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Abstract

Reconstruction and modeling of 3-D geometry are among the core issues in computer vision. While geometry

composed of radiometrically simple materials is currently relatively easy to reconstruct and model, geometry

with complex reflectance properties presents a substantial challenge. The research work presented here is an

investigation of this problem. Two methods are proposed that are specifically designed to handle geometry

with complex photometric properties.

The first proposed method is designed to reconstruct large-scale geometry with arbitrary and possibly

anisotropic BRDFs. Existing reconstruction techniques typically make explicit or implicit assumptions about

the reflectance properties of a surface. The proposed method uses the idea of photometric ranging, where no

such assumptions are necessary. In a photometric stereo-like setup of multiple images obtained from a single

viewpoint under controlled illumination, photometric ranging recovers the depth directly for each camera

pixel, rather than through surface normal field integration. It exploits the basic concept of radiant energy

density falloff with distance from a point light source. Double-covering the incident light field allows to find

sets of coincidental pairs of light directions where this can be used to align the reflected light fields and

directly reconstruct the depth of a scene. Unlike photometric stereo, in photometric ranging no assumptions

are required about the surface smoothness, the presence or absence of shadowing, or the nature of the BRDF,

which may vary over the surface. Once the depth of a scene is known, the reflected light field can also be

resampled to relight the scene, that is to render the same scene from the camera view, but under novel

lighting, including nearby and distant sources.

The second proposed method aims to model small-scale geometry of volumetric surface materials with

complex reflectance. Instead of recovering the intricate geometry itself, it uses an appearance-based approach

of volumetric texturing, which is a popular technique for rendering rich 3-D detail when a polygonal surface

representation would be ineffective. Although efficient algorithms for rendering volumetric textures have

been known for years, capturing the richness of real volumetric materials remains a challenging problem.

The proposed technique generates a volumetric representation of a complex 3-D texture with unknown

reflectance and structure. From the acquired reflectance data in the form of a 6-D Bidirectional Texture
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Function (BTF), the proposed method creates an efficient volumetric representation in the form of a stack

of semi-transparent layers each representing a slice through the texture’s volume. In addition to negligible

storage requirements, this representation is ideally suited for hardware-accelerated real-time rendering.
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Chapter 1

Introduction

Achieving visual realism in computer generated rendeirng is a daunting task. The natural world is a visually

complex system, with light interactions taking place on a quantum level. Although modeling various light

phenomena has been a central topic in computer graphics for years, it is unlikely that a comparable level of

detail to the real world will ever be reached. Light interactions take place in an environment that is likewise

extremely complex. Modeling the complexity of the natural environment is the goal of computer graphics.

As computing power continues to grow rapidly, modeling is becoming more accurate and realistic. This is

especially true when we look at the improvements of the capabilities of graphics hardware. The quality of

offline image synthesis has already reached the level where it becomes very difficult for humans to distinguish

synthetic images form real ones. Moreover, thanks to the rapid advancements in graphics hardware, we are

quickly approaching the same level in real-time image synthesis (see an example in Figure 1.1). However,

as rendered scenes become more complex, even more effort must be put into scene modeling. Although it

is entirely possible to manually build realistically-looking synthetic environments, it is usually a lot more

efficient to scan the real thing. For example, the natural environment can be scanned using a digital camera

or a laser range scanner, and the data can then be used to create a computer model representation. This

process of reconstruction and modeling is the topic of this research work.

1.1 Research Work Overview

The research work presented here is an investigation of reconstruction and modeling of 3-D geometry with

complex reflectance. It focuses on media that do not scatter light or are very weakly scattering, such as

the air. Two algorithms are presented which are intended for two different objectives in reconstruction.

Their common feature is the ability to handle geometry with complicated reflectance. While there are many

reconstruction algorithms for reconstruction of geometry with simple reflectance, there are still relatively

few that can handle complex photometric properties.
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Figure 1.1: An example of state-of-the-art real-time rendering engine: CryENGINE�2 [46]. In the top row
are frames rendered in real-time and modeled after the real photographs in the bottom row.

1.1.1 Photometric Ranging of Large-Scale Geometry

The first proposed method is intended for reconstruction of large-scale geometry with complex unknown

reflectance. It is a shape reconstruction method that is appropriate for opaque scenes in non-diffusive

environments. While existing shape reconstruction techniques typically make explicit or implicit assumptions

about the reflectance properties of a surface, the algorithm is based on the idea of photometric ranging, where

no assumptions about the reflectance properties are necessary.

The reflectance of a surface is typically described using a bidirectional reflectance distribution function

(see Appendix A.3). A BRDF is a 4-D function of the incident and outgoing light direction that describes the

reflectance properties of a surface as a ratio of the outgoing radiance to the incident irradiance. In computer

vision and graphics, simplifications are typically necessary to the BRDF. Over the years, many parametric

models have been created to simulate the BRDF of common materials. Nearly all geometric reconstruction

methods make use of BRDF models, yet each of these characterizes only a limited class of materials. Most

existing reconstruction methods require some knowledge or make implicit assumptions about the BRDF. In

contrast, the proposed photometric ranging method does not have such requirements.

In a photometric stereo-like setup of multiple images obtained from a single viewpoint under controlled

illumination, the algorithm can be used to recover the depth directly, rather than through surface normal

field integration typical of other photometric methods. It achieves that by double-covering the incident light

field. That allows it to find sets of coincidental pairs of light directions where the principle of irradiance

2



Figure 1.2: Shape reconstruction and relighting example using the proposed algorithm. On the left is one
of the input images. In the center is the recovered depth map shown as a gray scale image. On the right is
an example of geometry relighting using the original images and the recovered depth map.

falloff from a point light source can be used to align the reflected light fields and directly reconstruct the

depth of a scene. Unlike photometric stereo, in photometric ranging no assumptions are required about the

surface smoothness, the presence or absence of shadowing, or the nature of the BRDF, which may vary over

the surface. Once the depth of a scene is known, the reflected light field can also be resampled to relight

the scene, that is to render the same scene from the camera view, but under novel lighting, including nearby

and distant sources (see Figure 1.2).

Key advantages of the proposed reconstruction algorithm can be summarized as follows:

� Shape reconstruction method that works for objects with arbitrarily complex BRDFs.

� The depth of a scene is recovered directly and independently at each pixel.

� Provides a 2-D slice of the apparent BRDF at each pixel.

� The original data and the recovered depth map can be used to render the object under novel illumi-

nation including nearby and distant light sources.

1.1.2 Modeling of Small-Scale Geometry

The second half of this research work contends with the problem of reconstruction and modeling of small-

scale geometry of volumetric surface materials with complex reflectance properties. Unlike the first method,

it focuses on efficient modeling, rather than on precise geometric reconstruction. Materials covering large

elements of a scene, although they can have a very complex small-scale geometry, are rarely viewed up-close

when rendered. Detailed rendering of small-scale geometry is therefore often superfluous. At the end, what
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Figure 1.3: Appearance complexity space for textures. Horizontal and vertical axes indicate increasing
geometric and photometric complexities. Textures in the lower right corner have relatively simple reflectance,
yet their BTFs are complex due to geometry.

really matters in rendering is the visual resemblance of the rendered image to the real scene, as well as

minimization of the rendering and the data storage costs.

Interactive applications are traditionally limited to a polygonal representation, which becomes very in-

efficient at surface macro scales. The standard solution to this problem is to approximate geometric detail

with textures. Various texture representations offer a trade-off between visual realism and rendering/storage

costs. The complexity of the modeled material is often the deciding factor. As such, relatively simple geom-

etry of various smooth materials, such as concrete, wood, painted surfaces, can be visually reproduced with

a flat albedo map represented with a color texture. To represent rougher material textures, the albedo map

is usually supplemented with a normal map. Materials with more complex geometry and visible macro scale

features require a more advanced representation for the same level of realism. Adding a displacement texture

provides a way to represent materials for which geometry can be described with a depth map. More com-

plicated materials typically require volumetric representations. While various methods have been proposed

to render volumetric textures, there has been very little work on how to reconstruct them from image data.

The proposed algorithm offers a possible solution.

The algorithm starts with a set of images of a volumetric surface material stored as bidirectional texture

function samples (see Section 5.1.1). A BTF can be used directly for rendering, but high storage and

synthesis costs make that unattractive in real-time applications. Real-time applications require efficient

compression, resampling, and rendering algorithms. All of these are often very difficult to achieve. Yet for
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Figure 1.4: Three views of a volumetric texture synthesized from a BTF set. The yellow line indicates the
light direction. Bottom row shows parameter textures for a single layer with a sample input texture to the
left of the line.

many materials, this is the result of complex geometry, rather than the reflectance. Consider some examples

in the lower right corner of Figure 1.3. Although these materials have relatively simple reflectance, their BTFs

will be very complex due to geometry alone. The proposed algorithm works by separating this geometric

information from the reflectance data making it possible to obtain a more compact representation. As a

second benefit, extracting the geometry information also allows for more realistic rendering of volumetric

materials at grazing angles, where direct BTF rendering methods cannot reproduce the occluding contour,

as BTFs are parametrized in 2-D.

The proposed algorithm focuses on volumetric surface materials and takes an appearance-based approach

to modeling. Instead of precisely modeling geometric details, the material is represented as a stack textures,

each representing a volumetric slice of the original material sample. This volumetric representation is

generated from a set of images taken with an ordinary camera and parametrized as a BTF. In addition to

geometry, it also captures reflectance properties as a parametric BRDF model (see Figure 1.4). This results

in a compact representation, effectively compressing a BTF. When viewed at a normal viewing distance, the

appearance of a surface rendered using this approximation is hardly distinguishable from the original.

Key advantages of the proposed volumetric texture reconstruction and modeling method can be summa-

rized as follows:

� Addresses an open problem of geometry extraction from BTFs.

5



� Works well for textures with complex geometry, reflectance, and shadowing.

� Separates the geometry from the reflectance and produces a very compact representation.

� Can be used to render the occluding contour in real-time applications.

1.2 Document Organization

This document is organized as follows. It starts with a review of the light transport model in Chapter 2.

Emphasis is placed on common approximations used in 3-D scanning, computer vision, and computer graph-

ics. Then Chapter 3 gives a broad overview of various 3-D scanning and reconstruction techniques. This

includes true volumetric scanning typically used in medical imaging and also shape scanning techniques

typically used for computer graphics applications. Chapter 4 introduces the algorithm for shape reconstruc-

tion of large-scale geometry with complex reflectance. The second algorithm intended for volumetric surface

materials is described in Chapter 5. Finally the discussion of the two algorithms and future prospects follow

in Chapter 6.
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Chapter 2

The Light Transport Model

The core of computer image synthesis is simulation of light. In quantum physics “light” is viewed as a stream

of elementary particles called photons that act as energy carriers for the electromagnetic force. Photons travel

at the speed of light (299,792,458 m/s in vacuum) and they carry energy given by their oscillation frequency.

Since frequency translates into wavelength, photons can be alternatively viewed as electromagnetic wave

packets traveling at the speed of light. Interaction between these can lead to phenomena characteristic

of waves, such as interference and diffraction. Visible light is a narrow band of electromagnetic radiation

that is detectable by our eyes in the range of approximately 400 nm to 700 nm. This particle-wave duality

is the manifestation of the dual nature of matter theorized by De Broglie [53]. It allows the light to be

treated as a stream of particles, or as a wave, depending on the situation. In image synthesis applications

both approaches often lead to complementary solutions, although the particle model of light is currently

the dominant one. This is mostly a pragmatic choice, since the particle model is much easier to efficiently

simulate on a computer, given the desired environment complexity and physical effects. However, with the

particle model of light it is very difficult to model wave phenomena such as interference or diffraction.

This work also follows the particle model of light for the same efficiency reasons. While simultaneously

modeling the wave nature of light would certainly allow for greater realism and flexibility, the particle model,

as experiments will show, is typically sufficient. The next section describes in details the particle model of

light used in this work, and, inadvertently, in computer graphics. It expands on the analysis of this topic

presented by Andrew Glassner in his book “Principles of Digital Image Synthesis” [77].

2.1 The Particle Model of Light

In “Kinetic Theory of Gases” Ludwig Boltzmann formulated a statistical interpretation of thermal diffusion

processes in dilute gases. The theory is a mathematical analysis of how the kinetic energy of molecules

is distributed through collisions until a thermal equilibrium is reached. This heat diffusion process, or

heat transport, is formalized in terms of statistical analysis of particle flow through a differential volume.
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Interestingly, the same statistical treatment can be applied to many other particle systems reminiscent of

gases. In fact, a few decades later, Boltzmann’s theory has been adapted for simulating neutron interactions

in atomic reactions. Since light can be thought of as a flow of photon particles through an environment, it

too can be modeled in a similar fashion.

There are, of course, some major differences between photonic and molecular interactions. Photons are

essentially infinitesimally small packets of energy and do not collide with each other like molecules. However,

they do collide with scattering particles (dust, molecules, atoms, ions, etc.) present in a medium. Collisions

can actually be a lot more complex. Most scattered photons traveling through a medium (air, for example)

undergo elastic collisions in a process referred to as Rayleigh scattering (or equivalent Brillouin scattering

in solids) [61]. In elastic collisions, the energy of an incoming photon does not transfer a collided particle

to a higher energy level, but the photon is re-emitted in some other direction. This effect is very prominent

every day when we look at the blue sky. The apparent blue color is the result of Rayleigh scattering varying

with the wavelength of light. Inelastic scattering of visible light is usually a lot less frequent and can take a

form of Raman scattering [184]. If an incoming photon has enough energy to transfer a molecule to a higher

energy state, then any remaining energy is re-emitted as a lower energy photon. This can be viewed as a

form of inelastic collision. High energy photons (more typical of x-rays) can also cause ionization by ejecting

electrons. When the energy of an incoming photon is greater than the ionization energy of a particle and

an electron is ejected, the remaining energy is re-emitted as a lower energy photon. This form of inelastic

scattering is known as Compton scattering [41]. When the energy of a photon is completely absorbed, we

are dealing with the process of absorption.

A photon-excited particle usually fairly quickly relaxes to its ground energy level. As it transfers to lower

energy levels, it emits one or more photons. When the process produces photons with a different energy than

the original source, it is called fluorescence. In unusual cases, the process can take a fairly long time, even

minutes or hours. If photon emission is delayed more than about 10 ns, the process is called phosphorescence.

2.1.1 The Transport Equation

The particle model is a substantially simplified view of light transport. Photons are modeled as infinitesimally

small massless particles traveling at a constant speed. The speed c depends only on the medium. Photons

can be absorbed or scattered by the medium, but do not interact with each other. Each photon can be

mathematically described by its position in space and direction (x, y, z, θ, φ). We can equivalently think of

them as points in a 5-d Euclidean space R5, or a Cartesian product space of positions and direction vectors

R3 ⊗ S2 called the phase space [77]. Each photon carries an energy E proportional to its frequency ν (the

8
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Figure 2.1: Schematic of a photon flow model in scattering media.

inverse of its wavelength λ) expressed as:

E = h ν =
h c

λ
(2.1)

h is known as the Planck’s constant equal to 6.62620× 10−34 J · s. Given some initial distribution of photon

positions and their directions at time t, the particle model of light describes the photon phase space distrib-

ution after some time period T . In other words, it is a model of the photon flow through a volume V within

some solid angle vector ~Ω. This 3-D particle transport model has been known since the 50s [34, 187, 76].

For an in-depth analysis of the transport model, refer to a book by Ishimaru [108].

The flow of photons through the medium can be expressed as a balance equation. Let N be the total

number of photons within a range of wavelengths Λ traveling through a phase volume (V, ~Ω) at a time t. In

scattering medium, some of these photons may flow through the medium with no interactions, but others

will be absorbed or scattered, as indicated in the diagram in Figure 2.1. The scattering process can work

either for or against the flow, meaning that photons could be “scattered into” the flow along ~Ω or “scattered

out” from the flow. Some additional photons can be also created inside the volume through emission. We

can therefore express the change in the number of photons after traveling through the volume V as:

∆N = −Na −No + Ni + Ne (2.2)
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Na - loss due to absorption by the medium
No - loss due to outscattering from the direction ~Ω
Ni - gain due to inscattering into the direction ~Ω
Ne - gain due to emission from the medium

Let %(r, ~ω, λ, t) particles/m3 · sr be the phase space time density of photons with a wavelength λ at a point

r moving in a direction ~ω. The total number of photons N present in a flow through a volume V in a solid

angle direction ~Ω with a wavelength range Λ at a time t can be calculated by integrating the photon density

function %:

N =
∫

~Ω

∫
V

∫
Λ

%(r, ~ω, λ, t) dλ dr d~ω (2.3)

If the density % changes over a time period T , the number of photons will change accordingly:

∆N =
∫

~Ω

∫
V

∫
Λ

∫
T

d%(r, ~ω, λ, t)
dt

dt dλ dr d~ω (2.4)

Note, that the position of photons r also changes in time and therefore d%
dt must be expressed using the chain

rule [52]:

d%

dt
=

∂%

∂t
+

∂%

∂r
· ∂r

∂t
(2.5)

∂%
∂r is the directional derivative of %, or the gradient ∇ =

(
∂
∂x , ∂

∂y , ∂
∂z

)
. ∂r

∂t is the photon velocity. Since

photons travel in the direction of ~ω, Equation 2.5 can be simplified to:

d%

dt
=

∂%

∂t
+ (∇%) · (c ~ω) (2.6)

This partial derivative expansion can now be used to rewrite Equation 2.4 as a two term expression:

∆N =
∫

~Ω

∫
V

∫
Λ

∫
T

∂%(r, ~ω, λ, t)
∂t

dt dλ dr d~ω +
∫

~Ω

∫
V

∫
Λ

∫
T

c∇%(r, ~ω, λ, t) · ~ω dt dλ dr d~ω (2.7)

The first term measures the time rate of change in the photon density, while the second represents the total

outflow (also known as streaming) of photons from the volume V . In the absence of photon interactions with

the medium (light moving through an “empty” space), the number of photons remains constant (∆N = 0).

The time rate of change of density depends only on the difference between the number of inflowing and

outflowing photons:

∂%

∂t
= −c∇% · ~ω (2.8)
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Note that, if the photon density is constant in time, it implies that the light source is static, i.e. the number

of photons emitted by the light source and traveling through the volume V does not vary over time.

In a scattering environment, all terms in Equation 2.2 play a role in the overall balance and ∆N is no

longer zero. Each of them either contributes to the photon flow, or causes losses. In most situations media

act as attenuators and the overall balance is negative (∆N < 0).

The absorption term Na stands for the number of photons absorbed in the volume V over the time period

T . Let µa(r, ~ω, λ) be the directional absorption coefficient [91] that defines the percentage of photons with

a wavelength λ absorbed when traveling through the volume at a point r along a solid angle vector ~ω over

a distance ds = c dt. The absorption term can then be expressed as:

Na =
∫

~Ω

∫
V

∫
Λ

∫
T

c µa(r, ~ω, λ)%(r, ~ω, λ, t) dt dλ dr d~ω (2.9)

Outscattering is the result of interactions between photons and the medium not ending in photon’s

absorption. Photons are instead deflected in directions other than ~Ω. Scattering can be described using a

directional scattering coefficient µs(r, ~ω, λ) [91], similar to the absorption coefficient µa. Unlike an absorption

event, in an outscattering event only the direction of travel and possibly the wavelength of a photon change.

The distribution of scattered photons can be described by a normalized scattering phase function p(r, ~ω →

~ω′, λ → λ′). The function specifies the directional and spectral distribution of scattered photons (see

Appendix A.3.3)1. Outscattering can be mathematically described as an integral over the number of photons

with a wavelength λ that were out-scattered from the direction of ~ω, possibly changing the wavelength:

No =
∫

~Ω

∫
V

∫
Λ

∫
T

c µs(r, ~ω, λ)
∫

4π

∫ ∞

0

p(r, ~ω → ~ω′, λ → λ′)%(r, ~ω, λ, t) dλ′ d~ω′ dt dλ dr d~ω

=
∫

~Ω

∫
V

∫
Λ

∫
T

c µs(r, ~ω, λ)%(r, ~ω, λ, t) dt dλ dr d~ω (2.10)

Since the integral of the normalized scattering phase function over the entire sphere of scatter directions and

all scatter wavelengths is by definition equal to one (see Equation A.16), the final equation is actually quite

simple, involving just the directional scattering coefficient µs and the density %.

