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Background and Motivation
: DESIGN PERSPECTIVES

• Engineering design demands more performance, efficiency, 
and reliability, for less time, cost, material, and effort.

• Non-traditional (including rheologically-complex) materials 
may provide novel performance beyond what was available 
with simple (Newtonian fluids, elastic solids) materials.

• Designing materials (with synthesis of new materials) opens 
an avenue to unprecedented design innovations.

• Function-valued material properties (material functions):
e.g., 𝜂 ሶ𝛾 , 𝜓1 ሶ𝛾 , 𝜓2 ሶ𝛾 , 𝐺 𝑡 , 𝐺′ 𝜔 , 𝐺′′ 𝜔 , etc.

• We limit our study to Linear Viscoelasticity (LVE) here.
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VDI: Viscoelastic Damping Isolator
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Background and Motivation
: RESEARCH QUESTIONS

• Rheological Materials Design Challenges:

1. Models that could violate physics laws:
e.g., directly designing relaxation kernel function
𝜂 ሶ𝛾 , 𝜓1 ሶ𝛾 , 𝜓2 ሶ𝛾 , 𝐺 𝑡 , 𝐺′ 𝜔 , 𝐺′′ 𝜔

2. Models that do not have unique parameters for identical designs:
e.g., multimode Maxwell model

3. Models that limits the type of material systems significantly:
e.g., Giesekus model (polymeric flow), Baxter’s model (colloids)

4. What additional design efforts are needed?
e.g.,
- How to parameterize function-valued properties?
- How many number of design parameters are deeded?

4
VDI: Viscoelastic Damping Isolator
(Huang et al, 2015)
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Engineering Design With Material Functions

• Design procedure with and of rheological materials
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Material-agnostic or material-specific approaches can be utilized.
Material-specific process.

Lee et al, IMECE 2019
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Mapping Linear Viscoelasticity (LVE) For Engineering Design

• Many equivalent representations, e.g.,
‒ relaxation modulus, 𝐺 𝑡

‒ creep compliance, 𝐽 𝑡

‒ complex moduli, 𝐺′ 𝑡 , 𝐺″ 𝑡

• Not all representations are design-appropriate,
e.g., 𝐺′ 𝑡 , 𝐺″ 𝑡 are related to each other and cannot be 
independently designed,

Kramers-Kronig relation: 
𝐺′ 𝜔

𝜔2 =
2

𝜋
0׬
∞ 𝐺″ 𝑥

𝜔2−𝑥2
𝑑𝑥

𝑥

• Preferred characteristics for design representations
‒ encompass the most general material behavior,

‒ do NOT violate fundamental restrictions,

‒ are directly measurable to facilitate development or 
selection of real materials.
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MAP1: Continuous Relaxation Spectra Description For LVE Materials

Natural choices of material descriptions:

• Force/stress controlled load
• Creep compliance 𝐽 𝑡

• Retardation spectrum 𝐿 𝜏

• Deformation/strain controlled load
• Relaxation modulus 𝐺 𝑡

• Relaxation spectrum 𝐻 𝜏

Design of materials perspective:

• Connect to physical microstructural 
mechanisms and information.

• The relaxation spectra 𝐻 𝜏 is a useful 
design-appropriate material description.

• Definition of relaxation modulus

𝐺 𝑡 = න
0

∞𝐻 𝜏

𝜏
𝑒− Τ𝑡 𝜏𝑑𝜏

= න
0

∞

𝐻 𝜏 𝑒− Τ𝑡 𝜏𝑑 ln 𝜏
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Example: Continuous relaxation spectrum in Log-Normal 
distribution and corresponding relaxation modulus



MAP1: Continuous Relaxation Spectra Description For LVE Materials

Conversion from modulus to spectrum
: mathematically ill-posed problem

• A small difference (error) in modulus, 𝐺, results in a large 
difference in spectrum, 𝐻.

• Alfrey approximation: 𝐻 𝜏 = −
𝑑𝐺 𝑡

𝑑 ln 𝑡 𝑡=𝜏
,

• Spectra approximation, Laplace approximation, etc

• Least square fitting of 𝐺 𝑡 using optimization algorithms:

min
෩𝐻 𝜏

׬ ෨𝐺 ෩𝐻 𝜏 − 𝐺 𝐻 𝜏
2
𝑑𝜏, etc.

• Software, such as TRIOS (TA Instrument) can aid computing 
approximated 𝐻 𝜏 from complex modulus, 𝐺′ 𝜔 and 𝐺′′ 𝜔 .

Design process generally does not demand this 
sophisticated conversion:

• Design with relaxation spectrum

• Obtain molecular weight distribution from the spectrum

• Convert from spectrum to modulus (not difficult)
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(Schwarzl and Staverman, 1952)



MAP1: Continuous Relaxation Spectra Description For LVE Materials

Shape of the spectrum

• Theoretically not constrained

• Generally parameterized to represent typical 
behaviors for real materials / Can be superposed

• Parameterizations

− Log-Normal: glasses, noncovalent networks

− Rouse model: polymer dynamics, bead-spring

− Fractional Maxwell model: spring-pot

− Fractional Zener: amorphous polymer

− Critical Gel: polymer at point of gelation

− BSW: entangled, narrowly-distributed polymer

− Modified BSW: broadly-distributed polymer

− Generalized Maxwell model: discrete timescales

− Box Distribution, Wedge, Power Law, 
Asymmetric Lorentzian, etc.

