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ABSTRACT

Theoretical results conclude that one-step Direct Position Estimation (DPE)-

based Global Navigation Satellite System (GNSS) receivers can achieve more

accurate localization than their two-step counterparts. However, numerical

solutions to DPE equations and approximations made for those equations

introduce new effects that can reduce the accuracy improvement that such

a one-step receiver may provide. This work examines effects that arise from

those numerical solutions to DPE equations and from the approximations

made for those equations. In light of the theoretical formulation of the DPE

algorithm, resultant insights for design decisions of a DPE receiver implemen-

tation are presented, stemming from analysis of the localization and process-

ing time results of a parallelized DPE receiver implementation developed

specifically for this work. Additionally, a modular software architecture for

the custom DPE receiver implementation and parallelization of portions of

the DPE receiver algorithm for GPU operation are also proposed.
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CHAPTER 1

INTRODUCTION

Since the inception of the Global Positioning System (GPS), the two-step

approach to computing navigation and timing solutions has been the popular

choice for Global Navigation Satellite System (GNSS) receivers due to its

speed and reliability in uncomplicated signal environments [1]. Such two-step

methods compute ranges to satellites as intermediate measurements before

computing navigation solutions. Typically, these intermediate measurements

are found independently of each other using an approach known as scalar

tracking, making them susceptible to errors when complicated effects are

present in GNSS signals [2, 3]. Signal reflections or blockages, such as those

from buildings, and interference on the electromagnetic spectrum, such as

jamming or spoofing effects, can lead to loss of lock on satellite channels and

significantly incorrect results from the receiver [4, 5, 6, 7, 8].

The Direct Position Estimation (DPE) algorithm, a one-step maximum

likelihood formulation of the GNSS localization problem, has been proposed

to specifically address these challenges [9]. The potential of the DPE ap-

proach has begun to be explored in the literature, as conceptual benefits, an-

alytical advantages, demonstrated improvements, and processing techniques

have been presented. However, two-step approaches remain dominant in the

realm of GNSS receiver design, as the implementation practice of DPE is yet

in its infancy. This work aims to support the growth of the DPE receiver

body-of-knowledge and will begin with an overview of the DPE literature

and the objectives of this work.

1.1 Related Works

The manner in which the one-step approach solves localization problems al-

lows DPE to offer advantages over the two-step approach. While the DPE
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approach itself will be introduced in detail in Chapter 2, this section will

survey advantages offered by the DPE approach to motivate the work. Con-

ceptually, the DPE approach can be more resilient to errors in received GNSS

transmissions. Analytically, derivations prove that the DPE algorithm can

theoretically achieve higher localization accuracy than two-step approaches.

Demonstratively, DPE-based implementations have shown this localization

improvement in practice, particularly in challenging environments. And,

techniques for efficient processing have decreased the computational cost of

software-defined DPE implementations.

1.1.1 Conceptual Advantages

Conceptually, DPE reduces vulnerabilities which are prevalent when satel-

lite transmissions are separately tracked. Should the transmission from a

satellite be reflected or a GNSS-like malicious transmission be present in

the received signal, for a two-step approach, the satellite transmission delay

found by the receiver to compute the ranging measurement may be corrupted

by the presence of multiple GNSS-like signals in the received data [3, 10]. If

the second step of a two-step approach does not account for this effect on

the ranging measurement, the best that the receiver can do is discard that

measurement [11]. Conversely, with the vector correlation used by DPE, as

long as the line-of-sight-to-the-satellite transmission is present in the received

signal, it will always contribute to the score of a given state [12].

1.1.2 Analytical Advantages

Analytical results have proven that the DPE algorithm is theoretically capa-

ble of achieving more accurate navigation solutions than two-step approaches,

particularly in challenging signal environments. In [13], Cramér-Rao bound

analysis is used to mathematically show that two-step approaches such as

scalar tracking are not maximum-likelihood-optimal, while DPE, derived

from the maximum likelihood estimate of receiver state X, is. Closas et al.

also show in [14] that DPE is theoretically guaranteed to compute the best

possible navigation solution given a set of antenna voltage samples, while two-

step approaches can, at best, only match the accuracy of DPE. Additionally,
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in [15], Gusi-Amigó et al. show that DPE can maintain its performance at a

higher level of noise power proportional to the number of available satellites

as compared with two-step methods. The accuracy in lower signal-to-noise

ratio environments is also analyzed in [15]. Bialer et al. show in [16] that

DPE will outperform two-step approaches in dense multipath environments.

1.1.3 Demonstrated Advantages

The benefits of DPE begin to shine when the receiver’s view of the sky is lim-

ited. Demonstratively, the proof-of-concept results presented in [4] show an

improvement in localization accuracy using DPE over a two-step approach as

the carrier-to-noise ratio decreases. Using only a 1-ms sample snippet in an

environment with many signal reflections, Axelrad et al. generate position

estimates in [12] within 50 m of the actual position using DPE. In an environ-

ment where half the sky is blocked, Ng and Gao add reflected transmissions

to the replica signal constructed by DPE in [10], achieving position accuracy

within 5 m of the actual position and 40 m of improvement in positioning

accuracy over a two-step method. Chu and Gao provide an architecture for

multi-receiver DPE-based localization in [17] and demonstrate that DPE-

based receivers can generate position estimates as soon as line-of-sight to

satellites is recovered by subjecting the receivers to high-dynamics aerial ef-

fects from a fixed-wing aircraft, in contrast to two-step methods which lose

track in this scenario. Malicious GPS spoofers can even be localized when

using a multi-receiver network of DPE receivers, as shown in [18].

1.1.4 DPE Computational Efficiency

Techniques to improve computation speed or localization accuracy that build

on the basic DPE formulation have also been presented in the literature.

In [19], a vector tracking loop is introduced and shown to provide successful

tracking even when in a multipath environment. In [20], the Space-Altering

Generalized Expectation Maximization (SAGE) algorithm is used to more

efficiently search the navigation domain to find the maximum likelihood es-

timate. The search for the clock bias state is simplified in [21], providing

another means of improving the efficiency. Axelrad et al. show in [22] how
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to efficiently combine non-coherent correlations for different satellite chan-

nels for collective detection – a corresponding problem to DPE. Ng and Gao

demonstrate in [23] that a DPE receiver can maintain track when duty-

cycling sample set reads, increasing the time available to the receiver to pro-

cess each iteration. And, [21, 22, 23] all utilize an efficient batch correlation

method presented by [24].

1.2 Contributions

Yet, there remain barriers to broader usage of DPE in GNSS-based localiza-

tion:

• While the benefits of DPE are evident in the analytical formulation of

the approach, DPE-based receiver implementations are solving

numerical equations using sampled physical signals and dis-

cretized theoretical signal models. This translation from analyti-

cal equations to the numerical implementation impacts the localization

accuracy. Furthermore, approximations that are made to reduce the

computational burden additionally impact the localization accuracy.

• Näıve implementations of the DPE algorithm are more com-

putationally expensive than those of two-step approaches, lim-

iting the practical use of the implementation.

• Implementations of DPE-based receivers have typically been developed

to demonstrate a new theoretical result or improvements. However,

the impacts of implementation design choices on localization

have not been the focus of prior works, obscuring localization

performance tradeoffs between different implementations.

This work aims to aid in reducing these barriers by the following contri-

butions:

• Identify effects present in the localization results which are

caused by the nature of the one-step approach to localiza-

tion, numerical representation of equations, and approxima-

tions made for efficiency.
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In the same vein of other DPE literature [25, 26], a signal-centred

derivation of the DPE algorithm is presented. From this derivation,

some benefits of DPE over two-step approaches are identified to high-

light important aspects when solving the DPE algorithm. And, ap-

proximations for computational efficiency that are used in the DPE

receiver implementation of this work are introduced.

In light of the mathematics behind the DPE receiver implementation,

new conclusions about the DPE-based localization accuracy are drawn

and identified in localization results from the DPE-based receiver im-

plementation. A clock-aiding effect is identified in grid-based DPE,

and this effect is found to be responsible for improved vertical accu-

racy in localization results. A position-domain discriminator-like step

is shown to improve the accuracy of the receiver implementation, and a

justification for this improvement is provided. Additionally, a limit on

the accuracy of DPE-based receiver implementations that arises from

a discretized cross-correlation step is identified and found to manifest

in the localization results.

• Leverage parallel programming principles to present a com-

putationally faster implementation of a DPE-based single-

constellation GNSS receiver.

A grid-based approach to a DPE-based receiver implementation de-

termines the navigation solution by evaluating candidate navigation

solutions and choosing the best one. Each candidate may be evaluated

independently of the others. Furthermore, the candidate navigation

solutions are evaluated based on a cross-correlation score between the

received signal and a discretized theoretical replica, and the samples of

the theoretical replica may also be constructed independently of each

other. For these reasons, the DPE algorithm is well-suited for parallel

processing. Use of a graphics processing unit (GPU) for more efficient

DPE processing has been suggested in [27, 28], but an implementation

has not yet been presented in the literature.

A custom software-defined parallelized DPE-based GNSS receiver is

developed for this work and evaluated against a comparable software-

defined sequential DPE-based receiver. To accomplish this, the DPE al-
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gorithm is parallelized. The implementation is developed in the CUDA

C/C++ programming language [29] and evaluated on an NVIDIA Jet-

son TX2 portable GPU. Additionally, to support future research, the

receiver implementation is decomposed into seven modular subtasks

packaged with well-defined inputs and outputs, and the implementa-

tion is parameterized in a manner that allows its run speed to be tuned

by a user for the host hardware.

• Provide insights into implementation design decisions stem-

ming from analysis of localization and processing time results

from the custom DPE-based receiver implementation.

Implementation details, such as the choice of candidate navigation solu-

tions and sampling frequency, play a role in the localization results. Dif-

ferent candidate navigation solution “grids” are used by the DPE-based

receiver implementation, and insights for the benefits provided by these

grids are presented by comparing experimental data with analytically-

identified effects. The manifestation of these effects in the navigation

solutions computed by the DPE-based receiver provides a foundation

for future research into numerical implementations of the DPE algo-

rithm. Speedup from the parallelized DPE-based receiver implemen-

tation is evaluated and remaining bottlenecks are identified to provide

guidance on tuning and GPU hardware selection.

The thesis is organized into six chapters. This chapter introduces the ob-

jectives and contributions of the work. Chapter 2 derives the DPE algorithm

from the signal structure of a GNSS transmission and identifies some ap-

proximations and techniques used by a numerical implementation of DPE.

Chapter 3 presents a modular DPE-based receiver software architecture and

details for the implementation used in this work. Chapter 4 presents new

analysis of effects present in DPE and DPE-based receiver implementations.

Chapter 5 presents results from the receiver implementation for a station-

ary receiver dataset, two mobile receiver datasets, and the computational

efficiency of the implementation. Chapter 6 concludes the thesis.

6



CHAPTER 2

BACKGROUND

A GNSS consists of a set of satellites in accurately known orbits transmitting

known messages to their users. In the context of navigation, the namesake

purpose of GNSS, a user may operate a GNSS receiver to compute position

estimates using knowledge of the satellites’ positions and the signals observed

by the receiver’s antenna [1, 30]. Implicitly coupled with the question of posi-

tion is one of timing. Not only is timing often desired by the user to provide

context for the position estimates, but receiver algorithms also must typi-

cally determine the signal receive time with respect to some reference when

estimating position [1]. This leads to the position-time state representation:

x , [x y z δt]> = [p δt]> (2.1)

where

• p , [x y z]> describes the 3D position estimate, assumed without

loss of generality in this work to be a geographic and Cartesian coor-

dinate system, such as Earth-centered, Earth-fixed (ECEF).

• δt describes the time estimate, assumed without loss of generality in

this work to be a clock bias with respect to a time standard, such as

GPS time.

Many receiver algorithms and architectures have been developed for gen-

erating position-time estimates using GNSS [31, 32, 33, 34, 35]. However, for

the physically implemented GNSS, the received signals observed are subject

to real-world interferences that may be able to drive the receiver into a fail-

ure mode [3]. Due to the breadth of potential interferences, these algorithm-

derailing effects have not been universally overcome, and GNSS receiver de-

sign remains an area of active research for further study of the failure modes

and development of improved receiver countermeasures [7, 36, 37, 38, 39].
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DPE, the subject of this work, is one such recently developed approach

that mitigates the impact of some interferences to conventional GNSS re-

ceivers [9]. This chapter will introduce fundamental concepts of GNSS-based

navigation and formally present the DPE approach. The introduction to

GNSS-based navigation will also summarize the conventional receiver ap-

proach, known as scalar tracking, in order to highlight the primary improve-

ments introduced by DPE.

For simplicity of discussion, the numerical solutions presented in this work

are exclusive to a single-constellation GPS receiver implementation. Dif-

ferent GNSS constellations use different channel sharing schemes, which will

result in differently-shaped probability density functions over the same range

of navigation solutions. Thus, to enable effective discussion of a numerical

implementation compared to its analytical formulation, this work will focus

solely on GPS. However, the concepts presented are expected to be appli-

cable without loss of generality to all GNSSs, as the concepts draw their

assumptions from the problem of satellite-based localization.

2.1 GNSS-Based Navigation

As the presence of stars in the sky can provide references for position and

time, the fundamental idea of GNSS-based navigation is that a user operating

a GNSS receiver can estimate their own state x by receiving signals trans-

mitted from a constellation of artificial satellites. By taking measurements

of the voltage of a GNSS receiver’s antenna, the receiver runs an algorithm

to process these samples into measurements, then filters the measurements

into a state estimate. And, it is the conceptual approach that the processing

algorithm takes to the problem of localization that will paint with a broad

brush the capabilities of the receiver.

This section will first introduce details of the GPS constellation relevant to

understanding the conceptual approaches of scalar tracking and DPE. Then,

the scalar tracking approach will be summarized for reference to DPE.
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2.1.1 GPS Signal Structure

The GPS constellation consists of 31 satellites orbiting such that they pass

over the same point on Earth approximately twice per day [1]. Following

the physics of orbital mechanics, the trajectory of each GPS satellite is pa-

rameterized into an ephemeris, and the set of all GPS ephemerides are made

publicly available, downloadable both online and from the GPS satellites

themselves [1]. Each ephemeris parameterizes a satellite trajectory such that,

given a time within the range of validity for the ephemeris, a series of equa-

tions may be solved to find the position-velocity-time (PVT) state of that

satellite.

By finding a time-identifier pattern of bits in the navigation data of the

received transmission [1], a receiver can determine the time at the satellite

when the current set of samples were sent. Since the ephemerides are sets

of orbital parameters that solve for the PVT states of the satellites at given

times, knowing the transmission time for a signal from satellite i means

satellite i can be used as a position-time reference.

The signal from satellite i can be modeled as follows [25]:

Sit{τ} = aitD
i
t{(fC/A + f icoded,t)τ + φicode,t}Gi{(fC/A + f icoded,t)τ + φicode,t}

exp{j2π((f iL1 + f icarrd,t)τ + φicarr,t)}
(2.2)

where the functions defined are referenced to the time t at the beginning

of a finite-length sampling window and the parameter τ is the index of a

sample in the window of K samples [0, 1
fs
, 2
fs
, ...,∆T − 1

fs
]. fs and ∆T are the

sampling frequency and time duration of the sampling window, respectively.

Dissecting Equation 2.2, the reader will observe four constituent functions:

• ait is the amplitude of the received signal, assumed to be constant over

the sampling window.

• exp{·} describes the carrier wave, broadcasting at frequency fL1 and

experiencing some Doppler shift f icarrd,t and phase shift φicarr,t.

• Gi{·} is an encoding function returning either +1 or −1 according

to the Pseudo-random Number (PRN) Code Division Multiple Access

(CDMA) channel sharing method that allows all GPS satellites to
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transmit on the same carrier frequency fL1. Gi{·} is a function of

the PRN code frequency fC/A experiencing some Doppler shift f icoded,t
and with the PRN code phase φicode,t.

• Di
t{·} is a function describing the transmitted navigation data returning

either +1 or −1 according to the navigation data being transmitted.

Present in this data are the identifier bit patterns that allow for recovery

of transmission time. One navigation data bit is timed to be exactly the

length of 20 complete PRN codes, making Di
t{·} dependent on exactly

the same parameters as Gi{·}.

Once the parameters of the functions in Equation 2.2 are known, the re-

ceiver can determine the transmitted navigation data by removing the other

components of Sit{τ} and recovering the unscaled Di
t{·}. fL1 and fC/A are

known constants of the GPS implementation, so it remains for the receiver

to estimate the parameters φicode,t, f icarr,t, φicarr,t, and f icarr,t.

These four parameters are known as channel parameters :

• The code phase, φicode,t

• The code frequency shift, f icode,t

• The carrier phase, φicarr,t

• The carrier frequency shift, f icarr,t

List 2.1: Channel Parameters

When the receiver has estimates of these channel parameters for satellite

i, the receiver is said to have track of satellite i. And, by tracking a subset

of the satellites available in the GPS constellation, the receiver can utilize

these satellites as landmarks and begin to determine information about itself

through a localization algorithm.

2.1.2 Two-Step Localization

The two-step approach to GNSS-based navigation, typically implemented

by a process called scalar tracking, uses the principle of multilateration [1].
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In multilateration, an unknown position-time state can be found given the

Euclidean distance to known position-time states. In the case of a GPS

receiver, the receiver’s antenna is the unknown state, the GPS satellites are

known states, and the ranges are found by processing measurements from

the antenna. Thus, the two steps arise from:

1. Processing the received signal to compute range measurements from

the antenna voltage samples.

2. Computing the position-time estimate from the range measurements

by the principle of multilateration.

The range measurements are computed by taking the difference of the satel-

lite i’s transmission time titx with the current time estimate at the receiver

t and multiplying by the speed of light c, providing a time-of-flight (ToF)

measurement to the satellite. However, it should be noted these ranges are

estimates. Passive environmental effects, active broadcasts in the same or

nearby bands, and reflections of the GPS signals themselves can interfere

with the receiver’s track of the satellite channel parameters. And, the time

estimate of the receiver is subject to error.

Acknowledging this, the range estimate to the ith satellite will not be

exactly equal to the true range ri and is appropriately called the pseudorange

ρi:

ρi = c(t− titx) =
√

(xi − x)2 + (yi − y)2 + (zi − z)2 + c(δti − δt) + εi (2.3)

where the difference between the true range and ρi is captured by the term

εi. Due to this inaccuracy in the pseudorange estimates, the multilateration

problem of locating the receiver will not have exact solutions but will instead

be an optimization problem to find the maximum likelihood receiver state x

given the pseudoranges.