Inscattering is just the opposite of outscattering. Photons traveling in directions other than ~ω change

their direction (and possibly the wavelength) and contribute to the flow. The process can be described as

an integral over all photons in-scattered from all directions into ~ω undergoing a change of wavelength to λ:
1Note that, unlike the definition from Section A.3.3, this form of the phase function also models wavelength shifts.
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Ni =
∫

~Ω

∫
V

∫
Λ

∫
T

c µs(r, ~ω, λ)
∫

4π

∫ ∞

0

p(r, ~ω′ → ~ω, λ′ → λ)%(r, ~ω′, λ′, t) dλ′ d~ω′ dt dλ dr d~ω (2.11)

Finally the emission term can be specified using a directional emission density function %e(r, ~ω, λ, t). The

function defines the density of photons with a wavelength λ emitted over a distance c dt along the direction

of ~ω:

Ne =
∫

~Ω

∫
V

∫
Λ

∫
T

c %e(r, ~ω, λ, t) dt dλ dr d~ω (2.12)

After substituting all photon streaming terms, Equation 2.2 expands to:

∫
~Ω

∫
V

∫
Λ

∫
T

∂%(r, ~ω, λ, t)
∂t

dt dλ dr d~ω +
∫

~Ω

∫
V

∫
Λ

∫
T

c∇%(r, ~ω, λ, t) · ~ω dt dλ dr d~ω =

−
∫

~Ω

∫
V

∫
Λ

∫
T

c µa(r, ~ω, λ)%(r, ~ω, λ, t) dt dλ dr d~ω

−
∫

~Ω

∫
V

∫
Λ

∫
T

c µs(r, ~ω, λ)%(r, ~ω, λ, t) dt dλ dr d~ω

+
∫

~Ω

∫
V

∫
Λ

∫
T

c µs(r, ~ω, λ)
∫

4π

∫ ∞

0

p(r, ~ω′ → ~ω, λ′ → λ)%(r, ~ω′, λ′, t) dλ′ d~ω′ dt dλ dr d~ω

+
∫

~Ω

∫
V

∫
Λ

∫
T

c %e(r, ~ω, λ, t) dt dλ dr d~ω

(2.13)

The outermost integrals present in every term can be dropped. By dividing both sides by the speed of

light c we obtain the integro-differential form [77] of the photon transport equation (some notation has been

dropped for clarity):

1
c

∂%

∂t
+∇% · ~ω = −(µa + µs)% + µs

∫
4π

∫ ∞

0

p(r, ~ω′ → ~ω, λ′ → λ)%(r, ~ω′, λ′, t) dλ′ d~ω′ + %e (2.14)

The absorption and the scattering coefficients are usually combined into a single extinction coefficient,

µ, measuring the probability of a photon loss from the flow:

µ′ = µa + µs (2.15)

The average distance a photon can travel in a medium before a collision, or its mean free path, is equal

to the inverse 1
µ . The ratio of the number of scattered photons to the total number of collisions is sometimes
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referred to as the scattering albedo $ = µs

µ [52]. The final form of the integro-differential transport equation

is:

1
c

∂%

∂t
+∇% · ~ω = −µ% + µs

∫
4π

∫ ∞

0

p(r, ~ω′ → ~ω, λ′ → λ)%(r, ~ω′, λ′, t) dλ′ d~ω′ + %e (2.16)

Equation 2.16 is quite similar the original particle transport equation originally developed by Boltzmann

known as the Boltzmann equation. It gives a general description of photon balance in a scattering medium

over time. The equation remains an approximation based on several important assumptions:

� Photons are point particles. Although they are actually wave packets, they are treated as points.

This limits the minimum spatial resolution of the model.

� Photon interactions with the media occur instantaneously. In reality, scattering involves ab-

sorption and then subsequent emission that does not happen instantaneously. This limits the minimum

time scale resolution.

� Photons do not interact with each other. This essentially implies a low photon density relative

to their actual size.

� Photons travel in straight lines. The refractive index of a medium is the same everywhere,

otherwise photon light waves will undergo refraction, changing the path of individual photons.

� Photon polarization can be ignored. Although Equation 2.16 does not account for the polarization

of light, polarization actually may still be modeled by a set of transport equations, one for each

polarization parameter.

� Other photon wave phenomena can be ignored. This implies that the distance between scat-

tering events is much greater than the size of photon wave packets and therefore interference can be

ignored.

Of these assumptions the last three are the most limiting in computer graphics. Note, that all three refer

to various wave phenomena of light, which cannot be modeled using a particle model.

The complete specification of the environment for the light transport equation includes the initial photon

density, scattering, attenuation, and emission parameters, as well as the boundary conditions. The boundary

conditions refer to the directional density of incident photons, which may also vary over time. This is the

same as defining the external lighting.
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2.1.2 Monochromatic Transport Equation for Isotropic Media

Equation 2.16 can be substantially simplified in the case of isotropic media. A medium is isotropic when the

phase function p does not depend on the direction of the incidence and scatter, but only on the relative angle

between these. The phase function can be parametrized in terms of the dot product of the two directions.

Similar directional isotropy applies to emission, scattering, and absorption coefficients. Isotropic media are

very common and include air, fog, water - essentially all gases and liquids.

Another common simplification is often made to light scattering. In many media the majority of scattering

is elastic and therefore wavelength shifts usually do not occur. The light transport model that assumes elastic

scattering is called monochromatic, as interactions can be considered at each wavelength independently. In

isotropic media Equation 2.16 is then a model of photon transport for a single wavelength:

1
c

∂%(r, ~ω, t)
∂t

+∇%(r, ~ω, t) · ~ω + µ(r)%(r, ~ω, t) = µs(r)
∫

4π

p(r, ~ω′ · ~ω)%(r, ~ω′, t) d~ω′ + %e(r, t) (2.17)

Notice, that the emission density function %e is now isotropic.

Recall that the phase function (Equation A.16) specifies the directional probability distribution of a

scattering event. In an isotropic medium, the distribution is the same for all incident directions and can be

parametrized simply with the cosine of the angle formed by the incident and the scattered directions. The

mean value of the cosine of the scattering angle is called an anisotropy coefficient [22]:

g =
∫

4π

p(~ω′ · ~ω) ~ω′ · ~ω d~ω′ (2.18)

g can vary from −1 for totally backward scattering, to 1 for forward scattering. When g is equal to 0,

the scattering is considered isotropic (equal scattering probability in all directions). In a diffusive medium

(µa � µs) with strongly biased scattering in the forward direction, further approximation can be made by

replacing the scattering coefficient with the reduced scattering coefficient µ′s [91]. The reduced scattering

coefficient is equal to the scattering coefficient modified by the anisotropy:

µ′s = µs(1− g) (2.19)

µ′s can be thought of as the effective diffusion of photons over a distance of 1/µ′s, the result of many smaller

diffusion steps over 1/µs. The absorption and the reduced scattering coefficients are then often combined

into a single reduced extinction coefficient [91]:
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µ′ = µa + µ′s (2.20)

This simplification is quite commonly used to approximate isotropic media such as air, water, fog, or smoke.

It is also used in medicine for Optical Tomography (see Section 3.1.2. Human tissues can be considered

isotropic and typical values of the anisotropy coefficient g typically vary between 0.65 and 0.95 [37]. Light

tends to be scattered forward along the direction of a beam.

2.1.3 Steady-State Transport Equation

In many situations the properties of a medium and boundary conditions (the external illumination) do not

vary in time. The density distribution of photons is then going to reach a steady-state i.e. ∂%
∂t = 0 and

Equation 2.17 will no longer be time-dependent:

∇%(r, ~ω) · ~ω + µ(r)%(r, ~ω) = µs(r)
∫

4π

p(r, ~ω′ · ~ω)%(r, ~ω′) d~ω′ + %e(r) (2.21)

Time variations occurring to a medium or the external illumination are really only relevant if they occur on

a time scale comparable to the average time a photon spends in the medium, which is typically on a micro-,

or just a nanosecond scale. This is, for example, well below the typical time frame rates used in computer

graphics and therefore virtually all rendering algorithms use the steady-state form of the transport equation.

On the other hand, the time-dependent form is explicitly used in many optical tomography techniques (see

Section 3.1.2).

2.1.4 Integral Form of the Steady-State Transport Equation

The integro-differential form of the transport equation can be difficult to solve directly. Usually it is a lot

more convenient in an integral form, as described by Duderstadt and Martin [62]. The first step in the

process is to realize that, since photons travel in straight lines between collisions, their position r is really

a function of the direction ~ω. Protons’ positions can be traced back to some point s along a line and the

position could be expressed as a vector line equation:

r(s) = r− s ~ω (2.22)

This observation allows for some significant simplifications. The directional derivative of the density % at r

in the direction ~ω can be expressed now as a derivative of % along a straight line:
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∇%(r, ~ω) · ~ω = − ∂

∂s
%
(
r(s), ~ω

)∣∣∣∣
s=0

(2.23)

Symbolically, Equation 2.21 can be rewritten as:

− ∂

∂s
%
(
r(s), ~ω

)
+ µ

(
r(s)

)
%
(
r(s), ~ω

)
= µs

(
r(s)

) ∫
4π

p
(
r(s), ~ω′ · ~ω

)
%
(
r(s), ~ω′

)
d~ω′ + %e

(
r(s)

)
(2.24)

%′
(
r(s), ~ω

)
− µ

(
r(s)

)
%
(
r(s), ~ω

)
= −G

(
r(s), ~ω

)
(2.25)

G
(
r(s), ~ω

)
represents the gain due to inscattering and emission. Note, that Equation 2.25 is a standard

first-order differential equation. It can be solved by using an exponential integrating factor (see Appendix B

for details) to give the photon density at a phase space location s1. The result is expressed as an integral of

all photon transport events occurring over the interval [s0, s1] along the direction of ~ω. Solving for % using

Equation B.5 yields:

%
(
r(s1), ~ω

)
= a(s0)%

(
r(s0), ~ω

)
+

∫ s1

s0

a(s)G
(
r(s), ~ω

)
ds (2.26)

where a(s) is the integrating factor similar to B.3 representing the ray attenuation function. The attenuation

function is defined as:

a(s) = e−
R ‖s1−s‖
0 µ

(
r(u)

)
du (2.27)

Alternatively, it is more common to express the ray attenuation function in terms of the optical thickness τ

[52]:

a(s) = e−τ
(
r(s),r(s1)

)
(2.28)

where :

τ(r0, r1) =
∫ ‖r1−r0‖

0

µ(r0 +−−→r0r1u) du (2.29)

The optical thickness represents the total ray attenuation along the line between points r0 and r1. This

quantity is indirectly measured during computer tomography (see Section 3.1.1) and later used to reconstruct

the spatially-varying extinction coefficient function of the medium. Expanding Equation 2.26 using the
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attenuation function expressed in terms of the optical thickness τ yields:

%
(
r(s1), ~ω

)
=

e−τ
(
r(s0),r(s1)

)
%
(
r(s0), ~ω

)
+

∫ s1

s0

e−τ
(
r(s),r(s1)

) [
µs

(
r(s)

) ∫
4π

p
(
r(s), ~ω′ · ~ω

)
%
(
r(s), ~ω′

)
d~ω′ + %e

(
r(s)

)]
ds

(2.30)

Equation 2.30 has a very intuitive physical interpretation. The photon phase space density at a point

r(s1) is the sum of the incident photons at a point r(s0) plus the in-scattered and the volume-emitted

photons along ~ω minus the photons lost due to attenuation.

2.2 The Radiance Model

An alternative to the modeling of light as a flow of particles is to view it as a flow of energy. The energy of

light and photon density are directly related quantities. Each photon is a wave-particle packet that carries

energy inversely proportional to its wavelength (see Equation 2.1). The flow of light energy is expressed

using radiance (see Appendix A). Radiance is a measure of energy flow per unit area per unit solid angle

(see Equation A.8). Conversion of the transport equation from the particle form to a radiance form is simply

a matter of multiplying the phase-space photon density by the photon energy:

L = %
h c

λ
(2.31)

In expressions involving radiance it is also common to express scattering using bidirectional distribution

functions (BDFs) (see Appendix A). A BDF is similar to the scattering phase function, but it directly

relates the outgoing radiance to the incoming irradiance. The radiance form of Equation 2.30 can be written

as:

L
(
r(s1), ~ω

)
=

e−τ
(
r(s0),r(s1)

)
L

(
r(s0), ~ω

)
+

∫ s1

s0

e−τ
(
r(s),r(s1)

) [∫
4π

f
(
r(s), ~ω′ · ~ω

)
L

(
r(s), ~ω′

)
cos(θ′) d~ω′ + Le

(
r(s)

)]
ds

(2.32)

Note that the BDF f incorporates the scattering coefficient µs. Conversion from irradiance to radiance in

the integral introduced an extra cosine term of the angle θ between the in-scattered direction ~ω′ and the
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L(r(s),ω' )~
L(r(s1),

ω)~

L(r(s0),ω
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(s0)

(s1)

Figure 2.2: Photon transport in scattering media. The final radiance at the point r(s1) is the sum of the
incident radiance at a point r(s0) plus the in-scattered radiance along the ray. In addition, the final radiance
also includes the volume-emitted radiance gain and the radiance lost due to attenuation, which are not
shown in the figure.

direction of the flow ~ω (this assumes BDF isotropy). Similar to Equation 2.30, the radiance at the point r(s1)

is the sum of the incident radiance at a point r(s0) plus the in-scattered and the volume-emitted radiance

along ~ω minus the radiance lost due to attenuation (see Figure 2.2). In typical situations most media do not

emit light i.e. all light energy comes from external light sources and Equation 2.32 further reduces to:

L
(
r(s1), ~ω

)
=

∫ s1

s0

e−τ
(
r(s),r(s1)

) ∫
4π

f
(
r(s), ~ωv · ~ω

)
L

(
r(s), ~ω′

)
cos θ′ d~ω′ ds (2.33)

Note, that boundary and initial condition terms were omitted from derivations for readability reasons.

2.2.1 Full Radiance Equation

The radiance model from Equation 2.32 is not a complete description of light in every situation, although it

is sufficient in most cases. Still it can often be expanded to account for some phenomena. These may include

polarization 2, phosphorescence, and fluorescence. Without going into derivation details (for full details,

please refer to the book by Glassner [77]), this more complete full radiance equation can be expanded to

include incandescent, phosphorescent, and fluorescent terms:
2Polarization plays a role in reflections, as the light reflected off a surface at the Brewster’s angle is linearly polarized.
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L
(
r(s1), ~ω, λ,~e, t

)
=

∫ s1

s0

e−τ
(
r(s),r(s1)

)[
Le

(
r(s), ~ω, t, λ

)
+ mp(~ω)

∫ t

−∞
γp(t− tγ)Ep

(
r(s), λ

) ∫
4π

L
(
r(s), ~ω′, λ,~e, tγ

)
cos(θ′) d~ω′ dtγ

+
∫

4π

f
(
r(s), ~ωv → ~ω, λ

) ∫
Λ

Ef

(
r(s), λi → λ

)
L

(
r(s), ~ω′, λi, ~e, t

)
cos(θ′) dλi d~ω′]

ds

(2.34)

mp(~ω) - phosphorescence modulation function
γp(t− tγ) - phosphorescence time decay function
Ep

(
r(s), λ

)
- phosphorescence wavelength efficiency

Ef

(
r(s), λi → λ

)
- fluorescence efficiency for transfer of energy from λi

to λ
~e - ellipsometric light polarization vector

Note that boundary and initial condition terms were again omitted for clarity. The full radiance equation is

rarely used directly in computer graphics due to the computational cost involved.
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Chapter 3

Three-Dimensional Scanning
Techniques

Scanning in computer science is a process by which some physical properties of the real world are measured

and eventually digitized into a form that can be processed by a computer. The number of physical dimensions

over which the scanning takes place determines the complexity of the process. Acquisition in one-dimension,

for example, detection of a changing sound wave at one point (time would be the only dimension) , requires

a relatively simple microphone. Scanning in two-dimensions typically requires a more complex scanning

methodology. A 2-D slice of radiance arriving from a particular range of directions or an image can be

captured using a digital camera. A digital camera is a relatively complex device containing a 2-D1 light

detector, typically either a CCD or a CMOS array [138]. Another 2-D scanning device, a flatbed scanner,

uses a 1-D light detector moved mechanically across the page to scan in the second dimension.

Scanning physical properties in three dimensions is more complex yet. This chapter is an overview of

various volumetric scanning techniques, especially relevant in computer-aided medical imaging, typically

comprising scanning of volumetric density or attenuation. In addition, this chapter is an overview of shape,

or geometric reconstruction methods. Shape reconstruction is an active research area in engineering and

computer vision dealing with the problem of recovery of surfaces of solid objects in transparent media (most

often the clear air). Reconstruction methods proposed in Chapter 4 and Chapter 5 also fall in the same

category as they deal with solid surfaces in clear media. Yet while the method from Chapter 4 is designed to

recover surfaces of solid, opaque objects, the method from Chapter 5 is closer to volumetric methods used

in medical imaging and recovers a volumetric density representation.

3.1 Volumetric Reconstruction Methods

Medicine has always been on a lookout for a better way to peer inside the human body in order to study,

diagnose, and heal. The biggest challenge has always been how to do so with minimal harm to the patient.

The field of non-invasive medical imaging has its beginnings in 1895, when Wilhelm Roentgen took first
1Technically the wavelength of light could be considered an another dimension.
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Figure 3.1: 2-D transmission computed tomography (CT). A single measurement I(i, θ) represents the total
attenuation along the direction j for a particular rotation angle θ of the source and the detector.

X-ray images. X-rays are high energy photons that can penetrate soft tissues, but are strongly absorbed

by denser tissues (such as bone and cartilage), thus providing an image of the interior of the body. The

appearance of computers opened the possibility of interactive viewing of data in all three dimensions. Using

X-rays to create 3-D images was the next logical step.

3.1.1 Computed Tomography

In the mid-70s appeared a medical scanning technique named computed tomography (CT) or, alternatively,

computed axial tomography (CAT). CT was first developed by Hounsfield [100] and built by EMI Central

Research Laboratories. In CT, a linear beam of X-rays is passed through a body and the beam attenuation is

measured by a detector. The source and the detector are rotated around the body and a set of measurements

are taken. Each measurement provides a one-dimensional slice showing the attenuation along a particular

direction (see Figure 3.1). The volumetric reconstruction process is relatively simple because scattering and

bending of X-rays as they travel through the body is marginal and can be ignored. The photon transport

equation in Equation 2.32 reduces to the first term, as the only remaining process is the absorption. While

tomography can be done in three dimensions, it is often simplified to measuring 2-D slices by rotating a

parallel X-ray source and a detector on the opposite sides of a patient’s body. In this simpler version, the

attenuation for some source/detector rotation angle θ for a parallel beam of X-rays with power area density

W0 (see Equation A.2) is written as:
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W (i, θ) = W0e
−
R detector

source
µ(x,y)dj

= W0e
−
R

µ

(
i cos(θ)−j sin(θ),i sin(θ)+j cos(θ)

)
dj

(3.1)

Here µ(x, y) denotes the 2-D X-ray extinction coefficient (see Equation 2.15). Since scattering is ignored,

the extinction coefficient is essentially equivalent to the absorption coefficient µa. The detected 1-D projec-

tion along the i axis corresponds to the attenuation integral of µ along the j axis. Since the X-ray detector

is actually providing a logarithmic measure of the beam power area density, the measured X-ray brightness

I simplifies to:

I(i, θ) ∝ ln (W (i, θ))

= I0

∫
µ (i cos(θ)− j sin(θ), i sin(θ) + j cos(θ)) dj

= I0

∫ ∫
µ(x, y)δ (i− x cos(θ)− y sin(θ)) dx dy

(3.2)

δ is the Dirac delta function (or the impulse function). Equation 3.2 is called the Radon transform [92]

of the attenuation µ(x, y). Finding µ, requires solving the inverse problem i.e. finding the inverse Radon

transform:

µ(x, y) =
∫ π

0

I (x cos(θ) + y sin(θ), θ) dθ (3.3)

In real-world applications only a discrete set of measurements is collected and θ is a discrete variable.

The image reconstruction is performed using a discrete version of Equation 3.3.

The core requirement of CT is for the radiated waves to pass through the examined object along straight

lines. Although X-rays work quite well, there are other lower energy methods less harmful to people. Yet

lower energy waves are also more susceptible to diffraction and refraction and therefore are more difficult to

use in tomography.

There are currently many variations of the basic axial tomographic technique. In general, tomography

can be divided into three sub-genres: transmission, emission, and reflection tomography. All rely on solving

for the inverse Radon transform therefore require that photons travel along straight lines.
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Transmission Tomography

Transmission tomography measures the attenuation of radiation traveling completely through an object.

X-ray transmission tomography described in the previous section was the first tomographic technique and

remains highly popular today. Yet using X-rays have negative side-effects on the human body and finding

an alternative has always been of great interest.

Even before invention of computers there have been attempts to employ visible light as an alternative to

X-rays in examination of tissues [48]. Although the early experiments have shown that the light is inferior to

X-rays due to scattering, its harmless nature still made it desirable as an examination tool. Since the early

90’s visible light have been used in full-scale CT scans [110, 236, 230]. The newest transmission techniques

typically use coherent light sources in the near infra-red part of the spectrum and belong to the growing

area of Optical Tomography (OT) (see Section 3.1.2). In addition to visible light, researchers continue to

investigate other forms of illumination, including ultrasound [81, 111, 182] and microwave radiation [116].

Emission Tomography

Rather than using an external radiation sources, emission tomography works by detecting an internally

introduced radiation source. Usually these come in a form of compounds readily absorbed by the body

containing radioactive isotopes with short half-lifes such as Carbon-11, Nitrogen-13, Oxygen-15, or Fluorine-

18. The radioactive decay process produces positrons, which after traveling a short distance (on average

less than 1mm) annihilate with randomly encountered electrons producing gamma radiation, which are very

high energy photons. During annihilation process there are two photons produced that radiate out in the

opposite directions. The scanning technique incorporates two detectors placed on the opposite sides of the

body that are used to detect simultaneous occurrence of gamma photons on the two sides (see Figure 3.2).

Such detection event implies that the two photons have likely originated from the same annihilation. Since

they travel in opposite directions and essentially straight lines, the annihilation point must be located along

the same line. Non-simultaneous photon occurrences are rejected as noise. This method has been first

used by Brownell and Sweet to localize brain tumors [28]. It is commonly known as Positron Emission

Tomography (PET).

A related method known as Single Photon Emission Computed Tomography (SPECT) was developed

later in the 60s by Kuhl and Edwards [131]. The method uses isotopes that produce only a single gamma

photon. To measure the direction of the incoming photon SPECT uses collimator detector array. Collimators

essentially function as a form of optics for radiation that is not refracted by glass (cannot be bent). Depending

on the configuration, collimators can act as parallel, converging, diverging, or even as a pinhole optics.
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Figure 3.2: Emission tomography. On the left, Single Photon Emission Computed Tomography (SPECT)
uses a detector with a collimator array. On the right, Positron Emission Tomography (PET) uses a pair of
detectors with coincidence circuitry to detect pairs of photons coming from a single event.

SPECT usually uses parallel collimators, giving a 1:1 magnification. Each detector cell is only activated by

photons coming almost perpendicular to it (see Figure 3.2). Given a set of radiation measurements around

the body, the inverse Radon transform problem is then solved with iterative or analytical methods. Although

the images are usually of lower quality than PET, this scan method is much cheaper.