Characteristics of the spectrum

• Primary timescale, viscosity strength, and 
deviation of these properties describe the 
spectrum shape.

• Dispersity of the prominent time scale 
represents dispersity in the microstructure.

• Dispersity in the microstructure mechanism 
leads relaxation behavior.

9
(Ferry, 1980; Tschoegl, 1989; Baumgaertel, 1992;
Martinetti, 2015; De Rosa, 1994)



Case Study – 1D Viscoelastic Vibration Isolator Design
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Problem: Design 1D viscoelastic vibration 
isolator under wide range of frequencies

• Log-Normal spectrum is successfully utilized 
for designing viscoelastic relaxation 
modulus.

• Different parameterizations for the 
continuous relaxation spectra could be easily 
implemented with this design framework.

• Obtained different optimal designs, meaning 
that each model has its own design space 
bounds.

• Direct optimization of shape of the 
relaxation spectrum may support more 
flexible design space exploration.

Maximum Amplitude

Maximum Acceleration

Amplitude Area Under Curve

Acceleration Area Under Curve



MAP2: Reduced-Dimensionality Description For LVE Materials
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Intuition in design with/of materials is important

• Simplicity of describing materials by single value material properties 
gives greater insight.
(e.g., density, viscosity, Young’s modulus, yield stress/strain, etc.)

• Ashby diagrams, Materials databases, and the Materials genome 
help engineers to explore a wide range of materials.

Lack of such intuitive description for LVE

• Different putties have different material functions (e.g., relaxation 
modulus), but still this is in the shape of a function of a timescale.

• Most work in the rheology literature is analysis of materials, but 
design problems are the inverse of analysis.

• Materials descriptions motivated by design could provide improved 
intuition for designers.
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MAP2: Reduced-Dimensionality Description For LVE Materials

• Low-dimensional viscoelastic constants

− Describe viscoelastic qualities
e.g., elasticity, viscosity, compliance

− Computed from the integral moments of the 
spectrum (0th, 1st, 2nd moments)

− Includes characteristic relaxation times

𝑀0 = 0׬
∞
𝑄 𝜏 𝑑𝜏 = 0׬

∞𝐻 𝜏

𝜏
𝑑𝜏 = 𝑮𝟎 elasticity

𝑀1 = 0׬
∞
𝜏𝑄 𝜏 𝑑𝜏 = 0׬

∞
𝐻 𝜏 𝑑𝜏 = 𝜂0 viscosity

𝑀2 = න
0

∞

𝜏2𝑄 𝜏 𝑑𝜏 = න
0

∞

𝜏𝐻 𝜏 𝑑𝜏 = 𝐽0𝜂0
2

𝝉𝟏 =
𝑀1

𝑀0
=
𝜂0
𝐺0

= 𝜏𝑛:
(mean relaxation time of the

viscosity weighted spetrum)

𝝉𝟐 =
𝑀2

𝑀1
= 𝐽0𝜂0 = 𝜏𝑤:

(mean relaxation time of the

modulus weighted spetrum)

• Timescale polydispersity index: PDI

− deviation from dominant relaxation timescale

− PDI can be interpreted as the distance between 
the timescales τ1 and τ2 in log scale

PDI = Τ𝜏2 𝜏1

• LVE description visualized in an Ashby-like plot

12(Corman, PhD 2019)



Case Study –
Experimental Measurement to Reduced-Dimensionality Description
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Experimental data Relaxation spectrum Reduced-dimensionality description

Computation of reduced-
dimensionality description

𝜏1 = 0.157, 𝜏2 = 0.358, 𝐺0= 982245.6

Extraction of relaxation 
spectrum

(using TA Instrument TRIOS)

Experimental measurement 
of complex moduli (𝐺′, 𝐺″)



Case Study – Quarter Car Suspension Viscoelastic Damping Design
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Conclusions and Future Works

• Design with/of nontrivial materials (e.g., soft, rheologically-complex materials) has the potential to 
achieve unprecedented design innovations.

• Characteristics of design-appropriate models are identified.

• Design appropriate LVE material descriptions are presented:

• Continuous relaxation spectra, 𝐻 𝜏

• Reduced-dimensionality description, 𝐺0, 𝜏1, 𝜏2

• Limitations

• Conversion between different material descriptions can be nontrivial.

• Reduced-dimensionality description cannot uniquely map specific materials.
(same value, but different material possible)

• Demonstrated with case studies: Vibration isolator, Experimental data process, Vehicle suspension
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Conclusions and Future Works

• Regarding design appropriate modeling

• Are design-appropriate models available for nonlinear viscoelasticity?

• Is it possible to find material function constraints?
e.g., Criminale-Eriksen-Filbey (CEF) fluid model has unbounded material functions.

• Can a data-driven design approach be an effective resolution for this material function bounding 
problem?

• Regarding the reduced dimensionality description

• How large is the space of distinct materials that map to the same reduced model parameter values?

• How to handle multiple spectrum peaks with simple representation?
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