If pseudorange measurements are significantly corrupted, the receiver po-

sition estimate can be drawn away and channel parameter tracking can be

lost. These pseudorange corruptions can be compensated for using optimiza-

tion techniques other than least-squares. Robust estimators [40, 41, 42] and

weighting the pseudorange by estimates of the channel noise [43, 44] are

among a variety of demonstrated alternative techniques. Additionally, algo-

rithms have been introduced to identify pseudoranges that may be corrupted
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to an extent that produces hazardously misleading position-time informa-

tion [11, 45].

While there is flexibility in the choice of optimization technique used, the

two-step architecture remains – scalar pseudorange measurements are first

computed from separately tracked channels, then all concurrent measure-

ments are used together in position-time estimation.

2.2 Direct Position Estimation Formulation

In contrast to the two-step approach of scalar tracking, the one-step approach

of DPE arises from the observation that the channel parameters of satellite

i can be completely determined by knowing the relative position, time, and

velocity between the receiver’s antenna and a given satellite.

X , [x y z δt ẋ ẏ ż δ̇t]> = [p δt ṗ δ̇t]> (2.4)

This section will mathematically derive the DPE method of estimating the

receiver’s PVT state from this observation. This section will also simplify the

computation of DPE and examine the meaning of the operations performed

on the physical signals by DPE.

2.2.1 Revisiting the Received Signal Model

Given the channel parameters, the transmission from every satellite can be

completely reconstructed at a given PVT state (Equation 2.2). The receiver’s

PVT state can then be determined by choosing the state whose reconstructed

transmissions most closely matches the received signal.

To show this observation mathematically, for the position-velocity-time

(PVT) state X and referring to List 2.1 and Equation 2.2 for the channel

parameters and their roles, the channel parameters may be written in terms

of a PVT solution as follows [25]:
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• φicode,t = fC/A(t− TOWi − N i
code,t

fC/A
)− fC/A

c
(‖pi − p‖+ (cδt− cδti))

• f icode,t =
fC/A

c
( (pi−p)>

‖pi−p‖ (ṗ− ṗi) + (cδ̇ti − cδ̇t))

• φicarr,t = fL1(t− TOWi − N i
code,t

fC/A
)− fL1

c
(‖pi − p‖+ (cδt− cδti))

• f icarr,t = fL1

c
( (pi−p)>

‖pi−p‖ (ṗ− ṗi) + (cδ̇ti − cδ̇t))

List 2.2: Definitions of the Channel Parameters

where t is the signal receive time, TOWi is the GPS time-of-week (TOW)

associated with the identifier bits being used for global time reference, and

N i
code,t is the integer number of CDMA codes elapsed since the identifier bits

of the TOWi.

The code phase and carrier phase parameters φicode,t and φicarr,t are found

by computing the number of cycles elapsed since the time-alignment trans-

mission and subtracting the time the signal spent travelling to the receiver,

which leads to the dependence on X. The code frequency and carrier fre-

quency shifts f icode,t and f icarr,t are the result of the Doppler effect due to the

relative velocity between satellite i and the receiver, which also leads to the

dependence on X.

The signal received St{·} is the superposition of the transmissions of all

GPS satellites in view Sit{·} plus the effects of noise Nt{·} [25]:

St{τ} =
∑
i

Sit{τ}+Nt{τ} (2.5)

For this work, noise is defined to include passive environmental effects, other

active broadcasts in the same or nearby bands, modelling errors such as

satellite position inaccuracies, and reflections of the GPS signals themselves.

Since the received signal St{·} is composed of the transmissions of the in-

dividual satellites, St{·} is also a function of the receiver’s PVT state X.

However, since the individual transmissions are summed, the received signal

is also a function of the amplitude of each transmission. While the amplitude

of the received signal could be ignored in scalar tracking due to the indepen-

dence of each channel, it cannot be ignored when reconstructing the expected

composite signal. Thus, the received signal St{·} can be known for a given

PVT state X and the transmission amplitude a from each satellite.
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2.2.2 Derivation of the DPE Algorithm

Following the derivation presented in [26], finding the replica signal Ŝt{·} of

maximum likelihood to the received signal St{·} is equivalent to finding X̂

and â, the maximum likelihood estimates of the receiver state and the ampli-

tudes of each satellites’ transmission, according to the invariance property of

maximum likelihood estimation (MLE) [9]. Assuming Nt{·} is additive white

Gaussian noise (AWGN), this yields the least-squares minimization problem:

â, X̂ = arg min
a,X

||y −Ca||2 (2.6)

where y is the vector of K antenna voltage samples in the sampling window

[0, 1
fs
, 2
fs
, ...,∆T − 1

fs
], C is a K × M matrix of the samples of the recon-

structed signal St{·} in the sampling window [0, 1
fs
, 2
fs
, ...,∆T − 1

fs
] for the M

visible satellites, and a is the vector of received amplitudes of the M visible

satellites [26].

Performing the maximum likelihood estimation on Equation 2.6 is possible,

but would be an (8 + M)-dimensional problem, as the state PVT states X

and the received signal amplitudes a are unknown. Additionally, for the

objective of GPS navigation, estimates of the received satellites’ amplitudes

are typically not of importance to the user. Thus, it would be desirable to

modify this formulation to eliminate the explicit simultaneous estimation of

â from the minimization function.

The estimate of â is found by taking the derivative of Equation 2.6 with

respect to â assessed at the maximum likelihood state X̂ and setting the

resultant equation equal to zero [9] (intermediate steps omitted for brevity):

â = (Ĉ
∗
Ĉ)−1Ĉ

∗
y (2.7)

where Ĉ is the matrix C assessed at X̂, and Ĉ
∗

is the Hermitian transpose

of Ĉ. Intuitively, this result means that the maximum likelihood estimate

of a is the least-squares solution of the difference between the maximum

likelihood reconstructed signal and the actual received signal. This also gives

an expression for â that depends on X through C. Substituting this result

into Equation 2.6 and expanding gives:
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X̂ = arg min
X

||y∗y − 2y∗C(Ĉ
∗
Ĉ)−1C∗y + y∗C(Ĉ

∗
Ĉ)−1C∗y||

= arg min
X

||y∗y − y∗C(Ĉ
∗
Ĉ)−1C∗y||

= arg max
X

||y∗C(Ĉ
∗
Ĉ)−1C∗y||

(2.8)

Further reduction comes through a property of the CDMA codes used by

GPS. Taking a look at the structure of C:

C =



c1
[0] c2

[0] . . . cM[0]

c1
[ 1
fs

]
c2

[ 1
fs

]
. . . cM

[ 1
fs

]

c1
[ 2
fs

]
c2

[ 2
fs

]
. . . cM

[ 1
fs

]

...
...

c1
[∆T− 1

fs
]
c2

[∆T− 1
fs

]
. . . cM

[∆T− 1
fs

]


(2.9)

A given column i consists of the K samples of the reconstructed trans-

mission from satellite i. Thus, when multiplying (C∗C), the elements are

the sum of the element-wise multiplication of the samples of two signals. By

definition, the sum of element-wise multiplications of samples is the cross-

correlation between two signals. Thus, the element at index (i, j) of the

resultant matrix has the value of the cross-correlation between the signal

from satellite i and the signal from satellite j [26].

The PRN codes used by GPS for CDMA are Gold codes, which have

an auto-correlation score of K for a signal with K samples and a cross-

correlation score between different codes significantly smaller in magnitude

than K [30]. Thus:

[(C∗C)]i,j =

K, i = j

[(C∗C)]i,j � K, i 6= j
(2.10)

leading to the approximation (C∗C) ≈ NIM [26], where IM is the identity

matrix of size M ×M . Substituting this result into Equation 2.8 gives:

X̂ = arg max
X

1

K
||y∗CC∗y|| (2.11)

Again following from the definition of C, multiplying (C∗y) produces a

resultant vector of length M where the element at index i is the cross-

correlation between the reconstructed signal from satellite i and the signal
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actually received. The multiplication (C∗y) then performs the sum of the

element-wise squares of each satellites’ cross-correlation score with y. This

result is the vector cross-correlation between the received signal and the ex-

pected transmission from each satellite without the explicit estimation of the

received transmissions’ amplitudes a [19].

So, for the cross-correlation function Ri
t between the received signal St and

the reconstructed transmission of satellite i (as given in Equation 2.2),

Ri
t(X) =

∑
i

St{τ}Di
t{·}Gi{·}exp{·} (2.12)

the vector cross-correlation functionRt is the summation of the cross-correlations

Ri
t,

Rt(X) =
∑
i

Ri
t(X) (2.13)

allowing the objective function of DPE to be written as:

X̂ = arg max
X

1

K
||y∗CC∗y|| = arg max

X
||Rt(X)|| (2.14)

In summary, the DPE approach provides a one-step maximum likelihood

estimation of the receiver’s PVT state X by comparing the signal received to

the expected transmission at the state X for each satellite through a vector

cross-correlation.

2.2.3 DPE Terminology

For the remainder of this work, the action of evaluating the similarity be-

tween the expected signal and the received signal through the vector cross-

correlation will be referred to as the replica-received cross-correlation. As

described in Section 2.1.1, the received signal for a DPE-based receiver is a

set of antenna voltage samples. A DPE-based receiver will solve this equa-

tion (or an approximation thereof) for sample set after sample set, providing

localization results to the user. In this work, the process of acquiring a sam-

ple set and computing a DPE navigation solution from it will be referred to

as one timestep.
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2.3 Numerical Solutions to DPE

As the GPS navigation messages and PRN codes are highly non-linear and a

function of eight dimensions, a receiver implementation cannot be expected

to analytically solve an objective function which uses the replica-received

cross-correlation, such as Equation 2.14. Thus, implementing this operation

numerically and studying the effects that arise from the numerical implemen-

tation is the focus of this work.

This section will highlight numerical DPE techniques presented in other

works which will be employed in this work’s DPE receiver implementation.

2.3.1 Grid-based versus Iterative DPE Approaches

Two classes of algorithms exist to numerically solve the DPE objective func-

tion: iterative and grid-based. The grid-based approach to DPE computes

a solution for the objective function by constructing a grid of candidate re-

ceiver states and evaluating the cross-correlation between the received signal

and replica signal for each grid point’s state [12]. The cross-correlations are

the likelihood for each grid point, meaning the grid is the discrete represen-

tation of the probabilistic manifold of PVT estimates for DPE. Finding the

maximum likelihood state on the manifold provides a numerical solution to

the objective function of DPE. Each of the candidate receiver states may be

evaluated independently of the others, which can be exploited for computa-

tional efficiency by parallelizing the evaluation of each state across the many

threads of a GPU. This approach is visualized in Figure 2.1.

Figure 2.1: The grid-based approach to DPE evaluates multiple states
simultaneously and chooses the best one.
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In contrast, iterative algorithms for DPE are more suited for computation

on a CPU, as they evaluate the cross-correlation between the replica and re-

ceived signals at one state, quantify the replica-received error at that state,

then move the state and try again until the replica-received error is below

some threshold. This is visualized in Figure 2.2. Closas proposes the use

of the Space-Alternating Generalized Expectation Maximization (SAGE) al-

gorithm in [20], which reduces the search space for clock bias estimates to

improve computation cost. However, as Cheong et al. observe in [21], the

reduction in search space by the SAGE algorithm may fail to correct errors

in the clock bias. And, as Chapter 4 will show, such errors would also propa-

gate into the vertical estimates. Furthermore, iterative methods are subject

to converging to local minima, while a grid-based approach can be easily

configured to sample candidate points over a large domain and reject local

minima with proper filtering.

Figure 2.2: The iterative approach to DPE begins at one state and
progressively refines that update until a convergence condition is met.

A grid-based approach will be studied in this work. Not only does the

grid-based approach offer the advantages outlined above as compared to the

iterative approach, but further study of a parallelized approach to DPE is

desirable. The idea of a GPU-based implementation has been suggested in

the literature [27, 28] and grid-based DPE has been demonstrated in multiple

experiments (such as [18, 25, 26]), but a GPU-specific implementation has

yet to be demonstrated and evaluated in the literature.
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2.3.2 Improving the Computational Efficiency

Even with parallelization, individually computing the received signal replica

and its replica-received cross-correlation score for each candidate receiver

state on an 8-dimension grid would be computationally prohibitive except

for the most powerful of computers or for grids which may be trivially small.

However, in exchange for a slight degradation of the accuracy of the replica-

received scores, the two concepts of manifold decoupling and batch correla-

tion reduce the computational cost of the problem to one that is much more

practically implementable. These techniques allow the scores for all candi-

date grid points to be generated together in an efficient manner and turn the

step of scoring all points on the grid from one of intense computation into a

much faster look-up step.

Manifold Decoupling

Since the received signal is dependent on the PVT state of the receiver, a

näıve implementation of DPE measurement estimation is an 8-dimension op-

timization problem. However, as proposed in [46] and demonstrated in [25],

GNSS-based position and velocity estimation can be performed indepen-

dently of each other, given a reasonable starting estimate of the PVT state.

This is due to the scale of the GNSS with respect to the search space of

an initialized receiver. For a fixed position state, the shape of the cross-

correlation function with respect to velocity states will not be significantly

affected by the exact position state chosen over a range of position states on

the order of 100 meters [46]. Similarly, for a fixed velocity state, the shape

of the cross-correlation function with respect to position states will not be

significantly affected by the exact velocity state chosen over the range of

reasonable receiver velocity changes [46].

Thus, finding the maximum likelihood PVT state may be approximated by

estimating the maximum likelihood position-time state from a position-time

manifold and the maximum likelihood velocity-drift state from a velocity-

drift manifold. This approximation will hold as long as the previous iter-

ation’s estimate of the PVT state is close to the actual PVT state of the

current sample set, as each manifold will estimate four states and hold four

states fixed:
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X̂ t =
[
xt ẋt

]>
≈
[
arg maxxt

||Rt(xt, ˆ̇xt−1)|| arg maxẋt
||Rt(x̂t−1, ẋt)||

]>
(2.15)

This reduces the estimation problem from an 8-dimensional optimization

problem to two 4-dimensional optimization problems – a total reduction in

the number of points searched by n4

2
for a hypercubic grid of size n.

Batch Correlation

With decoupled position-time and velocity-drift manifolds, another optimiza-

tion is made possible. Both manifolds are capable of approximating the cross-

correlation function with respect to a given channel parameter then solving

for the value of that channel parameter value for a given state to find their

cross-correlation score.

For the position-time manifold, referring to the channel parameters given

in List 2.1, the velocity state ṗ is known and the unit vector to the satellite
(pi−p)>

‖pi−p‖ is effectively constant over the size of the grid. Thus, the frequency

parameters f icode,t and f icarr,t are constant and the phase parameters φicode,t
and φicarr,t are a function of the position-time state x. If the PRN code chips

Gi
rec{·} are retrieved from the received signal, the circular cross-correlation

property of the PRN codes of GPS may be leveraged to compute the cross-

correlation score for all code phases φicode,t [24]. This is accomplished by a

property of the fast Fourier transform (FFT) – the circular cross-correlation

function of two discrete signals u and v of length ∆T can be found by:

corr(u, v)[k] =
m=∆T∑
m=0

u∗[m]v[m+ k] = F−1(F∗(u)F(v))[k] (2.16)

for the FFT function F . Thus, the position-time correlation scores may be

approximated by:

Rt(xt, ˆ̇xt−1) ≈ F−1(F∗(Gi
rec{·})F(Gi{x})) (2.17)

For the velocity-drift manifold, referring to the channel parameters given

in List 2.1, the position state p is known. Thus, the phase parameters φicode,t
and φicarr,t are constant, and the frequency parameters f icode,t and f icarr,t are

a function of the velocity-drift state ẋ. Even with the phase parameters

known, computing the cross-correlation scores for every frequency is still
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computationally expensive. However, the power of a given frequency in the

carrier wave can be used to score that frequency [24]. Thus, if the carrier wave

exprec{·} is retrieved from the received signal, the velocity-drift correlation

scores may be approximated by:

Rt(x̂t−1, ẋt) ≈ F(exprec{·}) (2.18)

Manifold Scoring

After the batch correlations, each state on the position-time or velocity-

drift grid will look up its score from the batch correlation results by back-

calculating the expected φicode,t or f icarr,t, respectively, for each tracked channel

i and sum the results. Since the batch correlations are effectively sampling

the continuous cross-correlation function or FFT-based frequency difference

function at specific code delays or Doppler frequencies, a grid point will

interpolate between two samples if its back-calculated value does not exactly

match that of one of the sample indices.

Once each point is scored, the maximum likelihood state may be found.

This state is the measurement of the software-defined DPE receiver. The

maximum likelihood state may be chosen in different ways, such as simply

choosing the grid state with the highest score or by applying a peak detector

step to resolve the navigation solution estimate to a sub-grid-level precision.

The means of choosing a maximum likelihood state is a signal tracking prob-

lem, which will be addressed in Section 2.3.3.

2.3.3 DPE Signal Tracking

The better the generation of the expected transmission C in Equation 2.14,

the better the estimation of the receiver’s PVT state. With a perfect model

of the world, any state X may calculate the expected transmission exactly.

However, the DPE objective function of Equation 2.14 is modeled as an

estimation problem following the assumption that such a perfect model does

not exist.
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Open-Loop versus Closed-Loop

The simplest and typically least accurate method of generating the signal

replica is to pick the state on the manifold with the highest replica-received

cross-correlation score from the previous DPE receiver iteration and back-

calculate the channel parameters for the next timestep from that state. This

is considered an open-loop implementation, and its accuracy is dependent

on both the choice of candidate receiver states and the signal transmission

model used in the back-calculation.

In contrast, a closed-loop DPE can significantly improve the accuracy of

the constructed signal through an additional processing step. A channel-

domain tracker will analyze a recent set of samples and, using knowledge of

the GNSS navigation message format and the navigation message received

previously, the receiver can better determine what navigation data should be

received next by working with the estimates of the channel parameters. A

navigation-domain tracker, alternatively, will analyze the shape of the cross-

correlation function Rt based the scores of the grid of candidate receiver

states to refine the navigation solution to a sub-grid point-level precision.

However, tracking loops are an extra step of processing, and, if the track-

ing loop produces an erroneous conclusion about the channel parameters, the

navigation solution accuracy can be degraded. Channel-domain tracking, as

seen when used in two-step approaches, is susceptible to locking onto mul-

tipath reflections [36], and navigation-domain tracking may mischaracterize

the shape of the manifold. Thus, designing tracking loops that reliably im-

prove accuracy and reject failure modes is an important area of study on its

own, as they have a significant impact on the host receiver.

