
c© 2019 by Rebecca C. Foust. All rights reserved.

OPTIMAL GUIDANCE AND CONTROL OF HETEROGENEOUS SWARMS
FOR IN-ORBIT SELF-ASSEMBLY OF LARGE SPACE STRUCTURES:

ALGORITHMS AND EXPERIMENTS

BY

REBECCA C. FOUST

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Aerospace Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Doctoral Committee:

Professor Soon-Jo Chung, Chair and Director of Research
Professor Petros Voulgaris
Assistant Professor Koki Ho
Dr. Fred Hadaegh, Jet Propulsion Laboratory, California Institute of Technology

Abstract

Satellite design has been harshly constrained by surviving entry into space though the major-

ity of the satellite’s lifetime exists in much calmer conditions. Significant study has recently

gone into assembling satellites and space structures in-orbit. Several methods have been

proposed involving an assembler robot or astronaut which puts the parts together, but in

the interest of saving resources we believe that it is advantageous to make this process au-

tonomous and robust by leveraging existing optimal guidance and control schemes for a

self-assembling swarm. This approach avoids single-point failures, requires significantly less

ground support, provides increased reliability due to redundancy, increased flexibility, the

ability to reconfigure for future missions, and the ability to self-repair. Since the satellites

required could be mass-produced from a small set of different component types, the benefit

from economy of scale would reduce the overall mission cost when compared to monolithic

satellites. This dissertation details an optimal guidance and control scheme to enable in-

orbit self-assembly of a large structure from a heterogeneous swarm of satellites. In the

proposed scheme, the component satellites for the heterogeneous swarm are chosen to pro-

mote flexibility in final shape inspired by crystal structures and Islamic tile art. After the

ideal fundamental building blocks are selected, basic nanosatellite-class satellite designs are

presented to enable accurate attitude control simulations. The Swarm Orbital Construction

Algorithm (SOCA) is a guidance and control algorithm that allows for the limited type het-

erogeneity and docking ability required for in-orbit assembly. The algorithm was tested in

a simulated perturbed 6-DOF spacecraft dynamic environment for planar and out-of-plane

final structures. The algorithm is then experimentally validated coarsely on omnidirectional

ii

wheeled robots and precisely on-board the M-STAR robots in the precision flat floor facility

in the Caltech Aerospace Robotics and Control lab, the largest of its kind at any university.

In support of this effort, a better way of handling nonlinear dynamics constraints within

sequential convex programs was developed. SCP is a useful tool in obtaining real-time solu-

tions to direct optimal control, but it is unable to adequately model nonlinear dynamics due

to the linearization and discretization required. As nonlinear program solvers are not yet

functioning in real-time, a tool is needed to bridge the gap between satisfying the nonlinear

dynamics and completing execution fast enough to be useful. Two methods are proposed,

sequential convex programming with nonlinear dynamics correction (SCPn) and modified

SCPn (M-SCPn), which mixes SCP and SCPn to reduce runtime and improve algorithmic

robustness. Both methods are proven to generate optimal state and control trajectories that

satisfy the nonlinear dynamics. Simulations are presented to validate the efficacy of the

methods as compared to SCP.

In addition, several autonomous rendezvous and docking (AR&D) technologies were stud-

ied because in-orbit self-assembly requires repeated, reliable autonomous docking to ensure

success. Docking small satellites in space is a high-risk operation due to the uncertainty

in relative position and orientation and the lack of mature docking technologies. This is

particularly true for missions that involve multiple docking and undocking procedures like

swarm-based construction and reconfiguration. A tether-based docking system was evalu-

ated in simulation as compared to traditional propulsive methods. The tether-based method

provides a way to reduce the risk of the dock, since the docking maneuver is performed with

a much smaller satellite and the reeling maneuver can be done gently. Tether-based meth-

ods still require some actuation on the docking end of the tether, and propulsion on such

small systems is inexact. An electromagnetic docking system was investigated to address

these issues. Designed with reconfigurable self-assembly in mind, the gripping mechanism

iii

is androgynous, able to dock at a variety of relative orientations, and tolerant of small mis-

alignments. The electromagnetic system can be used either on the end of a tether or on the

main spacecraft itself since the electromagnet is well controlled and the measurement of the

ambient electromagnetic field can be used as to improve the intersatellite distance estimate

enough to reduce the risk of docking to the main spacecraft. The performance of this system

was validated experimentally on-board the M-STARs. The performance of the electromag-

netic docking system on-board the simulators is then compared against a propulsive docking

system tested in the same way. Overall, this dissertation provides optimal guidance and

control algorithms for nonlinear systems to enable in-orbit self-assembly of heterogeneous

swarms.

iv

Acknowledgments

This work would not have been possible without the support and understanding of many

people. First, I would like to thank my advisor, Prof. Soon-Jo Chung for his technical and

personal guidance. Without Dr. Chung’s support and encouragement I would certainly not

have made it to this point. I would also like to thank my NASA advisor Dr. Fred Hadaegh

for the professional advice and encouragement. Thank you also to my committee members,

Prof. Voulgaris and Prof. Ho for their assistance and support.

I would like to thank my colleagues and friends Kyunam Kim, Yashwanth Nakka, Patrick

Spieler, Kai Matsuka, Benjamin Riviere, Xichen Shi, Salar Rahili, Wolfgang Hoenig, Michael

O’Connell, Vincenzo Capuano, Ellande Tang, Amir Rahmani, Jean-Pierre de la Croix, and

Giri Subramanian for making the long journey much more pleasant and fruitful. Thanks

especially to Sorina Lupu and Saptarshi Bandyopadhyay who have been a great comfort and

assistance through the highs and lows.

Thanks also to Shelly Kaur, Kris Benke, and Zalak Thaker for helping me survive Illinois,

and my friends back home Katie Guzman, Beth Leumas, Catharine Love, Janice Rattigan,

Lizzy Wunsch and Tina Thomas for their support. Most of all, I would like to thank my

family who can always make me laugh, and who never doubted that I could succeed.

v

Table of Contents

List of Tables . ix

List of Figures . x

List of Abbreviations . xiv

List of Symbols . xv

Chapter 1 Introduction . 1
1.1 Literature Review . 3
1.2 Main Contributions . 10
1.3 Organization . 12

Chapter 2 Multi-Spacecraft Testbed for Autonomy Research Setup 14
2.1 Motivation . 14
2.2 Overview of the Facility . 16
2.3 M-STAR Spacecraft Simulator Hardware . 17

2.3.1 Translation Stage. 18
2.3.2 Attitude Stage. 19
2.3.3 M-STAR Software Architecture . 21

2.4 Dynamics and Control . 22
2.4.1 Attitude Kinematics . 23
2.4.2 Nonlinear Dynamic Model . 24
2.4.3 Control Design for Full Nonlinear Dynamics 26
2.4.4 Control Implementation . 26
2.4.5 Thruster Model and Influence Matrix 28
2.4.6 Reaction Wheel Configuration and Model 31
2.4.7 Hardware Implementation of the Hierarchical Control Law 32

2.5 Experiments . 33
2.5.1 Results . 33

2.6 Chapter Summary . 35

Chapter 3 Optimal Guidance and Control with Nonlinear Dynamics Con-
straints . 36
3.1 Problem Statement . 37

3.1.1 Nonlinear Optimal Control Problem 37

vi

3.2 Convex Optimization with Direct Transcription of Dynamics 39
3.2.1 Non-Convex Optimization Problem Using Discretization 39
3.2.2 Sequential Convex Programming with Linearized Constraints 41
3.2.3 Sequential Convex Programming with Nonlinear Dynamics Constraints 42

3.3 Convergence and Optimality of SCPn . 44
3.4 Simulation Results . 58
3.5 Chapter Summary . 63

Chapter 4 In-Orbit Self-Assembly of a Heterogeneous Swarm 64
4.1 Heterogeneous Target Assignment . 64

4.1.1 Heterogeneous Docking Components 64
4.1.2 Shape Parameters . 67
4.1.3 Assignment with Conflict Resolution for Heterogeneous Agents 68

4.2 SOCA Problem Statements and Algorithms 74
4.2.1 Problem Statement . 74
4.2.2 Optimal SOCA Trajectory Generation 76
4.2.3 MPC-SCPn Nonlinear Dynamics Correction 81

4.3 Simulation of 3D Spacecraft Dynamics with Attitude 84
4.3.1 Simulation Results . 85

4.4 3DOF Experiment on Omni-Directional Wheeled Robots and M-STAR Space-
craft Simulators . 88
4.4.1 Omni-Wheeled Robot Experimental Validation 88
4.4.2 In-Orbit Construction Experiment on the M-STARs 91

4.5 Control Allocation for Self-Assembling Structures 94
4.5.1 Simulation Results . 96
4.5.2 Incorporation Into SOCA . 98

4.6 Chapter Summary . 99

Chapter 5 Autonomous Spacecraft Docking 100
5.1 Tether-Based Autonomous Docking . 101

5.1.1 Sample Mission Overview . 101
5.1.2 Initial Proximity Maneuver . 102
5.1.3 Berthing Maneuver . 108

5.2 Electromagnetic and Thruster-based Docking 116
5.2.1 Electromagnet-based Docking . 116
5.2.2 Thruster-based Docking . 117
5.2.3 Docking Port Design . 118

5.3 Control . 119
5.3.1 Trajectory Planner . 119
5.3.2 Electromagnet-Based Docking . 120
5.3.3 Thruster-Based Docking . 121

5.4 Results . 122
5.4.1 Electromagnet-Based Docking . 122
5.4.2 Thruster-Based Docking . 125
5.4.3 Experimental Results - Comparison 126

vii

5.5 Conclusion . 128

Chapter 6 Fast Motion Planning . 130
6.1 Problem Statement . 130

6.1.1 Continuous-time Nonlinear Optimal Motion Planning Problem 131
6.1.2 Discrete-time Nonlinear Optimal Motion Planning Problem 132

6.2 Spherical Expansion and Sequential Convex Programming (SE–SCP) Algorithm134
6.2.1 Initialization Step . 134
6.2.2 Spherical Expansion Step . 136
6.2.3 Sequential Convex Programming Step 139
6.2.4 Nonlinear Dynamics in SE–SCP . 143

6.3 Numerical and Experimental Results . 143
6.3.1 Numerical Simulations with Spacecraft in Debris Field 144
6.3.2 Experimental Results with Quadrotor 145
6.3.3 Comparison with RRT? and PRM? 149

6.4 Chapter Summary . 150

Chapter 7 Conclusion and Future Work . 151
7.1 Conclusion . 151
7.2 Future Work . 154

References . 156

Appendix A Tether Based Docking Dynamics 168

Appendix B Docking Experiment Analysis Tables 170

Appendix C Experiment Videos . 172

viii

List of Tables

1.1 Review of SmallSat Docking Missions . 8

2.1 A sample of spacecraft simulators from other institutions. [48, 126, 93, 36,
10, 58, 121, 122, 117, 145, 135, 59, 141, 131, 139, 123, 33] 15

2.2 List of components on the translation stage. 19
2.3 List of components on the attitude stage. 21
2.4 Constraints on the angular motion of the attitude stage. 23

B.1 Thruster-based Docking - Test Results . 170
B.2 Electromagnet-based Docking - Test Results 171

ix

List of Figures

1.1 Outline of Mission Steps . 2
1.2 Dissertation Organizational Diagram . 13

2.1 Multiple 6-DOF M-STAR spacecraft at Caltech’s Aerospace Robotics and
Control Lab. 16

2.2 M-STAR spacecraft dynamics simulator. 17
2.3 Flowchart of pneumatic system on translation and attitude stage. 18
2.4 Attitude stage architecture. 20
2.5 Software architecture design. 22
2.6 Coordinate Systems used for the derivation of the dynamic model. 24
2.7 Attitude Stage with actuator configuration and nomenclature in the body frame. 25
2.8 Closed-loop control implementation for the 6DOF simulator. 32
2.9 Closed-loop waypoint reaching experimental result- test case 1. 34
2.10 Closed-loop waypoint reaching experimental result- test case 2. 34

3.1 Linearization and discretization error accumulates over time when trajectories
are found using SCP. Mean trajectory error resulting from SCP is shown by
the colored circles along the nonlinear trajectory 37

3.2 Relationship between SCPn components . 47
3.3 Relationship between M-SCPn components 57
3.4 Quadrotor trajectories computed using SCP (red), SCPn (blue), and M-SCPn

(black) in squares compared against the nonlinear trajectory using the respec-
tive control trajectory in triangles. The SCP trajectory clearly does not follow
the nonlinear dynamics, but the SCPn and M-SCPn trajectories do. 59

3.5 Terminal position error for each algorithm over the five different tolerances and
five initial nominal trajectories, generated using [#Its] number of simplified
SCP iterations. 60

3.6 Algorithm runtimes (s) for each algorithm over the five different tolerances and
five initial nominal trajectories, generated using [#Its] number of simplified
SCP iterations. 61

3.7 Simulations using three obstacles in SCP (red), SCPn (green), and M-SCPn
(blue) in Xs compared against the nonlinear trajectory using the respective
control trajectory in triangles. 62

x

4.1 The Royal Palace Gates in Fes, Morocco served as inspiration for this work,
along with the geometry in crystals found in nature 66

4.2 Examples of potential shapes and tiling patterns possible with the proposed
mission, using only rectangular rod and hexagonal connector agents 67

4.3 Definitions of the Rod and Connector agent types, with docking ports shown
in red . 68

4.4 Possible barrier functions to use in assignment 70
4.5 Bad Assignment: the desired configuration on the left has an underutilized

connector, with only two docks required. This allows the initial barrier func-
tion to mis-assign a rod agent to the connector location, resulting in a discon-
nected structure. 70

4.6 3-Agent example showing the efficacy of the angle barrier function in prevent-
ing improper assignments . 72

4.7 Description of docking radii and cone. In (a), the relative sizes of the docking,
collision avoidance and boundary layer radii. Once another agent comes within
the boundary layer radius, the main agent decides whether to dock or avoid
it. If the agents are docking, the docking cone constraint shown in (b) goes
into effect. The initial distance is the distance when the docking constraint is
first applied, when the red agent comes within the boundary layer of the blue
agent or vice versa. 77

4.8 With the use of the assembly set condition, six agents can easily form a planar
equilateral triangle without the collision avoidance issue. This example is
performed using planar position and attitude double integrator dynamics for
clarity. 79

4.9 54 agents (30 rods, 24 connectors) combine from up to 1.5 km apart to make
a planar hexagon with a 20 cm separation. Note the out of plane motion is
all within 0.2 meters. 86

4.10 Zoomed in view of the final time step of all 54 agents in the final flower shape 86
4.11 20 agents (10 rods, 10 connectors) combine from up to 1.5 km apart to make

a folded hexagon with a 20 cm separation. Note the out of plane motion is
still small, but up to one meter . 87

4.12 Zoomed in view of the final time step of all 20 agents in the 3D folded hexagon
shape . 88

4.13 Omni-Directional 3-wheeled robot used to experimentally validate SOCA . . 89
4.14 Time lapse of 6 omni-directional robots for SOCA experiment 90
4.15 Actual vs desired robot trajectories . 90
4.16 4 M-STARs Following SOCA Optimal Trajectories in Spacecraft Simulator

Facility . 92
4.17 Full Motion Captured Trajectories of 4 M-STARs Following SOCA Optimal

Trajectories . 93
4.18 Experimental performance of M-STARS as compared to command 93
4.19 Description of the three basic control allocation tests run before incorporating

the algorithm into SOCA . 98

5.1 Concept Mission Application for Tethered Formation Flying-based AR&D . 100

xi

5.2 The frame conventions for the child and parent spacecraft 102
5.3 The glideslope approach trajectory for the parent spacecraft approaching the

berthing position . 106
5.4 Optimal Approach Trajectory for the Parent Spacecraft 108
5.5 Velocity and Thrust over Time for the Optimal Approach Maneuver 108
5.6 The glideslope approach trajectory for the child spacecraft approaching the

target spacecraft’s position . 109
5.7 Optimal Trajectory for the Parent Spacecraft 110
5.8 Velocity and Thrust over Time for the Optimal Maneuver 110
5.9 Left: Free-flying child tether-based capture and docking scenario, Right: Spin-

up released tether-based capture and docking scenario 111
5.10 Parent and Child Spacecraft Trajectories for Spin-Up Based Dock 113
5.11 Control Inputs for the Spin-Up Based Dock 114
5.12 Parent and Child Spacecraft X and Y Positions for Reeling Maneuver 115
5.13 Control Inputs for the Reeling Maneuver . 115
5.14 Two 3DOF M-STARs Equipped with Electromagnets, Docking Ports, and

Reaction Wheels . 116
5.15 Electromagnet Design . 117
5.16 Electromagnet Current Controller . 117
5.17 Two M-STARs With Thrusters and Four Docking Ports 118
5.18 Kinematics of the Gripper Mechanism . 119
5.19 Distance Controller for Electromagnet-based Docking System 120
5.20 Thruster Allocation Based on MIB . 122
5.21 Electromagnet-based Docking Trajectory with Orientation Represented using

Hexagons . 123
5.22 Electromagnet Current Commanded vs. Time 124
5.23 Angular Momentum and Torque of the Reaction Wheel vs Time 124
5.24 X Y Position and Heading of the Two M-STARs vs Time 125
5.25 Electromagnet-based Docking System Tracking Error 125
5.26 Thruster Docking Trajectory with Orientation Represented using Squares . . 126
5.27 MIB . 126
5.28 X and Y Velocities vs Time . 127
5.29 Thruster-based Docking System Tracking Error 127
5.30 Relative Velocity for the 14 runs . 128

6.1 Xobs, Xfree, Xinit, and Xgoal are shown in this workspace. The obstacles are
marked in blue. 131

6.2 Initialization step. The obstacles are marked in blue. 135
6.3 Xnew and rnew are generated using the Steer and MinDistObs functions. . . 137
6.4 Multiple iterations of the spherical expansion step. The minimum-cost paths

are shown in red. See Extension 1. 138
6.5 Visualization of the optimal trajectory (in green) for the first loop of SCP. . 141
6.6 Visualization of the optimal trajectory (in green) for the second loop of SCP,

where the old optimal trajectory (in red) from Fig. 6.5 is used to setup the
optimization problem. 142

xii

6.7 Multiple iterations of the SCP step. See Extension 2. 143
6.8 Debris environment. 144
6.9 The first path Pnew is found during the the spherical expansion step and its

refinement using the SCP step are shown. 145
6.10 A better path Pnew is found during the the spherical expansion step and its

refinement using the SCP step are shown. 146
6.11 Caltech’s CAST Drone Arena . 146
6.12 A map of the environment and trajectories computed by the SE-SCP algo-

rithm (red dash line) and flown by a quadrotor (blue solid line). The initial
and goal positions are marked with red circles and stars. See Extension 5. . . 147

6.13 Benchmark Comparisons of the SE–SCP algorithms (original, uni-directional,
and bi-directional) with RRT? and PRM? . 148

A.1 Coordinate frames of Parent spacecraft with a tethered child. 168

xiii

List of Abbreviations

AR&D Autonomous Rendezvous and Docking

DOF Degree of Freedom

FDIR Fault Detection Identification and Recovery

GNC Guidance Navigation and Control

HCW Hill-Clohessy-Wiltshire

LVLH Local Vertical Local Horizontal

MIB Minimum Impulse Bit

MPC Model Predictive Control

M-SCPn Modified Sequential Convex Programming with Nonlinear Dynamics Correc-
tion

M-STAR Multi-Spacecraft Testbed for Autonomy Research

PWM Pulse Width Modulated

ROS Robot Operating System

RPM Rotation Per Minute

SCP Sequential Convex Programming

SCPn Sequential Convex Programming with Nonlinear Dynamics Correction

SE-SCP Spherical Expansion, Sequential Convex Programming

SmallSat Small Satellite

SOCA Swarm Orbital Construction Algorithm

xiv

List of Symbols

Chapter 3

β = Trust region shrink rate

dt = Time step

f = Nonlinear dynamics at time step k

F = Cost integrand function

gi = Convex inequality constraints

J = Cost function

k = Discrete time parameter

N = Number of agents

Nj = Set of neighbor agents

p = Number of inequality constraints

Rcol = Collision avoidance radius

Rcomm = Communication radius

x0 = Initial state constraint

xf = Terminal state constraint

x
(w)
k = State trajectory at the k-th time step for the w-th iteration

x
(w)
n,k = Nominal, nonlinear state trajectory at the k-th time step for the w-th iteration

t = Time

t0 = Initial time

tf = Final time

T = Final discrete time step

xv

u
(w)
k = Control input trajectory at the k-th time step for the w-th iteration

Umax = Maximum control input

w = Iteration number

vk = Numerical integration quadrature weight

Chapter 4

N = number of spacecraft

Nj = number of docks required at a target

ni = maximum number of docks a satellite can perform based on its type

t = time

tf = final time (tf = T∆t)

trun = time required to compute the optimization

∆t = length of time step

N[j] = set of the closed neighborhood

Dj = set of agents that are assigned to dock with agent j

Pj = set of agents that have a higher priority than j

Rcol = minimum distance between spacecraft to avoid a collision in the optimization

Rbl = distance at which the agent chooses to dock or avoid an approaching agent

Rdock = physical separation of centroids of docking agents

R̄col = minimum distance between spacecraft to avoid a collision in reality

Rcomm = maximum distance a spacecraft can communicate (Rcomm > Rcol)

T = total number of time steps

TH = number of time steps in the model predictive control horizon

Umax = maximum allowable magnitude of the control vector

Vmax = maximum allowable magnitude of the relative velocity vector

hj(x[k], k]) = cost to transfer a spacecraft from x[k] at time k to xf at T

k = time step k

xvi

k0 = time step at the start of the model predictive control horizon

x0 = state vector at initial time

xf = state vector at final time

xj = state vector of spacecraft j

x̄ = nominal state vector

B = Control influence matrix

CG = XYZ position of center of gravity

dact = Actuator direction wrt body frame

fdes = Vector of desired XYZ forces and torques

I3 = 3x3 Identity matrix

AJ = Moment of Inertia tensor wrt frame A

m = Mass

NT = Number of thrusters

Arb = Vector b wrt frame A

Brb = Vector from CG of b to dock port in frame B

ARB = Rotation from frame B to frame A

Chapter 5

θ = Heading Angle

µ0 = Magnetic Permeability of Free Space

ρ = Density of the Electromagnet Coil Material

σ = Coil Axial Turn Density

B = Control Influence Matrix

N = Number of Windings

T = Array of Thruster Commands

f = Electromagnet Force

h = Coil Separation Distance

xvii

i = Current

l = Coil Thickness

m = Electromagnet mass

mz = Moment about Z-Axis

p = Power Consumption of the Electromagnet

r = Coil Radius

v = Drive Voltage of the Electromagnet

xviii

Chapter 1

Introduction

Design and construction of large space systems is often constrained by factors that have

more to do with launch than the intended mission, like launch vehicle fairing size or ability

to withstand launch loading. Satellites constructed in space would not experience these

design constraints, allowing for lighter, more capable satellites. Start to finish construction

in-orbit is not yet possible, but improvements can still be made through recent advances

in swarm spacecraft guidance and control [70, 99, 100] and autonomous rendezvous and

docking [51].

By leveraging the above swarm guidance and control algorithms, a large space structure

can be constructed from a swarm of component satellites. The advantages of such a mission

are clear: increased reliability due to redundancy, increased flexibility, ability to reconfigure

for future missions, and ability to self-repair [143]. Applications for such missions range

from the small scale, where the components are microsatellites building a support structure

for a distributed telescope or a solar sail, to the large scale, where components are habitat

modules building a space colony. The mission concept is illustrated in Fig. 1.1 using two

types of agents. The mission steps are as follows:

Step 1 The components enter into loose formation to stay close to other components until

they are used (e.g. see collision-free J2 invariant passive relative orbits in [99]).

Step 2 The components determine their desired final position in the assembly and move to

take the position using SOCA.

Step 3 Along the path to the final position, components assigned to neighboring positions

1

Figure 1.1: Outline of Mission Steps

dock and proceed combined.

Step 4 Finally, a complete structure is made once all components have reached their final

destination.

Since the satellites required could be mass-produced from a small set of different com-

ponent types, the benefit from economy of scale would reduce the overall mission cost when

compared to monolithic satellites. Autonomous rendezvous and docking (AR&D) technolo-

gies for small satellites are necessary to enable in-orbit assembly schemes. SmallSats have

the distinct advantages of low cost and weight, which make them particularly attractive to

multi-agent missions like in-orbit assembly. With these benefits come restrictions, however.

SmallSats have reduced performance across the board, in power generation, computing, pose

determination and control. These difficulties are even more pronounced as the size of the

satellite is decreased. Nanosatellite and CubeSat scale sensors and actuators are limited in

performance and have few options available [19]. The most successful proximity operations

CubeSat mission, the CanX-4&5 mission, was able to achieve centimeter-level position de-

termination and sub-meter level control [24]. For a docking mission, this level of accuracy

could lead to dock failure or even collision. These sensing and actuation gaps make activities

like AR&D much more difficult, but through the use of well-designed controllers and docking

actuators these difficulties can be overcome.

2

1.1 Literature Review

To reach the potential of this swarm, it is imperative that the proposed guidance and control

algorithm allows each agent in the swarm to act independently, without global knowledge

of the swarm. Centralized algorithms are disadvantageous because they require all-to-all or

all-to-one communication, which is difficult in large spacecraft swarms, either highly taxes

the communication systems or introduces a single-point failure. This requirement means

the algorithm must be decentralized, so each agent decides its own trajectory based on

information from the agents with which it can communicate. Also, to increase the flexibility

in potential final structures, it is beneficial to use multiple types of agents in the construction

swarm, so the guidance and control algorithm must be able to handle heterogeneous agents.

Finally, the proposed algorithm must control both position and attitude of the spacecraft

since docking is required.

In literature, many examples of decentralized swarm guidance schemes exist, but the

swarms are typically homogeneous [144, 136, 137, 111]. The heterogeneous swarm guidance

schemes typically use centralized algorithms. A similar modular swarm construction mission

was demonstrated using a homogeneous swarm of rectangular boats constructed in a brick

pattern [128]. Though this demonstration involved a homogeneous swarm with a planar

construction and centralized guidance and assignment, the assembly scheme docks along the

way to the final location, similar to the present paper. Another team created a satellite

assembly guidance and control scheme for a homogenous swarm to a predefined final forma-

tion using a glideslope algorithm to guide each satellite to a dock relative to other satellite,

with collision avoidance and particular constraints on relative velocity at certain waypoints

along the trajectory [109]. The approach is suboptimal; it uses linearized dynamics and

neglects perturbations and relative attitude but succeeds in building the formation at a low

fuel cost [109].

The field of robotic self-assembly has many interesting and innovative mechanisms. The

systems that are applied to space assembly are typically multi-use robots with multiple end-

3

effectors like the MoleCubes [146], which have a useful reconfiguration technique where the

cubes rotate along a diagonal axis to switch the location of two faces. This actuation type

could be very useful in the in-space construction scheme we have defined. Another interesting

actuation type with space applications is used by the MIT M-Blocks. The M-Blocks are

cubes that have magnetic edges and an internal flywheel which allows them to pop up and

latch on to make various configurations [119]. Self-assembling robotics applied to space

applications is very limited. The Transformable Robotic Infrastructure-Generating Object

Network (Trigon) system uses robotic self-assembly for in-space construction to facilitate

human planetary missions [72]. The Trigon system is multi-use and can build structures

from rovers to habitats using a ”kit-of-parts”, a set of Trigon parts. Each Trigon part is

essentially a face with actuators along the edges that can interact to self-assemble by moving

parts along the structure [72]. In orbit, some methods propose a free-flying tether robot which

can dock with components to combine them into an overall structure [49, 129]. CalPoly’s

PolyBots perform self-assembly using two types of agents with hermaphorditic docking ports.

The two agent types are similar to our design, a node and a segment. Though the system

architecture is similar to our concept, PolyBots are mainly intended for surface operations

and can be connected to form an arbitrary robot. The flexibility of the segment agent allows

the PolyBot chains to be used for locomotion and manipulation [142].

The guidance and control algorithm detailed in this dissertation expands upon prior work,

the Swarm Assignment and Trajectory Optimization (SATO) algorithm. SATO was used to

solve a target assignment and collision-free path planning problem by implementing a de-

centralized auction algorithm with a trajectory planner which implemented model predictive

control using sequential convex programming (MPC-SCP)[100, 101]. The two algorithms are

run sequentially over the course of the SATO algorithm so that the initial assignments and

trajectories can be updated as agent connectivity changes or collision avoidance is needed.

All agents are assumed to know the set of target locations, and have a limited communication

radius. SATO was designed for a homogeneous swarm targeting to a disconnected, free-flying

4

formation and did not incorporate docking or assembly of any kind. While SATO performs

admirably for this type of homogeneous swarm formation building, it must be altered for

the proposed heterogeneous construction swarm. In addition to the heterogeneity logic, the

collision avoidance logic in MPC-SCP must be carefully relaxed to allow docking agents to

come within the collision avoidance radius.

Enabling such a mission also require guidance and control algorithms that are advanced

enough to operate autonomously in complex dynamics environments with a large number of

agents. Optimal guidance and control methods for nonlinear systems are currently lacking in

real-time implementations, so other avenues must be taken to achieve fast, efficient motion

on-board advanced aerial and space vehicles. In previous work, sequential convex program-

ming was used to successively linearize the nonlinear dynamics about a trajectory, but the

error in linearization and discretization of the dynamics adds up and results in a trajectory

that may no longer satisfy the original constraints.

Several methods exist to tackle nonlinear optimal control problems, but they often fall

short in capability when it comes to real-time implementation for multi-agent systems. Pseu-

dospectral methods are well suited to handle the nonlinear dynamics, but grow computa-

tionally prohibitive as the number of agents increases and are not yet implemented in real-

time [50, 116]. Nonlinear solvers are getting fast enough to implement onboard for well

posed problems but do not adapt well and are not suitable for multi-agent problems thus

far [112]. Typical real-time quadrotor trajectory generation and control implementations

rely on simplifications like assuming differentially flat trajectories, using path primitives, or

decoupling the states to reduce the optimization burden [71, 91]. These methods are effective

for individual quadrotors, some even in obstacle-rich environments, but are not designed to

handle multi-agent systems. Mixed integer linear programming can also be implemented

in real-time if certain assumptions are valid, but also scales poorly with the number of

agents [118, 61, 44].

Convex optimization problems are easily and efficiently solved, but many common con-

5

straints on trajectory generation and control problems are nonconvex and many dynamical

systems are nonlinear [83]. Through convexification, relaxation, and approximation some

such problems may be fully solved [9, 138]. In other cases though, the adjustments restrict

the set of possible solutions to the point where the new problem is infeasible though the

original nonconvex problem is feasible.

Sequential convex programming (SCP) parses a nonconvex problem into a sequence of

convex programs with convexified or linearized constraints. This sequence of convex prob-

lems allows the convexification to be more closely tailored to the original nonconvex problem,

allowing more solutions to be found, while still making use of efficient convex optimization

solvers. SCP is used for a plethora of applications relating to optimal path planning and

control, gaining popularity with the collision-free path planning for multiple quadrotors or

spacecraft, developed independently by two research teams [14, 97, 98, 101]. SCP has been

used before these works on several other applications, like generalized nonconvex optimiza-

tion and single agent optimal control [20, 45]. SCP has also been used by roboticists for

problems like team-based path planning in non-convex environments [30] and complex robot,

complex environment optimal path planning [124]. Recently, SCP has been applied to more

complex problems with tight constraints like optimal entry and landing [81, 134, 84]. Often,

the optimal state trajectory found with SCP is implemented with a tracking controller rather

than determining the optimal control concurrently with the optimal state [37].

Previous work [97, 98, 101] has used SCP for nonlinear problems ranging from collision-

free guidance and control of swarms to optimal robotic motion planning in cluttered environ-

ments [17] to in-orbit satellite self-assembly [54, 52]. In some cases, it is possible to relax the

original nonlinear nonconvex problem using a slack variable such that the relaxed problem is

solvable using SCP and the solution is exact with respect to the nonlinear dynamics under

certain assumptions [86]. This solution type is preferable, but requires rigorous analysis to

prove the equivalence between the relaxed and original problems, and may not be possible

for all problems. More often though, the nonlinear dynamics constraint is linearized and the

6

nonconvex inequality constraints are convexified in order to make the nonconvex optimal

guidance and control problem convex. The linearization and discretization of the dynamics

cause error to accumulate with each successive iteration of SCP.

Typical implementations of SCP use an approximation of the dynamics without address-

ing this gap between the approximated and actual dynamics since the optimal state trajectory

is used more frequently [82, 83, 23]. Frequently, trust regions are used to keep the successive

solutions sufficiently close to mitigate the buildup of error due to linearization [88, 87]. These

are helpful in achieving convergence, but ultimately still allow an accretion of error in the

system, particularly for hard problems where several iterations are necessary. To fully trust

the optimal state and control trajectories, this error must be corrected, especially before im-

plementation on fragile problems like multi-agent docking or aggressive, cluttered-workspace

trajectory planning where small errors in the commanded trajectory can result in mission

failure.

As the agents in the swarm dock and move to their desired final positions, they must

be able to control the structures they create. The act of docking makes certain thrusters

unavailable due to the plume impingement on the now docked spacecraft, and the control

allocation algorithm must be able to dynamically adjust the control influence matrix to

model these new connections. Similar adaptations exist to allocate control in the case of

actuator failure, which is the crux the recovery portion of FDIR [133]. In this case however,

actuators must be added and the mass properties must be changed. This has been handled

in most commonly in previous docked satellites through gain scheduling, where the con-

troller gains are pre-determined for each configuration and stored in a table [94, 74]. This

is disadvantageous for an in-orbit assembly scheme because the sheer number of gains to

be computed and stored is intractable. Another common method is system identification,

where the docked spacecraft characterize the mass properties by actuating thrusters and

calculating the response. This is fuel and time intensive to generate high-fidelity models.

The final option is online model calculation, in which each agent stores its mass properties

7

Mission Name Lead Organization Status Docking Actuation
AAReST [28] Caltech and Surrey Space Center Scheduled, 2019 Electromagnets
STARS 1 [106] Kagawa University Jan. 23, 2009 Pre-Tethered
STARS 2 [107] Kagawa University Feb. 28, 2014 Pre-Tethered
CPOD[26] Tyvak Nano-Satellite Systems Awaiting Launch Thrusters
Rascal [7] St. Louis University Cancelled Thrusters
CleanSpace One [6] EPFL Gathering Funds Thrusters
Spheres [108] MIT May-November 2006 Thrusters
STRaND 2 [28] Surrey Space Center Not Available Electromagnets

Table 1.1: Review of SmallSat Docking Missions

and as they dock, they calculate the new mass properties of the combined system [94]. This

is beneficial because it does not require much data storage or any fuel usage, but it can be

sensitive to errors in docking alignment. Very few sources in literature have looked into this

online model calculation problem and solutions typically end at determining the new mass

and control properties to use with the controller and neglect to automate the removal of

blocked actuators from the allocation problem [95].

In addition to the guidance and control algorithms, it is necessary that the docking

system used in the in-orbit construction scheme be well-chosen. Autonomous rendezvous

and docking missions have stringent requirements and the technology is often fraught with

mechanism failures, making it one of the highest risk space operations [25]. Current AR&D

methods also lead to extensive fuel consumption. Careful trajectory planning and improved

sensors can reduce the fuel cost somewhat, but since docking necessitates two satellites com-

ing in contact, the failure of any subsystem can easily lead to mission failure. For example,

the DART mission was intended to show the rendezvous and docking of two satellites, but

instead ended in mission failure when a relatively small navigation error led to excessive fuel

consumption and collision with the docking target [3].

Performing proximity operations and docking with nanosatellites and CubeSats is partic-

ularly difficult. Nanosatellite-scale sensors and actuators are generally inaccurate and with

few options, limited by availability, space, and power consumption [19].

In literature, several solutions have been proposed to perform docking in space for

SmallSats. The main categories include thruster-based docking, tether-based docking, and

8

magnet-based docking. A selection of SmallSat missions involving docking that flew into

space or are proposed to fly into space is presented in Table 1.1.

