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Abstract

Accurate first-principles calculations can provide valuable predictions for material-specific properties as well

as simplified models for interpreting materials’ behavior. However, the level of accuracy required is difficult

to reach in systems where it is important to properly account for electron correlations. I report several

benchmarks establishing that variational Monte Carlo (VMC) and fixed-node diffusion Monte Carlo (FN-

DMC) are efficient enough to compute properties of realistic systems while significantly improving on the

accuracy of more commonly-used first-principles approaches. For chemical reactions, FN-DMC can provide

reaction barrier estimates that have reached “chemical accuracy,” the accuracy threshold to predict room-

temperature chemistry measurements. For the iron-based superconductor, FeSe, I report on quantum Monte

Carlo calculations that accurately reproduce the structural properties, including the lattice constants and

the equation-of-state. In FeSe, I also found a coupling between the structure, spin texture, and orbital

occupation in the system that may be relevant to explain some of the unique properties of that system.

To establish its predictive capabilities, I also utilize FN-DMC to make a prediction for the singlet-triplet

gap of MgTi2O4, a spinel system relevant to the search for spin liquids. We found that the gap was larger

than previous experiments have considered, and may explain why the singlet-triplet gap has not yet been

observed in that system.

In addition to calculating material properties, I also leverage FN-DMC to characterize systems using

simple models. In FeSe, starting from the assumption that Hund’s coupling is important, I found a simple

model that was able to explain how the electronic properties varied with spin texture. Using a downfolding

procedure combined with FN-DMC and tools from data science, I analyzed the importance of a wide class of

effective model terms in describing an Fe-Se diatomic molecule. The study determined that Hund’s coupling

was the most important interaction in this system, and quantified its importance relative to other terms. I

also developed a new strategy for efficiently discovering low-energy states in the Hilbert space, an important

input for developing low-energy effective models. I applied this strategy in H2 in two geometries where a

tight-binding model is accurate and where it breaks down, and I quantify the importance of interactions

in the effective model. The results establish the accuracy of FN-DMC for correlated electron systems and
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develop strategies for determining accurate effective lattice models from first-principles quantum Monte

Carlo.
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Chapter 1

Introduction

1.1 First-principles calculations and materials design

The history of superconductivity is the perfect example of the unpredictable nature of electrons in materi-

als. Superconductivity was first observed in the early 1900’s, when conductivity was explained in classical

terms. To test the notion that electron conduction was driven by classical thermal fluctuations, Onnes et

al. developed new cooling techniques which enabled the first probe of mercury at liquid helium temper-

atures (0.3 K) [9]. Rather than seeing the resistivity increase, the resistivity suddenly dropped precisely

to zero—something impossible to understand from the standpoint of classical mechanics. 56 years later,

the theory of BCS superconductivity [10] was able to explain the phenomenon in mercury and many other

superconductors using concepts from quantum mechanics. Early trends in superconductor discoveries sug-

gested they were metals with high symmetry and no magnetism, and it was proposed that no superconductor

would exist above roughly 30 K [11, 12]. The discoveries of cuprate superconductors [13] and iron-based

superconductors [14, 15] (among others) would all break these trends, and many would break the proposed

30 K limit. The superconducting phases of these unconventional superconductors arise at or near conditions

where the material is magnetic, often are doped from materials that are insulators or poor metals, and

have quasi-two-dimensional structures. Like the first observation of superconductivity, progress in these

unconventional superconductors has been in advance of theoretical predictions [16].

In these cases, a better understanding of how quantum mechanical properties of electrons drive materials’

properties should accelerate the discovery of useful materials by enabling theory to guide experiment. Indeed,

a quantum-mechanical theory of interacting electrons which is universally applicable to the low-temperature

properties of materials is already known. It is the first-principles many-body Schrödinger equation [17]:

Ĥ = T̂ + V̂ =
1

2

∑
i

∇2
i +

∑
ij

1

|ri − rj |
+
∑
iI

Vext(ri − aI), (1.1)

Here, i, j index all electron coordinates, ri represents electron positions, I and aI are similar for the ions,
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and Vext is the external potential, usually representing the Coulomb interaction with the ions in a crystal.

Miraculously, hidden within this relatively simple linear partial differential equation contains all the informa-

tion required to derive much of the low-temperature phenomena of condensed matter physics and chemistry.

Generalizations to relativistic effects such as spin-orbit coupling are also possible [18].

The first-principles equation (1.1) is general enough to describe phenomena from computer chips, to

combustion, to biology, to superconductors, and yet is detailed enough to give material-specific information.

For example, it can compute parameters required to predict the superconducting transition temperature of

H3S [19]. In H3S, the theoretical prediction starting from first-principles calculations finds Tc ≈ 194 K [20]

and the highest measured experimental transition is close at 203 K. Unlike the unconventional superconduc-

tors, calculations motivated the experimental discoveries [19, 16]. First-principles calculations also currently

used to guide designs of silicon or silicon alternatives to improve the efficiency of solar cells [21, 22], as well

as discovering new ferroelectrics [23].

The fact that such a simple equation can derive all the diverse behaviors of electrons in solids should

suggest that doing so is not always trivial. While simple to write down, (1.1) represents a coupled set of 3N

equations, where N is the number of electrons necessary to describe, which needs to be extrapolated to the

thermodynamic limit. Current methods can solve some realistic systems accurately enough to closely match

experimental results, but they also fail in other cases. It is often difficult to calculate accurate properties for

systems with localized d or f electrons, for example, many of the unconventional superconductors, as well as

VO2, NiO, MnO, and other transition metal oxide systems. Many technological applications, from medical

(e.g. MRI), to energy [24, 25], to transportation [26], to research [27, 28] would benefit from superconduc-

tors with high transition temperatures and tunable materials’ properties. Understanding unconventional

superconductors may play an important role in this pursuit due to their unique properties. Transition metal

compounds can also display important properties besides superconductivity. Perovskites containing transi-

tion metals exhibit colossal magnetoresistance, which have technological applications in, for example, disk

drives [29]. Spinel systems with transition metals in frustrated lattices may give rise to uncommon quantum

mechanical states, with possible applications to quantum computing [30]. Materials design for these systems

would benefit from better access to accurate properties calculated from first-principles.

1.2 Effective models from first-principles calculations

A natural question emerges as to whether a simpler but less general model than (1.1) can sufficiently

describe a material, in the expectation that the simpler model be solved more accurately. For example,
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much of the early successful theories of electrons in materials, such as Drude theory [31], have been based

on the non-interacting approximation: the assumption that electrons behave as though they experience

no interactions at all. In this case, the 3N coupled equations are replaced by N 3-dimensional equations—

a dramatic simplification which often makes the problem tractable. In certain cases, the origin of this

phenomenon may be understood from from Laudau’s Fermi-liquid theory. When it is possible to adiabatically

connect the interacting system to a non-interacting model, there is a one-to-one mapping between non-

interacting eigenstates and eigenstates of the interacting system. The result is that the excitations of the

interacting system are describable by excitations of the non-interacting system with adjusted properties;

these excitations are known as quasiparticle excitations [32].

Approximations which solve (1.1) directly by dropping electron interactions would be incredibly inac-

curate. For example, consider an electrons on the surface of a neutral solid. Without electron-electron

interaction, the electrons would incorrectly experience an enormous attractive interaction to the center of

the solid. Instead, the effect of interactions need to be incorporated into the definition of the non-interacting

problem. For many semiconductors and insulators, a noninteracting effective model can often describe many

of the low-lying excitations, albeit with interactions accounted for by adjusting the external potential [33].

On the other hand, in transition metal oxides such as FeO, NiO, CoO, MnO, and other systems containing

rare earth atoms, systems with partially-filled conduction bands are insulating [34, 35], something not ex-

plainable with a non-interacting model without breaking spin-symmetry. Violations of theoretical limits of

Fermi liquid theory are also prevalent in the normal state of cuprate superconductors as well [36, 37]. In

these situations, the system is not close to any known exactly solvable model.

Often, the one-band Hubbard model is referred to as the simplest model displaying strong correlation

effects, effects that cannot be described by effective non-interacting models [35], but the extent to which a

simple Hubbard model is a good model for a given material is difficult to evaluate [38]. Addressing these

kinds of questions is also possible starting from (1.1). Already, first-principles calculations are widely used

for interpretation of experiments based on providing noninteracting models that reasonably describe the

system [39, 40]. One approach is testing predictions of interacting theories using first-principles results [41].

A more systematic approach is downfolding [42]: a computational process for determining models which can

reproduce targeted features of (1.1). Finding the types of models that reproduce first-principles properties

of correlated quantum materials, like superconductors, would build intuition and understanding of quantum

mechanical systems far from the noninteracting limit. However, as discussed in Chapter 3, downfolding

the first-principles Hamiltonian into a simple but accurate effective model is also an important unsolved

problem.
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1.3 Outline of the dissertation

My Ph.D. work has contributed to both aspects of first-principles calculations: (a) connections to exper-

iments through benchmarking, interpreting experimental results, and making predictions for experiments

and (b) connections to simplified models through downfolding. My focus has been developing benchmarks

for the first-principles diffusion Monte Carlo method, and developing strategies for downfolding using it and

variational Monte Carlo.

In Chapters 2 and 3, I overview state-of-the-art first-principles methods and downfolding methods. I

discuss their fundamental assumptions, where they make approximations, give some examples of calculations,

and summarize the current challenges. I have used four of these methods for work in my Ph.D.: Hartree-

Fock, density functional theory, variational Monte Carlo, and diffusion Monte Carlo. For these four methods

I have a more detailed theoretical discussion and literature review. Chapter 4 summarizes how the presented

methods are used in most of the calculations.

I have performed several benchmarks of diffusion Monte Carlo, studying the limitations of the method

due to the fixed-node approximation and other errors. In Chapter 5, in collaboration with an under-

graduate, I compare the computation of reaction barrier heights from fixed-node diffusion Monte Carlo to

experiment. The results achieved “chemical accuracy,” or the accuracy required for making predictions for

room-temperature chemical reactions. In Chapter 6, I report a diffusion Monte Carlo benchmark on the

structural and magnetic properties of FeSe, an iron-based superconductor. In this compound, my collabora-

tors and I found diffusion Monte Carlo reproduces lattice parameters and the equation-of-state, even when

common density functional theory approaches fail.

I also develop strategies for developing simple models for correlated-electron systems. In Chapter 6,

based on diffusion Monte Carlo calculations on FeSe, I report a relationship between the charge and spin of

the system. I propose a simple model based on Hund’s coupling which can explain the features seen in our

calculations. In Chapter 7, I report diffusion Monte Carlo calculations on an FeSe diatomic molecule, and

combined with downfolding and techniques from machine learning, determined a minimal effective model for

the system. This technique provided a second, more quantitative verification of the importance of Hund’s

coupling in Fe-Se system, relative to other model terms. In Chapter 8, I applied a simple downfolding tech-

nique to MgTi2O4 to make a prediction for the singlet-triplet excitation energy. We found that experimental

searches for this excitation were being conducted at a lower energy than our calculations suggest it should be

found, which has motivated a new search for the excitation. In Chapter 9, I demonstrate a new technique we

discovered, which allows for a systematic determination of the low-energy subspace of a system. Eigenstates

within this low-energy subspace correspond to eigenstates of simpler lattice models, which can be solved to
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greater accuracy.

In Chapter 10, I will review the importance of these results for advancing our capabilities for predictive

calculations of materials’ properties using theory.

1.4 Summary of accomplishments

To complete this work, I have accomplished the following:

• Code development for the open-source package, QWalk [43]. I developed a high-throughput

python workflow package for performing density functional theory, variational Monte Carlo, and dif-

fusion Monte Carlo calculations [44, 45]. This package includes scripts for interfacing QWalk with

PySCF and CRYSTAL, two packages for performing other types of calculations. Two undergraduates

have worked with me and utilized this code under my guidance to perform the benchmark studies of

barrier heights and the convex hull of the Si-O system (the latter is ongoing).

• Benchmark studies of diffusion Monte Carlo and downfolding techniques. These include the

molecular barrier heights, the structural properties of FeSe, and the prediction for singlet-triplet gap

of MgTi2O4. Large-scale benchmark studies of non-hydrogen transfer reaction barriers using diffusion

Monte Carlo were not available before this work. Our benchmark of FeSe was the first calculation of

structural properties of an iron-based superconductor using diffusion Monte Carlo. The calculation

of MgTi2O4 is the first first-principles prediction for the singlet-triplet gap in that system that I am

aware of, and represents an important example of a first-principles prediction for a correlated-electron

material conducted in advance of experimental verification.

• Applying first-principles quantum Monte Carlo to understand strongly-correlated elec-

trons. In bulk FeSe, our work discovered evidence for spin-charge coupling in the system. This

spin-charge was later discovered to correlate well with unconventional superconductivity [46]. We were

able to explain these observations using a simple model depending on strong Hund’s coupling. In the

FeSe diatomic molecule, I tested the technique of orthogonal matching pursuit applied to a down-

folding technique and utilized it to quantify the importance of different types of model interactions

in that system. This approach defines a systematic procedure for stepping from simple, more inac-

curate models to more complex, more accurate ones. We found that Hund’s coupling was the more

important term to include in the model, and could quantify its importance. Based on the difficulties

with current strategies for downfolding, I also helped develop and test a new strategy for sampling
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low-energy states. This technique should provide a more systematic procedure for downfolding with

diffusion Monte Carlo in future calculations.

Papers associated with this work:

• Results on bulk FeSe are published in B. Busemeyer, M. Dagrada, S. Sorella, M. Casula, and L. K.

Wagner, “Competing collinear magnetic structures in superconducting FeSe by first-principles quantum

Monte Carlo calculations,” Phys. Rev. B, 94, 3,035108, (2016).

• Results on barrier heights are published in K. Krongchon, B. Busemeyer, and L. K. Wagner, “Accurate

barrier heights using diffusion Monte Carlo,” The Journal of Chemical Physics, 146, 12, 124129, (2017).

• Results on FeSe diatomic molecules are published in H. Zheng, H. J. Changlani, K. T. Williams, B.

Busemeyer, and L. K. Wagner, “From Real Materials to Model Hamiltonians With Density Matrix

Downfolding,” Front. Phys., 6, (2018).

• Results from MgTi2O4 are published in B. Busemeyer, G. J. MacDougall, and L. K. Wagner, “Pre-

diction for the singlet-triplet excitation energy for the spinel MgTi2O4 using first-principles diffusion

Monte Carlo,” Phys. Rev. B, 99, 8, 081118, (2019).

An additional report benchmarking diffusion Monte Carlo on the formation energy of Si-O compounds is

currently in preparation.
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Chapter 2

Current state-of-the-art in
first-principles methods

I focus this review on zero-temperature approaches which have been applied to the first-principles Hamil-

tonian (1.1). These methods focus on determining properties of the ground state or a few of the lowest

energy eigenstates of the electronic first-principles Hamiltonian. Because the Fermi energy of most materials

is much larger than the thermal energy in the temperature ranges of interest, zero-temperature approaches

are sufficient for most low-temperature electronic phenomena.

2.1 Wave-function methods

Wave function methods attempt to solve the exact first-principles Hamiltonian (1.1) in a subspace of the

full Hilbert space. If the ground state or if the first few eigenstates of (1.1) lie within this subspace, then

the methods will be exact. If these eigenfunctions can be expressed to a good approximation by elements of

the subspace, the methods will be accurate, otherwise, they will incur large errors. Because they all share

the same Hamiltonian, the resulting energies can often be made variational—they represent a strict upper-

bound for the true energy of the system. By looking for the least upper bound to the energy, different wave

function methods can be compared and any free parameters can be determined independently of experiment.

2.1.1 Hartree-Fock and configuration interaction

Basic definitions. Hartree-Fock solves for the ground state of the first-principles equation in the subspace

of Slater determinants [47, 48]:

Φ(R) = Det ([φi(rk)]) ≡ Det


φ1(r1) · · · φ1(rN )

...
. . .

...

φN (r1) · · · φN (rN )

 . (2.1)

For nonrelativistic calculations, a wave function for up and down electrons together can be expressed as a

product of determinants: Det ([φ↑,i(rj)])Det ([φ↓,i(rj)]), where φ↑,i(rj) = φ↓,i(rj) in restricted Hartee-
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Fock, and φ↑,i(rj) 6= φ↓,i(rj) in unrestricted Hartree-Fock. The method determines the orbitals in

Det ([φ↑,i(rj)])Det ([φ↓,i(rj)]) by solving the Hartree-Fock equations self-consistently:

(T̂ + V HF
eff (r))φσσi,i(r) = εσi φσi,i(r) (2.2)

V HF
eff (r) = −1

2
∇2 + Vext(r) +

∑
j,σj

∫
dr′

φ∗σj ,j(r
′)φσj ,j(r

′)

|r− r′| −
∑
j,σj

∫
dr′

φ∗σj ,j(r
′)φσi,i(r

′)

|r− r′|
φσj ,j(r)

φσi,i(r)
(2.3)

These equations can be derived using the method of Lagrange multipliers on the expression for the energy of a

Slater determinant (see §2.5). The first integral is known as the Hartree potential, and is the energy of the

classical charge distribution n(r) = |φσj ,j(r)|2 interacting with the electron in orbital φσi,i(r). The second

integral is known as the exchange potential, and represents the difference between the exact interaction

potential and the classical Hartree potential for this wave function.

The eigenvalues in Hartree-Fock, εi, have a well-defined meaning through Koopman’s theorem [49, 50].

Let ĉk represent the destruction operator for an orbital from the Hartree-Fock equations. εk − εl represents

the energy of ĉ†k ĉl|Φ(R)〉: a Slater determinant formed by removing the electron from orbital φl and placing it

in φk without adjusting the other orbitals. Intuitively, this will over-estimate excitation energies considering

that the energy of the determinant may be lowered by allowing the other orbitals to adjust to the change in

V HF
eff (r). This is also commonly found in practice [51, 52]. Replacing one orbital is a singles excitation,

two is a doubles excitation, and so on.

Configuration interaction (CI) methods determine the lowest energy wave function of the form:

Ψ(R) =
∑
i

ciΦi(R); Φi(R) = Det ([φi,j(rk)]) ≡ Det


φi,1(r1) · · · φi,1(rN )

...
. . .

...

φi,N (r1) · · · φi,N (rN )

 . (2.4)

Often φi,j(rk) are solutions from the Hartree-Fock equations, but these can also be optimized. The set of

all determinants formed by excitations of the Hartree-Fock determinant is a basis for the N -body Hilbert

space. Expressing the many-body Hamiltonian in this basis and exactly diagonalizing is the method known

as full configuration interaction (FCI) [53]. The number of orbitals determined by the Hartree-Fock

equations is Nbasis, the number of single-particle basis functions used to solve the equations. The number

of determinants in this basis is therefore
(
Nbasis

N

)
. To be complete, Nbasis needs to extrapolated to infinity.

Many other post-Hartree-Fock methods can be described as selecting a subspace of the FCI basis in

which to solve the Hamiltonian. For example, complete active space (CAS) chooses Nactive < N

orbitals from the first N orbitals and Nvirtual orbitals from the rest, and only takes determinants that differ
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by interchanging the occupation of those [53]. Selected configuration interaction methods use other

various strategies to choose the determinants [54]. These methods scale combinatorially with the number of

orbitals allowed to be used for excitations when generating determinants [54, 55].

Approximations. Slater determinants encode no correlation effects aside from the antisymmetry be-

tween two electrons of the same spin. Because of this, the energy of a wave function relative to the Hartree-

Fock ground state energy is often referred to as the correlation energy. Hartree-Fock is exact for a

non-interacting system, and normally provides a poor description when correlation effects are important.

Because each single Slater determinant encodes no correlations, combinations of determinants are required

to describe correlations. Some types of correlations are easily captured by a few determinants; these are

often called “non-dynamical” correlations in chemistry literature, and often arise from states composed of

nearly degenerate orbitals [56]. Correlations in general may require many determinants, as can be seen by

examples [55, 57, 58], or by a simple argument. Because the Coulomb repulsion in (1.1) has a singularity in

the potential energy whenever ri → rj , in this limit there must be a corresponding singularity in the kinetic

energy to keep the total energy finite. This is known as the cusp condition [59] because it requires a cusp

in the wave function when ri → rj . Because each determinant encodes no correlations, its Laplacian at any

point in space away from an ion is finite, and therefore an infinite number of determinants are required to

produce a cusp. This is just one example of a property that exact eigenstates of Ĥ should have which is

difficult to describe using few determinants; other correlations also might be important and also difficult to

describe. Additional determinants also will be needed if the orbital set {φi,j} determined from Hartree-Fock

is not optimal for the expansion when ci 6= 0 for i > 0. If any method drops determinants that are important

for describing any of these effects, large errors may result. The FCI method is only exact when Nbasis can

be extrapolated to infinity, which increases the computational requirements combinatorially fast.

Examples of applications. Hartree-Fock has been broadly applied to both molecules [53] and solids [60,

61], calculating properties such as cohesive energy, band gaps, and Compton profiles. Failures of Hartree-

Fock are common, for instance, Hartree-Fock overestimates the band gaps of solid neon and argon by

4.0 eV and 4.4 eV, respectively [51]. The Hartree-Fock overestimates band-gap of Si by approximately

5.6 eV [62]. Hartree-Fock calculations of bond-distances of second-row diatomic molecules errs by roughly

0.1 Bohr and calculation of the binding energy can err by roughly 50%, or even fail to predict the binding

of the molecule [63]. Post-Hartree-Fock methods can reach a high degree of accuracy for small molecules,

for example, within mHa of the exact energy for molecules containing on the order of 10 electrons or

fewer [58, 64]. Due to combinatorial scaling with system size, FCI can only be applied to systems roughly

the size of H2O or smaller [65]
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Current challenges. While highly accurate solutions are possible in theory, it is difficult to reach the

basis size, system size, and number of determinants required in correlated electron materials. For example, for

an Fe2S2 cluster, a CAS on the important bonding orbitals would require 1016 determinants [57]. Choosing

a subspace that is too small can drastically affect the accuracy of the method. A complete active space

calculation performed on just the Fe d orbitals of the Fe2S2 cluster found and electron affinity of 1.1 eV,

whereas the experimental estimate was 2.15 eV [55]. The number of determinants required to recover the

same percentage of correlation energy scales exponentially with N [66]. In solids, wave functions with a fixed

number of determinants also have a size-extensivity problem: their energy converges to the Hartree-Fock

energy as N is extrapolated to the thermodynamic limit.

2.1.2 Coupled cluster

Basic definitions. Coupled cluster generates the wave function by applying the operator, eĈ to the

Hartree-Fock determinant, |Φ0〉. In the coupled cluster with singles and doubles (CCSD) approxima-

tion, Ĉ = Ĉ1 +Ĉ2. Ĉ1 =
∑
ij tij ĉ

†
i cj generates a linear combination of singles excitations of the Hartree-Fock

determinant, and Ĉ2 =
∑
ijkl tijklc

†
i c
†
jckcl generates a combination of the doubles excitations. Therefore,

eĈ |Φ0〉 generates an infinite sum of determinants whose coefficients are the Taylor expansion coefficients

of the exponential. A major advantage to this approach is coupled-cluster expansions do not have a size-

extensivity problem [67]. Generalizations to triples, quadruples, and so on are generated similarly. Including

triples is called CCSDT (T standing for triples); including quadruples is CCSDTQ, etc.

Approximations. This parameterization is only exact when Ĉ contains all orders of excitations. When

Ĉ = Ĉ1, for example, the estimate of the ground state will not deviate from Hartree-Fock, because eĈ |Φ0〉

is a determinant [68], and Hartree-Fock is already the lowest-energy Slater determinant. Evaluation of the

energy of the wave function, eĈ |Φ0〉 is usually approximated in a way which is non-variational [67, 69]. For

this reason, finding a lower energy in coupled cluster compared to another wave function approach does not

necessarily imply coupled cluster is a better estimate of the ground state energy.

Examples of applications. Coupled cluster has been applied extensively to molecules and poly-

mers [67, 69]. In the context of solids, CCSD has been applied in the case of diamond and silicon. In

silicon, it finds the band gap within 0.02 eV of the experimental results, and in diamond, the error is on

the order of 0.1 eV [70]. In both these calculations, errors from the basis set and k-points are still large

compared to the scale of the gap, so it is unclear if better calculations will still be in agreement. It has

also been applied to the study of H2O absorption on BN and graphite [71] which matched diffusion Monte

Carlo calculations on the same system [72] and found good agreement with experiment. CCSD has also been
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applied to transition-metal-containing molecules with mixed results [73, 74, 75].

Current challenges. While requiring less computational resources than many post-Hartree-Fock meth-

ods, CCSD roughly scales with N2N4
unocc [67], where Nunocc = Nbasis−N , which makes finite size and basis

set convergence difficult. CCSDT scales with N3N5
unocc and CCSDTQ scales with N4N6

unocc. For small

system sizes, N ∼ 10 and Nunocc ∼ 100, CCSDT is a factor of 103 more computationally difficult than

CCSD and CCSDTQ is a factor of 106 more difficult than CCSD. This makes it difficult to perform calcu-

lation much above the level of CCSD for larger systems. Even in molecules composed of s and p orbitals,

corrections to CCSD can be on the order of 0.1 eV, compared to CCSDTQ or FCI [67]. In transition metals,

errors of CCSD compared to CCSDT or CCSDTQ are often greater because the Hartree-Fock reference is a

worse approximation when correlations are important.

In extended systems, CCSD scales with N2N4
unoccN

4
k , where Nk is the number of k-points sampled in

the Brillouin zone [70]. Calculations also scale sharply in memory requirements: N2N4
unoccN

3
k [70]. These

issues make it very difficult to converge the basis set and level of approximation in large systems.