Weighted Average-Based Navigation-Domain Tracking

A weighted average-based navigation-domain tracker will be introduced to

demonstrate how such trackers can be used in DPE and their impact on the

receiver’s localization solutions. Utilized by Ng and Gao in [10] and [23], this

signal tracker estimates the navigation solution at the peak of the manifold

by weighting all the states on the grid by their replica-received score and

computing the average. However, the mathematical effects of such tracking

and its achievable accuracy were not the focus of [23] and were not studied
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in the work.

This work will follow up on the weighted average-based navigation-domain

tracker with a parallelized implementation in Chapter 3, mathematical analy-

sis in Chapter 4, and demonstration in Chapter 5. For the remainder of this

work, when referring to the closed-loop DPE receiver implementation, the

weighted average-based navigation-domain tracker is being utilized. Along-

side this, to analyze the impact of the tracker, as well as more clearly isolate

effects arising from the numerical implementation of Equation 2.14, an open-

loop implementation will also be considered.

2.4 Conclusion

The advantages of GNSS-based localization using DPE are the result of a

single-step, maximum-likelihood approach to GNSS localization, providing

an algorithm robust to certain vulnerabilities introduced by the intermedi-

ate measurements of two-step methods. Studying the two-step approach in

Section 2.1.1 introduces fundamental ideas of GNSSs and leads to the un-

derstanding that facilitates the single-step approach of DPE. Derivation of

DPE mathematically in Section 2.2 shows the resilience to the vulnerabilities

of two-step approaches. And, in order to make a numerical implementation

of DPE more computationally efficient and accurate, the ideas of grid-based

DPE, batch correlation, and closed-loop operation were introduced.
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CHAPTER 3

DPE RECEIVER IMPLEMENTATION

Under the grid-based numerical approach put forth in Section 2.3, princi-

ples of parallel computing can be used to improve the efficiency of the DPE

algorithm. The signal replica can be constructed in a parallelized manner,

the scores of each candidate point can be computed independently, and the

manifold can be assessed with parallelized reduction techniques. This makes

DPE well-suited for implementation on a GPU, as each candidate state can

be assessed on separate processing threads – each thread executing the same

instructions, but operating on different memory locations corresponding to

different candidate points.

This chapter presents the first of the three areas of contributions of this

work: a software-defined DPE receiver implementation developed and tuned

for a portable GPU. The software segment of the receiver will be implemented

using a proposed seven-task modular decomposition; two of the modules im-

plement a parallelized DPE algorithm and five of the modules perform paral-

lelized supportive tasks to advance the DPE algorithm to the next timestep.

The hardware segment of the receiver responsible for generating the antenna

voltage samples will be introduced. Lastly, implementation parameters and

hardware-specific tuning will specified.

3.1 Software Segment

To provide the researcher with the benefits of abstraction when developing

a receiver implementation, the software segment of a software-defined GPS

receiver may be decomposed into the seven tasks of List 3.1.

The DPE algorithm itself is implemented in the Batch Scoring and Assess

Manifold modules – a pair of tandem modules which provide the researcher

with flexibility through abstraction to make changes to the way in which the
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1. Initialization: place the grid and load channel parameters

2. Acquire Samples: load samples for the current processing iteration

3. Batch Scoring: compute the cross-correlation scores for the grid

4. Assess Manifold: score the grid points and generate the measurement

5. Filter: filter the measurements

6. Channel Propagation: update channels and satellite states

7. Logging: record results

List 3.1: DPE Task Decomposition

scores are batch-calculated and the manifolds are assessed. The seven tasks

of List 3.1 are executed sequentially for a set of samples; the processing of

that set constitutes one timestep. Then, a new set of samples is acquired,

and the next timestep runs.

For operation on a GPU, the software of this work is developed in NVIDIA’s

CUDA C/C++ 9.0.252 parallel computing platform [47]. The Nsight IDE

provided by NVIDIA is used for profiling the GPU usage [48].

The DPE algorithm is wrapped in a custom C++ object-oriented software

architecture developed by the Grace Gao Research Group at the University of

Illinois at Urbana-Champaign. Under this architecture, a software-defined re-

ceiver is implemented by a Flow, consisting of an ensemble of Modules which

are capable of sharing data by Ports. These three software constructs of the

Flow, the Module, and the Port are specified in base classes, from which the

implementation classes constituting an algorithm are derived. The relation

of these three constructs is diagrammatically represented in Figure 3.1.

Following the seven-task decomposition given in List 3.1, the DPEFlow

software-defined receiver program was created by developing the seven mod-

ules given in Figure 3.2.

3.1.1 Initialization

Developed for this work, the DPInit module loads an initialization file. The

initialization data consists of a starting PVT state, channel parameters to

visible satellites, the GPS time of the internal reference time, and satellite
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Figure 3.1: Block diagram representation of the software architecture used
in this work.

Figure 3.2: DPE algorithm design developed for this work.

ephemerides, and this information is made available to other modules in

the flow. The functionality provided by the DPInit module is depicted in

Figure 3.3.

Given the numerical-solution nature of this DPE algorithm implementa-

tion, an initial PVT state is required. This initial state will be the center

point of the first timestep’s manifold grid and will be the starting state of

the measurement filter. For reasons explained in Section 3.1.6, the channel

parameters for this initial state are also provided. To provide a global time

reference for the clock states, a reference time is loaded as well.

Following the standard for distributing satellite orbit data, a Receiver Inde-

pendent Exchange Format (RINEX) file parser is included in DPInit to load

the satellite ephemerides and bypass the 12.5 minute ephemeris download-

from-satellite time [1]. All ephemerides in the RINEX file with the same

issue time are stored in the same instance of a custom class, and all of these

instances are accumulated in a vector.
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Figure 3.3: DPInit module created for this work.

3.1.2 Acquire Samples

SampleBlock is adapted for this work from an existing module developed by

the Grace Gao Research Group and is responsible for loading the antenna

voltage measurements from a file into GPU memory. As CPU→ GPU mem-

ory transfers can be time-consuming, it is desirable to keep the algorithm

waiting on these transfers as little as possible. Thus, SampleBlock uses a

multi-buffer design to pre-load samples for the next iteration while other

modules are processing the samples of the current iteration, parallelizing the

memory transfers and minimizing the time each new iteration must wait for

samples. This parallelization is diagrammatically represented in Figure 3.4.

According to settings specified in the flow, an array of buffers is created,

each one sized to the number of antenna voltage samples to be processed

in one iteration of the DPE algorithm. Samples are asynchronously read

into the buffers from a source file. Once a buffer is full, it is copied to device

memory. Once the device copy completes, that buffer is ready to be processed

by the DPE algorithm.

The state of the set of buffers is managed using semaphores. Every time

a full buffer is copied to device memory, a semaphore is incremented. Every

iteration, this semaphore is checked to ensure there is a buffer available for

processing, with an error being returned if not. Also every iteration, the

buffer of samples that was processed during the previous iteration is marked

for replacement by being added to a second semaphore tracking the number of

buffers available to newly loaded samples. This second semaphore regulates

the asynchronous sample loading by preventing more samples from being

read when no buffers are available.

SampleBlock also provides the sampling frequency fs and buffer size ∆T

to the rest of the DPE algorithm.
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Figure 3.4: SampleBlock module adapted for this work.

3.1.3 Batch Scoring

The first of the two tandem modules implementing the DPE algorithm, the

BatchCorrScores module was developed for this work to compute the corre-

lation scores using the batch correlation technique described in Section 2.3.2.

For the position-domain scores, this is accomplished by constructing the

replica at the receiver’s state estimate then cross-correlating with the received

signal using FFTs. For the velocity-domain scores, this is accomplished by

wiping off the PRN code and navigation bits from the received signal then

computing the frequency components of the remaining carrier wave by FFT.

Components of the replica signals used for cross-correlation and wipe-off

can be generated independently of the others, and each sample of each compo-

nent can be generated independently of the others. Additionally, the FFTs

which compute the scores can be performed independently of each other.

Thus, the batch correlation step of the DPE algorithm was parallelized ac-

cording to Figure 3.5. Each block in Figure 3.5 is a sub-task of the batch

correlation, and each block is executed on one of three CUDA streams which

are synchronized by CUDA events. This parallelization scheme ensures no

computational work in the algorithm is redone.

Since the received signal is the superposition of all transmissions, the cor-

relation score at a given state is also the superposition of all channels (Equa-

tion 2.5). Thus, the correlation scores for each channel being tracked may be

computed separately. This way, the correlation function approximations are

treated as independent look-up tables, and the correlation score for a state

is computed as the sum of the score for each channel. For any step in the

implementation that produces a different signal for each channel, the signals

are stored contiguously in a 1D array – the last sample of one channel’s signal
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Figure 3.5: Parallelized implementation of Equations 2.17 and 2.18.

being followed by the first sample of the next channel’s signal.

In this implementation, replicas of the carrier wave exp{·}, PRN code

Gi{·}, and navigation data Di
t{·} are computed in blocks 2, 4, and 7, re-

spectively, using the current estimates of the channel parameters. For the

position-time scores, the carrier wave replica is used to wipe off the carrier

effects from the received samples in block 5, and the result is Fourier trans-

formed in block 8. This result is multiplied with the complex-conjugate of

the FFT of the replica in blocks 7 and 10, and the inverse FFT is performed

on the result in block 12. For the velocity-time scores, the DC-offset of the

received samples is removed in block 9, and the navigation data replica and

the C/A code replica are used to wipe off their effects from the received

samples in block 11. The FFT of the result is then taken in block 13.

When constructing the navigation data replica Di
t{·}, the next navigation

bit may not be known at the time of replica generation. In such a scenario,

replicas are constructed for both navigation bit possibilities [25]. Correlation

scores for both replicas are computed, and the navigation bit value that

gives the higher correlation score for the current best code phase parameter
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is selected. This is the cause of the dependence of block 12 on block 11.

Additionally, this limits the sample length ∆T to the length of one navigation

bit from a computational efficiency standpoint – if multiple navigation bits

are included in the sample set, the number of possible values to check will

scale exponentially with the number of navigation bits.

By leveraging the manifold decoupling and batch correlation techniques

and by structuring the signal processing to not repeat computations, the

BatchCorrScores module is capable of efficiently determining correlation

scores as a function of channel parameters, as shown in Figure 3.6.

Figure 3.6: BatchCorrScores module developed for this work.

3.1.4 Assess Manifold

The second of the two tandem modules implementing the DPE algorithm,

the BatchCorrManifold module was developed for this work to determine

which PVT states will comprise the manifold, compute the cross-correlation

score for each point, then generate a measurement from the manifolds.

The position-time and velocity-drift manifolds are computed in parallel on

separate CUDA streams. Each thread will compute the score for a state one

at a time until all states have been scored. The states are chosen according to

a grid initialization function and are oriented along the local East-North-Up

(ENU) coordinates of the PVT state corresponding to the channel parameter

estimates used when generating the batch correlation scores.

Since both the position-time and velocity-drift manifolds are generated by

looking up the batch correlation score for each state on the grid, the thread-

level algorithm for this underlying concept is represented in Figure 3.7. The
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differences between the way in which the two manifolds are generated lie

simply in which states, channel parameters, and scores are used.

Figure 3.7: Computations performed by each thread when generating
manifolds.

Position-Time Manifold

For a state on the position-time manifold x, this is accomplished by finding

the difference between the code phase of the point being evaluated φicode,t(x)
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and the code phase used in the batch correlation φ̂icode,t−1. Following the

definition given in List 2.2, φicode,t(x) is found from the range between the

satellite and the state x. The code phase difference is used to linearly inter-

polate between the batch-computed code correlation scores.

Velocity-Drift Manifold

For a state on the velocity-drift manifold ẋ, this is accomplished by find-

ing the difference between the carrier frequency of the point being evaluated

f icarr,t(ẋ) and the carrier frequency used in the batch correlation f̂ icarr,t−1.

Following the definition given in List 2.2, f icode,t(ẋ) is found from the Doppler

frequency between the satellite and the state ẋ. The carrier frequency dif-

ference is used to linearly interpolate between the FFT scores.

Measurement Generation

Once each position-time state xi or velocity-drift state ẋi is scored with a

value wxi
or wẋi

, respectively, the maximum likelihood state may be found.

This state is the measurement of the software-defined DPE receiver. In the

open-loop implementation, the state with the highest score is chosen from

the position-time and velocity-drift grids, as given in Equation 3.1. In the

weighted-average closed-loop implementation, all states are weighted by their

score and the result is averaged, as given in Equation 3.2.[
xi ẋi

]>
=
[
arg maxxt

wxi
arg maxẋt

wẋi

]>
= Zt (3.1)

[
xi ẋi

]>
=
[∑

i

wxixi

wxi

∑
i

wẋi
ẋi

wẋi

]>
= Zt (3.2)

Whether performing a max operation in the open-loop implementation

or a weighted addition with the closed-loop implementation, the operations

are performed by a parallel reduce – the score for each grid point is added

to a running total or compared to the maximum seen within the thread,

then the threads exchange their results until one thread is left with the final

state, the measurement Zt. Zt is then passed to the filtering step of the

DPE algorithm. The processing pipeline of the BatchCorrManifold module

is shown in Figure 3.8.
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Figure 3.8: BatchCorrManifold module developed for this work.

3.1.5 Filtering

Developed for this work, the cuEKF module filters the measurements from

BatchCorrManifold. While the state Y t is the maximum likelihood state,

error in the estimate is still expected due to interference effects on the received

signal, discretization errors in the sampling and software-defined processing,

and approximations in the DPE algorithm itself. Thus, an extended Kalman

filter (EKF) is implemented to filter such errors and produce smoother, likely

more accurate state estimates by modelling the uncertainty in measurements

and integrating those in consideration of previous state estimates and their

uncertainty [49, 50].

The EKF accomplishes this by modelling the state estimates at time t as

a Gaussian distribution with mean X t|t and covariance P t|t. Physical pro-

cesses that are considered to have random effects often follow a Gaussian

distribution [49], and Gaussian distributions may be combined using rather

simple linear algebra equations. For a measurement with mean Zt and noise

covariance Rt at time index t, the measurement update of an EKF updates

the previous best guess of the state X t|t−1 and its covariance P t|t−1 by mul-

tiplying the two distributions:

Y t = Zt − h(X t|t−1)

Kt = P t|t−1H
>
t (H tP t|t−1H

>
t + Rt)

−1

X t|t = X t|t−1 + KtY t

P t|t = (I −KtH t)P t|t−1

(3.3)

where h(·) is the function mapping the state to the measurement and H t is

the Jacobian of h(·) assessed at the state X t|t−1. Following the measurement
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update, the EKF then predicts the state and covariance for the next iteration

based on the state’s expected motion between iterations:

X t+1|t = f(X t|t)

P t+1|t = F tP t|tF
>
t + Qt

(3.4)

where f(·) is the function describing the expected motion of the state, F t is

the Jacobian of f(·) assessed at the state X t|t, and Qt is the noise associated

with the expected motion.

Each iteration, the EKF performs the measurement update to compute

X t|t followed by the prediction update to compute X t+1|t. These states are

made available to the rest of the DPE algorithm.

To eliminate the need for CPU ↔ GPU data transfers in this module, the

EKF was implemented on the GPU using the CUDA Basic Linear Algebra

Subroutines (cuBLAS) library [51], as shown in Figure 3.9.

Figure 3.9: cuEKF module developed for this work.

3.1.6 Channel Propagation

Developed for this work, the ChannelManager module maintains current

estimates of the channel parameters for all satellites being tracked. These

parameters are used by both the BatchCorrScores and BatchCorrManifold

modules and, as they describe the relationship between the receiver state and

the state of each satellite, they are updated using X t|t. Further, an estimate

of the transmission time of the next sample set is found, which is used to

compute the corresponding satellite states. This functionality is shown in

Figure 3.10.

The channel frequency parameters f icode,t and f icarr,t are computed according

to their formulae as given in List 2.2. However, the channel phase parameters
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φicode,t and φicarr,t are propagated forward from their previous estimates using

the estimates of the corresponding frequency:

φicode,t = (f icode,t∆T + φicode,t−1) mod LC/A

φicarr,t = (f icarr,t∆T + φicarr,t−1) mod 1.0
(3.5)

Instead of the back-calculation and time-propagation equations for updat-

ing the channel parameter estimates, channel-domain tracking loops could be

employed. Though beyond the scope of this work, the software architecture

was designed to accommodate channel-domain tracking loops in this module.

Following the phase parameter update, the ChannelManager module then

computes the satellite states for the current set of channel parameters. Since

the code phase estimate is computed every iteration, a count is maintained

of the code periods elapsed since the time-identifier bits were transmitted

by each satellite. This allows the transmission time of the sample set to be

accurately estimated. As the ephemeris for a satellite is the parameterization

of its trajectory, a series of orbital mechanics equations is then solved to

compute the PVT state for each satellite.

The channel parameters and the corresponding PVT for each satellite are

made available to the next iteration of the DPE algorithm.

Figure 3.10: ChannelManager module developed for this work.

3.1.7 Logging

The DataLogger module is adapted for this work from a core functionality

module in the group’s software architecture. Data on the GPU from the

current iteration is asynchronously copied to the CPU and recorded in a file.
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Typically, the state estimate X t|t is of greatest interest, though other data

may be recorded using this module, as well. Values are stored in a comma-

separated format for easy analysis. The parallelization of this functionality

is shown in Figure 3.11.

Figure 3.11: DataLogger module adapted for this work.

3.2 Hardware Segment

To evaluate the numerical DPE implementation, Chapter 5 processes simu-

lated and real-world results using the software presented in Section 3.1. The

host which generates and processes the datasets is presented in this section.

The hardware segment consists of a GPS signal source, a signal sampler, and

the GPU to process the samples.

3.2.1 Signal Source

For the simulated datasets, the GPS signals originate from the National In-

struments GPS Simulation Toolkit [52]. This simulator is capable of generat-

ing the theoretical transmissions from up to 12 GPS satellites with adjustable

amplitudes. By specifying the receiver position-time state in National Instru-

ments LabVIEW, the simulator will generate the composite received signal

for that state. The receiver state may also be programmed to follow a spec-

ified path over a period of time. By simulating the received signal using

this hardware, the accuracy of the DPE implementation can be evaluated

by comparing the results directly to the known receiver states and with only

known effects on the received signal. After a simulated downconversion from
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the GPS L1-band carrier frequency of fL1 = 1575.42 MHz [1] to 0 Hz, the

samples are generated at a frequency of fs = 2.5 MHz. This downconver-

sion means that the frequency of the carrier wave in the received samples for

satellite i will only consist of the Doppler frequency component f icarr,t.