Although emission tomography is invasive (introduction of a tracer material into the blood stream), it

is an indispensable tool in imaging body processes, rather than tissues. Specific tracer compounds are used

to observe absorption process by a particular organ. It is widely used in oncology for localizing tumors,

cardiology for diagnosing blood flow problems, and in neurology to observe brain activity.

Reflection Tomography

Reflection tomography actually has its roots in ultrasound imaging. It turns out that sound waves can be

used in tomography in a similar way as light waves. For years ultrasound tomographic techniques have been

used not only in medical fields, but also in geological, oceanographical, and industrial applications. The

use of wave echoes to measure distances started with the development of SONAR (SOund Navigation And

Ranging) and later RADAR (RAdio wave Detection And Ranging). The principle of wave ranging relies on

detecting and timing the wave reflected off a distant object. If the speed at which the wave travels is known,

the distance to the object can be accurately gaged.

The first attempt to apply RADAR as a tool for analysis of interior of objects has been done by Stern in
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Figure 3.3: Ultrasound imaging versus reflection tomography. In ultrasound (a), reflections are measured
along a narrow beam of radiation. The signal measured at a particular time corresponds to the reflection
strength at the corresponding depth sampled along a line. In reflection tomography (b), reflections are
measured along a spherical wavefront formed by a fan-shaped beam. The signal measured at a particular
time is therefore the total sum of all reflections occurring at the corresponding spherical distance from the
emitter. Reflection tomography can also employ a parallel wavefront emitter in a similar fashion.

late 20’s when he used the technology to measure the thickness of a glacier in Austria [177]. Unfortunately

it was largely forgotten until an accident in the late 50’s, when several U.S. Air Force planes crashed in

Greenland due to their radar penetrating the ice and causing the pilots to overestimate the altitude [177].

This event sparked a renewed interest in subsurface imaging using radio and sound waves, including ice,

water, and ground [42, 11]. A system very similar to Stern’s was eventually sent as one of the scientific

experiments on Apollo 17 to the Moon [215]. First applications of ultrasound also appeared in industry,

where it was used to detect flaws in airplane components and laid the foundation of non-destructive testing

of materials [57, 71]. Medical uses were investigated in the early 50’s, when Howry and Bliss obtained first

cross-sectional images of a subject submerged in water [101]. Wild and Reid developed the first ultrasound

breast cancer scanner [240]. First ultrasonic recording of the movement of the hart was demonstrated by

Edler and Hertz [64].

In the simplest configuration an ultrasonograph works by emitting a pulse along a narrow beam and

displays the arrival time and the strength of the detected echo on a temporal axis. The time lag of the

echo is proportional to the depth of the reflection. This one-dimensional imaging technique is referred to as

the amplitude, or the A-mode ultrasonography (see Figure 3.3a). A 2-D image can be obtained with the

brightness, or the B-mode, where the brightness of each image pixel is proportional to the strength of the
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reflection and is positioned along the depth (or temporal) axis. The beam is swept in a region of interest

along a series of closely-spaced scan lines. The resulting 2-D image is a volume slice along the sweep plane.

The main design feature characteristic of ultrasonographic imaging is volume sampling along a narrow

beam of radiation. The reflected echo essentially corresponds to depth measurements along a straight line.

It is a major limitation when the aim is to create a 2-D image, or eventually reconstruct a 3-D volume. Not

only is the sampling region very small, but also the reflections traveling in all directions interfere with any

attempt to make more than one measurement at a time. On top of that, the speed of sound in water (human

body is mostly water) is a relatively slow 1.5 mm/µs. High-resolution reconstruction using ultrasonography

can be a very time-consuming process. Reflection tomography has a potential to accelerate the process

of reconstruction by sampling over the entire surface of the wavefront [120]. Instead of a narrow beam,

reflection tomography uses a very wide fan-shaped beam. A narrow pulse emitted expands spherically and

reflects off any inhomogeneities. The detected echo at time t is therefore the sum of all reflections at a

distance of ct, where c is the speed of the wave. The locus of all points at that distance is a hemispherical

surface and the detected reflection is therefore an integral over that surface (see Figure 3.3b).

Similarities to transmission tomography are easy to spot. In transmission tomography a measurement

is an integral of the attenuation along the direction of the wave, in reflection tomography it is an integral

of reflection on the wavefront surface perpendicular to the wave travel direction. By moving the emit-

ter/detector on the surface enough measurements can be made to reconstruct the entire volume is a similar

fashion. Alternative designs for reflection tomography can also use other wavefront shapes, including plane

and cylindrical wave emitters, but the analysis is essentially the same. This tomographic reconstruction

method from reflections was first proposed by Norton and Linzer [172]. Later Dines has shown the feasibil-

ity of this technique by reconstructing a volume consisting of needles suspended in water [59]. An in-depth

study of ultrasound reflection tomography was performed by Jago and Whittingham [111]. Their clinical

evaluation showed noticeably improved resolution over conventional B-mode ultrasonography, although the

advantage was not conclusive.

Quite recently Huang et al. [102] demonstrated a new interferometric NIR reflection tomography method

called Optical Coherence Tomography (OCT). The technique has its roots in Optical Coherence-Domain

Reflectometry (OCDR), a one-dimensional interferometric range-finding method that was originally used to

find faults in fiber-optic network components. It is also very related to optical transmission tomography

discussed earlier. Unlike the former, where the transmitted part of the coherent beam is used, OCT makes

the use of the portion reflected back toward the source. Initially OCT made its way into medical applications

requiring precise anatomical eye measurements [69, 95]. Huang et al. developed the method further to the
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use for 3-D imaging of semi-transparent tissues. The method is similar to ultrasound imaging, as it also

probes the delay on the reflected wave returning from the object. However, an OCT system uses light waves

generated by a laser diode and measures the delay with an interferometer.

OCT offers superb resolution (on the order of 10µm) when compared to other techniques, however the

scanning depth is currently very limited. Scattering and absorption typically put the limits around 2 cm

for transparent tissues (for example, an eye) and can rarely exceed a few millimeters in absorbent tissues

[202]. Its applications include micro examination of the eye in ophthalmology, blood vessel examination in

cardiology, and skin cancer diagnosis in dermatology. It is seen as the tool of the future in microsurgery.

Reflection tomography uses the reflected wave to reconstruct the volumetric structure of an object.

Unfortunately reflections take place on all density interfaces, on the way in and out, leading to multiple

inter-reflections or reverberations within the object. In addition to the undesired reverberations, the wave

also refracts when passing from one density region to another - a phenomena known as phase front aberrations.

Both of these result in noise and reduced resolution [5].

3.1.2 Optical Transmission Tomographic Techniques

The use of non-ionizing form of radiation, such as the near infra-red light (NIR) to examine patients has

its obvious health advantages over the more traditional X-rays. Yet, unlike X-rays, the body is only weakly

transparent to NIR. Below 600 nm the light is strongly absorbed by the hemoglobin present in the blood,

while water absorption limits the penetration depth for wavelengths above 1µm [85]. Finally, NIR is a

subject to significant scattering causing the internal features to be blurred.

There are currently two different approaches used to overcome the problem of NIR scattering. The first

one is based on the observation that photons that take the shortest time to travel through an object take the

most direct or straight path. The method therefore aims to capture photons that arrive first at the detector

and and filter out the scattered rest. The second approach is based on the notion that an observation of the

scattering of light corresponds to a unique volumetric distribution of absorption and scattering. The process

of reconstructing the volume is therefore put as an inverse problem of recovering that distribution using an

appropriate light transport model.

Direct Imaging Methods

One way to improve the sharpness of a tomographic image is by filtering-out scattered photons. This can

be accomplished with a collimator array in front of the detector [113, 110, 241]. This is very similar to the

SPECT emission tomography method described earlier (see Figure 3.2). As with SPECT, collimator filters-
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out any photons not traveling perpendicular to the detector. The assumption is that unscattered photons

took the straightest path through the sample. An equivalent method proposed by Wang et al. [235] works

by filtering high frequencies in the Fourier spectrum of the spatial distribution of the transmitted light. This

leaves only the portion of the transmitted beam arriving at the detector close to the perpendicular direction.

Unfortunately collimated filtering only really works for relatively shallow depths (a few millimeters for soft

body tissues). As the sample thickness increases the ratio of unscattered to scattered photons rapidly

decreases [85].

Another way to distinguish between transmitted and scattered light is to look for light polarization

changes. As light is scattered, it looses its initial polarization in collisions eventually leading to a total

randomization. This approach has been evaluated by Schmitt et al. [201]. Unfortunately most of the light

traveling through a scattering medium eventually looses polarization due to scattering. The experimental

limit for biological tissues is about 1 cm, approximately equivalent to a theoretical depth limit of ten transport

scattering mean free paths [29].

When light gets scattered, not only does it loose polarization, but also coherence. This can also be

exploited to filter-out the undesired scattered portion by intersecting the emerging light with a reference

beam [218, 139, 35]. The coherent unscattered portion will interfere with the beam producing a holographic

image. This is exactly the same principle used in holographic imaging. The depth resolution in such systems

depends on the coherence length of the light source. Since all coherence-based methods still require a portion

of the transmitted light to remain coherent with the reference beam it puts a limit on the maximum sample

thickness. In addition, the scattered light adds up to the background noise lowering the overall signal-to-

noise ratio (SNR). Several improvements to increase the SNR have been proposed and tested, especially

based on heterodyne detection [107, 90, 32]. That particular technique measures the amplitude of the beat

frequency produced when the coherent portion of the transmitted light interferes with a frequency-modulated

reference beam. The amplitude is proportional to the intensity of the transmitted coherent portion. This

approach has been quite successful and thickness well over 1 cm have been measured. It is also the basis for

the reflective Optical Coherence Tomography (OCT), discussed earlier (see Section 3.1.1).

Scattered light can also be directly blocked by a “lightning fast” shutter. Since the non-scattered photons

arrive first, a fast shutter could let through the front of a pulse and block the tail. This happens extremely

fast (usually on the order of picoseconds) and therefore the use of any mechanical shutter is out of the

question. Shutters used in such cases rely instead on certain optical phenomena that can occur with a

similar temporal resolution. One such method relies on the optical Kerr effect - a property of some isotropic

28



transparent substances (usually liquids or liquid crystals) to become birefringent2 under a strong coherent

light. The shutter that utilizes the Kerr effect is called a Kerr gate and consists of a Kerr cell placed between

two blocking polarizers. When a laser is directed at an angle at the cell the induced anisotropy rotates the

plane of polarization allowing the blocked signal from the first polarizer to pass through the second one.

Essentially the Kerr cell acts as a half-wave plate. With the disappearance of the laser stimulus the gate

“closes” within a few picoseconds blocking the signal one again. The Kerr gate shutter method allows to

block the trailing part of the scattered pulse letting through only photons traveling the shortest path. The

subject is scanned with a series of short laser pulses. The light from each pulse is split, so that part of it

is used to “open” the Kerr gate allowing the non-scattered portion of the other part of the pulse to pass

through the subject to the detector. This method has been shown to produce quality images for samples

up to 1 cm thick [236, 121, 143]. The opacity of a Kerr gate limits the minimum detectable fraction of

the transmitted photons, which must be above a few percent of the pulse [85]. An improved design uses a

light amplification process based upon the phenomena of stimulated Raman scattering (SRS) [153, 186, 13].

Ultimately this approach still relies on the strength of the non-scattered part of the laser beam. There are

other alternative filter/amplifier designs exploiting various optical phenomena, such as combining the signal

and reference pulses in a non-linear crystal to generate an amplified signal at twice the frequency (known as

second-harmonic generation, or SHG) [247] and a related method of combining the signal with a reference

pulse with twice the frequency in a non-linear crystal to produce an amplified signal at a frequency equal to

the difference between the two [67, 239]. The former method is known as optical parametric amplification

(OPA).

Capturing the whole temporal profile of the transmitted pulse is yet another possibility. This can be

done using a streak camera. A streak camera essentially is an inverted version of a cathode ray tube: the

incoming light is used to generate electrons which are swept in an electric field and impact a phosphor screen

producing a temporal image that is recorded in a conventional way with a CCD or a film. Streak cameras

have been used to generate sharp 2-D time-gated images [87, 159, 86], and also to generate true tomographic

images used to reconstruct the 3-D volume [88, 204]. An alternative to a streak camera is a time-to-amplitude

converter (TAC). TAC is used to convert a photon arrival delay to a voltage forming a histogram of photon

arrival times, equivalent to the temporal dispersion curve. This approach has been investigated by Berg et

al. [15] and Benaron et al. [14]. Other promising detection devices include an ultra-fast photodiode [54] and

an avalanche photodiode detector [126, 200].

An indirect way to recover the pulse profile is to approach the problem in the frequency domain rather
2Birefringence is also known as double refraction, or the property of some transparent materials (calcite is a good example),

to refract entering light along two distinctive directions, depending on the polarization of the light.
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than time domain. Frequency methods use an amplitude-modulated (usually in the radio frequency range)

coherent light beam and measure its attenuation and the modulation phase shift. Most of the time the het-

erodyne detection method is used. A measurement at a single modulation frequency is enough to recover the

first moment of the temporal point spread function (TPSF), or the average photon arrival time. Although

additional measurements at different frequencies could, in principle, allow to recover the full TPSF, it is

usually not necessary. By adapting the Boltzmann transport equation to the amplitude-modulated beam

(or the photon density wave) inside the scattering media, Fishkin and Gratton [72] showed how these mea-

surements can be used to recover the approximate absorption and diffusion coefficients essentially providing

information about the internal structure. They concluded that achieving desirable resolution would require

frequencies on the order of several gigahertz. Unfortunately with the existing technology it is still very diffi-

cult to achieve high-frequency modulation at sufficient power levels and current devices are only capable of a

few hundreds of megahertz [85]. Working at these lower frequencies still provides enough resolving power to

be a viable medical diagnostic tool [176, 114, 249] leading even to first commercial implementations by Carl

Zeiss [123], Siemens [203], and Philips [179]. Many recent designs also include several modifications that aim

to improve the resolution. One of the more promising relies on amplitude-phase compensation [33]. The

method uses a combination of two sources of photon waves with the same amplitude but with a phase shift

of 180◦ and a detector equidistant to the two sources. If the two photon waves pass through a homogeneous

medium the interference at the detector would be destructive. Inhomogeneities result in partial cancellation

detectable using the standard heterodyne method. Another common modification is to use light emitters

operating at different NIR frequencies allowing for faster acquisition time and better tissue discretization.

This permits temporal, or functional, tissue analysis [33].

Model-Based Inversion Methods

Inversion methods aim to solve the inverse problem of the photon transform under the assumption that

a particular distribution function of absorption and scattering produces a unique distribution of photons

exiting the sample. Inversion methods are known under the name of diffuse optical tomography (DOT),

as the diffusion is explicatively modeled. In a sense the term “tomography” here is quite misleading, as

DOT does not use the principle of radiation travel along straight lines. The term is being used mostly for

historical reasons. In DOT light scattering is explicitly modeled. A number of calibrated light sources are

used to illuminate the sample from different directions and for each direction the distribution of the diffused

light is measured using detectors placed on the volume’s surface. These measurements are then used to

estimate the likely distribution of absorption and scattering coefficients inside the volume. Since diffuse
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optical tomography is based on diffusion it will not be discussed here. For a review of DOT refer to the

review by Gibson et al. [75].

3.1.3 Magnetic Resonance Imaging

An alternative non-invasive volumetric scanning method called Magnetic Resonance Imaging does not use

high-energy radiation, but relies on the principle of nuclear magnetic resonance. Nuclear magnetic resonance,

discovered independently by Bloch et al. [21] and Purcel et al. [183], describes the behavior of protons in

a magnetic field. In a strong magnetic field protons align their magnetic moments (or spin) with the field

lines (the object becomes magnetized). By the law of momentum conservation, this alignment will undergo

precession (analogous to a spinning gyro). Although this precession is random, in MRI it is synchronized

by applying a perpendicular magnetic field at the precession or resonance frequency (usually in the range of

10-100 MHz). After the resonance field is removed, protons will gradually loose their spin synchronization.

These changes can be detected and used to infer various spatially-varying properties of the examined volume.

In MRI, a subject is placed in a strong magnetic field that initially magnetically aligns protons. Then

a second oscillating magnetic field is applied to induce precession resonance (an RF pulse). The resonating

field is then switched off and a sensitive antenna is used to pick up variations in the magnetic field as the

protons relax their spins. Varying the length and frequency of the RF pulses allows for measuring of various

characteristics.

Typically three quantities are measured: the proton density (PD), the spin-lattice (T1), and the spin-spin

(T2) relaxation. PD is a measure of the spatial proton density. It is essentially equivalent to measuring

hydrogen density. T1 measures the magnetization relaxation time in the longitudinal direction, while T2

measures the time for the transverse magnetization to decay due to dephasing. T1 time is usually much

longer than T2. Unlike CT, in MRI volume is typically described using three parameters.

In order to reconstruct the 3-D volume, the spacial distribution of each parameter must be determined.

The methodology used to measure volumetric variation in the MRI signal was proposed by Lauterbur [137].

The crux of the method is the dependence of the proton’s precess frequency on the magnetic field strength:

creating a smooth gradient in the magnetic field induces a corresponding gradient in precess frequencies. The

location dependent read-out takes place by sending a resonance inducing RF-pulse at a particular frequency.

Since the precession frequency of the protons was made location dependent by the gradient field, only a

narrow “slice” of the volume will match with the RF-pulse frequency and resonate. To determine the 2-D

location within the slice, additional two gradient fields are used in the other two perpendicular directions.

One encodes the signal in terms of frequency and the other uses phase. The whole 3-D volume can therefore
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be reconstructed by sending a series of RF-pulses and varying the three gradient fields.

MRI has excellent soft tissue discrimination when compared to other scanning methods. Today it is the

primary tool used as a non-invasive method for cancer diagnosis [49]. The main drawback of MRI is the high

cost and long acquisition times3. Multiple RF-pulses and gradient fields adjustments must be performed

in order to reconstruct the entire volume. Strong magnetic fields also prohibit most metallic objects in the

scanner.

3.2 Shape Scanning Methods

Although shape scanning could be achieved by most volumetric methods discussed in the previous section,

there are many others that were developed specifically for that purpose. Shape scanning methodologies often

take a form reminiscent to reflection tomography. In fact, many reflection tomography methods are also used

in a simplified form for shape scanning. They are among active scanning methods, where a scanner first emits

energy into the environment and then measures the reflection. For example, laser time-of-flight scanners

use the principle of timing the reflected signal to determine the depth of the reflection surface. The same

principle is used in an A-mode ultrasonography. Shape scanning is also often done passively by detecting the

electromagnetic radiation naturally emitted from the environment. This is similar to emission tomography,

although emission tomography typically requires a tracer material. Most passive shape scanning methods

detect reflected visible light and use digital cameras as detectors4.

Shape scanning methods are based around the concept that the radiance along a ray in an empty space

remains constant. This is called the ray law of radiance (see Appendix A.2). Technically it refers to scanning

of solid shapes in a vacuum environment. In practice, the meaning of “empty” is not very strict. Although

in a non-vacuum environment photons eventually collide with other particles resulting in attenuation, the

ray law is often a good approximation over short distances. It is frequently applied to light traveling in

clear air. The use of the empty space assumption leads to a significant simplification: all light interactions

are limited solely to surfaces of objects. The radiance transport equation in Equation 2.33 reduces to an

expression of boundary conditions, which essentially has the form of Equation A.10.

3.2.1 Active Shape Scanning Methods

Active shape scanners emit an energy wave into the environment and infer the geometry from the detected

reflection. This methodology is very similar to reflection tomography. Some methods already mentioned
3There is a derived method called functional MRI (fMRI), that can measure relatively short-time changes in the blood

oxygen level and is often used to monitor brain activity, but the resolution is much lower.
4Infra-red cameras could be used to detect emitted, rather than reflected light.
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in Section 3.1.1 can be used directly. These include SONAR and RADAR, although they offer limited

maximum resolution due to relatively long wavelengths.

Laser Range Scanning

The development of laser scanners began in the 70s and early 80s, with a lot of pioneering work done by the

National Research Council of Canada [188]. For a historical review of the laser scanner technology refer to a

review by Blais [20]. Lasers are probably the best tool currently available for measuring distances with great

accuracy. Their main advantage over conventional light sources is coherence, both temporal and spacial.

These can be used in different ways to construct range scanners, which can be subdivided into three main

categories: triangulation, time of flight, and modulation scanners [23].

The main principle behind the triangulation method for laser range scanning is to take advantage of the

spatial coherence of the laser beam over long distances. The scanner consists of a laser emitter and a camera

placed at an angle [195]. The camera is used to observe the reflection of the laser beam. The position of

the reflection in the camera’s field of view is used to compute the distance from the reflection surface to the

emitter. Triangulation laser scanners can be very accurate, although their range is limited due to geometry.

On the other hand, triangulation methods can be extended to also scan the reflectance of a surface in color

[9]. By using a multi-wavelength laser source the relative brightness of the reflected beam at each wavelength

can be used to estimate the color reflectance of the surface.

Time of flight laser range scanners work by measuring the amount of time it takes for light to travel as

it reflects from a surface and returns to the detector [142]. This is essentially the same principle used in

SONAR and RADAR. Accordingly, a LIDAR (Laser Imaging Detection and Ranging) is a laser version of

a RADAR. A time of flight scanner emits a pulse and then measures the time delay t of the reflected pulse.

If the speed of light c in the medium is known, the distance d to the reflection surface will be just the half

of the distance traveled by the light during that time [165]:

d =
c t

2
(3.4)

Time-of-filght laser range scanners are typically used for scanning over large distances, as their accuracy is

usually lower than triangulation laser scanners over shorter ranges [4]. The accuracy is limited by the ability

of the electronic to precisely time the reflection time delay.

