26th Symposium on Fluid Mechanics and Rheology of Nonlinear Materials and Complex Fluids International Mechanical Engineering Congress & Exposition (IMECE), November 11-14, 2019, Salt Lake City, Utah

IMECE2019-13370 \mathcal{L} **Continuous Relaxation Spectra and Its Reduced-Dimensionality Descriptions for Engineering Design With Linear Viscoelasticity**

Yong Hoon Lee,^{1*} R. E. Corman,¹ Randy H. Ewoldt,¹ James T. Allison²

* ylee196@Illinois.edu ¹ Dept. of Mechanical Science and Engineering ² Dept. of Industrial and Enterprise Systems Engineering

> University of Illinois at Urbana-Champaign Urbana, IL 61801, USA

> > Copyright © 2019 Yong Hoon Lee. All rights reserved.

Table of Contents

- 1. Background and Motivation
- 2. Engineering Design With Material Functions
- 3. Mapping Linear Viscoelasticity For Engineering Design
- 4. MAP1: Continuous Relaxation Spectra Description For Linear Viscoelastic Materials
	- Case Study 1D Viscoelastic Vibration Isolator Design
- 5. MAP2: Reduced-Dimensionality Description For Linear Viscoelastic Materials
	- Case Study Experimental Data To Reduced-Dimensionality Description
	- Case Study Quarter Car Suspension Damping Design
- 6. Conclusions and Future Work
- 7. References

Background and Motivation : DESIGN PERSPECTIVES

- Engineering design demands **more** performance, efficiency, and reliability, **for less** time, cost, material, and effort.
- Non-traditional (including rheologically-complex) materials may provide novel performance beyond what was available with simple (Newtonian fluids, elastic solids) materials.
- Designing materials (with synthesis of new materials) opens an avenue to unprecedented design innovations.
- Function-valued material properties (material functions): e.g., $\eta(\dot{\gamma}), \psi_1(\dot{\gamma}), \psi_2(\dot{\gamma}), G(t), G'(\omega), G''(\omega)$, etc.
- We limit our study to Linear Viscoelasticity (LVE) here. **LLINOIS**

VDI: Viscoelastic Damping Isolator

Background and Motivation : RESEARCH QUESTIONS

- Rheological Materials Design Challenges:
- 1. Models that could violate physics laws: e.g., directly designing relaxation kernel function $\eta(\dot{\gamma}), \psi_1(\dot{\gamma}), \psi_2(\dot{\gamma}), G(t), G'(\omega), G''(\omega)$
- 2. Models that do not have unique parameters for identical designs: e.g., multimode Maxwell model
- 3. Models that limits the type of material systems significantly: e.g., Giesekus model (polymeric flow), Baxter's model (colloids)
- 4. What additional design efforts are needed? e.g.,
	- How to parameterize function-valued properties?
	- How many number of design parameters are deeded?

VDI: Viscoelastic Damping Isolator

Engineering Design With Material Functions

• Design procedure **with** and **of** rheological materials

Mapping Linear Viscoelasticity (LVE) For Engineering Design

Elastic Solid

De (Deborah number) 0 ∞

- Many equivalent representations, e.g.,
	- relaxation modulus, $G(t)$
	- creep compliance, $J(t)$
	- \sim complex moduli, $G'(t)$, $G''(t)$

(Corman et al., JMD 2016)

- Not all representations are design-appropriate, e.g., $G'(t)$, $G''(t)$ are related to each other and cannot be independently designed, (Bird et al., DPL1 1987; Mours & Winter, 2000)Kramers-Kronig relation: $\frac{G\prime(\omega)}{m^2}$ ω^2 $=\frac{2}{\pi}$ $\frac{2}{\pi} \int_0^{\pi}$ ∞ $Gn(x)$ $\omega^2 - x^2$ dx \mathcal{X}
- Preferred characteristics for design representations
	- ‒ encompass the most general material behavior,
	- ‒ do **NOT** violate fundamental restrictions,
	- ‒ are directly measurable to facilitate development or selection of real materials.

MAP1: Continuous Relaxation Spectra Description For LVE Materials

- Natural choices of material descriptions:
- Force/stress controlled load
	- Creep compliance $J(t)$
	- Retardation spectrum $L(\tau)$
- Deformation/strain controlled load
	- Relaxation modulus $G(t)$
	- Relaxation spectrum $H(\tau)$
- Design of materials perspective:
- Connect to physical microstructural mechanisms and information.
- The relaxation spectra $H(\tau)$ is a useful design-appropriate material description.
- Definition of relaxation modulus $\overline{\infty}$ H(τ $G(t) =$ $e^{-t/\tau}d\tau$ τ 0 ∞ $H(\tau)e^{-t/\tau}d\ln\tau$ $=$ \vert 0 $10²$ 10^{3} $10⁰$ $\frac{1}{\lambda}$ $10⁰$ 10^{-2} 10^{-3} 10^{-} $10⁰$ 10^{-3} Example: Continuous relaxation spectrum in Log-Normal distribution and corresponding relaxation modulusINOIS