3.2.2 Sampling

The receiver’s voltage samples are acquired through the use of an Ettus

Research Universal Software Radio Peripheral (USRP) [53]. The USRP is

an radio front-end that will sample at a specified frequency; for this work,

the sampling frequency fs = 2.5 MHz. The samples are triggered by a

Microsemi SA.45s Chip-Scale Atomic Clock (CSAC) that provides a clocking

signal of 10 MHz ± 5 × 10−10 Hz to the USRP [54, 55]. The USRP also

digitally down-converts the received signal from the GPS L1-band carrier

frequency of fL1 = 1575.42 MHz [1] to 0 Hz, meaning the frequency of the

carrier wave in the received samples for a satellite i will only consist of the

Doppler frequency component f icarr,t. Additionally, during the digital down-

conversion, the USRP converts the signal received into its in-phase (I) and

quadrature (Q) form, resulting in one sample consisting of both the I and Q

signal components.

The samples produced by the USRP are sent over Ethernet to a computer

to be recorded in a data file using the USRP hardware drivers provided by

Ettus Research. The I and Q components are 16 bits each, meaning one

sample is 32 bits or 4 bytes.

3.2.3 GPU

The GPU used is an NVIDIA Jetson TX2 [56]. The TX2 consists of 2

streaming multiprocessors, each supporting up to a total of 2048 threads [57].

CUDA kernels – functions responsible for executing code on the GPU –

launch a specified number of blocks, each block executing a specified number

of threads. Each block can support up to 1024 threads, though that number

may need to be tuned smaller depending on how many registers a thread

uses, as each block has a maximum of 32768 registers available to it [57].

Thus, optimizing CUDA kernel launches for the TX2 entails choosing the
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number of blocks and threads to launch for each kernel so that the GPU has

as many threads as possible active at a time while staying under the register

cap for each kernel block launched.

The TX2 has 8GB of RAM available to the CPU and GPU for mem-

ory allocation [57]. As sample sets, intermediate processing results, and the

manifolds are all stored as arrays, this places a limit on the theoretical max-

imum allowable sizes of those steps of the implementation. However, 8GB is

sufficient for the implementation considered in this work.

3.2.4 Hardware Integration

The hardware segment consists of the pipeline shown in Figure 3.12.

Figure 3.12: The hardware pipeline of the DPE receiver for this work.

3.3 Receiver Implementation

This section will specify the configuration of the software segment. The set-

tings selected are an example tuning for the receiver implementation chosen

to balance localization accuracy and computational efficiency.

3.3.1 PVT State Convention

PVT states are defined with position-velocity states p and ṗ in the ECEF

coordinate frame and time states δt and δ̇t as the negative offset with re-

spect to an internal reference time kept by the DPE algorithm based on the
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number of samples received. Additionally, δt and δ̇t are stored computa-

tionally as the distances cδt and cδ̇t to be of comparable magnitude to the

ECEF p and ṗ states. Though not a requirement, this distance form of the

time states is often more convenient for computations, particularly in linear

algebra operations for optimization and filtering.

3.3.2 DPInit

The DPE algorithm is initialized by the results of a 60-second scalar tracking

algorithm. The scalar tracking algorithm acquires lock of the available satel-

lites to provide the DPE algorithm with channel parameters and achieved a

reasonably accurate PVT state estimate such that the true receiver state is

within the DPE receiver’s manifold when initialized from this estimate.

3.3.3 SampleBlock

Samples are loaded from a datafile in sets of ∆T = 20 ms long. This sam-

ple set length was chosen to match the length of one navigation bit so

that the value of only one navigation bit needs to be determined by the

BatchCorrScores module. While more than one navigation bit can occur in

the sample set if the Doppler effect increases the received code frequency

(f icode,t > 0), the Doppler effect is small (f icode,t ± 10 kHz) compared to the

nominal code frequency (fC/A = 1.023 MHz). Thus, only a few samples could

contain the second navigation bit, and having the value of the second navi-

gation bit wrong would contribute minimally to the overall batch correlation

score.

Each sample set consists of fs×∆T = 2.5 MHz×20 ms = 50×103 samples.

With each sample being 4 bytes, each buffer requires 200 kb. A total of 32

buffers are allocated for the rolling buffer implementation, taking a total of

6.4 Mb of device memory for this module.

3.3.4 BatchCorrScores

The majority of the steps in the BatchCorrScores module follow the number

of samples in the sample set currently being processed. The replica Gi{·}
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used in Equation 2.17 to compute position-time cross-correlation is 50 ×
103 samples to match the sample set, since cross-correlation is a sample-by-

sample comparison of two signals. Thus, the FFTs used to transform the

sample set and the replica Gi{·} as well as the following inverse fast Fourier

transform (IFFT) are both 50× 103-point transforms. A Gi{·} replica must

be constructed and Fourier transformed for each tracked satellite i, then the

IFFT must be taken for each tracked satellite to generate that channel’s

cross-correlation scores.

For the velocity-drift scores, however, since the cross-correlation scores are

approximated by the FFT coefficients, there is flexibility in the choice of

number of FFT points. By extending the number of points P in exprec{·}
of Equation 2.18 to a power of 2, the execution time for the FFT is reduced

to O(P log(P )) [58]. If the new elements are added by zero-padding the end

of the sample set, the precision of the FFT will also be increased by sinc

interpolation. This precision increase will continue as more zeros are added

to the end of the sample set. Empirically, a 524288-point FFT was chosen,

as this is 50 × 103 rounded to the nearest power of two and multiplied by

8. The multiplication by 8 was empirically chosen to minimize the linear

interpolation distance performed by the velocity-drift manifold by having

the FFT perform a more accurate sinc interpolation, instead.

3.3.5 BatchCorrManifold

Three position-time and velocity-drift grids were used by BatchCorrManifold

when evaluating the DPE receiver algorithm: Spread Grid 7m, RNGrid 7m,

and Spread Grid 6m.

Spread Grid 7m

The candidate points of the Spread Grid 7m manifold were chosen with a

higher density towards the center of the grid and lower density towards the

extremities of the grid. This provides higher resolution for good starting es-

timates and a wide coverage to increase the range of poor estimates tolerable

by the receiver. The candidate spacing density is shown in Figure 3.13 with

a 1D slice of the position dimension grid.
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Figure 3.13: A 1D slice of the Spread Grid 7m.

As shown in Figure 3.13, the spacing increases from 7 m between points

to 21 m between points after the seventh point from the center of the grid.

Table 3.1 provides the specifics for the spacing of the candidate points in

each dimension.

Table 3.1: Spread Grid 7m manifold dimensions

Dim. Axis Span
Inner

Spacing
Outer

Spacing
Points per

Dim.

Position East, North, Up ±154 m 7 m 21 m 25
Clock Bias Bias Range cδt ±154 m 7 m 21 m 25

Velocity East, North, Up ±15.4 m
s

0.7 m
s

2.1 m
s

25

Clock Drift Drift Range cδ̇t ±5.5 m
s

0.25 m
s

0.75 m
s

25

As previous open-loop DPE implementations have shown position-domain

localization accuracy on the order of 50 m [12, 26], this spacing ensures

that 49 m in every direction around the estimate chosen by the receiver

is covered by the higher-resolution spacing of points. Additionally, with

the total coverage extending to 154 m when including the lower-resolution

spacing of points, initialization perturbations up to 80 m – the subject of the

experiments in Section 5.1 – will still have maximum likelihood candidate

points contained within the grid even when compounded with the effects of

the 50 m-order open-loop DPE accuracy.

RNGrid 7m

In comparison with the structured Spread Grid 7m, the RNGrid 7m was

generated to cover the same position-time domain space with the same num-

ber of points as the Spread Grid 7m, but using largely randomly-selected

candidate points.

A total of (254 − 17) points of the 254 points were chosen as 4D uniform
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random variables, i.i.d. with respect to each dimension. All candidate grid

points were chosen i.i.d. with respect to each other.

The other 17 points in the position-time domain grid were chosen explicitly.

Sixteen of these were the 16 vertices of a 4D hypercube spanning ±154 m in

each dimension to ensure RNGrid 7m covers the same position-time space as

Spread Grid 7m. The one other explicitly chosen grid point was a candidate

at the center of the grid so that the algorithm could remain at the same

estimate over multiple timesteps.

A 3D slice of the RNGrid 7m used in this work is shown in Figure 3.14.

Figure 3.14: A 3D slice of the RNGrid 7m for grid points with clock bias
between 153 and 154 m. The randomly chosen grid points are represented
as blue circles, and 8 of the 16 vertex points that are visible in this plot are
represented as orange triangles.

As Section 5.1 uses this grid to study position-time domain effects, the

velocity-drift grid of the RNGrid 7m configuration was kept identical to the

Spread Grid 7m. The specifications of the grid are provided in Table 3.2.

The random selection of grid points allows the effects introduced by the

structure in the choice of states in the Spread Grid 7m to be easily identified.

Thus, the justification for the domain covered by the RNGrid 7m follows from

that of Spread Grid 7m. While Table 3.2 shows that the average spacing is

now 12 m between points, the 7m moniker in RNGrid 7m was used to signify

the comparative relationship with Spread Grid 7m.
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Table 3.2: RNGrid 7m manifold dimensions

Dim. Axis Span Mean Spacing
Points per

Dim.

Position East, North, Up ±154 m 12.3 m 25
Clock Bias Bias Range cδt ±154 m 12.3 m 25

Dim. Axis Span
Inner

Spacing
Outer

Spacing
Points per

Dim.

Velocity East, North, Up ±15.4 m
s

0.7 m
s

2.1 m
s

25

Clock Drift Drift Range cδ̇t ±5.5 m
s

0.25 m
s

0.75 m
s

25

Spread Grid 6m

The candidate points of the Spread Grid 6m manifold were chosen in the

same manner as Spread Grid 7m, but with a 6-m spacing for the high-density

points and a corresponding adjustment to the lower-density points. This size

reduction was chosen to better suit the mobile dataset analyzed in Section 5.2.

The candidate spacing density is shown in Figure 3.15 with a 1D slice of the

position dimension grid:

Figure 3.15: A 1D slice of the Spread Grid 6m.

As shown in Figure 3.15, the spacing increases from 6 m between points

to 18 m between points after the seventh point from the center of the grid.

Table 3.3 provides the specifics for the spacing of the candidate points in

each dimension.

Table 3.3: Spread Grid 6m manifold dimensions

Dim. Axis Span
Inner

Spacing
Outer

Spacing
Points per

Dim.

Position East, North, Up ±132 m 6 m 18 m 25
Clock Bias Bias Range cδt ±132 m 6 m 18 m 25

Velocity East, North, Up ±13.2 m
s

0.6 m
s

1.8 m
s

25

Clock Drift Drift Range cδ̇t ±5.5 m
s

0.25 m
s

0.75 m
s

25
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With the receiver in the mobile dataset of Section 5.2 moving approxi-

mately 3 m between iterations but with no initialization perturbations, this

grid size offers a slightly higher resolution in exchange for slightly less range.

3.3.6 cuEKF

While the cuEKF module was developed and verified for this work, it was

not utilized in the experimental localization results in order to better isolate

and study the effects of the numerical implementation of the DPE receiver.

3.4 Conclusion

This chapter introduced the DPE receiver implementation developed specif-

ically for this work. A seven-task decomposition of the DPE algorithm was

presented in List 3.1 and implemented as the seven Modules described in

Section 3.1. Considerations for efficient GPU processing were also incorpo-

rated in the modules. The receiver implementation processes pre-recorded

GPS datasets which were acquired through a simulated or real-world radio

front-end which downconverts the received signal and samples at a rate of

fs = 2.5 MHz. An NVIDIA Jetson TX2 is used as the host hardware for

the software implementation, and the parallelized Modules are tuned to this

hardware. Three DPE manifold grids were also specified.

44



CHAPTER 4

ANALYSIS AND DESIGN INSIGHTS FOR
A NUMERICAL DPE IMPLEMENTATION

While the benefits of DPE can be proven analytically, the numerical imple-

mentation of DPE will require approximations that may degrade these ben-

efits. Following the DPE algorithm and techniques presented in Chapter 2,

and given the DPE-based receiver implementation specified in Chapter 3,

this chapter presents the second of the three areas of contributions of this

work: new analysis of certain effects present in the localization results of a

DPE-based receiver implementation.

Three specific effects will be studied in this chapter. First, a state coupling

effect arising from the nature of satellite-based navigation will be derived for

DPE. Second, a position-domain signal tracker using weighted averaging will

be justified. Third, a limit on the open-loop DPE accuracy based on the

sampling frequency will be determined.

4.1 Satellite Geometry and DPE

Grid-based DPE also offers the potential to provide improved resilience to

errors as compared to iterative methods. This improvement arises from a

coupling between the accuracy of the estimates of clock bias and the accuracy

of the estimates of the receiver’s vertical state. While [59] shows this effect

for two-step receivers, this work will show that the same effect occurs in

one-step receivers.
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4.1.1 Linear Model for DPE Maximum Likelihood

Figure 4.1: The autocorrelation score as a function of code chips delayed
for GPS PRN codes.

As shown in Figure 4.1, assuming the replica and received signals have

matched frequencies, GPS PRN codes have a cross-correlation function pro-

portional to the difference in code phase signals over a specific range of code

phases. This relation can be modeled as shown in Equation 4.1, with units

expressed in number of chips of the PRN code sequence:

score(∆φicode,t) =

1− |∆φicode,t|, 0 ≤ |∆φicode,t| ≤ 1

0, ∆φicode,t > 1
(4.1)

where ∆φicode,t = φicode,treceived − φ
i
code,treplica

(x) + εiφi and:

• φicode,treplica(x) = ||xi − x|| is the code phase estimate computed by the

receiver for state x.

• φicode,treceived = ||xi − xactual|| is the code phase of the received signal at

the receiver’s true state xactual.

• εiφi is a collection of the errors in the replica and received signals, and

is responsible for any shift in the maximum score away from

φicode,treplica(x)− φicode,treceived .

• x = [p δt]> can be described in terms of the receiver’s true state by

p = pactual −∆p and δt = δtactual −∆δt.
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Substituting the definitions above into Equation 4.1 and using a Taylor

series approximation of the vector norm gives Equation 4.2:

∆φicode,t = ||pi − p−∆p|| − ||pi − p|| − (δtactual − δt) + εiφi

≈ (pi − p)

||pi − p||
∆p + ∆δt+ εiφi

= [(−1i)]>∆p + ∆δt+ εiφi

(4.2)

According to the substitution in Equation 4.2, [−1i]> = (pi−p)
||pi−p|| . Then, the

solution to the objective function of Equation 2.14 is found by maximizing

the sum of the cross-correlation scores for all the tracked channels, as given

in Equation 4.3:

X̂ = arg max
X

∑
i

(1− |∆φicode,t|)2

= arg min
X

∑
i

|∆φicode,t|2

= arg min
X

∣∣∣∣∣Γ
[

∆p

∆δt

]∣∣∣∣∣
2

(4.3)

with the satellite geometry matrix Γ =


(−11) 1

(−12) 1
...

...

(−1M) 1

.

4.1.2 Geometric Impact

A comparison between the satellite-geometric formulation of DPE given in

Equation 4.3 and the formulation of two-step approaches given on page 204

of [1] shows that satellite geometry plays the same role in both DPE and

two-step-based receivers. Thus, effects that occur in the receiver due to

the satellite geometry in two-step-based receivers will occur in DPE-based

receivers as well.

The aforementioned resilience to noise in grid-based DPE arises from a

difference in satellite geometry between the horizontal plane and the vertical

axis. In the horizontal plane, a receiver will be able to receive signals from

satellites from any direction, provided there is no interference from structures
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or terrain. This means that, for a state slightly shifted from the actual

receiver position in the horizontal plane, the code phase errors for all channels

will be either positive or negative. However, as the surface of the Earth blocks

signals from satellites that are below the horizon for a near-Earth receiver,

the receiver will only receive satellites which are above it. A state slightly

shifted from the actual receiver position in the vertical dimension will have

code phase errors for all channels with the same sign. Such a shift in all the

channels is very similar to a clock bias shift, which leads to a strong coupling

between the vertical estimates and the clock bias estimates, as Misra shows

in [59]. And, to confirm this, the same demonstration done by Misra in [59]

for two-step receivers will be conducted for DPE in Chapter 5.

This coupling manifests itself numerically in the dilution of precision (DOP)

matrix DOP = (Γ>Γ)−1. This matrix originates from the covariance of the

error of the position estimate, as shown in Equation 4.4 [1]:

Cov

[
∆p

∆δt

]
= σ2(Γ>Γ)−1 = σ2DOP (4.4)

As the DOP matrix is a covariance matrix, the diagonal terms are pro-

portional to the variance in a given direction while the off-diagonal terms

are proportional to the covariance between two directions. If the position

states of the DOP matrix are expressed in terms of receiver-referenced ENU

coordinates, GPS receivers will typically have much higher variance in the

vertical direction than the other directions, due to the effects described above.

Furthermore, also due to the effects described above, the covariance terms

between the vertical dimension and the clock bias dimension will typically

be significant, while all other off-diagonal terms are not significant, indicat-

ing a strong coupling between the dimensions. This means that the error in

the vertical estimate will typically be directly proportional to the error in

the clock bias estimate; for GNSSs, the vertical error will be directly pro-

portional to the clock bias error by factor between 1 and 2. And, as Misra

demonstrates in [59], if the receiver has an accurate model of the error in its

clock, the coupling can be leveraged to significantly reduce the error in the

receiver’s vertical estimates.
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4.1.3 DPE Receiver Design Insights

Position-time manifold grids can be designed to leverage the coupling be-

tween vertical and horizontal estimates. If the DPE algorithm begins in a

low-confidence state, such as one acquired through coarse acquisition, a grid

with large, independent variations in the vertical and clock bias states should

be used. The variation in such a grid would increase the likelihood of finding

a state with offsetting errors in the vertical and clock bias dimensions. If

the DPE algorithm begins in a state of reasonable confidence, such as one

acquired through scalar tracking or previous DPE timesteps, a grid with ver-

tical and clock bias states that vary together should be used. This would

allow a grid of the same size to refine the estimate by searching a smaller

space at a higher resolution.

An uncertainty metric could be used to adjust which grids are used during

operation, as well. When there is greater variance in the time and clock bias

states, the variation between the vertical and clock bias states could increase.

The state covariance from a Kalman filter or the sharpness of the manifold

in the previous timestep could be used as such metrics.

