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GÜLİZ SERAY TUNCAY

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Doctoral Committee:

Professor Carl A. Gunter, Chair
Professor Tao Xie
Assistant Professor Adam Bates
Assistant Professor Suman Jana, Columbia University



ABSTRACT

Mobile operating systems (i.e., mobile platforms) favor flexibility and re-usability as design

principles and provide mobile applications with channels for establishing cross-origin inter-

actions in an effort to realize these principles. Under this cross-origin scheme, applications

accomplish tasks collaboratively with other principals, such as the web, other applications,

and system components, by relying on them for certain functionality and data, consider-

ably saving platform resources as well as the programming efforts of application developers.

While clearly helping to provide a captivating mobile experience, this rich set of interac-

tions within mobile platforms unfortunately also create significant attack vectors and pose

notable security risks that need to be carefully taken into account to ensure the security of

the platform.

In this thesis, we focus on the security of cross-origin interaction channels on mobile

operating systems. We choose Android as a use case due to its popularity and open source

and show that cross-origin interactions constitute a significant impediment to establishing

least privilege on Android. More specifically, we show that there are severe issues in the

security mechanisms that are put in place by Android or even a lack of adequate mechanisms

to protect these interactions, which enable adversaries to stealthily obtain sensitive user data,

high-risk platform resources, and application functionalities. We demonstrate the severity of

these vulnerabilities by our measurement studies and showcases of exploits on popular real-

world applications with millions of downloads on Google Play and show that a majority of

Android users are rendered vulnerable due to these critical issues. As a remedy, we propose

practical designs that strive to make Android more robust and secure by addressing the

problems with cross-origin channels in a systematic, effective, and efficient manner.

In particular, we show that mobile applications that utilize embedded web browsers are

under the risk of inadvertently exposing critical resources to untrusted web domains and

we propose a systematic and practical access control mechanism to address this issue. Ad-

ditionally, we disclose serious vulnerabilities in Android’s permission framework that put

inter-process communication and platform resources at severe risk and we redesign Android

permissions to systematically resolve the issues. Finally, we present new attacks on An-

droid’s runtime permissions which proves that this new permission model cannot satisfy its

key security guarantees due to design issues and vulnerabilities, jeopardizing the security of

platform resources. We discuss the current approach taken by Android to mitigate these

issues and demonstrate how this mechanism, although seemingly an ideal solution, is still
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intrinsically broken due to the existing vulnerabilities that we discovered.

All in all, this thesis aims to identify issues that threaten least privilege on mobile platforms

and strives to provide practical mitigation solutions to resolve such issues. Our work has

influenced the design and implementation of some of the critical security mechanisms in

Android and has consequently led to changes in the official Android releases by Google.

Even though we used Android as a use case here, the issues we disclosed in this thesis can

also be encountered on other mobile platforms that utilize cross-origin interactions and our

methodologies and designs go beyond Android to the design of mobile operating systems

more generally.
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CHAPTER 1: INTRODUCTION

1.1 OVERVIEW

Mobile operating systems place significant emphasis on flexibility and re-usability as design

principles and promote mobile applications (apps for short) to rely on existing data and

resources, in an effort to better utilize scarce platform resources (e.g., memory and storage)

while also significantly reducing the programming efforts of app developers. To this end,

mobile platforms offer a rich set of programming constructs that allow app developers to

incorporate existing content into their apps from different origins, such as the web, other

third-party apps, and the platform itself. Thanks to these cross-origin interactions [1], users

can now enjoy seamless access to the web while using their favorite apps, they can smoothly

utilize multiple apps to accomplish tasks, and they can gracefully utilize sensors and other

platform resources to capture their surroundings and store their personal information on their

devices. While these enhancements help apps gain notable revenue by creating an enthralling

and engaging mobile experience for users, they unfortunately also create new attack vectors

that can be easily exploited by adversaries. More specifically, any vulnerability in these

interfaces can lead to adversaries escalating their privileges to perform high-risk tasks and

obtain sensitive data, severely threatening the security and the privacy of mobile device

users.

In this thesis, we choose the Android operating system as a use case due to its popularity

(with over 80% of the market share) and open-source nature [2] and show that cross-origin

interactions constitute a significant challenge to realizing the fundamental principle of least

privilege, which states that each principal should be given the bare minimum privileges to

perform its legitimate task. In particular, we take a deep dive into Android’s platform inter-

nals to identify critical security issues that arise in cross-origin interactions due to the lack

of fine-grained access control mechanisms or due to erroneous designs and implementations

of existing access control mechanisms. We demonstrate the existence as well as extent of

these problems with large-scale measurement studies on popular mobile applications and

with showcases of real exploits on high-profile apps with millions of downloads and show

that these issues indeed pose a real and significant threat to the security and privacy of

billions of mobile device users. Recognizing the importance of systematically addressing

security issues to prevent similar issues from resurfacing in the future, we carefully study the

designs of the app components and security mechanisms that we identified to be problematic

in order to determine the root causes of the issues. Based on this understanding, we pro-
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pose practical access control solutions that strive to target the heart of the problems in an

effective and efficient manner. The security vulnerabilities we discovered in our work have

officially been acknowledged by Google as serious threats that required swift attention and

our work has consequently prompted critical changes in the official releases of Android, the

most popular mobile operating system as of now. It is worth mentioning that even though

we focus on Android as a use case in this thesis, the vulnerabilities we discovered are not

platform-specific and our methodologies and mitigation techniques go beyond Android to

the design of mobile operating systems more generally.

Interactions between apps and web. Android provides cross-origin interactions between

apps and web domains to bolster reusability on the platform and provide users with an

overall well-rounded experience. Apps can integrate content from the web (i.e., web pages)

through the use of a widely-used component called embedded web browser (viz., WebView)

on Android. WebView helps developers minimize their programming effort by allowing

them to reuse some of their existing web content and avoid reimplementing platform-specific

app code. In an effort to provide a seamless interaction between apps and web domains,

WebView provides programming bridges that can be used by app developers to tightly-

couple their apps to certain web domains via allowing web code to access application code.

We identified that the use of these programming bridges in mobile apps creates a serious

attack vector as access to application code through the bridges is completely unregulated

and any web domain can access the exposed resources, which creates an opportunity for

web attackers to utilize the bridges to stealthily acquire app and device resources. Our

investigation showed that Android provided very little security against such attacks and

lacked the security mechanisms to allow app developers to regulate access to their app code

and device resources. We demonstrate how a majority of the popular apps are vulnerable

due to the lack of a fine-grained access model in WebViews and present case studies to

show how popular apps can be attacked through the programming bridges to get access to

sensitive user data (e.g., medical information). In order to systematically address this issue

in WebView, we propose a fine-grained access control framework called Draco that allows

app developers to easily express policy rules on how resources should be accessed by web

origins via utilizing our easy-to-use and expressive policy language [3]. Draco requires no

modifications to the Android source code as it is implemented in the Chromium System

WebView app; hence it is easy to deploy without requiring OTA update of the operating

system.

Interactions between different apps. In an effort to promote reusability and flexibility,

Android also allows applications to communicate with and rely on each other for certain
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functionality and data. This is realized by allowing apps to expose some of their app com-

ponents to other apps in order to accomplish certain tasks collaboratively via Android’s

built-in inter-process communication (IPC) mechanism, called the Binder IPC. In order to

protect the exposed application components, Android introduces custom permissions, which

is a security mechanism that is introduced as an addition to Android’s permission system

and is widely adopted by app developers. In this security scheme, third-party apps declare

their own custom permissions and assign them to their components for protection from other

apps. We discovered that this security mechanism is still far from achieving least privilege as

it suffers from serious security vulnerabilities that enable adversaries to escalate their priv-

ileges on the platform and obtain unauthorized access to signature-protected components

of apps and to high-risk device resources that require dangerous permissions (e.g., camera,

microphone) [4, 5]. After carefully dissecting the design and implementation of this security

mechanism, we discovered that at the root of these vulnerabilities lie overlooked design is-

sues in custom permissions. In particular, the main problem, as we identified, is that custom

permissions are treated and enforced the same way as system permissions by the Android

platform, even though these two types of permissions are created by entities of different

trust levels (i.e., system vs third-parties), consequently leading to privilege escalation at-

tacks. To understand the extent of these problems, we conducted a large-scale measurement

study on the most popular Android applications and showed that a majority of applications

are rendered vulnerable due to these design issues in custom permissions. In addition, we

demonstrated real exploits that target popular Android apps with millions of downloads and

stealthily gain access to their private resources that have sensitive functionality, significantly

challenging the security and privacy of device users. To systematically mitigate the issues,

we propose a new model for Android custom permissions called Cusper, which provides an

effective, efficient, and backward-compatible design that targets the root cause of the issues

[6]. Furthermore, we built the first formal model of Android runtime permissions and used

this model to formally verify the correctness of our approach. The security vulnerabilities we

discovered in this work were acknowledged by Google as serious vulnerabilities that required

prompt fixes and our work consequently led to changes in the future releases of Android

[7, 8].

Interactions between apps and the system. Finally, Android allows apps to interact

with the system to obtain certain platform resources (e.g., camera, microphone etc) and sen-

sitive user data (e.g., SMS, contacts etc) in order to provide mobile device users a captivating

experience. Access to these resources is regulated under Android’s permission model where

apps need to acquire the necessary permissions to obtain certain resources. Initially, all per-
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missions were granted at installation time after the user agreed to install an app. However,

this static model has received much criticism from the developer and security communities

due to its lack of granularity, which only allowed apps to be granted either all or none of

their requested permissions, and due to its lack of context, where users were not provided

any explanation regarding the reasoning behind an app’s use of permissions. In order to

provide a remedy to this situation, Android 6.0 underwent a major update of its permission

model and introduced runtime permissions, where apps would be dynamically granted dan-

gerous permissions that are associated with high-risk resources (e.g., camera, contacts etc.),

giving the user the opportunity to see in what context the app requested the permission as

well as the chance to deny certain permissions. In our work, we identified that the correct

operation of this model depends on certain implicit assumptions which are taken for granted

by platform designers and adversaries can easily break these assumptions to obtain permis-

sions from the background while impersonating foreground apps. This way, the security

guarantees made by the runtime permission model are entirely broken as now an adver-

sary can stealthily request permissions from the background without providing the user any

real context and also they can obtain permissions on behalf of other apps, which is against

Android’s mandatory access control policy for permissions. We conducted a comprehensive

user study to investigate if users’ (lack of) understanding of runtime permissions would make

them vulnerable to these attacks and also to understand if and how users could be led to

fall victim to these attacks by utilizing their past behavior. Our results show that mobile

device users are generally highly-vulnerable to our attacks and certain situations exacerbate

their vulnerability. By utilizing our understanding from this user study, we build realistic

phishing-based privilege escalation attacks on runtime permissions. Finally, we discuss the

ideal defense strategy for phishing attacks in general and Android’s current efforts on im-

plementing this mitigation technique, which we unfortunately discovered to fall short due to

vulnerabilities that can be utilized to bypass the mitigation. Hence, our attacks still work

even in the latest Android releases that had promised to terminate phishing on the platform.

Thesis statement: Cross-origin interactions are a major source of vulnerabilities in estab-

lishing least privilege in modern mobile operating systems. However, the vulnerabilities can

frequently be effectively addressed with well-chosen modifications in the design of the per-

mission system or by introducing new access control mechanisms to the cross-origin channels

in need.

4



1.2 THESIS CONTRIBUTIONS

In this thesis, we make significant contributions in the identification of serious design

issues and security vulnerabilities in cross-origin interactions on real-world mobile operating

systems as well as the design and implementation of practical mitigation techniques to resolve

the identified issues. The issues we discovered pose major threat to millions of apps and

billions of users and our designs strive to systematically mitigate the issues while being

practical, effective, and efficient. Our contributions can be summarized as follows:

• Identification of the overlooked lack of access control problem in embedded web browsers for

all mobile web apps. Previous work has shown that apps developed with hybrid frameworks

that heavily rely on programming bridges in embedded web browsers to provide a cross-

platform development experience are highly vulnerable to web attacks due to the lack of

access control in these in-app browsers. We show that this problem is not limited to the

scope of hybrid apps but in fact applies to all apps that utilize embedded web browsers. We

demonstrate this by exploits on popular real-world apps that utilize embedded web browsers

and show that adversarial web domains can stealthily obtain sensitive user data and device

resources via the programming bridges.

• Introduction of a fine-grained and uniform access control mechanism for embedded web

browsers. In order to provide protection against web adversaries, we built a uniform and

fine-grained access control system for embedded web browsers to allow developers to specify

their trusted web domains and the resources they trust each of these domains with for all

types of apps. Our implementation resides in the Chromium system WebView app and does

not require any modifications to the Android source code; therefore, it can be easily deployed

without requiring any OTA update to the operating system.

• Discovery and extensive analysis of serious vulnerabilities in Android custom permissions

that lead to privilege escalation attacks on system resources, user data, and app components.

We discovered two new classes of attacks on custom permissions that allowed adversaries

to escalate their privileges to stealthily obtain sensitive user data (e.g., contacts, SMS etc),

high-risk platform resources (e.g., camera, microphone, location etc.), and private resources

of other apps. These attacks are feasible to deploy in the real-world. Both of these attacks

have been acknowledged by Google as serious security vulnerabilities and prompted Google

to swiftly release security fixes to address the issues.

• Identification of the root cause of the perpetual custom permission vulnerabilities. After a

detailed investigation of the design and implementation of Android permissions, we identified

that the root cause of the perennial custom permission vulnerabilities is the system’s inher-
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ent indifference to the trust levels of the creators of permissions. System permissions are

declared by the trusted system, while custom permissions are declared by untrusted third-

party applications; however, the Android framework does not distinguish between these two

types of permissions at any point in time. This unavoidably leads to untrusted third-parties

escalating their privileges to stealthily obtain high-risk system permissions and sensitive app

components.

• Implementation of a practical and systematic redesign of Android custom permissions.

We redesigned Android custom permissions in order to systematically resolve the perennial

custom permission vulnerabilities via targeting the root cause of the issues. We separate the

management of custom permissions from system permissions and add an internal naming

scheme that allows us to track the ownership custom permissions to prevent spoofing attacks.

Our approach is effective, efficient, and backward-compatible with third-party apps.

• Introduction of the first formal model of Android permissions. We built the first formal

model of Android runtime permissions using the Alloy specification language and utilized this

model in our formal analysis to prove the correctness of our mitigation of custom permission

vulnerabilities. This formal model is a stand-alone contribution by itself as it can be used by

other researchers to prove the correctness of other security properties or their designs and

additions to the runtime permission model.

• Discovery of serious vulnerabilities in runtime permissions that lead to phishing-based priv-

ilege escalation attacks. Android runtime permissions strive to provide additional contex-

tual information to the users to help them make informed decisions regarding permissions;

however, we discovered that the security guarantees made by this model can be broken as

adversaries can utilize the dynamic nature of runtime permissions to obtain permissions from

the background while impersonating other apps. We built realistic attacks by studying the

behavior of mobile device users and accordingly adjusting our attacks to target the situations

in which users are highly vulnerable due to not fully understanding the intricacies of the

runtime model.

• Discovery of vulnerabilities in Android’s recently-introduced mitigation against phishing

attacks. Android introduced a new mitigation approach in version 10.0 Q to resolve phish-

ing attacks permanently by disallowing background apps to start activities. However, we

found several ways to bypass this mitigation to still continue launching activities from the

background.

• Impact on the design and implementation of real-world mobile operating systems. The

issues we unearthed in this work have been acknowledged by Google as serious security

vulnerabilities and led Google to update Android in order to promptly resolve the issues.
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All in all, our work has impacted the design and implementation of Android, the most

popular mobile operating system as of now.

• Discoveries and new designs that go beyond Android to address vulnerabilities in cross-

origin interactions on mobile operating systems. The vulnerabilities we disclosed in this

thesis are not platform-specific and can be found in other mobile operating systems that

rely on cross-origin interactions. In addition, our research methodologies and designs can be

generalized to other mobile operating systems as well.

1.3 THESIS ORGANIZATION

Chapter 2 presents the background concepts on the Android operating system and its

security mechanisms. Chapter 3 discusses the related work on Android security. Chapter 4

focuses on protecting app to web interactions on Android. Chapter 5 presents the privilege

escalation attacks we discovered on custom permissions, present our redesign of custom

permissions to mitigate the attacks, and formal analysis of our mitigation for correctness.

In Chapter 6, we present the phishing-based privilege escalation attacks we discovered on

Android’s runtime permission model and our strategies for producing realistic attacks. We

then discuss existing mitigation strategies by Google and how we discovered they are broken

due to security vulnerabilities. Finally, Chapter 7 concludes this thesis with a discussion of

the applicability of higher-level mitigation strategies and future directions.
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CHAPTER 2: BACKGROUND

2.1 ANDROID OPERATING SYSTEM

Android is an open-source mobile operating system released commercially by Google for

the first time in 2008. Due to it being open-source, it is adopted by many major phone

vendors (e.g., Samsung, HTC, LG etc.) and it is currently the most popular mobile OS as

it has a large user base comprising of billions of users, simply dominating the mobile market

share [9]. Starting from version 1.1, Android versions have traditionally been given dessert

names that follow an alphabetical order (except for Petit Four), as can be seen in Table 2.1.

Table 2.1: Commercial Android versions [10]

Code name Version number Initial release date API level

(No codename) 1.0 September 23, 2008 1
Petit Four 1.1 February 9, 2009 2
Cupcake 1.5 April 27, 2009 3
Donut 1.6 September 15, 2009 4
Eclair 2.0 – 2.1 October 26, 2009 5 – 7
Froyo 2.2 – 2.2.3 May 20, 2010 8
Gingerbread 2.3 – 2.3.7 December 6, 2010 9 – 10
Honeycomb 3.0 – 3.2.6 February 22, 2011 11 – 13
Ice Cream Sandwich 4.0 – 4.0.4 October 18, 2011 14 – 15
Jelly Bean 4.1 – 4.3.1 July 9, 2012 16 – 18
KitKat 4.4 – 4.4.4 October 31, 2013 19 – 20
Lollipop 5.0 – 5.1.1 November 12, 2014 21 – 22
Marshmallow 6.0 – 6.0.1 October 5, 2015 23
Nougat 7.0 – 7.1.2 August 22, 2016 24 – 25
Oreo 8.0 – 8.1 August 21, 2017 26 – 27
Pie 9.0 August 6, 2018 28
Android Q 10.0 29

2.1.1 Platform Architecture

Android is a Linux-based operating system; where the kernel is an optimized version or

the Linux kernel with additional drivers implemented for IPC as well as for the sensors

that are specialized for smartphones. On top of the kernel, the Android operating system

provides libraries written in C, Android runtime for executing Java applications, and a

Java application framework that can be used by app developers to implement their apps.
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Figure 2.1: Android Software Stack [11].

Figure 2.1 illustrates the software stack of Android.

Android applications are typically written in Java by utilizing the Java API framework

that simplifies the use of system components and services for developers. These apps are

then compiled into byte code, which is later transformed into dex code by an Android IDE

(typically Android Studio). Dex code is a more optimized and compact version of byte

code specifically designed for mobile platforms to save storage space. In order to interpret

and run dex code, Android platform also has a Java process machine. Previously, Android

used Dalvik virtual machine, which performed Just-In-Time compilation to translate dex

code into machine code. However, on Android 5.0, Android replaced Dalvik with Android

RunTime (ART) which performs Ahead-Of-Time compilation at installation time in order
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to improve the runtime speed (particularly startup time) of apps and reduce their memory

footprint. In its more recent versions, Android also provides Kotlin language support to app

developers.

In addition, Android allows app developers to write parts of their apps in C in order

to achieve better performance. This is done with the help of Java Native Interface (JNI),

which is a programming framework that enables Java code running in a Java Virtual Machine

(JVM) to call and be called by native applications. In order to utilize JNI, JNI’s naming

conventions should be followed when writing code in C.

2.1.2 Application Components

Android apps can comprise of four components: activities, services, broadcast receivers,

and content providers. Each of these components (except content providers) can be an entry

point to the apps. Activities are components that present the user with a graphical user

interface to perform a single task. Activities follow a lifecycle, as can be seen in Figure 2.2.

Services run in the background to perform long-running operations with no user interface.

Broadcast receivers are used to receive broadcast messages from the system or the other

apps. Content providers allow storing and sharing data between apps via a relational

database interface. Communication between components is achieved through the Intent

mechanism on Android. Intents are asynchronous messages between components in the

same app or different apps that are used for activation of components.

Manifest file. Each Android app comes with a manifest file, which contains a set of

declarations of app components, component capabilities, and app requirements. For each

component declared in the manifest file, a certain permission can be assigned to protect the

component and each component can be declared to receive specific types of messages (i.e.,

intents) from other apps (via intent filters). In addition, apps will declare their hardware

requirements (e.g., sensors) and the types of permissions they need in the manifest file.

2.1.3 Inter-Component Communication

The Android operating system relies on inter-process communication (IPC)–also called

inter-component communication (ICC) on Android–in order to achieve re-usability. Here,

we present the details on how IPC is achieved and protected on Android.

Intents. Communication between components is achieved through the Intent mechanism

on Android. Intents are asynchronous messages between components in the same app
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Figure 2.2: Activity Lifecycle [12].

or different apps that are used for activation of components. Intents contain a bundle of

information: action to be taken on the receipt of the intent, data to act on, category of the

component to handle the intent, and instructions on how to launch a target activity. Routing

of intents can be explicit, where the intent is delivered to a specific receiver (i.e., component

and package name will be specified) or, it can be implicit, where all of the components

that registered to receive that action will be delivered the intent. In the manifest file, the

developer can indicate which intents they want the components to respond to. This is done

through the use of intent filters, where each component can declare the type of action,

category, and data it is willing to handle.

Binder IPC. Unlike traditional Linux, for inter-process communication Android uses its
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own mechanism called the Binder IPC, which is implemented based on OpenBinder [13].

Compared to the traditional IPC mechanisms of Linux, Binder IPC provides optimized

communication between processes for the Android platform. Binder IPC is implemented as

a driver in the Linux kernel, where the kernel exposes the /dev/binder device as an interface

to enable IPC. The Binder driver is the central object of the Android framework which

ensures that all IPC calls go through this driver.

2.1.4 Activity and Task Organization

A task is a collection of activities that are used to collaboratively perform a specific job.

Android arranges activities forming a task into a back stack, in the reverse order of their

start. Pressing the back button removes the top activity from the back stack and brings

forth the activity underneath it to the foreground. In addition, recently-accessed tasks and

activities can be obtained via the recents button that presents the system-level UI called the

recents screen upon being clicked. Normally, the system handles the addition and removal

of activities and tasks to the recents screen; however, this behavior can be overridden via

some of the existing Android APIs. For example, FLAG ACTIVITY NEW DOCUMENT flag can

be passed to an Intent that is used for starting activity via the addFlags() API in order to

add the activity to the recents screen. Additionally, activities can be launched as new tasks

to be added to the recents screen by setting the android:documentLaunchMode attribute

of the <activity> accordingly in the manifest file. Similarly, tasks can always be excluded

from the recents screen by setting android:excludeFromRecents to true or by calling the

finishAndRemoveTask() API in the activity that creates the new task.

2.1.5 Embedded Web Browsers

Android provides embedded web browsers (i.e., WebView) to allow apps to display web

content fetched from the local storage or from the web. WebView is a widely-used component

that forms the basic building block for modern web browser applications on the Android

platform. Developers use WebViews to seamlessly integrate web content into their apps,

without having to rely on a full-featured, heavy-weight web browser to render web content.

There are several interesting use cases for WebViews. For example, advertisement libraries

use WebViews to display ad content within apps. In addition, app developers can rely on

WebViews to tightly couple web sites with similar functionality to the app in order to

reuse web site’s UI code and to provide fast and convenient updates. Furthermore, hybrid

frameworks such as PhoneGap rely on WebView’s rendering capabilities to allow developers
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to write JavaScript and HTML code that can be easily ported to other mobile platforms.

2.1.6 WebView Implementation

WebView was first introduced in the API level 1 of the Android platform. It inherits

from Android View and has additional rendering capabilities for displaying web pages. In

Android 4.3 (JellyBean) and earlier, WebView implementation is based on Apple’s WebKit

browser engine [14], which powers several web browsers such as Safari, Google Chrome and

Opera. WebKit consists primarily of two components: 1) WebCore, which provides the

core layout functionality, and 2) JavaScriptCore, which is an engine that runs JavaScript.

Starting from Android 4.4 (KitKat), Android dismissed the use of WebKit and the WebView

implementation is instead based on Chromium [15], which is Google’s widely-used, open-

source browser project. Chromium uses Google’s fork of WebKit, called Blink, as a rendering

engine, and Google’s high-performance V8 JavaScript engine.

Up until Android 4.4 (inclusive), the WebView implementation resided in the Android

Open Source Project (AOSP) [2]; hence, any update to the WebView requires modifications

to the operating system and can be pushed to users only with an OS update. With the

introduction of Android 5 (Lollipop), WebView became a system app (called Android System

WebView), presumably to ship updates quickly to the WebView code through Google Play.

Apps that use WebViews load WebView code as a library into the app’s process from the

System WebView app.

2.1.7 WebView API

The WebView API allows app developers to load web content by calling the methods

loadURL(), loadData(), loadDataWithBaseURL() and postURL() with a string argument

that is the URL of the desired web content. JavaScript can be enabled on a WebView by

calling setJavaScriptEnabled() on a WebSettings instance of a WebView. The source of

JavaScript can be a file on the local storage or a remote domain. Additionally, the app can

directly execute JavaScript by calling loadURL() with a string that starts with “javascript:”

and is followed by the JavaScript code.

Navigation. Android developers have the option of controlling navigation within Web-

Views. Whenever the user clicks on a link in a page on a WebView, the developer can

intercept this to make a decision on how this page should be loaded, or if it should be loaded

at all. Developers have the option of allowing page loading from only certain domains, and
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Listing 2.1: Navigation control in WebView

public boolean shouldOverrideUrlLoading(WebView view, String url) {

URI obj = new URI(url);

//allow alloweddomain.com pages to load in the WebView

if (obj.getHost().equals("alloweddomain.com")) {

return false;

}

//Load in browser

Intent intent = new Intent(Intent.ACTION_VIEW), Uri.parse(url));

view.getContext().startActivity(i);

return true;

}

open pages from untrusted domains in the web browser. This can be implemented by over-

riding the shouldOverrideUrlLoading() callback method and checking the domain of the

page before it is loaded.

Listing 2.1 shows how navigation control logic can be implemented. The developer im-

plements shouldOverrideUrlLoading callback method to control navigation, allowing only

content from ”alloweddomain.com” to be rendered in the WebView, and everything else will

be redirected to the system browser. Even though, this can help a great deal in protecting

resources from untrusted origins, it is not enough to provide complete safety to applica-

tions since any trusted web site may include untrusted components such as an iframe for

advertisements.

JavaScript interfaces. The WebView API allows inserting Java objects into WebViews

using the addJavaScriptInterface() method. JavaScript loaded in the WebView can have

access to application’s internal Java code, giving web code the ability to interact more tightly

with an app, and in some cases get access to system resources (e.g., hybrid frameworks).

Mobile web apps commonly utilize JavaScript interfaces to meld web content with application

code and provide users with a richer user experience compared to pure web apps.

Listing 2.2 shows how JavaScript interfaces can be used in applications. First, the app

needs to register a Java object with a specific WebView instance and give this object a

name. As shown in the example, this can be done by addJavaScriptInterface(new

MyJSInterface(),"InjectedObject"). After this, JavaScript code running in the Web-

View can execute the methods of this object by using the name of the object and the name

of the method, as in InjectedObject.myExposedMethod().

