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Abstract. Rewriting is a general and expressive way of specifying con-
current systems, where concurrent transitions are axiomatized by rewrite
rules. Narrowing is a complete symbolic method for model checking
reachability properties. We show that this method can be reinterpreted
as a lifting simulation relating the original system and the symbolic sys-
tem associated to the narrowing transitions. Since the narrowing graph
can be infinite, this lifting simulation only gives us a semi-decision pro-
cedure for the failure of invariants. However, we propose new methods
for folding the narrowing tree that can in practice result in finite sys-
tems that symbolically simulate the original system and can be used
to algorithmically verify its properties. We also show how both narrow-
ing and folding can be used to symbolically model check systems which,
in addition, have state predicates, and therefore correspond to Kripke
structures on which ACTL∗ and LTL formulas can be algorithmically
verified using such finite symbolic abstractions.

1 Introduction

Model checking techniques have proved enormously effective in concurrent sys-
tem verification. However, the standard model checking algorithms only work
when the set of states reachable from the given initial state is finite. Various
model checking techniques for infinite-state systems exist, but they are less de-
veloped than finite-state techniques and tend to place stronger limitations on the
kind of systems and/or the properties that can be model checked (see Section
1.1).

In this work we adopt the rewriting logic point of view, in which a concurrent
system can always be axiomatized as a rewrite theory modulo some equational
axioms, with system transitions described by rewrite rules. We then propose a
new narrowing-based method for model checking such, possibly infinite-state,
systems under reasonable assumptions. The key insight is that the well-known
theorem on the completeness of narrowing (which for rewrite theories whose rules
need not be convergent has to satisfy a topmost restriction) can be reinterpreted
as a lifting simulation between two systems, namely, between the initial model
associated to the rewrite theory (which describes our system of interest), and a
“symbolic abstraction” of such a system by the narrowing relation.



The narrowing relation itself may still lead to an infinite-state system. Even
then, narrowing already gives us a semi-decision procedure for finding failures of
invariants. To obtain a finite-state abstraction, we then define a second simula-
tion by folding the narrowing-based abstraction, using a generalization criterion
to fold the possibly infinite narrowing tree into a finite graph. There is no guar-
antee that such a folding will always be finite. But we think that such foldings
can be finite in many practical cases and give several examples of finite concur-
rent system abstractions of infinite systems that can be obtained in this way and
can be used to verify properties of infinite systems.

Our work applies not only to the model checking of invariants, but also
to the model checking of ACTL∗ and LTL temporal logic formulas; not just
for one initial state, but for a possibly infinite, symbolically described set of
initial states. We therefore also provide results about the ACTL∗ and LTL

model checking of concurrent systems axiomatized as rewrite theories. For such
temporal logic model checking we have to perform narrowing in two different
dimensions: (i) in the dimension of transitions, as already explained above; and
(ii) in the dimensions of state predicates, because they are not defined in general
for arbitrary terms with variables, but only for suitable substitution instances.
Again, our narrowing techniques, when successful in folding the system into a
finite-state abstraction, allow the use of standard model checking algorithms to
verify ACTL∗ and LTL properties of the corresponding infinite-state systems.

After some preliminaries in Section 2, we consider narrowing for model check-
ing invariants of transition systems in Section 3, and narrowing for model check-
ing temporal logic formulas on Kripke structures in Section 4. We conclude in
Section 5. Throughout we use Lamport’s infinite-state “bakery” protocol as the
source of various examples. Appendix A discusses other examples based on a
readers-writers protocol.

1.1 Related work

The idea that narrowing in its reachability sense should be used as a method for
analyzing concurrent systems and should fit within a wider spectrum of analysis
capabilities, was suggested in [37,16], and was fully developed in [34,35]. The
application of this idea to the verification of cryptographic protocols has been
further developed by the authors in collaboration with Catherine Meadows and
has been used as the basis of the Maude-NPA protocol analyzer [21]. In relation
to such previous work, we contribute several new ideas, including the use of lifting
simulations, the folding of the narrowing graph by a generalization criterion, and
the new techniques for the verification of ACTL∗ and LTL properties.

The methods proposed in this paper are complementary to other infinite-
state model checking methods, of which narrowing is one. What narrowing has
in common with various infinite-state model checking analyses is the idea of
representing sets of states symbolically, and to perform reachability analysis
to verify properties. The symbolic representations vary from approach to ap-
proach. String and multiset grammars are often used to symbolically compute
reachability sets, sometimes in conjunction with descriptions of the systems as
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rewrite theories [6,5], and sometimes in conjunction with learning algorithms
[44]. Tree automata are also used for symbolic representation [25,40]. In general,
like narrowing, some of these methods are only semi-decision procedures; but by
restricting the classes of systems and/or the properties being analyzed, and by
sometimes using acceleration or learning techniques, actual algorithms can be
obtained for suitable subclasses: see the references above and also [7,8,20,24].

Two infinite-state model checking approaches closer in spirit to ours are: (i)
the “constraint-based multiset rewriting” of Delzanno [15,14], where the infin-
ity of a concurrent system is represented by the use of constraints (over integer
or real numbers) and reachability analysis is performed by rewriting with a
constraint store to which more constraints are added and checked for satisfia-
bility or failure; and (ii) the logic-programming approach of [4], where simula-
tions/bisimulations of labeled transition systems and symbolic representations
of them using terms with variables and logic programming are studied. In spite
of their similarities, the technical approaches taken in (i) and (ii) are quite dif-
ferent from ours. In (i), the analogue of narrowing is checking satisfiability of the
constraint store; whereas in (ii) the main focus is on analyzing process calculi
and on developing effective techniques using tabled logic programming to detect
when a simulation or bisimulation exists.

Our work is also related to abstraction techniques, e.g., [9,31,26,29,41], which
can sometimes collapse an infinite-state system into a finite-state one. In particu-
lar, it is related to, and complements, abstraction techniques for rewrite theories
such as [39,33,23]. In fact, all the simulations we propose, especially the ones in-
volving folding, can be viewed as suitable abstractions. From this point of view,
our results provide new methods for automatically defining correct abstractions
in a symbolic way.

There is, finally, related work on computing finite representations of the
search space associated by narrowing to an expression in a rewrite theory, e.g.,
for computing regular expressions denoting a possibly infinite set of unifiers in
[3], or for partial evaluation in [43,2,30,1]. However, these works have a different
motivation and do not consider applications to simulation/bisimulation issues,
although they contain notions of correctness/completeness suitable for such ap-
plications.

2 Preliminaries

We follow the classical notations and terminology from [17,42] for term rewriting
and from [36,38] for rewriting logic and order-sorted notions. We assume an
order-sorted signature Σ with a finite poset of sorts (S,≤) and a finite number
of function symbols. We furthermore assume that: (i) each connected component
in the poset ordering has a top sort, and for each s ∈ S we denote by [s] the top
sort above s; and (ii) for each operator declaration f : s1 × . . . × sn → s in Σ,
there is also a declaration f : [s1]× . . .× [sn] → [s]. We assume an S-sorted family
X = {Xs}s∈S of disjoint variable sets with each Xs countably infinite. TΣ(X )

s
is

the set of terms of sort s, and TΣ,s is the set of ground terms of sort s. We write
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TΣ(X ) and TΣ for the corresponding term algebras. The set of positions of a
term t is written Pos(t) and the set of non-variable positions PosΣ(t). The root
of a term is Λ. The subterm of t at position p is t|p and t[u]p is the subterm t|p
in t replaced by u. A substitution σ is a sorted mapping from a finite subset of
X , written Dom(σ), to TΣ(X ). The set of variables introduced by σ is Ran(σ).
The identity substitution is id. Substitutions are homomorphically extended to
TΣ(X ). The restriction of σ to a set of variables V is σ|V .

