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ABSTRACT

The operational integrity of the infrastructure systems is critical for a nation

state’s economic and security interests. Such systems rely on automation to

perform complex control tasks to avoid malfunction caused by human error.

However, such automation requires coordination of their components. Such

coordination relies on several guarantees of safety and performance from their

underlying cyber networks. It is challenging to provide such guarantees us-

ing traditional networks due to their rigid feature set and distributed, opaque

and non-standard control interfaces. The central goal of this dissertation is

to develop a set of design tools that use network programmability to achieve

end-to-end delay, access control and resiliency guarantees for critical infras-

tructure (CI) applications. We propose and evaluate the architecture and

design of several tools to address these guarantees singularly and simultane-

ously.

With the standardized control and data-planes, the computational analysis

of the centralized network configurations has emerged as a powerful approach

for solving a variety of problems. We used this approach in one of our analysis

tools to simultaneously validate access control and resilience of networks. We

also used an analytic approach to assess the resiliency of CI network with

the use of metrics computed by using Monte Carlo methods. To that end,

we built a data-plane simulator to enable such computation.

Furthermore, it is now feasible to synthesize desired behavior in a pro-

grammable CI network to meet the performance and resilience goals for in-

dividual application flows. We used the synthesis approach to build a tool

that uses efficient centralized algorithms to synthesize control-plane config-

uration resulting in flows meeting their end-to-end delay deadlines. We also

demonstrate a framework that uses synthesis at the intersection of control

and data planes to implement network coding to achieve seamless resiliency

for network flows.
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CHAPTER 1

INTRODUCTION

1.1 Motivations

Modern life is anchored in the seamless operation of infrastructure systems.

The operational integrity of such systems is at the heart of a nation state’s

economic and/or security interests [1] and consequently they are designated

as critical infrastructure (CI) [2] [3]. CI systems are classified into various

sectors and range from those directly interacting with the daily life of their

end-users (e.g. power grid, wastewater treatment plants, financial networks)

to sectors that enable other sectors in the wider economy (e.g. advanced

manufacturing or emergency services). These systems increasingly rely on

computerized automation to perform the critical control tasks because it

makes them less prone to faults caused by human mistakes.

Hence, such automation systems inevitably require using a computer net-

work to coordinate their various components and therein lies the biggest

threat to them. For example, the modern power grid relies on sensing and

control units communicating over a cyber network to derive smart outcomes

for the utilities, generators and consumers and avoid blackouts [4]. Similarly,

advanced industrial control systems use cyber networks to orchestrate phys-

ical units (e.g. robots, assembly lines) to increase productivity and reduce

losses. These networks have the following distinct requirements:

• Security: CI systems are constantly under attack [5] [6]. Some of these

threats are mitigated by imposing access-control using firewalls. Some

CI networks (e.g. power grid networks, hospital computer networks)

undergo routine audits [7] [8] of their firewall configuration to deter-

mine if the critical assets are adequately protected. However, continued

successful attacks have demonstrated the inadequacy of audit processes

to secure these networks. Furthermore, due to the possibility of human
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errors in the design process [9], automated tools are required to validate

network device configurations to ensure that the access control on such

networks is correctly implemented.

• Resilience: CI systems require that their networks continue to op-

erate seamlessly even when a subset of network devices or links fail.

When such failures occur, the routing of packets needs to adapt so as

to avoid using the failed components of the network while using the

least amount of redundancy. However, such efficient adaptation must

occur at time-scales that necessitate making decisions on locally on the

network device [10].

• Bandwidth and End-to-End Delay: CI systems need guaranteed

bandwidth and upper-bound on end-to-end delays for network flows

[10]. Historically this has been achieved by overprovisioning of net-

work and use of specialized hardware (e.g., AFDX in avionics [11]).

More recently, standards bodies have also tried to develop standards

for such special-purpose hardware [12] [13]. However, overprovisioning

the resources and the use of specialized hardware can be prohibitively

expensive. Hence, design tools are required that can use commodity

hardware and perform resource allocation on that hardware such that

the network meets its performance guarantees.

In order to meet the requirements described above simultaneously, the net-

works have to grow more feature-rich. More features require a more precise

control of the behavior of individual network devices (e.g. firewall, switches

etc.) that constitute the network. However, traditional networking devices

have a rigid feature set. The APIs to control their features are either non-

existent or non-standardized. Consequently, it has been hard to evolve the

capabilities of the networks without operational disruptions. Historically, it

has required clever mechanisms on the part of researchers to overcome these

obstacles [14]. This may finally be changing with the advent of programmable

networks [15] [16].
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1.2 Programmable Networks & Critical Infrastructure

There are various interpretations of what programmable networks are. How-

ever, for the purposes of this dissertation, this term refers to the networks

where intent of the network designer or operator is programmed onto the net-

work using a collection of application programming interfaces (APIs). Such

networks comprise of two distinct architectural planes, each of which can be

modified using the API it exposes. The control-plane decides what functions

each network device (called switch) performs whereas the data-plane deter-

mines how the function is performed at each switch. Naturally, the data-

plane is located at the switches to maintain speed for making per-packet

decisions whereas a logically centralized controller houses the control-plane.

The controller and the switch are able to communicate with each other se-

curely using a secure API. Both switches and controllers are typically built

on top of commodity off-the-shelf (COTS) hardware.

In the last decade, network programmability has permeated in the design

and operation of various types of networks. This fundamental shift away

from the distributed and proprietary control-plane architecture is driven by

a combination of open software and standardization efforts. Open-source

control-plane has been developed and adopted by consortia of users, academia

and equipment vendors to promote software reuse and robustness [17] [18].

Standards such as OpenFlow [19] and P4 [20] have enabled an unprecedented

data-plane flexibility. This combination has allowed proliferation of new

features in production networks in data centers [21], wide-area networks [22],

and the internet exchange points [23].

Similarly, programmability has profound implications for the CI networks.

It allows exploration of new design trade-offs to meet their unique require-

ments. However, despite there being many potentially applicable use-cases,

the networks in CI have been slow to adopt programmability. One example

of such a use case is the NERC access-control regulations [7] for the critical

assets in the Electronic Security Perimeter (ESP). The regulation requires

limited and well-documented access to these hosts from the power utility’s

corporate network. However, despite there being financial penalties when a

violation is detected, several utilities have been found to violate this regula-

tion [24] as recently as in 2018. While the problem of enforcing an access-

control policy in real-time has been solved with the use of programmable

3



control-plane [16] [25], the CI network operators need regulatory compliance

for control-plane output during the design phase before the network is put in

production.

The design emphasis of CI networks must not be on simply using new

features and mechanisms to solve such use-cases. Historically, addition of

new features and mechanisms has caused networks to become more com-

plex [26]. One way to tame this complexity is for networks to become more

programmable because it provides operational flexibility. However, such flex-

ibility does will not automatically guarantee that a CI network will meet its

intended requirements. This dissertation is an attempt at bridging the gap

between the flexibility made available by programmability and the guarantees

required by the CI networks.

1.3 Dissertation Objective

In order to provide guarantees in CI networks, we focus on the design phase

prior to the implementation of a network. This is also when capacity plan-

ning, critical asset designations etc. are performed. The central goal of this

dissertation is to develop a set of design tools that guarantee a CI network

shall meet its access-control, end-to-end delay and resilience requirements.

There are two distinct approaches that our tools take to exploit network

programmability. One is the analytic approach, whereby a snapshot of the

logically centralized state of the network is analyzed to validate that it meets

certain requirements. Alternatively, there is the synthetic approach, whereby

the network state is synthesized to meet its requirements in a way which is

correct by design. The next sub-section summarizes our contributions.
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1.4 Summary of Contributions

As stated previously, our contributions are a series of design tools that target

a set of requirements that are unique to CI networks. Each requirement

concerns a different behavior of the network and thus requires its own model.

For example, for access-control, the packet transformations that occur within

a switch are crucial, whereas they may not have direct implications for the

data rate at the output of the switch. Hence, we developed each design

tool to encapsulate an appropriate model to represent the network for the

particular requirement it addresses. Besides the models, these tools also use

the appropriate algorithms to explore various design trade-offs. These trade-

offs are not novel, however, the rise of network programmability has made it

possible to explore them very cost-effectively. For example, if a packet flow

is to meet its end-to-end delay deadline, there is a fundamental trade-off

between the flow rates and total available network flow. Our models and

algorithms formalize these trade-offs. Finally, we evaluate the tools using

simulations and empirical experiments. Our contributions are summarized

in Table 1.1.

Table 1.1: Summary of contributions: The numbers in the cells refer to the
list below. The shaded cells represent existence of previous work that has
addressed the problem.

Guarantee Analysis Synthesis

Access Control (1)(3)

Failure Resiliency (1)(2)(3)(6) (4)

Bandwidth and Delay Guarantee (5)

Following is the list of publications from this work:

1. Rakesh Kumar, David M. Nicol: Validating Security and Resiliency

in Software Defined Networks for Smart Grids, IEEE Transactions on

Smart Grid (in review)

2. David M. Nicol and Rakesh Kumar: Efficient Monte Carlo Evalua-

tion of SDN Resiliency, Proceedings of the 2016 annual ACM Confer-

ence on SIGSIM Principles of Advanced Discrete Simulation. ACM,

2016.
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3. Rakesh Kumar and David M. Nicol: Validating Resiliency in Soft-

ware Defined Networks for Smart Grids, IEEE International Conference

on Smart Grid Communications, 2016.

4. Rakesh Kumar, Monowar Hasan, Smruti Padhy, Konstantin Evchenko,

Lavanaya Piramanayagam, Sibin Mohan, Rakesh B. Bobba: End-to-

End Network Delay Guarantees for Real-Time Systems using SDN,

IEEE Real-Time Systems Symposium, 2017.

5. Rakesh Kumar, Vignesh Babu, David M. Nicol: Network Coding for

Critical Infrastructure Networks (Extended Abstract), IEEE Interna-

tional Conference on Network Protocols, 2018.

6. David M. Nicol, Rakesh Kumar: SDN Resiliency to Controller Fail-

ure in Mobile Contexts, Winter Simulation Conference, 2019.

1.4.1 Validating Access Control and Resiliency

CI networks are required to provide connectivity that is resilient to link and

device failures while simultaneously complying with an access control policy.

The control-plane is responsible for implementing these requirements by way

of generating the network’s forwarding plane state. However, these require-

ments can be in conflict with each other because the resiliency might require

using paths that are not desirable due to the access control policy. Thus,

the flow rules synthesized by the control-plane may inadvertently choose one

requirement over the other, thus leading to catastrophic failures and/or se-

curity breaches.

Our first contribution is a policy specification language that allows a user

to specify their requirements. The specification allows expression of various

types of requirements simultaneously. These requirements include access-

control, resiliency from link and device failures, path lengths and link ex-

clusion for certain flows. In order to ensure that the flow rules meet their

network’s requirements, they must be validated against a given policy. This

dissertation contributes two distinct methods of performing such validation.

We perform two types of validation using distinct models motivated by

differing set of requirements. In the first method, we perform exhaustive

validation under all possible packets. However, each flow rule can address
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an arbitrary set of packets and has a priority and a set of actions associated

with it. Hence, the number of ways flow rules can be generated is very large.

This results in a combinatorial explosion in the number of possibilities that

need to be validated. In order to tame this resulting complexity, we used

header-spaces to represent a collection of packets and a directed graph to

represent the flow rules and ports of the switches. While using this methods

results in exhaustive validation, it can be computationally expensive. Hence,

we used another method where we model individual packets and simulate the

behavior of switches. While both of these methods are applicable for general

networks, we use OpenFlow as the reference standard.

Finally, beyond statically validating a specific policy, it is important to

quantify and characterize the nature of resiliency in a CI network using met-

rics. Again, due to the combinatorial explosion, these metrics are difficult to

measure analytically. Hence, this distribution contributes methods to mea-

sure them empirically against a network’s configuration using Monte Carlo

method. We contributed several mechanisms of doing this using both simu-

lation and exhaustive modeling described above.

1.4.2 Synthesizing for Bandwidth and Delay Guarantees

Applications in the CI networks need guarantees on the end-to-end delay for

packets in a flow. The flows in the CI networks frequently have a predictable

maximum traffic rate. The rate for an individual flow can be used to estimate

its worse-case network bandwidth requirement at each link in its path from

source to the destination. A flow’s end-to-end delay requirement will be met

if there is more bandwidth available at each link than what it needs and if the

total path length is small enough so that the cumulative per-hop processing

delay is less than its requirement.

Hence, providing a delay guarantee for each flow relies on the conservative

use of the available network bandwidth so that its end-to-end delay require-

ments are met even if every other flow in the system produces traffic at the

maximum rate for an extended period of time. Fundamentally, a network

designer needs to decide what paths a given set of flows must take and then

make the appropriate bandwidth allocations along these paths. Such gran-

ular allocation of bandwidth to an individual flow needs an open interface
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to each switch. The distributed control-plane does not provide such control.

Hence, traditionally, the most widely used mechanisms either use redundant

resources and/or specialized hardware.

However the programmable networks provide mechanisms to control the

bandwidth, and consequently the delay, for individual traffic flows. Our

approach to providing guarantees for end-to-end delay relies on such mech-

anisms. We solve a network-wide combinatorial optimization problem for

allocating resources for each flow at each switch port. The constraints for

each flow are its required bandwidth and delay. We use an NP-hard multi-

constraint problem (MCP) formulation which can be solved with a greedy

heuristic. Once the problem is solved, we enforce the solution by using the

switch API. We synthesize the flow rules and use a separate queues for each

individual flow to avoid interference between them. We also synthesize the

configuration for mapping the flow traffic to the appropriate queue and band-

width parameters for each queue at each switch.

1.4.3 Synthesizing for Resilience Guarantees

As noted above, applications in the CI networks need forwarding resilience

to failure events that cause the network topology to change due to link or

device failures. Such resilience implies that the packets in a given set of

flows continue to be delivered while the event occurs. When a distributed

control-plane is used, such an event results in routing table updates, and

consequently the packets that are in-transit are lost. Similarly, even with

the centralized control-plane and the use of fast-failover mechanism, there

are packet losses due to time taken by the switch to shift traffic from one

link to another. In either case, the effective forwarding state generated by

the control-plane needs to be updated in the event of a failure, resulting

in additional complexity in the control-plane. In the distributed control-

plane, this complexity is handled by distributed algorithms that share link-

state, while in the centralized control-plane, it is handled in a program that

considers all possible combinations of failure events.

Furthermore, some applications may require the resilience to be seamless,

so that not only does the network recover from a failure event, but there is no

interruption in packet delivery as the network goes through such a topological
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change. Most modern networking is based on the store-and-forward paradigm

so that the contents of a packet are either stored or forwarded by a network

device such as switch, router, firewall etc. However, the store-and-forward

paradigm cannot guarantee completely seamless packet delivery regardless

of the location of the control-plane unless a complete duplication of network

packets along multiple paths is used. This obviously leads to very inefficient

use of network resources.

Hence to guarantee seamless resiliency, in contrast to the prevalent store-

and-forward paradigm, we explored the use of algebraic coding across one or

more packets at the switches. This approach has been previously explored

in theory [27] [28], but its application has been limited to the application

layer in part due to the complexity and rigidity of ASIC design. However,

with the advent of programmable data-planes, it is now possible to use linear

network coding (NC) at the intermediate network nodes to meet resilience

requirements of the CI applications. To that end, we propose an architecture

that realizes linear NC in programmable networks by decomposing the linear

NC functions into the atomic coding primitives. We designed and imple-

mented the primitives using the features offered by the P4 ecosystem. In our

approach, a user modifies the data-plane and then uses the modified data-

plane in the control-plane. With this combination, we demonstrate that we

can synthesize flow rules that result in seamless resiliency when device/link

failures occur.

1.5 Dissertation Outline

The rest of this dissertation is organized as follows:

Chapter 2 introduces some preliminaries. Chapters 3 and 4 present the

use of the analytic approach: Chapter 3 discusses validation of access-control

and resilience guarantees in the configuration of CI programmable networks.

Chapter 4 presents our work that enables the use of Monte Carlo methods

to measure resiliency metrics.

Chapters 5 and 6 take a synthesis approach. Chapter 5 discusses our work

to synthesize a configuration that meets bandwidth and delay guarantees.

Chapter 6 describes our work to synthesize resilience guarantees using net-

work coding. Chapter 7 concludes and proposes directions of future work.
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CHAPTER 2

BACKGROUND

In this chapter, we provide a brief overview of the unique networking needs

of the applications that constitute the critical infrastructure systems. We

provide details about how the operational integrity of a CI system depends on

the continuous operation of its underlying communication network. Finally,

we introduce some background on programmable networks.

2.1 Critical Infrastructure Applications

Over the past few decades, digital technology has permeated the CI systems.

The most common example is the rise of supervisory control and data acqui-

sition (SCADA) systems in the power grid [29], oil refineries [30] and water

treatment plants [31]. There are multiple reasons for these trends motivated

by the needs of the specific system. However, a common thread is the use

of computers to perform programmable automation of the control mecha-

nisms to regulate system safety and performance while achieving economies

of scale.

Most CI systems are implemented as distributed cyber-physical systems

(CPS). They are often composed of multiple distributed applications that

coordinate their activity. Each distributed application controls an aspect of

the system operations. For example, in a power grid sub-station, there is an

application that controls the voltage on distribution lines. However, the grid

itself has many sub-stations and there are control applications that perform

load-balancing across multiple sub-stations and thus need to coordinate with

the sub-station level control applications. Each of these central and sub-

station level applications is divided in distributed software components that

perform functions such as collecting sensor measurements (sensors), running

the control algorithms (controller) and actuating on the control decisions
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(actuators). However, such coordination, both within an application and

among different applications, requires a robust communication network.

The rise of automation in the CI systems has coincided with an increased

use of standardized networking technology (e.g. TCP/IP). Both the appli-

cations and the communication network infrastructure have moved towards

standardization. CI applications use specially designed communication pro-

tocols. Often these protocols cover functionalities that span both transport

(L4) and network(L3) layers. Examples of such protocols include Modbus

[32], DNP3 [33] and IEC 61850 [34]. These protocols use both unicast and

multicast network flows for the control tasks. The protocols are interac-

tive. The most common pattern of messages involves a central control node

collecting some state from a set of sensors and dispatching commands to ac-

tuators. The communication can be triggered periodically or is event-driven

depending on the application.

