rujs “ rpvipρ|Y Z τqq!s P Jpvi | ψiqρ|Y K. Note that, since u | ϕ Ñf
Ž

i vi | ψi is T -consistent, R |ù
@,0
T

u | ϕÑf
Ž

i vi | ψi always holds.

With this notation, we state the following auxiliary lemma:

Lemma D.1 Let rA, C1s $T u | ϕÑf
Ž

i vi | ψi be a closed goal with parameters Y (and therefore T -

consistent), derived by our inference system for R from some initial set of goals rL, Cs $T C. Then, for

each n ą 1, if R |ù@,nT A and R |ù@,n´1
T C1, then R |ù@,nT u | ϕÑf

Ž

i vi | ψi.

Proof D.10 We prove the lemma by contradiction. Assume it does not hold; let nmin be the smallest n

for which the lemma does not hold for the closed goals derivable from the initial goals rL, Cs $T C. Let

rA, C1s $T u | ϕÑf
Ž

i vi | ψi be a closed goal among these for which the lemma does not hold for nmin and,

among such closed goals, one having a closed proof tree P of the smallest possible size. Note that this means

that: (i) the Lemma holds for any n ď nmin for each non-root closed subgoal appearing in the closed proof

158

tree P (otherwise P would not be of smallest possible size); and (ii) R ��|ù
@,nmin

u | ϕ Ñf
Ž

i vi | ψi, but (a)

the Lemma’s hypotheses hold for n “ nmin; and (b) for any n ă nmin R |ù@,n u | ϕÑf
Ž

i vi | ψi. We then

show that, for any ru0s “ ruρ!s P Ju | ϕK and for any T -terminating path, ru0s ÑR ru1s ÑR . . . ÑR runmin
s

there exists a k, 0 ď k ď nmin, τ and i with ruks “ rpvipρ|Y Z τqq!s P Jpvi | ψiqρ|Y K, so that, since

R |ù
@,n
T u | ϕ Ñf

Ž

i vi | ψi for any n ă nmin, we get R |ù
@,nmin

T u | ϕ Ñf
Ž

i vi | ψi, contradicting the

assumption R��|ù
@,nmin

u | ϕÑf
Ž

i vi | ψi and completing the proof.

We distinguish the following cases, according to the proof rule applied to the root goal rA, C1s $T
u | ϕÑf

Ž

i vi | ψi in its closed proof tree:

Subsumption. Then u | ϕ Ñf
Ž

i vi | ψi is a trivial formula, so that R |ù@ u | ϕ Ñf
Ž

i vi | ψi, and, a

fortiori, R |ù@,nmin

T u | ϕÑf
Ž

i vi | ψi.

Step@. Let rA, C1s $T u | ϕÑf
Ž

i vi | ψi be a closed goal with a minimal closed proof tree P for which

the lemma does not hold for nmin. First, notice that

ϕô pϕ^
ł

pi,βqPmatchpu, tviu,Y q

ψiβq _ ϕ
1. (D.2)

Therefore, Ju | ϕK “ Ju | ϕ^
Ž

pi,βqPmatchpu, tviu,Y q
ψiβqKYJu | ϕ1K. But, since each pi, βq P matchpu, tviu, Y q

we have u “EΩYBΩ viβ, and for each ground Ω-substitution γ Z τ with dompγq “ Y the goal’s parameters,

and for each rws “ rpupγZτqq!s P Ju | ϕ^
Ž

pi,βqPmatchpu, tviu,Y q
ψiβqK there must be an i such that TΣ{EYB |ù

ψiβpγ Z τq and u “EΩYBΩ viβ, we must have rws P Jpvi | ψiqβγK, and, since γ and β have disjoint domains,

so that γβ “ βγ, a fortiori, rws P Jp
Ž

i vi | ψiqγK. But this means that Ju | ϕ^
Ž

pi,βqPmatchpu, tviu,Y q
ψiβqK Ď

Ju | ϕK XY J
Ž

i vi | ψiK. Therefore, since we have: (i) Ju | ϕK “ Ju | ϕKzpJu | ϕK XY J
Ž

i vi | ψiKq Z pJu |
ϕK XY J

Ž

i vi | ψiKq, (ii) Ju | ϕ ^
Ž

pi,βqPmatchpu, tviu,Y q
ψiβqK Ď Ju | ϕK XY J

Ž

i vi | ψiK, and (iii) Ju | ϕK “
Ju | ϕ ^

Ž

pi,βqPmatchpu, tviu,Y q
ψiβqK Y Ju | ϕ1K, the set-theoretic equalities (i)–(iii) force the containment

Ju | ϕ1K Ě Ju | ϕKzpJu | ϕK XY J
Ž

i vi | ψiKq, giving us the desired over-approximation claimed in Fact (3)

in the explanation of the Step@ rule. Therefore, since, as pointed out in Fact (1) of the same explanation,

any state in the set Ju | ϕK XY J
Ž

i vi | ψiK automatically satisfies the formula u | ϕ Ñf
Ž

i vi | ψi, and

R |ù
@,nmin´1
T u | ϕ Ñf

Ž

i vi | ψi, to reach the desired contradiction R |ù
@,nmin

T u | ϕ Ñf
Ž

i vi | ψi it is

enough to consider T -terminating paths of length nmin, ru0s ÑR ru1s ÑR . . .ÑR runmins with ru0s “ ruρ!s P

Ju | ϕKzpJu | ϕK XY J
Ž

i vi | ψiKq. Note that if such a path is going to satisfy R |ù@,nmin

T u | ϕ Ñf
Ž

i vi | ψi

by means of some k, 0 ď k ď nmin, with ruks “ rpvipρ|Y Z τqq!s P Jpvi | ψiqρ|Y K, we must have k ě 1.

Therefore, it is enough to show that in the length nmin ´ 1 path ru1s ÑR . . . ÑR runmins there is a k,

1 ď k ď nmin such that ruks “ rpvipρ|Y Z τqq!s P Jpvi | ψiqρ|Y K. But, since we have the over-approximation

Ju | ϕ1K Ě Ju | ϕKzpJu | ϕK XY J
Ž

i vi | ψiKq, and, by the assumptions on the minimal proof tree P, we have

R |ù
@,nmin

T prj | ϕ
1 ^ φjqα Ñ

f
Ž

ipvi | ψiqα for each pj, αq P unifypu | ϕ1, Rq, it will be enough to show

that: (a) ru1s “ rprjαδq!s P Jprj | ϕ1 ^ φjqαK for some pj, αq P unifypu | ϕ1, Rq; (b) ρ “EΩYBΩ pαδq|U

for some ground substitution δ, where U “ varspu | ϕ1q (and of course, thanks to the over-approximation,

TΣ{EYB |ù ϕ1ρ), and (c) the parameters of prj | ϕ
1 ^ φjqαÑ

f
Ž

ipvi | ψiqα are exactly varspαpY qq.

Indeed, let us prove (a)–(c) hold, and then show that there is a k, 1 ď k ď nmin such that ruks “

rpvipρ|Y Z τqq!s P Jpvi | ψiqρ|Y K. First of all, since ru0s ÑR ru1s, there is an unforgetful rule lj Ñ rj if φj

in R such that ru0s “ rpuρq!s “ rpljγq!s ÑR rprjγq!s “ ru1s, and TΣ{EYB |ù φjγ. But since the variables

of all sequents and those of lj Ñ rj if φj are always assumed disjoint, this just means that ρ Z γ is a

159

EΩ Y BΩ-unifier of u “ lj. Therefore, there is a pj, αq P unifypu | ϕ1, Rq and a ground substitution δ such

that ρZγ is equal modulo EΩYBΩ to αδ, which proves (b). But since ρZγ is equal modulo EΩYBΩ to αδ,

TΣ{EYB |ù ϕ1ρ, and TΣ{EYB |ù φjγ, we have TΣ{EYB |ù pϕ
1^φjqαδ, which proves (a). Now note that, by the

variable disjointness between rules in R and sequents, pvi | ψiqα “ pvi | ψiqα|U “ pvi | ψiqα|Y . Therefore,

if Z “ varspvi | ψiq, assuming without loss of generality that all variables in the range of α are fresh, we

have varsppvi | ψiqαq “ ZzY Z varspαpY qq. Furthermore, since u | ϕ Ñf
Ž

i vi | ψi satisfies the invariant

varspψiq Ď varspviq Y varspu | ϕq for each i, and for each pi, βq P matchpu, tviu, Y q uβ “ u “EΩYBΩ viβ,

and the equations EΩ Y BΩ are regular, we have varspψiβq Ď varspu | ϕq, and therefore varspu | ϕq “

varspu | ϕ1q. But since lj Ñ rj if φj is unforgetful, we have varspljq Ď varsprjq Y varspφjq “ W , and

therefore, by the freshness assumption on α and regularity of the equations EΩ Y BΩ, varspprj | φjqαq “

varspljαq Z W zvarspljq “ varspuαq Z W zvarspljq. This then yields varspprj | ϕ
1 ^ φjqαq “ varsppu |

ϕqαqZW zvarspljq. And since Z and W are disjoint sets of variables, again by the freshness of α, we finally

have, varspprj | ϕ
1 ^ φjqαq X varsppvi | ψiqαq “ pZzY Z varspαpY qqq X pvarsppu | ϕqαq ZW zvarspljqq “

varspαpY qq X pvarsppu | ϕqαq “ varspαpY qq, proving (c).

Having proved (a)–(c) let us now finish this case by proving that in the path ru1s ÑR . . . ÑR runmins

there is a k, 1 ď k ď nmin, such that ruks “ rpvipρ|Y Z τqq!s P Jpvi | ψiqρ|Y K, using the fact that R |ù@,nmin

T

prj | ϕ
1 ^ φjqαÑ

f
Ž

ipvi | ψiqα for each pj, αq P unifypu | ϕ1, Rq. But we already know that ru1s “ rprjαδq!s

and TΣ{EYB |ù pϕ
1 ^ φjqαδ. But by R |ù@,nmin

T prj | ϕ
1 ^ φjqα Ñ

f
Ž

ipvi | ψiqα and (c), this ensures that

there is a k, 1 ď k ď nmin such that ruks P Jppvi | ψiqαqδ|varspαpY qqK “ Jppvi | ψiqα|Y qδ|varspαpY qqK “ Jppvi |
ψiqpαδq|Y K “ Jppvi | ψiqρ|Y K. Therefore, there is a ground substitution τ such that ruks “ rpvipρ|Y Z τqq!s P

Jpvi | ψiqρ|Y K, as desired.

