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Abstract. We consider the problem of verifying the safety of well-
structured transition systems (WSTS) with auxiliary storage. WSTSs
with storage are automata that have (possibly) infinitely many control
states along with an auxiliary store, but which have a well-quasi-ordering
on the set of control states. The set of reachable configurations of the au-
tomaton may themselves not be well-quasi-ordered because of the pres-
ence of the extra store. We consider the coverability problem for such
systems, which asks if it is possible to reach a control state (with some
store value) that covers some given control state. Our main result shows
that if control state reachability is decidable for automata with some
store and finitely many control states then the coverability problem can
be decided for WSTSs (with infinitely many control states) and the same
store, provided the ordering on the control states has some special prop-
erty. The special property we require is defined in terms of the existence
of a ranking function compatible with the transition relation. We then
show that there are several classes of infinite state systems that can be
viewed as WSTSs with an auxiliary storage. These observations can then
be used to both reestablish old decidability results, as well as discover
new ones.

1 Introduction

Algorithmic verification of infinite state systems has received considerable atten-
tion from the research community in the past decade because the semantics of
many systems can be naturally described using an unbounded state space. Ex-
amples of such systems include recursive software (sequential or concurrent, with
or without dynamic allocation), asynchronous distributed systems, real-time sys-
tems, hybrid systems, and stochastic systems. Since the general problem of model
checking such systems is known to be undecidable, a variety of solutions have
been proposed. These include semi-decision procedures to verify a system [9, 34,
11,4,8,30,55] or to find bugs [49,48, 10], as well as identifying special classes of
infinite state systems (and properties) for which model checking can be shown
to be decidable [2,19,45,3, 44, 39,5, 6,42, 26, 16,23, 51].

While specialized approaches have been used to prove positive decidability
results in many cases, a few general and broad techniques have emerged. One im-
portant technique is the use of well-quasi-orders (wqo) [38] (or stronger notions
like better-quasi-orders [5]). The idea here is to identify a simulation relation



(or some variant, like weak simulation, or stuttering simulation) on the (infi-
nite state) transition system which is also a wqo. Then using the observation
that any increasing sequence (with respect to subset ordering) of upward closed
sets (with respect to a wqo) eventually stabilizes, a variety of problems, like
backward reachability and simulation by finite state processes, can be shown
to be decidable [1,27]. Transition systems with a wqo simulation relation are
called well-structured transition systems (WSTS). Examples of WSTSs include
petri nets (and variants) [47,1,27], finite state systems communicating over
lossy /error-introducing channels [2, 19], integral relational automata [56], timed
automata [7], dynamic networks of timed automata [3], and recursive parallel
program schemes [37]. In addition to the technique of using w.q.0.s, other general
techniques include: tree interpretation [53,46,17, 18,54, 16] where decidability is
proved by embedding the transition system in the infinite binary (or in gen-
eral n-ary) tree and reducing the model checking problem to checking an MSO
formula on the embedding which can be decided using Rabin’s Theorem [50];
reducing the model checking problem to the first-order theory of reals [39,23,
25, 24], which is known to be decidable from Tarski’s result [52].

In this paper, we ask when the approach of using w.q.0.s can be com-
bined with other techniques to prove general decidability results. We consider
the problem of verifying safety properties of well-structured transition systems
(WSTS) with an auxiliary store. WSTSs with auxiliary storage, which we call
w.q.0.automata, are automata with (possibly infinitely many) control states that
can store and retrieve information from an auxiliary data structure. Formally a
data store is a domain of possible values, along with a set of predicates and oper-
ations to transform the store. The transitions of a w.q.0. automaton are guarded
by a (pre-defined) predicate to test the value of the store, and transform the
store using an allowed operation, in addition to changing the control state. Such
automata are called w.q.0. automata because the control states are required to
be ordered by a well-quasi-ordering that is compatible with the transition re-
lation — a state ¢ can be simulated by all control states greater (with respect
to the ordering on states) than g. The semantics of such an automaton can be
defined using a transition system, where the configurations are pairs (¢, d), of a
control state ¢, and a data value d. Notice the natural ordering on configurations
— (q1,d1) = (gq2,d2) iff ¢1 = g2 and di = da — is not in general a w.q.o0., and
moreover, there maybe no w.q.o. on configurations compatible with the transi-
tions. Therefore, techniques from the theory of WSTSs cannot be used directly
to solve the model checking problem of wqo automata.

Our main theorem proves the decidability of the coverability problem for
certain special w.q.0. automata. Recall that in the coverability problem we are
given a control state ¢, and asked whether there is an execution, starting from
the initial configuration, that can reach some control state ¢’ = ¢. The conditions
required to prove decidability are as follows. First we require that the control
state reachability problem be decidable for automata with finitely many control
states and the same data store. Second, we require a ranking function on states
compatible with the w.q.0. on states such that the number of states with a



bounded rank (for any bound k) is finite. Finally, we require that transitions
of the wqo automata that decrease the rank of the control state, are enabled
only at a fixed data store and do not change the data store. We show that if a
wqo automata satisfies these conditions then a backward reachability algorithm
terminates, and can be used to solve the coverability problem; the termination
of the algorithm relies on the properties of well-quasi orders. It is important to
note that we have no requirements on the algorithm solving the control state
reachability problem for the finite control state case (first condition above), and
so it could rely on any of the techniques that have been discovered in the past.

We then show that there are many natural classes of systems that can be
viewed as w.q.0. automata, for which our decidability result applies. Our main
result can then be used to rediscover old results (but with a new proof), and
establish many new decidability results. First we consider asynchronous pro-
grams [32,28,31,40,41,20,35], which are recursive programs that make both
conventional synchronous function calls, where a caller waits until the callee
completes computation, and asynchronous procedure calls, which are not imme-
diately executed but are rather stored and “dispatched” by an external scheduler
at a later point. Such systems can be abstracted (using standard techniques like
predicate abstraction [29]) into automata with a multi-set (to store pending
asynchronous calls) and a stack (for recursive calls), but which remove elements
from the multi-set only when the stack is empty. The control state reachabil-
ity problem for such recursive multi-set automata has been previously shown to
be decidable [51,33], and our main theorem provides a new proof of this fact.
Moreover, because our main theorem is a generalization of these results, it can
also be used to establish new decidability results. In particular we can prove the
decidability of the control state reachability problem for automata with both
a multi-set and a higher-order stack [36,16,14]. Such automata can be used
to model asynchronous programs, where asynchronous procedures can be more
generally (safe) higher-order recursive programs [36], rather than (first-order)
recursive procedures.

Asynchronous programming as an idiom is being widely used in a variety of
contexts. One particular context is that of networked embedded systems [28, 31],
where asynchronous procedure calls form the basis of event-driven programming
languages. Such embedded systems often need to meet real-time constraints, and
so the dispatcher is required to schedule pending asynchronous calls based on
the time when they were invoked. We show that such programs with boolean
variables 1, can be modeled by automata with a stack, and multi-set of clocks.
Then using our main theorem we prove the decidability of the control state
reachability problem for such systems.