Amplitude modulation or phase shift methods are based on the same principle used in optical coherence

reflection tomography (see Section 3.1.1). The basic layout of a phase shift scanner is the same as that of a

time of flight scanner, as the detector is placed on the same path with the emitter. The laser light signal is
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modulated with a low frequency signal fmod and then the phase shift ∆f of the reflected signal is measured

by the detector [223, 117]. The distance to the surface can then be calculated as:

d =
1
2
c
∆f

2π
fmod (3.5)

The resolution of an amplitude-modulated scanner is usually much better than that of a typical time of

flight scanner [4].

Recently frequency modulated laser scanners have been gaining popularity [219, 30, 58, 166]. They use a

source with frequency periodically swept over a small range ∆fs. As with amplitude modulation, the reflected

signal is then combined with the emitted signal, but this time to measure the frequency shift difference ∆f .

The distance from the detector to the surface is then proportional to the detected frequency shift:

d =
1
2
c
∆f

fs
Ts (3.6)

Ts is the time period over which the frequency sweep ∆fs occurs. The amplitude of the frequency shift

difference signal ∆f is proportional to the amplitudes (not the power) of the two combined signals and

therefore the dynamic range is about twice as large as for the other time of flight methods [4]. This is

the main advantage of frequency modulated scanners which are typically more accurate and can work over

longer ranges.

Although a point laser range finder can only detect the distance to one point at a time, it can be modified

to scan a range of directions by using a set of computer controllable mirrors that change the direction of the

beam. This results in a 2-D depth field measured from the sensor’s location. Since the light travels extremely

fast, the scanning speed depends on the mechanical components of the mirror array. Typical point scanning

speeds are on the order of 10-100 kHz [4].

Structured Light Scanners

While laser range finders can be very accurate, they only allow point sampling of depth and the speed of

acquisition is ultimately limited by mechanical components responsible for directing the beam. Overcoming

this limitation has led to active scanning methods with consecutive sampling. For example, a laser beam can

be split along a line allowing for simultaneous depth sampling along its length. Such solution is used in a slit

laser scanner [3]. Early slit scanner designs were using incandescent light [210]. Spatial coherence of lasers

over large distances has been the decisive factor in favor of using them in later designs. A slit scanner uses an

extension of the triangulation laser scanning technique: a camera placed at an angle measures the reflection
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of the beam. The displacement of the reflection along a line in the camera view then corresponds to the

depth of the reflection point. Depth of the visible scene can be measured by performing a one-dimensional

sweep of the laser line across the view.

A step above slit scanners are stripe scanners [112, 6]. By projecting a series of parallel stripes, stripe

scanners can estimate depth of an entire scene in a fraction of time required by slit scanners. Going even

further, a a dense stripe pattern could be used to capture geometry from just a single image by tracing

individual lines simultaneously. A measurement can then be performed instantaneously and no mechanical

components are necessary for scanning [20]. Unfortunately additional lines make the line identification

algorithm more difficult. While a slit scanner could use a simple threshold, or edge filter to detect the

reflection of the line in the image frame, identifying dense pattern features usually requires feature coding

and stereographic reconstruction algorithms [162].

In stereo reconstruction scanning is traditionally done passively, as discussed in Section 3.2.2. Yet passive

stereo can be difficult to perform under some conditions, such as when a surface lacks features. To aid the

stereo algorithm, active stereo methods use a projector to project a coded pattern onto a scene. Features of

the pattern can then be identified for correspondence matching and in turn used for depth reconstruction.

Various active stereo methods were proposed utilizing different projection patterns, including color stripes

[25], square grids [238], or other more complex forms [105, 161, 82, 104, 144]. Pattern methods have become

quite popular due to their robustness, speed, and relatively low cost. A basic setup requires only a camera

and a projector. They are currently one of the favorite methods for geometry scanning in computer graphics.

Active stereo methods are mostly limited to Lambertian scenes.

3.2.2 Passive Shape Scanning Methods

Passive shape scanning does not involve emission of a radiation by the scanner, but rather relies on the

detection of the radiation already emitted by the scene. Visible light is the most obvious choice. In computer

vision, shape scanning uses images taken with a camera. An image is a 2-D slice of the scene’s radiance field

that captures the interaction between the lighting and geometry. Even though a single image encapsulates

the actual geometry of the scene, this problem of shape reconstruction is ill-posed. People are naturally

good at solving it (to roughly recreate the geometry using their prior experience), but they can also be easily

fooled. For example, we cannot differentiate an image of a scene from an image of a photograph of the same

scene.

In computer vision the geometry also cannot be recovered directly from a single image without prior

knowledge and limiting assumptions about reflectance. The problem has been extensively explored and the
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majority of existing techniques use some form of visual cues. Not surprisingly, often these are also the same

cues that are used by people. Probably the most popular one is shading and the problem is referred to as

Shape from Shading [106, 97]. Another possibility is to use texture in a problem known as Shape from Texture

[242, 221]. Object contours can also serve a a source of geometric information [122]. Feature sharpness due

to a lens with a low depth of field can also be used. The problem is generally known as Depth form Defocus

[65]. Alternatively some of the methods rely on direct human input [99, 229, 212, 45, 256]. Applications of

single image techniques are rather limited and will not be discussed here in detail.

Robust geometry recovery usually requires multiple images. In general, there are two possible passive

approaches to shape reconstruction from multiple images: stereographic and photometric. The choice dic-

tates how the additional images are captured. In a stereographic approach additional images are captured

while changing the camera view, while photometric approach uses variations in the lighting.

Traditional Stereography

The stereographic approach to shape scanning makes use of the view parallax of the scene as the location

of the camera changes. Early stereo reconstruction work was conducted in 70’s and early 80’s (refer to the

survey paper by Barnard [10]). Initial work focused on the problem of geometry reconstruction from a pair

of stereo images [83] and later was generalized to multi-view stereo reconstruction. The next section gives

an overview of different multi-view stereo algorithms used for object reconstruction in object-centric stereo.

In the most basic two-frame stereography, the geometry of a scene is recovered from two images taken

by two cameras or the same camera after a translation. The apparent movement of scene features between

the two camera views will depend on the distance z of these features from the camera. As the feature point

is moved along the x axis of the image plane by ∆x, the parallax ∆xp in the image plane for an ideal pinhole

camera can be expressed as:

∆xp = −f
∆x

z
(3.7)

where f is the focal length of the camera. This can also be inverted by moving the camera as shown in

Figure 3.4. A feature point P visible in a stereo pair of images created by moving a camera along the x axis

of the image plane by b will appear at two different offsets x1 and x2 along the epipolar lines in the two

images. These offsets can be expressed as:
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Figure 3.4: Stereo reconstruction. A feature point P visible in a stereo pair of images created by moving a
camera along the x axis by b will appear at two different offsets x1 and x2 along the epipolar lines in the
two images. This can be used to recover the depth z.

x1 = f
x

z
x2 = f

x− b

z
(3.8)

The point correspondence between the two images can be represented with a disparity map. Disparity d

of a point P is defined to be equal to the difference in the offsets x1 and x2:

d = x1 − x2 = f
b

z
(3.9)

If the baseline distance b and the focal length f is known, the depth z of the feature point in the scene

can now be easily computed:

z = f
b

x1 − x2
(3.10)

The key to all stereographic methods is the ability to correlate points in the scene as the camera view

changes. When a camera is moved, this correspondence problem is often ambiguous. This is due to several

possible situations, such as the lack of texture, occlusions, or view-dependent reflectance changes of the

scene. Although a number of possible constraints are often used (for example epipolar geometry, surface

smoothness, image brightness constancy), there is no straightforward solution to this problem. A number
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of possible approaches have been proposed, which can be organized as either local or global correspondence

matching [27].

Local matching methods attempt to match image features over small regions. The most popular approach

is block-based matching, where the goal is to find the best match for a small region of pixels or a pixel template

over some search region [7, 68, 253, 17]. Although template matching is relatively cheap to compute and is

one of the favorite choices for real-time stereo implementations [27], it does not do very well in the presence

of stereo ambiguities. Local matching can also be done on specific geometric features present in images, such

as edges [232, 18] or curves [199]. These are generally more robust, but do not produce dense depth maps.

When the disparity between images is small, correspondence is often framed as an optical flow problem. In

a typical situation images come form a slowly moving video camera and the relative movement of feature

points from frame to frame can be formulated in terms of differential point motion [98]. The search region

is limited to a small window around the original point and the disparity can be estimated by finding a

least-squares solution to a system of differential correspondence equations over the window [149].

Global matching methods aim to solve local stereo ambiguities by enforcing global constraints on the

visible scene. In general, they are more robust then local methods, although at a higher computational cost.

The most common approach is to use dynamic programming [43]. For example, a global constraint such as

the epipolar ordering and smoothness can be enforced on a local level by finding the minimum cost path

through the disparity space [173, 44, 19]. Disparity space is a 2-D representation of correspondence cost

along two matching epipolar lines. Smoothness constraint is used to find the minimum cost path.

An alternative dynamic programming approach proposed by Tomasi and Manduchi [226] uses intrinsic

curves, or local feature descriptor vectors at each pixel. These descriptors are created by applying local

operators, such as edge, or corner detectors, to each pixel in an image. The idea is that these remain

invariant as the camera moves and the correspondence problem turns into a nearest neighbor search in the

intrinsic curve space.

Dynamic programming methods still make it difficult to introduce smoothness constraints between epipo-

lar lines. A more recent approach to the stereo correspondence problem is to utilize graph cuts [43]. The

method has been popularized by Roy and Cox [190]. The idea is to represent image pixels (u, v) and dispar-

ities d as a three-dimensional graph along (u, v, d) axes. In the graph, edges have an associated flow capacity

corresponding to the disparity and smoothness costs of adjacent graph vertices. The minimum cut solution

produced by the graph cut algorithm is then the minimum cost stereo disparity solution. A recent alternative

graph cut representation proposed by Kolmogorov and Zabih [128] uses pixel pair correspondences (rather

than pixels themselves) as graph nodes. This way the graph cut cost function can also include a disparity
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smoothness term and an occlusion penalty term when one of the pixels is occluded. This approach has been

shown to be among the best in comparative tests [197]. Other less popularized global matching methods

include disparity diffusion [208, 196, 155] and Markov belief network propagation [220], the latter producing

results matching in quality the best graph cuts methods [197].

Binocular stereo uses images taken from two overlapping views to recover the depth. However, having

just two images is very often insufficient to unabigiously identify disparities. Including additional images

taken from different views can help to resolve them. Many stereo systems now often use three cameras

instead of just two. In trinocular stereo [246, 174] point matching is performed over three overlapping image

frames. A single point maps to three pairs of epipolar lines, two for each of the three frames. This results

in an additional epipolar constraint, as the disparity point in each image frame must be the intersection

of the epipolar line pair. Disparity search is simplified to a simple verification at a precise location in

the third image [8]. Of course using more images can result in even higher quality depth maps. Epipolar

stereo reconstruction from multiple images is generally known as multi-baseline stereo [250, 175, 26]. A

video sequence captured with a moving camera can also be framed as a stereographic method. Geometric

reconstruction form video is known as structure from motion [169, 228] and is usually solved using the

optical-flow approach.

Multi-View Stereographic Reconstruction

In a typical stereography camera views are assumed to be close, so that disparities between images can

be easily identified. A separate class of stereographic algorithms focuses on the problem of geometric

reconstruction of entire objects from many radically different view points. As the camera can be positioned

at radically different locations, depth maps are not the best geometric representations. Multi-view stereo

object reconstruction methods usually utilize point cloud, polygonal, level set, or voxel representations [205].

As a consequence, disparity cannot be easily used to reconstruct geometry. Instead, most of these methods

minimize some form of a global photo-consistency cost function [133]. The error is generally computed by

comparing existing photographs of an object with identical views of the rendered model.

To reconstruct the shape of an object, a camera is used to capture the object’s appearance from many

different directions. This actually reassembles computed tomography (see Section 3.1.1). Images obtained

by moving the camera are synonymous with attenuation measurements obtained by moving the detector in

CT. Unlike tomography, a camera captures the reflected radiation from the object’s surface. Some multi-

view stereo object reconstruction methods are even simpler and look only at object occlusions of a known

background. As only the silhouette of an object is used for its reconstruction, these methods are referred
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to as shape from silhouettes or shape from contours [63]. Shape from silhouettes methods use a known

background to identify the silhouettes of an opaque foreground object. Silhouettes are then used to carve

the volume by back-projection. Although this methodology can be applied to opaque objects with complex

reflectance properties, the reconstructed geometry is only an approximation of its convex hull, or the visual

hull [136]. This limitation can be overcome by examining the light reflected from an object. Such methods

explicitly exploit photo-consistency, either by starting with a fully transparent volume and then filling it in a

photo-consistent way or by starting with an opaque volume and carving photo-inconsistent parts. The voxel

coloring algorithm [206] uses the first approach. Since the appearance of a Lambertian surface observed

under fixed illumination is view independent, opacity and color can be iteratively assigned to each voxel so

that it is most consistent over all input images. Space carving [192, 133, 132, 216, 254] takes the opposite

approach to reconstruction. Voxels with inconsistent appearance are progressively eliminated slowly carving

the shape of the object. The process typically requires several passes over the volume, usually as an iterative

plane sweep from different directions [133]. There are also other methods that start with an opaque volume

yet do not use voxel representations [189, 255, 66]. Since the Lambertian assumption can be quite restrictive,

most recent work focused on extending these algorithms to handle more radiometrically complex surfaces

[248, 115, 251]. An evaluation of various multi-view stereo reconstruction algorithms was recently done by

Seitz et al. [205].

Photometric Methods

Taking the photometric approach requires an analysis of the reflectance properties of the scene. Observed

changes in image brightness due to changing lighting are then used to deduce the underlying geometry of

the scene. The camera location and parameters are kept fixed, while the scene is observed under a changing

illumination.

Photometric stereo can be traced back to the work of Woodham [244], who proposed a method for

simultaneous normal and albedo recovery of an observed surface. The radiance reflected by an opaque

surface due to the received irradiance can be related using the reflectance equation (see Equation A.10).

The most basic setup analyzed by Woodham assumes a known directional light source in a clear medium

and ignores reflections and shadowing. The reflectance equation reduces to the product of the BRDF and

the irradiance of the observed surface (refer to Equation A.10 for parameter definitions):
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Figure 3.5: Photometric stereo. (a) Reflected radiance Lo measured for a minimum of three distinct light
directions is used to recover the orientation of the surface normal vector ~n. (b) The shape of the surface is
reconstructed by integrating the recovered surface normal vectors over the image plane. The absolute depth
of the surface z0 and shape discontinuities are ambiguous and cannot be reconstructed.

L(~ωo) =f(~ωi → ~ωo)E(~ωi)

L(~ωo) =f(~ωi → ~ωo)L(~ωi) ~ωi · ~n

Lo =f(~ωi → ~ωo)Li ~ωi · ~n (3.11)

If the BRDF of the surface is known, the surface normal ~n can be recovered using just two measurements

of the reflected radiance for two distinct light directions [96]. This is because ~n has only two degrees of

freedom. Unfortunately the BRDF of the observed surface is usually unknown and therefore more images

are needed. For example, if the surface is assumed to be Lambertian (see Equation A.13) then the minimum

is three images. Silver [214] has shown how to reconstruct the shape of objects with Lambertian reflectance,

but unknown albedo. This is the standard setup for photometric stereo methods (see Figure 3.5a). The

additional measurement is required to disambiguate the surface albedo (or the diffuse coefficient Kd if we

use a radiometrically calibrated setup). The problem can be solved using a simple set of equations:
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Kd~n =
π

Li


~ωi1

~ωi2

~ωi3


−1 

Lo1

Lo2

Lo3

 (3.12)

Kd is solved for by using the unit vector constraint on the surface normal ~n. To reduce errors more than

three measurements can be used, so that Equation 3.12 becomes over-constrained. The normal ~n is then

found by using a least-squares approach.

Although traditional photometric stereo can only recover the orientation of the surface ~n, scene geometry

can often be recovered by integrating the normal vector field over the image plane. The depth of a scene

ŝ(x, y) seen with a camera from a fixed view point is a projection of the geometric shape s(x, y, z) 7→

[x, y, ŝ(x, y)]. Under this mapping, the surface tangential and normal vectors can be expressed as:

~tx =
∂s
∂x∥∥ ∂s
∂x

∥∥ =

[
1, 0, ∂ŝ

∂x

]√
1 + ∂ŝ

∂x

2
(3.13)

~ty =
∂s
∂y∥∥∥ ∂s
∂y

∥∥∥ =

[
0, 1, ∂ŝ

∂y

]
√

1 + ∂ŝ
∂y

2
(3.14)

~n = ~tx × ~ty =

[
− ∂ŝ

∂x ,− ∂ŝ
∂y , 1

]
√

1 + ∂ŝ
∂x

2
+ ∂ŝ

∂y

2
(3.15)

Note the relation between the normal vector ~n components and the derivatives of the depth ŝ. Given a

recovered normal vector ~n, the depth gradient vector can therefore be written as:

∇ŝ =
[

∂ŝ

∂x
,
∂ŝ

∂y

]
=

[
−~nx

~nz
,−~ny

~nz

]
(3.16)

To recover the geometry, the depth gradient field can be integrated over the image plane. This requires

making an additional assumption of surface continuity (see Figure 3.5b). Even with this assumption the

gradient field integration can only be used to recover the relative depth, as the absolute depth ŝ(x0, y0)

is unknown. The relative depth can be estimated by integrating the depth gradient field along some path

starting at a chosen surface depth point ŝ(x0, y0). Under the surface continuity assumption the result should

be independent of the path, as the gradient field should satisfy the second partial derivatives equality:

∂

∂y

∂ŝ

∂x
=

∂

∂x

∂ŝ

∂y
(3.17)
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The simplest path that could be used to estimate an unknown depth ŝ(x1, y1) could start at ŝ(x0, y0)

and integrate the gradient field along the x direction to get ŝ(x1, y0) and then along the y direction to arrive

at ŝ(x1, y1):

ŝ(x1, y1) = ŝ(x0, y0) +
∫ x1

x0

∂ŝ

∂x
(x, y0)dx +

∫ y1

y0

∂ŝ

∂y
(x1, y)dy (3.18)

Unfortunately in practice the estimated values of ∇ŝ are noisy and the recovered value for ŝ(x1, y1) will

likely depend on the selected path. A solution to this is to estimate the depth by minimizing a surface fit

cost function [96] such as:

∫ ∫
image

(
∂ŝfit

∂x
− ∂ŝ

∂x
)2 + (

∂ŝfit

∂y
− ∂ŝ

∂y
)2 dxdy (3.19)

where ŝfit(x, y) is the surface being fitted. ŝfit(x, y) could be discrete or be represented using basis functions

(splines, for example). The optimization is done iteratively until a minimum is reached.

Although the basic photometric stereo was developed for purely Lambertian surfaces, it may often be

applied to surfaces with more complex reflectance properties. This may by done if specular highlights

and shadows can be treated as outliers. Shafer [207] first observed that for many objects the reflected

light can be treated as a linear combination of diffuse Lambertian and specular components. Often the

specular component of a surface is nearly zero except for a few sharp highlight areas. As long as there

are a minimum of three measurements for every pixel with no highlight or shadow, the surface could be

treated as Lambertian, and Lambertian photometric stereo could still be applied. Coleman and Jain [118]

first extended photometric stereo to surfaces with simple specular highlights by rejecting measurements with

detected specularities. Provided that sampled light directions are far apart with respect to the size of the

specular lobe, their method could work using just four measurements. For color images, the separation

could be done by performing a chromatic analysis of the reflected light [145, 12]. When the color of the light

source is different than the ambient color of the surface, a specular reflection will have a different chromatic

spectrum which can be detected. Four-image photometric stereo works well as long as specular highlights

are sharp and do not overlap each other in images. The overlap problem is especially difficult for scenes with

regions of high curvature.

Rather than rejecting measurements with specular highlights as noise, it is generally better to remove

the specular part from an image leaving only the Lambertian component. Shlüns and Witting [198] used

sparse set of images to achieve the separation, but required the surface to have homogeneous reflectance

parameters. Sato and Ikeuchi [193] also used dense sampling of light directions, but with color histogram
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analysis at each pixel. Recently Shen et al. [209] used a sparse technique with no homogeneity restriction on

the Lambertian component, while Wu and Tang [245] used energy minimization via a graph cut in a very

dense photometric stereo setting. Finally Mallick et al. [154] proposed a color space transformation that

effectively removes the specular component and can work with as few as three images. For all dichromatic

color separation methods the major challenge is saturation of specular highlights in a camera leading to a

complete loss of color information.

Photometric stereo is not limited in any way to the Lambertian reflectance model. More complex re-

flectance models allow for reconstruction of a greater variety of surface materials but reconstruction also

require many more images to recover the additional parameters. Reflectance is described using a bidirectional

reflectance distribution function (BRDF) (see Appendix A.3). Tagare and deFigueriredo [225] developed a

theory for photometric stereo for a large class of reflectance models. They also investigated the problem

of the minumin number of measurements required to reconstruct the normal field. The theory was later

extended by Kay and Caelly [125] who specifically looked at the problem of non-linear parameter recovery.

Early experimental work on non-Lambertian reflectance models was done by Nayar et al. [167] who used

extended light sources over many directions to explicitly recover the surface and reflectance parameters of

a hybrid Torrance-Sparrow and Beckmann-Spizzichino model. In a similar way Solomon and Ikeuchi [217]

used a simplified Torrance-Sparrow BRDF model to obtain a measure of surface roughness but required just

four images. The Torrance-Sparrow BRDF model with fixed global specular parameters has been used by

Georghiades [74] in an uncalibrated photometric stereo setting to reconstruct the surface normal field and

unknown light directions. An alternative photometric approach for isotropic BRDFs introduced by Hertz-

man et al.[94, 93] uses orientation-constancy of surface appearance under the same illumination. Using this

principle, a reference object with known geometry and the same surface BRDF can be used to map surface

normals to the object of interest, when observed in the same illumination conditions. Several reference

objects with different BRDFs can be used to compute a material surface map of objects composed of several

materials with different BRDFs. Under a constraint that each object’s surface point is a pairwise combi-

nation of parametric BRDFs of a small set of materials, Goldman et al.[78] later extended this technique

by eliminating the need for reference objects. The number of materials must still be provided by the user.