Axiom. Let rA, C1s $T u | ϕÑf
Ž

i vi | ψi be a closed goal with parameters Y and with a smallest possible

closed proof tree P for which the lemma does not hold for nmin. In particular we know that R |ù@,nmin

T A. To

reach the desired contradiction we need to show that for any ρ P rUÑTΩs such that ru0s “ rpuρq!s P Ju | ϕK
and any T -terminating path, ru0s ÑR ru1s ÑR . . . ÑR runmin

s there exists a k, 0 ď k ď nmin, an i, and a

ground substitution τ such that ruks “ rpvipρ|Y Z τqq!s P Jpvi | ψiqρ|Y K.

Let u1 | ϕ1 Ñf
Ž

j v
1
j | ψ

1
j with parameters Y 1 such that Y “ varspαpY 1q be the axiom in A used in the

rule application. Since u “EΩYBΩ
u1α and u0 “EΩYBΩ

uρ we have that u0 “EΩYBΩ
u1αρ. Further, since

TΣ{EYB |ù ϕ ñ ϕ1α and TΣ{EYB |ù ϕρ, we have that TΣ{EYB |ù ϕ1αρ. Thus, ru0s “ rpu
1αρq!s P Ju1 | ϕ1K.

Since R |ù@,nmin

T u1 | ϕ1 Ñf
Ž

j v
1
j | ψ

1
j, there exists j and 0 ď k1 ď nmin such that ruk1s P Jpv1j | ψ1jqpαρq|Y 1K.

But by pv1j | ψ
1
jqα “ pv

1
j | ψ

1
jqα|Y 1 and Y “ varspαpY 1q, we have Jpv1j | ψ1jqpαρq|Y 1K “ Jpv1jα | ψ1jαqρ|Y K. We

then will be done of we show that:

1. Y “ varspv1jα | ψ
1
jα^ ϕqXvarsp

Ž

i vi | ψiq, and

2. for any ρ P rUÑTΩs such that TΣ{EYB |ù ϕρ, Jpv1jα | ψ1jαqρ|Y K “ Jpv1jα | ψ1jα^ ϕqρ|Y K.

Indeed, since v1jα | ϕ^ ψ
1
jαÑ

f
Ž

i vi | ψi is a closed subgoal in P, we must have R |ù@,nmin

T v1jα | ϕ^ ψ
1
jαÑ

f

Ž

i vi | ψi. But, by (1), v1jα | ϕ^ ψ
1
jα Ñf

Ž

i vi | ψi has parameters Y and, by (2), ruk1s P Jpv1jα |

ψ1jα^ ϕqρ|Y K. But since the sequence ruk1s ÑR . . . ÑR runmin
s has length n ď nmin , there exist a k,

k1 ď k ď nmin , an i, and a ground substitution τ such that ruks “ rpvipρ|Y Zτqq!s P Jpvi | ψiqρ|Y K, as desired.

To see (1), note that, by the parameter preservation assumption, we have Y “ varspv1jα | ψ
1
jαqXvarsp

Ž

i vi |

ψiq, so that Y Ď varspv1jα | ψ
1
jα^ ϕqXvarsp

Ž

i vi | ψiq. But since varspϕq “ pvarspϕqXY qZpvarspϕqXU0q,

where U0 “ UzY , if x P pvarspv1jα | ψ
1
jα^ ϕqXvarsp

Ž

i vi | ψiqqzY , then we must have x P pvarspϕq X U0q,

160

which is impossible, since U0 X varsp
Ž

i vi | ψiq “ H. To see (2), note that we always have Jpv1jα |

ψ1jαqρ|Y K Ě Jpv1jα | ψ1jα^ ϕqρ|Y K. But since pv1jα | ψ
1
jαq and pvarspϕq X U0q have disjoint variables, any

rpv1jαpρ|Y Z θqq!s P Jpv1jα | ψ1jαqρ|Y K has also the form rpv1jαpρZ θqq!s, and since by assumption EYB |ù ϕρ,

we get rpv1jαpρ|Y Z θqq!s P Jpv1jα | ψ1jα^ ϕqρ|Y K, and therefore Jpv1jα | ψ1jαqρ|Y K Ď Jpv1jα | ψ1jα^ ϕqρ|Y K, as

desired. This finishes the proof for the Axiom case and for the lemma. 2

Now we prove the main result (Theorem 5.4) using Lemma D.1. Indeed, assume by contradiction that the

theorem does not hold. Then, there must be a closed goal pu | ϕ Ñf
Ž

i vi | ψiq P C such that rL, Cs $T
u | ϕÑf

Ž

i vi | ψi is a closed subgoal derived by our inference system for R, but R��|ùu | ϕÑ
f
Ž

i vi | ψi P C.

Further, we can choose such a closed subgoal in C with nmin the smallest possible natural number such that

R ��|ù
@

nmin
C. By T -consistency of all goals in C we must have nmin ą 0. Then, R |ù@,nmin´1

T C and, since by

hypothesis R |ù@nmin
L, we have, a fortiori, R |ù@,nmin

T L. Thus, by Lemma D.1, we have R |ù@,nmin

T ϕ Ñf

Ž

i ψi. This contradicts the assumption R��|ù
@

nmin
u | ϕÑf

Ž

i vi | ψi and completes the proof. 2

Proof of Lemma 5.6

Proof D.11 Since ϕ is semantically equivalent to ψ _ φ we have Ju | ϕK “ Ju | ψK Y Ju | φK. The lemma

then follows easily from Definition 5.5, using the parameter preservation condition. 2

Proof of Lemma 5.7

Proof D.12 Let Y be the parameters in rA, Cs $T u | ϕÑf A. We have two cases. (1) If x:s R Y , then

Atx :s ÞÑ uiu “ A, 1 ď i ď k, and the result just follows from: (i) the parameters Y being the same in

rA, Cs $T u | ϕÑf A and in its k instances in the premise, and (ii) Ju | ϕK “
Ť

1ďiďkJpu | ϕqtx:s ÞÑ uiuK.

(2) If x :s P Y , then the parameters of each rA, Cs $T pu | ϕqtx:s ÞÑ uiu Ñ
f Atx:s ÞÑ uiu are pY ´ tx :

suq Y varspuiq. Observe that, by the definition of pattern set for s, rYÑTΩs “
Ť

1ďiďkttx:s ÞÑ uiuτi | τi P

rpY ´tx:suqYvarspuiqÑTΩsu. Therefore, R |ù@T rA, Cs $T u | ϕÑf A iff @ ρ P rYÑTΩs R |ù@T prA, Cs $T
u | ϕÑf Aqρ iff p@ i, 1 ď i ď kq p@ τi P rpY ´ tx:suq Y varspuiqÑTΩsq R |ù@T prA, Cs $T u | ϕÑf Aqtx:

s ÞÑ uiuτi iff
Ź

1ďiďkrA, Cs $T pu | ϕqtx:s ÞÑ uiu Ñ
f Atx:s ÞÑ uiu, as desired. 2

Proof of Lemma 5.8

Proof D.13 Suppose the Substitution rule is applied to u |
Ź

i wi “ w1i ^ ϕ Ñf
Ž

jPJ vj | φj having

parameters Y . Let U “ varspu |
Ź

i wi “ w1i ^ ϕq, U0 “ varsp
Ź

i wi “ w1iq, and Z “ varsp
Ž

jPJ vj | φjq.

Then Y “ U X Z. Let W “ ZzY . Note that the following facts hold for each α P UnifE1YB1
p
Ź

i wi “ w1iq:

1. Jpu |
Ź

i wi “ w1i ^ ϕqαK “ Juα | ϕα^ pαK.

2. varsppu |
Ź

i wi “ w1i ^ ϕqαq X varspαpZqq “ varspαpY qq “ varspuα | ϕα^ pαq X varspαpZqq.

To see (1), note that, since α P UnifE1YB1
p
Ź

i wi “ w1iq, Jpu |
Ź

i wi “ w1i ^ ϕqαK “ Jpu | ϕqαK, and

Jpu | ϕqαK Ě Juα | ϕα^pαK. So we just need to show Jpu |
Ź

i wi “ w1i^ϕqαK Ď Juα | ϕα^pαK. Indeed, suppose

ρ P rpUzU0Z ranpαqqÑTΩs is such that rpuαρq!s P Jpu |
Ź

i wi “ w1i^ϕqαK. Then TΣ{EYB |ù pαpρZ pαρq|U0
q,

and therefore, rpuαρq!s “ rpuαpρZ pαρq|U0
qq!s P Juα | ϕα^ pαK, as desired.

To see (2), note that varsppu |
Ź

i wi “ w1i ^ ϕqαq “ pUzU0q Z ranpαq, varspuα | ϕα ^ pαq “ U Z ranpαq,

and varspαpZqq “W Z pY zU0q Z varspαpY X U0qq. Therefore, varsppu |
Ź

i wi “ w1i ^ ϕqαq X varspαpZqq “

varspαpY qq “ ppUzU0q Z ranpαqq XW Z pY zU0q Z varspαpY X U0qq “ pY zU0q Z varspαpY X U0qq “ pU Z

ranpαqq XW Z pY zU0q Z varspαpY X U0qq “ varspuα | ϕα^ pαq, as desired.

161

Now note that (1) and (2) yield the equivalence:

R |ù
@
T pu |

ľ

i

wi “ w1i ^ ϕqαÑ
f
p
ł

jPJ

vj | φjqα ô R |ù
@
T uα | ϕα^ pαÑf

p
ł

jPJ

vj | φjqα. (D.3)

The pðq implication in the Lemma’s proof now follows immediately from the above equivalence and the

following Instance Lemma, where ψ is chosen to be the formula
Ź

i wi “ w1i ^ ϕ.

Lemma 5.9 (Instance Lemma) Suppose R |ù@T u | ψ Ñf
Ž

jPJ vj | φj with parameters Y , and let β be

a substitution whose domain V is contained in varspu | ψq and where the variables in ranpβq are all fresh.

Then R |ù@T pu | ψqβ Ñf p
Ž

jPJ vj | φjqβ.