Finally, we consider networks of message passing recursive systems commu-
nicating over uni-directional, lossy FIFO channels. This model is particularly
appropriate for describing networks of clients and servers, processing requests.
The semantics of such systems can be defined using transition systems whose

1 A general program can always be abstracted using techniques such as predicate
abstraction [29] to obtain such restricted programs.



configurations have multiple stacks, and the contents of multiple lossy channels.
We show that for control state reachability purposes, one can consider an equiv-
alent system that has only one stack, and where losses are confined to take place
just before a message receive step. Finally, the decidability of the verification
problem is established using our main theorem.

Paper Outline. The rest of the paper is organized as follows. First we discuss
closely related work. Then in Section 2, we present basic definitions and prop-
erties of well-quasi orders and ranking functions. We formally define w.q.o0. au-
tomata in Section 3. Our main decidability result is presented next (Section 4).
Section 5, gives examples of w.q.o0. automata, and discusses the consequences of
our main decidability result. Finally we conclude (Section 6) with some obser-
vations and future work.

1.1 Related Work

There is a large body of work on infinite state verification, and we cannot hope
to justice to them in such a paper; therefore this section limits itself to work
that is very close in spirit to this paper. Our work continues a line of work
started in [51], where we considered automata with multi-sets and stacks to
model asynchronous programs. The decidability of the control state reachability
problem was proved using w.q.o. theory and Parikh’s theorem. In [33], Jhala
and Majumdar, simplified the proof of the decidability result, removing its re-
liance on Parikh’s theorem. However both these proofs use features that are very
specific to multi-sets and stacks, and cannot be easily generalized to obtain ver-
ification algorithms for the models considered in this paper. In particular, our
original motivation was to look at the problem of verifying networked embedded
systems [28, 31], which are real-time asynchronous programs, and the proof tech-
niques in [51, 33] do not generalize to such a model. We discuss the differences
between our proof approach and then one in [33] in more detail, when we present
the main theorem.

Another very closely related work is the paper by Emmi and Majumdar [22].
One of the main observations concerns w.q.o. pushdown automata, which are
pushdown automata with infinitely many control states that have a well-quasi
ordering on control states. They show the decidability of the control state sub-
covering problem for such automata. Unfortunately, the proof presented in the
paper is incorrect [43]. The authors conjecture that the decidability result for
w.q.0. pushdown automata is true. Even if the conjecture is successfully proved
there are some differences with our main theorem. First, the Emmi-Majumdar
result considers downward compatibility of the ordering with the transitions and
the sub-covering problem, whereas we consider upward compatibility and the
coverability problem. Next, their result specifically applies to automata with
stacks, and not to other data structures like higher-order stacks that we consider
here. On the flip side, their conjecture does not impose any conditions on the
wqo on states itself (like ranking functions) that we require for our result. So if



the Emmi-Majumdar conjecture is successfully proved then the main theorem
here apply to incomparable classes of systems.

Finally there is a long line of work on proving decidability results for con-
current recursive systems, with varying degrees of synchronization; see [17,45,
44, 42,15,12] for some examples. The examples of dynamic networks of recursive
programs that we consider here (like asynchronous programs, and real-time asyn-
chronous programs) are generally incomparable in expressiveness to the these
models. However, the most powerful class considered in [13] is more expressive
than simple asynchronous programs. However, the results in [13] only allow to
verify inductive invariants expressed in a special sub-logic that they consider; in
general verifying a safety property involves finding an inductive invariant that
implies the safety property.

2 Preliminaries

We first recall some standard definitions, notations and facts about well-quasi-
orders [38].

2.1 'Well-quasi-orders

A binary relation =< on a set Q is said to be a pre-order if < is reflexive and
transitive. Please note that a pre-order need not satisfy anti-symmetry, i.e., it
may be the case that ¢ < ¢’ and ¢’ < ¢ for ¢ # ¢’. We shall say that ¢ is strictly
less that ¢’ (written as g < ¢') if ¢ X ¢’ but ¢’ Z ¢. Two elements ¢, ¢’ are said to
be comparable if either ¢ < ¢’ or ¢’ < ¢ and said to be incomparable otherwise.
We write ¢ = ¢ if ¢ <gand g > ¢ if ¢ <q.

A pre-order < on a set Q is said to be a well-quasi-order if every countably
infinite sequence of elements ¢1,¢2,¢s3,..., from Q contains elements ¢, =< ¢
for some 0 < r < s. Equivalently, a pre-order is a well-quasi-order if there is
no infinite sequence of pairwise incomparable elements and there is no strictly
descending infinite sequence (of the form ¢; > g2 > g3 > ...). For the rest of
paper, we shall say that (Q, <) is a w.q.0. if < is a well-quasi-order on Q.

Let (Q,=) be a w.q.0o. and Q" C Q. We say that Mg C Q' is a minor set
for Q' if for i) for all ¢ € Q' there is a ¢’ € Mg such that ¢’ < ¢, and ii) for
all ¢1,q2 € Mg/, ¢1 # ¢q2 implies ¢1 A g2. The definition of well-quasi-ordering
implies that each subset of Q has at least one minor set and all minor sets are
finite. The elements of the minor sets are minimal elements in the following
sense.

Proposition 1. Let Mq be a minor set for Q and let ¢ € Mq. For any ¢1 € Q,
if @ < q then ¢ < q1.

Proof. Let g1 € Q be such that ¢; < ¢. Since Mq is a minor set for Q, there
is a ¢ € Mq such that ¢’ < ¢;. By transitivity, we get ¢’ < ¢. We conclude by
observing that since ¢, ¢’ € Mq, we have ¢ = ¢’ by definition. ]



A set U C Q is said to be upward closed if for every ¢; € Uand ¢2 € Q, ¢1 < ¢2
implies that g2 € U. An upward closed set is completely determined by its minor
set: if My is a minor set for U then U = {q € U|3q,, € Mys.t. g = q}. Also any
subset Q" C Q determines an upward closed set, Ug = {¢| 3¢’ € Q’s.t. ¢ < ¢}.
The following important observation follows from w.q.o. theory.

Proposition 2. For every infinite sequence of upward closed sets U1, Us . .. ...
such that U, C U,41 there is a j such that Uy = U; for all 1 > j.

2.2 Ranking functions

If the order < also satisfies anti-symmetry then it is possible to define a function
rank from Q into the class of ordinals as: rank(gq) = 0 if Q does not have any
elements strictly less than ¢ and rank(q) = sup({rank(¢’) ¢’ < q}) + 1 other-
wise. The function rank guarantees that if ¢1, g2 are comparable then rank(q;) <
rank(gz) iff g1 < g2. We adapt the concept of the rank function for pre-orders.
First instead of working with the whole class of ordinals, we shall work with
the set of natural numbers?. Furthermore, we shall only require that rank(g;) <
rank(gz) if ¢1 < ¢o.
Definition 1. [Ranking function] Given a w.q.o. (Q, X), a function a : Q — N
is said to be a ranking function if for every q1,q2 € Q, ¢1 =X q2 implies a(q1) <
a(ga).