4.2 Grid-based Signal Tracking

In GNSSs, signal tracking is a part of the receiver algorithm responsible for

maintaining highly accurate estimates of the channel parameters [1]. This

idea of tracking can also be utilized by DPE in the position domain to im-

prove the receiver state estimate. The grid points themselves are samples of

the replica-received correlation function at different code phases, and, with

the points being the sum of the scores of each channel at a certain code

phase, a step that better resolves the peak of the manifold will perform vec-

tor tracking. Weighted average-based position-domain vector tracking was

utilized by Ng and Gao in [10] and [23]; however, its mathematical justifica-

tion was not explored in those works. The following justification of weighted

average-based position-domain vector tracking was developed for this work.
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4.2.1 Analytical Model of Manifold Scoring

The auto-correlation function of GPS PRN codes has the form shown in

Figure 4.1. Assuming perfect signal transmission and reconstruction, if the

DPE receiver’s estimate x is exactly at the ground truth location xactual, all

tracked channels should have this form and lie on top of each other, as shown

in Figure 4.2 (staggered for visual clarity).

Figure 4.2: Theoretical shape of correlation functions of multiple tracked
channels at the ground truth location of a receiver.

However, if the DPE receiver’s estimate is slightly off the ground truth

location by some perturbation ∆x, the correlation scores of the channels will

begin to move away from the center of the plot based on the estimate-receiver

and satellite-receiver relative geometry, as shown in Figure 4.3.

Figure 4.3: The replica-received correlation plots for a receiver state
estimate nearby – but not equal to – the ground truth location of the
receiver.
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The chip offsets on the x -axis of Figure 4.3 are referenced with respect to

the grid point at state x. For clearer visualization of how the cross-correlation

functions shift based on the state perturbation applied, a range of chip offsets

are shown in Figure 4.3. However, the grid points cannot compute the true

shape of the function; only the cross-correlation scores at zero chip offset

from itself – the value of the cross-correlation function on the y-axis – can

be computed for a given grid point.

Consider now two states co-linear with the ground truth and perturbed at

∆x from the ground truth in opposite directions. Assuming the three points

have the same satellite geometry due to their proximity, the state perturbed

by −∆x will have a mirror image replica-received correlation plot with re-

spect to the state perturbed by ∆x. In other words, the correlation plots

will shift the same amounts in opposite directions, as shown in Figure 4.4.

Figure 4.4: The replica-received correlation plots for two receiver state
estimates the same distance away in opposite directions from the ground
truth location of the receiver.

So, for all possible shifts ∆x in a given direction, until the shifts are greater

than one chip for any channel, and assuming all points have the same satel-

lite geometry across the grid, the replica-received correlation plots for each

channel will shift at a constant rate. Due to the piecewise linearity of the

cross-correlation function, a constant-rate shift results in a linear change in

the score. Thus, the composite replica-received correlation plot for M chan-

nels has the same form as the auto-correlation function for one channel, as

shown Figure 4.5.
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Figure 4.5: The sum of the individual replica-received correlation plots at
the ground truth location of the receiver over a select range where all
channels are above their noise floors.

The rate at which the individual cross-correlation plots is a function of

the relative locations of that channel’s satellite and the receiver. Channels

with satellite elevation closer to the horizon will move into the correlation

function’s noise floor faster than those closer to zenith. For simplicity, in

this analysis, it is assumed that the DPE grid has no candidate points with

channels in the noise floor. Thus, Figure 4.5 visualizes only a range of offsets

bounded by u in which each channel has a non-zero score.

4.2.2 Geometric Solution of Position

Due to this known and piecewise-linear structure, the ground truth posi-

tion may be geometrically computed. Figure 4.6 visualizes geometric rela-

tions used in the computation of the ground truth xactual from two states

x1 ∈ [−u, 0) and x2 ∈ (0, u] with |x1| > |x2|.
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Figure 4.6: The geometry of the replica-received correlation scores for two
states nearby the ground truth location of the receiver.

The score(·) values and the locations of x1 and x2 are the only values

available to the receiver. However, other terms present in Figure 4.6 will be

used to compare the weighted average of x1 and x2 to an exact calculation

of the receiver’s true location xactual. Equation 4.5 geometrically solves for

the value of xactual through linear interpolation on the line from score(x1) to

score(x2)′:

xactual =
(score(xactual)− score(x1))x2 + (score(x2)′ − score(xactual))x1

score(x2)′ − score(x1)
(4.5)

For simplicity, assuming the composite correlation function is normalized,

following the formulation of Equation 4.1, the width and height of the trian-

gles drawn in Figure 4.6 are equivalent:

• score(xactual)− score(x1) = φ1

• score(xactual)− score(x2) = φ2

• score(x2)′ = score(x2) + 2φ2

• score(x2)− score(x1) = φ1 − φ2

If the correlation plot is not normalized, a scale factor s may be used to

relate the values instead. Using this simplification, though, the following

substitutions may be made into Equation 4.5:
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xactual =
φ1x2 + (score(x2) + 2φ2 − score(xactual))x1

score(x2) + 2φ2 − score(x1)

=
φ1x2 + (2φ2 − φ2)x1

2φ2 + φ1 − φ2

=
φ1x2 + φ2x1

φ1 + φ2

(4.6)

4.2.3 The Weighted Average Position-Domain Tracker

In comparison, the weighted average between x1 and x2 is given by Equa-

tion 4.7.

x =
score(x1)x1 + score(x2)x2

score(x1) + score(x2)

=
(1− |φ1|)x1 + (1− |φ2|)x2

2− |φ1| − |φ2|

(4.7)

When comparing Equation 4.6 and Equation 4.7, it is clear that the

weighted average does not compute the true position of the manifold peak.

However, the weighted average is capable of converging to the true position

over multiple iterations due to the trends of the numerator coefficients. Let

x1 be further away from xactual than x2. Then,

• The factors of the x1 term, φ2 (Equation 4.6) and 1 − |φ1| (Equation

4.7), will be smaller numbers.

• The factors of the x2 term, φ2 (Equation 4.6) and 1 − |φ2| (Equation

4.7), will be larger numbers.

These factors will trend in the same direction as x2 approaches xactual.

When x2 = xactual, φ2 = 0, and Equation 4.6 will keep x2 = xactual. When

using the weighted average-based position-domain vector tracker, if the DPE

grid is evenly spaced, x2 = xactual, and there is a third point x3 such that

x2 − x1 = x3 − x2, as shown in Figure 4.7:.

Figure 4.7: Visualization of the relations of x1, x2, and x3.
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For these three points, the weighted average equation changes to Equa-

tion 4.8.

x =
(1− |φ1|)x1 + (1− |φ2|)x2 + (1− |φ3|)x3

3− |φ1| − |φ2| − |φ3|
(4.8)

where |φ1| = |φ3|, x will also equal x2, and the grid will remain at x2.

4.2.4 DPE Receiver Design Insights

By taking the weighted average of the states on the grid, the known structure

of the manifold can be leveraged to numerically find the state at the max-

imum of the theoretical DPE manifold, regardless of whether that state is

actually sampled by the grid. The weights used in this operation are simply

the scores computed by each grid point, making the computation efficient

when parallelized using reduction.

The weighted average does assume that the manifold is unimodal – the

weighted average for a manifold with two peaks, for example, will converge

to a state between the peaks. Also, this tracker does require successive

timesteps to converge, but will remain at the maximum of the theoretical

manifold once it is found. Finally, this approach does require a manifold grid

that is symmetric about the center state of the grid, however, which forces an

inherent structure in the states that are searched. This last requirement may

be innocuous or even desired if the receiver is leveraging satellite geometry

effects, but, nonetheless, must be considered when the receiver designer is

choosing grid configurations. Such considerations are the price for the high

accuracy and computational efficiency of the tracker, and good choices of

such tradeoffs are integral to a well-designed receiver implementation.

4.3 Accuracy Limitations of DPE

The batch correlation technique introduced in Section 2.3.2 and utilized as

described in Section 3.1.3 is crucial for making the computational cost of

a numerical DPE implementation practically implementable in portable re-

ceivers. However, it is an approximation of the true scores of the grid states,

and this approximation does introduce an accuracy-degrading effect, which

will be studied in this section.
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4.3.1 Numerical Cross-Correlation

The batch correlation technique operates on the principle that, for the DPE

algorithm, all states on the position-time grid ultimately reduce to an esti-

mate of code phases to each satellite and that all states on the position-time

grid have the same relative velocity with respect to each satellite. And, since

circular cross-correlation functions can be efficiently calculated by FFT, the

circular cross-correlation function between the received signal and the re-

ceiver’s best PVT estimate will efficiently give an approximation of the scores

at every code delay and, thus, every state on the grid.

However, the numerical implementation of the cross-correlation function

does not compute an analytical expression of the cross-correlation function.

Instead, it computes cross-correlation scores at specific code delays, leaving

the receiver to interpolate the score between what are effectively samples of

the cross-correlation function. Over the majority of code delays, interpolating

the score is an accurate approximation – the cross-correlation function is

piece-wise linear when the replica is within one code chip of the received

signal and is in a noise floor around zero when the replica has more than

one code chip of error with respect to the received signal. However, the

interpolation can be erroneous for a critical range of code delays.

Consider the difference between the analytical cross-correlation function

and the numerical cross-correlation function, assuming the receiver has a

perfect model for the received signal. The numerical implementation, con-

sisting of the cross-correlations of two sampled signals, will be a discrete set

of cross-correlation score values. If the replica signal is constructed in the

numerical implementation with no code delay with respect to the received

signal, linear interpolation between the cross-correlation samples will have

no error compared to the analytical cross-correlation function. However, if

the code delay is non-zero, linear interpolation between the cross-correlation

samples will be erroneous near the peak of the cross-correlation function.

For clarification without loss of generality and for comparison with the

localization results in Chapter 5, this effect is visualized in Figure 4.8 for the

sampling frequency fs = 2.5 MHz used in the receiver implementation. For

the GPS L1 signal tracked by the receiver implementation of this work, the

PRN code repeats 1023 code chips every 1 ms. Thus, the samples of the

replica signal are spaced according to Equation 4.9:
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(1× 10−3) sec

1023 chips
× (2.5× 106 samples

sec
) ≈ 2.5

samples

chip
= 0.4

chips

sample
(4.9)

With the replica samples spaced at 0.4 chips
sample

, the worst-case numerical

approximation of the analytical cross-correlation function by linear interpo-

lation will occur when the replica is constructed at a code phase error of

0.2 chips, as shown in Figure 4.8.

Figure 4.8: The computed cross-correlation scores compared to the
theoretical cross-correlation scores under channel parameter error.

4.3.2 Resultant Localization Errors

Open-loop DPE, in particular, suffers detrimental accuracy effects from er-

roneous batch correlation approximations, as the following events occur:

1. When the DPE receiver implementation begins a new timestep, it con-

structs a replica signal at the receiver’s previous PVT state, which, for

the position-time component, was the state on the grid with the high-

est batch correlation score. Thus, the replica at the new timestep will

have nearly the same code phase error as the highest-score position-

time state of the previous timestep, with the only change in code phase

error coming from movement of the receiver.

2. If the position-time grid includes the same state as the receiver’s pre-

vious PVT estimate, there will be a sample of the cross-correlation

function exactly at the code phase error of that state on the grid. All
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other states on the position-time grid will be interpolations of the sam-

ples of the cross-correlation function.

3. If the code phase error of the previous timestep’s PVT estimate has

not changed sufficiently, the sample of the cross-correlation function

corresponding to that PVT state will have the highest score, since it

was the state with the highest score at the previous timestep. And,

the grid point state at the previous PVT state will have a score exactly

equal to this highest score, while all other grid points will, at best,

be interpolations between the best score and some other lower score

cross-correlation sample.

In essence, for any given timestep, the score for the previous-best PVT

state will be the one most accurately computed in the current timestep.

And, the PVT states that should score better than the previous-best PVT

state will be underestimated – scoring worse than the previous best PVT

state – within some range of code phase errors. This arises because of the

batch correlation and the grid-based approach generating the replica for the

previous best PVT state. This effect is visualized in Figure 4.9.

Figure 4.9: The progression of the error in the batch-correlated
cross-correlation scores over multiple timesteps for a DPE receiver moving
away from the estimated state.

As shown in Figure 4.9, for the batch correlation implementation of this

work, there will be a range of 0.4 code chips with respect to a given satel-

lite where the previous best PVT state will again have the highest cross-

correlation score. In the worst-case scenario for such error, the receiver would

still have to move a distance of 0.2 chips along the line-of-sight direction to
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a given satellite before the receiver’s PVT estimate would no longer be the

highest score. This still translates to a 60-m range in the line-of-sight direc-

tion where the previous PVT state has the highest cross-correlation score for

a specific satellite.

When transforming this error region to ENU coordinates, satellite geom-

etry will play a significant role. For purely horizontal movement, the error

region will still be 60 m. However, satellites can only be tracked with some

elevation above the horizon, extending the error region further as a func-

tion of the geometry matrix Γ. Nonetheless, this approximation of a 60-m

open-loop DPE “deadband” provides a reasonable accuracy expectation and

explanation for presented in Chapter 5 of this work.

The impact of satellite geometry also leads to a concerning effect: an open-

loop grid-based DPE receiver implementation using batch correlation will

have worse horizontal accuracy in urban environments, as the only satellites

visible by line-of-sight in an urban canyon have high elevation. This is due

to satellite geometry – horizontal error will minimally change the code phase

error for high elevation satellites. This effect runs counter to the motivation

of using DPE in urban environments for its multipath resilience.

4.3.3 DPE Receiver Design Insights

Batch correlation and grid-based DPE are beneficial numerical approxima-

tions for computational efficiency, particularly when implemented on a GPU.

However, replica fidelity is biased towards the previous best guess on the grid

and reduced for grid states closer to the true peak. Thus, estimates from such

an implementation will not move from a maximum likelihood state unless

the code phase error of that state exceeds a certain deadband range. This

deadband range is a function of the sampling frequency and the line-of-sight

vectors to all satellites. However, these effects can be mitigated when prop-

erly addressed in the DPE receiver design. Thus, this impact on accuracy

should be considered for compensation by receiver design choices:

1. Increase the sampling frequency. This will reduce the time between

samples and, thus, the size of the accuracy deadband. Increased fre-

quency will come at a higher processing cost and more expensive hard-

ware, but is guaranteed to decrease the size of the deadband propor-
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tionately to the increase in the sampling frequency.

2. Add channel parameter-domain signal trackers. If the code phase is

more accurately resolved by tracking chip transitions in the received

signal instead of simply being back-calculated from the previous PVT

estimate, the replica is more likely to have a sample at the true peak.

This comes at a slight increase in computational cost and will provide

improvement proportionately to how well the bit transitions can be

tracked. However, it may be susceptible to multipath errors if the

tracking loops are scalar.

3. Add position-domain signal trackers. Grid-based DPE samples the

theoretical manifold at specific states. A position-domain tracker will

filter these samples to estimate the scores of the theoretical manifold

between these samples and estimate the true peak at a higher precision

than that of the grid. If the filtering is more accurate, the added

precision will lead to a more accurate replica at the next timestep.

However, such trackers will only provide improvement as accurate as

their filtering.

4.4 Conclusion

This chapter examined three effects that arise in numerical solutions to the

DPE algorithm. Section 4.1 introduced a coupling between vertical and clock

bias estimates that arises from the satellite geometry that can be leveraged

depending on the choice of manifold grid. Section 4.2 justified the use of

a weighted average-based signal tracker and the requirements such a signal

tracker places on the choice of manifold grid. Section 4.3 identified an ap-

proximation error that will cause an open-loop DPE receiver to remain at a

PVT estimate within a certain error range, but can be countered with com-

pensation in other parts of the receiver design. These effects will be present

in the localization results of Chapter 5, including experiments where the

first and second will be leveraged and the third will be mitigated by receiver

design.
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CHAPTER 5

EXPERIMENTAL RESULTS

To evaluate the DPE receiver implementation detailed in Chapter 3, this

chapter presents the third of the three areas of contributions of this work:

localization accuracy and computational efficiency analysis of the DPE-based

receiver on simulated and real-world data. The software-defined DPE-based

receiver implementation developed specifically for this work generated all the

results presented in this chapter from execution on an NVIDIA Jetson TX2

following the implementation parameters specified in Chapter 3. Further-

more, the three effects of numerical DPE studied in Chapter 4 are all present

and analyzed in the results.

First, idealized GPS receiver data generated by simulation will study the

best-case localization accuracy and to identity the causes of effects present in

the localization results. Second, real-world GPS receiver data will evaluate

the receiver implementation’s performance when subjected to motion and

unmodeled errors. Third, the speedup and GPU occupancy of the DPE

receiver implementation presented in this work as compared to a sequential

DPE implementation will be analyzed.

5.1 Localization Accuracy Analysis – Simulated Data

This section will study the DPE receiver implementation’s ability to choose

an accurate state from the manifold. In order to evaluate the best-case

capabilities of the receiver, a simulated dataset of a stationary receiver is

used. A stationary-receiver simulated dataset is desirable for this objective,

as it will have the following properties:

• Nearly line-of-sight satellite transmissions, as only Klobuchar-modeled

atmospheric deflections will be introduced.
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• No fluctuation of received satellite power, which would be possible in

real-world data due to atmospheric and terrain effects. Received satel-

lite power will be modeled as a function of distance, which will vary

minimally over the duration of the dataset.

• No movement of the receiver, meaning the cross-correlation manifold

will have only minimal change of shape over the dataset, and the change

that does occur will only be from the motion of satellites.

Given these three properties, it may be assumed that there is one maximum

likelihood state in the dataset for a theoretically perfect solution to the DPE

objective function of Equation 2.11 – in other words, there should exist one

state where the replica-received cross-correlation scores for each satellite are

at their maximum value. Also, with the clean satellite signal transmissions,

the model used by the receiver implementation to construct the replica signals

will be quite accurate to the actual received transmission. This, then, makes

the dataset ideal to analyze how well the DPE receiver implementation solves

this objective function in an ideal case. In particular, steady state localization

error, convergence, and convergence time will be of interest in this analysis.

5.1.1 Localization Experiment Design

In order to test the DPE receiver implementation’s localization capabilities,

the receiver was initialized at 100 different states surrounding the true posi-

tion of the receiver per experiment. The initialization states were chosen by

randomly drawing i.i.d. from a uniform distribution:

• Magnitude values in the range [50, 80] m and angle values in the range

[0, 2π) for the horizontal plane. These values were converted into rect-

angular offsets in the East and North directions and added to the initial

state.