The algorithm recovers BRDF model parameters and material weights for each pixel. The algorithm was

demonstrated for the Ward BRDF model.

A completely generic approach that makes no assumptions about the BRDF model has been proposed

by Zickler et al.[152, 257, 258]. The algorithm is based on the principle of BRDF reciprocity first described

by Helmholtz [233]. This principle of reflectance symmetry about the incoming and the outgoing light direc-
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tions allows for geometric reconstruction without specific knowledge of the BRDF. The algorithm requires

reciprocal positioning of light source and camera pairs and therefore combines some aspects of stereographic

and photometric approaches.
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Chapter 4

Photometric Ranging of Large-Scale
Geometry

Geometric reconstruction of objects with complex surface reflectance properties remains a challenging prob-

lem in computer vision. This chapter explores the problem of geometric reconstruction of the shape of

objects with arbitrary and possibly anisotropic BRDFs (see Appendix A.3) and introduces a method that

can be used for that purpose.

4.1 Introduction

In computer vision, geometric reconstruction uses images as the source of data. With limited knowledge

of the scene, recovering of scene’s geometry usually requires multiple images. In general, there are two

possible approaches to shape reconstruction from images: geometric and photometric. These approaches

were discussed in detail in Section 3.2.2. The proposed method can be viewed as photometric, since it uses

controlled illumination to recover the geometry of a scene from a fixed view. However, unlike photometric

stereo, it recovers the depth of the scene directly. The basic principle is to exploit the law of radiant energy

density falloff with distance from a point light source. When a point light source is moved away in free space

from a surface, the change in the surface’s irradiance is inversely proportional to the square of the distance

to the source. This idea was first explored by Iwahori et al. [109], who presented an algorithm to recover

the depth and the normal field of a Lambertian scene. They have shown that for a diffusive surface with

uniform reflectance this could be accomplished with just four images. Using the same concept, Clark [38]

later proposed an active photometric ranging algorithm that is not restricted to Lambertian scenes. His

differential algorithm utilizes the fact, that the BRDF gradient component along the light direction vector

is always zero, as a BRDF does not depend on the distance to the light source. As this method requires

differentiation of the irradiance function, it is highly sensitive to noise. Later Clark and Pekau [39] proposed

an alternate integral formulation of Clark’s algorithm using a planar light source that is more robust to

noise, yet it was only demonstrated to work on Lambertian objects with uniform reflectance. Along with the

algorithm of Zickler et al., the method discussed was introduced in [152, 129]. Very recently the principle of
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using point light sources to recover depth has also been theoretically explored by Mulligan and Brolly [164],

who coined the term photometric ranging.

The proposed algorithm exploits the same concept of the radiant density falloff from a point light source

to recover the scene’s depth, but, uses a different approach specifically suited for lightfield rendering with

nearby light sources. Using reflectance measurements of coincidental point light source pairs made over a

range of light positions, the reflected light fields and be algned to recover the distance to the surface at each

pixel location. Moreover, this method is likewise independent of the reflective properties of the surface, and

produces high-quality results using real objects.

4.2 Radiance Ratio for Coincidental Illumination

We start by analyzing the basic principle used in photometric ranging. In traditional photometric stereo

light sources are intentionally positioned at large distances from an observed surface in order to approximate

directional light sources at infinity. On the other hand, photometric ranging uses point light sources at close

distances in order to detect irradiance changes caused by varying the separation between the source and

the surface. Consider a convex surface illuminated by a point light source and observed with a stationary

camera, as shown in Figure 4.1. The illuminator is an ideal point light source with intensity 1 I0 [W/sr].

Consider the problem of computing the irradiance Ei received by a small surface patch dA at a distance l

from the illuminator. If the patch subtends a solid angle dωi with respect to the illuminator, then Ei can

be expressed as:

Ei =
I0 dωi

dA
(4.1)

Since dA is a small, differential patch, we can apply a solid angle approximation for dωi:

Ei =
I0

(
dA cos θi

l2

)
dA

=
I0

l2
cos θi (4.2)

where θi is the angle between the surface normal ~n and the direction to the light source, and l is the distance

to the source. Note that the cos θi factor reflects the foreshortening of the patch with respect to the light
1Intensity is defined as the measure of radiant power exiting from a point per unit solid angle [77], although it is often

casually overused to mean the camera-recorded pixel value related to pixel’s irradiance. To differentiate, we will refer to the
former as pixel brightness.
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Figure 4.1: Coincidental illumination observed by a camera. A small surface patch dA is illuminated by a
point light source with intensity I0. As the light source is moved along the surface incident direction ~ωi, the
change in observed radiance L depends only on the change in the separation between the surface and the
light.

source. The phenomenon described by Equation 4.2 is often referred to as the inverse-square law.

Some of the light reaching the patch is subsequently reflected toward the camera. The outgoing radiance

along the solid angle vector ~ωo is related to the incoming irradiance Ei through the BRDF of the surface.

In general, the BRDF can depend on several other parameters, such as wavelength, polarization, etc. For

simplicity, we will only consider the BRDF’s directional dependence for now. The outgoing radiance is

fr(~ωi → ~ωo)Ei, where fr is the BRDF of the surface for the patch dA. Combining these, we can express the

outgoing radiance in terms of the original light source intensity I0. For a light source at a distance l from

dA, the outgoing radiance L1 is:

L1 = fr(~ωi → ~ωo)
I0

l2
cos(θi) (4.3)

Now imagine moving the point light source back by a distance ∆l along ~ωi to a new position (see Figure 4.1).

The irradiance received by the surface patch will decrease due to the increased separation:

L2 = fr(~ωi → ~ωo)
I0

(l + ∆l)2
cos(θi) (4.4)

Since the camera remains stationary, the camera vector ~ωo is the same in both cases. We will combine

the BRDF and the foreshortening term into a two-dimensional camera-oriented reflectance function of the
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incoming light direction:

fr→c(~ωi) = fr(~ωi → ~ωo) cos(θi) (4.5)

When a point light source is moved along the incident direction ~ωi, this reflectance function remains

constant. This is because the BRDF is a function of the incoming and outgoing light directions, which do

not change in this case. We can therefore relate Equation 4.3 and Equation 4.4 through the reflectance

function:

fr→c(~ωi)I0 = L1l
2 = L2(l + ∆l)2 (4.6)

Note, that we have effectively eliminated the reflectance term and in turn the BRDF. The result is a

simple formula that relates the unknown distance l to the measured irradiance values L1, L2 and the known

offset ∆l:

L1l
2 = L2(l + ∆l)2 (4.7)

It may appear, that Equation 4.7 could be directly used to recover the distance to the surface patch, by

solving it for l. Unfortunately it is not possible in this basic setup to correlate the location of the surface

patch dA with the corresponding point on the camera’s image plane. The location of the surface patch in

space can only be determined given measurements of reflected radiance L1 and L2, yet we cannot determine

the direction ~ωi to obtain the second radiance measurement L2 without knowing the location of dA. In

the next section we will present an approach that solves this problem by double-covering the set of incident

directions and then uses a global optimization strategy to estimate the scene’s depth.

4.2.1 Depth Estimation using Dense Sampling

Even though it is not possible to determine the depth directly from a single pair of measurements, the

problem can be solved using a global approach. As shown in Figure 4.2, let us define a global coordinate

system {O}, whose origin O will be conveniently located near the center of the object. Imagine, that a point

light source is moved over a convex surface around the object while we gather images capturing the reflected

radiance. Let the convex surface be defined by a radial distance function l(φ, θ) relative to {O}. L(φ, θ;u, v)

will be the radiance function measured at an image point (u, v), as the light source is moved over l(φ, θ).

Note, that L is measured for a single, fixed viewing direction, and (φ, θ) are parameters of the direction of

the light source. The measured radiance will be a function of the surface’s BRDF, foreshortening, source’s
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Figure 4.2: Mapping between the radiance field L(φ, θ;u, v) in global coordinates {O} and the radiance field
LP (φP , θP ;u, v) in local coordinates {P} at a point P .

intensity, and the distance to the source, as defined earlier in Equation 4.3. An example of a radiance

function L(φ, θ;u, v) for a particular pixel (u, v) is shown in Figure 4.3. Measurements were done by moving

a point light source on a spherical surface and then repeated for a different sphere radius.

For some point P along ~ωo, also mapping to the point (u, v) on the camera plane, we can define a similar

local radiance and radial distance functions LP (φP , θP ;u, v) and lP (φP , θP ). For that we define a local

coordinate system {P} with P as the new origin whose axis are aligned with those of {O}. Note, that we

can remap the original functions into the {P} frame of reference. Let WP define a 2-D change of coordinates

that transforms the (φ, θ) into local coordinates (φP , θP ):

(φP , θP ) = WP (φ, θ) (4.8)

While the radiance function is remapped, the distance function must additionally be offset by a vector from

the origin O to the point P . This can be written as:

LP (φP , θP ;u, v) = L(φ, θ;u, v) (4.9)

lP (φP , θP ) =
∥∥∥l(φ, θ)


sinφ sin θ

cos φ sin θ

cos θ

− ~P
∥∥∥ (4.10)
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Figure 4.3: An example of a complex radiance function measured at a single pixel location as a point light
source is moved on a spherical surface in the (φ, θ) space. The figure shows the green channel measurements
for motion over two spheres of different radii. Missing data at the bottom of each graph is due to the robot
arm occlusions.

Suppose, that we have multiple measurements obtained by moving a point light source over two non-

intersecting surfaces described by two distance functions l1 and l2, resulting in two radiance functions L1

and L2. Projecting both into the local coordinates of the surface point P , we obtain a double-covered

local radiance function (Figure 4.4). For every direction (φP , θP ) we have two radiance measurements

corresponding to point sources at two distances from P . Note that this is very similar to the situation

described by Equation 4.6. For any light source direction (φP , θP ) we can identify a pair of collinear light

source locations on l1 and l2. Analogous to Equation 4.7, we can therefore form an equation relating the

local radiance and light source distance functions independent of the local BRDF:

L1(φP , θP ;u, v)l1(φP , θP )2 = L2(φP , θP ;u, v)l2(φP , θP )2 (4.11)

Effectively we have eliminated the unknown surface BRDF fr(~ωi → ~ωo), the foreshortening term cos(θi),

and the unknown source intensity I0. The location of the surface point P is still unknown, even though this

location is necessary to define the mapping WP . However, now radiance is defined as a function of (φP , θP )

and, using the WP operator, it can be re-mapped for any point P .

Let s(u, v) be the depth of the scene for a camera pixel (u, v). That is, s(u, v) is the distance to a point

P from the camera center C along the camera vector ~ωo intersecting the camera plane at a point (u, v). We

can express the point P in terms of s as:
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Figure 4.4: Radiance functions L1 and L2 in the local reference frame of the point P . For some direction
(φP , θP ) the distances to the two point source locations are given by l1 and l2.

P = C − s ~ωo (4.12)

If we knew the true surface depth ŝ, then under ideal conditions we would expect Equation 4.11 to be

satisfied for every light direction (φP , θP ). For the true depth the two re-mapped radiance functions L1 and

L2 would be in alignment, differing only be the ratio of the squares of the light source distances l1 and l2.

However, in general, Equation 4.11 will not be satisfied for an arbitrarily chosen value of s. We can define

an error function over the depth s along the camera vector ~ωo as:

E(s;u, v) =
∫

Φ

∫
Θ

∥∥L1(φs, θs;u, v)l12(φs, θs)− L2(φs, θs;u, v)l22(φs, θs)
∥∥ dθsdφs (4.13)

Appropriately we have replaced location subscripts P with depth s. Our aim is to find the minimum of

Equation 4.13 over some likely range of depth values. This minimum corresponds to the best depth estimate

ŝ(u, v):

ŝ(u, v) = argmin
s

∫
Φ

∫
Θ

∥∥L1(φs, θs;u, v)l12(φs, θs)− L2(φs, θs;u, v)l22(φs, θs)
∥∥ dθsdφs (4.14)

It should be noted that for each image point (u, v), the depth ŝ is estimated independently.
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Figure 4.5: Physical violations of the direct illumination assumption: (a) subsurface backscattering, (b)
surface interreflection, (c) shadowing, (d) combination of all three.

4.3 An Implementation of Photometric Ranging

The objective function in Equation 4.14 is non-linear and multimodal, and finding its minimum requires a

global iterative approach. Ideally, the minimum value corresponding to the true depth would be equal to

zero, but in practice, there may be several local minima, and the global minimum may likely be greater than

zero due to data noise. In addition, the direct illumination assumption by a point light source can sometimes

be violated due to shadows, interreflections, or sub-surface scattering (see Figure 4.5). Shadows violate the

direct illumination assumption as the direct light path is blocked by geometry. However, measurements

affected by shadows can be easily determined and discarded through brightness thresholding. This may

be more difficult if the other two phenomena are present. Interreflections and sub-surface scattering are

more difficult to detect and account for. One possible solution is to use the direct illumination separation

method proposed by Nayar et al. [168]. Still, for many opaque objects, sub-surface scattering is minor and

interreflections are not significant if the surface is mostly convex or the surface albedo is low.

4.3.1 Finding the Minimum

In order to find the global minimum of Equation 4.14, it is necessary to resample radiance functions L1

and L2 into the local coordinates of {P}. Since radiance functions were discretely sampled, evaluating

them at arbitrary values of (φ, θ) requires interpolation. Mapping between the global (φ, θ) and the local

(φP , θP ) space, which requires resampling, may therefore result in sampling artifacts if the sampling rate of
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the global radiance is inadequate. This is a potential problem if the radiance function has high-frequency

components, for example, high-frequency BRDF components or shadow boundaries. Although a denser set

of measurements would be preferred, we can alternatively apply a low-pass filter. In experiments low-pass

filtering had few negative side effects on the reconstruction. As a second benefit, filtering also removes high-

frequency noise. We have achieved the best filtering results by first applying a Savitzky-Goley polynomial

smoothing filter [194] and subsequently performing bicubic re-sampling during the WP mapping operation.

We then approximate integrals from Equation 4.14 over the (Φ,Θ) range by summation at discrete points.

To find the global minimum corresponding to the true depth, we can use a number of recursive non-

linear minimization algorithms. Experiments discussed in this chapter use a variation of the convex global

underestimator method [180]. The method recursively uses a quadratic underestimate of the overall shape

of the objective function to find the global minima through direct sampling. In the final iteration uses the

minimum from the quadratic estimator, as it turned out to be better in the presence of noise.

4.3.2 Light Geometry Cofiguration

To estimate the depth of a scene point, it must be directly illuminated from a 2-D subset for two surfaces of

light positions. The simplest configuration of the source surfaces are two spheres, one enclosing the other.

The sampling should be sufficiently dense to guarantee that all visible parts of a scene are under direct

illumination in some image. This is the configuration that we have used in our experiments (see Figure 4.9).

Note, that in Equation 4.14 the error is minimized over the depth s, which is measured along the camera

direction ~ωo rather than the light direction ~ωi. When the light ray is perpendicular to the camera ray, the

gradient of the error function in Equation 4.13 with respect to s is zero. In fact, the gradient is always zero

for the component of the light source vector orthogonal to the camera vector. This may cause difficulties in

localizing the minimum when the data is noisy. To account for that, more weight can be placed on samples

where the light direction is closer to the camera direction by weighting each sample with the dot product:

‖~ωi · ~ωo‖. This weighting is applied to the objective function from Equation 4.14.

4.3.3 Radiometric Calibration of the Light Source

Unlike other photometric techniques that assume that the light source is at infinity, photometric ranging

uses a point light source at close range. This poses some difficulties, as effects of a real, non-ideal light

source become more pronounced at finite distances. These include the source’s finite size and possibly its

anisotropic angular radiation pattern.

Radiant energy density due to a finite size source decreases with distance at a lower rate than for a point
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Figure 4.6: Theoretical surface irradiance falloff behavior when lit from a distance l by a uniform circular
light source with a radius r [191].

source. Fortunately, we can minimize the impact of the finite size by moving the source “far enough” from

the surface. With increasing distance, the energy density falloff approaches that of an ideal point source.

In Figure 4.6 a graph shows the theoretical power density falloff from a circular light source of radius r

versus the distance l from the surface. At distances less than 0.1 of the radius, a circular light source can

be treated as an infinite plane source, and the observed irradiance does not change much with distance. At

greater distances the physical dimensions of the source become significant. Yet at distances above 10 times

the radius, a circular light source can essentially be approximated as a point light source. For example,

to achieve the goal of approximating the radiant density falloff to within 1%, the light must be kept at a

distance over 10 times the light’s diameter. For necessary derivations, refer to the book by Ryer [191]. At

the same time it is important to realize, that the signal-to-noise ratio of the reconstuction is dictated by the

proximity of the light source, and therefore the size of the light source should still be as small as possible,

so that the minimum acceptable distance is small.

In experiments we have been using a compact super-bright white light emitting diode (LED) OTLWHTA-
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Figure 4.7: Radiation pattern measurement for our LED. A camera is used to measure changes in reflected
radiance from the center of a diffuse surface as a light source is rotated. Measurements are repeated for a
range of distances from the surface.

5-10-66-E [178]. With a radius of 0.5 cm, the minimum distance for the 1% point source approximation was

5 cm. In the experimental setup (Figure 4.9) the diode was always kept at a radius of more than 14 cm (the

maximum radius was limited by the mechanical constraints of the robot to 19 cm). In accordance with the

1% approximation rule, it provided a working space with a radius of about 9 cm.

All real light sources typically also have a non-uniform angular power radiation pattern caused by the

physical shape of the light emitting area. For example, a typical LED has a peak power output in a forward-

facing direction and quickly decreases away from it. To keep the source power constant, the light source

should ideally always be pointed toward the examined surface. However, since the the surface depth is

unknown a-priori, the best we can do is to aim the light toward the origin O. The resulting power difference

can be compensated for by measuring the angular power distribution pattern of the light source. We have

measured it by taking a series of observations of a lit tilted diffuse plane. While the light source was

rotated about its center point, a camera was used to measure the brightness at the center the diffuse plane

(see Figure 4.7). Measurements were repeated for a range of distances to the surface and a least-squares

polynomial fit was then used on the measured data. Given the surface light vector ~ωi and the actual forward

direction of the light source aimed at the origin O, the resulting function can then used to correct the

expected measured irradiance.

The last issue to consider is the temporal stability of the illumination source. This includes both the

light’s temperature and the power output. These can be easily assured through selection of a stable power
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supply and a source with a short warm-up time.

4.3.4 Calibration of the Camera and Noise Control

For the method to be accurate, we must be able to detect small changes in irradiance due to variations in

light source distance. In essence, the algorithm uses ratios of irradiance measured for two different source

distances to the surface. Equation 4.7 can be re-written as:

RL =
L1

L2
=

(
l + ∆l

l

)2

(4.15)

A question one might ask is how much can we expect the ratio RL to change, as the distance l changes.

This indicates how sensitive the camera needs to be in order to detect changes in l. Let us assume, that

our distance l is large enough, so that the inaccuracy in light source positions can be ignored as a source of

error. Differentiating Equation 4.15 with respect to l, we get:

dRL

dl
= −2

∆l (l + ∆l)
l3

(4.16)

To obtain a relative measure, we divide both sides by RL and rearrange the equation a bit to obtain:

dRL

RL
= −2

∆l

l + ∆l

dl

l
(4.17)

Recall that ∆l is the separation between the two light sources (see Figure 4.1). The observed relative

change in the radiance ratio RL will therefore be the greatest when the separation between light sources is

maximized and will be equal to at most twice the relative change in the distance l. This is the fundamental

limitation of this method for a single measurement and is equivalent to a theoretical observation when the

light source is placed as close as possible to the surface and a second observation with the light source placed

at infinity. In practice, it is difficult to achieve a value greater than one times the relative change in the

distance l.

Unfortunately measuring small percentage changes in irradiance with a typical digital camera can be

difficult. The biggest challenge in using digital cameras is limited sensitivity. This is mostly due to the

sensor noise inevitably present in any measurement of the light reflected off the scene. The response of the

camera can also be non-linear. Since the algorithm requires linear radiance measurements, the radiance

response curve must be recovered in a calibration procedure. Refer to Appendix C for more details on the

procedure.

In the algorithm, the location of the camera and its optical characteristics (focal length, exposure, etc.)
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Figure 4.8: Response plot of the Cannon EOS-1D camera in the green channel. The plot has been created
using fifteen images of the Q-60 calibration target (shown on the right) with shutter speeds varying from
1 sec to 1/25 sec. The logarithm of the exposure e is shown versus the logarithm of the camera-recorded pixel
brightness I.
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are fixed. As the light source is moved, changes in measured irradiance then remain directly proportional

to changes in the incoming radiance. In experiments we have been using the Canon EOS-1D camera [31].

The radiance response function has been sampled by taking a series of images of the Kodak Q-60 calibration

target [127] at varying exposure levels. Images were captured using the camera’s RAW mode that preserves

the “raw” brightness values captured by the sensor with no electronic processing that would typically follow.

Figure 4.8 shows the distribution of the measured values forming the camera’s response. The best-fit response

function can be computed by minimizing the objective function from Equation C.5. The distribution of data

points for this camera suggests a nearly linear response. For small exposure values the response is very noisy

due to random noise of the camera. For large exposures the sensor becomes saturated. Only the relative

values on the vertical axis are meaningful (refer to [56]). Note, that the range of camera brightness values

is from 22 to 214 (EOS-1D is a 12-bit camera with a 2-bit offset in RAW mode).

