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Abstract

Spectral methods have recently emerged as a powerful tool for dimensionality reduction and man-
ifold learning. These methods use information contained in the eigenvectors of a data affinity (i.e.,
item-item similarity) matrix to reveal low dimensional structure in high dimensional data. The most
popular manifold learning algorithms include Locally Linear Embedding, Isomap, and Laplacian Eigen-
map. However, these algorithms only provide the embedding results of training samples. There are
many extensions of these approaches which try to solve the out-of-sample extension problem by seek-
ing an embedding function in reproducing kernel Hilbert space. However, a disadvantage of all these
approaches is that their computations usually involve eigen-decomposition of dense matrices which
is expensive in both time and memory. In this paper, we propose a novel dimensionality reduction
method, called Spectral Regression (SR). SR casts the problem of learning an embedding func-
tion into a regression framework, which avoids eigen-decomposition of dense matrices. Also, with
the regression based framework, different kinds of regularizers can be naturally incorporated into our
algorithm which makes it more flexible. SR can be performed in supervised, unsupervised and semi-
supervised situation. It can make efficient use of both labeled and unlabeled points to discover the
intrinsic discriminant structure in the data. Experimental results on classification and semi-supervised
classification demonstrate the effectiveness and efficiency of our algorithm.
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1 Introduction

Dimensionality reduction has been a key problem in many fields of information processing, such as
machine learning, data mining, information retrieval, and pattern recognition. Practical algorithms in

∗The work was supported in part by the U.S. National Science Foundation NSF IIS-05-13678/06-42771 and NSF BDI-

05-15813. Any opinions, findings, and conclusions or recommendations expressed here are those of the authors and do not

necessarily reflect the views of the funding agencies.

1



supervised machine learning degrade in performance (prediction accuracy) when faced with many features
that are not necessary for predicting the desired output. An important question in the fields of machine
learning, knowledge discovery, computer vision and pattern recognition is how to extract a small number
of good features. A common way to attempt to resolve this problem is to use dimensionality reduction
techniques.

One of the most popular dimensionality reduction algorithms might be Principal Component Analysis
(PCA) [20]. PCA performs dimensionality reduction by projecting the original n-dimensional data onto
the d(� n)-dimensional linear subspace spanned by the leading eigenvectors of the data’s covariance
matrix. Its goal is to find a set of mutually orthogonal basis functions that capture the directions of
maximum variance in the data so that the pairwise Euclidean distances can be best preserved. If the
data is embedded in a linear subspace, PCA is guaranteed to discover the dimensionality of the subspace
and produces a compact representation.

In many real world problems, however, there is no evidence that the data is sampled from a linear
subspace. For example, it is always believed that the face images are sampled from a nonlinear low-
dimensional manifold which is embedded in the high-dimensional ambient space [18]. This motivates us
to consider manifold based techniques for dimensionality reduction. Recently, various manifold learning
techniques, such as ISOMAP [30], Locally Linear Embedding (LLE) [26] and Laplacian Eigenmap [4] have
been proposed which reduce the dimensionality of a fixed training set in a way that maximally preserve
certain inter-point relationships. LLE and Laplacian Eigenmap are local methods which attempt to
preserve local geometry of the data; essentially, they seek to map nearby points on the manifold to nearby
points in the low-dimensional representation. ISOMAP is a global method which attempts to preserve
geometry at all scales, mapping nearby points on the manifold to nearby points in low-dimensional space,
and faraway points to faraway points. One of the major limitations of these methods is that they do not
generally provide a functional mapping between the high and low dimensional spaces that are valid both
on and off the training data.

There are a lot of approaches that try to address this issue by explicitly requiring an embedding
function either linear or in RKHS when minimizing the objective function [17, 6, 33]. They provide
natural out-of-sample extensions of Lapalcian Eigenmaps, LLE and Isomap. However, the computation
of these methods involves eigen-decomposition of dense matrices which is expensive in both time and
memory. It is almost infeasible to apply these approaches on large data sets. Some other approaches
address this issue through a kernel view of LLE, Isomap and Laplacian Eigenmaps [5, 13]. They interpret
these spectral embedding algorithms as learning the principal eigenfunctions of an operator defined from
a kernel and the unknown data generating density. Such kernel is usually data dependant1. To obtain
the embedding result of an unseen example, we need to calculate the kernel function values of this unseen
example with all the training samples which may not be possible in some situations2.

In this paper, we propose a novel dimensionality reduction algorithm, called Spectral Regression (SR).
1The kernel function K(xi,xj) depends not only on xi and xj but also on the whole data set.
2e.g ., the data dependant kernel is constructed by integrating label information. To calculate K(xi,xj), we need to know

whether xi and xj have the same label. Since the label of an unseen example is usually unavailable, we can not calculate

the kernel function values of this unseen example with all the training samples.
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Table 1: Notations
Notations Descriptions

m the number of total training data points
n the number of features
c the number of classes
l the number of labeled data points
lk the number of labeled data points in k-th class
xi the i-th data point
X the data matrix
a the transformation vector (linear projective function)

The proposed algorithm is fundamentally based on regression and spectral graph analysis [7]. It can be
performed either in supervised, unsupervised or semi-supervised situation. Specifically, we first construct
an affinity graph over both labeled and unlabeled points to discover the intrinsic discriminant structure
in the data. This graph is used to learn responses for both labeled and unlabeled points. Once the
responses are obtained, the ordinary regression is then applied for learning the embedding function.

The points below highlight several aspects of our approach:

1. SR can be performed in supervised, unsupervised and semi-supervised situation. It can make
efficient use of both labeled and unlabeled points to discover the intrinsic discriminant structure
in the data. When all the points are labeled, SR provides a Regularized Discriminant Analysis [9]
solution. When all the points are unlabeled, SR gives a natural out-of-sample extension for spectral
clustering [22, 32] and spectral dimensionality reduction [4].

2. SR uses the regression as the building block, different kinds of regularizers can be naturally incor-
porated into our algorithm which makes it more flexible.

3. Since the affinity graph is usually sparse and our algorithm is based on the regression framework,
the computation can be very fast.

4. Our algorithm may be conducted in the original space or in the reproducing kernel Hilbert space
(RKHS) into which data points are mapped. This gives rise to kernel SR.

The paper is structured as follows: in Section 2, we provide a graph embedding view of dimensionality
reduction. Our Spectral Regression (SR) algorithm is introduced in Section 3. In Section 4 and 5,
we provide a theoretical and computational complexity analysis of our algorithm respectively. The
experimental results are presented in Section 6. Finally, we provide some concluding remarks.

2 Graph Embedding View of Dimensionality Reduction

Given m samples {xi}m
i=1 ⊂ R

n, dimensionality reduction aims at finding {zi}m
i=1 ⊂ R

d, d � n, where zi

can “represents” xi. In the past decades, many algorithms, either supervised or unsupervised, have been
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proposed to solve this problem. Despite the different motivations of these algorithms, they can be nicely
interpreted in a general graph embedding framework [6, 18, 33].

Given a graph G with m vertices, each vertex represents a data point. Let W be a symmetric m×m

matrix with Wij having the weight of the edge joining vertices i and j. The G and W can be defined to
characterize certain statistical or geometric properties of the data set. The purpose of graph embedding
is to represent each vertex of a graph as a low dimensional vector that preserves similarities between the
vertex pairs, where similarity is measured by the edge weight.