Android API 17 introduced the use of @JavaScript annotation tag to export only the
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Listing 2.2: JavaScript Interfaces in Android WebView

mWebView.addJavaScriptInterface(new MyJSInterface(), "InjectedObject");

//...

public class MyJSInterface {

@JavaScriptInterface

public void myExposedMethod() {

// do some sensitive activity

}

public void myHiddenMethod() {

// JavaScript cannot access me, do some other activity

}

}

desired Java methods of a Java class to JavaScript, primarily to prevent reflection-based

attacks, where an adversary can use Java reflection to get access to the Android runtime

and then execute arbitrary commands via calling InjectedObject.getClass().

forName("java.lang.Runtime").getMethod("getRuntime",null).

invoke(null,null).exec(cmd). The use of the annotations is illustrated in Listing 2.2,

where only the annotated method is made accessible to JavaScript. Even though API level

17 addresses a critical problem, it does not completely eradicate all the issues with WebViews.

WebView still provides no access control on the JavaScript interfaces; any domain whose

content was loaded into a WebView is free to use all the exported parts of the exposed Java

object.

JavaScript event handlers. The WebView API allows developers to handle the alert,

prompt and confirm JavaScript events, by registering the onJsAlert(), onJsPrompt() and

onJsConfirm() Java callback methods, respectively. Whenever the JavaScript side calls

any of these event methods, their respective handler will be called, if it is overridden. The

developer is free to implement any logic in these event handlers. In fact, these event handlers

are used in some hybrid frameworks to connect the web side to the local side.

In 2.3, the alert event handler checks if the string parameter starts with the desired label

for this app. If this is the case, then the app parses the message and handles it according to

its own logic. If the message does not start with the desired label, then the app falls back

on the default behavior of alert() in JavaScript, which is simply displaying the message.

Handling HTML5 API requests. The rise of HTML5 has brought in a set of APIs

that can give web applications the ability to access device hardware via JavaScript. Some
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Listing 2.3: Overridden alert() event handler on Android

public boolean onJsAlert(WebView view, String url, String message, JsResult

jsResult) {

if (message != null && message.startsWith("MyAppsLabel:")) {

jsResult.confirm();

parseMessageAndDoStuff(message);

return true;

} else { // falls back on the default behavior of alert() in JS

return super.onJsAlert(view, url, message, jsResult);

}

}

examples to these HTML5 APIs are Geolocation and getUserMedia, which enable access

to GPS and to media devices such as camera and microphone, respectively. When a web

domain requests access to one of these devices, the user should be prompted to grant ac-

cess to this request. Starting from API level 21, Android WebView provides support for

these HTML5 APIs and introduces mechanisms to grant or deny requests for accessing de-

vice hardware. In order to handle requests from web origins, the developer needs to make

use of onGeolocationShowPrompt (for geolocation), and onPermissionRequest (for media

devices) to grant or deny permission to the requests.

2.2 ANDROID SECURITY MODEL

Android incorporates different security mechanisms to ensure the security of apps and the

platform as well as to provide users with appropriate privacy.

2.2.1 Application Sandbox

At its core, Android embraces the security mechanisms provided by the Linux kernel. It

uses Linux’s discretionary access control (DAC) mechanism to regulate access to the file

system with the read, write, execute actions that can be granted to current user, group and

public. Furthermore, Android implements process isolation, where a given user cannot in-

terfere with another user’s resources (files, memory, CPU resources etc.). Android uses these

Linux security building blocks to implement its application sandbox; where each Android

app corresponds to a different Linux user on the system and their resources including the

processes, the files and CPU resources are protected from each other.

In Android, each app runs as a separate Linux user within its assigned sandbox with
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limited access to resources to ensure the integrity of the system and the apps. When an

app wishes to use a resource outside its sandbox, it has to conform to Android’s permission

model and explicitly request it.

2.2.2 Application Signing

Digital certificates are the current standard to provide end-point authentication in today’s

communication paradigms. For example, on the web, when a client (e.g., web browser)

communicates with a server (e.g., web domain), the server provides the client with a digital

certificate that contains the public key of the server as a form proof of identity, which can then

be verified by the client. This kind of authenticity verification relies on the establishment of

a public key infrastructure (PKI), where trusted certificate authorities bind public keys to

the identity of the entities in question.

Android also utilizes digital certificates as a proof of authenticity, which is necessary in

order for apps to prove their authenticity to perform certain tasks. For example, in order

to share a process with another app or to have a signature-protected form of IPC between

multiple apps, Android requires the communicating apps to be signed by the same developer

signature. In addition, in order for an app with a certain package name to get updates on the

device, app’s current signature has to match that of before to prevent repackaging attacks.

In order to conform to Android’s security model, every Android app has to carry a developer

signature and certificate to be installed. However, as opposed to the web certificate ecosystem

where a public key is tied to the actual identity of the respective entity (e.g., people and

organization), Android utilizes a decentralized certificate model where certificates are self-

signed by the app developers and serve as a trust-on-first-use (TOFU) identity. This is a

design decision by Android framework developers to foster a free app market for developers

where they can publish their apps quickly without running into many obstacles.

2.2.3 Android Permissions

In addition to the security features adopted from Linux, Android also implements other

access control mechanisms to provide further security to the platform. First and foremost

is the Android permission model, which aims to regulate access to system resources and

sensitive user data by utilizing a set of security labels called permissions. By default, an

Android application has access to only a limited set of system resources. In order to gain

access, they have to request the necessary permissions in their manifest file with declarations

of permission requirements. In contrast with the Linux’s permission model for the file system,
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this permission model corresponds to a mandatory access control (MAC) mechanism, where

all API calls go through a central reference monitor, which then verifies that a given user is

granted the necessary permissions in order to successfully execute the respective API call.

Camera, microphone, Internet, Bluetooth, SMS/MMS functions, location etc. are some of

the resources that are protected via this permission model.

Each permission is associated with a protection level that indicates its severity. There

are currently three main protection levels in Android: normal, signature, and dangerous.

Resources that are associated with activities that present low risk to user’s privacy (e.g.,

Internet) are protected with normal permissions; whereas high-risk resources (e.g., camera,

contacts etc.) are protected with dangerous permission. Signature permissions protect

private resources of apps, where the requester can be granted the permission only if it is

signed with a matching certificate to that of the definer of the permission of interest.

Custom Permissions. Android ensures the security of inter-process communication (IPC)

by utilizing its permission model. When two app components communicate, both the caller

and the callee can require the other party to hold certain permissions for a successful commu-

nication. With this model, third-party apps are allowed define their own permissions. These

third-party permissions, called custom permissions, are utilized by the system to regulate

access to the app components. A component protected by a custom permission can be ac-

cessed through the Binder IPC only if the caller has the respective permission defined by the

callee. In addition, the caller can also require the callee to hold certain custom permissions

in order to be able tor receive messages from the caller.

In order to define a new custom permission, an app must provide a permission name

and can optionally include a permission group to which this permission belongs and a de-

scription regarding the utility of the permission in its manifest as shown in the lines 2 -

7 of Listing 2.4. Additionally, in order to request a permission, an Android app needs to

declare the use of the permission by referring to it with its name, as shown in line 10 of

Listing 2.4. Furthermore, Android allows applications to create custom permissions dynam-

ically via the use of the addPermission() API method. In order for this method to work

successfully, apps need to declare permission trees in their manifest file which state the do-

main name under which the dynamic permissions will be created. Listing 2.5 demonstrates

an example where a service is protected with a signature-level custom permission named

com.gulizseray.MY PERMISSION that was declared in Listing 2.4, other app components

can be protected in a similar fashion.

Although it is suggested that reverse domain name notation should be used for custom

permission names, there is currently no naming convention enforced by the system for custom
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Listing 2.4: Creating and requesting custom permissions

1 <!--Create a custom permission-->

2 <permission

3 android:name="com.gulizseray.MY_PERMISSION"

4 android:protectionLevel="signature"

5 android:permissionGroup=

6 "android.permission-group.STORAGE">

7 </permission>

8

9 <!-- Request a custom permission -->

10 <uses-permission android:name="com.example.PERM_NAME" />

Listing 2.5: Protecting a service with custom permissions

1 <service

2 android:name=".MyService"

3 android:enabled="true"

4 android:exported="true"

5 android:permission="com.gulizseray.MY_PERMISSION">

6 </service>

permissions and apps can use any name they desire when creating new custom permissions.

One exception is that Android does not allow two different permissions to coexist on the

same device if they have the same name; hence, installation of an app which defines a

permission with a name that belongs to an existing permission on the device will be denied

by the system. Conventional use case for custom permissions is for apps to define custom

permissions with the signature protection level so that only the apps that are signed with

the same certificate (e.g., apps that belong to the same developer) can utilize the resources

of the definer app.

Runtime Permissions Model. Before Android 6.0 Marshmallow (API level 23), Android

had been using a static permission model where permissions were granted to apps at in-

stallation time and they could never be revoked to apps unless the apps got uninstalled.

Figure 2.3 shows how all dangerous permissions were previously displayed to the user at

installation time on Google Play store. Previous work has investigated the effectiveness of

this permission model and has concluded that users would benefit from having the ability to

revoke permissions on demand [16]. Following these criticisms and after much demand from

the security and user community, Android underwent a major change in its security model

and switched to a dynamic permission model (i.e., runtime permissions) where permissions

would be requested dynamically and could be revoked by the user at any time. The runtime
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Figure 2.3: Permissions being displayed to the user during installation on Google Play [17].

permission model is a step towards achieving least privilege on Android, as it allows for

a user-oriented model where apps will have to work only with a subset of their required

permissions as seen fit by the device user.

Android runtime model cluster permissions into permission groups based on their utility

[18]. In particular, there are 24 dangerous permissions in 10 permission groups on the latest

version of the Android platform (Android 9.0 Pie), which protect access to high-risk system

resources (e.g., storage, contacts, location, camera, microphone, SMS, sensors etc.). The

full list of permission groups on Android 9.0 Pie can be seen in Figure 2.4. According

to the runtime model, runtime permissions are granted on the basis of permission groups.

If a dangerous permission in a permission group is granted to an app, all the dangerous

permissions in that group will also be granted (if explicitly requested by the app) in order

to minimize user’s effort. Figure 2.5 shows how a runtime permission request looks like on

Android.
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Figure 2.4: Permission groups on Android 9.0 (Pie).

In order to utilize runtime permissions, an app should have a target API level of at least

23 and it should run on an Android OS version that supports the runtime permission model.

Legacy apps (i.e., target API level 22 or less) running on Android OS versions that implement

runtime permissions will still adhere to the install time model; however, user is still given

the ability to revoke permissions to the legacy apps through Settings and in this case the

apps will likely crash if they did not correctly use security exceptions. Listing 2.6 shows how

dangerous permissions can be requested and Listing 2.7 demonstrates how the result of a

request (user granting/denying a permission) can be handled.
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Figure 2.5: Runtime request for dangerous permissions. The dialog on the left is for initial
permission requests whereas the dialog on the right is for secondary requests, which provide
an option to turn off further requests [17].

2.3 RESEARCH METHODOLOGIES

2.3.1 Static Program Analysis

Static analysis is a methodology for testing and evaluating a piece of software by analyzing

the source code without executing the software, in contrast with dynamic analysis, where

the program is analyzed while it is being executed. The primary advantage of static analysis

is that all possible execution paths can be examined statically and thus it can reveal errors

that may not manifest themselves with dynamic analysis. Amandroid [20], Flowdroid [21],

Androguard [22] are some of the popular static analysis frameworks designed for Android

applications.
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Listing 2.6: Requesting runtime permissions in Android [19]

1 // Here, thisActivity is the current activity

2 if (ContextCompat.checkSelfPermission(thisActivity,

3 Manifest.permission.READ_CONTACTS)

4 != PackageManager.PERMISSION_GRANTED) {

5

6 // Permission is not granted

7 // Should we show an explanation?

8 if (ActivityCompat.shouldShowRequestPermissionRationale(thisActivity,

9 Manifest.permission.READ_CONTACTS)) {

10 // Show an explanation to the user *asynchronously* -- don’t block

11 // this thread waiting for the user’s response! After the user

12 // sees the explanation, try again to request the permission.

13 } else {

14 // No explanation needed; request the permission

15 ActivityCompat.requestPermissions(thisActivity,

16 new String[]{Manifest.permission.READ_CONTACTS},

17 MY_PERMISSIONS_REQUEST_READ_CONTACTS);

18

19 // MY_PERMISSIONS_REQUEST_READ_CONTACTS is an

20 // app-defined int constant. The callback method gets the

21 // result of the request.

22 }

23 } else {

24 // Permission has already been granted

25 }

2.3.2 Formal Verification (via Alloy)

Formal verification allows us to systematically reason about the design of complex systems

by covering many cases that would otherwise be difficult to investigate with static analysis or

software testing. In our work, we used the formal verification framework called Alloy, which

is developed by a team led by Daniel Jackson at MIT [23]. Alloy is a declarative specification

language that is used to model the behavior and structural constraints of complex systems

[23]. It provides a modeling tool called Alloy Analyzer that operates based on first-order (i.e.,

predicate) logic and can be used to analyze formal models created with the Alloy language.

Alloy Language. Statements in Alloy can be interpreted both from object-oriented (OO)

programming paradigm and from set theory perspectives. Signature is a declaration of a

schema, which defines the vocabulary of the model. It is similar to the concept of a class in

OO paradigm and to a set in set theory. It can consist of several fields, which are equivalent

to fields in OO paradigm and to relations from a set theoretical perspective. Facts are global
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Listing 2.7: Request callback for runtime permissions in Android [19]

1 @Override

2 public void onRequestPermissionsResult(int requestCode,

3 String[] permissions, int[] grantResults) {

4 switch (requestCode) {

5 case MY_PERMISSIONS_REQUEST_READ_CONTACTS: {

6 // If request is cancelled, the result arrays are empty.

7 if (grantResults.length > 0

8 && grantResults[0] == PackageManager.PERMISSION_GRANTED) {

9 // permission was granted, yay! Do the

10 // contacts-related task you need to do.

11 } else {

12 // permission denied, boo! Disable the

13 // functionality that depends on this permission.

14 }

15 return;

16 }

17

18 // other ’case’ lines to check for other

19 // permissions this app might request.

20 }

21 }

constraints to the model that are always supposed to hold. Predicates define parametrized

constraints, which can be interpreted as operations that can be performed in the model.

Functions are expressions with declaration parameters and they return a result based on the

parameters. Assertions are assumptions made on the model and they can be validated via

the Alloy analyzer. Additionally, Alloy allows using multiplicity keywords as quantifiers in

quantified constraints: all (universal quantifier), some (existential quantifier), lone (zero or

one), one (exactly one), no (zero). Also, it is possible to use some (or set interchangeably),

lone, and one for field declarations in signatures to indicate the number of elements a field

can take and also for signature declarations to indicate the number of elements that can

belong to the set of the signature.

Alloy Analyzer. The Alloy Analyzer tool performs only finite scope checks on the models.

The analysis is sound since it can never return false positives and is complete up to a scope

as the tool will never miss any counterexamples that are equal or smaller than the specified

scope. As in traditional model checking, Alloy models are infinite, that is, the specification

dictates how the components of a system should behave without any restrictions on their

quantity. The analyzer also provides automated analysis by allowing automatic generation
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of examples that satisfy a given model as well as counterexamples to claims (i.e., assertions)

that are expected to hold in the model.

2.3.3 Context-Free Grammars

A context-free grammar (CFG) is a notation used for describing the syntax of formal

languages. It is defined a set of recursive rewriting rules that can generate all possible strings

in a given language. A CFG consists of 1) a set of terminals, which are the characters of the

alphabet of the language being defined, 2) a set of non-terminals, which are placeholders for

patterns of terminals that can be generated via the nonterminals, 3) a set of productions,

which are rules for rewriting nonterminals using other nonterminals and/or terminals. In

computer science, the most common notation for describing CFGs is the Backus-Naur Form

(BNF) notation [24].

25



CHAPTER 3: RELATED WORK

3.1 THIRD-PARTY CODE AND WEB ATTACKS

Previous work has discussed the problem that foreign code governs the same privileges as

the host application in different contexts.

Protecting against third-party libraries and other inter-module threats. Third-

party libraries governing the same permissions as the host app has been shown to be prob-

lematic by the previous work. Working towards solving this issue, AdSplit [25] suggests

separation of ad components from the core app and running them in their own processes for

protecting against the malicious activities that can be performed by potentially-malicious ad

libraries. In [1], the authors discuss the vulnerabilities due to the nonexistence of origin-based

protection on the Android system. More specifically, they show that third-party libraries

make host apps vulnerable to cross-origin attacks on the app-to-app channels such as intent

and the scheme mechanism. Their solution, Morbs, gives developers a means to express

new policies about how two apps can communicate, and it labels messages between apps

with their origins so that the developer-written permissions can be enforced at run time.

One short-falling of this solution is that it works for only app-to-app communication chan-

nels. FlexDroid [26] gives developers a way of creating fine-grained access control policies

on the system resources for third-party libraries based on Android permissions. To enforce

the policies, they examine the Dalvik call stack at run time to identify the origin of the

call and its associated permissions. Case [27] takes another approach and instruments apps

with a module that can mediate access between the submodules (which can even be in the

granularity of a Java class) of the app. These solutions are not limited to only app-to-app

channels as Morbs and can protect an app against inter-module threats; however, they do

not provide protection against arbitrary foreign content that can be loaded within a single

in-app module (e.g., via web containers).

Analysis, attacks, and defenses for WebViews. Vulnerability of WebViews has been

extensively discussed by previous work [28, 29, 30, 31, 32]. In [28], the authors present

several classes of attacks that can be launched against apps that use WebViews. Chin et

al. present a static analysis tool that can identify whether an app is vulnerable to WebView

attacks [29]. Mutchler et al. present a large-scale analysis on mobile web applications, and

present the trend of vulnerabilities in these applications. None of these work implement

any defense mechanism targeting WebViews [30]. In [33], the authors present an access

control mechanism for WebViews. Their approach uses static analysis to identify the use
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of security-sensitive APIs in the exposed Java class, and notifies the user if any such use

is found. The user is then prompted to allow or completely block the binding of the Java

object. The main drawback of this approach is that after the user allows the binding, they

do not provide any origin-based access control, so all the origins still have the same access

rights. Additionally, their focus is only on the permission-protected resources and they do

not attempt to protect other application resources.

WebView-related attacks on hybrid frameworks and bringing origin-based ac-

cess control. Georgiev et al. discuss the nonexistence of origin-based access control in

hybrid frameworks and propose a capability-based approach (NoFrak), where app developer

whitelists origins that are allowed to access system resources [34]. The drawback of their

approach is that it works only for the Phonegap framework even though the aforementioned

problem is not even specific to hybrid frameworks. Additionally, the solution is not fine-

grained since a whitelisted origin get access to all resources of the app. In [35], the authors

propose fine-grained access control system for hybrid apps, which allows developers to add

origin permissions to the manifest file and associate iframes with permissions, and enforces

the developer rules in the operating system. One drawback of this solution is that the web

developer has to be compliant and include the permission tag along with the desired permis-

sions in the iframes; otherwise, the frame just governs all the permissions the main page is

given to. Furthermore, even though this solution provides a more fine-grained access control

than NoFrak, it focuses on only protecting permission-protected resources, and hence is not

enough to fully protect the app and its user as we have previously shown. Moreover, neither

of these solutions give developers the flexibility to consult with the user on how to handle

requests. In [36], the authors present code injection attacks on hybrid apps. Even though

they mainly target hybrid frameworks, the attack shown can be applied to all mobile web

applications in general.

Fixing Web-based system apps. Georgiev et al. show that Web-based system applica-

tions also suffer from similar problems, and introduce POWERGATE, which provides access

control on native objects in the system by enforcing the policy rules created by the developer

[37]. Here, their focus is on native-access APIs provided to the application by the platform,

and not on the resources exposed by the use of JavaScript bridges.

3.2 ANDROID PERMISSIONS AND IPC

Previous work investigated Android Permissions and IPC security from many different

perspectives.
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IPC security on Android. Previous work has shown ways of exploiting IPC on Android

to acquire unauthorized access to resources. In [38], the authors discuss the permission

re-delegation problem where an unprivileged app can access system resources through a

privileged app via IPC. Additionally, [39] shows ways of exploiting the Intent mechanism

to send or receive Intents in an unauthorized manner and get access to other app’s private

resources.

Analysis of Android Permissions. Wei et al studied the evolution of permissions across

Android versions and showed that the set of permissions on Android tends to grow with every

release [40]. Stowaway tool aims to detect if apps follow the least privilege for permission

requests [41]. Additionally, Bagheri et al present a formal analysis of Android permissions

for older Android versions (<6.0) in Alloy [42]; whereas others introduce similar models in

Coq [43, 44].

Android Runtime Permissions. One of the early works on runtime permissions shows

the necessity of having revocable, ask-on-first-use type permissions on Android, supported

by user studies [16]. [45] provides an initial analysis on the runtime permission model and

identifies several problems in this model that might open up ways for exploits. In [46], the

authors analyze the undesirable side effects of switching to runtime permissions and introduce

a tool called RevDroid that aims to identify these problems in apps. DP-transform provides

a tool which helps developers adapt to the runtime model by automatically introducing the

permission requests required by the model into the application code [47]. In [48], the authors

study the decision making progress of users in the runtime permission model by employing

an in-situ user study. Their findings suggest that most important factor while granting or

denying a permission is relevance of the permission to the app’s functionality. In addition,

user’s trust in the app developer also appears to play a significant role in their willingness

to grant runtime permissions.

Android Custom Permissions. Although previous work has studied Android permissions,

there is little work done specifically regarding Android custom permissions.The blog post

in [49] discusses how the ”first one wins” approach for custom permission definitions can

create problems. Shin et al presents a viable attack on custom permissions by exploiting

the naming convention problem of custom permissions [50], to which Google responded with

bug fixes. In [51], the authors discuss how permissions can stay dormant on the Android

platform, later to be revived by the installation of a permission definer app, and demonstrate

attacks on custom permissions via the exploitation of this undesirable property.
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3.3 MOBILE UI SPOOFING ATTACKS

Mobile UI spoofing attacks on Android have been studied heavily by the security commu-

nity. In these attacks, users are tricked into misidentifying an app and as a result they either

inadvertently provide sensitive information to adversaries or they perform sensitive opera-

tions that will be beneficial for the adversaries without being aware of the consequences.

Two main classes of UI spoofing attacks are phishing and clickjacking (also known as UI

redress attacks). Bianchi et al. systematically studies the techniques that can be utilized to

launch UI spoofing attacks and propose a defense mechanism that enables users to identify

the authors of the apps they are interacting with.

Phishing attacks. In phishing attacks, the adversary surreptitiously replaces or mimics

the UI of the victim to lead the user into thinking that they are interacting with the victim,

while they are actually interacting with the adversary’s app. Felt et al. discuss phishing

attacks that can take place between mobile apps and websites on mobile platforms [52]. In

[39], the authors discuss some of the intent vulnerabilities that can enable phishing attacks.

More recently, Aonzo et al. discusses how a new app distribution mechanism on Android

called instant apps can be utilized for phishing attacks in the context of password managers

to trick them into supplying attackers with users’ saved passwords [53].

In order to infer information about the foreground app, phishing attacks utilize either

existing APIs or side-channels after these APIs were deprecated by Android in an attempt to

prevent phishing attacks. In [54], authors discuss UI state inference attacks that rely on the

proc filesystem (viz., procfs) to infer the UI state of apps (i.e., what is being displayed etc.)

in real time. In [55], the authors use the interrupt channel on the procfs to infer the status

of the foreground app. On more recent Android versions, procfs is highly restricted and the

techniques we mentioned do not work anymore. More recently, Spreitzer et al. introduced

ProcHarvester, which provides machine learning techniques to automatically identity the

public resources in the procfs that can be utilized to infer the identity of the foreground

app and keyboard gestures of the user [56]. Similarly, ScanDoid provides comparable utility

using the Android APIs for the same purpose [57].

Clickjacking. In clickjacking, also known as the UI redress attacks, the adversary care-

fully places opaque and click-through overlays covering either parts of or the entirety of

the victim app. While the user thinks they are interacting with the UI provided by the

overlays, their clicks actually reach the victim and induce a state change in the victim that

enables the attacker to achieve a sensitive task. In [58], Niemietz et al. demonstrate how UI

redress attack, which are well-studied in the context of desktop-browser environments, can

also applied to the Android platform. Wu et al. systematically study clickjacking attacks
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and propose a detection scheme to identify such attacks [59]. In [60], the attacker utilizes

opaque overlays to lure the user into granting them the accessibility permission, which is an

extremely powerful permission that allow the attacker to perform many sensitive tasks (i.e.,

installing apps, obtaining dangerous runtime permissions). Possemato et al. demonstrate

that, contrary to common belief, not only system apps but also third-party apps suffer from

clickjacking attacks and they propose a practical defense mechanism called CLICKSHIELD

[61].
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CHAPTER 4: SECURING WEB TO APP INTERACTIONS

Previous work has shown that web domains can obtain unauthorized access to critical app

and device resources in apps developed with hybrid frameworks that rely on programming

bridges to provide a cross-platform development experience. However, the main drawback

of these existing works is that they considered the problem of excess authorization of web

domains to be limited to these hybrid programming frameworks and proposed solutions

that would work only within the context of these frameworks. In our work, we show that

this problem in fact affects all applications–regardless of the programming framework used

to build them– that utilize embedded web browsers and propose a general-purpose access

control mechanism for web code in order to better address web overprivilege in Android.

This chapter is based on our work in [3].

4.1 INTRODUCTION

Mobile application (or “app” for short) developers heavily rely on embedded browsers

for displaying content in their apps and libraries. A previous study shows that 85% of

the apps in the Google Play store contain at least one embedded browser (i.e., WebView on

Android) [30]. Other than the natural use case of just displaying web content, there are some

interesting ways to use these web containers in apps: advertisement libraries use embedded

browsers to display ad content within apps, app developers can rely on embedded browsers

to tightly couple web sites with similar functionality to the app in order to reuse web site’s

UI code and to provide fast and convenient updates. Additionally, hybrid frameworks (e.g.,

PhoneGap) rely on embedded browsers to enable app developers to write their apps purely

with web languages (e.g., JavaScript and HTML) with the premise of ease of programming

and portability to other mobile operating systems.

Even though they are extremely useful, these embedded browsers come with their own

security problems. They are inherently given the ability to execute web code (i.e., Java-

Script). Additionally, through the use of JavaScript bridges, they can allow web code to

interact directly with app components (i.e., internal Java code). Indeed, these bridges are

what hybrid apps rely on to allow access to system resources such as contact list, camera,

Bluetooth, SMS etc. Obviously, the misuse of this functionality by malicious web domains

can be detrimental to the user and to the app since an attacker, whose web domain (hence

malicious code) was loaded into a WebView can exploit the existing bridges to collect in-

formation about the user and even change the app’s behavior. The main problem here is
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that there is no means of performing access control on the untrusted code running within

a WebView, any origin loaded into the WebView is free to use all the available JavaScript

bridges. With the introduction of API level 17, Android made an attempt to mitigate the

negative consequences of this problem (i.e., accessing Android runtime via Java reflection)

by introducing mechanisms to allow the developer to specify which methods will be exposed

to JavaScript. However, this does not eliminate the problem as the untrusted code loaded

into a WebView still inherits the same permissions as the host app and can exploit just the

exposed parts of the bridge to perform its malicious activities. Since the origin (as in same

origin policy) information is not propagated through the bridge, the app developer has no

control over this access attempt and cannot perform any access control based on the origin.