However, due to the criticality and time-sensitivity of such tasks, the safe

operation of these protocols requires specific performance and security guar-

antees from their communication networks. This need for guarantees has led

to proliferation of specialized hardware and software. While the specifica-

tion of such hardware and software varies depending on the objectives of the

given CI application, there are three broad classes of requirements which are

common in a wide variety of CI applications. We present a brief overview of

these common requirements below.

2.1.1 End-to-End Delay and Bandwidth

For CI applications, it is crucial to be able to receive sensor readings and

dispatch commands to actuators within a very specific window of time. The

exact deadline for safe operation may vary depending on the application, but

the application does not have tolerance for additional delay as some other

applications such as video streaming might have. The optimal operation of

the application may be affected when its end-to-end delay requirement is not

met. For example, one of the causes of the 2003 Northeast blackout was

found to be lack of reliable real-time data for the control systems [4]. Hence,

due to the very nature of their objective, the CI applications have a key

requirement of the communication network, which is to provide guaranteed
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maximum end-to-end delay for a given bandwidth need.

In traditional networks, these requirements are codified in various stan-

dards for different CI applications. In some instances, power grid applica-

tions can require a worst-case end-to-end latency of 5 ms [10]. In traditional

networks, these requirements have been met by using specialized hardware

and/or conservative overprovisioning of network resources. While such con-

servative approaches are operationally expensive, they are also very opaque.

Such opacity makes it hard to understand the impact of a change in the

network on the CI system as a whole. Thus, it is not uncommon for network

designers to deploy a new layer of networking equipment for each new appli-

cation deployment while keeping the old and redundant gear operational as

well.

2.1.2 Access Control

Due to their criticality, the communication networks in CI systems are targets

for nation-state level adversaries [5] [6]. Such attacks have been shown to be

effective in disrupting the operations in a variety of recent events. Network

Access Control is the first line of defense against such attacks. Many CI

systems are required by regulatory bodies to have specific network access

control policies in place. For example, in the United States, the NERC-CIP

[7] standard defines a logical Electronic Security Perimeter (ESP) in the heart

of any power grid system and regulates access to the components in the ESP.

The violators of the standard are subject to fines [24].

In traditional networks, the operators are required to understand various

configuration languages and manually configure access control policies on

individual network devices such as firewalls and routers. This process is

widely known to be error prone [9].

2.1.3 Failure Resiliency

Like any other application, CI applications are disrupted when cyber net-

work component failures occur. However, some CI applications are uniquely

prone to cascading failures due to cyber-physical co-dependencies [35] [36].

For instance, a cyber network component in a power grid may be powered
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using the grid itself. Hence, when a cyber component goes down, it may

cause failures of other cyber components. Hence, it is common practice for

the communication network for such CI systems to be designed with the

necessary redundancy that anticipates various conditions.

In traditional networks, resiliency is provided by duplicating networks in

the most conservative case. Such redundancy, while effective, can incur large

operational and infrastructure overheads, especially if the network is not built

using commodity off-the-shelf (COTS) components. Furthermore, if such

redundancy is not used, the network relies on the convergence of a distributed

routing algorithm to resolve new paths after link or device failures. In general,

in internet-wide networks, such convergence is known to take arbitrarily long

time with no guarantees [37] [38].

2.2 Programmable Networks

Due to the interdependencies among the nodes in any computer network,

a total overhaul of the architecture of any network poses a great challenge.

Thus, transition of networks to become more programmable has been evolu-

tionary. This transition has been motivated by use-cases whose impact was

either limited in network sizes or represented minor changes to the network

architecture or both. The notion of reprogramming a computer network

dates to at least 1996. Motivated by the need for rapid innovation in the

network infrastructure, in their seminal work on Active Networking (AN),

Tennenhouse and Wetherhall proposed that packets themselves carry pro-

grams (called capsules) to modify the behavior of the intermediate network

devices [39]. By 2005, the first attempts to separate the control and data

planes were successfully demonstrated using systems known as SoftRouter

[40] and RCP [41]. While there are many reasons why these efforts did not

result in widespread adoption, one is a general lack of applications that may

need these advances. Only in the last decade has scalable data plane perfor-

mance been matched with appropriate standardization of the abstractions in

APIs.

The modern programmable networks consist of two disaggregated architec-

tural planes that have separate concerns [16] [42]: The control-plane decides

which packet forwarding and transformations occur at the switches, while the
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data-plane is responsible for actual implementation of such actions. These

planes are delineated such that the control-plane is centralized and is driven

by a global network state [40] [41] [43]. The data-plane is located on indi-

vidual switches and relies upon the control-plane for instructions to perform

per-packet operations. These two architectural planes communicate using a

southbound API. The control-plane applications communicate directly with

the control-plane using a northbound API. Following are more details about

each of these planes and their interfaces.

2.2.1 Control Plane

The control-plane decides what happens to packets when they arrive inside

the network. Such decisions include packet paths, packet scheduling deci-

sions, access control policy implementation etc. The control-plane itself is

further subdivided into a controller and a series of stand-alone applications

that implement specific functionalities.

Such division of labor allows independent evolution of various network

functions and reduces complexity. For example, in a distributed control-

plane, a variety of network functions require keeping track of the current

network topology and thus they end up duplicating the efforts. However, in

a centralized and programmable control-plane, the network state (including

the topology) is logically centralized and available to all the applications.

Thus, network functions which are implemented as control-plane applications

only need to focus on their core application logic.

2.2.2 Data Plane

The data-plane implements how the actions decided by the control plane

are applied to the packets when they arrive at an individual network node

(i.e. switch). The design of a data-plane needs to maintain what is known

as the line speed performance: that is, each packet is processed before the

next one arrives, even if the device is operated at its maximum capacity.

The programmable data-planes come in two varieties: they are either fixed-

function such as OpenFlow [19] or they are programmable using standard

interfaces such as the P4 language [20] [44]. The pertinent details of each
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Figure 2.1: Data planes: standardized (top) vs. programmable (bottom).

kind of data-plane are as follows:

Standardized Data Plane

A switch with a standardized data-plane contains a single table processing

pipeline and multiple physical ports as shown in top half of Figure 2.1. Pack-

ets arrive at one of the ports, and are processed by the pipeline comprised

of one or more flow tables. Each flow table contains rules ordered by their

priority. Each flow rule defines a matching condition, and an action taken if

the packet header satisfies the rule criteria. During the processing of a single

packet, these actions can modify the packet, forward it out of the switch, or

drop it. The number of tables, the set of match fields and the set of actions

that a switch can take are all fixed in the standardized data plane.

Rules are tested in decreasing order of priority until a matching rule is

found. A packet arriving at a switch is first matched against the rules in the

first table and assigned a set of actions to be applied at the end of the table

processing pipeline. The instructions in a matching rule in any table can

choose to manipulate this set and can also apply some actions to the packet

before it is processed by the next table in the pipeline. Each flow rule has

two parts:

• Match: A set of packet header field values that apply to the given

rule. Some are characterized by single values (e.g. VLAN ID: 1, or

TCP Destination Port: 80), others by a range (e.g. Destination IP
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Addresses: 10.0.0.0/8). If a packet header field is not specified then it

is considered to be a wildcard.

• Instructions Set: A set of actions applied by the flow rule to a match-

ing packet. Besides specifying a single output port for the packet,

the actions can specify a variety of parameters to perform fast-failover

and/or allocation of bandwidth to a particular flow. These parameters

include:

– List of Watch and Fail-over Ports: The switch can specify a

list of tuples of watch and output ports. The switch monitors the

liveness of the watch ports. The packet is sent out using the first

live port in the list.

– Queue References: Every OpenFlow switch is capable of provid-

ing isolation to traffic from other flows by enqueuing them on sepa-

rate queues on the egress port. Each queue has an associated QoS

configuration that includes, most importantly, the service rate for

traffic that is enqueued in it. The OpenFlow standard itself does

not provide mechanisms to create new queues and assumes that

they are predefined by the underlying architecture (e.g., hardware

chip); however, each flow rule can refer to a specific queue number

for a port, besides the OutputPort.

– Meters: Beyond the isolation provided by using queues, Open-

Flow switches are also capable of limiting the rate of traffic in a

given network flow by using objects called meters. Meters on a

switch are stored in a meter table and can be added/deleted by

using messages specified in OpenFlow specification. Each meter

has an associated metering rate. Each flow rule can refer to only

a single meter.

Programmable Data Plane

The P4 ecosystem has been gaining traction in both academia and industry

for implementing novel data-plane functions. It comprises an open-source

P416 language [20] [45] and the accompanying Portable Switch Architecture

(PSA) [46]. The ecosystem has accelerated the design and adoption of novel
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network functions by enabling fully programmable data-planes without com-

promising the line-speed performance of modern network devices.

Furthermore, the primary goal of the P4 ecosystem is to make data-planes

programmable by allowing expression of per-packet computations performed

on a network device. As such, it is not designed to enable network coding

applications. However, it does provide several features that make it well-

suited as a platform for implementing linear NC functions for failure resilience

and multicast rate enhancements. Unlike an OpenFlow switch, a switch with

a programmable data-plane contains separate table processing pipelines at

the ingress and egress. The pipelines are identical and the illustration in the

bottom of Figure 2.1 shows a simplified example of a pipeline in the PSA.

Below, we briefly describe some of the relevant features:

• Programmable Parsing: Unlike a standardized data plane, the pro-

grammable data-plane can parse arbitrary packet headers and extend

them as needed without needing to change the hardware. As illus-

trated in the bottom of Figure 2.1, each arriving packet is subject to

a programmable parser (left-most block) and corresponding deparser

(right-most block) immediately before it leaves.

• Customizable Packet Processing Pipelines: There are separate

ingress and egress pipelines on each PSA device which can be configured

from the control-plane. These pipelines are constructed using tables.

Each table has a set of fields (called its key) that determines the pack-

ets that match it. Each table also has associated C-like sub-routines

called actions. The actions can perform nearly arbitrary operations on

the packet headers including for example addition, multiplication and

XOR.

• Packet Cloning & Recirculation: Cloning makes copies of packets

on the egress pipeline, while recirculation sends the packets from the

egress pipeline to the ingress pipeline. Both of these features can be

used in tandem to generate a new packet for coding/decoding opera-

tions. Furthermore, since P4 does not have a primitive analogous to a

loop in imperative programming languages, packet cloning and recir-

culation can also be used to create one without any intervention from

end-hosts.
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• Registers: Registers are essentially global variables that can hold

global state independent of any specific packet in any given pipeline.

These registers can be used to drive state machines and implement data

structures that hold packets that are required to be coded.

• Extensibility: P4 allows extension of the core language by using a

construct called extern. Essentially, this construct allows another level

of flexibility to implement features that do not exist in the language.

Such flexibility may be crucial to any implementation of NC that goes

beyond simple linear codes.

2.2.3 Southbound Interface

The interface between control and data plane is called the southbound inter-

face. It is essentially a standardized [19] unicast TCP connection between

each switch and the controller. It is a bi-directional interface: the con-

troller sends instructions to switches and also receives current state from the

switches. Such state includes interface and flow counters. The controller and

switches also exchange periodic messages to establish liveness of the other

node. The switches also send link-layer updates (e.g. change in a link status

etc.) to the controller as needed.

The semantics of the information exchanged between the data and control

planes have evolved. When the first version of OpenFlow was released, the

focus was on demonstrating a proof-of-concept and hence the semantics were

simple: The controller sent flow rules down into a single table inside the

switch and read counters from the switches. However, with programmable

data-planes, the interface now includes capabilities to re-program the behav-

ior of the switch via the controller itself [44]. This includes changing how

many flow tables are available at the switch.

2.2.4 Northbound Interface

The interface between the individual control-plane application and the con-

solidated control-plane function is called a northbound interface. It is ex-

posed by the controller. There is no standardization around the semantics of

the northbound interfaces due to the variations in the functionalities of the
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individual controllers. However, these interfaces are typically built on top

of the secure HTTP protocol, and the use of specially designed application

layer protocol is avoided to allow the application logic to be written in a wide

variety of programming languages.

The northbound interface allows innovation in programmable network,

helping application designers to try new ideas without re-inventing the en-

tire control-plane software stack. Each design tool that we propose in this

dissertation uses the northbound API to perform different functions.
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CHAPTER 3

ANALYSIS: ACCESS AND CONTROL AND
RESILIENCY GUARANTEES

As described in Chapter 2, the programmable control plane provides flexible

switch-level mechanisms to respond to link and device failures. However,

the network-wide effect of the usage of these mechanisms may lead to vio-

lation of the administrative policies governing the smart grid network. In

order to guarantee that a network satisfies its requirements, its control-plane

state must be validated. Such validation requires careful modeling of the

control-plane state of the network and the impact of the failure events. The

automatic validation mechanism needs to take into account all possible com-

binations of packet header bits and the actions performed on them by each

switch. This can result in a very large state-space. While the prior work

[47] [48] has proposed state-space efficient abstractions for the analysis, it

does not provide mechanisms to simultaneously validate resiliency and secu-

rity properties of a given network. To that end, we propose an automated

validation mechanism that tractably validates the state of an network. Our

contributions are:

• A resilient routing policy (RRP) specification to express requirements

for smart grid communication networks that use fast failover packet

egress action. This specification allows simultaneous expression of re-

quirements pertaining to the resiliency and the security properties of

a network. We demonstrate the use of RRP with case studies in the

context of networked micro-grids and substations.

• Models that represent a snapshot of the network state and the packet

flows enabled by it. These models are extensions of our previous work

[49] and allow simultaneous exhaustive packet header and link failure

contingency analysis.

• Mechanisms to perform validation of policies expressed as RRP. These

mechanisms divide the validation in two phases of offline pre-computation
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of analysis state and subsequent querying of this state with validation

queries. Such division ensures that multiple queries pertaining to the

same snapshot of the network state are answered without performing

the exhaustive analysis from scratch, hence resulting in amortization

of validation time.

The rest of this chapter is organized as follows: Section 3.3 describes the

resilient routing policy specification with a concrete example; Section 3.4 de-

scribes our model; Section 3.5 defines data structures and algorithms that

implement our model and the policy validation mechanisms; Section 3.6 eval-

uates the performance and viability of performing exhaustive traffic analysis;

Section 3.7 demonstrates the use and scalability of our validation mechanism

using case studies.

3.1 Related Work

In traditional distributed control-plane networks, the errant behavior of a

network device is typically rooted in misconfiguration or a bug. Fireman

[50] is a firewall-specific static analysis tool that allows checking for incon-

sistencies in implementation of access control. Anteater [51] and Libra [52]

illustrate requirements validation by using only the data-plane state from

campus and data-center networks respectively. These tools parse the config-

uration and the data-plane state of heterogeneous devices; thus, individual

device models become bottlenecks to predicting overall network behavior.

The configuration languages on these devices evolve and these devices also

interact with each other using non-compatible, bug-ridden implementations

of protocols.

While the SDN architecture addresses some of the problems faced by the

distributed control-plane networks, the flexibility to program individual flows

can lead to behaviors that do not conform to the administrative policy. Kang

et al. [25] proposed that the entire network to be viewed as a big switch and

specification of policy for endpoints and paths that a subset of traffic takes

through the network. Kazemian et al. proposed that the network be viewed

as a rules graph and specification of policy in terms of traffic generators

and receivers by using a specialized language called flowexp [53]. However,
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neither of these semantics allow specification of behavior of the network when

the topology of the network changes.

For policy validation, Kazemian et al. developed an abstraction to rep-

resent a set of packets called Header Space [47]. They developed tools for

verification of requirements such as reachability, access control and loop de-

tection [53]. Similarly, Khurshid et al. developed an abstraction for repre-

senting commonalities in the traffic referred in the flow rules as trie-based

data structures [48]. However, both of these approaches validate an SDN

comprising of switches that are not capable of the fast failover mechanism.

This mechanism was added to the switch specification in the OpenFlow ver-

sion 1.3 [19] and allows choosing alternative ports for traffic on a switch when

a link fails without controller intervention. Our previous work [49] proposed

the port graph model that incorporates this mechanism and is agnostic to

a given switch specification. We extend this model and provide mechanisms

that anticipate the impact of the failure events and thus avoid any recompu-

tation of analysis state for a specific policy.

Finally, instead of validating the control-plane state of an SDN against a

stated policy, there are proposals for synthesizing the control-plane state that

can provide certain resiliency guarantees in a smart grid network by using

the fast-failover mechanism. Proposals by Sharma et al. [54], Aydeger, et

al. [55] and Gyllstrom et al. [56] use fast failover rules to provision paths

that have backups. However, these proposals do not consider provisioning of

simultaneous security guarantees.

3.2 The System Architecture

In order to perform exhaustive analysis, our approach requires access to

the logically centralized state of the network: the network topology and

the forwarding rules installed on switches. In the programmable networking

architecture, the controller is the purveyor of this state and makes it available

via a northbound API to be used by the applications. As illustrated in Figure

3.1, our prototype (called the Flow Validator) uses the northbound API to

access a current snapshot of the network state.
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Figure 3.1: A programmable network containing four switches connected in
a ring. Each switch also connects to the controller via a management port
(dashed line).

3.3 Resilient Routing Policy (RRP)

The cyber network for power grids is subject to unique, simultaneous re-

quirements of security and resiliency for access to the critical assets. Thus,

in order to state such requirements for the network supporting a power grid,

we propose a policy specification called resilient routing policy (RRP).

The RRP refers to the elements of the network topology such as ports,

links and switches. Each switch si is assigned a number i. A physical link

between the switches si and sj is denoted li,j. Each port pi,j refers to the port

number j on si. Formally, a policy P is a set of statements of expectations

from the network under consideration. Each statement specifies some aspect

of the intended behavior of the network. Given a set of events e, each policy

statement refers to a source zone (zi), a destination zone (zj), a set of packets

it pertains to (t) and a set of resiliency constraints (c) that are required to

be validated. Thus a policy is:

P = {s1, s2, ...sn}, where

si = (zi, zj, t, e, c) for i = 1, . . . , n,
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with further explanation of zones, traffic zones, events, and constraints below.