Thruster-based docking is the most common form of docking and has a long history of

success in space. Thrusters provide the most maneuverability of any of the docking types

discussed. With thrusters, the initial separation can be as large as the propellant storage of

the satellite allows.

However, thruster-based docking has drawbacks like the propellant consumption. The

MIB of the thruster affects the resolution of the maneuver and drives consumption up for

precise motion like docking. This also dictates the minimum impact velocity. Thruster-

based docking also comes with the risk of thruster plume impingement, which can lead to

disturbance forces and undue heating, causing dock and component failure [25, 51, 56]. These

limitations can make missions like assembly of a structure difficult.

Tether-based docking is advantageous since it is repeatable and the main two spacecraft

stay separated until the tether begins to reel, so docking failures can often be fixed with little

risk to the main spacecraft. Additionally, with some extra sensors the tether can be used to

improve the relative navigation accuracy [38, 33]. Tether-based docking poses disadvantages

such as tether entanglement if tension is not maintained, as well as increased complexity in

design. However, it is more robust to failure since the tether can be rolled back and a new

attempt can be made.

Several studies have examined controlling tethered satellites and docking via tethers, but

generally the satellites are launched with the tethers connected [102, 106]. In some concept

missions without pre-tethered satellites, the tether is ejected forcefully to intercept the target

like shooting a harpoon gun. To add more flexibility, some studies use an electromagnetic

end effector to aide in the capture [110, 115, 47]. While this helps in final capture, it increases

complexity, cost, and weight.

Magnet-based docking comes in two forms, permanent magnets and electromagnets. The

permanent magnets create a hard dock and have a small capture range, but are simple

9

to implement. In [113], permanent magnets are used for the docking mechanism, but the

capture range issue is overcome by using thrusters to bring the CubeSats into close proximity.

Electromagnet-based docking can provide a smoother, more accurate docking. In addi-

tion, it does not require consumables to operate, and does not create plumes. As a disadvan-

tage, more current and thus more mass is required to bring satellites together from longer

distances. As superconductor technology improves though, this limitation can be amelio-

rated. Several studies have suggested electromagnetic docking, in addition to the ARReST

and STRaND 2 missions from Table 1.1, but these docks are typically hard docks to ensure

dock completion. Electromagnets have been also studied for formation flying applications,

like in references [127], [79], [13], [80], or in contact-free docking applications such as [76].

1.2 Main Contributions

This dissertation investigates optimal guidance and control for robots with nonlinear dy-

namics, for heterogeneous swarm self-assembly in-orbit, and for robots traversing cluttered

environments. The main contributions of this paper are as follows:

• Two novel algorithms, SCPn and M-SCPn, are presented which correct for the lin-

earization and discretization error caused when nonlinear dynamics are used in se-

quential convex programming. This prevents the error from building up and allows

the algorithm to converge to a solution that satisfies the nonlinear dynamics and the

optimization constraints. A new constraint is added to SCPn to ensure that the re-

sulting optimal trajectory is a feasible solution for the original nonconvex problem.

Using this constraint, it is proven that SCPn converges to the optimal solution and the

solution remains feasible for the nonlinear dynamics. Due to runtime and robustness

issues with SCPn, a second algorithm, modified SCPn (M-SCPn) is presented which

mixes SCP and SCPn to great effect, achieving solutions that are true to the nonlinear

dynamics in shorter times for a wider set of test cases. Both algorithms are tested

10

through simulations involving a quadrotor traversing a simple obstacle field.

• Novel modular spacecraft simulating robots are presented, capable of frictionless mo-

tion with spacecraft-like actuation methods for testing multi-agent spacecraft guidance

and control algorithms in a variety of configurations. These robots are also capable

of testing actual spacecraft hardware and fully integrated CubeSats. The robots are

controlled well enough to be suitable for verifying proximity operations and docking

maneuvers. Experimental results are presented to demonstrate the utility of the sys-

tem.

• An in-orbit construction algorithm is presented which uses a decentralized auction al-

gorithm with MPC-SCPn and is suitable for limited type heterogeneity in the swarm

and allows for docking satellites while avoiding undesired collisions. The algorithm

takes in a shape without pre-assigned target positions and solves the optimal assign-

ment and collision-free trajectory generation together. The assignment is performed

using a distributed auction with a variable number of targets in case of agent loss, and

strict bonding rules to address the heterogeneity. MPC-SCPn is used to generate the

collision-free trajectories, with modifications to relax collision constraints on agents

targeting neighboring positions to allow the agents to dock before reaching the target.

Simulation and experimental results are presented for three final configurations with

up to 54 agents.

• A trade study over several docking methods is presented to demonstrate the benefits of

tether-based and electromagnet-based autonomous docking over traditional propulsive

docking. This study is broken into two parts, one where tether and propulsive dock-

ing are compared in a simulation study and one where electromagnet and propulsive

docking are compared in simulation and experiments. Both tethers and electromag-

nets are propellant-free, which makes them desirable from a lifetime standpoint. The

electromagnet-based docking system is capable of very low terminal velocity docking,

11

which is ideal for in-orbit assembly applications.

1.3 Organization

The organization and flow of this dissertation are shown in Fig. 1.2. Chapter 2 discusses the

development of the Multi-Spacecraft Testbed for Autonomy Research spacecraft simulator

robots. This testbed is used for experimental validation across subsequent chapters. Chapter

3 details the development of the sequential convex programming algorithm which is designed

to function with nonlinear dynamics constraints. The resulting algorithms are then verified

against an uncorrected algorithm and against the true system dynamics. In Chapter 4,

the in-orbit construction algorithm for heterogeneous swarms is presented and validated

in simulation and on the aforementioned M-STARs. Chapter 5 details a study of several

different kinds of docking schemes, which are tested against each other in simulation and in

experiments on the M-STARs. Chapter 6 explores optimal motion planning in a cluttered

environment by leveraging sequential convex programming with nonlinear dynamics. The

dissertation concludes in chapter 7.

12

Chapter 2:
Multi-Spacecraft Testbed for
Autonomy Research Setup

Chapter 5:
Autonomous Spacecraft

Docking

Chapter 3:
Optimal Guidance and Control

with Nonlinear Dynamics
Constraints

Modified Sequential
Convex Programming

with Nonlinear
Dynamics

Sequential Convex
Programming with

Nonlinear Dynamics

Chapter 4:
In-Orbit Assembly of a
Heterogeneous Swarm

Swarm Orbital
Construction Algorithm

Distributed Auction
Algorithm for Docking

Model Predictive Control
using Sequential Convex

Programming with
Nonlinear Dynamics

Chapter 6:
Fast Motion Planning

Spherical Expansion
with Sequential Convex

Programming with
Nonlinear Dynamics

MULTI-AGENT SYSTEMS

Figure 1.2: Dissertation Organizational Diagram

13

Chapter 2

Multi-Spacecraft Testbed for
Autonomy Research Setup

2.1 Motivation

Historically, air bearing [125] platforms have been a popular choice to build spacecraft dy-

namics simulators. Air bearing spacecraft simulation platforms were developed by several

research laboratories [48, 126, 93, 36, 10, 58, 121, 122, 117, 145, 135, 59, 141, 131, 139, 123, 33];

a selection of these simulation platforms is shown in Table 2.1. Existing air bearing platforms

can be classified into four types based on the mode of operation: 3 degrees-of-freedom (DOF)

planar [145, 131, 93], 3-DOF attitude [126, 131, 36], 5-DOF planar and attitude [48, 122, 135,

123], and 6-DOF planar and attitude with gravity-axis motion [139, 121, 141]. The air bear-

ing system acts as a ground-based simulator platform for flight-like actuators and sensors,

which provides an opportunity to test flight algorithms and emulate space dynamics [40].

In this chapter, we describe the development of a new 6-DOF spacecraft simulator, the

Multi-Spacecraft Testbed for Autonomy Research (M-STAR), that is designed to be modular

and accommodates 3-DOF, 4-DOF, 5-DOF, and 6-DOF operation with minimal mechanical

modifications. The spacecraft simulator hardware was designed to have decentralized control

and information sharing capabilities with neighboring agents in view of the future goal of

testing multi-agent GNC algorithms using up to five of these simulators. Each spacecraft

has 16 thrusters and 4 reaction wheels to study fault-tolerant control.

In view of the model-based GNC algorithms a detailed nonlinear dynamic model for the

5-DOF system was derived by modelling it as a 3D pendulum on a gliding planar plat-

form with a center of gravity offset in the 3D pendulum. The nonlinear dynamic model

14

Organization Name DOF

Naval Postgraduate School POSEIDYN 3
Georgia Institute of Technology ASTROS 5
Florida Institute of Technology ORION 6
University of Florida ADAMUS 6
Yonsei University ASTERIX 5
NASA Jet Propulsion Laboratory (JPL) FCT 5

SSDT 3
German Aerospace Center (DLR) TEAMS 3 and 5
Massachusetts Institute of Technology SPHERES 3

ARGOS 3 (attitude)

Table 2.1: A sample of spacecraft simulators from other institutions. [48, 126, 93, 36, 10, 58,
121, 122, 117, 145, 135, 59, 141, 131, 139, 123, 33]

is decoupled by assuming a small center of gravity offset. A nonlinear hierarchical control

law is proposed for fast attitude dynamics and slower position dynamics due to the time-

scale separation. The control law computes forces and torques collocated to the dynamics.

Control allocation [75] is done to map the collocated control signal to the actuator signal.

Optimization formulations [22] can be used to solve the control allocation problem, typically

formulated as a linear program. For the M-STAR control allocation, we implement a gen-

eralized pseudo-inverse method for control allocation with a weighted influence matrix to

account for actuator saturation limits, as the optimization formulations are computationally

expensive for real-time implementation.

The position control of the M-STAR is performed using on-off solenoids, which are inher-

ently nonlinear due to mechanical delays and varying pressure in the manifold that supplies

compressed air to the solenoids. The solenoids are characterized [29] by measuring the force

produced for varying on-off time, using a calibrated load cell. A linear model to compute

the on time of a thruster is developed using the measured data for a given force requirement

at each time step. The control law, control allocation scheme, and thruster model are tested

for position tracking using a Robot Operating System (ROS) based software framework.

15

Figure 2.1: Multiple 6-DOF M-STAR spacecraft at Caltech’s Aerospace Robotics and Control
Lab.

2.2 Overview of the Facility

The spacecraft simulator facility requires the following three components to be operational:

the epoxy flat floor, the compressed air filling station, and the M-STARs. The epoxy flat

floor is a high precision floor with flatness within 0.001 inches for frictionless translation

of the spacecraft dynamics simulator using three flat air-bearing pads. Fig. 2.1 shows the

facility with multiple M-STAR spacecraft simulators and protection for collisions on the

outer edge of the floor. The full 6-DOF spacecraft simulator can be seen in the middle with

two 3-DOF simulators on the sides.The second component, the filling station, is comprised

of an industrial air compressor and two 6,000 psi storage tanks. The filling station is used to

fill the on-board air cylinders that supply air to the flat air bearings, spherical air bearing,

and 16 on-off non-latching solenoid valves that act as thrusters on the simulator. The M-

STAR shown in Fig. 2.2 acts as the dynamic simulation platform for a SmallSat and includes

all the necessary on-board sensors, actuator systems, and computing to achieve full 6-DOF

control. The pose of the spacecraft simulator is estimated using 14 motion capture cameras

mounted on the ceiling of the facility. In the following section, we elaborate on the subsystem

hardware of the simulator.

16

2.3 M-STAR Spacecraft Simulator Hardware

The Caltech Aerospace Robotics and Controls Lab’s 6-DOF spacecraft dynamics simulator

for spacecraft formation control research was designed to accommodate up to a 12U CubeSat

as a payload. The floating test bed simulates 5-DOF dynamic motion and 1-DOF kinematic

motion along the gravity direction, with translation and attitude stages decoupled via a

spherical air bearing. The translation stage floats frictionlessly on the precision floor using

three flat round air bearings. The attitude stage has a hemispherical air bearing ball that

floats frictionlessly on the cup mounted at the top of the linear actuator on the translation

stage. Tables 2.2 and 2.3 list the hardware components on both the translation stage and

attitude stages respectively. The hardware on each stage is divided into three subsystems: 1)

mechanical, including structural and pneumatic components; 2) electrical, including power,

computing, and low level controller boards; and 3) actuation, to impart torque or impulse in

the required degree of freedom. Each of these components plays an essential role in achieving

torque-free controlled motion.

Flat Air
Bearing

Compressed
Air Tanks

TX2

Thruster Control Board

Odrive Board

Reaction
Wheels

Linear
Actuator Battery

Attitude
Stage

Thrusters

Thrusters

Figure 2.2: M-STAR spacecraft dynamics simulator.

17

Attitude
Stage

Manifold

S

S

S

Compressed
Air Tanks
4500 psi

50 psi
Non­latching
Solenoids

Normally Closed
(x16)

Translation
Stage

Manifold
75 psi Flat Air

Bearings
(x3)

Hemispherical Air
Bearing (Cup)

40­50 psi

Compressed
Air Tanks
4500 psi

Figure 2.3: Flowchart of pneumatic system on translation and attitude stage.

2.3.1 Translation Stage.

The translation stage provides frictionless in-plane motion for the whole simulator using

three linear flat round air bearings. It consists of three compressed air cylinders running

at 4500 psi, a spherical air bearing cup, pneumatic components for pressure regulation, and

tubing required to supply air for the bearings. The pneumatic system on the translation

stage is shown in Fig. 2.3. In addition, it is equipped with a linear actuator, a brushless DC

linear motor for achieving motion in the gravity direction with supporting control electronics.

The different operation modes of operation (3-DOF, 4-DOF, 5-DOF, and 6-DOF) can be

achieved as follows:

• 3-DOF: spherical air bearing turned off and linear actuator replaced with a passive

tube

• 4-DOF: spherical air bearing turned off

• 5-DOF: linear actuator replaced with a passive tube

• 6-DOF: all actuators active

18

This provides flexibility in operation and allows the construction of algorithms with increased

complexity. The compressed air storage tanks’ capacity was designed to achieve at least

25-30 minutes of flotation time at the operating pressure in 6-DOF mode. Several custom-

designed add-ons can be incorporated on the translation stage such as docking ports and

reaction wheels for attitude control.

Subsystem Component
NewWay Air Bearing

Compressed Air Cylinders
Mechanical Structure Design

Spherical Air Bearing
Regulator

Actuator Progressive Automation Linear Actuator
Battery

Electronics and Power Linear Actuator Controller
Raspberry Pi

Table 2.2: List of components on the translation stage.

2.3.2 Attitude Stage.

The attitude stage structure was designed using carbon fiber composites and honeycomb

materials, optimized to provide a flotation time of up to 30 minutes with a payload of 12

kilograms. It has a box structure and acts as a platform for a potential payload, such as a

12U CubeSat. The attitude stage structure has the hemispherical ball of the air bearing pair

and floats on the translation stage to provide 3-DOF frictionless attitude motion. This stage

has 16 on-off non-latching solenoids with custom made nozzles and four in-house reaction

wheels as actuators. The power distribution board for the attitude stage and the low-

level controller for the thrusters are designed at Caltech. The schematic of the pneumatic

subsystem for supplying regulated compressed air to the thrusters is shown in Fig. 2.3. It

includes three compressed air cylinders, a regulator, and a manifold for air distribution.

The regulated pressure is supplied to all the thrusters through the manifold to maintain

19

the pressure across them. The operating pressure of the thrusters is decided based on

experimental characterization of the solenoids. The electrical subsystem of the attitude

stage is shown in Fig. 2.4. We chose an NVIDIA Jetson TX2 as the main computer to run

the GNC and perception algorithms. The computer communicates the control signal to the

low level boards as shown in Fig. 2.4. The subsystem components of the stages are listed in

the Table 2.3.

Battery
Power

Distribution
Board

Jetson
Carrier

Tx2 Board

Custom Thruster
Controller Board

16 Non­latching
Solenoid Thrusters

With Nozzle

Motion
Capture
System

Reaction Wheel
Motor controller 1

Reaction Wheel
Motor controller 2

Reaction
Wheel 1

Reaction
Wheel 2

Reaction
Wheel 3

Reaction
Wheel 4

Hall Sensor

Hall Sensor

Hall Sensor

Hall Sensor

IMU (Vector
Nav)

Figure 2.4: Attitude stage architecture.

20

Subsystem Component

Structure

Mechanical Nozzles

Pneumatics

Actuator Thrusters

Custom Reaction Wheel Assembly

Battery

Power Distribution Board

Electronics and Power Thruster Control Board

ODRIVE Reaction Wheel Driver

Maxon Motor Reaction Wheel Motor

NVIDIA Jetson TX2 Computer

Table 2.3: List of components on the attitude stage.

2.3.3 M-STAR Software Architecture

The software for the simulator was designed to allow for interchangeable guidance, naviga-

tion, and control modules. The architecture is implemented in C++ using abstract base

classes for the three modules, with virtual loop functions for subclasses to implement. As

illustrated in Fig. 2.5, navigation subclasses are responsible for generating updated state

data for the guidance system and controller. The guidance system maintains a trajectory

of desired states, from which the controller selects a target state for the current time step

and implements the required dynamics. The current experimental setup features waypoint

guidance, motion capture camera based navigation, and the 5-DOF controller outlined in the

next section. However, these could respectively be swapped for an arbitrary motion-planning

algorithm, pose feedback from integrated on-board sensor data, and controllers for the four

configurations of the simulator.

21

Navigation

navigation_loop()

Current State Data:
Pose, Velocity, Acceleration

Controller

Current State Desired State

Guidance

Trajectory:
List of Desired States

Current State

guidance_loop()

position_control_loop()

attitude_control_loop()

Figure 2.5: Software architecture design.

The architecture is built on Robotic Operating System (ROS) framework, which allows

for each loop to be scheduled at a unique rate that can be changed at run time. Data from

other modules is automatically fetched before each loop runs. ROS also provides a messaging

architecture for communicating with peripheral boards, the ability to create unique launch

configurations for different module setups, and test logging.

2.4 Dynamics and Control

Each M-STAR has two links coupled using a spherical air bearing as a joint. This system

can be modelled as a three dimensional pendulum on a floating platform with a ball joint

to provide 3-DOF rotation of the pendulum (modelling the attitude of the spacecraft) and

2-DOF planar motion of the floating platform. Constraints on the 3D pendulum motion due

to mechanical interference between the attitude stage and the translation stage are shown

in Table 2.4. The coordinate systems used for deriving the kinematics and dynamics of the

system are shown in Fig. 2.6. The inertial reference frame on the test floor is defined by the

coordinate system (Xi, Yi, Zi) with origin Oi . A non-rotating reference frame (Xib, Yib, Zib)

that is parallel to the inertial frame, is attached to the attitude stage with origin Ob at the

center of the hemispherical bearing to define the orientation of the attitude stage. The atti-

22

tude stage dynamics are derived in terms of the angular rates in the body frame (Xb, Yb, Zb)

at origin Ob. Before proceeding to the discussion on the dynamics and control implemen-

tation, the attitude representation used for describing the motion of the 3D pendulum in

SO(3) space is discussed.

Pitch (rotation about Xib) ±45◦

Roll (rotation about Yib) ±45◦

Yaw (rotation about Zib) ±180◦

Table 2.4: Constraints on the angular motion of the attitude stage.

2.4.1 Attitude Kinematics

The attitude of the 3D pendulum can be represented by any attitude representations in-

cluding quaternions [89], Modified Rodrigues Parameters (MRPs) [89], and SO(3) rotation

matrix. For example, the MRPs p ∈ R3 are stereographic projections of the unit quater-

nions [89], q ∈ H, where H is the Hamiltonian space and have a bijective mapping to the

quaternion sphere are used here. The attitude representation in MRPs takes into account

the unit norm of the quaternions. The attitude kinematics equation is given using the body

angular rates ω ∈ R3. The kinematics of MRPs are given as follows.

ṗ = Z(p)ω; where Z(p) =
1

2

(
I3

(
1− pTp

2

)
+ ppT + S(p)

)
, S(p) =

[0 −p3 p2
p3 0 −p1
−p2 p1 0

]
(2.1)

The rotation matrix R(p)> to transform from the frame (Xib, Yib, Zib) to the body frame

(Xb, Yb, Zb) in terms of the MRPs is given as:

R(p)> = I3×3 −
4(1− pTp)
(1 + pTp)2

S(p) +
8

(1 + pTp)2
S(p)2 (2.2)

The transformation R(p) is used in mapping the external force due to thrusters in the

body frame to the inertial frame for controlling the translation dynamics.

23

ob

Xb

Xib

Zb

Y b

Yib

Zib

Yi

Xi

oi

Zi

r cg

Figure 2.6: Coordinate Systems used for the derivation of the dynamic model.

2.4.2 Nonlinear Dynamic Model

The dynamics of the 5-DOF system with the velocity vb at the centre of rotation of the

attitude stage and angular rates of the attitude stage ω in body frame (Xb, Yb, Zb) is given

in the Eq. (2.4), where, rcg is the center of gravity offset from the center of rotation of

the attitude stage in the body frame coordinates, J is the mass moment of inertia of the

attitude stage about the center of rotation in the body frame, R(p) is defined in Eq. (2.2),

(x, y) is the planar location of the center of rotation from the inertial frame origin, ma is

the mass of the attitude stage, and mt is the mass of the translation stage. In the following

equations, a1 = [1; 0; 0] , a2 = [0; 1; 0] and a3 = [0; 0; 1] are unit vectors in the reference frame

(Xib, Yib, Zib).

˙̄P = R(p)vb where P̄ = (x, y, 0)>, D = (a>1 ; a>2 ; 0) (2.3)

Mb(p)

ω̇
v̇b

+ Cb

ω
vb

+Hb = τb (2.4)

Mb(p) =

 J maS(rcg)R(p)>DR(p)

ma

(
S(rcg)R(p)>DR(p)

)>
(ma +mt)

 (2.5)

24

Yb

Xb

Zb
Zb

Yb

Xb
2l

2b

h

1

2

3

5

4

6

7 8

RW1
RW2

RW3

RW4

9

10

13

14

15

16

11

12

α

Figure 2.7: Attitude Stage with actuator configuration and nomenclature in the body frame.

Cb =

 −S(Jω) maS(rcg)R(p)>DR(p)S(ω)

−maR(p)>DR(p)S(ω)S(rcg) (mt +ma)S(ω)

 (2.6)

Hb =

−magS(rcg)R(p)>a3

0

 (2.7)

The control inputs to the system are represented by τb = [τfτt], which include forces due to

thrusters τf and torques τt due to thrusters and reaction wheels in body frame. The control

design is done in body frame. The forces computed in body frame τf are transformed to

forces in inertial frame τp = R(p)τf for implementation of the position control law. The

implementation of the transformation and the influence of thrusters in the body frame on

the position dynamics in inertial frame is discussed in the following sections. In the body

frame, for the 5-DOF dynamics in Eq. (2.4) it can be proved that Ṁb − (Cb + CT
b) = 0 and

that Ṁb− 2Cb is a skew-symmetric matrix. The matrix form in Eq. (2.4) will be used in the

following section to derive a controller that globally exponentially tracks a given position

and almost globally exponentially tracks an attitude trajectory.

25

2.4.3 Control Design for Full Nonlinear Dynamics

The objective of the control design is to ensure that the 5-DOF of M-STAR, [P̄ (t), p(t)] given

in Eq. (2.3), exponentially tracks a given trajectory [P̄d(t), pd(t)] ∈ C2([0,∞]). The following

theorem states the nonlinear control law and proves the global exponential stability of the

closed-loop system in Eq. (2.10). Here the variables sω = ω−ωr and sv = vb− vbr define the

states for virtual dynamics. The variables wr and vbr define the reference signal computed

from filtered desired states dynamics given in the following Eq. (2.8).

ωr = Z−1(p)ṗd(t) + Z−1(p)Λω(pd(t)− p)

vbr = R> ˙̄Pd(t) +R>Λv(P̄d(t)− P̄)

(2.8)

The closed-loop system in terms of virtual states sω, sv, given in Eq. (2.10), with the control

law Eqs. (2.8–2.9), is globally exponentially stable in the sense of the Euclidean norm,

assuming the feedback gains Kω, Kv,Λω,Λv > 0 and the inertia matrix Mb is positive definite

and uniformly bounded with lower bound λmin and upper bound λmax. For the proof, please

see [105].

τb = Mb

ω̇r
v̇br

+ Cb

ωr
vbr

+Hb −

Kω 0

0 Kv


sω
sv

 (2.9)

Mb

ṡω
ṡv

+ Cb

sω
sv

+

Kω 0

0 Kv


sω
sv

 = 0 (2.10)

2.4.4 Control Implementation

For the control implementation, it is assumed that the attitude stage is coarsely balanced

with small rcg. Eq. (2.11) shows the decoupled translation dynamics in inertial frame and

rotational dynamics in body frame with small center of gravity offset. The terms in the

dynamics corresponding to the rcg act as a bounded disturbance at the input d(t) =
[
dw(t)
dp(t)

]

26

for small accelerations.
J 0 0

0 ma +mt 0

0 0 ma +mt



ω̇

ẍ

ÿ

+


ω × Jω

0

0

+


−magS(rcg)R(p)>a3

0

0

 =

τr
τp

+

dw(t)

dp(t)


(2.11)

dw(t) = −maS(rcg)R(p)>a1ẍ−maS(rcg)R(p)>a2ÿ

dp(t) =

−ma(S(rcg)R(p)>a1)>ω̇ −maa
>
1 R(p)S(ω)2rcg

−ma(S(rcg)R(p)>a2)>ω̇ −maa
>
2 R(p)S(ω)2rcg

 (2.12)

A hierarchical control law was implemented with an inner attitude control loop and an

outer position control loop because of the timescale separation between the two dynamics,

Eq. (2.11). Given a desired position trajectory, [xd(t), yd(t)] ∈ R2, and attitude trajectory

represented in MRPs, pd(t) ∈ R3, the control law presented below exponentially tracks both

position and attitude trajectories using smooth control inputs for the decoupled dynamics

for no disturbance. In the case with a bounded disturbance at the input, the closed-loop

system is finite-gain Lp stable. The control input to the position dynamics is simplified from

Eq. (2.9) and is given by Eq. (2.13).

τp = (mt +ma)

ẍd
ÿd

−Kd

ẋ− ẋd
ẏ − ẏd

−Kp

x− xd
y − yd

 (2.13)

(mt +ma)

ẍ− ẍd
ÿ − ÿd

−Kd

ẋ− ẋd
ẏ − ẏd

−Kp

x− xd
y − yd

 = dp(t) (2.14)

The closed-loop position dynamics with the control law in Eq. (2.13) are given in Eq. (2.14).

The gain values Kd and Kp are chosen to achieve the required position tracking performance.

The attitude controller in Eq. (2.15) is exponentially stable [18] with no disturbance and

tracks a given desired attitude trajectory that is C2 continuous. It can be shown that this

27

control law is simplified form of the controller proposed in Eq. (2.9). The nonlinear controller

is finite-gain Lp stable with bounded disturbance at the input.

τr = Jω̇r − S(Jω)ωr −Kr(ω − ωr)−magS(rcg)R(p)>a3

ωr = Z−1(p)ṗd(t) + Z−1(p)Λr(pd(t)− p)
(2.15)

J(ω̇ − ω̇r)− S(Jω)(ω − ωr)−Kr(ω − ωr) = dw(t) (2.16)

The closed-loop attitude dynamics are given in the Eq. (2.16). The matrices Λr and Kr are

positive definite and are chosen to achieve required tracking performance. The control laws

presented above compute control signals which are at least C2 continuous and the number

of control inputs are collocated with the states. Considering the overactuated design of the

simulator and the impulse actuation of the thrusters, a transformation from the continuous

control signal to the thruster on-off times is required to achieve equivalent performance with

non-smooth control inputs. In the following two sections, we discuss the actuator models for

thrusters and reaction wheels to make this transformation, along with the influence matrices

due to the location of the actuators.

2.4.5 Thruster Model and Influence Matrix

Influence Matrix.

Eqs. (2.13) and (2.15) give force and torque inputs that need to be applied collocated with

the five degrees of freedom of the system. The spacecraft has 16 thrusters mounted in the

configuration shown in Fig. 2.7, with thrusters 1-8 used for position and yaw angle control,

and 9-16 used for roll and pitch angle control. The collocated force and torque inputs

from the control law are transformed to the force input requirements on each of the 16

actuators through control allocation using an influence matrix. For the position controller,

28

the following is the actuator input to control input mapping called the influence matrix.

τp = R(p)BpF1 (2.17)

In the equation 2.17, R(p) transforms the actuator input in the body frame to the inertial

frame. Bp corresponds to the influence matrix given by Eq. (2.18) for position control. The

force vector, F1 = [f1 f2 f3 f4 f5 f6 f7 f8]>, acts as the input to the spacecraft dynamics

simulator thrusters mounted for position and yaw control. The actuator numbering is shown

in Fig. 2.7.

Bp =

−1 −1 0 0 1 1 0 0

0 0 −1 −1 0 0 1 1

 (2.18)

For attitude control, the thruster force to control input mapping is given as follows.

τr = BrF where Br = [B1 B2] and F =

[
F>1 F>2

]>
(2.19)

where F2 = [f9 f10 f11 f12 f13 f14 f15 f16]>. Also, see Fig. 2.7 for the thruster numbering

and nomenclature of `, b, and h.

B1 =


0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−` ` −b b −` ` −b b

 ,

B2 =


0 0 h −h 0 0 −h h

h −h 0 0 −h h 0 0

0 0 0 0 0 0 0 0


(2.20)

Control Allocation.

The control allocation scheme for the position controller computes the 8 dimensional thruster

forces F1 given the transformation matrix R(p) and the influence matrix Bp. A generalized

29

right psuedo-inverse solution to the control allocation problem that minimizes the L2-norm

of the control effort is given by F1 = B>p (BpB
>
p)−1R(p)−1τp and weighted pseudo-inverse is

given in Eq. (2.21), with a diagonal weighing matrix W . We use this algorithm for real-time

implementation.

F1 = W (BpW)>(BpW (BpW)>)−1R(p)−1τp (2.21)

The elements of the diagonal matrixW can be chosen to take into account actuator saturation

limits. For example, given the maximum umax and minimum umin thrust that can be produced

by the thruster f1, we choose the corresponding diagonal element in W as 1
|umax−umin| . For

attitude control using thrusters and reaction wheels, the same approach can be used for

computing the actuator force.

Thruster Firing Time.

The continuous actuator force computed using the control allocation scheme needs to be

transformed to the thruster firing times because the thrusters on the spacecraft simulator

are on-off non-latching solenoids. The on time of the thrusters is controlled using a PWM

signal with the duty cycle mapped to the on time requirements. Consider a PWM signal

with frequency fpwm with duty cycle corresponding to firing time ∆t, and continuous force

Fr that needs to be applied by a thruster at time step t. Let Fa be the force applied by

the thruster when open/on and the control loop frequency be fcl. It is assumed that control

frequency is same as the PWM signal frequency. The firing time is given in the following

equation.

∆t =
Fr
fclFa

(2.22)

The equation above assumes that the thruster produces the same force for all firing times.

To verify this claim and validate the model, an experimental setup was built. Methods and

results can be found in Ref. [105]

30

2.4.6 Reaction Wheel Configuration and Model

The simulator is equipped with four reaction wheels for attitude control arranged in a pyra-

mid configuration (see Fig. 2.7). The angle α made by the axis of the wheel and the (Xb, Yb)

plane is chosen to have maximum momentum storage [90], α = 35.26◦. The overactuated

configuration will be used to study the fault detection, isolation, and recovery of reaction

wheels, which is a major source of failure [42] in flight missions. The attitude dynamics

with four reaction wheels in the pyramid configuration and no gravity torques is given in

Eq. (2.23). The influence matrix is given by G in Eq. (2.24).

Jω̇ + ω × Jω = −GJwΩ̇− ω ×GJwΩ (2.23)

G =


c(α)c(45◦) −c(α)c(45◦) −c(α)c(45◦) c(α)c(45◦)

c(α)s(45◦) c(α)s(45◦) −c(α)s(45◦) −c(α)s(45◦)

s(α) s(α) s(α) s(α)

 (2.24)

Jw =



Jw1 0 0 0

0 Jw2 0 0

0 0 Jw3 0

0 0 0 Jw4


(2.25)

In the above equation, J is the mass moment of inertia including the four wheels, Jw is

a diagonal matrix with the mass moment of inertia of the wheels about the rotation axis,

Ω = [Ω1 Ω2 Ω3 Ω4]> is the rotation speed of the each of the four wheels, and s(·), c(·) denote

the sine and cosine of a given angle, respectively. For the numbering and location of the

wheels with respect to body frame see Fig. 2.7. The term −GJwΩ̇ is the control input to

the attitude dynamics. The attitude controller in Eq. (2.15), is modified to cancel the cross-

coupling term −ω ×GJwΩ by feeding the wheel speed to the control law. The final control

31

law is given in the Eq. 2.9d.

τb = Mb

ω̇r
v̇br

+ Cb

ωr
vbr

+Hb −

S(GJwΩ) 0

0 0


ωr
vbr

−
Kω 0

0 Kv


sω
sv

 (2.26)

2.4.7 Hardware Implementation of the Hierarchical Control Law

In this section, we elaborate on the implementation of the hierarchical control law discussed

earlier. The schematic of the control law is shown in Fig. 2.8. The attitude control is done

in the inner-loop with control frequency between 80 − 100 Hz using reaction wheels. The

thrusters can be used to do coarse attitude control, or desaturate the reaction wheels. The

X, Y position controller is done using thrusters, it is coupled with the attitude dynamics by

a rotation matrix to map the actuator force in the body frame to the inertial frame. The

position dynamics are slow compared to the attitude dynamics, so it is run as an outer-

loop with feedback on position data for control computations and attitude data for control

allocation at control frequency between 1− 10 Hz.

Nonlinear
Attitude
Controller

Thruster
Allocation

Reaction
Wheel
Torque
Allocation Attitude

Dynamics

Motion
CaptureIMU

LIDAR VISION

X,Y Position
Controller

Thruster
Allocation for
Translation

Position
Dynamics

Thruster
Firing Time

Thruster
Firing
Time

Actuator
Selection
Logic

Low Level
Wheel

Controller

Z Position
Controller

Linear Actuator
Low Level
Controller

Z ­Position
Kinematics

Desired
Position
Trajectory

Desired Attitude
Trajectory

1­10 Hz

80­100 Hz

1­10Hz

TBD

Attitude, Body Rate

X, Y Position
Z Position

Figure 2.8: Closed-loop control implementation for the 6DOF simulator.

32

2.5 Experiments

In this section, we present the preliminary experimental results for the position tracking

controller discussed earlier. Here, we try to track a step input and demanding harmonic

trajectories using the control law, control allocation and firing time schemes developed in

the chapter. The position and orientation data of the simulator is measured using the motion

capture camera system running at 100 Hz. The thrusters are operated at 50 psi. The tracking

results are discussed in the following section.

2.5.1 Results

Fig.s 2.9 and 2.10 show preliminary results of waypoint reaching experiments. The task for

the controller was to reach origin of the inertial frame and stay there until a further command

was communicated. The controller performs well for the two presented cases. The current

position controller can be easily extended for tracking a trajectory with coarse way points.

The steady-state error in both of the cases was less than the assigned value of 5cm. In this

particular test the yaw angle attitude was coarsely maintained around 0, except when the

system faced perturbations from uneven flow and varying pressure in the pressure manifold

that supplies air to the thrusters, which caused a couple on the simulator due to firing forces

that do not balance. Further investigation into characterizing the viscous friction due to air

gap between the simulator and the epoxy floor, and the dead zone of the thrusters needs to

be done to improve the performance of the controller.

33

(a) x position (m) vs. time(s) (b) y position (m) vs. time(s)

-0.5 0 0.5 1 1.5 2 2.5

X (m)

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Y
(m

)

(c) (x,y) trajectory(m)

0 10 20 30 40 50 60 70 80

time (s)

0

100

200

300

400

500

600

Fir
ing

 tim
e (

ms
)

6
5
2
1
8
7
3
4

(d) Firing time vs. time

Figure 2.9: Closed-loop waypoint reaching experimental result- test case 1.