Prior research studies on security issues in WebViews and JavaScript bridges fall short

in at least four significant ways. First, they have limited scope, since they mainly target

hybrid apps and create solutions that work only for the hybrid frameworks [34]. Second, they

are incomplete, since they focus only on protecting permission-protected resources (such as

the camera and microphone) [34, 35], and disregard other cases where a foreign domain is

inadvertently allowed to access sensitive information (such as a user’s social security number).

Third, they rely on whitelisting policies that always block unknown domains and therefore

deprive developers of the flexibility to make decisions based on user input. Fourth, they are

ad hoc since they focus only on a subset of resource access channels and do not provide a

uniform solution that works across all channels.

The current disorganized and complex nature of interactions between web origins and

applications creates confusion for developers. From our inspection of the apps in the Google

Play store, we observed that the danger of loading untrusted web origins and exposing

resources to them is not very well understood by app developers. Developers mistakenly

assume that targeting API versions that address some of the issues with embedded browsers

(e.g., using API level 17 or higher on Android) will protect their apps from these vulnerabili-

ties. When they seem to be aware of the danger, assuring protection seems to be burdensome,

and they tend to make mistakes while trying to evade the problem by implementing navi-

gation control logic or multiple WebViews with different levels of exposure. However, even

taking the correct programmatic precautions does not completely eradicate the problem since

there is no guarantee that a trusted web domain will consist only of trusted components.

Indeed, it is quite common for web pages to use an iframe in order to display ad content,

and once loaded, there is no means for a developer to protect the resources that were exposed

to web content from these potentially malicious components. All of this creates the necessity

for an access control mechanism targeting web code where developers are given the ability

to specify desired access characteristics of web origins in terms of app and device resources.
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Developers should be allowed to specify what capabilities should be given to web origins

with a fine granularity, and if they need user input to make decisions. This brings forth

the need for a policy language, which developers can use to describe the expected behavior

and use of resources by web origins, without having to rely on any complex programmatic

structures, and the need for a mechanism that will take into consideration the developer

policies to make access control decisions.

Working towards addressing these issues, we systematically study the vulnerabilities that

are caused by loading untrusted web domains in WebViews on Android. We show cases

where top-selling Android apps suffer from these vulnerabilities. Based on the threats we

identified, we designed an easy to use, declarative policy language called Draconian Policy

Language (DPL) for developers to specify access control policies on resources exposed to web

origins. DPL allows declaration of policies with different levels of trust (i.e., fully-trusted,

semi-trusted, untrusted) for different origins. We implement a system called Draco for fine-

grained access control of web code: Draco enables app developers and device manufacturers

(OEMs) to insert explicit Draconian policies into their apps, and dynamically enforces these

policy rules at runtime in an efficient manner.

4.2 UNDERSTANDING THE PROBLEM

Embedded web browsers suffer from a lack of access control in Javascript bridges. In this

section, we will elaborate this issue in detail and discuss how current security mechanisms

in WebView fall short in providing the necessary access control. We will show how this issue

affects a majority of popular applications on Google Play store and demonstrate case studies

that show how two popular Android apps can be attacked through the JavaScript bridges

to stealthily obtain access to sensitive user data (e.g., medical information).

4.2.1 Lack of Access Control in WebView

The vulnerabilities in WebViews have been investigated by previous work [30, 28, 29,

31, 32]. A recurrent and fundamental problem is that there is no way of performing access

control on the foreign code executed within a WebView; any origin loaded into the WebView

is free to use the exposed JavaScript bridges. In particular, since the origin information is

not propagated to the app through the bridges, the app developer has no control over

the behavior of foreign code and cannot make access decisions based on the real origin of

the invocation. With the introduction of API level 17, Android addressed some critical

problems of WebViews such as reflection-based attacks by introducing Java annotations into
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the WebView API to limit the extent of exposure. However, this does not completely solve

the problem as the foreign code loaded into the WebView still has the same permissions

as the host app, and it can exploit the exposed parts of the JavaScript bridges to perform

malicious activities such as accessing system resources, getting the user’s private information,

and executing code that was meant for use only by the web domain of the developer.

In order for a JavaScript bridge to be exploitable, the app must load untrusted content

into the associated WebView. An obvious way is by allowing the WebView to navigate to

untrusted websites or to sites with untrusted content (e.g., iframe). Previous work shows

that navigation to untrusted sites is common among applications: 34% of the apps that

use WebViews do allow the user to navigate to third-party websites [30], and 42.5% of

the apps that register a JS interface allow the user to navigate to third-party websites or

to websites with untrusted content [29]. In order to verify these results, we picked three

top-selling Android apps that demonstrate the common vulnerabilities identified by previ-

ous work: USPS, CVS Caremark, and JobSearch by Indeed. Through manually analyzing

their code, we observed that developers do try to take precautions against the attacks on

JS bridges by loading pages from untrusted domains in either the browser instead of the

WebView (e.g., USPS app), or in separate WebViews with limited functionality which they

create for this purpose (e.g., JobSearch app by Indeed). However, developers can make

mistakes while implementing the navigation control logic. For example, in the USPS app,

the developer checks if the loaded URL contains “usps.com” rather than checking if the

host’s domain name matches “usps.com”, mistakenly allowing any non-USPS website that

partially matches “usps.com” (e.g., musps.com, uusps.com). Additionally, developers might

make wrong assumptions about the navigation behavior of the WebView. We have identified

that the app developer might assume that the content provided to the WebView intrinsically

does not allow navigation (i.e., it does not contain hyperlinks) and provide the user with

functionalities that can break this assumption (e.g., allowing users to input hyperlinks) as

in JobSearch app by Indeed, or they simply do not foresee that a specific WebView can be

used by the user to navigate out of the trust-zone of the app by just following the links

on the web pages as in the CVS Caremark app. We will examine the CVS Caremark and

JobSearch apps in more detail later in this section.

Although it may look like correct implementation of navigation control would solve the

JavaScript bridge exploitation issues (and fix the USPS app), we argue that it is simply

an insufficient measure to protect JavaScript bridges. Even if developers implement all

navigation behavior correctly and do not allow the user to navigate to untrusted web origins

within the context of their apps, the pages from trusted domains might include untrusted

components such as iframes, which also inherit the same permissions as the app and have
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access to all the exposed bridges. Thus, the system does not provide the necessary means

for developers to completely protect their apps against attacks on the JavaScript bridges.

4.2.2 Prevalence

While the current design of JavaScript bridges by default grants access to a domain

for all the exposed resources, for HTML5 APIs the access model is exactly the opposite;

the default behavior is to deny all the requests by a domain for a permission unless the

onPermissionRequestResult, onPermissionsRequest, and

onGeolocationPermissionPrompt methods are overridden by the app developer. In order

to better understand how this difference between the JavaScript bridges and the HTML5

APIs affects the developers, we statically analyzed the top 1337 free Android applications

from 21 Google Play categories selected at our discretion. Table 4.1 depicts the prevalence

of WebViews and how often WebView APIs are used in these apps. Here, we distinguish

ad and core WebViews (WebView in the core of the app) based on our comprehensive list

of package names for ad libraries, and also give the cumulative result including both uses

of WebView. In line with the previous work [30, 29], we have observed that WebView is

a commonly-used component as around 92% of the applications in our dataset make use

of it in their core application code (i.e., not used by advertisement libraries). Among the

applications that include at least one WebView in their core code, 77% of them use Java-

Script interfaces, and 70% use event handlers. However, it can be observed that there is

a sudden drop in the numbers when it comes to the use of HTML5 APIs. This might be

happening for two reasons. On the one hand, developers generally do not wish to grant

access to permission-protected resources to external domains, and apps can operate without

having to rely on external web origins. On the other hand, even though more than 85%

of the apps in our dataset target API 21 or higher and are able to handle HTML5 API

requests, they simply decide not to do so, possibly due to the complex request handling

logic of the HTML5 APIs. Since the majority of the apps require API 21 or higher, they

need to comply with the run time permissions introduced by Android 6.0. This means that

each time they wish to grant access to a web domain, they also need to check if the app

was granted the permission of interest by the user and, if not, they must prompt the user

to grant it. On top of this, they also need to implement origin-based access control; hence,

they need to maintain the necessary data structures and track user preferences. This process

is unnecessarily cumbersome. If the system provides the necessary infrastructure to allow

developers to uniformly declare their security policies, this would minimize effort and reduce

the likelihood of errors, irrespective of the underlying channel (whether that is a JavaScript
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Used Web Features # (%) in core # (%) in ad # in both core and ad Total # (%)

WebView 1226 (92%) 551 (41%) 544 (41%) 1233 (92%)
JavaScript enabled 1189 (89%) 495 (37%) 482 (36%) 1202 (90%)

JavaScript Interfaces 945 (71%) 395 (30%) 361 (27%) 979 (73%)
@JavaScriptInterface 587 (44%) 328 (25%) 182 (14%) 769 (58%)

onJsPrompt 857 (64%) 202 (15%) 172 (13%) 887 (66%)
onJsAlert 696 (52%) 259 (19%) 227 (17%) 923 (69%)

onJsConfirm 699 (52%) 214 (16%) 184 (14%) 883 (66%)

onGeolocationPermissionsShowPrompt 567 (42%) 169 (13%) 133 (10%) 700 (52%)
onPermissionRequest 32 (2%) 0 (0%) 0 (0%) 32 (2%)

Table 4.1: Prevalence of WebViews and use of WebView APIs (#: absolute number, %:
percentage)

interface, an event handler or an HTML5 API).

4.2.3 Case Studies

Previous work has shown how applications built with hybrid frameworks suffer from Java-

Script bridge vulnerabilities since hybrid frameworks rely on these bridges to give application

code access to device resources like the camera, contact list and so on [34, 35]. However,

the problem is not constrained to hybrid applications. In fact, an application that uses

an embedded browser to display web content and needs enhanced communication between

the web domain and the app, is susceptible to similar exploits. Here, we investigate the

understudied JavaScript bridge issues that exist in non-hybrid applications. In particular,

we present our analysis on two widely-deployed applications distributed through the Google

Play store, which we found as suffering from JavaScript bridge issues. Indeed, we show that

the exposure of these bridges to adversaries can be detrimental to users’ privacy and can

adversely affect the application’s flow. We have disclosed these issues to the developers of

those apps but—at the time of writing—haven’t received a response.

CVS Caremark. CVS Caremark is one of the Android apps offered by the American

pharmacy retail company CVS. It has been downloaded 100,000 times so far and currently

has a rating of 3.6. It allows users to track their prescription history, get refills or request

mail service for new prescriptions, and get information about drugs and their interactions.

In order to help their users with their medical needs, the app requires them to register to the

CVS system with their name, health care ID, and email address. The app additionally tracks

some other personal information, including the user’s pharmacy preferences and location.

Furthermore, the app implements some functionality to check the login state of users, retrieve

some internal database IDs, perform UI functionality such as displaying date pickers, and
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invoke the browser to load a given URL.

CVS Caremark app uses WebViews to render web content, and utilizes JavaScript inter-

faces to enable a tight communication between the app and CVS web servers. It registers

two different interfaces with the WebView, of classes WebViewJavascriptInterface and

JavaScriptWebBridge, and names the JavaScript objects associated with these interfaces

“native” and “WebJSInterface” respectively. We observed that the “native” interface im-

plements some of the main functionalities of the app (e.g., scanning prescriptions, registering

users etc.) with access to device resources and exposes user’s private information. Hence, it

is highly possible that this interface was meant by the developer to be used for internal use

only, that is by trusted CVS domains. On the contrary, the “WebJSInterface” is possibly

meant to be used in a more generic context and by untrusted domains; hence, it exposes

functionalities more conservatively. However, this attempt to protect the app and device

resources by creating two interfaces is not useful, since both of these interfaces belong to

the same WebView instance, which is used to load all URLs. Hence, the security of the app

relies on implementing navigation control correctly, by not allowing the app to navigate to

untrusted domains or to domains that might contain pages with untrusted elements. The

app simply does not make any attempt to mitigate the problem by implementing navigation

control to filter untrusted domains; hence, it is vulnerable to JavaScript bridge attacks. Even

if navigation control was implemented correctly, this would not be enough to protect from

these attacks since even a trusted origin may include elements that are of risky nature (e.g.,

iframe). We have successfully performed an attack on this JavaScript interface bridge by

navigating to our attack URL which runs the code in 4.1. The attack domain was able to

retrieve personal information (like the user’s name, health care ID, email address, pharmacy

preference, and location) as well as execute app functions such as using the camera on the

victim device for barcode scanning functionality and retrieving images of user’s prescription

drugs.

Job Search by Indeed. Job Search is an app released by Indeed, a company that produces

an employment-related search engine (indeed.com), to allow users to search for jobs on their

Android devices. The app is downloaded 10,000,000 times and has a rating of 4.1.

Most of the content displayed to the user in the app is fetched from Indeed’s web domain

(indeed.com) and rendered in a WebView. This is done mainly to reuse the UI code of

Indeed’s web domain in order to reduce the app development effort and simplify maintenance

of its deployment. Similarly to the CVS Caremark app, JobSearch creates and uses two

types of WebView classes, one (of class IndeedWebView that extends the WebView class)

for internal use and another (of class ExternalWebView that extends IndeedWebView) for
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Listing 4.1: JavaScript interface exploitation in CVS Caremark

function beEvil() {

deviceInfo = native.getDeviceInfo()

clientID = native.getBenefactorClientInternalId()

geolocation = native.getGeoLocation()

loginState = native.getLoginState()

userName = native.getUserName()

preferredPharmacy = native.getPreferredPharmacy()

native.scanRx() // scan barcodes

// get prescription barcode image

prescriptionImage = native.getFrontRxImgData()

data = constructData(deviceInfo, clientID, geolocation, loginState,

preferredPharmacy, userName, prescriptionImage)

// Send data to server

b=document.createElement(’img’)

b.src=’http://123.***.***.***/?data=’+ data

native.setPreferredPharmacy("WhicheverPharmacyIWant!")

}

showing external content such as job descriptions from untrusted domains. The app attaches

a JavaScript interface (named “JavaScriptInterface”) to the internal WebView, while not

exposing any such interfaces to the external one in an attempt to protect resources from

external domains. The app also takes precautions to restrict navigation in the internal

WebView by removing all the hyperlinks in the rendered text content; hence, it supposedly

does not allow loading of external URLs in this WebView. However, the app also offers the

user the choice of adding web sites as a part of their profile and allowing the user to navigate

to these sites. This breaks the developer’s no-load assumption on the internal WebView for

pages from external domains, and thereby puts the exposed JavaScript interfaces at risk.

In fact, we were able to access the JavaScript interface by navigating to our ”malicious”

website in the internal WebView. In this interface, the app offers the device’s unique ID,

enabling/disabling Google Now, checking if this device is registered with Indeed, getting

user’s registration ID, and registering the device with Indeed.

4.2.4 Adversary Model

Based on our observations on how JavaScript bridge vulnerabilities can be exploited,

we assume a web adversary who owns web domains and/or ad content in which he can

place malicious code. Mobile web apps render the malicious domains and malicious ad

content through their embedded browsers. Such an app can reach a malicious domain
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when the user starts navigating through the embedded browser. Moreover, malicious ad

content can be offered by the adversary to both the app’s trusted domains and to other

untrusted domains. We assume that the adversary can reverse engineer the victim app

code to identify the exploitable JavaScript bridges. The adversary can achieve this by first

downloading the victim app’s apk using existing frameworks for crawling Google Play store,

and then decompiling it with any of the existing dex decompilers (dex2jar [62], JD-GUI [63],

apktool [64] etc.).

4.3 DRACO ACCESS CONTROL

Running code from untrusted origins in a WebView can be detrimental to users as the

foreign code can compromise users’ privacy and disturb their experience by exploiting the

WebView’s tight-coupling with the application code and device resources. A straightforward

way to address this threat is to simply prevent the user from visiting untrusted web pages.

However, there are cases where this is impossible to achieve since even trusted domains might

embed untrusted components in their web pages. Hence, it is necessary to provide an access

control mechanism for WebViews that can distinguish the source of foreign code that is being

executed and grant access only if the source is trusted by the developer or by the user. To

tackle this problem, we propose Draco, a fine-grained, origin-based access control system for

WebViews, which consists of two major components: 1) an access control policy language

that we call the Draconian Policy Language (DPL), which allows app developers to declare

policy rules dictating how different components within a WebView should be exposed to

different web origins, and 2) a runtime system we call Draco Runtime System (DRS), which

takes policy rules on system and internal app resources (i.e., JavaScript bridges) as an input

from the developer and enforces them dynamically when a resource request is made by a

web origin.

4.3.1 Design Goals

Before we go into the depths of our policy language and the Draco runtime access control

on WebViews, it is important to discuss what our design goals are and how they affect the

architecture of our system. Previous work focuses on access control only on the permission-

protected parts of the exposed bridges in hybrid frameworks. Our goal is to provide develop-

ers with a fine-grained access control model, which will enable them to express access control

policies on all parts of all access channels for all use cases of WebViews (i.e., in hybrid and

native apps). These channels are namely the JavaScript interface, the event handlers, and
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the HTML5 API. App developers should be given full control on all of the channels, that

is, they should be able to specify which origins can access which parts of the channels and

assign permissions to trusted origins. They should also be given the flexibility to delegate

decisions to the user when needed. Draco should avoid modifications on any parts of the

operating system and should be implemented as part of a userspace app. This would allow

the system to be readily and immediately deployable, while enabling frequent updates that

are disjoint from firmware updates. Additionally, Draco should be able to enforce policy

rules efficiently and its policy language should be easy to understand and use for developers,

as well as easy to extend if necessary.

4.3.2 Draconian Policy Language

Draco supports a declarative policy language that allows app developers to describe their

security policies with respect to remote code origins. Here we present the Draconian Policy

Language (DPL) and provide examples to demonstrate its expressiveness.

Grammar. We want to instantiate a capability-based access control scheme based on least

privilege and allow specification of what resources each remote origin can access and how they

can access them. By default, if a DPL rule does not exist to allow the web code to access

any resource, then access is denied. We use the Backus-Naur Form (BNF) notation [24]

for context-free grammar to describe the new policy language. Terminals are denoted by

single-quoted literals.

Draco allows developers to write policy rules which dictate how sensitive resources can be

accessed by web code. We define the syntax of a DPL rule as:

〈policy rule〉 ::= 〈subject〉 ‘;’ 〈trust level〉 | 〈subject〉 ‘;’ 〈channel〉 ‘;’ 〈decision point〉

Each Draconian policy rule is applied on a subject. The subject indicates the web origin

whose web content was loaded in the WebView. Here, a remote origin is represented by a

URI scheme (i.e., http or https), a hostname and a port number as in the same origin policy.

We allow wild cards for origins in our language, in order to allow creation of rules that can

be applied to any origin. Additionally, we allow wild cards for sub-domains in domain names

(e.g., (*).mydomain.com) to enable rules that can assign all hosts under the same domain

the same access characteristics.

〈subject〉 ::= ‘*’ | 〈protocol〉 〈hostname〉 〈port〉

〈protocol〉 ::= ‘http://’ | ‘https://’ | ∅
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〈hostname〉 ::= 〈subdomain〉 〈domain name〉

〈domain name〉 ::= string

〈subdomain〉 ::= ‘(*).’ | 〈name〉 ‘.’ | ∅

〈name〉 ::= string

〈port〉 ::= ‘:’ 〈port number〉 | ∅

〈port number〉 ::= integer

A trust level is an abstraction that allows developers to instantiate default policies. Our

system supports three trust levels:

〈trust level〉 ::= ‘trustlevel’ ‘<’ 〈trust level options〉 ‘>’

〈trust level options〉 ::= ‘trusted’ | ‘semi-trusted’ | ‘untrusted’

A trusted subject is allowed to access all resources whereas an untrusted subject is never

allowed to access any resources through any channels. A semi-trusted domain can access

exposed functionality but only through user interaction. At this point it should be clear

that our policy language allows for essentially whitelisting domains. However, this is still

not expressive enough. Consider for example the case that we want to allow a subject to

access the exposed JavaScript interfaces but not run HTML5 code that can unilaterally

access resources. Towards this end, the second part of the DPL rule definition allows for

such fine-grained declarations. In particular an app developer can specify which channel

should be protected. A decision point dictates whether such a policy rule should be enforced

transparently to the user or only when the user agrees to it. If left empty, then “system”

is assumed which forces the system to enforce the rule transparently to the user. If “user”

is chosen then the system delegates the enforcement decision to the user at the time of the

access attempt. DPL also allows app developers to provide a description message for the

user. This can be useful in cases the DPL rule governs resources at a very fine-granularity

(e.g. at the method level) which might be challenging for the user to understand. In such

cases a semantically meaningful message provided by the app developer could help the user

better perceive the context.

〈decision point〉 ::= ‘decisionpoint’ ‘<’ 〈decision maker〉 ‘>’ 〈description〉

〈decision maker〉 ::= ‘system’ | ‘user’ | ∅
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〈description〉 ::= ‘<’ 〈text〉 ‘>’ | ∅

〈text〉 ::= string

The channel definition is more intricate: Draco needs to allow greater levels of rule ex-

pressiveness to enable developers to dictate fine-grained policies. Every channel has its own

idiosyncrasies and exposes resources in different ways. This obviates the need for allowing

different specifications for each channel. Thus, an app developer should be able to choose

the channel they want to protect:

〈channel〉 ::= 〈event handler〉 | 〈html5 〉 | 〈jsinterface〉

Our access control follows a least privilege approach: by default everything is forbidden

unless there is a rule to allow something to happen. In particular, for the event handler

channel, our policy allows app developers to specify how the whole channel can be accessed

by the subject, but also—need be—to define which permission-protected APIs can be utilized

by each event handler method. This is reflected in the policy language as follows:

〈event handler〉 ::= ‘alloweventhandler’ ‘;’ ‘<’ 〈eh methods〉 ‘>’ ‘;’ ‘<’ 〈permission list〉
‘>’

An event handler method list (eh method list) can be a single event handler method, or

a list of event handler methods. Furthermore, developers should be allowed to specify a list

of permissions for the exposed event handler methods:

〈eh methods〉 ::= ‘all’ | 〈eh method list〉

〈eh method list〉 ::= 〈eh method〉 | 〈eh method〉 ‘,’ 〈eh method list〉

〈eh method〉 := ‘onJsHandler’ | ‘onJsPrompt’ | ‘onJsConfirm’

〈permission list〉 ::= 〈permission〉 | 〈permission〉 ‘,’ 〈permission list〉 | ∅

where a ¡permission¿ can be any of the Android permissions.

Similarly, for the html5 channel one can specify the WebKit permissions that web code

can make use of:

〈html5 〉 ::= ‘allowhtml5’ ‘;’ ‘<’ 〈HTML permission list〉 ‘>’

〈HTML permission list〉 ::= 〈HTML permission〉 | 〈HTML permission〉 ‘,’

〈HTML permission list〉
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〈HTML permission〉 ::= ‘VIDEO CAPTURE’ | ‘AUDIO CAPTURE’ | ‘GEOLOCATION’ |
‘PROTECTED MEDIA ID’ | ‘MIDI SYSEX’

Lastly, for the jsinterface channel, our policy language allows developers to describe how

every Java class and Java method exposed to JavaScript can be accessed by the subject:

〈jsinterface〉 ::= ‘allowjsinterface’ ‘;’ 〈class methods〉 ‘;’ ‘<’ 〈permission list〉 ‘>’

〈class methods〉 := 〈class name〉 ‘<’ 〈methods〉 ‘>’

〈class name〉 ::= string

〈methods〉 ::= ‘all’ | 〈method list〉

〈method list〉 ::= 〈method name〉 | 〈method name〉 ‘,’ 〈method list〉 | ∅

〈method name〉 ::= string

Expressiveness. As with any language, there exist an intrinsic tradeoff between the usabil-

ity of the policy language and its expressiveness. On the one hand, a usable policy language

is of low complexity but at the same time limited on the policies it can express. On the

other hand, a complex policy language can express more fine-grained rules. DPL strikes a

careful balance between the two by aiming to express selected set of useful policies at the

method level with one-line, concise rules.

Consider for example the case where a developer of a low risk application would like to

allow their web service (“mydomain.com”) to run code within the WebView of the host app.

In such cases, the developer could simply provide a rule as follows:

https://mydomain.com;trustlevel<trusted>

Given only this rule, the system forbids any web code of origin other that “mydomain.com”

to access any exposed functionality from the host app. At the same time, the trusted

“mydomain.com” can benefit from all the exposed features.

In the aforementioned vulnerable case of the CVS Caremark app (see Section 4.2), it is

evident that the app developers wanted to allow the CVS domains to access a rich JavaScript

interface (WebViewJavascriptInterface) and other domains to access a more conservative

JavaScriptWebBridge interface. This could be simply described by the app developer and

enforced by DRS providing the following DPL rules:
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1 https://www.caremark.com;allowjsinterface;

WebViewJavascriptInterface<all>;decisionpoint<system>

2 *;allowjsinterface;JavaScriptWebBridge;decisionpoint<user>

where “*” is a wildcard that can match any origin. The former rule allows only CVS domains

to access the sensitive APIs, whereas the non-sensitive app functionality can be exposed to

all domains after user approval with the latter rule.

In the case of the “Job Search” app by Indeed, the developer could simply provide the

rule:

(*).indeed.com;allowjsinterface;JavaScriptInterface; decisionpoint<system>

This will allow only code from “indeed.com” to use the exposed JavaScript interfaces. The

developer does not need to worry about implementing two different WebViews, one for secure

domains and one for untrusted domains. Furthermore, navigation will not be an issue as the

system transparently allows only the “(*).indeed.com” domains to access sensitive APIs.

In fact, we identified by looking at the decompiled application code that the “Job Search”

developers have written around 550 lines of code, aiming to achieve separation between

trusted and untrusted domains by using a second fully-developed WebView (along with

custom-built Activity, WebViewClient, WebChromeClient classes), and yet the app was still

vulnerable. In contrast, one line of code with the Draconian Policy Language is enough

to secure the app with Draco. Additionally, even though DPL allows the construction

of very fine-grained policies, it can be seen from these examples that simple and easy-to-

construct policy rules can be sufficient in many practical cases. Consequently, our system

can provide strong protection to apps and minimize developers’ efforts with an easy to use

policy language.

MyStore example. To demonstrate more fully the expressiveness of DPL, we consider a

more elaborate scenario. Let us assume that MyStore is a large retail company that aims to

incorporate Eddystone [65] Bluetooth Low Energy (BLE) [66] beacons on product shelves

in its stores [67]. These beacons broadcast URLs for the product they advertise using the

BLE protocol. MyStore also provides its clients with a shopping app, namely MyStore App,

which scans for the BLE beacon advertisement messages and displays the web page of the

advertised products in a WebView. The advertised websites provide further information

about the product such as description, images, reviews etc. These web pages can belong to

the web domain of MyStore (mystore.com), or to the MyStore suppliers that partner with
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MyStore to use store beacons. MyStore App collects a user’s profile and preferences, allows

her to scan product barcodes, and also acquires the location of the user’s mobile device to

perform analytics in order to better their services.