2.1.3 Density matrix renormalization group (DMRG) and extensions

Correlations in ground state wave functions are short-ranged for gapped Hamiltonians [76, 77, 78]. This

implies that a large part of Hilbert space capable of describing long-range correlations are not needed for

these ground state calculations. This observation is the concept behind density matrix renormalization group,

an algorithm for optimizing matrix product states (MPS). MPS is another type of determinant expansion

which is exceptionally well-suited to describe short-range correlations in one dimension.

Basic definitions. The MPS are defined as [77]:

|ΨMPS〉 =

2∑
n1,...nNbasis=0

(
Nbasis∏
i=1

M i
ni

)
|n1, ..., nNbasis

〉 (2.5)

The |n1, ..., nNbasis
〉 refers to a Fock state; the Slater determinant of §2.1.1 is the expression of this state in

the real-space basis. i indexes different basis set elements, for example a single-particle orbital basis. Matrix

elements of M i
ni are the variational parameters of the wave function. If M i

ni are allowed to be any size, and

Nbasis is large enough, this parameterization can express any many-body wave function [77, 78]. Notice the

one-dimensional structure of the states: every matrix corresponding to a basis element i directly multiples

i− 1 and i+ 1 only. The connection to renormalization group theory is not discussed here, but if interested,

see Ref. [79].

Approximations. To create more compact but approximate states, DMRG relies on the singular value
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decomposition. Any matrix, M , can be factorized via a singular value decomposition (SVD) intoM = UDV †.

The SVD has the property that keeping the largest Nbond elements of the diagonal matrix, D, and setting

the rest to zero, then UDV † represents the optimal rank-Nbond approximation of M . One version of the

algorithm known as single-site DMRG uses singular-value decompositions to approximate matrices in (2.5)

by keeping only at most Nbond of their singular values nonzero. Nbond is called the bond dimension of the

matrix product state, and is a measure of the degree of correlation between the two sites. When Nbond = 1

the state represents an uncorrelated state [77, 78]. At larger values of Nbond, it can be shown that the

correlations described by (2.5) between electrons within basis set element i and j drop exponentially with

i− j [77, 78].

Examples of applications. DMRG has been used extensively in one-dimensional and quasi-one-

dimensional systems, where it can match exact methods. In N2, the nitrogen binding curve matches FCI [80].

In Cr2, the ground state energy matches FCI [81]. It has also been applied to larger molecules, where it

was used to analyze the ground state properties and correlation functions between the sites [82]. DMRG

was also applied to the Fe2S2 cluster referenced in §2.1.1, where it found new low-energy spin eigenstates

not describable by a simple Heisenberg model [57]. It was also applied to the 1-D hydrogen chain, where the

method matched many methods including FCI on the equation-of-state [83]. It is also sometimes applied to

2-d models, for example the one-band Hubbard model in 2-d [84].

Current challenges. Ground state wave functions of gapped Hamiltonians obey area law entanglement

entropy, which implies correlations are short-ranged for these ground states [77, 78]. Excited states generally

may not, which sometimes limits its use as an excited state or time-dependent method [77].

In two dimensions or more, the MPS can be constructed by choosing an ordering for the basis set. [76].

If the basis consists of localized orbitals in real space, this can be viewed as a kind of threading of a one-

dimensional chain through the space [84]. In realistic calculations, practical orderings must be explored, and

generally, placing bonding and antibonding orbitals near one another in the product is advantageous [76].

Because the correlations described at a fixed bond dimension drop exponentially with separation in the

chain, the computational costs scale exponentially in each dimension higher than one [76, 77], which has

limited its use in first-principles calculations in greater-than-one dimension.

2.1.4 Variational Monte Carlo

Variational Monte Carlo (VMC) [85, 86] can be summarized as using Monte Carlo integration to variation-

ally optimize the parameters of a trial wave function, |ΨT(P)〉, where P is the vector of parameters for

optimization. I will focus on energy minimization for concreteness, but other objective functions exist, such
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as variance minimization [87] or the method discussed in Chapter 9. Standard numerical optimizations are

sufficient for this task, but require access to the energy and potentially derivatives of the energy with respect

to P.

Monte Carlo integration for expectation values

A quantum mechanical expectation value can be cast as an expectation value of a probability distribution:

〈Ĥ〉 =

∫
dR
〈Ψ|R〉〈R|Ĥ|ΨT〉
〈ΨT|ΨT〉

=

∫
dR
|〈R|ΨT〉|2
〈ΨT|ΨT〉

〈R|Ĥ|ΨT〉
〈R|ΨT〉

=

∫
dR P(R)EL(R). (2.6)

Here, P(R) = |〈R|ΨT〉|2
〈ΨT|ΨT〉 is the probability distribution of the |ΨT〉 in real-space, and EL(R) = 〈R|Ĥ|ΨT〉

〈R|ΨT〉 is a

quantity referred to as the local energy. In probability theory, integrating to obtain an expectation value

is equivalent to computing the sample mean of the distribution in the limit of infinite samples,

〈Ĥ〉 =

∫
dRP(R)EL(R) = lim

Nw→∞
1

Nw

Nw∑
R∈P

EL(R), (2.7)

where the sum refers to taking Nw samples from the probability distribution P(R). The error due to the finite

sampling can be estimated by the standard deviation of the mean, which is equal to (Var(EL(R))/Nw)1/2,

where Var(EL(R)) is the variance of EL(R) over the samples. Sampling P(R) is done using a Metropolis

Markov process [88].

Types of trial wave functions

I focus on Slater-Jastrow wave functions because they have been benchmarked in the context of QMC

simulations, including correlated-electron systems [89]. These wave functions take the form

ΨT(R) = Φ(R)J(R). (2.8)

The first factor is a Slater determinant or sum of Slater determinants and the second factor is a Jastrow

factor wave function, both discussed here.

Many-electron wave functions must be antisymmetric, and for this dissertation, the antisymmetric prop-

erty is provided by the Slater determinant. The Slater determinant for a set of orbitals {φi}Ni=1 is defined
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the same as in §2.1.1:

Φ0(R) = Det ([φi(rj)]) ≡ Det


φ1(r1) · · · φ1(rN )

...
. . .

...

φN (r1) · · · φN (rN )

 . (2.9)

A weighted sum of Slater determinants is known as a multi-Slater wave function,

Φ(R) =
∑
k

ckΦk(R) =
∑
k

ckDet ([φ↑,k,ri(r↑,j)])Det ([φ↓,k,ri(r↓,j)]), (2.10)

where now φσ,k,i(r) 6= φσ,l,i(r). The orbitals may be provided by another method (such as Hartree-Fock or

density functional theory), or they may be optimized. The strengths and weaknesses of Slater determinant

expansions were discussed in §2.1.1.

The most important correlations between electrons occur at short range, which are nonexistent for the

Slater determinant (aside from the exchange hole), and difficult to describe with few Slater determinants.

The Jastrow factor can describe these local correlations, in addition to some long-range correlations, and

also satisfy the cusp condition [59]. The form used in this work is known as a “two-body Jastrow factor”:

J(R) = eU(R); U(R) =
∑
iIk

cen
k ak(riI) +

∑
ijk

cee
k bk(rij), (2.11)

where riI = |ri − aI | and rij = |ri − rj |. The second sum of U(R) allows for electrons to avoid one another

at close range, and puts in the cusp condition [59] corresponding to the singularity in the Coulomb repulsion

between two electrons. Often this second term suppresses the wave function near the ions, and the first sum

of U(R) corrects this [65]. The first sum is also used to satisfy the cusp condition corresponding to any

singularities in the Vext, which are present due when Vext includes the Coulomb potential of the ions. The

ck are all variational parameters, except that cen
0 and cee

0 is set to satisfy cusp conditions if required. For the

results in this dissertation,

a0 = b0 =
cp(r/rcut)

1 + γp(r/rcut)
; p(x) = x− x2 + x3/3; (2.12)

ak>0(r) = bk>0(r) =
1− z(r/rcut)

1 + βkz(r/rcut)
; z(x) = x2(6− 8x+ 3x2). (2.13)

The a0 and b0 terms create a discontinuity in the gradient of magnitude c, while γ is a variational parameter.

The k > 0 the functions are used to describe correlations in the wave function, and βk will all be variational
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Figure 2.1: A pedagogical example of how the off-diagonal of the 1-RDM characterizes the system. Consider
if |φi〉 orbitals represent s orbitals on each H atom, and the Hamiltonian for two H2 molecules separated
by a large distance is diagonalized in this basis. The ground state is an antisymmetrized product of two

bonding orbitals: |ab〉 = (|a〉 + |b〉)/
√

2 and |bc〉 = (|c〉 + |d〉)/
√

2. In this case ρ
(1)
↑,a,b = 1/2 and ρ

(1)
↑,a,c = 0,

characterizing the bonding in the system. This is because the up electron can be removed from (a) and
placed into (b) holding all else fixed (not time-evolving the system, for example). There is no probability
for the right H2 to have three electrons, and so removing an electron from (a) and placing it on (c) has no

amplitude: ρ
(1)
↑,a,c = 0.

parameters. This particular form forces the Jastrow function to go smoothly to zero at r = rcut [90]. For

systems with periodic boundary conditions, rcut is set low enough to avoid correlations that are longer than

the supercell size.

Quantities available from VMC

The routine outlined in §2.1.4 discusses how to evaluate 〈Ĥ〉 for a given trial wave function, but the method

generalizes to other observables. The one-body reduced density matrix is a particularly important observable

which demonstrates how observables besides the energy are calculated. A simple way to define the one-body

reduced density matrix (1-RDM) is ρ
(1)
σ,ij = 〈Ψ0|ĉ†σ,iĉσ,j |Ψ0〉. ĉσ,i represents the destruction operator

for an electron of spin σ acting on a one-body orbital, |φi〉. The diagonal of the matrix represents the

occupation of the orbital in the ground state. One way of understanding the off-diagonal of the 1-RDM is

as the instantaneous-time limit of the one-body Green function in a basis: Gσij(t) = 〈Ψ0|ĉ†σ,ie−tĤ ĉσ,j |Ψ0〉.

This measures the amplitude for removing an electron in |ψi〉, evolving the system for a time t, then placing

it back in |φj〉. Consider the pedagogical example in Fig. 2.1; as reasoned in the caption, the off-diagonal is

larger between two orbitals that are hybridized in a bonding orbital. The off-diagonal of the 1-RDM is thus

useful for characterizing bonding in the system.

Similar to (2.16), the strategy is to convert the quantum expectation value into a expectation in proba-
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bility:

〈ĉ†σ,icσ,j〉 =

∫
dR
|〈R|ΨT〉|2
〈ΨT|ΨT〉

〈R|ĉ†σ,iĉσ,j |ΨT〉
〈R|ΨT〉

(2.14)

Now there is an additional complication in that 〈R|ĉ†i ĉj |ΨT〉 is nonlocal; it depends on the value of the wave

function throughout space.

〈R|ĉ†i ĉj |ΨT〉 =

∫
dR′ 〈R|ĉ†σ,iĉσ,j |R′〉〈R′|ΨT〉 =

N∑
a=1

∫
dr′a φ

∗
i (ra)φj(r

′
a)〈R′a|ΨT〉, (2.15)

where R′a is the same as R except that ra (the a-th coordinate) is replaced by r′a. The last equality follows

because the matrix element of 〈R|ĉ†i ĉj |R′〉 is nonzero only when R and R′ differ by one coordinate. Now the

sampling will require an additional integration, which can be incorporated into the Monte Carlo integration:

〈ĉ†σ,iĉσ,j〉 =

N∑
a=1

∫
dRdr′a

|ΨT(R)|2
〈ΨT|ΨT〉

φ∗i (ra)φj(r
′
a)ΨT(R′a)

ΨT(R)
(2.16)

An efficient sampling probability for this new coordinate is f(r′a) ∝∑i |φi(r′a)|2 [91].

The two-body reduced density matrix (2-RDM) is another important quantity, and it is defined

as ρ
(2)
σηijkl = 〈Ψ0|ĉ†σiĉ†ηj ĉσk ĉηj |Ψ0〉. This is accessible from VMC using a similar derivation, but involving

two additional electron coordinates [91]. This quantity measures static correlations between electrons in

the system. For instance, ρ
(2)
↑↓iiii = 〈Ψ0|ĉ†↑iĉ

†
↓iĉ↑iĉ↓i|Ψ0〉 = 〈Ψ0|n̂↑in̂↓i|Ψ0〉 represents the expected double

occupation of an orbital, which appears as the interaction term in the Hubbard model. Two-body spin

correlations are also expressible as combinations of elements of the two-body density matrix, for instance,

Ŝi · Ŝj = Ŝi,xŜj,x + Ŝi,yŜj,y + Ŝi,zŜj,z = Ŝi,+Ŝj,− + Ŝi,−Ŝj,+ + Ŝi,zŜj,z (2.17)

=
1

2

(
ĉ†↑iĉ↓iĉ

†
↓j ĉ↑j + ĉ†↓iĉ↑iĉ

†
↑j ĉ↓j

)
+

1

4
(n̂↑i − n̂↓i)(n̂↑j − n̂↓j) (2.18)

〈Ŝi · Ŝj〉 =
1

2

(
ρ

(2)
↑↓ijji + ρ

(2)
↓↑ijji

)
+

1

4

(
ρ

(2)
↑↓ijij + ρ

(2)
↓↑ijij − ρ

(2)
↑↑ijij − ρ

(2)
↓↓ijij

)
(2.19)

where Ŝi,± = Ŝx ± iŜy are the spin raising and lowering operators.

Applications and current challenges

The accuracy of VMC is intimately linked to the parameterization of ΨT(R; P). The space of wave functions

formed by all possible parameter values of ΨT(R; P) is a subspace of the full Hilbert space. Both ground [85,
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86] and excited state [92, 93] calculations are possible. Similar to the post-Hartree-Fock methods, if the

eigenstate of interest is far from this subspace, there will be errors. For realistic systems it is often difficult

to find parameterizations that are efficient to evaluate while also being capable of describing states of

interest [94]. Accurate wave functions may require thousands to tens of thousands of parameters to be

optimized [95, 96], and increasing numbers of parameters tends to make optimization more difficult [95].

Recently, artificial neural networks have been used as variational wave functions [97], however, applications

to large or realistic systems as well as wave functions with signs or complex numbers, such as fermionic wave

functions, is still difficult [98].

Nonetheless efficiently-optimized wave functions can still recover a large proportion of the correlation

energy, and when used as a starting point for diffusion Monte Carlo, improve the energy and variance of the

diffusion Monte Carlo result. For example, in second-row atoms and dimers, efficient parameterizations can

recover 70–90% of the correlation energy, depending on the system and the parameterization [94]. Running

diffusion Monte Carlo with these as a starting point increases the captured correlation energy to 90–95%.

2.1.5 Diffusion Monte Carlo

Diffusion Monte Carlo (DMC) is a type of projector Monte Carlo and is the central method employed in my

Ph.D. work. Projector Monte Carlo methods access eigenstate properties by applying the operator e−τĤ

for large τ [65]. As discussed in the FCI method of §2.1.1, expanding eigenstates in a determinant basis is

prohibitively difficult, due to the exponentially large Hilbert space. Instead projector Monte Carlo methods

focus on computing expectation values and do not attempt to expand the eigenstates in a basis [99]. The

derivation I outline is based on Ref. [65] and Ref. [99].

DMC focuses on computing the expectation values of eigenstates by sampling real-space coordinates,

R. Let |ΨT〉 be a trial function with an analytic representation. We can act Ĥ on |ΨT〉 in a manner

similar to §2.1.4 because the analytical form is known. Let {|Ψi〉}∞i=1 be the eigenstates of Ĥ, where

|Ψ0〉 is the ground state. Because Ĥ is hermitian, the mixed expectation value accesses the energy of the

eigenstate: 〈Ψi|Ĥ|ΨT〉 = Ei〈Ψi|ΨT〉. For illustration, consider a calculation of the ground state energy, and

let 〈Ψ0|ΨT〉 6= 0. Expressing the mixed expectation value in the real-space basis,

E0 =
〈Ψ0|Ĥ|ΨT〉
〈Ψ0|ΨT〉

=

∫
dR Ψ∗0(R)ΨT(R)EL(R)∫

dR Ψ∗0(R)ΨT(R)
, (2.20)

where EL(R) = ĤΨT(R)/ΨT(R)—the same as in §2.1.4. The form of this integral is similar to the inte-

gral (2.16) appearing in VMC (§2.1.4), except that |ΨT(R)|2 is replaced by Ψ∗0(R)ΨT(R). Similar to VMC,
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this integral can be computed using Monte Carlo sampling. Information about Ψ0(R) is computed using

imaginary-time evolution.

Imaginary-time evolution

Acting the operator, e−τĤ , on a trial wave function, |ΨT〉, determines the lowest-energy eigenstate with

nonzero overlap with |ΨT〉:

|ΨT〉 =

∞∑
i=0

|Ψi〉〈Ψi|ΨT〉; e−τĤ |ΨT〉 ∼ e−τEm |Ψm〉〈Ψm|ΨT〉 (2.21)

in the limit of large τ , where m is the smallest m such that 〈Ψm|ΨT〉 6= 0. e−τĤ is also the Green function

of the Schrödinger equation equation when time is imaginary [65, 100]: t→ iτ ,

− ∂τΨ(R, τ) = ĤΨ(R, τ) ⇐⇒ Ψ(R, τ) =

∫
dR′ G(R,R′, τ)Ψ(R′, 0), (2.22)

where G(R,R′, τ) = 〈R|e−τĤ |R′〉 is the imaginary-time Green function in the real-space basis. To

summarize, propagation in imaginary time has the effect of exponentially suppressing high-energy states.

Under the assumption 〈ΨT|Ψ0〉 6= 0, then (2.21) expressed in the real-space basis implies

Ψ0(R1) = lim
τ→∞

eτE0〈Ψ0|ΨT〉−1

∫
dR2〈R1|e−τĤ |R2〉ΨT(R2). (2.23)

The prefactor, eτE0〈Ψ0|ΨT〉−1, will cancel in the ratio of (2.20). The only important still-unknown quantity

is G(R1,R2, τ) = 〈R1|e−τĤ |R2〉.

The Trotter formula [101] applied on this expression gives

〈R1|e−τĤ |R2〉 = 〈R1|e−τV̂ e−τT̂ |R2〉+O(τ [T̂ , V̂ ]) (2.24)

= e−τV (R1)〈R1|e−τT̂ |R2〉+O(τ [T̂ , V̂ ]), (2.25)

assuming V̂ is diagonal in the real-space basis (e.g. for Coulomb interactions).

〈R1|e−τT̂ |R2〉 = GD(R1,R2, τ) = (2πτ)3/2 exp{−(R1 −R2)2/(2τ)}

represents the Green function for the diffusion equation. This is the origin of the name “diffusion Monte

Carlo.” This might be expected because the imaginary-time Schrödinger equation (2.35) with V̂ → 0 is
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exactly the diffusion equation.

The expression (2.24) is not useful yet, because in the limit τ → ∞ the error of the Trotter break-up

goes to infinity. Let τ = M∆τ , where M is a large integer. ∆τ will be known as the time step.

〈R1|e−τĤ |RM 〉 = 〈R1|(e−∆τĤ)M |RM 〉 =

∫
dR2...dRM−1

M−1∏
i=1

〈Ri|e−∆τĤ |Ri+1〉 (2.26)

=

∫
dR2...dRM−1

M−1∏
i=1

[
e−τV (Ri)GD(Ri,Ri+1,∆τ)

]
+O(∆τ [T̂ , V̂ ]). (2.27)

The limit where ∆τ → 0 will now converge to the exact propagation. We reach the τ →∞ limit by taking

M →∞.

Collecting these results, the expression for ground state wave function is

Ψ∗0(R1) =

∫
dR2...dRM

M−1∏
i=1

[
e−τV (Ri)GD(Ri,Ri+1,∆τ)

]
Ψ∗T(RM ) (2.28)

The product,
∏
iGD(Ri,Ri+1), the probability density of Brownian particle taking a path R1 → R2 →

· · · → RM in 3-N dimensional space—a 3MN -dimensional configuration.

Applying this formula to (2.20),

E0 =

∫
dR Ψ∗0(R)ΨT(R)EL(R)∫

dR Ψ∗0(R)ΨT(R)
=

∫
dR1...dRM P(R1, ...,RM )W (R1, ...,RM )EL(RM )∫

dR1...dRM P(R1, ...,RM )W (R1, ...,RM )
(2.29)

P(R1, ...,RM ) =

M−1∏
i=1

GD(Ri,Ri+1,∆τ) (2.30)

W (R1, ...,RM ) = ΨT(R1)Ψ∗T(RM )

M−1∏
i=1

e−τV (Ri). (2.31)

In this form, the numerator and denominator represent expectation values ofW ({Ri})EL(RM ) andW ({Ri}),

respectively, over the probability distribution P({Ri}) of Brownian paths going from R1 to RM . This can

be sampled with a set of walkers executing Brownian diffusion dynamics [65], and thus converted into a ratio

of sample means:

E0 ≈
∑
{Ri}∈BW (R1, ...,RM )EL(Rj)∑

{Ri}∈BW (R1, ...,RM )
(2.32)

B is a set of Brownian paths with Gaussian random steps of variance ∆τ .

There are two problems with the current approach. (a) A numerical instability occurs when the weights,

W (R1, ...,RM ), average to zero. This happens for antisymmetric ΨT(R), which I discuss in the next section.
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(b) The variance of the weights, W ({Ri}), is extremely large because V (Ri) contains Coulomb singularities,

making this algorithm useless for most practical calculations. A simple modification to the routine to utilize

importance sampling will resolve this problem.

Sign problem and fixed-node approximation

The expression for the energy (2.20) has a problem when
∫
dR1, ...dRMP ({Ri})W ({Ri}) = 0, because the

denominator approaches zero in the limit of infinite samples. In fact, both numerator and denominator

approach zero, and their ratio remains finite, approaching E0. Small fluctuations in either the numerator or

the denominator will cause wild changes in their ratio, and the variance of this process increases exponentially

with the system size [100]. This is an instance of a sign problem which can occur in stochastic methods.

There are important cases where the average sign is not zero. For example, if the ΨT(R) no nodes (e.g.

zeros), then it will never change sign. It is straightforward to see that

W (R1, ...,RM ) = ΨT(R1)Ψ∗T(RM )

M−1∏
i=1

e−τV (Ri) ≥ 0

and therefore cannot average to zero. In this case, E0 is the energy of the bosonic ground state, Ψ0(R) =

ΨB(R), which also has no nodes. For this reason, DMC can be made exact for bosonic ground states [100].

In the case of a fermionic ΨT(R), then evaluating (2.20) has the fermion sign problem, because

fermionic wave functions are antisymmetric [100]. The sign of W (R1, ...,RM ) is equal to the sign of the

product, ΨT(R1)ΨT(RM ). In the limit of infinite M , the positions of R1 and RM become uncorrelated, and

thus 〈ΨT(R1)ΨT(RM )〉 = 〈ΨT(R1)〉〈ΨT(RM )〉 = 0 · 0. To compute the energy of a fermionic state, ΨT(R)

must have fermion symmetry, because Ĥ commutes with the particle-permutation operator, and hence e−τĤ

cannot change the particle symmetry of ΨT(R).

One way to ensure that ΨT(R1)ΨT(RM ) ≥ 0 is to reject all walker steps that cross a node (or zero) of

the trial wave function. This is known as the fixed-node approximation, because it implies the projected

wave function computed with this constraint, |ΨFN〉 ∝ e−τĤ |ΨT〉, will have the same nodes as |ΨT〉. |ΨFN〉

is called the fixed-node wave function. Three important properties hold for this approximation:

(a) EFN = 〈ΨFN|Ĥ|ΨFN〉/〈ΨFN|ΨFN〉 ≥ E0.

(b) EFN is the lowest energy wave function with the same nodes as ΨT.

(c) In the case that |ΨT〉 has the same nodes as |Ψ0〉 (but may differ away from the nodes), |ΨFN〉 = |Ψ0〉.

Because these are important for interpreting the results in this dissertation, I will outline a rough proof of
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these properties [102].

Consider replacing the external potential energy in Ĥ with

V ′ext(R) =


Vext(R) R ∈ P+ = {R|ΨT (R) ≥ 0}

∞ R 6∈ P+

(2.33)

Let this modified Hamiltonian be Ĥ+. Walkers that cross the nodes of ΨT (R) int the exact algorithm all

contribute zero weight, and so there is no sign problem. The wave function that results from the projection

under this operator is Ψ+(R) ∼ e−τĤ+ΨT(R), and is the ground state of Ĥ+.

Ψ+(R) is zero for R 6∈ P+. Let ΨFN(R) = Ψ+(R) for R ∈ P+, but enforce particle antisymmetry for

R 6∈ P+. For instance ΨFN((r1, r2)) = −ΨFN((r2, r1)) for N = 2. This is equal to the fixed-node wave

function corresponding to ΨT(R). Because ΨFN(R) is an antisymmetric wave function in the Hilbert space

of Ĥ, the fixed-node energy, EFN = 〈ΨFN|Ĥ|ΨFN〉 ≥ E0, the ground-state energy of Ĥ. This proves (a).

Because |Ψ+〉 is also the ground state of Ĥ+ and any wave function with the same nodes as |ΨT〉 is a valid

wave function for Ĥ+ with the correct boundary conditions on the nodal surface, |ΨFN〉 is the minimum

energy wave function among these, proving (b).

Assume ΨT (R) has the same nodes as Ψ0(R), the ground state of Ĥ. Due to the linearity of Ĥ, because

Ĥ+ = Ĥ within P+ and because ΨFN(R) = Ψ0(R) = 0 on the boundary, ΨFN(R) = Ψ0(R) in P+ by the

uniqueness theorem for partial differential equations. By particle antisymmetry they also also equal for all

R. By this reasoning, when the nodes of ΨT(R) are exact, then ΨFN(R) = Ψ0(R) and EFN = E0. This

proves (c).