Proof D.14 Let U “ varspu | ψq. Note that, by the freshness assumption on β and V Ď U , the for-

mula pu | ψqβ Ñf p
Ž

jPJ vj | φjqβ has parameters varspβpY qq. We then need to show that for each

δ P rpUzV q Z ranpβqÑTΩs, ru0s “ rpuβδq!s P Jpu | ψqpβδq|varspβpY qqK and T -terminating sequence ru0s ÑR

ru1s . . . run´1s ÑR runs there is a 0 ď k ď n such that ruks P Jp
Ž

jPJ vj | φjqpβδq|varspβpY qqK. But

pβδq|varspβpY qq “ δ|Y zV Zpβδq|varspβpYXV qq “ δ|Y zV Zpβ|YXV qpδ|varspβpYXV qqq “ δ|Y zV Zpβδq|YXV “ pβδq|Y .

Therefore, ru0s “ rpuβδq!s P Jpu | ψqpβδq|Y K, so that, by the assumption R |ù@T u | ψ Ñf
Ž

jPJ vj | φj

with parameters Y , for the same T -terminating sequence there is a 0 ď k ď n such that ruks P Jp
Ž

jPJ vj |

φjqpβδq|Y K “ Jp
Ž

jPJ vj | φjqpβδq|varspβpY qqK, as desired. 2

We now resume the proof of the pñq implication for Lemma 5.8. Recall that U “ varspu |
Ź

i wi “ w1i^ϕq

and Z “ varsp
Ž

jPJ vj | φjq, so that Y “ U X Z. We need to show that for each ground substitution

γ P rUÑTΩs such that ru0s “ rpuγq!s P Ju |
Ź

i wi “ w1i ^ ϕK and each T -terminating sequence ru0s ÑR

ru1s . . . run´1s ÑR runs there is a 0 ď k ď n, a j P J , and a ground substitution τ P rZzYÑTΩs such that

ruks “ rpvjpρ|Y Z τqq!s P Jp
Ž

jPJ vj | φjqγ|Y K.

This can be shown as follows. Let U0 “ varsp
Ź

i wi “ w1iq. Since γ unifies
Ź

i wi “ w1i, there must

be a unifier α P UnifE1YB1
p
Ź

i wi “ w1iq and a ground substitution δ P rpUzU0q Z ranpαqÑTΩs such that

γ “EΩYBΩ αδ. Therefore, by our earlier Fact (1), ru0s “ rpuγq!s “ rpuαδq!s P Ju |
Ź

i wi “ w1i^ϕ^ pαK. And,

since we assume that R |ù@T puα | ϕα^pαÑf p
Ž

jPJ vj | φjqα (with parameters varspαpY qq by Fact (2)), there

is a 0 ď k ď n, a j P J , and a ground substitution τ P rZzYÑTΩs “ rpvarspαpZqqzvarspαpY qqqÑTΩs such that

ruks “ rpvjαpδ|varspαpY qq Z τqq!s P Jp
Ž

jPJ vj | φjqαδ|varspαpY qqK. But since (i) p
Ž

jPJ vj | φjqα “ p
Ž

jPJ vj |

φjqα|Y , and (ii) α|Y δ|varspαpY qq “ pαδq|Y “EΩYBΩ γ|Y , we have ruks “ rpvjpγ|Y Zτqq!s P Jp
Ž

jPJ vj | φjqγ|Y K,

as desired. 2

162

APPENDIX E OMITTED PROOFS FROM CHAPTER 6

E.1 INTRODUCTION

In Appendix B, we saw several techniques for proving ground convergence of standard rewrite theories

R “ pΣ, B,Rq where rules R may be conditional. In this Appendix, we utilize these techniques to prove

the ground convergence and sufficient completeness of the standard rewrite theory underlying our Maude

system and property specification of IBOS. Since the specification is quite large, we believe that writing

down the proof in a fully formalized way would overwhelm the reader; instead, we will illustrate the key

practical concerns used when applying our hierarchical proof system in Table B.1, so that the reader may

obtain a clear intuition. Before proceeding, it is necessary to Chapter 6 which gives an overview of our IBOS

specification from a high level.

In particular, recall from Def. B.15 that for ground confluence proofs at each level, the initial set of

starting goals is the set of all most general critical pairs between the rules in theory level Ri and between

rules in Ri and rules in theory level Ri´1 where i ‰ 0. For complex functions whose datatypes are free

modulo associativity and/or commutativity, the number of most general critical pairs may be quite large. In

our IBOS property specification, some function symbols have hundreds of critical pairs, which means that

writing down the fully formalized proof would require closing hundreds of proof trees—and that is only for

a single function. For such a large number of proof goals, automated support becomes essential. For this

reason, large portions of the proof have been entirely automated in Maude, either as entirely new tools or

extensions of previous tools, e.g., the Maude Church-Rosser Checker [45].

Our outline for this section is as follows: (1) we show the hierarchical dependencies between functions

and outline our general proof strategy for proving ground convergence and sufficient completeness; (2) we

illustrate how our hierarhical proof operates in a few representative examples.

For any omitted proof details, we refer the reader to our IBOS case study repository avaiable at https://

github.com/sskeirik/ibos-case-study which contains the Maude source code for our automated proofs

as well.

E.2 IBOS CONVERGENCE/SUFFICIENT COMPLETENESS PROOF STRATEGY

Our Maude system specification for IBOS has 53 sorts, 80 constructors, and uses one defined symbol.

Our Maude invariant property specification for IBOS defines another 31 sorts, 34 constructors (some are

subsort-overloadings of previous constructors) and another 47 defined symbols.

Both specifications make extensive use of subsort-overloading, which greatly helps with nailing down

precisely the input and output of functions. One may wonder if so many sorts are useful. In fact, subsort-

overloading constructors can be understood as adding additional kind-level predicates to our specification,

but with the advantage that Maude’s built-in and highly efficient unification algorithm respects the subsort

relation.

Since we will verify ground convergence and sufficient completeness hierarchically, we require a definitional

order (Def. B.11) upon which to construct our theory telescope. Such an order is constructed from the non-

constructor call graph (Def. B.10). We present a simplified non-constructor call graph in Figures E.1 and

E.2—rendered by the versatile graphviz program—where (i) a symbol’s dependencies are its leftward edges;

163

https://github.com/sskeirik/ibos-case-study
https://github.com/sskeirik/ibos-case-study

(ii) all transitive and self-edges have been removed; (iii) nodes that did not fit in the four columns of Figure

E.1 appear on second column of Figure E.2; (iv) all defined symbols that have no edges are omitted; (v)

the boolean functions and and not are also omitted due to excessive edges. Based on our layout, note that

defined symbols in the same column cannot depend on each other. Thus, to construct a definitional order it

is sufficient to first add all omitted symbols and then do a left-to-right, top-to-bottom traversal of symbols

in Figures E.1 and E.2.

Thus, our general strategy is:

1. use standard, non-hierarchical methods to prove termination and sort-decreasingness;

2. for each theory Ri‰0 in our inductive telescope:

(a) prove sufficient completeness and ground local confluence of Ri assuming sufficient completeness

and ground convergence of Ri´1;

(b) if any symbol f P ∆i is annotated with fvp-constraintspf,Rq ‰ H, check obligations in Lemma

B.1 to increase set of variant solvable equalities.

For termination checking we rely on recursive path orderings as mentioned in Sec. B.2 and mechanized

using the Maude Termination Assistant [140]. On the other hand, since none of the defined symbols in the

IBOS specification have subsort-overloading, the sort decreasingness check becomes trivial—it is sufficient to

only consider the identity sort specialization. Additionally, in our IBOS system and property specification,

all constructors are free modulo associativity, commutativity, and/or identity axioms. Thus, the base case of

our hierarchical proof system where any rewrite rules in the constructor subtheory must be proved convergent

has zero proof obligations and therefore holds trivially.

E.3 IBOS CONVERGENCE/SUFFICIENT COMPLETENESS PROOF EXAMPLES

As an example of the kinds of proofs and proof obligations that we generate, consider the predicate

in-conf? : ProcessId Configuration Ñ Bool, which checks whether a process with identifier ProcessId exists

in Configuration. We provide a partial specification of the predicate in Figure E.3 in Maude:

1 op in-conf? : ProcessId Configuration -> Bool [metadata "116 true"] .

2 eq in-conf?(P, < P | A > C) = true [variant] .

3 ceq in-conf?(P, < P’ | A > C) = in-conf?(P,C) if P „p P’ = false .

4 eq in-conf?(P, none) = false .

5 ceq in-conf?(NP, C) = false if fresh-np-id?(NP,C) = true .

6 ceq in-conf?(WP, C) = false if fresh-wp-id?(WP,C) = true .

Figure E.3: Partial Specification of in-conf?

where variables P, P’ have sort ProcessId, C has sort Configuration, A has sort AttributeSet, and NP (resp.

WP) has sort NetProcessId (resp. WebProcessId). Line 1 of Figure E.3 is the Maude operator declaration;

the operator metadata encodes two pieces of information: (a) the natural number encodes the operator’s

precedence in the RPO; (b) the constant true is only element in the set fvp-constraintspin-conf?, IBOSq.

By examining fvp-constraintspin-conf?, IBOSq, we see that equalities of the form in-conf?(P,C) “ true

164

Figure E.1: IBOS Defined Symbol Dependencies

165

Figure E.2: Other IBOS Defined Symbol Dependencies

166

should be variant sovleable using only the equation on line 2—which follows by checking the conditions

specified in Lemma B.1. Our intent that this equation is part of an FVP specification is indicated by adding

the variant keyword to the equation’s attribute set.

The intuition behind the definition of this predicate on lines 2–4 is the following: if identifier P is equal

to the identifier of some process < P | A > in the configuration, we are done; otherwise, if ProcessId

equality predicate „p returns false, throw away the current process and keep searching the remainder of

the configuration; finally, if the configuration is none, process identifier P cannot appear in the configuration.

The equations in lines 5–6 are useful lemmas for inductive theorem proving purposes which state, if the

process identifier NP (resp. WP) is provably fresh (greater than all process identifers) in a configuration, it

cannot appear in that configuration.

At this point, according to the strategy outlined above, we first assume that operations „p, fresh-np-id?,

and fresh-wp-id? are sufficiently complete and ground convergent. Under this assumption, we then prove

the sufficient completeness and the ground local confluence of the specification of in-conf?. Finally, we

prove the conditions of Lemma B.1 are satisfied.

E.3.1 Example Sufficient Completeness Proof

We first prove sufficient completeness. Recall from Def. B.15, the initial proof sequent in the sufficient

completeness proof of Ri for each f : s1 ¨ ¨ ¨ sn Ñ s P ∆i is the constrained term pfpxn : s1 ¨ ¨ ¨xn :: snq | Jq.