Let y = [y1, y2, · · · , ym]T be the map from the graph to the real line. The optimal y tries to minimize∑
i,j

(yi − yj)2Wij (1)

under appropriate constraint. This objective function incurs a heavy penalty if neighboring vertices i

and j are mapped far apart. Therefore, minimizing it is an attempt to ensure that if vertices i and j are
“close” then yi and yj are close as well [12]. With some simple algebraic formulations, we have∑

i,j

(yi − yj)2Wij = 2yT Ly, (2)

where L = D − W is the graph Laplacian [7] and D is a diagonal matrix whose entries are column (or
row, since W is symmetric) sums of W , Dii =

∑
j Wji. Finally, the minimization problem reduces to

find

y∗ = arg min
yT Dy=1

yT Ly = arg min
yT Ly
yT Dy

. (3)

The constraint yT Dy = 1 removes an arbitrary scaling factor in the embedding. The optimal y’s can be
obtained by solving the minimum eigenvalue eigen-problem:

Ly = λDy. (4)

Many recently proposed manifold learning algorithms, like Isomap [30], Laplacian Eigenmap [4], Locally
Linear Embedding [26], can be interpreted in this framework with different choices of W . Please see [33]
for more details.

The graph embedding only presents the mappings for the graph vertices in the training set. For
classification purpose, a mapping for all samples, including new test samples, is required. If we choose a
linear function, i.e., yi = f(xi) = aTxi, Eq. (3) can be rewritten as:

a∗ = arg min
yT Ly
yT Dy

= arg min
aT XLXTa
aT XDXTa

, (5)

where X = [x1, · · · ,xm]. The optimal a’s are the eigenvectors corresponding to the minimum eigenvalue
of eigen-problem:

XLXTa = λXDXTa. (6)

If we choose a function in RKHS, i.e., yi = f(xi) =
∑m

j=1 αjK(xj ,xi), K(xj ,xi) is the Mercer kernel of
RKHS HK . Eq. (3) can be rewritten as:

ααα∗ = arg min
yT Ly
yT Dy

= arg min
αααT KLKααα

αααT KDKααα
, (7)
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where K is m × m gram matrix Kij = K(xi,xj) and ααα = [α1, · · · , αm]T . The optimal ααα’s are the
eigenvectors corresponding to the minimum eigenvalue of eigen-problem:

KLKααα = λKDKααα. (8)

With different choices of W , this framework leads to many popular linear dimensionality reduction
algorithms, e.g ., Linear Discriminant Analysis (LDA) [10], Locality Preserving Projections (LPP) [17],
Neighborhood Preserving Embedding (NPE) [16] and their kernel extensions, e.g ., Kernel Discriminant
Analysis (KDA) [2], Kernel LPP [17], Kernel Eigenmaps [6].

Although the affinity matrix W could be sparse, the matrices XLXT , XDXT , KLK and KDK

are all dense. Therefor, solving the eigen-problem in Eqn (6) and Eqn (8) are both time and memory
consuming. Moreover, to get a stable solution of eigen-problem in Eqn (6), the matrices XDXT is
required to be non-singular [11] which is not true when the number of features is larger than the number
of samples. In this case, some additional preprocessing steps (e.g ., SVD) are thus needed.

Suppose rank(X) = r, the SVD decomposition of X is

X = UΣV T (9)

where Σ = diag(σ1, · · · , σr) and σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the singular values of X, U = [u1, · · · ,ur] ∈
R

n×r and ui’s are called left singular vectors, V = [v1, · · · ,vr] ∈ R
m×r and vi’s are called right singular

vectors. Let X̃ = UT X = ΣV T and b = UTa, we have

aT XLXTa = aT UΣV T LV ΣUTa = bT X̃LX̃Tb

and

aT XDXTa = aT UΣV T DV ΣUTa = bT X̃DX̃Tb

Now, the objective function of linear graph embedding in (5) can be rewritten as:

b∗ = arg min
bT X̃LX̃Tb

bT X̃DX̃Tb
,

and the optimal b’s are the eigenvectors corresponding to the minimum eigenvalue of eigen-problem:

X̃LX̃Tb = λX̃DX̃Tb. (10)

It is clear that X̃DX̃T is nonsingular and the above eigen-problem can be stably solved. After we get
b∗, the a∗ can be obtained by solving a set of linear equations systems UTa = b∗. By noticing that
given U , b∗, there will be infinitely many solutions of a which satisfy this equations system3. Among all
these solutions, a∗ = Ub∗ is obviously one of them. The similar approach can also be used to handle the
singularity of KDK [2].

3Unless n < m and rank(X) = n. In this case, U will be an orthogonal matrix and there is an unique solution of equation

UT a = b∗ which is exactly Ub∗.
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The SVD step further increases the computational cost. In some applications (e.g ., text processing),
the data matrix is sparse which can be fit into the memory even with a large number of both samples and
features. However, the singular vector matrices of SVD decomposition on data matrix are dense, thus
may not be able to be fit into the memory. In this case, all these linear graph embedding approaches can
not be applied.

Since we have L = D−W , it is easy to check that the minimization problem in Eqn. (3) is equivalent
to the following maximization problem:

y∗ = arg max
yT Dy=1

yT Wy = arg max
yT Wy
yT Dy

.

and the optimal y’s are the maximum eigenvectors of eigen-problem

Wy = λDy. (11)

The eigen-problems of obtaining linear and kernel embedding functions can also be rewritten as

XWXTa = λXDXTa. (12)

and
KWKααα = λKDKααα. (13)

respectively. This maximum eigen-problem formulation in some cases can provide a more numerically
stable solution [11]. In the following of our paper, we will develop our algorithm based on this formulation.

3 The Spectral Regression Algorithm

Clearly, seeking a linear function (or a function in RKHS) which minimizes the objective function is a
natural extension of the spectral dimensionality reduction algorithms. However, the high computational
cost in both time and memory restricts these approaches to be applied on large scale data sets. In this
section, we describe our algorithm which can solve this problem.

In order to solve the this eigen-problem in Eqn. (12) and (13) efficiently, we use the following theorem:

Theorem 1 Let y be the eigenvector of eigen-problem in Eqn. (11) with eigenvalue λ. If XTa = y,
then a is the eigenvector of eigen-problem in Eqn. (12) with the same eigenvalue λ. If Kααα = y, then ααα

is the eigenvector of eigen-problem in Eqn. (13) with the same eigenvalue λ.

Proof We have Wy = λDy. At the left side of Eqn. (12), replace XTa by y, we have

XWXTa = XWy = XλDy = λXDy = λXDXTa

Thus, a is the eigenvector of eigen-problem Eqn. (12) with the same eigenvalue λ. The second part of
the theorem can be proved by the same approach.
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Theorem (1) shows that instead of solving the eigen-problem Eqn. (12), the linear embedding functions
can be acquired through two steps:

1. Solve the eigen-problem in Eqn. (11) to get y.

2. Find a which satisfies XTa = y. In reality, such a might not exist. A possible way is to find a
which can best fit the equation in the least squares sense:

a = arg min
a

m∑
i=1

(aTxi − yi)2 (14)

where yi is the i-th element of y.

The advantages of this two-step approach are as follows:

1. The matrix D is guaranteed to be positive definite and therefor the eigen-problem in Eqn. (11)
can be stably solved. Moreover, both L and D are sparse matrices. The top c eigenvectors of
eigen-problem in Eqn. (11) can be efficiently calculated with Lanczos algorithms [11].

2. The technique to solve the least square problem is already matured [11] and there exist many effi-
cient iterative algorithms (e.g ., LSQR [24]) that can handle very large scale least square problems.

In the situation that the number of samples is smaller than the number of features, the minimization
problem (14) is ill posed. We may have infinite many solutions for the linear equations system XTa = y
(the system is underdetermined). The most popular way to solve this problem is to impose a penalty on
the norm of a:

a = arg min
a

(
m∑

i=1

(
aTxi − yi

)2 + α‖a‖2

)
(15)

This is so called regularization and is well studied in statistics. The regularized least square is also called
ridge regression [15]. The α ≥ 0 is a parameter to control the amounts of shrinkage. Now we can see the
third advantage of the two-step approach:

3 Since the regression was used as a building block, the regularization techniques can be easily
incorporated and produce more stable and meaningful solutions, especially when there exist a large
amount of features [15].