7

MAP1: Continuous Relaxation Spectra Description For LVE Materials

(Schwarzl and Staverman, 1952)

,

Conversion from modulus to spectrum : mathematically ill-posed problem

- A small difference (error) in modulus, G , results in a large difference in spectrum, H .
- Alfrey approximation: $H(\tau) = -\left[\frac{dG(t)}{d\ln \tau}\right]$ d $\ln t \, \mathsf{J}_{t=\tau}$
- Spectra approximation, Laplace approximation, etc
- Least square fitting of $G(t)$ using optimization algorithms: min $\overline{\widetilde{H}(\tau)}$ $\int\big|\tilde{G}\left(\widetilde{H}(\tau)\right)-G\big(H(\tau)\big)$ 2 $d\tau$, etc.
- Software, such as TRIOS (TA Instrument) can aid computing approximated $H(\tau)$ from complex modulus, $G'(\omega)$ and $G''(\omega)$.
- Design process generally does not demand this sophisticated conversion:
	- Design with relaxation spectrum
	- Obtain molecular weight distribution from the spectrum
	- Convert from spectrum to modulus (not difficult)

MAP1: Continuous Relaxation Spectra Description For LVE Materials

Shape of the spectrum

- Theoretically not constrained
- Generally parameterized to represent typical behaviors for real materials / Can be superposed
- Parameterizations
	- − Log-Normal: glasses, noncovalent networks
	- − Rouse model: polymer dynamics, bead-spring
	- − Fractional Maxwell model: spring-pot
	- − Fractional Zener: amorphous polymer
	- − Critical Gel: polymer at point of gelation
	- − BSW: entangled, narrowly-distributed polymer
	- − Modified BSW: broadly-distributed polymer
	- − Generalized Maxwell model: discrete timescales
	- − Box Distribution, Wedge, Power Law, Asymmetric Lorentzian, etc.

ILLINOIS

Characteristics of the spectrum

- Primary timescale, viscosity strength, and deviation of these properties describe the spectrum shape.
- Dispersity of the prominent time scale represents dispersity in the microstructure.
- Dispersity in the microstructure mechanism leads relaxation behavior.

Case Study – 1D Viscoelastic Vibration Isolator Design

Problem: Design 1D viscoelastic vibration isolator under wide range of frequencies

- Log-Normal spectrum is successfully utilized for designing viscoelastic relaxation modulus.
- Different parameterizations for the continuous relaxation spectra could be easily implemented with this design framework.
- Obtained different optimal designs, meaning that each model has its own design space bounds.
- Direct optimization of shape of the relaxation spectrum may support more flexible design space exploration.

MAP2: Reduced-Dimensionality Description For LVE Materials

Intuition in design with/of materials is important

- Simplicity of describing materials by single value material properties gives greater insight. (e.g., density, viscosity, Young's modulus, yield stress/strain, etc.)
- Ashby diagrams, Materials databases, and the Materials genome help engineers to explore a wide range of materials.

Lack of such intuitive description for LVE

- Different putties have different material functions (e.g., relaxation modulus), but still this is in the shape of a function of a timescale.
- Most work in the rheology literature is analysis of materials, but design problems are the inverse of analysis.
- Materials descriptions motivated by design could provide improved intuition for designers. **ILLINOIS**

MAP2: Reduced-Dimensionality Description For LVE Materials

- Low-dimensional viscoelastic constants
	- − Describe viscoelastic qualities e.g., elasticity, viscosity, compliance
	- − Computed from the integral moments of the spectrum $(0^{th}, 1^{st}, 2^{nd}$ moments)
	- − Includes characteristic relaxation times

$$
M_0 = \int_0^\infty Q(\tau) d\tau = \int_0^\infty \frac{H(\tau)}{\tau} d\tau = \mathbf{G_0}
$$
 elasticity
\n
$$
M_1 = \int_0^\infty \tau Q(\tau) d\tau = \int_0^\infty H(\tau) d\tau = \eta_0
$$
 viscosity
\n
$$
M_2 = \int_0^\infty \tau^2 Q(\tau) d\tau = \int_0^\infty \tau H(\tau) d\tau = J_0 \eta_0^2
$$

\n
$$
\tau_1 = \frac{M_1}{M_0} = \frac{\eta_0}{G_0} = \tau_n
$$
 (mean relaxation time of the viscosity weighted spectrum)
\n
$$
\tau_2 = \frac{M_2}{M_1} = J_0 \eta_0 = \tau_w
$$
 (mean relaxation time of the modulation time of the modulation time of the modulus weighted spectrum)