In our case, the sole sequent is the constrained term is pin-conf?(P,C) | Jq. The entire proof is shown in

Figure E.4, where we simplify notation by (a) displaying terms with the constraint J as unconstrained; (b)

not repeating identical parts of sequents in Split or Case Analysis subproofs.

P1 “

$

&

%

Closure
in-conf?(P,< P | A > C)

Substitution
... | P „p P’ “ true

Closure
... | P „p P’ “ false

Split
in-conf?(P,< P’ | A > C)

Closure
in-conf?(P,none)

P1

in-conf?(P,< P’ | A > C)
Case Analysis

in-conf?(P,C)

Figure E.4: Sufficient Completeness Proof for in-conf?

Recall that the applications of the Case Analysis, Split, and Substitution rules all have non-trivial

side-conditions that must be checked. For the Case Analysis rule, the completeness of the case analysis

on variable C of sort Configuration follows from the fact that a configuration is syntactically just a multiset

of processes. By definition, a multiset is empty or contains an element (process). For the Split rule,

completeness follows from two facts: (a) symbol „p is assumed to be sufficiently complete; (b) true and

false is a coverset for sort Bool. Together, this implies that P „p P’ “ true _ P „p P’ “ false ô J.

Finally, the soundness of the Substitution step follows from the fact that, in the constraint P „p P’ “ true

the symbol „p is an equality predicate. Thus, the most general unifier is naturally one where both process

identifiers are made equal.

Note that the addition of the inductive lemmas on lines 5–6 in Figure E.3 does not affect sufficient

completeness whatsoever; however, these lemmas do affect the confluence proof.

167

E.3.2 Example Ground Local Confluence Proof

We must prove ground local confluence of in-conf?. Recall from Def. B.15, the initial proof sequents

in the ground local confluence proof of Ri for each f P ∆i are the most general critical pairs among rules

in R∆i
and between any rules in R∆i

and Ri´1. In this case, the optimization from Def. B.15 applies

because the symbol in-conf? has no axioms and is not subsort-overloaded, so no overlapping rules cannot

appear in Ri´1. This implies that MCP pRi´1,R∆iq “ H. Thus, it is sufficient to consider the critical pairs

MCP pR∆i ,R∆iq.

For the purposes of generating critical pairs, let us denote the equations on lines 2–6 in Figure E.3 as E2

through E6. Firstly, let us make some simplifying observations:

1. each left-hand side can only meaningfully unify at the topmost position;

2. thus, it is sufficient to consider critical pairs between unordered pairs of equations;

3. for equations E4, E5, and E6, the self critical pairs are all trivial, because for each equation left-hand

side, the most general self-unifier is the identity substitution;

4. equation E4 cannot unify with equations E2 and E3;

5. the critical pairs generated by unifiers among pE2, E2q pE4, E5q pE4, E6q pE5, E6q are all either ptrue Ó

true | φq or pfalse Ó false | φq and thus trivially joinable.

Thus, we are left with five pairs of equations with viable, non-trival left-hand side unifiers that produce

non-trivial critical pairs: pE3, E3q pE2, E3q pE2, E5q pE2, E6q pE3, E5q pE3, E6q.

We first tackle the critical pair sequents generated by pE2, E5q and pE2, E6q, i.e., MCP ptE2u, tE5, E6uq.

tptrue Ó false | fresh-np-id?(NP,< NP | A > C) “ trueq (E.1)

ptrue Ó false | fresh-wp-id?(WP,< WP | A > C) “ truequ (E.2)

Here, the condition for both pairs is unsatisfiable, since the instantion of the function fresh-np-id? (resp.

fresh-wp-id?) is transformed to false by an application of the Simplify rule, leading to the unsatisfiable

equality false = true.

We next tackle the critical pairs generated by equation pair pE3, E3q, i.e., MCP ptE3u, tE3uq:

tpin-conf?(P,C) Ó in-conf?(P,C) | P „p P’ “ falseq (E.3)

pin-conf?(P,< P1 | A1 > C) Ó in-conf?(P,< P2 | A2 > C) |

P „p P1 “ false^ P „p P2 “ falsequ
(E.4)

Here the first critical pair is trivially joinable. The second is joinable by Context Joinability; when

the constraints are added to the specification as rewrite rules as follows:

Ri Z tP „p P1 “ false, P „p P2 “ falseu $

in-conf?(P,< P1 | A1 > C) Ó in-conf?(P,< P2 | A2 > C)
(E.5)

168

which rewrites by two applications of E3 to:

Ri Z tP „p P1 “ false, P „p P2 “ falseu $

in-conf?(P,C) Ó in-conf?(P,C).
(E.6)

We next consider the proof sequents from critical pairs in MCP ptE2u, tE3uq:

tptrue Ó in-conf?(P,C) | P „p P “ falseq, (E.7)

ptrue Ó in-conf?(P,< P | A2 > C) | P „p P’ “ falsequ (E.8)

The first one is solvable by Simplify followed by Unfeasibility; the second is solvable by Context

Joinability and a single application of E2.

Our final case to consider are the critical pairs MCP ptE3u, tE5, E6uq:

tpfalse Ó in-conf?(NP,C) | NP „p P’ “ false ^

fresh-np-id?(NP,< P’ | A > C) “ trueq,
(E.9)

pfalse Ó in-conf?(WP,C) | WP „p P’ “ false ^

fresh-wp-id?(WP,< P’ | A > C) “ truequ
(E.10)

In Figure E.5, we show the proof for the first critical pair; the second follows analogously. Since this example

is quite complex, a few observations are in order to explain the proof:

1. the function fresh-np-id? only checks if its NetProcessId argument is fresh with respect to other

processes with a NetProcessId identifier;

2. In proof subtree P2, we split on the FVP less-than-or-equal predicate <= for natural numbers in order

to enable the fresh-np-id? predicate to rewrite;

3. in proof subtree P4 the variable Z is a non-zero natural number.

E.3.3 Example Application of Variant Solveability Lemma

Finally, we apply Lemma B.1 to the in-conf? predicate. Firstly, observe that in-conf? is essentially

tail-recursive. Secondly, since we have already proved confluence of in-conf?, observe that the righthand

side of final rules of in-conf? are ground, so that sets R`in-conf? “ tE2u and R´in-conf? “ tE4, E5, E6u

immediately satisfy condition 1 of Lemma B.1. Thus, we need only verify condition 2 of Lemma B.1 on the

rule set Rrec,in-conf? “ tE3u. For convenience, we recall the rules in question below:

R`in-conf? “ teq in-conf?(P2, < P2 | A2 > C2) = true [variant] .u (E.11)

Rrec,in-conf? “ tceq in-conf?(P, < P’ | A > C) =

in-conf?(P,C) if P „p P’ = false .u
(E.12)

To check that the condition is satisfied, we first compute the most general unifiers between the lefthand

side of E2 and the righthand side of E3:

UnifBΩ
plhspE2q, rhspE3qq “ tP ÞÑ P2, C ÞÑ < P2 | A2 > C2u. (E.13)

169

P
4
“

$ & %

C
o
n
.
J
o
in
.
pf
a
l
s
e
Ó
i
n
-
c
o
n
f
?
(
n
e
t
w
o
r
k
(
M

+
Z
)
,
C
)
|
f
r
e
s
h
-
n
p
-
i
d
?
(
n
e
t
w
o
r
k
(
M

+
Z
)
,
C
)
“

t
r
u
e
q

S
im

p
l
if
y
pf
a
l
s
e
Ó
i
n
-
c
o
n
f
?
(
n
e
t
w
o
r
k
(
M

+
Z
)
,
C
)
|
f
r
e
s
h
-
n
p
-
i
d
?
(
n
e
t
w
o
r
k
(
M

+
Z
)
,
<

n
e
t
w
o
r
k
(
M
)

|
A

>
C
)
“

t
r
u
e
q

S
u
b
.
pf
a
l
s
e
Ó
i
n
-
c
o
n
f
?
(
n
e
t
w
o
r
k
(
N
)
,
C
)
|
f
r
e
s
h
-
n
p
-
i
d
?
(
n
e
t
w
o
r
k
(
N
)
,
<

n
e
t
w
o
r
k
(
M
)

|
A

>
C
)
“

t
r
u
e
^

N
<
=

M
“

f
a
l
s
e
q

P
3
“

$ & %

U
n
f
e
a
si
b
il
it
y
pf
a
l
s
e
Ó
i
n
-
c
o
n
f
?
(
n
e
t
w
o
r
k
(
N
)
,
C
)
|
f
a
l
s
e
“

t
r
u
e
q

S
im

p
l
if
y
pf
a
l
s
e
Ó
i
n
-
c
o
n
f
?
(
n
e
t
w
o
r
k
(
N
)
,
C
)
|
f
r
e
s
h
-
n
p
-
i
d
?
(
n
e
t
w
o
r
k
(
N
)
,
<

n
e
t
w
o
r
k
(
M

+
N
)

|
A

>
C
)
“

t
r
u
e
q

S
u
b
.
pf
a
l
s
e
Ó
i
n
-
c
o
n
f
?
(
n
e
t
w
o
r
k
(
N
)
,
C
)
|
f
r
e
s
h
-
n
p
-
i
d
?
(
n
e
t
w
o
r
k
(
N
)
,
<

n
e
t
w
o
r
k
(
M
)

|
A

>
C
)
“

t
r
u
e
^

N
<
=

M
“

t
r
u
e
q

P
2
“

$ ’ ’ & ’ ’ %

P
3

..
.
|
..
.^

N
<
=
M
“

t
r
u
e

P
4

..
.
|
..
.^

N
<
=
M
“

f
a
l
s
e

S
p
l
it

pf
a
l
s
e
Ó
i
n
-
c
o
n
f
?
(
n
e
t
w
o
r
k
(
N
)
,
C
)
|
f
r
e
s
h
-
n
p
-
i
d
?
(
n
e
t
w
o
r
k
(
N
)
,
<

n
e
t
w
o
r
k
(
M
)

|
A

>
C
)
“

t
r
u
e
q

C
a
se

pf
a
l
s
e
Ó
i
n
-
c
o
n
f
?
(
N
P
,
C
)
|
f
r
e
s
h
-
n
p
-
i
d
?
(
N
P
,
<

n
e
t
w
o
r
k
(
M
)

|
A

>
C
)
“

t
r
u
e
q

P
1
“

"