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X )
s

for some
sort s ∈ S. Given Σ and a set E of Σ-equations such that TΣ,s 6= ∅ for every
sort s, order-sorted equational logic induces a congruence relation =E on terms
t, t′ ∈ TΣ(X ) (see [38]). Throughout this paper we assume that TΣ,s 6= ∅ for every
sort s. The E-subsumption order on terms TΣ(X )

s
, written t 4E t′ (meaning that

t′ is more general than t), holds if ∃σ : t =E σ(t′). The E-renaming equivalence
on terms TΣ(X )

s
, written t ≈E t′, holds if t 4E t′ and t′ 4E t. We extend =E ,

≈E , and 4E to substitutions in the expected way. An E-unifier for a Σ-equation
t = t′ is a substitution σ s.t. σ(t) =E σ(t′). A complete set of E-unifiers of an
equation t = t′ is written CSUE(t = t′). We say CSUE(t = t′) is finitary if it
contains a finite number of E-unifiers. This notion can be extended to several
equations, written CSUE(t1 = t′1 ∧ · · · ∧ tn = t′n).

A rewrite rule is an oriented pair l → r, where l 6∈ X , l, r ∈ TΣ(X )
s

for
some sort s ∈ S, and Var(r) ⊆ Var(l). An (unconditional) order-sorted rewrite
theory is a triple R = (Σ, E, R) with Σ an order-sorted signature, E a set of
Σ-equations, and R a set of rewrite rules. A topmost rewrite theory is a rewrite
theory s.t. for each l → r ∈ R, l, r ∈ TΣ(X )

State
for a top sort State, and no

operator in Σ has State as an argument sort.

The rewriting relation →R on TΣ(X ) is t
p
→R t′ (or →R) if p ∈ PosΣ(t),

l → r ∈ R, t|p = σ(l), and t′ = t[σ(r)]p. The relation →R/E on TΣ(X ) is
=E ;→R; =E . Note that →R/E on TΣ(X ) induces a relation →R/E on TΣ/E(X )

by [t]E →R/E [t′]E iff t →R/E t′. When R = (Σ, E, R) is a topmost rewrite
theory we can safely restrict ourselves to the rewriting relation →R,E on TΣ(X ),

where t
p
→R,E t′ (or →R,E) if p ∈ PosΣ(t), l → r ∈ R, t|p =E σ(l), and

t′ = t[σ(r)]p. Note that →R,E on TΣ(X ) induces a relation →R,E on TΣ/E(X )

by [t]E →R,E [t′]E iff ∃w ∈ TΣ(X ) : t →R,E w and w =E t′. The narrowing

relation  R on TΣ(X ) is t
p,σ
 R t′ (or

σ
 R,  R) if p ∈ PosΣ(t), l → r ∈ R,

σ ∈ CSU∅(t = t′), and t′ = σ(t[r]p). Assuming that E has a finitary and complete

unification algorithm, the narrowing relation  R,E on TΣ(X ) is t
p,σ
 R,E t′ (or

σ
 R,E ,  R,E) if p ∈ PosΣ(t), l → r ∈ R, σ ∈ CSUE(t|p = l), and t′ = σ(t[r]p).

Note that  R,E on TΣ(X ) induces a relation  R,E on TΣ/E(X ) by [t]E
σ
 R,E

[t′]E iff ∃w ∈ TΣ(X ) : t
σ
 R,E w and w =E t′. Note that, since we will only

consider topmost rewrite theories, we avoid any coherence problems, and, as
pointed above for →R/E and →R,E , the narrowing relation  R,E achieves the
same effect as a more general narrowing relation  R/E (see [35]).
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3 Narrowing-based Reachability Analysis

A rewrite theory R = (Σ, E, R) specifies a transition system TR whose states
are elements of the initial algebra TΣ/E , and whose transitions are specified by
R. Before discussing the narrowing-based reachability analysis of the system TR,
we review some basic notions about transition systems.

Definition 1 (Transition System). A transition system is written A = (A,→),
where A is a set of states, and → is a transition relation between states, i.e.,
→⊆ A × A. We write A = (A,→, I) when I ⊆ A is a set of initial states.

Frequently, we will restrict our attention to a set of initial states in the transition
system and, therefore, to the subsystem of states and transitions reachable from
the initial states. However, we can obtain a more abstract description of such
reachable subsystem by using a folding relation in order to shrink the associated
transition system, i.e., to collapse several states into a previously seen state
according to some criteria.

Definition 2 (Folding Reachable Transition Subsystem). Given A =
(A,→, I) and a relation G ⊆ A × A, the reachable subsystem from I in A with
folding G is written ReachG

A(I) = (ReachG
→(I),→G, I), where

ReachG
→(I) =

⋃

k≤n FrontierG
→(I)n,

F rontierG
→(I)0 = I,

FrontierG
→(I)n+1 = {y ∈ A | (∃z ∈ FrontierG

→(I)n : z → y)∧
(∄k ≤ n, w ∈ FrontierG

→(I)k : y G w)},

→G=
⋃

n∈N
→G

n+1,

x →G
n+1 y







if x ∈ FrontierG
→(I)n, y ∈ FrontierG

→(I)n+1, x → y; or
if x ∈ FrontierG

→(I)n, y 6∈ FrontierG
→(I)n+1,

∃k ≤ n : y ∈ FrontierG
→(I)k, ∃w : (t → w ∧ w G y)

In this paper, we consider only folding relations G ∈ {=E,≈E ,4E} on transition
systems whose state set is TΣ/E(X )

s
for a given sort s. We write ReachA(I) for

the transition system Reach=E

A (I), which is the standard notion of reachable
subsystem. Note that, the more general the relation G, the greater the chances
of ReachG

A(I) being a finite transition system. We are furthermore interested in
comparisons between different transition systems, for which we use the notions
of simulation, lifting simulation, and bisimulation.

Definition 3 (Simulation, lifting simulation, and bisimulation). Let A =
(A,→A) and B = (B,→B) be two transition systems. A simulation from A to B,
written A H B, is a relation H ⊆ A × B such that a H b and a →A a′ implies
that there exists b′ ∈ B such that a′ H b′ and b →B b′. Given A = (A,→A, IA)
and B = (B,→B, IB), H is a simulation from A to B if (A,→A) H (B,→B) and
∀a ∈ IA, ∃b ∈ IB s.t. a H b. A simulation H from (A,→A) to (B,→B) (resp.
from (A,→A, IA) to (B,→B, IB)) is a bisimulation if H−1 is a simulation from
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(B,→B) to (A,→A) (resp. from (B,→B, IB) to (A,→A, IA)). We call a simu-
lation (A,→A, IA) H (B,→B, IB) a lifting simulation if for each finite sequence
b0 →B b1 →B b2 →B · · · →B bn with b0 ∈ IB, there exists a finite sequence
a0 →A a1 →A a2 →A · · · →A an with a0 ∈ IA such that ai H bi for 0 ≤ i ≤ n.

It is easy to see that simulations, lifting simulations, and bisimulations compose,
that is, if A H B K C are simulations (resp. lifting simulations, resp. bisimula-
tions), then A H ; K C is a simulation (resp. lifting simulation, resp. bisimula-
tion). In fact, we have associated categories, with transition systems as objects
and simulations (resp. lifting simulations, resp. bisimulations) as morphisms.

In rewriting logic we usually specify a concurrent system as a topmost3

rewrite theory R = (Σ, E, R), where states are E-equivalence classes of ground
terms of a concrete top sort State, i.e., elements in TΣ/E,State

, and transitions

are rewrite rules l → r for l, r ∈ TΣ(X )
State

that rewrite states into states. We
can describe the operational behavior of the concurrent system by an associated
transition system.

Definition 4 (TR-Transition System). Let R = (Σ, E, R) be a topmost rewrite
theory with a top sort State. We define the transition system TR = (TΣ/E,State

,→R,E).

Example 1. Consider a simplified version of Lamport’s bakery protocol, in which
we have several processes, each denoted by a natural number, that achieve mu-
tual exclusion between them by the usual method common in bakeries and deli
shops: there is a number dispenser, and customers are served in sequential order
according to the number that they hold. This system can be specified as an
order-sorted topmost rewrite theory in Maude4 as follows:

fmod BAKERY-SYNTAX is
sort Nat .
op 0 : -> Nat .