(a) x position (m) vs. time(s) (b) y position (m) vs. time(s)

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

X (m)

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Y
(m

)

(c) (x,y) trajectory in m

0 10 20 30 40 50 60 70 80

time (s)

0

100

200

300

400

500

600

700

800

900

Fir
ing

 tim
e (

ms
)

6
5
2
1
8
7
3
4

(d) Firing time vs. time

Figure 2.10: Closed-loop waypoint reaching experimental result- test case 2.

34

2.6 Chapter Summary

In this chapter, we discussed the hardware development of a 6-DOF robotic spacecraft sim-

ulator M-STAR for testing formation guidance, navigation and control algorithms. The

simulator has 6-DOF with translation and attitude stages decoupled using a spherical air

bearing. The translation stage floats on the epoxy flat floor using three flat round air

bearings. The hardware architecture of M-STAR and its subsystems including mechanical

structure, pneumatic system for flat air bearings, spherical air bearing required to achieve

frictionless and disturbance torque free motion of the simulator were discussed in detail. The

low level control architecture for thrusters and reaction wheels was mentioned for controlling

the dynamics.

A nonlinear dynamic model of M-STAR was presented by modelling the system as a 3D

pendulum on a floating platform. A hierarchical model-based control law for the nonlinear

system was discussed for tracking a given position and attitude trajectory. A generalized

pseudo-inverse control allocation scheme, with a thruster actuator model developed using

experiments, was used to implement the control law in a ROS based software framework for

testing position control.

35

Chapter 3

Optimal Guidance and Control with
Nonlinear Dynamics Constraints

This chapter presents an efficient upgrade to the widely used SCP method which allows the

method to be used to more accurately solve optimal control problems with nonlinear dynam-

ics constraints. The new algorithm, SCPn, corrects for the linearization and discretization

error in each SCP loop. This prevents the error from building up and allows the algorithm to

converge to a solution that satisfies the nonlinear dynamics and the optimization constraints.

A new constraint is added to SCPn to ensure that the resulting optimal trajectory is a fea-

sible solution for the original nonconvex problem. Using this constraint, it is proven that

SCPn converges to the optimal solution and the solution remains feasible for the nonlinear

dynamics. Due to runtime and robustness issues with SCPn, a second algorithm, modified

SCPn (M-SCPn) is presented which mixes SCP and SCPn to great effect, achieving solutions

that are true to the nonlinear dynamics in shorter times for a wider set of test cases. Both

algorithms are tested through simulations involving a quadrotor traversing a simple obstacle

field. Preliminary results, reported in [53], are broadened and strengthened with optimality

proofs for M-SCPn and extensive simulations across a broad set of parameters chosen to

identify weaknesses in the algorithms.

Previous work [97, 100, 101] has used SCP for nonlinear problems ranging from collision-

free guidance and control of swarms to optimal robotic motion planning in cluttered environ-

ments [17] to in-orbit satellite self-assembly [54, 52]. In order to make the nonconvex optimal

guidance and control problem convex, the nonlinear dynamics constraint is linearized and

the nonconvex inequality constraints are convexified. The linearization and discretization of

the dynamics cause error to accumulate with each successive iteration of SCP. This error

36

causes the linearized/discretized optimal trajectory to diverge from the nonlinear dynamics

and can lead to failed constraints, as seen in Fig. 3.1. In the figure, the black line represents

the SCP optimal trajectory and the colored circles represent the error between the SCP

trajectory and the nonlinear trajectory, which grows over the course of the trajectory. The

error is large enough that the terminal constraint is missed by a substantial margin.

Figure 3.1: Linearization and discretization error accumulates over time when trajectories are
found using SCP. Mean trajectory error resulting from SCP is shown by the colored circles
along the nonlinear trajectory

3.1 Problem Statement

In this section, the original continuous-time nonlinear optimal control problem is presented.

3.1.1 Nonlinear Optimal Control Problem

We define the original finite-horizon optimal control problem for x(t) ∈ Rn and u(t) ∈ Rm

as follows.

Problem 1 (Constrained, Nonlinear Optimal Control).

37

minimize
x,u

∫ tf

t0

F(x(t),u(t))dt subject to (3.1)

ẋ(t)− fc(x(t),u(t)) = 0 ∀t ∈ [t0, tf] (3.2)

g̃i(x(t),u(t)) ≤ 0, i = 1, . . . , r, ∀t ∈ [t0, tf] (3.3)

x(t0) = x0, x(tf) = xf , (3.4)

where Eqs. (3.2)-(3.3) represent the continuous dynamics constraint (ẋ = fc) and the general

inequality constraints (g̃i ≤ 0) of the state (x) and the control vector (u), respectively, and

Eq. (3.4) represents the initial and terminal constraints. Examples of the cost integrand

function include F(x(t),u(t)) = ‖u(t)‖q. Then, the L1 integration of F shown in Eq. (3.1)

correctly captures the fuel cost of a spacecraft dynamic model with q ∈ {1, 2,∞}.

Example 1 (State and Control Constraint).

If Problem 1 involves multiple (N) agents [97, 98, 101] such that x = (x1, · · · ,xN) and

u = (u1, · · · ,uN), examples of g̃i(x(t),u(t)) ≤ 0 in Eq. (3.3) include the following maximum

control constraint and collision avoidance constraint:

‖u(t)‖r ≤ Umax ∀t ∈ [t0, tf], r ∈ {1, 2,∞}, j = 1, . . . , N (3.5)

‖G[xj(t)− xm(t)]‖2 ≥ Rcol ∀t ∈ [t0, tf], m ∈ N[j], j = 1, . . . , N (3.6)

N[j] = {m| ‖xj(t)− xm(t)‖2 ≤ Rcomm} (3.7)

where G = [I3×3 03×3] is used to take the position state if each xj(t) is composed of both

the position and velocity states. Also, Rcomm is the communication radius of each agent,

Umax denotes the maximum control magnitude, and Rcol denotes the minimum allowable

distance between two agents. Note that the q and r in the norms ‖u‖q in Eq. (3.1) and ‖u‖r

in Eq. (3.5) could be different depending on the thruster/actuator architecture. Note that

the collision avoidance constraints in Eq. (3.6) can be convexified into a convex polytope

38

around the nominal position of the spacecraft, drawn from the intersection of half-space

approximations of Eq. (3.6) [97, 98, 101].

3.2 Convex Optimization with Direct Transcription

of Dynamics

To solve Problem 1 efficiently, the state and control constraints Eq. (3.3) are assumed to

be convexified and decoupled so that each agent can use SCP to determine its optimal

trajectories.

3.2.1 Non-Convex Optimization Problem Using Discretization

The first step in the process of converting Eq. (3.2) into a constraint that can be used in

direct optimization is to convert the ordinary differential equation in Eq. (3.2) to a finite

number of algebraic constraints by using a zero-order hold discretization approach such that

xk = x(tk), uk = u(tk) for the x(t) and u(t) values at t ∈ [tk, tk+1), k = k0, . . . , T − 1,

where T is the final discrete time step (tT = tf) and tk0 = t0. The stacked vector is denoted

by xk0:T = (xk0 , . . . ,xT) and uk0:T−1 = (uk0 , . . . ,uT−1). Furthermore, we assume that the

integrand cost function F in Eq. (3.1) is written as

F(x(t),u(t)) = Fx(x(t)) + Fu(u(t)) (3.8)

where Fx : Rn 7→ R1 and Fu : Rm 7→ R1 is a convex function. First, we consider the problem

with Fu only before generalizing the cost function to Eq. (3.8). The discretized version of

Problem 1 is written as the following optimization.

Problem 2 (Non-Convex Program (NCP) with Nonlinear Dynamics).

39

minimize
uk0:T−1

T−1∑
k=k0

Fu(uk)vk subject to (3.9)

xk+1 − f(xk,uk) = 0, xk0 = x0, k = k0, . . . , T − 1 (3.10)

gi(xk,uk) ≤ 0, i = 1, . . . , p, k = k0, . . . , T (3.11)

where f represents the discretized nonlinear dynamics and vk denotes the quadrature weight

of numerical integration (e.g., vk = ∆t = tk+1 − tk for the Euler method or see [62] for

pseudospectral integration). Note that gi ≤ 0, i = 1, . . . , p includes all of the convex in-

equality constraints (Eq. (3.3)) as well as the terminal conditions of (Eq. (3.4)) relaxed as

an inequality constraint (e.g., ‖xk=T − xf‖ ≤ ε) so the number of inequality constraints

p = r + 1, where r is the number of inequality constraints in Problem 1. Hence, Problem 2

is a nonconvex optimization problem simply because of Eq. (3.10).

Example 2 (Discretization of Dynamics in Eq. (3.2)).

The discrete-time nonlinear dynamic model (Eq. (3.10)) of the dynamic model of Eq. (3.2)

can be derived from the fourth-order Runge-Kutta (RK4) integration scheme as follows

y1k = fc(xk,uk)

y2k = fc(xk + ∆t
2

y1k,uk+
1
2
) (3.12)

y3k = fc(xk + ∆t
2

y2k,uk+
1
2
)

y4k = fc(xk + ∆ty3k,uk+1)

xk+1 = xk +
∆t

6
(y1k + 2y2k + 2y3k + y4k)

where uk+ 1
2

= uk+uk+1

2
. SCPn is independent of the type of numerical integration/discretization

method used, for further options see [120, 62, 60].

40

3.2.2 Sequential Convex Programming with Linearized

Constraints

In prior work [97, 98], the dynamics and nonconvex constraints in Problem 2 are sequentially

linearized about some nominal trajectory to form a convex program. The basic problem

formulation is presented in Problem 3 and the method is presented in Method 1. The first

nominal trajectory is an initial guess of the solution, then after the first iteration the solution

of the previous iteration of SCP is used for all subsequent nominal trajectories. The nominal

trajectory in SCP is only used to linearize the dynamics and other convexified constraints

that require linearization. For more details see references [97, 98, 101].

Problem 3 ((w)-th Sequential Convex Program: SCP(w)(x̄, ū) given:

x̄k0:T = x
(w−1)
k0:T , ūk0:T−1 = u

(w−1)
k0:T−1).

minimize
uk0:T−1

T−1∑
k=k0

Fu(uk)vk subject to (3.13)

xk+1 − A(x̄k)xk −B(ūk)uk − z(x̄k, ūk) = 0, xk0 = x0, k = k0, . . . , T − 1 (3.14)

gi(xk,uk) ≤ 0, i = 1, . . . , p, k = k0, . . . , T (3.15)

where A(x̄n,k) =
∂f

∂xk

∣∣∣∣
(x̄n,k,ūk)

, B(ūk) =
∂f

∂uk

∣∣∣∣
(x̄n,k,ūk)

, and z(x̄n,k, ūk) = f(x̄n,k, ūk)−

A(x̄n,k)x̄n,k − B(ūk)ūk. The Lipschitz and convex functions gi(xk,uk), i = 1, . . . p are from

Eq. (3.11).

Remark 1 There are several ways to find a potential initial nominal trajectory, (x̄, ū).

For many instances, SCP can be initialized with null trajectories. Problems with tougher

constraints may have trouble converging with this, in which case a straight line trajectory

or other simplified trajectory can be used. For highly restrictive problems, it is helpful to

run a simplified version of SCP without some of the constraints for a few iterations.

41

Method 1 Sequential Convex Programming with Linearized Constraints (SCP Method)

1: x
(0)
k := feasible solution to Problem 3, u

(0)
k := 0, ∀k

2: x̄k := x
(0)
k , ūk := u

(0)
k , ∀k

3: w := 1
4: while ‖x(w)

k − x
(w−1)
k ‖ < ε ∀k do

5: x
(w)
k ,u

(w)
k :=the solution to Problem 3, SCP(x̄, ū) ∀k

6: x̄k := x
(w)
k , ūk := u

(w)
k , ∀k

7: w := w + 1
8: end while
9: (x

(w−1)
k ,u

(w−1)
k) is the approximate solution to Problem 2

3.2.3 Sequential Convex Programming with Nonlinear Dynamics

Constraints

In contrast with prior work, the contribution of this paper is to show that the numerical

integration of nonlinear dynamics equations between each SCP iteration is essential to the op-

timality of the SCP solutions that use sequential linearizations. The solution (xk0:T ,uk0:T−1)

of the (w)-th iteration of the following convex programming approximation of the nonconvex

program in Problem 2 is denoted as xk+1 = x
(w)
k , uk = u

(w)
k , k = k0, . . . , T − 1.

Problem 4 ((w)-th Sequential Convex Program: SCPn(w)(x̄, ū) given:

x̄n,k0:T = x
(w−1)
n,k0:T , ūk0:T−1 = u

(w−1)
k0:T−1).

minimize
uk0:T−1

T−1∑
k=k0

Fu(uk)vk subject to (3.16)

xk+1 − A(x̄n,k)xk −B(ūk)uk − z(x̄n,k, ūk) = 0, xk0 = x0, k = k0, . . . , T − 1 (3.17)

gi(xk,uk) +
k−1∑
j=k0

Li,j,k‖uj − ūj‖ ≤ 0, i = 1, . . . , p, k = k0, . . . , T (3.18)

‖uk − ūk‖ ≤ (β)w−1T0, ∀k = k0, . . . , T − 1 (3.19)

where A(x̄n,k) =
∂f

∂xk

∣∣∣∣
(x̄n,k,ūk)

, B(ūk) =
∂f

∂uk

∣∣∣∣
(x̄n,k,ūk)

, z(x̄n,k, ūk) = f(x̄n,k, ūk)−A(x̄n,k)x̄n,k−

B(ūk)ūk, and β is chosen to allow the cost to converge first. The Lipschitz and convex

functions gi(xk,uk), i = 1, . . . p are from Eq. (3.11), and a positive constant Li,j,k is defined

42

as:

Li,j,k = 2‖Bk‖(‖Ak‖)k−j−1 sup
‖xk−x

(w)
k ‖≤εx

‖uk−u
(w)
k ‖≤εu

∥∥∥∥∂gi(xk,uk)∂xk

∥∥∥∥ (3.20)

where ‖Ak‖ = sup‖xk−x
(w)
k ‖≤εx

‖A(xk)‖, ‖Bk‖ = sup‖uk−u
(w)
k ‖≤εu

‖B(uk)‖ are the local Lips-

chitz constants of f(x,u), εu = βw−1T0, the control trust region size and εx is the state trust

region size, defined in Proposition 1. This definition of Li,j,k is justified in Theorem 2 of

Section 3.3. Moreover, the nominal trajectories x̄k = x
(w−1)
n,k for the current (w)-th SCPn it-

eration are obtained by integrating the original nonlinear dynamics (Eq. (3.2)) starting from

the initial condition (x0) using the input trajectory (u
(w−1)
k), ∀k of the previous (w − 1)-th

SCPn iteration:

x
(w−1)
n,k+1 = f(x

(w−1)
n,k ,u

(w−1)
k), k = k0, . . . , T − 1, and x

(w−1)
n,k0

= x
(w−1)
k0

= x0 (3.21)

This SCPn optimization along with nonlinear dynamic correction Eq. (3.21) is repeated until

the sequence of trajectories converges. The nominal trajectory x
(w)
n,k+1, ∀k for the (w + 1)-th

SCPn is obtained by integrating x
(w)
n,k+1 = f(x

(w)
n,k ,u

(w)
k), x

(w)
n,k0

= x
(w)
k0

using the (w)-th SCPn

solution u
(w)
k0:T−1, similar to Eq. (3.21). The convergence of SCPn solutions to an optimal

solution is proven in Theorem 2 by showing that the costs in subsequent iterations are

non-increasing and convergent.

The SCPn method is described in Method 2. First, an initial approximate trajectory is

generated with or without state and control constraints (line 1). Then, the iterative process

begins with the agent solving for its optimal state and control trajectories (line 5) and

numerically integrating the control trajectory to get the nominal, nonlinear state trajectory

for the next iteration (line 7). Finally, iteration is continued until the trajectories converge

and satisfy all the constraints (line 4).

Remark 2 The state and control trust region conditions can be added into the convergence

criteria in line 4 as well, but the user must be careful to choose the trust region parameters

43

β and T0 such that the cost is allowed to converge before the state and control. Allowing

the state or control to converge first will result in suboptimal solutions.

Method 2 Sequential Convex Programming with Nonlinear Dynamic Correction (SCPn
Method)

1: x
(0)
k := feasible solution to Problem 4, u

(0)
k := 0, ∀k

2: x̄k := x
(0)
k , ūk := u

(0)
k , ∀k

3: w := 1
4: while ‖J (w) − J (w−1)‖ < ε ∀k, (See Remark 2) do

5: x
(w)
k ,u

(w)
k :=the solution to Problem 4, SCPn(x̄, ū) ∀k

6: x
(w)
n,k :=numericalIntegrate(fc,x0,u

(w)
k), ∀k

7: x̄k := x
(w)
n,k , ūk := u

(w)
k , ∀k

8: w := w + 1
9: end while
10: (x

(w−1)
n,k ,u

(w−1)
k) is the approximate solution to Problem 2

3.3 Convergence and Optimality of SCPn

In this section, we will show that SCPn (Method 2) converges to a point, which satisfies

the Karush-Kuhn-Tucker (KKT) conditions for optimality of the nonconvex optimization in

Problem 2. First, we will show that SCPn converges as the number of iterations tends to

infinity (w →∞).

Proposition 1 (Equivalence and Convergence of SCPn Trust Regions). The error at the

k-th time corrected by nonlinear integration (Eq. (3.21)) for the (w+ 1)-th SCPn is given as

x
(w+1)
n,k − x

(w+1)
k , while the accuracy of the linearized dynamics Eq. (3.17) for the (w + 1)-th

SCPn is x
(w+1)
k − x

(w)
n,k . Since the trust region ‖u(w+1)

k − u
(w)
k ‖ ≤ βwT0, ∀k Eq. (3.19) is

shrinking exponentially fast as w →∞, the following holds for k = k0, . . . , T ,

lim
w→∞

‖x(w+1)
k − x

(w)
n,k‖ = 0, lim

w→∞
‖x(w+1)

n,k − x
(w)
n,k‖ = 0, lim

w→∞
‖x(w+1)

n,k − x
(w+1)
k ‖ = 0.

(3.22)

44

and at any given iteration, the size of the trust region around the state is related to the size

of the trust region around the control as follows:

εx = βwT0

k−1∑
j=k0

(‖Ak‖)k−j−1‖Bk‖ (3.23)

Proof. Eq. (3.17) for the (w + 1)-th SCPn becomes

x
(w+1)
k+1 − x

(w)
n,k+1 = A(x

(w)
n,k)(x

(w+1)
k − x

(w)
n,k) +B(u

(w)
k)(u

(w+1)
k − u

(w)
k) (3.24)

whose fixed initial condition x
(w+1)
k0

= x
(w)
n,k0

leads to

x
(w+1)
k − x

(w)
n,k =

k−2∑
j=k0

(
k−1∏
i=j+1

A(x
(w)
n,k+j−i)

)
B(u

(w)
j)(u

(w+1)
j − u

(w)
j) +B(u

(w)
k−1)(u

(w+1)
k−1 − u

(w)
k−1)

(3.25)

Hence, due to ‖u(w+1)
k − u

(w)
k ‖ → 0, ∀k as w →∞, ‖x(w+1)

k − x
(w)
n,k‖ → 0, ∀k is proven.

The error corrected by nonlinear integration at the (w+ 1)-th SCPn and (k+ 1)-th time

is given as

x
(w+1)
n,k+1 − x

(w+1)
k+1 = x

(w+1)
n,k+1 − x

(w)
n,k+1 −

(
x

(w+1)
k+1 − x

(w)
n,k+1

)
= f(x

(w+1)
n,k ,u

(w+1)
k)− f(x

(w)
n,k ,u

(w)
k)−

(
x

(w+1)
k+1 − x

(w)
n,k+1

)
(3.26)

If f(x
(w)
n,k ,u

(w)
k) has bounded, continuous partial derivatives in the convex domain (Eqs. (3.18)-

(3.19)), f(x
(w)
n,k ,u

(w)
k) is Lipschitz [78]:

‖x(w+1)
n,k+1 − x

(w)
n,k+1‖ = ‖f(x

(w+1)
n,k ,u

(w+1)
k)− f(x

(w)
n,k ,u

(w)
k)‖

≤ ‖Ak‖‖x(w+1)
n,k − x

(w)
n,k‖+ ‖Bk‖‖u(w+1)

k − u
(w)
k ‖ (3.27)

where ‖Ak‖ = sup‖xk−x
(w)
k ‖≤εx

‖A(xk)‖, ‖Bk‖ = sup‖uk−u
(w)
k ‖≤εu

‖B(uk)‖.

45

This can be expressed as a function of ‖u(w+1)
k − u

(w)
k ‖ using x

(w+1)
n,k0

= x
(w)
n,k0

as follows

‖x(w+1)
n,k − x

(w)
n,k‖ ≤

k−1∑
j=k0

(‖Ak‖)k−j−1‖Bk‖‖u(w+1)
j − u

(w)
j ‖ (3.28)

Hence, limw→∞ ‖x(w+1)
n,k − x

(w)
n,k‖ = 0 as limw→∞ ‖u(w+1)

k − u
(w)
k ‖ = 0. Also, the first equality

of Eq. (3.26) verifies ‖x(w+1)
n,k − x

(w+1)
k ‖ ≤ ‖x(w+1)

n,k − x
(w)
n,k‖ + ‖x(w+1)

k − x
(w)
n,k‖. Therefore,

limw→∞ ‖x(w+1)
n,k − x

(w+1)
k ‖ = 0 holds due to the limit results mentioned immediately below

Eqs. (3.25) and (3.28).

Combining the control trust region Eq. (3.19) with Eq. (3.28) establishes the state trust

region:

‖x(w+1)
n,k − x

(w)
n,k‖ ≤ βwT0

k−1∑
j=k0

(‖Ak‖)k−j−1‖Bk‖ (3.29)

and thus the size of the state trust region is given by:

εx = βwT0

k−1∑
j=k0

(‖Ak‖)k−j−1‖Bk‖ (3.30)

Definition 1 (OS and FS of SCPn(w)(x̄, ū) and NCP). We define SCPn(w)(x̄, ū) as the

(w)-th Problem 4 where the nominal trajectories x̄k and ūk are used in Eqs. (3.17), (3.18),

and (3.19). An optimal solution and a feasible solution to SCPn(x̄, ū) are denoted by

OS(SCPn(x̄, ū)) and FS(SCPn(x̄, ū)), respectively. For example, the (w)-th and the (w+1)-

th SCPn optimal solutions of Problem 4 yield

(x
(w)
k0:T ,u

(w)
k0:T−1) = OS(SCPn(w)(x

(w−1)
n,k0:T ,u

(w−1)
k0:T−1)) (3.31)

(x
(w+1)
k0:T ,u

(w+1)
k0:T−1) = OS(SCPn(w+1)(x

(w)
n,k0:T ,u

(w)
k0:T−1))

Similarly, OS(NCP) and FS(NCP) denote an optimal solution and a feasible solution of the

nonconvex program in Problem 2, respectively.

46

As described in Method 2, the optimal solution of SCPn(w)(x
(w−1)
n,k0:T ,u

(w−1)
k0:T−1)) is numerically

integrated to obtain x
(w)
n,k0:T . This nonlinear trajectory is then used as the nominal trajectory

for the next SCPn iteration, SCPn(w+1)(x
(w)
n,k0:T ,u

(w)
k0:T−1)) and can be shown to be a feasible

solution to the nonconvex problem.

Proposition 2 A nominal trajectory, (x
(w)
n,k0:T ,u

(w)
k0:T−1), which is a feasible solution to the

NCP (Problem 2), is also a feasible solution to the (w + 1)-th iteration of SCPn.

Proof. It follows that (x
(w)
n,k0:T ,u

(w)
k0:T−1) is a feasible solution to SCPn(w+1)(x

(w)
n,k0:T ,u

(w)
k0:T−1)

because substituting (xk = x
(w)
n,k ,uk = u

(w)
k) into Eqs. (3.17) and (3.18) for the (w + 1)-

th SCPn straightforwardly shows that Eqs. (3.17) and (3.18) reduce to the corresponding

constraints in Problem 2: Eqs. (3.10) and (3.11). Also, the trust region condition, Eq. (3.19)

automatically holds.

In summary, starting from some feasible solution FS(NCP), we establish

(x
(w)
n,k0:T ,u

(w)
k0:T−1) = FS(NCP) (3.32)

(x
(w)
n,k0:T ,u

(w)
k0:T−1) = FS(SCPn(w+1)(x

(w)
n,k0:T ,u

(w)
k0:T−1)) (3.33)

(x
(w+1)
k0:T ,u

(w+1)
k0:T−1) = OS(SCPn(w+1)(x

(w)
n,k0:T ,u

(w)
k0:T−1)) (3.34)

These relationships can also be seen in Fig. 3.2.

Figure 3.2: Relationship between SCPn components

Note that limw→∞ ‖uk − u
(w−1)
k ‖ = 0 from Eq. (3.19) and Proposition 1 implies that the

inequality constraint function gi(xk,uk) +
∑k−1

j=k0
Li,j,k‖uj − u

(w−1)
j ‖ in Eq. (3.18) increases

as w increases, thereby expanding the size of the feasible region that tends toward that of

47

Eq. (3.11). The following theorem shows the cost further decreases through a sequence of

convex optimization and nonlinear integration when the inequality constraint Eq. (3.11) of

Problems 2 and 4 is restricted to functions of uk only, before the main result, Theorem 2 is

presented.

Theorem 1 (Decreasing Cost over Optimal SCPn Sequence with Restricted Constraints).

If Eq. (3.11) is replaced by

gi(uk) ≤ 0, i = 1, . . . , p, k = k0, . . . , T, (3.35)

then Problems 2 and 4 are referred to as R-NCP and R-SCPn, respectively. Also, it follows

from Eq. (3.20) that Li,j,k = 0.

If there exists a feasible solution to the restricted nonconvex problem such that

(x
(w)
n,k0:T ,u

(w)
k0:T−1) = FS(R-NCP), then

J(u
(w+1)
k0:T−1) ≤ J(u

(w)
k0:T−1) (3.36)

where J(x,u) is the cost function (Eq. (3.16)) of Problems 2 and 4.

Proof. If the state and control trajectory at some w is a feasible solution to the restricted

nonconvex problem, expressed as (x
(w)
n,k0:T ,u

(w)
k0:T−1) = FS(R-NCP), then the solution must

satisfy the constraints of the restricted NCP, Eqs. (3.17) and (3.35). This feasible solution

to R-NCP is used as a nominal trajectory for the (w + 1)-th R-SCPn to yield an optimal

solution: (x
(w+1)
k0:T ,u

(w+1)
k0:T−1) = OS(SCPn(w+1)(x

(w)
n,k0:T ,u

(w)
k0:T−1)).

Consequently, applying Proposition 2 and J(OS(SCPn(w+1))) ≤ J(FS(SCPn(w+1))), ∀w to

Eqs. (3.33) and (3.34) results in

J(u
(w+1)
k0:T−1) ≤ J(u

(w)
k0:T−1) (3.37)

where strict inequality is used unless (x
(w)
n,k0:T ,u

(w)
k0:T−1) = OS

(
SCPn(x

(w)
n,k0:T ,u

(w)
k0:T−1)

)
. Since

48

the nonlinear integration does not change the input trajectory, the above relationship holds

across SCPn iterations. Furthermore, this optimal input solution (u
(w+1)
k0:T−1) of SCPn(w+1)

Eq. (3.32) is used to determine the nonlinear trajectory Eq. (3.21) from the initial condition

x
(w+1)
n,k0

= x0, thereby yielding the new nominal trajectory (x
(w+1)
n,k0:T ,u

(w+1)
k0:T−1) as seen in Fig. 3.2.

We show herein that this solution is a feasible solution to R-NCP. (x
(w)
n,k0:T ,u

(w)
k0:T−1) already

satisfies the nonlinear dynamics constraint Eq. (3.17) and because the restricted inequality

constraints are independent of the state, satisfying Eq. (3.35) is the same for R-NCP and

R-SCPn. Therefore, the constraints are satisfied and the solution is feasible to the restricted

nonconvex problem. We conclude that given that (x
(w)
n,k0:T ,u

(w)
k0:T−1) is a feasible solution

to the R-NCP, when R-SCPn is applied, (x
(w+1)
n,k0:T ,u

(w+1)
k0:T−1) is also a feasible solution to the

R-NCP.

Next, we show that the same results can be obtained for the unrestricted problems (Prob-

lems 2 and 4) provided that a modification is made to the inequality constraint Eq. (3.11),

as given in Eq. (3.18).

Theorem 2 (Decreasing Cost over Optimal SCPn Sequence). If there exists a feasible solu-

tion to the original nonconvex problem (Problem 2) such that (x
(w)
n,k0:T ,u

(w)
k0:T−1) = FS(NCP),

∃w, then

J(u
(w+1)
k0:T−1) ≤ J(u

(w)
k0:T−1) (3.38)

(where J(u) is the cost function of Problems 2 and 4 given in Eq. (3.16)) under the following

condition for each gi(xk,uk) in Eq. (3.18)

Li,j,k = 2‖Bk‖(‖Ak‖)k−j−1 sup
‖xk−x

(w)
k ‖≤εx

‖uk−u
(w)
k ‖≤εu

∥∥∥∥∂gi(xk,uk)∂xk

∥∥∥∥ (3.39)

where ‖Ak‖ = sup‖xk−x
(w)
k ‖≤εx

‖A(xk)‖, ‖Bk‖ = sup‖uk−u
(w)
k ‖≤εu

‖B(uk)‖.

The resulting nominal trajectory (x
(w+1)
n,k0:T ,u

(w+1)
k0:T−1) obtained from SCPn is also a feasible

solution to the nonconvex problem.

49

Proof. This theorem starts with some value of w in which there is a feasible solution to

the original nonconvex problem (Problem 2) such that (x
(w)
n,k0:T ,u

(w)
k0:T−1) = FS(NCP). This

means that x
(w)
n,k+1 = f(x

(w)
n,k ,u

(w)
k) from Eq. (3.10) and g(x

(w)
n,k ,u

(w)
k) ≤ 0 Eq. (3.11) hold for

all appropriate values of k. Also, by Proposition 2, (x
(w)
n,k0:T ,u

(w)
k0:T−1) is also a feasible solution

of SCPn(w+1).

Therefore, applying J(OS(SCPn(w+1))) ≤ J(FS(SCPn(w+1))), ∀w to Eq. (3.33) and

Eq. (3.34) results in

J(u
(w+1)
k0:T−1) ≤ J(u

(w)
k0:T−1) (3.40)

Furthermore, this optimal input solution (u
(w+1)
k0:T−1) of SCPn(w+1) Eq. (3.32) is used to

integrate x
(w+1)
n,k+1 = f(x

(w+1)
n,k ,u

(w+1)
k), k = k0, . . . , T − 1 Eq. (3.21) from the initial condition

x
(w+1)
n,k0

= x0, thereby yielding the new nominal trajectory (x
(w+1)
n,k0:T ,u

(w+1)
k0:T−1). We show herein

that this solution is a feasible solution to Problem 2 if Eq. (3.39) holds.

First, the convex inequality constraint Eq. (3.18) of SCPn(w+1) is given as

gi(x
(w+1)
k ,u

(w+1)
k) +

k−1∑
j=k0

Li,j,k‖u(w+1)
j − u

(w)
j ‖ ≤ 0, i = 1, . . . , p, k = k0, . . . , T (3.41)

The first-order condition of a convex function holds for each gi as follows

gi(x
(w+1)
k ,u

(w+1)
k) ≥ gi(x

(w+1)
n,k ,u

(w+1)
k) +

∂gi
∂xk

∣∣∣∣
(x

(w+1)
n,k ,u

(w+1)
k)

(x
(w+1)
k − x

(w+1)
n,k) (3.42)

+
∂gi
∂uk

∣∣∣∣
(x

(w+1)
n,k ,u

(w+1)
k)

(0) (3.43)

Combining Eqs. (3.41) and (3.43) results in

gi(x
(w+1)
n,k ,u

(w+1)
k) ≤ ∂gi

∂xk

∣∣∣∣
(x

(w+1)
n,k ,u

(w+1)
k)

(x
(w+1)
n,k − x

(w+1)
k)−

k−1∑
j=k0

Li,j,k‖u(w+1)
j − u

(w)
j ‖ (3.44)

In order to show (x
(w+1)
n,k0:T ,u

(w+1)
k0:T−1) = FS(NCP), we need to prove gi(x

(w+1)
n,k ,u

(w+1)
k) ≤ 0,

50

whose sufficient condition can be given as

∥∥∥∥ ∂gi∂xk

∥∥∥∥ (‖x(w+1)
n,k − x

(w)
n,k‖+ ‖x(w+1)

k − x
(w)
n,k‖) ≤

k−1∑
j=k0

Li,j,k‖u(w+1)
j − u

(w)
j ‖ (3.45)

Applying the property of submultiplicativity of norms to Eq. (3.25) shows that both ‖x(w+1)
n,k −

x
(w)
n,k‖ and ‖x(w+1)

k − x
(w)
n,k‖ possess the same upper-bound given in Eq. (3.28). Hence, substi-

tuting Eq. (3.28) into Eq. (3.45) shows that Eq. (3.45) is satisfied by

k−1∑
j=k0

2

∥∥∥∥ ∂gi∂xk

∥∥∥∥ (‖Ak‖)k−j−1‖Bk‖‖u(w+1)
j − u

(w)
j ‖ =

k−1∑
j=k0

Li,j,k‖u(w+1)
j − u

(w)
j ‖ (3.46)

Consequently, the condition of Li,j,k Eq. (3.39) is established. If the global Lipschitz constants

are used in Eq. (3.46) instead of the local Lipschitz constants, the bound is overly conservative

in certain dynamics due to the large value of the global state Lipschitz constant (‖A‖), which

restricts the feasible set to the point where solutions are not possible or quite difficult to

find.

Since (x
(w)
n,k0:T ,u

(w)
k0:T−1) already satisfies the nonlinear dynamics constraint Eq. (3.10), we

conclude that given that (x
(w)
n,k0:T ,u

(w)
k0:T−1) is a feasible solution to the NCP, when SCPn is

applied, (x
(w+1)
n,k0:T ,u

(w+1)
k0:T−1) is also a feasible solution to the NCP as can be seen in Fig. 3.2.

This theorem shows that a sequence of SCPn optimal solutions (x
(w)
k0:T ,u

(w)
k0:T−1) and fea-

sible solutions (x
(w)
n,k0:T ,u

(w)
k0:T−1) to NCP (Problem 2) has a nonincreasing cost. We will now

prove that a sequence of optimal solutions exists and converges to an optimal solution (KKT

point) of Problem 2.

Theorem 3 (Convergence of SCPn to KKT Point). If (x(w),u(w)) is a feasible solution to

Problem 2 for some w = w0, then a sequence of optimal solutions ({x(w)}, {u(w)}) exists.

If each optimal solution is unique, the sequence converges to (x(∞),u(∞)), which is a KKT

point of Problem 2.

51

Proof. Since Eqs. (3.10)-(3.11) form a closed and bounded set and the feasible solutions

in the sequence (x
(w)
n,k0:T ,u

(w)
k0:T−1) satisfy the equations, there exists an infinite subsequence(

{x(wi)}, {u(wi)}
)

that converges, where wi is the i-th iteration and (x(wi),u(wi)) is the i-

th feasible solution at iteration wi in the convergent subsequence. Let the convergence

point be called (x(∞),u(∞)). The Weierstrass theorem [21] establishes that a continuous

function over a closed and bounded set achieves a minimum and a maximum on that set,

so J(u(∞)) exists in the set of feasible solutions. By completeness, this gives the sequence

J({u(wi)})→ J(u(∞)).