Practical necessities: importance sampling and managing walker weights

Importance sampling is imperative for practical calculations because it removes singularities in the walker

weights and drastically reduces nodal crossings which must be killed or rejected. Returning to the mixed

expectation value,

E0 =
〈Ψ0|Ĥ|ΨT〉
〈Ψ0|ΨT〉

=

∫
dR Ψ∗0(R)ΨT(R)EL(R)∫

dR Ψ∗0(R)ΨT(R)
=

∫
dR f0(R)EL(R)∫

dR f0(R)
, (2.34)

where f0(R) = Ψ0(R)ΨT(R) is the mixed distribution. The following function converges to the mixed-

distribution in the limit of large imaginary time: f(R, τ) = ΨT(R)Ψ∗T(R, τ), where ΨT(R, 0) = ΨT(R). By

21



multiplying (2.35) by ΨT(R),

Ψ∗(R, τ) =

∫
dR′ G(R,R′, τ)Ψ∗(R′, 0) =⇒ f(R, τ) =

∫
dR′ G(R,R′, τ)

ΨT(R)

ΨT(R′)
|ΨT(R′)|2 (2.35)

=

∫
dR′ G̃(R,R′, τ)f(R′, 0), (2.36)

where G̃(R,R′, τ) = G(R,R′, τ)ΨT(R)/ΨT(R′) is the importance-sampled Green function, which

evolves f(R, τ) in imaginary time. Notice that G̃ is larger than G for moves R′ → R that increase the value

of ΨT. The differential equation corresponding to G̃ can be derived similarly, by multiplying the imaginary

time Schrödinger equation by ΨT(R) and rearranging terms. Doing this yields [100]:

−∂τf(R, τ) = (−1

2
∇2 +∇ · vQ(R) + vQ(R) · ∇+ EL(R))f(R, τ), (2.37)

where vQ(R) = ∇ΨT(R)/ΨT(R). The terms containing vQ(R) represent a drift term in the diffusion

equation [100]. The Trotter break-up to approximate this term is similar to the steps I took for G, and it

results in the following approximation of G̃ [100]:

f0(R1) =

∫
dR1...dRM

M−1∏
i=1

[
e−τEL(Ri)G̃D(Ri,Ri+1,∆τ)

]
f(RM , 0); (2.38)

G̃D(Ri,Ri+1, τ) = (2πτ)3/2 exp{−(Ri −Ri+1 + vQ(R))2/(2τ)}. (2.39)

G̃D is the Green function for the diffusion equation with a drift term proportional to vQ(R). Rather than

pure Brownian motion, the walkers will drift towards regions of large ΨT(R).

The final Monte Carlo integral with importance sampling is

E0 =

∫
dR f0(R)EL(R)∫

dR f0(R)
=

∫
dR1...dRM P̃(R1, ...,RM )W̃ (R1, ...,RM )EL(RM )∫

dR1...dRM P̃(R1, ...,RM )W̃ (R1, ...,RM )
(2.40)

≈
∑
{Ri}∈B̃ W̃ (R1, ...,RM )EL(Rj)∑

{Ri}∈B̃ W̃ (R1, ...,RM )
; (2.41)

P̃(R1, ...,RM ) =

M−1∏
i=1

G̃(Ri+1,Ri,∆τ)|ΨT(R1)|2 (2.42)

W̃ (R1, ...,RM ) =

M−1∏
i=1

e−τEL(Ri). (2.43)

B̃ is now a set of paths whose initial position, R1, are sampled from |ΨT(R1)|2 and execute drifted diffusion

according to vQ(Ri). While integral is equal to the non-importance-sampled version (2.29) when evaluated
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exactly, there are two major practical advantages to importance-sampled DMC. (a) The weights are now

e−τEL(Ri) at each step. If ΨT(R) satisfies the cusp conditions, the Coulomb singularities cancel out between

the T̂ and V̂ parts of Ĥ, dramatically reducing the variance of the weights. Additionally, in the limit that

ΨT(R) is exactly an eigenstate, Ψi(R), then EL(R) = Ei, a constant. Therefore if ΨT(R) is a reasonable

approximation to an eigenstate, the variance of weights will be much more reduced. (b) As walkers approach

a node of ΨT(R), vQ(R) = ∇ΨT(R)/ΨT(R) diverges away from the node, and therefore, node crossings

are much more rare compared to random Brownian motion. Because the time step is finite, some walkers

will still cross a node occasionally, and these moves need to be rejected. [100].

Although the variance of the weights is greatly reduced by importance sampling, because the weight of

walker is a product of many random numbers, the variance of the walker weights is still very large [99]. A few

walkers will be generating most of the important weight for the final average, and many of the walkers will

be contributing essentially nothing, but nonetheless consume computational resources for their propagation.

Instead, a birth/death process is used to redistribute the weights and keep the variance of the weights low.

The set of walkers with weight larger than some number (1.8 for QWalk [90, 43]) are selected for branching.

Each larger walker with weight w1 and position R1 are matched with the walker with lowest weight, w2, at

position R2 that has not been branched for this step. With probability p = w1/(w1 +w2), the walker at R2

is killed and a new walker is born at R1 with weight (w1 +w2)/2. The walker already at R1 has its weight

set to (w1 + w2)/2 as well. With probability 1 − p, the walker at R1 is killed and a similar birth occurs

at R2. This particular approach keeps the number of walkers fixed, which improves parallelization, while

ensuring that the walker weights do not grow larger than 1.8.

A second issue is that the sum of the walker weights will grow or decline depending on the energy of the

trial wave function [65]. To control the total sum of the walker weights and keep it from growing or shrinking

as the propagation progresses, a constant, Eref is added to the local energy and adjusted to keep the total

weight reasonably constant [65, 90]. This can be interpreted as keeping the norm of ΨT(R, τ) constant as

τ →∞ [65].

Fixed-node and excited states

Although the fixed-node approximation usually contributes error to ground state properties, it also gives

control over the projected wave function, |ΨFN〉. If ΨT(R) is approximately an excited state, then ΨFN(R)

can be a close approximations of that eigenstate [103]. It is also possible to design ΨFN(R) with certain

spin textures. For example, consider Fig. 2.2. ΨT(R) was constructed from Kohn-Sham wave functions

with different patterns of stripes or checkerboard spin density on the iron sites. After applying fixed-node
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(a) (b) (c) (d)

Figure 2.2: Spin densities of FeSe magnetic spin textures at ambient pressure, (a) collinear, (b) collinear, 1
flip, (c) bicollinear, and (d) checkerboard. Four unit cells of a single iron layer are shown, divided by black
lines. “Collinear, 1 flip” refers to flipping the spin of one iron per unit cell in the collinear configuration.
Since four unit cells are shown above, there are four “flipped” iron moments shown in this plot. The larger
red Se atoms lie above and below the plane and show significantly smaller spin density. Irons are smaller
and blue, and lie within larger concentration of spin. The two colors of the isosurfaces denote density of up
and down.

diffusion Monte Carlo to each of those states, the spin density of those states kept the same pattern, but

lowered the overall energy of the state.

However, it is difficult to determine if the ΨT(R) nodes are a good guess for the state of interest.

Because ΨT(R) may not be orthogonal to the ground state, no variational principle exists to systematically

choose parameters for target states. Nonetheless, in practice, DMC estimations of excited state energies

successfully reproduce experimental results in a variety of examples. Optical gap calculations are possible

using diffusion Monte Carlo by using singles excitations of Kohn-Sham wave functions to define nodes of a

trial function [89, 103, 104]. Models fit to spin excitations have also been used to compute properties which

match experiment [105, 106, 107, 41].

Quantities available from DMC

For observables that commute with Ĥ, the derivation for the DMC estimate is easily generalized from §2.1.5,

similar to the generalization presented in §2.1.4. The mixed expectation value does not equal the expectation

value for an Ô such that [Ô, Ĥ] 6= 0:

lim
τ→∞

〈ΨT|Ôe−τĤ |ΨT〉
〈ΨT|e−τĤ |ΨT〉

=
〈ΨT|Ô|Ψ0〉
〈ΨT|Ψ0〉

6= 〈Ψ0|Ô|Ψ0〉
〈Ψ0|Ψ0〉

(2.44)

This is known as the mixed estimator, which is a good estimate of the ground state expectation value

when ΨT(R) is close to the true ground state, Ψ0(R). It is not an exact estimate because Ô may map |Ψ0〉

to eigenstates of higher energies which have nonzero overlap with |ΨT〉.

There are two methods of correcting the mixed-estimator error, computing the extrapolated estima-

tor [108] and a related projection algorithm known as reptation Monte Carlo [109]. Reptation Monte Carlo

24



essentially performs the projection on both sides: limτ→∞〈ΨT|e−τĤÔe−τĤ |ΨT〉/〈ΨT|e−2τĤ |ΨT〉 which re-

quires additional computational resources.

In this dissertation, only the extrapolated estimator is utilized. If the trial function is close to the ground

state in the sense that |Ψ0〉 = |ΨT〉+ε|Ψ̃T〉, where all wave functions are normalized and ε is a small number,

then

〈ΨT|Ô|Ψ0〉 = 〈ΨT|Ô|ΨT〉+ ε〈ΨT|Ô|Ψ̃T〉; (2.45)

〈Ψ0|Ô|Ψ0〉 = 〈ΨT|Ô|ΨT〉+ 2εRe
[
〈ΨT|Ô|Ψ̃T〉

]
+O(ε2). (2.46)

Fixed-node or fixed-phase DMC calculations here fix either the sign or the phase of the wave function, so

Re
[
〈ΨT|Ô|Ψ̃T〉

]
= 〈ΨT|Ô|Ψ̃T〉. In that case, taking a combination to cancel the first-order error,

〈Ψ0|Ô|Ψ0〉 = 2〈ΨT|Ô|Ψ0〉 − 〈ΨT|Ô|ΨT〉+O(ε2). (2.47)

Applications and current challenges

Examples of applications. These methods generally scale efficiently with the number of electrons, but

have a relatively large computer time requirement compared to other methods that scale the same. For

instance, DMC scales as N3, the same as density functional theory (see §2.2), but a reasonable run of DMC

on a primitive cell of Si is roughly 100 times longer than the same for DFT with PBE. However, Monte Carlo

methods are highly parallelizable, and well-suited for modern supercomputers [65, 90]. Thus, as systems

of interest become more complex and supercomputers have gained more processors, quantum Monte Carlo

algorithms have become important first-principles methods [89].

In the literature, there are benchmarks of the energies of atomic systems [110, 111, 112, 113], small

molecules including transition metals [114, 115, 116, 117, 118], and large benchmark studies have been

performed on the G1 set of molecules [119, 120] and the G2 set of molecules [121]. Atomic studies find

agreement with experiments on order of 0.23 kcal/mol for ionization potentials, on order of 2.3 kcal/mol

for electron affinity, and around 1-3 kcal/mol for atomization energies, depending on the accuracy of the

trial wave function. They also find that DMC recovers 90-99% of the correlation energy, depending on the

accuracy of the VMC starting point. Noncovalent interaction energies were found to agree with coupled-

cluster calculations within 0.1 kcal/mol. In most cases, energy differences roughly within so-called chemical

accuracy of 1 kcal/mol are attainable.

Diffusion Monte Carlo has also been studied in the context of solids [122, 105, 107, 123, 124, 41, 125]).
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This includes a study of H2O absorption on graphene, which was able to match the experimental water

contact angle within statistical uncertainty [72] In FeO and NiO, DMC computes the matches experiment

within a few percent in lattice constants, cohesive energy, and bulk modulus [126, 127, 122]. In MnO, DMC

computed the correct ordering of two ZnO polymorphs, which is not always correctly predicted by methods

such as density functional theory (§2.2) [128]. Several cuprate superconductors have been studied with FN-

DMC, finding good agreement with experimental phonon frequencies, optical gaps, and effective exchange

couplings [107, 123]. By studying different spin orderings, FN-DMC characterized the doped hole-doped

ground state of a cuprate to be a spin polaron [124].

Current challenges. Although DMC scales relatively well with system size, the computational costs of

simulating the small energy scales and large length scales required for a phenomenon such as superconduc-

tivity are still prohibitively large for the first-principles Hamiltonian [89]. Additionally, most experiments

access quantities that depend on excited state properties, whereas diffusion Monte Carlo is primarily a

ground-state method. Because DMC energies are variational, the error from incorrect nodes in the starting

wave function can be variationally determined. However, it is difficult to know the precise magnitude of the

error without a exact calculation as a reference.

Many of these issues can potentially be addressed using density matrix downfolding, described in §3.2.

In that approach, the fixed-node error is not as important because eigenstates are not required. The method

produces accurate effective models that may be solved to find excited state properties, and may be extended

to larger length scales to probe additional properties. Density matrix downfolding has only recently been

developed, and strategies for developing accurate models are still in development. In Chapter 9, I develop a

new strategy for applying this approach to correlated electron systems.

The spectral function can also be computed by computing the real-time correlation function of the ground

state. Because e−τĤ is formally equivalent to evolving the system in imaginary time, by using analytic

continuation [129], it is possible to compute the real-time correlation function from the trajectory during

the projection process. However, the analytic continuation operation is numerically unstable to errors, and

because these methods always generate some stochastic errors, the results can be very noisy [129].

2.1.6 Auxiliary-field quantum Monte Carlo

Auxiliary-field quantum Monte Carlo [68] is similar to DMC in that it utilizes imaginary-time propagation

to extract properties of the ground-state wave function. It shares many of the strengths and weaknesses of

DMC but with some important differences that I will discuss.

Basic definitions. AFQMC starts by expressing the Hamiltonian in a basis of single-particle orbitals,
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such as plane-waves or Gaussian-type orbitals. Written in second-quantized notation:

Ĥ = Ĥ1 + Ĥ2 =
∑
ij

tij ĉ
†
i ĉj +

∑
ijkl

Vijklĉ
†
i ĉ
†
j ĉk ĉl. (2.48)

As discussed in §2.1.1, the ground state can be represented in the basis of determinants formed from Hartree-

Fock orbitals, which are all mutually orthogonal. Similarly, the ground state of Ĥ can be written as a

weighted sum of nonorthogonal determinants:

|Ψ0〉 =
∑
i

αi|Φi〉 〈Φi|Φj〉 6= δij , (2.49)

where the orbitals are not from Hartree-Fock. The advantage of relaxing the condition of orthogonality is that

the additional variational freedom can potentially reduce the number of determinants required to compute

properties of the ground state. Another useful property of the subspace of nonorthogonal determinants is

that for any determinant, |Φ〉,

B̂|Φ〉 = |Φ′〉; B̂ = exp

∑
ij

Uij ĉ
†
i ĉj

 , (2.50)

where U is a square matrix, and |Φ′〉 is another determinant which may not be orthogonal to |Φ〉 [68]. Acting

operators of the form B̂ on any element in the subspace of nonorthogonal determinants does not leave that

subspace.

The imaginary time propagator, Ĝ = e−τĤ from (2.35), can be transformed into a sum of integrals

of operators in the form of B̂ in (2.50) [68]. This is done using the Trotter break-up from §2.1.5 and a

Hubbard-Stratonovich transformation. e−τĤ1 in (2.48) is already of the form of B̂. Ĥ2 =
∑
ijkl Vijklĉ

†
i ĉ
†
j ĉk ĉl

can be expressed as:

Ĥ2 =
1

2

∑
γ

λγ v̂
2
γ e−

∆τ
2 λγ v̂

2
γ =

∫
dx

(2π)1/2
e−

1
2x

2

ex(−∆τ
∑
γ λγ v̂γ)1/2

(2.51)

where v̂γ are one-body operators, and the x is an auxiliary field from the Hubbard-Stratonovich transfor-

mation [68]. λγ and v̂γ can be determined with various strategies, but for a general basis, it is possible to

determine them via a Cholesky decomposition [68].
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Like DMC in (2.20), the ground state energy can be computed using the mixed expectation value:

E0 =
〈ΨT|Ĥ|Ψ0〉
〈ΨT|Ψ0〉

=

∫
dx1...dxM 〈ΨT|Ĥ

∏M
i=1

[
p(xi)B̂(xi)

]
|ΨT〉∫

dx1...dxM 〈ΨT|
∏M
i=1

[
p(xi)B̂(xi)

]
|ΨT〉

, (2.52)

where M is the number of time steps from the Trotter break-up, similar to DMC. p(xi) ≥ 0 and B(xi)

take various forms depending on the form of the transformations, see Ref. [68] for examples. |ΨT〉 is often a

Slater determinant (although other forms are possible [68]), so that B̂(x1)...B̂(xM )|ΨT〉 = |Φ(x1, ...,xM )〉,

another Slater determinant. The algorithm will thus initialize walkers representing |ΨT〉 in the basis of Ĥ

in 2.48, evolve them by applying B̂(xi) and accumulating weights p(xi), then average over the resulting

determinants’ overlap with 〈ΨT|.

From this form it is clear that if 〈ΨT|Φ(x1, ...,xM )〉 < 0 or complex for some x1, ...,xM , a problem

similar to the sign problem in DMC will appear, as the walkers have signs or phases that average to

zero due to symmetry [130]. Reminiscent of the fixed-node approximation, there is a constrained path

approximation [131], which enforces 〈ΨT|Φ(x1, ...,xM )〉 to be the same sign or phase as |ΨT〉. Unlike the

fixed-node constraint, this approximation is not variational without additional computational effort [130].

The reason for this stems from the fact that determinants with positive overlap with |ΨT〉 are not orthogonal

to determinants with negative overlap with |ΨT〉. This differs from FN-DMC: regions where ΨT changes

sign represent orthogonal subspaces of configuration space.

Approximations. Many of the same approximations used in AFQMC are analogous to approximations

in DMC. Timestep error, for example, appears due to the Trotter breakup of Ĥ1 and Ĥ2, and is extrapolated

to zero similarly to DMC.

The constrained path approximation is significantly different from the fixed-node approximation in other

ways, however [130]. For example, there are cases where the sign structure of 〈ΨT|Φ(x1, ...,xM )〉 can be

incorrect, while AFQMC is still exact, including any noninteracting Hamiltonian and the one-band half-

filled Hubbard model [130]. If non-variational estimates of the energy are used, parameters in ΨT cannot

be variationally optimized. Instead, a self-consistent procedure can be utilized to reduce the dependence on

the choice of trial wave function [132].

Examples of applications. AFQMC has computed accurate ground state properties for effective

lattice Hamiltonians [84, 133, 134, 135], and it can be made exact for the half-filled Hubbard model [135].

AFQMC has also been applied to accurately determine the spectral function in lattice models [136]. It can

also compute the fundamental gap in solids, for example Si, diamond, and ZnO, where it is within errorbars

of experiment [137]. In NiO, the correct equilibrium volume was computed within AFQMC [138].
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Current challenges. AFQMC faces many of the same challenges as DMC. Like DMC, AFQMC scales as

N3–N4 [139]. Access to excited state properties is limited because it is fundamentally a ground state method.

Access the to real-time dynamics through analytical continuation may require sophisticated techniques to

control the error [136].

In addition to these issues, AFQMC has some additional issues that should be considered. When a

Slater determinant is used as the trial function, it cannot satisfy the cusp conditions for the electron-

electron interaction. This condition is usually satisfied in FN-DMC with the Jastrow factor, which expresses

correlation in real space and generally cannot be expressed as a single determinant. The Hamiltonian of

AFQMC is expressed in a single-particle orbital basis, which must be converged to the complete limit. FN-

DMC operates in the complete basis set limit. Despite these additional considerations, while not guaranteed,

in many cases AFQMC can achieve more accurate results than FN-DMC [130].

2.2 Density functional theory

Rather than computing the correct many-body wave function, Density functional theory (DFT) focuses on

computing the correct ground state density of the many-body Schrödinger equation. This is a dramatic

simplification: compared to the 3N -dimensional eigenstates, the density of a system of N electrons is always

a 3-dimensional function, n(r). The excellent balance of efficiency and accuracy of density functional theory

has made it an essential component of first-principles methodology.

2.2.1 Hohenberg-Kohn existence theorem and Kohn-Sham density functional

theory

The foundation of DFT is the Hohenberg-Kohn theorems [140, 141]. They guarantee that the ground state

density, n0(r) is sufficient to determine all properties of a system. They also prove the existence of a

functional F [n(r)] such that F [n(r)] ≥ E0 and F [n(r)] = E0 if and only if n(r) = n0(r). The exact form

of this functional is unknown and still an area of active research [2, 142]. Nonetheless, the existence of the

exact functional has motivated many approximate energy functionals, and variationally optimizing electron

densities for a given functional has lead to the broadly successful method known as DFT.

Although the total functional F [n(r)] is unknown, practical approximations have been developed through

Kohn-Sham density functional theory. Kohn-Sham DFT posits that the ground state density can be com-

puted as the ground state density of an auxiliary noninteracting model with some effective potential Veff(r).

There is no general guarantee that this is true, but it nonetheless motivates some useful approximations. The
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problem of approximating the exact energy functional, F [n(r)] is converted to finding an accurate effective

potential, Veff(r).

The Hartree-Fock effective potential, V HF
eff (r) from (2.2), is one possible functional, but because a Slater

determinant cannot represent the ground state in every interacting system, it is clear that some modification

is necessary. The kinetic energy, Hartree potential, and external (ionic) potential in V HF
eff (r) represent large

contributions to the energy. Let Veff(r) = Vion(r) + VHartree(r) + Vxc(r), where Vxc(r) is to correct the

final energy for exchange and correlation effects. Because the long-range interactions are accounted for by

Vion(r) and VHartree(r), it is reasonable to approximate Vxc(r) as a function that depends on the density

or derivatives of the density at r [143]. This is the origin of many well-known DFT functionals. The

local density approximation (LDA) approximates Vxc(r) = vLDA(n(r)) as the same as the homogeneous

electron gas at density n(r). The vLDA(r) for the homogeneous electron gas was fit to diffusion Monte Carlo

calculations performed by David Ceperley and Berni Alder in 1980 [144]. The family of GGA functionals add

a dependence on the gradients of the density to the LDA, and are either fit to other sources of data [145, 2]

or made to satisfy exact theoretical constraints, as in the PBE functional [146]. Collecting these pieces

together, the auxiliary Hamiltonian is

(T̂ + Veff(r))φσσi,i(r) = εσi φσi,i(r) (2.53)

Veff(r) = −1

2
∇2 + Vext(r) +

∑
j,σj

∫
dr′

φ∗σj ,j(r
′)φσj ,j(r

′)

|r− r′| + Vxc(r) (2.54)

Hybrid functionals average the exchange approximation from a DFT functional, Vx(r), with the ex-

change potential from the Hartree-Fock equations (2.2). For example, the PBE0 hybrid functional [147]

is V PBE0
xc (r) = V PBE

c (r) + 0.75V PBE
x (r) + 0.25V HF

x (r), with V HF
x (r) representing the exchange term in the

V HF
eff (r). The exchange potential is no longer a local functional of the density, and in practice, computing

this exchange term requires significantly more computational effort. Hybrid functionals are often much more

accurate than the local functionals they are based on [142], and this is often attributed to the cancellation

of self-interaction error [148]. This error is best illustrated by a system with one electron, which has

nonzero Hartree interaction energy despite there being no two electrons to interact. In Hartree-Fock the

exchange term exactly cancels the self-interaction error, and hence, mixing some Hartree-Fock exchange can

improve the results in DFT.

One critical difference from Hartree-Fock is that Vxc(r) must be chosen for the calculation. The Kohn-

Sham orbitals, which are the one-body solutions to the Kohn-Sham equations (2.53), are commonly used

to form the orbital set for the Slater-type part of ΨT(R) in QMC calculations. In this dissertation, Vxc(r)
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is chosen by variationally optimizing the energy for a QMC run using these orbitals as input. There is no

variational principle for comparing DFT functionals within DFT, and choosing the Vxc(r) approximation is

sometimes treated similarly to a free parameter for performing DFT calculations [142, 145, 149, 150].

2.2.2 The Kohn-Sham Hamiltonian: its usage and its theoretical meaning

The eigenvalues and eigenvectors of the Kohn-Sham Hamiltonian (2.53) are used extensively to interpret ma-

terial properties, as well as used for constructing many-body wave functions for further use. Band structures

from DFT are simply the eigenvalues of the Kohn-Sham Hamiltonian and are compared to experiments.

For example, DFT band structures are compared to density of states measurements from angle-resolved

photoemission spectroscopy (ARPES) [40, 39]. The ground state energy can be used to calculate structural

properties, such as the formation energy [149]. Forces from DFT can be used for crystal structure opti-

mization [151, 152]. The determinant of Kohn-Sham eigenstates is a valid many-body wave function in the

Hilbert space of Ĥ, and thus can be used as components in trial functions for first-principles QMC [89]. The

Kohn-Sham determinant is also used to compute observables such as densities [41, 142], or even topological

quantities such as the polarization [153] or the Chern number [154].

It is important to understand what theoretical basis exists for these interpretations. If the Kohn-Sham

ansatz is correct and the Vxc(r) is exact, then the Hohenberg-Kohn theorem implies that the ground state

density and ground state energy for a given crystal structure are exact. In this circumstance, observables

directly accessible from the energy and the density are also exact, such as the forces on the atoms used for

a structure optimization. However, even in this hypothetical circumstance, all properties derived from the

Kohn-Sham determinant or Kohn-Sham eigenvalues will have no guarantee of accuracy. Properties like band

structures and polarization have no guarantee of accuracy even in this exact case [143]. The only guarantee

of the Kohn-Sham auxiliary Hamiltonian is that it produces the exact ground-state density of the system.