3 Obviously, not all concurrent systems need to have a topmost rewrite theory spec-
ification. However, as explained in [34,35], many concurrent systems of interest,
including the vast majority of distributed algorithms, admit topmost specifications.
For example, concurrent object-oriented systems whose state is a multiset of objects
and messages can be given a topmost specification by enclosing the system state in
a top operator. Even hierarchical distributed systems of the “Russian doll” kind can
likewise be so specified, provided that the boundaries defining such hierarchies are
not changed by transitions.

4 The Maude syntax is so close to the corresponding mathematical notation for defin-
ing rewrite theories as to be almost self-explanatory. The general point to keep in
mind is that each item: a sort, a subsort, an operation, an equation, a rule, etc., is
declared with an obvious keyword: sort, subsort, op, eq, rl, etc., with each dec-
laration ended by a space and a period. A rewrite theory R = (Σ, E, R) is defined
with the signature Σ using keyword op, equations in E are specified using keyword
eq or keywords assoc, comm and id: (for associativity, commutativity, and identity,
respectively) appearing in an operator declaration, and rules in R using keyword
rl. Another important point is the use of “mix-fix” user-definable syntax, with the
argument positions specified by underbars; for example: if then else fi. We write
the sort of a variable using keyword var or after its name and a colon, e.g. X:Nat.
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0 ; 0 ; [0, idle]

��

s(0) ; s(0) ; [0, idle]

��

s2(0) ; s2(0) ; [0, idle]

��
s(0) ; 0 ; [0, wait(0)]

��

s2(0) ; s(0) ; [0, wait(s(0))]

��

s3(0) ; s2(0) ; [0, wait(s2(0))]

��
s(0) ; 0 ; [0, crit(0)]

66lllllllllllllllllll
s2(0) ; s(0) ; [0, crit(s(0))]

55jjjjjjjjjjjjjjjjjjjj
· · ·

Fig. 1. Infinite transition system ReachTR
(0 ; 0 ; [0, idle])

op s : Nat -> Nat .

sorts ModeIdle ModeWait ModeCrit Mode .
subsorts ModeIdle ModeWait ModeCrit < Mode .

sorts ProcIdle ProcWait Proc ProcIdleSet ProcWaitSet ProcSet .
subsorts ProcIdle < ProcIdleSet .
subsorts ProcWait < ProcWaitSet .

subsorts ProcIdle ProcWait < Proc < ProcSet .
subsorts ProcIdleSet < ProcWaitSet < ProcSet .

op idle : -> ModeIdle .
op wait : Nat -> ModeWait .

op crit : Nat -> ModeCrit .
op [_,_] : Nat ModeIdle -> ProcIdle .
op [_,_] : Nat ModeWait -> ProcWait .

op [_,_] : Nat Mode -> Proc .
op none : -> ProcIdleSet .

op __ : ProcIdleSet ProcIdleSet -> ProcIdleSet [assoc comm id: none] .
op __ : ProcWaitSet ProcWaitSet -> ProcWaitSet [assoc comm id: none] .
op __ : ProcSet ProcSet -> ProcSet [assoc comm id: none] .

sort State .
op _;_;_ : Nat Nat ProcSet -> State .

endfm
mod BAKERY is

protecting BAKERY-SYNTAX .
var PS : ProcSet .
vars N M K : Nat .

rl N ; M ; [K, idle] PS => s(N) ; M ; [K, wait(N)] PS .
rl N ; M ; [K, wait(M)] PS => N ; M ; [K, crit(M)] PS .

rl N ; M ; [K, crit(M)] PS => N ; s(M) ; [K, idle] PS .
endm

Given the initial state t1 = “0 ; 0 ; [0, idle]”, the infinite transition system
ReachTR

(t1) is depicted in Figure 1. We will graphically identify initial states
by underlining them.

Narrowing calculates the most general rewriting sequences associated to a term.
We can exploit this generality and use narrowing as a lifting simulation of rewrit-
ing. We write TΣ/E(X )◦

State
for the set of E-equivalence classes of terms of sort

State excluding variables, i.e., TΣ/E(X )
◦

State
= TΣ/E(X )

State
\XState. We can define

the transition system associated to narrowing as follows.

Definition 5 (NR-Transition System). Let R = (Σ, E, R) be a topmost
rewrite theory with a top sort State. We define a transition system NR =
(TΣ/E(X )

◦

State
, R,E).

Note that we exclude variables in Definition 5, since the relation  R,E is not
defined on them. Note also that for each rule l → r in a topmost rewrite theory,
we have r 6∈ X , since l 6∈ X , Var(r) ⊆ Var(l), and r ∈ TΣ(X )

State
.

Given a subset U ⊆ TΣ/E(X )
s
, we define the set of ground instances of U as

[[U ]] = {[t]E ∈ TΣ/E,s | ∃ [t′]E ∈ U s.t. t 4E t′}. Note that U may be a finite
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set, whereas [[U ]] can often be an infinite set. This gives us a symbolic way of
describing possibly infinite sets of initial states in TR, which will be very useful
for model checking purposes.

The following result relates the transition systems associated to narrowing
and rewriting. Note that we do not have a bisimulation in general, since a term
t ∈ TΣ(X ) may have narrowing steps with incomparable substitutions σ1, . . . , σk,
i.e., given i 6= j, σi(t) may disable the rewriting step performed on σj(t) and
viceversa; see Figure 2. Our results are based on the following result from [35].

Lemma 1 (Topmost Completeness). [35] For R = (Σ, E, R) a topmost the-
ory, let t ∈ TΣ(X ) be a term that is not a variable, and let V be a set of variables
containing Var(t). For some substitution ρ, let ρ(t) →R/E t′ using the rule l → r

in R. Then there are σ, θ, t” such that t
σ
 R,E t” using the same rule l → r, t”

is not a variable, ρ|V =E (σ ◦ θ)|V , and θ(t”) =E t′.

Theorem 1 (Lifting simulation by narrowing). Let R = (Σ, E, R) be a
topmost rewrite theory with a top sort State. Let U ⊆ TΣ/E(X )

◦

State
. The re-

lation 4E defines two lifting simulations: TR 4E NR and ReachTR
([[U ]]) 4E

ReachNR
(U).

Proof. To show that 4E is a simulation, let [t]E , [t′]E ∈ TΣ/E,State
and [t]E →R,E

[t′]E using rule l → r ∈ R, for each [w]E ∈ TΣ/E(X )
State

and substitution ρ such

that t =E ρ(w) (i.e., t 4E w), by Lemma 1, there are substitutions σ, θ and w′ ∈

TΣ(X )
State

such that w
σ
 R,E w′ using rule l → r ∈ R, t =E θ(σ(w)), and t′ =E

θ(w′) (i.e., t′ 4E w′). To show the lifting property, let [t0]E , . . . , [tn]E ∈ TΣ/E,State

and t0
σ1

 R,E t1
σ2

 R,E t2 · · ·
σn
 R,E tn using rules l1 → r1, . . . , ln → rn ∈ R. There

is at least one substitution ρ such that (σ1◦σ2 · · ·◦σn◦ρ)(t0) ∈ TΣ,State
and then,

let θ = σ1 ◦ σ2 · · · ◦ σn ◦ ρ, we have θ(t0) →R,E θ(t1) →R,E θ(t2) · · · →R,E θ(tn)
using rules l1 → r1, . . . , ln → rn ∈ R. ⊓⊔

Since NR is typically infinite, for a set U ⊆ TΣ/E(X )
◦

State
of initial states and

a relation G ⊆ TΣ/E(X )
◦

State
× TΣ/E(X )

◦

State
, we may be interested in the reach-

able subsystem from U in NR with folding G, i.e., in the transition system
ReachG

NR
(U).

Example 2. Consider Example 1 and let t2 = “N:Nat ; M:Nat ; [0, MD:Mode]”.
The finite transition system Reach

4E

NR
(t2) is depicted in Figure 2. In the case of

narrowing, we will graphically tie the substitution computed by each narrowing
step to the proper transition arrow. Also, when a transition step is making use
of the folding relation G, i.e., when it is not a normal rewriting/narrowing step
but a combination of rewriting/narrowing and folding with the relation G, we
mark the arrow with a double head.