MyStore App is a mobile web application that uses components from mystore.com via the

help of the WebView embedded browser, and exports device resources and app functionalities

through Java Script bridges. In particular, it exposes the MyInterface Java class, which

features the following functions: getAge(), getGender(), get StoreLocation(). MyStore

wants to allow mystore.com to access all the JavaScript Interfaces and resources of MyStore

App. At the same time, it wants to allow its partners’ web domains to access the location

of the store for them to know where their products are being seen. Furthermore, it wants to

provide its partners the opportunity to get the user’s age and gender. However, providing this

information might entail privacy concerns. Thus, the store wants to allow their partner to

access this information only if the user agrees, which will not violate the user’s expectations

and thus minimize the privacy risk. Enforcing this complex interactions can be extremely

challenging with the current state of affairs on the Android platform, since it might require

implementing multiple WebViews with different levels of exposure and duplicating method

definitions. However, it becomes much easier when Draco is used. Consider for example the

following Draconian policy rules:

1 mystore.com;trustlevel<trusted>

2 partner.com;allowhtml5;permission<GEOLOCATION>

3 partner.com;allowjsinterface;MyInterface<getLocation>; decision<system>

4 partner.com;allowjsinterface;MyInterface<getAge,getGender>;

decision<user><"Access to age and gender">

The first rule allows mystore.com to access all exposed resources on all channels. The second

and third rule allow the trusted partner.com domain (e.g., partner companies) to access the

location through either HTML5 APIs or exposed interfaces of the MyStore App. Finally,

the last rule allows partner.com to access the exposed functions that provide the user’s age

and gender only if the user agrees. As can be seen, writing policy rules using DPL should

not require much effort from the app developers .
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4.3.3 Draco Runtime System

Draco’s other major component is its runtime system, namely the Draco Runtime System

(DRS). A key aspect of the design of DRS is to avoid any modifications in the Android

OS to make DRS easier to both deploy and update. In particular, DRS is built on top

of the WebView system app on Android. This requires making modifications only in the

Chromium source code [15], which is the provider of the WebView implementation on the

Android platform.

High-level architecture. Keeping our design goals in mind, we implemented DRS in

Chromium [15], which is a system library residing in the Android WebView system app,

providing the WebView implementation to the Android apps. Figure 4.1 illustrates our

design in more detail. The app developer provides DPL rules to the WebView programmati-

cally through their Android app. DRS features a Policy Manager class (i.e., PolicyManager),

which parses the policy rules and inserts them into a policy map data structure. We also

implemented a unit for decompiling the app and statically analyzing it to determine the

permissions necessary to successfully execute the methods in exposed Java class methods

and event handlers. This is necessary because we allow the developer to assign subjects a set

of permissions they are allowed to use for each channel and do not assume any cooperation

other than entering policy rules. In particular, in the case of JavaScript interfaces and event

handlers, we need to know beforehand what permissions the requested method uses in order

to determine if the subject under investigation is granted all of the permissions required by

that method. DRS employs an Information Unit which hosts and manages the two data

structures corresponding to policies (policy map) and the permissions used by class methods

and event handlers (permission map). During invocation on any of the three aforementioned

channels, DRS intercepts the invocation and checks if any one of the policy rules allows the

subject to execute or access the requested part of the channel, or if the user needs to be

prompted for a decision. If the request is allowed according to the developer policies or by

the user, DRS lets the invocation go through, otherwise it gracefully blocks the request.

Note that it could be the case that the app itself runs web code loaded from its local files.

For example, the loadUrl() method can be invoked with “file://” which loads a html file

from the local storage or with “javascript://” which invokes the inline JavasSript code with

no origin. Since the subject of this execution is the app, we treat this as trusted. However,

there could be cases where web code can run with undefined origin (e.g., by loading code

with the eval JavaScript function). Our system completely blocks such attempts.

Parsing module. Draco allows developers to enter policy rules into the WebView without

having to modify the source code of the Android Open Source Project (AOSP). We con-
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Figure 4.1: Draco Runtime System (DRS) architecture.

sidered extending the Android Manifest file with policies (as was done in previous work),

as well as using annotation tags as policy rules on the exposed Java code. However, both

of these approaches require changes to be made on the Android platform itself; the former

requires changing the parsing logic in the Package Manager, and the latter requires changing

the WebView APIs.

In Draco, we exploit the existing loadUrl method in the WebView API, and piggy-back

rules into the WebView. As we explained before (see Section 2.1.5), the loadUrl method

takes a URL string as an input argument and loads this URL. It can also execute JavaScript

code if the given string starts with the “javascript:” tag. We extend the functionality of

loadUrl within the WebView system app, to capture strings that start with the “policyrule:”

tag which indicate a Draconian policy rule for the WebView. DRS’s Policy Manager class

is implemented in the facade Java layer of Chromium, and is responsible of parsing DPL

rules and inserting them into the data structures we utilize for enforcement. This class
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uses the Java Native Interface (JNI) to talk to its native “back end” that performs these

functionalities in C++. This structure makes it easier to communicate the policies to the

Chromium implementation that performs most of its main functionalities in native code

(C++).

App decompilation and static analysis unit. For the enforcement of permission-based

DPL rules that regulate the use of sensitive APIs in the JS interface and event handler

channels, we need to determine the permissions used in a given class and its methods for

JavaScript interfaces, and permissions used in the event handler callback methods for the

event handlers channel. Such a permission-based rule might be expressed informally as

follows: “Origin X can access a method which makes sensitive API calls that require permis-

sions Y, Z only if it’s given these permissions by the developer.”. Doing this without the help

of the developer (e.g., by submitting the list of methods with the used permissions) requires

static analysis on the application code to retrieve the permissions used in the JavaScript

interface classes and their methods, and in the event handlers. DRS uses apktool [64], which

works with a success rate of 97.6% [68], to decompile the app into smali bytecode, then finds

the exposed JavaScript interface classes and the event handlers declared in DPL rules, and

processes them to find the permissions that are required by them. This requires determining

the sensitive API calls made in the class methods and the event handlers. DRS utilizes the

API-to-permission mapping released in PScout [69] and searches for the API calls specified

in this mapping in the app’s decompiled smali code. This provides DRS with a list of used

sensitive API calls and their corresponding permissions required by each class method and

event handler. DRS performs this process in the background, only during app installation

and update time and saves the results in a file in the app’s data folder to avoid repetition

of this process.

Information unit. At the core of the PolicyManager lie two components: the policy map

and the permission map. The Policy map uses a hash map to keep track of the developer

DPL rules (as key value pairs). It uses a string for its key, and a vector of strings for the value.

The key consists of the subject, channel name, and type of the channel option, namely class

name (for interfaces), function (for event handlers), or permission (all channels). In case the

channel option is a JavaScript Interface class name, the vector of strings (value for that key)

consists of the name of the allowed methods for that interface. As for permission for the

channel option, this vector will be the name of the allowed permissions. The Permission map

is used for tracking the used permissions in a given class and its methods for JS interfaces,

and for tracking permissions used in event handler methods. The list of permissions for

these methods will be retrieved from a permission file created by the aforementioned static
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analysis unit.

Enforcement. Chromium works based on a multi-process architecture (Figure 4.2). Each

tab (called Renderer in Chromium jargon) in the browser is a separate process and talks

to the main browser process through Chromium inter-process communication (IPC). Even

though WebView is based on Chromium, it does not inherit this multi-process architecture.

Instead, it keeps the same code structure but adopts a single process architecture, due to var-

ious reasons including the difficulty of creating multiple processes within an app in Android,

concern for memory usage in resource-limited environments, synchronization requirements

of Android Views, as well as other graphics related issues. DRS policy enforcement is imple-

mented in the native part (C++) of the Browser component of the Chromium code 4.2. This

is because this is the point of invocation for all of the channels and most of the necessary

information to perform access control already resides in this component.

• JavaScript interfaces. For the JavaScript interfaces, the origin information is not passed

to the Browser component with the creation of a bridge object. Hence, in the Renderer,

we get the security origin (as in same origin policy) of the calling frame and propagate this

information to the Browser. When the invocation happens, we know the name of the class

method the origin wants to execute, however, we have no way of knowing the class name

of the object this method belongs to since C++ provides no way of retrieving the name of

a Java object’s class in run time. That is why, the retrieval of the class name needs to be

done in the Java facade layer in Chromium in order to be communicated later to the native

layer. This is done after the call to addJavaScriptInterface (so that we do not have to

change this API method) and before the object moves to the native side (so that we still have

class name information). Given the channel name, class name, method name and the web

origin, the Policy Manager is able to make an access control decision for this origin using

the aforementioned data structures to check if the required policies exist for this domain to

execute the method. The Policy Manager first checks if the origin has access to the given

method of the class, and if that is the case, it performs the permissions checks to see if the

permissions given to the origin would be a superset of the permissions used by the requested

method. If the origin passes both checks, then it is allowed to perform the invocation of the

requested method. However, if the decision point set in the respective DPL rule is set to

“user”, then the user is prompted with the description provided for this rule to make the

access control decision.

• Event handlers. For the event handler channel, all the information necessary for enforce-

ment exists in the Browser component. Hence, given the channel name, origin, and the name

of the event handler method, the Policy Manager can enforce the policy. The enforcement
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logic is similar to that for JavaScript interfaces. The Policy Manager first checks if the

origin is allowed to execute the event handler method for a given JavaScript event. If so,

it then performs permission checks on the event handler to see if the origin is granted the

permissions to execute the handler. If that is the case, then the origin is granted access to

this event handler.

• HTML5 API. DRS intercepts the entry point of the onGeolocationShowPrompt callback

for geolocation and the onPermissionRequest callback for other HTML5 resources in the

native part of Chromium code for this channel. We retrieve the resources from the request

object in Chromium and for each resource ask the Policy Manager whether there is a rule

allowing the origin to use that permission, or ask the user if the developer specifies in the

DPL rule for the user to be consulted. If the origin is allowed by a DPL rule (and by the

user if needed), DRS allows the origin to go through with the invocation, else DRS gracefully

blocks the request.
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4.4 SYSTEM EVALUATION

In this section, we evaluate the effectiveness and performance of Draco on commercial

off-the-shelf (COTS) devices.

4.4.1 Effectiveness

In Section 4.2, we described attacks on the CVS Caremark and Job Search apps. To

evaluate the effectiveness of Draco, we enhanced the apps with DPL rules as these are

described in Section 4.3.2. We have installed the apps on a Nexus 5 phone running Android

6.0. We have also updated the WebView system app to a version enhanced with the Draco

Runtime System. In both cases, we found that Draco successfully blocks all illegitimate

access attempts by spurious domains. At the same time, the legitimate domains can function

properly and the app remains fully functional.

4.4.2 Performance

As explained before, DRS consists of: 1) a static analysis unit for determining the permis-

sions used by class methods and event handlers, 2) a parsing module that dissects the policy

rules entered by the developer and permissions used by class and event handler methods and

inserts them into our data structures, and 3) an enforcement unit that intercepts invocations

on JS bridges and invocations made via HTML5 APIs to ensure that the origin making the

request is granted the access right by the developer and to block the request otherwise, or

to prompt the user for granting permissions. We will analyze the performance of each com-

ponent separately. We conduct all of our experiments on a LG Google Nexus 5 smartphone,

which runs Android 6.0 (Marshmallow) and is equipped with 2.26GHz quad-core Qualcomm

Snapdragon 800 processor and 2GB RAM.

App decompilation and static analysis unit. We first require the decompilation of class

files associated with Draconian policy rules into smali bytecode. Currently, we are performing

this off-line (not on Android); however, there are existing tools that can decompile apps on

the Android platform. For example, apktool [64] decompiles all the resource and class files

in the target app between approximately 60 to 90 seconds, depending on the size of the app.

Another tool, DexDump [70], can perform app decompilation much more efficiently since it

parses classes on demand. We hope to borrow from their techniques and use them in our

future implementation.
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Table 4.2: Runtime for static analysis on Nexus 5

Static Analysis cost average (s) standard deviation

small class (5 methods) 3.004 0.054
medium class (10 methods) 5.940 0.114

large class (15 methods) 8.766 0.167

After decompiling the target app, we statically analyze the classes associated with Draco-

nian policy rules to determine which permissions are used by each exposed method. Table 4.2

shows the performance results of permission extraction of class methods for three cases: 1) a

small class with 5 methods (506 smali instructions), 2) medium-sized class with 10 methods

(1106 smali instructions), and 3) a larger class with 15 methods (1706 smali instructions).

Here, the total number of smali instructions in methods is the dominating factor for the

performance since for each instruction we perform a lookup in our data structure for PScout

mappings.

Policy parsing module. The Parsing module runs each time the app is launched by the

user in order to populate the in-memory policy and permission maps. As explained before,

there are two sub-components of the parsing module; the policy parser, which simply parses

the policy rule inserted by the developer, and the permission parser, which parses the output

of the static analysis to identify the permissions used by class methods and event handlers

for the classes and event handlers declared in the DPL rules. Both of these components incur

minimal overhead: in total, we identify the run time of the parsing module to be in the order

of miliseconds as shown in Table 4.3. This cost is negligible compared to the launch time of

Android apps, which is expected to be in the order of seconds [71].

• Policy parsing. The complexity of the inserted DPL rule can change the total run time of

the parsing operation. In order to investigate how rule complexity affects performance, we

have considered three types of rules: 1) a simple DPL rule that involves 5 class methods,

2) a large DPL rule that involves 15 class methods, and 3) a semantically large DPL rule

that involves all class methods (i.e., uses all tag). Listing 4.2 shows how these rules can

be added to the app. We only investigate the performance for the JavaScript interface

channel; however, the results are comparable for other channels since the construction of

the policy rules are similar. We run each experiment 10 times and report average run time

and standard deviation. Table 4.3 shows the results for the three types of policy rules (case

1, 2, 3). First we observe that the parsing overhead, is negligible, in the order of a few

miliseconds. Additionally, as the number of class methods increases (from 5 to 15), the run

time slightly increases. This is simply because number of insertion operations performed is
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Listing 4.2: Small, large, semantically large rules for JS interfaces

// small policy rule

mWebView.loadUrl("policyrule;allowjsinterface;

https://mydomain.com;GeoWebViewActivity$JsObject<classMethod1,

classMethod2,classMethod3,classMethod4,classMethod5>");

// large policy rule

mWebView.loadUrl("policyrule;allowjsinterface;

https://mydomain.com;GeoWebViewActivity$JsObject<classMethod1,

classMethod2,..., classMethod14, classMethod15>");

// (semantically) large policy rule

mWebView.loadUrl("policyrule;allowjsinterface;

https://mydomain.com;GeoWebViewActivity$JsObject<all>")

proportional to the number of class methods in the rule(O(n)). However, for a policy that

addresses all class methods, the run time is even smaller than that of a simple policy. This

is because all tag semantically means that all class methods are involved, and when it is

used, we do not require insertion of all the class methods into the policy map one by one.

• Permission parsing. The performance of permission parsing is affected by the the number of

permissions used by the app, and the number of sensitive API calls (i.e., required permissions

for the sensitive API call) used in each method. It has been shown that on average Android

apps use five permissions [72]. Therefore, we consider two cases: 1) a small permission file

(created by the static analysis unit) for a class with five methods where each method uses

five or less permissions, 2) a large permission file with 20 class methods and five permissions

for each method. We consider the second case to be not very likely to occur and use it only

as an upper bound on the performance for permission parsing. For both of these cases, we

use a simple policy rule (including 5 methods), with the addition of the permission list that

contains all the five permissions the app (without using all tag) grants to the given subject.

Table 4.3 shows the results of policy parsing (which include permission parsing). As can be

observed from the table, the run times are still in the order of milliseconds, with the total

run time being higher for when the permission file that contains many methods that use all

of the app permissions.

Enforcement. It is important for the enforcement to be efficient since this an action that is

expected to be performed frequently during the lifetime of an app. Thus, any delay can affect

the app’s run time performance and degrade user experience. Here, we take a closer look at

the performance of the enforcement unit for the JavaScript interface and HTML5 channels.
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Table 4.3: Runtime for policy rule parsing and insertion on Nexus 5

Parsing cost average (ms) standard deviation

(1) small policy 1.874 1.248
(2) large policy 2.453 0.811

(3) semantically large policy 1.633 0.847
(1) w/ small permission file 2.428 0.820
(1) w/ large permission file 8.434 2.269

Table 4.4: Runtime for enforcement on JavaScript interface channel on Nexus 5

Enforcement cost average (ms) standard deviation

small policy (allow) 0.356 0.260
small policy (block) 0.243 0.051
large policy (allow) 0.965 1.214
large policy (block) 0.551 0.124

semantically large policy (allow) 0.146 0.0252

We do not present our results for the event handler channel since they are intrinsically similar

to those of the JavaScript interface channel. For the former cases, we report the average

time it takes (and standard deviation) to allow and disallow an origin.

• JavaScript interface channel. We take the same approach as in our evaluation for policy

parsing, and perform enforcement corresponding to small (5 methods), large (15 methods)

and semantically large (all methods) policy rules. For each case, we assume the origin

wants to access the method that is the last method in the provided method list so that

we get an upper bound on the run time (since we perform linear search in vector that

contains the methods associated with a policy rule). Table 4.4 shows the results for the

JavaScript interface channel. Evidently, the enforcement overhead is negligible (in the order

of microseconds).

• HTML5 API channel. For the HTML5 API channel, we consider two cases: 1) an access

control decision is made solely by the system, and 2) the user is prompted to make a decision

on the use of permissions. Table 4.5 shows the time taken by the system for both of these

cases for the HTML5 API channel. We do not show the time the user takes to grant or

revoke access to permission-protected resources. Naturally, this will be at least in the order

of seconds with a large variation, and is many orders of magnitude larger than the purely-

system based access control decision. Again we observe sub-millisecond delays highlighting

the efficiency of DRS enforcement.
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Table 4.5: Runtime for enforcement on HTML5 channel on Nexus 5

Enforcement cost average (ms) standard deviation

system (allow) 0.282 0.093
system (block) 0.130 0.029

user (allow) 0.326 0.116
user (block) 0.286 0.076

4.5 SUMMARY

In this chapter, we investigated the overlooked JavaScript bridge vulnerabilities for native

mobile web applications that use embedded web browsers (WebView) to display web content.

We showed cases where highly-popular Android apps become vulnerable and inadvertently

expose their internal resources to untrusted web code. By investigating the use of WebView

APIs by app developers, we identified the need for a unified and fine-grained access control

mechanism on WebView. Hence, we proposed Draco, a unified access control framework that

allows developers to declare access rules for the exposed resources with fine granularity and

enforces these access policies at runtime. Draco’s declarative policy language can be used by

app developers to create policy rules that specify their trusted or semi-trusted origins with

capabilities defining their access coverage on the three access channels (JavaScript inteface,

event handlers, HTML5). Draco Runtime System then enforces these policy rules in an

effective and efficient manner. This approach also saves developers from implementing bur-

densome programming measures (i.e., navigation control, multiple WebViews with different

levels of exposure) in an attempt to prevent exposed resources from web domains. Draco is

easily deployable since it does not require Android OS modifications, but only enhancements

in the Android System WebView app.

55



CHAPTER 5: SECURING INTER-PROCESS COMMUNICATION

As one of its main access control mechanisms, Android utilizes a permission model in order

to regulate access to sensitive user and platform resources. In this chapter, we will present

our security analysis on a key part of this model, namely custom permissions, which is an

access control mechanism to secure inter-process communication on the Android platform.

We found custom permissions to be suffering from serious design issues that enable malicious

apps to escalate their privileges to obtain unfettered access to critical device resources as

well as permission-protected components of other apps. We will present our systematic and

formally-verified re-design of custom permissions to eradicate these perennial issues. This

chapter is based on our work in [6].

5.1 INTRODUCTION

Android’s permission model forms the security basis for the critical operations that can be

performed on the platform by the apps. In a nutshell, the main purpose of this model is to

regulate access to platform and app resources, which is achieved by utilizing a set of security

labels, called permissions. In order to protect the platform resources (e.g., microphone,

Internet etc.), the platform uses system permissions, which are a predefined set of permissions

introduced by the platform itself. The permission model also provides the platform with

finer-grained security as a means to protect Inter-Process Communication (IPC) between

different app or system components. Specifically for this purpose, Android introduces custom

permissions : these are application-defined permissions which allow developers to regulate

access to their app components by other apps. In fact, the use of custom permissions is very

common among third-party applications. According to our study on the top free apps on

the Google Play Store, 65% of the apps define custom permissions, while 70% request them

for their operation.

Unfortunately, design flaws and vulnerabilities in custom permissions can completely com-

promise the security of IPC, inevitably leading to exploits on third-party apps and the plat-

form itself. Previous work has consistently found custom permissions to be problematic

[50, 51], and as a response to these studies, Google made an effort to address the identi-

fied problems by releasing bug fixes. However, similar vulnerabilities still exist even after

Google patched this initial wave of vulnerabilities. In this work, we present two classes of

attacks that exploit the vulnerabilities in custom permissions to get unauthorized access to

platform and app resources. With one of our attacks, a malicious app can bypass the user
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interaction requirements for acquiring dangerous system permissions on Android versions

that support runtime permissions and stealthily access high-risk platform resources (e.g.,

camera, microphone etc.). With our other attack, a malicious app can escalate its privileges

to gain elevated access to the protected components of other apps. We further demonstrate

how an adversary can utilize the aforementioned vulnerabilities to target high profile apps

with millions of downloads, such as CareZone and Skype, and access sensitive user data (e.g.,

medical conditions, insurance information) and functionalities (e.g., VoIP calls). We have

officially reported these attacks to Google, which acknowledged them as severe flaws that

need to be addressed in the next versions of Android.

In our investigation of the Android permission model and its respective source code, we

observed that there is no separation of trust between system and custom permissions in the

Android framework, which leads to the manifestation of permission vulnerabilities; we call

this failure to distinguish custom permissions in the system, the ‘predicament’ of custom

permissions. First, system and custom permissions are currently insufficiently isolated and

they receive the same kind of treatment from Android, which opens up opportunities for

malicious apps to utilize custom permissions to obtain unauthorized access to platform re-

sources. Second, there is currently no enforced naming convention for when declaring custom

permissions—apps are allowed to declare custom permissions with any name they desire.

This creates a confused deputy problem where a privileged app’s protected resources can be

utilized by unauthorized apps that possess different custom permissions declared with the

same name as of the ones used by the privileged app to protect its resources. In order to sys-

tematically address these problems, we propose a design and corresponding implementation

which we call Cusper. Cusper decouples the handling of custom permissions from system

permissions to prevent an adversary from escalating their privileges and stealthily acquiring

system resources. Additionally, Cusper implements an OS-level naming convention for cus-

tom permissions to prevent custom permission spoofing. This is backward-compatible with

existing apps and enables the system to properly identify custom permissions according to

the developer signature of their definer apps.

To prove the correctness of Cusper, one could employ traditional analysis methods such

as testing and static analysis. However, these are typically insufficient since they depend on

the analyst determining all possible test cases, a challenging endeavor. In contrast, formal

methods can be leveraged to build models and verify that key properties are never violated

in a proposed system. In fact, previous work has already used the latter approach to formally

model the Android permission model [42, 43, 44]. Unfortunately, the proposed formal models

are outdated since they correspond to the install time permission model of Android. In order

to verify the correctness of Cusper, we build the first formal model of the Android runtime
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permission model using the Alloy specification language. Specifically, we model the data

abstractions for permission-related structures and the behavior of system operations (e.g.,

install, uninstall, update) that concern permissions for the runtime model, which significantly

differ in terms of both abstractions and behavior from the previous model. We found that

the original permission model violates two fundamental security properties regarding access

to app and platform resources: 1) there should be no unauthorized component access, and

2) there should be no access to high-risk (‘dangerous’) platform resources without user’s

consent. We leverage our formal model to demonstrate the existence of vulnerabilities that

violate these invariants in the original permissions model and show that, in contrast, Cusper

always satisfies them. Finally, to illustrate Cusper’s practicality, we implement it in Android

and show that it effectively resolves the identified vulnerabilities while incurring a negligible

overhead.

5.2 USE OF CUSTOM PERMISSIONS

Custom permissions provide security to IPC that apps harness for their operation. They

are utilized by app developers to restrict access to components as per the sensitivity of the

protected resource. In this section, we investigate the prevalence of custom permissions

among the top free apps on Google Play and showcase two high-profile apps that we selected

to launch attacks on by exploiting the vulnerabilities in custom permissions.

5.2.1 Prevalence

We collected 50 top free apps from each of the Google Play Store categories (with some

failures in collection) and in total analyzed 1308 apps to identify statistics regarding the

use of custom permissions. As can be seen in Table 5.1, 65% of the apps in our dataset

declare custom permissions (statically or dynamically) and 70% of them request custom

permissions. Additionally, 89% of all the permissions created by these apps are of protection

level signature (see Table 5.2), which indicates that app developers typically use custom

permissions to allow other apps to utilize their protected components only if they are signed

by the same developer or company.

This analysis shows that custom permissions are commonly utilized by app developers.

Vulnerabilities in their use create risks for the security of the platform and key apps. To

illustrate this we have identified ways we can launch attacks on the platform to obtain any

system resource (e.g., camera, microphone) without user consent and on apps to stealthily

access their protected components and data. Apps that utilize custom permissions are
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Table 5.1: Apps at risk due to custom permissions

Usage Number of Apps

Create Static Custom Permissions 834 (64%)
Create Dynamic Custom Permissions 50 (3%)
Create Custom Permissions 847 (65%)
Request Third-party Permissions 919 (70%)
Total number of apps in dataset 1308 (100%)

Table 5.2: Protection Levels of Custom Permissions

Permission Protection Level Number of Permissions

Signature Permissions 1203 (89%)
Dangerous Permissions 14 (1%)
Normal Permissions 40 (2%)
Signature or System Permissions 57 (4%)
Total Number of Permissions 1350 (100%)

potentially susceptible to the attacks that target their protected components when they are

installed on Android 6.0 or newer. This currently includes more than 50% of all Android

devices [73] with a growing user base. This is a widespread security concern: just the apps

in our dataset have been downloaded on average 25 million times.

5.2.2 Case Studies

In this section, we present case studies where sensitive data or resources of popular Android

apps have been leaked through the custom permission vulnerabilities. In order to obtain

the vulnerable components that leak resources, we conduct manual analysis which requires

going through the decompiled application code and crafting attacks specifically for the app

in study. As an example, to attack a vulnerable activity component, we go through the

decompiled code to find the Java file for the activity itself and if it is not obfuscated, we

proceed to inspect the source code to identify whether the intent it expects is of a particular

format. Finally, using this information, we create attack apps that exploit the existing

custom permission vulnerabilities and stealthily activate the component of interest with the

appropriate intent. We will explain the details of how this attack works in Section 5.3.2.

CareZone is a medical Android app produced by a company with the same name. It has

1,000,000+ downloads and has a 4+ rating on the Google Play Store. The app allows users

to store medical-related information such as health background (e.g., blood type, medical
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conditions, allergies etc.), medication lists, medical contacts and their addresses, calendar

events, insurance information, and photos or health files in an organized manner. It also

features calendars to track appointments as well as to-do and notification lists for tracking

tasks. All of this medical data and meta-data is stored in a single content provider which has

been exported and is protected by a signature permission. There are no other dynamic checks

on accessing the content provider. Our attack is able to bypass the signature requirements

and read the entire content provider, which gives us access to the aforementioned sensitive

data without the user’s explicit consent or knowledge. The fact that all this data was stored

in a single content provider seems to reflect the developer’s implicit reliance on the security

guarantees provided by the platform.