Zones (zi, zj)

A zone is a set of ports that a policy statement refers to. Recall the notation

that pi,j specifies a port on switch number i with port number j.

Traffic Set (t)

The traffic set is a set of field-value pairs (i, vi), where i is the field number

in the packet header, and each vi is a set of integer intervals, where each

interval is a pair of low and high values given by [lj, hj]. Thus, in a packet

header containing d fields, a traffic set is specified by:

vi = {[l0, h0], [l1, h1], ...[lj, hj]}

t = {(i1, v1), (i2, v2), ...(id, vd)}

Events Set (e)

The policy statement contains a set e of permutations of links. The policy

applies to the failure of each of these permutations of links, one at a time.

For validating against failure of a switch, the permutation comprises all the

adjacent links to the given switch.

Constraints Set (c)

As each failure events in the network occur, the flow rules using fast-failover

will choose alternative paths for the traffic. The Flow Validator exhaustively

analyzes resulting traffic flows after each event. These traffic flows are com-

pared with the expectation of a policy statement. Each policy statement

defines a set of constraints, c, where each member represents one of the fol-

lowing orthogonal requirements for the packets in traffic set t from a source

zone to the destination zone. Following is a list of constraints that can be

specified about the given network configuration:

• Connectivity C: Asserts that the configuration enables packets to

flow between the source and destination zones.
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Figure 3.2: A substation network topology containing four switches. The
clique provides alternative paths that may be used by the fast-failover
mechanism. The users can log in via the Internet and connect to RTAC to
perform configuration and maintenance tasks.

• Isolation I: Asserts that the configuration blocks the packet flow

between source and destination zones.

• Path Length LN : Asserts that the paths taken by the packets from

the source zone to the destination zone have a specified maximum path

length (N). The length is measured in the number of switches in the

path.

• Link Avoidance AL: Asserts that the paths taken by the packets

from the source zone to the destination zone do not traverse a specified

physical link (L) in the network topology.

3.3.1 Example Policy

In order illustrate various elements of the RRP, we present an example. The

example policy below concerns the CI network inside a substation as shown

in Figure 3.2.
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z1 = {p1,0}

z2 = {p2,0, p3,0} z3 = {p4,0}

v1 = {[−∞,+∞]} v2 = {[443, 443]}

t1 = {(i1, v1) . . . (id, v1)} t2 = {(i1, v1), (i2, v2), . . . (id, v1)}

c1 = {C,L3} c2 = {C,Al3,4}

e1 = {(l1,3), (l3,4), (l4,2), (l2,1), (l1,4), (l2,3)}

s1 = (z2, z1, t1, c1, e1) s2 = (z3, z1, t2, c2, ∅)

P = {s1, s2}

Tbe policy defines three zones: z1, z2 and z3, each containing the switch

ports attached to the Real-Time Automation Controller (RTAC), the Ether-

net Substation Relay (ESR) and the generator Intelligent Electronic Device

(IED), and the Internet gateway port respectively.

By using the zone definitions above, the policy statement s1 specifies what

occurs to the packets from z2 to z1 when any single link in the topology fails.

In order to concern every packet, it uses a traffic set t1 which covers the entire

range of the interval for each field in the packet header. To specify the failure

events it concerns, it uses an events set e1 which contains every permutation

of a single link failure in the topology. Finally by using the constraint set

c1, it asserts that even after any event in e1 occurs, the network continues

to provide connectivity for this traffic such that the maximum path length

is three switches (i.e. N = 3).

Similarly, the policy statement s2 specifies access control for traffic from z3

to z1. It only allows the SSH traffic by using a traffic set t2 to represents the

packets with the destination TCP port 443 in the header. It does not concern

any specific failure events but asserts that the network provides connectivity
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for this traffic such that its path does not traverse the link between switches

s3 and s4 (i.e. L = l3,4).

3.4 Model

In order to validate policies expressed using RRP, we propose a model to

represent the control-plane state of programmable network using three sep-

arate but inter-linked abstractions. The first abstraction models the packet

forwarding and modification decisions of the control-plane state. The second

abstraction models the sets of packet headers that are delivered from any one

port to another in the network as a result of the control-plane state. Finally,

the third abstraction models the exact sequence of intermediate switch ports

that the delivered packets traverse. Analysis of these models reveals precisely

what traffic is permitted, descriptions against which we determine whether

the permitted traffic always complies with policy. Here, we describe each one

of these abstraction in detail.

3.4.1 Port Graph

The port graph model represents the control-plane state and the physical

topology of a given network with a directed graph (N,E). The set of nodes

(N) in a port graph models the points of interest in a network through which

traffic can flow. These points are either the physical ports on the switches,

or flow tables where computation (e.g. packet modification, forwarding deci-

sions) occurs. The set of edges (E) models the transfer of traffic from their

predecessors to successors.

The model uses port graphs on two levels. On the lower level, a port graph

models switch transfer function originating from the switch’s configuration as

described in Chapter 2. On the higher level, a port graph models the entire

network and is constructed using the transfer functions of the individual

switches and the network topology. Such distinction between two levels of

port graph offers two advantages: First, it makes the model independent

of the switch specification. So, if a network is composed of heterogeneous

switches running different OpenFlow versions or standards, it can still be

modeled using their individual port graph. Second, it provides algorithmic
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Figure 3.3: A network comprising of three switches. The switches (s1 and
s3) have two flow tables and one host each.

efficiencies by reducing the number of nodes and edges that are present in

the higher-level network port graph.

Figures 3.4 and 3.5 illustrate the port graphs on both levels for a simple

three-switch topology shown in Figure 3.3. Below we describe what consti-

tutes the port graph’s nodes and edges on each level:

Nodes

Nodes model the points of decision. Every switch in the SDN has multiple

nodes in the port graphs on both levels. Every switch port is represented

with two nodes, one for each direction of traffic: ingress/egress. In addition

to these nodes, every flow table in the switch has a node in the port graph

as well. Hence the total number of nodes per switch in the port graph is

2 ∗ p+ t, where p is the number of switch ports and t is the number of tables

in the switch.

Edges

Edges model the transfer of traffic from predecessors to successors. Each edge

has two attributes associated with it: An edge filter EF(p,s) that intersects
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Figure 3.4: The switch port graphs representing the transfer function of s1
and s3. The dashed edge represents an inactive edge.

Figure 3.5: The network port graph.

29



as a match with the traffic transferring from predecessor node p to successor

node s and a list of fields that are modified in this transfer. There are three

types of edges in the switch port graph:

• Packet Arrival Edges: These edges model the start of packet processing

for the switch. Packets are first examined by flow rules in the first

flow table of the switch, thus resulting in edges from the ingress nodes

representing each port to the node representing the first flow table.

• Packet Departure Edges: These edges model departure of packets due

to an action applied by a matching flow rule in a flow table. These

are edges from table node representing the flow table containing the

rule to the node representing the egress node for the port. Since rules

in a flow table are matched in the order of priority, there is an intra-

table dependency between traffic flows that matches a flow rule. This

is illustrated in Table 3.1. Consider traffic T arriving at a flow table

containing flow rule F1. Packets that match this rule are not matched

with the next rule F2 and so on.

Table 3.1: Flow table model with n rules and T as input traffic set

Input Traffic Flow Rule Match Flow Edge Filter
T F1 T ∩ F1

T ∩ F1
c F2 T ∩ F1

c ∩ F2

T ∩ F1
c ∩ F2

c F3 T ∩ F1
c ∩ F2

c ∩ F3

... ... ...
T ∩ F1

c ∩ F2
c ∩ ...Fn−1c Fn T ∩ F1

c ∩ F2
c ∩ ...Fn−1c ∩ Fn

• Inter-table Edges: These edges model the transfer of packets from one

table to another in the pipeline. Each goto-table instruction found in

a flow rule results in an edge from the node representing its flow table

to the node representing the table that the instruction refers to.

Furthermore, we distinguish between modifications that are applied imme-

diately before a packet arrives at a flow table in the processing pipeline, and

those applied at the end of pipeline. We also attribute a flag to each edge in

the switch port graphs resulting from fast failover actions in a flow rule. The

flag indicates whether a given port graph edge is active. Finally, while not
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shown in the figures, we also capture any packet modifications by tracking

the set-vlan actions in the configuration.

There are two types of edges in the network port graph:

• Physical Link Edges: These edges represent the bi-directional flow of

unmodified packets across each physical link in the topology. Thus, the

edge filter is a wildcard with no field modifications.

• Switch Transfer Function Edges: These edges are a direct consequence

of the output of the switch port graph of the a switch. For a given

ingress and egress port node pair (i, j), if there is admitted traffic in

the switch port graph, then an edge is added in the network port graph

between i and j. The filter for this edge is ATSi,j in the switch port

graph. The modifications for this type of edge are an accumulation of

all the modifications that the switch port graph applies to that traffic

as it goes from ingress to egress port node.

3.4.2 Admitted Traffic Set (ATS)

An admitted traffic set (ATSp,d) in the network port graph is defined as

representing the traffic carried from a source node p to the destination node

d, where p, d ∈ N . This definition makes it so that the nodes that represent

the ports connecting the physical links become the intermediate nodes and

are not explicitly represented by the ATSp,d.

For example, with reference to the Figure 3.3, assume that one is interested

in the ATSp,d from the port 1 on the Switch s1 to the port 1 on the Switch

s3. Here, port 3 on the Switch s1 and port 2 on the Switch s3 are the

intermediate ports represented with their ingress and egress nodes in the port

graphs in the Figures 3.4 and 3.5. However, the ATSp,d shall not concern

these intermediate ports.

The reason the intermediate nodes are not explicitly represented is that,

due to the use of fast-failover actions, the intermediate nodes may change

based on the status of the links. However, our model separates the exact

path from the node p to d from the definition of the traffic itself.
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3.4.3 Active Traffic Path

A traffic path is a sequence of ports that the traffic in the set ATSp,d traverses.

However, as noted above, this path may change based on the status of the

links in the topology. We assume that at any given time, there is at most a

single path from a source p and a destination d. Given a set active links, the

resulting traffic path is defined as the active traffic path. The existence of an

active path between a node-pair is a direct consequence of the configuration

(i.e. flow rules) and the topology of the network.

The active traffic path is represented as a sequence of edges from the source

node p to the destination node d. For an edge to be part of a traffic path, it

is necessary that it enables the traffic at its predecessor node to be carried

to its successor nodes after filtering or modification at its predecessor node.

For example, the highlighted edges in Figure 3.4 represent the path from the

host at the Switch s1 to the host at Switch s3. Furthermore, since only one

of the edges is active per matched flow rule, there is only one path composed

entirely of active edges.

3.5 Design

Our design makes the choice of dividing the total computation required for

policy validation in two phases: We first precompute traffic flows through the

network assuming that a traffic wildcard were to appear at switch ports. We

then use this precomputed state to validate specific instances of policies ex-

pressed using RRP. This choice allows amortization of the cost of exhaustive

analysis over many policy validation queries.

First, the design requires the construction of the switch and network port

graphs as described in Section 3.4.1. In this section, we describe the data

structures and algorithms that we use to precompute and store the state to

enable the policy validation. Finally, we describe the algorithms to perform

policy validation itself.
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3.5.1 Precomputation of Admitted Traffic Sets

Before the computation of ATSp,d, the switch transfer functions are initial-

ized. This initialization is done by using a breadth-first-search that carries

and initializes the ATSp,d for each node of the switch port graphs. The

search starts at every possible destination node (i.e. port egress nodes) and

starts with carrying a wildcard traffic set. At each node, it explores all the

predecessors of the node and modifies the traffic set when each edge in the

port graph is traversed. The modification takes into account the edge filter

and the modifications that are applied at the predecessor of the edge. The

search terminates at the port ingress nodes because they do not have any

predecessors.

Once the traffic is propagated on the switch port graphs, ATSp,d is com-

puted. If the source and destination nodes are on the same switch, the

switch’s transfer function is directly referred. Otherwise, the computation is

handled in three phases. First, we identify the pairs of intermediate nodes,

with the egress node at the source switch and ingress node at the destination

switch, that carry a subset of the ATSp,d. Next, we intersect the traffic from

source node to intermediate egress node with this subset. Lastly, the result

of this intersection is intersected with traffic from intermediate ingress node

to the destination node to obtain the subset of ATSp,d.

3.5.2 Computation of Active Paths

Algorithm 1 returns one or more edges as the path AP by using a depth-first

search. The search starts at a source node and ends at the destination node if

no loops are detected. It proceeds recursively, following the admitted traffic

sets along the port graph edges. This algorithm relies upon other auxiliary

methods; for example, in line 3, it uses a method called CanTraverseEdge

to check if a given port graph edge is active and if its edge filter allows a

subset of ATSp,d. This requires an intersection operation and checking a

flag. Similarly, in line 8, it uses a method called PathHasNoLoops, which

uses cycle-detection to check if the path accumulated thus far has cycles in

it. If there are no such cycles, then the edge is appended to the path and

a recursive call is made in lines 9-10. Line 4 stops the said recursion at the

destination node.
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Algorithm 1 Computation of the paths from a node p to destination d that
carry traffic ATSp,d.

Input: The source and destination nodes p and d and the admitted traffic
set ATSp,d from p to d, the set of successors for each node in the graph
σp,d and an empty list AP .

Output: The active path AP is populated with the edges from p to d.

1: function GetActivePath(p, d, σp,d, ATSp,d, AP )
2: for all s ∈ σp,d do
3: if CanTraverseEdge(p, s, d, ATSp,d) then
4: if s == d then
5: AP =Append(AP , Ep,s)
6: return
7: else
8: if PathHasNoLoops(AP , s) then
9: P =Append(AP , Ep,s)

10: GetActivePath(s, d, σp,d, ATSs,d, AP )
11: end if
12: end if
13: end if
14: end for
15: end function

While the run-time of this algorithm is seemingly bounded by the run-time

of the depth-first search, there are several ways in which exact composition of

the flow rules in the underlying network configuration affects the run-time.

For example, if the match of a flow rule is very specific, then a relatively

simple traffic set is carried to the next edge filter. Furthermore, if a flow rule

uses fast-failover mechanism, then it results in multiple edges, thus causing

the search in Algorithm 1 to take longer. Finally, the order of matching flow

rules in the flow tables matters because the flow rules at the bottom of the

table have a more complex edge filter than those at the top.

34



3.5.3 Computation of Failover Paths

Algorithm 2 Computation of the failover path that carries traffic ATSp,d
when the links in λ have failed.

Input: The current active path AP and a sequence of links λ.

Output: The failover path FP , if one exists after the links in λ are presumed

to have failed or an empty list otherwise.

1: function GetFailoverPath(AP , λ)

2: FP = AP

3: for all l ∈ λ do

4: SetLinkPortsDown(l)

5: Ep,s = GetAffectedEdge(FP , l)

6: if Ep,s then

7: E
′
p,s = GetAlternativeEdge(Ep,s)

8: PP = GetAffectedPrefixPath(FP , l)

9: SP = []

10: GetActivePath(s, d, E
′
p,s.EF , SP )

11: if E
′
p,s & SP then

12: FP = PP + [E
′
p,s] + SP

13: else

14: FP = []

15: break

16: end if

17: end if

18: end for

19: for all l ∈ λ do

20: SetLinkPortsUp(l)

21: end for

22: return FP

23: end function

Algorithm 2 returns a failover path if the given active path survives the failure

of a sequence of links (λ). To that end, it simulates link failures and finds

alternative active paths due to the use of fast-failover mechanism by the flow

rules. Specifically, it simulates link failure and restoration events in lines 4

and 18 respectively. This is done so that the method CanTraverseEdge
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in Algorithm 1 described previously can correctly ascertain the path of traffic

across the affected port graph edges. Once the failures have been simulated,

the restorations are also simulated before exiting the algorithm, so that the

next call results in correct state of the link.

The algorithm proceeds with simulating the failure of one link at a time by

iterating over λ. The loop from lines 3-17 performs the key operation of find-

ing an alternative path in case of each link’s failure, if one exists. First, in line

5, the algorithm checks if the failed link affects the primary path at all by us-

ing the auxiliary method GetAffectedEdge. If the failure does affect the

path, then in line 7, the algorithm uses the method GetAlternativeEdge

to find an alternative port graph edge to the affected port graph edge. If an

alternative edge exists, then in line 10, the algorithm finds the remaining

active path from the successor of the alternative edge to the destination. If

such a path from the successor exists, it means the path survives the link fail-

ure of the particular link in the sequence. The exact path is reconstructed in

line 12 by concatenating the path until the affected edge (obtained using an-

other auxiliary method GetAffectedPrefixPath), the alternative edge

and the remaining active path.

However, if the presumed failure of any of the links in λ results in no re-

maining active path SP or if there is no alternative edge to the affected edge,

then it means that there is no failover path for the given λ and consequently

the algorithm returns an empty list in line 14.

3.5.4 Policy Validation

After the precomputation is done, the user prepares the RRP policy they

want to validate. It is posed to the Flow Validator as a policy validation

query. Each query contains a set of policy statements in the form described

in Section 3.3. Each query results in the analysis of the effect of failure events

on the ATSp,d and active traffic paths.

Before the validation begins, the policy query is first transformed into an

equivalent and representative data structure called PMap. The goal of this

transformation is to avoid repetition of validation even when the policy query

may contain multiple references to the same combination of sequence of link

failures (λ) and a source and destination node pair (sp, dp). Therefore, the
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Algorithm 3 Policy Validation algorithm.

Input: A nested policy hashmap PMap representing the contents of the
policy query.

Output: The set v containing all the policy violations found.