The ranking function « can be extended to a function on the set of upward
closed sets of (Q, <) as follows. Let My be a minor set for an upward closed U.

Let amax(U) = max{a(q)|g € My}. It can be easily shown that this extension is
well-defined, i.e., does not depend on the choice of My.

3 Well-structured transition systems with auxiliary
storage

The paper considers automata with an auxiliary store and possibly infinitely
many control states, such that there is a well-quasi-ordering defined on the con-
trol states. We formally, define such automata in this section. We begin by first
introducing the concept of a pointed data structure that formalizes the notion
of an auxiliary store.

3.1 Pointed data structures

Definition 2 (Pointed data structure). A pointed data structure is a tuple
D = (D,ofp,p?e/d, d;,pi) such that D is a set, op is a collection of functions
f:D— D, pfr\eJd is a collection of unary predicates on D, d; is an element of
D and p; € pfr\eJd is a unary predicate on D such that p;(d) < (d = d;). The

elements of D are henceforth called data values and the data value d; is said to
be the initial data value.

2 The set of natural numbers is also the set of all finite ordinals.



For example, a pushdown store on a alphabet I' in a pushdown automata
can be formalized as follows. The set I'* (set of all finite strings over I") can
be taken as the set of data values with the empty string € as the initial value.
The set of predicates pred can be chosen as {empty} U {top, [y € I'} U {any},
where p; = {e} (the initial predicate), top.,, = {wy|w € I'*} (the top of stack
is 7v) and any = I'* (any stack). The set of functions op can be defined as
{id} U {push, |y € I'} U {pop, |y € I'} where push, and pop, are defined as
follows. For all w € I'*, push_ (w) = wy and pop,(w) = w; if w = wyy and w
otherwise. In a pushdown system the function pop., will be enabled only when
the store satisfies top,. The function push, is enabled when the store satisfies
any.

For the rest of paper, we shall assume that our data structure has a finite
number of predicates and a finite number of functions. This is mainly a matter
of convenience and we could have dealt with countable number of predicates and
functions as long as the data structure is finitely presentable. We could also have
dealt with a finite number of initial values, partial functions and relations in the
set op. However, for the sake of clarity, we have omitted these cases here.

3.2 w.q.0. Automata

We now define a w.q.0. automaton A that formalizes the notion of WSTS with
auxiliary storage.

Definition 3. /w.q.0. automaton] A w.q.o. automaton on a pointed data struc-
ture D = (D, op, pred, d;, p;) is a tuple (Q, =, 9, ¢;) such that

1. (Q,=) is a w.q.0.,

2. ¢; € Q and

3.0 CQx pfr\eJd x op X Q. Furthermore, the set § is upward compatible, i.e.
for every (q,p,9,q') € § and q < q1 there exists ¢} such that ¢ < ¢} and
(q1,p,9,41) € 0.

The set Q is said to be the set of control states of the automaton, & the transition
function and q; the initial state. If the set Q is finite then we say that it is a
finite w.q.o. automaton.

Please note that given an upward closed set U C Q, a predicate p € pfr\e/d,
g € op let 6-Y(p,g,U) be the set {q|3q" € Us.t.(q,p,9,q') € 6}. The upward
compatibility of § ensures that §=!(p, g, U) is either empty or upward closed.

An example of such an automaton in literature is multi-set pushdown au-
tomata [51,33] and discussed in Section 5.1. For the remainder of the section,
we shall fix a pointed data structure D = (D, op, pred, d;,p;) and a w.q.0. au-
tomaton A on D.

The semantics of a wqo automaton is defined in terms of a transition system
over a set of configurations. A configuration is a pair (q,d), where ¢ € Q is
a control state and d € D is a data value. The pair (g;,d;) is said to be the



initial configuration. For 69 C 6, we say (q1,d1) —As5, (¢2,d2) if there is a
transition (¢1,p, g,q2) € 0o such that p(d;) and de = g(dy). We shall omit A if the
automaton under consideration is clear from the context. The transition relation
on configurations will be — A 5. The n-fold composition of —5, will be denoted by
—4 . In other words, (q,d) —§ (q',d’) iff there are (qo,do), (q1,d1), . (qn,dn)
such that g9 = ¢,dp = d, ¢, = ¢’,d, = d' and for every 0 < r < n (qr,d;) —s,
(@r+1,dry1). We shall write (q,d) —3 (¢',d’) if there is some j > 0 such that
(q,d) —%0 (¢',d"). Finally, we shall say that the configuration (¢’, d’) is reachable
from (g, d) using transition in d¢ if (¢,d) —3 (¢',d).

Given a set Q' C @, it will be useful to define two sets, Prex 5, 4 (Q") and
Prej 5,(Q"). The set Prej 5 4, (Q) ={q|3¢ € Q' s.t. (¢,di) —3, (¢, di)} gives
the set of all states from which some control state in Q' can be reached starting
with and ending with the initial data value d;. The set Prejy 5 (Q") = {¢|3¢ €
Q,d € D st. (¢,di) —3, (¢',d)} gives the set of all states from which some
control state in Q" can be reached starting with the initial data value and ending
with some data value. We will omit the subscript A if it is clear from the context.

Observe that since ¢ is upward compatible, if (¢, d) =% (¢, d’) then for every
¢1 = q there exists an ¢} > ¢’ such that (¢1,d) —% (¢},d’). Therefore, for any
upward-closed set U, the sets Prej 5(U) and Prej 5, (U) are upward closed.

It will also be useful to identify two kinds of transitions in a wgo automaton.
The first ones are fired only when the data is initial and preserve the data.

Definition 4 (Initial data preserving). A transition (q,p,g,q') € 9) is said
to be initial data preserving if p = p; and g = id where id is the identity function.

The other kind of transitions will be rank non-decreasing transitions which will
be defined with respect to a ranking function (see Definition 1).

Definition 5 (Rank non-decreasing). Given a ranking function o on (Q, <)
and a set of transitions dg C 6, we say that oo is rank o non-decreasing if
for each predicate p € pred, function g € op and upward closed set U C Q
either (50_1(])7 g, U) =10 or 50_1(]), g, VU) is upward-closed and amax(éo_l(p, g,U)) <
amax(U)-

The above condition can also be stated in the following way.

Proposition 3. An upward-compatible set 6o C § is rank o non-decreasing iff
for any ¢,q1,q1 € Q, p € pred, g € op such that ¢ = q; and (q1,p,9,4;) € do
then there are q,q" such that a(q) < a(§), ¢ X q1, § =2 ¢ and (¢,p,9,q") € do.

Proof. (=) Assume that &y is non-decreasing. Let §,q1,¢] € Q, p € pfr\e/d, g €
op be such that (q1,p,9,q;) € do. Consider the upper closed set U = Ugg.
Let Uy = &;'(p,g,U). By definition, amax(U) = a(q), ¢} € U, ¢ € U; and
amax(Ul) S a((j)

Let My, be a minor set for U;. As ¢1 € Uy, thereisa ¢ € My, such that ¢ < ¢;.
Now, since Uy = d; ' (p, g, U), there is a ¢’ € U such that (¢,p, g,q') € . Also, as
U = Uy, we get ¢ < ¢'. Finally, please note that by definition a(g) < amax(U1).
Hence, a(g) < a(d).