C
o
n
.
J
o
in
.
pf
a
l
s
e
Ó
i
n
-
c
o
n
f
?
(
N
P
,
C
)
|
f
r
e
s
h
-
n
p
-
i
d
?
(
N
P
,
C
)
“

t
r
u
e
q

S
im

p
l
if
y
pf
a
l
s
e
Ó
i
n
-
c
o
n
f
?
(
N
P
,
C
)
|
f
r
e
s
h
-
n
p
-
i
d
?
(
N
P
,
<

N
N
P
:
N
o
n
N
e
t
P
r
o
c
e
s
s
I
d

|
A

>
C
)
“

t
r
u
e
q

P
1

..
.r
P
’
{
N
N
P
:
N
o
n
N
e
t
P
r
o
c
e
s
s
I
d
s

P
2

..
.r
P
’
{
n
e
t
w
o
r
k
(
M
)
s

C
a
se

A
n
a
ly

si
s
pf
a
l
s
e
Ó
i
n
-
c
o
n
f
?
(
N
P
,
C
)
|
f
r
e
s
h
-
n
p
-
i
d
?
(
N
P
,
<

P
’

|
A

>
C
)
“

t
r
u
e
q

G
e
n
.
pf
a
l
s
e
Ó
i
n
-
c
o
n
f
?
(
N
P
,
C
)
|
N
P
„
p
P
’
“

f
a
l
s
e
^

f
r
e
s
h
-
n
p
-
i
d
?
(
N
P
,
<

P
’

|
A

>
C
)
“

t
r
u
e
q

F
ig

u
re

E
.5

:
A

p
p

li
ca

ti
o
n

o
f

C
o
n

fl
u

en
ce

P
ro

o
f

S
y
st

em
fo

r
i
n
-
c
o
n
f
?

C
ri

ti
ca

l
P

a
ir

170

Under this single unifier—let’s call it α—we must show that lhspE3qα is rewritable by some rule in

R`in-conf? assuming condpE3qα holds. Let us compute the resulting constrained term plhspE3q | condpE3qqα

below:

pin-conf?(P2, < P’ | A > < P2 | A2 > C2) | P2 „p P’ = falseq (E.14)

But this constrained term is clearly rewritable by a rule in R`in-conf?, as required. Thus, we are able to use

variant unification to solve equalities of the form in-conf?(P,C) = true for any instance of in-conf?(P,C)

that is FVP below.

E.4 IBOS INVARIANT SUFFICIENCY PROOF

In this section, we provide an overview of our formal proof of the sufficiency of our reformulation of same-

origin policy invariant with respect to an original formulation [116]. Let us make the above sentence more

precise. Like our work, [116] specified IBOS as a rewrite theory and specified the same-origin policy for

IBOS as a rewrite theory invariant. In particular, they actually specified the entire co-invariant as the union

of instances of four simple constructor pattern predicates—let us call these constrained terms CO-SOPi for

1 ď i ď 4. They then combined a by-hand proof of abstraction with a bounded model-checking proof which

demonstrated that the initial state S0 could not reach any state inside CO-SOPi for 1 ď i ď 4. On the other

hand, in our reformulation of the same-origin policy invariant, we chose to specify it (a) as an invariant in

the standard sense, and (b) as a single constructor pattern predicate—let us call this constrained term SOP.

The sufficiency proof of our invariant then can be made precisely as the following claim:

ľ

1ďiď4

JSOPKX JCO-SOPiK “ H (E.15)

This claim can be further broken down into a set of unsatisfiability proofs as follows. Let EIBOS refer to

the equational theory underlying the IBOS specification and let EIBOS,Ω refer to its equational constructor

subtheory. Since the (co-)invariants specified above are all constructor pattern predicates, they have the

form pt | φq where t is a constructor term and φ is a quantifier-free formula. Let tSOP and tCO-SOPi refer

to the term part of these constrained terms and φSOP and φCO-SOPi refer the constraint part for 1 ď i ď 4.

Then, by definition, the above claim is equivalent to:

ľ

1ďiď4

@α P UnifEIBOS,Ω
ptSOP, tCO-SOPiq TEIBOS ��|ù pφSOP ^ φCO-SOPiqα (E.16)

One key idea being exploited here is the fact that constructor theory unification is often both decidable and

cheap. Thus, by utilizing constrained constructor pattern predicates, we cut through much of the complexity

of deciding disjointness by a single unification. Then, of course, the question becomes: how can we decide

TEIBOS ��|ù pφSOP ^ φCO-SOPiqα? Typically, this inductive satisfiability check is not decidable.

The second key idea we exploit here is that of sound constrained constructor pattern predicate transfor-

mations. That is, instead of working directly at the level of formulas as in formula (E.16) above, we retain

the constrained term structure and utilize very similar proof rules to those in our hierarchical proof system

shown in Table B.1. By a combination of applications of rules similar to Split, Case, and Substitu-

tion, we were able to take the term ptSOP | φSOP ^ φCO-SOPiqα and transform it into a logically equivalent

171

term where unsatisfiability of the condition followed quite easily. The only remaining technique utilized

was an application of contextual rewriting to detect unsatisfiability of a constraint whenever the equality

true “ false was generated. Of course, in the intial model TEIBOS , these two constants are disjoint, so if

any formula, we have TEIBOS |ù φñ true “ false, we must have TEIBOS ��|ù φ.

In fact, these four techniques: variant unification, case analysis, formula splitting, and detecting unsatis-

fiability by equating true and false were sufficient to carry out the complete disjointness proof. However,

there is one last important principle at work: the use of what we refer to as structural modularity in Chapter

6. This modularity principle is the glue that binds the whole proof together and automates away the brunt

of the “work.” What kind of work are we talking about? Even though we have powerful proof rules at our

disposal, it is unfortunately often not clear how or where they should be applied. This problem becomes

worse as the number of proof goals scales.

The answer to this problem is to generalize and conquer via structural modularity. What we mean is this:

suppose that one instance of a formula φαi is proved unsatisfiable by an application of a formula split. Then,

it is extremely likely we will have similar instances φαj with i ‰ j that can be solved by application of a

nearly identical formula split. Furthermore, the choice of terms to include in this formula split are typically

parameters exposed directly in the structure of pt | φq itself. Indeed, we preserve the term portion of the

constrained term pt | φq instead of discarding it because it provides an excellent source of structure upon

which to generate the right applications of the proof rules.

Thus, at the end, we prove emptiness of the constrained terms pt | φq by structurally guided versions of

the Case Analysis and Split rules together with fully automated Substitution (via variant unification)

and Inductive Unsatisfiability (via contextural rewriting) rules. In fact, all of these proof rules have

been fully automated with a simple API in Maude. The full details of the proof are available at the IBOS

case study repository: https://github.com/sskeirik/ibos-case-study.

172

https://github.com/sskeirik/ibos-case-study

REFERENCES

[1] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M. Deardeuff, “How amazon web
services uses formal methods,” Commun. ACM, vol. 58, no. 4, pp. 66–73, 2015.

[2] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal methods: Practice and
experience,” ACM Comput. Surv., vol. 41, no. 4, pp. 19:1–19:36, Oct. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1592434.1592436

[3] J. Meseguer, “Rewriting logic as a semantic framework for concurrency: a progress report,” in Proc.
CONCUR’96, Pisa, August 1996. Springer LNCS 1119, 1996, pp. 331–372.

[4] J. Meseguer and G. Rosu, “The rewriting logic semantics project: A progress report,” Inf. Comput.,
vol. 231, pp. 38–69, 2013.

[5] F. Durán, C. Rocha, and J. M. Álvarez, Towards a Maude Formal Environment. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 329–351. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-24933-4 17

[6] M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Mart́ı-Oliet, and C. Talcott, All About Maude
– A High-Performance Logical Framework. Springer LNCS Vol. 4350, 2007.

[7] J.-L. Lassez and K. Marriott, “Explicit representation of terms defined by counter examples,” J.
Autom. Reasoning, vol. 3, no. 3, pp. 301–317, 1987.

[8] J. l. Lassez, M. Maher, and K. Marriott, “Elimination of negation in term algebras,” in In Mathematical
Foundations of Computer Science. Springer, 1991, pp. 1–16.

[9] M. Tajine, “The negation elimination from syntactic equational formula is decidable,” in Proc. RTA-93,
ser. LNCS, vol. 690. Springer, 1993, pp. 316–327.

[10] R. Pichler, “Explicit versus implicit representations of subsets of the Herbrand universe,” Theor.
Comput. Sci., vol. 290, no. 1, pp. 1021–1056, 2003.

[11] M. Fernández, “Negation elimination in empty or permutative theories,” J. Symb. Comput., vol. 26,
no. 1, pp. 97–133, 1998.

[12] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud, “Introducing OBJ,” in
Software Engineering with OBJ: Algebraic Specification in Action. Kluwer, 2000, pp. 3–167.

[13] K. Futatsugi and R. Diaconescu, CafeOBJ Report. World Scientific, 1998.

[14] M. J. Maher, “Complete axiomatizations of the algebras of finite, rational and infinite trees,” in Proc.
LICS ’88. IEEE Computer Society, 1988, pp. 348–357.

[15] M. J. Maher, “Complete axiomatizations of the algebras of finite, rational and infinite trees,” IBM T.
J. Watson Research Center, Tech. Rep., 1988.

[16] H. Comon and P. Lescanne, “Equational problems and disunification,” Journal of Symbolic Computa-
tion, vol. 7, pp. 371–425, 1989.

[17] H. Comon, “Equational formulas in order-sorted algebras,” in Proc. ICALP’90, ser. LNCS, vol. 443.
Springer, 1990, pp. 674–688.

[18] H. Comon and C. Delor, “Equational formulae with membership constraints,” Inf. Comput., vol. 112,
no. 2, pp. 167–216, 1994.

[19] G. Nelson and D. C. Oppen, “Simplification by cooperating decision procedures,” ACM Trans. Pro-
gram. Lang. Syst., vol. 1, no. 2, pp. 245–257, 1979.

173

http://doi.acm.org/10.1145/1592434.1592436
http://dx.doi.org/10.1007/978-3-642-24933-4_17
http://dx.doi.org/10.1007/978-3-642-24933-4_17

[20] D. C. Oppen, “Complexity, convexity and combinations of theories,” Theor. Comput. Sci., vol. 12, pp.
291–302, 1980.