• Values in the range [−80,−50]∪ [50, 80] m as an offset in the Up direc-

tion and added to the initial state.

• For certain experiments, values in the range [−80,−50] ∪ [50, 80] m as

an offset in the clock bias direction and added to the initial state.
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The lower bound of 50 m was selected according to the DPE accuracy

limitations imposed by batch correlation as explained in Section 4.3 – the

open-loop navigation solution should not be expected to move if errors are less

than approximately 60 m. The upper bound was chosen to ensure that the

manifold peak shape and the maximum likelihood state would be contained

within the 154 m reach of the grids defined in Section 3.3.5.

The DPE receiver is also given accurate states of the satellites at initializa-

tion which were obtained through closed-loop scalar tracking. This ensured

that error present in the open-loop DPE solution could only be caused by

the DPE algorithm or the updates between timesteps. With the idealized

simulated data and channel-domain tracking loops, the navigation solution

computed by this scalar tracking had centimeter-level error with respect to

the simulated state, confirming the satellite states used in initialization were

accurate.

5.1.2 Satellite Geometry

The dataset used in this section consists of simulated transmissions from GPS

satellites with the geometric configuration shown in Figure 5.1. Satellite with

PRN 22 was not tracked by the DPE receiver implementation due to its low

elevation.

Figure 5.1: A skyplot of the satellites visible to the simulated receiver for
the dataset used in Section 5.1.

The DOP matrix for the simulated dataset, expressed in the dimensions

of East, North, Up, and clock bias, respectively, is given in Equation 5.1:
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DOPsim =


0.390438 −0.013094 −0.166666 0.139578

−0.013094 0.607397 0.0867343 −0.110702

−0.166666 0.0867343 2.38308 −1.51608

0.139578 −0.110702 −1.51608 1.09746

 (5.1)

The horizontal DOP is the square root of the sum of the East and North

variance values from DOPsim: HDOP =
√

0.390438 + 0.607397 = 0.998917.

The vertical DOP is the square root of the Up-direction variance value from

DOPsim: V DOP =
√

2.38308 = 1.54372. The clock bias DOP is the square

root of the clock bias variance value from DOPsim: TDOP =
√

1.09746 =

1.047597. As expected from the discussion on satellite geometry in Sec-

tion 4.1, the vertical accuracy will be more sensitive to measurement noise

due to its higher DOP than the horizontal or clock bias dimensions. Fur-

thermore, the covariance between the clock bias and the vertical dimensions

is 1.51608 – a strong coupling, especially when compared to the other off-

diagonal terms.

The satellite geometry and resulting DOPsim matrix was computed for the

beginning of the dataset and experienced negligible change over the dataset.

5.1.3 Localization – Open-Loop Spread Grid 7m

For the following experiments, the Spread Grid 7m manifold configuration

was used as specified in Section 3.3.5. The simulated stationary dataset

was processed with open-loop DPE. In order to study the effects of coupling

between the vertical and clock bias dimensions, two sets of 100 randomly

initialized runs each processed the first two seconds of the dataset: one set of

100 runs with no perturbation in the initial clock bias estimate, and one set

of 100 runs with perturbation in the initial clock bias estimate. The offsets

to the scalar tracking initialization state for both sets of 100 runs are shown

in Figure 5.2.
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Figure 5.2: The offsets to the scalar initialization state for the results
presented in Section 5.1.3. The initializations with no clock bias
perturbation are shown in blue, and the initializations with clock bias
perturbation are shown in orange.

The final root mean square (RMS) errors for all 100 runs in these two sets

are shown in Figure 5.3.

Figure 5.3: The RMS error after two seconds of processing for the randomly
initialized simulated dataset using the DPE receiver implementation with
the Spread Grid 7m manifold grid. The initializations with no clock bias
perturbation are shown in blue, and the initializations with clock bias
perturbation are shown in orange.

Furthermore, by plotting the error in one dimension with respect to an-

other, the expected coupling between only the vertical and clock bias dimen-

sions may be observed, as shown in Figure 5.4.
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Figure 5.4: The RMS error after two seconds of processing for the randomly
initialized simulated dataset using the DPE receiver implementation with
the Spread Grid 7m manifold grid. The initializations with no clock bias
perturbation are shown in blue, and the initializations with clock bias
perturbation are shown in orange.

As expected from DOPsim and comparable to the scalar tracking results

presented in [59], Figure 5.4 shows a linear correlation between vertical error

and clock bias error, and no correlation between other states. This coupling

allows for relatively low vertical RMS errors in the final states, as statistically

characterized in Table 5.1.

Table 5.1: RMS and standard deviation of the error in the randomly
initialized simulated dataset using the DPE receiver implementation with
the Spread Grid 7m manifold grid. The initializations with no clock bias
perturbation are provided in the top row, and the initializations with clock
bias perturbation are provided in the bottom.

Hori-
zontal

Vertical
Clock
Bias

Geometric

RMS (m)
No δt Perturbation

32.78455 72.96034 45.58069 92.06323

RMS (m)
δt Perturbed

38.24430 48.88085 39.13977 73.37497

Standard Deviation (m)
No δt Perturbation

14.90965 34.90779 27.43428 36.88651

Standard Deviation (m)
δt Perturbed

19.40486 23.03195 18.72932 28.82295

Interestingly, perturbing the clock bias state noticeably improves the ver-

tical RMS error, as well as the clock bias error. This is likely due to the

numerical sampling of the manifold grid. When the DPE receiver’s state

estimate moves, the state on which the grid is centered will also move at the

next timestep. This will cause a different set of points to be sampled; with
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the increased sampling density at the center of the grid, the states around

the new estimate will be sampled at a higher resolution, as well.

Initial state estimates with more error typically resulted in the receiver

moving to a greater number of intermediate state estimates. For the 100

runs without the clock bias perturbation, the DPE receiver implementation

moved once at most and, on average, 0.89 times before settling on the final

state. For the 100 runs with the clock bias perturbation, the DPE receiver

implementation moved five times at most and, on average, 1.68 times before

settling on the final state.

Additionally, with the way the random perturbations were drawn, runs

in the clock bias-perturbed set would be initialized with states with less

than 30 m difference in their vertical and clock bias error half the time.

With the linear structure of the candidate points in the Spread Grid 7m,

the coupling between the vertical and clock bias states may be exploited,

as the manifold would immediately be in a region with many states having

comparable vertical and clock bias errors, beneficially utilizing the coupling.

Conversely, runs that did not have clock bias perturbations would have states

with around 65 m difference in their vertical and clock bias error. States with

comparable vertical and clock bias error would be in the lower-resolution

region of the grid, and they may have significant error in the horizontal

dimension, giving a low score and preventing the grid from moving that

direction.

Thus, perturbing the clock bias forced more states – typically including

states with less error – on the theoretical replica-received correlation man-

ifold to be sampled, increasing the receiver implementation’s likelihood of

finding a state near the true peak. These better estimates are reflected by

the improvement in the covariance for the vertical and clock bias states.

With the improvement in the vertical and clock bias accuracies from per-

turbing the initial clock bias comes a slight decrease in horizontal accuracy.

However, as Table 5.1 has a lower geometric error, and Equation 2.11 shows

that DPE optimizes with respect to low geometric error, this increase in

horizontal error is reasonable, given the definition of the objective function.
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5.1.4 Localization – Open-Loop RNGrid 7m

For the following experiments, the RNGrid 7m manifold configuration was

used as specified in Section 3.3.5. The simulated stationary dataset was

processed with open-loop DPE – weighted average tracking was not used.

In order to study the effects of coupling between the vertical and clock bias

dimensions, two sets of 100 randomly initialized runs each processed the first

two seconds of the dataset: one set with no perturbation in the initial clock

bias estimate, and one set with perturbation in the initial clock bias estimate.

The offsets to the scalar tracking initialization state for both sets of 100 runs

are shown in Figure 5.5.

Figure 5.5: The offsets to the scalar initialization state for the results
presented in Section 5.1.4. The initializations with no clock bias
perturbation are shown in blue, and the initializations with clock bias
perturbation are shown in orange.

The final RMS errors for all 100 runs in these two sets are provided in

Figure 5.6.

Figure 5.6: The RMS error after two seconds of processing for the randomly
initialized simulated dataset using the DPE receiver implementation with
the RNGrid 7m manifold grid. The initializations with no clock bias
perturbation are shown in blue, and the initializations with clock bias
perturbation are shown in orange.

Furthermore, by plotting the error in one dimension with respect to an-
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other, the expected coupling between only the vertical and clock bias dimen-

sions may be observed, as shown in Figure 5.7.

Figure 5.7: The RMS error after two seconds of processing for the randomly
initialized simulated dataset using the DPE receiver implementation with
the RNGrid 7m manifold grid. The initializations with no clock bias
perturbation are shown in blue, and the initializations with clock bias
perturbation are shown in orange.

Again, Figure 5.7 shows a linear correlation between vertical error and

clock bias error, and no correlation between other states. Table 5.2 shows

the final RMS errors for these experiments.

Table 5.2: RMS and standard deviation of the error in the randomly
initialized simulated dataset using the DPE receiver implementation with
the RNGrid 7m manifold grid. The initializations with no clock bias
perturbation are provided in the top row, and the initializations with clock
bias perturbation are provided in the bottom.

Hori-
zontal

Vertical
Clock
Bias

Geometric

RMS (m)
No δt Perturbation

35.10287 69.31776 44.66751 89.62338

RMS (m)
δt Perturbed

35.99064 54.11594 40.16401 76.40033

Standard Deviation (m)
No δt Perturbation

13.39996 37.10285 25.989167 37.57627

Standard Deviation (m)
δt Perturbed

17.44745 22.07944 15.95802 26.03454

Again, perturbing the clock bias state noticeably improves the vertical

RMS error, as well as the clock bias error. As with Spread Grid 7m, RN-

Grid 7m will sample a different set of points as the state estimate moves.

Initial state estimates with more error again typically result in the receiver

moving to more intermediate state estimates. For the 100 runs without the
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clock bias perturbation, the DPE receiver implementation moved once at

most and, on average, 0.94 times before settling on the final state. For the

100 runs with the clock bias perturbation, the DPE receiver implementation

moved five times at most and, on average, 1.85 times before settling on the

final state. Again, sampling more states on the theoretical replica-received

manifold improves the receiver implementation’s likelihood of finding a state

near the true peak.

However, in RNGrid 7m, there is no structure in the choice of candidate

points, so any exploitation of the coupling between vertical and clock bias

error will stem only from the density of the states in the grid.

The horizontal error also decreases slightly for the RNGrid 7m when the

initial clock bias is perturbed. Again, since Table 3.2 shows the geometric

error decreased with the clock bias perturbations, this worsening of the hor-

izontal accuracy is an effect of Equation 2.11 optimizing for lower geometric

error.

5.1.5 Localization – Closed-Loop Spread Grid 7m

In the following experiment, the Spread Grid 7m manifold configuration was

used as specified in Section 3.3.5. The simulated stationary dataset was

processed with closed-loop DPE using the weighted-average position-domain

tracker. Due to the improvement observed in Sections 5.1.3 and 5.1.4 when

perturbing the initial clock bias estimate, the clock bias was perturbed for

this experiment, as well.

Since the weighted average tracker position-domain tracker requires a sym-

metric manifold to converge and remain on the true peak of the manifold, the

RNGrid 7m manifold was not evaluated with the tracker, as the randomness

does not guarantee symmetry. Also, 60 seconds of the dataset was processed

to observe convergence of the weighted average position-domain tracker. The

RMS error over all 100 randomly initialized runs for every sample set is shown

in Figure 5.8.
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Figure 5.8: The RMS error after two seconds of processing for the randomly
initialized simulated dataset using the DPE receiver implementation with
the Spread Grid 7m manifold grid. The initial clock bias estimate was
perturbed in this dataset.

Figure 5.8 shows that localization error in the closed-loop implementation

continuously decreases over the first 20 seconds – a difference from the open-

loop implementation, which jumped at most five times in the first one second

of data before remaining steady for the rest of the dataset. The convergence

in the closed-loop case is due to two reasons. First, as discussed in Section 4.2,

the weights used in the weighted average are close but not exactly equal to

the geometrically ideal values of linear interpolation. Second, Section 4.3

shows that the batch correlation method of manifold state score calculation

will often compute cross-correlation scores that undervalue the states on the

peak. In such a scenario, the manifold itself will have a form where the

true peak is “sliced off” and the computed maximum is at the navigation

solution of the previous timestep. As shown in Figure 4.9, the “sliced off”

region of the manifold will still have higher scores than the side walls of

the manifold, so the weighted average of the manifold will be closer to the

peak than the computed maximum point. This effect will pull the navigation

solution towards the true peak over multiple timesteps until it has converged

on the true peak, which manifests in the decreasing error of Figure 5.8.

After the first 20 seconds of the dataset, the exponential error decay stops

and experiences steady-state trends. To study this steady-state region, anal-

ysis will focus first on the horizontal and vertical error, then focus second on

the clock bias error.
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Horizontal and Vertical Error

As seen in Figure 5.8, the weighted average-based signal tracker converges

to significantly more accurate horizontal and vertical estimates of the true

receiver position than the open-loop method. Additionally, the errors in the

open-loop and weighted-average position domain signal tracker exhibit some

different effects compared to each other:

1. In the open-loop implementation, the navigation solution will vary over

time for approximately one second before reaching and remaining at a

final state for the rest of the dataset. In the closed-loop implementa-

tion, the navigation solution will converge to a region of less than 3 m

RMS position error within the first 20 seconds of the dataset, but the

navigation solution will continue to move during the rest of the dataset.

2. In the open-loop implementation, different random initializations will

arrive at different navigation solutions with standard deviation on the

order of tens of meters. In the closed-loop implementation, different

random initializations will arrive nearly the same navigation solution

with standard deviation on the order of micrometers.

By picking the state with the highest score, the open-loop implementation

does not utilize any information about the shape of the manifold and is only

capable of evaluating a finite set of states around the initialization state. In

contrast, the closed-loop implementation is steered to the peak of the cross-

correlation manifold by moving the grid until the scores on either side of

the center of the manifold are balanced. The weights used in the weighted

average may also resolve to values between grid points, allowing the receiver

to sample any possible point. As a result, the closed-loop receiver is capable

of getting much closer to the true peak of the cross-correlation manifold.

The jitter that remains in the horizontal and vertical error of the closed-

loop implementation is likely due to the atmospheric effects modeled by the

simulator but not the receiver implementation. These errors will prevent the

replica-received correlation score functions of the individual channels from

perfectly aligning at the ground-truth state, and thereby from matching Fig-

ure 4.2. Thus, there will be some error in the estimation of the ground truth

state that cannot be overcome without better replica modelling. As this error

is on the order of 3 m RMS, it is likely smaller than the 7-m spacing of grid
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points in the open-loop implementation, and is “filtered” by the grid only

being able to reach a finite subset of states.

To characterize the steady-state jitter in the closed-loop implementation,

Table 5.3 shows the mean value from 30 s to 60 s of the RMS error at each

timestep for all random initializations, and the mean value from 30 s to

60 s of the standard deviation in the error at each timestep for all random

initializations in the horizontal and vertical dimensions.

Table 5.3: RMS and standard deviation of the error in the randomly
initialized simulated dataset using the DPE receiver implementation with
the Spread Grid 7m manifold grid for both weighted average closed-loop
(CL) DPE and open-loop (OL) DPE. The initial clock bias estimate was
perturbed in this dataset.

Horizontal RMS Error
Over All Timesteps

Vertical RMS Error
Over All Timesteps

CL RMS
at Each SS Timestep
Over All Runs (m)

0.950763 0.143969

CL Standard Deviation
at Each SS Timestep
Over All Runs (m)

0.000303 0.000850

OL RMS
at Each SS Timestep
Over All Runs (m)

38.24430 48.88085

OL Standard Deviation
at Each SS Timestep
Over All Runs (m)

19.40486 23.03195

In the statistical characterization of the horizontal and vertical error of

Table 5.3, it can be seen that the vertical error is an order of magnitude better

than the horizontal error. This is due to the coupling to a very accurate lock

of the clock bias, the justification for which will be discussed next.

Clock Bias Error

In Figure 5.8, while the horizontal and vertical position plots converge near

zero in steady-state, the clock bias plot grows linearly for the remainder of

the dataset. At first glance, it may appear that this is a loss of lock and

increasing error in the clock bias term of the DPE receiver’s state estimates.
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However, with further analysis, it may be concluded that the receiver is

maintaining lock on a drifting clock.

First, as indicated on the y-axis of Figure 5.8, the clock bias plot is showing

the absolute difference with respect to the scalar tracking used to initialize the

dataset. This scalar tracking solution is the state to which all perturbations

are added. So, a difference with respect this state is not an error unless that

state is known to be at the true location with respect to the received signal.

And, the linearity in the growing clock bias of Figure 5.8 is indicative of

receiver clock drift.

All clock bias estimates from 30 s to 60 s were fit to a first-order equation

using the linregress function of the SciPy library [60]. With a coefficient

of determination of R2 = 0.99888, the linear growth in the clock bias state

depicted in Figure 5.8 can be modeled for sample set index τ as given in

Equation 5.2:

δtgrowth(τ) = 0.00556
m

sampleset
τ − 0.70281 m (5.2)

With the strong linearity over this region as indicated by the coefficient

of linearity, it would appear that this effect is caused by a clock drift in the

simulated data itself. Converting Equation 5.2 into units of clock drift by

using the speed of light as 3 × 108m
s

and the length of one sample set as

20 ms
sampleset

(specified in Section 3.1.2) gives Equation 5.3:

δtgrowth(τ) = 0.92665
ns

s
τ − 2.34272 ns (5.3)

If the DPE receiver implementation is accurately locked to the true clock

bias, this linear regression shows that the drift is less than one nanosecond per

second or less than one part per billion (ppb), which is within the rating of

50 ppb of the simulator module used [61]. Furthermore, if the trend is latent

in the convergence phase of the clock bias plot, the scalar tracking solution

used for initialization has 2.35 ns of error, indicating that this solution is

accurate, as expected.

As the fit and parameters of the regression in Equation 5.3 are reasonable,

it may be concluded that the DPE receiver implementation not only correctly

tracks a drift in the clock bias, but that this drift is correctly tracked regard-

less of initialization, according to Table 5.4. The RMS for the steady-state

interval from 30 s to 60 s of the standard deviations between each of the 100
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runs for the clock bias is in the micrometer range, showing that all random

initializations converged to nearly the same estimate.