One way of interpreting the solutions to the Kohn-Sham Hamiltonian is by viewing the Kohn-Sham

Hamiltonian as an effective noninteracting model. Studying properties of Kohn-Sham eigenvalues or orbitals

is studying the properties of solutions to this model, rather than solutions to the true Hamiltonian, Ĥ.

The Kohn-Sham bands represent the energy of singles excitations: ĉ†k ĉq|ΦKS〉, keeping all orbitals fixed,

where ΦKS(R) is the determinant of Kohn-Sham orbitals and energy is measured using T̂ + Veff(r). The

Kohn-Sham model can be remarkably accurate in many cases, particularly simple metals and insulators.

The model naturally breaks down when where correlation effects are important and incorrectly modeled by

Vxc(r) [89], such as in systems with localized d or f electrons.

Note that when a DFT band structure does not match experimental electron dispersion, the source of the
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discrepancy is not always clear. The inaccuracy of DFT band structure is sometimes interpreted to mean

the system is “strongly correlated,” [39] meaning that no noninteracting model exists that can describe

the system [155]. However, inaccuracy of DFT with a given Vxc(r) is only the statement that a particular

noninteracting model is not accurate: the Kohn-Sham model for the system. Instead, some downfolding

methods may address whether any good noninteracting model exists, such as the method described in §3.2.

2.2.3 Example applications and current challenges

Examples of applications. Density functional theory is by far the most commonly used method for first-

principles calculations. The method boasts a large set of successes, particularly in semiconductors and simple

metals [33], and has been applied to large numbers of materials [156] and used to predict the existence of

new materials [157]. It is used to fit classical potentials for classical simulations of molecular dynamics [158].

Besides this direct use, it is commonly used to generate the starting point for other methods. For instance,

DFT can generate part of the initial wave function which are optimized though first-principles quantum

Monte Carlo methods [89]. The GW method (see §2.3.1) often uses DFT to provide the initial density and

Green function. LDA+DMFT utilizes DFT to provide an approximate local Hamiltonian to solve [159].

Additionally, other methods almost always compare to DFT to measure their accuracy and computational

efficiency.

DFT has been applied to essentially every material that has been studied with first-principles methods.

I focus on a few examples of correlated electron materials, as this is the main focus of this dissertation.

In VO2, standard density functionals incorrectly finds a metallic state for the ground state in the low-

temperature structure [160]. In MnO, FeO, CoO, and NiO, DFT errors using GGA to calculate the gap

are approximately 70% of the experimental values or else completely gapless [161]. Magnetic moments from

several DFT functionals were in reasonable agreement for MnO and FeO but too small by roughly 20%

of experiment [161]. In the cuprates, properties such as the gap are sensitive to the exchange correlation

functional, and common functionals do not compute accurate phonon spectra [162, 163, 164, 107]. In the

context of iron-based superconductors, spin-unpolarized LDA can achieve the qualitatively correct Fermi

surface topology, but the magnitude of the band width is a factor of 4 to 16 too large, depending on the

band [39].

Current challenges. The form of Veff(r) must be chosen, and there is no way to determine the

accuracy of one approximate form verses another without appealing to experiment or other calculations. This

ambiguity is sometimes dealt with by choosing simple or commonly-used functionals from the literature [165].

Other times, functional choices may be fit to experimental results and then used in similar systems [149,
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145, 32]. Recently, it has been shown that fitting experimental energies too closely can lead to incorrect

predictions for the ground state density [142]. As discussed above, the results are sometimes sensitive to

the choice in functional, so for simple properties like energy gaps, the results can be tuned by trying many

functionals and choosing the desired result.

Because the Kohn-Sham equations have no theoretical grounding as an approximation to the system,

properties derived from the band structures of DFT are often unreliable [143]. This is some part of the

reason DFT is known to predict incorrect band gaps, band widths, effective masses, and other properties

reliant on the Kohn-Sham equations being an accurate representation of the system.

2.3 Diagrammatic methods

Diagrammatic methods solve a simplified Hamiltonian exactly and compute properties of the first-principles

Hamiltonian as corrections to the these results. They tend to focus on the single-particle Green function,

G(x1, x2) = 〈Ψ|T [c(x1)c†(x2)]|Ψ〉, where xi = (ti, ri) are time and space coordinates, |Ψ〉 is the ground state

of the system, T [·] denotes that t1 < t2. Assume the Hamiltonian can be written Ĥ = Ĥ0 + Ĥhard, where

Ĥ0 is solvable, and its Green function is G0. G, the Green function for Ĥ, can be written as a correction to

G0 in a Dyson equation [166]:

G(ω) = (G0(ω)−1 + Σ(ω))−1 =⇒ G(ω) = G0(ω) +G0(ω)Σ(ω)G(ω) (2.55)

Σ(ω) is called the self energy and ω is the frequency. Once the Green function and self energy are

approximated closely enough, properties such as response functions or the spectral function can be computed

from them [167]. One advantage of diagrammatic approaches is that they can access these experimentally

relevant quantities.

When the solvable Hamiltonian is a noninteracting Hamiltonian, G0 is the Green function for a system

of noninteracting electrons, which is known [4]. In this case, (2.55) is formally equivalent to solving Hedin’s
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equations [4]:

Σxc(x1, x2) =

∫
d4x3d

4x4 iG(x1, x4)W (x1, x3)Γ(x4, x2, x3) (2.56)

W (x1, x2) = Vc(x1 − x2) +

∫
d4x3d

4x4 vc(x1, x3)P (x3, x4)W (x4, x2) (2.57)

P (x1, x2) = −i
∫
d4x3d

4x4G(x1, x3)G(x4, x1)Γ(x3, x4, x2) (2.58)

Γ(x1, x2, x3) = δ(x1 − x2)δ(x1 − x3) +

∫
d4x4d

4x5d
4x6d

4x7
δΣxc(x1, x2)

δG(x4, x5)
G(x4, x6)G(x7, x5)Γ(x6, x7, x3)

(2.59)

G(x1, x2) = G0(x1, x2) +

∫
d4x3d

4x4 G0(x1, x3)Σ(x3, x4)G(x4, x2) (2.60)

where xi = (ri, t) represent space-time coordinates, Σ(x1, x2) = VHartree(r1−r1)+Σxc(x1, x2) and VHartree(r) =∫
d3r′ n(r′)/|r−r′|. Hedin’s equations break the problem down into parts that have physical interpretations:

W represents the screened interaction potential, P represents the polarizability, and Σxc represents the part

of the self-energy due to exchange and correlation effects. These integral equations can be diagrammatically

represented using Feynman diagrams, as represented in Fig. 2.3. Γ is referred to as a vertex because it

connects a polarization line with two Green function lines in the corresponding diagram.

Hedin’s equations (2.56–2.60) each depend on a quantity specified by another equation. The strategy

is generally to make an approximation to some of the quantities and use the equations to compute the

other quantities. The equations can be made self-consistent by using the equations to compute the first

approximated quantities, and continue doing so in a loop until the quantities no longer change.

2.3.1 GW approximation

Basic definitions. To make the problem soluble, the GW approximation assumes Γ = δ(x1−x2)δ(x2−x3)

in (2.59). This implies the equation for the polarizability becomes P (x1, x2) = −iG(x1, x2)G(x2, x1). This

is equivalent to making the random phase approximation (RPA) [168, 169, 170] for the reducible

polarizability [4]. The self energy (2.56) becomes Σxc(x1, x2) = iG(x1, x2)W (x1, x2), which is the origin of

the name GW approximation. Now, starting with an approximate form for the Green function, such as

the Green function from the Kohn-Sham equations of a DFT calculation, the method can (a) calculate the

polarization from P (x1, x2) = −iG(x1, x2)G(x2, x1); (b) calculate the screened interaction from (2.57); (c)

calculate self-energy from Σxc(x1, x2) = iG(x1, x2)W (x1, x2). Stopping here is known as one-shot GW,

sometimes referred to as G0W0. Calculating G from (2.60) and continuing until reaching self-consistency is

known as self-consistent GW. Other more intricately defined levels of self-consistency are also used, for
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Figure 2.3: Feynman diagrams representing Hedin’s equations (2.56–2.60). Image from Ref. [4].

example quasi-particle self-consistent GW (QSGW) [171].

Approximations. Approximating the irreducible polarizability using the RPA is an uncontrolled ap-

proximation. It is equivalent to taking a non-interacting approximation to the electron-hole correlation

function [172]. The RPA has been successful in computing long-range optical plasmonic properties [173],

such as in graphite [174] and graphene [175]. However, in some systems, electron-hole correlations are sig-

nificant, such as LiH, where the predicted RPA optical spectrum differs significantly from experiment. [176].

Corrections to this approach are normally termed vertex corrections, and commonly utilize the Bethe-

Salpeter equation to incorporate electron-hole interactions. [177, 178].

Stopping before reaching self-consistency implies that Hedin’s equations are not correctly solved. Coun-

terintuitively, this usually results in more accurate results compared to experiment, as discussed below. This

also means one-shot GW may have a significant dependence on the DFT functional used to produce the

initial Green function [179].

Examples of applications. The one-shot GW and QSGW approximations have achieved most notable

success in describing quasi-particle excitations in main-group semiconductors and insulators. In Si, Ge, and

LiCl, one-shot GW computes the fundamental gap within 5% of the experiment, a dramatic improvement

over the LDA starting point which is used (errors range from from 30% to 90% of experiment, all underes-

timated) [180]. In s- and p-electron compounds, one-shot GW generally finds quasiparticle gaps to within

a few tenths of an eV of experiment, while QSGW can improve the agreement further [171]. Interestingly,
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there are some cases where a QSGW results gets worse results, for example diamond in Ref. [171]. When

combined with vertex corrections from the Bethe-Salpeter equation, GW can reproduce optical absorption

peaks in MoSe2 and WSe2 within roughly 0.02 eV [181]. One-shot GW can reproduce the optical spec-

trum of Si near the Fermi level as well, but fails to describe the plasmon peak structures without further

vertex corrections [182]. On the other hand, partially self-consistent GW can reproduce the spectrum of

VO2 reasonably well, including a sharp plasmon peak near 1.3 eV [183] which is also seen in experiment at

1.2 eV [184].

Achieving full self-consistency is rarely done in practical calculations, in part due to the computational

expense, and in part because results may become less accurate [185, 186]. For example, in the homogeneous

electron gas, fully self-consistent GW achieves the most accurate ground state energy, but more inaccu-

rate quasiparticle lifetime and quasiparticle dispersion [58]. This is attributed to the error of the vertex

approximation becoming more significant as the self-consistent loop proceeds [186, 178].

In other transition metal materials, use of non-fully-self-consistent GW is problematic due to sensitivity

of the starting point. Gaps in transition metal oxides exhibit errors of 10-30%, and are more sensitive to the

approximations in GW [187]. In Fe2O3, the band gaps are sensitive to the level of self-consistency and the

kind of density functional theory used for the starting Green function [179]. In MnO, FeO, CoO, and NiO,

DFT errors using GGA to calculate the gap are more approximately 70% of the experimental values or else

completely gapless. One-shot GW starting from these wave functions only reduces the error to roughly 50%

of the experimental result or more and fails to open a gap in the gapless states [161].

Current challenges. Given the mixed successes and failures of the GW approximation, it is clear that

it is difficult to predict when RPA will be a sufficient approximation for transition metal systems. Non-

fully-self-consistent GW also inherits much of the uncertainty of choosing the DFT exchange-correlation

potential, because the results are sensitive to this choice, and again, there is no procedure for choosing

Veff(r) independently of experiment. Fully self-consistent GW is often less accurate than one-shot GW, and

vertex corrections that can alleviate it problems are computationally complex and are also not guaranteed

to be sufficient.

2.3.2 Dynamical mean field theory

Intuitively, the difficulty of GW in transition metal systems can be traced back to the derivation of (2.55).

If Ĥhard contains many large terms, then Σ(ω) is difficult to approximate because it makes significant

changes to the noninteracting Green function [188]. For electrons inside the d shells of a transition metal,

interactions with other electrons are important. The concept behind single-site DMFT is to make the solvable
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Hamiltonian, Ĥ0, the d and/or f shells of one atom, which is small enough to solve with numerically exact

methods. The states outside this single site are considered as a bath, and are treated as noninteracting

states. The Σaux for this single-site calculation is used to approximate the Σ for the one-particle Green

function.

Basic definitions. In practice, DMFT is usually applied to downfolded lattice-Hamiltonians, so to

simplify discussion, I will assume an accurate lattice model has been determined for the system.

Starting with (2.55), in the case when G0 is the non-interacting Green function, (ω − εk)−1, then the

Dyson equation takes the from [188]

Gk(ω) = [ω − εk − Σk(ω)]−1. Gi(ω) =
1

Nk

∑
k

Gk(ω) (2.61)

where Gi is the green function of a single site, computed by averaging over the k-dependent single-particle

Green functions. Single-site DMFT makes two approximations to evaluate Σk for this equation: (a) Σk(ω)

is restricted to matrix elements between orbitals on a single site only, e.g. has no k dependence; (b) Σ(ω) is

the same as the Σaux(ω) of the orbitals interacting on a single site and coupled to a bath. Different levels of

approximation in DMFT occur depending on the type of auxiliary system defined, for instance, how many

orbitals are included on the site and in the bath.

The method enters a self-consistent loop wherein an approximate form for Σ is guessed (e.g. Σ = 0), the

auxiliary system is solved using exact diagonalization or accurate quantum Monte Carlo techniques, Σk for

the lattice is approximated as Σaux from the calculation, Gk solved using (2.55), the bath is updated in the

auxiliary system, and so on until self-consistency [188].

Approximations. There are at least three important approximations in single-site DMFT: the k-

independent Σk(ω) replacement, the calculation of Σaux, and the lattice model or method of localization.

The k-independence can be improved by cluster DMFT, which extends this idea to auxiliary systems with

multiple sites [159]. The calculation of Σaux(ω) depends on, for example, the number of bath states included.

If the number of bath states increases until it matches the full Hilbert space of the system, this error will

also go to zero.

To make an accurate separation of Σ(ω) into matrix elements between sites and on a single site, usually

some downfolding approach is required to derive accurate effective interactions that are short-ranged [159].

Discussion of this technique and the errors inherent in it is left to Chapter 3. However, it is relevant to this

discussion that a double-counting correction is added to compensate for errors in the cRPA downfolding

method. Similar to the exchange-correlation functional in DFT, this correction must be chosen based on
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some external input, and it is often chosen to better match with experiment [189, 190].

Examples of applications. DMFT has been applied broadly to materials with d and/or f electrons. In

metallic iron and nickel, it successfully reproduces the temperature dependence of the magnetic moment and

magnetic susceptibility [191]. In the iron-based superconductors, DMFT has been broadly able to reproduce

spectra of ARPES, and has characterized the importance of Hund’s coupling in describing the multi-orbital

physics of the iron atoms [192, 193, 194, 195]. In these systems, a Hund’s coupling, J , is required, and gen-

erally needs to be estimated from agreement with experiment. In SrRuO3 and CaRuO3, DMFT calculations

were performed using parameters that were chosen such that the resulting DMFT calculation gave reason-

able agreement with experiment, then the resulting model was used to interpret the materials [196, 197].

The main result was that strong Hund’s coupling was important for an adequate description of the material.

In SrMnO3 and LaNiO3, the results were again somewhat sensitive to parameter choices for the model, but

with the correct selection of parameter, the experimental spectrum was reproduced [198, 190]. In the heavy-

fermion material, CeIrIn5, the DMFT calculations fit to an LDA-downfolded model was able to reproduce

the magnetic part of the resistivity vs. temperature and the de Haas-van Alphen frequencies [199]. The

effective masses from DMFT were found to be on order of 1000 times the effective mass predicted by the

LDA bands used to build the model.

There are also cases where single-site DMFT is insufficient to describe the correlations. In VO2, with

single-site DMFT an insulating low-temperature state only appears when U is increased to unphysically

high levels, however a cluster of two sites was able to capture the insulating phase [200]. Describing d-wave

superconductivity in the cuprates also requires a cluster expansion [201, 202].

Current challenges. From many of the examples, it is clear that a large uncertainty of this method is

due to difficulty in downfolding models of transition metal systems using DFT alone. Even when parameters

are not chosen outright to match experiment, the double-counting correction functions similarly to adjusting

free parameters in a model. When adjusting free parameters in this way, it remains unclear if the resulting

model is truly a faithful representation of the system: whether is it is unique and whether it can extrapolate

to all the systems or properties it is supposed to describe.

Uncertainty in the double-counting correction can be eliminated using GW, but as discussed in §2.3.1, it is

unclear that GW can give a proper description of transition metals, particularly beyond quasiparticle spectra.

Haule has also proposed a method of removing double-counting corrections, but nonetheless requires defining

a set of projectors to localize the effective interactions, and needs to be converged to a basis-independent

limit [203].

Because the exact calculation of Σaux(ω) requires exponentially scaling methods, it is usually difficult to
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go beyond just a few sites. This makes it difficult to converge the approximation to the cluster size and the

size of the bath. Correlations that extend more than a few sites will be nearly impossible in this approach,

and these correlations need to be treated with a different approximate approach, for instance, GW [159].

2.4 Pseudopotential approximation

Several of the methods presented here benefit from approximating the Hamiltonian by a pseudopotential.

Pseudopotentials allow for more accurate treatment of the valence electrons of heavier atoms by removing

core electrons and adjusting the potential to compensate. Rewriting the first-principles equation (1.1),

H =
1

2

∑
i

∇2
i +

∑
ij

1

|ri − rj |
+
∑
iI

Vext(ri − aI), (2.62)

where ri are electron coordinates and aI are nuclei coordinates. In the all-electron case,

Vext(|ri − aI |) =
∑
i,I

ZI
|ri − aI |

, (2.63)

where ZI is the atomic number of the ion, and all the electrons in the material are simulated. We employ

pseudopotentials from M. Burkatzki, C. Filippi, and M. Dolg (BFD pseudopotentials) [204, 205], which

are of the form:

Vext(ri − aI) = Vloc(|ri − aI |) +

lmax∑
l=0

Vl(|ri − aI |)P̂l,I , (2.64)

where P̂l,I projects the wave function onto the spherical harmonics of degree l on each atom I. The form of

Vloc and Vl are

Vloc(r) = −Z
eff
I

r
+
Zeff
I

r
e−αr

2

+
Zeff
I

r
αre−βr

2

+ γe−δr
2

, Vl(r) = ζe−ηr
2

. (2.65)

Zeff
I = ZI −Zcore

I where Zcore
I is the number of electrons removed from the calculation. All Greek letters are

parameters that are optimized for a given atom. In the case of BFD, they are optimized to match energies

of configurations within Hartree-Fock, which is accurate for core electrons, where kinetic and ionic potential

energy contributions dominate the correlation energy. In the limit that r → 0, the potential behaves

quadratically, which eases numerical difficulties of representing the wave function near the nucleus [204].

The resulting pseudopotentials are benchmarked by comparing atomic spectra, molecular binding energies,
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and vibrational frequencies with correlated-electron methods [204, 205]. Other benchmarks show that when

compressing bonds sufficiently much, the accuracy of this approach may break down, but for the ranges of

bond lengths of interest to us, the pseudopotential is very accurate compared to experiment and all-electron

CCSD(T) [206, 207].

The accuracy of the pseudopotentials for quantum Monte Carlo depends on the number of electrons

removed from the calculation [206]. We utilize “small core” pseudopotentials for transition metals, which

generally keeps one full shell of electrons which are lower energy than the valence shell. For example, in

iron, we keep 3s23p64s25d6, with Zeff = 16, and so each iron contributes 16 electrons to the system in the

neutral case.

In the case that Vl(r) 6= 0, then EL(R) of §2.1.4 and §2.1.5 depends on the wave function value in

more than a single point. In VMC, this can be handled as explained in §2.1.4, with an additional integral

over electron coordinates. In diffusion Monte Carlo, §2.1.5, this can cause a complication in (2.24) when

computing 〈Ri|eV̂l |Ri+1〉, which may be negative. Even if ΨT(R1)ΨT(RM ) ≥ 0, W ({Ri}) may change sign.

This can be handled using the localization approximation [208], which is non-variational, or T-moves [209],

which is variational but increases timestep error.

2.5 Supplemental information: Hartree-Fock equations

Let 〈R|Φ〉 = Det ([φi(rj)]). I suppress spin degree of freedom for simplicity.

I approach it via the method of Lagrange multipliers. I vary the φ∗i (r) subject to the constraints 〈φi|φi〉 =

1. Basic theory of Lagrange multipliers within functional analysis implies that if

δ〈Φ|Ĥ|Φ〉
δφ∗

−
∑
i

εi
δ〈φi|φi〉
δφ∗

= 0, (2.66)

then the energy of |Φ〉 is minimized subject to the normalization constraint. εi are the Lagrange multipliers,

but can be interpreted as the orbital energies. Evaluating the functional derivative,

δ〈Φ|Ĥ|Φ〉
δφ∗

=
∑
i

∫
drδφ∗i (r)

(
T̂ + Vext(r)

)
φi(r) (2.67)

+
1

2

∑
ij

∫
drdr′

δφ∗i (r)φ
∗
j (r
′)φi(r)φj(r′)

|r − r′| +
1

2

∑
ij

∫
drdr′

φ∗i (r)δφ
∗
j (r
′)φi(r)φj(r′)

|r − r′| (2.68)

− 1

2

∑
ij

∫
drdr′

δφ∗i (r)φ
∗
j (r
′)φj(r)φi(r′)

|r − r′| − 1

2

∑
ij

∫
drdr′

φ∗i (r)δφ
∗
j (r
′)φj(r)φi(r′)

|r − r′| (2.69)

The right side two-body terms are identical to the left side up to renaming the summation index and
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integration variables.

δ〈Φ|Ĥ|Φ〉
δφ∗

=
∑
i

∫
drδφ∗i (r)

(
T̂ + V̂ext

)
φi(r) (2.70)

+
∑
ij

∫
drdr′

δφ∗i (r)φ
∗
j (r
′)φi(r)φj(r′)

|r − r′| −
∑
ij

∫
drdr′

δφ∗i (r)φ
∗
j (r
′)φj(r)φi(r′)

|r − r′| (2.71)

=
∑
i

∫
drδφ∗i (r)

(T̂ + V̂ext

)
+
∑
j

∫
dr′

φ∗j (r
′)φi(r)φj(r′)

|r − r′| −
∑
j

∫
dr′

φ∗j (r
′)φj(r)φi(r′)

|r − r′|


(2.72)

Thus,

∑
i

∫
drδφ∗i (r)

(T̂ + V̂ext

)
φi(r) +

∑
j

∫
dr′

φ∗j (r
′)φi(r)φj(r′)

|r − r′| −
∑
j

∫
dr′

φ∗j (r
′)φj(r)φi(r′)

|r − r′| − εiφi(r)

 = 0

(2.73)

Since δφ∗i (r) is arbitrary, the term in the brackets must be zero for all i. These are the Hartree-Fock

equations.
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Chapter 3

State-of-the-art in downfolding the
first-principles Hamiltonian

Access to accurate model Hamiltonians would generally improve many of the methods discussed in §2. The

computational requirements of exact diagonalization, CCSD, AFQMC, DMRG, and DMFT all grow with

the size of a single-particle basis set used to express the many-body Hilbert space. Smaller basis sets may

be possible if interaction parameters are adjusted to account for basis elements left out of the calculation.

If these adjusted interactions are short-ranged, several of the methods will also be more efficient. For ex-

ample, matrix product states are easier to evaluate for Hamiltonians with short-range operators [77]. In

DMFT, interactions extending farther than a single site require a cluster calculation, which is much more

computationally costly [159]. Although the first-principles Hamiltonian electrons interact with a relatively

long-range Coulomb potential, lattice models with short-range interactions can sometimes be a good ap-

proximation [210]. The best form for the interactions and how accurate they are is often unclear.

Besides these practical considerations, knowing the types of effective models and their parameters often

provides a clear, concise, and intuitive description for a system. For example, if a material is accurately

described by a Heisenberg model,

Ĥeff = J
∑
〈ij〉

Ŝi · Ŝj , (3.1)

and J < 0, it is clear that the material should be a ferromagnet, and the magnitude of J sets the energy

scale of the transition temperature.

The most commonly used downfolding approach is constrained-RPA [211, 200], which utilizes DFT to

derive the model. Recently, I as well as other collaborators have developed and applied a method known

as density-matrix downfolding, a downfolding approach utilizing wave-function based methods. Another

technique known as canonical transformations has been applied to molecules with strong correlations [212,

213, 214, 215]. Canonical transformation approximately block-diagonalizes the Hamiltonian by applying

unitary operator to reduce undesirable off-diagonal elements. After this process is complete, one block of

the modified Hamiltonian represents the model of the system. The computational cost scales as N6, similar
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to coupled cluster. This makes application to solids difficult, so I will not go into further detail for this

method.

3.1 Constrained-RPA

Basic definitions. Constrained-RPA (cRPA) is a modification of the RPA approach for computing

the screened interaction, W , in (2.57), where only part of the space is traced out. In the RPA, P (x1, x2) =

−iG(x1, x2)G(x2, x1). If the Green functions are approximated by the DFT Kohn-Sham system, then

P (r1, r2, ω) =

occ∑
i

unocc∑
j

φi(r1)φ∗i (r
′
2)φj(r1)φj(r

′
2)

{
1

ω − εj + εi
− 1

ω + εj − εi

}
(3.2)

where φi(r) and εi are the Kohn-Sham orbitals and energies [216, 4]. The “constraint” is that the sums over

the occupied orbitals,
∑occ
i , and unoccupied orbitals,

∑unocc
i , does not extend over the d or f orbitals on

a site. The screened interaction, W (2.57), is computed from this modified polarization calculation. This is

used to determine an effective Hamiltonian of the form

Ĥeff =
∑
ij

tij ĉ
†
i ĉj +

∑
ijkl

Vijklĉ
†
i ĉ
†
j ĉk ĉl.