[21] R. E. Shostak, “Deciding combinations of theories,” Journal of the ACM, vol. 31, no. 1, pp. 1–12, Jan.
1984.

[22] F. Baader and K. U. Schulz, “Combining constraint solving,” in Constraints in Computational Logics
CCL’99, International Summer School, vol. 2002. Springer LNCS, 1999, pp. 104–158.

[23] H. Comon-Lundth and S. Delaune, “The finite variant property: how to get rid of some algebraic
properties,” in Proc RTA’05, Springer LNCS 3467, 294–307, 2005.

[24] S. Escobar, R. Sasse, and J. Meseguer, “Folding variant narrowing and optimal variant termination,”
J. Algebraic and Logic Programming, vol. 81, pp. 898–928, 2012.

[25] J. Meseguer, “Variant-based satisfiability in initial algebras,” Sci. Comput. Program., vol. 154, pp.
3–41, 2018. [Online]. Available: https://doi.org/10.1016/j.scico.2017.09.001

[26] A. Stefanescu, Ştefan Ciobâcă, R. Mereuta, B. M. Moore, T. Serbanuta, and G. Rosu, “All-path
reachability logic,” in Proc. RTA-TLCA 2014, vol. 8560. Springer LNCS, 2014, pp. 425–440.

[27] A. Stefanescu, D. Park, S. Yuwen, Y. Li, and G. Rosu, “Semantics-based program verifiers for all
languages,” in Proc. OOPSLA 2016. ACM, 2016, pp. 74–91.

[28] J. Meseguer, “Twenty years of rewriting logic,” J. Algebraic and Logic Programming, vol. 81, pp.
721–781, 2012.

[29] D. Lucanu, V. Rusu, A. Arusoaie, and D. Nowak, “Verifying reachability-logic properties on rewriting-
logic specifications,” in Logic, Rewriting, and Concurrency - Essays dedicated to José Meseguer on the
Occasion of His 65th Birthday, vol. 9200. Springer LNCS, 2015, pp. 451–474.

[30] F. Baader and W. Snyder, “Unification theory,” in Handbook of Automated Reasoning. Elsevier, 1999.

[31] H. Comon, “Complete axiomatizations of some quotient term algebras,” Theor. Comput. Sci., vol. 118,
no. 2, pp. 167–191, 1993.

[32] J. Meseguer, “Membership algebra as a logical framework for equational specification,” in Proc.
WADT’97. Springer LNCS 1376, 1998, pp. 18–61.

[33] J. Goguen and J. Meseguer, “Order-sorted algebra I: Equational deduction for multiple inheritance,
overloading, exceptions and partial operations,” Theoretical Computer Science, vol. 105, pp. 217–273,
1992.

[34] H. Ehrig and B. Mahr, Fundamentals of Algebraic Specification 1. Springer, 1985.

[35] J. Meseguer, “Variant-based satisfiability in initial algebras,” University of Illinois at Urbana-
Champaign, Tech. Rep. http://hdl.handle.net/2142/88408, November 2015.

[36] J. Meseguer, “Variant-based satisfiability in initial algebras,” in Proc. FTSCS 2015, C. Artho and
P. Ölveczky, Eds. Springer CCIS 596, 2016, pp. 1––32.

[37] J. Goguen and R. Burstall, “Institutions: Abstract model theory for specification and programming,”
Journal of the ACM, vol. 39, no. 1, pp. 95–146, 1992.

[38] N. Dershowitz and J.-P. Jouannaud, “Rewrite systems,” in Handbook of Theoretical Computer Science,
Vol. B, J. van Leeuwen, Ed. North-Holland, 1990, pp. 243–320.

[39] J. Meseguer, “Strict coherence of conditional rewriting modulo axioms,” C.S. Department, University
of Illinois at Urbana-Champaign, Tech. Rep. http://hdl.handle.net/2142/50288, August 2014,
submitted to Theoretical Computer Science.

174

https://doi.org/10.1016/j.scico.2017.09.001

[40] J.-P. Jouannaud and H. Kirchner, “Completion of a set of rules modulo a set of equations,” SIAM
Journal of Computing, vol. 15, pp. 1155–1194, November 1986.

[41] A. Cholewa, J. Meseguer, and S. Escobar, “Variants of variants and the finite variant property,”
CS Dept. University of Illinois at Urbana-Champaign, Tech. Rep., February 2014, available at
http://hdl.handle.net/2142/47117.

[42] R. Gutiérrez, J. Meseguer, and C. Rocha, “Order-sorted equality enrichments modulo axioms,” Sci.
Comput. Program., vol. 99, pp. 235–261, 2015.

[43] J. Meseguer, “Generalized rewrite theories and coherence completion,” in Proc. Rewriting Logic and
Its Applications - 12th International Workshop, WRLA 2018, ser. Lecture Notes in Computer Science,
V. Rusu, Ed., vol. 11152. Springer, 2018, pp. 164–183.

[44] S. Lucas and J. Meseguer, “Normal forms and normal theories in conditional rewriting,”
J. Log. Algebr. Meth. Program., vol. 85, no. 1, pp. 67–97, 2016. [Online]. Available:
https://doi.org/10.1016/j.jlamp.2015.06.001

[45] F. Durán and J. Meseguer, “On the church-rosser and coherence properties of conditional order-sorted
rewrite theories,” J. Log. Algebr. Program., vol. 81, no. 7-8, pp. 816–850, 2012.

[46] R. Bruni and J. Meseguer, “Semantic foundations for generalized rewrite theories.” Theor. Comput.
Sci., vol. 360, no. 1-3, pp. 386–414, 2006.

[47] S. Skeirik and J. Meseguer, “Metalevel algorithms for variant-based satisfiability,” in Proc. WRLA
2016, D. Lucanu, Ed., vol. 9942. Springer LNCS, 2016, pp. 167–184.

[48] P. Hudak, J. Hughes, S. L. P. Jones, and P. Wadler, “A history of haskell: being lazy with class,”
in Proc. Third ACM SIGPLAN History of Programming Languages Conference (HOPL-III). ACM,
2007, pp. 1–55.

[49] A. van Deursen, J. Heering, and P. Klint, Language Prototyping: An Algebraic Specification Approach.
World Scientific, 1996.

[50] J. Meseguer, “Conditional rewriting logic as a unified model of concurrency,” Theoretical Computer
Science, vol. 96, no. 1, pp. 73–155, 1992.

[51] J. Meseguer, J. Goguen, and G. Smolka, “Order-sorted unification,” to appear in the Journal of
Symbolic Computation, special issue on unification.

[52] M. Alpuente, S. Escobar, J. Espert, and J. Meseguer, “A modular order-sorted equational generaliza-
tion algorithm,” Inf. Comput., vol. 235, pp. 98–136, 2014.

[53] J. Guttag, “The specification and application to programming of abstract data types,” Ph.D. disser-
tation, University of Toronto, 1975, computer Science Department, Report CSRG-59.

[54] J. Meseguer, M. Palomino, and N. Mart́ı-Oliet, “Equational abstractions,” Theoretical Computer Sci-
ence, vol. 403, no. 2-3, pp. 239–264, 2008.

[55] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. L”oding, S. Tison, and M. Tommasi,
“Tree automata techniques and applications,” Available at: http://tata.gforge.inria.fr/, 2008, Release
November 18, 2008.

[56] J. Hendrix, J. Meseguer, and H. Ohsaki, “A sufficient completeness checker for linear order-sorted
specifications modulo axioms,” in Automated Reasoning, Third International Joint Conference, IJCAR
2006, 2006, pp. 151–155.

[57] J. D. Hendrix, “Decision procedures for equationally based reasoning,” Ph.D. dissertation, University
of Illinois at Urbana-Champaign, 2008, http://hdl.handle.net/2142/10967.

175

https://doi.org/10.1016/j.jlamp.2015.06.001
http://tata.gforge.inria.fr/

[58] M. Clavel, J. Meseguer, and M. Palomino, “Reflection in membership equational logic, many-sorted
equational logic, Horn logic with equality, and rewriting logic,” Theoretical Computer Science, vol.
373, pp. 70–91, 2007.

[59] C. Rocha and J. Meseguer, “Constructors, sufficient completeness, and deadlock freedom of rewrite
theories,” in Proc. LPAR 2010, ser. Lecture Notes in Computer Science, vol. 6397. Springer, 2010,
pp. 594–609.

[60] W. S. Brainerd, “Tree generating regular systems,” 1969.

[61] S. Skeirik, A. Stefanescu, and J. Meseguer, “A constructor-based reachability logic for rewrite the-
ories,” University of Illinois Computer Science Department, Tech. Rep., March 2017, available at :
http://hdl.handle.net/2142/95770. To appear (shorter version) in Proc. LOPSTR 2107, Springer
LNCS 2018.

[62] A. R. Bradley and Z. Manna, The calculus of computation - decision procedures with applications to
verification. Springer, 2007.

[63] D. Kroening and O. Strichman, Decision Procedures - An Algorithmic Point of View, ser. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 2008.

[64] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli, “Satisfiability modulo theories,” in Handbook of
Satisfiability, A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, Eds. IOS Press, February
2009, vol. 185, ch. 26, pp. 825–885.

[65] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook of Model Checking, E. Clarke,
T. Henzinger, and H. Veith, Eds. Springer, 2014, (to appear).

[66] C. Barrett, I. Shikanian, and C. Tinelli, “An abstract decision procedure for satisfiability in the theory
of inductive data types,” Journal on Satisfiability, Boolean Modeling and Computation, vol. 3, pp.
21–46, 2007.

[67] S. Krstic, A. Goel, J. Grundy, and C. Tinelli, “Combined satisfiability modulo parametric theories,”
in Proc. TACAS 2007, vol. 4424. Springer LNCS, 2007, pp. 602–617.

[68] A. Armando, S. Ranise, and M. Rusinowitch, “A rewriting approach to satisfiability procedures,” Inf.
Comput., vol. 183, no. 2, pp. 140–164, 2003.

[69] C. Dross, S. Conchon, J. Kanig, and A. Paskevich, “Adding Decision Procedures to SMT Solvers
using Axioms with Triggers,” Journal of Automated Reasoning, 2016, accepted for publication.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-01221066

[70] M. Clavel, F. Durán, S. Eker, J. Meseguer, and M.-O. Stehr, “Maude as a formal meta-tool,” in FM’99
— Formal Methods, ser. Springer LNCS, J. Wing and J. Woodcock, Eds., vol. 1709. Springer-Verlag,
1999, pp. 1684–1703.