1: function ValidatePolicy(PMap)
2: v = ∅
3: for all λ ∈ PMap do
4: for all (sp, dp) ∈ PMap[λ] do
5: for all s ∈ PMap[λ][(sp, dp)] do
6: AP =GetActivePath(s.t, (sp, dp))
7: FP =GetFailoverPath(AP , λ)
8: for all c ∈ s.Constraints do
9: if c == Connectivity & ¬FP then

10: Append(v, (λ, sp, dp, c))
11: end if
12: if c == Isolation & FP then
13: Append(v, (λ, sp, dp, c))
14: end if
15: if c == Path Length & FP then
16: if FP.NumSwitches > c.N then
17: Append(v, (λ, sp, dp, c))
18: end if
19: end if
20: if c == Link Avoidance & FP then
21: if FP.CrossesLink(c.L) then
22: Append(v, (λ, sp, dp, c))
23: end if
24: end if
25: end for
26: end for
27: end for
28: end for
29: return v
30: end function
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PMap is a two-dimensional hashmap. The first and second dimensions of

the key of PMap are λ and (sp, dp). The corresponding values to each key in

the PMap are a list of statements referring to the λ and (sp, dp) in the key.

We use Algorithm 3 to find all the policy violations in a given PMap.

Line 2 initializes the set v to an empty set. Lines 3-5 start three loops

that iterate over the contents of the PMap. This results in exploring every

combination of the sequence of link failures (i.e. λ), the node pair (i.e.

(sp, dp)), and the relevant policy statement s. The core policy validation

for each such combination is performed in lines 6-25. First, we obtain the

primary and failover paths in lines 6 and 7 respectively. We then iterate

over each constraint in the policy statement s and record any violation by

appending to the set v in lines 8-25. Each violation is a tuple specifying the

source, destination node pair (sp, dp), sequence of link failures (λ) and the

specific constraint (c) which has been violated.

The policy validation for each constraint, assuming the links in λ have

failed, proceeds as per the specification described in Section 3.3. Line 9

checks whether the failover path does not exist and if so, line 10 records a

Connectivity constraint violation. Line 12 checks whether a failover path

does exist and if it does not, line 13 records an Isolation constraint violation.

Line 16 checks if the length of the failover path exceeds the length specified

in the constraint (i.e. N) and if so, line 17 records a Path Length constraint

violation. Line 21 checks if the failover path crosses a link that is to be

avoided per the constraint (i.e. L) and if so, line 22 records a Link Avoidance

constraint violation.

3.6 Evaluation

In this section, we evaluate the performance of the algorithms presented in

Section 3.5. In particular, we seek to characterize and compare the time it

takes to perform precomputation of admitted traffic and then use the results

of the precomputation to answer specific policy validation queries. We first

describe our experimental setup for the empirical evaluation. Specific details

regarding each aspect of our design are presented subsequently.
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3.6.1 Experimental Setup

We implemented a single-threaded prototype in cPython called Flow Valida-

tor. We performed all the experiments on a virtual machine with 16 GB of

RAM and 2 processor cores clocked at 3.3 GHz. We used mininet [57] to

emulate the network topologies containing Open vSwitch [58] as the switch

implementation. We used an open source controller called Ryu [59] and used

its the northbound API to synthesize flow rules.

We performed the evaluation using four different network topologies with

varying number of switches and hosts at each switch as shown in Figure 3.6.

Three of these topologies (i.e. full-clique, ring and Clos [60]) are bi-connected,

i.e. if any single link fails, there is still a topological path between any pair of

switches. For these topologies, we used the approach described by Elhourani

et al. [61] for synthesizing flow rules. These flow rules enable host-pair

flow paths carrying all IP traffic even when any single link in the topology

fails. The fourth topology we used is motivated by the need to provide

VLAN based isolation in a network of microgrids. The details regarding

the structure of this topology and how the flow rules are synthesized are

described in more detail in Section 3.7. The number of flow rules required

to provide connectivity for each host pair increases quadratically with the

number of hosts in a given topology and the flow rule synthesis technique.

3.6.2 Initial Precomputation

We measured the time taken to perform the exhaustive analysis as the initial

precomputation. This includes the time for computing transfer functions for

each switch in the topology and the time of propagating traffic from each

port associated with a host. The results are shown in Figure 3.7. Both axes

of the plot are logarithmic. The x-axis shows the number of individual host-

pairs in the topology and the y-axis shows the time taken to perform the

initial precomputation.

Evidently, the time taken to perform initial precomputation increases with

the number of host pairs in every topology. However, the absolute value and

the trend of the relationship between the two quantities vary among differ-

ent topologies. Generally, with one exception described later, the absolute

value of precomputation time increases with the total number of switches
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Figure 3.6: Network topologies used for evaluation, clockwise from
bottom-left: Clos (14 switches), Microgrid (19 switches), Ring (10 switches)
and Clique (4 switches).
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Figure 3.7: Initial precomputation for the evaluated topologies.

in the topology. This is a direct consequence of propagation in Algorithm

1. However, even though the Microgrid topology has more switches than

the Clos topology, the nature of flow rules in the Clos topology is such that

it results in addition of more edges in the port graph. In particular, the

Microgrid topology does not have any fast-failover rules whereas the Clos

topology does. Each fast-failover rule causes addition of multiple edges to

model different possibilities

3.6.3 Active Path Computation

We measured the time it takes to compute a single active path using Algo-

rithm 1. In order to measure this time, we performed validation of a policy

containing a single statement. The statement specified that the length of

active traffic path for each host pair in the four topologies described earlier

must be less than the twice the diameter of the given topology. Here, the

diameter is the longest shortest path between any two switches in the topol-

ogy. The validation of this policy results in computation of the active traffic
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Figure 3.8: Active path computation time for the evaluated topologies.

path between each host pair in the topology, whose length is then compared

to the diameter as specified in Algorithm 3. We computed the average and

standard error of the active path computation time over all host pairs, and

they are plotted in Figure 3.8 for the four topologies.

The average active path computation time is affected by the nature of the

synthesized flow rules and the length of the paths that the rules result in. For

example, the flow rules used in the Microgrid topology are such that most

of them are local to each microgrid and thus are smaller in length and are

computed fastest. Furthermore, the flow rules used in this topology are also

very specific to an individual host, so the intersections performed by the path

computation algorithms are fast. In the other three topologies, the flow rules

are synthesized such that the traffic belonging to an entire switch (i.e. all the

hosts at that switch) is referred with the same match at any other switch.

The ring topology presents the worst case because it results in addition of

many edges in the network port graph due to only two underlying physical

paths.

42



3.7 Case Studies

In this section, we demonstrate the expressiveness of RRP and scalability of

our validation mechanisms by using empirical experiments. We used mininet

[57] to emulate two different types of cyber networks to contextualize this

demonstration. The network in the first case connects hosts within a sub-

station to each other and to the Internet. The network in the second case

study connects hosts spanning multiple microgrids and the main grid. The

policy statements used for each network reflect the specific set of guarantees

that it needs to provide. In each case, we measure the time it takes to per-

form exhaustive validation of policies expressed as RRP by using the Flow

Validator.

3.7.1 Resilience in a Substation Network

The cyber network inside a substation may be comprised of a set of net-

worked control devices such as intelligent electronic devices (IED), real-time

automation controllers (RTAC) and ethernet relays (ER). These host de-

vices are considered critical assets and provisioning of the substation net-

works presents an adoption opportunity for the programmable networking

architecture in smart grid networks. These host devices require resilient and

secure connectivity for safe operation of the substation.

Consider the substation network topology depicted in Figure 3.2. The

network transports IEEE C37.118 [62] packets carrying synchrophasor mea-

surements from an IED to the RTAC. The RTAC may send control decision

encapsulated in DNP3 [33] packets to the ESR. If a set of network links fail,

the policy requires that all host devices continue to communicate with each

other, while simultaneously maintaining compliance to the security policy.

We increased the number of host devices (e.g. ER, IED or RTAC) connected

to each switch to evaluate the scalability. We synthesized the flow rules for

all host pairs by using the approach described by Elhourani et al. [61] to

ensure that each host pair can communicate even if any single link in its

primary path fails.

The number of active path computations to exhaustively validate the pol-

icy depends on both the specified number of link failures (k) and number of

links in the topology (|L|) in the RRP instance and the topology respectively.
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Figure 3.9: Exhaustive policy validation times as a function of kmax and |L|
and the number of host pairs in a four-switch topology in substation.

Since the topology in Figure 3.2 is a full-clique containing four switches, it

follows that |L| = 6. However, in order to vary k, we used the same policy

specification containing the two statements as illustrated by the example pol-

icy in Section 3.3, but changed the value of k for both statements to validate

resiliency when up to any k links in the topology (i.e. k1 ∈ {0, 1, 2, 3}) fail.

We measured the policy validation time for each value of k. We repeated

each experiment for five iterations and plot the results in Figure 3.9. Note

that the graph has logarithmic axes. Hence, our results indicate that the

validation time increases with the number of host-pairs in the topology. This

is a direct consequence of the number of host pairs that are part of the PMap

in the Algorithm 3.

Furthermore, the validation time is directly proportional to k, because k

is proportional to the number of link permutations whose failure is to be

considered for the validation. Each such permutation results in an entry in

the PMap and thus adds to the time taken by Algorithm 3.
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3.7.2 Security for Interconnected Microgrids

A microgrid is composed of multiple energy sources and loads in a relatively

small geographical area compared to the main smart grid. Multiple mi-

crogrids operate in tandem with the main grid to deliver essential services.

Intelligent controllers embedded in a microgrid enable it to autonomously op-

timize energy generation, share energy with the main grid and isolate itself

from the main grid during emergencies. Thus, controllers in a microgrid need

connectivity with controllers in the main grid for coordination and stability.

Regulatory regimes such as NERC CIP require tight network access control

between hosts in microgrids and the main grid. Hence, the operations in the

microgrid architecture require tight control over and visibility of connectivity

between the hosts in any two grids.

To implement this network, we used a network architecture which overlays

logical segments called enclaves and functional domains on top of the phys-

ical topology [63]. Hosts that need to communicate with other hosts within

a microgrid are grouped in an enclave based on their functionality and/or

physical proximity. For example, cyber nodes (IED, ER etc.) associated with

a photovoltaic generator could constitute an enclave. However, inter-enclave

communication among hosts grouped in a functional domain is allowed to

enable smart grid functions that require coordination between a microgrid

and the main grid. For example, an energy management system (EMS) may

control the islanding operation of a microgrid by controlling a group of in-

terconnected IEDs performing separate functions. Since each enclave and

functional domain is a broadcast domain, it is implemented as a virtual local

area network (VLAN). Each host inside an enclave or a functional domain

is assigned to one or more VLANs reflecting its membership in enclaves and

functional domains.

In our experiments, we emulated networks where one or more microgrids

connect to the main grid. We used a single switch to represent the main

grid control center, while each microgrid is represented by three switches

connected in a ring. One of the three switches in the microgrid has a physical

link to the switch representing the main grid control center. Each switch

inside the microgrid ring connects to the same number of hosts given by nh.

Each switch connects to hosts from a specific enclave; thus, the number of

enclaves given by ne is same as the total number of switches in the topology.
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However, we define a single functional domain containing only one host from

each switch in the network. We emulated different networks by choosing

different values of nh and ne. We synthesized flow rules for each network by

using a northbound application called ONOS-VPLS [64].

We used Flow Validator to validate that the hosts can communicate with

other hosts within an enclave or a functional domain and not otherwise. Each

enclave is represented by a zone. Furthermore, we use two zones to represent

hosts that are in or out of the functional domain. Each policy statement

expresses the requirements for a single direction of traffic from the source

zone to the destination zone. Hence, in order to validate the requirements

for each enclave, we need n2
e statements. Similarly we need three additional

statements to express requirements for traffic flowing into, out of and within

the functional domain. Hence, the total number of policy statements used

for each network is n2
e + 3. Finally, we used k = 0 for all of these policy

statements, thus anticipating no resilience in the flow rules synthesized by

ONOS-VPLS.

We measured the policy validation time for each network. We repeated

each experiment for ten iterations and plot the average policy validation time

in Figure 3.10 with error bars indicating the standard error (SE). Our results

indicate that for a given number of policy statements, the validation time

increases quadratically. This is due to the corresponding quadratic increase

in the number of host pairs that are required to be validated. Furthermore,

for a specific value of nh, we observed a quadratic increase in policy validation

time. This is due to the quadratic increase in the number of policy statements

due to increasing ne.
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Figure 3.10: Security policy validation times for different values of nh and
number of policy statements corresponding to ne.
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CHAPTER 4

ANALYSIS: RESILIENCY METRICS

Due to the criticality of the CI systems and their absolute reliance on their

cyber networks to meet their goals, the continuous operation of the CI net-

work is paramount. However, such continuous operation requires resilience

to link or network device failures. Such resilience, or lack thereof, is a conse-

quence of the configuration of a CI network. Hence, the configuration of such

networks must be analyzed to study the impact of failures on the network

in a wide variety of scenarios. Such wide-ranging analysis can be effectively

framed with the use of resiliency metrics.

As described in Chapter 2, fast-failover mechanism is a form of proactive

configuration to provide dynamic resilience to failures. With its use, the

network can be prepared to withstand a given set of link or device failures

ahead of time. Its use avoids controller intervention upon link or device

failures. Consequently, it results in a routing convergence time bounded by

the time it takes for the switch to start using the new path. However, as the

number of critical flows in a network increases, the associated fast-failover

based configuration for enabling resilience for those flows can become very

complex. Hence, it is absolutely critical that appropriate resiliency metrics

be used to understand the consequences of using this mechanism.

There is prior work on computing resiliency metrics for a given network

[65]. However prior work focuses on computing metrics that are topological

and does not take into account the dynamic behavior that programmable

networks are capable of exhibiting. The dynamic behavior of the entire

network is determined by a combination of the features of the data-plane

and their corresponding control-plane configuration. We propose capturing

these dynamics by using simulated models of these networks. The model

must be capable of determining, for a given data-plane and configuration for

its switches, whether a given pair of hosts remains connected when a set of

failure events have occurred. Note that this is in contrast to what we studied
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in Chapter 3 where our concern was to validate policies that exhaustively

validated all possible connectivity and not a given host pair.

We have done two projects where this simulation model has been used in

the context of the OpenFlow 1.3 fast-failover mechanism. In each project,

we used a simulation model in combination with an appropriate analytic

framework to compute a specific metric. In one project, we used variance

reduction techniques to compute the expected number of links that will fail

in a given network before the controller is called to rescue and restore the

paths [66]. In another project we used a simple Monte Carlo method to

estimate the probability that a given set of hosts remain connected under a

given mobility model for the fast-failover capable wireless switches [67].

The rest of the chapter is organized as follows: Section 4.1 introduces

some related work; Section 4.2 describes the motivation of using simulation to

compute metrics; Section 4.3 describes the architecture of the proposed data-

plane simulator; Section 4.4 describes several design decisions and compares

them with our contributions in Chapter 3; Section 4.5 presents the evaluation

of our simulator design.

4.1 Related Work

One of the many metrics to characterize the topological resiliency of a net-

work is static reliability. Static reliability refers to the probability that a

given set of nodes are all connected when links (not nodes) in the system

can fail problematically. It is termed such because it refers to the topological

connectivity of the network. Computing this metric for a given network in

a closed form is known to be NP-hard [68]. Hence sampling is used. There

are previously studied techniques to estimate static reliability using Monte

Carlo methods [69]. However simple Monte Carlo methods yield very high

relative error when dealing with rare events (e.g. link failures). To that end,

sampling techniques using variance reduction approaches have been devised

to tackle them [65].

Resilience can also be provisioned by reacting to the failure event once it

has occurred. With a centralized control-plane, one responds to failures by

waiting for the switches to contact the controller for new routes. However,

such a reactive system results in large convergence times as a function of
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number of flows that are affected by the failures [70]. In this chapter, we are

concerned with networks where the fast-failover mechanism has been used.

Theoretically, an emulator such as mininet [57] provides the same func-

tionality as a simulator for the programmable network. In practice, however,

it does not scale with a large number of switches. Furthermore, using emula-

tion limits the modes of interaction with the model for metrics computation

over a large network, and emulation of events such as link failures involves

interaction with the Linux kernel. There have been prior efforts to model

programmable networks using discrete-event simulation [71], but they did

not model the fast failover mechanism.

4.2 Motivation

Resilience metrics provide insights about the robustness of a network to fail-

ures and thus inform the choices of network designers. It is often difficult

to keep track of individual host-pair connectivity, so a summarizing statistic

such as a resilience metric helps capture various properties of the network.

The use of metrics also allows the network designers to compare various

control-plane programs. The programs ultimately generate flow rules. By

analyzing the overall properties of the network that emerge directly from

the flow rules, a network designer can choose the control-plane program best

suited to her needs.

Furthermore, the rise of programmable data-planes implies that individual

data-plane instances (i.e. switches) will behave increasingly more dynami-

cally with minimal control-plane interventions. Such dynamism is especially

useful for providing resilience, and the fast failover mechanism is a prime

example of such dynamism. However, the use of such dynamic mechanisms

also poses a trade-off between network device complexity (and consequently

performance challenges) and responsiveness to failures. Shifting more com-

plexity to the data-plane (i.e. to make local forwarding decisions instead of

contacting the controller) reduces the time to respond to the random dynam-

ics (i.e. failure of a link or a switch) and consequently leads to lower packet

loss, but it also removes key elements of control away from the control-plane.

In order to make the appropriate choices in such trade-offs, we need data-

plane simulators because the increase in the complexity of data-planes makes
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them hard to model with the simplifying assumptions used in Chapter 3.

In the rest of this section, we first set the context by describing the various

metrics our work concerns directly. We then describe commonly used analytic

mechanisms to compute these metrics. Finally, we describe the consequent

requirements for a data-plane simulator that it has to meet in order to allow

the analytic mechanisms to work.

4.2.1 Examples of Resiliency Metrics

We are primarily concerned with metrics that concern the connectivity of

the network in case one or more failure events occur and the fast-failover

mechanism is engaged. Some examples of the questions that a designer might

ask are:

1. Given a changing topology, what fraction of flows in a given set of

flows are connected? This metric is particularly useful to capture the

effectiveness of a given flow rule synthesis algorithm in the scenarios

involving mobility in wireless settings. This metric can also characterize

the impact of cascaded failures on a power grid.