The mapping M(x) is equivalent to solving the KKT conditions of SCPn(x,u), which

are continuous with respect to x. Therefore, the mapping M is continuous. Since the

subsequence ({x(wi)}, {u(wi)}) → (x(∞),u(∞)) and the limit of a continuous function of a

convergent sequence is the function of the limit of that sequence, the following is true:

{M(x(wi))} →M(x(∞)) (3.47)

Additionally, x(∞) is a fixed point and x(wi+1) = M(x(wi)). Therefore,

{x(wi+1)} → x(∞) (3.48)

Finally, we will show that (x(∞),u(∞)), the fixed point that minimizes J(u(w)) is a KKT

point of Problem 2. From Proposition 1, we know that after convergence, (x(∞),u(∞)) =

(x
(∞)
n ,u(∞)). Since x(∞) is a fixed point of M , it is a solution to SCPn(x(∞),u(∞)) and

from Proposition 2, it is a feasible solution to Problem 2. Additionally, Problem 4 is convex

so any solution to this problem is a KKT point (x(∞),u(∞))=SCPn(x
(∞)
n ,u(∞)) and sat-

isfies stationarity (Eq. (3.49)), complementary slackness (Eq. (3.50)), and dual feasibility

52

(Eq. (3.51)):

0

0

 =

∑p
i=1 λ

(∞)
k,i ∇xkgi(x

(∞)
k ,u

(∞)
k)∑p

i=1 λ
(∞)
k,i ∇ukgi(x

(∞)
k ,u

(∞)
k)

+

∇xkhdyn(x
(∞)
k+1,x

(∞)
k ,u

(∞)
k)

∇ukhdyn(x
(∞)
k+1,x

(∞)
k ,u

(∞)
k)

µ(∞)
k + (3.49)

∇xkJ(u(∞))

∇ukJ(u(∞))

+

∇xkhdyn(x
(∞)
k ,x

(∞)
k−1,u

(∞)
k−1)

0

µ(∞)
k−1, k = k0, . . . , T − 1

0 = λ
(∞)
k,i gi(x

(∞)
k ,u

(∞)
k), i = 1, . . . , p, k = k0, . . . , T (3.50)

λ
(∞)
k,i ≥ 0, i = 1, . . . , p, k = k0, . . . , T (3.51)

where hdyn is the dynamics equality constraint and
∑k−1

j=k0
Li,j,k‖uj − u

(w−1)
j ‖ → 0 is used

due to the exponentially shrinking trust region Eq. (3.19). Also, we can find from Eq. (3.17)

hdyn(x
(w)
k+1,x

(w)
k ,u

(w)
k) = A(x

(w−1)
n,k)x

(w)
k +B(u

(w−1)
k)u

(w)
k + z(x

(w−1)
n,k ,u

(w−1)
k)− x

(w)
k+1 (3.52)

∇xkhdyn(x
(∞)
k+1,x

(∞)
k ,u

(∞)
k) = A(x

(∞)
n,k), ∇xkhdyn(x

(∞)
k ,x

(∞)
k−1,u

(∞)
k−1) = −I, (3.53)

∇ukhdyn(x
(∞)
k+1,x

(∞)
k ,u

(∞)
k) = B(u

(∞)
n,k)

Proposition 2 and Theorem 2 indicate that the original cost function Eq. (3.9) of Prob-

lem 2 is expressed as J(u) for the fixed KKT point (x
(∞)
n ,u(∞)) = FS(SCPn(x

(∞)
n ,u(∞))) =

FS(NCP). Now let λ∗k = λ
(∞)
k , ν∗k = ν

(∞)
k , µ∗xk = µ

(∞)
xk , and µ∗uk = µ

(∞)
uk , where the Lagrange

multipliers with superscript∞ are the KKT multipliers that satisfy the KKT conditions for

the convex program. Then, we can show that Eqs. (3.49)-(3.51) become the KKT conditions

for the nonconvex program (Problem 2) because ∇xkhdyn(x
(∞)
k+1,x

(∞)
k ,u

(∞)
k) = A(x

(∞)
n,k) =

∂f

∂x

∣∣∣∣
x

(∞)
n,k

and ∇ukhdyn(x
(∞)
k+1,x

(∞)
k ,u

(∞)
k) =

∂f

∂u

∣∣∣∣
u

(∞)
k

, k = k0, . . . , T − 1. Hence, all the KKT

conditions Eqs. (3.49)-(3.51) remain the same for Problem 2 after substitution.

Now, we can relax the cost function to include convex functions of the state trajectory. In

the following proposition, it is shown that cost function for each iteration can be expressed

53

solely in terms of the control input trajectory for that iteration.

Proposition 3 (Convexity of Cost Function of Input). The cost function Eq. (3.16) can be

written as a convex function of only u
(w)
k0:T−1 = (u

(w)
k0

; · · · ; u
(w)
T−1) such that

J(u
(w)
k0:T−1) =

T−1∑
k=k0

(
Fx(u(w)

k) + Fu(u(w)
k)
)
vk (3.54)

Proof. Nesting Eq. (3.17) in on itself for k = k0, . . . , T results in:

x
(w)
k+1 =

(
k∏

j=k0

A(x
(w−1)
n,j)

)
x

(w)
k0

+
k−1∑
j=k0

(
k∏

i=j+1

A(x
(w−1)
n,i)

)(
B(u

(w−1)
j)u

(w)
j + z(x

(w−1)
n,j ,u

(w−1)
j)

)
(3.55)

+B(u
(w−1)
k)u

(w)
k + z(x

(w−1)
n,k ,u

(w−1)
k)

=

(
k∏

j=k0

A(x
(w−1)
n,j)

)
x

(w)
k0

+ (3.56)

k−1∑
j=k0

(
k∏

i=j+1

A(x
(w−1)
n,i)

)(
B(u

(w−1)
j)(u

(w)
j − u

(w−1)
j) + x

(w−1)
n,j+1 − A(x

(w−1)
n,j)x

(w−1)
n,j

)
+B(u

(w−1)
k)(u

(w)
k − u

(w−1)
k) + x

(w−1)
n,k+1 − A(x

(w−1)
n,k)x

(w−1)
n,k

=b
(w)
k (x

(w−1)
n,k0:k ,u

(w−1)
k0:k) +

[
C

(w)
k (x

(w−1)
n,k0:k ,u

(w−1)
k0:k)

]
u

(w)
k0:k (3.57)

where the initial condition x
(w)
k0

is fixed as given in Eq. (3.4). The variables b
(w)
k and C

(w)
k are

functions of solutions from previous iterations, therefore x
(w)
k is an affine function of u

(w)
k .

Since Fx(x(w)
k) in Eq. (3.16) is a convex function, a convex function of an affine function is

convex, so the entire cost function can be expressed as a convex function of u
(w)
k .

Since we have already shown that the cost as a function of only the control input will

converge, and that the difference between x
(w)
n,k and x

(w)
k will converge to zero, we can show

that the cost as a function of x
(w)
n,k will converge. This does not mean that J(x

(w)
n ,u(w)) will

be lower than J(x(w),u(w)) for all w because the nonlinear dynamics correction can perturb

the cost in either direction.

54

To use convex programming to solve the trajectory optimization (Problems 2 and 4), the

nonconvex constraints must be converted to convex or affine constraints.

Example 3 (Convexification of Collision Avoidance Constraint). [97, 98]

One standard definition of a collision avoidance constraint is to avoid a ball around the

obstacle or other agent. This is defined as:

− ‖pj,k − p̄i,k‖2 ≤ Rcol k = k0, . . . , T (3.58)

where pj,k is the agent’s position at time k and p̄i,k is the nominal position of the other

agent and obstacle for each agent and obstacle i. This constraint is nonconvex. The best

convex approximation is an affine constraint, where the 3-D spherical prohibited region (S2)

is replaced by a plane which is tangent to the sphere and perpendicular to the line segment

connecting the nominal position of the other agent or obstacle.

− (p̄j,k − p̄i,k)
T (pj,k − p̄i,k) ≤ Rcol‖(p̄j,k − p̄i,k)‖2 k = k0, . . . , T (3.59)

This hyperplane rotates as the agent moves which helps approximate the agent and obstacle

more precisely and helps to prevent the workspace from becoming overly restricted.

Corollary 3.1 If (x
(w)
n ,u(w)) is a feasible solution to the the nonconvex problem (Problem 2),

then (x
(w)
n ,u(w)) is a feasible solution to SCPn(w+1) even if the nonconvex problem contains

nonconvex inequality constraints, gNC(x
(w)
n ,u(w)) ≤ 0, that are convexified using a shifting

hyperplane in SCPn as shown in Example 3. The hyperplane is defined as:

− aTk xk ≤ bk (3.60)

where ak and bk are chosen at each time step such that the nonconvex constraint region is

tangent to the hyperplane without intersecting the hyperplane at any other points.

55

Proof. From Proposition 2, we know that (x
(w)
n ,u(w)) = FS(SCPn(w+1)) for problems with

convex constraints. Relaxing this to include nonconvex inequality constraints convexified us-

ing successive hyperplanes as in [97] involves establishing the equivalency between satisfying

the nonconvex constraint and the hyperplane-convexified constraint. By the construction of

the hyperplane, it encompasses the full nonconvex constraint region and thus satisfying the

hyperplane constraint must satisfy the nonconvex constraint.

Remark 3 The optimization problems stated thus far have relied on a fixed terminal time

but this is not required. If the terminal time is an optimization variable, even linear dynamics

become nonlinear. Defining τ = t
tf

for τ ∈ [0, 1] and augmenting the state with tf so that

x̃ = [x, tf], the redefined linear system dynamics with respect to τ become the following:

∂x

∂τ
= (Ax +Bu)tf (3.61)

∂tf
∂τ

= 0 (3.62)

which is nonlinear in x̃. Since SCPn handles nonlinear dynamics, this broadens the applica-

tions of SCPn.

The addition of the barrier
∑k−1

j=k0
Li,j,k‖uj − ūj‖ around the inequality constraints

(Eq. (3.18)) is imposed to ensure conformity to the nonlinear dynamics, but it reduces the

feasible set such that the number of iterations required to find a convergent solution is

significantly higher than the previous SCP implementation when used with tough convex or

convexified constraints like Example 3. To reduce the computational burden, a combined

approach (Method 3) was formulated wherein the original SCP method is used until the

solutions violate the constraints of the nonlinear problem, then the SCPn method is used.

This method is only advisable when the inequality constraints are lenient enough that the

added Li,j,k term is not needed for several iterations in the trajectory generation process.

The relationship between the components of the M-SCPn method can be seen in Fig. 3.3.

56

Figure 3.3: Relationship between M-SCPn components

Method 3 Modified Sequential Convex Programming with Nonlinear Dynamic Correction
(M-SCPn Method)

1: x
(0)
k := the solution to Problem 3 ∀k

2: x̄k := x
(0)
k , ∀k

3: w := 1
4: while ‖J (w) − J (w−1)‖ < ε ∀k do

5: x
(w)
k ,u

(w)
k :=the solution to Problem 3 (Sequential Convex Program), ∀k

6: if Eq. (3.18) does not hold then

7: x
(w)
k ,u

(w)
k :=the solution to Problem 4 (Nonlinear Corrected Sequential Convex Pro-

gram), ∀k
8: end if
9: x

(w)
n,k :=numericalIntegrate(fc,x0,u

(w)
k), ∀k

10: x̄k := x
(w)
n,k , ∀k

11: w := w + 1
12: end while
13: x

(w−1)
n,k is the approximate solution to Problem 2

Next, we will prove the stability of the combined method.

Corollary 3.2 (Convergence of M-SCPn to a KKT Point). If (x
(w)
n,k ,u

(w)
k) is a feasible solution

to Problem 2 for some w, then the M-SCPn Method (Method 3) will converge to a steady-

state solution (x∞n,k,u
∞
k) which is feasible to the nonconvex problem and is a KKT point of

Problem 2.

Proof. There are two possible ways the M-SCPn method can execute. Either SCP without

dynamics integration returns a solution that is feasible to SCPn, or SCPn with dynamics

integration executes and returns the solution. In either case, the resulting solution is feasible

57

to SCPn, i.e. (x
(w)
k ,u

(w)
k) = FS(SCPn(w+1)) then numerically integrated. From Theorem 2

we see that a solution of this sort must also be feasible to the nonconvex problem, Problem 2,

so (x
(w)
n,k ,u

(w)
k) = FS(NCP). From Theorem 3 we know that the feasible set of the NCP is

closed and bounded and thus the solutions of M-SCPn form a sequence which converges to

a point (x
(∞)
k ,u

(∞)
k). From the construction of the algorithm, we know that any solution

(xwn ,u
w) is feasible to SCPn and so is also feasible to SCP since the feasible set of SCPn is a

subset of the feasible set of SCP. To prove that the cost converges, we must first show that

it decreases over M-SCPn iterations for both of the execution methods, SCP and SCPn.

Assume the contrary, that the cost does not decrease over M-SCPn, ¬J(u(w+1)) ≤ J(u(w)).

This implies the following:

J
(
OS(SCP(w+1))

)
> J

(
FS(SCP(w+1))

)
(3.63)

This is logically inconsistent since the cost of an optimal solution must be lower than or

equal to that of a feasible solution. The same conclusion holds when SCPn runs, and thus

the cost is nonincreasing over M-SCPn iterations.

Since the cost J(u(w)) is continuous and decreasing over a closed and bounded set, it

converges by the Weierstrass theorem [21] to J(u(∞)) as established in Theorem 2. The

optimization problem solved in M-SCPn is either the same as SCPn or enforced to satisfy

the constraints of SCPn, the KKT conditions remain the same as stated in Theorem 3. The

conclusion in Theorem 3 holds for M-SCPn, considering that the state and cost converge as

shown above.

3.4 Simulation Results

Simulations were performed to validate the SCPn and M-SCPn methods compared to SCP

and the true nonlinear trajectory generated from the control trajectory for all three meth-

ods. All simulations were performed using quadrotor dynamics as described in [101]. The

58

quadrotor was given the initial position 0, 0, 0 m and the terminal position 5, 5, 1 m with a

1-m diameter sphere in the middle of the straight-line path to engage the collision avoidance

constraint described Example 3. Simulations used CVX, a MATLAB-based convex optimiza-

tion engine running the Mosek solver [66, 64, 103]. The nonlinear trajectories were found

by numerically integrating the nonlinear dynamics, as seen in Eq. (3.12), using the optimal

control trajectory found using SCP, SCPn, and M-SCPn. To test the performance of the

methods, the convergence tolerance and the initial nominal trajectories were varied. The

convergence tolerance specifies at what point the method is considered converged based on

the difference between successive state and control trajectories. This value was varied from

1e-2 to 1e-6. The initial nominal trajectories were found by running SCP without collision

avoidance constraints for a set number of iterations. The number of iterations tested were

(5, 7, 10, 12, 15), where more iterations corresponds to a better initial guess. The algorithms

were cut off at a maximum of 20 iterations even if unconverged to keep the batch runtime

tractable.

0
-2

0.5

1

z
(m

)

1.5

0

2

65

x (m)

2 4

y (m)

324 106 -1

SCP
SCP

NL

SCPn
SCPn

NL

M-SCPn
M-SCPn

NL

Start
Finish

Figure 3.4: Quadrotor trajectories computed using SCP (red), SCPn (blue), and M-SCPn
(black) in squares compared against the nonlinear trajectory using the respective control
trajectory in triangles. The SCP trajectory clearly does not follow the nonlinear dynamics,
but the SCPn and M-SCPn trajectories do.

Trajectories from one of the batch simulations are shown in Fig. 3.4. The SCP trajectory,

shown in red, diverges from the nonlinear dynamics over the course of the trajectory to such

59

an extent that the terminal constraint is not satisfied in the nonlinear dynamics. The SCPn

and M-SCPn trajectories, shown in blue and black respectively, are perfectly matched to

their nonlinear trajectories. A summary of the batch simulation results is shown in Figs. 3.5

and 3.6. Fig. 3.5 shows the error in the terminal position between the algorithm state

trajectory and the nonlinear trajectory for all of the simulations. For SCP, the deviation from

the nonlinear dynamics is independent of the convergence tolerance but varies drastically

with the initial nominal trajectory. Poor initial trajectories result in lower error because

fewer iterations means less accumulation of linearization and discretization error. For all

SCP cases, the error in terminal position is unacceptably high and nowhere near the required

tolerances.

1e-2 1e-3 1e-4 1e-5 1e-6

0.1

0.3

0.5

S
C

P

1e-2 1e-3 1e-4 1e-5 1e-6
10-7

10-4

10-1

S
C

P
n

1e-2 1e-3 1e-4 1e-5 1e-6
Convergence Tolerance (m)

10-7

10-4

10-1

M
-S

C
P

n

#Its=5
#Its=7
#Its=10
#Its=12
#Its=15

Figure 3.5: Terminal position error for each algorithm over the five different tolerances and
five initial nominal trajectories, generated using [#Its] number of simplified SCP iterations.

In general the performance of SCPn and M-SCPn is comparable with millimeter-level

tolerances and reasonably well-chosen initial nominal trajectories. The interesting differences

come into play in the stress cases. When initialized with a poor trajectory and a stringent

convergence tolerance, SCPn is much more likely to fail to converge than M-SCPn. Overall

SCPn fails to sufficiently converge by the 20 iteration cutoff in 8 of the 25 test cases. M-SCPn

60

fails just three of the cases.

1e-2 1e-3 1e-4 1e-5 1e-6
0

2

4
S

C
P

1e-2 1e-3 1e-4 1e-5 1e-6

10

20

30

S
C

P
n

1e-2 1e-3 1e-4 1e-5 1e-6
Convergence Tolerance (m)

10

20

30

M
-S

C
P

n

#Its=5
#Its=7
#Its=10
#Its=12
#Its=15

Figure 3.6: Algorithm runtimes (s) for each algorithm over the five different tolerances and
five initial nominal trajectories, generated using [#Its] number of simplified SCP iterations.

Fig. 3.6 shows the runtimes for each of the simulations. In all cases, M-SCPn has a faster

runtime than SCPn though it is still not as fast as SCP. From the runtimes it is clear that

SCPn is very sensitive to the convergence tolerance as the runtime is much longer for all

cases with sub-millimeter tolerances. For M-SCPn, the only test cases with excessively long

runtimes were the tough cases, tight tolerances or poor nominal trajectories. The runtimes

shown in the figure are too long to be implementable onboard most robots, but when these

algorithms are implemented in C++ the runtimes reduce sufficiently to allow for onboard

use.

To test these algorithms more thoroughly, more obstacles were added to the simulations.

In this simulation, three spherical obstacles are placed along the quadrotor’s desired path se-

quentially such that each sphere must be individually avoided. Results are shown in Fig. 3.7.

None of the trajectories intersect with the obstacles, but the SCP nonlinear trajectory and

the SCPn trajectories do not reach the terminal point. The additional constraints restrict

the feasible set of SCPn too much to find an adequate solution. M-SCPn is the only success-

61

ful algorithm, avoiding the obstacles while following the nonlinear dynamics and reaching

the final point.

0

2

y
(m

)

4

0

x (m)

6

6 5 4 3 2 1 0

0.5

1z
(m

) 1.5

2

2.5

SCP
SCP

NL

SCPn
SCPn

NL

M-SCPn
M-SCPn

NL

Start
Finish

Figure 3.7: Simulations using three obstacles in SCP (red), SCPn (green), and M-SCPn
(blue) in Xs compared against the nonlinear trajectory using the respective control trajectory
in triangles.

M-SCPn has improved performance in every respect over SCPn, with faster and better

convergence for a wider range of initializations. This is because the addition of the boundary

around the inequality constraints in SCPn restricts the feasible set causing the algorithm

to require more iterations to converge since the optimizations fail more frequently due to

the shrinking trust region around the control restricting the feasible set even further. Since

M-SCPn only optimizes using the boundary when needed, it is able to find more solutions

faster.

62

3.5 Chapter Summary

In this chapter, two methods were presented which are capable of extending sequential con-

vex programming for use with nonlinear dynamics. Previous implementations suffered from

deviations from the true nonlinear dynamics due to the sequential linearizations and dis-

cretizations. The proposed methods, SCPn and M-SCPn, numerically integrate the control

trajectory resulting from the optimization to obtain a corrected nominal trajectory, which

the next iteration of the optimization then linearized the dynamics around. This way, the

linearization and discretization errors do not compound in each successive iteration, keeping

the obtained trajectory close to the nonlinear dynamic trajectory. To ensure the corrected

solution stays feasible to the nonconvex optimization problem, an additional bound around

the inequality constraints is added to the SCPn optimization. This bound allows the for-

mation of theoretical guarantees. Both methods are shown to converge to a solution with

decreasing cost, and to satisfy the KKT conditions of the original nonconvex optimization

problem. These claims can also be extended to problems with hyperplane-convexified in-

equality constraints and problems with costs that are convex functions of both state and

control. In addition to theoretical guarantees, extensive simulations were performed to es-

tablish the efficacy and robustness of the two algorithms as compared to the standard,

uncorrected SCP algorithm. Simulations were performed using highly nonlinear quadrotor

dynamics with a convexified collision avoidance constraint. These results show that both

SCPn and M-SCPn solve the terminal constraint failure of SCP and yield trajectories which

adhere to the nonlinear dynamics, but suffer a performance loss when compared to SCP due

to the extra computation needed to enforce the nonlinear dynamics. M-SCPn has improved

performance over SCPn in terms of computation time, convergence quality, and robustness

to initialization quality.

63

Chapter 4

In-Orbit Self-Assembly of a
Heterogeneous Swarm

This chapter will go over the development of the Swarm Orbital Construction Algorithm

(SOCA). The result of this chapter is to present a coherent, robust, and correct algorithm for

in-orbit construction using a decentralized algorithm to guide and control a heterogeneous,

docking swarm of satellites. The algorithm presented in this dissertation is suitable for

limited type heterogeneity in the swarm and allows for docking satellites while avoiding

undesired collisions. The algorithm takes in a shape without pre-assigned target positions

and solves the optimal assignment and collision-free trajectory generation together. The

assignment is performed using a distributed auction with a variable number of targets in

case of agent loss, and strict bonding rules to address the heterogeneity. MPC-SCPn is used

to generate the collision-free trajectories, with modifications to relax collision constraints on

agents targeting neighboring positions to allow the agents to dock before reaching the target.

4.1 Heterogeneous Target Assignment

4.1.1 Heterogeneous Docking Components

When designing the construction swarm, a lot of thought was put into the geometry of the

agents and the resulting final constructions possible using those geometries. The desire for

flexibility in final configuration led to the examination of Islamic tile art and the geometry

of crystals for inspiration. Islamic art like that shown in Fig. 4.1 relies strongly on geometric

shapes and symmetry, creating complicated and elegant periodic or aperiodic patterns [8, 11].

These patterns can be helpful in the investigation of large space structures for several rea-

64

sons. Mainly, the vast array of complicated geometric patterns can be used as models for

layouts of potential space structures because they are sufficiently complex to suit a variety

of mission types and the basic geometric shapes can be constructed using standard satellite

buses. The focus on symmetry is beneficial for space structures as well because symmetric

structures are more likely to be controllable. By inspection of the rigid body Euler equations,

it is clear that the attitude dynamics of asymmetric satellites are significantly more entwined

than axisymmetric satellites, and in the proposed scheme it is highly possible that the center

of gravity of an asymmetric assembly is outside the assembly, therefore the control points

available may not be able to stabilize the assembly. When evaluating potential large space

structures, controllability is a grave concern.

Islamic tile artists created quasi- and aperiodic tiling patterns centuries before western math-

ematicians like Roger Penrose formalized them [16]. Penrose tilings, or 5-way symmetric

tilings do not have the translational symmetry of most tile patterns which makes them

aperiodic [85, 114]. This means the tilings are not simple tessellations, but are complex

and non-repeating patterns. Unfortunately these fascinating Penrose tile designs require

non-convex geometries which are less desirable for satellite structural designs. Tessellation,

which makes use of translational symmetry, is also helpful in increasing the packing efficiency

of the rocket, components that tessellate will pack more densely into the rocket, enabling

more agents to be brought to orbit in each launch. Crystals found in nature typically have

a periodic geometric layout much like the above mentioned art. For example, the mineral

beryl typically has a hexagonal prism shape in macro-scale. It also has a hexagonal void

created at the nano-scale, created by the ring of silicon-oxygen bonds [46].

The chosen hexagonal prism connectors with rectangular prism rods can be combined to

create a complex planar structure with a minimum degree of heterogeneity. Hexagonal and

rectangular agent types can be used to create the following shapes: parallelogram, equilateral

triangle, hexagon, any combination thereof, as shown in Fig. 4.2. Any one of these shapes

can tessellate to cover the whole plane, but it is also possible to combine the shapes to cover

65

Figure 4.1: The Royal Palace Gates in Fes, Morocco served as inspiration for this work, along
with the geometry in crystals found in nature

the plane in more useful ways tailored to particular missions. These shapes can be combined

using semiregular or uniform tiling in methods similar to that of Islamic tile art and the

work of M.C. Escher, where fixed geometric shapes are tessellated and decorated to create

art [41]. The patterns and shapes can all be made at any scale, by adding more rectangular

rod agents between the hexagonal connector agents.

The concept of tessellation and tiling is much more complicated in three dimensions,

with only three regular geometries capable of filling 3-space, the cube, tetrahedron and

octahedron [140]. Instead of complete 3-space tessellation, several planes of different tilings

can be connected by out of plane agents to create 3D configurations. When designing these

configurations, it would also be beneficial to examine space grid structures, an architectural

feature akin to complicated trusses where patterns of struts combine in three dimensions

to act as a single unit [31]. The ability of this system to achieve any three dimensional

configurations relies heavily on the docking orientations allowed by the chosen docking port.

In this chapter we will assume the docking system allows docking at a set of relative angles,

0 and 90◦. This makes the generation of 3D shapes possible, though limiting the out of plane

dock angles limits the possible final shapes.

66

Figure 4.2: Examples of potential shapes and tiling patterns possible with the proposed mis-
sion, using only rectangular rod and hexagonal connector agents

4.1.2 Shape Parameters

The rod agent is a rectangular prism with two docking ports located on the ends. The con-

nector agent is a regular hexagonal prism with six docking ports along the sides. In order to

execute this algorithm while incorporating attitude control, assumptions about mass prop-

erties and systems engineering configurations for the agent types must be made. The mass

and volume advantages of the swarm will be most effective if the agents are kept small, in the

nanosatellite class. The rod agent can use a standard 2U CubeSat bus, with a mass of 2.6 kg

and principal inertia parameters (44.5, 111.3, 111.3)kg−cm2. Each side of the regular hexag-

onal prism must be the same as the face of a CubeSat to allow docking. The connector agent

has a mass of 4 kg and principal inertia parameters (116.7, 116.7, 166.7)kg− cm2. The body

frame definitions and the docking port locations for the two agent types are shown in Fig. 4.3.

67

(a) Rod Agent

(b) Connector Agent

Figure 4.3: Definitions of the Rod and Connector agent types, with docking ports shown in
red

The docking ports will combine features of existing magnetic docking ports [104, 2].

The docking ports are assumed to be hermaphroditic, electromagnet-based with a rigidizing

component so the electromagnets can be turned off.

4.1.3 Assignment with Conflict Resolution for Heterogeneous

Agents

The target assignment algorithm, called Distributed Auction Algorithm for Docking (DAA-

D), assumes each agent in the swarm knows the location of all the possible targets. Since

the algorithm is decentralized and distributed, all bidding information is communicated

only to agents within the communication radius. Each agent calculates its cost to each

target using some cost function like the cost of a minimum-fuel optimal trajectory or the

distance between the two points. The agent then uses this cost to bid for target locations

with the agents within its communication network. The auction is designed to allow all

bids to propagate completely through the communication network. As the agents move to

the targets, the communication graph becomes connected which ensures that over time the

68

optimal assignment will be reached [101].

DAA-D has to be designed to ensure that each agent type is assigned to an appropriate

location. For the current agent definitions, the agent types have different number and loca-

tion of docking ports but the same radius, as seen in Fig. 4.3. This means that potential

target locations can be differentiated by the number and the angle between docks required at

each location. Algorithmically, this involves changing the cost function used in the auction

to make improper assignments prohibitively expensive. This is achieved through the use

of barrier functions. The target information known by every agent must now indicate the

location of the target and how many docks must be performed at that location.

A barrier function can be used to prevent agents from successfully bidding on targeting

locations they cannot accommodate. An example barrier function is:

B(n,NT (xf)) =

 − log(a(n,NT (xf)) n ≥ NT (xf)

Inf n < NT (xf)
(4.1)

with NT (xf) is the number of docks required at a target and n is the maximum number of

docks an agent can perform based on its type (6 for connectors, 2 for rods). The barrier

function is chosen to give B(n,NT (xf)) infinite value when the number of docks at a target

exceeds the number of docks the agent can perform.

It is also possible to use a different sigmoid function to change the performance of the

assignment by changing the function a(n,NT (xf)).

Three different a(n,NT (xf)) are shown in Fig. 4.4. Using a(n,NT (xf)) = 1 gives a simple

sorting of agents. Changing a(n,NT (xf)) to some decreasing positive function of n−NT (xf)

like 1/(n−NT (xf) + 1) makes agents inclined towards positions where they are most useful.

If no barrier function is used then the problem is the same as the standard auction from

SATO [101]. The chosen barrier function uses a(n,NT (xf)) = n−NT (xf) to dissuade agents

from using all of their docking ports.

The barrier function used above would not be sufficient to properly assign all input

69

Figure 4.4: Possible barrier functions to use in assignment

configurations. A potential improper assignment is illustrated in Fig. 4.5. In assignments

with underutilized connectors, with one or two docks required, it is necessary to augment

the barrier function to include the angle between the docks so that improper assignments

are avoided. This requires that the angle of the docks are encoded in the desired final

configuration that all agents have access to.

Figure 4.5: Bad Assignment: the desired configuration on the left has an underutilized con-
nector, with only two docks required. This allows the initial barrier function to mis-assign a
rod agent to the connector location, resulting in a disconnected structure.

70

The angle barrier function becomes more complicated in 3D configurations, and the choice

of barrier function depends on the geometries of the chosen swarm. For planar configurations,

the angle barrier function can act on the angle between docking agents, some multiple of 60◦

for connectors, or 180◦ for rods

Bang(θ,ΘT (xf)) = − log(g(θ,ΘT (xf)) + 1) (4.2)

for some sigmoid g(θ,ΘT (xf)) like

g(θ,ΘT (xf)) =

 θ −ΘT (xf) θ ≥ ΘT (xf)

−1 θ < ΘT (xf)
(4.3)

where θ is the dock angle allowed by the agent type, either 60◦ for connectors or 180◦ for

rods, and Θ(xf) is the angle required for docking at terminal position xf . In 3D configura-

tions, the connector geometry we have chosen is the same as 2D, but we opt to utilize the all

of the dock orientations allowed by the hermaphroditic docking port. The barrier function

for the planar case can also be used for this configuration since the out of plane angle does

not affect the choice between the rod and the connector. Adding this barrier function and

providing the required dock angles successfully eliminates this problem, as shown in Fig. 4.6.

Without the angle barrier function, the agents can assign to improper target locations. The

addition of the angle barrier function prevents rods from assigning to terminal positions

which require a connector because of the dock angle.

To apply SOCA to a swarm with a higher degree of heterogeneity, the logic in the above

barrier functions would need to be altered to properly sort between the characteristics of the

new agent types.

The algorithm to solve the optimal assignment problem is presented in Algorithm 4.

See [101] for an optimality proof of this auction algorithm.

71

(a) Without angle barrier function (b) With angle barrier function

Figure 4.6: 3-Agent example showing the efficacy of the angle barrier function in preventing
improper assignments

Method 4 Distributed Auction Algorithm for Docking (DAA-D)

1: Xf = terminal positions in desired shape

2: ci(s) = cost of agent i choosing target s

3: Bi(s) = docking barrier function for agent i choosing target s

4: Bi
ang(s) = angle barrier function for agent i choosing target s

5: mi = # of targets available for agent i to bid on

6: pi = 01×mi

7: piold = −11×mi

8: ji = 1

9: counti = 0

10: for all i (run in parallel) do

11: while counti < 2Dnet do

12: if |pi(ji)| > piold(ji) (i is outbid) then

13: mi = max (mi, |{s|pi(s) 6= 0}|)

72

14: if |{s|pi(s) > 0}| = mi then

15: mi = |{s|pi(s) > 0}|+ 1

16: pi(1 : mi) = − (|pi(1 : mi)|+ ε)

17: end if

18: vi = mins=1...mi
(
ci(s) + Bi(s) + Bi

ang(s) + |pi(s)|
)

19: ji = arg mins=1...mi

(
ci(s) + Bi(s) + Bi

ang(s) + |pi(s)|
)

20: wi = mins=1...mi,s 6=ji
(
ci(s) + Bi(s) + Bi

ang(s) + |pi(s)|
)

21: γi = wi − vi + ε

22: pi(ji) = |pi(ji)|+ γi

23: counti = 0

24: else if pi 6= piold (another agent is outbid) then

25: mi = max (mi, |{s|pi(s) 6= 0}|)

26: counti = 0

27: else

28: counti = counti + 1

29: end if

30: piold = pi

31: Communicate pi to all agents in N[i]

32: for s = 1 . . .mi do

33: pi(s) = minq∈arg maxq∈N[i]
(|pq(s)|) (pq(s))

34: end for

35: end while

36: Optional: mi = |{j|pi(j) 6= 0}|

37: Optional: Go back to line 6 and rerun with new mi

38: xi,f = Xf (ji)

39: end for

73

4.2 SOCA Problem Statements and Algorithms

4.2.1 Problem Statement

The updated SOCA assignment and trajectory generation problems with the changes dis-

cussed above are:

Problem 5 (Auction Cost).

min
uj

T−1∑
k=k0

‖uj[k]‖1∆t subject to (4.4)

xj[k + 1] = Aj[k]xj[k] +Bj[k]uj[k] + zj[k], k = k0, . . . , T − 1, j = 1, . . . , N (4.5)

‖uj[k]‖∞ ≤ Umax k = k0, . . . , T − 1, j = 1, . . . , N (4.6)

‖Hxj[k]‖2 ≤ Vmax H = [03×3 I3×3], k = k0, . . . , T, j = 1, . . . , N (4.7)

xj[0] = xj,0 (4.8)

xj[T] = Xf (j) (4.9)

The cost function used here and in the trajectory generation section was chosen to create

spacecraft fuel optimal paths, though the vector norm chosen depends the spacecraft thruster

configuration [100].

Problem 6 (Updated Assignment Problem).

min
xj,f , j=1...N

N∑
j=1

[C(xj,0,xj,f) + B(nj, NT (xj,f)) + Bang(θj,ΘT (xj,f))] (4.10)

subject to the following constraints:

xj,f ∈ Xf , xj,f 6= xi,f , ∀j = 1 . . . N, ∀i 6= j

74

where B(nj, NT (xj,f)) is the docking port barrier function and Bang(θj,ΘT (xj,f)) is the dock-

ing angle barrier function presented above in Eq. (4.1) and (4.2).

Problem 7 (Updated Trajectory Generation).

min
uj

T−1∑
k=k0

‖uj[k]‖1∆t (4.11)

subject to the following constraints:

(a) the dynamics, state, and control constraints

xj[k + 1] = Aj[k]xj[k] +Bj[k]uj[k] + zj[k], k = k0, . . . , T − 1, j = 1, . . . , N (4.12)

‖uj[k]− ūj[k]‖ ≤ (β)w−1T0, ∀k = k0, . . . , T − 1 (4.13)

‖Hxj[k]‖2 ≤ Vmax H = [03×3 I3×3], k = k0, . . . , T, j = 1, . . . , N (4.14)

(b) the initial and terminal conditions obtained from Problem 6

xj[0] = xj,0, xj[T] = xj,f , j = 1, . . . , N (4.15)

(c) the new collision avoidance constraint

−(r̄j[k]− r̄i[k])T rj[k] ≤−Rij(‖r̃j[k]− r̃i[k]‖2 + 2‖P‖2) + ‖P T r̃i[k]‖2

− ‖r̃j[k]TP‖2 + (r̃i[k]− r̃j[k])T r̃i[k]

(4.16)

G = [I3×3 03×3], k = kbl, . . . ,min{k0 + TH , T}, i ∈ N[j] ∩ Pj \ Dj

where N[j] = {i| ‖xj[k0] − xi[k0]‖2 ≤ Rcomm}, Rcomm is the communication radius of each

agent, Dj is the set of agents that are assigned to dock with agent j and Pj is the set of

agents that have a higher priority than j, P is the ellipsoidal error profile of the nominal

trajectory, and Rij depends on Rcol or 2Rdock if agent i is in the assembly set of j

75

(d) the docking condition

if ‖G(x̄j[k]− x̄i[k]‖2 ≤ Rbl:

‖G(xj[k]− x̄i[k])‖2 ≤ Rcone(k), (4.17)

kbl = arg mink0≤k≤k0+TH
{‖G(x̄j[k]− x̄i[k]‖2 −Rbl} (4.18)

Rcone(k) = Rdock +
‖G(xj[kbl]− x̄i[kbl])‖2 −Rdock

T − kbl
(T − k),

k = kbl, . . . ,min{k0 + TH , T}, i ∈ N[j] ∩ Pj ∩ Dj

After the problem above is solved using MPC-SCPn, the nonlinear correction step is

applied:

xw−1
n,j [k + 1] = fj[k](xw−1

n,j [k],uw−1
j [k]), k = k0, . . . , T − 1, (4.19)

xw−1
n,j [k0] = xw−1

j [k0] = x0 (4.20)

where fj[k] is the Runge-Kutta integration of the state with the given control.