(<) Let dp be an upward compatible set of transitions, p € p?gd be a
predicate, g € op be a function and U be an upward closed set such that
50_1(p,g, U) # 0. Let My be a minor set for U, Uy = 50_1(p,g, U) and My, be a mi-
nor set for Uy. Pick g1 € My, and fix it. It suffices to show that a(g1) < amax(U).

As g1 € Uy, there exists ¢ € U such that (q1,p, g, q}) € U. Now, by definition,
there is ¢ € My such that § < ¢}. By the hypothesis of the proposition, there
are ¢, ¢ such that a(q) < a(q), ¢ 2 q1, ¢ < ¢ and (q,p,9,q") € do.

Please note by definition, ¢ € Uy and a(§) < amax(My). Also since ¢1 € My,
and ¢ = g1, we have by Proposition 1 ¢; < ¢ also. Hence, we get a(q) < a(q1) <
a(G) < amax(My) as required. O

As mentioned in the introduction, we will consider special w.q.0. automata,
namely those in which the only rank decreasing transition are those that are
also initial data preserving. We will say that such a restricted w.q.o. automata
is compatible to a ranking function; we define this formally next.

Definition 6 (Compatibility of ranking function). Given a ranking func-
tion a on (Q, X) we say that « is compatible with § if

1. a(g;) =0, and
2. there exist § = 6, U Oy such that
— Op is the set of all initial data preserving transitions.
— 04 =0\ 0 and 0, is rank o non-decreasing. The pair (04,0p) is said to
be the a-compatible splitting of d.

The condition «(g;) = 0 is not a serious constraint as we can always define
a ranking function o/(¢) = max(a(q) — a(g;),0). The second condition in the
definition implies that the transition function ¢ can be split into two disjoint
upward-compatible sets §, and J,. All transitions in §, are enabled only when
the data value is initial and these transitions also do not modify the data. This
condition on 4, ensures that any computation (¢,d;) —3 (¢’,d’) is of the form
(¢,di) =3, (qo,di) —s, (q1,di) =3, (q2,di) —s, (q2,di) ... —5, (qn,di) —3,
(¢',d') for some qo,q1,-..qn € Q.

a

4 Decidability of the coverability problem

Given a w.q.0. automaton A = (Q,=,d,¢;) on a pointed data structure D =
(D, op, pred, d;, p;), an upward closed set U, we are interested in deciding if there
is some configuration (g, d) such that ¢ € U and ¢ is reachable from the initial
configuration ¢;. The upward closed set U is often represented by its finite mi-
nor set. This problem is known as coverability problem and we shall study two
versions of this problem. The first is whether there exists some state ¢ € U such
that the configuration (¢,d;) is reachable from (g, d;), i.e., if ¢; € Prep 5 4.(U).
Secondly whether there exists some state ¢ € U and d € D such that (g,d) is
reachable from (g;, d;), i.e., if ¢; € Prep 5(U).



We start by describing how the coverability problem is tackled in WSTSs
without the store. In that case, the transition relation § C Q x Q and we are in-
terested in deciding whether the reflexive transitive closure (6~1)*of the relation
d~! contains ¢; or not. A backward reachability analysis is performed in order
to decide the coverability problem. An increasing sequence U; is generated such
that Uy = U and U;41 = U; Ud~1(U;). The upward compatibility ensures that
5’1(Uj) is upward closed. Since any increasing sequence of upward closed sets
in a w.q.0. must be eventually constant, we terminate once U; = U;41.

Our approach to the coverability problem for a w.q.o. automaton will follow
a similar approach. Given a w.q.0. automaton A = (Q, <,d,¢;) on a pointed
data structure D = (D, op, pred, d;, p;), we shall assume the existence of a rank-
ing function a compatible with the transition relation §. Let (d4,95) be the
a-splitting of §. We shall always assume that we can compute the minor set
for &, 1(U,pi, id) given a minor set for U. However, we shall need to compute
Pre 5. 4,(U). For this we shall need the notion of rank k-approximations.

4.1 Rank k-approximations

Intuitively, the rank k-approximation Ay of A is constructed from the subset of
control states of A whose rank is less than k. The construction is carried out in
a way that captures all the computations of the original automaton that use the
transitions in d,.

Definition 7 (Rank k-approximation). Given a w.q.o. automaton A = (Q,
=,0,q;) on a pointed data structure D = (D, 0~p,pr7:e/d, di,pi), a ranking function
a on (Q,=) such that o is compatible with 6. Let (d4,0p) be the a-compatible
splitting of §. Given k € N, the rank k approzimation is defined as the automaton
Ay = (Q<k, =k, 0k, ¢;) where:

- Q< = {a€Qlalg) <k},

—q=xq forq,qd €Qer iff ¢ X ¢ and

—(q,p,9,q") € i for q,q € Q< iff there exists ¢ € Q such that ¢" = ¢’ and
(¢,p. 9 <
(4,,9,4") € da.

For the rest of the section, we shall assume a fixed w.g.0. automaton A =
(Q, =, 0,q;) on a fixed pointed data structure D = (D, op, pred, d;, p;) and a fixed
ranking function « on (Q, =) compatible with §. Let (d,, dp) be the a-compatible
splitting of the transition relation ¢.

The following Lemma states that any computation in the rank k-approximat-
ion of A corresponds to a computation of A that uses the transitions in d,.

Lemma 1 (Soundness of approximations). Let A, = (Q,=,d,q) be the
rank k-approzimation of A. For any q,q1 € Q<k,d,d1 € D, if (q,d) —3, (q1,d1)
then there is some q; € Q such that ¢ = q1 and (q,d) —3. (qy,d1).

Proof. The proof is by induction on the number of steps in the computation
(¢.d) =3, (q1,d).



Base case. The number of computation steps in 0. Then the lemma follows
trivially by choosing ¢} to be q;.

Induction Hypothesis. Assume that the lemma is true for all computations
(¢,d) —3, (q1,d1) of j steps. Consider a computation (g, d) —%k (q1,d1) —s,
(g2,dz2) of j + 1 steps. By induction hypothesis, there is a ¢; € Q such that
@1 = qu such that (¢,d) =3, (q1,d1).

Also, by definition of rank k-approximation, since (q1,d1) —s, (¢2,d2) there
is some ¢4 € Q such that ¢f = g2 (q1,d1) —s, (¢4,d2). Now, since ¢; < ¢} and
(q1,d1) —s, (¢5,dz2), we get by upward-compatibility of the transition relation
dq, there is some ¢} such that ¢4 < ¢4 and (¢}, d1) —s, (g5, d2).

Please note by transitivity of <, we get g2 =< 3. Furthermore, as (¢,d) —3,
(qlla dl) and (qllv dl) da (qgv dQ)a we get (Qa d) _)Ea (qgv d2) as required. O

The following Lemma states that any computation of the automaton A that
uses transitions in J, and ending in a state which is above some state go € Q<
is reflected in its k-th approximation.