Any irradiance readings recovered using the inverse transfer function will always be corrupted by the

camera noise. In general, there are two main types of noise in a digital sensor: the pattern noise and

the random noise (see Appendix C.2). The pattern noise refers to the spacial bias and variation in the

photo response over the sensor’s surface. It can be effectively eliminated by subtracting a bias dark frame

captured at the same exposure settings. In experiments we have recorded a dark frame after each data

acquisition session. The random noise is generally the result of random quantum processes and is influenced

by temperature. It becomes especially problematic at low exposure levels, as demonstrated in Figure 4.8.

Averaging several frames is one way to reduce it, although it appropriately lengthens the acquisition time.

An alternative is to perform spatial averaging of pixels. The obvious side effect is a reduction in spatial

resolution. This may be an acceptable sacrifice, especially when using high-resolution cameras.

Finally, as with all photometric methods, special care must be taken to keep the camera pixel-registered.

Recall, that relatively small differences in recorded irradiance have direct effect on estimated depth. At

the same time, shifting the camera view just slightly on a sub-pixel level can have a drastic effect when

a pixel’s extent crosses a brightness discontinuity, either a physical edge, or a textural discontinuity. For

scenes with many brightness discontinuities, sub-pixel registration is essential and it can be very challenging

for a high-resolution camera. Spatial averaging of pixels can also help in this case.

4.4 Experimental Setup

The experimental setup is shown in Figure 4.9. It used a digital camera to take a series of images of objects

placed on a static stand under controlled illumination. A white LED was used as a light source and moved
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Figure 4.9: Experimental setup diagram.

using a robot. The effective diameter of the LED used in experiments was approximately 10mm. Physical

workspace limitations of the robot allowed the LED to be positioned at a maximum radius of only 190 mm.

In order to comply with the point-source approximation condition (Section 4.3.3), this limited the minimum

distance from the object’s surface to the light source to 90 mm. The radial pattern of the LED illuminator

radiation was also non-uniform, with intensity falling off away from the central axis (see Figure 4.7). This

was accouted for using the procedure from Section 4.3.3. An AdeptOne-MV robot [2] was used to move the

light source over two spherical surfaces with irradiance sampled uniformly in the (φ, θ) space. Only the front

upper quarter spheres of light directions were sampled (see Figure 4.9).

Experiments used a low-noise 12-bit Canon EOS-1D camera and all images were captured in RAW camera

mode with fixed exposure. The camera was calibrated using the procedure from Section 4.3.4. A mosaic

of a full set of images is shown in Figure 4.10. Of note are robot arm occlusions for light source locations

near the camera view. Since unoccluded parts of these images contained useful data, occluded parts were

masked-out during processing rather than discarding these images completely.

4.5 Depth Reconstruction Results

Initial evaluation evaluation of the algorithm was done on objects with known geometry and simple re-

flectance in order to compare it to existing photometric methods. Wooden blocks covered with white paper

(nearly Lambertian) were used as models for that purpose. Two reconstruction examples are shown in
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Figure 4.10: A sample set of images captured for inner (top image) and outer (bottom image) spherical light
sampling. The vertical axis corresponds to light elevation (θ), ranging from 5◦ to 85◦, while the horizontal
axis is the azimuth direction (φ), ranging from −90◦ to 90◦. Individual images were roughly 1 megapixel
crops and were scaled-down to fit the figure.
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Figure 4.11. The top example tests the algorithm on a smooth cylinder and the bottom example presents a

shape with a discontinuous depth. Top-down views of reconstructed profiles are shown below sample frontal

views. Each thin line in the graph represents a line of pixels from a narrow 10 pixel horizontal strip across

the center of the images above. They are overlaid with the approximate true geometry of each of the models

marked as thick red lines. For both objects light positions on the spheres were sampled every 10◦, which

is half of that in Figure 4.10. The forward camera direction is misaligned slightly with the z-axis in both

cases.

On average, the standard deviation of the recovered depth was 1.63mm, or 1.2% of the inner radius of the

sampling sphere. The highest recorded errors occured in a few spots, usually where the direct illumination

assumption was violated through scatterng of the light in the space under the paper (the paper was only

loosely attached with a tape). Note, that sharp discontinouities present in the left example would be

especially difficult to recover by methods based on surface normal integration. Here reconstructions were

performed on a per-pixel basis with no spatial smoothing.

Unlike reconstructions shown in Figure 4.11, reconstructions of real objects often contained some high-

frequency noise, typically caused by errors in sub-pixel registration (refer to Section 4.3.4). Although a

smoothness constraint in Equation 4.14 over several pixels would have helped, it would also make it difficult

to preserve edges. One of the advantages of the algorithm is that it works on a per pixel basis and a spatial

smoothness constraint would violate that. Therefore a choice was made to leave filtering as a possible

postprocessing step. In Figure 4.12 is an example of depth map postprocessed using a median filter. Note

the high-frequency noise on what would be sharp brightness discontinuities in the camera view. These include

physical edges of the object and texture transition regions. After applying an edge-preserving median filter,

the noise is mostly gone.

Next there are several reconstruction examples of real non-Lambertian objects. Depth maps were post-

processed with a median filter in a similar fashion shown in Figure 4.12. Figure 4.13 shows depth reconstruc-

tion of the rubber duck used earlier to illustrate the algorithm. The complete set of input images for the duck

is shown in Figure 4.10. The same light source sampling was used for the other reconstruction examples. The

duck is made of rubber and is partially painted with glossy paint. There are multiple visible specularities

on the surface. Note, that the duck’s eye has not been reconstructed since the amount of reflected light

captured at this exposure level was below the dynamic range of the camera. Taking multiple exposures and

constructing high-dynamic range images (HDR) [56] would be a potential solution. This would not only

allow for capture of objects with a large range of surface albedo, but also provide more flexibility in capture

of highly specular objects, since clipping also occurs for specularities. Similar dynamic range issues are also
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Figure 4.11: Depth reconstruction compared to the ground truth. At the top is a smooth cylinder and on
the bottom is an object with sharp discontinuities. Reconstructed depth profiles (blue) are overlaid with the
true profiles (red). Profiles are shown from the top view, perpendicular to the camera direction. The origin
for the z axis is at the center of a sphere traced by the light source.
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Figure 4.12: Depth map filtering. On the left is a raw depth map of a pepper containing some high-frequency
noise, mostly over image brightness discontinuities. In the center is the same depth map after filtering with
a 5x5 edge-preserving median filter. Final result after texturing is shown to the right. Depth maps were
rotated away from the original camera view in order to better show the high-frequency noise.

present in the other examples.

Figure 4.14 shows depth reconstruction of a real pepper. The waxy surface is very glossy and partially

transmissive. There is a detectable amount of subsurface scattering, however it did not significantly affect

the result.

Finally Figure 4.15 shows depth reconstruction of a ceramic rabbit sculpture. In addition to specularities,

the surface of the sculpture has a complicated macrostructure with a significant amount of macro-shadowing.

There is also a sharp discontinuity, where the back ear is occluded by the head. While it could be a problem

during the surface normal field integration step in traditional photometric stereo, here the discontinuity has

no impact on the reconstruction process.

4.6 Image-based Relighting

Image-based relighting [243, 146] is a technique of image-based modeling and rendering, or realistic synthesis

of new images using a pre-recorded set of images, typically photographs of a real scene. Since images can

be considered samples of the plenoptic function [1], the rendering process turns into plenoptic function

resampling. When the lighting is fixed, the problem reduces to that of light field rendering [141, 80]. The

light field is a function representing the reflected radiance of the scene under fixed lighting, observed from

any view point in space. Light field rendering uses the light field function sampled during the acquisition

process to render images of the same scene under the same illumination but from novel view points. Image-
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Figure 4.13: Depth reconstruction of a rubber duck. At the top is a sample input image with the recovered
depth map to the right shown as a lit mesh using the Lambertian lighting model. The mesh was rotated
slightly away from the camera view. At the bottom are two rendered novel camera views of depth maps
textured using the sample image from the top.
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Figure 4.14: Depth reconstruction of an orange pepper. At the top is a sample input image with the
recovered depth map to the right shown as a lit mesh using the Lambertian lighting model. The mesh was
rotated slightly away from the camera view. At the bottom are two rendered novel camera views of depth
maps textured using the sample image from the top.
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Figure 4.15: Depth reconstruction of a rabbit sculpture. At the top is a sample input image with the
recovered depth map to the right shown as a lit mesh using the Lambertian lighting model. The mesh was
rotated slightly away from the camera view. At the bottom are two rendered novel camera views of depth
maps textured using the sample image from the top.
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Figure 4.16: Two relighting examples of the rubber duck with nearby light sources using the recovered
geometry. On the left is an example of a novel illumination using two nearby point sources placed on the
two sides of the model. On the right is a synthesized image of the rubber duck with a square grid placed
near the surface. The grid casts a shadow on the geometry by blocking one of two light sources.

based relighting extends this concept by sampling the incident illumination. This way new images of the

scene can be rendered given new illumination conditions.

Our choice of a spherical configuration for the incident light sampling described in Section 4.3.2 is not

arbitrary, as our aim is to capture the effects of illumination for two purposes: depth reconstruction and

relighting. The spherical configuration is most convenient for scene relighting, as it efficiently covers all

possible incoming light directions. At the same time, it can also be used to recover the depth. Knowing

the depth of the scene is advantageous, as it allows relighting the scene with nearby light sources, when the

effects of radiant energy density falloff with distance became apparent. Note that this is not very feasible

with image-based relighting, as it would require dense sampling of the incident light in three dimensions,

substantially increasing the size of the original data and the acquisition time. Therefore in image-based

relighting lights are typically distant [243, 55, 156]. Instead, we sample the incident illumination at two

distances to the surface and first recover the depth of the scene. Then we use one of the original sets and

the recovered depth to render the scene under a novel illumination.

For convenience, we have chosen to define the new lighting using an illumination function Inew(φ, θ)

with a corresponding radial distance function lnew(φ, θ). The illumination function Inew(φ, θ) defines the

intensity of a virtual point source placed along the direction (φ, θ) at a distance specified by lnew(φ, θ). Both
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Figure 4.17: Two relighting examples of the orange pepper with nearby light sources using the recovered
geometry. On the left is an example of a novel illumination using a line source extending horizontally. On
the right is a synthesized image of the orange pepper with a field of grass illuminated from behind by an
area light source . The grass casts shadows on the geometry by blocking the area source (note the blurring
effect).

are defined in the global coordinates of the scene. Note, that any area sources can be also be approximated

by resampling them into virtual point sources. This way we can specify an arbitrary proximate lighting

environment that can be resampled using uniform point light sources2.

In order to recover the depth ŝ(u, v) for a particular pixel (u, v) we have earlier captured two global

radiance functions: L1(φ, θ;u, v) and L2(φ, θ;u, v). When L1 and L2 are remapped into the local coordinates

corresponding to the point (u, v, ŝ), they satisfy Equation 4.14 and therefore can be used to compute the

product of reflectance and intensity from Equation 4.6:

fr→c(φŝ, θŝ;u, v)I0 = L1(φŝ, θŝ;u, v)l12(φŝ, θŝ) = L2(φŝ, θŝ;u, v)l22(φŝ, θŝ) (4.18)

Note, that we could use either L1 or L2. We can now compute the radiance seen by the camera under the

new illumination Inew:

Lnew(u, v) =
∫

Φ

∫
Θ

fr→c(φŝ, θŝ;u, v)I0
Inew(φŝ, θŝ)
lnew

2(φŝ, θŝ)
dθŝdφŝ (4.19)

2More complex lighting that cannot be approximated using uniform point sources requires additional two dimensions to
describe the directional power distribution pattern of each point source.
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Figure 4.18: Two relighting examples of the rabbit sculpture with nearby light sources using the recovered
geometry. On the left is an example of a novel illumination using two point sources one near the surface
and the second far away. On the right is a synthesized image of the rabbit sculpture illuminated with light
passing through a stained glass.

If the original point source intensity I0 is unknown, Inew has to be specified as a fraction of I0. Equation 4.19

uses the same remapping procedure as used by the depth reconstruction algorithm from Section 4.2.1. The

intensity function Inew is mapped the same way as radiance functions, that is InewP
(φP , θP ) = Inew(φ, θ),

where P is the new origin point for the operator WP .

Several examples of objects rendered using this technique are shown next. All were synthesized for the

same camera view, but under novel illumination conditions. In Figure 4.16 are two examples using the

rubber duck model. The left image uses two nearby light sources to demonstrate the effects of geometry,

and the right one shows a shadow cast by a regular rectangular grid placed in front of one of the lights.

Figure 4.17 demonstrates a non-point nearby light source (a strip source in this case) illuminating the orange

pepper model. In addition, the second image shows soft-shadows cast by a shadow mask modeling a field of

grass in front of a nearby square area light source. Finally Figure 4.18 has an example of an image rendered

with a light source positioned very close to the surface of an object. The second image shows the rabbit

sculpture illuminated with light passing through an artificial stained glass window. Note, that none of these

images would be possible to render correctly if the geometry of the scene was unknown.
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Chapter 5

Capturing the Appearance of
Volumetric Surface Textures

This chapter describes a new technique for capturing volumetric appearance of a 3-D texture with unknown

reflectance and structure. From the acquired reflectance data in the form of a 6-D Bidirectional Texture

Function (BTF), the proposed algorithm creates an efficient volumetric representation in the form of a stack

of semi-transparent layers each representing a slice of the original material. In addition to negligible storage

requirements, this representation is ideally suited for hardware-accelerated real-time rendering.

5.1 Introduction

The focus of this algorithm is on the most complex form of surface materials which can only be accurately

reproduced with a volumetric representation (refer again to Figure 1.3 for some examples). Although efficient

algorithms for rendering volumetric textures have been known for years, capturing the richness of real

volumetric materials remains a challenging problem. Currently volumetric acquisition options are limited.

This is especially true, if the aim is to capture the reflectance of a material as well. Existing rendering

algorithms typically use computer-generated representations [158, 60, 119, 170, 51, 140, 237, 73]. There

are many acquisition techniques that can recover the geometry or the density of the material, but are not

suited for capturing of the reflectance. These include any of the volumetric scanning techniques discussed

in Chapter 3. In particular, computed tomography methods (see Section 3.1.1) could work quite well and

have been used before [36].

The algorithm described here is quite similar in nature to tomography. It also relies on the principle of

non-diffusive transmission of radiation and uses a similar integration-like formulation of light passing through

a volumetric material. A material sample is modeled using a stack of vertically offset texture layers. At

each layer point a vector of BRDF parameters models the local reflectance and the geometry is represented

with the volumetric attenuation. At runtime, layers can be synthesized over a surface giving an impression

of a 3-D texture. Similar volumetric representation have been shown to be useful for a number of volumetric

textures [158, 170, 140]. The texture model representation used by the proposed algorithm will be referred
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Figure 5.1: A BTF example for a woven carpet sample. The figure shows several samples for changing light
tilt direction (away from the sample normal direction, top row) and changing camera tilt direction (bottom
row).

to as the Layered Volumetric Surface Texture (LVST) model.

5.1.1 Bidirectional Texture Functions

In general, the appearance of a surface material can be described with the bidirectional texture function

(BTF). The concept was proposed by Dana et al. [50]. This 6-D function of light and viewing directions

describes the apparent reflectance of a surface when reprojected onto a fixed plane. As the result, a material

sample can be described using a BTF implicitly encapsulating both the geometry and the reflectance. In

Figure 5.1 are a few samples of a BTF representing a sample of a woven carpet. The top row shows the

changing appearance as the light source direction changes. On the bottom are shown the effects of changing

camera direction. Note the blurriness caused by the decreasing sampling rate in the vertical direction as the

camera direction is near the grazing angle. This is only the effect of the limited resolution of the camera.

The sampling rate ideally should stay the same.

5.1.2 Related Work

There are several related methods that aim to infer the geometric structure of a texture. Liu et al. [148] and

Haindl et al. [84] used shape-from-shading to construct a surface displacement map. Shape-from shading
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methods work for BTFs with simple reflectance for which the Lambertian reflectance assumption applies.

Another approach taken by Yu and Chang [252] uses shadow graphs for height map reconstruction. Their

method is a combination of shape-from-shading and shape-from-shadow with constraints enforcing con-

sistency between the two. Wang and Dana [234] used a library of geometric textons to reconstruct an

approximation of a BTF height map. Although the focus of their method is actually better reconstruction of

shadowing effects rather than geometry, it generates a height map as well. It also works for non-Lambertian

surfaces for which the reflectance model can be approximated by a known model. Unfortunately, displace-

ment mapping methods are not very useful for textures with a more complex geometry.

Although volumetric reconstruction into layers has not attracted much attention in the BTF setting, it

has been explored in the area of stereo reconstruction, which was discussed earlier in Section 3.2.2. Stereo

algorithms aim to estimate the depth of a scene using two or more images taken from different locations.

This information can then be used to create a volumetric model of the scene. Capturing transparency

has recently attracted more attention for two reasons: some scenes actually contain transparent objects

(glass windows, glass containers, etc.), but also in order to make boundaries of opaque regions smoother.

Of particular interest is the work by Szeliski and Golland [224]. Given a stereo sequence, their algorithm

extracts layers with semi-transparent boundary regions. By performing a global optimization on the color

and transparency value of boundaries, they can obtain smooth, semi-transparent edges. However, as with

most stereo reconstruction algorithms, their algorithm does not model reflectance.

Volumetric decomposition of BTFs can also be viewed as a compression scheme. Storage requirements

typically make it impractical to use BTFs directly in real-time rendering. Over the past few years there

has been an ongoing work on better compression and parametrization. Most compression solutions use

some variation of eigen decomposition or principal component analysis [163, 130, 231, 147, 150]. For addi-

tional compression, some also utilize Laplacian pyramids [84, 150]. A different approach is to view BTFs

as a 2-D apparent BRDF (ABRDF) function [243], that also encapsulates the effects of geometry, reflec-

tions, transparency, and shadowing. Per-pixel view and lighting variations can then be approximated by

ABRDF clustering [47, 227, 234] or modeled. Modeling can be done using traditional parametric BRDF

representations [157, 70, 124] or factorization techniques [222].

5.2 The LVST Model

The volumetric model used by the algorithm consists of a stack of N layers, as pictured in Figure 5.2a.

Each layer is parametrized with (un, vn), where u and v are the 2-D texture dimensions, and n is the layer
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Figure 5.2: The LVST model. (a) Layer parameters relate the total outgoing radiance in terms of the
reflected illumination and the total outgoing radiance from layers below. (b) Layers warped into the camera
direction. (c) Layers warped into the light source direction.

index. We number layers starting at one for the top layer. The bottommost layer is always fully opaque.

Rendering involves superposition of each layer by re-projection into the view direction and computation of

the reflectance values for each of them. This composing process can be expressed as a backward warping

operation Wb applied to each layer projecting them into the viewing direction. This is accomplished using

the shear-warp algorithm [134]. Under parallel projection this operation reduces to simple parallax shifts

of layers relative to each other. The inverse of the backward warping operator Wf , maps the camera view

along ~ω into coordinates of a layer n as:

[
un vn

]T

= Wf (~ω, n)
[

ũ ṽ

]T

(5.1)

where (ũ, ṽ) are the coordinates in the camera view. In the composing process of N layers, the total camera-

observed brightness Io for the current viewing direction along ~ω is the sum of brightness contributions from

each individual layer Il attenuated by the product of the projected attenuation factors a:

Io(ũ, ṽ, ~ω) =
N∑

n=1

Il,n(un, vn, ~ω)
n−1∏
n′=1

an′(un′ , vn′ , ~ω) (5.2)

Note, that this composing expression can be made into a discretized approximation to Equation 2.33. By

substituting radiance for the brightness in Equation 5.2, the total outgoing radiance Lo becomes the sum of

the incoming radiance Li,n in-scattered at each layer n according to the bidirectional distribution function

(BDF) f :
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Lo(~ω) =
N∑

n=1

∫
4π

fn

(
~ω′ → ~ω

)
Li,n

(
~ω′

)
~Nn · ~ω′ d~ω′

n−1∏
n′=1

an′ (5.3)

~Nn is the normal vector. All parameters in Equation 5.3 are also functions of u and v which will be omitted

from now on from equations for better readability.

The operation described by Equation 5.3 is essentially equivalent to computed tomography (CT) (see

Section 3.1.1). The light is attenuated on its way to the surface as it travels in the volume and the attenuation

is discretized at each layer. In CT attenuation is typically modeled as a continuous function. Here light

interactions along the direction ~ω are limited to layer intersection points and increasing the number of layers

has the net effect of increasing the sampling rate along the ray. As in tomography, a measurement contains

the effects of all light interactions along a ray. The source of radiation is on the same side of the sample as

the detector, same as in reflection tomography (see Section 3.1.1). Still, the geometry is not estimated by

timing the reflected echoes, but rather as in transmission tomography by estimating the absorption.

Equation 5.3 accounts for light contributions from all directions and therefore could potentially be used

to approximate an arbitrary volumetric material. Still, a more application-specific approximation can lead

to a more efficient implementation. In order to utilize the model for real-time rendering, the number of

reflection computations has to be kept at a reasonable level. The algorithm presented here limits itself to

just a single reflection and a diffuse correction term Ld,n that approximates secondary reflections. It was

designed specifically for non-diffusive volumetric materials with strong light source direction correlation.

Under these conditions, light interactions are dominated by absorption (as opposed to scattering) and light

arriving at the camera is mainly due to the first scattering reflection event. The integral of the incoming

radiance Li,n at each layer is then approximated with just the primary incoming light direction ~ωi:

Lo(~ω) =

N∑
n=1

fr,n(~ωi → ~ω)
[
Li,n(~ωi) + Ld,n

]
~Nn · ~ωi

n−1∏
n′=0

an′

(5.4)

We replace the BDF with the more appropriate reflectance term (BRDF) (see Appendix A.3) fr, as we assume

scattering is inconsequential. For a BRDF, we are free to choose any parametric reflectance model that best

suits a particular material. BRDF models with fewer parameters have the advantage of faster conversion.