Table 5.4: RMS and standard deviation of the error in the randomly
initialized simulated dataset using the DPE receiver implementation with
the Spread Grid 7m manifold grid for both weighted average closed-loop
(CL) DPE and open-loop (OL) DPE. The clock bias is referenced to the
scalar initialization clock bias. The initial clock bias estimate was
perturbed in this dataset.

Clock Bias RMS Difference
Over All Timesteps

CL RMS
at Each SS Timestep
Over All Runs (m)

15.98248

CL Standard Deviation
at Each SS Timestep
Over All Runs (m)

0.000610

OL RMS
at Each SS Timestep
Over All Runs (m)

39.13977

OL Standard Deviation
at Each SS Timestep
Over All Runs (m)

18.72932

Since it may be concluded that the DPE receiver implementation very ac-

curately tracks the clock bias in the navigation solution, the vertical accuracy

will also benefit through the coupling of these two states.

The clock drift is not noticeable in Sections 5.1.3 and 5.1.4, as the open-

loop results are only processed for two seconds. By Equation 5.2, the clock

bias error at two seconds is −0.147 m, significantly smaller than the grid

point spacing.

5.1.6 Conclusion – Stationary Data

Using the idealized simulation data, theoretical effects of DPE and the grid-

based implementation could be easily isolated and studied. By analyzing the

results of many randomly initialized runs, the predicted coupling between the

vertical and clock bias states was identified. The performances of different

grids were shown to vary due to this coupling, and both grids had strengths
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depending on the initial error in the data. Also, the effect of the batch

correlation biasing scores towards the navigation solution of the previous

timestep was identified. The navigation solutions only moved a few times

and typically never moved again after the navigation solution had less than

0.2 to 0.3 code chips of error.

Additionally, a discriminator-like weighted averaging step demonstrated

improved accuracy by leveraging a prediction about the shape of the mani-

fold. Given time to converge, the weighted averaging step was also able to

mitigate the effects of inaccurate score calculation from the batch correlation

approximation.

Comparing Grids in Open-Loop

Comparing Table 5.1 and Table 5.2, the standard deviations for all cases

were very similar, all differing with their counterpart on the other grid by

less than 3 m. Thus, the uncertainties in the estimates for both grids were

similar. However, a clear difference in the RMS error emerged. When the

clock bias was not perturbed, RNGrid 7m reached better solutions, with

lower vertical, clock bias, and geometric error. When the clock bias was

perturbed, Spread Grid 7m reached better solutions, with lower vertical,

clock bias, and geometric error.

As discussed in Section 5.1.3 and Section 5.1.4, perturbing the clock bias

estimates produced better estimates of the clock bias due to the grids sam-

pling more points. Thus, these experiments show that structure in selection

of grid points in the manifold does impact the accuracy of the solution.

When fewer candidate states are sampled and the coupling between vertical

and clock bias states cannot be well-used, it is better to have no structure

in the choice of candidate states being evaluated. However, when more can-

didate states are sampled and the coupling between vertical and clock bias

states can be exploited, a structure in the points being sampled can lead the

receiver implementation to better estimates.

Comparing Open and Closed-Loop Operation

With the unimodal manifold shape of the simulated data, the weighted aver-

age step aided the receiver in converging to sub-meter-level accuracies over
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the first 20 seconds of the dataset. The different initialization perturbations

converged to effectively the same state with only sub-millimeter-level differ-

ences, demonstrating the reliability of the discriminator-like step. The accu-

racy of this approach is significantly greater than decameter-level accuracy

in the open-loop implementation.

The weighted average position-domain tracker also demonstrates how cor-

rect characterization of the true manifold can reject errors. The true manifold

is unimodal, but inaccuracies in the batch correlation cause the computed

manifold to have the true peak “sliced off”. In this case, fitting the mani-

fold to a unimodal shape correctly shifts the navigation solution towards the

true peak, and the batch correlation error is effectively rejected over multiple

timesteps. This motivates the advantages of position-domain discriminators

and how much they can improve the accuracy of DPE if they accurately

model the theoretical manifold shape.

5.2 Localization Accuracy Analysis – Real-World Data

This section will analyze the DPE receiver implementation’s ability to local-

ize itself in real-world environments. In order to evaluate the practical per-

formance of the receiver, two datasets recorded during the flight of a C-12C

Huron are used. These datasets were generated under “Project GRIFFIN”, a

Test Management Project by the United States Air Force Test Pilot School

at Edwards Air Force Base for academic use by the Grace Gao Research

Group [62]. These real-world datasets will have the following properties:

1. Real-world effects on the satellite transmissions, such as atmospheric

and terrain effects on signal power, will be present in the received signal.

2. A mobile receiver will produce very different manifolds over the dataset,

and the receiver will need to follow the true position of the receiver

throughout the dataset for successful operation.

3. Satellite transmissions may reflect off of terrain, and atmospheric effects

are not guaranteed to follow the Klobuchar model.

Given these three properties, the maximum likelihood state for a theoret-

ically perfect solution to the DPE objective function of Equation 2.11 will
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vary over time. Furthermore, some real-world effects on the satellite trans-

missions will not be reconstructed by the receiver implementation, meaning

the DPE manifold computed by the receiver implementation will not match

the theoretical DPE manifold for a receiver that could perfectly replicate the

received signal. This dataset, then, will serve to evaluate how well a DPE

receiver implementation can perform its objective of localization with real-

world errors. In particular, localization error as a function of time will be of

interest in this analysis.

5.2.1 Localization Experiment Design

In order to test the DPE receiver implementation’s localization capabilities,

the receiver was initialized at a state during the flight found by scalar track-

ing. The satellite states obtained during the scalar tracking initialization

were also provided to the DPE receiver implementation. For both datasets,

the Spread Grid 6m specified in Section 3.3.5 was used in an open-loop im-

plementation.

Sixty seconds of each dataset was processed to evaluate the localization

accuracy of the receiver over time. Ground truth position was obtained

from a time-space positioning information (TSPI) system, which recorded the

flight path of the aircraft with a position accuracy of ±0.46 m and velocity

accuracy of ±6.1 mm
s

[26].

5.2.2 Satellite Geometry – Mobile 1 Dataset

The first dataset, referred to hereafter as the Mobile 1 Dataset, was collected

by a flight in the Mojave Desert northeast of Edwards Air Force Base in

California. The flight profile took the aircraft nearly due east in a straight

and level path. The horizontal component of the flight path is drawn in blue

along with the aircraft’s horizontal and vertical velocities in Figure 5.9.
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Figure 5.9: The flight path (left), horizontal velocity (center), and vertical
velocity (right) of the Mobile 1 dataset. The flight path is represented by
the blue line, travelling from left to right in the image. Plotted using
Google Maps [63].

The received signal consists of transmission from GPS satellites with the

geometric configuration shown in Figure 5.10. The satellite with PRN 30

was not tracked by the DPE receiver implementation in this experiment.

Figure 5.10: A skyplot of the satellites visible to the simulated receiver for
the Mobile 1 dataset. Satellites and their PRN are denoted with the red
star and black text.

The DOP matrix for the Mobile 1 real-world dataset, expressed in the

dimensions of East, North, Up, and clock bias, respectively, is given in Equa-

tion 5.4:

DOPm1 =


0.402148 −0.0293464 −0.0509775 0.0396547

−0.0293464 0.580979 0.461984 0.303643

−0.0509775 0.461984 1.97873 1.12828

0.0396547 0.303643 1.12828 0.784079

 (5.4)

The horizontal DOP is the square root of the sum of the East and North

variance values from DOPm1: HDOP =
√

0.402148 + 0.580979 = 0.991527.
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The vertical DOP is the square root of the Up-direction variance value from

DOPm1: V DOP =
√

1.97873 = 1.406674. The clock bias DOP is the square

root of the clock bias variance value from DOPm1: TDOP =
√

0.784079 =

0.885482. As expected from the discussion on satellite geometry in Sec-

tion 4.1, the vertical accuracy will be more sensitive to measurement noise

due to its higher DOP than the horizontal or clock bias dimensions. Fur-

thermore, the covariance between the clock bias and the vertical dimensions

is 1.12828 – a strong coupling, especially when compared to the other off-

diagonal terms.

The satellite geometry and resulting DOPm1 matrix was computed for the

beginning of the dataset and experienced negligible change over the dataset.

5.2.3 Localization – Mobile 1 Dataset

Over the 60 seconds of processed data, the DPE receiver’s horizontal and ver-

tical error with respect to the TSPI system and clock bias error with respect

to the scalar initialization propagated forward are shown in Figure 5.11. In

Figure 5.11, a gray vertical line is placed every time the DPE solution moves,

as it does not move every iteration. This can be seen in Figure 5.12.

Figure 5.11: The RMS error over 60 seconds of data for the Mobile 1
dataset using the DPE receiver implementation with the Spread Grid 6m
manifold grid.

Figure 5.12: The solutions of the DPE receiver implementation over the
path of the Mobile 1 dataset. The black lines connect a DPE receiver
implementation solution (green) to the corresponding ground truth as
measured by the TSPI system (blue). Plotted using Google Maps [63].
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With no exceptions, every piecewise step present in each of the plots of

Figure 5.11 is caused by the DPE solution jumping to a new state. Then,

the effects between the gray lines may be studied, as shown in Figure 5.13.

Figure 5.13: A look at the RMS error in the first seven different solutions of
the DPE receiver implementation for the Mobile 1 dataset.

For the horizontal error in Figure 5.11, many of the intervals consist of

the error steadily growing until the DPE estimate moves again to a new

lower-error state. This is consistent with the aircraft flying away from the

point and eventually the receiver’s antenna will have moved enough that

the correlation score at another point on the grid becomes higher than the

previous estimate.

However, some estimates on the horizontal plot show the error decreasing

briefly after the DPE solution moves. This occurs when the DPE algorithm

chooses a point ahead of the aircraft as its current state estimate. This can be

seen by matching the intervals in Figure 5.13 with the different DPE solution

estimates in Figure 5.14.

Figure 5.14: A look at the RMS error in the first seven different solutions of
the DPE receiver implementation (green) as compared to the receiver’s true
position (blue) for the Mobile 1 dataset. The black lines connect a DPE
receiver implementation solution to the ground truth at that time. Plotted
using Google Maps [63].

For the vertical error in Figure 5.11, the error between intervals is nearly

linear as the altitude is relatively constant throughout the flight. This leads
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to the plateau-like form of the vertical error plot, which is in contrast to the

peaks of the horizontal error plot. If the DPE receiver implementation’s nav-

igation solution moves once every several iterations, the flight path velocities

shown in Figure 5.9 should be reflected in significant horizontal error change

between intervals and minimal vertical error change between intervals.

The slope that does exist between navigation solution movement intervals

for the vertical error can be explained by the change – albeit minimal – in

altitude over the flight path, as shown in Figure 5.15. Figure 5.15 also shows

that the coupling between the vertical error and clock bias remains present

in the real-world mobile data.

Figure 5.15: An overlay of the DPE-estimated altitude and the
TSPI-measured altitude (left) and the vertical error plotted as a function of
clock bias error (right).

Due to the highly-accurate timing of the CSAC used to trigger sampling

intervals, there is no noticeable clock drift in the clock bias error results

of Figure 5.13, and the clock bias error remains level between navigation

solution movement intervals. This is the cause of the banding of points in

the vertical-clock bias coupling plot of Figure 5.15: the clock bias error only

ever resolves to a finite set of values since the clock does not noticeably drift.

The statistical distributions of the error after the first 10 seconds of data in

these results are provided in Table 5.5. The first 10 seconds were intentionally

omitted from statistical analysis to reduce the likelihood of bias from the

scalar tracking aiding used for initialization.

Table 5.5 shows that the horizontal error is larger than the vertical error

or clock bias error, a departure from the prediction of DOPm1 in Equa-

tion 5.4. However, the vertical position of the aircraft only varies over a

range of 35.39 m while the horizontal position moves 5271.36 m from the
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Table 5.5: RMS and standard deviation of the error over 60 seconds of data
for the Mobile 1 dataset using the DPE receiver implementation with the
Spread Grid 6m manifold grid.

Horizontal Vertical Clock Bias Geometric

RMS (m) 44.60444 31.10273 26.67471 58.35988

Standard
Deviation (m)

16.43598 23.94378 20.11102 19.86220

initial position.

Furthermore, by looking at the error in the DPE receiver implementa-

tion’s navigation solution when the navigation solution moved as shown in

Figure 5.16, it can be seen that the state estimate moves, on average, when

the error is around 82 m. Considering that the average vertical velocity is

1.603 m
s

and the average horizontal velocity is 88.080 m
s
, the true position of

the aircraft changes significantly more in the horizontal direction than in the

vertical direction between different navigation solution estimates. This effect

manifests itself in the horizontal RMS error, meaning that even horizontally-

accurate DPE receiver implementation estimates quickly become inaccurate

until the solution moves again. Meanwhile, a vertically-accurate navigation

solution will remain vertically accurate until the navigation solution moves

to an inaccurate guess. Additionally, the vertical estimates benefit from the

clock-bias coupling, and the clock bias estimates are free from noticeable

drift.

Figure 5.16: The error in the position estimates when the DPE receiver
implementation estimate moved (left) and the error of the new position
estimates when chosen by the DPE receiver (right).

While the left plot of Figure 5.16 shows that the DPE receiver imple-

mentation fairly consistently updates its position estimate when the error
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is between 70 and 90 m, the number of timesteps that the receiver remains

at a navigation solution has a larger variance, as shown in Figure 5.11 with

the gray lines. This additional variance is reflected in the right plot of Fig-

ure 5.16, which shows the accuracy of newly-chosen estimates ranges from

20 m of error to 60 m of error.

These effects can be explained by the analysis in Section 4.3. An error

of 80 m is on the order of 0.2 PRN code chips for a satellite with elevation

a 40◦ elevation angle. Given fs = 2.5 MHz, it should be expected that the

navigation solution moves once the receiver has accumulated around 0.2 code

chips of phase error with respect to the average satellite. As for the error in

a newly-chosen navigation solution, since scores nearest to the peak are the

ones that are underestimated when interpolating, a state that scores higher

than the previous navigation solution would be an optimization of distance

closer to the true peak than the previous navigation solution (for a higher

score) and distance away from the true peak (for better score fidelity). This

expectation is reflected in the error of the new navigation solution having

variance between 20 m and 80 m – grid states with less than 20 m of error

are too close to the peak to have good replica fidelity and those greater than

80 m are far enough away from the peak that the previous state still has a

higher score.

5.2.4 Satellite Geometry – Mobile 2 Dataset

The second dataset, referred to hereafter as the Mobile 2 Dataset, subjected

the receiver to a more dynamic flight profile and terrain effects near the Black

Mountain Wilderness in California. The flight profile included an S-bend

curve and decreasing altitude. The horizontal component of the flight path

is drawn in blue along with the aircraft’s horizontal and vertical velocities in

Figure 5.17.
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Figure 5.17: The flight path (left), horizontal velocity (center), and vertical
velocity (right) of the Mobile 2 dataset. The flight path is represented by
the blue line, travelling from left to right in the image. Plotted using
Google Maps [63].

The received signal consists of transmission from GPS satellites with the

geometric configuration shown in Figure 5.18. The blue points on the top of

the skyplot are estimations of the Black Mountain Wilderness terrain peaks

and are included to indicate the possibility of terrain interference effects on

low-elevation satellites, such as PRNs 5, 11, and 27. The Black Mountain

Wilderness terrain has an altitude on the order of 1000 to 1150 m, as deter-

mined for the points selected through the Google Maps Elevation API [63].

The aircraft’s altitude decreased from 1000 m to 850 m over the 60 s of the

dataset, allowing the Black Mountain Wilderness terrain to rise above the

horizon during the flight.

Figure 5.18: A skyplot of the satellites visible to the simulated receiver for
the Mobile 2 dataset. Satellites and their PRN are denoted with the red
star and black text, and terrain elements are denoted with blue stars.

The DOP matrix for the Mobile 2 real-world dataset, expressed in the

dimensions of East, North, Up, and clock bias, respectively, is given in Equa-

tion 5.5:
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DOPm2 =


0.354055 0.10108 0.14323 0.120878

0.10108 0.470432 −0.0347885 −0.0174103

0.14323 −0.0347885 1.88099 1.08842

0.120878 −0.0174103 1.08842 0.745301

 (5.5)

The horizontal DOP is the square root of the sum of the East and North

variance values from DOPm2: HDOP =
√

0.354055 + 0.470432 = 0.908013.

The vertical DOP is the square root of the Up-direction variance value from

DOPm2: V DOP =
√

1.88099 = 1.371492. The clock bias DOP is the square

root of the clock bias variance value from DOPm2: TDOP =
√

0.745301 =

0.863308. As expected from the discussion on satellite geometry in Sec-

tion 4.1, the vertical accuracy will be more sensitive to measurement noise

due to its higher DOP than the horizontal or clock bias dimensions. Fur-

thermore, the covariance between the clock bias and the vertical dimensions

is 1.08842 – a strong coupling, especially when compared to the other off-

diagonal terms.

The satellite geometry and resulting DOPm2 matrix was computed for the

beginning of the dataset and experienced negligible change over the dataset.

5.2.5 Localization – Mobile 2 Dataset

Over the 60 seconds of processed data, the DPE receiver’s horizontal and ver-

tical error with respect to the TSPI system and clock bias error with respect

to the scalar initialization propagated forward are shown in Figure 5.19. In

Figure 5.19, a gray vertical line is placed every time the DPE solution moves,

as it does not move every iteration. This can be seen in Figure 5.20.

Figure 5.19: The RMS error over 60 seconds of data for the Mobile 2
dataset using the DPE receiver implementation with the Spread Grid 6m
manifold grid.

Again, with no exceptions, every piecewise step present in each of the plots
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Figure 5.20: The solutions of the DPE receiver implementation over the
path of the Mobile 2 dataset. The black lines connect a DPE receiver
implementation solution (green) to the corresponding ground truth as
measured by the TSPI system (blue). Plotted using Google Maps [63].

of Figure 5.19 is caused by the DPE solution jumping to a new state. Then,

the effects between the gray lines may be studied, as shown in Figure 5.21.

Figure 5.21: A look at the RMS error in the first 12 different solutions of
the DPE receiver implementation for the Mobile 2 dataset.

As with the Mobile 1 dataset, horizontal error in the Mobile 2 dataset

either strictly increases or decreases then increases over the interval of a

navigation solution. These effects are the result of newly-selected navigation

solutions being chosen ahead or behind the flight path of the aircraft, as

shown in Figure 5.22.