Lemma 2 (Faithfulness of approximation). Let A; = (Q, X, 6,¢;) be a rank
k-approxzimation of A. If there are qo,q,q € Q such that qo € Q<k, ¢ = qo and
(q,d) =3, (¢',d), then there is a 1 € Q<i such that ¢1 < q and (¢1,d) =3,
(g0, d").

Proof. The proof is by induction on the number of steps in the computation
(a.d) =3, (d.d).

Base case. The number of steps is 0. The lemma trivially follows by choosing
q1 to be qq.

Induction Hypothesis. Assume that the lemma is true for all computations
(¢,d) —3. (q¢',d') of j steps. Consider a computation (g, d) —s, (4, d) -5 (¢, d)
of j + 1 steps.

Now, by induction hypothesis, there is a g2 such that g2 < ¢, g2 € Q< and

(g2, d) =3, (q0,d").

Now, since (q,d) —s, (cj,cf) there exists p € pfr\e/d and g € op such that
(¢,p,9,4) € 04, p(d) and d= g(d). Also since g2 < ¢, we get by Proposition 3
that there isa g1 < g and a ¢} * g2 such that a(q1) < a(g2) and (¢1,p, 9,q}) € 0q-

Since, a(g2) < k, we get a(q1) < k and by construction (¢1,p,g,q2) € k.
Thus, we get (q1,d) —5, (g2, Ed)) —3, (qo,d’) as required. O

The above two lemmas show that if U C Q is an upward closed set such that
@max(U) = k then minor sets for the sets Prejy 5 ; (U) and Prey, 5 (U) can be
constructed by just considering the rank k-approximation.

Corollary 1. Let U C Q be an upward-closed set and My = {q1,q2,...,q-} be
a minor set for U. If amax(U) = k, then let Ay = (Q<k, <k, 0k, ¢:) be a rank k
approzimation for the automaton A.

Let Q1 be a minor set for Prey, s 5 (My) and let Q2 be a minor set for
Prea, s.(My). Then Q1 is also a minor set for Prej 5. 4.(U) and Q2 is a minor
set for Prej 5 (U).



Thus, if we have algorithms to compute minor sets for Prej, 5 4 (Q’) and
Prej, 5.(Q') for any subset Q" C Q, then we can compute the minor sets
Prea 5..4,(U) and Prey 5 (U) for an upward closed set U whose rank is k. To-
wards this end, we shall define effective wqo automata.

4.2 Effective w.qg.0.automata and coverability

We start by defining a ranking function effectively compatible with the transition
relation of a wgo automata.

Definition 8 (Effectively compatible ranking functions). Given a w.q.o.
automaton, A = (Q, <,0d,q;) on the pointed data structure D = (D,pfr\e/d, op, pi,
d;), a ranking function « : Q — N compatible with § is said to be effectively
compatible with § if the following hold.

— For each k € N, the set Q< = {q € Q| alq) < k} is finite.

— There is an algorithm Rank that on input g € Q computes a(q).

— There is an algorithm Elements that on input k € N computes the set Q<y.

— There is an algorithm Approx that on input k € N outputs the rank k-
approzimation.3

An effectively compatible ranking function is finitely presented by the algorithms
Rank, Elements and Approx.

If « is effectively compatible with ¢, and the relation < is decidable then corol-
lary 1 ensures that algorithms to check if g1 € Prej 5 4.(U) or 1 € Prej 5 (U)
exist if state reachability can be solved for finitely many states. We are now
almost ready to prove our main theorem. We need one more definition.

Definition 9 (Effective w.q.0. automaton). A w.q.o. automaton A = (Q, <

,0,q;) on the pointed data structure D = (D, pred, op, p;,d;) is said to be effective
if the following hold.

— There is a ranking function o : Q — N effectively compatible with §. Let the
algorithms Rank, Elements, Approx finitely present the ranking function.

— There is an algorithm Less that on inputs g1 and qo returns true is q1 = g2
and false otherwise.

— There is an algorithm InvDeltab which given a minor set for an upward closed
set U returns a minor set for 5;1(U,pi, id) where id is the identity function
on D where &y is the set of initial data preserving transitions.

An effective automaton is finitely presented by the algorithms Rank, Elements,
Approx, Less and InvDeltab.

We now have the main result of the paper.

3 Please note that since we are assuming that predicates and functions are finite sets,
a finite presentation of the rank k-function always exists.



Theorem 1 (Decidability of the coverability problem). Assume that for

a data structure D = (D,pfr\e/d, op, i, d;) there are two algorithms A and B such
that the following hold.

— Given a finite wgo automaton A1 = (Q1,=1,01,q:), and q1,¢; € Q1 the
algorithm A returns true if q1 € Prejy, 5 4.(q)) and false otherwise.

— Given a finite wqo automaton Ay = (Qi,=1,01,¢), and q1,¢" € Q1, the
algorithm B returns true if 1 € Prex, 5 (¢1) and false otherwise.

Let A = (Q,pfr\e/d, op, q;) be an effective (not necessarily finite) automaton. Given
a minor set My for an upward closed set U, there is an algorithm to decide if
there is some q € U such that the configuration (q,d;) is reachable from the initial
configuration (q;,d;). Similarly there is an algorithm to decide if there is some
q € U and some d € D such that (q,d) is reachable from the initial configuration

(Qi;di)~

Proof. Let a be the ranking function effectively compatible with §. Let (dq, dp)
be the a-compatible splitting of §. In order to decide whether g; € Pre; ,57017,,(U)7
we construct the increasing sequence Uy C U; C Us, ... such that Uy = U and
Urp1 = U, U Prex 50,,d7:(U7’ U 5;1(Ur,pi, id)) where id is the identity function.
As (dq4,0p) is an a-compatible splitting of J, any computation (g,d;) —3
(qlvdl) is of the form (Qadl) _>§a (qovdl) e (QIadi) _>§a (Qdel) T8 e T
(gn,di) —3, (¢',d') for some qo,q1,...g, € Q. Thus, Prea 5.4,(U) = Urzo U,.
Again, as every increasing sequence of increasing upward closed sets must be
eventually constant, we can terminate once we get U, = U, 1. Hence, the first
question can now be answered by deciding whether ¢; € U,.. The second question
can be reduced to the first problem by considering U" = Prej 5 (U). ad

Please note that the above proof is essentially different from the proof of de-
cidability of the coverability problem in multi-set pushdown automata (MPDS)
given in [33]. While we perform a backward-reachability analysis, the proof in [33]
constructs a sequence of over-approximations to rule out unreachable states and
a sequence of under-approximations to discover the reachable states. Further-
more, the proof in [33] relies essentially on the fact that the w.q.o0. is formed by
products of linear orders (in there case products of N) and is not extendible to
a general w.q.o.. However, as in our case, the rank decreasing functions (decre-
menting of counter) are constrained and occur only when the pushdown stack is
empty. We discuss the relation between the proofs in detail in Section A.