A Wannier basis is constructed from the d-state DFT orbitals [216, 159], and interaction parameters for the

Hamiltonian in this basis, Vijkl is simply this W expressed in this basis. Often the hopping parameters,

tij , are approximated as the same as those for the Kohn-Sham non-interacting Hamiltonian [216, 159]. The

interaction parameters Vijkl has a frequency dependence originating from the ω appearing in the expression

for the polarization.

Interaction between the d states is already accounted for in the non-interacting Kohn-Sham Hamiltonian.

Interactions between all electrons in the system is part of the external potential in the Kohn-Sham auxiliary

system, which is solved self-consistently to determine the Kohn-Sham orbitals and eigenvalues. A double-

counting correction is normally subtracted to remove these approximate interactions within the d states

already present in the DFT results. Most of the applications of cRPA to DMFT in the literature have

approximated this term [217, 218, 189]. More recently, Haule presented an approach to removing the

double-counting bias for a given DFT functional [203].

Approximations. The errors of the RPA in §2.3.1 also apply here for cRPA. Additionally, the param-

eters from the method will depend on the definition of the orbitals that are integrated out. The Wannier

basis is guaranteed to be a complete basis for the Kohn-Sham orbitals, but may not be a good basis for
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the real system. Exactly what precise definition of a d orbital is the best description for the system is not

addressable with this approach.

Examples of applications. All of the examples listed in §2.3.2 apply this technique to estimate the

parameters for the model to solve using DMFT. To make the interactions local, usually only one-site terms

in U are kept.

Current challenges. The results of DFT+DMFT calculations can be sensitive to the double-counting

correction used. For example, a study with SrVO3, Sr2RuO4, MnO, CoO, and NiO found orbital occupations

and spectra can shift depending on the treatment of double-counting [218]. Similar results were found in

NiO [217] and rare-earth nickelate perovskites [189].

Recently, higher-level calculations discovered certain classes of problems where cRPA breaks down [219].

As an example, when downfolding two-dimensional two and three-band Hubbard models to one band, they

found that with equal hopping in both directions and U = 4, there were significant errors in the cRPA-

downfolded Hamiltonian. A similar effect was seen in downfolding multiband Hubbard models in two di-

mensions [220]. Both studies attribute the error to the RPA approximation.

Critically, this formalism does not provide any means for evaluating the accuracy of approximate Hamil-

tonians independently of experiment. For example, it is an open question if Hubbard-like models are a

good model for superconductivity in the cuprates, and even if they are, how many bands are required [38].

Additionally, there is no means of discovering the minimal set of parameters required to describe the system

to some degree of accuracy. For example, the Hund’s coupling term represents a complicated combination

of a spin-resolved Vijkl within the d space. There is no formalism for discovering that only this parameter

is required without appealing to experiment.

3.2 Density matrix downfolding.

Density matrix downfolding [42, 210] is a method of determining the parameters and accuracy of a wide

class of lattice models. The class of lattice models it determines are of the form:

Ĥeff =
∑
l

βld̂l, (3.3)

where βl are parameters and d̂l are elements of the one- or two-body reduced density matrix (1-RDM/2-

RDM). This definition includes band structure models (d̂l are elements of the 1-RDM in a molecular orbital

basis), tight-binding models (d̂l are elements of the 1-RDM in a localized basis), Heisenberg models (d̂l are

of the form Si ·Sj), Hubbard models (d̂l are elements of the two-body density matrix), and combinations of
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them. For instance, the one-band Hubbard model on square lattice is:

Ĥeff = t
∑
〈ij〉

(c†i cj + h.c.) + U
∑
i

ni,↑ni,↓ (3.4)

In this case, d̂1 =
∑
〈ij〉 ĉ

†
i ĉj and d̂2 =

∑
i n̂i,↑n̂i,↓.

3.2.1 Proof of principles

The goal of this process will be to efficiently describe a low-energy subspace of the full Hilbert space,

called LE . Let |Ψi〉 be the eigenstates of Ĥ with eigenvalue Ei, and let E0 ≤ E1 ≤ ..., i.e. the indices

are sorted by energy. The low-energy subspace, LE , is defined as the lowest n eigenstates for some

integer, n: LE = Span({|Ψi〉ni=1}). Density matrix downfolding focuses on matching an effective energy

functional, Eeff [Ψ] = 〈Ψ|Ĥeff |Ψ〉/〈Ψ|Ψ〉 to the first-principles energy functional, E[Ψ] = 〈Ψ|Ĥ|Ψ〉/〈Ψ|Ψ〉 for

all |Ψ〉 ∈ LE . This section will prove that once this is done, the eigenstates and eigenvalues of Ĥ can be

mapped to eigenstates and eigenvalues of Ĥeff in a straightforward manner. These proofs first appeared in

Ref. [210].

Theorem 1. |Ψ〉 is a critical point of E[Ψ] if and only if |Ψ〉 is an eigenstate of Ĥ.

Proof of theorem 1. A functional derivative of E[Ψ] demonstrates this.

δ

δΨ∗
E[Ψ] =

δ

δΨ∗
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 =

H|Ψ〉
〈Ψ|Ψ〉 − 〈Ψ|H|Ψ〉

|Ψ〉
|〈Ψ|Ψ〉|2 =

(H − E[Ψ])|Ψ〉
〈Ψ|Ψ〉 . (3.5)

Thus, (Ĥ − E[Ψ])|Ψ〉 = 0 if and only if δE[Ψ]/δΨ∗ = 0, i.e. |Ψ〉 is a critical point of E[Ψ].

Let H be the Hilbert space of Ĥ. Ĥeff will be an operator on LE , a subspace of H. If |Ψ〉 ∈ LE and

|Φ〉 ∈ H \ LE , then |Ψ〉 ⊕ |Φ〉 ∈ H. In the following, we will use the direct sum operator ⊕0 to translate

between the larger H and the smaller LE . The state |Ψ〉⊕ 0 represented in the basis of eigenstates of Ĥ will

have zero components for all eigenstates outside of LE .

Lemma 1. Suppose that |Ψ〉 ∈ LE and |Φ〉 ∈ H \ LE . Then δE[Ψ⊕Φ]
δΦ

∣∣∣
Φ=0

= 0.

Proof. 〈Ψ⊕ 0|Ĥ|0⊕ Φ〉 = 0 because the two states have non-overlapping expansions in the eigenstates

of Ĥ. Using that fact, we can evaluate

δE[Ψ⊕ Φ]

δΦ

∣∣∣∣
Φ=0

=

(
Ĥ − E[Ψ⊕ Φ]

)
|Φ〉

〈Ψ|Ψ〉+ 〈Φ|Φ〉

∣∣∣∣∣∣
Φ=0

= 0. (3.6)

This is equivalent to noting that Ĥ is block diagonal in the partitioning of H into LE and H \ LE .
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Importantly, if |Ψ〉 ∈ LE , then δE[Ψ⊕0]
δ(Ψ⊕0)∗ = |Ψ′〉 ⊕ 0, where |Ψ′〉 ∈ LE .

Theorem 2 Assume E[Ψ ⊕ 0] = Eeff [Ψ] + C for any |Ψ〉 ∈ LE , where C is a constant. Then (Ĥeff +

C)|Ψ〉 ⊕ 0 = Ĥ(|Ψ〉 ⊕ 0).

Proof. Note that

δE[Ψ⊕ 0]

δ(Ψ⊕ 0)∗
=

(Ĥ − E[Ψ⊕ 0])|Ψ⊕ 0〉
〈Ψ|Ψ〉 (3.7)

and

δEeff [Ψ]

δΨ∗
=

(Ĥeff − Eeff [Ψ])|Ψ〉
〈Ψ|Ψ〉 . (3.8)

Since the derivatives are equal, setting Eq. (3.7) equal to Eq. (3.8),

Ĥ|Ψ⊕ 0〉 = (Ĥeff + E[Ψ⊕ 0]− Eeff [Ψ])|Ψ〉 ⊕ 0 = (Ĥeff + C)|Ψ〉 ⊕ 0. (3.9)

Theorem 2 combined with Lemma 1 means that the eigenstates of Ĥeff are the same as the eigenstates of Ĥ

if the derivatives of its energy functional match Ĥ. Such a Ĥeff always exists. Let Ĥeff =
∑N
n=1En|Ψn〉〈Ψn|

where |Ψn〉’s are eigenstates belong to LE . This satisfies E[Ψ] = Eeff [Ψ] and Ĥeff |Ψ〉 = H|Ψ〉 for any |Ψ〉

in LE . We have thus reduced the problem of finding an effective Hamiltonian Ĥeff that reproduces the

low-energy spectrum of Ĥ to matching the corresponding energy functionals E[Ψ] and Eeff [Ψ].

3.2.2 Fitting energy functions that are linear in density-matrix elements

Given {Ψα}Nsamp

α=1 ⊂ LE , the best parameters for a model, Ĥeff , can be defined as minimizing the square

deviation between E[Ψα] and Eeff [Ψα] for all α. By assuming the linear form for the parameters (3.3) and

evaluating Eeff [Ψα] on each sample, the problem becomes a standard linear regression:

min
{βl}


(
E[Ψ]−

∑
l

βl〈Ψα|d̂l|Ψα〉
)2
 = min

{βl}

{
(y −Aβ)

2
}
, (3.10)

where yα = E[Ψα] is a component of the target vector, Aα,l = 〈Ψα|d̂l|Ψα〉 is a matrix element of the

linear predictor function, and β = (β1, ..., βNparameters
) is the parameter vector. The expectation values

of the d̂l operators are called descriptors, and are generally defined as observables meant to describe

elements of the Hilbert space in a coarse-grained way. In the case of the one-band Hubbard model (3.4),

Aα,1 =
∑
〈ij〉〈Ψα|ĉ†i ĉj |Ψα〉 and Aα,2 =

∑
i〈Ψα|n̂i,↑n̂i,↓|Ψα〉. If there are Nsamp samples, then A is of size
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Nsamp× 2, because there are two parameters, β = (t, U). The samples need not be approximate eigenstates,

but they should lie within LE .

The data set can both determine the parameters and measure the degree to which Eeff correctly describes

the set. The coefficient of determination, R2, is the ratio of the variance explained by the model relative to

the total variance of the data set [221]. The singular values of a principal component analysis measures the

number of parameters required to describe the sample set [222]. Using LASSO, ridge regression, or orthogonal

matching pursuit, techniques for regularization are available which find models with minimal number of

parameters [223, 224, 225]. Uncertainty in the parameters can be measured using bootstrapping [226]

or cross-validation [227]. A sense of the relative importance of parameters is available by evaluating the

correlation between the descriptors and the energy of the samples. Similarly, a strong correlation within

the sample set between residuals of a model and a descriptor outside the model suggests that the outside

descriptor can be included to reduce errors.

To summarize, the density matrix downfolding process is:

(a) Generate samples in LE , not necessarily eigenstates.

(b) Choose a set of descriptors to consider, d̂l.

(c) Form a vector of the energies, y, and a matrix of the descriptors for each sample, A, both evaluated

with first-principles methods.

(d) Perform linear regression: minβ(y −Aβ)2.

(e) Evaluate the sample and descriptor set.

The last step is to emphasize that review of the sample set or the descriptors is often needed. If there

are insufficient descriptors, the method will find poor goodness-of-fit, for instance, low R2. If there are

insufficient samples to fit all the descriptors, the method will find large errors on the parameters. In this

way, the method has an internal way of determining if the samples and the descriptors are a good match.

Consequently, if the user is confident in either the samples or the descriptors, the method has an internal

way of determining if the downfolding was successful and suggesting improvements. If neither the samples

nor the descriptors are certain, the process requires more exploration and careful consideration. I present a

new strategy for handling this situation in Chapter 9, which automatically finds low-energy samples for the

model fit.
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3.2.3 Examples of applications and current challenges

Examples of applications. Density matrix downfolding has been applied to several systems, successfully

predicting excitation spectra. For example, the spectrum of benzene and graphene [42]. It has also been

applied to study spin Hamiltonians, computing the singlet-triplet gap successfully in VO2, and computing

the correct effective exchange coupling in the parent compound of a cuprate superconductor [107, 123]

Current challenges. In most of the applications so far, the subspace of interest has been clear a

priori. In many cases where the correct form for a model Hamiltonian is unclear, it is also unclear what

low-energy states of the systems are like. For example, the proper effective model for the ground state

magnetic properties of the iron-based superconductor, FeSe, is unclear. Sometimes the process will require

low-energy states with a given orbital occupation or other property. It is sometimes difficult to guess low-

energy wave functions with a given orbital occupation (for example). This is especially difficult if the state

of interest shares its symmetries with another state in the sample set. I present a new method of addressing

this challenge in Chapter 9.

Additionally, a many-body calculation is required for each sample, which makes this significantly more

computationally expensive than cRPA downfolding. Generalizations to fitting parameter derivatives of the

model can alleviate this, but nonetheless require calculations of large numbers of many-body properties.

Because of this, for large systems, it is important to choose samples carefully to minimize the number of

necessary samples.
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Chapter 4

Connecting methods into a
calculation workflow

An accurate DMC calculation requires input from several of these methods together. The basic workflow

for a DMC calculation is outlined here.

(a) Perform a self-consistent calculation such as Hartree-Fock (§2.1.1) or DFT (2.2) to provide orbitals

{φi(rj)} for a Slater determinant or multi-Slater wave function (§2.1.4). DFT provides orbitals through

the Kohn-Sham ansatz (§2.2.2).

(b) Form a state of the form ΨT(R) = Φ↑(R↑)Φ↓(R↓)eU(R), where Φ↑(R↑) and Φ↓(R↓) are Slater determi-

nant wave functions from (a) containing the up and down electron coordinates, respectively, and eU(R)

is a Jastrow factor (§2.1.4). Optimize the Jastrow parameters with VMC (§2.1.4). For small systems,

the multi-Slater coefficients or orbitals can also be optimized at this step.

(c) With the VMC-optimized ΨT(R), use this as the trial function for a fixed-node DMC calculation (§2.1.5):

ΨFN(R) = limτ→∞ e−τĤΨT(R).

Properties from the VMC step are also used for reducing the mixed-estimator error when quantitative

accuracy is important.

These methods are also used in various ways to generate the samples, |Ψα〉, for density matrix downfolding

(chapter 3). For example, one can start with either Hartree-Fock or a DFT functional to generate a Slater

determinant of Hartree-Fock orbitals or Kohn-Sham orbitals. Different samples will use the ground state

determinant, singles excitations, doubles excitations and so on. For each determinant, VMC is used to

optimize a Jastrow factor. Finally each of these states is used as a trial function for fixed-node diffusion

Monte Carlo. The fixed-node constraint keeps these states from all converging to the same state, but the

projection dramatically lowers their energy, making them reasonable approximations to a sampling of LE .

The other method is described in more detail in §9, and utilizes a modification of the objective function in

VMC to explore LE systematically.
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Chapter 5

Reaction barriers for non-hydrogen
transfer reactions

The work in this chapter was reported in K. Krongchon, B. Busemeyer, and L. K. Wagner, “Accurate barrier

heights using diffusion Monte Carlo,” The Journal of Chemical Physics, 146, 12, 124129, (2017). The results

help to demonstrate the accuracy of FN-DMC for realistic calculations which are directly comparable to

experiment. Fixed node diffusion Monte Carlo was performed on a test set of forward and reverse barrier

heights for 19 non-hydrogen-transfer reactions, and the nodal error was assessed. The DMC results are

robust to changes in the nodal surface, as assessed by using different mean-field techniques to generate

single determinant wave functions. Using these single determinant nodal surfaces, DMC results in errors

of 1.5(1) kcal/mol on barrier heights (meaning 1.5 kcal/mol with 0.1 kcal/mol standard error). Using the

large data set of DMC energies, we attempted to find good descriptors of the fixed node error. It does not

correlate with a number of descriptors including change in density, but does show some correlation with the

gap between the highest occupied and lowest unoccupied orbital energies in the mean-field calculation.

5.1 Reaction barriers from first-principles

DMC has been applied to both periodic and open boundary Hamiltonians and can obtain accurate results

currently up to around 1000 electrons [89]. These aspects make DMC an interesting possibility for studying

large reactions such as those on surfaces. In order to properly evaluate the performance of DMC on chemical

systems, extensive benchmarking is necessary. There have been only a few tests of the performance of

QMC methods for reaction barriers. DMC studies of reaction barriers have been calculated for H + H2

[228, 229, 230], several organic molecules [231, 232, 233, 234, 235], surface reactions [236, 237, 72], and

others [238, 239]. These have generally found that DMC can get close to or within chemical accuracy for

reaction barriers, often improving on results of density functional theory (DFT). Recently, a large test set

of DMC calculations on hydrogen-transfer reactions found mean unsigned errors of 1.0 kcal/mol for barrier

heights and between 0.5 and 0.8 for bond dissociation energies, depending on the approximations used [240].

However, no large test sets of reaction barriers of non-hydrogen transfer reactions computed at the same
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level of accuracy using DMC have been conducted prior to this work.

We use a high-throughput implementation of DMC to study a database from Peverati and Truhlar [2].

The database consists of non-hydrogen-transfer reactions that involves relatively small molecules, and was

chosen to complement the existing results from other methods on this particular set of reactions available

in the literature [1, 241, 242]. We evaluate several simple strategies for constructing trial wave functions

and assess their performance. We also present a recipe for QMC calculations of reaction barriers that

obtains mean absolute errors of reaction barriers of approximately 1.5(1) kcal/mol, close to so-called chemical

accuracy.

5.2 Details of the calculations

We consider the 19 reactions enumerated in Table 5.1. The barrier heights are calculated by subtracting

the DMC total energies of the products and reactants to the transition states. We employ the clamped ion

approximation to the Hamiltonian of the ions, which neglects the kinetic energy of the ions.

The Hartree–Fock (HF) and DFT calculations were performed using the CRYSTAL code [243]. The core

electrons were removed using pseudopotentials published by Burkatzki, Filippi, and Dolg [204, 205]. The

use of these pseudopotentials has been justified by Nazarov et al. [244]. We used a Gaussian triple-ζ basis

set with polarization functions.

The set of orbitals produced by each of these methods was used as the foundation for a Slater–Jastrow-

type trial wave function for DMC calculations. The Jastrow factor was optimized by minimizing the variance

of the local energy. DMC was then performed on the Slater–Jastrow wave function to find the best estimate

of the ground state energy for each system. Both the variational and the diffusion Monte Carlo calculations

are done within the open source code QWalk [90]. Thus, four DMC methods: DMC(PBE), DMC(HF),

DMC(PBE0), and DMC(Min) are considered. The first three represent DMC calculations whose Slater

determinant is generated by the method in parentheses. The DMC(Min) method is formed by taking the

minimum DMC energy among the other three. Due to the variational principle, DMC(Min) should give the

closest upper bound to the ground state energy and would be the canonical DMC result for predictions.

5.3 Results

The trial wave function performances from each of the nodal surfaces are compared in Fig. 5.1. For each

system, we show the total DMC energy relative to the lowest energy of the three methods. The transition

states labeled as TS01 to TS19 are defined in Table 5.1. The Ne and Ar atoms have also been checked and
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Table 5.1: The non-hydrogen-transfer reactions [1] and their corresponding IDs. The transition states are
labeled as TS01 to TS19, following Ref [2]. When + separates the reactants or products, the energies of each
atom or molecule are calculated in separate DFT, HF, or DMC calculations, whereas when . . . separates the
reactants or products, all the reactants or all the products are simulated in the same calculation together
although they are actually seperated in physical space.

ID Reaction

1 H + N2O
TS01−−−→ OH + N2

2 H + FH
TS02−−−→ HF + H

3 H + ClH
TS03−−−→ HCl + H

4 H + FCH3
TS04−−−→ HF + CH3

5 H + F2
TS05−−−→ HF + F

6 CH3 + FCl
TS06−−−→ CH3F + Cl

7 F– + CH3F
TS07−−−→ FCH3 + F–

8 F– . . .CH3F
TS07−−−→ FCH3 . . .F

–

9 Cl– + CH3Cl
TS09−−−→ ClCH3 + Cl–

10 Cl– . . .CH3Cl
TS09−−−→ ClCH3 . . .Cl–

11 F– + CH3Cl
TS11−−−→ FCH3 + Cl–

12 F– . . .CH3Cl
TS11−−−→ FCH3 . . .Cl–

13 OH– + CH3F
TS13−−−→ HOCH3 + F–

14 OH– . . .CH3F
TS13−−−→ HOCH3 . . .F

–

15 H + N2
TS15−−−→ HN2

16 H + CO
TS16−−−→ HCO

17 H + C2H4
TS17−−−→ CH3CH2

18 CH3 + C2H4
TS18−−−→ CH3CH2CH2

19 HCN
TS19−−−→ HNC
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Figure 5.1: The DMC total energy relative to the lowest energy among the three functionals. The error
bars are statistical errors from DMC.
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Figure 5.2: The error of forward and reverse reaction barrier heights, denoted by vf and vr, versus reaction
ID as defined in Table 5.1. The error bars are insignificant and therefore neglected. The value of the missing
point, vr of HF for Reaction 1, is 41.14 kcal/mol.

included in the plot as a comparison to other closed shell systems. From the plot, the Kohn–Sham orbitals

calculated from the PBE0 functional yield the lowest DMC energies for almost all systems studied, except

for F– and Ne, which are closed shell second period atoms, where DMC(HF) outperforms DMC(PBE0).

The fact that HF tends to do better for closed shell second period atoms agrees with the general trend that

has been observed, for example, in C2 and Si2 [85, 245].

After obtaining the energy for each system, we calculate the forward and reverse barrier heights, denoted

by vf and vr, of the reactions in Table 5.1. The error between the calculated barrier heights and the

experimental results [1, 2] are presented in Fig. 5.2. For reference, we also present the results of the DFT

and HF calculations. However, note that our DFT results are using HF pseudopotentials, so they will differ

slightly from results including all electrons or using DFT- and DFT-functional-specific pseudopotentials.

The dependence of the DMC results on the nodal surface is on the order of a few kcal/mol for these systems.

Consistent with a previous study [1], HF tends to overestimate the barrier height, and the trend continues
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to hold for DMC(HF). The notable exception is Reaction 5, which is far too low in HF, while it is unusually

too high in DMC(HF). This discrepancy can be understood by the fact that HF seems to overestimate the

energy of F2 as can be seen from Fig. 5.1, while the fixed-node error of TS05 is particularly large. This

illustrates the general feature that the fixed-node errors tend not to correlate with the quality of the method

generating the trial wave function, which is examined in the Discussion.

To summarize the results, the errors in vf and vr are combined into a single data set and presented

as a box-and-whisker plot [246] as shown in Fig. 5.3 (Top). The plot shows that DFT(PBE) tends to

underestimate the barrier height, while HF does the opposite, as has been found before [1, 247]. On going

to the DMC results, the spread in the barrier-height errors decreases dramatically, while the median is much

closer to zero. While DMC(PBE) method yields the median closest to zero, 5 out of the 19 results were

outliers, suggesting this trial wave function is less reliable.

Finally, the mean absolute error (MAE) for each method has been calculated and reported in a bar

chart (Fig. 5.3) (Bottom). As discussed previously, the reactions being tested do not exhibit any significant

difference between DMC(PBE0) and DMC(Min) because DMC(PBE0) tends to provide the lowest total

energies. Neglecting DMC(Min), the most accurate methods as shown are DMC(PBE) and DMC(PBE0)

followed in order by DMC(HF), DFT(PBE0), HF, and DFT(PBE). The differences in the overall accuracy for

DMC(Min), DMC(PBE), and DMC(PBE0) are statistically indistinguishable by our calculations. However,

these three methods clearly perform better than DMC(HF). The MAEs in DMC(Min) and DMC(PBE0)

are 1.5(1) kcal/mol and 1.4(1) kcal/mol—close to the 1 kcal/mol accuracy necessary to predict chemical

reaction rates.

For comparison, Zheng et al. [241] found the best N4 scaling methods to have MAE around 1 kcal/mol,

and the bestN3 scaling methods to have error around 3 kcal/mol. The best accuracy methods in this category

of their database are semi-empirical density functionals, whereas our DMC methods require no experimental

input. From this database, other wave-function-based methods such as variants of the CCSD(T) method

attain a MAE of around 0.5 to around 1 kcal/mol accuracy, but scale much less favorably with system size.

5.4 When are fixed-node errors large?

Analyzing trends in the fixed node error of the test set demonstrates the principle that the quality of the

functional may have little to do with the quality of the DMC calculation utilizing the trial wave function

it generates. The error in the barrier heights themselves did not correlate reliably between the method

producing the trial function and the final DMC result. For instance, the HF error of vf in Reaction 5 is
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Figure 5.3: (Top) The box-and-whisker plot of the barrier-height errors for each method. Each box ends
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more negative, while DMC(HF) error is more positive compared to the average error.

We attempted to find some correlation with quantities computable in DFT and HF which may indicate

the fixed node error may be large. We computed several physical quantities within PBE0 and HF and checked

to see if the differences between these results correlated with the nodal error, measured by the difference

in energy between DMC(PBE0) and DMC(HF). We found that the difference in energies computed by

the PBE0 and HF did not correlate with the fixed-node error. Also, the square difference in the electron

densities between PBE0 and HF,
∫
d3r (ρPBE0(r) − ρHF(r))2 did not correlate with the fixed-node error.

The total change in atomic charges, measured by
(∑

I(cI,PBE0 − cI,HF)2
)1/2

where cI,PBE0 is the number

of electrons on ion I as measured by PBE0, for example, also did not correlate with the fixed-node error.