If the linear regression is replaced by the kernel regression, we can find the embedding functions in the
RKHS. The analysis is similar to the above and is omitted to avoid unnecessary repetition.

Since our approach essentially performs regression after the spectral analysis of the graph, we called
it Spectral Regression (SR). Given a labeled set x1,x2, · · · ,xl and an unlabeled set xl+1,xl+2, · · · ,xm

in Rn. These samples belong to c classes and let lk be the number of labeled samples in the k-th class
(
∑c

k=1 lk = l). The algorithmic procedure of SR is stated below:

1. Constructing the adjacency graph: Let G denote a graph with m nodes. The i-th node
corresponds to the sample xi. We construct the graph G through the following three steps to
model the local structure as well as the label information:

7



(a) Put an edge between nodes i and j if xi is among p nearest neighbors of xj or xj is among p

nearest neighbors of xi.

(b) Put an edge between nodes i and j if xi shares the same label with xj .

(c) Remove the edge between nodes i and j if the label of xi is different from that of xj .

2. Choosing the weights: W is a sparse symmetric m × m matrix with Wij having the weight of
the edge joining vertices i and j.

(a) If there is no edge between i and j, Wij = 0.

(b) Otherwise,

Wij =

⎧⎪⎨⎪⎩
1/lk, if xi and xj both belong

to the k-th class;
δ · s(i, j), otherwise.

(16)

where 0 < δ ≤ 1 is the parameter to adjust the weight between supervised information and
unsupervised neighbor information. s(i, j) is a function to evaluate the similarity between xi and
xj and we have two variations.

(a) Heat kernel [parameter σ ∈ R]:

s(i, j) = e−
‖xi−xj‖2

2σ2

(b) Simple-minded [no parameter]:
s(i, j) = 1

3. Responses generation: Find y0,y1, · · · ,yc−1, the largest c generalized eigenvectors of eigen-
problem:

Wy = λDy (17)

where D is a diagonal matrix whose (i, i)-th element equals to the sum of the i-th column (or row,
since W is symmetric) of W . It is straightforward to show that the first eigenvector is a vector of
all ones with eigenvalue 1 [7].

4. Regularized least squares: Find c − 1 vectors a1, · · · ,ac−1 ∈ R
n. ak (k = 1, · · · , c − 1) is the

solution of regularized least square problem:

ak = arg min
a

(
m∑

i=1

(aTxi − yk
i )2 + α‖a‖2

)
(18)

where yk
i is the i-th element of yk. It is easy to check that ak is the solution of the linear equations

system:
(XXT + αI)ak = Xyk (19)

where I is a n × n identity matrix. The canonical Gaussian elimination method can be used to
solve this linear equations system [11]. When X is large, some efficient iterative algorithms (e.g .,
LSQR [24]) can be used to directly solve the above regularized least square problem in Eqn. (18).
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5. SR Embedding: Let A = [a1,a2, · · · ,ac−1], A is a n×(c−1) transformation matrix. The samples
can be embedded into c − 1 dimensional subspace by

x → z = ATx (20)

If embedding functions in RKHS are required, the 4th step can be replaced by regularized kernel least
squares as follows:

4′ Regularized kernel least squares: Find c− 1 vectors ααα1, · · · ,αααc−1 ∈ R
m. αααk (k = 1, · · · , c− 1)

is the solution the linear equations system:

(K + αI)αααk = yk (21)

where K is m × m gram matrix Kij = K(xi,xj) and K(xi,xj) is the Mercer kernel of RKHS
HK . It can be easily verified that function f(x) =

∑m
i=1 αk

i K(x,xi) is the solution of the following
regularized kernel least square problem [27]:

min
f∈HK

m∑
i=1

(
f(xi) − yk

i

)2 + α‖f‖2
K (22)

where αk
i is the i-th element of vector αααk.

5′ KSR Embedding: Let Θ = [ααα1, · · · ,αααc−1], Θ is a m×(c−1) transformation matrix. The samples
can be embedded into c − 1 dimensional subspace by

x → z = ΘT K(:,x) (23)

where K(:,x) .= [K(x1,x), · · · , K(xm,x)]T

4 Theoretical Analysis

SR (KSR) uses regularized least squares to get the embedding functions. When α > 0, the regularized
solution will not satisfy the linear equations system XTa = y and a will not be the eigenvector of of
eigen-problem in Eqn. (12) (So as the KSR solution ααα). It is interesting and important to see when SR
gives the exact solutions of eigen-problem (12) and (13). Specifically, we have the following theorem:

Theorem 2 Suppose y is the eigenvector of eigen-problem in Eqn. (11), if y is in the space spanned
by row vectors of X, the corresponding projective function a calculated in SR will be the eigenvector of
eigen-problem in Eqn. (12) as α deceases to zero. If y is in the space spanned by row (or column, since
K is symmetric) vectors of K, the corresponding projective function ααα calculated in KSR will be the
eigenvector of eigen-problem in Eqn. (13) as α deceases to zero.
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Proof Suppose rank(X) = r, the SVD decomposition of X is

X = UΣV T (24)

where Σ = diag(σ1, · · · , σr), U ∈ R
n×r, V ∈ R

m×r and we have UT U = V T V = I. The y is in the
space spanned by row vectors of X, therefor, y is in the space spanned by column vectors of V . Thus,
y can be represented as the linear combination of the column vectors of V . Moreover, the combination
is unique because the column vectors of V are linear independent. Suppose the combination coefficients
are b1, · · · , br. Let b = [b1, · · · , br]T , we have:

V b = y ⇒ V T V b = V Ty

⇒ b = V Ty

⇒ V V Ty = y (25)

To continue our proof, we need introduce the concept of pseudo inverse of a matrix [25], which we denote
as (·)+. Specifically, pseudo inverse of the matrix X can be computed by the following two ways:

X+ = V Σ−1UT

and
X+ = lim

λ→0
(XT X + λI)−1XT

The above limit exists even if XT X is singular and (XT X)−1 does not exist [25]. Thus, the regularized
least squares solution in SR

a =
(
XXT + αI

)−1
Xy

= (XT )+y (α → 0)

= UΣ−1V T ȳ

Combine with the equation in Eqn. (25), we have

XTa = V ΣUTa

= V ΣUT UΣ−1V Ty = V V Ty = y

By Theorem (1), a is the eigenvector of eigen-problem in Eqn. (12). The KSR part of the theorem can
be proved with the same approach.

When the the number of features is larger than the number of samples, the sample vectors are usually
linearly independent, i.e., rank(X) = m. In this case, we will have a stronger conclusion for SR which
is shown in the following Corollary.

Corollary 3 If the sample vectors are linearly independent, i.e., rank(X) = m, all the projective func-
tions in SR are the eigenvectors of eigen-problem in Eqn. (12) as α deceases to zero. These solutions
are identical to the linear graph embedding solutions as described in Section (2).
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Proof Since rank(X) = m, all the m eigenvectors yk of eigen-problem (11) are in the space spanned by
row vectors of X. By Theorem (2), all m corresponding ak of SR are eigenvectors of eigen-problem in
Eqn. (12) as α decreases to zero. They are

aSR
k = UΣ−1V Tyk.

Consider the eigen-problem in Eqn. (10), since the m eigenvectors yk are also in the space spanned
by row vectors of X̃ = UT X = ΣV T , eigenvector bk will be the solution of linear equations system
X̃Tbk = yk. The row vectors of X̃ = ΣV T are linearly independent, thus bk is unique and

bk = Σ−1V Tyk.