5 Applications

We will now present many natural examples of w.q.o0. automata. An immediate
of consequence of Theorem 1, will be decidability results for safety verification
for these systems. The examples that we present here, have as data store either
a pushdown stack, or some variant of it, or a higher-order pushdown stack.
Therefore, when presenting these examples, we will use more standard notation



for such stacks, rather than define them formally in terms of the domain, test
predicates and operations. This mainly to make the examples easy to follow, and
not clutter them with a lot of notation.

5.1 Multi-set pushdown system

Multi-set pushdown automata have been introduced in the literature [51,33]
as models of asynchronous programs that may make asynchronous procedure
calls which are not immediately executed but stored and scheduled only after a
recursive computation is completed.

Definition 10 (Multi-set pushdown system). A Multi-set pushdown system
(MPDS) is a tuple B = (S, I, Apush, Apops Acry Arts S0), where S is a finite set
of states, I' is a finite set of stack and multi-set symbols, Apysh, Apops Acr, Are C
S x I' x S together form the transition relation, and sg is the initial state.

The semantics of an MPDS B is defined in terms of a transition system as
follows. A configuration C of B is a tuple (s,w,B) € S x I'* x B[I'] where I'*
is the set of all finite strings over I" and B[I] is the set of all multi-sets over I
The initial configuration of B is (sg, €, ) where € is the empty string and § is the
empty multi-set. The transition relation = on configurations is given as a union
of four relations, = push, = pop, = cr and = defined as follows: (s,w, B) = push
(s',wy',B) iff (s,v',8") € Apush, (s, w7y, B) =pop (8", w, B) iff (s,7,5") € Apops
(s,w,B) = (s, w,BU{~'}) iff (s,7,¢') € A and (s,e, BU{~}) =n (s',¢, B)
iff (s,7,s") € Anx. Please note that the relation Ay assume that the stack is
empty and does not change the contents of the stack. The relation =* is defined
as the reflexive transitive closure of =-.

The ordering relation < on S x B[I'] is defined as (s, B) < (s1,B1) iff s = 53
and B is a sub-multi-set of By; this is known to be a well-quasi-order [21]. Using
this fact, any MPDS can be seen as an instance of an wqo automaton with
S x B[I'] as the set of control states and the pushdown stack as the storage.
This wqgo automaton can be turned into an effective w.q.0. automaton by using
the cardinality of the multi-set B as the ranking function. Therefore, Theorem 1
yields the following result.

Theorem 2 (Coverability of MPDS). Given a MPDS B = (S, I, Apush,
Apop, Acr; A, 80) and s € S, the problem of checking whether there exist B €
B|I'] and w € I'* such that (so,€,0) =* (s,w, B) is decidable.

Proof. An MPDS B can be easily seen as a w.q.o. automaton A as follows. As
discussed in Section 3.1 the pushdown stack can be seen as a data structure
as follows. The set I'™ is the set of data values with the empty string € as the
initial value. The set of predicates pred can be chosen as {empty} U {top,, [ €
I'}U{any}, where p; = {e} (the initial predicate), top,, = {wy|w € I'*} (the top
of stack is ) and any = I'* (any stack). The set of functions op can be defined
as {id} U {push, |y € I'} U {pop, |y € I'} where push, and pop., are defined as



follows. For all w € I'*, push_(w) = wy and pop,(w) = w; if w = wyy and w
otherwise.

The set of control states Q can be defined as S x B[I'] which forms a w.q.0. un-
der the ordering (s, B) < (s1, B1) iff s = s1 and By is a sub-multi-set of Ba. The
transition relation 4 is the union of dpush, dpop, Ort and der Where dpush, Opop, Ore and
der are defined as follows. The set dpush contains exactly ((s, B),any, push.,, (s,
B))iff (s, (s',7")) € Apush- The set dpop contains exactly ((s, B), T, pop., (s, B))
iff ((s,7),s") € Apop- The set d¢ contains exactly ((s, B), any, id, (s', BU{~'})) iff
(s,(s',7")) € Acr. The set . contains exactly ((s, BU{v}),empty,id, (s', B)) iff
((5,7),8") € An. Now, it can be easily shown that ((so,®),e€,) —as ((s,B),w)
iff (s,¢,0) =* (s,w, B).

Consider the ranking function o : S x B[T] — N defined as a((s, B)) = |B|
where |B| denotes the cardinality of multi-set B. Now it can be easily shown
that « is effectively compatible with §. The pair (dpush U dpop U Ocr, Ort) forms
the a-compatible splitting. The wqo automaton A is now easily shown to be
effective. The result then follows from Theorem 1. O

The above result was proved in [51] using Parikh’s theorem and in [33] using
over-approximations and under-approximations; Theorem 1 yields a different
and more general proof of this result.

5.2 Multi-set higher-order pushdown systems

Higher-order pushdown systems [18, 36,16, 14] (HPDS) characterize safe higher-
order recursive program schemes [36] and generalize the standard pushdown
systems. The pushdown stack of a HPDS is sequence of stacks and is called a
higher-level store. Stores of level 1 are sequences of letters (the standard push-
down stack) and stores of level j + 1 are sequence of stores of level j. The
operations allowed on a level n store are push; and pop; operations for each
level 5 < n. For j = 1, the push; and pop; operations are the usual push and
pop operations on the top-most level 1 store. For 2 < j < n the operation push;
operation duplicates the top-most level j store while the operation pop; deletes
the top-most level j store.

The definition of the multi-set pushdown system (Definition 10) can be gen-
eralized as follows. Given a finite set of symbols I, let O, (I") be the set of level
n stores on I" and I,(I") be the set of level n operations on O,, stores.

Definition 11 (Multi-set higher-order pushdown system). A order n
multi-set pushdown system (n-MPDS) is a tuple (S, I, Agt, Ay, A, So) where
S is a finite set of stores, I' a finite set of symbols, A TS x I, x S, Ac, A C
S x I' x S define the transition relation, and sg is the initial state.

The semantics of an n-MPDS B is defined in terms of a transition system
as follows. A configuration C' of B is a tuple (s,St,B) € S x O,(I") x B[I
where B[I] is the set of all multi-sets over I" as before. The initial configuration
of B is (so,L,0) where L is the empty store. The transition relation = on
configurations is given as a union of three relations, =, = and = defined



in the following way. We say that (s, St, B) =1 (s',g(St), B) iff (s,g,5") € Ag,
(s,St,B) =« (¢,5t,BU{+'}) iff (s,7,5')) € Aq and (s, L,BU{v}) =n
(', L, B)iff (s,7,s") € Ax. The relation =* is defined as the reflexive transitive
closure of =. As in the case of a MPDS, we have the following.

Theorem 3 (Coverability of n-MPDS). Given a n-MPDS B = (S, I, Aq,
Acr, A, s0) and s € S, the problem of checking whether there exist B € B[]
and St € O,, such that (so, L,0) =* (s, St, B) is decidable.