In particular, we have been using the Lafortune model [135] which gives a good trade-off between generality

and the number of required parameters.

The proposed LVST model can be summed up as consisting of a stack of layers with spatially-varying
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parameters. Each layer location (un, vn) is described by several parameters:

� The surface normal ~Nn.

� Parameters of the chosen BRDF fr,n.

� The attenuation factor an.

� The diffuse radiance term Ld,n.

In the next section we will show how to iteratively solve for these unknown parameters.

5.3 Estimating the LVST Parameters from a BTF Dataset

Equation 5.4 expresses the total outgoing radiance along a single ray. A captured BTF samples the outgoing

radiance values Lo for discrete light and camera directions (~ωi, ~ω). The total incoming radiance Li can also

be measured. For each layer n, we would like to find the best estimate for the BRDF fr,n, attenuation an,

surface normal ~Nn, and the diffuse light term Ld,n, so that the observed error between rendered and originally

measured radiance values is minimized. Globally we are trying to solve the inverse image synthesis problem

with unknown reflectance and geometry. This problem appears in vision applications and, in general, is

difficult to solve. For a particular BRDF model with f parameters, we have to solve for n · u · v · (f + 4)

unknowns. For the trichromatic RGB model, the number of unknows is even greater. Solving for them

directly, even for models with just a few layers, can be prohibitive. Instead, we solve this high dimensionality

problem by expressing it as a series of local optimization steps. In particular, we iteratively perform local

optimizations on individual layers.

5.3.1 Layer Optimization

Consider the radiance Lo,n leaving a particular layer n toward the camera along ~ω (see Figure 5.2). By

looking back at Equation 5.4 we can see, that it is equal to the sum of the incoming radiance Li,n(~ωi)+Ld,n

reflected by the layer and the radiance transmitted from the layers below Lo,n+1. We will denote the reflected

radiance with Ll,n:

Lo,n(~ω) = Ll,n(~ω) + anLo,n+1(~ω)

Ll,n(~ω) = fr,n

(
~ωi → ~ω

)[
Li,n(~ωi) + Ld,n

]
~Nn · ~ωi

(5.5)

76



Lets assume, that all incoming and outgoing radiance values are known and we are given a set of

(Li,n, Lo,n+1, Lo,n) triplets for K different light and viewing directions. For each discrete position on a

layer n we want to solve for the unknown parametric BRDF function fr,n, the diffuse radiance constant

Ld,n, the surface normal ~N , and the attenuation coefficient an. The least-squares solution can be obtained

by minimizing objective function O of the form:

O =
K∑

k=1

[
Ll,n,k + anLo,n+1,k − Lo,n,k

]2

wn,k (5.6)

We have dropped some notation from Equation 5.5 for readability.

The weighting factor wn,k in the Equation 5.6 is crucial, as it provides the means to distribute radiance

into appropriate layers. It is used to penalize data when a layer point is not in the direct line of sight of the

camera and represents visibility. It can be written as a product of attenuations:

wn,k =
n−1∏
n′=1

an′ (5.7)

Unlike the global problem, the local objective function is only non-linear in the BRDF model parameters.

We will directly take advantage of that fact later on. The optimization process can broken down into a series

of layer updates. For each layer, the algorithm uses the current estimate of the model to compute necessary

layer radiance values. From each input image in the sampled BTF, we can obtain the outgoing radiance

from the top layer Lo,1 = Lo. Similarly, the total incoming radiance from the light source is the same as the

incoming radiance to the top layer Li,1 = Li. If the current state of the LVST model is known, we can also

compute radiance values for other layers. In general, the outgoing radiance Lo,n from layer n is equal to the

difference between the measured radiance Lo and radiance contributions from layers above n:

Lo,n =
1

an−1

[
Lo −

n−1∑
n′=1

Ll,n′

n′−1∏
n′′=1

an′′

]
(5.8)

In a similar way, we can express the radiance incoming from below the layer n as the sum:

Lo,n+1 = Ll,n+1 +
N∑

n′=n+2

Ll,n′

n′−1∏
n′′=n+1

an′′ (5.9)

Finally, to compute the radiance due to direct illumination, we first perform a warping operation similar to

Wf , but with respect to the light source direction (see Figure 5.2c). We can express the direct illumination

reaching the layer n as:
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Li,n = Li

n−1∏
ni=1

sni
(5.10)

The shadowing coefficient sni
is eventually equal to the attenuation ani

. Initially model optimization is

done without shadowing, which is then estimated in the final pass. The reasons for that will be explained

in Section 5.3.5.

In summary, the algorithm begins from the bottommost layer and iterates through all layers until con-

vergence is achieved. All layers are initialized to be fully transparent. For each BTF sample image, the layer

stack undergoes viewer and camera direction warping operation Wf and the three layer radiance values are

computed. These can then used to solve the least-squares problem from Equation 5.6.

5.3.2 BRDF Model Optimization

The majority of BRDF models are non-linear and therefore minimization of the objective function from

Equation 5.6 generally requires a non-linear solution. Unfortunately non-linear minimization algorithms

are also much slower than their linear counterparts, as they typically require multiple iterations over the

input data. This is problematic, as typical input BTF data sets are very large, containing on the order of

thousands of samples while Equation 5.6 must be solved for each individual pixel separately. Iterating over

the whole input data is unpractical.

When dealing with large data sets, it is better to use incremental algorithms, such as the Extended

Kalman Filter [16], conceptually equivalent to an incremental version of the Gauss-Newton method. The

idea behind incremental solvers is to deal with large sets by incrementally iterating over smaller chunks of

data. In particular, an incremental version of the Gauss-Newton method works by progressively updating

the current gradient covariance matrix Cm, as new data vectors x become available. A single iteration over

the parameter vector P is performed every M such updates. It can be conceptually written it as:

Cm = λCm−1 +∇xm∇xT
m (5.11)

Pi = Pi−1 − C−1
Mi

Mi∑
m′=M(i−1)

∇xm′xm′ (5.12)

The parameter vector Pi is updated every M data vectors x. Instead of directly computing the inverse of

Cm, the algorithm actually uses the Sherman-Morrison update formula [79]. This saves some computation

time. The smoothing parameter λ controls “forgetfulness” with respect to the past data. A value of one
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signifies that all observed data has equal weight. It is desirable to smoothly increase the value of λ after each

update from some initial constant less than one approaching unity. This results in faster initial convergence.

Given radiance values computed using Equations 5.8, 5.9, and 5.10, the algorithm evaluates the gradient

of Equation 5.6 and subsequently updates the incremental solver. For more details on the incremental

optimization algorithm refer to the work of Bertsekas [16].

5.3.3 An Example: Incrementally Solving for the Lafortune Model Parameters

As several LVSTs in the paper use the Lafortune BRDF model (see Section A.3.2), it will be used here as an

example to show how the incremental optimization performs. Similar analysis can be done for other BRDF

models.

The algorithm uses the simplified version of the Lafortune model with non-zero values only along the

diagonal of the specular lobe matrix Cl (see Equation A.15). One-lobe Lafortune BRDF model with this

simplification can be written as:

fr = Kd + Ks(~ωTCl~ωi)kl (5.13)

,where Kd and Ks are the diffuse and the specular coefficients and kl is the specular exponent for the lobe.

Trichromatic color parameters are indicated in bold. When the specular coefficient is zero, BRDF reduces

to the constant diffuse coefficient.

There is a total of 15 unknown parameters, including the attenuation and the diffuse radiance correction

term. In order to minimize the objective function from Equation 5.6 by using the incremental method, the

gradient vector ∇x of the objective function must be evaluated for each input sample data. The residual in

Equation 5.6 has the form:

Rn = fr
~Nn · ~ωi [Li,n + Ld,n] + aLo,n+1 − Lo,n (5.14)

The gradient vector ∇x therefore is:
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∂O
∂ ~N

= ~ωi

[
Kd + Ks(~ωTCl~ωi)kl

]
[Li + Ld] ·Rw (5.15)

∂O
∂Kd

= ~N · ~ωi [Li + Ld] Rw (5.16)

∂O
∂Ks

= (~ωTCl~ωi)kl ~N · ~ωi [Li + Ld] Rw (5.17)

∂O
∂Cl

= ~ωT~ωi klKs(~ωTCl~ωi)kl−1 ~N · ~ωi [Li + Ld] ·Rw (5.18)

∂O
∂kl

= ln(~ωTCl~ωi)Ks(~ωTCl~ωi)kl ~N · ~ωi [Li + Ld] ·Rw (5.19)

The layer subscript n has been dropped for better readability. Recall, that w is the weighting factor defined

in Equation 5.7.

The incremental algorithm requires several other parameters to be defined. These are best found exper-

imentally. This was done using an artificial data set of a generated Lafortune model reflection. Samples

were taken uniformly over a hemisphere of light and camera directions and then randomly ordered. Even

though the whole set consisted of 10800 samples, the algorithm typically converged for the Lafortune model

parameters after 10 − 20% of samples. This convergance rate depended somewhat on the noise level, as

shown in Figure 5.3. Four examples are shown for different levels of added Gaussian noise.

Even with a noise level of 20%, the algorithm performed reasonably well with parameter values slowly

approaching the true values by the 5000th sample. The exponential parameter kl took the longest to converge

and therefore always limited the minimum required number of iterations. In general, that would be true

of any exponential BRDF parameteres. An interesting observation about the effects of noise is that small

amounts actually improve the convergance speed. Notice that with σ = 0.05 parameters (in particular the

specular exponent kl) converge faster than for σ = 0.025. This is related to the smoothing parameter λ

which controls the weighting of data samples processed on earlier iterations. The more weight is put on the

previously seen data the slower the algorithm is to change the parameter values. Noise acts in a similar way,

as it obscures the true values essentially decreasing their impact on the parameters.

The effect of changing the smoothing parameter λ in the presence of noise is demonstrated in Figure 5.4.

In the algorithm, the parameter λ is smoothly increased from some initial value λ0 to asymptotically approach

unity using the formula:

λ = 1− λ0

1 + λdNm2
(5.20)

The parameter N is the data set size and m is the current sample number. λd controls the rate of decay
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Figure 5.3: Incremental BRDF model optimization. Plots show the convergence for Lafortune model para-
meters for a single pixel using an artificial data set containing 10800 uniformly sampled and randomized data
points. The parameters in each of the four plots listed from top to bottom are: the surface normal vector ~N ,
the color diffuse term Kd, the color specular term Ks, the specular lobe exponent kl, and the three specular
lobe coefficients Cl (refer to Equation A.15). The bottom plot shows the convergence of the magnitude of
the gradient vector ‖∇x‖. The four plots show the convergence for different standard deviation values σ of
additive Gaussian noise. Color terms are kept in the range [0, 1].
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Figure 5.4: Incremental BRDF model optimization. Plots show the convergence for Lafortune model pa-
rameters for a single pixel using an artificial data set containing 10800 uniformly sampled and randomized
data points. The parameters in each of the four plots listed from top to bottom are: the surface normal
vector ~N , the color diffuse term Kd, the color specular term Ks, the specular lobe exponent kl, and the
three specular lobe coefficients Cl (refer to Equation A.15). The bottom plot shows the convergence of the
smoothing parameter λ. The four plots show the convergence for different decay rates of the smoothing
parameter λd. Color terms are kept in the range [0, 1].

82



k∇
x
k

k∇
x
k

k∇
x
k

k∇
x
k

1000 2000 3000 4000 5000
-1

0

1

N

σ = 0.05 λd = 1e-007 M = 120

1000 2000 3000 4000 5000
0

0.5

1

K
d

1000 2000 3000 4000 5000
0

0.5

1

K
s

1000 2000 3000 4000 5000
0

10

20

k
l

1000 2000 3000 4000 5000
-1

0

1

C
l

1000 2000 3000 4000 5000
10

-5

10
0

10
5

1000 2000 3000 4000 5000
-1

0

1

N

σ = 0.05 λd = 1e-007 M = 60

1000 2000 3000 4000 5000
0

0.5

1

K
d

1000 2000 3000 4000 5000
0

0.5

1

K
s

1000 2000 3000 4000 5000
0

10

20

k
l

1000 2000 3000 4000 5000
-1

0

1

C
l

1000 2000 3000 4000 5000
10

-5

10
0

1000 2000 3000 4000 5000
-1

0

1

N

σ = 0.05 λd = 1e-007 M = 1

1000 2000 3000 4000 5000
0

0.5

1

K
d

1000 2000 3000 4000 5000
0

0.5

1

K
s

1000 2000 3000 4000 5000
0

10

20

k
l

1000 2000 3000 4000 5000
-1

0

1

C
l

1000 2000 3000 4000 5000
10

-20

10
-10

10
0

1000 2000 3000 4000 5000
-1

0

1

N

σ = 0.05 λd = 1e-007 M = 15

1000 2000 3000 4000 5000
0

0.5

1

K
d

1000 2000 3000 4000 5000
0

0.5

1

K
s

1000 2000 3000 4000 5000
0

10

20

k
l

1000 2000 3000 4000 5000
-1

0

1

C
l

1000 2000 3000 4000 5000
10

-10

10
-5

10
0

Figure 5.5: Incremental BRDF model optimization. Plots show the convergence for Lafortune model pa-
rameters for a single pixel using an artificial data set containing 10800 uniformly sampled and randomized
data points. The parameters in each of the four plots listed from top to bottom are: the surface normal
vector ~N , the color diffuse term Kd, the color specular term Ks, the specular lobe exponent kl, and the
three specular lobe coefficients Cl (refer to Equation A.15). The bottom plot shows the convergence of the
magnitude of the gradient vector ‖∇x‖. The four plots show the convergence for different parameter update
periods M . Parameters are updated every M data vectors xm. Color terms are kept in the range [0, 1].
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and Figure 5.4 shows the effect of changing its value. Varying it affects the trade-off between algorithmic

stability and the speed of convergence. Note, that for large values (λd = 2 · 10−7) the exponential specular

parameter kl does not reach a convergence. On the other hand, small values of λd produce unstable results.

Finally the update period of BRDF parameters is controlled by the parameter M . Its purpose is mainly

to improve the computational performance of the algorithm, as we could potentially update parameters on

every new data sample. However, updates are expensive, as they involve computation of the inverse of the

gradient covariance matrix C (see Equation 5.11). Increasing the update period M can significantly improve

the running performance of the algorithm. Figure 5.5 shows the effect of changing the update period on the

convergence. Note that with M = 15 samples there is no visible degradation in convergence performance,

while with an update period of M = 60 samples the algorithm becomes initially a little less stable. Doubling

the period to M = 120 significantly degrades the stability.

5.3.4 Recovering the Attenuation Parameter

In general, the spatially varying attenuation parameter an is difficult to recover using the incremental solver

directly. The problem is ill-posed, as multiple combinations of BRDF parameters and the attenuation

can result in many local minima. Since Equation 5.6 in linear in the attenuation parameter, we will take

advantage of it. We use the non-linear incremental solver to initially estimate the layer radiance Ll,n, while

an is set to maximum opacity. We use this result to subsequently solve a linear problem of the form:

an = argmin
α2

K∑
k=1

[
α1Ll,n,k + α2Lo,n+1,k − Lo,n,k

]2

wn,k (5.21)

This equation can be interpreted as a blending optimization between two one-layer BTF representations at

slightly different offsets. α1 is a dummy blending factor for Ll,n that we do not have to solve for. Once we

solve Equation 5.21 for α2, Ll,n must be updated making α1 redundant.

Recovering geometry from images can at most be guaranteed visual consistency with the originals. Recov-

ering the attenuation parameter can be viewed as solving a blending equation for two BTF representations at

different depth offsets. Yet visual consistency can often be achieved in a non-unique way, allowing multiple

solutions. For example, a constant radiance offset present in the input data could be arbitrary distributed

between layers. This is the case for flat, featureless texture regions in the BTF. Although visually consistent

with the input data, unexpected artifacts may appear, when rendered for viewing directions that were not

part of the input. Moreover, as the distance between layers is decreased, so will the differences in their

appearance, until they become dominated by noise and re-projection error. Increasing the number of layers

can therefore be beneficial only up to a certain point. We can conclude, that the resolution limit, defined
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as the minimum useful separation distance between layers, is directly related to the strength of the noise

present in the BTF and inversely related to the local texture gradient measured against the relative warping

displacement for that separation distance. Below this threshold, the attenuation parameter cannot be mean-

ingfully estimated. Alternatively, we could modify the algorithm to achieve better consistency. For example,

adding a smoothness constraint based upon the local neighborhood information, such as the surface gradient

continuity, could lead to a more consistent solution and is an interesting area to explore.

5.3.5 Shadows and the Diffuse Radiance Term

Unlike some other phenomena, shadows cannot be easily parametrized. Shadows are created when light is

attenuated on its way to a surface and depend on geometry. Although the LVST model stores spatially-

varying attenuation parameters at each layer, shadows generated that way will rarely be consistent with the

original shadows due to geometry being flattened into layers. Yet sharp shadow boundaries that do not match

exactly may still look more “natural” to an observer. Following this argument, we model shadows using the

actual attenuation values stored at each layer. As this is not consistent with least-squares optimization used

to recover other parameters, shadowing is initially ignored and is only taken into account in the final pass

of the algorithm.

Note, that in a shadowed area, the diffuse radiance Ld,n becomes the primary source of illumination. In

the final step of the algorithm we solve for the diffuse radiance term, which essentially serves as a correction

factor for shadows. We again linearize Equation 5.6 solving for Ld,n:

Ld,n = argmin
α

K∑
k=1

w′
n,k[

fr,n [Li,n,k + α] ~Nn · ~ωi + Lo,n+1,k − Lo,n,k

]2

(5.22)

The main difference this time is that we only consider data points for which Li,n,k < 1, i.e. at least some

shadow is cast by layers above. Many other ways of rendering shadows are definitely possible and it can be

an interesting area to investigate.

Summing it up, the algorithm consists of a series of local optimization steps that are repeated until

convergence is achieved:

1. Initialize all layers and make them fully transparent.

2. Starting from the deepest layer N , iterate over the layer stack (with no shadowing):
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Figure 5.6: LVST parameter textures recovered from the carpet BTF set using the Lafortune reflectance
model. Each row corresponds to one layer. Parameters are in columns. From left to right, they are: the
color diffuse term Kd, the attenuation coefficient a, the normal vector ~N (RGB color represents (x, y, z)
vector components), the diffuse radiance factor Ld, the color specular term Ks, the specular lobe exponent
kl, and the three specular lobe coefficients Cl. Attenuation, diffuse radiance, and specular exponent are
scalar values.
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(a) Solve for the attenuation coefficient (Section 5.3.4):

i. Generate an opaque layer for the current layer location.

ii. Solve Equation 5.21 for the attenuation.

(b) Estimate the BRDF and surface normal parameters (Section 5.3.2).

3. Solve for the diffuse radiance component and update the model for shadowing (Section 5.3.5).

At the end, the algorithm produces a stack of multidimensional layers containing all LVST model pa-

rameters. An example of an LVST representation recovered using this algorithm is shown in Figure 5.6.

Notice, that for the bottom layer (number 4) the attenuation is set for maximum opacity and that there is

no diffuse radiance in the topmost layer. There is also very little visible differentiation in the specular lobe

parameter, as it actually ended up very close to the initial value used by the algorithm.

5.4 Input BTF Data Sets

Textures used in the experiments come from the UIUC BTF database [130]. The database contains some

complex volumetric surface textures and a few are shown in Figure 1.3. Each texture was sampled over a

range of discrete viewing and lighting directions resulting in over 10,000 images.

The data required some additional post-processing, most importantly, inversion of the gamma correction

that was automatically applied by the video camera that was used. Some image artifacts, which could not

be corrected for, included video compression artifacts and camera noise. Errors in geometric alignment,

including camera and light orientations, lens distortions, approximation of the perspective with parallel

projections, and errors in the BTF rectification process were also problematic.

5.5 Results

Although the algorithm could be applied to BTFs with simple geometry, it does not provide any advantage

over other compression schemes mentioned in Section 5.1.2. Since it was designed to specifically handle

textures with complex volumetric structures, we have tested the algorithm on several captured BTFs with

such characteristics. In addition to BTF data, the algorithm requires a choice of number of layers and

the height bounds. These can be manually selected by examining the data. Since all layer updates are

independent of each other in the (u, v) space, we take an advantage of this parallelism and solve for all layer

parameters simultaneously. The number of iterations required before convergence conditions are detected

depends on the complexity of the texture and the chosen BRDF, but is on the order of a few thousands
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Figure 5.7: Images synthesized using the LVST model. The original BTF samples are at the top with
corresponding synthesized equivalents at the bottom.

input BTF samples. Quite often convergence of a single layer is achieved before the majority of the input

data is even evaluated, suggesting significant data redundancy. Depending on the number of layers and their

dimensions, our C++ implementation typically takes a few hours to fully converge when run on a desktop

PC.

Several examples of synthesized views along with the original data are shown in Figure 5.7. All textures

in the figure have the same spatial resolution as the original BTF data (192x192, with a possible margin of a

few pixels). They are modeled with four to five layers, except the lichen texture, which uses six layers. Since

the algorithm relies on parametric modeling, it cannot represent phenomena not represented by the model.

The resulting reconstructions are typically blurred versions of the originals. However, a major advantage of

this representation is a more natural interpolation and even extrapolation from the original data.

The LVST representation can be used to render BTFs on polygonal meshes. Figure 5.8 demonstrates

smooth changes in texture appearance on a smoothly-varying surface with tiled LVSTs. Please note silhou-

ettes visible near the upper edge of the cylinder. To further improve the visual quality at grazing angles,

the algorithm can be trivially extended to additionally construct vertical layers.