Thus, the projective functions of Linear Graph Embedding (LDE) described in section 2

aLDE
k = Ubk = UΣ−1V Tyk = aSR

k

For KSR, if the Gaussian RBF kernel is used, a similar conclusion will hold only requires that all the
sample vectors are different.

Corollary 4 If all the sample vectors are different, all projective functions in KSR with Gaussian RBF
kernel are eigenvectors of eigen-problem in Eqn. (13) when α = 0.

Proof When m samples are distinct points, the Gaussian RBF gram matrix K is of full rank [21, 27]. The
linear equations system Kααα = y has unique solution ααα = K−1y which is the eigenvector of eigen-problem
in Eqn. (13).

The corollary (3) also implies that when the sample vectors are linear independent, which will usually
be the case when the number of features is larger than the number of samples, the embedding functions
of linear SR will give the exactly same embedding results on training set as those spectral embedding
algorithms (e.g ., Laplacian Eigenmaps) if the same W is used as α decreases to zero. For kernel SR, if
the Gaussian RBF kernel is used, corollary (4) shows that the same conclusion will hold if all the sample
vectors are different. While the embedding functions in linear SR and kernel SR are defined everywhere,
both on and off training samples.

4.1 Connection to LDA in Supervised Setting

With all the data points labeled, we have
∑c

k=1 lk = l = m. Without loss of generality, we assume that
the data points in {x1, · · · ,xm} are ordered according to their labels. Let W (k) be a lk × lk matrix with
all elements being 1/lk. We can easily see that the matrix W in Eqn. (16) has a block-diagonal structure

W =

⎡⎢⎢⎢⎢⎣
W (1) 0 · · · 0

0 W (2) · · · 0
...

...
. . .

...
0 0 · · · W (c)

⎤⎥⎥⎥⎥⎦ (26)
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We have D = I and the generalized eigen-problem in Eq. (17) reduces to an ordinary eigen-problem

Wy = λy. (27)

With Theorem (2), we know that SR essentially provides the solutions of eigen-problem

XWXTa = λXXTa. (28)

Let X(k) = [x(k)
1 , · · · ,x(k)

lk
] denote the data matrix of k-th class, we have

XWXT =
c∑

k=1

X(k)W (k)(X(k))T

=
c∑

k=1

1
lk

(
lk∑

i=1

x(k)
i

lk∑
i=1

(x(k)
i )T

)

=
c∑

k=1

lk μμμ(k)(μμμ(k))T

(29)

where μμμ(k) = 1
lk

∑lk
i=1 x(k)

i is the mean vector of the k-th class. If the data are centered, i.e., the total
mean vector μμμ = 1

m

∑m
i=1 xi = 0, we have

XWXT =
c∑

k=1

lk(μμμ(k) −μμμ)(μμμ(k) −μμμ)T = Sb

and

XXT =
m∑

i=1

xixT
i =

m∑
i=1

(xi −μμμ)(xi −μμμ)T = St

Sb is called the between-class scatter matrix and St is the total scatter matrix [10]. The eigen-problem
in Eq. (28) can also be written as

Sba = λSta. (30)

Since St = Sb + Sw where Sw is the within-class scatter matrix, the maximum eigenvalue problem (30)
is equivalent to

Sba = λSwa. (31)

The latter is exactly the eigen-problem of Linear Discriminant Analysis (LDA) [10]. Thus, with centered
data, SR in supervised setting provides the LDA solution.

LDA is a canonical approach for classification and dimensionality reduction . It seeks directions on
which the data points of different classes are far away from each other while requiring data points of
the same class to be close to each other. The classification is based on the distances of the test point to
the class centroids in the reduced subspace. It is guaranteed to be Bayesian optimal when each class is
Gaussian with the same covariance matrix [10, 15].

Now let us examine the eigenvector y in Eq. (27). The W is block-diagonal, thus, its eigenvalues
and eigenvectors are the union of the eigenvalues and eigenvectors of its blocks (the latter padded ap-
propriately with zeros). It is straightforward to show that W (k) has eigenvector e(k) ∈ R

lk associated
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with eigenvalue 1, where e(k) = [1, 1, · · · , 1]T . Also there is only one non-zero eigenvalue of W (k) because
the rank of W (k) is 1. Thus, there are exactly c eigenvectors of W with the same eigenvalue 1. These
eigenvectors are

yk = [ 0, · · · , 0︸ ︷︷ ︸∑k−1
i=1 li

, 1, · · · , 1︸ ︷︷ ︸
lk

, 0, · · · , 0︸ ︷︷ ︸∑c
i=k+1 li

]T (32)

Since 1 is a repeated eigenvalue of W , we could just pick any other c orthogonal vectors in the space
spanned by {yk}, and define them to be our first c eigenvectors. The vector of all ones is naturally in
the spanned space. This vector is useless since the responses of all the data points are the same. In
reality, we can pick the vector of all ones as our first eigenvector and use Gram-Schmidt process to get
the remaining c− 1 orthogonal eigenvectors. The vector of all ones can then be removed. It is important
to note that the values of the i-th and j-th positions of any vector y in the space spanned by {yk} will
be the same as long as xi and xj belong to the same class.

Besides the advantages of SR we described in the previous section, two points should be emphasized
for using SR instead of directly applying LDA:

1. LDA needs to solve the eigen-problem in Eq. (31) which could be very computationally expensive
for high dimensional data in large scale problem. The eigen-decomposition step of SR in Eqn. (17)
is trivial with the W constructed as in Eqn. (26). Thus, SR only needs to solve c − 1 regularized
least squares problems which can be very efficient.

2. When the parameter α > 0 in the fourth step, SR gives a regularized LDA solution [9]. It was
showed that regularized LDA can get better performance than ordinary LDA, especially we have a
large amount of features [14].

4.2 Connections to Laplacian Eigenmap and LPP in Unsupervised Setting

When all the data points are unlabeled, W in the second step of our algorithm is simply a p-nearest
neighbor graph. Let L = D − W , it is easy to check that the largest eigenvectors of the eigen-problem
(17) are equivalent to the smallest eigenvectors of Ly = λ′Dy. Specifically, we have

Wy = λDy ⇒ (D − L)y = λDy

⇒ Ly = (1 − λ)Dy = λ′Dy
(33)

The latter is exactly the eigen-problem of Laplacian Eigenmap [4]. Recall the eigen-problem of Locality
Preserving Projection (LPP) [17] which is as follows:

XLXTa = λXDXTa (34)

From Theorem (1) and (2), we see that the fourth step of our algorithm provides a regularized locality
preserving projection solution.

Clustering by using the top eigenvectors of a matrix derive from the distance between points (like W

in our algorithm), so called spectral clustering methods, recently received a lot of interests [22, 32]. But
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despite their empirical successes, there is still no theoretical proof on which eigenvectors to use and how
to derive clusters from them. Those eigenvectors also play a key role in our algorithm, we provide here
a informal analysis on how many eigenvectors we should use when there exist c classes. Our analysis is
based on graph partitioning.