5.3 Timed multi-set pushdown system

Asynchronous programming forms the basis of event-driven languages that are
used to describe networks of embedded systems [28, 31]. Such systems have real-
time constraints, in addition to synchronous and asynchronous procedure calls.
Though the asynchronous procedure calls are postponed till the end of the ex-
ecution of the current recursive procedure call, they are scheduled only if they
have not passed some real-time deadline. We model this by augmenting a push-
down system with real-time clocks. When a asynchronous procedure is called, a
clock is added to the multi-set and set to 0. We assume that all clocks proceed
at the same rate. Once the current recursive computation is completed, the next
job is scheduled only if the associated clock is within some interval bounded
by integers (we will assume that oo is an integer for this case). The results can
easily be generalized to the case when the time constraints are rationals rather
than integers.

Definition 12. [Timed multi-set pushdown automata] A Timed multi-set push-
down system (TMPDS) is a tuple B = (S, I, Apush, Apop, Acrs Arts S0), where S
18 a finite set of states, I' is a finite set of stack and multi-set symbols, the sets
Apush, Apopy Aer €S X I'x S, and A C (S x I' x Nx NU{oo}) x S are finite
and together form the transition relation, and sq is the initial state.

The semantics of an MPDS B is defined in terms of a transition system as
follows. A configuration C' of B is a tuple (s,w, B) € S x I'* x B[I' x RT] where
I'* is the set of all finite strings over I', RT is the set of positive real numbers
and B[I" x R™] is the set of all multi-sets over I" x RT. The initial configuration
of B is (s, €, D). The transition relation = on configurations is given as a union
of five relations, = push, = pop; =cr,=rt and =r.

The relation =puen is defined as (s, w, B) =push (s, wy/, B) iff (s,,7',s') €
Apush- The relation =,op is defined as (s, wy, B) =pop (¢',w, B) iff (s,7,¢) €
Apop- The relation = is defined as (s,w, B) =pop (8, w,B U {(7/,0)}) iff
(s,7',8") € Acr. The relation = is defined as (s,e, BU{(7,t)}) = (¢',7, B) iff
there exist ny,ny € N such that ny <t < ny and ((s,7,n1,n2),s") € An. The
relation =7 is defined as (s, w, B) =7 (s,w, B;) for every t € R where By is
the multi-set obtained by replacing each (v,t') € B by (v,t +t) € B. Observe
that elements are deleted from B only when the pushdown stack is empty. The
relation =* is defined as the reflexive transitive closure of =-.



We are once again interested in an algorithm which answers the question
that given s € S whether there exists B € B[I' x RT] and w € I'* such that
(s0,€,0) =* (s,w, B). In order to apply Theorem 1, we define a well-quasi-order
=< on B[I' x R*] which gives rise to regions [3] by symmetrizing the relation <.

The relation < on B[I" x R+] is defined as follows. Let nyax be the largest
natural number occurring in A, Given t € R let [¢| denote the integer part
of t and let frac(t) denote the fractional part of t. Given By, By € B[I"' x RT],
we say that By = Bs iff there exists a one-to-one function j : By — By such that
the following hold.

= If j((m1,t1)) = (72, t2) then y1 = 2.

— If j((v,t1)) = (7, t2) then t1 > npax iff t2 > Nmax-

—If j((v,t1)) = (7,t1), t1 < Nmax then |t1] = |t2] and frac(t;) = 0 iff
frac(te) = 0.

TG0 0)) = (1 t2), F((+ 1)) = (7'+14) and 1,8, < i then frac(ty) <
frac(t)) iff frac(ts) < frac(th).

This relation < defines a well-quasi-order on B[I" x R*] [3]. The relation =<
induces an equivalence relation on B[I' x Rt]: B~ B’ iff B < B’ and B’ < B.
The set of equivalence classes under the relation ~ is said to be a region. Let
Reg(I) be the set of all regions defined in this way and let Reg(B) be the region
that contains B. The well-quasi-order < extends to the set of regions in the
standard way Reg(B1) <gr Reg(B2) iff B; < Bs. Please note that the function
agr @ Reg — N defined as ar(R(B)) = |B|, where |B| is the cardinality of the
multi-set B, is a ranking function.

The transition relation = can be extended to a binary relation =g on
S x I'* x Reg[I'] as follows. We say that (s, w, Reg(B)) =g (s',w', Reg(B")) iff
(s,w, B) = (s',w’, B"). The well-defineness of the relation = can be shown us-
ing the standard techniques [3]. Thus, (so, €, 0) =* (s, w, B) iff (so, €, Reg(0)) =7
(s,w, Reg[B]) where =% is the reflexive transitive closure of = . Thus, using
S x Reg(I) as the set of control states, the pushdown stack as the data structure
and ag as the ranking function, we can prove the following.

Theorem 4 (Coverability of TMPDS). Given an TMPDS B = (S, I', Apysh,
Apop7 Acr,

Aw, s0) and s € S, the problem of checking whether there exist B € B[I' x RT]
and w € I'* such that (so,¢€,0) =* (s,w, B) is decidable.

5.4 Network of message passing recursive programs

We can apply our result to analyze a network of recursive programs which send
requests to each other on uni-directional lossy FIFO queues. Each recursive pro-
gram is modeled as a pushdown system which may generate new requests while
executing a recursive computation. New requests are only handled when the re-
cursive computation finishes. We shall assume that all recursive computations
terminate. As a consequence of the fact that all computations terminate and
that new requests are handled only when a recursive computation is completed,



the transition relation is equivalent (for reachability concerns) to a transition
system in which message loss happens only when all the pushdown stores are
empty. For lack of space reasons, the model is discussed in detail in Appendix B.

6 Conclusions and future work

We considered the coverability problem of a w.q.0. automaton which are well-
structured transition systems with an auxiliary store. Our main result is that
if the control state reachability problem is decidable for finite w.q.0. automa-
ton, then there is a decision procedure based on backward-reachability analysis
for the coverability problem with infinitely many states if the w.q.0. automaton
satisfies certain conditions. The main requirement is the existence of a ranking
function compatible with the WSTS. Intuitively, the compatibility of the ranking
function ensures that rank decreasing functions only occur when the store is the
same as the initial store. For the rank non-decreasing functions, the backward
reachability is performed using the decision procedure for finite w.q.0. automa-
ton. We showed that the decision procedure in the paper can be utilized in
several contexts such as higher-order asynchronous programs with asynchronous
procedure calls, networked embedded systems and a network of message passing
recursive systems.

We plan to implement the decision procedure in this paper and utilize it in
model-checking the systems considered in this paper. A second line of research
is to investigate whether other decision procedures that rely on w.q.o. theory
such as the sub-covering problem can be extended to the framework of w.q.o.
automaton.
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A Relationship between two proofs

We describe briefly the relation between the proof of our main theorem 1 and
the proof of the decidability of the coverability problem in multi-set pushdown
automata (MPDS) given in [33]. Multi-set pushdown systems are automata with
a finite set of control states, a pushdown stack and a multi-set over a finite set
of symbols I'. Elements are pushed/popped from the stack and added/deleted
from the multi-set depending on the control states. The pairs (s, B) where s is
a control state and B is the multi-set form a w.q.0. and hence can be seen a
w.q.0. automaton. Furthermore, since I" is finite, a multi-set B can be seen as
an element of Ny x Ny ...N;. Viewed in this manner, the maximum coordinate
of B forms a ranking function. The first thing to note is that as in our w.q.o.
automaton, rank-decreasing transitions in [33] only take place when the stack is
empty (and this is crucial in that proof also).