Additionally, the difference in the barrier heights between DMC(PBE0) and DMC(HF) did not correlate

with the difference in barrier heights between PBE0 and HF.

We did find some correlation between the gap in energy between the highest-occupied and lowest-

unoccupied-molecular-orbital (the HOMO-LUMO gap) and the fixed-node error. Fig. 5.4 plots out the

HOMO-LUMO gap computed by PBE0 compared to the energy difference between DMC(PBE0) and

DMC(HF). This plot illustrates how the worst fixed-node errors tend to occur in transition states, and

these transition states tend to have lower energy gaps. This is consistent with previous work on reaction

barriers [239], which found that transition states tend to have multiconfigurational character, due to the

stretching of bonds which often occurs in transition states.
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Figure 5.5: Approximate nodal error, measured by the energy difference between DMC(PBE0) and
DMC(HF) plotted against the energy difference between VMC(PBE0) and VMC(HF).

We also attempted to correlate the fixed node error with VMC results. For variance optimized wave

functions, the noise inherent in the variance optimization was a limiting factor in making the comparison.

While this noise does not affect the DMC results, it is larger than any correlation between the optimized

variance and the DMC energy. Instead, we reoptimized the wave functions using the linear method [85],

minimizing the energy directly, as shown in Fig. 5.5. There is a high correlation (0.7) between the VMC

energies and the DMC energies. We found that to obtain this correlation, the total energy needed to be

optimized to high accuracy. In some cases, this could be more computationally demanding than the DMC

calculation.

5.5 Conclusions from barrier height study

We have found that fixed node diffusion Monte Carlo (DMC) with a single Slater determinant can obtain

near-chemical accuracy for a benchmark set of 19 chemical reactions. Using this set, we performed statistical

analysis to investigate trends in the nodal error. Of the functionals we surveyed, PBE0 provides the lowest

energy nodal surfaces for almost all molecules. The size of the nodal errors in DMC are uncorrelated with the

error of the DFT functional used to produce the trial wave function but do tend to be larger for transition

states with small HOMO-LUMO gaps. However, the HOMO-LUMO gap does not appear to completely

determine the nodal error. Since the version of the algorithm we used scales very well with system size,

O(N3−4
e ), it is applicable even to larger systems, and since it does not use fitted parameters, one may expect
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it to have similar accuracy on other systems. It thus appears that DMC could be a viable route to performing

high accuracy calculations on barrier heights for many chemical systems.
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Chapter 6

Accurate FN-DMC calculations of
FeSe

The work in this chapter was reported in B. Busemeyer, M. Dagrada, S. Sorella, M. Casula, and L. K. Wagner,

“Competing collinear magnetic structures in superconducting FeSe by first-principles quantum Monte Carlo

calculations,” Phys. Rev. B, 94, 3,035108, (2016). The results labeled “VMC(opt)” and “DMC(opt)” and

the PBE calculations were performed by M. Dagrada, S. Sorella, and M. Casula. All other calculations

were performed by me. These results demonstrate that FN-DMC can provide both accurate results and

insight into microscopic mechanisms for unusual properties in materials that are difficult to analyze with

other theoretical approaches.

Resolving the interplay between magnetic interactions and structural properties in strongly correlated

materials through a quantitatively accurate approach has been a major challenge in condensed matter

physics. Here we apply highly accurate first principles quantum Monte Carlo (QMC) techniques to obtain

structural and magnetic properties of the iron selenide (FeSe) superconductor under pressure. Where com-

parable, the computed properties are very close to the experimental values. Of potential ordered magnetic

configurations, collinear spin configurations are the most energetically favorable over the explored pressure

range. They become nearly degenerate in energy with bicollinear spin orderings at around 7 GPa, when the

experimental critical temperature Tc is the highest. On the other hand, ferromagnetic, checkerboard, and

staggered dimer configurations become relatively higher in energy as the pressure increases. The behavior

under pressure is explained by an analysis of the local charge compressibility and the orbital occupation

as described by the QMC many-body wave function, which reveals how spin, charge and orbital degrees of

freedom are strongly coupled in this compound. This remarkable pressure evolution suggests that stripe-like

magnetic fluctuations may be responsible for the enhanced Tc in FeSe and that higher Tc is associated with

nearness to a crossover between collinear and bicollinear ordering.
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6.1 Introduction to FeSe

The quest for a microscopic theory of unconventional or high-temperature superconductivity is a major

challenge in condensed matter physics. The discovery of iron-based superconductors in 2006 [14] was an

important contribution to the field since it added a second class of high-temperature unconventional su-

perconductors to the experimental roster, along with the cuprate superconductors. Despite their differ-

ent electronic structure, their phase diagrams have striking similarities[248, 249], particularly the prox-

imity of the superconducting phase with an antiferromagnetic state. This behavior, along with other

considerations[250, 251, 252, 253, 254], makes it likely that spins and magnetism are important in de-

termining the superconducting state.

FeSe is a particularly interesting example of the iron-based superconductors for several reasons. Its critical

temperature is strongly dependent on pressure[255, 254, 5], reaching 37 K at 7 GPa. At ambient conditions,

FeSe has a simple P4/nmm crystal structure with two inequivalent Fe and Se positions per unit cell, and it

undergoes a distortion from tetragonal to orthorhombic symmetry by cooling it down below 91 K, while it

becomes superconducting below 8 K at ambient pressure. An intriguing peculiarity of FeSe is that, at variance

with most of the iron-based superconductors, it does not show any long-range magnetic order at ambient

pressure[256]. Long-range magnetic order is realized under pressure [257]. Additionally, antiferromagnetic

spin fluctuations have been revealed by neutron scattering experiments (see for example Ref. [258]) in the

proximity of the superconducting phase. Their role in driving the nematic transition and their connection

to superconductivity have been the subject of intense debate. All these aspects make it attractive for

computational techniques to correlate microscopic electronic structure with the superconductivity and it

is therefore one of the most studied iron-based superconductors. However, the precise calculation of the

properties of this material remains challenging from first principles methods such as density functional

theory (DFT) due to strong electron correlation.

For example, the PBE band structure is in poor agreement with experiments which report a considerably

narrower bandwidth[259, 260]. Furthermore the FeSe lattice constants display an average error of ∼ 0.1

Å independently from the exchange correlation functional employed (see for instance Ref [261] and Tab 6.1).

Despite useful work using dynamical mean field theory[262, 263, 193, 264, 265, 266, 267, 268, 269, 270, 271,

272] and GW[194, 273, 274] methods, there is a need for high quality calculations that can better describe

the electronic and crystal structure of these materials.

In this chapter, I describe the results of first principles quantum Monte Carlo simulations of the magnetic

behavior of FeSe under pressure. We find that, compared to commonly used density functional theory calcu-

lations, the FN-DMC calculations obtain more accurate lattice constants, bulk moduli, and band dispersion.
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(a) (b) (c) (d)

Figure 6.1: Spin densities of magnetic orderings at ambient pressure, (a) collinear, (b) collinear, 1 flip, (c)
bicollinear, and (d) checkerboard. Four unit cells of a single iron layer are shown, divided by black lines.
“Collinear, 1 flip” refers to flipping the spin of one iron per unit cell in the collinear configuration. Since
four unit cells are shown above, there are four “flipped” iron moments shown in this plot. The larger red Se
atoms lie above and below the plane and show significantly smaller spin density. Irons are smaller and blue,
and lie within larger concentration of spin. The two colors of the isosurfaces denote density of up and down.

By increasing the pressure, the difference in energy of ordered magnetic states with stripe-like order goes

to zero with pressure, while checkerboard-like magnetic states increase in energy. The convergence of the

stripe-like magnetic states is correlated with the increase in Tc in this material under pressure, which offers

a tantalizing connection to spin fluctuations as a potential origin. Such behavior may be a calculable design

principle for new unconventional superconducting materials.

6.2 Details of the calculations

We perform FN-DMC calculations with a single Slater-Jastrow trial wave function ansatz, To test the

sensitivity of the choice of orbitals used in the Slater determinant part, we use two approaches to determine

the orbitals. The first optimizes a parameter in density functional theory used to generate the orbitals, and is

the less computationally demanding of the two. The parameter to be optimized in the Slater determinant is

the amount of exact exchange w, for which we find the optimal value near w = 0.25. This corresponds to the

PBE0 functional, and this optimum is often the case for similar calculations on transition metal systems [275].

For consistency, we used w = 0.25 for all our calculations, and we denote this method by DMC(PBE0). The

details of the optimization of functional and of the parameter, w, is reported in the appendix. The second

QMC approach used in this work performs a complete variational optimization of the determinant orbitals

within a relatively small basis set, and is more computationally demanding but in principle more accurate.

These calculations are denoted throughout the paper with the label QMC(opt), where QMC will refer to

VMC or DMC depending on the calculation. Further information on the orbital optimization procedure is

provided in the Supplementary Material. In our tests for FeSe, while the DMC(opt) technique did obtain

lower energies as expected, the energy differences were consistent between the two techniques, so most data

is obtained from DMC(PBE0).
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All DMC(PBE0) calculations were done within the open-source package QWalk [90], with orbitals gen-

erated by DFT calculations performed with the DFT code CRYSTAL [243]. For the DMC(opt) method, we

used the package TurboRVB [276].

We use the BFD pseudopotential to approximate the core of the atoms [204, 205]. The energy difference

between the collinear and checkerboard magnetic state is consistent between an all-electron and pseudopo-

tential PBE0 calculation within 0.01 eV. The convergence of the most important parameters in both our

QMC methods is shown in the “Convergence and validation” section of the appendix. For the FeSe crystal

structure, the anion height above the iron planes is the only internal parameter of the compound in the

tetragonal P4/nmm phase. This parameter represents a crucial ingredient to determine the magnetic be-

havior of FeSe, but its evaluation by first-principles methods is a challenging task, as detailed in the section

titled “Crystal structure.” The optimization of the Se height is carried out with two different procedures.

For the DMC(PBE0) method, the relaxed value is obtained by fitting a total energy curve with a cubic

function. In the VMC(opt), the optimized Se height value is obtained by a direct minimization of the ionic

forces within the variational Monte Carlo framework [277]. By including the cell parameters in the mini-

mization procedure, we are able to fully relax the crystal structure of FeSe at different magnetic orderings.

We consider a minimization converged when both the forces and their error bars are lower than 10−3 Ha/a.u.

per atom.

We found that effects due to the finite size of the simulation cell, or finite size errors (FSEs), constitute

the major source of systematic error for both DMC(PBE0) and DMC(opt). We apply several techniques in

order to reduce FSEs. All DMC(PBE0) calculations are twist averaged [278] over 8 twist conditions on the

8 f.u. FeSe supercell; DMC(opt) results are instead obtained with a larger 16 f.u. supercell averaging over

periodic and antiperiodic boundary conditions; further corrections are then applied to cure one-body and

two-body FSEs. In both cases, we managed to reduce the impact of FSEs below the desired accuracy on

energy calculations. A detailed explanation of the procedures used to control FSEs is given in the appendix.

6.3 Results

6.3.1 Trial wave functions and ground state

For the Slater-Jastrow wave function there are many local minima both in preparing the Kohn-Sham orbitals

using density functional theory and in optimizing the orbitals directly. These minima correspond to different

magnetic orderings of the Fe spins. The most relevant ones are presented in Fig. 6.1. We also included a

type of paramagnetic state in which the up and down spin orbitals are constrained to be equal, but we found
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Figure 6.2: Selection of experimental measurements from Margadonna et al. [5], Kumar et al. [6], and
Millican et al. [7] of the selenium height, zSe, as a function of pressure, along with corresponding QMC
(left) and DFT (right) predictions. QMC(opt) refers to calculations done with a fully optimized Slater
determinant, which was VMC for the paramagnetic state (open circles), and DMC for the collinear state
(green diamonds). The fully-optimized QMC calculation is done at Γ-point only, but at a 16-f.u. supercell.
The DMC(PBE0) points are at 8 f.u., but are twist averaged over 8 twist values, therefore should have
compareable finite-size errors. More discussion of this comparison is available in the appendix. Accordingly,
the ambient pressure DMC(PBE0) calculation agrees nearly within error bars with the fully optimized
DMC(opt) calculation.
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data and from experiments by Margadonna et al. [5], Kumar et al. [6], and Millican et al. [7]. All
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the magnetic state. For the volumes considered here, regardless of spin ordering, P (V ) falls within the
experimental spread. Inset displays corresponding bulk modulus in units of GPa for PBE0, DMC(PBE0),
and the experiments considered. The bulk modulus is strongly coupled to the magnetic state, and for the
collinear state, DMC(PBE0) demonstrates excellent agreement with all the experiments considered. Bulk
moduli computed from PBE are between 7 and 9 GPa, and are much more insensitive to the magnetic
ordering (see Supplemental Materials for tabulated values). Lattice constants used were those of Kumar[6].
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that state to be more than 0.5 eV/Fe higher in energy than any magnetically ordered wavefunction. The

ground state thus seems to require large local moments on the Fe atoms.

While it is known experimentally that FeSe does not have long-range ordering [256], the calculations

here enforce periodic boundary conditions on a relatively small cell and thus cannot describe long-range

fluctuations of the magnetic order that might be the cause of loss of long-range order. For the experimental

crystal structure, the collinear magnetic ordering is the lowest in energy in our calculations and is observed

to be the dominant short-range order experimentally [258]. The energetic cost of introducing a “defect” into

the magnetic order is quite small; we will discuss that aspect later. Both the DMC(opt) and DMC(PBE0)

approaches result in a rather large magnetic moment on the Fe atom. For the collinear magnetic ordering

we obtain a value of ∼ 3.4 µB for DMC(PBE0), and a slightly lower ∼ 3.1 µB for the fully optimized

calculations. In both cases the magnetic moment is close to the atomic limit.

Between the two DMC approaches, the energy difference between different magnetic orderings is in agree-

ment within stochastic errors, so there is good reason to believe that the cheaper DMC(PBE0) technique

is accurate. In comparison to PBE calculations, which are the most common in the literature, the relative

energies according DMC are quite different, including the lowest energy magnetic phase, which is the “stag-

gered dimer” configuration in DFT [279, 280, 281], but turns out to be the collinear configuration in DMC. It

appears that hybrid DFT calculations in the PBE0 approximation obtain reasonably good magnetic energy

differences in comparison to DMC; since this functional also produced the orbitals that gave the lowest FN-

DMC energy, it may be capturing some of the correct physics for the magnetic properties of this material.

However, the PBE0 functional predicts an insulating gap[8] for FeSe for all magnetic orderings, in contrast

to DMC and experiment.

6.3.2 Crystal structure

Obtaining the correct crystal structure for FeSe is a major challenge, since the layers interact through non-

bonded interactions. The c lattice parameter in particular is affected by Van der Waals interactions and

electron correlation plays a key role in determining the in-plane physics. The behavior of FeSe’s super-

conducting properties under pressure gives another clue on the importance of structural variations in its

description. A first-principles prediction of the lattice parameters is thus an important test of the descrip-

tion of this physics. Since the DMC calculations are computationally costly, we limited our study to the

tetragonal phase of FeSe. Because the low temperature orthorhombic distortion is small[5], one might expect

that its effect on the overall electronic structure is also small. We leave such considerations to another paper.

The equilibrium lattice parameters of FeSe are presented in Table 6.1. As mentioned in the previous
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Table 6.1: FeSe optimal structural parameters with different computational methods. DFT calculations
have been performed with the software package QuantumESPRESSO [3] using a 10x10x10 k-points mesh,
an energy cutoff of 75 Ry and norm conserving pseudopotentials for both Fe and Se. The variational Monte
Carlo VMC(opt) results are obtained at Gamma point only with the 16 f.u. FeSe supercell containing 32
atoms.

Source Magnetic Ord. a c FeFe zSe

DFT-PBE paramagnetic 3.6802 6.1663 2.6023 1.3862
DFT-PBE collinear 3.8007 6.2363 2.6966 1.4568

VMC paramagnetic 3.71(1) 5.49(1) 2.62(1) 1.437(5)
VMC collinear 3.72(1) 5.68(1) 2.63(1) 1.56(1)

experimental [282] - T 7 K 3.7646(1) 5.47920(9) 1.4622
experimental [6] - T 8 K 3.7685(1) 5.5194(9) 2.6647(3) 1.5879

experimental [5] - T 300 K 3.7724(1) 5.5217(1) 1.4759

sections, these results are obtained with a direct optimization of FeSe cell parameters with the VMC(opt)

method. The in-plane FeSe properties should be well captured by QMC since the a lattice parameter is in

close agreement with experimental results (within ∼ 4 σ) independently of the chosen magnetic configuration.

Both collinear and paramagnetic wavefunctions shows also a general improvement with respect to DFT

concerning the c lattice parameter. This provides evidence of the accuracy in treating Van der Waals

interactions with the QMC wavefunction, mainly achieved with the Jastrow factor[283, 284]. The evaluation

of the inter-plane c distance might be affected by the dispersion along the z-axis, which we did not take into

account in our supercell which always contains only one Fe plane. We check this dependency by performing

a test structural relaxation on a FeSe supercell with 16 Fe atoms in two planes and 8 Fe atoms with only

one plane considered in the supercell. We find that the difference between the c parameter obtained in the

two configurations is negligible.

The final internal parameter zSe represents the height of the selenium anion above the plane, and it has

been experimentally demonstrated [285] to be of key importance in determining superconducting properties

of iron-based superconductors in general. We collect all our calculations of zSe, as well as some experimental

results, in Fig. 6.2. We find that both the magnetic state and the accuracy of the calculation have an

important effect on the prediction of this parameter. At approximately the same level of finite size error,

our two DMC calculations agree very closely, determining that fixed node and basis set error is likely to

be unimportant. However, we found that zSe is surprisingly sensitive to finite size effects, both in the in-

plane and out of plane directions. Given the supercells that we studied, we found a variation in zSe of

approximately 0.05 Å, depending on the twisted boundary conditions and supercell. With experimental

lattice parameters, our best estimate for zSe is thus 1.54(5)Å, which is quite close to the experimental range.

As we shall see later, the properties of FeSe depend sensitively on zSe, so to account for this uncertainty, we

will consider properties as a function of selenium height as well as pressure.
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By fitting an equation of state previously used by Anton et al. [286] to our DMC(PBE0) energies as a

function of volume, we extract the bulk modulus and the pressure dependence on volume P (V ), shown in

Fig 6.3. The collection of ambient-pressure bulk-moduli results is reported in the inset of Fig. 6.3, in units

of GPa. For all these calculations, experimental lattice constants [6] have been used. P (V ) and the bulk

modulus show a strong dependence on the magnetic order.

While P (V ) has scatter between experiments, they are more consistent in the bulk modulus, so we

base our comparisons of the theoretical calculations on the latter quantity. The DMC(PBE0) calculation

demonstrates excellent agreement with all three experiments if the collinear magnetic ordering is imposed,

but it is less close to experiment for the other magnetic orderings. Our PBE0 calculations are also in

somewhat good agreement with DMC(PBE0), except a notable disagreement for the ferromagnetic ordering.

On the other hand, PBE bulk moduli are significantly lower than both experiment and the other calculations,

generally predicting bulk moduli between 7 and 10 GPa, depending only slightly on the magnetic ordering.

Since the collinear ordering is also the lowest energy for DMC(PBE0), for the remainder of this article, we

use the collinear equation of state to estimate the pressures that correspond to the volumes used in the

calculations.

6.3.3 Interaction of structure and magnetism

Fig 6.4 shows the interaction between pressure, magnetic ordering, and selenium height. As has been found

before [287], the magnetic energies depend strongly on the selenium height, and this dependence changes

with pressure. For a given pressure, there are two points on the selenium height curves that are of substantial

interest. The first is the minimum energy (solid vertical line), which as can be seen in Fig 6.2, does not change

very much with pressure(or volume) in our calculations. The second is the crossing point (dashed vertical

line) between the collinear and bicollinear magnetic orderings, which are competing low-energy states. This

crossing point depends on the pressure, and approaches the minimum energy point at higher pressures (lower

volumes), as shown on the rightmost plot in the figure.

Another interesting feature visible in Fig 6.4 is that the checkerboard magnetic ordering intersects the

bicollinear and collinear magnetic orders at zero pressure (78.4 Å3) and large zSe, but there is a shift of the

checkerboard curve to higher energies once pressure is applied. The underlying physics of this effect will be

discussed in the Section titled “Interaction of charge and orbitals with magnetism.”

Fig 6.5 shows a cut through the data in Fig 6.4 along the minimum energy zSe (subfigure a), and the

experimentally determined zSe (subfigure b). Along this cut we evaluated many magnetic orderings to

establish a set of trends, and checked finite size errors by considering an 8 f.u. cell and 16 f.u. cell with
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Figure 6.4: DMC(PBE0) energies as a function of volume and selenium height zSe for three of the magnetic
orderings. The solid vertical line represents the minimum of the collinear magnetic ordering, while the
dashed vertical line represent the predicted crossing of the bicollinear and collinear energies. These two
points converge as the pressure is increased, as shown on the far right.
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Figure 6.5: For each calculation (QMC, PBE, and PBE0): (Right) Total energies for 8 f.u. cell for various
magnetic orderings, as a function of volume, choosing experimental [5] values of zSe. (Left) Same as right, but
choosing optimized values of zSe. For the top QMC plots, energies are referenced to the collinear energy at
around 77 Å3. The DFT calculations are referenced to the zSe minimum energy for that type of calculation.
The DMC paramagnetic energies are ∼ 0.85 eV/f.u. higher than the reference collinear energy.
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twist averaging. Further information on finite size corrections are available in the appendix. Under pressure,

the checkerboard, ferromagnetic, and staggered dimer magnetic orderings rise in energy compared to the

lowest energy collinear ordering. On the other hand, the stripe-like orderings, including the bicollinear and

collinear orderings with defects converge with applied pressure.

From Fig 6.5 (bottom panels) the failure of PBE in capture this trend in FeSe energetics under pressure is

apparent. Even with lattice constants fixed to experimental ones, the PBE energies of magnetically ordered

states are quite different from the FN-DMC energies. In agreement with recent work, PBE does predict the

staggered dimer as ground state. Despite the failure of PBE0 in describing the conducting behavior of FeSe,

the magnetic energies are reasonably close to the DMC results.

Given the data available to us, we can determine some properties that are robust to the finite size errors

and uncertainty in zSe in our calculations. The first is that the relative energetics of magnetic orders changes

strongly as a function zSe and pressure. In FN-DMC and PBE0, which would a priori be expected to be

more accurate, the collinear and bicollinear orders become closer in energy as with increasing pressure for

reasonable values of zSe. According to FN-DMC, this effect is robust against zSe variations, depending

mainly on the change in the relative magnetic energies as a function of pressure.

The energetic cost of reversing a single spin in the collinear ordered state, labeled “collinear, flip 1”

in Fig 6.5a, follows the bicollinear energy quite closely. Because this cost decreases with pressure, we can

surmise that magnetic fluctuations become more energetically available as pressure is increased.

6.3.4 Optical excitations and magnetism

The direct optical gap was calculated by promoting the highest energy orbital in the Slater determinant

part of the trial wavefunction to the next excited state orbital. This constructs a wave function ansatz for

an electron-hole excitation. The results are shown in Fig 6.6. The resulting DMC(PBE0) energy relative to

the DMC(PBE0) ground state is our estimation of the gap. Interestingly, the DMC(PBE0) gap is within

statistical uncertainties of 0 despite the fact PBE0 estimates a rather large gap, regardless of magnetic

ordering. Only the checkerboard state is gapped according to DMC(PBE0).

The charge degrees of freedom are therefore coupled to the spin degrees of freedom. According to these

calculations, in FeSe there is a coupling between the mobility of charge and the spin ordering. In the

remainder of the paper, we will correlate these properties with those of the ground state for different spin

orderings.
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Figure 6.6: Gap as a function of twisted boundary conditions calculated within DMC(PBE0). For the stripe-
like magnetic states, the gap is zero within statistical error. The unit cell is a 2× 2 supercell, expanded in
the x-y plane, shown as one of the four outlined boxes in each of the spin densities of Fig. 6.1. [Note: this
figure has been updated from the published version to correct an mistake in the units of the gap.]
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Figure 6.7: (a) Charge variance, in units of number of electrons squared for different magnetic orderings
in the majority and minority spin channel, as a function of cell volume, illustrating that the minority spin
channel is more mobile, and additionally that the checkerboard ordering’s electrons are more constrained to
a given iron site. (b) Magnetic moments inside each iron’s Voronoi polyhedron. (c) Magnitude of on-site
correlations, measured by |Cov(n↑, n↓)|/[Var(n↑)Var(n↓)]1/2. (d) Single-particle orbital occupations of the
iron d-states, measured by the on-diagonal terms of the 1-RDM. Note checkerboard’s charge density points
mostly out of the iron plane, while the other orderings point mostly within the plane. (e) Hybridization of
different orderings, as measured by an average of the off-diagonal elements of the 1-RDM, broken down by
interactions between antiparallel (Antipar.) aligned irons and parallel (Par.).
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6.3.5 Interaction of charge and orbitals with magnetism

From the energetic properties, we note two classes of magnetic order in FeSe: ones which are stripe-like,

and ones which are not stripe-like. The stripe-like orderings converge in energy with pressure, while the

checkerboard and staggered dimer pattern increases in energy relative to those orderings. Similarly, the gap

calculated in DMC(PBE0) distinguishes between different orderings, with metallic character in the stripe-like

ordering. In this section, we will make the following observations:

• Compared to majority electrons, minority spin electrons are more mobile and are more affected by the

spin ordering.

• The one-particle orbitals are occupied differently depending on the spin ordering.

These effects combine to give a cartoon picture of the physics that explains the difference in pressure behavior

between the magnetic orders.