We consider the problem of dividing the graph G into c disjoint subgraphs, G1, · · · ,Gc, such that
G = G1 ∪ · · · ∪ Gc and Gk ∩ Gp = ∅, k �= p. The min-cut criteria can be stated as follows:

min
G1,··· ,Gc

⎛⎝∑
i∈G1

∑
j∈G2

Wij + · · · +
∑

i∈Gc−1

∑
j∈Gc

Wij

⎞⎠ (35)

where W is the weight matrix of graph G. Now, let’s recall the objective function of Lapalcian Eigenmaps
[4], which is also the objective function for many spectral clustering algorithms::

min
∑
ij

‖Yi − Yj‖2Wij (36)

It is easy to verify that Eqn (36) gives the same solution of Eqn (35) as long as Yi’s satisfy two conditions:
(1) ‖Yi − Yj‖ = 0 if xi and xj belong to the same subgraph; (2) ‖Yi − Yj‖ = d, d is a constant for any
xi and xj as long as they belong to different subgraph. To fulfil such requirement, we can immediately
see the label vector Yi’s reside on the vertices of the standard (c − 1)-simplex, i.e., Yi should be at least
c− 1 dimension. Let Y = [Y1, · · · , Ym]T . By relaxing the elements of Y to take real values. The column
vectors of optimal Y will be given by the c − 1 smallest eigenvectors of eigen-problem Ly = λDy [4].

The above informal analysis shows that we need at least c− 1 (after removing the first all ones trivial
eigenvector) smallest eigenvectors of L to reveal the c class structure. Such analysis is consistent with
previous study on spectral clustering [22]. Also, our analysis in the previous section shows that when
the label information are available, we can use exactly c − 1 eigenvectors to reveal the class structure.

It is also important to note that many spectral clustering algorithms [1, 22, 32] and spectral dimen-
sionality reduction algorithm [4] do not have explicit embedding function, thus can not be applied to
unseen data. Similar to LPP, SR provides natural out-of-sample extensions to Laplacian Eigenmap [4]
and several other spectral clustering algorithms [22, 32]. Moreover, the computation of our approach can
be more efficient than ordinary LPP [17].

4.3 Spectral Regression in Semi-Supervised Setting

For SR in semi-supervised setting, we have the following theorem.

Theorem 5 Let y be one of the first c largest eigenvectors of eigen-problem (17), y = [y1, y2, · · · , ym]T .
Suppose two labeled points xi and xj share the same label. For any η > 0, there exists δ (parameter in
the second step of our algorithm) such that |yi − yj | ≤ η.

Proof Without loss of generality, we assume that the labeled data points {x1, · · · ,xl} are ordered
according to their labels, xi and xj belong to the first class and there is l1 labeled points in the first
class. The eigenvectors are normalized , i.e., ‖y‖ = 1.
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The first l1 elements in the i-th and j-th rows of W are 1/l1 and the next m − l1 elements are either
zero or δ · s(i, j) as defined in Eq. (16). It is easy to check the rank of W is grater than c. Thus, y is an
eigenvector with non-zero eigenvalue, Wy = λDy. We have

yi =
1
λ

1
Dii

m∑
q=1

Wiqyq =
1
λ

1
Dii

⎛⎝ 1
l1

l1∑
q=1

yq +
m∑

q=l1+1

Wiqyq

⎞⎠
(1 ≤ i ≤ l1)

Since s(i, j) ≤ 1, (∀ i, j) and ‖y‖ = 1, we have

Wiq ≤ δ, (q = l1 + 1, · · · ,m),

Wjq ≤ δ, (q = l1 + 1, · · · ,m),

Dii =
∑

q

Wiq ≤ 1 + (m − l1)δ,

Djj =
∑

q

Wjq ≤ 1 + (m − l1)δ,

|yi| ≤ 1, (i = 1, · · · ,m).

Thus,

|yi − yj | =

∣∣∣∣∣ 1λ 1
l1

l1∑
q=1

yq

(
1

Dii
− 1

Djj

)

+
1
λ

⎛⎝ 1
Dii

m∑
q=l1+1

Wiqyq − 1
Djj

m∑
q=l1+1

Wjqyq

⎞⎠∣∣∣∣∣
≤ 1

λ

1
l1

l1∑
q=1

|yq|
∣∣∣∣Djj − Dii

DiiDjj

∣∣∣∣
+

1
λ

1
Dii

m∑
q=l1+1

Wiq|yq| + 1
λ

1
Djj

m∑
q=l1+1

Wjq|yq|

≤ 1
λ

1
l1

l1∑
q=1

|yq|
(
2(m − l1)δ

)
+

2
λ

m∑
q=l1+1

|yq|δ

=

⎛⎝2(m − l1)
λl1

l1∑
q=1

|yq| + 2
λ

m∑
q=l1+1

|yq|
⎞⎠ δ

≤
(

4(m − l1)
λ

)
δ

Given η > 0, we choose δ = ηλ/4(m − l1). Thus |yi − yj | ≤ η.

The above theorem shows that when δ is sufficiently small, the responses of the labeled same class
points can be as close as possible. This property is reasonable and important since for classification,
either supervised or semi-supervised, we always expect that the responses of the samples in the same
class are close to each other.
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5 Computational Complexity Analysis

In this section, we provide a computational complexity analysis of SR. Our analysis considers both time
complexity and memory cost. The term flam, a compound operation consisting of one addition and one
multiplication, is used for presenting operation counts [28].

To get a better understanding of the benefits SR achieves, we first provide a computational complexity
analysis of LDA and LPP.

5.1 Complexity Analysis of LDA and LPP

Both LDA and LPP need to solve the eigen-problem in Eqn. (12) with different W . LDA can get some
computational benefits from the special structure of W as shown in the following equations (We have
DLDA = I).

XWLDAXTa = λXXTa

⇒ UΣV T WLDAV ΣUTa = λUΣΣUTa

⇒ Σ−1UT UΣV T WLDAV
(
ΣUTa

)
= λΣ−1UT UΣ

(
ΣUTa

)
⇒ V T WLDAV b = λb

(37)

V ∈ R
m×d is right singular matrix of X and d is the rank of X. The i-th row vector of V corresponds to

the data point xi and we denote it as zi, V = [z1, · · · , zm]T . Let z(k)
i denote the row vector of V which

corresponds to x(k)
i . Define ννν(k) = 1

lk

∑lk
i=1 z(k)

i and H = [
√

l1ννν
(1), · · · ,

√
lcννν

(c)] ∈ R
d×c. Inspired by Eqn.

(29), we have

V T WLDAV =
c∑

k=1

1
lk

(
lk∑

i=1

z(k)
i

lk∑
i=1

(z(k)
i )T

)

=
c∑

k=1

lk ννν(k)(ννν(k))T

=HHT

(38)

The above algebraic steps show that the LDA projective functions can be obtained by the SVD decom-
position of X and calculating the eigenvectors of HHT .

It is easy to check that the left singular vectors of X (column vectors of U) are the eigenvectors
of XXT and the right singular vectors of X (column vectors of V ) are the eigenvectors of XT X [29].
Moreover, if U or V is given, then we can recover the other via the formula XV = UΣ and UT X = ΣV T .
In fact, the most efficient SVD decomposition algorithm (i.e. cross-product) applies this strategy [29].
Specifically, if m ≥ n, we compute the eigenvectors of XXT , which gives us U and can be used to recover
V ; If m < n, we compute the eigenvectors of XT X, which gives us V and can be used to recover U .
Since the matrix H is of size r × c, where r is the rank of X and c is the number of classes. In most
of the cases, r is close to min(m, n) which is far larger than c. Thus, comparing to directly calculate
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the eigenvectors of HHT , compute the eigenvectors of HT H then recover the eigenvectors of HHT can
achieve a significant saving.

When m ≥ n, the calculation of XXT requires 1
2mn2 flam; Computing the eigenvectors of XXT

requires 9
2n3 flam [29, 11]; Recovering V from U requires mn2 flam by assuming X is of full rank;

Computing the eigenvectors of HHT requires 1
2nc2 + 9

2c3 + nc2 flam; Finally, calculating a’s from b’s
requiring n2c. When m < n, we have the similar analysis. We conclude that the time complexity of LDA
measured by flam is

3
2
mnt +

9
2
t3 +

3
2
tc2 +

9
2
c3 + t2c

where t = min(m, n). Considering c � t, the time complexity of LDA can be written as 3
2mnt + 9

2 t3 +
O(t2).