[71] G. Rosu and T. Serbanuta, “An overview of the K semantic framework,” J. Log. Algebr. Program.,
vol. 79, no. 6, pp. 397–434, 2010.

[72] J. H. Siekmann, “Unification theory,” J. Symb. Comput., vol. 7, no. 3/4, pp. 207–274, 1989.

[73] J.-P. Jouannaud and C. Kirchner, “Solving equations in abstract algebras: A rule-based survey of
unification.” in Computational Logic - Essays in Honor of Alan Robinson. MIT Press, 1991, pp.
257–321.

[74] F. Baader and J. H. Siekmann, “Unification theory,” in Handbook of Logic in Artificial Intelligence
and Logic Programming, Volume 2. Oxford University Press, 1994, pp. 41–126.

[75] F. Baader and W. Snyder, “Unification theory,” in Handbook of Automated Reasoning (in 2 volumes).
Elsevier and MIT Press, 2001, pp. 445–532.

176

https://hal.archives-ouvertes.fr/hal-01221066

[76] J.-M. Hullot, “Canonical forms and unification,” in Proc. Fifth Conference on Automated Deduction,
ser. LNCS. Springer, 1980, vol. 87, pp. 318–334.

[77] J.-P. Jouannaud, C. Kirchner, and H. Kirchner, “Incremental construction of unification algorithms
in equational theories,” in Proc. ICALP’83. Springer LNCS 154, 1983, pp. 361–373.

[78] J. Meseguer and P. Thati, “Symbolic reachability analysis using narrowing and its application to the
verification of cryptographic protocols,” J. Higher-Order and Symbolic Computation, vol. 20, no. 1–2,
pp. 123–160, 2007.

[79] F. Baader and K. U. Schulz, “Combination techniques and decision problems for disunification,” Theor.
Comput. Sci., vol. 142, no. 2, pp. 229–255, 1995.

[80] J. Meseguer and S. Skeirik, “Equational formulas and pattern operations in initial order-sorted alge-
bras,” in Proc. LOPSTR 2015, M. Falaschi, Ed., vol. 9527. Springer LNCS, 2015, pp. 36––53.

[81] J. Giesl and D. Kapur, “Decidable classes of inductive theorems,” in Proc. IJCAR 2001, vol. 2083.
Springer LNCS, 2001, pp. 469–484.

[82] J. Giesl and D. Kapur, “Deciding inductive validity of equations,” in Proc. CADE 2003, vol. 2741.
Springer LNCS, 2003, pp. 17–31.

[83] S. Falke and D. Kapur, “Rewriting induction + linear arithmetic = decision procedure,” in Proc.
IJCAR 2012, vol. 7364. Springer LNCS, 2012, pp. 241–255.

[84] T. Aoto and S. Stratulat, “Decision procedures for proving inductive theorems without induction,” in
Proc. PPDP2014. ACM, 2014, pp. 237–248.

[85] K. Bae and J. Meseguer, “Model checking linear temporal logic of rewriting formulas under localized
fairness,” Sci. Comput. Program., vol. 99, pp. 193–234, 2015.

[86] K. Futatsugi, “Fostering proof scores in CafeOBJ,” in Proc. ICFEM 2010, vol. 6447. Springer LNCS,
2010, pp. 1–20.

[87] J. Meseguer, “Generalized rewrite theories, coherence completion, and symbolic methods,” 2019, to
appear in Journal of Logical and Algebraic Methods in Programming.

[88] S. Skeirik and J. Meseguer, “Metalevel algorithms for variant satisfiability,” J. Log. Algebr. Meth.
Program., vol. 96, pp. 81–110, 2018.

[89] C. A. R. Hoare, “An axiomatic basis for computer programming,” Commun. ACM, vol. 12, no. 10,
pp. 576–580, 1969.

[90] G. Rosu and A. Stefanescu, “From Hoare logic to matching logic reachability,” in FM, ser. Lecture
Notes in Computer Science, D. Giannakopoulou and D. Méry, Eds., vol. 7436. Springer, 2012, pp.
387–402.

[91] J. C. Reynolds, “Separation logic: A logic for shared mutable data structures,” in LICS 2002. IEEE,
2002, pp. 55–74.

[92] J. Meseguer and G. Roşu, “The rewriting logic semantics project,” Theoretical Computer Science, vol.
373, pp. 213–237, 2007.

[93] C. Ellison and G. Rosu, “An executable formal semantics of C with applications,” in POPL, J. Field
and M. Hicks, Eds. ACM, 2012, pp. 533–544.

[94] G. Dowek, T. Hardin, and C. Kirchner, “Theorem proving modulo.” J. Autom. Reasoning, vol. 31,
no. 1, pp. 33–72, 2003.

[95] P. Viry, “Adventures in sequent calculus modulo equations,” Electr. Notes Theor. Comput. Sci.,
vol. 15, pp. 21–32, 1998. [Online]. Available: http://dx.doi.org/10.1016/S1571-0661(05)82550-2

177

http://dx.doi.org/10.1016/S1571-0661(05)82550-2

[96] C. Rocha and J. Meseguer, “Theorem proving modulo based on boolean equational procedures,” in
Proc. RelMiCS 2008, vol. 4988. Springer LNCS, 2008, pp. 337–351.

[97] F. Durán and P. C. Ölveczky, “A guide to extending full maude illustrated with the implementation
of real-time maude,” Electronic Notes in Theoretical Computer Science, vol. 238, no. 3, pp. 83 – 102,
2009.

[98] F. Durán, S. Eker, S. Escobar, N. Mart́ı-Oliet, J. Meseguer, and C. L. Talcott, “Associative unification
and symbolic reasoning modulo associativity in maude,” in Proc. Rewriting Logic and Its Applications
- 12th International Workshop, WRLA 2018, ser. Lecture Notes in Computer Science, V. Rusu, Ed.,
vol. 11152. Springer, 2018, pp. 98–114.

[99] G. Rosu and A. Stefanescu, “Checking reachability using matching logic,” in Proc. OOPSLA 2012.
ACM, 2012, pp. 555–574.

[100] S. Skeirik, A. Stefanescu, and J. Meseguer, “A constructor-based reachability logic for rewrite theo-
ries,” in Proc. Logic-Based Program Synthesis and Transformation - 27th International Symposium,
LOPSTR 2017, ser. Lecture Notes in Computer Science, vol. 10855. Springer, 2017, pp. 201–217.

[101] C. Rocha, J. Meseguer, and C. A. Muñoz, “Rewriting modulo SMT and open system analysis,” Journal
of Logic and Algebraic Methods in Programming, vol. 86, pp. 269–297, 2017.

[102] B. Moore, “Coinductive program verification,” Ph.D. dissertation, University of Illinois at Urbana-
Champaign, 2016, http://hdl.handle.net/2142/95372.

[103] D. Lucanu, V. Rusu, and A. Arusoaie, “A generic framework for symbolic execution: A coinductive
approach,” J. Symb. Comput., vol. 80, pp. 125–163, 2017.

[104] Ştefan Ciobâcă and D. Lucanu, “A coinductive approach to proving reachability properties in logically
constrained term rewriting systems,” in Proc. IJCAR 2018, ser. Lecture Notes in Computer Science,
vol. 10900. Springer, 2018, pp. 295–311.

[105] J. Goguen, “OBJ as a theorem prover with application to hardware verification,” in Current Trends
in Hardware Verification and Automated Theorem Proving, P. Subramanyam and G. Birtwistle, Eds.
Springer-Verlag, 1989, pp. 218–267.

[106] K. Futatsugi, “Generate & check method for verifying transition systems in cafeobj,” in Software,
Services, and Systems - Essays Dedicated to Martin Wirsing on the Occasion of His Retirement from
the Chair of Programming and Software Engineering, ser. Lecture Notes in Computer Science, R. De
Nicola and R. Hennicker, Eds., vol. 8950. Springer, 2015, pp. 171–192.

[107] D. Gâinâ, D. Lucanu, K. Ogata, and K. Futatsugi, “On automation of ots/cafeobj method,” in Specifi-
cation, Algebra, and Software - Essays Dedicated to Kokichi Futatsugi, ser. Lecture Notes in Computer
Science, S. Iida, J. Meseguer, and K. Ogata, Eds., vol. 8373. Springer, 2014, pp. 578–602.

[108] A. Riesco and K. Ogata, “Prove it! inferring formal proof scripts from cafeobj proof scores,” ACM
Trans. Softw. Eng. Methodol., vol. 27, no. 2, pp. 6:1–6:32, 2018.

[109] C. Rocha and J. Meseguer, “Proving safety properties of rewrite theories,” 2011, in Proc. CALCO
2011, Springer LNCS 6859, 314-328.

[110] C. Rocha, “Symbolic reachability analysis for rewrite theories,” Ph.D. dissertation, University of Illinois
at Urbana-Champaign, 2012.

[111] C. Rocha and J. Meseguer, “Mechanical analysis of reliable communication in the alternating bit
protocol using the Maude invariant analyzer tool,” in Specification, Algebra, and Software - Essays
Dedicated to Kokichi Futatsugi, ser. Lecture Notes in Computer Science, vol. 8373. Springer, 2014,
pp. 603–629.

178

[112] S. Chen, J. Meseguer, R. Sasse, H. J. Wang, and Y.-M. Wang, “A systematic approach to uncover
security flaws in gui logic,” in IEEE Symposium on Security and Privacy. IEEE, 2007, pp. 71–85.

[113] S. Tang, H. Mai, and S. T. King, “Trust and protection in the illinois browser operating system,” in
9th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2010, October 4-6,
2010, Vancouver, BC, Canada, Proceedings. USENIX Association, 2010, pp. 17–32.

[114] S. Tang, “Towards secure web browsing,” Ph.D. dissertation, University of Illinois at Urbana-
Champaign, 2011, 2011-05-25, http://hdl.handle.net/2142/24307.

[115] R. Sasse, “Security models in rewriting logic for cryptographic protocols and browsers,” Ph.D. disser-
tation, University of Illinois at Urbana-Champaign, 2012, http://hdl.handle.net/2142/34373.

[116] R. Sasse, S. T. King, J. Meseguer, and S. Tang, “IBOS: A correct-by-construction modular browser,”
in FACS 2012, ser. Lecture Notes in Computer Science, vol. 7684. Springer, 2013, pp. 224–241.