Since a transition system usually includes a set of initial states, we can extend
Theorem 1 to a folding relation G, to obtain a more specific (and in some sense
more powerful) result. For this we need the following characterization of a folding
relation G.
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N:Nat ; M:Nat ; [0, MD:Mode]

GF

@A
{MD:Mode/idle}

66 66mmmmmmmmmmmmmmmmmm

BC@A
{MD:Mode/wait(M:Nat)}

DD DD














ED

BC
{MD:Mode/crit(M:Nat)}

hhhhQQQQQQQQQQQQQQQQQQ

Fig. 2. Finite transition system Reach
4E

NR
(N:Nat ; M:Nat ; [0, MD:Mode])

Definition 6 ( R,E-equivalent relation). Let R = (Σ, E, R) be a rewrite
theory. The binary relation G ⊆ TΣ/E(X ) × TΣ/E(X ) is called  R,E-equivalent

if for [t]E , [t′]E , [w]E ∈ TΣ/E(X ) such that t G w and t R,E t′ using rule l → r,

there is [w′]E ∈ TΣ/E(X ) such that w  R,E w′ using rule l → r and t′ G w.

Lemma 2 ( R,E-equivalence of G). Let R = (Σ, E, R) be a topmost rewrite
theory with a top sort State. The relations {=E,≈E ,4E} on TΣ/E(X )

State
are

 R,E-equivalent.

Proof. We only prove it for 4E . Let [t]E , [t′]E ∈ TΣ/E(X )
State

such that t
ρ
 R,E t′

using rule l → r. Let [w]E ∈ TΣ/E(X )
State

and τ such that t =E τ(w) (i.e.,

t 4E w). Note that ρ(τ(w)) →R,E t′ using rule l → r. By Lemma 1, there

are substitutions σ, θ and w′ ∈ TΣ(X )
State

such that w
σ
 R,E w′ using rule

l → r ∈ R, (τ ◦ ρ)|Var(w) =E (σ ◦ θ)|Var (w), ρ(t) =E ρ(τ(w)) =E θ(σ(w)), and
t′ =E θ(w′) (i.e., t′ 4E w′). ⊓⊔

Theorem 2 (Simulation by G-narrowing). Let R = (Σ, E, R) be a top-
most rewrite theory with a top sort State. Let U ⊆ TΣ/E(X )◦

State
and G ⊆

TΣ/E(X )
◦

State
× TΣ/E(X )

◦

State
be  R,E-equivalent. The relation G then defines a

simulation ReachNR
(U) G ReachG

NR
(U).

Proof. By Definition 6 and Lemma 2. ⊓⊔

We can obtain a bisimulation when every narrowing step of a transition sys-
tem computes the identity substitution, which means that every possible rewrit-
ing sequence is represented in its most general way in the narrowing tree.

Theorem 3 (Bisimulation by narrowing). Let R = (Σ, E, R) be a topmost
rewrite theory with a top sort State. Let U ⊆ TΣ/E(X )◦

State
. Let each transition

in ReachNR
(U) be of the form [t]E

id
 R,E [t′]E. The relation 4E then defines a

bisimulation ReachTR
([[U ]]) 4E ReachNR

(U).

Proof. We only prove that4−1
E is a simulationReachNR

(U) 4−1
E ReachTR

([[U ]]).

If [w]E , [w′]E ∈ TΣ/E(X )
State

and [w]E
id
 R,E [w′]E using rule l → r ∈ R, then for

each grounding substitution σ, i.e., σ(w) ∈ TΣ,State
, [σ(w)]E →R,E [σ(w′)]E . ⊓⊔

Lemma 3 ( R,E-equivalence of G−1). Let R = (Σ, E, R) be a topmost
rewrite theory with a top sort State. Let T ⊆ TΣ/E(X )

State
such that for each

[t]E , [t′]E ∈ T , [t]E
σ
 R,E [t′]E implies σ = id. The relations {=E

−1,≈E
−1,4E

−1}
on T are  R,E-equivalent.
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N:Nat ; N:Nat ; [0, idle]

id

��
s(N:Nat) ; N:Nat ; [0, wait(N:Nat)]

id

��
s(N:Nat) ; N:Nat ; [0, crit(N:Nat)]

id

jjjj

Fig. 3. Finite transition system Reach
4E

NR
(N:Nat ; N:Nat ; [0, idle])

Proof. We only have to prove it for 4−1
E , since =E and ≈E are symmetric. Let

[t]E , [t′]E ∈ TΣ/E(X )
State

such that t
id
 R,E t′ using rule l → r, i.e., t →R,E t′

using rule l → r. Let [w]E ∈ TΣ/E(X )
State

and τ such that τ(t) =E w (i.e.,

t 4−1
E w). Then, τ(t)

id
 R,E τ(t′) using rule l → r, i.e., τ(t) →R,E τ(t′) using

rule l → r. And thus, let w′ = τ(t′), we have t′ 4−1
E w′. ⊓⊔

Theorem 4 (Bisimulation by G-narrowing). Let R = (Σ, E, R) be a top-
most rewrite theory with a top sort State. Let G ⊆ TΣ/E(X )

◦

State
× TΣ/E(X )

◦

State

and G−1 be  R,E-equivalent. Let U ⊆ TΣ/E(X )
◦

State
. Let each transition in

ReachG
NR

(U) be of the form [t]E
id
 G

R,E [t′]E. The relation G then defines a bisim-

ulation ReachNR
(U) G ReachG

NR
(U).

Proof. By Definition 6. ⊓⊔

Example 3. Consider Example 1 and t3 = “N:Nat ; N:Nat ; [0, idle]”. The
finite transition system Reach

4E

NR
(t3) is depicted in Figure 3. Note that every

transition has the id substitution. Therefore, by Theorems 1 and 4, we have a
bisimulation between the infinite transition system ReachTR

(0 ; 0 ; [0, idle])

shown in Figure 1 and Reach
4E

NR
(N:Nat ; N:Nat ; [0, idle]) in Figure 3.

Note that the narrowing-based methods we have presented allow us to answer
reachability questions of the form (∃−→x ) t →∗ t′. That is, given a set of initial
states [[t]] we want to know whether from some state in [[t]] we can reach a state in
[[t′]]. The fact that narrowing provides a lifting simulation of the system TR means
that it is a complete semi-decision procedure for answering such reachability
questions: the above existential formula holds in TR if and only if from t we can
reach by narrowing a term that E-unifies with t′. In particular, narrowing is very
useful for verification of invariants. Let p ∈ TΣ(X )

State
be a pattern representing

the set-theoretic complement of an invariant. Then, the reachability formula
∄−→x : t →∗

R/E p corresponds to the satisfaction of the invariant for the set of

initial states [[t]]. Therefore, narrowing provides a semi-decision procedure for
the violation of invariants. Furthermore, the invariant holds iff p does not E-
unify with any term in ReachNR

(t). It also holds if p does not E-unify with any

term in Reach
4E

NR
(t), which is a decidable question if Reach

4E

NR
(t) is finite. If p

does E-unify with some term in Reach
4E

NR
(t), in general the invariant may or

10



N ; N ; [0,idle] [s(0),idle]

iduulllllllllll
id

,,YYYYYYYYYYYYYYYYYYYYYYYY

s(N) ; N ; [0,wait(N)]
[s(0),idle]

id
��

id

((RRRRRRRRRRR

s(N) ; N ; [0,idle]
[s(0),wait(N)]

id

��
id

vvlllllllllll

s(N) ; N ; [0,crit(N)]
[s(0),idle]

id

'' ''

s(s(N)) ; N ; [0,wait(N)]
[s(0),wait(s(N))]

id

��

s(s(N)) ; N ; [0,wait(s(N))]
[s(0),wait(N)]

id

��

s(N) ; N ; [0,idle]
[s(0),crit(N)]

id

xxxx

s(s(N)) ; N ; [0,crit(N)]
[s(0),wait(s(N))]

id

JJ JJ

s(s(N)) ; N ; [0,wait(s(N))]
[s(0),crit(N)]

id

TTTT

Fig. 4. Finite transition system Reach
4E

NR
(N:Nat ; N:Nat ; [0, idle] [s(0), idle])

may not hold: we need to check whether this corresponds to a real narrowing
sequence.