Skype is an Android app by Microsoft that allows users to make voice and video calls

over the Internet. It has 500,000,000+ downloads and a 4+ rating. Skype has an activity

which can be invoked to start the call functionality to any telephone number. This activity

is protected using a signature permission which, once bypassed, would allow the adversary

to invoke calls to a specified person or number. This could have many implications. For

example, it could be used as part of a suite of other spying capabilities. Our attack is able to

spoof the original permission and launch Skype calls without the user’s knowledge through

this protected activity.

5.3 ATTACKS

Custom permissions play an important role in enabling re-usability on the Android plat-

form by providing security to IPC; hence, any threat to their proper operation can result

in the compromise of the security of the apps and the platform itself. In this section, we

discuss two types of custom permission vulnerabilities we identified on Android: 1) custom

permission upgrade and 2) confused deputy. By exploiting these vulnerabilities, an app can

bypass user consent screens for granting/denying permissions to obtain high-risk system re-

sources and can also gain unauthorized access to protected components of other apps. We

reported these to Google which acknowledged both of them as severe vulnerabilities. Given

its real-world implications and its prevalence, we believe that the predicament of custom

permissions constitutes a current and notable security risk worth addressing.

Threat Model. We consider an adversary that has the ability to crawl app markets (e.g.,

Google Play Store) to download victim apps of interest, reverse engineer them by utilizing

several tools [64, 63, 62], and analyze the Android manifest files and source code of these

apps to observe the cases where custom permissions are used to protect app components.
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The adversary can build and distribute on app markets a set of malicious apps that exploit

the custom permission vulnerabilities of Android to launch attacks on the victim apps and

on the platform.

5.3.1 Custom Permission Upgrade Attack

Android runtime permission model (supported by Android 6.0 and onward) requires user’s

approval for granting apps permissions of protection level dangerous. This attack enables

a malicious app to completely bypass the user consent screen and automatically obtain any

dangerous system permissions [74].

In particular, there are 24 dangerous permissions in 9 permission groups [75] on the current

version of the Android platform (7.0), which protect access to high-risk system resources (e.g.,

storage, contacts, location, camera, microphone, sms, sensors etc.). Our attack illustrates

how an adversary can gain unfettered access to all high-risk system resources that are

protected by these permissions without the user’s consent. Google acknowledged this attack

as a serious security vulnerability (CVE-2019-2200) [5].

Attack Overview. First, the adversary creates an app that includes in its manifest file a

custom permission declaration with the protection level normal or signature and sets this

custom permission to be a part of a system permission group (e.g., storage, camera etc.).

Then, they update the definition of this custom permission so that the protection level is

changed to dangerous and proceed to push an update to their app on the respective app

market. Here, this update can be pushed to all the app users after the app reaches a target

user base. In addition, specific user groups can be targeted via the use of push services (e.g.,

Google Cloud Messaging (GCM) [76], which is used by 94% of the apps in our database

that utilize custom permissions) that allow sending update notifications, and via enterprise

app stores (e.g., Appaloosa [77]) that enable enforced targeted updates. The expectation

is that since the custom permission is of level dangerous, the user will be prompted at

runtime to make a decision on whether to grant or deny this permission in the runtime

permission model. However, the malicious app automatically gets granted the permission.

In addition, since the runtime permission model grants dangerous permissions on a group

basis, the app also automatically obtains all the other requested dangerous permissions of

the system permission group that the original permission belongs to. Same procedure can

be followed to attack any system permissions group; hence, the adversary can silently obtain

all system permissions simultaneously. Requesting dangerous permissions in the Android

manifest constitutes no problems for the adversary, as permission requirements of an app
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are not directly presented to users at installation since Android 6.0. Hence, the user will be

completely unaware that all these system permissions are granted to the app.

Internals of the Attack. Android does not treat custom permissions any differently

than system permissions. As we will describe in more detail in Section 5.5.2, granting of any

permission is handled according to the permission’s protection level and the SDK level of the

requesting app on the runtime model. Normal and signature permissions are always granted

as install time permissions. For legacy apps (SDK level <23), dangerous permissions are still

install time permissions; whereas for new apps they are granted at runtime. In case a legacy

app gets upgraded to SDK level 23 or more, the system also “upgrades” the granted dangerous

permissions from install time to runtime permissions and automatically grants them if they

were not manually revoked by the user through the permission settings (indicated by the

FLAG PERMISSION REVOKE ON UPGRADE flag being set for the permission). However, the

system does not consider other cases where a change in the definition of a permission can

mistakenly trigger the same permission upgrade operation. In the case of our attack, when

a custom permission declaration is modified by an app update such that the protection level

changes from normal or signature to dangerous, the system wrongfully treats this case as an

app upgrade, and tries to also upgrade the existing permission to a runtime permission even

though the update operation did not change the app’s SDK level. Since Android does not

allow users to revoke normal or signature permissions, the aforementioned flag will never

be set for the existing install permission. Hence, the dangerous permission will be granted

automatically without any user consent. Evidently, this violates a key security principle

that should always hold in the Android runtime permission model: no dangerous runtime

permission should be granted without user interaction.

Note that, the problem here is that the system does not consider the special cases that can

happen in the case of custom permissions. If a system permission is being upgraded from an

install to a runtime permission for an app, this can only mean that the app is being upgraded

to SDK level 23 or more. However, when a custom permission is upgraded for an app, this

can indicate either that the legacy app is being upgraded, or that the permission definition is

being changed from normal or signature to dangerous. Currently, the system is not equipped

with the ability to distinguish between these two cases for custom permissions as it cannot

even distinguish system permissions from custom permissions. To make things worse, the

system allows a third party developer to declare a custom permission as a part of a system

permission group. Thus, the adversary can not only get a dangerous custom permission

silently granted, but they can further get access to all system dangerous permissions in the

same group with any granted dangerous custom permission.
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5.3.2 Confused Deputy Attack

In this attack, the adversary exploits the lack of naming conventions for custom permis-

sions on Android to launch an attack on a victim app that utilizes custom permissions to

protect its components [78]. To do this, the adversary counterfeits the custom permissions

of the victim app by reusing their names in her own permission declarations and takes ad-

vantage of the system’s inability to track the true origin of permissions to access protected

components of the victim app. Google acknowledged this attack as a high-severity security

vulnerability since it bypasses operating system protections that isolate application data

from other applications (CVE-2017-0593) [4].

Attack Overview. In this attack, the adversary’s goal is to get the operating system to

grant their apps a signature custom permission of a victim app that is signed by a different

key than that of the adversary and therefore obtain unauthorized access to the components

protected by this signature permission.

In order to achieve this, the adversary develops two applications: 1) a definer attack app

which spoofs the custom permission of the the victim app by reusing the same permission

name but changing the protection level to dangerous, 2) a user attack app which only

requests this permission in its manifest file. The reason adversary needs two apps to carry

out this particular attack is that Android currently does not allow two applications that

declare a custom permission with the same name to coexist on the same device. Hence,

the adversary’s app cannot simultaneously exist on the device along with the victim app

if it declares a permission with the same name to the one used by the victim. However,

the adversary can divide their attack into two different apps, one that spoofs the custom

permission as long as the victim app is not installed on the device, and a second one that

only requests this permission and is able to coexist with the victim. The definer attack app

needs to be installed first by the user, and this should be followed by the installation of the

user attack app. After the spoofed permission of the definer attack app is granted to the user

attack app at runtime, the definer attack app can be uninstalled by the user or updated by

the app developer (for all users or targeted to a specific group by using services like GCM or

Appaloosa) to remove the custom permission definition so that the victim can be installed

afterwards. After the installation of the victim app, the user attack app is able to launch an

attack on the victim to freely access victim’s signature-protected components even though

it is not signed with the same app certificate as the victim.

Note that there can be many ways for an adversary to get the user to install two ap-

plications on their device. For instance, the app developer can use in-app advertisements

and links to direct the user to app stores to download their other app (e.g., Facebook and
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Messenger). Another effective way would be to utilize a common Android app development

practice called plug-in architectures [79, 80], which on demand unravel new features to the

user in the form of new apps in order to foster re-usability and save storage space by unlock-

ing features only if they are necessary. An example to apps using this architectures is Yoga

Guru [81], which unlocks users new yoga exercises—as part of new apps—only after making

progress with the set of exercises they currently have.

Internals of the Attack. During the installation or the update of an app, if a permission

definition is removed from the system due to this operation, the system iterates over the

existing apps to readjust their granted permissions. The desired outcome of this behavior is

that all the undefined permissions should be revoked to the remaining apps after an unin-

stallation or an update. However, instead of immediately revoking an undefined permission

to the remaining apps, the system instead revokes it only if a new permission with the same

name is being redeclared. Even though this initially seems unharmful since the granted

permission is rendered useless until it is redefined, this behavior is what enables our attack.

Once the permission name is recycled by the introduction of a new signature permission,

due to the mismatch of signatures, the system attempts to revoke this permission to the

adversary; however, it mistakenly only revokes install permissions and fails to do so for run-

time permissions. This, in turn, leaves the undefined runtime permissions granted to the

app. Since Android utilizes only the names of permissions during permission enforcement, it

cannot differentiate between two distinct permissions with the same declared name. Hence,

the app holding a “dormant” dangerous permission gains unauthorized access to components

protected with a signature permission with the same name. Evidently, this violates a key

security principle that should always hold in the Android permission model: there should be

no unauthorized component access.

Note that again the framework developers seem to disregard the peculiarities and corner

cases created by custom permissions. Currently, a third-party app cannot define a custom

permission using the name of an existing system permission. It was, however, possible for

them to use the name of a new system permission that were to be defined in the next

version of the OS, to hijack the system permissions [82]. Google’s fix to this security vul-

nerability was that the system would always take the ownership of permissions defined by

itself; hence, spoofing attacks on system permissions should not succeed anymore as the

platform is treated as the main principal to define/remove system permissions under any

circumstance. However, a similar approach cannot be applied to custom permissions as the

system cannot make a decision regarding the ownership of a permission between two apps

that define the same custom permission. Hence, we not only need to identify whether a
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permission is system or custom, but in the latter case, we also need a way to identify its

origin and treat it as a different permission in case there are other permissions with the

same name. It is worth noting that whether a permission is custom or system cannot be

determined solely based on its name as even custom permissions can currently use system

prefixes (e.g. android.permission) and system apps can create permissions with any name

without being forced to use a system prefix (e.g., browser permissions).

5.4 CUSPER

System permissions are defined by the platform—a privileged principal—whereas custom

permissions are defined by apps—less privileged principals. The former kind typically pro-

tects system resources while the latter is utilized to protect inter-component communication

between apps. The fact that the system treats them the same, results in severe security

vulnerabilities as the ones we discovered (Section 5.3). Note that other vulnerabilities might

also exist or might manifest in the future because of this non-separation between the two

classes of permissions. Ideally, we need a new design which will allow us to achieve a clean

separation of trust between the system and custom permissions. This way, the system will

have to handle the two cases differently avoiding logic errors and at the same time, any

potential vulnerabilities in third party app custom permissions will not allow privilege es-

calation, which can enable exploits of system permissions and platform resources. However,

such a new design needs to be carefully constructed to be practical. In fact, it needs to

be as simple as possible to be adopted in practice, and backward compatible. A complete

redesign of the Android permission model would require non-trivial modifications to the

Android framework while thousands of apps relying on custom permission would be imme-

diately affected. Instead, in our work, we introduce two main design principles which can

easily be incorporated into the current design of Android permissions, require no changes to

the existing apps, and can guarantee a separation of trust eliminating the threat of privilege

escalation in permissions, without breaking the operation of system and third-party compo-

nents that rely on permissions. These design principles are: (a) decoupling of system and

custom permissions; (b) new naming scheme for custom permissions. We implement these

in our system that we call Cusper.

5.4.1 Isolating System from Custom Permissions

Currently, Android does not maintain distinct representations for system and custom per-

missions, that is, the system does not track whether a permission originated from the system
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or from a third-party app. Due to this reason, both types of permissions are also granted

and enforced in the same fashion. As we have shown in Section 5.3, this is problematic as it

allows apps to use custom permissions to gain unauthorized access to system permissions.

For example, a malicious app can declare a custom permission and assign it to a system

permission group. This behavior is allowed by Android since it does not differentiate be-

tween the two permission types. Thus, when the custom permission is granted, the app

automatically gains access to the system permissions in the same group, essentially elevat-

ing its privileges from a permission defined by a low trust principal to permissions defined

by the platform. In our system, we never allow custom permissions to share groups with

system permissions. Additionally, the fact that Android internally treats all permissions the

same way is an important limitation with security repercussions: platform developers tend

to overlook the existence of custom permissions when handling permissions. The custom

permission upgrade attack is an example of that. To overcome this, in our system, system

and custom permissions have distinct representations in the platform. By doing this, we can

differentiate between the two types of permissions during granting as well as enforcement

and apply different strategies depending on the type of permissions.

Implementation. In order to decouple the two permission kinds, one could create separate

object representations and data structures. This would require a complete redesign of the An-

droid permission implementation throughout the Android framework which we think is im-

practical. Alternatively one could use existing fields in the current permission representation

in Android which can give us information on the source of a permission. BasePermission

class has a sourcePackage field that indicates the originating package of a permission. For

system permissions defined in the platform manifest, this field is set to android, for sys-

tem permissions defined in system packages, it usually starts with com.android, and for

custom permissions it is the package name of the defining third-party app. However, the

package name itself cannot be used to identify whether a package is system or third-party,

as there are already system apps with package names not starting with com.android (e.g.,

browser) and even third-party apps can have package names starting with the system pre-

fixes (com.android etc.). Hence, sourcePackage is not a reliable identifier of whether a

permission is custom or system.

Instead, a both practical and robust approach, would be to extend the object representa-

tion of a permission with an additional member variable, indicating whether this permission

is a custom permission. In Cusper, we implement this by augmenting the BasePermission

and the PackageParser.Permission classes. The value of the new variable is assigned when

an app’s manifest is parsed (PackageParser.java) during installation or upgrade. If the
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app under investigation is untrusted (as indicated by its non-platform signature), we mark its

permissions as custom. When parsing an untrusted app’s manifest, we further check whether

the app developer assigned a custom permission to a system permission group. In this case,

we ignore the assignment, which results in the permission having no group. Moreover, if

the app declares a custom permission group, we ensure it does not use a system permission

group prefix (android.permission-group). In essence, we thwart the vulnerability while

ensuring that even if future vulnerabilities manifest, there will be no escalation to system

permissions.

After doing this, we can now track the creation of custom permissions by third-party apps.

In order to particularly thwart the Custom Permission Upgrade, when a custom permission—

which we can now effectively and efficiently differentiate from system permissions—is created

with the protection level normal or signature (i.e., install permission), we simply set the

FLAG PERMISSION REVOKE ON UPGRADE flag so that the permission will not be granted

automatically if it is later updated to be a dangerous (runtime) permission.

5.4.2 Naming Conventions for Custom Permissions

Android allows third-party apps from different developers to declare permissions with the

same name. The current solution is to never allow two permission declarations with the

same name to exist on the device. While this sounds effective, it is unfortunately unable to

stop the second attack we demonstrated: a definer app A declares a permission and another

app B gets the permission granted. When the first app A is uninstalled and a victim app C

comes in declaring and using the same permission to protect its components, it is vulnerable

to confused deputy attacks from app B. We solve this problem by introducing an internal

naming convention: we enforce that all custom permission names are internally prefixed

with the source id of the app that declares it. Note that we do not expect app developers

to change their practices. Custom permissions are still declared with their original names

in the manifest files of apps to allow backward compatibility. However, in our system, the

custom permission names are translated to source id : permission name. Thus, even if

permission revocation such as in the above attack scenario fails, the attack will be rendered

ineffective. This is because, as far as our system is concerned, the granted permission to app

B will be an entirely different permission than the one app C uses to protect its components.

Choosing the appropriate source id is not straightforward. Consider for example using

an app’s package name as the source id. This introduces two main problems. First,

repackaged apps distributed on third-party application markets could use the package name

of an app distributed on Google Play. Thus, the repackaged app could take the role of the
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definer attack app (see Section 5.3) and instigate a confused deputy attack. This is possible

since the repackaged app and the victim app share the same package name and a permission

created by the repackaged app cannot be distinguished from the one created by the victim

if they share the same permission name. Second, using the package name as the source id

might break the utility of signature custom permissions for some use cases. For example,

developers that have a set of applications which utilize each other’s components, commonly

use signature permissions to protect the components of their apps from others. Since the

installation order cannot be determined in advance, each app in the set has to declare the

same permission (i.e., same name and protection level) in their manifest to make sure this

permission will be created in the system. If permissions are prefixed with their declarer

app’s package name, then the system will treat them as different permissions. Therefore,

any attempted interaction will be wrongfully blocked.

In Cusper, we instead use the app’s signature as the source id to prefix permission names.

In the case of a repackaged app, assuming the malicious developer does not possess the private

keys of the victim app developer, the declared permission will be a different permission in the

system than the victim’s declared permission. Moreover, utility is preserved since custom

permissions with the signature level will be treated as the same permission as long as they

come from the same developer, which is exactly the purpose. Note that the same scheme

can also be utilized for permission tree names.

Lastly, the official suggestion to Android app developers which declare custom permissions,

is to use names that follow the reverse domain name paradigm (similar to the one for package

names). However, Android does not enforce this naming convention. Even though it will

ignore a permission declaration with the exact same name as an existing permission, it

allows third-party apps to use a system permission name prefix (e.g., android.permission)

in their custom permission declarations. Since permission names and groups are currently

the only information the system has regarding the intention and source of the permission,

this treatment is at the very least hazardous. In Cusper, we address this naturally as we

add prefixes to permission names and never allow a custom permission to use a name prefix

reserved for system permissions. Since we decouple the two types, we can now identify

the type and origin of permissions, and readily enforce this rule. To maintain backward

compatibility and ensure that the custom and system permission names are distinct, we also

ignore system permission names for custom permissions (as the original system currently

does).

Implementation. To thwart custom permission spoofing attacks of any sort (including our

Confused Deputy attack), apart from distinguishing between custom and system permissions,
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we further need a way to track the origin of custom permissions and uniquely identify them in

the system. Towards this end, we implement a naming convention for custom permissions in

Cusper. Our implementation consists primarily of a permission name translation operation

to prefix the permission names with their source id to ensure uniqueness in the system. This

translation happens during installation and update for the names of the declared custom

permissions and requested install time permissions, and at runtime for dangerous permissions

and the permissions used to protect components (guards).

At the time of installation, we allow the system to parse declared custom permission

names from an untrusted app’s manifest; however, we translate their names to be prefixed

with the hash of their app’s signature before the actual permission is created in the sys-

tem. In the case an app is signed with multiple keys, we sort the hashes of the keys and

concatenate them. Note that one could attempt to perform the translation in place. For ex-

ample, it could perform the translation while parsing a permission name from the manifest.

However, at that point, the app’s certificates are not yet collected. Doing so would in-

cur non-negligible overhead since it involves a number of file opening and reading operations

(PackageParser.collectCertificates()). Instead, we keep the parsed data unaltered un-

til after the certificate collection normally happens. Then, we scan the package’s meta-data

to perform the necessary translations. Our approach resulted in great performance savings

which keep Cusper’s performance comparable to the original system (see Section 5.6).

Similarly, we first proceed to translate the names of the requested permissions during

installation or update. This is done to correctly grant install time permissions (i.e., normal

and signature). Note that a requested permission might not necessarily exist in the system

at this time and therefore the permission name translation cannot happen. For example,

an app that declares the permission might be installed at a later point in time. Since the

declared permission will be translated, it will essentially be treated as a different permission

than the one requested, violating application developers’ expectations. This is not a problem

with install time permissions: the permission correctly will not be granted as its definition

does not exist on the system at the time of installation, which is on a par with the behavior

of the original Android OS. In the case of dangerous permissions which are granted by the

user at runtime, we need to dynamically check for existing declared permissions. Therefore,

we perform a requested permission translation at runtime. In particular, when a dangerous

permission is to be displayed to the user, we perform a scan on all declared permissions to

find a custom permission with the same suffix as the requested permission. In our implemen-

tation, we do not allow declaration of custom permissions with the same name which ensures

that the scan will result in only one possible permission. This is also the current design of

Android which does not allow two apps to declare the same permission. Note, however, that
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since we prefix custom permissions, one could extend our system to allow multiple apps to

use the same custom permission names. In case of an app requesting that permission, we

could readily resolve the conflict if one of the declarers has the same signature. If all declarer

apps come from different developers, a mechanism similar to Intent filters could be utilized

to allow the user to select the appropriate declarer app.

It is worth noting that one could alternatively create a separate hash map for custom

permissions (e.g., key-value pairs of (suffix, prefix)) to avoid the linear scan for suffix lookup.

However, this hash map would need to be kept consistent with the original hash map for all

declared permissions in the system (e.g., tracking addition/removal of permissions), which

is hard to achieve since there are multiple places throughout the Android source code where

this in-memory data structure is updated or sometimes even constructed from scratch from

files in persistent storage. Hence, for the sake of consistency and not breaking utility, we

prefer the linear scan method and do not change the structure of the in-memory data types

for permissions. As we will show in our evaluation in Section 5.6, this method does not

result in any significant overhead.

Finally, as for permissions that are used to protect app components (guards), their name

translation takes place at runtime during enforcement since a guard might not necessarily

exist in the system at the time of installation.

5.5 ANDROID PERMISSIONS ALLOY MODEL

As a part of the software development process, to verify that a piece of software meets

the requirements, it is common practice in industry to rely only on software testing and not

provide formal proofs of program correctness for the underlying model as formal verification

is highly time consuming, difficult and expensive. However, we argue that fundamental

components like a permission system are naturally worth more effort as any failure in such

components can make way for critical security vulnerabilities or even render the security of

the whole system ineffective. Additionally, numerous security bug reports on similar issues

present further proof that the current testing methodologies for Android permissions are not

completely effective and a better way of proving program correctness is necessary. Hence,

in this section, we focus on providing a formal model of Android (runtime) permissions and

a formal proof for the correctness of our design for Cusper.

Formal verification allows us to systematically reason about our design of Cusper by

covering many cases that would otherwise be difficult to investigate with static analysis

or testing. This is not to say software testing is unnecessary when a formal correctness

proof is provided. In fact, we still need software testing to verify that our implementation

70



conforms to our proposed model (which is formally verified to be correct). On the other hand,

“formal verification reduces the problem of confidence in program correctness to the problem

of confidence in specification correctness” [83]. In other words, verification is performed

not on the actual implementation but on a representation that is as close to the original

implementation as possible. This is because it is challenging to perform formal verification

at a scale required by source code, especially at the huge scale of the Android source code.

Progress in the area does exist towards this for other programming languages [84], but

such approaches are typically employed at the time of development, where the developer is

required to annotate the code. This would be infeasible in our case where a large portion

of the Android source code is already written. Additionally, correctness is proved only with

respect to a set of fundamental properties that were defined based on the specification. There

is no guarantee the system will behave correctly under any condition that was not a part of

the defined properties or in case of redesigns of the system that might invalidate the model

assumptions. Hence, the state of the art formal verification is not a silver bullet but still a

best effort technique for proving correctness.

To analyze the security of Android permissions, previous work proposed formal models

that correspond to the older Android versions which supported only install-time permissions

[42, 43, 44]. Unfortunately, no such model exists for Android’s currently-adopted runtime

permissions. Hence, we build the first formal model of the Android runtime permissions

and use it to verify the correctness of Cusper. This allows us to investigate Cusper under

many cases such as all possible installation orders and app declarations. Note that having

such a formal model has other benefits; for example, security researchers can use it to verify

other properties of their interest on the runtime permission model. We based our model

on the Alloy implementation of [42] as Alloy is a high-level specification language that is

easy to interpret. However, we spend a significant amount of effort to extend this model to

conform to the official specification for the new runtime permissions [18]. We analyze the

security of the model through an automated analysis and show that when it is augmented

with the design of Cusper, the fundamental security properties that were originally violated

are satisfied. Our main contributions to the existing formal analysis on Android permissions

can be summarized as follows:

• We updated the definitions of permission-related data abstractions in the model to

comply with the new definitions of the runtime permission model.

• We significantly updated the permission granting scheme to comply with the complex

granting scheme of the runtime model specification (e.g., permissions can be granted

as either install or runtime).
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• We implemented permission groups and permission granting on a group basis for dan-

gerous permissions according to the runtime permission model.

• We enabled apps to dynamically change their manifest declarations and introduced an

app update mechanism (apps could not be updated in the previous model).

• We identified and fixed the bugs in the existing model (e.g., missing signature checks

for permissions).

• We demonstrated the existence of the aforementioned custom permission vulnerabili-

ties in the model.

• We implemented our defense, Cusper, in the model to thwart these vulnerabilities and

showed that Cusper satisfies the fundamental security properties.

We only model the parts of Android that concern permissions (e.g., permission-related data

abstractions and operations) as it would be infeasible to model all of Android due to its large

scope and complexity. Additionally, due to space limitations, we will be only be presenting

the parts of our model that are key to understanding the general operation of the model or

that significantly differ from the previous model. As for the actual Alloy implementation,

we will present only a small part of it in this section. but the full implementation can be

found in [85]. Our model can be dissected into three main parts: 1) abstractions related

to permissions, device architecture, and applications on Android, 2) system operations that

concern permissions, and 3) fundamental security properties to verify the correct behavior

of the model.

5.5.1 Abstractions

In this section, we present the abstractions in our model that correspond to the represen-

tations of permissions, applications and devices on Android.

Permissions. Our Permission abstraction is on a par with what we described in Sec-

tion 2.2.3: each permission is associated with a name, a source package to indicate the

defining package name, a protection level, and at most one permission group. Listing 5.1

presents the Alloy implementation for permissions, protection levels and permission group

abstractions.

Applications and Components. Each Application on Android has a unique package

name, a signature used by the developer to sign the app, and a target SDK level. Addition-

ally, each app can comprise of several components, defined by the set Component, where a

component can be one of the four Android components. Each component can be protected

72



Listing 5.1: Permissions and permission groups in the model

1 sig Permission {

2 name : PermName,

3 protectionLevel : ProtectionLevel,

4 sourcePackage : PackageName,
5 permGroup : lone PermGroupName// if perm belongs to group

6 }

7

8 abstract sig ProtectionLevel {}

9 one sig Normal, Dangerous, Signature extends ProtectionLevel {}

10

11 sig PermissionGroup {

12 name : PermGroupName,

13 perms : Permission -> Time // set of changing perms

14 }

with a permission that we call guard. Furthermore, an application itself can have a guard

to protect all of its components. Component guard takes precedence over the application

guard in case they both exist. Each application can define a set of custom permissions and

request a set of permissions.

In order to keep track of the permissions that are granted to apps, each app is associated

with a permissionsState field that consists of a set of PermissionData objects which

carry system flags and state information (e.g., whether a permission is granted as runtime

or install time) regarding each permission granted to the app at any time. This concept of

“stateful” permissions is one of the major representation differences between the runtime

and the install time models.

In order to implement an app update mechanism, we need to allow apps to dynamically

change the declarations in their manifest file. To achieve this, we associate the fields that

require to be mutable with an object from the totally-ordered set of Time in order to allow

pairing of the fields with different values at different time steps. Obviously, package name

and the signature should be immutable since these are the unique identifiers for apps and

developers. The ability to dynamically change declarations is another important feature we

introduce in our model, as this gives us the ability to update Android apps that are already

installed on a given device. Listing 5.2 demonstrates the application-related abstractions in

Alloy.