5.5.1 Compression and Real-Time Rendering

The result of the algorithm is a compact texture representation highly suitable for real-time applications.

From the original sets of over 10,000 images, corresponding LVST representations are on the order of 10-20

textures. Such high compression ratio and easily parallelizable rendering process is perfectly suitable for

graphics hardware acceleration. The rendering process simply involves evaluation of Equation 5.4. For each

layer, we have to evaluate the BRDF model stored in several textures and modulate it with the shadow cast
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Figure 5.8: LVSTs tiled on a cylinder and rendered in real-time. The two examples in the left column were
fitted using the diffuse model and the two on the right use the Lafortune model. The yellow line indicates
the light direction. Note the 3-D texture on the silhouettes.
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Figure 5.9: Two views of a mesh with a synthesized sponge texture lit and rendered in real-time.

by the layers above. In practice, it can be performed in a few simple steps:

1. Starting from the bottommost layer N , evaluate the BRDF for the given light and camera directions.

2. Compute the shadow cast by all layers above the current layer and use it to compute the final layer

radiance.

3. Render the layer into the screen buffer blending it according to the attenuation factor.

These three steps can be evaluated using graphics hardware in a pixel shader. We have implemented a

real-time application to demonstrate this. In a vertex program it computes layer offsets and evaluates the

BRDF model in a fragment program. A patch-based surface texture synthesis algorithm [151] uses vectors

of LVST parameters in a fashion similar to regular texture synthesis, that operates on vectors of RGB color

values. In LVST synthesis, we have used vectors of concatenated values of attenuation coefficients an and

some number of BRDF parameters from every layer. Typically the diffuse term Kd,n alone was sufficient.

Note, that the texture synthesis algorithm from [151] trades-off synthesis quality for speed and therefore we

expect even better visual results from other synthesis algorithms.

In Figure 5.9 are two screen captures of a mesh lit and rendered in real-time with s synthesized sponge tex-

ture. Following figures show the results for several other textures: lichen (Figure 5.10), carpet (Figure 5.11),
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Figure 5.10: Two views of a mesh with a synthesized lichen texture lit and rendered in real-time.

Figure 5.11: Two views of a mesh with a synthesized carpet texture lit and rendered in real-time.
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Figure 5.12: Two views of a mesh with a synthesized moss texture lit and rendered in real-time.

and moss (Figure 5.12). The carpet and the moss textures use the Lafortune model.
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Chapter 6

Conclusions

The research work presented here results in two novel algorithms for reconstruction of 3-D geometry with

complex reflectance observed in non-diffusive media. Although both algorithms use similar assumptions,

they are intended for two different purposes. The first algorithm presented in Chapter 4 is intended for

accurate reconstruction of large-scale opaque geometry. The second algorithm presented in Chapter 5 is

designed to capture the appearance of small-scale geometry and reflectance of volumetric surface materials.

When used in conjunction, they could provide an effective framework for capturing different aspects of a

real scene.

6.1 Discussion

6.1.1 The Large-Scale Geometry Reconstruction Algorithm

The photometric ranging algorithm presented in Chapter 4 is designed for surfaces with complex, spatially

varying, and unknown reflectance properties. Photometric ranging exploits the law of radiant energy density

falloff with distance from a point light source and, unlike other photometric methods, the depth is estimated

directly and independently at each pixel using reflectance field alignment, rather than through surface

normal field integration. Using the method of double-covering the incident light in a spherical configuration,

the method have been shown to work for a variety of surfaces with unknown and varying non-Lambertian

reflectance. Relatively dense sampling typically required of this method makes it well suited for image-based

rendering and allows for image synthesis with lights at finite distances, something that is not feasible using

existing image-based relighting techniques. As synthesized examples have shown, this method could be

applied directly in rendering applications.

Several aspects of this method could benefit from a deeper investigation. Experiments have shown that

achieving sub-pixel registration is of utmost importance, otherwise camera shifts over brightness discon-

tinuities can significantly bias brightness shifts due to the changing distance to the light source. Further

investigation is required on how to achieve an improved registration, either through a better mechanical
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design, or better registration algorithms. Also, the benefits of increasing the dynamic range of the data by

capturing high dynamic range images, or using the direct illumination separation algorithm proposed by

Nayar et al. [168] to eliminate interreflections have not been verified experimentally. In Section 4.3.2 an

observation was made that only changes of the reflected radiance resulting from the light movement along

the camera ray affect the depth measured from the camera view. This would argue for positioning a light

coincidental with the camera center. It could possibly be best accomplished with a half-silvered mirror

positioned at a 45◦ angle in the path of the camera ray and reflecting light from a source into the path.

Moving the light perpendicular to the camera ray would then be equivalent to moving the light along the

ray.

On a higher level, double-covering the incident lighting may contain additional information that the

algorithm is currently not taking advantage of. It is not clear, for example, if that could be used to

simultaneously recover the geometry of the scene, surface normals, and light locations. Finally, this method

shows a promise for a way to effectively sample the full 4-D BRDFs of objects composed of several distinct

materials, similar to Goldman et al. [78], but without a need for an explicit BRDF model.

6.1.2 The Small-Scale Volumetric Appearance Modeling Algorithm

The algorithm for appearance capture and modeling of volumetric textures proposed in Chapter 5 works by

separating the geometric information from the reflectance data present in a bidirectional texture function. It

is especially destined for volumetric surface textures with complex, opaque microstructure, shadowing, and

unknown reflectance properties. These types of textures are especially difficult to compress and reconstruct

by existing BTF compression schemes. By contrast, the layered representation naturally offers very high

compression of the original data and is fit for real-time rendering applications. On top of that, by providing

a geometric representation, it allows for realistic rendering for textures at grazing angles. Even higher

coherence of the rendered texture could be achieved by trivially extending the algorithm to re-sample the

BTF into vertical layers. At a negligible additional storage cost, textures could then be fully rendered at

any orientation to the viewer.

Although we have applied the underlying algorithm to decomposition of BTFs into layers, its applications

could potentially be useful in other areas. The concept of recursively updating data slices could be used

in other volume reconstruction applications, where transparency, shadowing, and complicated reflectance

properties play an important role. Finally, it could likely be extended to voxelized representations as well.
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6.2 Final Remarks

In recent years the prospect of reconstructing geometry with complex reflectance has become very appealing.

As the rendering capabilities of graphics hardware continue to soar, the demand for reconstruction algorithms

that can handle such geometry continues to grow as well. While a number of algorithms has been recently

proposed, there is still no universal solution for scanning of arbitrary scenes. Imagine for example a foggy

scene at a lake. Complex reflectance of plant leaves, water with its transparency and refractions, diffusive fog,

complex large-scale geometry of trees as well as small-scale geometry of bark and moss. All the complexity

occurs simultaneously. Although currently we are not yet capable of digitizing a lake scene, the recent

progress of research gives a hope that it will be possible in the future. The two algorithms proposed here

hopefully bring us closer to that ultimate goal.
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Appendix A

Basic Radiometric Concepts

The field of radiometry is dedicated to measuring and describing various properties and interactions of light,

including the infrared and the ultraviolet radiation. Roughly, it spans the electromagnetic spectrum from

10 to 106 nm. Note that the visible light is only in the range of about 360 to 830 nm. There is also a related

field of photometry, which deals with the perception of light by the human eye. It takes into account the

eye’s wavelength-dependent sensitivity, rather than the actual power. This work is based on radiometric

principles.

One basic property used to describe light is its radiant energy Qe. The amount of energy transmitted

per unit time is called the radiant power :

Φ =
dQe

dt
[W = J/s] (A.1)

Radiant power of a surface is described in terms of the area power density W . It is a measure of the

amount of energy moving through an imaginary unit area in space per unit time. Depending on whether the

energy is seen as arriving at or leaving a surface, its respective power area density is called either irradiance

E, or radiosity B:

W ≡ E ≡ B =
dΦ
dA

[W/m2] (A.2)

A.1 Solid Angles

The distribution of radiant power at some point, either emitted or received, usually requires a radial de-

scription. Power density is then a measure of the energy flux passing through a solid angle per unit time.

Solid angle is a 2-dimensional angular measure of a surface area of an area projection onto a unit sphere.

It is usually easier to think about it with an analogy of an angle in 2-dimensions. An angle can be defined

as ratio of the length of a circular arc l to the radius r of the circle:
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Figure A.1: Solid angle approximation.

θ =
l

r
≡ 2πα [rad] (A.3)

α represents the fraction of the circle’s circumference. Equivalent solid angle definition represents the ratio

of an area of a spherical patch S to the squared radius of a sphere r2:

ω =
S

r2
≡ 4πα [sr] (A.4)

Here α represents the fraction of the surface area of the sphere. Solid angles are typically used in a vector

representation as a solid angle vector : ~ω(ω, θ, φ), where (θ, φ) designate the direction in spherical coordinates.

ω is the solid angle centered along that direction.

Angular power density is very convenient for describing the power radiated by a point light source. For

an ideal point light source the angular power density is identical in all directions:

I =
dΦ
d~ω

[W/sr] (A.5)

The angular power density I is often called the source intensity. Note that intensity is often a casually

overused term to mean many different things, including the total power of a light source, or the brightness

of a pixel recoded by a digital camera.

In radiometric calculations it fequently becomes necessary to determine the solid angle subtended by some

distant surface patch. For small surface patches the subtended solid angle can be typically approximated by
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Figure A.2: The concept of radiance.

the area of the patch itself:

ω =
S

r2
≈ A

r2
(A.6)

Here A refers to the area of the patch. For a distant circular patch of radius a, it can approximated further

as:

ω ≈ πa2

r2
=

π
(
r sin( θ

2 )
)2

r2
≈ π

4
θ2 (A.7)

where θ is the angle subtended by the patch as shown in Figure A.1. Equation A.7 can be used as long as

θ is small, so that the approximation sin(θ) ≈ θ can be used.

A.2 Radiance

One of the most useful terms in radiometry is radiance. It is commonly used to describe the transport of

radiant power between surfaces. For example, a surface radiates B = dΦ
dA watts per unit area and we would

like to know how much of that power is received by another surface at some distance away (see Figure A.2).

Radiance measures the radiant power density leaving, or arriving at a surface per unit projected solid angle:

L =
dB

d~ωr cos(θe)
≡ dE

d~ωe cos(θr)
[W/m2·sr] (A.8)
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θe denotes the angle between the emitter surface normal and the receiver surface solid angle direction ~ωr.

θr and ~ωe have equivalent meaning in the irradiance equation. The usefulness of radiance comes from its

solid angle weighting. Radiance is independent of the distance between surfaces 1. It can be thought of as

a measure of radiant power transmitted along light rays. This fundamental ray law [211] is the core of all

raytracing and radiosity algorithms in computer graphics.

A.3 Bidirectional Distribution Functions

When light hits a surface, it is either absorbed, or scattered. This transfer of light energy or radiance is

typically characterized using a bidirectional distribution function (BDF) [89]:

f(~ωi → ~ωo, λ) =
dLdE(~ωi,λ)(~ωo, λ)

dE(~ωi, λ)
[1/sr] (A.9)

BDF defines the spherical distribution of the radiance (parametrized by ~ωo) scattered by a surface due to

the irradiance arriving from some solid angle vector ~ωi at a wavelength λ. The wavelength dependance can

often be ignored. In general, BTF can also be used to model light polarization and wavelength shifts. For a

broader model refer to Equation 2.34.

BDF combines the effects of both reflection and transmisison. For a solid material, for which only reflec-

tion plays a role, BTF reduces to a bidirectional reflectance distribution function (BRDF) [171]. Similarly

transmission of light can be described by a bidirectional transmission distribution function (BTDF). BTF

can therefore be viewed as a combination of BRDF and BSDF.

BTF becomes useful in computations involving transfer of light. For example, the total radiance scattered

from a point in a particular direction is calculated by integrating the BTF for all incoming irradiance:

L(~ωo, λ) =
∫

Ωi

f(~ωi → ~ωo, λ)E(~ωi, λ) d~ωi (A.10)

This equation is commonly referred to as the reflectance equation [40].

A.3.1 Reflectance and Transmittance

Although radiance distribution functions are very convenient in radioimetric equations, they are very in-

convenient to measure directly. They describe radiance over infinitesimal solid angles, that can only be

approximated by inherently finite measurements. Reflection measurements typically use a related quantity
1This is true only if we assume a vacuum environment.
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called reflectance 2 [171]. It simply specifies what fraction of the incident flux incoming over some finite

solid angle is reflected into another solid angle:

ρ(~Ωi → ~Ωo) =

∫
~Ωo

E(~ωo) d~ωo∫
~Ωi

E(~ωi) d~ωi

=

∫
~Ωo

∫
~Ωi

f(~ωi → ~ωo)E(~ωo) d~ωi cos(θo) d~ωo∫
~Ωi

E(~ωi) d~ωi
(A.11)

θo denotes the direction of the outgoing solid angle vector ~ωo. Typical reflectance measurements use a

calibrated beam of light uniform over the entire measurement range of directions. The incoming radiance

therefore is a constant and the Equation A.11 reduces to:

ρ(~Ωi → ~Ωo) =
1∫

~Ωi
d~ωi

∫
~Ωo

∫
~Ωi

f(~ωi → ~ωo) cos(θi) cos(θo) d~ωi d~ωo (A.12)

Note that any measurement of reflectance should carry a description of the setup that includes the light

beam configuration and the solid angle of the sensor.

A.3.2 Some Popular BRDF Models

The simplest BRDF model assumes the light reflects uniformly in all directions:

f(~ωi → ~ωo, λ) =
Kd(λ)

π
(A.13)

Kd(λ) is a wavelength-dependent reflectance coefficient. Surprisingly, many surfaces commonly referred to

as “matte” behave this way. Other surfaces can often be approximated using this model as well. Due to its

simplicity, it is widely used in computer vision algorithms. The model is called Lambertian after Johann

Heinrich Lambert, who first mathematically described this phenomena in his book “Photometria”, published

in 1760.

A more complex model aims to account for Lambertian and also for specular reflections. It is based on

an observation that many surfaces posses mirror-like characteristics by reflecting the illumination about the

surface normal. The reflection intensity falloff away from the reflection direction can be approximated by a

function:

f(~ωi → ~ωo, λ) =
Kd(λ)

π
+ Ks(λ)

(
~ωT

o (2~n~nT − I)~ωi

)k

(A.14)

2There is also an equivalent term for refraction called transmittance.
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where Ks(λ) is the specular coefficient. 2~n~nT − I is the reflection matrix for the light direction ~ωi about

the surface normal ~n. The exponent k is the “shininess” parameter that controls the width of the specular

peak. For a perfect mirror, k approaches infinity. The model is known as the Phong model after Bui Tuong

Phong who proposed the model [181].

Phong model in its simplicity is not very good at representing more complicated BRDFs with off-specular

peaks and anisotropic behavior. A more generalized form of the Phong model developed by Lafortune et

al. [135] allows for much greater flexibility. The basic idea is to represent the BRDF as a sum of L lobes,

which are not necessarily symmetric:

f(~ωi → ~ωo, λ) =
Kd(λ)

π
+

L∑
l=1

Ks,l(λ)(~ωT
o Cl(λ)~ωi)kl (A.15)

Here Cl(λ) is a 3 × 3 matrix3 that relates the incoming and outgoing directions. It generalizes the Phong

reflection matrix 2~n~nT − I. However, in many cases, not all 9 parameters of Cl are necessary. Except for

very complex anisotropic BRDFs, only the three diagonal parameters usually need to be non-zero, while

isotropic BRDFs require only two independent diagonal parameters [135].

There is a large number of other more complex BRDF models in existance, for example: Ward, Torrance-

Sparrow, Cook-Torrance, Minnaert, Oren-Nayar, Schlick, etc. For details on some of these, refer to the book

by Glassner [77].

A.3.3 Scattering Phase Function

BTFs are very convenient in describing material interfaces, where the surface normal can be easily identified.

In scattering media such reference surface does not exist. Instead, the distribution of scattered light at any

point in a medium is defined using a scattering phase function (SPF) [213, 103]. When normalized, this

unitless function can be interpreted as a probability density function:

∫
4π

p(r, ~ωi → ~ωo, λ) d~ωi = 1 (A.16)

A SPF specifies the directional distribution of scattered light with a wavelength λ that arrived from a

direction ~ωi. In general, this definition can also be expanded to include phase (wavelength) shifts.

In most homogenous materials (for example: air, water, or milk), SPF is isotropic with respect to the

incoming direction and can be parametrized simply with the cosine of the angle between the incoming and

outgoing directions. One notable exception are crystals, where SPF is usually defined with respect to the
3Note that the notation used here expresses ~ω in Cartesian coordinates (x, y, z).
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crystal lattice planes.
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Appendix B

First-Order Differential Equations

Consider a first-order differential equation of the form:

y′(x) + a(x) y(x) = b(x) (B.1)

We would like to solve this equation for y(x) over the interval [x0, x1]. The key for the solution is to find an

integrating factor [24] f(x), such that, when multiplied with the the left side of the equation B.1, it can be

reduced as shown:

f(x)
[
y′(x) + a(x) y(x)

]
=

[
f(x) y(x)

]′ (B.2)

We can solve for f(x) by expanding both sides using the rules of differentiation:

f(x) y′(x) + f(x) a(x) y(x) = f ′(x) y(x) + f(x) y′(x)

f(x) a(x) y(x) = f ′(x) y(x)

f(x) a(x) = f ′(x)∫ x1

x

1
f(u)

f ′(u) du =
∫ x1

x

a(u) du

ln f(x) =
∫ x1

x

a(u) du

f(x) = exp
(∫ ‖x1−x‖

0

a(u) du
)

(B.3)

Therefore we can simplify B.1 by multiplying both sides by f(x) and using the reduction B.2:
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f(x)
[
y′(x) + a(x) y(x)

]
= f(x) b(x)[

f(x) y(x)
]′ = f(x) b(x)∫ x

x0

[
f(v) y(v)

]′
dv =

∫ x

x0

f(v) b(v) dv

f(v) y(v)|xx0
=

∫ x

x0

f(v) b(v) dv

f(x) y(x)− f(x0) y(x0) =
∫ x

x0

f(v) b(v) dv (B.4)

The solution is especially simple when solving for y(x1):

y(x1) = f(x0) y(x0) +
∫ x1

x0

f(v) b(v) dv (B.5)
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Appendix C

Light Sensing with Digital Cameras

A digital camera is an image sensing device that takes advantage of the photoelectric effect to convert light

into electric charge. When a photon strikes the surface of a sensor, it can sometimes knock-out an electron

by transferring its energy into the kinetic energy of the electron. This can build up a charge over time

on the sensor, that act as a capacitor cell. A number of these capacitor cells arranged in an array make

up a picture. Currently the most common sensor types are either a charge-coupled device (CCD) or a

complementary-metal-oxide-semiconductor (CMOS) [138]. While CCDs are typically more sensitive to light

than CMOS based sensors, they are also more expensive than the CMOS chips.

To create an image in a digital camera the sensor is placed behind an optical lens. The irradiance falling

on a photosensitive element depends on the lens geometry and can be expressed as [96]:

Eo = Lo
π

4

(
D

f

)2

cos(α)4 (C.1)

where D and f are the lens diameter and the focal length. α is the angle that the pixel’s principal ray

makes with the optical axis of the camera. Assuming, that the image plane of the camera is perpendicular

to the camera view vector the measured pixel brightness value I corresponds to the total pixel irradiance

Eo received over a time t. I is related to the irradiance through some unknown transfer function T :

I = T
(
Eo t

)
(C.2)

The brightness I can be expressed directly in terms of the incoming radiance Lo, subject to exposure e [160]:

I = T
(
Lok e

)
(C.3)

where:

k =
cos(α)4

f2
e =

πd2

4
t

105



The exposure is an adjustable value representing the amount of light that reaches the photosensitive cell

over a period of time. It can be controlled by changing the aperture d and/or the acquisition time t. The

exposure is usually set to allow the photosensitive element capture the maximum amount of information

while minimizing the noise.

C.1 Nonlinearity

In order to measure the irradiance, it is necessary to recover the inverse transfer function T −1. Making a

logical assumption that the response curve is monotonically increasing, we can rewrite Equation C.2 as:

lg Eo = lg T −1(I)− lg t

lg Eo = G(I)− lg t (C.4)

The range of brightness values I is limited by the maximum capacitance of a sensor cell and the resolution

of the analog to digital conversion.

One way to solve for the unknown function T −1 is to setup an optimization problem that minimizes an

objective function over a discrete range of exposure values [160, 56]:

O =
M∑
i=1

N∑
j=1

[G(Iij)− lg Ei − lg tj ]
2 + c

Imax∑
i=Imin

G′′(i)2 (C.5)

M is the number of chosen pixel locations and N is the number of exposures. The measurement data consists

of a set of images of a static scene taken at varying exposures. Note the second smoothing term used to

relate the discrete values of G to each other. For details, refer to the paper by Debevec and Malik [56], or

Mitsunaga and Nayar [160].

C.2 Sensor Noise

As with any sensing device, the signal detected by a digital camera is corrupted by noise.The noise in digital

cameras can be classified as either the random noise, or the pattern noise [185].
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Figure C.1: Typical photon transfer curve for a digital camera showing the noise level for different brightness
values up to the saturation point. The graph shows the dominant noise contributors for different sections
on the curve.

C.2.1 Random Noise

This type of noise is the result of random processes occurring during image acquisition. It is often referred to

as the temporal noise, since it’s temporally random and is responsible for variations in images of an identical

scene. The most important components of random noise is the shot noise, the thermal noise, and the readout

noise. Its effects can be reduced by frame averaging.

C.2.2 Pattern Noise

Pattern noise comes from different defects and physical variations present in sensing cells across the sensor.

It is therefore often referred to as the spatial noise. The most important components of the spatial noise are

the dark current non-uniformity and the photo response non-uniformity. The effects of pattern noise can be

partially eliminated by dark frame subtraction.
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