Example 4. Consider Example 1 and the initial state with two processes t4 =
“N:Nat ; N:Nat ; [0, idle] [s(0), idle]”. The finite transition system
Reach

4E

NR
(t4) is depicted in Figure 4. Note that we have a bisimulation between

ReachTR
([[t4]]) and Reach

4E

NR
(t4). Consider the following pattern identifying that

the critical section property has been violated

“N:Nat ; M:Nat ; [0, crit(C1:Nat)] [s(0), crit(C2:Nat)]”.

We can check that the pattern does not unify with any state in the transition
system of Figure 4, and thus this bad pattern is unreachable from any initial
state being an instance of t4. This provides a verification of the mutual exclusion
property for the infinite-state BAKERY protocol, not just from a single initial state,
but from an infinite set [[t4]] of initial states.

Note, finally, that, for U a set of of initial states, even if the transition system
ReachTR

([[U ]]) is finite, the transition system ReachG
NR

(U) can be much smaller.
Furthermore, the set U is typically finite, whereas the set [[U ]] is typically infinite,
making it impossible to model check an invariant from each initial state by
finitary methods. In all these ways, narrowing allows algorithmic verification of
invariants in many infinite-state systems, and also in finite-state systems whose
size make it unfeasible to use standard model checking techniques.

4 Narrowing-based ACTL∗ Model Checking

Model checking [10] is the most successful verification technique for temporal
logics. When we perform model checking, we use Kripke structures to represent

11



the state search space. Kripke structures are the natural models for propositional
temporal logic. Essentially, a Kripke structure is a total5 transition system to
which we have added a collection of atomic propositions on its set of states.

Definition 7 (Kripke Structure). Given a set Π of atomic propositions, a
Π-Kripke structure (or just Kripke structure) is a triple K = (A,→,L) such that
(A,→) is a transition system with → total, and L : A −→ P(Π) is a function,
called the labeling function, assigning to each state a the set L(a) ⊆ Π of atomic
propositions that hold in a. We write K = (A,→, I,L) when (A,→, I) defines a
transition system with initial states I.

We consider the Computation Tree Logic (CTL∗), its universally quantified
subset (ACTL∗), and a subset of both, linear temporal logic (LTL), as the tem-
poral logics for property specification. We refer the reader to [10] for formal
definitions of these three temporal logics. Given a set Π of atomic propositions,
the semantics of a formula ϕ ∈ CTL∗

Π (resp. ϕ ∈ ACTL∗
Π , ϕ ∈ LTLΠ) is defined

by means of a satisfaction relation K, a |= ϕ, where K = (A,→,L) is a Π-Kripke
structure having Π as its atomic propositions, and a ∈ A is a state. We refer the
reader to [10] for a detailed definition of satisfaction of a CTL∗ (ACTL∗, LTL)
formula ϕ in a Kripke structure.

The following notion of simulation and results, except for lifting simulations,
are borrowed from [10,32]. They allow the comparison of Kripke structures.

Definition 8 (Simulation, lifting simulation, and bisimulation of Kripke-
structures). [10,32] Let Π be a set of atomic propositions. Let KA =
(A,→KA ,LA) and KB = (B,→KB ,LB) be two Π-Kripke structures. A sim-
ulation H from KA to KB, written KA H KB, is a simulation of transition
systems (A,→KA) H (B,→KB ) such that a H b implies LA(a) = LB(b), and
is a bisimulation if, in addition, KB H−1 KA is also a simulation. Similarly,
given Kripke-structures KA = (A,→KA , IKA ,LA) and KB = (B,→KB , IKB ,LB),
KA H KB is a simulation if (A,→KA , IKA) H (B,→KB , IKB ) is a simulation and
a H b implies LA(a) = LB(b), and is a bisimulation if, in addition, KB H−1 KA

is also a simulation. A simulation (A,→KA , IKA ,LA) H (B,→KB , IKB ,LB) is
lifting if (A,→KA , IKA) H (B,→KB , IKB ) is lifting.

Satisfiability of formulas in temporal logics is preserved under some condi-
tions when we have a simulation/bisimulation between two Kripke structures.
Namely, satisfiability of ACTL∗ (including LTL) formulas is reflected back by a
simulation between two Kripke structures, and satisfiability of CTL∗ formulas
is preserved in both directions in the case of a bisimulation between two Kripke
structures.

Theorem 5. [10,32] Let Π be a set of atomic propositions. Let KA =
(A,→KA ,LA) and KB = (B,→KB ,LB) be two Π-Kripke structures and let

5 A binary relation R ⊆ A × A on a set A is called total if and only if for each a ∈ A

there is at least one a′ ∈ A such that (a, a′) ∈ R. If R is not total, it can be made
total by defining R• = R ∪ {(a, a) ∈ A2 |6 ∃a′ ∈ A.(a, a′) ∈ R}.
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KA H KB be a simulation (resp. bisimulation). For each ϕ ∈ ACTL∗
Π (resp.

ϕ ∈ CTL∗
Π), a H b ∧KB, b |= ϕ =⇒ KA, a |= ϕ (resp. a H b ∧KB , b |= ϕ ⇐⇒

a H b ∧ KA, a |= ϕ).

In rewriting logic we usually specify a concurrent system as a topmost rewrite
theory R = (Σ, E, R), and the atomic propositions Π as equationally-defined
predicates in an equational theory EΠ = (ΣΠ , EΠ⊎E). As explained in Section 3,
the rewrite theory R contains a top sort State, generating E-equivalence classes
TΣ/E,State

, and rewrite rules l → r ∈ TΣ(X )
State

denoting system transitions. For

the equational theory EΠ , we have the following definition (see [13] for further
details).

Definition 9 (Bool-equational theory). Let R = (Σ, E, R) be a topmost
rewrite theory with top sort State and rules l → r ∈ TΣ(X )

State
. We define

a Bool-equational theory EΠ = (ΣΠ , E ⊎ EΠ) defining the atomic propositions
Π on TΣ(X )

State
as follows:

1. EΠ extends (Σ, E) in a protecting manner; i.e., TΣΠ/(EΠ⊎E)|Σ = TΣ/E;

2. the signature ΣΠ is defined as ΣΠ = Σ ⊎ Π ⊎ {tt, ff};
3. there is a new top sort Bool with no subsorts containing only constants tt

and ff and the unary symbols Π such that the operation definition of each
p ∈ Π is of the form p : State → Bool and for each equation t = t′ ∈ EΠ ,
t, t′ ∈ TΣΠ

(X )
Bool

;

4. E is sufficiently complete (see [17,42]) and protecting of Bool, i.e.,
TΣΠ/(EΠ⊎E),Bool

contains only two different equivalence classes [tt] and [ff];

5. the congruence relation =(EΠ⊎E) on TΣΠ
(X ) is decidable.

In practice, we concretize the previous definition to the following case, which
is the class of equational theories considered in this paper for defining state
predicates.

Refinement 1 When, in addition to Definition 9, equations in EΠ can be ori-

ented into a set
−→
EΠ of confluent and terminating rules modulo E (see [17,42]),

equality questions of the form p(t) =(EΠ⊎E) tt and p(t) =(EΠ⊎E) ff, for [t]E ∈
TΣ/E(X )

State
and p ∈ Π, are decidable (see [38]), i.e., can be decided by whether

p(t) →∗
−−→
EΠ ,E

w with w =E tt or w =E ff.

We can define a Π-Kripke structure associated to a rewrite theory R and a
Bool-equational theory EΠ defining the atomic propositions Π .

Definition 10 (T Π
R -Kripke Structure). Let R = (Σ, E, R) be a topmost

rewrite theory with top sort State and EΠ = (ΣΠ , E⊎EΠ) be the Bool-equational
theory defining the atomic propositions Π on TΣ(X )

State
. The Π-Kripke struc-

ture is defined as the triple T Π
R = (TΣ/E,State

, (→R,E)•,LΠ), where for each

[t]E ∈ TΣ/E,State
and p ∈ Π, we have p ∈ LΠ([t]E) ⇐⇒ p(t) =(EΠ⊎E) tt.
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0 ; 0 ; [0, idle]

��

s(0) ; s(0) ; [0, idle]

��

s2(0) ; s2(0) ; [0, idle]

��
s(0) ; 0 ; [0, wait(0)]0-wait?