- Timescale polydispersity index: PDI
	- − deviation from dominant relaxation timescale
	- − PDI can be interpreted as the distance between the timescales τ_1 and τ_2 in log scale $PDI = \tau_2/\tau_1$
- LVE description visualized in an Ashby-like plot

Case Study – Experimental Measurement to Reduced-Dimensionality Description

Experimental measurement of complex moduli (G', G'')

Extraction of relaxation spectrum (using TA Instrument TRIOS)

Computation of reduceddimensionality description $\tau_1 = 0.157$, $\tau_2 = 0.358$, $G_0 = 982245.6$

Case Study – Quarter Car Suspension Viscoelastic Damping Design

ILLINOIS

Conclusions and Future Works

- Design with/of nontrivial materials (e.g., soft, rheologically-complex materials) has the potential to achieve unprecedented design innovations.
- Characteristics of design-appropriate models are identified.
- Design appropriate LVE material descriptions are presented:
	- Continuous relaxation spectra, $H(\tau)$
	- Reduced-dimensionality description, $[G_0, \tau_1, \tau_2]$
- Limitations
	- Conversion between different material descriptions can be nontrivial.
	- Reduced-dimensionality description cannot uniquely map specific materials. (same value, but different material possible)
- Demonstrated with case studies: Vibration isolator, Experimental data process, Vehicle suspension

Conclusions and Future Works

- Regarding design appropriate modeling
	- Are design-appropriate models available for nonlinear viscoelasticity?
	- Is it possible to find material function constraints? e.g., Criminale-Eriksen-Filbey (CEF) fluid model has unbounded material functions.
	- Can a data-driven design approach be an effective resolution for this material function bounding problem?
- Regarding the reduced dimensionality description
	- How large is the space of distinct materials that map to the same reduced model parameter values?
	- How to handle multiple spectrum peaks with simple representation?

References

- 1. R.E. Corman, "Design tools for linear viscoelastic fluids," Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 2019.
- 2. R.E. Corman, et al., "Setting material function design targets for linear viscoelastic materials and structures," *J. Mech. Des.*, 138(5):051402, 2016. doi:10.1115/1.4032698
- 3. B.W. Huang, et al., "Seismic analysis of a viscoelastic damping isolator," *Adv. Mater. Sci. Eng.*, 2015:280625, 2015. doi:10.1155/2015/280625
- 4. Y.H. Lee, et al., "Simultaneous design of non-Newtonian lubricant and surface texture using surrogate-based multiobjective optimization," *Struct. Multidiscip. O.*, 60(1):99- 116, 2019. doi:10.1007/s00158-019-02201-1
- 5. Y.H. Lee, et al., "A multiobjective adaptive surrogate modelingbased optimization (MO-ASMO) framework using efficient sampling strategies," In *ASME 2017 IDETC/CIE*, DETC2017-67541, Cleveland, OH, USA. doi:10.1115/DETC2017-67541
- 6. A.C. Pipkin, *Lectures on Viscoelasticity Theory*, Springer, New York, 1972.
- 7. R.B. Bird, et al., Dynamics of Polymeric Liquids, Vol.1 Fluid Mechanics, 2nd ed, Wiley, New York, 1987.
- 8. M. Mours and H.H.Winter, "Mechanical spectroscopy of polymers," In T. Tanaka (eds) *Experimental Methods in Polymer Science*, Academic Press, San Diego, 2000.
- 9. F. Schwarzl and A.J. Staverman, "Higher approximations of relaxation spectra" *Physica*, 18(10):791-798, 1952. doi:10.1016/S0031-8914(52)80267-8
- 10.J.D. Ferry, Viscoelastic Properties of Polymers, 3rd ed, Wiley, New York, 1980.
- 11.N.W. Tschoegl, *The Phenomenological Theory of Linear Viscoelastic Behavior*, Springer, Berlin, 1989.
- 12.M. Baumgaertel and H.H. Winter, "Interrelation between continuous and discrete relaxation time spectra," J. Non-Newton. Fluid., 44:15-36, 1992. doi:10.1016/0377- 0257(92)80043-W
- 13.L. Martinetti, "Uniaxial extensional behavior of A-B-A thermoplastic elastomers: structure-properties relationship and modeling," Ph.D. Dissertation, University of Minnesota, 2015.
- 14.M.E. De Rosa and H.H. Winter, "The effect of entanglements on the rheological behavior of polybutadiene critical gels," *Rheol. Acta*, 33:220-237, 1994. doi: 10.1007/BF00437307

ASME 2019 IMECE International Mechanical Engineering Congress & Exposition®

CONFERENCE COMMITTEE NOV 11-14, 2019 **MEETINGS & SPECIAL EVENTS EXHIBITION** NOV 8-14, 2019 NOV 10 - 13, 2019

Salt Lake City, Utah

Thank you.

This material is partially based upon work supported by the National Science Foundation under Grant No. CMMI-1463203.

Authors Engineering System Design Laboratory Ewoldt Research Group