4.2.2 Optimal SOCA Trajectory Generation

The next modification was to the trajectory generation algorithm. MPC-SCPn is used to

create the optimal, collision-free trajectories to the targets selected by DAA-D. Initially, a

nominal trajectory is generated without considering collision avoidance. Then each agent

solves the MPC-SCPn problem with collision avoidance on a limited time horizon, with the

knowledge of the nominal trajectories of the agents within its communication radius. The

collision avoidance constraint is not convex, but by approximating the other agents’ collision

avoidance spheres as hyperplanes orthogonal to the surface, convexity can be obtained.

Because the agents need to dock for construction, the collision avoidance constraint must

be suspended for agents that are attempting to dock. This is achieved using a boundary

layer around the collision avoidance radius. The relative sizes of the radii are illustrated in

76

Fig. 4.7a. When an agent approaches within the boundary layer, the main agent checks to

see if the approaching agent is targeted for a location neighboring the main agent’s target.

If it is, the agent follows the docking cone constraint. Otherwise, the collision avoidance

constraint holds.

(a) Relative sizes of docking, collision
avoidance and boundary layer radii

(b) Docking Cone

Figure 4.7: Description of docking radii and cone. In (a), the relative sizes of the docking,
collision avoidance and boundary layer radii. Once another agent comes within the boundary
layer radius, the main agent decides whether to dock or avoid it. If the agents are docking,
the docking cone constraint shown in (b) goes into effect. The initial distance is the distance
when the docking constraint is first applied, when the red agent comes within the boundary
layer of the blue agent or vice versa.

In order to allow the agents some flexibility in docking, the docking constraint requires

the agent to maintain a shrinking distance to the agent to be docked. This means that over

time the main agent will stay within a cone defined by the other agent. The cone radius

begins as the initial separation and ends as the agent docking radius, as seen in Fig. 4.7b.

This docking cone forces the agents to come together by the final time. This way, the agents

are allowed to dock before they reach the target if it is beneficial to their trajectories, or

they can wait until the final position to dock.

77

Avoiding Collision with Docked Agents

This implementation requires that agents avoid docking with an approaching agent that is

not in its docking set, even if that agent is already docked with an agent in its docking

set. This causes agents to avoid docking until the final time step to avoid collision with

the other agent. This is fixed by simply adjusting the collision avoidance radius of agents

in this position. Each agent, j, knows the set of agents it intends to dock with based on

the assigned terminal positions. As agent j docks with another agent i, agent i is added to

the assembly set of agent j, Ajset and vice versa. This set is communicated to other agents

in j’s dock set, which then reduce the collision avoidance radius for those agents to double

the docking radius. This does not affect the convexity of the collision avoidance constraint

because the radius changes between time steps. To illustrate this problem and the solution,

Fig. 4.8 shows the agents smoothly travelling to the equilateral triangle final configuration.

The blue circles in the figure represent the collision avoidance radius of each agent. In

this final configuration, the collision avoidance radii overlap. Without the adjusted collision

avoidance for agents in the assembly set, the yellow, magenta, and cyan agents would avoid

each other causing irregularities in the trajectories. The magenta agent can be seen avoiding

the cyan agent by the adjusted smaller collision avoidance radius as it passes near the end

of the trajectory.

Second-Order Cone Programming

The convexified collision avoidance constraint in Problem 7 introduces a lot of error in the

estimation of the other agents’ trajectories. One way to make the algorithm robust to that

error is to use second order cone programming to frame the constraint [27]. This method

uses ellipsoidal error profiles around the estimated trajectory.

Lemma 1 Let the nominal trajectories x̄ of each agent i approaching agent j be distorted

by an ellipsoidal error P , which is the same for all agents and defined as the square root

of the measurement covariance. Under these conditions the collision avoidance constraint

78

Figure 4.8: With the use of the assembly set condition, six agents can easily form a planar
equilateral triangle without the collision avoidance issue. This example is performed using
planar position and attitude double integrator dynamics for clarity.

becomes:

−(r̄j[k]− r̄i[k])T rj[k] ≤−Rij(‖r̃j[k]− r̃i[k]‖2 + 2‖P‖2) + ‖P T r̃i[k]‖2

− ‖r̃j[k]TP‖2 + (r̃i[k]− r̃j[k])T r̃i[k]

(4.21)

Proof. The collision avoidance constraint is defined as:

(x̄j[k]− x̄i[k])TCTC(xj[k]− x̄i[k]) ≥ Rij‖C(x̄j[k]− x̄i[k])‖2 (4.22)

for each agent j with neighbor agents i, where the nominal trajectories are denoted with

bars. Since all but xj[k] is constant and r[k] = Cx[k], this can be expressed as a linear

inequality, ajrj ≤ bj, with the constants given as:

aj = (r̄i[k]− r̄j[k])T (4.23)

bj = −Rij‖r̄j[k]− r̄i[k]‖2 − (r̄j[k]− r̄i[k])T r̄i[k] (4.24)

79

We then introduce error ellipsoids into this linear inequality to increase robustness, with the

ellipsoids defined using:

sup{ajxj|aj ∈ εj} ≤ inf bj (4.25)

This implies the Second Order Cone Constraint [27]:

ājxj + ‖Pjxj‖2 ≤ inf{bj} (4.26)

Then for any error direction q:

aj = {āj + Pjq|‖q‖2 ≤ 1} (4.27)

aj − āj = Pjq (4.28)

(aj − āj)
TP−Tj P−1

j (aj − āj) = qTq ≤ 1 (4.29)

Assume ‖q‖ ≤ 1, r̄j[k] = r̃j[k] + Pjqj, r̄i[k] = r̃i[k] + Piqi, where r̃ denotes the actual

nominal trajectory. Using these assumptions and plugging Eq. (4.23) into the left hand

side of Eq. (4.25), we get:

sup
‖qj,i‖2≤1

(ajrj[k]) = (r̄i[k]− r̄j[k])T rj[k] + sup
‖q1,2‖2≤1

(qTj P
T
j rj[k]− qTi P

T
i rj[k])

= (r̄i[k]− r̄j[k])T rj[k] + 2‖P T
j rj[k]‖2

(4.30)

Substituting the assumed error ellipse constraints and assuming equal error profiles for

both agents

bj = −Rij‖r̃j[k]− r̃i[k] + Pjqj − Piqi‖2

− (r̃j[k] + Pjqj − r̃i[k]− Piqi)T (r̃i[k] + Piqi)

≤ −Rij(‖r̃j[k]− r̃i[k]‖2 + 2‖P‖2) + ‖P T r̃i[k]‖2 − ‖r̃j[k]TP‖2

+ (r̃i[k]− r̃j[k])T r̃i[k]

(4.31)

80

Through manipulation, we arrive at the new collision avoidance constraint:

−(r̄j[k]− r̄i[k])T rj[k] ≤−Rij(‖r̃j[k]− r̃i[k]‖2 + 2‖P‖2) + ‖P T r̃i[k]‖2

− ‖r̃j[k]TP‖2 + (r̃i[k]− r̃j[k])T r̃i[k]

(4.32)

The ellipsoidal error P allows the error in the nominal trajectory to be fitted to the

on-board sensors more realistically. This is particularly important with the swarm config-

uration since small satellite sensors are less capable. Using the same profile for all agents

is appropriate since most of the error would come from sensing, which is the same for all

agents.

4.2.3 MPC-SCPn Nonlinear Dynamics Correction

Though MPC-SCP trajectory generation converged on a solution, the solution did not nec-

essarily follow the actual spacecraft dynamics. This was due to the linearization done in

the optimization loop. The losses due to linearization accumulated over the trajectory and

could become substantial over long duration simulations. The constraints were modified and

a nonlinear correction step was added to the MPC-SCPn portion of SOCA to reduce these

errors, as seen in Chapter 3.

For a discretized non-convex problem with nonlinear dynamics and convex or convexified

constraints like spacecraft guidance with collision avoidance, the solution can be approx-

imated using sequential convex programming. This is done by linearizing the dynamics

and generating a solution iteratively using the previous solution as a nominal trajectory

until the optimization converges on a solution, like in MPC-SCP. For SCP with nonlinear

correction, the nominal trajectory for the next SCP iteration is taken as the numerically

integrated nonlinear dynamics using the initial conditions and the current SCP-generated

81

control trajectory:

xwn,j[k + 1] = fj[k](xwn,j[k],uwj [k]), k = k0, . . . , T − 1,

and xwn,j[k0] = xwj [k0] = x0 (4.33)

where fj[k] is the nonlinear dynamics, w is the SCP iteration, and the subscript n indicates a

nominal, nonlinear trajectory. This SCP optimization process along with nonlinear dynamic

correction step (4.33) is repeated until the sequence of trajectories converges. To ensure

convergence and optimality, the problem’s inequality constraints must be modified so that

the corrected solution will be provably feasible to the nonconvex problem, generalized to

Problem 2. The convergence and optimality of SCPn is shown in Chapter 3.

The algorithm to solve Problem 7 for the optimal trajectories allowing both docking and

collision avoidance is shown below in Algorithm 5. Note that the nonlinear correction step

11 occurs after each iteration of MPC-SCP.

Method 5 Guidance and Control using Sequential Convex Programming

1: x̄j[k] := 06×1, ∀j, k

2: xj,0[k] := the solution to Problem 7 (Trajectory Generation) with Pj = ∅, ∀j, k

3: x̄j[k] := x0
j [k], ∀j, k

4: Communicate x̄j[k] to all neighboring agents (i ∈ N[j])

5: K := {1, . . . , N}

6: w := 1

7: while K 6= ∅ do

8: for all j ∈ K (run in parallel) do

9: xnomj,w [k] :=the solution to Problem 7 (Trajectory Generation), ∀k

10: end for

11: xj,w[k] := fj[k](xnomj,w [k],unomw [k]) ∀k (Nonlinear Correction)

82

12: for all j (run in parallel) do

13: x̄j[k] := xj,w[k], ∀k

14: Communicate x̄j[k] to all neighboring agents (i ∈ N[j])

15: if ‖xj,w[k]−xj,w−1[k]‖∞ < εSCP ∀k and ‖G(xj,w[k]−xi,w[k])‖2 > Rcol ∀k ≥ kbl,∀i ∈

N[j] ∩ Pj \ Dj then

16: Remove j from K

17: end if

18: end for

19: w := w + 1

20: end while

A model predictive control implementation of SCPn (Algorithm 5) can be used to im-

plement the DAA-D and SCPn methods in real time in order to simultaneously solve the

SOCA problems. MPC uses a receding horizon to update the optimal target assignments for

docking (Algorithm 4) and current trajectories obtained via communication with neighbors

and on-board sensors. SOCA is described in Algorithm 6.

Method 6 Swarm Orbital Construction Algorithm (SOCA)

1: k0 = 0

2: while k0 ≤ T do

3: for all i = 1, . . . , N (parallel) do

4: for all j = 1, . . . ,M do

5: Solve Problem 5 using SCP (Algorithm 5)

6: ci(j) = cost of optimal solution to Problem 5

7: end for

8: end for

9: Solve Problem 6 using DAA-D (Algorithm 4)

10: xj,f = solution to Problem 6, ∀j

83

11: if # of bids has changed then

12: k0 = 0

13: end if

14: Solve Problem 7 using SCP (Algorithm 5)

15: uj[k] = control solution to Problem 7, ∀j, k = k0 . . . k0 + TH − 1

16: Apply uj[k] for k = k0 . . . k0 + TH − 1

17: Update k0 and xj,k0 to current time

18: end while

4.3 Simulation of 3D Spacecraft Dynamics with

Attitude

The algorithm with the above modifications was implemented in a simulation with 54 agents

(24 connectors, 30 rods) using high-fidelity relative orbit dynamics [99] with J2 perturbations

with a virtual chief in a 500 km, 45◦ inclination orbit. The attitude dynamics used are Euler’s

rotational equation. The LVLH frame J2 perturbed orbital dynamics of each agent j are

described by the following equations [99]:

ẍj = 2ẏjωz − xj(η2
j − w2

z) + yjαz − zjωxωz − (ζj − ζ) sin(i) sin(θ)− r(η2
j − η2) (4.34)

ÿj =2ẋjωz + 2żjωx − xjαz − yj(η2
j − w2

z − ω2
x) + zjαx

− (ζj − ζ) sin(i) cos(θ) + xjωz − zjωx)
(4.35)

z̈j = 2ẏjωx − xjωxωz − yjαx − zj(η2
j − w2

x − (ζj − ζ) cos(i)) (4.36)

with parameters as defined in Ref. [99]. These equations are then linearized with respect

to a nominal orbit found for each agent j for use in MPC-SCP. The attitude dynamics use

84

Euler’s rotational equation and attitude kinematics:

Iω̇ + ω × (I · ω) = τext (4.37)

θ̇ = Z(θ)ω (4.38)

where I is the inertia matrix, ω is the angular velocity, τ(ext) is the external torque vector

acting on the body, θ is the vector of 3-2-1 Euler angles, and Z(θ) is the corresponding kine-

matic transformation matrix for these Euler angles [18, 130]. These equations are linearized

with respect to a nominal attitude trajectory.

4.3.1 Simulation Results

The first simulation uses 24 connectors and 30 rods targeted to a planar flower shape, though

the trajectories to achieve the arrangement are three dimensional. In the figures present-

ing the results, rod agents are represented by rectangular prisms and connector agents are

represented by hexagonal prisms, rotated to the trajectory orientation. Initial positions are

enlarged to show orientation. The agents begin in J2 invariant relative orbits, which greatly

reduce the energy required to maintain the orbit and would likely be used for agents awaiting

docking. The agents have an initial separation of up to 1.5 kilometer and final separation of

twenty centimeters.

85

(a) 2D View of Trajectories (b) 3D View of Trajectories

Figure 4.9: 54 agents (30 rods, 24 connectors) combine from up to 1.5 km apart to make a
planar hexagon with a 20 cm separation. Note the out of plane motion is all within 0.2 meters.

Figure 4.10: Zoomed in view of the final time step of all 54 agents in the final flower shape

Fig. 4.9a shows the 2D view of the overall trajectories of the agents over the duration of

the simulation. The 3D trajectories are shown in Fig. 4.9b. Though the agents are allowed to

move in three dimensions, the out of plane motion is minimal (<20 cm) due to the expense

of out of plane motion and the planar nature of the target configuration.

The scale difference is too large in these figures to show the agents achieve the target con-

86

figuration since the final separation is so small. Fig. 4.10 shows the position and orientation

of all agents at the final time step. The agents reach the desired terminal configuration.

The second simulation uses 10 connectors and 10 rods targeted to a three dimensional

folded hexagon shape. Fig. 4.11a shows the 2D view of the overall trajectories of the agents

over the duration of the simulation. The 3D trajectories are shown in Fig. 4.11b. The out

of plane motion in this simulation is larger than the previous simulation, about one meter.

This is still very small, just above the 65 centimeters required of the target shape.

Fig. 4.12 shows the position and orientation of all agents at the final time step. Again, all

agents reach the desired terminal configuration.

(a) 2D View of Trajectories (b) 3D View of Trajectories

Figure 4.11: 20 agents (10 rods, 10 connectors) combine from up to 1.5 km apart to make a
folded hexagon with a 20 cm separation. Note the out of plane motion is still small, but up
to one meter

87

Figure 4.12: Zoomed in view of the final time step of all 20 agents in the 3D folded hexagon
shape

4.4 3DOF Experiment on Omni-Directional Wheeled

Robots and M-STAR Spacecraft Simulators

Experimental validation of the algorithm was performed first on wheeled robots in a mo-

tion capture environment then on spacecraft simulators in the flat floor facility at Caltech.

The SOCA algorithm can generate optimal collision-free trajectories from any set of initial

conditions within the workspace to create the desired shape at the specified final time, but

in these experiments the algorithm is run offline so the robots are initialized in the same

configuration each run.

4.4.1 Omni-Wheeled Robot Experimental Validation

Initial experiments were performed using six NEXUS 3-Wheeled Compact Omni-Directional

Arduino Compatible Mobile Robots (shown in Fig. 4.13). The robots are controlled using

88

Arduinos with XBee communication devices. The SOCA is run on a separate computer,

which uses ROS to access the motion capture system, run the algorithm, and send commands

to the robots. This computer then communicates commands to the robots through the Xbee

serial wireless modules attached to each of the robots. SOCA generates trajectories which

require motion capture feedback to follow, so each robot is given its current position and

orientation, along with the trajectory waypoint. Onboard the robot, a PD controller is

used to generate the desired wheel RPMs, then map those values to the actual robot wheel

commands, a set of three PWM values. A six-robot system was tested in a 2-meter by

2-meter motion capture space, where each robot read in its trajectory, given by a list of

waypoints provided by an offline system SOCA algorithm.

Figure 4.13: Omni-Directional 3-wheeled robot used to experimentally validate SOCA

Multiple preliminary tests were performed to characterize the relationship between the

input PWM signal and the motor RPM. Inconsistencies were observed in the RPM at a

constant PWM even on smooth surfaces. This problem was ameliorated by closing the loop

onboard the robots using the motor encoders, which gives better control over the speed and

path of the robot. The encoders are read at each control loop (about 0.1s) and the PWM is

corrected based on the encoder readings. For more details see [57]. The experimental results

show SOCA performing assignment and trajectory generation for 6 agents in planar final

configuration with realistic 3DOF trajectories.

89

Figure 4.14: Time lapse of 6 omni-directional robots for SOCA experiment

Figure 4.15: Actual vs desired robot trajectories

The off-board control computer ran the SOCA algorithm given intended starting points

90

of each of the six robots and determined the optimal trajectory with collision avoidance.

The starting positions of the robots and the time lapse of the full test is shown in Fig 4.14.

The algorithm worked very well however the onboard controller on the robots could not

track the trajectories sufficiently well to enable docking. The tracking error of the robots is

approximately 10 cm, which is sufficient to eliminate the collision avoidance effects of SOCA.

This causes the two rectangular agents to get stuck at t=5-10sec and the bottom rectangular

agent to miss its final orientation. To within the tracking error, all of the robots follow the

trajectories well. Further investigation is needed to conclusively determine the source of the

error but the culprit is most likely the low-level motor controller which has very inconsistent

performance due to the noisy wheel encoders. The intended trajectory is plotted in Fig. 4.15

with the actual trajectories achieved by the robots. For the most part, each of the robots

achieves the correct direction of travel, but the tracking error prevents the trajectories from

lining up perfectly. The wiggle seen in blue at the bottom of the figure is likely cause by

this error in wheel actuation. The feedback keeps pulling the robot back towards the desired

trajectory but the wheel errors keep causing deviations. The actuation errors in this ground

robot system were a motivating factor in the development of the spacecraft simulator facility.

4.4.2 In-Orbit Construction Experiment on the M-STARs

For this experiment, the four M-STARS described in Chapter 2 made a T shape in the

center of a 4 meter square. Three of the four agents were identical, with two docking ports

placed on opposite sides of the square upper stage. The fourth M-STAR had four ports,

one on each side of the upper stage. These specifications were input into SOCA to generate

optimal, collision-free construction trajectories. Due to time limitations, the trajectories

were computed offline then fed to the M-STARs. These trajectories were then followed using

the onboard control scheme described in [55].

91

Figure 4.16: 4 M-STARs Following SOCA Optimal Trajectories in Spacecraft Simulator Facil-
ity

Due to the aggressive nature of the optimal trajectories, the simulators come very close.

Errors in trajectory tracking caused several initial attempts to fail. After extensive gain

tuning and cleaning of the flat air bearings and the floor, the construction was successful

and repeatable. A sample experimental trajectory is seen in Fig. 4.17, and the discrepancy

between the command and actual trajectory is shown in 4.18. Stills from the experiment are

shown in Fig. 4.16. The biggest issue is when spacecraft 4 encounters some friction on the

floor at 55 s. Links to videos for the three experiment types can be found in Appendix B.

92

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
X (m)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Y
 (

m
)

SC1
SC2
SC3
SC4

Figure 4.17: Full Motion Captured Trajectories of 4 M-STARs Following SOCA Optimal
Trajectories

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

4

X
 (

m
)

SC1
SC2
SC3
SC4

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

Y
 (

m
)

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

 (
de

g)

Figure 4.18: Experimental performance of M-STARS as compared to command

93

4.5 Control Allocation for Self-Assembling Structures

This section describes an online model aggregation and control allocation method which com-

bines mass properties and removes actuators blocked by docking. This method will demon-

strate the ability to prevent uncontrollable docks when used in conjunction with SOCA.

Combining the agent types above into any feasible structure requires a modularized

approach to updating the model. This can be done by requiring that only one dock be

performed at any given time. To effectively combine two models into one, we must first

define a set of information that each model must contain:

• System mass

• Center of gravity

• Moment of inertia tensor

• Control influence matrix

We assume that each component satellite has its center of gravity at the geometric center

of the object. Combining the masses and determining the new center of gravity is straight-

forward:

may = m1 +m2 (4.39)

1CGay =
m2

may

[
1r1D + 1r2D

]
(4.40)

From here the moment of inertia tensor can be calculated using the parallel axis theorem:

1Jay,CG = 1J1 +m1

(
(1r1,CG)2I3 − 1r1,CG

1rT1,CG
)

+ (4.41)

1R22J2(1R2)T +m2

(
(1r2,CG)2I3 − 1r2,CG

1rT2,CG
)

(4.42)

Before calculating the changes to the control influence matrix, the control influence matrix

94

of each agent type must be calculated.

B2 =

 BForce

BTorque

 =

 2 [dact,1, dact,2, . . .]

2ract ×BForce

 (4.43)

This can then be transformed for each of the two docking components as follows:

B2ay =

 1R22[dact,1, dact,2, . . .]

(1R22ract + 1r2,CG − 1CG)×BForce

 (4.44)

Bay = [B1ay, B2ay] (4.45)

When a new agent is added, the position of the actuators in the A frame must be

recalculated before solving for the B matrix. The new control influence matrix still needs

some tweaking to remove actuators that have been blocked by the dock, or whose plumes

would interact with other parts of the spacecraft. Actuators can be removed by creating an

identity matrix of the size of the number of actuators, then zeroing out the row corresponding

to the blocked actuator. This matrix then post-multiplies B to create the effective B matrix,

Beff . To determine which actuators are blocked, the configuration of the agents is leveraged.

For both agent types, the blocked thrusters can easily be determined if the docking port in

use is found. The thrusters associated with each docking port is predetermined and stored,

then these agents are considered blocked if the docking port is in use. A useful extension here

is finding the actuators whose plumes would interact with the assembled structure. Finding

these actuators involves approximating the plumes as cones and checking for collision between

these cones and the assembly. This is a simplistic model of thruster plumes, typically the

three-dimensional characteristics of the plumes are taken into consideration and this may

be addressed in future work. Collision checking methods from the field of robotics can be

leveraged to efficiently determine if the plume cone interacts with the rest of the structure

[32, 15]. After the unusable thrusters are pruned from the control allocation matrix, the

95

control authority of this potential assembly must be checked. The control authority of the

assembly is determined by calculating the singular value decomposition of the B matrix.

This is then multiplied by the maximum achievable thrust to determine the maximum fdes

that this assembly can achieve. For CubeSat scale actuators, a reasonable value for the

maximum thrust of each actuator is 50 mN [4]. If this fdes is sufficient to complete the

trajectory, the docking is allowed to occur, if not the agents must not dock and must avoid

collision until one or both assemblies have docked with other agents. While the agents are

docked, the control allocation is performed using the following linear program:

min
u

∑
i

uis.t. (4.46) u

−u

 ≥
 0

−umax

 (4.47)

Bu = fdes (4.48)

where the B and u change for different assemblies as the number of control points change.

This program minimizes the control effort exerted by all actuators subject to constraints on

the maximum and minimum values.

4.5.1 Simulation Results

Simulations were performed in Matlab using CVX, a Matlab package for specifying convex

programs, along with the Gurobi solver [63, 64, 68]. The simulation in Matlab uses SOCA

to generate collision-free assembly trajectories in a J2 perturbed spacecraft dynamical envi-

ronment as described earlier in the chapter, then uses this method to allocate the control

for the assembly as the various agents dock along their trajectories. A separate simulation

was created using the maximum efforts required over a SOCA trajectory to determine which

potential docking configurations were infeasible by examining the control allocation matrix

96

at these configurations and the maximum control effort available to the thrusters.

A simple simulation was made using the maximum desired force and torque generated

through an execution of the SOCA. This fdes was used to test three docking scenarios, agent

to agent docking, agent to assembly docking, and assembly to assembly docking. The error

in the allocation was determined as follows:

uerr = ‖Bu− fdes‖1 (4.49)

Agent to Agent Docking

This test involved a rod agent and a connector agent docking to form an assembly. The

resulting shape can be seen in Fig. 4.19a. A common-sense test was performed to see that

each component of fdes was achieved with the correct combination of thrusters. This assembly

was then used to allocate the maximum fdes over a SOCA trajectory as given above. The

error in actuation is 2.89e-10 N with a total force of 0.138N using 16 thrusters of the available

52. One problem that is noted in using linear programs to allocate control is the inability to

specify an impulse bit, the smallest thrust possible for the controller to produce. As a result,

several agents are commanded to give very small thrusts, on the order of 1e-10. This is not

achievable with the chosen thruster. To reduce these erroneous micro-fires, we will add the

number of thrusters firing to the cost to be minimized. Nearly all of the control error is a

result of these micro-fires.

Agent to Assembly Docking

The agent to assembly docking involves a connector agent docking with an assembly of a rod

and a connector as seen in Fig. 4.19b. This and the more complex docks must be treated

carefully, particularly in the calculation of r2,CG, which becomes more complicated the more

agents are involve. We circumvent this problem by calculating the value for each docking

port upon assembly so that new assemblies can simply sum the vectors. For this assembly,

97

(a)
(b) (c)

Figure 4.19: Description of the three basic control allocation tests run before incorporating
the algorithm into SOCA

there are 96 thrusters with 16 blocked, giving 80 usable thrusters. The control allocation

algorithm uses 22 thrusters a total force of 0.128N with a maximum error of 4.82e-10N.

Assembly to Assembly Docking

The assembly to assembly docking involves two assemblies of a rod and a connector as seen

in Fig. 4.19c. For this assembly there are 120 thrusters with 24 blocked, leaving 96 thrusters.

The maximum SOCA fdes is achieved using 40 thrusters at a total force of 0.129 N with a

maximum error of 3.16e-10 N.

4.5.2 Incorporation Into SOCA

The model update and control allocation were incorporated into the SOCA to test the

calculations over the course of a complete, 20 agent mission. Once agents enter within

a predefined distance from each other, they determine if they will dock based on their

assignment. If they are intended to dock, now they check the control authority of the

assembly they would create. If it is sufficient, they dock. Otherwise, they avoid collision

until a later time.

98

4.6 Chapter Summary

A distributed algorithm has been presented to allow for construction using a heterogeneous

swarm of component satellites with limited communication radii. The agent types chosen can

create a diverse set of final configurations which can cover the plane and build out-of-plane.

This extends prior work in the field because it is both distributed and heterogeneous, can

function in a complex dynamic environment, and accounts for relative attitude dynamics.

The SOCA algorithm can correctly assign the heterogeneous agents for all target sets and

avoid collision only where necessary. The algorithm was also made robust to uncertainty

in the nominal trajectory. The handling of nonlinear dynamics was improved to make the

trajectories commanded by SOCA realistic and achievable. An advanced control allocation

scheme was presented to handle the changing shape parameters and actuator availability

during self-assembly. The simulation results show SOCA performing assignment and tra-

jectory generation for 20-54 agents in two and three dimensional final configurations with

realistic trajectories. The algorithm is experimentally validated on 6 omni-wheeled robots

and four spacecraft simulators. The wheeled robots were not sufficient to make claims about

the success of the algorithm, but the spacecraft simulators were used to successfully exper-

imentally validate the optimal construction algorithm. The proposed scheme is useful for

missions ranging from sparse aperture interferometric telescope construction to space colony

or station construction.

This algorithm can also be used for a higher degree of heterogeneity without substantially

altering the algorithm, as discussed in the auction algorithm section. While adding more

agents would expand the possible final shapes even further, it would also increase system

manufacturing cost and does not affect the design or execution of the algorithm substantially.

99

Chapter 5

Autonomous Spacecraft Docking

This chapter investigates three types of docking for use in in-orbit self-assembly as shown in

Fig. 5.1. The first half of the chapter focuses on comparing tether-based docking with tradi-

tional thruster-based methods in simulation. The second half is a more thorough treatment

of an electromagnetic docking system as compared to thruster-based methods in simulation

and experimentation on the M-STARs. The three docking schemes presented are capable of

very low terminal velocity docking, which is ideal for in-orbit assembly applications. Ultra-

soft docking is defined in this chapter as a dock where the relative velocity is less than 1

mm/s, soft docking has a relative velocity of less than 1 cm/s, and hard docking is above 1

cm/s. Both tether and electromagnet -based methods are capable of achieving docks with-

out using propellant. The tether method required advanced control schemes to perform this

dock without propellant and with an ultra-soft approach velocity.

Image / Picture Here with Caption

Figure 5.1: Concept Mission Application for Tethered Formation Flying-based AR&D

100

5.1 Tether-Based Autonomous Docking

5.1.1 Sample Mission Overview

For this mission, the chaser vehicle performs all the maneuvering for docking with a target

vehicle located at the origin of the LVLH frame. Both the chaser and the target are 30 cm

cubes with a mass of 10 kg, and are assumed to be launched in the same vehicle to a 500

km orbit, so the chaser vehicle begins within a 1 km sphere around the target due to delay

in separation and drift. For the tether simulations, a child spacecraft/mass is attached by

the tether to the chaser. The child is a 3 cm cube weighing 0.5 kg. The tether length is

restricted to 10 m though longer tethers can be used. The tether length was chosen because

of the multi-agent nature of the desired mission. With multiple satellites in close range or

even docking simultaneously, long tethers are a liability. This system allows for easy satellite

replacement or addition to the tether-connected system. If a satellite is being replaced, it

releases the tethers holding it to the others, then moves away. The new agent then moves

into position and the other spacecraft release tethers to dock with it.

Nanosatellite-scale thruster options are extremely limited, but the child spacecraft could

make use of a modified version of the VACCO 0.14U thruster with 5.4 mN thrust and 70

second Isp [4]. The same thruster system is available at multiple scales so these parameters

are also used for the parent.

The mission begins with a 1 km separation between the two satellites. At this point the

initial proximity maneuver begins and places the chaser into the desired berthing maneuver

position. The berthing maneuver is then performed using either thrusters or the tether,

with some docking mechanism making the final rigid connection. The satellites used will be

referred to as target(T), parent(P) and child(C) in fig/tether.

101

5.1.2 Initial Proximity Maneuver

Traditional docking strategies focus on approaching the target using the radial or velocity

directions, R-bar and V-bar respectively, or using the glideslope algorithm which merges the

two while maintaining a line of sight to the target. The glideslope algorithm is typically

preferred because it achieves good terminal relative velocities while staying within line of

sight of the docking port, however it does perform several unoptimized burns so it can be

quite expensive. Optimized versions of the glideslope algorithm exist, and achieve a great

reduction in fuel cost, but these methods can have worse performance on other docking

constraints like a higher terminal velocity [12]. In this chapter we will use the glideslope

algorithm as proposed by Hablani et al. to maintain vehicle safety through a low terminal

velocity [69]. As a comparison, we will briefly show optimal trajectory results generated with

Model Predictive Control Using Sequential Convex Programming (MPC-SCP) [100, 54].

Glideslope Trajectory

The glideslope algorithm is based on the Hill-Clohessy-Wiltshire (HCW) equations shown in

Eq. 5.1, which are a set of dynamic equations describing the relative motion of satellites in a

circular orbit near to each other in the Local Vertical/Local Horizontal (LVLH) frame. The

HCW equations depend only on initial state, orbit angular frequency ω, and time and are

only accurate within about 30 km of the origin of the frame due to the linearization [51]. The

definition for the LVLH frame can be found in Fig. 5.2. Eq. 5.4 shows a simplified notation

for Eq. 5.1.

Z

Y

X

Parent
Frame

Child
Frame

LVHV
Frame

X
X

Y

Y

Z
Z

T

Figure 5.2: The frame conventions for the child and parent spacecraft

102

 x(t)

y(t)

 z(t)ẋ(t)ẏ(t)ż(t) = (5.1)



1 0 6(ωt− sin(ωt)) 4
ω

sin(ωt)− 3t 0 2
ω

(1− cos(ωt))

0 cos(ωt) 0 0 sin(ωt)
ω

0

0 0 4− 3 cos(ωt) − 2
ω

(1− cos(ωt)) 0 sin(ωt)
ω

0 0 6ω(1− cos(ωt)) −3 + 4 cos(ωt) 0 2 sin(ωt)

0 −ω sin(ωt) 0 0 cos(ωt) 0

0 0 3ω sin(ωt) −2 sin(ωt) 0 cos(ωt)



 x0

y0

 z0×

(5.2)

ẋ0ẏ0ż0 (5.3)

 r(t)

v(t)

 =

 Φrr(t) Φrv(t)

Φvr(t) Φvv(t)


 r0

v0

 (5.4)

The goal of the glideslope algorithm is to approximate a straight-line path, ρ, to the

target using a chosen number of impulsive burns while satisfying line-of-sight constraints

and minimizing burns near the target to reduce plume impingement. This version of the

algorithm can find a trajectory even for initial and terminal positions in different planes.

Thrusts performed are assumed to be impulsive and the range rate is assumed to be linearly

related to the range, though this is nonlinear for close maneuvers.