��

s2(0) ; s(0) ; [0, wait(s(0))]0-wait?

��

s3(0) ; s2(0) ; [0, wait(s2(0))]0-wait?

��
s(0) ; 0 ; [0, crit(0)]0-crit?

55kkkkkkkkkkkkkkkkkkkk
s2(0) ; s(0) ; [0, crit(s(0))]0-crit?

44jjjjjjjjjjjjjjjjjjjjjj
· · ·

Fig. 5. Infinite Kripke structure Reach
T Π
R

(0 ; 0 ; [0, idle])

In what follows we will always assume that R is deadlock free, that is, that
the set of →R,E-canonical forms of sort State is empty. As explained in [13,39],
this involves no real loss of generality, since R can always be transformed into a
bisimilar Rdf which is deadlock free. Under this assumption the Kripke structure
T Π
R then becomes the pair T Π

R = (TR,LΠ).
As in Section 3, given a set U ⊆ TΣ/E,State

of initial states, we abuse the no-

tation and define the reachable sub Π-Kripke structure of T Π
R by Reach

T Π
R

(U).

Example 5. Consider Example 1. We are interested in the atomic propositions
Π = {0-wait?, 0-crit?} testing whether process number 0 is in its critical section
or waiting, described by the following equational theory6 in Maude.

fmod BAKERY-PROPS is
protecting BAKERY-SYNTAX .

sort Bool .
ops tt ff : -> Bool .

ops 0-wait? 0-crit? : State -> Bool .
vars N M : Nat .
eq 0-wait?(N ; M ; [0, idle]) = ff .

eq 0-wait?(N ; M ; [0, wait(K)]) = tt .
eq 0-wait?(N ; M ; [0, crit(K)]) = ff .

eq 0-crit?(N ; M ; [0, idle]) = ff .
eq 0-crit?(N ; M ; [0, wait(K)]) = ff .

eq 0-crit?(N ; M ; [0, crit(K)]) = tt .
endfm

Given the initial state t1 = “0 ; 0 ; [0, idle]”, the infinite Π-Kripke struc-
ture Reach

T Π
R

(t1) is depicted in Figure 5, where we can model check the formula

“2(0-wait? ⇒ 30-crit?)” stating that whenever process 0 is waiting, it eventu-
ally gets into its critical section.

Note that we can have symbolic states (i.e., terms TΣ/E(X )◦
State

) such that the

atomic propositions Π cannot be evaluated without further instantiation; check
the transition system of Figure 2, where propositions 0-wait? and 0-crit? cannot
be evaluated in the node “N:Nat ; M:Nat ; [0, MD:Mode]”. We first characterize
the terms for which the atomic propositions can be evaluated.

Definition 11 (Π-Terms). Let R = (Σ, E, R) be a topmost rewrite theory with
top sort State and EΠ = (ΣΠ , E ⊎ EΠ) be the Bool-equational theory defining
the atomic propositions Π on TΣ(X )

State
. We define the set of Π-defined terms

as T Π
Σ (X )

State
= {t ∈ TΣ/E(X )

◦

State
| ∀p ∈ Π : (p(t) =(EΠ⊎E) tt)∨ (p(t) =(EΠ⊎E)

ff)}.

6 This equational theory is not sufficiently complete for all possible state terms but
only for state terms having a single process with id 0.
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Note that, for a Bool-equational theory EΠ = (ΣΠ , E ⊎EΠ) defining the atomic
propositions Π on TΣ(X )

State
, membership in T Π

Σ (X )
State

is decidable, since
=(E⊎EΠ) is decidable, and TΣ,State

⊆ T Π
Σ (X )

State
, since EΠ is sufficiently com-

plete.
For terms in TΣ(X )

State
\ T Π

Σ (X )
State

, we need a different relation that in-
stantiates terms as much as necessary in order to belong to the set T Π

Σ (X )
State

.
To define this relation we need a complete and finitary (EΠ ⊎ E)-unification
algorithm.

Definition 12 (Π-instantiation relation). Let R = (Σ, E, R) be a topmost
rewrite theory with top sort State and EΠ = (ΣΠ , E⊎EΠ) be the Bool-equational
theory defining the atomic propositions Π on TΣ(X )

State
. Let Π = {p1, . . . , pn}.

Suppose CSU(EΠ⊎E)(t = t′) admits a complete and finitary unification algorithm.
Then the instantiation relation  Π is defined as follows

t
θ
 Π θ(t) ⇐⇒ θ ∈ CSU(EΠ⊎E)(p1(t) = w1 ∧ · · · ∧ pn(t) = wn)

where for each 1 ≤ i ≤ n, wi is either tt or ff

Classes of equational theories (ΣΠ , E ⊎ EΠ) with a finitary and complete unifi-
cation algorithm have been studied in the literature (see [28,18,45]). The class
of equational theories considered here is simple but it turns out to be useful in
many common cases.

Definition 13 (Simple-Bool-equational theory). Let R = (Σ, E, R) be a
topmost rewrite theory with top sort State and EΠ = (ΣΠ , E ⊎EΠ) be the Bool-
equational theory defining the atomic propositions Π on TΣ(X )

State
. We say EΠ

is a simple-Bool equational theory if each equation in EΠ is of the form p(t) = tt

or p(t) = ff, where p ∈ Π and t ∈ TΣ(X )
State

.

Assuming that E has a complete and finitary unification algorithm, then we get
a finitary and complete set of (EΠ ⊎ E)-unifiers for a simple-Bool-equational
theory.

Theorem 6. Let R = (Σ, E, R) be a topmost rewrite theory with top sort State

such that CSUE(t = t′) on t, t′ ∈ TΣ(X ) has a finitary and complete unification
algorithm. Let EΠ = (ΣΠ , E ⊎ EΠ) be a simple-Bool-equational theory defining
the atomic propositions Π on TΣ(X )

State
. Then CSU(EΠ⊎E)(t = t′) on t, t′ ∈

TΣΠ
(X )

Bool
admits a finitary and complete unification algorithm.

Now, we can obtain a Π-Kripke structure from a transition system generated
by narrowing, since we can safely restrict ourselves to terms in T Π

Σ (X )
State

by
using the following narrowing relation  R,E;Π .

Definition 14 (Narrowing plus Π-instantiation). Let R = (Σ, E, R) be a
topmost rewrite theory with top sort State and EΠ = (ΣΠ , E ⊎ EΠ) be a Bool-
equational theory defining the atomic propositions Π on TΣ(X )

State
that has a

complete and finitary unification algorithm. The narrowing relation  R,E;Π is

defined as  R,E ; Π , i.e., t
θ
 R,E;Π t′ iff ∃w, σ, σ′ : t

σ
 R,E w, w

σ′

 Π t′, and
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θ = σ ◦ σ′. Note that  R,E;Π on TΣ(X ) can be extended to a relation
σ
 R,E;Π

on TΣ/E(X ) as (
σ
 R,E;Π); (=E).

Note that if t R,E;Π t′ and t ∈ T Π
Σ (X )

State
, then t′ ∈ T Π

Σ (X )
State

.
The remaining of this section reproduces the results obtained in Section 3

but for Kripke-structures. The proofs of these results are similar to the ones in
Section 3, but assume that every node in the corresponding Kripke-structure
can be evaluated by the corresponding labeling function LΠ . We can exploit the
generality of narrowing and define a Kripke-structure associated to narrowing.

Definition 15 (NΠ
R -Kripke Structure). Let R = (Σ, E, R) be a deadlock-

free topmost rewrite theory with top sort State and EΠ = (ΣΠ , E ⊎ EΠ) be a
Bool-equational theory defining the atomic propositions Π on TΣ(X )

State
that

has a complete and finitary unification algorithm. The following triple defines a
Π-Kripke structure NΠ

R = (T Π
Σ/E(X )

State
, R/E;Π ,LΠ), where for each [t]E ∈

T Π
Σ/E(X )

State
and p ∈ Π, we have p ∈ LΠ([t]E) ⇐⇒ p(t) =(EΠ⊎E) tt.