Device. Each Device comes with a set of built-in system permissions and a set of custom

permissions defined by third-party apps. We also include a platform signature in our device

representation to correctly perform signature checks when granting signature permissions
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Listing 5.2: Applications and components in the model

1 sig Application {

2 packageName : PackageName,
3 signature : AppSignature,
4 declaredPerms : Permission -> Time, // custom permissions

5 usesPerms : PermName -> Time, // requested permissions

6 guard : lone PermName, // protects all components

7 components : set Component,

8 targetSDK : Int -> Time,

9 // carries info regarding granted perms

10 permissionsState : PermissionData -> Time

11 }

12 abstract sig Component { // def. shortened for brevity

13 app : Application,

14 guard : lone PermName, // protects only this component

15 }

16 sig PermissionData {

17 perm : Permission,

18 flags : Flags,

19 isRuntime : Bool // runtime or install permission

20 }

defined by the system. Listing 5.3 illustrates the device abstraction in Alloy.

5.5.2 System Behavior

In this section, we describe the main system operations (i.e., Alloy predicates) that deal

with Android permissions. By carefully investigating the Android source code, we have

observed that most of these critical operations have either undergone a significant amount of

change or been recently introduced with the runtime permission model. Specifically, apart

from the significant change in abstractions, main operations such as install, uninstall and

Listing 5.3: An Android Device in the model

1 one sig Device {

2 apps : Application -> Time,

3 builtinPerms : set Permission, // system permissions

4 customPerms : Permission -> Time, // custom permissions

5 platformPackageName : one PackageName,

6 platformSignature : AppSignature,

7 builtinPermGroups : set PermissionGroup // system groups

8 }
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Table 5.3: Cases of grantPermissions. (∗ Precondition: Permission should exist as an install permis-
sion. † Deny if no other case matches.)

Grant Permission Cases Protection Level SDK Level Grant As

Grant install Normal Any Install
Grant install Signature Any Install
Grant legacy install Dangerous <23 Install
Grant upgrade∗ Dangerous >=23 Runtime
Grant runtime Dangerous >=23 Runtime
Deny † - - -

update now all require a scan over all the other existing applications to properly adjust

their permissions whenever there is a change in the set of permissions (e.g., removal of a

permission). Additionally, Android’s permission granting scheme changed drastically with

the introduction of runtime permissions. We aim to reflect all of these changes in our formal

model. It is important to note that the order of statements in the presented predicates

do not affect their correct operation since Alloy is a declarative (rather than imperative)

language.

Grant Permissions. In contrast with the install permission model where permissions can

be granted only at installation, in the runtime permission model, depending on the protection

level and the app’s target SDK level, permissions can be granted as either install or runtime

permissions. Permissions with protection level normal and signature are always granted as

install permissions, whereas for dangerous permissions, the behavior changes based on the

target SDK level of the app being installed.

Table 5.3 shows the cases that can happen for when granting permissions. Each case

will add/remove “stateful” permission objects for this app. As explained in Section 5.3,

we observed implementation flaws in this part of the Android source code which make

the aforementioned attacks possible and we mirrored the same erroneous behavior in our

Alloy predicate for granting permissions (grantPermissions). For example, when denying

“dangling” permissions to apps, we skip to revoke runtime permissions and only revoke install

permissions as it is currently implemented in Android. Also, when a custom permission is

updated from normal to dangerous protection level, we treat this as an app SDK update—

just as Android mistakenly does—and automatically grant the dangerous permission without

user’s consent. Note that our final formal model corrects these and other problematic issues

according to Cusper’s design. Listing 5.4 illustrates this operation; an example to how an

individual case are handled can be found in Listing A.3 in Appendix A.

Installation. As a precondition to the install operation, the app being installed should not
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Listing 5.4: Granting permissions in the Alloy model

1 pred grantPermissions[app : Application, t, t’ : Time] {

2 all pname : app.usesPerms.t’ |

3 pname in (Device.builtinPerms + Device.customPerms.t’).name =⇒
4 (let p = findPermissionByName[pname, t’] {

5 p.protectionLevel = Normal // Case GRANT_INSTALL (normal)

6 =⇒ grantInstallCase[p, app, t, t’]

7 else // Case GRANT_INSTALL (signature)

8 p.protectionLevel = Signature and

9 (verifySignatureForCustomPermission[p, app, t’] or

10 verifySignatureForBuiltinPermission[p, app])

11 =⇒ grantInstallCase[p, app, t, t’]

12 // . . .other cases (grant runtime etc.)

13 else // Case GRANT_DENY (deny permission)

14 no pd : PermissionData | pd.perm.name = pname and pd in

app.permissionsState.t’

15 })

16 else //permission doesnt exist, evoke (wrongfully only install perms)

17 let pd = getPermissionData[pname, app, t]{

18 hasPermissionData[pname, app, t]

19 and pd.isRuntime = True

20 and pd.perm.protectionLevel = Dangerous

21 =⇒ pd in app.permissionsState.t’

22 else

23 no pd : PermissionData | pd.perm.name = pname and pd in

app.permissionsState.t’

24 }

25 // make sure app cannot be granted unrequested permission

26 no pd : app.permissionsState.t’ |

27 pd.perm.name not in app.usesPerms.t’

28 }

exist on the device and the list of apps after the operation is completed should consist strictly

of all the apps before installation augmented by the new app. As a result of installation,

custom permissions of this app will be added to the device. Just as it is currently handled

in Android, our Alloy predicate for installation does not allow an app to declare a custom

permission which has the same name as an existing permission on the device. Custom

permissions that are declared to be part of system permission groups also get added to the

respective groups. Finally, the permissions requested by the app will be granted to the app

without affecting the permissions granted to other apps, that is “stateful” permission objects

should not change.

Uninstallation. The uninstall operation removes an existing app and its custom permis-
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Listing 5.5: Uninstall operation in the Alloy model

1 pred uninstall[t, t’ : Time, app : Application] {

2 app in Device.apps.t // precondition

3 // remove app from list

4 Device.apps.t’ = Device.apps.t - app

5 // remove custom perms defined by app

6 Device.customPerms.t’ = Device.customPerms.t - app.declaredPerms.t

7 all a : Application - app | grantPermissions[a, t, t’]

8 // remove permissions from permission groups

9 all pg : Device.builtinPermGroups, p : Permission |

10 p in pg.perms.t and p not in app.declaredPerms.t’

11 =⇒ p in pg.perms.t’ else p not in pg.perms.t’

12 }

sions from the device and it readjusts the permissions granted to other apps in case there

is a change in the set of custom permissions. In order to achieve this, grantPermissions

is executed for all the apps on the device to reassign permissions and make sure that apps

will be revoked the custom permissions of the removed app. This is a new behavior intro-

duced by Google as a response to the previous bug reports regarding the issues with custom

permissions. Listing 5.5 demonstrates uninstallation in Alloy.

Update. We introduce the update operation in our model since this operation is necessary

to demonstrate the Custom Permission Upgrade vulnerability. Similar to uninstall, if a

custom permission defined by this app is being removed from the manifest file with the

update, we invoke grantPermissions for all other apps on the device in order to revoke

this permission. Additionally, grantPermissions is executed for the app being updated

to readjust its granted permissions, regardless of any change on the set of permissions.

Permission groups are also readjusted such that the permissions removed from the app are

also removed from their respective permission groups and the newly-added permissions are

added to their respective groups. Listing 5.6 demonstrates the update operation in Alloy.

5.5.3 Correctness of Cusper

In order to verify the correctness of a proposed model, one needs to first compile a set of

fundamental properties that need to be satisfied by the model under all conditions. Then, we

need Alloy assertions, which are sanity checks to verify that this model behaves as expected

with respect to these properties.

All security properties that had to be satisfied by the original Android permission model

should also be satisfied by Cusper. Here, we focus on the properties that were violated by
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Listing 5.6: Update operation in the Alloy model

1 pred update[t, t’ : Time, app : Application] {

2 app in Device.apps.t // precondition

3 Device.apps.t’ = Device.apps.t

4 // 1. Fix custom permissions on the device

5 Device.customPerms.t’ =

6 Device.customPerms.t - app.declaredPerms.t + app.declaredPerms.t’

7 // 2. Update all other apps if a perm is removed

8 anyPermissionRemoved[t, t’, app] =⇒updatePermissions[Application - app,

t, t’]

9 else

10 all a : Application - app | a.permissionsState.t’ = a.permissionsState.t

11 // 3. Regrant permissions for the current app

12 grantPermissions[app, t, t’]

13 // 4. Adjust permission groups

14 adjustPermissionGroups[app, t, t’]

15 }

16 pred updatePermissions[apps : set Application, t,t’ : Time] {

17 all app : apps | grantPermissions[app, t, t’]

18 }

the original model. Our observation is that the new classes of vulnerabilities we discussed in

Section 5.3 are made possible because of the violation of two fundamental security properties

that should always hold on the Android runtime permission model: 1) dangerous runtime

permissions should never be granted without user interaction, 2) there should never be an

unauthorized application component access. The first property means that a dangerous

permission should only be granted with the user’s approval for when the app’s target API

level is equal to or more than 23. The second one suggests that an app cannot access

another app’s components if it does not have the right permission for it. For example, if an

app component is being protected by a signature custom permission, only the applications

that possess the same signature as this app should be able to access the component.

In order to verify our observation, we built Alloy assertions of fundamental security prop-

erties and showed that the original model indeed does not satisfy the two aforementioned

properties as the Alloy analyzer is able to produce counterexamples for both assertions

indicating the violation of these properties. These correspond to the attack instances we

have previously described. However, when the permission model is augmented to describe

Cusper, we show that all the security properties are always satisfied, formally verifying the

correctness of our design.
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5.6 SYSTEM EVALUATION

In the previous section, we verify the correctness of the formal model of Cusper which

provides confidence regarding our design decisions. Next, we want to generate evidence

regarding the practicality of Cusper’s respective system implementation. Toward this end,

we empirically evaluate our implementation of Cusper on Android, with respect to (a) its

ability to thwart the specific attacks we presented and (b) its performance overhead incurred

in the affected Android operations.

Effectiveness. To evaluate the effectiveness of Cusper, we carried out the two attacks we

mentioned in Section 5.3 on Cusper-augmented Android and showed that both attacks fail.

First, we attempted the Custom Permission Upgrade attack on Cusper-augmented An-

droid and verified that the attack could no longer succeed. The user is correctly being

consulted to grant the pemission by the system once a permission declaration changes from

a normal protection level to dangerous. Moreover, we verified that a third-party app can

neither assign a custom permission in a system permission group, nor declare a custom per-

mission group using the system permission group naming convention. At the same time,

normal operations of benign third-party and system apps are preserved.

With respect to the Confused Deputy attack, using the the apps mentioned in Section 5.2

(i.e., Skype, CareZone) as well as other real-world apps, we verified that the attack can no

longer succeed while again utility is preserved with Cusper. We further tested that permis-

sion revocation happens correctly when the declarer app is uninstalled. We also verified that

declared custom permissions are prefixed by a hash of the app developer’s signature, and

the same happens for the custom permissions used to protect app components. Finally, we

tested that granting normal and signature permissions at installation time, granting dan-

gerous permissions at runtime, and using the permissions to access protected app or system

components, happen correctly; hence, we do not break any utility.

Efficiency. In evaluating the performance of our system, we focused on the operations

affected by our modifications. These include the app install operation, the app uninstall

operation, runtime (dangerous) permission granting, and permission enforcement. We did

not include our evaluation for the app update operation as its performance is similar to that

of app install. We use a Nexus 5 phone running Android 6.0 (android-6.0.1 r77) for all our

experiments. According to a previous study, Android users have on average 95 apps [86]

installed on their devices. In addition, according to our prevalence study in Section 5.2,

apps create one custom permission on average. In order to evaluate Cusper under realistic

conditions, we mimic this average case in our experiments and make sure the device contains

100 custom permissions along with all of the system permissions.
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Figure 5.1: Performance evaluation of Cusper for installation, uninstallation and runtime
(dangerous) permission granting.

In our app install and app uninstall experiments, we used the Android Debug Bridge

(adb) to install and uninstall an app of size 1.2 MB 100 times. The app declares a custom

permission, with protection-level dangerous, uses the permission, and declares a service

which is protected by that permission. We instrumented the installPackageAsUser()

method in the PackageManagerService class to get the start time of app installation. We

got the end time at the point before the system broadcasts the ACTION PACKAGE ADDED

intent indicating the completion of the package installation. For app uninstallation, we

instrumented the methods deletePackage() and deletePackageX() to get the start time

and end time respectively. Figure 5.1a and Figure 5.1b illustrate our results.

We compared our system with the unmodified Android version (Android). During instal-

lation, our system performs checks during parsing, performs the permission translation, and

handles the permission revocation. While parsing, it checks and stores whether a permission

definition is for a custom permission and it enforces the permission group checks. Then,

it parses the in-memory meta-data of an app to perform a custom permission translation.

Nonetheless, as shown in our evaluation, the performance overheads are indeed negligible:

there is no statistically significant deviation between Cusper and the original version.

In addition, we evaluated the operation of granting a dangerous permission at runtime. We

used an app which requests a custom permission previously defined in the system. Note that
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Figure 5.2: Performance evaluation of Cusper for component access.

this is a process which involves user interaction: the system pops up a dialog box asking the

user to grant or deny the permission request. We automated this process and ran this exper-

iment 100 times. However, to avoid the unpredictable temporal variable of user interaction,

we do not count the time between the display of the dialog box and the time the dialog box

is removed. Our evaluation instrumentation is deployed in the GrantPermissionsActivity

class. Figure 5.1c summarizes our results. Evidently, Cusper does not incur any distinctive

overhead.

Finally, we evaluated the performance of permission enforcement for custom permissions.

For this case, we show performance results for accessing permission-protected app compo-

nents of all kinds (i.e., activity, service, broadcast receiver, and content provider) in Fig-

ure 5.2. As can be seen, Cusper indeed incurs negligible overhead for all types of component
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invocation operations that require permission checks.

In summary, our modifications to the Android system are shown to have no perceivable

performance overhead while they greatly strengthen the security of the Android OS.

5.7 SUMMARY

In this chapter, we investigated the Android runtime permission model and identify design

flaws in custom permissions that can open up ways for adversaries to escalate their privi-

leges to obtain unauthorized access to app components and platform resources. In order to

systematically fix these flaws, we proposed a defense mechanism, Cusper, that provides sep-

aration of trust between system and custom permissions and introduces an internal naming

convention for custom permissions to effectively track their origins. To show the correctness

of our approach, we first constructed a formal model of the Android runtime permission

model using Alloy specification language and formally proved the existence of the vulnera-

bilities in this model. Then, we leveraged this formal model to show that Cusper satisfies the

fundamental security properties that were previously violated due to the custom permission

vulnerabilities. Our evaluation of Cusper on Android showed that Cusper effectively fixes

the existing vulnerabilities while inducing minimal overhead.
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CHAPTER 6: OVERPRIVILEGE IN RUNTIME PERMISSIONS

Android offers apps certain interfaces to communicate with the system to utilize sensi-

tive data and platform resources that are made available by the platform and it utilizes a

permission system to regulate access to these resources. Android 6.0 introduced runtime

permissions to provide users with a finer-grained permission model that offers more con-

textual information to help them make more conscious security decisions. In this chapter,

we demonstrate a new class of attacks on Android runtime permissions that constitute a

significant threat to the security and privacy of Android users. We present the internals of

our attacks and demonstrate their feasibility with user studies. We also demonstrate how

we found existing security mechanisms to fall short in preventing such attacks.

6.1 INTRODUCTION

Android’s permission model has been subject to much criticism due a range of issues

including its coarse granularity [87], side-channels to permission-protected resources [88, 89,

90, 91], and design issues with custom permissions [51, 6], all of which have been addressed

by Google avoiding any significant structural changes to the permission model. Another

aspect of this permission model that was highly reprehended was its static scheme, under

which permissions were granted to applications at installation time and they could never be

revoked throughout the course of the lives of the apps. Previous work has investigated the

effectiveness of Android’ install-time permission model and has concluded that users would

benefit from having the ability to revoke permissions on demand [16]. Finally taking a step

towards bringing more flexibility into such security decisions, Android underwent a major

update in its security model for permissions and switched to a dynamic permission model

(i.e., runtime permissions) where permissions would be requested from the user dynamically

and could be individually revoked by the user at any time. This was primarily done in order

to provide a notion of context (i.e., what triggered the permission dialog) to users, so that

they would have some awareness of how the permissions is going to be utilized and could

make more informed decisions. It is clear that this runtime permission model is a major step

towards achieving least privilege on the Android platform as it aims to grant apps the least

amount of permissions to perform their functionality at any time based on user preferences.

As Android’s permission system forms the backbone of access control on the platform re-

sources and sensitive user data, any issue in this model have the potential to deeply threaten

the security and privacy of all mobile device users. In particular, the runtime permission
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model warrants certain security guarantees for its correct operation. First, the model pro-

vides a contextual guarantee that ensures users will always be given the necessary contextual

information to make informed decisions. This is achieved by allowing only foreground apps

to request permissions in an attempt to make sure contextual cues will always be seen by the

user at the time of requests. Second, the model provides an identity guarantee that ensures

that the user is well-aware of the identity of the app owning the current context. This is

realized by clearly displaying the name of the requesting app in the permission dialogs to

inform the user about the identity of the app in question. In this work, we have identified

that both of these security guarantees are intrinsically broken due to implicit assumptions

that are taken for granted by the platform designers and we show how our findings can be

used to wreak havoc on runtime permissions. First, we show that a background app is still

able to request permissions by utilizing existing Android APIs to freely move within the

activity stack while disguising itself via invisible overlays. Second, we observed that the

naming scheme utilized in the permission dialogs assumes that the app name will uniquely

identify a single installed app on the user device for its secure operation; however, the An-

droid ecosystem does not readily enforce any rules on these names. As a consequence, apps

can now spoof the names of other apps or use internal names that are completely irrelevant

to their Google Play listing names but have the ability to refer to multiple apps at once with

mischievous tricks. The combination of these findings indicate a major identity crisis for

runtime permissions; background apps can now request permissions while impersonating the

foreground app, a catastrophic scenario which we call false transparency attacks. Our at-

tacks constitute a serious security hazard for Android’s runtime permissions because 1) they

allow background apps to stealthily obtain and use permissions, which is clearly undesired

by Android and defeats the purpose of using runtime permissions to provide context, and

2) they create an opportunity for malicious apps to exploit user’s trust in another, possibly

a high-profile app to obtain permissions that they would normally not be able to acquire,

breaking the security guarantees of Android’s permission system all together.

Our attacks serve as a platform for adversaries to easily obtain any set of dangerous

permissions by exploiting user’s trust in other apps. As in all phishing attacks, it is important

that our attacks appear realistic and do not arouse any suspicion in the user in order to

profitably mislead them to grant permissions. This requires the permission dialogs triggered

by the adversary to appear plausible, as users have a strong tendency towards denying

permission requests that seem irrelevant to the app’s use [48, 16]. We achieve this by first

ensuring there is an app on the foreground at the time of a request in order not to make

confusing permission requests that do not provide any context. Then, in order to only

request permissions that are relevant to the functionality of the victim app (e.g., navigation
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app asking for location but not SMS etc.), we infer the identity of the foreground app and

dynamically adjust our attack to only prompt the user for a permission that is already

declared in this app’s manifest file, as this is a strong indication that the permission is

necessary for some utility provided by this app. Android previously provided APIs (e.g.,

getRunningTasks()) as well as public resources (i.e., the proc filesystem) that could be

easily utilized to infer the identity of the foreground app; however, most of these have been

gradually deprecated or shutdown by Google in order to address concerns regarding phishing

on the Android platform. More recent work has employed machine learning techniques

to automatically identify the remaining public parts of the procfs (ProcHarvester) [56] or

public Android APIs (ScanDroid) [57] that can still be used to infer the foreground app by

analyzing the time series information collected from these sources, with a very high success

rate on event more restricted Android versions (7.0 and 8.0). In our work, we build on the

ProcHarvester system and significantly modify it to infer the foreground app in real time

and under realistic scenarios. Our experiments show that we are able to infer the foreground

app with an 85% accuracy within an acceptable time frame.

Additionally, we hypothesize that users might be intrinsically more vulnerable to our

attacks under certain circumstances due to their lack of complete understanding of runtime

permissions as well as their previous interactions with apps for permissions and we can utilize

this knowledge to improve the success of our attacks. To this end, we performed an IRB-

approved user study with 60 participants we recruited from mTurk in order to understand the

effects of these factors on our attacks. Our findings suggest that even though users generally

have a good understanding of the basics of runtime permissions, they are very much confused

about intricate and complex details of this model. In particular, users are not aware of the

security guarantees provided by runtime permissions, making them especially vulnerable to

our attacks. Furthermore, users seem to exhibits consistent behavior in terms of granting

permissions to apps; if they have previously granted a permission to an app, they tend to

repeat this decision for a future request for the same app-permission pair. Hence, adversaries

can utilize this consistency in granting behavior to improve the success of their attacks. We

have shown that a user base of 87% can be successfully mislead to fall victim to our attacks

with this strategy. Additionally, none of our participants reported any suspicious behavior

at the time of our attacks, simply not noticing an attack has taken place.

As we have previously mentioned, Android’s main strategy for defending against phishing

attacks has been revolving around blocking access to certain APIs and public resources that

provide a medium for obtaining the identity of the foreground app to successfully carry out

such attacks. However, we argue that dwelling more on similar approaches that aim for

identifying remaining sensitive parts of procfs as well as other potential side-channels and
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Table 6.1: Android Distribution Dashboard [73]

Code name Version number API level Adoption

Marshmallow 6.0 23 16.9%
Nougat 7.0 24 11.4%

7.1 25 7.8%
Oreo 8.0 26 12.9%

8.1 27 15.4%
Pie 9.0 28 10.4%

Total 74.8%

closing them down to prevent phishing will prove to be infeasible in the long run due to

utility reasons. Hence, we advocate for a more elegant and systematic approach to phishing

on Android by targeting the main enabler of these attacks: the ability to start activities

in the background. In fact, we observe that Google finally decided to move towards this

drastic but clean approach in the most recent Android release, Android Q (released as a

beta preview version as of the time of writing). When implemented correctly, this approach

should indeed be effective against all phishing attacks. However, we identified ways to evade

this security mechanism to still be able to silently start activities in the background; hence,

we are still able to launch our attacks on this latest Android release with some modifications.

6.2 RUNTIME PERMISSIONS IN THE WILD

Our attacks constitute a significant threat to the security of runtime permissions. Here,

we investigate the adoption of runtime permissions to demonstrate the extent of our attacks.

First, we investigate the adoption of Android versions that support runtime permissions

(6.0 - 9.0). As reported by Google, the cumulative adoption of these Android versions is

74.8%, as shown in Table 6.1. This means that the majority of users are using Android

devices that support runtime permissions and are vulnerable to our attacks by default.

Next we investigate the apps that adopted runtime permissions in the wild. For this

purpose, we collected the 80 top free apps of each app category on Google Play store (with

some failures) and obtained a final dataset with 2483 applications. We collected this dataset

in December 2018, when runtime permissions had already been released for a few years.

Table 6.2 summarizes our results. 83% of the apps in our dataset have a target API level

23 or more, indicating that they utilize runtime permissions. Out of these apps, 85% of

them (71% of all apps) request at least one permission of protection level dangerous. This

shows that runtime permissions are highly adopted by app developers and users are already
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Table 6.2: Adoption of permission models and use of dangerous permissions by apps.

Runtime
permissions

Install-time
permissions

Requesting dangerous permission 1755 (71%) 357 (14%)
Not requesting dangerous permission 309 (13%) 62 (2%)

Total 2064 (83%) 419(17%)

very accustomed to dealing with runtime permissions as the majority of the apps do ask for

permissions at runtime. This might indicate a habituation effect, positively impacting the

success of our attacks.

6.3 ATTACKING RUNTIME PERMISSIONS

According to Android’s new runtime permission model, dangerous permissions are re-

quested dynamically by prompting the user with a permission dialog. In this model, only

the foreground apps are expected to request permissions as a means to ensure users will

always be provided with the essential contextual cues (i.e., the triggering UI) at the time of

the request. Additionally, the system ensures that the user will be made aware of the app

owning the current context (and requesting the permission) by additional indicators, such

as the app’s name in the permission dialog. These security guarantees are provided by the

runtime permission model to reliably and securely deliver contextual information. In our

work, we discovered that there are certain ways to break these security guarantees by inval-

idating the implicit assumptions they rely on for their correct operation. By utilizing our

observations, we build phishing-based privilege escalation attacks in the context of runtime

permissions. Our attacks, that we call the false transparency attacks, allow an adversary to

obtain runtime permissions from the background while impersonating other, possibly more

trustworthy apps. This is clearly a violation of the security guarantees promised by Android

permissions, as a false principle obtains a privilege under an illegitimate circumstance. In

this section, we will discuss the essential security guarantees that are promised by the run-

time permission model, how they can be broken to launch phishing-based privilege escalation

attacks on runtime permissions, and the internals of our attacks in detail.

6.3.1 Threat Model.

We assume an adversary that can build Android apps and distribute them on app mar-

kets, such as Google Play (GP) store; however, the adversary is not necessarily a reputable
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developer on GP. Their goal is to obtain a desired set of dangerous permissions, which is

relatively difficult to achieve for non-reputable app developers as shown in previous work

[48]. To this end, the adversary provides an app with some simple and seemingly useful

functionality (e.g., QR code scanner etc.) to lure the users into installing the app. Once

the adversary’s app is installed on ap victim’s device, it will impersonate high-profile apps

in order to stealthily obtain dangerous permissions from the background.

6.3.2 (Breaking) The Essential Security Guarantees of Runtime Permissions

Runtime permissions strive to provide contextual information to users to help them make

conscious decisions while granting or denying permissions. In order to reliably and securely

deliver this contextual information, Android warrants some security guarantees: 1) users

will always be provided with the necessary contextual information, 2) users will be informed

about the identity of the app owning the current context at the time of a permission request.

Here, we discuss how these guarantees rely on the validity of certain implicit assumptions

and present the ways we discovered that can be used to invalidate these assumptions to

consequently break the security guarantees of runtime permissions.

Contextual Guarantee: Users should always be provided with context during

requests by allowing only foreground apps to request permissions. The runtime

permission model strives to provide users increased situational context in order to help

them with their permission decisions. Currently, Android provides contextual information

to dynamic permission requests in the form of graphical user interface; that is, when the user

is presented with a permission dialog, they have the knowledge of what was on the screen

and what they were doing prior to the request to help them understand how this permission

might be used by the app. In order to ensure users are always provided with contextual

information at the time of permission requests, Android allows permissions to be requested

only from the context of UI-based app components such as activities and fragments and the

requesting component has to run on the foreground for this purpose. The implication of this

is that only foreground apps will be able to request permissions. In our work, we discovered

that this assumption is conceptually broken as we can utilize existing features offered to

developers by the Android platform to enable background apps to also request permissions.

To elaborate, Android provides mechanisms that give apps the ability to move up and down

within the activity stack. In addition, apps can be made transparent, simply by setting

a translucent theme. By combining both of these mechanisms, a transparent background

app can be surreptitiously brought to the foreground for a limited amount of time, only
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to immediately request a permission and then it can be moved to the back of the activity

stack once the request is completed by the user. This way, a background app gains the

ability to request permissions without providing any real context to the user as the user is

presented only with the context of the legitimate foreground app due to the transparency of

the background app that is overlaid on top of it. It is important to note here that permission

requests do freeze the UI thread of the requesting app so nothing will happen if the user

clicks on the screen to interact with the app itself. This way, the user will not have the

opportunity to detect the current foreground app is not what app they think it is (i.e., it is

actually the background app in disguise) by simply trying to interact with the app.