Compared to the horizontal error, the vertical error between navigation

solution intervals in Figure 5.19 is much more level, yet it is steeper than

the vertical error in the Mobile 1 dataset. This is the result of the vertical

velocity being smaller than the horizontal velocity, as shown in Figure 5.17,

but larger than the vertical velocity in the Mobile 1 dataset.

Figure 5.23 shows the altitude estimates of DPE overlaid on the TSPI-

measured altitude and the coupling between the vertical and clock-bias errors.
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Figure 5.22: A look at the RMS error in the first 12 different solutions of
the DPE receiver implementation (green) as compared to the receiver’s true
position (blue) for the Mobile 2 dataset. The black lines connect a DPE
receiver implementation solution to the ground truth at that time. Plotted
using Google Maps [63].

Figure 5.23: An overlay of the DPE-estimated altitude and the
TSPI-measured altitude (left) and the vertical error plotted as a function of
clock bias error (right).

Again, due to the highly-accurate timing of the CSAC used to trigger sam-

pling intervals, there is no noticeable clock drift in the clock bias error results

of Figure 5.21, and the clock bias error remains level between navigation so-

lution movement intervals. This is the cause of the banding of points in the

vertical-clock bias coupling plot of Figure 5.23: the clock bias error only ever

resolves to a finite set of values since the clock does not noticeably drift.

The statistical distributions of the error after the first 10 seconds of data in

these results are provided in Table 5.6. The first 10 seconds were intentionally

omitted from statistical analysis to reduce the likelihood of bias from the

scalar tracking aiding used for initialization.
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Table 5.6: RMS and standard deviation of the error over 60 seconds of data
for the Mobile 2 dataset using the DPE receiver implementation with the
Spread Grid 6m manifold grid.

Horizontal Vertical Clock Bias Geometric

RMS (m) 43.57418 37.65380 29.04197 61.85950

Standard
Deviation (m)

19.69433 23.39240 19.60951 20.61531

Table 5.6 again shows that the horizontal error is larger than the verti-

cal error or clock bias error. Though more than the Mobile 1 dataset, the

vertical position of the aircraft varies over a range of 215.5 m, which is still

significantly less than the 6129.8 m of horizontal movement.

Furthermore, by looking at the error in the DPE receiver implementation’s

navigation solution when the navigation solution moved as shown in Figure

5.24, it can be seen that the state estimate moves, on average, when the error

is around 88 m. Considering that the average vertical velocity is 42.56 m
s

and

the average horizontal velocity is 94.45 m
s
, the true position of the aircraft

changes significantly more in the horizontal direction than in the vertical di-

rection between different navigation solution estimates. This effect manifests

itself in the horizontal RMS error, meaning that even horizontally-accurate

DPE receiver implementation estimates quickly become inaccurate until the

solution moves again. Meanwhile, a vertically-accurate navigation solution

will remain vertically accurate until the navigation solution moves to an inac-

curate guess. Additionally, the vertical estimates benefit from the clock-bias

coupling, and the clock bias estimates are free from noticeable drift.

Figure 5.24: The error in the position estimates when the DPE receiver
implementation estimate moved (left) and the error of the new position
estimates when chosen by the DPE receiver (right).
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Compared to Figure 5.16, Figure 5.24 shows more variation in when the

DPE receiver updates its position estimate. The Mobile 2 dataset typically

moves its position estimate when the error is between 60 and 100 m. This

can be attributed to the more dynamic flight profile, which experienced more

altitude change and a horizontal S-bend maneuver. Again, the variance in

the right plot of Figure 5.24 – the error of the new position estimate when

chosen – is greater than that of the left plot. However, the error in the newly

chosen estimates still typically ranges from 20 to 70 m.

The error plots of Figure 5.24 are still consistent with Section 4.3. The

receiver state tends to move when the error to the average satellite is around

or a little greater than 0.2 PRN code chips, as a horizontal error of 90 m is

0.2 PRN code chips for a satellite with elevation a 48◦ elevation angle. And,

the bounds on the range of errors when new navigation solutions are chosen

are consistent with the sampling effects – grid states with less than 20 m of

error are too close to the peak to have good replica fidelity and those greater

than 70 m are far enough away from the peak that others have a higher score.

5.2.6 Conclusion – Mobile Data

In this section, the DPE receiver implementation was demonstrated in two

datasets experiencing receiver motion and real-world signal inaccuracies. The

RMS error of the DPE receiver was comparable to the simulated data, with

a degradation of the horizontal error on the order of 10 m due to the receiver

moving and the batch correlation effects. Using the open-loop implemen-

tation, the effects of the numerical implementation of DPE could be easily

studied.

The Mobile 1 dataset was rather idealized for real-world data, as the re-

ceiver was flown in a straight-and-level flight path in an open-sky environ-

ment. The DPE-based receiver was seen to move navigation states when the

error exceeded 80 m on average, which is attributed to the errors from the

batch calculation. However, the receiver implementation still followed the

navigation solution over the course of the flight, as the grid size was suffi-

ciently large to include the true navigation solution when it moved out of the

range of the batch correlation error.

The Mobile 2 dataset subjected the receiver to a more dynamic flight
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profile and nearby terrain. The horizontal RMS error was about 1 m less

than that of the Mobile 1 dataset, though the vertical and clock bias RMS

errors were a few meters worse. There was more variation for when the

navigation solution of the Mobile 2 dataset moved, but it was still around

the value to be expected from the batch correlation error.

5.3 GPU Usage Performance Analysis

This section will examine the computational performance of the DPE receiver

implementation. The results presented are for the case of eight satellites be-

ing tracked in an open-sky stationary receiver simulated dataset using the

Spread Grid 7m manifold grid. The DPE receiver implementation is ini-

tialized from state and channel parameter estimates acquired through scalar

tracking. Additionally, the minimal satellite interference ensures that values

are well-behaved – the maximum likelihood state is within the domain of the

manifolds and the matrices in the EKF do not reach singular values. This

is done to ensure the results are an accurate profiling of the implementation

during intended operation.

Table 5.7 provides the information used in this analysis. First, GPU oc-

cupancy for the parallelized implementation is used to identify bottlenecks.

Second, the speedup of the parallelized implementation is evaluated through

comparison to a sequential implementation.

5.3.1 GPU Occupancy

The parallelized DPE receiver implementation processes one set of 20 ms

of voltage samples in under one second. The DPInit, SampleBlock, and

DataLogger modules are marked “Negligible”, as their implementations are

parallelized to perform reads and writes in the background of the main pro-

cessing stream and their time cost is below the precision of the study of

this work. The cuEKF and ChannelManager modules must execute on the

main processing stream and do measurably contribute to the execution time,

though their parallelizations reduce their time cost to two orders of mag-

nitude smaller than that of the BatchCorrScores and BatchCorrManifold

modules.
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Table 5.7: Execution time of each module for one timestep.

Operation
Parallelized DPE Sequential DPE

OL Time CL Time OL Time CL Time
DPInit Negligible Negligible – –
SampleBlock Negligible Negligible – –
BatchCorrScores 0.113 s 0.113 s 0.460 s 0.452 s

Replica Gen. 0.053 s 0.053 s 0.050 s 0.050 s
FFTs 0.060 s 0.060 s 0.410 s 0.402 s

BatchCorrManifold 0.842 s 0.731 s 2.28 s 2.32 s
Pos. Manifold 0.366 s 0.363 s 1.056 s 1.050 s
Vel. Manifold 0.373 s 0.367 s 0.940 s 0.936 s
Measurement Gen. 0.103 s <0.001 s <0.001 s 0.044 s

cuEKF <0.001 s <0.001 s – –
ChannelManager 0.001 s 0.001 s – –
DataLogger Negligible Negligible – –

Total 0.959 s 0.846 s 2.91 s 2.93 s

The largest contributor to the overall time is BatchCorrManifold, requiring

on the order of 800 ms. This comes from two kernels running in parallel to

generate the position-time and velocity-drift manifolds. To score a state on

the grid, a thread must compute the value of that state, remove the effect

of the Earth rotating during the transmission time from each satellite state,

compute the difference between the state’s channel parameters and the scores’

reference state, and interpolate to find the score for that state. This requires

a significant number of registers, which limits the GPU occupancy to 25%.

The open-loop and closed-loop implementations differ in how the mani-

folds are scored. The open-loop implementation was developed with further

analysis in mind, storing the scores for all grid points in memory before

performing a reduction comparison to find the grid state with the highest

score. This was done to give the researcher the opportunity to study the

manifold shape after processing the dataset. The weighted average-based

closed-loop implementation was developed with computational efficiency in

mind, demonstrating much faster operation through the use of a reduction

sum operation integrated into the manifold scoring step. As the integrated

reduction operation does not store the manifold scores, it sacrifices modular-

ity and ease of analysis for a nearly negligible execution cost.

The BatchCorrScores module also contributes noticeably to the time cost.

The Fourier transforms which generate the position-time scores take 12 ms
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and the high-resolution FFT which generates the velocity-drift scores takes

47 ms. As expected from Section 3.3.4, the velocity-drift scores are nearly

four times the computation time, as the FFT of the velocity-drift scores is

performed on an array 23.38 times the length of the the array used for the

position-time scores. The remaining 60 ms of the 115 ms is spent construct-

ing the 50× 103-sample signal replicas for each channel. The dependence of

the velocity-drift scores on the position-time scores to determine the navi-

gation bit also bottlenecks the velocity-drift operations, including the high-

resolution velocity-drift FFT.

Figure 5.25 shows the CUDA kernel launches for one timestep using the

Nsight IDE GPU profiling tool. The large number of registers required to

score the position-time and velocity-drift manifolds prevents their respective

CUDA kernels from executing concurrently, despite being assigned to sepa-

rate streams. A different tuning in the number of threads dispatched would

allow these kernels to execute concurrently, but with a negligible difference

in total time.

Figure 5.25: Time spent on GPU operations in one timestep of the DPE
receiver implementation for the open-loop implementation (top) and the
closed-loop implementation (bottom).

5.3.2 Parallelized GPU vs Sequential CPU

The sequential CPU implementation compared in Table 5.7 is acquired using

PyGNSS – a Python-based software-defined GNSS receiver [64] configured to

match the DPE implementation details of Chapter 3. PyGNSS performs the

same computations in the DPE algorithm as the GPU implementation devel-
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oped for this work, but with vector operations rather than CUDA kernels and

without parallelization present in SampleBlock, BatchCorrScores, or Batch-

CorrManifold. This makes PyGNSS a suitable candidate for comparison to the

GPU implementation. PyGNSS is run using Python 2.7 on a consumer-grade

Asus G75VX commercial laptop with an Intel i7-3630QM 2.4GHz CPU and

12GB of RAM.

Overall, the parallelized implementation demonstrates a speedup on the or-

der of three times as compared to the sequential implementation. As PyGNSS

does not follow the software architecture presented in this work, timing for

operations besides those of the DPE algorithm are not comparable. How-

ever, comparisons may be drawn within the DPE algorithm modules of the

receiver implementation: BatchCorrScores and BatchCorrManifold.

For the BatchCorrScores and its equivalent operations in PyGNSS, both

the sequential and parallelized implementation have similar time costs to

construct the replica signal. However, the parallelized implementation per-

forms the FFTs nearly six times faster than the sequential implementation,

leading to an overall speedup for the scoring operations of over four times.

For the BatchCorrManifold and its equivalent operations, even with only

25% occupancy, the parallelized implementation computes the manifold scores

almost three times faster than the sequential implementation. As the mani-

fold grids consist of 254 points, this result shows that parallelization is crucial

for larger DPE grid sizes to be practically implemented. In the open-loop

case, Python’s data management allows the largest score to be quickly found,

while a more significant computation cost is required to perform the weighted

average step in the closed-loop case. As seen by the closed-loop case of the

parallelized implementation, an integrated reduction step can generate the

measurement with time cost similar to that of Python’s largest value look-up.

For the operations between timesteps, PyGNSS takes approximately 150 ms

to run the EKF, update channel parameters and samples for the next timestep,

and log values. The parallelized implementation reduces this time cost to

approximately 2 ms. However, this comparison should be considered quali-

tatively and not quantitatively, as PyGNSS does have slight implementation

differences in these steps. Nonetheless, this comparison does show that, for a

DPE-based receiver implementation, asynchronous memory copies and effi-

cient parallelization can minimize the computational cost of these supportive

functions.
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5.3.3 Conclusion – GPU Usage Analysis

The time cost analysis highlights aspects of hardware that are important

to DPE receiver design. Back-calculating the code phases to the satellites

was computationally expensive when assessing manifold grid points, causing

register usage to be the limiting factor for GPU occupancy. Also, resolving

the navigation bit when computing the velocity scores places a bottleneck on

the parallelization of the position and velocity score batch calculation.

However, by comparing the execution times of a CPU DPE receiver im-

plementation with a GPU DPE receiver implementation, the performance

benefits of DPE implementations when leveraging parallel computing could

be easily identified. The FFTs and manifold scoring of the DPE algorithm

scale efficiently when parallelized as compared to their CPU counterparts.

And, asynchronous data transfers keep the parallelized implementation exe-

cuting the DPE algorithm during the majority of the execution.

Furthermore, the speedup of the parallelized DPE receiver achieves a target

execution time set by Ng and Gao in [23], which demonstrates a DPE-based

receiver implementation that tracks a moving vehicle using a 2% duty cycle.

In [23], the receiver processes one 20-ms sample set out of every second of

data using position-time and velocity-drift grids of 254 states each. While

the PyGNSS sequential configuration compared in this work takes longer than

one second to process a 20-ms sample set, the parallelized implementation

presented in this work could achieve real-time operation using the 2% duty-

cycling technique of [23], as one 20-ms timestep can be processed in less than

one second.

5.4 Conclusion

This chapter evaluated the localization results of a numerical implementation

of the DPE receiver algorithm. The approximations required for such an

implementation result in errors that can be identified by the effect they have

on the localization results. Once the causes of these effects are known, the

receiver can be designed in a way to mitigate the impact of these effects

on the localization results. And, the benefits of these approximations are

reflected in the computational improvement of the GPU implementation.

In the idealized datasets of Section 5.1, the coupling between clock bias
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and vertical states was shown to aid the accuracy of the navigation solutions,

and, because of this, different grids may perform better or worse than each

other depending on the current state estimate. Also, the batch correlation

approximation makes a signature impact on the localization accuracy, and

a position-domain signal tracker was shown to mitigate the impact with a

correct characterization of the theoretical manifold. In the real-world data

of Section 5.2, the DPE-based implementation tracked the flight path of a

mobile receiver and validated an estimation of the “deadband” caused by

batch correlation. Lastly, Section 5.3 demonstrated that a portable GPU

can outperform a consumer-grade sequential CPU implementation, and the

hardware usage was studied for insights into further optimization.
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CHAPTER 6

CONCLUSION

To date, the DPE algorithm has been recognized for having the potential

to mitigate errors that characteristically cause faults in classical two-step

receivers, but the algorithm has thus far seen only limited application in

practice due to the complexity of its implementation. Furthermore, approx-

imations made for numerical representation of the theoretical equations and

for computational efficiency can reduce the benefits gained by the one-step

approach. With the objective of lowering these barriers to broader DPE

usage, this work provided an implementation-oriented introduction to DPE,

developed a custom parallelized DPE-based receiver implementation, studied

effects of the numerical implementation, and evaluated the implementation

by processing analyzed GPS datasets.

6.1 Contributions

Chapter 1 motivated the use of the DPE algorithm by a survey of the

conceptual, analytical, and demonstrated advantages presented in

the literature. Chapter 2 summarized from the literature the derivation of

the DPE algorithm as a signal-focused objective function. Chapter 2

also presented prior techniques for computational efficiency that were

employed in the receiver implementation developed for this work.

Chapter 3 provided a parallelization of the DPE algorithm designed

for the CUDA parallel programming paradigm. This parallelization was im-

plemented as a software-defined GPS receiver on an NVIDIA Jet-

son TX2 with supporting hardware to perform necessary RF functionality.

Chapter 3 also detailed the implementation including sampling frequency

and manifold grids.

Chapter 4 identified a coupling between the error in the vertical
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and clock bias dimensions present in DPE. A position-domain tracker was

also justified. And, a degradation of cross-correlation scores close to

the true peak of DPE manifold caused by the batch correlation approxi-

mation was identified.

In simulated and real-world data, Chapter 5 identified the three effects

studied in Chapter 4. The simulated data demonstrated the DPE receiver’s

ability to find the navigation solution. The real-world data subjected the

receiver to unmodeled atmospheric and terrain effects. And, the computa-

tional efficiency of the implementation was analyzed.

6.2 Design Insights and Future Work

The results presented in this work provide insight into DPE-based receiver

design. These insights also spur future work, as leveraging these trade-offs

will contribute to a better DPE-based receiver. In particular:

• Operations necessary for GNSS-based localization, such as cross-correlation,

are executed quickly with parallel processing. Then, by designing the

other steps of the DPE algorithm to also be parallelizable, such as

the evaluation of the manifold using a grid and reduction sum, a DPE-

based receiver can execute more quickly on a GPU than a CPU. Future

work should consider more ways to reduce register cost when assessing

the manifold and tuning to the number of points on the grid.

• The coupling between clock bias and vertical errors can be leveraged by

grid-based DPE. Both conceptually and from experimental results, a

broad search over vertical estimates and clock biases should be con-

ducted first to find the proportional relationship between the two.

Then, a structured grid can reduce the search space considered when

refining the estimate. Thus, grids that maximize the benefit from the

coupling and heuristics that trigger grids to change during operation

should be considered for future work.

• Particularly for grid-based DPE, batch correlation is a valuable tech-

nique for reducing the computational cost, but it comes at the price

of accuracy. However, due to the structure of PRN cross-correlation,

techniques other than point-to-point linear interpolation or the use of

98



signal trackers can overcome this accuracy cost. This effect should be

considered in future work when implementing manifold scoring algo-

rithms, quantifying the accuracy of a DPE solution, or implementing

a signal tracker.

• Position-domain signal trackers are promising for improving the DPE

accuracy. Correct characterization of the manifold shape can reject er-

rors. While the true shapes of the theoretical manifolds in this work

were unimodal or with minimal reflections, urban environments can

introduce multipath sidelobes on the manifold. Future work should

consider other peak detectors and methods for evaluating the structure

of the grid. Additionally, signal trackers that do not require conver-

gence time may be desirable for future work.

Proper implementation of the results and concepts presented in this work

along with further refinements highlighted above will enable the DPE algo-

rithm to serve as the basis for an effective GNSS receiver that can provide

more robust performance than the classical scalar tracking-based architec-

tures in compromised signal environments.
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