2. How many link or device failures does it take for the controller inter-

vention to be required to enable a given set of flows? This metric is

useful to compare the effectiveness of flow rule synthesis algorithms to

deal with the impact of a series of bad events.

3. What is the average length of the paths after a set of link or device

failures have occurred? This metric is useful to compare synthesis

schemes that provide similar resilience guarantees but with different

consequences for the eventual performance requirements such as end-

to-end delay.

4.2.2 Computing Resiliency Metrics using Active Paths

The resiliency metrics mentioned above can all be computed using Monte

Carlo methods. The use of these methods involves multiple simulations of

the random phenomenon (i.e. failure events) to compute many samples.

While the exact algorithm that lies behind the computation of samples for

51



different metrics may vary, we observe that the computation of the active

path lies at the heart of computing each of the examples presented above.

In the context of a dynamic data-plane that supports fast-failover mech-

anism, an active path is defined as the sequence of ports between a specific

pair of hosts which the packets traverse after a set of links in the network

have failed. The computation of an active paths requires the simulation of

the data-plane along with its configuration and a description of the incident

failure events. The metrics mentioned previously can be sampled by using

the fact of whether an active path exists or not. In some cases, in case of its

existence, the length of the path (in number of ports/switch-hops) can also

be used to constitute the samples.

Finally, in order to come up with an estimate for the metric, the collected

samples undergo output processing. This process also yields confidence inter-

vals. Since the computation of a network-wide resiliency metric may involve

simulating rare events, it may take a very large number of samples to es-

timate the metric with high confidence. This results in large computation

times. Hence, variance reduction techniques have been proposed to achieve

high confidence with fewer samples. However, variance reduction techniques

require more state from the simulated network and not just the final sample

output. We discuss this and other requirements of the simulation architecture

next.

4.2.3 Requirements for a Data-Plane Simulator Architecture

Based on the nature of resiliency metrics and mechanisms that are used

to compute them, we summarize the key requirements for the data-plane

simulator architecture below:

• Fidelity: The simulator needs to capture the relevant behaviors of a

switch with very high fidelity based on three factors: The OpenFlow

specification, the configuration inside the switch and finally the con-

tents of the header of the packets arriving at an ingress port. Such

behaviors necessarily include the packet processing pipeline, the simple

output and fast-failover mechanisms as described in the Chapter 2.

Beyond a single switch, in order to compute the active paths, the

network-wide behaviors must be captured as well. To that end, the
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Figure 4.1: Data-plane simulator architecture

simulator needs to track the modifications applied to a packet as well

as the links it traverses.

• Performance: Unlike other analysis which compute all possible ac-

tions for all possible flows, in the data-plane simulator we are focused

on specifically identified host-pairs and the active paths between them.

• Scalability: The simulator must tackle topology sizes that are typical

in CI networks without having to resort to distributed computation.

• Convenient API: The simulator must expose the API for repeating

experiments. It must make it easy and efficient to collect the data

required to generate statistics.

• Flexibility: The simulator must have a flexible design that allows

computation of a variety of metrics around the active path computa-

tion. Its API must also support reporting of the corresponding state

with the sample to facilitate various variance reduction mechanisms.

4.3 The Data-Plane Simulator Architecture

The primary input of the data-plane simulator is a snapshot of the logically

centralized state of the programmable CI network of interest. The snap-
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shot consists of the network topology and the forwarding rules installed on

switches. The controller in a programmable network is the purveyor of this

state and makes it available via a northbound API to be used by the ap-

plications. As illustrated in Figure 4.1, our simulator uses the northbound

API to access a current snapshot of the SDN state. Note that, by using a

snapshot of the state, our architecture allows the metrics computation to be

performed offline so that it does not affect the operation of the network itself.

In the remainder of this section, we provide more details on how the proposed

simulator architecture meets the requirements mentioned previously.

In order to provide flexibility for computing various types of metrics, we

propose a bifurcated architecture: a compiled network model which exposes

a language-independent API to set up experiments, change conditions, and

make calls upon the network model. The data-plane simulator is imple-

mented in C++. The simulator implements a gRPC server that exposes the

API for interacting with it [72]. We also wrote a library of experiments in

Python that encapsulate a gRPC client that implements the computation of

samples for the metrics described above. Both components of the current

implementation are language independent. However, the choice of C++ and

Python for these two tasks is primarily driven by the performance consider-

ation and the ecosystem of libraries available for each of them respectively.

In order to provide fidelity, the architecture explicitly models the Open-

Flow specification in a module called SwitchSim. As illustrated in Figure 4.1,

this module lies at the heart of the simulator and closely mimics the forward-

ing actions and transformations made on a packet passing through it. To un-

derstand the importance of this element of the design it is important to know

that the OpenFlow specification supports more than just simple or failover

routing. The switch might block a packet entirely. It might change IP and

port numbers in a packet’s header to implement network address translation

(NAT). It might modify other bits in the packet header. The point is that

the data-plane simulator is designed to be used in an operational environ-

ment with potentially complex switch configurations, and so SwitchSim is

an executable implementations of the OpenFlow specification.

Our proposed architecture makes several explicit choices to address per-

formance concerns. Multi-threading is used for performance gains. Each

Monte Carlo sample is computed in its own thread. As detailed above, each

sample is computed by obtaining active paths for a set of host pairs. Hence,
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due to multi-threading, computations across different samples run in paral-

lel. However, in order to save memory and hence scale to large topologies,

we make separate copies of only the state that is different for each thread.

For example, each thread may be dealing with a different set of failed links

due to randomness, but the network’s configuration snapshot containing the

topology and flow rules stays the same across all threads. Furthermore, we

observed that each sample computation thread only reads the shared state.

Hence, we initialize this shared state before starting the threads so their reads

can proceed without any locks.

Finally, gRPC API is absolutely crucial for data collection for metrics com-

putation. The API is structured but easily extensible and can be designed

to provide state beyond the sample outputs. For example, we used it even to

report the time it takes to compute samples as reported in the next section.

4.4 Design

The design of the data-plane simulator borrows several ideas from that of

the FlowValidator described in Section 3.5. It borrows the key idea that

for the purpose of forwarding packets, the meaningful decisions occur only

at the packet processing pipeline (i.e. flow tables in OpenFlow). The ports

at switches are conduits that are followed from one table to another in the

network, until a dead-end is found due to lack of flow rules or failure of links

or a host is reached.

However, we modeled the effects of set of packets interacting with flow

rules using header spaces in Chapter 3. In the data-plane simulator we avoid

that in favor of explicit representation of each flow table and flow rule. The

algorithm to determine whether an active path between two hosts exists is

essentially a specialized breadth-first search across the topology. The search

carries a list of links that have presumably failed and avoids taking those

links. The search also checks if the flow rules have configured a fast-failover

path and follows those paths. Thus, the size of the topology affects the run-

time of the algorithm linearly. The simulator design allows it to scale to a

very high number of switches. The network topology and configuration also

affect the memory that the simulator consumes linearly.

The search does not use a model that represents aggregates of packet
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headers. It only models the contents of a single packet. Hence, while finding

an active path, instead of propagating a chunk of the header space, the search

only propagates the contents of a single packet header. This header models

the flow of interest and is compared explicitly against the match of the flow

rules encountered in the tables, instead of finding intersections of header

space. Hence, the algorithm used in this search is essentially the same as

Algorithm 1. However, the key difference is that the ATSp,d here represents

a single packet header. Naturally, this design choice results in constraints on

the Policy Validation queries that can be made. In particular, now a single

policy query can only concern a specific set of values in a header, whereas

using Flow Validator the fate of an entire set of packets can be determined

using a single query. However, in practice, this constraint is not limiting for

the Monte Carlo sample computations described in Section 4.2.

4.5 Evaluation

We present an empirical evaluation of the performance of the data-plane

simulator. The objective of the simulator is to compute Monte Carlo samples

to study the effectiveness of a flow rule synthesis algorithm that uses fast-

failover mechanism. Each Monte Carlo sample represents the fraction of

flows that remain connected even if a given sequence of link failures occur

were to occur.

We performed this evaluation to test the scalability of the simulator for

an increasing number of switches. We assumed that each switch has a single

source or destination host attached to it. Both the source and destination

hosts and the existence of links among the switches are determined randomly

in each topology. We set the total number of flows in our experiments to 32,

regardless of the size of the topology. Each flow has been synthesized to

have a path in the topology that can sustain a single link failure by using

the fast-failover mechanism in the OpenFlow. These random topologies are

motivated by our previous work [67].

We computed 100 samples on these topologies and measured the time it

takes to perform different operations. We repeated the experiment 20 times

and show the average time it took to perform various operations in Figure 4.2.

There is the Initialization time which indicates how long it took on average
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Figure 4.2: Time taken by the data-plane simulator to initialize a new
topology, determine the path of an active flow and compute 100 samples.
Each point represents an average over 20 iterations.

to set up the experiment with a completely new topology before any other

computations occur. We found this time to be independent of the size of

the topology. Then, we measured the time it takes to determine whether an

active path (i.e. taking into account the effect of the fast-failover mechanism)

exists between a randomly picked pair of hosts in the topology. Evidently,

this time increases with the size of the topology. Finally, we measured the

total time it takes to compute 100 samples. This time is simply a multiple

of the time it takes to compute a single active path and thus it also increases

as the size of the topology increases.
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4.6 Case Study

In order to demonstrate the effectiveness of the data-plane simulator, we

performed a case study to see how the use of fast-failover mechanism affects

the nature of connectivity in a random topology when a set of links fail

arbitrarily.

The setup topology had a topology with 40 switches and 186 links between

randomly sampled pairs between them. We changed the number of synthe-

sized flows in the same underlying topology. Each switch had a single host

attached to it, which can serve as a source or destination for a unidirectional

flow. Each flow has been synthesized to use the fast-failover mechanism and

can sustain the failure of a single link. The flow paths in the random topol-

ogy were chosen using the Dijkstra’s shortest path algorithm. For providing

the failover for each link, we simply assumed that the particular link did not

exist in an alternative topology and found the shortest path in the same. We

then tried to randomly sample an increasing number of links and failed them.

In particular, we failed 5, 10, 15 and 20 links in the topology and checked

how many of the originally synthesized flows were still active with the our of

data-plane simulator.

We repeated the experiment 100 times and Figure 4.3 presents our results.

The y-axis is the fraction of synthesized flows that remained active even

after the specific number of links have failed. The first major takeaway

from the experiment is that regardless of the number of link failures, as the

number of flows increases, a greater fraction of them become inactive due

to link failures. Secondly, the number of failed links matters, but only to a

certain point. Notice that both 15 and 20 link failure fractions are essentially

overlapping. However, there is a wide gap between the effects of 5 and 20

failed links.
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Figure 4.3: Case study: Fraction of flows that remain active when an
increasingly larger set of random sampled links have failed.
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CHAPTER 5

SYNTHESIS: BANDWIDTH AND DELAY
GUARANTEES

Many components in CI systems need to generate flows that require hard

real-time guarantees [73]. These guarantees are for both bandwidth and

maximum end-to-end delay experienced by the critical flows. Examples of

such systems include avionics, automobiles, industrial control systems, power

substations, manufacturing plants, etc. Current CI systems often have sep-

arate networks (hardware and software) for different critical flows. This

leads to significant overheads (equipment, management, weight, etc.) and

also potential for errors/faults and even increased attack surfaces and vec-

tors. Existing systems, e.g., avionics full-duplex switched Ethernet (AFDX)

[74, 75, 76], controller area network (CAN) [77], etc., that are in use in many

of these domains are proprietary, complex, expensive and require custom

hardware.

As described in Chapter 1, one of the advantages of using programmable

networks is the mechanism to push down rules to the commercial, off-the-

shelf (COTS) switches that can, to a fine level of precision, manage the

bandwidth assigned to a flow through the entire network. However, there is

no direct mechanism to guarantee a certain end-to-end delay for any given

flow. In this chapter we present mechanisms to guarantee end-to-end delays

for critical flows on networks constructed using programmable switches. The

main contributions of this work are summarized as follows:

1. We demonstrate the need for isolating flows into separate queues to

provide stable end-to-end delays (Section 5.1) even in the presence of

other types of traffic in the system.

2. We present mechanisms to guarantee delay constraints for individual

end-to-end flows in hard real-time systems based on COTS hardware

(Sections 5.3, 5.4 and 5.5) by formulating a multi-constraint problem.

We empirically evaluate the effectiveness of the proposed approach with
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various topologies and UDP traffic (Section 5.7) on a widely-used emulation

platform. Our results demonstrate that the end-to-end delay experienced by

the critical flows falls within their user specified timing deadline.

5.1 Motivating Experiment

Figure 5.1: The two-switch, four-host topology used in the experiments
with the active flows.

We intend to synthesize configurations for critical traffic such that it en-

sures complete isolation of packets for each designated critical flow at each

switch in its path.

In order to test how using output queues can provide isolation to flows

in a network so that each can meet its delay and bandwidth requirements

simultaneously, we performed experiments using mininet. The experiments

use a simple topology that contains two switches (s1, s2) connected via a

single link as shown in Figure 5.1. Each switch has two hosts connected to

it.

We configured flow rules and queues in the switches to enable connectivity

among hosts at one switch with the hosts at other switch. We experimented
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Figure 5.2: The measured mean and 99th percentile per-packet delay for the
packets in the active flows in 30 iterations.

with two ways to queue the packets as they cross the switch-to-switch link:

(i) in one case, we queue packets belonging to the two flows separately in two

queues (i.e., each flow gets its own queue), each configured at a maximum

rate of 50 Mbps (ii) in the second case, we queue packets from both flows in

the same queue configured at a maximum rate of 100 Mbps.

After configuring the flow rules and queues, we used netperf [78] to gen-

erate the following packet flows: the first starting at the host h1s1 destined

to host h1s2 and the second starting at host h2s1 with a destination host

h2s2. Both flows are identical and are triggered simultaneously to last for 15

seconds. We changed the rate at which the traffic is sent across both flows

to measure the average per-packet delay. Figure 5.2 plots the average value

and standard error over 30 iterations. The x-axis indicates the rate at which

the traffic is sent via netperf, while the y-axis shows the average per-packet

delay. The following key observations stand out:

1. The per-packet average delay increases in both cases as the traffic send

rate approaches the configured rate of 50 Mbps. This is an expected

queue-theoretic outcome and motivates the need for slack allocations

for all applications in general. For example, if an application requires

a bandwidth guarantee of 1 Mbps, it should be allocated 1.1 Mbps for

minimizing jitter.

2. The case with separate queues experiences lower average per-packet de-

62



lay when flow rates approach the maximum rates. This indicates that

when more than one flow uses the same queue, there is interference

caused by both flows with each other. This becomes a source of unpre-

dictability and eventually may cause the end-to-end delay guarantees

for the flows to be not met or perturbed significantly.

Thus, isolating flows using separate queues results in lower and more stable

delays, especially when traffic rate in the flow approaches the configured

maximum rates. Such isolation leads to a correct-by-design approach that

ensures that each flow is allocated bandwidth at each switch such that it

does not experience queueing delays. The maximum processing delay along

a single link can be measured and used as input to a path allocation algorithm

that we describe in the following section.

5.2 Related Work

There have been several efforts to study the provisioning a network such

that it meets bandwidth and/or delay constraints for the traffic flows. Re-

sults from the network calculus [79] framework offer a concrete way to model

the various abstract entities and their properties in a computer network.

NC-based models, on the other hand, do not prescribe any formulation of

flows that meet given delay and bandwidth guarantees. For synthesis, the

NP-complete MCP comes close and Shingang et al. formulated a heuristic al-

gorithm [80] for solving MCP. We model our delay and bandwidth constraints

based on their approach.

There are recent standardization efforts such as IEEE 802.11Qbv [81] which

aim to codify best practices for provisioning QoS using Ethernet. These ap-

proaches focus entirely on meeting guarantees and do not attempt to opti-

mize link bandwidth. However, the global view of the network provided by

the SDN architecture allows us to optimize path layouts by formulating the

problem as an MCP problem.

There are prior attempts at provisioning SDN with worst-case delay and

bandwidth guarantees. Azodolmolky et al. proposed a network calculus

based model [82] for a single SDN switch that provides an upper bound on

delays experienced by packets as they cross through the switch. Guck et al.

used mixed integer program (MIP) based formulation [83] for provisioning
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end-to-end flows with delay guarantees; however, their approach does not

optimize the bandwidth allocation to each queue used by the end-to-end

flows at an individual switch. There are approaches [84, 85] that have used

queues to rate-limit network traffic and improve end-to-end delay for cloud

applications (e.g., MapReduce). However, they do not try to meet a specific

end-to-end delay deadline for a given flow; rather, they accumulate all traffic

belonging to a given tenant VM and apply the queue constraints on the host

level.

Avionics full-duplex switched Ethernet (AFDX) [74, 75, 76] is a determin-

istic data network developed by Airbus for safety critical applications. The

switches in AFDX architecture are interconnected using full duplex links,

and static paths with predefined flows that pass through network are set up.

Though such solutions aim to provide deterministic QoS guarantees through

static routing, reservation and isolation, they impose several limitations on

optimizing the path layouts and on different traffic flows. There have been

studies toward evaluating the upper bound on the end-to-end delays in AFDX

networks [76]. The evaluation seems to depend on the AFDX parameters,

though.

Furthermore, there are several protocols proposed in the automotive com-

munication networks such as controller area network (CAN) [77] and FlexRay

[86]. While these protocols are designed to provide delay guarantees, they

are limited in their applicability to networks with traffic flows with different

bandwidth requirements and complex network topologies. The SDN archi-

tecture is useful in extending the guarantees in such scenarios. Thus, in this

chapter, we propose a flexible framework to configure COTS components

and meet end-to-end delay and bandwidth guarantees with optimized path

layouts.