The proof in [33] itself proceeds by considering over-approximations and
under-approximations for each rank k. Unlike our case, however, the approxima-
tions involve both the rank non-decreasing and rank-decreasing functions. For
over-approximation, the multi-set is not changed if the i-th coordinate crosses
k. The under-approximations are used to enumerate the reachable states and
the over-approximations are used to enumerate the unreachable states. A closer



examination of the proof, however, reveals that the proof essentially relies on
the following (and hence cannot be generalized for other w.q.0.’s).

— The w.q.0.in [33] is a product a finite set of states and well-orders (that is
linearly ordered well-quasi-orders). This ensures that for any upward closed
sets Uy and Uq, the set Up \ Uz can be written as a union of sets of the form
s x A1 X ... X A, where either A; is a singleton or an upward closed set of
N.

— A transition from (s, B) to (s, B’) only effects one coordinate of B.

— For any transition from (s, B) to (s', B’), the difference in rank is bounded.

B Network of message passing recursive systems

We now consider network of message passing recursive system communicating
over lossy FIFO nets. Each recursive program is modeled as a pushdown sys-
tem which may send requests to other systems while a recursive computation
is being executed. These requests are sent over uni-directional FIFO systems.
Furthermore, we will assume that a system processes a new request only after
the current request is completed.

Definition 13. A network of n-message passing recursive systems (n-NMPRP)
is a tuple B = ((Sj)o<j<n, I, (Aj)o<j<n, (85)o<j<n) where

— Sj is a finite set of states,

— I is a finite set of stack symbols and messages,

— 4; is a tuple (A push, Aj.pop; (Aj.1snd)o<i<n s (D rev)osi<n 1) where
Aj pushy A pops Ajisnds Ajirev C S5 X I' X S; together forms the transition
relation of the j-th process, and

— 5, 1s the initial state of j-th process.

The semantics of a n-NMPRP is defined in terms of a transition system. A
configuration is a tuple ((s;, w;j)o<j<n, (¢j1)o<ji<n,j=i) Where s; € S; describes
the state of system j, w; € I'* describes the contents of the pushdown stack
of system j and c;; € I'* describes the contents of uni-directional lossy FIFO
channel from j to [. The initial configuration, C; is ((s}, €)o<j<n, (€)o<ji<n,j£l)-
The transition relation = is defined in terms of =>; which describes the evolution
of the process j and =ss Which describes message loss.

The transition relation = ; itself consists of several relations as follows. Given
(85,7, 8%) € Aj push, the relation = susp changes (s;, w;) to (s}, w;y") while keep-
ing other components of the configuration unchanged. Given (s;,, s%) € 4; pop,
the relation = ,op changes (s;, w;7) to (s;, w;) while keeping other components
of the configuration unchanged. Given (s;,, s;) € Aj 1 snd, the relation = snd
changes (s;,w;) to (s}, w;) and (c;1), the contents of the FIFO queue from j to [,
to (¢j,17y) while keeping other components of the configuration unchanged. Given
(84,7, 55) € Ajrev, the relation = o, changes (s, €) to (s},¢€) and (yey,5), the
contents of the FIFO queue from [ to j to (¢; ;) while keeping other compo-
nents of the configuration unchanged. It will be useful to separate non-receiving



and receiving transitions of a process j and towards this end, we define = nrev
as the relation =; push U = pop Ulélﬁrm‘#l =j1snd and = v as the relation
Ui<i<n jozr = jibrev-

The transition relation =-joss is defined in terms of relation = joss for 0 <
4,1 < n,j # I. The relation =; ; 10ss changes the j, [-FIFO queue ¢; ;yc’; to ¢jc’
while keeping the other components of the configuration unchanged.

We are interested in recursive systems in which all recursive computations
terminate.

Definition 14. A network of n message passing recursive terminating programs
(’I’L-NMPTP) isan-NMPRPB = ((Sj)ogjgn, T, (Aj)ogjgn, (§j)0§j§n) such that
each of the relations =, nrev, 1 < m < n, generated by B satisfies for the follow-
ing condition.

For each configuration C = ((sj,w;)o<j<n, (¢j,1)o<ji<njzl) there exists a
configuration C" = ((s},w})o<j<n, (¢} )o<ji<n,j41) such that C =7, ., C'" and
/

wj 18 €.

Let =y be the relation

U :>l,rcv

1<i<n

U :>l,rcv .

1<i<n

and let =, be the relation

All recursive computations terminate in a n-NMPTP, and new requests are only
addressed when a recursive computation is completed. Using these facts, we can
ensure that every computation can be transformed into a computation in which
all message losses happen just before the reception of messages. We have the
following proposition.

Proposition 4. Given a n-NMPTP B, let C. be the set of all configurations in
which all stack contents are empty. Then, given C; =* C' where C; is the initial
configuration. there exist Co,C1,C2,C3, ..., Cp, Cpy1 such that Cpy = C
C, € Ce for all 7 < m and Cy =7, C1 = C1 =5y C2 =5y -+ =0
Cm :>It)ss Cerl.

nrcv

Please note that as no messages are during a recursive computation, the
relation = ., can itself be broken down into n-steps in which only one stack is
active.

Proposition 5. If C =}, C' such C,C" € C. that and then there exists
Co,C5,Cs3,...Cy such that C,. € C. for all0 < r < n, Cy € C, C,, = C'
and CO :>T,nrcv Cl :>§,nrcv C2 :>;,nrcv:>;,nrcv cee :>:L,nrcv C’ﬂ

Hence, in order to answer the question whether some states s; € S; is reached
with empty stack contents, any NMTP can be viewed as a pushdown system with
multiple (lossy) message queues where message loss and message receives only
occur at the end of a recursive computation. Clearly the condition on empty
stack contents in the desired configuration is not a serious restriction since we



can always add new states to the automaton which empties the stacks when the
states s; are reached.

Therefore, the NMPTP can be viewed equivalently (for reachability concerns)
as a wqgo automaton with a stack as the data storage and the set of control
states Q as the set of tuples ((sj)i1<j<n, (¢ji)1<i j<n,izj) Where s; € S; and
¢ji € I'* which models the contents of the FIFO queue from j to I. Given
q = ((sj)1<j<ns ()1t j<n15) and ¢ = ((8))1<j<n, (€] 1)1<t,j<n,1£), We say
that ¢ < ¢’ if s; = s; and c;; is a substring of c}l. The relation < defines a well-
quasi-order on Q. Using the total number of messages, i.e., the sum of lengths
of ¢; ; as a ranking function, we obtain the following.

Theorem 5. Given a n-NMPTP B = ((Sj)Ogjgn;F; (Aj)0§j§n7 (gj)OSan)7
51 € 51,82 € Sa,...5, € S there is an algorithm to decide if there exists a
configuration C' such that Cy —* C where Cy is the initial configuration and C
is configuration such that the j-th state of the process j in C is s;.