Character of minority and majority spin electrons. To characterize the differences between the spin

channels, we evaluate the local charge compressibility of the Fe sites: 〈(ni,σ − 〈ni,σ〉)2〉, where niσ is the

number of electrons within a Voronoi polyhedron around the ith Fe site of spin σ. Larger values of the

compressibility indicate electrons are more likely to hop between atoms. For a Fe atom with net ↑ spin, the

↑ electrons are labeled majority electrons and the ↓ minority, and vice versa for Fe atoms with net ↓ spin.

In Fig 7a, these results are presented. For all magnetic orders, the majority spin is very similar and

shows a low local charge compressibility, while the minority spin is different between different magnetic

orders, and its local charge compressibility is larger than the majority channel by around 0.3 n2
e (electron

number squared). This suggests the minority electrons are more mobile, however, their ability to hop is

affected by the local magnetic order. For the stripe-like orders, the minority electrons are least constrained,

and their minority channel compressibility is about 0.1 n2
e more than the checkerboard and dimer state.

This measure of mobility seems to be correlated with the optical gap calculations, which predict that the

checkerboard pattern induces a gap in contrast to the other magnetic orders.

One particle orbitals. In Fig 6.7d, we present the orbital occupation of the d orbitals in different spin

orderings. For stripe-like orderings, the xy, xz, and yz orbitals are occupied, in agreement with ARPES

results [259]. On the other hand, the 3z2 − r2 orbital is occupied for the checkerboard ordering. This

gives a simple explanation for the differences in the local charge compressibility: The checkerboard pattern

causes the minority spin to occupy the out of plane orbital, which would rise to an insulating state if it

were the ground state. This idea can be confirmed by checking the off-diagonal one-particle density matrix
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elements between Fe atoms with parallel and antiparallel net spins, in Fig 6.7e. The atomic orbitals are

more hybridized between parallel spin Fe atoms for the stripe-like orders. The charge degrees of freedom,

which are mainly the minority spins from the Fe, interact strongly with the magnetic ordering. This effect

also interacts with the net magnetic moment and on-site correlations (Fig 6.7b and Fig 6.7c).

6.3.6 Hund’s coupling and the connection to spin-charge coupling

The importance of Hund’s coupling in tuning correlation effects of multiband materials has been extensively

demonstrated by means of dynamical mean field theory (DMFT) calculations [268, 267, 269]. These results

highlighted its role in determining the bad metallic behavior in iron-based superconductors [270, 271], which

are therefore sometimes referred as Hund’s metals. DMFT studies of BaFe2As2 have predicted that kinetic

energy should be lower in the paramagnetic state, although the total energy is lower in the spin-polarized

states due to Hund’s coupling [263]. Correspondingly, we find that comparing the paramagnetic state and

collinear state, the kinetic energy is 21.5(8) eV/f.u. larger in collinear, while the total energy is 1.75 eV/f.u.

lower for collinear. Also due to Hund’s coupling, DMFT studies have predicted that the high-spin state

should be the only highly probable state [272]. Correspondingly, we find that the iron magnetic moment

fluctuates around 3.4 µB , with a standard deviation of 1.5 µB .

A simple picture based on Hund’s coupling can explain the energetics and other properties presented in

the results section. Hund’s rules dictate that for an atom with a partially filled shell, we expect the electrons

to have total spin S that maximizes the multiplicity 2S + 1. This is consistent with our computed magnetic

moment, which find that the majority channel is mostly filled, bringing the moment to around 3.1-3.4 µB .

The spin occupation of the d-states in a reference iron is diagrammatically shown in the top row of Fig.

6.8. Also due to Hund’s coupling, the electron that is most likely to hop to nearby iron atoms would be

the electron in the minority channel, to keep a large S. As illustrated in Fig. 6.8, this minority channel is

already filled for neighboring irons that are antiparallel, so only majority spin electrons can hop to those

atoms. Conversely, minority electrons can hop to neighboring parallel irons, since that spin channel is not

filled. Thus, irons with parallel spins allow the minority electrons to more easily hop about the aligned iron

sites, therefore decrease the kinetic energy. As seen in Fig. 6.7d the magnetic ordering affects the occupation

of the d states, hence affects the labeling of the states in Fig. 6.8, but the basic idea is unchanged.

While the minority spins require at least some parallel iron magnetic moments, the large localized mag-

netic moments also interact antiferromagnetically, leading to a competition between these two mechanisms.

As a compromise, antiferromagnetic configurations with ferromagnetic chains emerge as the lowest energy

configurations.
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Reference iron:

Parallel Neighbor:

Antiparallel Neighbor:

Figure 6.8: Diagrams depicting the occupations of the d-orbitals of a reference iron, one of its neighbors
with parallel net magnetic moment, and another neighbor with antiparallel magnetic moment. The minority
channel is spin down for the top two, and is spin up for the last. The minority electron on the reference
atom is most likely to hop to a neighbor, for example, the greyed out down electron on dz2−r2 . It may easily
hop to its parallel neighbor, which may fill its dx2−y2 orbital as suggested by the grey box. It may not hop
to any of the orbitals of the antiparallel neighbor, since the down spin channel is filled. Any hopping from
the reference iron to its antiparallel neighbor must occur in the spin-up channel, which consequently violates
Hund’s rule for the reference iron.
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This picture unifies many of the observations from our calculations. The checkerboard state is distin-

guished from the other states by its lack of parallel nearest neighbors, similar to how the ferromagnetic

state is distinguished by its lack of antiparallel neighbors. These two extremes are higher in energy, and

are disfavored as pressure increases the importance of Fe-Fe interactions. Because the checkerboard has

no parallel nearest neighbor, its iron d-electrons are more trapped on a single site, leading to a low charge

variance, and states that primarily occupy the dz2−r2 orbital. All stripe-like states have a combination

of antiparallel and parallel nearest neighbors, and allow the electrons to delocalize along the irons chains,

leading to higher correlations, higher variance, and more Fe-Fe hybridization. Although the staggered dimer

ordering is energetically competitive at low pressures, its energy, charge variance, and magnetic moment are

similar to checkerboard, and at high pressures, becomes energetically unfavorable just as the checkerboard

ordering does. Although the staggered dimer does allow some delocalization between the dimered parallel

spins, the itinerant spins are still trapped on the dimers, and therefore this state’s energetics follow the

checkerboard behavior at higher pressures.

This competition of interactions sets up a fine balance between many qualitatively different magnetic

configurations. Parameters in the structure can tilt this balance one way or another, leading to a strong

magneto-structural coupling. This is evident both from the strong magnetic dependence of the bulk modulus

in Fig. 6.3, as well as in Fig. 6.4, where zSe can exchange the ground state configuration between at least

two magnetic configurations. This logic can be straightforwardly applied to iron telluride (FeTe), the non

superconducting parent compound of FeSe. This material has the ground state magnetic ordering at a zTe

around 1.75 Å, which implies that the zTe should be decreased to force a crossover. By this logic, FeTe

would superconduct if it were put in tensile stress, as it has been observed [288].

6.4 Conclusion for bulk-FeSe

In summary, we have shown that QMC calculations can obtain an accurate description of the electronic

structure of FeSe. The lattice constants and bulk modulus are all very close to the experimental values

and significantly improve over DFT calculations. Our results are substantiated by the agreement between

different and complementary QMC techniques employed. We showed that they yield sufficiently small

statistical and systematic errors to study the relative energetics of different magnetic orders, which behave

differently from those predicted by DFT. The largest error in the calculations appear to be due to finite size

supercells, which we checked to be small enough that the trends presented here are preserved.

As an outcome of the high-accuracy calculations, we have determined that collinear and bicollinear
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motifs become close in energy as pressure increases, while the checkerboard motif increases in energy with

pressure. This behavior is correlated with delocalization of the minority electrons on the high-spin Fe atom.

Collinear and bicollinear motifs allow for more delocalization, which increases in importance as the pressure

is increased. This delocalization effect is strong enough to change the occupation of atomic orbitals in

FeSe depending on the magnetic ordering, so it is larger than the crystal field splitting of the orbitals.

The spontaneous breaking of C4 symmetry (or more properly S4 symmetry)[289, 290], is a result of this

physics. Magnetic configurations which contain spin chains are thus favored over the whole considered range

of pressure.

From the above results, we can see that the magnetic degrees of freedom are strongly coupled with the

charge and orbital degrees of freedom. In a similar way, since the relative magnetic energies are dependent on

the hopping of minority electrons from site to site, they are also strongly dependent on the structure. There

is thus both spin-charge and spin-structural coupling in this system. As one of us showed recently[123, 124],

the cuprates also show strong magneto-structural and magneto-charge coupling. One might speculate that

both of these effects are necessary for high Tc and it may prove fruitful to look for similar effects in proposed

new superconductors.

6.5 Supplemental information

6.5.1 Convergence and validation

In this appendix we present an extensive study of the convergence of the main parameters involved in our

QMC calculations. Within DMC(PBE0), the only parameter to be optimized in the Slater determinant

is the amount of exact exchange w. The optimization of FN-DMC energy as a function of w is presented

in Fig 6.10. As already mentioned in the main manuscript, we notice that the best FN-DMC is generally

obtained with ∼ 25% of exact exchange for all magnetic configurations; this corresponds to the PBE0 density

functional. The convergence of the FN-DMC energy with other parameters of QMC methods is reported in

Fig 6.9. For the DMC(PBE0) method, in Fig. 6.9b, we present energy convergence as a function of Fe and

Se basis set exponents by showing the behavior of the exponent of our most diffuse gaussian basis exponent

as it gets more diffuse. Benchmark calculations of DMC(PBE0) against the time step used in the projection

are presented in Fig 6.9d. We employed a time step of 0.01 for all DMC(PBE0) calculations. On the other

hand, lattice regularized FN-DMC algorithm employed for DMC(opt) method (see next section) suffers from

the lattice step error in Laplacian discretization. Convergence with lattice step is shown for the collinear

configuration in Fig 6.9f. We used a lattice step of 0.125 a.u. for all DMC(opt) calculations.
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Figure 6.9: Convergence of DFT and DMC parameters. Axes labeled by E − Emin are energies relative to
the minimum energy of the points in the subfigure. (a) Convergence of k-point grid for DFT calculations
for the 8 f.u. cell. A 4 × 4 × 4 grid was used for all these calculations. (b) Convergence of DMC(PBE0)
basis set parameters for the 8 f.u. cell, at zero pressure. “Fe basis exp” and “Se basis exp” refer to
the value of the smallest exponent in the basis. Values of around 0.26 and 0.2 were used for Fe and Se
respectively. While in the latter case the total energy is decreasing, the energy differences are stable. (c)
Finite size extrapolation for DMC(PBE0) at the largest and smallest volumes considered, twist averaging
over 8 boundary conditions. Energy is relative to the collinear energy for each size. The two checkerboard
lines reflect a finite size extrapolation in the ẑ direction (upper line) and extrapolation in the x-y plane
(lower line). The full extrapolation will likely be near the center of the two line endpoints. (d) Time step
extrapolation for the DMC(PBE0) at 8 f.u. at the largest and smallest volumes considered. A value of
0.01 a.u. was adopted for all DMC(PBE0) calculations. (e) Finite size extrapolation for the DMC(opt)
calculations, with periodic (PBC) and antiperiodic (APBC) boundary conditions, along with their average
(Avg.). These benchmark calculations are performed in the paramagnetic phase and energies are corrected
for one-body and two-body finite size errors. (f) Extrapolation of the lattice spacing used for the laplacian
discretization for the LR-DMC, i.e. DMC(opt), calculations. These benchmark calculations are performed
in the collinear phase. A value of 0.125 a.u. was adopted for all calculations.
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Figure 6.11: Finite size extrapolation near zSe = 1.42 of the energy differences between collinear and
checkerboard magnetic ordering for DMC(opt) (thick outline) an DMC(PBE0) (thin outline). DMC(opt)
data points are averaged over periodic and fully antiperiodic boundary conditions, while DMC(PBE0) is
averaged over 8 twists. The extrapolations are in agreement within statistical error.
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We turn now our attention to finite size errors (FSE) which represent the main source of error in our

QMC calculations. We performed several DFT test calculations to determine the impact of one-body FSE.

For both 8 f.u. and 16 f.u. supercells (used for DMC(PBE0) and DMC(opt) methods respectively) a 4x4x4

k-point grid is enough to obtain results converged within 1 meV independently from the density functional

used, as shown in 6.9a. The same k-point grid in the PBE0 wavefunction is also sufficient to converge

FN-DMC energies within the same threshold. For the DMC(PBE0) calculations, we twist average over a set

of 8 twist conditions [278], for unit cells ranging from 4 to 16 f.u., expanding the supercell in the x-y plane,

and z direction (adding an additional layer). The resulting finite-size extrapolations are depicted in Fig 6.9c.

The finite size extrapolation in the z direction is the checkerboard line above the other checkerboard line.

The true infinite size limit will likely lie in between these two extrapolations. Although the finite size effects

are relevant, they do not alter any conclusions of the main text. Going from low to high pressure, the

finite size errors amplify the change in energy differences between checkerboard and collinear. Extrapolating

with more than two points is prohibitively expensive for the bicollinear state, and so how finite size effects

affects the pressure dependence of the energy differences between collinear and bicollinear is not clear, as

the extrapolations are within error bars. However, it is certainly clear that bicollinear both remains very

close in energy to the collinear state—even in the extrapolation—whereas checkerboard’s energy certainly

rises well above the other states.

For DMC(opt), all calculations have been done with a 16 f.u. supercell. Structural optimization was

performed with periodic boundary conditions only. All other calculations were instead averaged between peri-

odic (PBC) and fully antiperiodic (APBC) boundary conditions. Further finite size corrections to DMC(opt)

energies are obtained by adding one-body corrections estimated from fully converged DFT-LDA calculations

and two-body corrections evaluated within the KZK approach [291, 292]. In Figure 6.9e is reported the

convergence of DMC(opt) energy in the paramagnetic phase as a function of the system size after applying

the corrections.

We verified that DMC(PBE0) and DMC(opt) are in agreement when the calculation is carried out with

exactly the same setup. For this purpose, we used a small 4 f.u. supercell in the collinear configuration at

the Γ-point. We computed the optimal Se height by fitting the total energy curve with both methods and

we found 1.46(1) Å for the DMC(opt) method and 1.40(5) Å for the DMC(PBE0) method. The two values

lies within one standard deviation of each other, and we consider them in statistical agreement.

Finally, we check the impact of finite size errors on the energy differences between collinear and checker-

board orderings. For this purpose, we compared finite size extrapolations at a fixed zSe ≈ 1.42 with the

typical setup employed for production runs, i.e. 8 f.u. averaged over 8 twists for DMC(PBE0) and 16 f.u.
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averaged over periodic and fully antiperiodic boundary conditions for DMC(opt). The results are presented

in Fig. 6.11. We found that the extrapolations as well as the larger cell sizes we used were within statistical

error. This suggests that the fixed node error of DMC(PBE0) when compared to the best Jastrow-correlated

single-deteminant wavefunctions is below statistical errors with respect to magnetic energy differences. It

is possible that this fixed node error is still larger than our statistical errors when comparing to the exact

energy differences, however, this would require investigation beyond Jastrow-correlated single-determinant

trial wavefunctions, which due to computational complexity, we leave for another study.
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Chapter 7

Low-energy description of FeSe
molecule from first-principles

The work in this chapter was reported in H. Zheng, H. J. Changlani, K. T. Williams, B. Busemeyer, and L.

K. Wagner, “From Real Materials to Model Hamiltonians With Density Matrix Downfolding,” Front. Phys.,

6, (2018). I have performed all the calculations presented in this chapter. One of the goals of first-principles

downfolding is to determine minimal descriptions for complex systems. This chapter presents a strategy for

using density matrix downfolding to find a minimal model for a transition metal system.

Transition metal systems are often difficult to model because the low energy physics involves multiple

orbitals and various kinds of couplings. This is seen in the proliferation of models for transition metals,

which include terms like spin-spin coupling, spin-orbital coupling, hopping, Hund’s coupling, and so on.

Models containing all possible descriptors are unwieldy, and it is difficult to determine which degrees of

freedom are needed for a minimal model to reproduce an interesting effect. Transition metal systems are

challenging to describe using most electronic structure methods because of the strong electron correlations

and multiple oxidation states possible in these systems. Fixed-node DMC has been shown to be a highly

accurate method on transition metal materials for improving the description of the ground state properties

and energy gaps [107, 123, 41, 89]. In this chapter, we applied DMD using fixed-node DMC to quantify the

importance of different terms in the effective Hamiltonian in a FeSe diatomic molecule with a bond length

equal to that of the iron based superconductor, FeSe [6], in order to help identify the descriptors that may

be relevant in the bulk material. We considered a low-energy space spanned by the Se 4p, Fe 3d, and Fe

4s orbitals. We sampled singles and doubles excitations from a reference Slater determinant of Kohn-Sham

orbitals taken from DFT calculations with PBE0 functional with total spin 0, 2, and 4, which were then

multiplied by a Jastrow factor and further optimized using fixed-node DMC. After this procedure, 241 states

were within a low energy window of 8 eV. Of these, eight states had a significant iron 4p component, which

excludes them from the low-energy subspace. This left us with 233 states in the low-energy subspace.
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Figure 7.1: (Left) Parameter values for each fit generated in the MP algorithm, labeled at the step where
they are included in the model. A zero value indicates that parameter is not yet added to the model. The
sign of J is consistent with Hund’s rules, and the signs of tσ,d and tσ,s are consistent with Se being located in
positive z with respect to Fe. (Right) RMS error of each model generated by MP as the algorithm includes
parameters. The RMS error of the largest model considered was 0.61 eV.

7.1 Downfolding procedure

We considered a set of 21 possible descriptors consisting of local operators on the iron 4s, iron 3d states,

and selenium 4p states, which is a total of 9 single-particle orbitals. We used the intrinsic atomic orbital

construction [293] to generate an efficient localized basis set. At the one-body level, we considered orbital

energy descriptors:

εsns, επ,Se(npx + npy ), εznpz ,

εz2ndz2 , επ,Fe(ndxz + ndyz ). εδ(ndxy + ndx2−y2 ), (7.1)

The labels π and δ signify that these are the π and δ-bonding orbitals for each atom. We also considered

the symmetry-allowed hopping terms:

tσ,d
∑
η

(
c†dz2 ,ηcpz,η + h.c.

)
, tσ,s

∑
η

(
c†s,ηcpz,η + h.c.

)
, tπ

∑
η

(
c†dxz,ηcpx,η + c†dyz,ηcpy,η + h.c.

)
. (7.2)

As before, η represents the spin index. At the two-body level, we considered Hubbard interactions:
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Up
∑
i∈p

ni,↑ni,↓, Ud,δ
∑

i∈{dxy,dx2−y2}
ni,↑ni,↓,

Ud
∑
i∈d

ni,↑ni,↓, Ud,π
∑

i∈{dxz,dyz}
ni,↑ni,↓, Udz2ndz2 ,↑ndz2 ,↓, (7.3)

where p refers to the Se-4p orbitals and d refers to the Fe-3d orbitals. Importantly, we also accounted

for the Hund’s coupling terms for the iron atom:

J
∑
i 6=j
i,j∈d

Si · Sj , JδSdxy · Sdx2−y2 , Jδ,dz2 (Sdxy + Sdx2−y2 ) · Sdz2 ,

JπSdxz · Sdyz , Jπ,dz2 (Sdxz + Sdyz ) · Sdz2 . Jπ,δ(Sdxz + Sdyz ) · (Sdxy + Sdx2−y2 ), (7.4)

Finally, we also added a nearest neighbor Hubbard interaction: V
∑
i∈p,j∈d ninj .

7.2 Results

To generate a minimal description of the system, we employed a matching pursuit (MP) method [225]. MP

chooses to add descriptors based on their correlation with the residual of the linear fit. We started with

a model that only consists of E0. The Hund’s coupling descriptor [the first term in Eq. (7.4)] has the

largest correlation coefficient with the residual fit, so it is added first. The fact that the Hund’s coupling is

chosen first in MP is consistent with several studies in the literature which show that it is important for the

magnetic properties of bulk FeSe [267, 268, 269], as well as the result from Chapter 6. Next, MP includes

the descriptor that correlates most strongly with the residuals of this first minimal model, in this case the

hopping between d and p σ-symmetry orbitals. We repeated this procedure until the RMS error did not

improve more than 0.05 eV upon adding a new parameter. This criterion was chosen to strike a balance

between the complexity of the model and the accuracy in reproducing the data set.
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The following model was produced:

Heff = εδ,Fe(ndxy + ndx2−y2 ) + εsns + εznpz

+tσ,d
∑
η

(
c†dz2 ,ηcpz,η + h.c.

)
+ tσ,s

∑
η

(
c†s,ηcpz,η + h.c.

)
+Ud

∑
i∈d

ni,↑ni,↓ + J
∑
i 6=j
i,j∈d

Si · Sj + E0. (7.5)

E0 is an overall energy shift, also included as a fit parameter. The parameter values and corresponding

error of each model produced by MP are shown in Figure 7.1. Note that all parameters may change at

each step because the entire model is refitted when an additional parameter is included in each iteration.

The parameters are smoothly varying with the inclusion of new parameters, and they take the correct signs

based on symmetry (where applicable). The RMS error decreases with each additional parameter, but less

so as the algorithm appends additional parameters. Eventually the diminishing improvements do not merit

the additional complexity of more parameters.

In summary, these calculations demonstrated a practical procedure for quantifying the importance of

model parameters: the matching pursuit order, which is determined by the correlation coefficients with

either the energy or the residual of previous fits. The procedure confirmed the importance of Hund’s

coupling in a direct and unbiased way—the importance of the term is quantified by the correlation of the

Hund’s coupling descriptor, 〈∑ i 6=j
i,j∈d

Si ·Sj〉, with the energy. The Coulomb repulsion is also important in this

system, as it appeared 3rd in the matching pursuit order. Quantifying the importance of model interactions

helps describe the system and can determine practical effective minimal models.

85



Chapter 8

Prediction of the singlet-triplet gap of
MgTi2O4

The work in this chapter was reported in B. Busemeyer, G. J. MacDougall, and L. K. Wagner, “Prediction

for the singlet-triplet excitation energy for the spinel MgTi2O4 using first-principles diffusion Monte Carlo,”

Phys. Rev. B, 99, 8, 081118, (2019). This work presents a simple application of downfolding to make

a prediction for experiments. Publishing calculations ahead of experiments is an important step towards

demonstrating the predictive capability of downfolding FN-DMC calculations.

The spinel, MgTi2O4, undergoes a transition into a dimerized state at low temperatures that is expected

to be a spin singlet. However, no signature of a singlet-triplet transition has been discovered, in part due

to the difficulty of predicting the energy of the transition from theory. We find that the dimers of MgTi2O4

can be described by a Heisenberg model with very small interactions between different dimers. Using high-

accuracy first-principles quantum Monte Carlo combined with a novel model-fitting approach, we predict

the singlet-triplet gap of these dimers to be 350(50) meV, a higher energy than previous experimental

observations have considered. The prediction is published in advance of experimental confirmation.

8.1 Nature of the ground state of MgTi2O4

Exotic electronic states are predicted to occur at low temperatures in geometrically frustrated lattices,

including the pyrochlore lattice[294, 295]. However, as temperature is decreased, the frustration is often

resolved by structural distortions. Because these systems have strong electron-electron interaction effects,

the resultant ground states can be challenging to describe using simple electronic structure theories. The

causation of this distortion is not always completely understood, and the correlated nature of the material

makes theoretical approaches challenging.

In the case of pyrochlore MgTi2O4, the high temperature pyrochlore lattice distorts to a dimerized

structure at Ts = 260 K[296]. A spin-singlet state would not be surprising in this case, since there is a

sharp decrease in the magnetic susceptibility coincident with the dimerization[297]. Existence of the singlet

ground state is also indirectly supported by optical experiments[298] interpreted through density functional
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theory (DFT) calculations with the B3LYP functional[296]. Local spin density approximation (LSDA) + U

calculations find that at nonzero U , the ground state contains antiferromagnetic dimers[150]. However, both

generalized gradient approximation (GGA) and local density approximation (LDA) + U with U < 6 eV fail

to produce the insulating state, highlighting the dependence of the results on the choice of DFT functional.

An additional concern with the spin-singlet identification is that neutron scattering experiments of MgTi2O4

find no singlet-triplet excitation up to energies of 25 meV[295]. We are not aware of any attempt to predict

the singlet-triplet gap of the system from first-principles calculations.

Another system, VO2, is quite similar to MgTi2O4 in that it undergoes a metal-insulator transition at low

temperatures simultaneously with a structural transition that forms dimers. An inelastic x-ray scattering

measurement found the singlet-triplet gap of VO2 to be 460 meV[299]. Diffusion Monte Carlo (DMC) was

applied to compute the singlet-triplet gap of VO2, finding the gap to be 440(24) eV—within statistical errors

of the experiment[41, 125]. The analysis used the DMC calculations to fit a model Heisenberg Hamiltonian,

which can be solved for the excitation energies. Similar techniques have been successfully applied widely in

the literature, including calculations utilizing quantum Monte Carlo[300, 301, 105, 302, 303, 106, 304, 107, 41].

Recently, the method was generalized and given the theoretical grounding to fit a large family of models,

including Hubbard and generalized Hubbard models[210], which would give access to additional types of

excitation energies. However, to cleanly demonstrate its predictability, correct predictions with the method

should be published before the experimental observation.

In this manuscript, we use quantum Monte Carlo calculations and a rigorous theory of effective models[210]

to make a prediction for the singlet-triplet gap of MgTi2O4. The gap is predicted to be 350(50) meV, which

should be observable using neutron scattering or reasonant inelastic x-ray scattering (RIXS) experiments.