First we find the vector u0 as a function of the position at t = 0 and t = T , the terminal

time.

u0 =
1

ρ0


x0

y0

z0

−

xT

yT

zT

 (5.5)

The XYZ position along the desired vector can be found by multiplying u0 by the range over

103

time. To find the range over time, we assume the range rate ρ̇ is linearly related to the range

with slope m, making the range rate equation:

ρ̇ = mρ+ ρ̇T (5.6)

where ρ̇T is the desired arrival speed and m can be found using this and the initial speed.

m =
ρ̇0 − ρ̇T
ρ0

(5.7)

Solving these equations yields an equation for range over time:

ρ(t) = ρ0e
mt +

(
ρ̇T
m

)
(emt − 1) (5.8)

with total transfer time, T :

T =
1

m
ln

(
ρ̇T
ρ̇0

)
(5.9)

To ensure safety, the arrival speed is chosen to be much less than the initial speed. The

actual glideslope trajectory is found by performing a user-selected N burns with initial and

final points along ρ. The burns are separated by ∆t = T
N

seconds with each burn time

denoted as tb. The range of each burn ρb = ρ(tb) is used to calculate the XYZ position of

each burn, rb:

rb = rT + ρbu0 (5.10)

The ∆V expended along this trajectory can be found by leveraging the HCW equations to

find the change in velocity needed to get from one rb to the next. The + superscript denotes

velocity after a burn and the − superscript denotes velocity before a burn.

v+
b = Φ−1

rv (∆t)(rb+1 − Φrr(∆t)rb) (5.11)

v−b+1 = Φvr(∆t)rb + Φvv(∆t)v
+
b (5.12)

104

The total ∆V is then found by:

∆V =
N∑
b=1

Φ−1
rv (∆t)(rb+1 − Φrr(∆t)rb)− Φvr(∆t)rb−1 + Φvv(∆t)v

+
b−1 (5.13)

where v+
0 is simply v0 and the position and velocity at any point along this trajectory are

found by concatenating the position and velocities found using the HCW equations for each

thruster firing:

 rb(t− tb)

vb(t− tb)

 =

 Φrr(t− tb) Φrv(t− tb)

Φvr(t− tb) Φvv(t− tb)


 rb−1

v+
b−1

 (5.14)

The free variables in this algorithm are ρ̇0, ρ̇T , N , and xf assuming the initial position and

velocity are randomly generated within the aforementioned bounds. More thruster firings

leads to a lower ∆V , but increases the probability of a thruster-related failure, like a stuck

open valve or over/under actuation. For this simulation, we use an initial relative speed of

30 m/s and a desired terminal relative speed of 0.1 m/s, with 3 thruster firings. The final

position is 10 m in the -X direction from the target spacecraft. The result of the glideslope

algorithm is shown in Fig. 5.3. The maneuver had a total ∆V of 38.9 m/s and a total elapsed

time of 188.8 seconds. The final velocity overshot the desired final speed at [0.30, 0,−0.02]

m/s. This can either be cleaned up with another burn at the final position or rolled in to the

next step of the process. Here we elect to use this residual velocity as the initial velocity for

the next phase. Using the Tsiolkovsky rocket equation [43], we can determine the propellant

mass required for this maneuver:

Mp = M0(e
∆V
Ispg0 − 1) (5.15)

For the thruster parameters and spacecraft parameters chosen above, the required fuel mass

is 612 g. This seems small, but this is already more than half of the propellant available

105

to the largest thruster of the chosen type and it does not account for drift corrections,

station-keeping, momentum dumps, etc.

-1000
-800

-600
-400

-200
0

X (m)
-1

-0.5
0

0.5
1

Y (m)

0

5

10

15

Z
 (

m
)

0 20 40 60 80 100 120 140 160 180 200
Time (sec)

10-2

100

102

V
el

oc
ity

 (
m

/s
)

Figure 5.3: The glideslope approach trajectory for the parent spacecraft approaching the
berthing position

Optimal Trajectory

Model Predictive Control using Sequential Convex Programming performs a series of opti-

mizations based on linearized dynamics and convexified constraints. The series of optimiza-

tions is proven to converge on the optimal solution for a properly stated problem. More

details on this trajectory generation method can be found in the cited references [100, 101].

One drawback of MPC-SCP is the loss of precision due to the linearization. This was solved

by adding the nonlinear correction step between optimization iterations to match the non-

linear dynamics [54]. The pseudocode for a single-agent version of the algorithm is presented

below.

106

Method 7 Model Predictive Control using Sequential Convex Programming

1: x̄[k] := 06×1, ∀k

2: x0[k] := reference trajectory ∀k

3: x̄[k] := x0[k], ∀k

4: w := 1

5: while Not Converged do

6: xnomw [k] :=the solution to convex problem, ∀k

7: xw[k] := fk(x
nom
w [k],unomw [k]) ∀k (Nonlinear Correction)

8: x̄[k] := xw[k], ∀k

9: if ‖xw[k]− xw−1[k]‖∞ < εSCP ∀k then

10: Converged, break

11: end if

12: w := w + 1

13: end while

To generate this berthing trajectory, the convex problem can be defined as minimizing

the fuel consumption subject to the J2 perturbed relative dynamics as stated in Eq. 5.1,

along with constraints on the initial and final position and velocity, maximum control effort,

and maximum velocity. The J2 perturbations cause nonlinear dynamics for both the target

and the parent. The resulting trajectory is shown in Fig. 5.4 with the velocities and controls

in Fig. 5.5. The total impulse over the trajectory is 67.6 mN-s, which corresponds to a fuel

consumption of 98.44 µg using the thruster parameters defined above.

107

0
300

100

200

200200

Z
 (

m
) 300

0

Y (m)

-200

400

X (m)

-400

500

100
-600

-800
0 -1000

Figure 5.4: Optimal Approach Trajectory for the Parent Spacecraft

0 20 40 60 80 100 120 140 160 180 200
Time (sec)

-10

-5

0

5

10

15

20

25

V
el

oc
ity

 (
m

/s
)

X
Y
Z

0 20 40 60 80 100 120 140 160 180 200
Time (sec)

-500

0

500

C
on

tr
ol

 (
 N

)

Figure 5.5: Velocity and Thrust over Time for the Optimal Approach Maneuver

5.1.3 Berthing Maneuver

The target and the parent are now separated by 10 m in the -X direction, with the parent

behind the target. The final approach phase is modeled as propulsive, child-based tethered,

and spin-based tethered docking.

108

Thruster-based Docking

The thruster-based docking maneuver is done using the same glideslope algorithm as the

initial proximity maneuver. For this version, the initial relative speed was 0.3 m/s and the

desired final speed was 0.1 mm/s, using 3 burns. The glideslope trajectory can be seen in

Fig. 5.6

-10
-8

-6
-4

-2
0

X (m)
-1

-0.5
0

0.5
1

Y (m)

0

0.2

0.4

0.6

Z
 (

m
)

0 100 200 300 400 500 600 700
Time (sec)

10-4

10-2

100

V
el

oc
ity

 (
m

/s
)

Figure 5.6: The glideslope approach trajectory for the child spacecraft approaching the target
spacecraft’s position

The maneuver had a total ∆V of 0.30 m/s and a total elapsed time of 266.4 seconds. The

final velocity was [0.5, 0,−0.05] mm/s which overshot the desired final speed again. This is

why the desired final speed was set so low, this overshoot cannot be cleaned up with a burn

at the final time. The last burn performed occurs only 4 cm away from the target spacecraft

which is highly undesirable but the speed at this location is still 7 mm/s. Depending on the

capabilities of the capture mechanism, this speed may be acceptable in which case the final

burn would be canceled. The fuel mass for this maneuver is 4.4 g.

The optimal maneuver is found using MPC-SCP for the same input parameters as the

glideslope algorithm. The resulting trajectory can be seen in Fig. 5.7. The velocity profile and

the control effort can be found in Fig. 5.8. The total control impulse over the whole maneuver

109

is 0.89 mN-s. For this small a thrust requirement, an electric propulsion device would be

more suitable, but several are available at this form-factor. There are even some flight-proven

CubeSat electric propulsion technologies, like the Busek pulsed plasma thrusters [5]. Using

the thruster parameters already specified though, this leads to a propellant consumption

of approximately 2.7 µg. This type of trajectory involves burning continuously and since

the relative velocities are so low (on the order of mm/s within 20 cm of the target) it may

possible to neglect the final burns.

0
3

0.2

2 2

0.4

Z
 (

m
)

0

0.6

Y (m)

1 -2

X (m)

-4

0.8

0 -6
-8

-1 -10

Figure 5.7: Optimal Trajectory for the Parent Spacecraft

0 50 100 150 200 250 300
Time (sec)

-0.02

0

0.02

0.04

0.06

0.08

0.1

V
el

oc
ity

 (
m

/s
)

X
Y
Z

0 50 100 150 200 250 300
Time (sec)

-1

0

1

C
on

tr
ol

 (
 N

)

Figure 5.8: Velocity and Thrust over Time for the Optimal Maneuver

110

Tethered Docking

When AR&D begins, the parent spacecraft expels the child spacecraft connected to the

parent via the tether. The child spacecraft has a varying amount of position and attitude

control, subject to study. Two capture strategies are considered for this scheme, one where

the child spacecraft has full maneuverability and one where the child spacecraft is unactuated.

These strategies are illustrated in Fig. 5.9. The complexity of the child and target satellites

are highly dependent on which capture strategy is chosen. A thruster-based approach adds

most of the complexity to the child spacecraft, requiring thrusters and attitude control, while

a spin-up approach depends upon the development of a robust, reusable catching mechanism

for the target. The software model of these strategies was generated using the Euler-Lagrange

formulation of the system. To simplify the modeling, the tether is assumed to be in tension

for the duration of the mission.

Z

Y

X X

Y
Z X

Y

Z

Z

Y

X

X

Y
Z

X
Y

Z

Z

Y

X X
Y

Z

X

Y
Z

X
Y

Z
X

Y
Z Z

Y

X

Z

Y

X X

Y
Z

X
Y

Z

Z

Y

X X
Y

Z

X
Y

Z

X
Y

Z
X

Y
Z Z

Y

X

Figure 5.9: Left: Free-flying child tether-based capture and docking scenario, Right: Spin-up
released tether-based capture and docking scenario

The model has three translational degrees of freedom on the parent and a rotational

degree of freedom about the body Z axis. The parent and child are connected by a variable-

111

length, massless tether with a rotational degree of freedom at the root. The dynamics are

presented in Appendix A. This planar model is sufficient to capture most child motion since

during spin-up, the out-of-plane angle is decoupled from the in-plane motion. This model

results in complex pendulum behavior which is excited by the contraction of the tether

during reel-in maneuvers. This model can be leveraged to achieve improved intersatellite

position knowledge through the use of a force torque sensor at the root of the tether. This

sensor would allow the parent to know the precise distance and angle to the target once

docked [34]. When the child spacecraft collides and attaches with the target spacecraft the

change in linear momentum is significantly smaller than that of traditional docking, because

the child spacecraft is much lower mass than the target spacecraft. This scheme also reduces

the risk of mission failure due to docking because the parent spacecraft could have several

sets of tethers and masses in case of failure.

Tethered Child Spacecraft The actuated scheme shown in Fig. 5.9 uses thrusters on

the child spacecraft to move it to the desired location on the target spacecraft, with the

tether unreeling speed equaling the child spacecraft speed to keep the tether taut. The child

spacecraft can follow the same glideslope trajectory as the thruster-based docking parent

spacecraft, though the reduced mass affects the required propellant mass. The required

propellant mass for the child spacecraft is 0.22 g. Following the MPC-SCP optimal trajectory,

the required propellant mass is 0.135 µg. After the child has docked with the target, the

parent spacecraft begins reeling in the tether.

Spin-Released Tether In the unactuated scheme (Fig 5.9), the parent spacecraft spins up

which deploys the tether using centrifugal force, then the child spacecraft is captured using

a retractable arm on the target. This strategy simplifies the child and parent spacecrafts

because the child spacecraft does not need propulsion, but it complicates the target spacecraft

because it requires a retractable arm to capture the child spacecraft. Once the spacecraft

112

are connected with the tether, the tether attributes can be leveraged to aide in relative

positioning.

CubeSat attitude determination and control is actually fairly advanced. The Blue Canyon

Technologies XACT system claims attitude control within 0.003◦ [1, 132]. XACT can also

sustain a slew rate of 10◦/s. This slew rate was used to saturate the controller during spin-

up. The controller used here is a simple proportional controller acting on the torque about

the parent body Z axis.

τZ = KpL(L− LF)−Kpφ ∗ (φ− φF) (5.16)

A PD controller is used to stabilize the motion of the parent. The results of this simulation

is shown in Fig. 5.10, with the control inputs shown in Fig. 5.11

Figure 5.10: Parent and Child Spacecraft Trajectories for Spin-Up Based Dock

113

0 20 40 60 80 100 120 140
Time(sec)

-20

0

20

40

60

P
os

iti
on

 C
on

tr
ol

 (
 N

)

ux
uy
uz

0 20 40 60 80 100 120 140
Time(sec)

-0.2

0

0.2

0.4

A
tti

tu
de

 C
on

tr
ol

P
 (

m
N

-m
)

Figure 5.11: Control Inputs for the Spin-Up Based Dock

The spin-up maneuver takes 126.3 seconds, during which time the parent must actively

thrust to maintain its position against the spacecraft dynamics and tether reaction forces.

The child can achieve docking with the target very precisely (within 1 mm), as seen in the

figure. The angular velocity at the time of docking is around 0.09 rad/s which corresponds

to a linear speed at the child spacecraft of about 0.9 m/s. This is unacceptably high. Longer

docking times and more precise control can bring this speed down, but the impact on the

catching mechanism will likely still cause a significant torquing perturbation on the target.

Tether Reeling

Once the target and parent are connected by a tether, the tether motor in the parent space-

craft can reel in the target spacecraft without the use of propellant. This causes complex

pendulum modes to form in the dumbbell-type system, but these modes can be controlled

using only the reaction wheel assembly in both agents. Controlling these modes does require

the cooperation of the target spacecraft [35, 39]. This reeling maneuver uses the same model

as the spin-up maneuver, except here the controller applies a stabilizing torque and a reeling

force:

τZ = Kpφ(φ− φF) (5.17)

114

uL = KpL(LF − L) (5.18)

The reeling maneuver shown in Fig. 5.12 took 158 seconds with negligible final velocity and a

maximum reel velocity of approximately 4.3 cm/s. The control applied is shown in Fig. 5.13.

0 20 40 60 80 100 120 140 160
Time (sec)

-15

-10

-5

0

5
X

 (
m

)

Parent Position
Child Position

0 20 40 60 80 100 120 140 160
Time (sec)

-1

-0.5

0

0.5

1

Y
 (

m
)

10-7

Parent Position
Child Position

Figure 5.12: Parent and Child Spacecraft X and Y Positions for Reeling Maneuver

0 20 40 60 80 100 120 140 160
Time(sec)

0

50

100

P
os

iti
on

 C
on

tr
ol

 (
 N

)

ux
uy
uz

0 20 40 60 80 100 120 140 160
Time(sec)

-5

0

5

T
et

he
r

R
ee

l F
or

ce
 (

m
/s

2)

10-4

Figure 5.13: Control Inputs for the Reeling Maneuver

115

5.2 Electromagnetic and Thruster-based Docking

5.2.1 Electromagnet-based Docking

The electromagnet-based system is shown in Fig. 5.14 and is mounted on the lower stage

of the spacecraft simulator. The main components of the electromagnet-based docking sys-

tem are: electromagnets, docking ports, reaction wheels, gyroscopes, batteries, and driving

electronics.

Reaction Wheel

3 DOF Spacecraft Simulators

Electromagnet Actuator

Docking Port

Figure 5.14: Two 3DOF M-STARs Equipped with Electromagnets, Docking Ports, and Reac-
tion Wheels

Electromagnet Design

The electromagnets are designed to provide a force of flim = 40 mN at 40 cm coil-to-coil

distance and take up less than 20% of the entire mass of the spacecraft simulator including

the structure and docking port. The number of windings, coil radius, coil thickness, and

maximum current specifications are calculated using a Sequential Least Squares Program-

ming optimization constrained to meet the above requirements while minimizing mass and

power consumption.

min
N,l,R,i

c1p(N, l, R, i) + c2m(N, l, R)

s.t. f = flim

m ≤ mmax

p ≤ pmax

116

The design of the electromagnet can be seen in Fig. 5.15. The coils were mounted on a

3D printed frame with cutouts to increase airflow and prevent overheating, which causes an

increase in the resistance of the wire.

Figure 5.15: Electromagnet Design

The electromagnet-based docking system runs a real-time current controller, shown in

Fig. 5.16, to compensate for the induced voltage generated when the two spacecraft move

with respect to each other. The feedback controller runs on the microcontroller at 1 kHz.

The controller takes a current setpoint and outputs a drive voltage for the electromagnet,

using feedback from a precise current sensor based on a low-tolerance shunt resistor.

Raspberry Pi
Microcontroller
Feedback Loop

Motor

Driver
Electromagnet

Current Sensor

Figure 5.16: Electromagnet Current Controller

5.2.2 Thruster-based Docking

Thruster-based docking on the spacecraft simulators uses two 3DOF M-STARs, configured

with a tube connecting the upper thruster stage with the lower stage. In Fig. 5.17, two docked

117

3DOF thruster M-STARs are shown. Each M-STAR has eight on-off solenoidal thrusters

connected through a regulator to three compressed air cylinders, driving electronics, and four

docking ports, presented in subsection 5.2.3, which are mounted on each side of spacecraft

simulator upper stages. A more detailed description of the thruster system on-board the

M-STARs can be seen in Ref. [105].

Docking Ports

Thrusters

Air tanks

Spacecraft Simulators

Figure 5.17: Two M-STARs With Thrusters and Four Docking Ports

5.2.3 Docking Port Design

Once the spacecraft are moved into proximity by the electromagnets, a gripping mechanism

has to ridigize the system and allow the magnets to be turned off. The gripping mechanism

is designed to be androgynous, so any spacecraft can dock to any other, and to lock so that

no torque is needed on the motor to keep the gripper in closed position.

The design of the docking port can be seen in Fig. 5.18. The servomotor in the center

of the gripper connects to the fingers using push rods, which lock into place at the closed

configuration so that once the gripper is closed, the motor can be turned off. Additionally, a

high friction surface is added to the docking port’s plate to constrain the rotational motion.

The reaction wheel should be able compensate for any heading error that happens be-

tween the spacecraft while docking, but the gripper can accommodate for misalignment as

118

Figure 5.18: Kinematics of the Gripper Mechanism

well. The misalignment tolerance was measured experimentally by putting the two spacecraft

at a certain separation and measuring the offset before gripping. The maximum distance

between the two grippers where the dock succeeds is 2 mm. The maximum lateral misalign-

ment between the two grippers is 12 mm. These values can be improved by changing the

finger shape but are sufficient for this work.

5.3 Control

For the feedback controllers on both docking systems, the pose and the angular velocity for

each spacecraft were determined by the motion capture system in the flat floor facility and

the on-board gyroscope. The dock finalization was also the same for both systems, with the

gripper closing when the two satellites are touching. Both systems relied on detailed models

derived mathematically and experimentally. For more details, see [55].

5.3.1 Trajectory Planner

The trajectory that was input into both controllers is a constant acceleration profile. For

electromagnet-based docking, an acceleration of 0.3 mm/s was input, while the velocity was

limited to 45 mm/s. For thruster-based docking, the acceleration is 1 mm/s, while the

119

velocity limit is infinity.

5.3.2 Electromagnet-Based Docking

Distance

Controller

Trajectory

Planner

+

Motion Camera

System

-

Electromagnet

Spacecraft 1
Force (F)

Electromagnet

Spacecraft 2

Control

allocation

Eq. no [2]

current

current

+

Motion Camera

System

-

Controller
angular velocity

setpoint

+

-

Reaction

Wheel

Gyroscope

Spacecraft
Torqueheading

setpoint

angular

acceleration

setpoint
Controller

Figure 5.19: Distance Controller for Electromagnet-based Docking System

The electromagnet-based docking involves three controllers (Fig. 5.19). For attitude

control, two PIDs in cascade are used, one that takes as input the heading and outputs an

angular velocity, that is then fed into the second controller. For the distance control, a single

PID was implemented. The input of the controller is the intersatellite distance. However, due

to the non-linearity between the input and the output (the current in the electromagnets),

the gain of the PI controller will have drastically different effect at different distances. Thus,

the controller determines the required force, which is used as a virtual input for an inverse

input nonlinear function which determines the current that is input into the electromagnets.

The poses of the two spacecraft simulators obtained from the motion capture system were

used to determine the intersatellite distance and the heading error. The distance controller

uses the distance between the electromagnets as a setpoint and controls the electromagnet

forces.

The required currents for the two electromagnets are computed from the force output by

the controller. The force at any distance is proportional to the product of the current (i) of

the two coils. Therefore, using Eq. (5.19), the required current product can be computed

from the force given for 1 Ampere (Fi=1A) computed using the derived electromagnet model.

120

i1i2 =
F

Fi=1A(d)
(5.19)

The current is allocated between the two electromagnets using the following equations:

i1 =
√
|i1i2| (5.20)

i2 = sign(i1i2)
√
i1i2 (5.21)

One of the spacecraft was chosen to always have a positive current, while the second one was

chosen to have the sign of the current product. In practical applications it may be preferable

to have a control allocation scheme that trades between the two to prevent overheating.

5.3.3 Thruster-Based Docking

The thruster controller uses a PID in cascade with velocity feed-forward for position control

and another PID for heading control. The controller determines the desired forces and

moment that is then allocated to each individual thruster.

The forces and moment in body frame can be expressed as the follows:


fBx

fBy

mB
z

 = BF (5.22)

where F is the thrust vector and B is the control influence matrix defined as:

B =


1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 −1 1 −1 1 −1 1 −1

 (5.23)

The thruster control allocation is determined using the Moore-Penrose pseudoinverse of the

121

control influence matrix.

Figure 5.20: Thruster Allocation Based on MIB

For fine velocity and position control where the total desired impulse for the spacecraft is

less than the MIB allows, two counteracting thrusters are allocated. The allocation scheme

for each of the pair of counteracting thrusters can be seen in Fig. 5.20. This function is

designed in such a way that each thruster has either 0 or more than its minimum impulse.

In this manner, very small net forces can be applied on the spacecraft for precise docking.

This solution is expensive in terms of propellant because two counteracting thrusters need

to fire in the same time, thus it is only done for close-approach maneuvers when distance

between the spacecraft simulators is less than 20 cm.

5.4 Results

Experimental validation of the two docking systems was performed in the flat floor facility

at Caltech. Due to the design of the facility and the M-STARs, friction between the floor

and the linear air bearings is small.

5.4.1 Electromagnet-Based Docking

Tests for the electromagnet-based docking system were performed by placing the two simu-

lators a set distance apart, then starting the position and heading controllers. Several tests

were performed by keeping the distance constant at approximately 40 cm apart. Afterwards,

122

the initial intersatellite distance was increased in each test until the electromagnets could no

longer attract enough to overcome the static friction of the floor. The maximum intersatellite

distance was found to be 55 cm. The results at 55 cm distance are discussed below.

The real trajectory of the two simulators is shown in Fig. 5.21, with the heading angle

shown as the orientation of miniaturized hexagons at various points along the trajectory.

The final orientation and position of the two simulators is shown by the life-sized hexagons.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
X (m)

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

Y
 (

m
)

SC1
SC2

Figure 5.21: Electromagnet-based Docking Trajectory with Orientation Represented using
Hexagons

It is clear to see that the electromagnets have quite a bit of drift in heading, which

could be caused by imbalances in the simulator mass or issues with the reaction wheel like

vibrations. The system is still able to maintain relative alignment though, so the docking is

still successful.

The control input is the current in each of the electromagnets, seen in Fig. 5.22. Note

that because this experiment has the highest possible intersatellite distance, the current is

saturated to 4.5A which is the maximum the electromagnets can reach with the power supply

used in this experiment (a 5-cell lithium polymer battery). The current can be increased

by using more power, wire with slightly less resistance than copper such as silver wire, or

superconductors.

The spacecraft point towards each other using the custom reaction wheels. In Fig. 5.23,

123

0 10 20 30 40 50 60 70 80 90 100
Time (sec)

-6

-4

-2

0

2

4

6

C
ur

re
nt

 (
A

)

SC1
SC2

Figure 5.22: Electromagnet Current Commanded vs. Time

0 10 20 30 40 50 60 70 80 90 100
-0.1

-0.05

0

0.05

0.1

0.15

A
ng

ul
ar

 M
om

en
tu

m
 (

kg
 m

2
/s

)

SC1
SC2

0 10 20 30 40 50 60 70 80 90 100
Time (sec)

-0.01

-0.005

0

0.005

0.01

T
or

qu
e

(N
m

)

Figure 5.23: Angular Momentum and Torque of the Reaction Wheel vs Time

the angular momentum and torque of the reaction wheels are shown, while in Fig. 5.24, the

heading of the two spacecraft is shown. The reaction wheel is saturating at 5000 rpm in this

case.

The intersatellite distance tracking accuracy of the electromagnet-based docking system

is shown in Fig. 5.25, which displays the standard deviation of the distance tracking error

over time during the 14 test runs. It is seen that the controller is robust to position errors, as

long as they are inside the attraction envelope of the electromagnet. The maximum standard

deviation of the tracking error is 2.59 cm.

124

0 10 20 30 40 50 60 70 80 90 100
1.2

1.4

1.6

1.8

2

X
 (

m
)

SC1
SC2

0 10 20 30 40 50 60 70 80 90 100
-1.5

-1

-0.5

0

Y
 (

m
)

0 10 20 30 40 50 60 70 80 90 100
Time (sec)

-200

-100

0

100

 (
de

g)

Figure 5.24: X Y Position and Heading of the Two M-STARs vs Time

0 10 20 30 40 50 60 70
Time (s)

0

5

10

15

20

25

30

35

40

D
is

ta
nc

e
(c

m
)

Standard Deviation
Actual Distance
Distance Setpoint

Figure 5.25: Electromagnet-based Docking System Tracking Error

5.4.2 Thruster-Based Docking

Since the thrusters are not limited by intersatellite distance but by propellant consumption,

these experiments all started from much higher separations. The trajectory resulting from

one of thruster-based docking tests is shown in Fig. 5.26. During this test, the spacecraft

were placed 5 meters apart. The components of the velocities of the two spacecraft can be

seen in Fig. 5.28.

The resultant force for each of the positive and negative thrusters during translation

phase is seen in Fig. 5.27. It is observed that the thrusters are not firing less than the time

corresponding to the MIB, which is 16 ms.

125

-2 -1 0 1 2 3
X (m)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Y
 (

m
)

SC1
SC2

Figure 5.26: Thruster Docking Trajectory with Orientation Represented using Squares

0 10 20 30 40 50 60 70 80 90
Time (sec)

0

20

40

60

80

100

120

140

160

180

200

F
iri

ng
 T

im
e

(m
s)

Xpos
Xneg
MIB Firing Time

Figure 5.27: MIB

Fig. 5.29 shows the trajectory tracking accuracy during 12 of the 14 thruster-based dock-

ing test runs. Two runs were excluded because the initial separation was significantly below

the average. The maximum standard deviation of the tracking error is 4.17 cm.

5.4.3 Experimental Results - Comparison

The two analyzed docking systems are compared by evaluating the initial separation, final

relative velocity, consumable usage and docking success. Unlike other metrics, consumables

are specific to each of the docking systems. For thruster-based docking, the total firing

time of each of individual thrusters used for position and attitude control is computed. For

126

0 20 40 60 80 100 120 140 160 180
-0.05

0

0.05

X
 V

el
oc

ity
 (

m
/s

)

SC1
SC2

0 20 40 60 80 100 120 140 160 180
Time (sec)

-0.1

-0.05

0

0.05

0.1

Y
 V

el
oc

ity
 (

m
/s

)

Figure 5.28: X and Y Velocities vs Time

0 10 20 30 40 50 60 70 80 90
Time (s)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

D
is

ta
nc

e
(m

)

Standard Deviation
Distance Setpoint

Figure 5.29: Thruster-based Docking System Tracking Error

electromagnet-based docking, the energy is computed as the average power multiplied by the

docking time. The results from the two docking systems during the 14 tests are presented

in the Tables B.1 and B.2 in Appendix B.

To assess the ultra-soft docking capability of both systems, in Fig. 5.30, the relative ve-

locity between the two spacecraft simulators is plotted. The thrusters perform well compared

to the electromagnets, however, at the cost of significant propellant use. During the first

8 runs, the electromagnets had an erroneous offset of 2.5 mm, thus the relative velocity is

artificially higher than subsequent runs where the error was corrected. After this issue was

127

solved, it can be seen that the electromagnets are under the ultra-soft docking velocity limit

(less than 1 mm/s). Additionally, in this plot it is shown that Test 5 is a failed dock. The

spacecraft were not able to dock in this test due to the aforementioned offset and the fact

that the gripper is designed to grip at a maximum separation of 2 mm. This was the only

electromagnet-based docking test where the gripper did not ridigize the two spacecraft. For

thruster docking, a dock failure occurred in Test 13, caused by a misalignment.

Figure 5.30: Relative Velocity for the 14 runs

5.5 Conclusion

Two propellant-free and ultra-low propellant docking systems were presented and compared

against thruster-based methods. For the tether-based system, the savings in fuel for the

tether system vs the thruster-based system using the optimal control was not considered

large enough to justify the added mechanical complexity. The tether does offer a signifi-

cant reduction in risk by its nature so overall is still considered favorable. A preliminary

propellant-less maneuver was attempted with some degree of success, but to achieve the

same ultra-soft dock would require further study.

The electromagnetic and thruster-based docking systems presented in the second half and ex-

perimentally validated. The electromagnet-based docking system performed admirably and

was able to complete docks from up to a 55 cm intersatellite distance. The electromagnet-

based docking system suffers from angular drift, most likely due to imbalances and man-

128

ufacturing issues in the reaction wheels. The thruster-based docking system was able to

successfully capture with a fairly low relative velocity but to achieve such a low velocity the

propellant usage was high. Work remains to isolate the potential error sources in the elec-

tromagnetic docking system to reduce the drift, incorporate on-board navigation to remove

the reliance on the motion capture system, and redesign the gripper to improve robustness

to misalignment.

129

Chapter 6

Fast Motion Planning

Fast motion planning of an agile, autonomous vehicle (like quadrotor, micro aerial vehicle,

rover, or spacecraft) has become an important topic of research over the last decade due

to significant improvements in hardware and processing power, which enable a large range

of applications that require faster planning for more fluid motion. For example, quadrotor

and micro aerial vehicle are suitable for deploying mobile sensor platforms for intelligence,

surveillance, and reconnaissance missions. Various space agencies have proposed missions to

explore small bodies in space using small spacecraft. A common problem in these applica-

tions is that of quickly generating an optimal trajectory for the autonomous vehicle, which

satisfies vehicle dynamics and collision avoidance constraints, in an environment cluttered

with multiple geometrically fixed obstacles. This chapter discusses the development of a

novel motion planning algorithm that addresses this problem. The work contained in this

chapter was developped in collaboration with Dr. Saptarshi Bandyopadhyay and Francesca

Baldini.

6.1 Problem Statement

The nonlinear optimal motion planning problem in continuous-time is first presented in

Section 6.1.1. This problem is then recast into a discrete-time nonlinear optimal motion

planning problem in Section 6.1.2.

130

6.1.1 Continuous-time Nonlinear Optimal Motion Planning

Problem

Let X ⊂ R3 denote the closed 3D workspace. Let Xobs ⊂ X represent the stationary

obstacles in the workspace. Let δ denote the clearance that the vehicle must maintain from

any obstacle. Let Xunsafe ⊂ X denote the unsafe regions around the obstacles that the

vehicle cannot enter. Therefore, the region where the vehicle can maneuver freely is given

by Xfree = X/(Xobs ∪ Xunsafe). Let Xinit ∈ Xfree and Xgoal ∈ Xfree represent the starting

position and the goal position of the vehicle at times t0 and tf respectively. Here t represents

continuous time. The workspace, obstacles, and locations of interest are shown in Fig. 6.1.

Although the figures are shown in 2D for ease of representing the ideas, the whole scheme is

valid for 3D.

Figure 6.1: Xobs, Xfree, Xinit, and Xgoal are shown in this workspace. The obstacles are marked
in blue.

Let x(t) ∈ Rnx and u(t) ∈ Rnu represent the vehicle’s state vector and control input at

time t. The vehicle’s state vector can be further decomposed into

x(t) =
(
p(t)T , ṗ(t)T ,θ(t)T , θ̇(t)T

)T
, where p(t) ∈ R3 and θ(t) ∈ SO(3) represent the vehi-

cle’s position and attitude vectors. We assume that the objective function of the states and

control inputs C (x(t), u(t)) is convex.

131

As shown in Problem 8, the objective of the optimal motion planning problem is to find

a feasible trajectory for the vehicle that starts at Xinit at time t0, reaches Xgoal at time tf ,

and minimizes the given convex objective function. Here (6.2)–(6.3) represent the initial

and terminal constraints and (6.4) ensures that the trajectory is within the safe region. The

set U ⊂ Rnu in (6.5) represents the feasible range of control inputs which is assumed to be

convex. The vehicle’s dynamics are given by (6.6), where f(·) is a smooth nonlinear function.

Problem 8 (Continuous-time Nonlinear Optimal Motion Planning Problem).

minimize
x(t),u(t), ∀t∈[t0,tf]

∫ tf

t0

C(x(t), u(t)) dt , (6.1)

subject to p(t0) = Xinit , (6.2)

p(tf) = Xgoal , (6.3)

p(t) ∈ Xfree , ∀t ∈ [t0, tf] , (6.4)

u(t) ∈ U , ∀t ∈ [t0, tf] , (6.5)

ẋ(t) = f (x(t),u(t)) , ∀t ∈ [t0, tf] . (6.6)

6.1.2 Discrete-time Nonlinear Optimal Motion Planning

Problem

We first transform the continuous-time Problem 8 into a discrete-time problem so that it

can be efficiently solved using SCP. Let ∆ represent the fixed time step size. Let τ [k], ∀k ∈

{0, . . . , T} represent the discrete time instants, where T is the total number of discrete time

steps. Therefore, we have τ [0] = t0, τ [T] = tf , and τ [k] = t0 + k∆ for all k ∈ {0, . . . , T}.

Therefore, ∆ =
tf−t0
T

and T =
tf−t0

∆
.

The control inputs in Problem 8 are discretized using a zero-order hold approach such

132

that ∀k ∈ {0, . . . , T − 1}:

u(t) = u[k], t ∈ [τ [k], τ [k + 1]) , (6.7)

x(t) = x[k], t ∈ [τ [k], τ [k + 1]) , (6.8)

∴ p(t) = p[k] , θ(t) = θ[k] .

In Problem 8, the objective function (6.1) and the constraints (6.2)–(6.5) can be easily

discretized using this zero-order hold approach. The linearization and discretization of the

vehicle’s dynamics equations (6.6) is discussed in the Appendix. Therefore, the transformed

discrete-time optimal motion planning problem is given in Problem 9. Note that the con-

straints (6.10), (6.11), and (6.14) are linear and the constraint (6.13) is convex. Since the

region Xfree is usually not convex, the only non-convexity in Problem 9 arises from the safety

constraint (6.12).

Problem 9 (Discrete-time Nonlinear (Non-Convex) Optimal Motion Planning Problem).

minimize
x[k],u[k]

T−1∑
k=0

C (x[k], u[k]) ∆ , subject to (6.9)

p[0] = Xinit , (6.10)

p[T] = Xgoal , (6.11)

p[k] ∈ Xfree , ∀k ∈ {0, . . . , T} , (6.12)

u[k] ∈ U , ∀k ∈ {0, . . . , T − 1} , (6.13)

x[k + 1] = F [k]x[k] +G[k]u[k] +H[k], ∀k ∈ {0, . . . , T − 1} . (6.14)

The objective of this chapter is to find an efficient technique to solve Problem 9. Our

SE–SCP algorithm first explores the workspace to approximate the region Xfree using a graph

and a combination of spheres. Once a feasible path is found on the graph, then we solve

Problem 9 using a sequence of convex problems.

133

6.2 Spherical Expansion and Sequential Convex

Programming (SE–SCP) Algorithm

The SE–SCP algorithm’s pseudocode is presented in Algorithm 8. During the Initialization

step (Section 6.2.1), the necessary data structures are created and initialized. After initial-

ization, the Spherical Expansion step (Section 6.2.2) and the Sequential Convex Programming

step (Section 6.2.3) are executed iteratively until the algorithm is stopped.

6.2.1 Initialization Step

The SE–SCP algorithm generates a directed graph G = (V , E) in the safe region Xfree, where

V is the set of nodes (vertices) and E is the set of directed edges. Each node in V stores

the position of the node and the minimum distance from that node to any obstacle. For

the node Xinit, the minimum distance to any obstacle rinit is obtained using the function

MinDistObs(Xinit,Xobs), which takes into account the position of the node and the obstacles

in the workspace and returns the radius of the largest sphere centered on that node which

does not intersect with any obstacle (line 1). Similarly, the minimum distance to any obstacle

rgoal is obtained for the node Xgoal as shown in Fig. 6.2 (line 2). Then the set of nodes V is

initialized with the nodes Xinit[rinit] and Xgoal[rgoal] (line 3). Each element in the set of edges

E stores the edge’s starting and ending nodes and the cost of traversing that edge. The set

of edges E is initialized with the empty set (line 3). If the spheres of the nodes Xinit and

Xgoal intersect, then edges are added between them (lines 4–9). The process of generating

edges is discussed in Section 6.2.2.