5.3 System Model

Consider a network topology (N) with open flow switches and controller,

and a set of real-time flows (F ) with specified delay and bandwidth guarantee

requirements. The problem is to find paths for the flows (through the topology)

such that the flow requirements (i.e., end-to-end delays) can be guaranteed

for the maximum number of critical flows. We model the network as an
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undirected graph N(V,E) where V is the set of nodes, each representing a

switch port in a given network and E is set of the edges, each representing a

possible path for packets to go from one switch port to another. Each port

v ∈ V has a set of queues vq associated with it, where each queue is assigned

a fraction of bandwidth on the edge connected to that port.

Consider a set F of unidirectional, real-time flows that require delay and

bandwidth guarantees. The flow fk ∈ F is given by a four-tuple (sk, tk, Dk, Bk),

where sk ∈ V and tk ∈ V are ports (the source and destination respectively)

in the graph, Dk is the maximum delay that the flow can tolerate and Bk

is the maximum required bandwidth by the flow. We assume that flow pri-

orities are distinct and the flows are prioritized based on a delay-monotonic

scheme, viz., the end-to-end delay budget represents higher priority (i.e.,

pri(fi) > pri(fj) if Di < Dj, ∀fi, fj ∈ F where pri(fk) represents priority of

fk).

For a flow to go from the source port sk to a destination port tk, it needs

to traverse a sequence of edges, i.e., a flow path Pk. The problem, then,

is to synthesize flow rules that use queues at each edge (u, v) ∈ Pk that

can handle all flows F in the given system while still meeting each flow’s

requirement. If dfk(u, v) and bfk(u, v) are the worst-case delay faced by the

flow and bandwidth assigned to the flow at each edge (u, v) ∈ E respectively,

then ∀fk ∈ F and ∀(u, v) ∈ Pk, and the following constraints need to be

satisfied:

∑
(u,v)∈Pk

dfk(u, v) ≤ Dk, ∀fk ∈ F (5.1)

bfk(u, v) ≥ Bk, ∀(u, v) ∈ Pk, ∀fk ∈ F. (5.2)

This problem needs to be solved at two levels:

• Level 1 : Finding the path layout for each flow such that it satisfies the

flows’ delay and bandwidth constraints. We formulate this problem as

a multi-constrained path (MCP) problem and describe the solution in

Sections 5.4 and 5.5.

• Level 2 : Mapping the path layouts from Level 1 on to the network

topology by using the mechanisms available in OpenFlow. We describe
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details of our approach in Section 5.6.

In addition to the aforementioned delay and bandwidth constraints (see

Eqs. (5.1) and (5.2)), we need to map flows assigned to a port to the queues

at the actual ports. Two possible approaches are: (a) allocate each flow

to an individual queue or (b) multiplex flows onto a smaller set of queues

and dispatch the packets based on priority. In fact, as we illustrate in the

following section, the queuing approach used will impact the delays faced by

the flows at each link. Our intuition is that the end-to-end delays are lower

and more stable when separate queues are provided to each critical flow –

especially as the rates for the flows get closer to their maximum assigned

rates. Given the nature of many CI networks, the number of critical flows

is often limited and well defined (e.g., known at design time). Hence, such

overprovisioning is an acceptable design choice – from computing power to

network resources (for instance, one queue per critical real time flow).

5.4 Path Layout: Overview and Solution

We now present a more detailed version of the problem (composing paths

that meet end-to-end delay constraints for critical real-time flows) and also

an overview of our solution. First, we briefly describe the classical multi-

constrained path problem in the next sub-section. The remainder of this

section describes our contribution of formulating the path layout problem as

an instance of the MCP problem.

5.4.1 The Multi-constrained Path (MCP) Problem

Assume a directed graph G(V,E), a source vertex v1 and a destination vertex

vk in the set E. Assume also that each arc in the set E has two non-negative

weights specified by the weight functions: w1 → R+
0 and w2 → R+

0 .

A multi-constrained path p is a path (v1 → v2 → v3 · · · → vk) such that it

meets following two constraints (C1 ∈ R+
0 and C2 ∈ R+

0 ) simultaneously:
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W1(p) =
k−1∑
i=1

w1(vi, vi+1) ≤ C1. (5.3)

W2(p) =
k−1∑
i=1

w2(vi, vi+1) ≤ C2. (5.4)

The problem MCP (G, v1, vk, w1, w2, C1, C2) is known to be NP-complete.

[87].

5.4.2 Problem Overview

Let Pk be the path from sk to tk for flow fk that needs to be determined.

Let D(u, v) be the delay incurred on the edge (u, v) ∈ E.

The total delay for fk over the path Pk is given by c. Therefore we define

the constraint on end-to-end delay for the flow fk as:

Dk(Pk) ≤ Dk. (5.5)

Note that the end-to-end delay for a flow over a path has the following delay

components: (a) processing time of a packet at a switch, (b) propagation on

the physical link, (c) transmission of packet over a physical link, and (d)

queuing at the ingress/egress port of a switch. As discussed in Section 5.3,

we use separate queues for each flow with assigned required rates. We also

overprovision the bandwidth for such flows so that critical real-time flows

do not experience queueing delays. Hence, we consider queuing delays to be

negligible. The other components of delay can be empirically estimated.

The second constraint that we consider in this work is bandwidth utilization,

that for an edge (u, v) for a flow fk, can be defined as:

Bk(u, v) =
Bk

Be(u, v)
(5.6)

where Bk is the bandwidth requirement of fk and Be(u, v) is residual (viz.,

available) bandwidth of an edge (u, v) ∈ E. For the purposes of establishing

a constraint for the setup of the MCP, bandwidth utilization over a path
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(Pk), for a flow fk is defined as:

Bk(Pk) =
∑

(u,v)∈Pk

Bk(u, v). (5.7)

Hence, note that the bandwidth utilization over a path Pk for flow fk is

bounded by

Bk(Pk) ≤ max
(u,v)∈E

Bk(u, v)|V |. (5.8)

where |V | is the cardinality of a set of nodes (ports) in the topology N .

Therefore in order to ensure that the bandwidth requirement Bk of the flow

fk is guaranteed, it suffices to consider the following constraint on bandwidth

utilization

Bk(Pk) ≤ B̂k (5.9)

where B̂k = max
(u,v)∈E

Bk(u, v)|V |. Note that the constraint in Eq. (5.9) is

loose. It can be tightened to reflect the occupancy of the flow along its path.

However, the path is not known a priori. Furthermore, the cardinality |V | can

also be replaced with the diameter of the topology. While such replacement

will make the constraint tighter, it remains to explore how it will affect the

utilization.

Remark 1 The selection of an optimal path for each flow fk ∈ F subject to

delay and bandwidth constraints in Eq. (5.5) and (5.9), respectively, can be

formalized as an MCP problem.

In order to solve the NP-complete problem, we use a polynomial-time

heuristic proposed by Chen and Nahrstedt [80]. The next subsection de-

scribes our approach to use this heuristic.

5.4.3 Polynomial-time Solution to the Path Layout Problem

The key idea behind the heuristic presented by Chen and Nahrstedt [80] is to

relax one of the constraints (in our case delay or bandwidth) at a time and

try to obtain a solution. If the original MCP problem has a solution, one of

the relaxed versions of the problem will also have a solution [80]. However, in

order use the polynomial-time heuristic, we first define following quantities
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pertaining to the constraints in our context:

D̃k(u, v) =

⌈
Xk ·D(u, v)

Dk

⌉
(5.10)

B̃k(u, v) =

⌈
Xk ·Bk(u, v)

B̂k

⌉
(5.11)

where Xk is a given positive integer. For instance, if we relax the bandwidth

constraint (e.g., represent Bk(Pk) in terms of B̃k(Pk) =
∑

(u,v)∈Pk
B̃k(u, v)),

Eq. (5.9) can be rewritten as

B̃k(Pk) ≤ Xk. (5.12)

The solution to this relaxed problem will also be a solution to the original

MCP [80]. Likewise, if we relax the delay constraint, Eq. (5.5) can be

rewritten as

D̃k(Pk) =
∑

(u,v)∈Pk

D̃k(u, v) ≤ Xk. (5.13)

Let the variable dk[v, i] preserve an estimate of the path from sk to tk for

∀v ∈ V , i ∈ Z+ (refer to Algorithm 4). There exists a solution (e.g., a path

Pk from sk to tk) if any of the two conditions is satisfied when the original

MCP problem is solved by the heuristic.

• When the bandwidth constraint is relaxed: The delay and (relaxed)

bandwidth constraints, i.e., Dk(Pk) ≤ Dk and B̃k(Pk) ≤ Xk are satis-

fied if and only if

dk[t, i] ≤ Dk, ∃i ∈ [0, Xk] ∧ i ∈ Z.

• When the delay constraint is relaxed: The (relaxed) delay and band-

width constraints, i.e., D̃k(Pk) =
∑

(u,v)∈Pk
D̃k(u, v) ≤ Xk and Bk(Pk) ≤

B̂k are satisfied if and only if

dk[t, i] ≤ Xk, ∃i ∈ [0, B̂k] ∧ i ∈ Z.
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5.5 Algorithm Development

The proposed heuristic solution of the MCP problem, as summarized in Al-

gorithm 4, works as follows. Let

∆(v, i) = min
P∈P (v,i)

W1(P) (5.14)

where P (v, i) = {P | W2(P) = i,P is any path from s to t} is the smallest

W1(P) of those paths from s to v for which W2(P) = C2. For each node

v ∈ V and each integer i ∈ [0, · · · , C2] we maintain a variable d[v, i] that

keeps an estimation of the smallest W1(P). The variable initialized to +∞
(Line 3), which is always greater than or equal to δ(v, i). As the algorithm

executes, it makes better estimation and eventually reaches ∆(v, i) (Line 8-

15). Lines 3-17 in Algorithm 4 are similar to the single-cost path selection

approach presented in earlier work [80, Sec. 2.2], and for the purposes of this

work, we have extended the previous approach for our formulation.

We store the path in the variable π[v, i],∀v ∈ V, ∀i ∈ [0, · · · , C2]. When

the algorithm finishes the search for path (Line 17), there will be a solution

if and only if the following condition is satisfied [80]:

∃i ∈ [0, · · · , C2], d[t, i] ≤ C1. (5.15)

If it is not possible to find any path (e.g., the condition in Eq. (5.15) is not

satisfied), the algorithm returns False (Line 41). If there exists a solution

(Line 19), we extract the path by backtracking (Line 21-29). Notice that

the variable π[v, i] keeps the immediate preceding node of v on the path

(Line 13). Therefore, the path can be recovered by tracking π starting from

destination t through all immediate nodes until reaching the source s. Based

on this MCP abstraction, we developed a path selection scheme considering

delay and bandwidth constraints (Algorithm 5) that works as follows.

5.5.1 Path Layout

Let us consider MCP HEURISTIC(N, s, t,W1,W2, C1, C2), an instance of polynomial-

time heuristic solution to the MCP problem that finds a path P from s to t

in any network N , satisfying constraints W1(P) ≤ C1 and W2(P) ≤ C2.
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Algorithm 4 Multi-constraint Path Selection
Input: The network N(V,E), source s, destination t, constraints on links W1 =

[w1(u, v)]∀(u,v)∈E and W2 = [w2(u, v)]∀(u,v)∈E , and the bounds on the constraints
C1 ∈ R+ and C2 ∈ R+ for the path from s to t.

Output: The path P∗ if there exists a solution (e.g., W1(P∗) ≤ C1 and W2(P∗) ≤ C2),
or False otherwise.

1: function MCP HEURISTIC(N, s, t,W1,W2, C1, C2)
2: /* Initialize local variables */
3: d[v, i] :=∞, π[v, i] := NULL, ∀v ∈ V , ∀i ∈ [0, C2] ∧ i ∈ Z
4: d[s, i] := 0 ∀i ∈ [0, C2] ∧ i ∈ Z
5: /* Estimate path */
6: for i ∈ |V | − 1 do
7: for each j ∈ [0, C2] ∧ j ∈ Z do
8: for each edge (u, v) ∈ E do
9: j′ := j + w2(u, v)

10: if j′ ≤ C2 and d[v, j′] > d[u, j] + w1(u, v) then
11: /* Update estimation */
12: d[v, j′] := d[u, j] + w1(u, v)
13: π[v, j′] := u /* Store the possible path */
14: end if
15: end for
16: end for
17: end for
18: /* Check for solution */
19: if d[t, i] ≤ C1 for ∃i ∈ [0, C2] ∧ i ∈ Z then
20: /* Solution found, obtain the path by backtracking */
21: P := Ø, done := False, currentNode := t
22: /* Find the path from t to s */
23: while not done do
24: for each j ∈ [0, C2] ∧ j ∈ Z do
25: if π[currentNode, j] not NULL then
26: add currentNode to P
27: if currentNode = s then
28: done := True /* Backtracking complete */
29: break
30: end if
31: /* Search for preceding hop */
32: currentNode := π[currentNode, j]
33: break
34: end if
35: end for
36: end while
37: /* Reverse the list to obtain a path from s to t */
38: P∗ := reverse(P)
39: return P∗
40: else
41: return False /* No Path found that satisfies C1 and C2 */
42: end if
43: end function
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Algorithm 5 Layout Path Considering Delay and Bandwidth Constraints
Input: The network N(V,E), set of flows F , delay and bandwidth utilization con-

straints on links Dk = [Dk(u, v)]∀(u,v)∈E , D̃k = [D̃k(u, v)]∀(u,v)∈E and Bk =

[Bk(u, v)]∀(u,v)∈E , B̃k = [B̃k(u, v)]∀(u,v)∈E , for each flow fk ∈ F , respectively, and

the delay and bandwidth bounds Dk ∈ R+ and B̂k ∈ R+, respectively, and positive
constant Xk ∈ Z, ∀fk ∈ F .

Output: The path vector P = [Pk]∀fk∈F where Pk is the path if the delay and bandwidth

constraints (e.g., Dk(Pk) ≤ Dk and Bk(Pk) ≤ B̂k) are satisfied for fk, or False
otherwise.

1: for each fk ∈ F (starting from higher to lower priority) do
2: Discard the the links for which Be′(u, v) < Bk,∀e′ ∈ E
3: /* Relax bandwidth constraint and solve */

4: Solve MCP HEURISTIC(N, sk, tk,Dk, B̃k, Dk, Xk) by using Algorithm 4
5: if SolutionFound then /* Path found for fk */
6: /* Add path to the path vector P */
7: Pk := P∗ where P∗ is the solution obtained by Algorithm 4
8: else
9: /* Relax delay constraint and try to obtain the path */

10: Solve MCP HEURISTIC(N, sk, tk, D̃k,Bk, Xk, B̂k) by using Algorithm 4
11: if SolutionFound then
12: /* Path found by relaxing delay constraint */
13: Pk := P∗ /* Add path to the path vector */
14: /* Update remaining available bandwidth */
15: Be(u, v) := Be(u, v)−Bk, ∀(u, v) ∈ Pk

16: else
17: Pk := False /* Unable to find any path for fk */
18: end if
19: end if
20: end for

For each flow fk ∈ F , starting with highest (e.g., the flow with tighter

delay requirement) to lowest priority, we first keep the delay constraint un-

modified and relax the bandwidth constraint by using Eq. (5.11) and solve

MCP HEURISTIC(N, sk, tk,Dk, B̃k, Dk, Xk) (Line 3) using Algorithm 4. We

only consider the feasible links in the topology, e.g., the links with residual

bandwidth Be′(u, v) ≥ Bk,∀e′ ∈ E.

If a solution exists, the corresponding path Pk is assigned for fk (Line 6).

However, if relaxing the bandwidth constraint does not return a path, we fur-

ther relax the delay constraint by using Eq. (5.10), keeping the bandwidth

constraint unmodified, and solve MCP HEURISTIC(N, sk, tk, D̃k,Bk, Xk, B̂k)

(Line 9). Once the path is found, we allocate the bandwidth for the sched-

uled flow and update the residual link bandwidth (Line 15). If the path

is not found after both relaxation steps, the algorithm returns False (Line

17) since it is not possible to assign a path for fk such that both delay and

72



bandwidth constraints are satisfied. Note that the heuristic solution of the

MCP depends of the parameter Xk. From our experiments we find that if a

solution exists, the algorithm is able to find a path as long as Xk ≥ 10.

5.5.2 Complexity Analysis

Note that Line 8 in Algorithm 4 is executed at most (C2 + 1)(V − 1)E

times. Besides, if there exists a path, the worst-case complexity to extract

the path is |P|C2. Therefore, time complexity of Algorithm 4 is O(C2(V E +

|P|)) = O(C2V E). Hence the worst-case complexity (e.g., when both of the

constraints need to be relaxed) to execute Algorithm 5 for each flow fk ∈ F
is O((Xk + B̂k)V E).

5.6 Implementation

We implement our prototype as an application that uses the northbound API

for the Ryu controller [59]. The prototype application accepts the specifica-

tion of flows in the network. The flow specification contains the classification,

bandwidth requirement and delay budget of each individual flow. In order

for a given flow fk to be realized in the network, the control-plane state of the

network needs to be modified. The control-plane needs to route traffic along

the path calculated for each fk as described in Section 5.5. In this section,

we describe how this is accomplished by decomposing the network-wide state

modifications into a set of smaller control actions (called Intents) that occur

at each switch.

5.6.1 Forwarding Intent Abstraction

An intent represents the actions performed on a given packet at each indi-

vidual switch. Each flow fk is decomposed into a set of intents as shown

in Figure 5.3. The number of intents that are required to express actions

that the network needs to perform (for packets in a flow) is the same as

the number of switches on the flow path. Each intent is a tuple given by

(Match, InputPort,OutputPort,Rate). Here, Match defines the set of packets

that the intent applies to, InputPort and OutputPort are where the packet
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h1 h2

s1
s2 s3

InPort	=	1,	OutPort	=	2,
Match	=	<UDP	Port	=	20000>,

Rate	=	5	Mbps

InPort	=	1,	OutPort	=	2,
Match	=	<UDP	Port	=	20000>,

Rate	=	5	Mbps
InPort	=	1,	OutPort	=	2,

Match	=	<UDP	Port	=	20000>,
Rate	=	5	Mbps

Intent@s1
Intent@s2

Intent@s3

Figure 5.3: Illustration of decomposition of a flow fk into a set of intents:
fk here is a flow from the source host h1 to the host h2 carrying
mission-critical DNP3 packets with destination UDP port set to 20, 000. In
this example, each switch that fk traverses has exactly two ports.
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arrives and leaves the switch, and finally the Rate is intended data rate for

the packets matching the intent. In our implemented mechanism for laying

down flow paths, each intent translates into a single OpenFlow [19] flow rule

that is installed on the corresponding switch in the flow path.