For LPP, we have (For simplicity, we use W , instead of WLPP .)

XWXTa = λXDXTa

⇒
(
XD1/2

)(
D−1/2WD−1/2

)(
XD1/2

)T
a = λ

(
XD1/2)

(
XD1/2

)T
a

⇒ Ū Σ̄V̄ T W̄ V̄ Σ̄ŪTa = λŪ Σ̄Σ̄ŪTa

⇒ V̄ T W̄ V̄ b = λb

(39)

where XD1/2 = Ū Σ̄V̄ T is the SVD decomposition and W̄ = D−1/2WD−1/2. The W̄ does not have the
special structure as WLDA and the approach described in Eqn. (38) can not be applied. We need to
directly calculate the eigenvectors of V̄ T W̄ V̄ . With 9

2 t3 flam, all the t eigenvectors can be calculated.
If only d projective functions are needed, the Lanczos algorithm can be used to iteratively compute the
first d eigenvectors within k1dt2 flam, where k1 is the number of iterations4 in Lanczos [29].

The affinity graph construction step (calculating the W ) in LPP is a necessary step in all the unsuper-
vised spectral embedding algorithms. If we use p-nearest neighbor graph, the time complexity is around
1
2m2n + 2mn + m2 log m flam. 1

2m2n + 2mn is used to calculate the pairwise distances and m2 log m is
used for m times sorting5. Overall, the time complexity of LPP measured by flam is

m2(
1
2
n + log m) +

3
2
mnt +

9
2
t3 + min(

9
2
t, k1d)t2 + O(t2)

Besides the data matrix X, both LDA and LPP need to store the left and right singular matrices of
X (or XD1/2), which are both dense matrices. Thus the memory cost of LDA (LPP) is at least

ms + mt + nt

where s is the average number of nonzero features for one sample (s ≤ n).
4Lanczos algorithm converges very fast, 20 iterations are usually enough to achieve a satisfactory precision [29].
5There exist more efficient algorithms to obtain the p-nearest neighbors in stead of sorting the m numbers. We will not

discuss this since it is beyond the scope of this paper.
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5.2 Complexity Analysis of SR

SR uses regularized least squares to find the projective functions, which is a necessary step in both
supervised and unsupervised cases. Thus, we begin our analysis with analyzing this step.

When n is not very large, the regularized least squares problem in Eqn. (18) can be solved by directly
solving the linear equations system in Eqn. (19). The calculation of XXT requires 1

2mn2 flam. Since the
matrix XXT + αI is positive definite, using Gaussian Elimination to solve the linear equations system
in Eqn. (19) costs 1

6n3 flam [28].

For large scale high dimensional data, the regularized least squares problem in Eqn. (18) can be
efficiently solved by iterative algorithm LSQR which is designed to solve large scale sparse linear equations
and least squares problems [24]. In each iteration, LSQR needs to compute two matrix-vector products in
the form of Xp and XTq. The remaining work load of LSQR in each iteration is 3m+5n flam [23]. Thus,
the time cost of LSQR in each iteration is 2mn + 3m + 5n. If LSQR stops after k2 iterations6, the time
cost is k2(2mn+3m+5n). Finally, the total time cost for d projective functions is dk2(2mn+3m+5n).
Besides data matrix X, LSQR needs m + 2n additional memory [23]. Finally, the memory cost in this
step is mn + m + 2n + dn, with dn to store the projective functions.

In supervised case, the eigen-problem in third step of SR is trivial and we can directly obtain those
c − 1 eigenvectors. The cost of this step is mainly the cost of Gram-Schmidt method, which requires
(mc2 − 1

3c3) flam and mc + c2 memory [28].

In unsupervised case, the affinity graph construction step is same as we analyzed before. Since the
p-nearest neighbor graph matrix W is sparse (has around mp non-zero entries), we can use Lanczos
algorithm to compute the first d eigenvectors within dk1m(p + 8) flam [29]. The memory requirement of
this step is simply the memory to store W and d eigenvectors.

5.3 Summary

We summarize our complexity analysis results in Table 2. We assume m � c and only show the dominant
part of the time and memory costs for simplicity. The main conclusions include:

• In supervised case:

� LDA has cubic-time complexity with respect to min(m, n). Moreover, the left and right
singular vector matrices of X, which are required to be stored in memory, are both dense.
When both m and n are large, it is not feasible to apply LDA.

� SR has linear-time complexity with respect to both m and n. It only has very small additional
memory requirement besides data matrix X. Thus, SR can be easily scaled to high dimensional
large data sets.

� The computational complexity analysis clearly shows the advantages of using SR instead of
directly applying LDA.

6LSRQ converges very fast [24]. In our experiments, 20 iterations are enough.
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Table 2: Computational complexity of LDA, LPP and SR
Time complexity (operation counts, flam)

Algorithm Graph Construction Responses Generation Embedding Functions

Supervised
LDA

−
− 3

2mnt + 9
2 t3

SR mc2 2ck2ms + 5ck2n

Unsupervised
LPP

m2(s + log m)
− 3

2mnt + 9
2rt3 + min(9

2 t, dk1)t2

SR dk1m(p + 8) 2dk2ms + 5dk2n

Memory cost
Algorithm

Supervised
LDA ms + (m + n)t + nc

SR ms + mc + nc

Unsupervised
LPP ms + mp + (m + n)t + nd

SR ms + mp + md + nd

m: the number of data samples
n: the number of features
t: min(m,n)
s: the average number of nonzero features for one sample (s ≤ n)
c: the number of classes (LDA and SR will produce c − 1 projective functions)
d: the number of dimensions (projective functions) required in LPP and SR
p: the number of nearest neighbors
k1: the number of iterations in Lanczos
k2: the number of iterations in LSQR

• In unsupervised case:

� The graph construction step is unavoidable for all the spectral graph embedding approaches.
If the same graph is used, the computational cost on this step can be neglected when we
compare the different algorithms.

� The popular manifold learning algorithm (e.g ., LLE, Isomap, Laplacian Eigenmaps) only
compute the embedding results of the training data, which is exactly the responses generation
step of SR. SR uses regression to find the projective functions with the additional linear-time
complexity cost (with respect to both m and n) and almost no additional memory requirement.

� Those linear (kernel) extension approaches (e.g ., LPP, NPE, Kernel Eigenmaps) directly cal-
culate the projective functions by solving dense eigen-problems. They require additional cubic-
time complexity cost (with respect to min(m, n)) and (m+n) ·min(m, n) memory cost. When
both m and n are large, it is infeasible to apply these approaches.

• In both cases:

� In many real problems, the data matrix is sparse. However, LDA and LPP need the complete
SVD decomposition, which can not get any benefit from the sparseness of the data matrix.
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Moreover, the left and right singular matrices are both dense. They can not be fit into the
memory when both m and n are large.

� As shown in Table (2), SR can fully explore the sparseness of the data matrix and gain
significant computational saving on both time and memory. SR can successfully applied as
long as the data matrix X can be fit into the memory.

� Even the data matrix X is too large to be fit into the memory, SR can still be applied with
some reasonable disk I/O. This is because in each iteration of LSQR, we only need to calculate
two matrix-vector products in the form of Xp and XTq, which can be easily implemented
with X and XT stored on the disk.

6 Experiments

In this section, several experiments on classification and semi-supervised classification were performed
to show the effectiveness and efficiency of our proposed algorithm. All of our experiments have been
performed on a P4 3.20GHz Windows XP machines with 1GB memory.