Observation of an excitation at the singlet-triplet gap would be strong evidence for the singlet ground state,

and confirmation that our technique is a new predictive tool for calculation of excited state properties in

transition metal systems.

8.2 Calculation details

We used a conventional recipe to perform the DMC calculations. To generate the trial functions, we employed

single-Slater-Jastrow-type wave functions[90, 305, 275, 306]. The Slater determinant is provided by DFT

calculations, which were performed by the CRYSTAL package[243]. In previous studies of hybrid functionals

and fixed-node error, the PBE0 functional often provides the best nodes compared to other choices of common

DFT functionals[275, 123, 41, 307], so we employed the PBE0 exchange-correlation functional for the DFT
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calculations in this work. We used a local Gaussian triple-ζ with polarization (TZP) basis set for the PBE0

calculations. The Jastrow factor was energy-optimized with variational Monte Carlo within the QWalk

package[90, 85]. Fixed-node diffusion Monte Carlo calculations were performed using QWalk, using T -moves

to handle the nonlocal parts of the pseudopotential[209]. The timestep error was confirmed to be negligible

for these quantities (Supplemental Information). All DMC energies were twist-averaged over the 8 real

twist-boundary conditions.

We fit a nearest-neighbor Heisenberg model to our DMC data, and use it to calculate the singlet-triplet

gap.

Heff = J
∑
〈ij〉

Si · Sj (8.1)

where 〈ij〉 represent the pairs of Ti in a dimer. Because each dimer is independent, the Hamiltonian is block

diagonal with blocks corresponding to each dimer. Let | ↑↑〉 represent the spin state on a single dimer with

both spins up, and | ↑↓〉 be the corresponding state with one spin up and one spin down, etc. Although not

all of them are eigenstates, the expectation value of the energies of these states according to (8.1) are −J/4

for | ↑↓〉 and | ↓↑〉 and is J/4 for | ↑↑〉 and | ↓↓〉. Thus, knowing the correct difference between the expectation

value of the energies of | ↑↑〉 state and the | ↑↓〉 state determines J . Similar approaches have been utilized

in many systems to determine effective exchange couplings[300, 301, 105, 302, 303, 106, 304, 107, 41]. The

singlet-triplet gap of this Hamiltonian is then

〈↑↑ |Heff | ↑↑〉 − 〈s|Heff |s〉 = J/4− (−3J/4) = J,

where |s〉 = (| ↑↓〉 − | ↓↑〉)/
√

2 is the singlet ground state.

Fixed-node DMC provided the estimated energy difference between | ↑↑〉 and | ↑↓〉 state for each dimer.

Trial functions for each state are prepared by initializing the DFT state with the target spin configuration,

achieving self-consistency, and checking that the resulting Kohn-Sham Slater determinant has the correct

spin configuration. The spin densities of the Slater determinants for each state are shown in Fig. 8.1.

We then optimize a two-body Jastrow factor for each Slater determinant generated this way, and use the

resulting Slater-Jastrow wave function as the trial function for DMC. Beginning with each of these trial

wave functions (with different spin densities), the fixed-node constraint fixes the overall spin symmetry as

the DMC projection removes all the high energy components from the trial wave function. Thus the resulting

fixed-node wave function represents low-energy states with the spins on each Ti corresponding to | ↑↑〉 or

| ↑↓〉 on each dimer.
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dimer triplet interdimer 1 interdimer 2 interdimer 3 interdimer 4 interdimer 5

Figure 8.1: Spin density contour plot for the spin states considered in this work. Up and down spin densities
are represented as blue and red. Orange atoms with spin are Ti atoms, of the spinless atoms, the smaller
brown atoms are O, and the white atoms are Mg. Bonds are drawn between dimerized Ti atoms, and bonds
that exit the unit cell have no Ti atom on the end outside the cell, which is drawn with black lines. The
diffusion Monte Carlo energies of the dimer and triplet state determine the model, and the “interdimer”
states are used to test the accuracy of the model.

8.3 Results

We evaluated the energetics of the “dimer” and “triplet” spin configurations presented in Fig. 8.1 to fit the

dimer model (8.1). We also evaluated the energy of the spin-unpolarized state, finding it to be 810(30) meV

higher than the “dimer” according to DMC and 898 meV according to PBE0. Net spin moments around

each Ti are therefore energetically favorable in our calculations. The relative energy of the “triplet” state

to the “dimer” state according to both PBE0 and DMC are presented in the “triplet” group of in Fig. 8.2.

Requiring the model (8.1) to reproduce this relative energy constrains its parameter to be J = 350(50) meV.

Thus the singlet-triplet gap is predicted to be 350(50) meV.

To test the accuracy of the independent-dimer Heisenberg model (8.1), we compare its predictions for an

additional test-set of states. An important approximation of the independent-dimer model is that it neglects

interactions between different dimers. The Ti-Ti distance within a dimer is approximately 2.85 Å. There

are two bonds that are 3.00 Å, two bonds that are 3.01 Å, and one long bond that is 3.16 Å. Considering

the bond lengths, the intra-dimer interaction should be the strongest, with possible corrections due to

interdimer interactions. The importance of these intermediate-distance interdimer interactions was checked

by sampling additional “interdimer” states with different relative dimer orientations as well as different

numbers of parallel and antiparallel intra-dimer alignment. For example, the state labeled “interdimer 1”

in Fig. 8.1 will probe interdimer interactions, as it changes the relative orientations of the dimers. For all

the states we calculated energies with DMC in Fig 8.2 and the unpolarized state, PBE0 tends to reproduce

the DMC energy differences within 2–3σ (σ being the statistical uncertainty of the DMC results). Given the

agreement with DMC and due to computational constraints, we only computed PBE0 as reference energies

for interdimer 2–5, as these states are only used to probe the relevance of interdimer interactions. The

independent-dimer model predictions appear in Fig. 8.2 along with the first-principle energy differences
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Figure 8.2: Energies of each state relative to the dimer state of Fig. 8.1 according to DMC and PBE0 as
well as models fit to DMC and PBE0 data. The triplet energy difference is sufficient to fit the parameter in
(8.1), with J = 350(50) meV from DMC, for example. This makes the singlet-triplet gap 350(50) meV for
this system. The interdimer states are predictions from the independent dimer model (8.1), and are used to
test the predictability of the model. Because PBE0 reproduces the energy differences for the unpolarized,
triplet, and interdimer state, PBE0 energies should be sufficient for interdimer 2–5, which are only used to
probe the relevance of interdimer interactions. Due to computational constraints we did not also provide
DMC energies for interdimer 2–5. The model predictions for the interdimer states agree quite well with (8.1),
suggesting that the independent-dimer model is an accurate effective model for the spins in this system.

according to PBE0. The independent-dimer model can be fit to either the PBE0 or DMC triplet energy

difference, and both resulting model predictions are presented in Fig. 8.2. The model predictions and

reference energies agree within 10 meV, so the energy of these spin states only depends on intra-dimer

interactions to high accuracy. Thus, the independent dimer model (8.1) seems to be an accurate minimal

model for the spin degree of freedom of MgTi2O4.

The spin and charge density of the lowest energy state are shown in Fig 8.3. The spin and charge density

in DMC is within statistical uncertainties of the Slater determinant of PBE0 orbitals, hence we show the trial

function densities to avoid the statistical noise in DMC. The 2-d slices, shown in Fig. 8.3, are through nearest

neighbor Ti atoms (intra-dimer) and through nearest neighbor Ti atoms in the x-y plane (interdimer). The

spin density in the dimer bond is typical for systems interacting through superexchange; in particular, the

spin density on the oxygen tends to be opposite the spin of the nearest Ti atom. In contrast, the interdimer

pairs ligands’ spin densities do not show any obvious superexchange pattern. There is an increase in Ti-O-Ti

hybridization relative to the spin-unpolarized state, but only inside the dimer bond, as one can see from

the increased charge density. The spin and charge densities show little increase in hybridization outside the

dimers, consistent with the results from fitting the models above.
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Figure 8.3: Spin density (top row) and charge density (ρ) relative to the unpolarized charge density
ρunpolarized (bottom row) through Ti pairs and their intermediate O. Dimer signifies the Ti atoms in the
center form a nearest neighbor dimer pair in the structure. Inter-dimer signifies that the Ti atoms are
nearest neighbors in the x-y plane. The dimer bond shows spin density typical for atoms interacting through
superexchange, as well as an increase in hybridization between Ti and O within the dimer as compared to
the unpolarized state. The interdimer bond shows no such signals of superexchange, in agreement with the
model results.

8.4 Conclusion for MgTi2O4

We have found the singlet-triplet gap of MgTi2O4 using high-accuracy diffusion Monte Carlo calculations

to be 350(50) meV. The approach utilizes a downfolding approach that had been applied successfully to

VO2[41] and a variety of other systems[210]. A second benefit of this approach is that it can evaluate the

accuracy of minimal models, which can provide simplified views of complex materials. In this case, we

found that a Heisenberg model with interactions between Ti inside a dimer but with independent dimers

can accurately describe the low-energy spin states in the system. Experimental confirmation of the singlet-

triplet gap should be possible in RIXS or neutron scattering. We are publishing this result in advance

of an experimental measurement so that it constitutes a true prediction. If confirmed, this would be an

example of a rare event in correlated electron physics–the prediction of a precise experimental result with

quantitative accuracy, and cement diffusion Monte Carlo as a technique that can accurately predict properties

of correlated electron materials.

8.5 Supplemental information

We converged the Brillioun zone sampling in the PBE0 calculations in Fig. 8.4. The total energies are

already converged within the micro-eV scale with a 4×4×4 grid, which is well below the scale of the energy
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Figure 8.4: (left) Energy vs. Brillouin zone sampling for the PBE0 calculations. The energies are shown
relative to the largest number of kpoints (6 × 6 × 6), so that the left point is zero by definition. The error
in the total energies is converged to the micro-eV scale, which is well below the scale of other errors in our
work. (right) Timestep extrapolation for the DMC calculations was performed with two points at 0.01 and
0.02 timestep. These points were extrapolated to zero timestep. The timestep error in the energy difference
is well within our statistical error.

differences (hundreds of meV).

We converged the timestep error from the DMC simulations in Fig. 8.4. While the timestep error on

the total energy is larger than the statistical error, this error completely cancels in any energy differences.

The difference in extrapolated DMC energies match the difference in the 0.01 timestep energies within one

standard error.
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Chapter 9

Algorithm for the discovery of
low-energy states

9.1 Approaches to finding low-energy states

A critical input into the downfolding procedure of §3.2 is a set of states in the low-energy Hilbert space

spanned by the lowest few eigenstates of Ĥ. Previous applications of the approach to extended systems

have used mean-field calculations to generate a set of determinants as starting points for VMC and DMC

calculations which generate the states. This can be an effective way to generate the states when properties

of the desired excited states are clear, for example, the spin states of Chapter 8. Previous applications to

fit spin and spin-phonon models, VO2 [41] and a cuprate [123] are similar. In systems where Kohn-Sham

excitations are reasonable approximations to low-energy states, QMC calculations initialized from these

states can be used for the fitting [210]. In all these cases the approximate low-energy states of interest were

clear a priori, and it was possible to use mean-field theory to generate nodes with the correct symmetries

for them.

In cases where the low-energy states are not so clear, mean-field excitations may target the wrong states.

For example consider FeSe, discussed in Chapter 6. In that chapter, PBE0 gave optimal nodal structure

among the DFT functionals considered, so it may also give reasonable nodes for excited states. Fig. 9.1 shows

the band structure of FeSe in the collinear spin texture according to PBE0. Consistent with other calculations

using PBE0 [8], the bands feature an unphysical gap larger than 2 eV. In Chapter 6, Fig. 6.6 showed the

result of using single-excitations to form the nodal surface for FN-DMC calculations, and computing the

energy difference between that state and the ground state (note Fig. 6.6 is done in an 8 f.u. cell). This

is an estimate of the optical gap at each k-point. The results show that the gap is reduced significantly,

and is within statistical error of zero, however the errorbars are still quite large in that calculation. More

recently, I converged the errorbars of the calculation further for the Γ-point optical gaps for the first few

excited states in the 8 f.u. cell, finding them to be 0.8(2) eV, 1.3(2) eV, and 1.5(2) eV. While significantly

reduced compared to the PBE0 gaps, the gaps are clearly nonzero, and the energy levels are larger than the

scale seen in ARPES [40], which suggest they are on the order of 10 meV.
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Figure 9.1: PBE0 band structure of FeSe with the collinear spin texture. The bands feature an unphysical
gap of over 2 eV, consistent with other hybrid functional calculations [8].

As discussed in §6.3.5, the orbital occupations are coupled to the local spin texture in the system. This

suggests that low-energy excitations of the system may require both orbital content and local spin texture

to change. Using singles excitations to calculate gaps does not adjust the local spin to account for changes

in the orbital content, and so may represent higher energy states. Altering the local spin texture requires

many orbital excitations, and it is difficult to guess exactly how it should be adjusted.

The method presented in this chapter is a new approach to generating low-energy states that would

handle this problem by modifying the orbitals and using variational Monte Carlo to optimize all other

degrees of freedom, including the local spin texture. The approach modifies the objective function of the

VMC algorithm, similar to other calculations which target excited states [93]. In this approach, the objective

is not an eigenstate, but rather a low-energy wave function with density matrix elements that are different

from the ground state. In §9.2, I introduce the objective functions and the variant of VMC I implemented

to test out the approach. In §9.3, I apply the method to equilibrium and stretched H2 to demonstrate how

it works in a controlled system. The method was able to reproduce the first 3 excitation energies, compared

to FCI. Unlike FCI, the method is capable of scaling to much larger systems.
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9.2 Modifying the VMC objective function

As discussed in §2.1.4, VMC optimizes the parameters in |ΨT(P)〉 by computing

〈Ĥ〉 =
〈ΨT(P)|Ĥ|ΨT(P)〉
〈ΨT(P)|ΨT(P)〉 (9.1)

and adjusting P, the parameters, to minimize the result. Instead of minimizing the energy alone, the

algorithm minimizes the objective function

O(P) = 〈Ĥ〉+ λ
〈ΨT(P)|d̂|ΨT(P)〉
〈ΨT(P)|ΨT(P)〉 , (9.2)

where d̂ is an operator whose expectation value is a descriptor for the model (such as a density matrix

element, see §3.2) and λ is a parameter that will move the state away from the ground state as it increases

in magnitude.

To optimize this objective function, the Stochastic Reconfiguration (SR) method was applied [308, 309],

with the Hamiltonian modified to be Ĥmod = Ĥ + λd̂. The properties required for this modified SR method

are already available in QWalk. The wave function was parameterized as

ΨT(R) =

4∑
i=1

ciΦi,↑(R)Φi,↓(R)J(R) (9.3)

where Φi,σ(R) were the set of 4 determinants made up of the complete active space (CAS) of the σ bonding

and antibonding orbitals from a spin-unrestricted DFT-B3LYP calculation. In this case, P represents {ci}4i=1

and 7 parameters in the Jastrow factor.

9.3 Application to H2

The approach was applied to fit a two-site Hubbard model of the form:

Ĥeff = t(ĉ†1ĉ2 + ĉ†2ĉ1) + U(n̂↑,1n̂↓,1 + n̂↑,2n̂↓,2) + Eext (9.4)

to fit a hydrogen molecule at approximately equilibrium length (0.74 Å) and stretched (2.0 Å). Eext is a

constant offset which is also a fit parameter. For these calculations, d̂ was chosen for (9.2) to be ĉ†1ĉ2 + ĉ†2ĉ1.

Large positive λ will push the state towards the bonding state and more negative values will push it towards

an antibonding state. The system was chosen because it should be describable by a tight-binding model near
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Table 9.1: Parameters, goodness of fit, and first three eigenvalues relative to the ground state for all
calculations presented in this chapter. Energies are in units of Ha.

dH−H calculation t U R2 E1 E2 E3

0.74 Å FCI - - - 0.4881 0.5205 0.5846
TB -0.281 - 0.996 0.5627 0.5627 1.1254
Hubbard -0.291 0.107 0.999 0.5301 0.6375 1.1676

2.00 Å FCI - - - 0.031 0.286 0.320
TB -0.0577 - 0.864 0.1154 0.1154 0.2308
Hubbard -0.0569 0.3126 0.999 0.037 0.350 0.387

equilibrium, and as the bond is stretched, interactions should become important. Additionally the system

is simple enough to solve nearly exactly using FCI.

9.3.1 H2 with equilibrium bond length

Fig. 9.2 shows the result of tuning λ from 0.0 to 1.0 Ha, which is sufficient to shift the resulting state from

the bonding to antibonding state. At λ = 0.0, the state shows 〈ĉ†1ĉ2 + ĉ†2ĉ1〉 = 2, meaning the bonding state

is double occupied. The slope of the line is precisely the t parameter for tight-binding model describing the

system. As discussed in the caption to Fig. 9.2, the fit with t = −0.296, U = 0.0 is a good fit for the system,

with R2 = 0.996. A negative t in (9.4) is consistent with a bonding ground state. A slight dip in the middle

of Fig. 9.2 (a) is due to interaction effects: this state has little double-occupation, and therefore has lower

interaction energy. Fitting both U and t will correct this so that the fit has R2 ≈ 0.99989.

Tab. 9.1 summarizes the fit parameters and resulting eigenvalues compared to a nearly exact FCI cal-

culation (performed in a quadruple-ζ basis set). The gap between ground and first excited state from both

models match FCI to roughly 10%. The next excited state gap is slightly more in disagreement with FCI,

and the third state is significantly different. The source of error for the last state is that the model is fitting

the space of the 1s orbitals of the hydrogen atoms only, and 2s or 2p states become significant in the FCI

calculation for the third excited state.

9.3.2 H2 with stretched bond length

When H2 is stretched to 2.0 Å, it enters a correlated, magnetic ground state. In this situation, we would

expect that the tight-binding model should be a poor description of the low-energy space. Fig. 9.3 shows

the result of applying the constrained VMC routine to the stretched geometry, with λ varying enough to

move from the bonding to the antibonding state once again. For this bond length, the tight-binding model

is a poorer (R2 = 0.864) description, with the error being proportional to the double occupation. This is an

indication that a Hubbard-U term will correct the model. Fitting the t and U of this system brings the R2
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Figure 9.2: States sampled by the constrained VMC algorithm by adjusting the hopping amplitude in
H2. Each point represents a VMC calculation with different λ specified by the color and marker. (a) By
increasing λ, the VMC optimization shifts from the bonding (lower right) to antibonding (upper left) state.
The t parameter of a tight-binding model, (9.4) with U = 0, is equal to the slope of the line. The state
begins to shift when λ ≈ t = −0.296 Ha, as this is the energy scale of changing the hopping amplitude.
The R2 of the fit is 0.996, signifying that the tight-binding model is a good fit for this system. (b) The
same data, but plotted with respect to both descriptors of the Hubbard model. The projection on the back
(matching (a)) and bottom planes are shown in grey. Although the plane traces a path in three dimensions,

the plot is very linear with 〈ĉ†1ĉ2 + ĉ†2ĉ1〉, meaning that a t-only model is sufficient for this system. The state
in the middle of the curve nearly minimizes the expected double occupation on the sites.

to above 0.999, signifying that it describes the states well.

The parameters, goodness-of-fit, and eigenvalues of this system appear in Tab. 9.1 as well. As expected,

the tight-binding model does a relatively poor job of replicating the excited states from FCI, indicating the

importance of explicitly accounting for interactions in the stretched system. The goodness-of-fit, R2 = 0.864,

is a direct measure of the performance of the tight-binding model, which can be interpreted as capturing

86.4% of the energy variation correctly. The performance of the Hubbard model is comparatively better

than the equilibrium case, which is because the energy scale of higher-shell orbitals has risen relative to the

states in bonding, antibonding, and correlated states in the 1s manifold. The conclusion from the study

confirms the intuition that the Hubbard model is a sufficient model for the first 4 eigenstates of stretched

H2.

9.3.3 Conclusions from constrained VMC study

I presented a new algorithm for discovering low-energy states for use in density-matrix downfolding which

does not rely on mean-field excitations as guesses for the states of interest. The method involves a relatively

simple modification of standard VMC optimization which biases the wave function towards changing the
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†
2
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Figure 9.3: Similar to Fig 9.2, states sampled by the constrained VMC algorithm by adjusting the hopping
amplitude in stretched H2. Each point represents a VMC calculation with different λ specified by the color
and marker. (a) By increasing λ, the VMC optimization shifts from the ground to antibonding (upper left)
state. Because the ground state is no longer the bonding state, decreasing λ moves the state from ground
to bonding. The tight-binding fit (the solid line) is no longer a good model for the system, although with
R2 = 0.864, it captures most of the energy variation. The error of the fit is proportional to the double-
occupation of the state that is sampled, which is why the error has positive curvature. (b) The same data,
but plotted with respect to both descriptors of the Hubbard model. The projection on the back (matching
(a)) and bottom planes are shown in grey. The energy scale is set to the same as Fig. 9.2 to emphasize the

rapid decrease of t—the slope of the line in the 〈ĉ†1ĉ2 + ĉ†2ĉ1〉 direction, which decreases exponentially with
H–H distance. The Hubbard model fits these points with R2 ≈ 0.999, so the points all lie in a plane with
slopes of non-negligible magnitude in two directions.
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descriptors of the wave function while remaining optimized in other regards. The method was able to repro-

duce eigenstates from FCI in the equilibrium and stretched H2 molecule, while quantifying the importance

of accounting for interactions in the effective model.

The objective function in (9.2) is not the only reasonable choice. For example, another possibility is

O(P) = 〈Ĥ〉+ λ

(
〈ΨT(P)|d̂|ΨT(P)〉
〈ΨT(P)|ΨT(P)〉 − d

∗
)2

, (9.5)

where λ and d∗ are two control parameters which control the forcefulness of the bias and the target descriptor

value, respectively. By specifying d∗, the algorithm can target specific values of the descriptor.

The methods used to fit the model are applicable to much larger systems than it is possible to solve using

FCI, and so represent a promising route to achieving accurate excited state on large systems. The method

should allow more accurate and efficient sampling of systems like FeSe, where the low-energy excitations of

the system are unclear, and mean-field estimates of the excited states nodes are inaccurate.
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Chapter 10

Progress towards a first-principles
understanding of correlated electron
materials
Accurate and predictive first-principles methods would be an invaluable tool in both materials design and

the theory of correlated electron systems. However, systems containing transition metals and other atoms

with localized electrons are difficult to treat with most methods. Fixed-node DMC (FN-DMC) represents

a promising tool for both these tasks, but the properties available from the method need to be extended

and more systematically benchmarked. My Ph.D. work has accomplished two tasks: I have extended the

benchmarks of FN-DMC and density-matrix downfolding in available in the literature, and established new

strategies for leveraging FN-DMC to better understand correlated electron materials.

Three of the studies contributed to the benchmarks available in the literature. In the benchmark of

barrier heights using QMC, we established that FN-DMC can provide accurate estimates of reaction barriers,

a critical parameter in the prediction of chemical reaction rates. The calculations compared favorably against

experiments, reaching “chemical accuracy,” the accuracy required to predict room-temperature chemistry.

By applying FN-DMC to a large benchmark, we analyzed trends in the fixed-node error across the sample

of molecules we computed, finding that the accuracy of the trial function had little to do with the accuracy

of the nodes for FN-DMC. The calculations using quantum Monte Carlo on FeSe found that FN-DMC

provided better estimates of structural properties than DFT with no adjustable parameters or undetermined

approximations. By comparing to fully optimized orbital calculations, we showed that energy differences in

this unconventional superconductor did not change appreciably between fully optimized orbitals and orbitals

generated by optimizing the hybrid exchange in DFT calculations. In MgTi2O4, we found that FN-DMC

predicts a larger singlet-triplet gap than current experiments have searched for, providing an explanation for

its absence in currently available experimental data. Our calculations of MgTi2O4 also provide a valuable

example of a FN-DMC prediction for an excitation energy published in advance of experiment—an important

test to establish a method’s predictive capabilities.

These studies also establish strategies for leveraging accurate calculations like FN-DMC to characterize

and explain material properties. In FeSe, we utilize FN-DMC to study how local spin texture couples to

structural and electronic properties. We found a strong coupling between the energetics of these spin textures
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and the structure under pressure, such that several of them become extremely close in energy as pressure rises.

The orbital makeup and other electronic properties in the systems are also coupled to these spin textures,

bridging structural, electronic, and magnetic properties in the system. The origin of the observations of this

coupling could be explained by a simple model assuming large Hund’s coupling. To verify the importance

of Hund’s coupling we performed a downfolding calculation on an Fe-Se diatomic molecule, applied data

science techniques to analyze the results, and found that Hund’s coupling was the most important predictor

of properties in the system. To enable efficient and systematic downfolding calculations in future work, we

developed and applied a new method of discovering low-energy states for density-matrix downfolding. This

approach, combined with FN-DMC and density-matrix downfolding, could enable accurate first-principles

QMC calculations to connect with tools like lattice-model calculations using DMFT and DMRG. Lattice

models, in turn, may be solved for excited states and time-dependent properties across larger length scales.

I envision the future of first-principles methods, coarse-grained models, and data science becoming more

interdependent, and strengthening one another in the process. Larger computers coupled with efficient and

accurate methods can provide large data sets to be analyzed with tools from downfolding and machine

learning. Insights from this analysis can be applied towards finding accurate and insightful coarse-grained

models. Coarse-grained models can be solved more precisely over larger length-scales, and compute properties

more relevant for experiments. The results of this comparison can inform on the accuracy of the first-

principles calculations and downfolding process. My Ph.D. work has primarily focused on strengthening the

first two steps of this process: accurate first-principles calculations and better modeling strategies. There are

many avenues yet to explore, but these results show promise that an approach which unifies these different

fields can advance theory of materials to a more predictive level.
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