[117] J. Meseguer, “Order-sorted rewriting and congruence closure,” in Proc. FOSSACS 2016, ser. Lecture
Notes in Computer Science, vol. 9634. Springer, 2016, pp. 493–509.

[118] J. Meseguer, “A logical theory of concurrent objects and its realization in the Maude language,” in Re-
search Directions in Concurrent Object-Oriented Programming, G. Agha, P. Wegner, and A. Yonezawa,
Eds. MIT Press, 1993, pp. 314–390.

[119] J. Meseguer, “Generalized rewrite theories, coherence completion and symbolic methods,” University of
Illinois Computer Science Department, Tech. Rep. http://hdl.handle.net/2142/102183, December
2018.

[120] S. Chen, D. Ross, and Y.-M. Wang, “An analysis of browser domain-isolation bugs and a light-weight
transparent defense mechanism,” in ACM Conference on Computer and Communications Security.
ACM, 2007, pp. 2–11.

[121] J. Schwenk, M. Niemietz, and C. Mainka, “Same-origin policy: Evaluation in modern browsers,” in
26th USENIX Security Symposium (USENIX Security 17). Vancouver, BC: USENIX Association,
2017. [Online]. Available: https://www.usenix.org/conference/usenixsecurity17/technical-sessions/
presentation/schwenk pp. 713–727.

[122] G. Klein and H. Tuch, “Towards verified virtual memory in l4,” TPHOLs Emerging Trends, vol. 4,
p. 16, 2004.

[123] R. Kolanski and G. Klein, “Formalising the l4 microkernel api,” in Proceedings of the 12th Computing:
The Australasian Theroy Symposium-Volume 51. Australian Computer Society, Inc., 2006, pp. 53–68.

[124] JavaScript Guide (1.2). Netscape Communications Corporation, 1997, originally http://developer.
netscape.com/docs/manuals/communicator/jsguide4/index.htm; accessed at https://www.cs.rit.edu/
„atk/JavaScript/manuals/jsguide/.

[125] A. Barth, C. Jackson, and J. C. Mitchell, “Securing frame communication in browsers,” Communica-
tions of the ACM, vol. 52, no. 6, pp. 83–91, 2009.

[126] C. Jackson and A. Barth, “Beware of finer-grained origins.” Web, 2008.

[127] C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner, “Dynamic pharming attacks and locked same-origin
policies for web browsers,” in Proceedings of the 14th ACM conference on Computer and communica-
tions security. ACM, 2007, pp. 58–71.

[128] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell, “Protecting browser state from web privacy
attacks,” in Proceedings of the 15th international conference on World Wide Web. ACM, 2006, pp.
737–744.

179

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schwenk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schwenk
http://developer.netscape.com/docs/manuals/communicator/jsguide4/index.htm
http://developer.netscape.com/docs/manuals/communicator/jsguide4/index.htm
https://www.cs.rit.edu/~atk/JavaScript/manuals/jsguide/
https://www.cs.rit.edu/~atk/JavaScript/manuals/jsguide/

[129] L.-S. Huang, Z. Weinberg, C. Evans, and C. Jackson, “Protecting browsers from cross-origin
css attacks,” in Proceedings of the 17th ACM Conference on Computer and Communications
Security, ser. CCS ’10. New York, NY, USA: ACM, 2010. [Online]. Available: http:
//doi.acm.org/10.1145/1866307.1866376 pp. 619–629.

[130] R. Wang, L. Xing, X. Wang, and S. Chen, “Unauthorized origin crossing on mobile platforms:
Threats and mitigation,” in Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, ser. CCS ’13. New York, NY, USA: ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516727 pp. 635–646.

[131] M. Bugliesi, S. Calzavara, and R. Focardi, “Formal methods for web security,” Journal of Logical and
Algebraic Methods in Programming, vol. 87, pp. 110–126, 2017.

[132] L. Bauer, S. Cai, L. Jia, T. Passaro, M. Stroucken, and Y. Tian, “Run-time monitoring and formal
analysis of information flows in chromium.” in NDSS, 2015.

[133] A. Bohannon and B. C. Pierce, “Featherweight firefox: formalizing the core of a web browser,” in
Proceedings of the 2010 USENIX conference on Web application development. Usenix Association,
2010, pp. 11–11.

[134] A. Bohannon, Foundations of web script security. Citeseer, 2012.

[135] D. Jang, Z. Tatlock, and S. Lerner, “Establishing browser security guarantees through formal shim
verification,” in Presented as part of the 21st tUSENIXu Security Symposium (tUSENIXu Security
12), 2012, pp. 113–128.

[136] D. Gollmann, “Problems with same origin policy: Know thyself,” in Security Protocols XVI. Berlin,
Heidelberg: Springer, 2011, pp. 84–85.

[137] D. F. Some, N. Bielova, and T. Rezk, “On the content security policy violations due to the same-origin
policy,” ser. WWW ’17, Republic and Canton of Geneva, Switzerland, 2017, pp. 877–886.

[138] A. Rubio, “Automated deduction with constrained clauses,” Ph.D. dissertation, Universitat Politècnica
de Catalunya, 1994.

[139] F. Durán, S. Lucas, and J. Meseguer, “Termination modulo combinations of equational theories,” in
Frontiers of Combining Systems, 7th International Symposium, FroCoS 2009, Trento, Italy, September
16-18, 2009. Proceedings, ser. Lecture Notes in Computer Science, vol. 5749. Springer, 2009, pp. 246–
262.

[140] R. Gutiérrez, S. Skeirik, and J. Meseuger, “Maude termination assistant,” in Preproceedings of WRLA
2018, Thessaloniki, Greece, April 2018 (distributed in electronic form by the ETAPS 2018 organizers);
Proceedings version to appear in LNCS.

[141] F. Durán, J. Meseguer, and C. Rocha, “Proving ground confluence of equational specifications
modulo axioms,” in Rewriting Logic and Its Applications - 12th International Workshop, WRLA
2018, Held as a Satellite Event of ETAPS, Thessaloniki, Greece, June 14-15, 2018, Proceedings, 2018,
to appear in Journal of Logic and Algebraic Methods in Programming 2020. [Online]. Available:
https://doi.org/10.1007/978-3-319-99840-4 11 pp. 184–204.

180

http://doi.acm.org/10.1145/1866307.1866376
http://doi.acm.org/10.1145/1866307.1866376
http://doi.acm.org/10.1145/2508859.2516727
https://doi.org/10.1007/978-3-319-99840-4_11

	CHAPTER 1 Introduction
	CHAPTER 2 Preliminaries
	Order-Sorted Algebra
	First-Order Equational Formulas
	Signature Morphisms

	Rewriting Logic
	Rewriting as Equational Deduction
	Rewriting as Concurrent Computation

	Maude Syntax

	CHAPTER 3 Pattern Operations
	Introduction
	The # Signature Transformation
	Variations on the # Theme

	Equational Formulas in Initial Order-Sorted Algebras
	Pattern Operations in Initial Order-Sorted Algebras
	Many- and Order-Sorted Pattern Difference Algorithms
	Correctness of the Order-Sorted Pattern Difference Algorithm
	Linear Pattern Languages as Regular Tree Languages

	Membership Constraints as Equational Formulas
	Implementation and Experiments
	Experimental Comparison of the Many- and Order-Sorted Difference Algorithms

	Applications and Examples
	Checking Sufficient Completeness
	Eliminating the otherwise Feature
	Invariant Specification and Verification

	Related Work and Conclusions

	CHAPTER 4 Metalevel Algorithms for Variant Satisfiability
	Introduction
	Variant Satisfiability in a Nutshell
	The Variant Satisfiability Algorithm and its Subalgorithms

	Variant Unification and Variant Satisfiability
	Variant Satisfiability Algorithm

	Metalevel Algorithms for Variant Satisfiability
	OS-Compactness and Satisfiability
	Constructor Variants and Constructor Unifiers
	Optimizing Constructor Variant and Unifier Generation
	Descent Maps
	Variant Satisfiability Examples

	Reflective Implementation of Variant Satisfiability
	Related Work and Conclusions

	CHAPTER 5 Constructor-Based Reachability Logic
	Introduction
	Rewriting Logic in a Nutshell
	Reachability Logic in a Nutshell
	The Invariant Paradox
	Chapter Overview
	A Running Example

	Constrained Constructor Pattern Predicates
	Constrained Constructor Pattern Operations

	Constructor-Based Reachability Logic
	Invariants, Co-Invariants, and Never-Terminating Systems
	Relationships to Hoare Logic and Universally Quantified LTL

	Reachability Logic's Inference System
	The Split, Case Analysis and Substitution Auxiliary Rules
	A Simple Example
	Revisiting QLOCK

	Prototype Implementation and Experiments
	Counter Proof Example
	QLOCK Proof Example
	Other Examples

	Related Work and Conclusions
	Related Work
	Conclusions

	CHAPTER 6 IBOS Case Study
	Introduction
	Object-Based Rewrite Theories
	Proving Inductive Invariants DBLP:conf/lopstr/SkeirikSM17,GRT-coh-compl-symb-meth-TR.

	IBOS and its Security Properties
	IBOS System Specification
	IBOS Security Properties Specification

	Proof of IBOS Security Properties
	Related Work and Conclusions

	CHAPTER 7 Conclusions and Future Work
	APPENDIX A Reachability Logic Tool Command Grammar
	APPENDIX B Auxiliary Proof Techniques
	Introduction
	Proving Termination via Axiom-Compatible RPOs
	Proving Sufficient Completeness/Ground Convergence Hierarchically
	Introduction to Sufficient-Completeness and Ground Confluence Checking
	Hierarchical Proof System for Ground Convergence and Sufficient Completeness

	Proving Completeness of Variant Unification in an FVP Subtheory
	Proving Validity using Contextual Rewriting

	APPENDIX C Omitted Proofs from Chapter 4
	Auxiliary Lemmas for Section 4.3.1
	Sort Emptiness
	Sort Finiteness

	Auxiliary Lemmas for Section 4.3.2

	APPENDIX D Omitted Proofs from Chapter 5
	APPENDIX E Omitted Proofs from Chapter 6
	Introduction
	IBOS Convergence/Sufficient Completeness Proof Strategy
	IBOS Convergence/Sufficient Completeness Proof Examples
	Example Sufficient Completeness Proof
	Example Ground Local Confluence Proof
	Example Application of Variant Solveability Lemma

	IBOS Invariant Sufficiency Proof

	REFERENCES