The variable Pold is used to store the best path found till the current time instant, and

the variable cPold
represents the cost of this path. The variable cuold

represents the cost of

the best trajectory found till the current time instant. During initialization, the path Pold is

set to an empty set and the cost for the path cPold
and the trajectory cuold

are set to infinity

or a very large number (line 10). The variable N , which represents the number of samples,

134

is also initialized to an appropriate value (line 11).

(a) Xinit and Xgoal (b) rinit and rgoal

Figure 6.2: Initialization step. The obstacles are marked in blue.

Method 8 SE–SCP Algorithm

1: rinit ← MinDistObs(Xinit,Xobs)
2: rgoal ← MinDistObs(Xgoal,Xobs)
3: V ← {Xinit[rinit], Xgoal[rgoal]}, E ← ∅
4: if ‖Xinit −Xgoal‖2 ≤ rinit + rgoal then
5: cinit,goal ← EdgeCost(Xinit, Xgoal)

6: E ← E ∪ {
−−−−−−→
Xinit Xgoal[cinit,goal]}

7: cgoal,init ← EdgeCost(Xgoal, Xinit)

8: E ← E ∪ {
−−−−−−→
XgoalXinit[cgoal,init]}

9: end if
10: cPold

←∞, cxolduold
←∞, Pold ← ∅

11: for i = 1, . . . , N do
12: Xrand ← GenerateSample

13: Xnearest ← NearestVertex(V , Xrand)
14: Xnew ← Steer(Xrand, Xnearest)
15: rnew ← MinDistObs(Xnew,Xobs)
16: Xnear ← NearVertices(V , Xnew, rnew)
17: V ← V ∪ {Xnew[rnew]}
18: for all Xn ∈Xnear do
19: cn,new ← EdgeCost(Xn, Xnew)

20: E ← E ∪ {
−−−−−→
XnXnew[cn,new]}

21: cnew,n ← EdgeCost(Xnew, Xn)

22: E ← E ∪ {
−−−−−→
Xnew Xn[cnew,n]}

23: end for
24: Pnew, cPnew ← MinPath(G, Xinit, Xgoal)
25: if cPnew < cPold

and Pnew 6= Pold then
26: P1 ← Pnew

27: WS1 ← PickSphere(P1)
28: (x?1,u

?
1, cx?1u?1)← OptTraj(P1, WS1)

29: for j = 2, . . . , NSCP do
30: (Pj, WSj)←

GenPath(x?j−1, Pj−1, WSj−1)
31: (x?j ,u

?
j , cx?j u?j)←
OptTraj(Pj, WSj,x

?
j−1,u

?
j−1)

32: end for
33: if cx?NSCP

u?NSCP
< cxolduold

then

34: xold ← x?NSCP

35: uold ← u?NSCP

36: cxolduold
← cx?NSCP

u?NSCP

37: cPold
← cPnew

38: end if
39: Pold ← Pnew

40: end if
41: end for
42: Return xold, uold, cxolduold

135

6.2.2 Spherical Expansion Step

During this step, the workspace is explored using the sampling technique shown in lines 12–

24 in Algorithm 8. The objective of this step is to populate the graph G = (V , E) and find

the minimum-cost paths from the start position Xinit to the goal position Xgoal.

Generate Sample

: The SE–SCP algorithm can use both random or quasi-random (deterministic) sampling

since the randomness of the samples is not crucial for motion planning applications ([73]). For

a given sampling choice, the function GenerateSample returns a random sample Xrand ∈ X

(line 12). If random sampling is chosen, then Xrand is drawn from a uniform distribution in X

such that the random samples are independent and identically distributed. If quasi-random

sampling is chosen, then Xrand is generated using the Halton sequence, which deterministi-

cally produces samples with low discrepancy and provides good coverage over the workspace

with a limited number of samples ([73]).

Generate New Node

: Next, the function NearestVertex(V , Xrand) takes into account the current set of nodes V

and the random sample Xrand and returns the node Xnearest that is nearest to Xrand (line 13),

i.e.,:

Xnearest := argmin
X∈V

‖X −Xrand‖2 . (6.15)

Note that the minimum distance to any obstacle rnearest from the node Xnearest is already

stored in V .

The function Steer(Xrand, Xnearest) generates the new node Xnew according to either of

the following two cases (line 14):

Case 1: If Xrand is inside Xnearest’s sphere (i.e., ‖Xnearest −Xrand‖2 ≤ rnearest) as shown in

Fig. 6.3a, then the new node Xnew = Xrand.

136

Case 2: Otherwise, Xrand is outside Xnearest’s sphere as shown in Fig. 6.3b. Then the new

node Xnew is on the boundary of Xnearest’s sphere and closest to the sample Xrand, i.e.,:

Xnew := argmin
{X∈X :‖X−Xnearest‖2=rnearest}

‖X −Xrand‖2

= Xnearest + rnearest
(Xrand −Xnearest)

‖Xrand −Xnearest‖2

. (6.16)

The minimum distance from obstacles rnew for the node Xnew is computed using the

function MinDistObs (line 15). Thus the node Xnew characterizes the convex obstacle-free

region around itself using the closed sphere of radius rnew.

(a) Case 1 (b) Case 2

Figure 6.3: Xnew and rnew are generated using the Steer and MinDistObs functions.

In contrast with the classical steering function in the literature ([77]), where the radius of

the sphere is fixed and represents the step-size of the algorithm, the radius of the sphere in

the SE–SCP algorithm is variable and adapts with the density of obstacles. Therefore, the

SE–SCP algorithm usually finds a feasible path faster than other sampling-based algorithms.

The function NearVertices(V , Xnew, rnew) takes into account the current set of nodes V ,

the new node Xnew and its radius rnew, and generates a list Xnear of all the nodes whose

spheres intersect with Xnew’s sphere (line 16), i.e.,:

Xnear := {Xn ∈ V : ‖Xn −Xnew‖2 ≤ rn + rnew} . (6.17)

It follows from our construction that Xnearest ∈Xnear. The new node Xnew[rnew] is added to

the set of nodes V (line 17).

137

Generate Graph’s Edges

: There exists a feasible collision-free path between each node in Xnear and Xnew because

their spheres intersect. We now generate the edges that connect these nodes. For each vertex

Xn ∈Xnear, the function EdgeCost(Xn, Xnew) takes into account the two nodes and outputs

the cost of traversing the directed edge cn,new from Xn to Xnew, which depends on the given

convex objective function, such that the trajectory always remains inside the union of the

two spheres (line 19). Then the directed edge
−−−−−→
XnXnew[cn,new] is added to the set of edges

E (line 20). Similarly, the cost for traversing the directed edge cnew,n from Xnew to Xn is

generated (line 21), and this new directed edge
−−−−−→
Xnew Xn[cnew,n] is added to E (line 22).

(a) i = 50 (b) i = 100 (c) i = 150 (d) i = 200 (e) i = 250 (f) i = 300

Figure 6.4: Multiple iterations of the spherical expansion step. The minimum-cost paths are
shown in red. See Extension 1.

Generate Minimum-Cost Path

: The function MinPath(G, Xinit, Xgoal) takes into account the current graph, the initial and

goal nodes, and returns the new minimum-cost path Pnew along with the cost of that path

cPnew (line 24). The path Pnew = {X1[r1], X2[r2], . . . , Xn[rn]} is a sequence of n nodes with

corresponding radii, where |Pnew| = n, X1 = Xinit, and Xn = Xgoal. An example path is

shown in Fig. 6.5. The cost of the path cPnew is the sum of the directed edges along that

path. Graph search algorithms like Dijkstra’s algorithm can be used for this step. If no path

exists, then cPnew is set to infinity.

In Fig. 6.4 and Extension 1, multiple iterations of the spherical expansion step are shown.

During each iteration, a new node and multiple edges are added to the graph G = (V , E) and

the graph G grows from both the start and goal positions. The minimum-cost paths from

138

Xinit to Xgoal are shown in Fig. 6.4e and 6.4f.

The following SCP step of the algorithm does not start until at least one geometric path

is found from Xinit to Xgoal. However, the spherical expansion step continues to explore the

workspace, even after SCP step has started, to find better geometric paths which are then

further optimized by the SCP step.

6.2.3 Sequential Convex Programming Step

During this step, the locally optimal trajectories from the start Xinit to the goal position

Xgoal that satisfy vehicle’s dynamics constraints are found using lines 24–40 in Algorithm 8.

Generate Optimal Trajectory

: If the cost of the new path cPnew is less than that of the old path cPold
and the new path is

different from the old path, then the optimal trajectory is found along this new path.

We first set the time step size ∆ such that T � |Pnew| and the linearization and dis-

cretization steps in Section 6.1.2 are valid. Initially, the T nodes are partitioned such that

the first set lie inside the sphere of X1, the next set lie in the sphere of X2, and so on. Let us

represent this partitioning using the array WS1, where WS1[k] outputs the index of the sphere

the kth node is supposed to lie in. The function PickSphere is used to generate the array

WS1 from the path Pnew (or P1). Here we partition the nodes based on the distance between

the spheres as shown in Algorithm 9. Although this initial partitioning of the nodes is done

heuristically, it does not affect the convergence proof since it is only done during the first

SCP loop. Furthermore, a better partitioning of the nodes can be obtained using a greedy

optimization algorithm ([92]).

Problem 10 (Discrete-time Convex Optimal Motion Planning Problem
(
CP (x?j−1,u

?
j−1)
)
).

minimize
xj,uj

T−1∑
k=0

C (xj[k], uj[k]) ∆ , subject to (6.18)

139

Method 9 The function PickSphere(P1)

1: Given P1 = {X1[r1], X2[r2], . . . , Xn[rn]}
2: Zold ← X1

3: for ` = 1, . . . , n do
4: if ` = n then Znew = Xn

5: elseZnew ← X` + (X`+1 −X`) ·
(

r`
r`+r`+1

)
6: end if
7: D[`]← ‖Znew − Zold‖2

8: Zold ← Znew

9: end for
10: D←

(
1∑n

`=1 D[`]

)
·D

11: for k = 0, . . . , T do
12: for ` = 1, . . . , n do
13: if ` = 1 and k

T
≤ D[1] then

14: WS1[k]← 1
15: else if D[`] < k

T
and k

T
≤ D[`+ 1] then

16: WS1[k]← `+ 1
17: end if
18: end for
19: end for

pj[0] = Xinit , (6.19)

pj[T] = Xgoal , (6.20)

‖pj[k]−XWSj[k]‖2 ≤ rWSj[k] , ∀k ∈ {1, . . . , T − 1} , (6.21)

‖pj[k]−XWSj[k+1]‖2 ≤ rWSj[k+1] , ∀k ∈ {1, . . . , T − 1} , (6.22)

uj[k] ∈ U , ∀k ∈ {0, . . . , T − 1} , (6.23)

xj[k + 1] = Fj−1[k]xj[k] +Gj−1[k]uj[k] +Hj−1[k] , ∀k ∈ {0, . . . , T − 1} . (6.24)

The function OptTraj(P1, WS1) takes into account this new path P1 and WS1, and re-

turns the optimal state trajectory x?1, optimal control trajectory u?1, and the cost of this

trajectory cx?1u?1 =
∑T−1

k=0 C (x?1[k], u?1[k]) ∆ by solving an approximate version of Problem 9

(shown in Problem 10) (line 28). If an additional trajectory is provided to the function

OptTraj(Pj, WSj,x
?
j−1,u

?
j−1) (as is the case in line 31), then the linearization and discretiza-

tion of the vehicle’s dynamics is performed around this trajectory (x?j−1,u
?
j−1) to generate

the matrices Fj−1[k], Gj−1[k], and Hj−1[k]. If no additional trajectory is provided to the

140

Figure 6.5: Visualization of the optimal trajectory (in green) for the first loop of SCP.

function OptTraj, then a nominal (pre-stored) trajectory (x?0,u
?
0) is used for linearization

and discretization.

Our key innovation is to use the sequence of spheres in the path P1, as shown in Fig. 6.5,

as an approximation of the region Xfree in order to convexify the safety constraint (6.12)

in Problem 9. The new motion planning problem is given in Problem 10. In order to

convexify the safety constraint (6.12), we enforce the constraint (6.21) that all the nodes are

inside their corresponding sphere. Nodes, with the next neighbor in the next sphere, have

the additional constraint (6.22) that they must lie in the intersection of the two spheres.

Note that Problem 10 is a convex optimization problem because the objective function is

convex and all constraints are either affine or convex. The convex optimization problem

can be solved using computationally-efficient interior-point-methods ([65, 67]) on resource-

constrained hardware.

The globally optimal solution of Problem 10, namely state trajectory

x?1 = {x1[0],x1[1], . . . ,x1[T]} and control trajectory u?1 = {u1[0],u1[1], . . . ,u1[T−1]} is used

to setup a new optimization problem as shown in Fig. 6.6. The function GenPath(x?1, P1, WS1)

takes into account this optimal solution x?1, the old path P1, and WS1; and returns a new

path P2 and WS2 as shown in Algorithm 10 (line 30 in Algorithm 8). If the spheres of two

141

Figure 6.6: Visualization of the optimal trajectory (in green) for the second loop of SCP, where
the old optimal trajectory (in red) from Fig. 6.5 is used to setup the optimization problem.

neighboring nodes in x?1 do not intersect, then the spheres from the previous step are used

to fill in the gap.

Method 10 The function GenPath (x?j−1, Pj−1, WSj−1)

1: Given x?j−1 = {xj−1[0],xj−1[1], . . . ,xj−1[T]}, WSj−1, and Pj−1 =
{X1[r1], X2[r2], . . . , Xn[rn]}

2: S[0]← −1
3: for k = 0, . . . , T − 1 do
4: if WSj−1[k] 6= WSj−1[k + 1] then
5: S[WSj−1[k]]← k
6: end if
7: end for
8: m← 1
9: Pj[m] = Pj−1[1]
10: for ` = 1, . . . , n− 1 do
11: (Pj,m)← AddToPath(S[`],m,S[`− 1] + 1)

12: k̂ ←
⌈

S[`]+S[`+1]
2

⌉
13: (Pj,m)← AddToPath(k̂,m,S[`] + 1)
14: end for

Once again, the optimal trajectory (x?2,u
?
2, cx?2u?2) is found using Problem 10, where the

trajectory (x?1,u
?
1) is used for linearization and discretization and

cx?2u?2 =
∑T−1

k=0 C (x?2[k], u?2[k]) ∆ (line 31). This optimization process using SCP is iteratively

executed NSCP times, where NSCP depends on the desired convergence error and the com-

142

plexity of the optimization problem (lines 29–32). Multiple iterations of the SCP step are

shown in Fig. 6.7 and Extension 2. Then, the current trajectory cost is compared with the

stored cost, and the best trajectory is stored (lines 33–39).

(a) j = 1 (b) j = 2 (c) j = 3 (d) j = 4 (e) j = 5 (f) j = 6

Figure 6.7: Multiple iterations of the SCP step. See Extension 2.

The algorithm stops after N nodes have been added to the graph (line 11), where N is

significantly (orders-of-magnitude) smaller than state-of-the-art sampling-based algorithms.

The algorithm outputs the best state trajectory xold, its control trajectory uold, and its cost

cxolduold
(line 42). If the algorithm is stopped before the for-loop is completed, then the

current best state and control trajectories are stored in xold and uold.

6.2.4 Nonlinear Dynamics in SE–SCP

When used on platforms with nonlinear dynamics that are not well approximated by lower

order dynamics, it is necessary to implement an approach similar to M-SCPn described

in Chapter 3 in the sequential convex programming step to maintain the integrity of the

solution. When SCPn or M-SCPn are used in lieu of SCP, the algorithm is referred to as

SE-SCPn.

6.3 Numerical and Experimental Results

In this section, we demonstrate the effectiveness of the SE–SCP algorithms using numerical

simulations and experimental results. We also present comparisons with existing algorithms

like RRT∗ and PRM∗.

143

Method 11 The function AddToPath(Input1, Input2, Input3)

1: Xnew ← pj−1[Input1]
2: rnew ← MinDistObs(Xnew,Xobs)
3: m← Input2

4: Xold[rold]← Pj[m]
5: kmin ← −1, kmax ← −1
6: knew ← −1, kold ← −1
7: for s = Input3, . . . , Input1 do
8: if ‖Xnew−pj−1[s]‖2 ≤ rnew and ‖Xold−
pj−1[s]‖2 ≤ rold then

9: if kmin = −1 then
10: kmin ← s, kmax ← s
11: else if kmax = s− 1 then
12: kmax ← s
13: else
14: kmax ← kmin

15: end if
16: end if
17: if ‖Xold − pj−1[s]‖2 ≤ rold then
18: kold ← s
19: end if
20: if ‖Xnew−pj−1[s]‖2 ≤ rnew and knew =
−1 then

21: knew ← s
22: end if
23: end for
24: if ‖Xold − Xnew‖2 ≤ rold + rnew and

kmin ≥ 0 then
25: m← m+ 1
26: Pj[m]← Xnew[rnew]
27: kmid ←

⌈
kmin+kmax

2

⌉
28: for s = Input3, . . . , Input1 do
29: if s ≤ kmid then
30: WSj[s] = m− 1
31: else
32: WSj[s] = m
33: end if
34: end for
35: else
36: m← m+ 1
37: Pj[m]← Pj−1[`]
38: m← m+ 1
39: Pj[m]← Xnew[rnew]
40: for s = Input3, . . . , Input1 do
41: if s ≤ kold then
42: WSj[s] = m− 2
43: else if s > kold and s ≤ knew then
44: WSj[s] = m− 1
45: else
46: WSj[s] = m
47: end if
48: end for
49: end if

(a) 3D view (b) Top view

Figure 6.8: Debris environment.

6.3.1 Numerical Simulations with Spacecraft in Debris Field

In this subsection, we show that the SE–SCP algorithm (Algorithm 8) can be used to generate

a spacecraft’s trajectory through a cluttered environment like a debris field. The debris

144

environment, the start position Xinit, and the goal position Xgoal are shown in Fig. 6.8

and the nonlinear spacecraft dynamics are discussed in [96]. The objective is to find the

spacecraft’s trajectory from Xinit to Xgoal so that the fuel consumption is minimized.

(a) Path Pnew
(b) First SCP itera-
tion

(c) Second SCP iter-
ation

(d) Third SCP itera-
tion

Figure 6.9: The first path Pnew is found during the the spherical expansion step and its
refinement using the SCP step are shown.

Fig. 6.9 shows the first path found during the spherical expansion step and three suc-

cessive refinements using the SCP step. Fig. 6.10 shows a better path is found during the

spherical expansion step and three successive refinements using the SCP step yield a better

trajectory. These trajectories satisfy the spacecraft’s dynamics constraints and are locally

optimal with respect to fuel consumption.

6.3.2 Experimental Results with Quadrotor

Experiments were performed with a custom-built quadrotor to show that the collision-free

trajectories computed using the SE-SCP algorithm satisfy the vehicle’s dynamics constraints.

In this experiment, the collision-free trajectory is computed onbaord the quadrotor and then

the quadrotor tracks this trajectory. These experiments were performed in collaboration

with Dr. Kyunam Kim. The quadrotor used in this experiment weighs 2.5 kg, has an arm

145

(a) Path Pnew
(b) First SCP itera-
tion

(c) Second SCP iter-
ation

(d) Third SCP itera-
tion

Figure 6.10: A better path Pnew is found during the the spherical expansion step and its
refinement using the SCP step are shown.

Figure 6.11: Caltech’s CAST Drone Arena

length of 24 cm, and is equipped with computers and sensors enabling fully autonomous

flight (Fig. 6.12a).

The experiment is performed in the flight arena of Caltech’s Center for Autonomous

Systems and Technologies. The arena is approximately 9.3 m by 12.2 m by 12 m with

multiple obstacles located both at the center of the space and close to the walls (Fig. 6.11).

The environment is modeled in a simulation environment with the clearance distance from

the obstacles set to δ = 0.5 m. Although the arena has a plenty of vertical space, we limited

146

(a) Quadrotor
(b) Perspective View (c) Top View

(d) Tracking Error

Figure 6.12: A map of the environment and trajectories computed by the SE-SCP algorithm
(red dash line) and flown by a quadrotor (blue solid line). The initial and goal positions are
marked with red circles and stars. See Extension 5.

the maximum height to 7 m to make the planning more challenging. The initial and goal

locations are given as (0, 0, 1) and (10, 4, 1). Due to the position of the obstacles, the

quadrotor has to pass through the narrow open space between the central obstacles.

The collision-free trajectory, computed onboard the quadrotor using by the SE-SCP

algorithm, is shown in Fig. 6.12b, 6.12c. The quadrotor’s actual flight trajectory, recorded

with a motion capture system, is shown in Extension 5. The quadrotor is able to track the

trajectory with the maximum position error of 0.15 m (Fig. 6.12d) and an average velocity of

approximately 0.4 m/s while traversing the 16 m long trajectory. These results demonstrate

that the SE–SCP algorithm can be executed onboard resource-constrained hardware and the

collision-free trajectory generated by the SE–SCP algorithm satisfies the vehicle’s dynamics

constraints.

147

B
en

ch
m

ar
k

E
n
v
.

C
om

p
u
ta

ti
on

T
im

e
T

ra
je

ct
or

y
C

os
t

Figure 6.13: Benchmark Comparisons of the SE–SCP algorithms (original, uni-directional,
and bi-directional) with RRT? and PRM?

148

6.3.3 Comparison with RRT? and PRM?

In this subsection, we compare the SE–SCP algorithms (Algorithm 8) with the asymptotically-

optimal RRT∗ and PRM∗ algorithms ([77]). Since the RRT∗ and PRM∗ algorithms cannot

directly incorporate the vehicle dynamics, we use the following discrete-time dynamics equa-

tion to compare these algorithms:

x[k + 1] = x[k] + u[k] . (6.25)

The 3D benchmark environments are shown in Fig. 6.13. For comparison purposes, all the

algorithms are implemented in MATLAB and each algorithm is executed 10 times. Average

results of their computation time and trajectory cost (path distance) are presented as bar

graphs in Fig. 6.13.

We conclude from these comparisons that the SE–SCP algorithm significantly outperform

the the RRT∗ and PRM∗ algorithms in terms of the computation time for similar trajectory

costs. The main reasons for the superior performance of the SE–SCP algorithms are as

follows:

• The spherical expansion step in the SE–SCP algorithm adapts with the density of the

obstacles in the environment. Since there is no pre-defined step-length in the SE–SCP

algorithm, the algorithm can build larger spheres when there are no nearby obstacles.

This is extremely helpful in quickly covering the workspace and possibly generating a

simple path from the start to the goal position.

• The SCP step computes the locally optimal trajectory in the neighborhood of the

geometric path, even if the original geometric path is not close to the locally optimal

trajectory. This is useful in reducing the number of samples and computation time

necessary to find the optimal trajectory.

Therefore, the SE–SCP algorithms are suitable for generating optimal trajectories through

149

cluttered environments while satisfying the vehicle dynamics constraints.

6.4 Chapter Summary

In this chapter we presented a motion planning algorithm, through geometrically-fixed un-

cooperative cluttered environments, that uses the vehicle dynamics and minimizes the given

convex cost function. Our SE–SCP algorithm has two main steps. During the spherical

expansion step, the algorithm explores the workspace using a random sampling technique

to generate collision-free spheres. This step generates coarse geometric paths from the start

position to the goal position. During the SCP step, locally optimal trajectories are gener-

ated along those geometric paths using SCP optimization that considers both the vehicle

dynamics and collision-avoidance constraints. Therefore, as newer paths are discovered by

the spherical expansion step, better trajectories are generated by the SCP step. Hence the

algorithm guarantees locally optimal trajectories using a finite number of samples and a

globally optimal trajectory as the number of samples tends to infinity.

We demonstrated the effectiveness of the SE–SCP algorithm using experimental results

and numerical simulations. We have shown that the SE–SCP algorithms significantly out-

perform the the RRT∗ and PRM∗ algorithms in terms of the computation time for similar

trajectory costs. This is because the spherical expansion step in the SE–SCP algorithm

adapts with the density of the obstacles in the environment, hence the workspace can be

quickly covered with spheres. Moreover, the SCP step generates a locally optimal trajec-

tory, which reduces the number of samples and computational time necessary to find the

optimal trajectories. Therefore, the SE–SCP algorithm is suitable for fast motion planning

through geometrically-fixed uncooperative cluttered environments. Future work will focus

on generating trajectories through non-stationary obstacles.

150

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The focus of this work was on optimal guidance and control algorithms for swarm self-

assembly and general robotic motion planning for robots with nonlinear dynamics. The

algorithms developed were designed to minimize fuel and avoid collisions while maintaining

adherence to the nonlinear dynamics. These algorithms were tested in simulation and in

experiments on-board wheeled robots, quadrotors, and spacecraft simulator robots.

In Chapter 2, we discussed the design and function of the robotic spacecraft simulators

used to experimentally validate the work in Chapters 4 and 5. The M-STARs are air-bearing

platforms which operate in a flat floor facility. This essentially negates the friction between

the robot and the floor and does not cause any undesired perturbations on the robot. With

the addition of spherical air bearings and linear actuators, the M-STARs are able to achieve

5DOF frictionless dynamic motion and 1DOF kinematic motion.

In Chapter 3, two methods were presented which are capable of extending sequential

convex programming for use with nonlinear dynamics. Previous implementations suffered

from deviations from the true nonlinear dynamics due to the sequential linearizations and

discretizations. The proposed methods, SCPn and M-SCPn, numerically integrate the con-

trol trajectory resulting from the optimization to obtain a corrected nominal trajectory,

which the next iteration of the optimization then linearized the dynamics around. This

151

way, the linearization and discretization errors do not compound in each successive itera-

tion, keeping the obtained trajectory close to the nonlinear dynamic trajectory. To ensure

the corrected solution stays feasible to the nonconvex optimization problem, an additional

bound around the inequality constraints is added to the SCPn optimization. This bound

allows the formation of theoretical guarantees. Both methods are shown to converge to a

solution with decreasing cost, and to satisfy the KKT conditions of the original nonconvex

optimization problem. These claims can also be extended to problems with hyperplane-

convexified inequality constraints and problems with costs that are convex functions of both

state and control. In addition to theoretical guarantees, extensive simulations were per-

formed to establish the efficacy and robustness of the two algorithms as compared to the

standard, uncorrected SCP algorithm. Simulations were performed using highly nonlinear

quadrotor dynamics with a convexified collision avoidance constraint. These results show

that both SCPn and M-SCPn solve the terminal constraint failure of SCP and yield trajec-

tories which adhere to the nonlinear dynamics, but suffer a performance loss when compared

to SCP due to the extra computation needed to enforce the nonlinear dynamics. M-SCPn

has improved performance over SCPn in terms of computation time, convergence quality,

and robustness to initialization quality. Further work remains to reduce the computational

burden, implement the methods on an agile quadrotor platform, and compare results against

results obtained using a nonlinear optimization solver.

In Chapter 4, a distributed optimal control and guidance algorithm has been presented

to allow for construction using a heterogeneous swarm of component satellites with limited

communication radii. The agent types chosen can create a diverse set of final configurations

which can cover the plane and build out-of-plane. This extends prior work in the field because

it is both distributed and heterogeneous, can function in a complex dynamic environment,

and accounts for relative attitude dynamics. The SOCA algorithm can correctly assign

the heterogeneous agents for all target sets and avoid collision only where necessary. The

algorithm was also made robust to uncertainty in the nominal trajectory. The handling of

152

nonlinear dynamics was improved to make the trajectories commanded by SOCA realistic

and achievable. An advanced control allocation scheme was presented to handle the changing

shape parameters and actuator availability during self-assembly. The simulation results show

SOCA performing assignment and trajectory generation for 20-54 agents in two and three

dimensional final configurations with realistic trajectories. The algorithm is experimentally

validated on 6 omni-wheeled robots and four spacecraft simulators. The wheeled robots were

not sufficient to make claims about the success of the algorithm, but the spacecraft simulators

were used to successfully experimentally validate the optimal construction algorithm. The

proposed scheme is useful for missions ranging from sparse aperture interferometric telescope

construction to space colony or station construction.

This algorithm can also be used for a higher degree of heterogeneity without substantially

altering the algorithm, as discussed in the auction algorithm section. While adding more

agents would expand the possible final shapes even further, it would also increase system

manufacturing cost and does not affect the design or execution of the algorithm substantially.

In Chapter 5, two propellant-free and ultra-low propellant docking systems were pre-

sented and compared against propulsive methods. For the tether-based system, the savings

in fuel for the tether system vs the propulsive system using the optimal control was not

considered large enough to justify the added mechanical complexity. The tether does offer

a significant reduction in risk by its nature so overall is still considered favorable. A prelim-

inary propellant-less maneuver was attempted with some degree of success, but to achieve

the same ultra-soft dock would require further study.

The electromagnetic and propulsive docking systems presented in the second half and exper-

imentally validated. The electromagnet-based docking system performed admirably and was

able to complete docks from up to a 55 cm intersatellite distance. The electromagnet-based

docking system suffers from angular drift, most likely due to imbalances and manufacturing

issues in the reaction wheels. The thruster-based docking system was able to successfully

capture with a fairly low relative velocity but to achieve such a low velocity the propellant

153

usage was high. Work remains to isolate the potential error sources in the electromagnetic

docking system to reduce the drift, incorporate on-board navigation to remove the reliance on

the motion capture system, and redesign the gripper to improve robustness to misalignment.

Finally in Chapter 6, we presented a motion planning algorithm, through geometrically-

fixed uncooperative cluttered environments, that uses the nonlinear vehicle dynamics and

minimizes the given convex cost function. Our SE–SCP algorithm has two main steps.

During the spherical expansion step, the algorithm explores the workspace using a random

sampling technique to generate collision-free spheres. This step generates coarse geometric

paths from the start position to the goal position. During the SCP step, locally optimal

trajectories are generated along those geometric paths using SCP optimization that considers

both the vehicle dynamics and collision-avoidance constraints. Therefore, as newer paths

are discovered by the spherical expansion step, better trajectories are generated by the SCP

step. Hence the algorithm guarantees locally optimal trajectories using a finite number

of samples and a globally optimal trajectory as the number of samples tends to infinity.

We demonstrated the effectiveness of the SE–SCP algorithm using experimental results and

numerical simulations. Therefore, the SE–SCP algorithm is suitable for fast motion planning

through geometrically-fixed uncooperative cluttered environments.

7.2 Future Work

This dissertation has addressed several guidance and control challenges that face in-orbit

self-assembly missions, but the other challenges exist for such an application that have not

been addressed here. Some such challenges are:

• Swarm Navigation - This dissertation assumes the agent navigation is performed by

another subsystem, but in reality issues in navigation can drastically affect the desired

guidance and control of a system. Particularly in a self-assembling swarm, each agent’s

pose must be known very precisely as it approaches a dock. Leveraging the swarm’s

154

estimates of the other agents could help with this issue. If a metric could be determined

to quantify the observability of each agent, it would be helpful to incorporate that into

SOCA to generate fuel and observability optimal trajectories. Part of this work could

involve detecting obstacles as they appear in the sensor field of view.

• Assembly Validation - For precision systems that are self-assembled like space tele-

scopes or habitats, it is necessary to validate the precision of the structure that is

created. This could be accomplished by one or more free-fliers circling the assembly

with knowledge of the desired shape. The orbit design of such a system would be

complex if the self-assembled structure were placed at a Lagrange point, depending on

the distance requirements for accurate knowledge of the assembly.

• Realistic Docking Maneuvers - From the models and extensive experimental data col-

lected during the testing in Chapter 5, we have a good idea of the close proximity

motion during a docking maneuver. Incorporating this knowledge into SOCA in a

meaningful way would improve the fidelity of the simulations. Additionally it would

be useful in this work to accurately characterize the expected error profile of the flat

floor facility.

• Theoretical Guarantees for SE–SCP - The algorithm developed in Chapter 6 performs

quite well in practice and is shown to outperform some similar methods, but cementing

the theoretical benefits of this approach would be beneficial.

155

References

[1] Attitude determination control systems. http://bluecanyontech.com/wp-content/
uploads/2017/04/DataSheet_ADCS_07_F.pdf. Accessed: 2017-5-11.

[2] Magnetic capture docking system. https://technology.nasa.gov/patent/

MSC-TOPS-63. Accessed: 2016-08-16.

[3] Overview of the dart mishap investigation results. https://www.nasa.gov/pdf/

148072main_DART_mishap_overview.pdf. Accessed: 2016-12-11.

[4] Propulsion unit for cubesats. http://www.vacco.com/images/uploads/pdfs/

11044000-01_PUC.pdf. Accessed: 2017-4-11.

[5] Pulsed plasma thrusters. http://www.busek.com/technologies__ppt.htm. Ac-
cessed: 2017-6-11.

[6] Cleanspace one. https://espace.epfl.ch/CleanSpaceOne_1, 2018. EPFL Space
Engineering Center eSpace. Accessed: 2018-01-30.

[7] Rascal-1: A do-si-do in space. https://www.sluspacelab.com/slu04-rascal1/,
2018. Saint Louis University SSRL. Accessed 2018-02-15.

[8] Syed Jan Abas and A Salman. Geometric and group-theoretic methods for computer
graphic studies of islamic symmetric patterns. In Computer Graphics Forum, vol-
ume 11, pages 43–53. Wiley Online Library, 1992.

[9] Behçet Açıkmeşe and Lars Blackmore. Lossless convexification of a class of optimal
control problems with non-convex control constraints. Automatica, 47(2):341–347,
2011.

[10] Brij N. Agrawal and Richard E. Rasmussen. Air-bearing-based satellite attitude dy-
namics simulator for control software research and development. 4366(831):204–214,
2001.

[11] Ahmad Aljamali and Ebad Banissi. Normalization and exploration design method of
islamic geometric patterns. In Geometric Modeling and Graphics, 2003. Proceedings.
2003 International Conference on, pages 42–48. IEEE, 2003.

[12] Yassine Ariba, Denis Arzelier, Laura Sofia Urbina, and Christophe Louembet. V-bar
and r-bar glideslope guidance algorithms for fixed-time rendezvous: A linear program-
ming approach. IFAC-PapersOnLine, 49(17):385–390, 2016.

156

http://bluecanyontech.com/wp-content/uploads/2017/04/DataSheet_ADCS_07_F.pdf
http://bluecanyontech.com/wp-content/uploads/2017/04/DataSheet_ADCS_07_F.pdf
https://technology.nasa.gov/patent/MSC-TOPS-63
https://technology.nasa.gov/patent/MSC-TOPS-63
https://www.nasa.gov/pdf/148072main_DART_mishap_overview.pdf
https://www.nasa.gov/pdf/148072main_DART_mishap_overview.pdf
http://www.vacco.com/images/uploads/pdfs/11044000-01_PUC.pdf
http://www.vacco.com/images/uploads/pdfs/11044000-01_PUC.pdf
http://www.busek.com/technologies__ppt.htm
https://espace.epfl.ch/CleanSpaceOne_1
https://www.sluspacelab.com/slu04-rascal1/

[13] Umair Ashun. Dynamics and Control of Electromagnetic Satellite Formations. PhD
thesis, Massachusetts Institute of Technology, 2007.

[14] Federico Augugliaro, Angela P Schoellig, and Raffaello D’Andrea. Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex programming
approach. In 2012 IEEE/RSJ international conference on Intelligent Robots and Sys-
tems, pages 1917–1922. IEEE, 2012.

[15] Francesca Baldini, Saptarshi Bandyopadhyay, Rebecca Foust, Soon-Jo Chung, Amir
Rahmani, Jean-Pierre de la Croix, Alexandra Bacula, Christian M Chilan, and Fred
Hadaegh. Fast motion planning for agile space systems with multiple obstacles. In
AIAA/AAS astrodynamics specialist conference, page 5683, 2016.

[16] Phillip Ball. Islamic tiles reveal sophisticated maths. http://www.nature.com/news/
2007/070219/full/news070219-9.html. Accessed: 2017-2-28.