6.1 Experiments on Supervised Learning

6.1.1 Face Recognition on PIE

Dimensionality reduction has been widely used in appearance-based face recognition. Two of the most
well known approaches include Eigenface [31] and Fisherface [3]. Eigenface is based on Principal Compo-
nent Analysis (PCA) and Fisherface is based on Linear Discriminant Analysis (LDA). Fisherface performs
PCA first to guarantee the nonsingularity of with-class scatter matrix Sw which is essentially same as
the SVD approach we discussed in Section 2. The ordinary Regularized Linear Discriminant Analysis
(RLDA) [9] solves the singularity problem by adding some constant values to the diagonal elements of
Sw, as Sw + αI, for some α > 0. In this experiment, we compared SR with these three approaches.

All the algorithms are tested on the CMU PIE face database7, which contains 68 subjects with
41,368 face images as a whole. The face images were captured under varying pose, illumination and
expression. We choose the five near frontal poses (C05, C07, C09, C27, C29) and use all the images
under different illuminations and expressions, thus we get 170 images for each individual. All the face
images are manually aligned and cropped. The cropped images are 32 × 32 pixels, with 256 gray levels
per pixel. The features (pixel values) are then scaled to [0,1] (divided by 256). For each individual,
l(= 10, 20, 30, 40, 50, 60) images are randomly selected for training and the rest are used for testing.

The nearest neighbor classifier is applied in the original face image space (Baseline) and PCA, LDA,
RLDA, SR subspace. For LDA, RLDA and SR, the dimension of the subspace is c − 1 (=67), where c

is the number of categories. For PCA, we tested its performance with all the possible dimensions and
report the best result. Notice that there is a parameter α which controls smoothness of the estimator

7http://www.ri.cmu.edu/projects/project 418.html
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Table 3: Recognition error rates on PIE (mean±std-dev%)
Train Size Baseline Eigenface (PCA) Fisherface (LDA) RLDA SR

10×68 64.8±0.7 64.8±0.7 29.7±1.3 19.1±1.2 19.5±1.3
20×68 48.6±0.7 48.6±0.7 20.5±0.8 10.9±0.7 10.8±0.7
30×68 37.9±0.6 37.9±0.6 10.9±0.5 8.7±0.7 8.4±0.7
40×68 29.9±0.6 29.9±0.6 8.2±0.4 7.2±0.5 6.9±0.4
50×68 23.9±0.6 23.9±0.6 7.2±0.4 6.6±0.4 6.3±0.4
60×68 19.6±0.6 19.6±0.6 6.4±0.3 6.0±0.3 5.7±0.2

Table 4: Computational time on PIE (s)
Train Size Eigenface (PCA) Fisherface (LDA) RLDA SR

10×68 2.527 4.291 7.725 0.468
20×68 7.012 7.626 7.828 0.685
30×68 7.329 7.887 7.908 0.903
40×68 7.558 8.130 8.278 1.126
50×68 7.693 8.377 8.414 1.336
60×68 7.949 8.639 8.654 1.573
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Figure 1: Error rate and computational time as functions of number of training samples per class on
PIE.

in both RLDA and SR. We simply set the value of α as 1, and the effect of parameter selection will be
discussed later.

The recognition error rate as well as the the running time (second) of computing the projection
functions for each method are reported on the Table (3) and (4). These results are also showed in the
Figure (1). For each given l (the number of training samples per class), we average the results over 20
random splits and report the mean as well as the standard deviation.

The main observations from the performance comparisons include:

• The eigenface approach (PCA) fails to gain any improvement over the baseline method. This is
probably due to the fact that PCA is unsupervised and does not encode discriminating information.
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• The fisherface approach (LDA) seeks the projective functions which are optimal on the training
set. It does not consider the possible overfitting in small sample size case. Both RLDA and SR
are regularized versions of LDA. The Tikhonov regularizer is used to control the model complex-
ity. When the number of training samples are small, RLDA and SR achieve significantly better
performance than LDA, which suggests that overfitting is a very crucial problem which should be
addressed in LDA model.

• Both LDA and RLDA need SVD decomposition of the data matrix which is computationally
expensive. While SR only needs to solve c − 1 regularized least squares problems which are very
efficient. This nice property makes it possible to apply SR to high dimensional large data sets.

6.1.2 Text Categorization on 20Newsgroups

The popular 20 Newsgroups8 is a data set collected and originally used for document classification by
Lang [19]. The “bydate” version is used in our experiment. The duplicates and newsgroup-identifying
headers are removed which leaves us 18,941 documents, evenly distributed across 20 classes. This corpus
contains 26214 distinct terms after stemming and stop word removal. Each document is then represented
as a term-frequency vector and normalized to 1.

The most well known dimensionality reduction algorithm for text processing is Latent Semantic In-
dexing (LSI) [8] which is essentially similar to PCA. The LDA obviously can also be used for text
classification (with the necessary SVD pre-processing). However, the ordinary RLDA can not be applied
because it needs to solve the generalized eigen-problem with matrices size n × n, where n is the number
of features. In our case, n = 26214 and such matrices can not be fit into memory.

The experimental setting is the same as before, so as all the parameters. The only difference is that
it is not possible to enumerate all the dimensions in LSI, and we tested its performance with dimension
50, 100 and 500.

The data set was randomly split into training and testing sets. In order to examine the effectiveness
of different algorithms with different size of the training set, we ran several tests that the training set
contains 5%, 10%, 20%, 30%, 40% and 50% documents. For each test, we averaged the results over
20 random splits. The categorization error rates as well as the dimensionality reduction time of all the
methods are shown in Table (5), (6) and Figure (2).

Similar to PCA, LSI is also unsupervised and does not have discriminating power. It is not a good
choice in dimensionality reduction for text categorization. The error rate in LSI subspace is even larger
than that in original document space. Both LDA and SR are supervised. They search for the subspace
in which the different class samples are far from each other while same class samples are close to each
other. As a result, classification in the LDA (SR) subspace achieves significant better performance than
in original document space. Again, as a regularized version of LDA, SR achieves better performance
than LDA, which verifies the effectiveness of regularization for classification [15].

LDA has the cubic-time complexity with respect to min(m, n) and it also needs the memory to store
8http://people.csail.mit.edu/jrennie/20Newsgroups/
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Table 5: Categorization error rates on 20Newsgroups (mean±std-dev%)
Train LSI
Size Baseline 50 100 500 LDA∗ RLDA∗ SR
5% 41.8±1.3 54.5±0.8 50.1±1.2 43.7±0.8 28.0±0.6 − 27.3±0.5
10% 35.7±0.5 50.6±1.1 46.2±0.7 39.1±0.6 22.7±0.6 − 21.3±0.5
20% 30.3±0.2 46.5±0.7 42.4±0.4 35.5±0.8 − − 16.0±0.3
30% 27.2±0.3 44.0±0.5 40.1±0.4 33.8±0.4 − − 13.8±0.2
40% 24.6±0.3 42.5±0.3 38.1±0.3 31.3±0.4 − − 12.4±0.2
50% 22.4±0.4 41.4±0.4 36.7±0.3 29.4±0.3 − − 11.4±0.2

Table 6: Computational time of LSI, LDA and SR (s)
Train LSI
Size 50 100 500 LDA∗ RLDA∗ SR
5% 6.53 11.58 19.52 24.54 − 16.47
10% 9.91 28.12 61.29 81.08 − 19.23
20% 16.45 44.13 138.9 − − 22.93
30% 22.13 58.13 301.8 − − 26.84
40% 27.80 70.86 518.7 − − 31.24
50% 32.87 82.60 708.4 − − 36.51
∗LDA (RLDA) can not be applied as the size of
training set increases due to the memory
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Figure 2: Error rate and computational time as functions of number of training samples per class on
20Newsgroups.

the left and right singular vector matrices which are both dense. As the size of the training set increases,
LDA can not be applied due to the memory limit. SR has linear-time complexity with respect to both m

and n. Moreover, it can fully explore the sparseness of the data matrix and gain significant computational
saving on both time and memory. These properties make SR an efficient and effective dimensionality
reduction algorithm for text processing tasks (high dimensional large scale data).
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Figure 3: Model selection of SR with α on PIE (a, b) and 20Newsgroups (c, d). The curve shows the
test error of SR with respect to α/(1 + α). The other line shows the test error of LDA. It is clear that
SR can achieve significantly better performance than LDA over a large range of α.