5.6.2 Bandwidth Allocation for Intents

In order to guarantee bandwidth allocation for a given flow fk, each one of

its intents (at each switch) in the path must allocate the same amount of

bandwidth. As described above, each intent maps to a flow rule and the

flow rule can refer to a meter, queue or both. However, meters and queues

are limited resources. Also, not all switch implementations provide both of

them. As mentioned earlier (Section 5.3), we use the strategy of one queue

per flow that guarantees better isolation among flows and results in stable

delays.

5.6.3 Intent Realization

Each intent is realized by installing a corresponding flow rule by using the

northbound API of the Ryu controller. Other than using the intent’s Match

and OutputPort, these flow rules refer to corresponding queues and/or meters.

If meters are used, then they are also synthesized by using the controller API.

However, OpenFlow does not support installation of queues in its controller-

switch communication protocol, so the queues are installed separately by

interfacing directly with the switches by using a switch API or command

line interface.

5.7 Evaluation

The goal of the evaluation in this section is two-fold: (a) schedulability of a

given set of flows across various topologies to explore the design space/performance

of the path layout algorithm in Section 5.7.1, and (b) an empirical evaluation,

using Mininet, that demonstrates the effectiveness of our end-to-end delay

guaranteeing mechanisms even in the presence of other traffic in the network

(Section 5.7.2).
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5.7.1 Performance of the Path Layout Algorithms

Topology Setup and Parameters

In the first set of experiments we explore the design space (e.g., feasible delay

requirements) with randomly generated network topologies and synthetic

flows. For each of the experiments we randomly generate a graph with 5

switches and create fk ∈ [2, 20] flows. Each switch has 2 hosts connected to

it. We assume that the bandwidth of each of the links (u, v) ∈ E is 10 Mbps

(e.g., IEEE 802.3t standard [88]). For this experiment the link delays are

randomly generated within [5, 25] µs. For each randomly-generated topology,

we consider the bandwidth requirement as Bk ∈ [1, 5] Mbps, ∀fk.

Results

Figure 5.4: Schedulability of the flows in different network topology. For
each pair (delay-requirement, number-of-flows), we randomly generate 250
different topologies. In other words, total 8 × 7 × 250 = 14,000 different
topologies were tested in the experiments.

We say that a given network topology with set of flows is schedulable if

all the real-time flows in the network can meet the delay and bandwidth
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requirements. We use the acceptance ratio metric (z-axis in Figure 5.4)

to evaluate the schedulability of the flows. The acceptance ratio is defined

as the number of accepted topologies (e.g., the flows that satisfied bandwidth

and delay constraints) over the total number of generated ones. To observe

the impact of delay budgets in different network topologies, we consider the

end-to-end delay requirement Dk, ∀fk ∈ F as a function of the topology.

In particular, for each randomly generated network topology Gi we set the

minimum delay requirement for the highest priority flow as Dmin = βδi

µs, and increment it by Dmin

10
for each of the remaining flows. Here δi is

the diameter (e.g., maximum eccentricity of any vertex) of the graph Gi

in the i-th spatial realization of the network topology, β = Dmin

δi
and Dmin

represents x-axis values of Figure 5.4. For each (delay-requirement, number-

of-flows) pair, we randomly generate 250 different topologies and measure the

acceptance ratios. As Figure 5.4 shows, stricter delay requirements (e.g., less

than 60 µs for a set of 20 flows) limit the schedulability (e.g., only 60% of the

topology is schedulable). Increasing the number of flows limits the available

resources (e.g., bandwidth) and thus the algorithm is unable to find a path

that satisfies the delay requirements of all the flows.

5.7.2 Emulation Experiments using Mininet

While the flow paths are laid out in a correct-by-construction manner (see

Algorithm 5), our evaluation in this section tests our algorithms with a variety

of cases to demonstrate that our delay-based admission control algorithms

work as intended. This is akin to demonstrating the workings and checking

the performance of a proven scheduling algorithm with synthetic task sets.

Experimental Setup

The purpose of the experiment is to evaluate whether our controller rules and

queue configurations can provide isolation guarantees so that the real-time

flows can meet their delay requirement in a practical setup.

We evaluate the performance of our proposed scheme using Mininet [57]

(version 2.2.1), which has been widely used [89, 90, 91, 92, 93]. Mininet

is an open source platform that emulates real-world setup by utilizing vir-

tualization on top of a Linux kernel. Mininet has the capability to emulate
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Table 5.1: Experimental platform and parameters

Artifact/Parameter Values

Number of switches 5

Bandwidth of links 10 Mbps

Bandwidth requirement of a flow [1, 5] Mbps

Controller Ryu 4.7

Switch configuration Open vSwitch 2.3.0

Network topology Synthetic/Mininet 2.2.1

OS Debian, kernel 3.13.0-100

different kinds of network elements such as host, switches (layer-2), routers

(layer-3) and links.

We configured switches using Open vSwitch (OVS) [58] (version 2.3.0) and

use Ryu [59] (version 4.7) as our controller. For each of the experiments we

randomly generate a Mininet topology using the parameters described in

Table 5.1.

We develop flow rules in the queues to enable connectivity among hosts in

different switches. The packets belonging to the real-time flows are queued

separately in individual queues and each queue is configured at a maximum

rate of Bk ∈ [1, 5] Mbps. If the host exceeds the configured maximum rate

of Bk, our ingress policing throttles the traffic before it enters the switch.1

We use netperf (version 2.7.0)[78] to generate the UDP traffic between

the source and destination for any flow fk. Once the flow rules and queues

are configured, we send packets from source sk to host tk for each of the flows

fk. The packets are sent in a burst of 5 with 1 ms interburst time. All packet

flows are triggered simultaneously and last for 10 seconds.

To measure the effectiveness of our prototype with mixed (e.g., real-time

and non-critical) flows, we enable [1,3] non-critical flows in the network. All of

the low-criticality flows use a separate, single queue and are served in a FIFO

manner – it is the “default” queue in OVS. Since many commercial switches

(e.g., Pica8 P-3297, HPE FlexFabric 12900E, etc.) supports up to 8 queues

per port (and 52 ports per switch), in our Mininet experiments we limit the

maximum number of real-time flows to 7. We performed experiments for a

single port where each of the 7 real-time flows uses a separate queue and the

remaining 8th queue is used for non-critical flows. Our flow rules isolate the

1In real systems, the bandwidths allocation would be overprovisioned (as mentioned
earlier), but our evaluation takes a conservative approach.
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non-critical flows from real-time flows. All the experiments are performed on

an Intel Xeon 2.40 GHz CPU and Linux kernel version 3.13.0-100.

We assume flows are indexed based on priority, i.e., D1 < D2 < · · · < D|F |

and randomly generate 25 different network topologies. We set D1 = 10δi µs

and increment with D1

10
for each of the flow fk ∈ F, k > 1 where δi is the di-

ameter of the graph Gi in the i-th spatial realization of the network topology.

For each topology, we randomly generate the traffic with required bandwidth

Bk ∈ [1, 5] Mbps and send packets between source (sk) and destination (tk)

hosts for 5 times (each transmission lasts for 10 seconds) and log the worst-

case round-trip delay experienced by any flow. We define the expected delay

bound as the expected delay if the packets are routed through the diameter

(i.e., the greatest distance between any pair of hosts) of the topology and

given by Di(u, v) × δi, where Di(u, v) = 5 µs is the delay between the link

(u, v) in i-th network realization. The link delay here is assumed to be a

given property of the topology.

Experience and Evaluation

Recall that we use a correct-by-design principle to lay out the flows in the

network. Figure 5.5(a) illustrates the results for the schedulable flows (viz.,

the set of flows for which both delay and bandwidth constraints are satisfied).

The y-axis of Figure 5.5(a) represents the empirical CDF of average round-

trip delay experienced by any flow. From our experiments we find that, the

non-critical flows do not affect the delay experienced by the real-time flows

and the average delay experienced by the real-time flows always meets their

delay requirements. This is because our flow rules and queue configurations

isolate the real-time flows from the non-critical traffic. As seen in Figure

5.5(a), the average round-trip delays are less than the maximum expected

round-trip delay bound (e.g., 2 × 5 × 4 = 40 µs).

To compare, we conducted an experiment of laying out the same set of

flows but without our mechanisms in place. This experiment used shortest-

path routing and did not separate the queues for any flows (in contrast to

the separate queues for real-time flows in our work). Figure 5.5(b) plots the

empirical CDF of the mean delays experienced by the real-time flows in this

setting. As the plot shows, these flows experienced higher and more vari-

able latency than when our mechanisms were in place, thus highlighting the
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Figure 5.5: The empirical CDF of: (a) average round-trip delay when using
paths generated by MCP and giving each flow its own queue, worst-case
round-trip delay; (b) average round-trip delay experienced when using
shortest paths and a single queue. We set the number of flows fk = 7 and
examine 7 × 25 × 5 packet flows (each for 10 seconds) to obtain the
experimental traces.
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Figure 5.6: End-to-end average round-trip delay with varying number of
flows. For each set of flow fk ∈ [2, 7], we examine fk × 25× 5 packet flows
(each for 10 seconds). The blue boxes represent inter-quartile range (e.g.,
50% of values for the group) while the inside red lines indicate median
value. The upper and lower whiskers represent values outside the middle
50%.

need for the proposed mechanisms being presented in this paper. The 99th-

percentile delays were also much higher than when using our mechanisms.

Figure 5.6 illustrates the impact of number of flows on the average round-

trip delay (represented by y-axis in the figure) with different number of flows

(x-axis). Recall that in our experimental setup we assume at most 8 queues

per port are available in the switches where 7 real-time flows are assigned to

each of 7 queues and the other queue is used for [1, 3] non-critical flows. As

shown in Figure 5.6, increasing the number of flows slightly decreases qual-

ity of experience (in terms of end-to-end delays). With increasing number

of packet flows the switches are simultaneously processing forwarding rules

received from the controller – hence increasing the round-trip delay. Recall

that the packets of a flow are sent in a bursty manner using netperf. In-

creasing number of flows in the Mininet topology increases the packet loss

and thus causes higher delay.
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CHAPTER 6

SYNTHESIS: RESILIENCY GUARANTEES

The applications that constitute the critical infrastructure (e.g. smart power

generation and distribution systems, oil refineries etc.) have a unique set

of requirements regarding their underlying communication networks. For

example, such applications require that their communication be seamlessly

resilient against arbitrary link or device failures. Furthermore, these applica-

tions also require a predictable end-to-end delay for data delivery in multicast

settings [10] [94]. Such resilience and performance requirements cannot be

simultaneously accomplished by mere overprovisioning of network resources

such as topological redundancy or bandwidth.

Rather, in the packet store-and-forward paradigm, the resiliency can be

provided by carefully routing the packets around a failed link or network

device and requires solving complex combinatorial problems [95] [96] [97]

[98]. However, even with the use of fast-failover mechanism, it is impossible

to provide seamless resiliency using such techniques due to a finite delay

caused by a switch’s capability to detect and respond to failure and change

in routing.

Such intractability is a result of hard routing and resource allocation de-

cisions that are in turn a consequence of the atomic nature of a packet flow

in the store-and-forward paradigm. In this paradigm, a flow has to originate

at a source port and follow a specific path to arrive at the destination(s)

without any modifications to its contents. However, network coding converts

this hard decision into one of many soft decisions by mixing packets at inter-

mediate network devices using algebraic coding. In theory, NC promises to

provide seamless resilience to failures for critical infrastructure applications

over the store-and-forward paradigm [27] [28]. However, practical NC that

achieves the promised theoretical gains has remained elusive.

Clearly, NC is realized when the intermediate network devices can be pro-

grammed to implement the packet coding and decoding capabilities. While
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there have been successful attempts to demonstrate the efficacy of using inter-

session NC in wireless networks [99] [100], the progress on the widespread

adoption of the same has been disappointing. In part, the reason has been

the practical issues of retrofitting NC onto the prevalent networking architec-

ture. These issues have been addressed in various ingenious efforts in the past

[101] [102]. But, more importantly, the adoption of NC has been stifled due

to a lack of programmable platforms that can implement novel data-plane

methods at scale. Historically, the switch ASIC architectures that implement

data-plane functionality have been optimized for ever-increasing line-speed

performance at the expense of programmability. However, very recently, with

the advent of programmable data-planes [20], it has become possible to not

only experiment with [103] but also to deploy new network functions using

a flexible data-plane architecture in production networks [104].

Based on these developments, we devise an architecture capable of simulta-

neously meeting resilience and performance requirements of the data streams

generated by applications in critical infrastructure systems. To that end, we

present one that leverages programmable networks to replace routing algo-

rithms with NC functions. Our contributions include:

• A library of atomic network coding primitives implemented using the

programmable data-planes.

• Use of the proposed primitives to construct linear network coding func-

tions capable of achieving specific requirements for applications’ data

streams.

• Evaluation of the coding functions to show that the seamless resilience

and multicast rate gains are obtained at a small per-packet processing

cost of coding and decoding the packets in the data-plane.

The remainder of this chapter is organized as follows: Section 6.1 dis-

cusses some experiments that motivate the development of network coding

for providing seamless resiliency; Section 6.2 discusses related work; Section

6.3 provides some background; Section 6.4 proposes an architecture to imple-

ment coding functions; Section 6.5 discusses the design of various elements of

the proposed architecture; Section 6.6 evaluates the performance and costs

of using the proposed design.
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6.1 Motivating Experiments

As noted above, applications in the CI networks need forwarding resilience

to failure events that cause the network topology to change due to link or

device failures. This resilience implies that the packets in a given set of flows

continue to be delivered while the event occurs. When a distributed control-

plane is used, such an event results in routing table updates and consequently

the packets that are in-transit are lost. Similarly, even with the centralized

control-plane and the use of fast-failover mechanism, there are packet losses

due to the time taken by the switch to shift traffic from one link to another.

Figure 6.1: Packet drops due to the use of fast-failover mechanism: 100,000
packets were sent at the rate of 95 Mbps.

Table 6.1: Number of packets lost when fast-failover mechanism is engaged
due to a link failure on an OpenFlow compatible hardware switch

Rate (Mbps) # Packets Lost

4 15

10 71

20 115

50 321

We performed an experiment to motivate using Network Coding to provide

seamless resilience. We used an OpenFlow enabled switch (Pica8 P-3297)

and three hosts (Raspberry Pi 3 Model B). We set up one of the hosts as the

packet source and other two hosts as receivers. We configured the switch to

forward the packets from the source to one of the receivers. However, we use

the fast-failover mechanism such that when link to one of the receivers fails,
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the packets are forwarded to the other receiver. We sent 100,000 packets with

1 kB payload with fixed inter-packet period to generate different data rates

and manually failed one of the receiver links. We measured the total number

of packets received at both hosts. Table 6.1 presents the total number of

packets lost at varying rates. We observed the number of lost packets to

increase with the data rate of the sender.

Furthermore, we performed a similar experiment with a higher number of

switches and only two hosts: a source and a destination. We sent 100,000

packets from the source to the destination and measured the end-to-end delay

of each packet. We failed and restored the first link in the primary path of

the packet flow. The primary path of the packets contained three switches.

When a link failure occurred, the path became longer with four switches.

Figure 6.1 plots the end-to-end delay for each packet. We observed that

approximately 1000 packets were dropped (shown in red) when both the link

failure and restoration events occurred.

It is clear that more packets are lost at higher flow send rates. The re-

sults from both Table 6.1 and the Figure 6.1 correspond with a link fail-

ure/restoration time of about 100 µs. This is consistent with what has been

previously reported for some specially designed switches as well [105]. The

takeaway from these experiments is that it is hard to escape packet losses

even with fast-failover enabled OpenFlow switches.

6.2 Related Work

There has been prior work in the store and forward paradigm that allows

nearly instantaneous failure recovery. When such failures are addressed re-

actively, they result in prohibitively large restoration time for critical infras-

tructure applications [106] [10]. There are proactive approaches to deal with

such failures which use the mechanisms local to a switch to reroute traffic

on an alternative path [95] [96] [97] [98]. However, such approaches require

k-connected network topologies for sustaining k link failures, thus incurring

a large overhead in procuring and maintaining such networks. Furthermore,

these approaches require solving combinatorial problems to choose alterna-

tive links in the event of link failures. These approaches also lead to new

problems such as the need to load-balance resilience so that a small set of
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links does not become too critical for the resulting network after the failures.

Recently, in order to meet the performance guarantees in store-and-forward

networks, the standards bodies have proposed standards for special-purpose

hardware [12] [13]. However, using such special hardware incurs large cap-

ital and recurring expenses. To that end, some recent work has proposed

mechanisms to simultaneously meet per-flow end-to-end delay and band-

width requirements using software-defined commodity networks [107]. How-

ever, this work solves a resource allocation problem using a heuristic for a

multi-constraint path problem that provides no guarantees of optimality.

The seminal work that demonstrated a practical mechanism to implement

NC by using simulations was done by Chou et al. [102]. This work focused

on coding batches of data which is incompatible with the acknowledgement

mechanisms of TCP. Subsequently, there has been work demonstrating TCP

throughput gains with the use of NC [101] [108] with deployable implemen-

tations. However, these efforts focus on intra-session coding at source only

and the goodput gains obtained due to intermittent packet loss.

There have been several prior efforts to implement NC on top of the ap-

plication layer, either in an overlay topology [109] [110] [111] or as a virtual

network function [112]. While implementing NC in the application layer of-

fers flexibility and variety in the type applications that can be materialized,

the cost of taking packets from the network interface and processing them in

upper layers can be high and can be mitigated by implementing NC in the

data-plane of network devices. Furthermore, COPE [99] demonstrated the

benefits of inter-session coding in the specific setting of wireless networks by

utilizing the broadcast property of the media with a clever heuristic. The

types of benefits that COPE extracted using a specially designed architec-

ture can now be replicated for wired networks by implementing NC using

standard platforms such as the P4 ecosystem.