Bianchi et al. discusses some of the ways they discovered how a background app can be

moved to the foreground [92]. Here, we discuss some of these techniques that were previously

discussed as well as some other ways we discovered that could achieve the same goal.

• startActivity API. Android provides the startActivity to start new activities, as the

name suggests. According to Bianchi et al., using this API to start an activity from a

service, broadcast receiver or a content provider will place the activity at the top of the

stack if NEW TASK flag is set. However, we found that simply calling startActivity without

setting this flag in these components also seems to achieve the same thing in recent Android

versions. In addition, they found that starting an activity from another activity while setting

the singleInstance flag also places the new activity on top of the stack. We found that

setting this flag is not necessary to achieve this anymore, even simply starting an activity

from a background activity seems to bring the app to the foreground.

• moveTaskTo APIs. moveTaskToFront() API can be used to bring an app to the fore-

ground. This API requires the REORDER TASKS permission, which is of protection level nor-

mal and is granted at installation time without user approval. In addition, moveTaskToBack()

API can be used to bring apps to the back of the activity stack. In this case, we observed

that the app continues running in the background (i.e., Activity.onStop() is not called

unless the activity actually finishes its job).

• requestPermission API. According to Android’s official developer documentation,

requestPermission(String[], int) API can only be called from components with user

interface such as activities and fragments. This is in line with the main goal of runtime per-

missions, to provide users a sense of situational context before they make decisions regarding

permissions. A similar version of this API with different parameters is also implemented in

the Android support API to provide forward-compatibility to legacy apps. This version,

requestPermission(Activity, String[], int), takes an extra activity parameter and

uses the context of this activity to request the permission. This support API makes it possi-
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ble to request permissions from non-UI components, such as services and broadcast receivers.

In addition, if requestPermission() API is called from a non-UI component or from an

active background activity (i.e., brought to the background by moveTaskToBack() API), the

app will be automatically brought to the foreground for the permission request.

Identity guarantee: Users should be made aware of the identity of the requester

via uniquely-identifiable app names in permission dialogs. Android allows apps to

be started automatically via its intent mechanism for IPC without requiring user’s approval

or intervention. This can create an issue for permission requests since the user might not be

able to tell the identity of an automatically-launched app if it were to immediately request a

permission, as they have not personally started or been interacting with this app. In order to

overcome this issue, Android displays the name of the requesting app on permission dialogs

in an attempt to help users quickly identify the app owning the current context.

Even though this mechanism initially seems like an effective solution to app identification

problem for runtime permissions, it is insufficient due to the lack of app name verification

on the Android ecosystem. Each Android app listed on the Google Play store has a Google

Play (GP) listing name that is displayed to the user while browsing this store, as well as an

internal app name that is defined in the resource files of the app’s apk and displayed when the

user is interacting with the app on their device, including in the permission dialogs. Google

Play store does enforce certain restrictions on GP listing names. For example, it produces

warnings to developers when their GP listing name is too similar to that of another app and

does not allow the developers to publish their apps in this case, in an attempt to prevent

typo-squatting and spoofing that can be used towards phishing attacks. However, the same

kind of scrutiny does not seem to be shown when it comes to internal app names as the

Android ecosystem does not enforce any rules on these names. Our observation is that 1)

the internal name of an app can be vastly different than the app’s GP listing name and 2)

multiple apps can share the same app name, even when installed on the same device. For

example, we have successfully published an app on Google Play store, where the internal

name of our app was “this app” even though the GP listing name was completely different,

a case we will make use of in our attacks as we will explain in more detail later. We were

also able to spoof the name of a popular app (i.e., Viber) and successfully release our app

with this internal app name on GP. In short, Android does not perform any verification on

the app names shown in runtime permission dialogs to ensure the identity of the requesting

app matches the user’s expectations.
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6.3.3 Wreaking Havoc on Runtime Permissions: False Transparency Attacks

By combining the inherent ability of apps to move within the task stack in disguise and

Android’s lack of app name verification, we built the false transparency attacks, where a

transparent background app temporarily moves to the foreground while impersonating an-

other, possibly more trustworthy app that was already in use by the user (i.e., on the

foreground) and requests a permission it sees fit. After the user makes a decision to either

grant or deny the permission, the attack app immediately moves to the background again

in order to evade detection so that the user can continue interacting with the legitimate

foreground app without noticing they have been attacked.

A demonstration of our attack including the state of the task stack before and during

the attack can be observed in action in Figure 6.1. Figure 6.1a displays the task stack

immediately before the attack takes place. As can be seen, Viber, a popular communication

app with millions of downloads, is at the front of the task stack (shown in the bottom) and

at the back of the task stack there is another app also called Viber, representing the attack

app running in the background targeting Viber for permissions. Here, it is worth noting

that we are showing the real content of the task stack for demonstration purposes and the

attack app can in fact be easily hidden from the task stack in order to evade detection by the

user, by utilizing the finishAndRemoveTask() API or the android:excludeFromRecents

tag in the Android manifest file as discussed in Section 2.1.4. At the time of the attack,

user will experience a user interface (UI) that is similar to the one in Figure 6.1b. Here,

the app prompting the user for a permission appears to be Viber, as both the UI displayed

underneath the permission dialog and the app name in the dialog strongly indicate the app

to be Viber. However, the request is, as a matter of fact, triggered from the transparent

attack app that surreptitiously made its way to the foreground and covered Viber. This can

be observed by displaying the state of the task stack at the time of the attack, as shown in

Figure 6.1c. As can be seen, the forged Viber app that belongs to the attacker is in fact at

the forefront of the task stack (seen at the bottom) and the real Viber app is immediately

behind it at the time of the attack, creating a confusion about the origin of the permission

request for the users due to the identicalness of the shown user interface to that of Viber.

Additionally, the attacker was able to spoof the internal app name of Viber in the permission

dialog to further mislead the user into thinking the permission request indeed originated

from Viber, as shown in Figure 6.1b. All in all, the contextual cues given to the user in

this attack scenario (i.e., UI, app name, the identity of the foreground app) appear to be

indistinguishable from a benign scenario where Viber is the legitimate permission-requesting

app, from the perspective of device users.
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(a) Pre-attack task stack (b) Stealthy request (c) Task stack during the attack

Figure 6.1: Background app requesting a permission pretending to be the foreground app
(Viber).

Plausible and Realistic Attacks. We intend our attacks to serve as a platform for

adversaries to easily obtain any set of dangerous permissions by exploiting user’s trust in

other apps while not arousing any suspicion. With each request, the adversary is essentially

exposing themselves to the user and is risking the possibility of alerting the user to be

suspicious and take action accordingly (e.g., scan their apps to uninstall questionable ones).

Therefore, it would be in the adversary’s best interest to request permissions sparingly, only

when the possibility of user granting the permission is considerably high. In order to achieve

this, we utilize several techniques as we will now explain.

First, users are accustomed to be asked for permissions by an app running on the fore-

ground. Hence, we do not request permissions when there is no app on the foreground in

order not to surprise user with the permission request. For this purpose, we utilize the

getRunningTasks() API, which previously provided the identity (i.e., package name) of the

app on the foreground, but was deprecated in Android 5.0 due to privacy reasons. However,

we discovered that this API still provides limited amount of information which can be uti-

lized to detect the existence of a foreground app. More specifically, this API now outputs

com.google.android.apps.nexuslauncher if there is no app on the foreground, indicating

the nexus launcher. Else, it outputs the package name of the app calling the API (whether

this app is on the foreground or not), indicating the existence of a running foreground app.
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Second, previous work has shown that when users make decisions to grant or deny per-

missions, they consider the relevance of a requested permission to the functionality of the

app. If they think the app should not require a certain permission for its operation or it

should still work without that permission, they generally choose to not grant the permission

[48, 16]. Taking this observation into account, in our attacks we avoid requesting permis-

sions that are certainly irrelevant to the functionality of the foreground app because such

requests will likely result in the user denying the permission. Here, we consider a permis-

sion to be relevant to the functionality of an app only if the app declares this permission

in its manifest file and intends to use it. In order to identify these relevant permissions,

we first need a mechanism to detect the identity of the victim app on the foreground (i.e.,

its package name) so that we can determine its declared permissions. For this purpose, we

utilize ProcHarvester, which uses machine learning techniques to identify the public parts

of Android’s proc file system (procfs) that can be used to infer the foreground app on An-

droid, even when access to procfs is mostly restricted by Google due to privacy reasons. We

modify ProcHarvester to fit realistic attack scenarios and also implement real-time inference

of time series on top of ProcHarvester to detect the identity of the foreground app in real

time. After obtaining the package name of the foreground app, we can use this information

to query PackageManager to obtain the permissions required by this app and request only

those permissions in our attacks. The details of our ProcHarvester-based implementation

for foreground app inference will be described in Section 6.4.

Additionally, we speculate that there might be other factors that can help with improving

the success and plausibility of our attacks. As such, we hypothesize that users’ general

understanding of how runtime permissions work and their previous decisions regarding trust

in victim apps for permissions might also influence their current decisions and consequently

have a substantial effect on the success of our attacks. Therefore, the attacker should not

only detect the foreground app to identify its relevant permissions, but also be strategic

about which of those permissions should be requested by taking into account users’ past

interactions with victim apps in this context. In order to test the validity of this hypothesis,

we performed an online user study with 60 participants from mTurk. Our study shows that

even though users generally have a good understanding of runtime permissions, they are

confused about the intricate details of this model, rendering them vulnerable to our attacks.

In addition, users are very inclined to grant a permission again if they had previously granted

it to the same app in question; that is, they tend to carry their past decision for granting a

certain permission to an app into the future requests for the same app, permission pair. 62%

of all participants will immediately grant such a permission on the second request without

considering any other factor and 25% of all participants will grant such a permission if
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they think it is required for the functionality of the app, resulting in a total of 87% of

all participants willing to grant a previously-granted permission. Given these results, it is

reasonable for the attacker to mainly target permissions that were previously granted to

the victim in order to maximize the success rate of the attacks and we build our attacks

accordingly based on this observation. We will cover the results of our user study at greater

depth in Section 6.5.

Apart from the functionality reasons to grant permissions, the reputation of the app

developer has also been shown to be another major decision factor for users when granting

permissions and this behavior seems consistent regardless of the permission being requested

[48]. For this reason, it is important that the attacker utilizes victim apps that are highly-

popular and have gained users’ trust in order for the attacks to be successful. Therefore,

we limit our victim apps to be from the top 100 free apps of Google Play (GP) store. This

subset, to our surprise, contains many gaming apps with unknown developers; hence, we

further filter out these apps to finally obtain 62 most popular and high-profile Android apps

developed by well-known/trusted companies and developers. It is worth noting that we have

also devised a way for the adversary to not have to target only a single app from this dataset

and instead target any of these victim apps simultaneously by utilizing the lack of app name

verification against GP listing names. Such a general attack scheme can be desirable over

a scheme that targets only a single app when the attacker needs multiple permissions that

can be provided by only a combination of victim apps, in line with our idea of our attacks

providing an attack platform for adversaries to obtain any of their desired permissions. In

addition, this general scheme can give the adversary more chances to deploy their attacks, as

now there are multiple apps that can be targeted. To elaborate, in this general attack scheme,

the attacker chooses a name that can logically represent any foreground app when displayed

in a permissions dialog, mischievously taking advantage of the plain English interpretation

of the question displayed in the permission dialog. More specifically, the adversary selects

this app as their attack app’s internal name to be displayed in the permission dialog and

the question in the dialog will now read as “Allow this app to access your contacts?”, as

shown in Figure 6.2b. Clearly, this question’s plain English meaning does not distinguish

between apps and is capable of referring to any app that is currently on the foreground for a

given permission request. We verified that such an app is accepted to the GP store and can

be installed on a user device via GP without a problem. We have also verified with our user

study that users seem to disregard this key piece of information in their choices as they are

not at all aware of the security guarantee (i.e., identity guarantee) provided by displaying

app names in the permission dialogs and they are naturally more concerned about the plain

English meaning of the statements in the dialogs.
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(a) Targeted attack scheme (b) General attack scheme

Figure 6.2: Two app name options to be displayed in permission dialogs for the attacker to
impersonate the foreground app (Viber).

Attack Steps. As we have explained the overall idea of our attacks and our methodologies,

we will now give a detailed step by step guide to creating an identity crisis for permissions

on Android.

1)Lurk in the background. The attack app creates a service to continuously run in the

background and periodically collect information about the running apps to determine when

to attack. Prior to Android 8.0, running background services could be achieved by using

Service or IntentService classes. However, Android 8.0 brings restrictions to background

execution of apps in order to preserve device resources to improve user experience. Back-

ground services are now killed a few minutes after the app moves to the background; hence,

use of JobScheduler is more appropriate for our attacks [93] as JobSchedulers can indefi-

nitely run in the background to periodically execute jobs.

2)Chose your victim carefully. The attack app runs our ProcHarvester-based implementa-

tion for foreground app inference while in the background to detect a victim app on the
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foreground. This comprises of continuously monitoring the proc filesystem and running our

real-time foreground app inference algorithm to detect the app if we notice a change in the

foreground. We will describe our implementation in more detail in Section 6.4.

3)Chose your permission carefully. Once we obtain the foreground app, we will query the

PackageManager to obtain the requested permissions of this app and prompt the user for

a permission that was granted to the victim but not to the attacker. If there is multiple

such permissions, we will randomly pick one to request. Note that more intricate selection

algorithms can be used to more properly pick the permission to be requested. For example,

previous work has shown that microphone permission is the most denied permission and

hence can be considered the most valuable from the perspective of our attack [48]. In this

case, the attacker might want to prioritize the microphone permission if the foreground app

can make a very good case of needing microphone (e.g., music app or communication app).

However, we do not perform this kind of advanced permission selection as our main purpose

is to demonstrate our attacks realistically without overly complicating our implementation.

4)Cloak and dagger. Once the attacker determines that a certain permission should be

requested from the victim on the foreground, they will start an invisible activity from the

background service, which will then be automatically moved to the foreground as we have

previously explained in Section 6.3.2. After this, the attacker will prompt the user for the

chosen permission from the context of this invisible activity.

5) Leave no trace behind. Once the user completes the permission request, the attacker will

call the moveTaskToBack() API in order to move to the back of the activity stack to evade

detection and continue running silently. This way, the victim app will be restored back to

the foreground and the user can continue interacting with the victim.

6.4 FOREGROUND APP INFERENCE

As we have described in Section 6.3, the adversarial app running in the background will

continuously try to infer the foreground app to determine if a known victim app is on

the foreground and in that case identify any suitable permissions to be requested while

pretending to be the victim app. Here, we will explain the previous efforts for foreground app

inference, why they fail to work in realistic scenarios, and our implementation for inferring

the foreground app in real time.

Past efforts for foreground app inference. Previously, Android offered convenient

APIs, such as getRunningTasks(), that could be used to easily infer the identity of the

foreground tasks; however, these APIs have been deprecated in Android 5.0 (API level 21)
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by Google in an effort to maintain the privacy of the running apps and prevent phishing

attacks on the platform. This has consequently led to a search to identify other avenues that

can accomplish the same task. Having inherited many features and security mechanisms

from Linux, Android, too, has a proc filesystem (procfs) that provides information about

the running processes and general system statistics in an hierarchical structure that resides

in memory. Security researchers have discovered that Android’s proc filesystem provides

numerous opportunities for attackers to infer the foreground app [54, 55]. In response,

Android has been gradually closing access to all the sensitive parts of the procfs pointed out

by researchers in order to prevent phishing attacks. In the most recent Android versions, all

of per-process information on the proc filesystem has been made private (i.e., accessible only

by the process itself) and only some of the global system information have been left to be

still publicly available due to utility reasons, rending the efforts to identify the foreground

app virtually impossible.

More recently, though, Spreitzer et al. discovered that despite all the strict restrictions

on the procfs, there are still public parts of this filesystem that initially seem innocuous but

in fact can be utilized to effectively identify the foreground app by employing a relatively

more complex analysis in comparison to the previous efforts. To this end, they introduced a

tool named ProcHarvester that uses machine learning techniques to automatically identify

the procfs information leaks (i.e., foreground app, keyboard gestures, visited websites) on

potentially all Android versions, including the newer versions with limited procfs availability,

by performing a time series analysis based on dynamic time warping (DTW) [56]. Then,

they showed that these identified parts can be utilized for foreground app inference via a

similar technique, yielding a high accuracy. In particular, ProcHarvester comprises of two

main components: 1) a monitoring app that logs the public parts of procfs on the user

device and 2) a server as an analysis unit (connected by wire to the phone) that collects

this information from the monitoring app to first build profiles of app starts for the apps in

their dataset and then perform DTW to identify information leaks. ProcHarvester currently

works as an offline tool in a highly-controlled environment and is not capable of inferring

the foreground app in real time, which is an absolute necessity for our attack scenario.

Real-time foreground app inference under realistic scenarios. In our work, we

build on the ProcHarvester system for inferring the foreground app in our attacks. More

specifically, we modified ProcHarvester to adapt to realistic scenarios and implemented real-

time inference of time series to identify the foreground app. Here, we utilize the same dataset

with 20 high-profile apps used in [56], to serve as the victim apps that the adversary will

primarily target for permissions. We first run the original ProcHarvester implementation to
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create profiles of only the procfs resources that yielded high accuracy for app inference [56],

for each app in our dataset. Additionally, in original ProcHarvester system, the analysis unit

(server) is directly connected to the user device by wire and is collecting data from the device

through this connection. However, in our case, adversaries cannot assume a wired connection

to a user device as this does not constitute a realistic attack scenario. Hence, we modified the

monitoring app to send continuous data to a remote server, which is running our foreground

app inference algorithm in real time. This is a plausible assumption as adversaries can easily

obtain the install-time INTERNET permission, which is of normal protection level, in order to

communicate over the Internet.

Most importantly, we implemented a real-time dynamic time warping (DTW) algorithm to

detect the foreground app. Currently, ProcHarvester can only be used as an offline inference

tool, as it works based on the assumption that app launch times will be known to the tool

in advance and the tool can run its DTW-based analysis starting from those launch times.

However, this assumption is unrealistic in real-life scenarios as an attacker cannot assume

to have a priori knowledge regarding app launch times since an app launch is either at the

user’s discretion or is initiated by the system or other apps via IPC. In our work, we devise

a technique to identify an interval of possible values for the app start time and run DTW

starting from all possible values in this interval, rather than using a single starting point as

in the original ProcHarvester, to obtain the foreground app in real time. First, in order to

obtain the starting time of an app launch, we utilize the getRunningTasks() API to monitor

foreground changes. Even though this method was previously deprecated in the hopes of

preventing phishing attacks, we observed that it still provides limited information regarding

the foreground of the device. In particular, whenever there is an app on the foreground,

the getRunningTasks() API outputs the package name of the caller app (regardless of

it being on the foreground or not), and if there is no app on the foreground, it outputs

com.google.android.apps.nexuslauncher, which corresponds to the Android launcher

menu. By continuously monitoring such foreground changes, we can know if an app launch

has been completed if the foreground state changed from “no app” to “some app”, providing

us the approximate end time (α) for the launch operation. Now, if we know the duration

of an app launch event, we can subtract this from the end time to find the approximate

start time of the app launch event. To identify this duration, we run an experiment on our

dataset and show that app launch takes around 379ms on average with a standard deviation

of 32.99ms, which gives us the final range of [α − 379 − 32.99, α − 379 + 32.99]ms for all

possible app start times. For each app in our dataset, we then calculate the DTW-based

distance using each of the possible values in this interval as the starting point of the analysis

(with a 50ms gap between each point) and take their average to obtain the final distance.
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Lowest of these distances corresponds to the foreground app.

In order to evaluate our foreground app inference implementation1, we conduct experi-

ments where we launch each of the 20 apps in our dataset 10 times and report the overall

accuracy and performance. Our experiments indicate a success rate of 85% for correctly

inferring the foreground app with our algorithm. In addition, we find the total time to

estimate the foreground app (after its launch) to be 7.37s on average with a standard de-

viation of 0.98s. We consider this to be a reasonable delay for our attacks as we expect

users to stay engaged with one app before they switch to another for much longer than this

duration (18.9s or more on average) as shown in [94]. Since the foreground app will presum-

ably not change during the analysis, the adversary should not have any problem targeting

the identified app in their attack after this introduced delay. In addition, please note that

the original ProcHarvester tool itself already needs around five seconds of procfs data to

correctly compute the foreground app.

It is worth mentioning that ProcHarvester is inherently device-dependent since an app can

have distinct profiles for a given procfs resource on different mobile device and this would

affect the performance of foreground app inference. Hence, in order to launch a “full-blown

attack” that can work on multiple mobile devices, adversaries would have to obtain the

procfs profiles of their victim apps on all those devices. Here, adversaries could conveniently

adopt a strategy to collect the profiles for only the most commonly-used Android devices in

order to quickly cover a satisfactory user base. Note that this extra profile data should not

greatly affect the performance or accuracy of the foreground app inference, as an attacker

can first identify the type of the device in real time via utilizing existing tools [95] and only

use the respective profiles in their analysis, avoiding DTW-based comparisons with profiles

belonging to other devices in order to improve both accuracy and performance. In our work,

we utilize the profiles from only one Android device (Google Pixel) as we primarily intend

our attacks to serve as a proof of concept.

6.5 USERS’ COMPREHENSION OF PERMISSIONS AND BEHAVIOR

Since our attack is a phishing attack at its core, it is important for it to be realistic and

persuasive for the attack’s overall success. We speculate that users’ comprehension of runtime

permissions and their past decisions in this context will play a significant role in how users

perceive our attacks and impact the success of our attacks. To this end, we performed an

online survey-based user study with 60 participants to more specifically understand how users

1We thank Jingyu Qian for helping us implement and evaluate the aforementioned modifications to the
original ProcHarvester code.
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decisions to grant or deny permissions are affected by these factors. Our findings suggest

that Android users generally have a good understanding of the basics of runtime permissions;

however, they are very much confused about the intricate details of this permission model. In

particular, users are not aware of the critical security guarantees provided by the system for

runtime permissions. Furthermore, users appear to display consistent behavior in terms of

decisions regarding their trust in apps with permissions as they tend to carry their previous

decisions to grant or deny permissions into the future permission requests. More specifically,

we observed that users are particularly more vulnerable to our attacks when they have

previously trusted a victim app with a certain permission and the adversary launches their

attack for the same app-permission pair. In conclusion, we have observed that a user base of

over 80% can be successfully misguided with our attacks by utilizing these findings and none

of our participants seem to notice any suspicious behavior or suspect any foul play during

the attacks.

6.5.1 Recruitment

We first obtained an IRB approval from our institution prior to the commencement of our

user study. After this, we recruited 60 participants from Amazon Mechanical Turk (mTurk)

to complete our online survey. Our inclusion criteria is based on user’s familiarity with

Android; we only recruited people who use Android as their primary phone into our study.

6.5.2 Methodology and Results

Our user study consists of an online survey where we ask participants questions to assess

their knowledge of runtime permissions and also study their reactions to certain permission

dialogs that may or may not correspond to our attacks to understand trends of behavior in

this context. In particular, we investigate four main areas of concern in our survey: 1) users’

general understanding of runtime permissions, 2) the effect of their past behavior on their

current decision-making process, 3) their in-situ reaction to our attacks, 4) their perception

of the security guarantees of the runtime permission model.

At the beginning of this survey, we informed our participants that they will be asked

questions about their experience with Android permissions; however, to avoid unnecessarily

priming them, we do not reveal that we are assessing the feasibility of our attacks and

trying to identify the most favorable circumstances for our attacks. Hence, our user study

still constitutes a conservative approach where users are at their best behavior in terms of

security posture since they have been made aware that we are conducting a study on app
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permissions, a well-known security mechanism on Android. The implication of this is that

our participants might be even more vulnerable to our attacks in the real world than what

our survey results reveal.

It is also worth noting that we prefer conducting an online survey over a real-world study

where we deploy our attacks in the wild for several reasons. To begin with, the problem we

are facing here resembles a chicken and egg problem: we need to build realistic attacks to

understand user behavior; however, we cannot build realistic attacks before we have some

understanding of user behavior. Hence, we argue that it is reasonable to test our hypothesis

in a controlled environment to identify general trends in user behavior. Furthermore, as we

mentioned in Section 6.3.3, our foreground app inference technique exhibits nondeterministic

behavior and it might, although not very frequently, still incorrectly guess the foreground

app at times. Hence, if we were to deploy this scheme in real life, we would obtain noisy user

data, skewing our understanding of trends in user behavior. This is clearly undesirable if we

want to build realistic attacks that follow user behavior as closely as possible. Additionally,

our foreground app inference technique is also device-dependent, requiring adversaries to

fingerprint certain devices depending on their goals in terms of target user base. For example,

an adversary can simply adopt a strategy where they fingerprint some of the most commonly-

used Android devices to quickly cover as many users as possible, which might be sufficient

for them to make profit depending on their objectives. However, our goal with this user

study is to precisely understand user behavior, requiring us to correctly interpret all of our

user data. As such, we would have to take on the improbable task of fingerprinting all

existing Android devices for a “deployed” user study since we cannot foresee the types of

devices our participants own given the current recruitment process on mTurk. Obviously,

this is not only infeasible but also utterly financially-burdening for us. Therefore, in line

with our main goal of providing realistic proof of concept attacks without having to build

full-fledged, fully-deployable attacks, we chose to conduct an online user study to understand

user behavior. Now we will share our results for each of the aforementioned areas of concern

in detail.

General Understanding of Runtime Permissions. In this part of the survey, we ask

participants questions that will reflect their understanding of runtime permissions in order

to assess if they are intrinsically vulnerable to our attacks due to lack of knowledge in this

domain.

We first ask users to self-report their level of familiarity with Android permissions. 7%

of the users identify themselves as expert, 46% as knowledgeable, 42% as average, 3% as

somewhat familiar, 1% as not familiar, as shown in Figure 6.3. Around 70% of the users
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are aware that Android used to have an install-time permission model, but now switched to

runtime permissions and at least 85% of the users have used the runtime permission model.

In addition, 75% of the users are aware that runtime permission model allow them to review

previous decisions regarding permissions and update them. These results so far indicate that

our participants generally have a good understanding of the basics of runtime permissions.

In contrast, we observe that users’ answers significantly sway from the truth when we ask

more intricate questions about the inner workings of runtime permissions. When asked if

they agree with the statement that only foreground apps can request permissions dynami-

cally, 55% of the users say they agree, 22% of the users disagree, and 23% state they do not

know the answer. This statement is indeed true and in accordance with the contextual secu-

rity guarantee promised by the runtime permission model as we explained in Section 6.3.2;

hence, it is surprising that a larger majority of the users did not say they agreed with it.

However, it is worth noting that this finding does not suggest that users are aware of our at-

tack scenarios as we will demonstrate later. It simply indicates that the runtime permission

model gets too confusing for users too quickly and they are not fully aware of the contextual

security guarantee provided by this model. To make matters worse, when participants are

asked their opinion on whether they think an app can prompt the user again for a permission

that was previously granted to it, 47% agree with the statement, 30% say disagree, 23% say

they do not know the answer. This statement is intrinsically false because Android, in fact,

does not allow apps to re-prompt users for granted permissions; permission dialogs are sim-

ply never shown again to the users in this case. It is alarming that such a big portion of users

either think this is a plausible case or they simply do not know the correct answer as this

indicates they become potential victims to our attacks. It is also worth pointing out that the

users who disagree with this statement and show awareness of apps’ inability to re-request

granted permissions still make decisions disregarding this belief and consequently fall prey

to our attacks, as we will show later in this section. This might signal that users have low

confidence in their level of knowledge when it comes to such intricate and complex details

of runtime permissions and/or they simply have too much trust in apps or the operating

system.