[17] Saptarshi Bandyopadhyay, Francesca Baldini, Rebecca Foust, Soon-Jo Chung, Amir
Rahmani, Jean-Pierre de la Croix, and Fred Y Hadaegh. Distributed fast motion
planning for spacecraft swarms in cluttered environments using spherical expansions
and sequence of convex optimization problems. In Proc. 9th International Workshop
on Satellite Constellations and Formation Flying (IWSCFF), Boulder, Colorado, June
19-21, 2017.

[18] Saptarshi Bandyopadhyay, Soon-Jo Chung, and Fred Y Hadaegh. Nonlinear attitude
control of spacecraft with a large captured object. Journal of Guidance, Control, and
Dynamics, 39(4):754–769, 2016.

[19] Saptarshi Bandyopadhyay, Rebecca Foust, Giri P Subramanian, Soon-Jo Chung, and
Fred Y Hadaegh. Review of formation flying and constellation missions using nanosatel-
lites. Journal of Spacecraft and Rockets, (0):567–578, 2016.

[20] Stephen P Banks and K Dinesh. Approximate optimal control and stability of nonlinear
finite-and infinite-dimensional systems. Annals of Operations Research, 98(1-4):19–44,
2000.

[21] Dimitri P Bertsekas. Nonlinear programming. Athena scientific, 1999.

[22] Marc Bodson. Evaluation of optimization methods for control allocation. Journal of
Guidance, Control, and Dynamics, 25(4):703–711, 2002.

[23] Riccardo Bonalli, Abhishek Cauligi, Andrew Bylard, and Marco Pavone. Gusto: Guar-
anteed sequential trajectory optimization via sequential convex programming. In 2019
IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2019.

[24] Grant Bonin, Niels Roth, Scott Armitage, Josh Newman, Ben Risi, and Robert E Zee.
Canx–4 and canx–5 precision formation flight: Mission accomplished! 2015.

[25] Joseph Bonometti. Boom rendezvous alternative docking approach. Space, pages 19–
21, 2006.

157

 http://www.nature.com/news/2007/070219/full/news070219-9.html
 http://www.nature.com/news/2007/070219/full/news070219-9.html

[26] J. Bowen, A. Tsuda, J. Abel, and M. Villa. Cubesat proximity operations demonstra-
tion (cpod) mission update. In 2015 IEEE Aerospace Conference, pages 1–8, March
2015.

[27] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univ. Press, Cam-
bridge, U.K., 2004.

[28] C. P. Bridges, B. Taylor, N. Horri, C. I. Underwood, S. Kenyon, J. Barrera-Ars,
L. Pryce, and R. Bird. Strand-2: Visual inspection, proximity operations amp;amp;
nanosatellite docking. In 2013 IEEE Aerospace Conference, pages 1–8, March 2013.

[29] Allen Chen. Propulsion system characterization for the spheres formation flight and
docking testbed. master’s thesis, 2002.

[30] Yufan Chen, Mark Cutler, and Jonathan P How. Decoupled multiagent path plan-
ning via incremental sequential convex programming. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages 5954–5961. IEEE, 2015.

[31] John Chilton. Space grid structures. Taylor & Francis, 2007.

[32] Howie M Choset, Seth Hutchinson, Kevin M Lynch, George Kantor, Wolfram Burgard,
Lydia E Kavraki, and Sebastian Thrun. Principles of robot motion: theory, algorithms,
and implementation. MIT press, 2005.

[33] Soon-Jo Chung. Nonlinear control and synchronization of multiple Lagrangian systems
with application to tethered formation flight spacecraft. PhD thesis, Massachusetts
Institute of Technology, 2007.

[34] Soon-Jo Chung, Danielle Adams, Alvar Saenz-Otero, Edmund Kong, David W Miller,
David Leisawitz, Enrico Lorenzini, and Steve Sell. Spheres tethered formation flight
testbed: advancements in enabling nasa’s specs mission. In SPIE Astronomical Tele-
scopes+ Instrumentation, pages 62680B–62680B. International Society for Optics and
Photonics, 2006.

[35] Soon-Jo Chung and David W Miller. Propellant-free control of tethered formation
flight, part 1: Linear control and experimentation. Journal of guidance, control, and
dynamics, 31(3):571–584, 2008.

[36] Soon-Jo Chung, David W Miller, and Olivier L de Weck. Argos testbed: study of
multidisciplinary challenges of future spaceborne interferometric arrays. Optical Engi-
neering, 43(9):2156–2168, 2004.

[37] Soon-Jo Chung, Aditya Avinash Paranjape, Philip Dames, Shaojie Shen, and Vijay
Kumar. A survey on aerial swarm robotics. IEEE Transactions on Robotics, 34(4):837–
855, 2018.

[38] Soon-Jo Chung, Jean-Jacques E Slotine, and David W Miller. Nonlinear model re-
duction and decentralized control of tethered formation flight. Journal of Guidance,
Control, and Dynamics, 30(2):390–400, 2007.

158

[39] Soon-Jo Chung, Jean-Jacques E Slotine, and David W Miller. Propellant-free control
of tethered formation flight, part 2: Nonlinear underactuated control. Journal of
guidance, control, and dynamics, 31(5):1437–1446, 2008.

[40] Marco Ciarcia, Roberto Cristi, and Marcello Romano. Experimental emulation of the
scaled clohessy-wiltshire dynamics on a flat air-bearing testbed. In AIAA Guidance,
Navigation, and Control Conference, page 1047, 2017.

[41] Robert Coolman. Tessellation: The geometry of tiles, honeycombs and m.c. es-
cher. http://www.livescience.com/50027-tessellation-tiling.html. Accessed:
2017-3-17.

[42] R. Cowen. The wheels come off kepler. Nature, 497(7450):417–418, 2013.

[43] Howard D Curtis. Orbital mechanics for engineering students. Butterworth-
Heinemann, 2013.

[44] Robin Deits and Russ Tedrake. Efficient mixed-integer planning for uavs in cluttered
environments. In 2015 IEEE international conference on robotics and automation
(ICRA), pages 42–49. IEEE, 2015.

[45] Quoc Tran Dinh and Moritz Diehl. Local convergence of sequential convex program-
ming for nonconvex optimization. In Recent Advances in Optimization and its Appli-
cations in Engineering, pages 93–102. Springer, 2010.

[46] Steven Dutch. Structure of beryl and cordierite. https://www.uwgb.edu/dutchs/

Petrology/Beryl-CordStruc.htm. Accessed: 2017-2-28.

[47] Matteo Duzzi, Lorenzo Olivieri, and Alessandro Francesconi. Tether-aided spacecraft
docking procedure. 4S Symposium, 2016.

[48] Youngho Eun, Chandeok Park, and Sang-Young Park. Design and Development of
Ground-Based 5-DOF Spacecraft Formation Flying Testbed. AIAA Modeling and
Simulation Technologies Conference, pages 1–7, January 2016.

[49] Jacob Everist, Kasra Mogharei, Harshit Suri, Nadeesha Ranasinghe, Berok Khosh-
nevis, Peter Will, and Wei-Min Shen. A system for in-space assembly. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, volume 3, pages 2356–
2361. IEEE, 2004.

[50] Fariba Fahroo and I Michael Ross. Advances in pseudospectral methods for optimal
control. In AIAA guidance, navigation and control conference and exhibit, page 7309,
2008.

[51] Wigbert Fehse. Automated rendezvous and docking of spacecraft, volume 16. Cambridge
university press, 2003.

159

http://www.livescience.com/50027-tessellation-tiling.html
 https://www.uwgb.edu/dutchs/Petrology/Beryl-CordStruc.htm
 https://www.uwgb.edu/dutchs/Petrology/Beryl-CordStruc.htm

[52] Rebecca Foust, Soon-Jo Chung, and Fred Hadaegh. Autonomous in-orbit satellite
assembly from a modular heterogeneous swarm using sequential convex programming.
In AIAA/AAS Astrodynamics Specialist Conference, AIAA SPACE and Astronautics
Forum and Exposition, Long Beach, CA, Sept. 13-16, 2016.

[53] Rebecca Foust, Soon-Jo Chung, and Fred Y Hadaegh. Solving optimal control with
nonlinear dynamics using sequential convex programming. In AIAA Scitech 2019 Fo-
rum, page 0652, 2019.

[54] Rebecca C Foust, Soon-Jo Chung, and Fred Y Hadaegh. Real-time optimal control
and target assignment for autonomous in-orbit satellite assembly from a modular het-
erogeneous swarm. In AIAA/AAS Space Flight Mechanics Meeting, 2016.

[55] Rebecca C Foust, Elena Sorina Lupu, Yashwanth Kumar Nakka, Soon-Jo Chung, and
Fred Y Hadaegh. Ultra-soft electromagnetic docking with applications to in-orbit
assembly. In International Astronautical Congress, 2018.

[56] Rebecca C Foust, Yashwanth K Nakka, Ayush Saxena, Soon-Jo Chung, and Fred Y
Hadaegh. Automated rendezvous and docking using tethered formation flight. In 9th
International Workshop on Satellite Constellations and Formation Flying, 2017.

[57] Rebecca C Foust, Michelle Zhao, Suzanne Oliver, Soon-Jo Chung, and Fred Y Hadaegh.
Distributed control of an evolving satellite assembly during in-orbit construction. In
International Astronautical Congress, 2017.

[58] D Gallardo and R Bevilacqua. Six Degrees of Freedom Experimental Platform for Test-
ing Autonomous Satellites Operations. Proceedings of the 8th International Conference
on Guidance, Navigation and Control, 2011.

[59] Daniele Gallardo, Riccardo Bevilacqua, and Richard Rasmussen. Advances on a 6
degrees of freedom testbed for autonomous satellites operations. In AIAA Guidance,
Navigation, and Control Conference, page 6591, 2011.

[60] Divya Garg, Michael Patterson, William W Hager, Anil V Rao, David A Benson, and
Geoffrey T Huntington. A unified framework for the numerical solution of optimal
control problems using pseudospectral methods. Automatica, 46(11):1843–1851, 2010.

[61] Mathieu Geisert and Nicolas Mansard. Trajectory generation for quadrotor based
systems using numerical optimal control. In 2016 IEEE international conference on
robotics and automation (ICRA), pages 2958–2964. IEEE, 2016.

[62] Qi Gong, Fariba Fahroo, and I Michael Ross. Spectral algorithm for pseudospectral
methods in optimal control. Journal of Guidance, Control, and Dynamics, 31(3):460–
471, 2008.

[63] M. Grant and S. Boyd. Cvx: Matlab software for disciplined convex programming
(version 1.22), May 2012. http://cvxr.com/cvx/.

160

[64] Michael Grant and Stephen Boyd. Graph implementations for nonsmooth convex
programs. In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in Learn-
ing and Control, Lecture Notes in Control and Information Sciences, pages 95–110.
Springer-Verlag Limited, 2008. http://stanford.edu/~boyd/graph_dcp.html.

[65] Michael Grant and Stephen Boyd. Graph implementations for nonsmooth convex
programs. In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in Learn-
ing and Control, Lecture Notes in Control and Information Sciences, pages 95–110.
Springer-Verlag Limited, 2008.

[66] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex pro-
gramming, version 2.1. http://cvxr.com/cvx, March 2014.

[67] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex pro-
gramming, version 2.1, March 2014.

[68] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018.

[69] Hari B Hablani, Myron L Tapper, and David J Dana-Bashian. Guidance and rela-
tive navigation for autonomous rendezvous in a circular orbit. Journal of Guidance,
Control, and Dynamics, 25(3):553–562, 2002.

[70] Fred Y Hadaegh, Soon-Jo Chung, and Harish M Manohara. On development of 100-
gram-class spacecraft for swarm applications. IEEE Systems Journal, 10(2):673–684,
2016.

[71] Markus Hehn and Raffaello D’Andrea. Real-time trajectory generation for quadro-
copters. IEEE Transactions on Robotics, 31(4):877–892, 2015.

[72] A Scott Howe and Ian Gibson. Trigon robotic pairs. In AIAA Space, 2006.

[73] Lucas Janson, Brian Ichter, and Marco Pavone. Deterministic sampling-based motion
planning: Optimality, complexity, and performance. The International Journal of
Robotics Research, pages 1–16, 2017.

[74] Christopher Michael Jewison. Reconfigurable thruster selection algorithms for aggrega-
tive spacecraft systems. PhD thesis, Massachusetts Institute of Technology, 2014.

[75] Tor A Johansen and Thor I Fossen. Control allocation—a survey. Automatica,
49(5):1087–1103, 2013.

[76] Laura Jones and Mason A Peck. Stability and Control of a Flux-Pinned Docking
Interface for Spacecraft. In AIAA Guidance, Navigation, and Control Conference,
pages 1–12, 2010.

[77] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion
planning. International Journal of Robotics Research, 30(7):846–894, 2011.

[78] Hassan Khalil. Nonlinear Systems. Prentice Hall, 3rd edition, 2002.

161

http://stanford.edu/~boyd/graph_dcp.html
http://cvxr.com/cvx

[79] Edmund Mun-Choong Kong. Spacecraft Formation Flight Exploiting Potential Fiels.
PhD thesis, Massachusetts Institute of Technology, 2002.

[80] Daniel W. Kwon. Cryogenic Heat Pipe for Cooling High Temperature Superconductors
with Application to Electromagnetic Formation Flight Satellites. PhD thesis, Mas-
sachusetts Institute of Technology, 2009.

[81] Xinfu Liu. Fuel-optimal rocket landing with aerodynamic controls. Journal of Guid-
ance, Control, and Dynamics, 42(1):65–77, 2018.

[82] Xinfu Liu and Ping Lu. Solving nonconvex optimal control problems by convex opti-
mization. Journal of Guidance, Control, and Dynamics, 37(3):750–765, 2014.

[83] Xinfu Liu, Ping Lu, and Binfeng Pan. Survey of convex optimization for aerospace
applications. Astrodynamics, 1(1):23–40, 2017.

[84] Xinfu Liu, Zuojun Shen, and Ping Lu. Entry trajectory optimization by second-order
cone programming. Journal of Guidance, Control, and Dynamics, 39(2):227–241, 2015.

[85] Peter J Lu and Paul J Steinhardt. Decagonal and quasi-crystalline tilings in medieval
islamic architecture. science, 315(5815):1106–1110, 2007.

[86] Ping Lu and Xinfu Liu. Autonomous trajectory planning for rendezvous and proxim-
ity operations by conic optimization. Journal of Guidance, Control, and Dynamics,
36(2):375–389, 2013.

[87] Yuanqi Mao, Daniel Dueri, Michael Szmuk, and Behçet Açıkmeşe. Successive con-
vexification of non-convex optimal control problems with state constraints. IFAC-
PapersOnLine, 50(1):4063–4069, 2017.

[88] Yuanqi Mao, Michael Szmuk, and Behçet Açıkmeşe. Successive convexification of non-
convex optimal control problems and its convergence properties. In 2016 IEEE 55th
Conference on Decision and Control (CDC), pages 3636–3641. IEEE, 2016.

[89] F Landis Markley and John L Crassidis. Fundamentals of spacecraft attitude determi-
nation and control, volume 33. Springer, 2014.

[90] F Landis Markley, Reid G Reynolds, Frank X Liu, and Kenneth L Lebsock. Maximum
torque and momentum envelopes for reaction wheel arrays. Journal of Guidance,
Control, and Dynamics, 33(5):1606–1614, 2010.

[91] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and control
for quadrotors. In 2011 IEEE International Conference on Robotics and Automation,
pages 2520–2525. IEEE, 2011.

[92] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and con-
trol for quadrotors. In Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 2520–2525. IEEE, 2011.

162

[93] David W Miller, A Saenz-Otero, J Wertz, A Chen, G Berkowski, C Brodel, S Carlson,
D Carpenter, S Chen, S Cheng, et al. Spheres: a testbed for long duration satellite
formation flying in micro-gravity conditions. In Proceedings of the AAS/AIAA space
flight mechanics meeting, pages 167–179. Clearwater, Florida, January, 2000.

[94] Swati Mohan. Tools for reconfigurable control system comparisons for autonomous
assembly applications. In International Astronautical Congress, Daejon, South Korea,
IAC-09 C, volume 1, pages 12–16, 2009.

[95] Swati Mohan. Quantative selection and design of model generation architectures for
on-orbit autonomous assembly. PhD thesis, Massachusetts Institute of Technology,
2010.

[96] D. Morgan, S.-J. Chung, L. Blackmore, B. Acikmese, D. Bayard, and F. Y. Hadaegh.
Swarm-keeping strategies for spacecraft under J2 and atmospheric drag perturbations.
J. Guid. Control Dyn., 35(5):1492 – 1506, 2012.

[97] D. Morgan, S.-J. Chung, and F. Y. Hadaegh. Spacecraft swarm guidance using a se-
quence of decentralized convex optimizations. In AIAA/AAS Astrodynamics Specialist
Conference, Minneapolis, MN, August 2012. AIAA 2012-4583.

[98] D. Morgan, S.-J. Chung, and F. Y. Hadaegh. Model predictive control of swarms of
spacecraft using sequential convex programming. J. Guid. Control Dyn., 37(6):1725–
1740, 2014.

[99] Daniel Morgan, Soon-Jo Chung, Lars Blackmore, Behcet Acikmese, David Bayard, and
Fred Y Hadaegh. Swarm-keeping strategies for spacecraft under j2 and atmospheric
drag perturbations. Journal of Guidance, Control, and Dynamics, 35(5):1492–1506,
2012.

[100] Daniel Morgan, Soon-Jo Chung, and Fred Y Hadaegh. Model predictive control of
swarms of spacecraft using sequential convex programming. Journal of Guidance,
Control, and Dynamics, 37(6):1725–1740, 2014.

[101] Daniel Morgan, Giri P Subramanian, Soon-Jo Chung, and Fred Y Hadaegh. Swarm
assignment and trajectory optimization using variable-swarm, distributed auction as-
signment and sequential convex programming. The International Journal of Robotics
Research, 35(10):1261–1285, 2016.

[102] Osamu Mori and Saburo Matunaga. Formation and attitude control for rotational
tethered satellite clusters. Journal of Spacecraft and Rockets, 44(1):211–220, 2007.

[103] ApS Mosek. The mosek optimization toolbox for matlab manual, 2015.

[104] Zoltán Nagy, Jake J Abbott, and Bradley J Nelson. The magnetic self-aligning
hermaphroditic connector a scalable approach for modular microrobots. In 2007
IEEE/ASME international conference on advanced intelligent mechatronics, pages 1–6.
IEEE, 2007.

163

[105] Yashwanth Kumar Nakka, Rebecca C Foust, Elena Sorina Lupu, David B Elliott,
Irene S Crowell, Soon-Jo Chung, and Fred Y Hadaegh. Six degree-of-freedom spacecraft
dynamics simulator for formation control research. In 2018 AAS/AIAA Astrodynamics
Specialist Conference, 2018.

[106] M. Nohmi. Mission design of a tethered robot satellite “stars” for orbital experiment. In
2009 IEEE Control Applications, (CCA) Intelligent Control, (ISIC), pages 1075–1080,
July 2009.

[107] M Nohmi. Initial orbital performance result of nano-satellite stars-ii. In Proceedings of
the 2014 International Symposium on Artificial Intelligence, Robots and Automation
in Space, 2014.

[108] Simon Nolet and David W Miller. Autonomous docking experiments using the spheres
testbed inside the iss. In Sensors and Systems for Space Applications in Defense and
Security Symposium, volume 6555. SPIE, 2007.

[109] Mohamed Okasha, Chandeok Park, and Sang-Young Park. Guidance and control for
satellite in-orbit-self-assembly proximity operations. Aerospace Science and Technol-
ogy, 41:289–302, 2015.

[110] Lorenzo Olivieri, Riccardo Mantellato, Francesco Branz, Francesco Sansone, Alessan-
dro Cavinato, Marco Gaino, Davide Petrillo, Alessandro Francesconi, and Enrico C
Lorenzini. Cubesat mission concept for tethered electromagnetic docking demonstra-
tion. In Tartu Conference on Space Science and Technology, 2014.

[111] Dimitra Panagou, Matt Turpin, and Vipin Kumar. Decentralized goal assignment
and trajectory generation in multi-robot networks: A multiple lyapunov functions ap-
proach. In 2014 IEEE International Conference on Robotics and Automation (ICRA),
pages 6757–6762. IEEE, 2014.

[112] Diego Pardo, Lukas Möller, Michael Neunert, Alexander W Winkler, and Jonas Buchli.
Evaluating direct transcription and nonlinear optimization methods for robot motion
planning. IEEE Robotics and Automation Letters, 1(2):946–953, 2016.

[113] Jing Pei, Luke Murchison, Victor Stewart, James Rosenthal, Drew Sellers, Mark
Banchy, Adam BenShabat, Ryan Elandt, David Elliott, and Adam K Weber. Au-
tonomous rendezvous and docking of two 3u cubesats using a novel permanent-magnet
docking mechanism. In 54th AIAA Aerospace Sciences Meeting, 2016.

[114] Roger Penrose. Pentaplexity. Eureka, 39:16–32, 1978.

[115] Davide Petrillo, M Buonomo, A Cavinato, F Chiariotti, M Gaino, F Branz, R Mantel-
lato, L Olivieri, F Sansone, A Francesconi, et al. Flexible electromagnetic leash docking
system (felds) experiment from design to microgravity testing. In 66Th International
Astronautical Congress, IAC-15 E, volume 2, 2015.

[116] Anil V Rao. A survey of numerical methods for optimal control. Advances in the
Astronautical Sciences, 135(1):497–528, 2009.

164

[117] Martin W Regehr, Ahmet B Acikmese, Asif Ahmed, M Aung, KC Clark, P MacNeal,
J Shields, G Singh, R Bailey, C Bushnell, et al. The formation control testbed. In
Aerospace Conference, 2004. Proceedings. 2004 IEEE, volume 1, pages 557–564. IEEE,
2004.

[118] Arthur Richards, Tom Schouwenaars, Jonathan P How, and Eric Feron. Spacecraft tra-
jectory planning with avoidance constraints using mixed-integer linear programming.
Journal of Guidance, Control, and Dynamics, 25(4):755–764, 2002.

[119] John W Romanishin, Kyle Gilpin, and Daniela Rus. M-blocks: Momentum-driven,
magnetic modular robots. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 4288–4295. IEEE, 2013.

[120] I. M. Ross and F. Fahroo. Legendre pseudospectral approximations of optimal control
problems. Lecture Notes in Control and Information Systems, 295:327–342, 2003.

[121] K. Saulnier, D. Pérez, R. C. Huang, D. Gallardo, G. Tilton, and R. Bevilacqua. A
six-degree-of-freedom hardware-in-the-loop simulator for small spacecraft. Acta Astro-
nautica, 105(2):444–462, 2014.

[122] Daniel P. Scharf, Jason A. Keim, and Fred Y. Hadaegh. Flight-like ground demon-
strations of precision maneuvers for spacecraft formations - Part II. IEEE Systems
Journal, 4(1):96–106, 2010.

[123] Markus Schlotterer, Eviatar Edlerman, Federico Fumenti, Pini Gurfil, Stephan Theil,
and Hao Zhang. On-ground testing of autonomous guidance for multiple satellites in
a cluster. In Proceedings of the 8th International Workshop on Satellite Constellations
and Formation Flying, 06 2015.

[124] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow,
Jia Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel. Motion planning with se-
quential convex optimization and convex collision checking. The International Journal
of Robotics Research, 33(9):1251–1270, 2014.

[125] Jana L. Schwartz, Mason A. Peck, and Christopher D. Hall. Historical Review of
Air-Bearing Spacecraft Simulators. Journal of Guidance, Control, and Dynamics,
26(4):513–522, 2003.

[126] Jana Lyn Schwartz. The distributed spacecraft attitude control system simulator: from
design concept to decentralized control. PhD thesis, Virginia Tech, 2004.

[127] Samuel Schweighart. Electromagnetic Formation Flight Dipole Solution Planning. PhD
thesis, Massachusetts Institute of Technology, 2005.

[128] Jungwon Seo, Mark Yim, and Vipin Kumar. Assembly planning for planar structures
of a brick wall pattern with rectangular modular robots. In 2013 IEEE International
Conference on Automation Science and Engineering (CASE), pages 1016–1021. IEEE,
2013.

165

[129] Wei-Min Shen, Peter Will, and Berok Khoshnevis. Self-assembly in space via self-
reconfigurable robots. In IEEE International Conference on Robotics and Automation,
2003., volume 2, pages 2516–2521. IEEE, 2003.

[130] Malcolm D Shuster. A survey of attitude representations. Navigation, 8(9):439–517,
1993.

[131] David C Sternberg, Christopher Pong, Nuno Filipe, Swati Mohan, Shawn Johnson,
and Laura Jones-Wilson. Jet propulsion laboratory small satellite dynamics testbed
simulation: On-orbit performance model validation. Journal of Spacecraft and Rockets,
55(2):322–334, 2017.

[132] Giri P Subramanian, Rebecca Foust, Derek Chen, Stanley Chan, Younes Taleb,
Dayne L Rogers, Jobin Kokkat, Saptarshi Bandyopadhyay, Daniel Morgan, Soon-Jo
Chung, et al. Information-driven systems engineering study of a formation flying
demonstration mission using six cubesats. In 53rd AIAA Aerospace Sciences Meeting,
page 2043, 2015.

[133] Nicholas Swain and Shadhanan Manickavasagar. A combined fault detection, identi-
fication and reconfiguration system based around optimal control allocation. In Fault
Tolerant Flight Control, pages 399–422. Springer, 2010.

[134] Michael Szmuk, Utku Eren, and Behcet Acikmese. Successive convexification for mars
6-dof powered descent landing guidance. In AIAA Guidance, Navigation, and Control
Conference, page 1500, 2017.

[135] Panagiotis Tsiotras. Astros: A 5dof experimental facility for research in space prox-
imity operations. Advances in the Astronautical Sciences, 151:717–730, 01 2014.

[136] Matthew Turpin, Nathan Michael, and Vijay Kumar. Trajectory planning and assign-
ment in multirobot systems. In Algorithmic Foundations of Robotics X, pages 175–190.
Springer, 2013.

[137] Matthew Turpin, Kartik Mohta, Nathan Michael, and Vijay Kumar. Goal assignment
and trajectory planning for large teams of interchangeable robots. Autonomous Robots,
37(4):401–415, 2014.

[138] Diederik Verscheure, Bram Demeulenaere, Jan Swevers, Joris De Schutter, and Moritz
Diehl. Time-optimal path tracking for robots: A convex optimization approach. IEEE
Transactions on Automatic Control, 54(10):2318–2327, 2009.

[139] Sasi Prabhakaran Viswanathan, Amit Sanyal, and Lee Holguin. Dynamics and control
of a six degrees of freedom ground simulator for autonomous rendezvous and proximity
operation of spacecraft. In AIAA Guidance, Navigation, and Control Conference, page
4926, 2012.

[140] Eric W. Weisstein. Space-filling polyhedra. From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/Space-FillingPolyhedron.html. Ac-
cessed: 2016-12-16.

166

 http://mathworld.wolfram.com/Space-FillingPolyhedron.html

[141] Markus Wilde, Brian Kaplinger, Tiauw Go, Hector Gutierrez, and Daniel Kirk. Orion:
A simulation environment for spacecraft formation flight, capture, and orbital robotics.
In Aerospace Conference, 2016 IEEE, pages 1–14. IEEE, 2016.

[142] Mark Yim, Kimon Roufas, David Duff, Ying Zhang, Craig Eldershaw, and Sam
Homans. Modular reconfigurable robots in space applications. Autonomous Robots,
14(2-3):225–237, 2003.

[143] Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll, Hod Lipson, Eric
Klavins, and Gregory S Chirikjian. Modular self-reconfigurable robot systems. IEEE
Robotics & Automation Magazine, 14(1):43–52, 2007.

[144] Jingjin Yu, Soon-Jo Chung, and Petros G Voulgaris. Target assignment in robotic net-
works: Distance optimality guarantees and hierarchical strategies. IEEE Transactions
on Automatic Control, 60(2):327–341, 2015.

[145] Richard Zappulla, Josep Virgili-Llop, Costantinos Zagaris, Hyeongjun Park, and Mar-
cello Romano. Dynamic air-bearing hardware-in-the-loop testbed to experimentally
evaluate autonomous spacecraft proximity maneuvers. Journal of Spacecraft and Rock-
ets, 54(4):825–839, 2017.

[146] Victor Zykov, Andrew Chan, and Hod Lipson. Molecubes: An open-source modular
robotics kit. In IROS-2007 Self-Reconfigurable Robotics Workshop, pages 3–6, 2007.

167

Appendix A

Tether Based Docking Dynamics

Y

Y

X

X

Figure A.1: Coordinate frames of Parent spacecraft with a tethered child.

M(θ, `)


φ̈

θ̈

῭

 dx+ C(φ̇, θ̇, ˙̀, φ, θ, `)


φ̇

θ̇

˙̀

 dx+H(θ̇, ξ̇, ˙̀) = τ (A.1)

168

M(θ, `) =


mc`

2 + 2mc``p cos θ +mc`
2
p + Iz mc` (`+ `p cos θ) mc`p sin θ

mc` (`+ `p cos θ) mc`
2 0

mc`p sin θ 0 mc

 (A.2a)

C(φ̇, θ̇, ˙̀, θ, `) =


c11 c12 c13

c21 c22 c23

c31 c32 0

 (A.2b)

H(φ̇, θ̇, ˙̀, θ, `) =


−mc

(
2 ˙̀(`+ `p cos θ)(φ̇+ θ̇)− θ̇2``p sin θ − 2φ̇θ̇``p sin θ

)
−mc(2 ˙̀φ̇`+ 2 ˙̀θ̇`+ ˙̀φ̇`p cos θ − φ̇θ̇``p sin θ)

−φ̇θ̇`pmc cos θ

 (A.2c)

τ =

[
τZ 0 uL

]T
(A.2d)

c11 = ˙̀(`mc + `pmc cos θ)− θ̇``pmc sin θ;

c12 = ˙̀(`mc + `pmc cos θ)− φ̇``pmc sin θ − θ̇``pmc sin θ;

c13 = φ̇(`mc + `pmc cos θ) + θ̇(`mc + `pmc cos θ);

c21 = ˙̀((`mc)/2 + (mc(`+ `p cos θ))/2− (`pmc cos θ)/2) + φ̇``pmc sin θ;

c22 = ˙̀`mc;

c23 = φ̇((`mc)/2 + (mc(`+ `p cos θ))/2− (`pmc cos θ)/2) + θ̇`mc;

c31 = −φ̇(`mc + `pmc cos θ)− θ̇`mc;

c32 = −φ̇((`mc)/2 + (mc(`+ `p cos θ))/2− (`pmc cos θ)/2)− θ̇`mc;

(A.3)

169

Appendix B

Docking Experiment Analysis Tables

Test
Initial
Separation
Distance [m]

Final
Relative
Velocity
[mm/sec]

Docking
Time
[sec]

Total
Firing
Time
[sec]

1 1.99 0.56 61.00 31.79
2 4.00 -0.34 92.00 52.61
3 4.49 2.00 97.50 52.12
4 5.50 0.88 107.50 60.41
5 5.46 0.22 107.50 46.66
6 5.42 0.17 107.50 68.17
7 5.38 0.63 78.00 43.20
8 5.38 0.63 78.00 43.20
9 4.81 0.34 101.00 86.59
10 2.17 0.24 65.50 44.41
11 3.25 -1.92 81.50 70.86
12 4.50 0.66 96.50 67.39
13 4.50 0.66 96.50 67.39
14 1.06 -0.95 39.50 23.25

Table B.1: Thruster-based Docking - Test Results

170

Test

Initial
Separation
Distance
[m]

Final
Relative
Velocity
[mm/sec]

Docking
Time
[sec]

Energy
[Wh]

1 0.39 0.689 73.50 0.97
2 0.40 4.349 73.60 0.98
3 0.39 -1.911 73.20 0.95
4 0.39 7.093 73.50 0.97
5 0.38 0.000 72.60 0.92
6 0.38 6.867 72.29 0.95
7 0.40 4.103 73.90 1.00
8 0.40 -0.226 73.90 0.97
9 0.47 0.016 80.40 1.13
10 0.39 -0.651 72.80 0.95
11 0.39 0.689 73.50 0.85
12 0.40 0.065 74.10 0.90
13 0.41 0.003 74.90 0.86
14 0.55 1.019 87.10 1.34

Table B.2: Electromagnet-based Docking - Test Results

171

Appendix C

Experiment Videos

Electromagnet-based Docking:

https://youtu.be/q2t74AjeQE8

Thruster-based Docking:

https://www.youtube.com/watch?v=-k0IJelQVjk

SOCA Validation:

https://www.youtube.com/watch?v=62cngDR1k-E

172

https://youtu.be/q2t74AjeQE8
https://www.youtube.com/watch?v=-k0IJelQVjk
https://www.youtube.com/watch?v=62cngDR1k-E

	List of Tables
	List of Figures
	List of Abbreviations
	List of Symbols
	Chapter 1 Introduction
	Literature Review
	Main Contributions
	Organization

	Chapter 2 Multi-Spacecraft Testbed for Autonomy Research Setup
	Motivation
	Overview of the Facility
	M-STAR Spacecraft Simulator Hardware
	Translation Stage.
	Attitude Stage.
	M-STAR Software Architecture

	Dynamics and Control
	Attitude Kinematics
	Nonlinear Dynamic Model
	Control Design for Full Nonlinear Dynamics
	Control Implementation
	Thruster Model and Influence Matrix
	Reaction Wheel Configuration and Model
	Hardware Implementation of the Hierarchical Control Law

	Experiments
	Results

	Chapter Summary

	Chapter 3 Optimal Guidance and Control with Nonlinear Dynamics Constraints
	 Problem Statement
	Nonlinear Optimal Control Problem

	Convex Optimization with Direct Transcription of Dynamics
	Non-Convex Optimization Problem Using Discretization
	Sequential Convex Programming with Linearized Constraints
	Sequential Convex Programming with Nonlinear Dynamics Constraints

	Convergence and Optimality of SCPn
	Simulation Results
	Chapter Summary

	Chapter 4 In-Orbit Self-Assembly of a Heterogeneous Swarm
	Heterogeneous Target Assignment
	Heterogeneous Docking Components
	Shape Parameters
	Assignment with Conflict Resolution for Heterogeneous Agents

	SOCA Problem Statements and Algorithms
	Problem Statement
	Optimal SOCA Trajectory Generation
	MPC-SCPn Nonlinear Dynamics Correction

	Simulation of 3D Spacecraft Dynamics with Attitude
	Simulation Results

	3DOF Experiment on Omni-Directional Wheeled Robots and M-STAR Spacecraft Simulators
	Omni-Wheeled Robot Experimental Validation
	In-Orbit Construction Experiment on the M-STARs

	Control Allocation for Self-Assembling Structures
	 Simulation Results
	Incorporation Into SOCA

	Chapter Summary

	Chapter 5 Autonomous Spacecraft Docking
	Tether-Based Autonomous Docking
	Sample Mission Overview
	Initial Proximity Maneuver
	Berthing Maneuver

	Electromagnetic and Thruster-based Docking
	Electromagnet-based Docking
	Thruster-based Docking
	Docking Port Design

	Control
	Trajectory Planner
	Electromagnet-Based Docking
	Thruster-Based Docking

	Results
	Electromagnet-Based Docking
	Thruster-Based Docking
	Experimental Results - Comparison

	Conclusion

	Chapter 6 Fast Motion Planning
	Problem Statement
	Continuous-time Nonlinear Optimal Motion Planning Problem
	Discrete-time Nonlinear Optimal Motion Planning Problem

	Spherical Expansion and Sequential Convex Programming (SE–SCP) Algorithm
	Initialization Step
	Spherical Expansion Step
	Sequential Convex Programming Step
	Nonlinear Dynamics in SE–SCP

	Numerical and Experimental Results
	Numerical Simulations with Spacecraft in Debris Field
	Experimental Results with Quadrotor
	Comparison with RRT and PRM

	Chapter Summary

	Chapter 7 Conclusion and Future Work
	Conclusion
	Future Work

	References
	Appendix A Tether Based Docking Dynamics
	Appendix B Docking Experiment Analysis Tables
	Appendix C Experiment Videos