There have previous theoretical proposals of using coding in the CI sys-

tems [113] [114] [115]. In practice, such proposals have focused on increasing

throughput for collecting wireless sensor measurements [100].

Finally, there are priors efforts to code packets at a link level to improve

robustness. Specifically, when optical links suffer grey failures, the links

throughput can be improved by using forward error correction (FEC) codes

[116] or simple parity codes [117]. However, there are no multicast through-

put gains obtained by using coding across an individual link.
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6.3 Network Coding

In the store-and-forward paradigm, each flow originates at a source port and

follows a deterministic path to arrive at the destination port(s); however,

its contents are immutable during the transit. Hence, due to immutability,

when globally optimal decisions for resource allocation for flows are to be

made, the resources are allocated separately for each flow at the network de-

vices. Furthermore, in the event of a link or device failure, the flows must be

routed around the failure entirely. Due to these requirements of immutabil-

ity, solving for performance guarantees and resilience requirements results in

formulation of problems that are intractable [118] [107] or combinatorially

complex [95] [96] [97] [98].

The NC paradigm approaches the problem of delivering data from point

A to point B by allowing intermediate nodes within the network to code and

recode the packets. This paradigm has many promising theoretical proper-

ties. For example, in their seminal work, Ahlswede et al. [27] showed that,

given a network represented as a multigraph G(V,E), network coding can

enable a sender s ∈ V to communicate with a set of receivers T ⊂ V \ s, at a

multicast rate equal to the minimum max-flow from the sender to any of the

t ∈ T . Li et al. [119] showed that using linear codes on the network nodes is

sufficient to achieve this rate. Koetter and Medard [28] extended the theorem

to the cases when the edges in E are subject to failures and showed that the

linear codes can achieve minimum max-flow even after failures. Finally, Ho

et al. [120] showed that the random linear network codes suffice to achieve

the same.

The implementation of linear NC requires two types of computations:

First, there are network-level operations such as computation of coding co-

efficients or designation of various roles to the individual nodes based on the

topology and the application requirements. These operations can be per-

formed in the programmable control-plane. Second, there are the simple

arithmetic operations (e.g. addition, multiplication) that are performed on

an individual or a small batch of packets in the applications’ data stream.

In order for coding to scale to line-speeds, these operations have to be per-

formed on the individual network devices using a programmable data-plane

architecture.
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Figure 6.2: Architecture.

6.4 Architecture

Figure 6.2 illustrates the proposed architecture which enables implementation

of linear network coding using P4 devices. This particular example shows a

stream of packets carrying applications’ data originating at the host on the

left side and terminating on the host at the right side. Fundamentally, we

assume that a packet stream can be divided into a batches of packets. These

batches are then processed by individual devices to achieve the NC gains.

We define a coding function as the realization of a linear code to improve

resilience or throughput of a unicast/multicast data stream. For example,

in Figure 6.2, the function implements a diversity code [121] to provide re-

silience to failure of any one of the three paths between S1 and S3. The

function replaces IP forwarding and spans one or more P4 enabled devices.

A northbound coding application implements multiple coding functions that

operate simultaneously across the network.

A coding primitive is an atomic block of functionality implemented on

the individual P4 switches. For example, in Figure 6.2, switches S1 and S3

implement the coding and decoding primitives respectively. Each primitive

operates independently of the others. Each incident stream of packets on

the device is subject to one or more primitives. A switch can process mul-

tiple data streams simultaneously. Each switch’s configuration contains the
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Figure 6.3: Coding function for realizing multicast rate gains over a
butterfly topology: The host on the left (at switch S1) is sending a
multicast stream to the two hosts on the right at switches S6 and S7.

identifier for the data streams and the exact sequence of coding primitives

applied to each of them.

6.5 Design

In this section, we present our design for coding functions over the Galois

Field of size 2 (GF2). While the benefits of using coding over this field are

less than larger complex field sizes, our proposed design applies to larger

field sizes and captures both the benefits and requirements of feasible coding

implementations. We first describe our design for the coding functions in the

control-plane. Next, we discuss the packet header that is used to coordinate

primitives for a given coding function and finally describe how our design of

the coding primitives in the data-plane uses the P4 ecosystem.

6.5.1 Coding Functions

The coding functions are a part of the coding application. Each coding func-

tion takes as input the source host and destination host(s) associated with the

data stream. It accesses the topology information by using the controller’s

northbound API. Then, the coding function generates the configuration for

the coding primitives described later in this section. Figures 6.3 and 6.4 show

instances of coding functions. One instance is that of a diversity code that

provides seamless resilience for a unicast stream over three paths. The other
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Figure 6.4: Coding function for realizing seamless resilience to failure of
links in any one of three available paths from host on the left (at switch S2)
to the host on the right (at switch S4).

instance uses a linear code for enhancing receiver’s data rate of a multicast

stream.

6.5.2 Coding Header

Each packet that belongs to a coding function carries a coding header. The

header contains various fields to coordinate the operations performed by

the coding primitives across the network. The header has a field called

next primitive which determines what happens to the packet when it ar-

rives at a network device. It also has a field called stream id to identify

packets belonging to different streams. Finally, it has the batch number

which identifies the packets belonging to a given batch of packets within the

stream.

Since P4 does not provide access to the contents of a packet, in our pro-

totype, we use a field in the coding header to carry the packet’s payload.

However, the number of bytes in each packet that can be manipulated as

the packet header are a fraction of the total packet size. The exact number

of bytes varies based on the design of the P4 switch but it is not beyond

a few hundred bytes. While, in practice, CI application protocols have the

ability to adjust the size of their payloads by trading them with sampling

frequency, this remains a fundamental limitation of the commercially avail-

able hardware switches. Furthermore, it is worth mentioning that there are
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no fundamental limitations on the software switches and they can choose to

explore the entirety of the packet payload as a header albeit with an increase

in the per-packet processing cost.

The coding primitives are implemented in the data-plane on the individ-

ual network devices using P4. The primitives are implemented primarily

in the ingress pipeline. However, some of the primitives use the egress

pipeline for recirculating cloned packets for generating new packets that carry

coded/decoded payload. For every primitive, we also collect some in-band

telemetry to measure processing times for evaluation.

Coding primitives use several common design patterns. Each primitive

uses at least one table in the ingress pipeline. If the primitive uses packet

cloning and recirculation, then it also uses a table in the egress pipeline.

Furthermore, each primitive table has a common field called stream id as

part of its key. This field is used to specify the packets belonging to a specific

application’s data stream. These packets could originate at the host or could

be the result of the output of another primitive.

Each table implements a decision tree. The levels of the tree are determined

by values taken by the fields in the key of the table. The actions in the

table form the leaves in the decision tree. These actions either perform

the mathematical operation for coding/decoding packets or manipulate some

global state that is held in registers.

6.5.3 Coding Primitives

Next, we describe the particulars of the individual primitives. As illustrated

in the Figure 6.5, we developed five primitives to implement linear inter-

session NC as follows:

• Splitting: Primitive splits a given packet stream arriving from a single

interface into individual batches of packets. It uses global state in

registers on a per-stream basis and stores the packets in the appropriate

registers so that the coding/decoding primitives can use them.

• Coding: Primitive generates new packets whose payloads are obtained

by coding over the previously stored payloads. It accomplishes that by

using the cloning and recirculation features to create a loop to gener-

ate packets whose payload is then populated to be the coded packets.
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Figure 6.5: Network coding primitives.

In order implement linear codes, the coding primitive only performs

addition, subtraction and XOR operations provided by P4.

• Forwarding: Primitive performs unicast or multicast forwarding of

a packet. The multicast forwarding action makes use of cloning to

generate copies of packets.

• Gathering: Primitive collects a batch of incoming packets from mul-

tiple interfaces and puts them into the registers corresponding to their

stream id. It also relies on global state in registers to keep track of

the packets it has received on a per-stream basis.

• Decoding: Primitive takes the gathered packets, decodes them and

forwards the payload packets to the host. In order to generate decoded

payload, this operation may also require generating new packets. This

primitive also uses cloning and recirculation to generate new packets

that are then populated with decoded payload.

Clearly, the coding and decoding primitives require buffering of the pack-
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ets. In our current prototype, we use the registers to maintain a fixed size

ring buffer containing the packet payloads and use the batch number to lo-

cate them appropriately. The packets belonging to same stream of packets

are correlated by using the stream id. In our design, we do not perform any

flow control on the switches.

Furthermore, one of the key concerns associated with the design of both

coding and decoding mechanism design is the need to wait for the arrival of

packets in the buffer at a primitive before they are ready to code or decode

a collection of packets. In our design, we avoid waiting at coding and send

packets out as soon as they arrive. However, at decoding, especially when

the first received packet is a coded packet, then the wait is inevitable. In

such cases, the difference in the delay of a coded packet vs. a plain packet

becomes a bottleneck. We evaluate various scenarios to explore this further

in Section 6.6.

6.6 Evaluation

We implemented a prototype of the library of primitives and functions that

use them. Our prototype is available in the public domain [122]. We eval-

uated our approach using mininet [57] and a software switch [123] as P4

target. The end-hosts were emulated using Python scripts that used scapy

[124] to construct and parse custom coding headers. The emulations were

performed on a machine that was running Ubuntu 16.04 LTS. The machine

had eight processor cores clocked at 2.7 GHz and 16 GB of RAM. We per-

formed two types of evaluation that are described below.

6.6.1 Multicast Rate Gains of Coding

We performed an experiment to measure the multicast rate gains that are

obtained when using a simple linear code to perform multicast over the clas-

sic butterfly network shown in Figure 6.3. The host on the left side wants

to multicast a data stream to the two hosts on the right. Suppose the band-

width of the links between the switches is k bps. Theoretically, coding should

allow a multicast rate of k bps for flows S1 → S2 and S1 → S3 simultane-

ously, whereas any scheme that uses packet forwarding would not be able to
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Figure 6.6: Comparison between received rate achieved using coding vs.
forwarding in the butterfly topology.

accomplish this rate because only a single packet can be forwarded along the

link S4 − S5.

We sent 750 packets at increasing data send rates with an exponentially

distributed inter-packet time to match the rate. Each packet contained 4096

bytes of payload. For the purpose of this experiment, the value of k was

set to 0.05 Mbps. We measured the simultaneous received data rate on

each receiver by using the packet payload sizes and their timestamps in the

generated PCAP files to obtain the range of time for which the transmission

was received at each receiver. Figure 6.6 plots two ratios. The x-axis is

the ratio of send-rate to the max-flow between the source and destination

host, whereas the y-axis is the ratio of observed received rate at one of the

receiving hosts (without loss of generality and empirically identical) to the

send rate.

We observe that the received rate for forwarding starts to drop when the

send rate is at 50% of the max-flow. This is because forwarding cannot

entirely use the max flow bandwidth. However, the received rate for the case

when coding is used does not drop at all. Furthermore, notice the difference

94



Figure 6.7: Processing time per packet for coding and decoding using the
diversity code.

between received rate for both cases when the data send rate is the same as

max flow. This relative gain in the received rate for coding is consistent with

the a 33% gain when using coding over forwarding for a butterfly topology

as theorized by Ahlswede et al. in their seminal paper.

6.6.2 Microbenchmarks

We performed an experiment to measure the processing latency associated

with coding and decoding packets in a P4-enabled switch. We used in-band

telemetry to measure the processing time at each switch in the path of the

packet. The processing time is measured as difference between the time-

stamp associated with packet arriving at the ingress pipeline and packet

being queued for egress.

We used the framework described above to implement diversity coding over

multiple alternative paths as shown in Figure 6.4. Each link was set to have

a delay of 5 ms. However, in order to create a delay differential for packets
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arriving at S5 for decoding, we changed the delay for link between S2 and

S5. Furthermore, we measured the impact of payload size on the processing

time. We sent 1000 packets for each point in the plot shown in Figure 6.7.

The packets were sent as fast as possible (i.e. there was no sleep between

any two packets).

We observed a negligible effect of increasing the payload sizes of packets for

all operations. Specifically, we observed that the processing time for the set

of switches that forward the packets (i.e. S1, S3, S5) increases only slightly

even when payload sizes are quadrupled. In the worst case, we observe that

processing time at the coding node (i.e. S2) can be up to four times the

processing time for only forwarding the packets. Similarly, in the worst-case,

a decoding node (i.e. S4) can take up to six times longer to process a packet

than a forwarding node. Some of this variation and extra processing time

is due to the cloning and recirculation operation that coding and decoding

primitives use.

Finally, we observe that for a lower link delay differential, the decoding

time is higher than the coding time and has a high standard deviation, and

vice versa. This is because different sets of table actions are in effect in those

two cases. For a lower link delay differential, the XOR packet arrives at the

decoder first and necessitates the use of arithmetic decoding, whereas when

the differential is higher, the decoding is essentially reduced to forwarding

the uncoded packets.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Summary of Dissertation Research

Network programmability has profound implications for the design and op-

erations of the networks in CI systems. These networks have unique require-

ments of guarantees around achieving end-to-end delay, access control and

resiliency. This dissertation is an attempt to design and prototype a set of

tools that exploit network programmability to provide such guarantees. We

develop these tools by proposing new architectures, algorithms and models.

We developed prototypes for these tools and evaluated them for their usabil-

ity and their efficacy towards providing the pertinent guarantee. We took two

distinct approaches in development of these tools: analytic and synthetic.

In traditional, distributed data-plane networks, computationally analyz-

ing the network configuration was challenged by the logistics: The configura-

tion language for network devices was distributed, opaque and non-standard.

However, with the rise of standardized control and data-planes, the compu-

tation analysis of network configurations has emerged as a powerful approach

for solving a variety of problems. We used this approach to validate access

control and resilience of networks simultaneously. We also used it to provide

a mechanism to compute metrics pertaining to network resilience by using

Monte Carlo methods.

In traditional networks, synthesizing network configuration so that it met

a certain network policy goal was achieved indirectly by using a distributed

routing algorithm. However, the mechanisms that were used were error-prone

and neither provided the room to innovate nor optimally used the network

resources. However, with the use of programmability, we synthesized control-

plane configuration in the CI networks to meet their resilience, and end-

to-end delay requirements have become possible. We also used centralized
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network coding based mechanisms that operate on an intersection of control

and data planes to provide seamless resilience.

7.2 Future Work

The long-term goal of our research is to use programmable networking in the

CI systems. We briefly described several ways in which this dissertation’s

work can be extended to help support this goal.

7.2.1 Analysis

To perform policy validation using the RRP, we proposed the use of header

spaces combined with a port graph model of the underlying network. How-

ever, the underlying assumption was that the network is composed of Open-

Flow devices. The port graph model itself is applicable towards programmable

networks composed of P4-enabled devices. However, in order to validate

policies on such programmable networks using FlowValidator, both the data-

plane programs as well as the current configuration of the device need to be

taken into account. So, a future research extension could explore whether

such models can accurately capture the arbitrary behaviors that a pro-

grammable switch may implement. Such future work could also explore

whether there is fundamental trade-off between model expressiveness and

the associated computational complexity for use of the same to perform pol-

icy validation query expressed in RRP.

To perform resiliency metric computation, we proposed explicitly simulat-

ing the data-plane to enable Monte Carlo methods. This results in constraints

on the nature of questions that can be asked about the network; however, it

does offer a lot better performance with the use of multi-threaded implemen-

tations. While our work focused on resiliency, the programmable data-planes

are being proposed to solve a variety of problems (e.g. to detect DDoS at-

tacks [125] or to perform in-network consensus [126]). It is not a priori clear

whether these applications are feasible and the behavior of the programmable

data-planes may be simulated to answer questions around performance of

such potential future applications. While the proposed data-plane simulator

is specifically designed to mimic a network composed of OpenFlow switches,
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there is no fundamental limitation on its extension towards simulating P4-

enabled data-planes.

7.2.2 Synthesis

To provide delay and bandwidth guarantees, we proposed algorithms to

search, and a mechanism to synthesize, configurations for paths. However,

our proposal makes a simplifying assumption to use a dedicated queue for

each flow at each port in the network. This may not be scalable because

the number of queues is fixed in hardware switches. This calls for future

work that multiplexes flows onto a single hardware. However, this would

necessitate the use of more sophisticated models (such as the ones rooted in

Network Calculus [79]) to accurately capture the scheduling of packets in the

switch processing pipeline and ports. Furthermore, it needs to be explored

whether a similar approach can be used to provide both fast failover and

end-to-end delay guarantees simultaneously. The naive approach to solving

the joint problem will require solving many instances of the same problem by

removing the presumably failed link from the topology. However, the naive

approach would not scale well for large topologies.

To provide resiliency guarantees, we proposed a framework that uses of

network coding. Our current implementation uses simple codes that pro-

vide fairly robust resilience for various scenarios. However, we have barely

scratched the surface of the opportunities that more sophisticated codes can

provide, and more sophisticated coding requires better inherent support from

the underlying switch hardware. Our current implementation relies on using

the P4 language’s clone and recirculate primitives to generate new pack-

ets to mimic a loop. However, the hardware switches are not designed for

such use. There is also no explicit looping mechanisms in the P4 language,

forcing us to rely on the P4 enabled software switch implementation in our

evaluation. The hardware based implementation on a programmable switch

remains a work in progress.

Furthermore, beyond the raw implementation issues, as evident in our

evaluation, there are processing costs to coding in the data-plane. This may

not be suitable for delay-sensitive CI applications. It might be worthwhile to

decide to not code packets if it is not necessary to provide resiliency. Hence,
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there is an opportunity for future work to explore the trade-off between

coding choices with per-packet scheduling decisions. Some recent work has

demonstrated the use of reinforcement learning (RL) to schedule packets in

a broadcast cellular network [127] [128]. RL relies on using feedback from

the system to adjust some parameters on its policy. With the rise of in-band

telemetry (INT) [129], getting per-packet delay is now possible. This delay

could be used to guide an RL agent that makes appropriate trade-offs based

on the agent’s objective in the context of CI networks.
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