Effect of past behavior and trust on current decisions. In this part of the survey, we

ask our participants about how their past decisions to trust apps with permissions affects

their current decisions. Our hypothesis is that we might be able to utilize the knowledge of

user’s past behavior in this context to accordingly adjust our attack to improve its success.

Our attack scheme allows a scenario where the adversary can prompt the user for a permis-

sion while impersonating a victim app that had previously requested the same permission,
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Figure 6.3: Self-reported familiarity with Android permissions

seemingly repeating the permission request for the same app-permission pair. Previously we

had shown that a majority of users falsely believe such a scenario should be always be al-

lowed on the Android platform regardless of what the user’s previous decision was, although

in fact the platform only shows permission dialogs for apps that were previously denied the

permissions they are now requesting. In order to understand if we can take advantage of

this wrong belief to improve the success of our attacks, we ask our participants how they

would react to such secondary permissions requests. More specifically, we ask them if they

would grant a permission that was previously granted or previously denied. In addition, if

they state their decisions would depend on additional factors, we inquire about those with

further questions. Figure 6.4 summarizes our results regarding how users react to secondary

permission requests. The general trend appears to be that users are far more careful when

it comes to granting previously-denied permissions. A significant portion of the users (62%)

are willing to immediately grant a previously-granted permission, whereas only 27% of the

users are willing to grant a previously-denied permission. In total, 28 users (47%) and 16

users (27%) stated their decision would depend on extra factors for previously-denied and for

previously granted permissions, respectively. For users who made this claim, we also inquire
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about what these factors separately for the previously-denied and previously-granted cases.

We allow our participants to list multiple factors. As can be seen in Table 6.3, users still

appear to be more careful when granting a permission that they previously denied to an

app. For both previously-granted and previously-denied permissions, the most important

factor when granting a permission is utility; users are far more willing to grant a permis-

sion on a secondary request if they think it is necessary for the app’s functionality (43%

for previously-denied and 25% for previously-granted permissions). In addition, users state

they will grant a previously-requested permission if they do not particularly care about it or

do not consider it risky. Figure 6.5 shows the distribution of such permissions. By far the

least risky permission according to our participants appears to be calendar.

Given these results, we observe that the most effective strategy for the attacker is to

give precedence to requesting permissions that were previously granted by the user. This

is because 62% of the users readily grant a permission that they previously granted, simply

trusting their previous decision. Furthermore, an additional 25% (15 out of 60) of the users

who claim to base their decisions on utility for such secondary requests might be recruited to

grant a permission again for the second time, given that the attacker, as any other app, can

simply utilize Android APIs to show users a permission rationale dialog with a convincing

explanation of why the permission is required in order to mislead them into believing the

permission is critical to the app’s functionality. This means that as high as 87% of users in

total could be persuaded to grant permissions in case of secondary permission requests, if the

attacker were to adopt the strategy of primarily targeting permissions that were previously

granted. We also cross-validate these results by presenting our participants with a storyboard

of our attacks where we ask them to take action on secondary requests after making an initial

decision, as we will soon discuss. As we have briefly explained in Section 6.3.3, we utilize

this strategy in our attacks.

In-situ reaction to our attacks. In this part of the survey, we provide our participants

with a storyboard of our attacks to study their in-situ reactions. More specifically, we

ask users to role-play given descriptions of real-world scenarios along with screenshots that

display permission requests which were either initiated by a popular Android app or by the

attacker impersonating this victim app.

Here, our main goal is to assess users’ in-situ reaction specifically to multiple requests as

well as to understand if they pay attention to the app names in permission dialogs to be able

to catch the attacks. For this purpose, it is more convenient for users if we described scenarios

involving apps that they are familiar with and could more easily relate to. In addition, as

we have discussed before, findings in previous work suggest that users take into account
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Figure 6.4: Current decision given past behavior and trust

“trustworthiness” of the apps when they are granting permissions [48]. For these reasons, as

a victim app, we utilized Viber, a highly-popular messaging app with millions of downloads

that allows users to communicate with their friends. Our storyboard describes a realistic

scenario where the contacts permission would be requested multiple times, either by Viber

or by the attacker. First, the legitimate Viber app requests the contacts permission to allow

the user to message their friends. Then, after a certain time, when Viber is on the foreground

again, the attacker requests the contacts permission again. For attacker’s request, instead of

spoofing the real name of Viber, they use “this app” as previously shown in Figure 6.2b. We

do this in order to understand if the users would fall for the generic attack that can target

multiple victims simultaneously. Our expectation is that users will deny the permission

if they notice something suspicious. In addition, we simulate the time gap between these

requests by allowing the participants to answer additional survey questions in between the

in-situ behavior questions. This is done in order to create a realistic situation that resonates

with our attack. As can be seen in Figure 6.6, a significant portion of the users (72%)

grant the contacts permission to Viber on the first request. On the second request which

is a deployment of our generic attack, 67% of the users still say they will still grant this
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Table 6.3: Users’ preference of influencing factors when granting permissions

Influencing Factor

Number of users
(previously-

denied
case)

Number of users
(previously-

granted
case)

The requested permission is necessary for
the app to work

26 15

The request is for a permission I do not care
about or do not consider particularly risky

17 9

The requesting app is highly popular (i.e.,
installed by millions of users)

4 0

The requesting app is developed by a
well-known company

5 2

Other 0 0

permission, 18% say they will deny the permission, and 15% of the users state their decision

depends on other factors. For participants who stated they will deny the permission the

second time, we ask them their reasoning to see if they declined because they might have

noticed our attack. For this, we provide them a text field under the “other” category to

write their comments. As shown in Table 6.4, only one participant selected “other” and

they did not mention they noticed the attack in their answer. This shows that all of our 60

participants were oblivious to the change of app name and they did not notice our attack.

In conclusion, our attack has shown to have the potential to successfully reach a user base

of 82%, by including both the users who immediately grant permissions if they previously

granted them (67%) and the users who consider utility a major factor to grant permissions

on the second request (15%). This result also serves as a cross-validation to the previous

part which did not involve similar role-playing involving permissions dialogs but obtained

similar results with more direct questions.

Table 6.4: Reasons for denying the permission on the secondary permission request

Reason Number of users

I already granted this permission to Viber
so it should not ask me again

1

I already denied this permission to Viber so
it should not ask me again

5

I always decline permissions 2
Multiple requests for the same permission
made me suspicious of Viber

2

Other 1
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Figure 6.5: Permission groups that are considered unimportant or non-risky by users

Understanding of security guarantees. We have shown that our participants have a

broken understanding of the contextual security guarantee of runtime permissions. Merely

a half of our users (55%) think that permissions can be requested dynamically only by

foreground apps, while 22% of the users think background apps can also request permissions,

and 23% simply do not have any opinion on the matter.

We ask further questions to our participants in order to assess their awareness of the

identity security guarantee provided by the app names in permission dialogs, as they all

seemed to have failed to notice the unconventional app name (“this app”) in the storyboard

of our attacks. For this purpose, we first present them with two side-by-side screenshots

of permission dialogs where the app name is “Viber” in one dialog and “this app” in the

other, as shown in Figure 6.7. Then, we ask them if they think the end results of these

permission requests are the same; that is, if Viber is either granted or denied the permission

based on the user’s response. As can be seen in Figure 6.8, 73% of users state that they

think both dialogs serve to achieve the same purpose whereas 27% of users do not think

this is the case. This provides further proof that most users are generally unaware of the
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Figure 6.6: In-situ behavior with a simulation of attack

identity guarantee provided by app names in permission dialogs, as the majority still fails

to recognize anything wrong in the app name even after it is specifically brought to their

attention. To our attack’s advantage, they seem to mostly care about the plain English

interpretation of the full statement shown in the dialogs.

6.6 (BREAKING) THE IDEAL DEFENSE

Phishing attacks have been long dreaded on the Android platform as they are very hard

to detect and protect against [92, 53]. In a classic phishing attack on mobile platforms, the

adversary utilizes existing APIs or side channels to identify the victim on the foreground

and immediately launches their own attack app that realistically spoofs components (e.g.,

UI, name etc.) of victim to replace the victim and lead the user to believe that they are

actually interacting with the victim.

Android’s way of dealing with phishing attacks has long been revolving around blocking

access to certain APIs and public resources that provide a medium to obtain the necessary

information (i.e., identity of the foreground app) to successfully carry out such attacks. For
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Figure 6.7: Two potential permission dialogs

example, as we have previously explained, the getRunningTask() API and similar APIs

that provide information regarding the running apps and services on the device have been

deprecated in Android 5.0. In addition, access to the proc filesystem (i.e., procfs), which

provides a side channel to infer the state of the apps running on the device including the

identity of the foreground app, has been gradually closed down.

However, as we have proven with our attacks, these security measures still fall short and

only serve as a band-aid to a deeper problem. We argue that it is infeasible to continue

putting effort into identifying and closing down all side channels that provide information

about the foreground app as some of these channels are cannot be made private or deprecated

due to utility reasons (e.g., monitoring apps depend on procfs to report app statistics etc.).

Hence, a different approach might be necessary to address phishing on Android without

compromising utility. Our observation is that the main enabler of phishing on Android is

the ability of apps to start activities in the background to replace foreground apps. If we

can stop background apps from surreptitiously replacing foreground apps, classic case of
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Figure 6.8: Users interpretation of two different app names in permission dialogs

phishing attacks can be easily addressed on Android.

In fact, we observed that in Android 10.0 Q (available only as a Beta pre-release as of

the time of writing), Google decided to move towards taking this drastic approach to defend

against phishing and eliminate it once and for all. Activity starts from background apps

will now be blocked on Android 10.0 Q unless the app can justify starting an activity in the

background, such as by having a service that is bound by the system or by another visible

app [96]. This approach should indeed be effective in stopping the attacks if implemented

correctly; however, we identified ways to evade this security mechanism to still be able to

start activities in the background without satisfying any of the required conditions checked

by the system to allow such an operation. Hence, our attacks will still work on Android Q.

In particular, we discovered that there are two ways that we can start activities in the back-

ground without getting blocked by the system. As we have previously explained, Android 8.0

brings restrictions to the background execution of apps and encourages the use of JobSched-

uler to be able to run background services efficiently. Old Service and IntentService APIs

can be still used to create background services; however, such services will be short-lived as

they are killed within mere minutes of their owning app being moved to the background. We
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observed that before these services are killed, they are still able to launch activities from the

background without any issues despite Android Q’s effort to block this action. It is worth

noting that this vulnerability is not readily usable in our attack as we need our attack app to

indefinitely run in the background. However, we observed another way that we can achieve

similar results to our original attack. More specifically, we discovered that activity starts

from within other activities are not checked by the system as a part of this new security

mechanism. Here, the possible assumption made by the system is that activities will be

stopped automatically (i.e., they will not run any code) when they move to the background;

hence, there is no need to enforce the background activity start protocol on activities as they

cannot possibly achieve this. However, we show this is a false assumption since activities

that are moved to the background via the moveTaskToBack API are still kept running by

the system. This, in turn, gives a background activity the ability to start new activities

without getting blocked on Android Q. Activities started in this way are also automatically

moved to the foreground by the system, as we have observed. We utilize this finding in our

attacks on Android Q; instead of having a JobScheduler service, we create a background

activity to carry out the tasks explained in Section 6.3.3. This activity can be launched

when the user presses on the back button to exit the attack app or simply when the user

switches to another app. Up until this point, the attack app can simply pretend to provide

its deceivingly-useful functionality (e.g., QR code scanning etc.). However, since the attack-

ing component of the app is now an activity and not a service, the attack app will appear in

the recents screens even when it is on the background (when the recents button is clicked by

the user); hence, there is a possibility that the app will be seen by the user at some point in

time and get killed or even uninstalled. In order to evade detection, we ensure that the user

will not notice that the attack app is running on the background by removing the app from

the task stack so that it will not be shown in the recents screen. We achieve this by setting

the android:excludeFromRecents flag of the activities of the app in the manifest file, as

described in Section 2.1.4. Additionally, in order to handle cases where the attack app gets

killed for any other reason, we can utilize a sticky service that relaunches the attack activity

and immediately moves it to the background to continue running our attack indefinitely.

6.7 DISCUSSION

Here we discuss some of the concerns that might be raised by the reader, in a Q&A format.

• Why doesn’t the attacker just launch a normal phishing attack? Google Play (GP) store

already has some security mechanisms in place to detect phishing attacks. For example,
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GP does not allow apps to be published with icons that are similar to those of other apps.

In addition, GP can also identify if the title of an app is dangerously similar to that of

another app. If an app has some suspicious behavior as in these cases, it will be suspended

by GP indefinitely. With our attack, the adversary does not run into the problem of getting

detected by Google Play store.

In addition, users are generally familiar with the concept of classic phishing attacks, where

the attacker impersonates another app by mimicking its UI. Hence, it is more likely (com-

pared to our attacks) that they will be on the lookout for such attacks. Our attacks do not

require mimicking another app’s UI and are previously unknown to the users (as well as

to the research and developer communities). Therefore, users will be highly vulnerable and

will get caught off-guard as they are not expecting such attacks in the first place. We have

proven the validity of this statement with our user study.

• Couldn’t the app just pretend to do something useful with the permission to convince

the users to grant it? While it is true that the most important reason for users to grant

permissions is the permission’s relevance to utility, it is not the sole factor that plays a

role in these decisions. Previous work has shown that users consider the relevance of the

permission to the app’s functionality (utility) for 68% of all their grant decisions, and for

32% of all grant events, they consider the reputation of the app developer as an important

factor influencing them to grant a permission [48]. In total, users select both criteria for 21%

of all the times they decided to grant permissions2. This means that only for 47% of all the

grant events, users would agree to grant permissions to a non-reputable app developer even

if the app could make a strong case of needing a permission. Since 86% of all permission

decisions (both grant and deny) corresponds to grant events as reported in [48], in total we

have a final 40% grant rate for non-reputable apps for all permission events. As can be seen,

this rate is much lower than the promised success rate of our attack (above 80%).

In general, both our user study and previous studies show that users do try to make

conscious decisions when it comes to permissions. They feel more comfortable granting

permissions to some apps while they do not feel so for others based on several factors. Our

goal is to enable adversaries to take advantage of user’s trust in another app, without having

to gain that trust on their own.

• What is the attacker going to do with the permissions? Our attacks serve as a platform

for different adversaries to obtain any desired permissions to realize their own goals. Each

adversary can come up with a different attack strategy that requires them to obtain a specific

set of permissions, which they could achieve using our attack scheme.

2This number is not reported in the cited article [48], we contacted the authors to obtain this information.
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6.8 SUMMARY

In this chapter, we presented a new class of phishing-based privilege escalation attacks

on Android runtime permissions. We conducted user studies to understand the effects of

users’ knowledge of runtime permissions and their past behavior in this context on the

success of our attacks. By doing this, we identified the most favorable circumstances for our

attacks and utilized these findings to make our attacks more realistic. At the very least, our

user study shows that our attacks are plausibly effective against many users, as all of our

participants were oblivious to the changes induced by the attack and followed through with

the attack without noticing anything suspicious. In addition, we discovered vulnerabilities

in Android’s most recent mitigation approach against phishing attacks implemented on the

latest Android release (10.0 Q), which allowed us to still be able to launch our attacks even

on this “phishing-free” Android version without any problem.
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CHAPTER 7: CONCLUSION

7.1 SUMMARY

In this thesis, we conduct extensive analysis on issues that cause over-privilege in mobile

cross-origin interactions. We choose the Android operating system as a use case due to its

popularity and open-source nature and show how such issues constitute a significant imped-

iment to establishing least privilege on this platform. More specifically, we demonstrate how

adversaries can escalate their privileges to obtain unfettered access to sensitive resources,

threatening the security of millions of apps and billions of mobile device users. As a rem-

edy, we provide practical and systematic access control solutions to realize least privilege on

mobile platforms. In particular, we investigate the security of the interactions between apps

and 1) web domains, 2) other apps, and 3) the system. First, we identify the lack of access

control for the interactions between apps and web domains for all apps that utilize embedded

web browsers and introduce a fine-grained and uniform access control mechanism to allow

developers to specify policy rules on which resources they want to expose to certain web

domains. Then, we investigate the security of the main access control mechanism for IPC

on Android, namely custom permissions, and identify serious security vulnerabilities in this

mechanism that lead to privilege escalation attacks on high-risk system resources, sensitive

user data, and private app resources. We introduce a new design to custom permissions to

systematically address these vulnerabilities by targeting their root cause and we conduct a

formal analysis on our approach to prove its correctness. Finally, we investigate the security

of Android’s new runtime permission model.We show that this model fails to meet its key

security guarantees as we discovered ways for adversaries to break the implicit assumptions

the model relies on for its correct operation to launch phishing-based privilege escalation

attacks on high-risk platform resources and sensitive user data. We conduct user studies to

help us build realistic attacks. We also investigate Android’s current approach to completely

eliminating phishing on the platform and show how this approach fails to achieve this goal

due to existing security vulnerabilities we discovered, rending our attacks still viable.

All in all, in this thesis we identified issues that threaten least privilege on mobile platforms

and provided practical mitigation solutions to resolve such issues in a systematic, effective,

and efficient manner. Our work has influenced the design and implementation of some of

the critical security mechanisms in Android and have led to changes in the official Android

releases. However, the vulnerabilities and design issues we disclosed in this thesis are not

confined only to the Android platform and can in fact be found in other mobile operating

114



systems that utilize cross-origin interactions. In addition, our methodologies and mitigation

techniques serve as general-purpose solutions that can be adapted to other platforms.

7.2 HIGHER-LAYER MITIGATION STRATEGIES

End-to-end principle in system design states that placing functions at low layers of a sys-

tem might mean redundant effort or provide little value; hence, implementing such functions

at higher levels of the system can prove to be more efficient or reliable. Given this princi-

ple, one could argue that higher-layer solutions could be just as effective for the issues we

unearthed in this work with the additional benefit of easier implementation, error handling,

and deployment while avoiding redundant efforts. For example, with the custom permission

vulnerabilities of Chapter 5 and the phishing-based privilege escalation attacks on runtime

permissions of Chapter 6, we have shown that adversaries can spoof custom permission

names and internal app names respectively to wreak havoc on the platform. In addition,

app repacking attacks [97] and mobile deep-link spoofing attacks [98, 99] have also been

known to similarly target package names, and mobile deep links, respectively. A majority

of these issues have been addressed by issuing mitigation strategies in different parts of the

platform as of now. However, the existence of all these attacks that rely on a similar kind

of exploit on different types of namespaces point out to a deeper problem we would like

to summarize here as the platform’s implicit trust in developer-defined namespaces of apps.

Given how the root cause of all these issues can be effortlessly expressed under one umbrella,

it might be reasonable to attempt to tackle them collectively at a higher level where they

can be more easily addressed while avoiding redundant mitigation efforts. What comes to

mind as a sensible approach in this regard is to implement a security mechanism within app

markets such as Google Play and Apple’s app store, to detect any kind of spoofing on all

of the developer-defined namespaces and suspend suspicious apps that are involved in such

behavior. As Apple’s app store is the only source where users can download iOS apps from,

this approach would work on the iOS platform. However, on Android, even though Google

Play store is the official app store, apps can still be downloaded from unofficial app markets

or they can be sideloaded. This makes it virtually impossible to adopt such a higher-level

strategy on the Android platform. Please note that we are not claiming a higher-level ap-

proach is absolutely the right strategy here, we are only considering such a solution as a

possibility given the end-to-end argument.

115



7.3 FUTURE DIRECTIONS

Moving forward, other channels for cross-origin interactions on mobile platforms could be

investigated in the future for security and privacy. Some examples include the interactions of

apps with system services and mobile deep linking channels [98] on the platform. In addition,

we envision that off-platform cross-origin interactions with other critical systems, such as

the Internet-of-Things devices and smart automobiles, create significant avenues for future

work as these systems are conjectured to become mainstream in our lives and are expected

to heavily interact with smartphones and similar devices that run mobile operating systems.
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APPENDIX A: CUSTOM PERMISSIONS

A.1 IMPLEMENTATION OF CUSPER IN ALLOY

In our formal model of Android runtime permissions, we update the representation of

permissions in order to reflect our design decisions. First, we add a boolean field to our

Permission Alloy signature to indicate whether a permission is custom or system. Then,

we also add a source id field, which will be used during permission enforcement to uniquely

identify permissions. Here, we use app signature and not the hash of it for our formal model

for simplicity. Updated permission abstraction can be seen in Listing A.1.

For app and component guards, Cusper performs name translation at runtime during en-

forcement. Listing A.2 represents the component invocation operation and the predicate

in line 8 illustrates how permission enforcement is done according to Cusper. Whenever a

component is being invoked, we retrieve the name of corresponding app or component per-

mission, perform a lookup operation to find the corresponding Cusper name (see line 11). In

addition, we update how we perform enforcement, so that when the system checks whether a

calling app has the permission required to invoke a component, it will use both the permission

name and the source id (see line 14).

Furthermore, we utilize the boolean custom permission indicator field to correctly set

the FLAG PERMISSION REVOKE ON UPGRADE flag as shown in line 25 of Listing A.3, which

illustrates how grantInstall case is handled.

A.2 OTHER DISCOVERED ATTACKS

In addition to the attacks we discussed in Section 5.3, we also discovered another attack

on Android custom permissions that utilizes the lack of naming conventions for permissions

Listing A.1: New permission representation according to Cusper

1 sig Permission {

2 name : PermName,

3 protectionLevel : ProtectionLevel,

4 sourcePackage : PackageName,
5 isCustomPermission : Bool, // new field for Cusper

6 permGroup : lone PermGroupName,

7 sourceId : AppSignature // new field for Cusper

8 }
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to launch attacks on benign apps [100].

As described in Section 2.2.3, custom permissions can also be created dynamically via

the Android APIs. In this attack, the adversary spoofs the dynamic custom permissions

of the victim. This attack is currently reproducible only on older versions of (<6) due to

some other issues in the new versions. Since we focused on modeling the new versions of

Android and did not find strong evidence for the use of dynamic permissions by third-party

developers as of now, we did not address this attack in our work. However, we believe it

is worth presenting here as it demonstrates the extent of custom permission vulnerabilities

and provides further proof that Android custom permissions are problematic at their current

stage.

Steps to Produce the Attack. In order to carry out the dynamic custom permission

attack, the adversary builds an app that statically declares a custom permission that the

victim app is planning to dynamically create via the addPermission() API method, which

requires the static declaration of a permission tree with a specific domain name by the victim.

The attack can work only if the installation of the attack app is performed before the victim

app has an opportunity to dynamically create the permission of interest. After this, the

attack app can gain unfettered access to signature protected components of the victim app,

while the victim will not be able to dynamically create its own custom permission anymore

since it is already defined in the system.

Internals of the Attack. Android does not seem to perform any checks on the availability

of the permission names for statically defined custom permissions against the permission

tree names on the device. In other words, an app can still statically declare a custom

permission with the domain name of a permission tree declared by another app, even though

the operation would fail if the app tried to declare this permission dynamically (i.e., throws

SecurityException stating the tree belongs to another app). Same kind of name translation

approach we presented in Cusper can be used for the names of permission trees to resolve

this problem.

As we mentioned, this attack works only on older Android versions (<6.0) since the new

versions require MANAGE USERS or CREATE USERS permissions for the addPermission() API

to properly work even though this behavior is not documented in the Android developer

guides. We believe this itself might be an undesired behavior that was introduced by the

system developers while implementing possibly the multi-user framework in Android; hence,

if this implementation is changed, the dynamic custom permission spoofing vulnerability

should emerge on Android 6.0 and onward.
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Listing A.2: Component invocation with Cusper

1 pred invoke[t, t’ : Time, caller, callee : Component]{

2 caller.app + callee.app in Device.apps.t

3 canCall[caller, callee, t]

4 noChanges[t, t’]

5 }

6

7 // Permission enforcement in the model according to Cusper

8 pred canCall[caller, callee : Component, t : Time] {

9 let pname = guardedBy[callee],

10 // name translation during enforcement for components

11 source = getSourceId[callee, t],

12 pd = getPermissionData[pname, caller.app, t] {

13 pname in pd.perm.name

14 source in pd.perm.sourceId

15 }

16 }

17

18 // Return name of the permission protecting component

19 fun guardedBy : Component -> PermName {

20 {c : Component, p : Name |

21 // component-specific permission takes priority over the app-wide

permission

22 (p = c.guard.name) or (no c.guard and p = c.app.guard.name)

23 }

24 }

25

26 // Guard names are translated during enforcement

27 fun getSourceId[c : Component, t : Time] : one AppSignature {

28 {p : AppSignature |

29 (p = findPermissionByName[c.guard.name, t].sourceId) or

30 (no c.guard and p = findPermissionByName[c.app.guard.name, t].sourceId)

31 }

32 }

33

34 // No changes in device and granted permissions

35 pred noChanges[t, t’ : Time] {

36 Device.customPerms.t’ = Device.customPerms.t

37 Device.apps.t’ = Device.apps.t

38 all a : Application | a.permissionsState.t’ = a.permissionsState.t

39 }
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Listing A.3: Grant install case for grantPermissions predicate

1 pred grantInstallCase[p : Permission, app : Application, t, t’ : Time] {

2 hasRuntimePermission[p, app, t]

3 =⇒ revokeRuntimePermission[p, app, t, t’]

4 grantInstallPermission[p, app, t, t’]

5 // no runtime permission should exist for this permission

6 no pd : app.permissionsState.t’ |

7 pd.perm = p and pd.isRuntime = True

8 }

9

10 pred hasRuntimePermission[p : Permission, app : Application, t : Time] {

11 one pd : app.permissionsState.t |

12 pd.perm.name = p.name and pd.isRuntime = True

13 }

14

15 pred revokeRuntimePermission[p : Permission, app : Application, t, t’ : Time] {

16 no pd : app.permissionsState.t’ |

17 pd.perm.name = p.name and pd.isRuntime = True

18 }

19

20 pred grantInstallPermission[p : Permission, app : Application, t, t’ : Time] {

21 one pd : app.permissionsState.t’ |

22 pd.perm = p and pd.isRuntime = False

23 // Cusper fix : clear the flag to disallow automatic upgrade to runtime

for custom permissions

24 p.isCustomPermission = False =⇒clearPermFlags[pd, t’]

25 else setPermFlags[pd, t’]

26 }

27

28 pred clearPermFlags[pd : PermissionData, t : Time] {

29 pd.flags.FLAG_PERMISSION_REVOKE_ON_UPGRADE = False

30 // clear other flags. . .
31 }

32

33 pred setPermFlags[pd : PermissionData, t : Time] {

34 pd.flags.FLAG_PERMISSION_REVOKE_ON_UPGRADE = True

35 // set other flags. . .
36 }
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APPENDIX B: RESEARCH ETHICS AND SAFETY

We obtained approval from the Institutional Review Board (IRB) at the University of

Illinois at Urbana-Champaign for our study described in Chapter 6 prior to the commence-

ment of the research. This approval was received under the protocol title ”Improving Android

Runtime Permissions”. Our user study comprised of an online survey where we recruited

participants from Amazon Mechanical Turk (mTurk). Prior to our study, we received consent

from all of our participants to collect and share their data anonymously.
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