6.1.3 Model Selection with α

The only parameter in SR (supervised mode) is the regularization parameter α ≥ 0 which controls
the smoothness of the estimator. Our theoretical analysis shows that SR gives the LDA solution as α

decreases to zero. In the previous experiments, we empirically set it to be 1. In this subsection, we try
to examine the impact of parameter α on the performance of SR.

Figure (3) shows the performance of SR as a function of the parameter α. For convenience, the X-axis
is plotted as α/(1 + α) which is strictly in the interval [0, 1]. It is easy to see that SR can achieve
significantly better performance than LDA over a large range of α. Thus, the parameter selection is not
a very crucial problem in SR algorithm. In reality, we can use cross validation to select this parameter
or simply choose a value between 0.1 and 1.

6.2 Experiments on Semi-Supervised Learning

In the following subsections, we try to examine the performance of our algorithm in semi-supervised
situation. In many of previous experiments for semi-supervised learning, the experimental setting is
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transductive (e.g ., [34, 35]), that is, both the training and test set (without label information) are
available during the learning process. In reality, a more natural setting for semi-supervised learning is
as follows. The available training set contains both labeled and unlabeled examples, and the testing set
is not available during the training phrase, which we refer here as semi-supervised setting. In this case,
many of recently proposed graph based semi-supervised learning algorithms can not be applied since they
do not have out-of-sample extension. SR learns the embedding functions which are defined everywhere,
thus, our algorithm can be applied in both of these two settings.

6.2.1 Handwritten Digit Recognition

The MNIST handwritten digit database9 was used in this experiment. The public MNIST database has
a training set of 60,000 samples (denoted as set A), and a testing set of 10,000 samples (denoted as set
B). In our experiment, we take the first 2,000 samples from the set A as our training set and the first
2,000 samples from the set B as our test set. In both training and test sets, each digit has around 200
samples.

A random subset with l (= 1, 2, 5, · · · , 40, 50) samples per digit from the training set were labeled and
the rest were left unlabeled. Predicting the label of those unlabeled samples is a transductive setting and
predicting the label of samples in test set is a semi-supervised setting. In the transductive setting, three
algorithms are compared. They are: (1) Kernel Discriminant Analysis (KDA) [2], which uses labeled
data only; (2) KSR, which uses both labeled and unlabeled data; (3) Consistency [34], which uses both
labeled and unlabeled data. In the semi-supervised setting, the first two algorithms are compared. For
KDA and KSR, the classification is based on the distances of a test example to the class centroids in the
KDA (KSR) subspace. We average the results over 20 random selection for each given l.

The p is set to be 5 for the p-nearest neighbor graph over all the training samples in KSR. This graph
is also used in the Consistency algorithm. The values of both parameters α and δ in KSR were set to
0.1. The same Gaussian RBF kernel with width 1 is used in both KDA and KSR. The parameter in
Consistency algorithm [34] was tuned to achieve the optimal performance.

Figure 4(a) and 4(b) show the performance of different algorithms in the transductive setting and
semi-supervised setting respectively. We have the following observations: (a) All these algorithms can
take advantage of more labeled samples, which is important to the real-world classification task. (b)
KSR can make efficient use of both labeled and unlabeled samples to discover the intrinsic discriminant
structure in the data, thus achieves consistent improvement over KDA which is purely supervised. (c)
KSR achieves comparable performance with Consistency algorithm in transductive setting. The latter
is one of the state-of-the-art semi-supervised learning algorithms. Moreover, KSR can also be applied in
semi-supervised setting which gives us more flexibility.
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Table 7: Performance comparisons on MNIST (mean±std-dev%)
Labeled Unlabeled Error Test Error

Size KDA KSR Consistency KDA KSR
1×26 58.3±4.9 34.0±4.9 33.3±5.0 63.4±5.3 45.5±4.3
2×26 42.9±3.1 25.4±3.3 23.5±4.1 49.3±3.6 37.0±5.6
5×26 28.3±2.6 17.9±2.8 15.8±2.1 34.0±2.7 29.8±4.4
10×26 19.8±1.1 14.4±2.4 14.2±1.1 29.1±2.1 24.3±3.9
15×26 15.1±1.4 10.6±0.8 11.9±0.7 21.9±1.9 17.2±1.6
20×26 13.0±0.8 9.5±0.9 10.9±0.6 20.6±2.1 16.3±1.6
30×26 9.5±0.7 7.9±0.4 9.8±0.5 16.1±1.0 13.6±0.8
40×26 7.7±0.4 7.2±0.5 9.7±0.6 14.7±0.8 12.5±0.7
50×26 6.5±0.3 6.2±0.4 8.9±0.7 13.0±0.9 11.7±0.5
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Figure 4: Error rate as a function of number of labeled samples.

6.2.2 Model Selection with δ

In semi-supervised setting, the essential parameter in SR is the δ (0 < δ ≤ 1) which adjusts the weight
between supervised information and unsupervised neighbor information. Figure (5) shows the perfor-
mance of KSR as a function of the parameter δ. When the number of labeled samples is extremely small
(1 or 2 labeled samples per class), the optimal δ tends to be large (larger than 0.1); With the number
of labeled samples increases, the optimal δ decreases. In all cases, KSR can achieve significantly better
performance than KDA over a large range of δ.

9http://yann.lecun.com/exdb/mnist/
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Figure 5: Model selection of SR with δ on MNIST. The curve shows the test error of KSR with respect to
δ. The other line shows the test error of KDA. When the number of labeled samples is extremely small
(1 or 2 labeled samples per class), the optimal δ tends to be large (larger than 0.1); With the number
of labeled samples increases, the optimal δ decreases. In all cases, KSR can achieve significantly better
performance than KDA over a large range of δ.

7 Conclusion

In this paper, we propose a new dimensionality reduction algorithm called Spectral Regression (SR). It
is based on the same variational principle that gives rise to the Laplacian Eigenmap [4]. As a natural
extension of several recent nonparametric techniques for global nonlinear dimensionality reduction such
as [26, 30, 4], SR aims at learning an embedding function (either linear or in RKHS) which is defined
everywhere (and therefore on novel test data points). It casts the problem of learning an embedding
function into a regression framework which facilitates both efficient computation and the use of regu-
larization techniques. The computational complexity analysis illustrates the advantage of SR over other
linear or kernel extensions of LLE and Laplacian Eigenmap [17, 6, 16].

By using the affinity graph to model both label and local neighborhood information, SR can make
efficient use of both labeled and unlabeled points to discover the intrinsic discriminant structure in the
data. Our theoretical analysis linked our algorithm to LDA [14] and LPP [17] in supervised and unsu-
pervised cases. The experimental results on classification and semi-supervised classification demonstrate
the effectiveness and efficiency of our algorithm.

Our approach provides a general framework for learning a function (either linear or in RKHS) in
graph embedding approaches. With the specific affinity graph, SR can provide a natural out-of-sample
extension of many spectral embedding algorithms like LLE, Isomap, Laplacian Eigenmaps and spectral
clustering algorithms [22].
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