The following results relate the rewriting and narrowing Kripke-structures asso-
ciated to a rewrite theory. In practice, we concretize the following results to a
simple-Bool-equational theory, which is the class of equational theories consid-
ered in this paper.

Theorem 7 (Kripke lifting simulation by narrowing). Let R = (Σ, E, R)
be a deadlock-free topmost rewrite theory with top sort State and EΠ = (ΣΠ , E⊎
EΠ) be a Bool-equational theory defining the atomic propositions Π on TΣ(X )

State

that has a complete and finitary unification algorithm. Let U ⊆ T Π
Σ/E(X )

State
. The

relation 4E defines two lifting simulations: T Π
R 4E NΠ

R and Reach
T Π
R

([[U ]]) 4E

Reach
NΠ

R
(U).

Lemma 4 ( R,E;Π-equivalence of G). Let R = (Σ, E, R) be a deadlock-
free topmost rewrite theory with top sort State and EΠ = (ΣΠ , E ⊎ EΠ) be a
Bool-equational theory defining the atomic propositions Π on TΣ(X )

State
that

has a complete and finitary unification algorithm. The relations {=E,≈E ,4E}
on TΣ/E(X )

State
are  R,E;Π-equivalent.

Proof. Since tt and ff are protected, equations in EΠ can be oriented into a

set
−→
EΠ of confluent and terminating rules modulo E. Let t, t′ ∈ TΣΠ

(X )
Bool

,
the set of unifiers CSU(EΠ⊎E)(t = t′) is defined by σ ∈ CSU(EΠ⊎E)(t = t′) if

t ≃ t′
σ
 ∗

−−→
EΠ

•,E
⊤, where

−→
EΠ

• is the set of rewrite rules
−→
EΠ

• =
−→
EΠ ∪{x ≃ x → ⊤}

for a new constant ⊤ of a new top sort NewBool with no subsorts and ≃ :
Bool × Bool → NewBool is a new binary operator. Since EΠ is a simple-Bool-
equational theory, each sequence t ≃ t′

σ
 ∗

−−→
EΠ

•,E
⊤ has at most two steps and thus,

since the number of rules in
−→
EΠ is finite, CSU(EΠ⊎E)(t = t′) is finite. Since EΠ

is topmost, certain additional assumptions such as E-coherence of →−−→
EΠ ,E

hold

(see [27]) and then (EΠ ⊎ E) has a complete unification algorithm by  −−→
EΠ ,E

,

i.e., CSU(EΠ⊎E)(t = t′) is complete. ⊓⊔
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Theorem 8 (Kripke simulation by G-narrowing). Let R = (Σ, E, R) be a
deadlock-free topmost rewrite theory with top sort State and EΠ = (ΣΠ , E⊎EΠ)
be a Bool-equational theory defining the atomic propositions Π on TΣ(X )

State

that has a complete and finitary unification algorithm. Let U ⊆ T Π
Σ/E(X )

State

and G ⊆ T Π
Σ/E(X )

State
×T Π

Σ/E(X )
State

be  R,E;Π-equivalent. Then the relation G

defines a simulation Reach
NΠ

R

(U) G ReachG
NΠ

R

(U).

And when narrowing steps have identity substitutions, we can have bisimu-
lation as in Section 3.

Theorem 9 (Kripke bisimulation by narrowing). Let R = (Σ, E, R) be a
deadlock-free topmost rewrite theory with top sort State and EΠ = (ΣΠ , E⊎EΠ)
be a Bool-equational theory defining the atomic propositions Π on TΣ(X )

State

that has a complete and finitary unification algorithm. Let U ⊆ T Π
Σ/E(X )

State
.

Let each transition in Reach
NΠ

R
(U) be of the form [t]E

id
 R,E;Π [t′]E. Then the

relation 4E defines a bisimulation Reach
T Π
R

(U) 4E Reach
NΠ

R
(U).

Lemma 5 ( R,E;Π-equivalence of G−1). Let R = (Σ, E, R) be a deadlock-
free topmost rewrite theory with top sort State and EΠ = (ΣΠ , E ⊎ EΠ) be a
Bool-equational theory defining the atomic propositions Π on TΣ(X )

State
that

has a complete and finitary unification algorithm. Let T ⊆ T Π
Σ/E(X )

State
such

that for each [t]E , [t′]E ∈ T , [t]E
σ
 R,E;Π [t′]E implies σ = id. The relations

{=−1
E ,≈−1

E ,4−1
E } on T are  R,E;Π-equivalent.

Proof. We only have to prove it for 4−1
E , since =E and ≈E are symmetric. Let

[t]E , [t′]E ∈ T Π
Σ/E(X )

State
such that t

id
 R,E;Π t′ using rule l → r, i.e., t →R,E t′

using rule l → r and t′
id
 Π t′. Let [w]E ∈ T Π

Σ/E(X )
State

and τ such that τ(t) =E w

(i.e., t 4−1
E w). Then, τ(t)

id
 R,E;Π τ(t′) using rule l → r, i.e., τ(t) →R,E τ(t′)

using rule l → r and τ(t′)
id
 Π τ(t′). And thus, let w′ = τ(t′), we have t′ 4−1

E w′.
⊓⊔

Theorem 10 (Kripke bisimulation by G-narrowing). Let R = (Σ, E, R)
be a deadlock-free topmost rewrite theory with top sort State and EΠ = (ΣΠ , E⊎
EΠ) be a Bool-equational theory defining the atomic propositions Π on TΣ(X )

State

that has a complete and finitary unification algorithm. Let U ⊆ T Π
Σ/E(X )

State
. Let

G ⊆ T Π
Σ/E(X )

State
× T Π

Σ/E(X )
State

and G−1 be  R,E;Π-equivalent. Let each tran-

sition in ReachG
NΠ

R
(U) be of the form [t]E

id
 G

R,E;Π [t′]E. Then the relation G

defines a bisimulation Reach
NΠ

R

(U) G ReachG
NΠ

R

(U).

Example 6. Consider Example 1 again. Now we are interested in the following
atomic propositions Π = {ever-wait?, ever-crit?} expressing that at least one
process has been in its waiting (resp. critical) state.
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0 ; 0 ; [0, idle]

id

��

s(N:Nat) ; s(N:Nat) ; [0, idle]ever-wait?,ever-crit?

id

��
s(0) ; 0 ; [0, wait(0)]ever-wait?

id

��

s2(N:Nat) ; s(N:Nat) ; [0, wait(s(N:Nat))]ever-wait?,ever-crit?

id

��
s(0) ; 0 ; [0, crit(0)]ever-wait?

id

55 55kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
s2(N:Nat) ; s(N:Nat) ; [0, crit(s(N:Nat))]ever-wait?,ever-crit?

id

llll

Fig. 6. Finite Kripke structure Reach
4E

NΠ
R

({w1, w2}) with w1 =

“0 ; 0 ; [0, idle]” and w2 = “s(N:Nat) ; s(N:Nat) ; [0, idle]”

fmod BAKERY-PROPS is

protecting BAKERY-SYNTAX .
sort Bool .

ops tt ff : -> Bool .
ops ever-wait? ever-crit? : State -> Bool .
vars N M : Nat .

vars PS : ProcSet .
eq ever-wait?(0 ; M ; PS) = ff .

eq ever-wait?(s(N) ; M ; PS) = tt .
eq ever-crit?(N ; 0 ; PS) = ff .
eq ever-crit?(N ; s(M) ; PS) = tt .

endfm

Consider the initial state w = “N:Nat ; N:Nat ; [0, idle]”. The transi-
tion system of Figure 3 cannot be transformed into a Π-Kripke structure, since
propositions {ever-wait?, ever-crit?} cannot be evaluated in, for instance, state
“N:Nat ; N:Nat ; [0, idle]”. Therefore, we must instantiate term w using the
narrowing relation  Π and obtain terms w1 = “0 ; 0 ; [0, idle]” and w2 =
“s(N:Nat) ; s(N:Nat) ; [0, idle]”, i.e., w  Π w1 and w  Π w2. The Π-
Kripke structure Reach

4E

NΠ
R

({w1, w2}) is depicted in Figure 6, where, since it is

a finite-state system, we can use standard LTL model checking techniques to
model check the formulas “ever-wait? ⇒ 3ever-crit?” and “2(ever-crit? ⇒

ever-wait?)”, which in this case hold in Reach
4E

NΠ
R

({w1, w2}). Therefore, by The-

orems 5, 7 and 8, the above LTL formulas also hold for the infinite-state BAKERY

system T Π
R and the infinite set [[{w1, w2}]] of initial states. Note that we have a

bisimulation and then CTL∗ formulas can also be verified.

Example 7. Consider Example 1 again. Now we are interested in the following
atomic propositions Π = {ex?} denoting the mutual exclusion in critical section.

fmod BAKERY-PROPS is
protecting BAKERY .
sort Bool .

ops tt ff : -> Bool .
op ex? : State -> Bool .

var WS : ProcWaitSet .
var PS : ProcSet .
vars N M K : Nat .

eq ex?(N ; M ; WS) = tt .
eq ex?(N ; M ; [K1, crit(M1)] WS) = tt .

eq ex?(N ; M ; [K1, crit(M1)] [K2, crit(M2)] PS) = ff .
endfm

Given the initial state t4 = “N:Nat ; N:Nat ; [0, idle] [s(0),idle]”, the Π-
Kripke structure Reach

4E

NΠ
R

(t4) is similar to Figure 4 but where the atomic propo-
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sition ex? holds in every state. Then, we can easily verify the formula “2ex?”,
stating that proposition ex? holds in every possible state, using a standard model
checking algorithm and without having to explore the infinite-state Π-Kripke
structure T Π

R for all initial states in the infinite set of instances [[t4]], which is,
of course, impossible to do with finitary model checking methods.

Similar arguments to those in Section 3 can be given in favor of narrowing
for model checking ACTL∗ (or CTL∗) properties of systems that are either
infinite-state or too big for standard finite-state methods. For example, when
a set U ⊆ T Π

Σ/E(X )
State

of initial states is provided, ReachG
NΠ

R

(U) for some G

such as 4E can be finite when Reach
T Π
R

([[U ]]) is infinite, or can be much smaller

even in the finite-state case. And U can be finite whereas [[U ]] may easily be
infinite, making it impossible to verify properties by standard model checking
algorithms.

5 Concluding Remarks

We have shown that, by specifying possibly infinite concurrent systems as rewrite
theories, narrowing gives rise to a lifting simulation and provides a useful semi-
decision procedure to answer reachability questions. We have also proposed a
method to fold the narrowing graph that, when it yields a finite system, allows
algorithmic verification of such reachability questions, including invariants. Fur-
thermore, we have extended these techniques to the verification of ACTL∗ and
LTL formulas. Much work remains ahead, including:

1. Gaining experience with many more examples: concurrent systems, security
protocols, Java program verification, etc.

2. Implementing these techniques in Maude [12,11], taking advantage of its LTL
model checker [19].

3. Investigating other folding relations that might further improve the genera-
tion of a finite narrowing search space.

4. Allowing more general state predicate definitions, for example with data
parameters.

5. Studying how grammar-based techniques [21] and narrowing strategies [22]
can be used to further reduce the narrowing search space.
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A Another example of concurrent system

Example 8. Consider a concurrent system counting the number of reader and
writer processes accessing a critical resource; the example is borrowed from [13].
Readers and writers can leave the resource at any time, but writers can only gain
access to it if nobody else is using it, and readers only if there are no writers.
This system can be specified as an order-sorted topmost rewrite theory in Maude
as follows:

mod READERS-WRITERS is

sort Nat State .
op <_,_> : Nat Nat -> State . --- readers/writers

op 0 : -> Nat .
op s : Nat -> Nat .

vars R W : Nat .

rl < 0, 0 > => < 0, s(0) > .
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< 0, 0 >

wwppppppppp

��
< 0, s(0) >

++

< s(0), 0 >

��

ff

< s(s(0)), 0 >

��

gg

· · ·

gg

Fig. 7. Infinite transition system ReachTR
(< 0, 0 >)

< N:Nat, 0 >

{N:Nat/0}��

ED
BC id

ggggOOOOOOOOOOOO

GF
@A{N:Nat/s(N’:Nat)}

77 77oooooooooooo < N:Nat, s(0) >

id

KK KK

Fig. 8. Finite transition system Reach
4E

NR
(< N:Nat, 0 >)

rl < R, s(W) > => < R, W > .
rl < R, 0 > => < s(R), 0 > .
rl < s(R), W > => < R, W > .

endm

Given the initial state u1 = “< 0, 0 >”, the infinite transition system ReachTR
(u1)

is depicted in Figure 7.

Example 9. Consider Example 8 and let u2 = “< N:Nat, 0 >”. The finite transi-
tion system Reach

4E

NR
(u2) is depicted in Figure 8. Note that we have a bisimula-

tion between the infinite transition system ReachTR
(< 0 , 0 >) shown in Figure

7 and Reach
4E

NR
(< N:Nat, 0 >) in Figure 8. Furthermore, we have a bisimula-

tion between the infinite number of infinite transition systems associated to
ReachTR

([[< N:Nat , 0 >]]) and Reach
4E

NR
(< N:Nat, 0 >).

Example 10. Consider Example 8. We are interested in the atomic proposi-
tions Π = {one-writer-atmost?, some-readers?, some-writers?, exclusion?} test-
ing, respectively, that there is at most one writer in the system, that there is at
least one reader in the system, that there is at least one writer in the system,
and the mutual exclusion of the critical resource. These atomic propositions are
described by the following equational theory in Maude.

fmod READERS-WRITERS-PROPS is
protecting READERS-WRITERS .

sort Bool .
ops tt ff : -> Bool .

op one-writer-atmost? : State -> Bool .
eq one-writer-atmost?(< N:Nat, 0 >) = tt .

eq one-writer-atmost?(< N:Nat, s(0) >) = tt .
eq one-writer-atmost?(< N:Nat, s(s(M:Nat)) >) = ff .
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< 0, 0 >
one-writer-atmost?

exclusion?

id

��

id // //
< s(N:Nat), 0 >

one-writer-atmost?

exclusion?

some-readers?

{N:Nat/0}

ww

ED

{N:Nat/s(N’:Nat)}

BC

ffffLLLLLLLLLLLLLLL
< 0, s(0) >

one-writer-atmost?

exclusion?

some-writers?

id

GG
id

55 55kkkkkkkkkkkk

Fig. 9. Finite Kripke-structure Reach
4E

NΠ
R

({< 0, 0 >, < s(N:Nat), 0 >})

op some-readers? : State -> Bool .
eq some-readers?(< s(N:Nat), M:Nat >) = tt .

eq some-readers?(< 0, M:Nat >) = ff .

op some-writers? : State -> Bool .
eq some-writers?(< N:Nat, s(N:Nat) >) = tt .
eq some-writers?(< N:Nat, 0 >) = ff .

op exclusion? : State -> Bool .

eq exclusion?(< s(N:Nat), s(M:Nat) >) = ff .
eq exclusion?(< 0, M:Nat >) = tt .

eq exclusion?(< N:Nat, 0 >) = tt .
endfm

Given the initial state u2 = “< N:Nat, 0 >”, the transition system of Figure
8 cannot be transformed into a Π-kripke structure, since some propositions
cannot be evaluated, e.g. some-readers?. Therefore, we must instantiate term
u2 using the narrowing relation  Π and obtain terms u′

2 = “< 0, 0 >” and
u′′

2 = “< s(N:Nat), 0 >”, i.e., u2  Π u′
2 and u2  Π u′′

2 . The Π-Kripke struc-

ture Reach
4E

T Π
R

({u′
2, u

′′
2}) is depicted in Figure 9, where, since it is a finite-state

system, we can use standard CTL∗ model checking techniques to model check
the formulas “A2one-writer?”, “A2exclusion?”, and “A2(many-readers? ⇒

(E3one-writer?))”, which in this case hold in Reach
4E

T Π
R

({u′
2, u

′′
2}). Therefore,

since we have a bisimulation and by Theorems 5, 9, and 10, the above CTL∗ for-
mulas also hold for the infinite-state READERS-WRITERS system T Π

R and the infinite
set [[u2]] of initial states.
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