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Abstract

This dissertation discusses some applications of conformal field theories (CFTs) in topological phases of

matter.

The first part is devoted to a discussion of coupled wire constructions of some novel quantum Hall systems.

Through a theoretical coupled wire model, we construct strongly correlated electronic integer quantum Hall

states with filling factor ν = 16. The edge state is a bosonic chiral (E8)1 CFT, which is closely related to

topological paramagnets in (3+1)d. As a distinguishing feature, these states support electric and thermal

Hall transport violating the Wiedemann-Franz law as (κxy/σxy) /
[(
π2k2

BT
)
/3e2] < 1. We further construct

two descendant non-Abelian quantum Hall states at filling ν = 8, each carrying bosonic chiral (G2)1 or (F4)1

edge theories, and hosting Fibonacci anyonic excitations in the bulk. Finally, we discover a new notion of

particle-hole conjugation based on the E8 state that relates the G2 and F4 Fibonacci states, which is

reminiscent of similar physics in half-filled Landau level.

The second part is focused on the surface topological orders of 3D bulk topological systems. Symmetry-

protected and symmetry-enriched topological (SPT/SET) phases in three dimensions are quantum systems

that support non-trivial two-dimensional surface states. These surface states develop finite excitation energy

gaps when the relevant symmetries are broken. On the other hand, one-dimensional gapless modes can

populate along interfaces that separate adjacent gapped surface domains with distinct symmetry-breaking

orders. A surface strip pattern in general reduces the low-energy SPT/SET surface degrees of freedom onto

a 2D array of gapless 1D channels. These channels can be coupled to one another by quasiparticle tunneling,

and these inter-wire interactions collectively provide an effective description of the surface state. In this

part, we study a general class of symmetry-preserving or breaking SPT/SET surface states that admit finite

excitation energy gaps and Abelian topological orders via the coupled wire construction. In particular, we

focus on the prototype Abelian surface topological orders that fall under the ADE classification of simply-

laced Lie algebras. We also elaborate on the emergent symmetry and duality properties of the coupled wire

models.

The third part is to discuss the relation between the conformal boundary state and (2+1)d SPT phases.
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We propose a diagnostic tool for detecting nontrivial symmetry-protected topological (SPT) phases protected

by a symmetry group G in 2 + 1 dimensions. Our method is based on directly studying the 1 + 1-dimensional

anomalous edge conformal field theory (CFT) of SPT phases. We claim that if the CFT is the edge theory

of an SPT phase, then there must be an obstruction to cutting it open. This obstruction manifests as

the non-existence of boundary states in the CFT that preserves both the conformal symmetry and the

global symmetry G. We discuss the relation between edgeability and gappability in the presence of G. We

study several examples including time-reversal symmetric topological insulators, ZN symmetric bosonic SPT

phases, and Z2 × Z2 symmetric topological superconductors.
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Chapter 1

Introduction

Since the discovery of topological insulators (TIs) and superconductors (TSCs) over the past decade [5, 6],

topological phases of matter have drawn the attention of both condensed matter and high energy physicists.

They are attractive not only because they present exotic properties in theory, but also because some of these

phenomena can be verified in materials. They introduce new frontiers in previously well-studied physical

concepts, such as quantum phase transitions in condensed matter physics and quantum anomalies in high

energy physics.

Topological phases are quantum phases that do not adiabatically connect to trivial ones. The ground

states of these phases are quantum mechanically entangled to an extent that any deformation path connecting

a topological state and a trivial state must go through a quantum phase transition where the bulk excitation

energy gap closes. For example, a topological insulating phase must be separated from a normal insulating

phase by a gapless Dirac/Weyl (semi)metallic phase or critical point [7]. This is intimately related to the

fact that, generically in three dimensional real space, a topological material and a normal one are distinctly

separated by an anomalous two dimensional surface. For example, the gapless Dirac surface state provides a

definitive measurable signature of a topological insulator [8]. Some topological phases require the presence

of symmetries. For example, topological insulators rely on time reversal symmetry, which protects the

Kramers degeneracy of the surface Dirac point, and charge conservation, which disallows pairing. In general,

symmetries provide a finer classification of topological phases by forbidding deformation paths that violate

them. These phases are referred to as symmetry-protected or symmetry-enriched topological (SPT/SET)

phases depending on whether the 3D bulk material supports integral or fractional quasiparticle excitations.

On the other hand, conformal field theories (CFTs) have wide applications in different fields, ranging from

mathematical physics [9, 10], high energy physics [11], to condensed matter physics.
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Before we discuss specific topics, I would like to introduce some background information about the

development of topological systems.

Quantum Hall systems

Quantum Hall systems provide one of the biggest platforms for topological phases of matter. Since the

discoveries more than 30 years ago of the integer quantum Hall effect (IQHE) [12] and fractional quantum

Hall effect (FQHE) [13] in experiments, substantial theoretical and experimental work has appeared. There

are many excellent references on QHE, to list a few, Ref. [14, 15, 16]. Fig. 1.1,1.2 below show some of the

characteristic experimental results of QHE.

Figure 1.1: Adopted from Ref. [1]. Some experimental setup and data for IQHE.

Figure 1.2: Adopted from Ref. [2]. Some experimental setup and data for FQHE. The sample for this
experiment is a 500 Å wide modulation-doped GaAs/AlGaAs quantum well of size about 5 mm × 5 mm.

2



There are some characteristic properties for QHE. For instance, the IQHE regime exhibits:

• integral filling factors;

• disorder, no interactions;

• finite energy gap for excitations;

• local excitations in the bulk and local gapless edge modes.

Fig. 1.3 shows some characteristics of IQHE.

Figure 1.3: Adopted from Ref. [3]. (a) Landau levels with the finite size effect. The intersections between
the Fermi energies and the Landau levels represent the chiral modes on the boundary. (b) Classical picture
of the cyclotron motion of electrons in the bulk and on the edge. l0 is the magnetic length. (Illustration:
Alan Stonebraker/stonebrakerdesignworks.com).

Correspondingly, the FQHE regime exhibits:

• fractional rational filling factors;

• disorder and interactions;

• finite energy gap for excitations;

• anyonic excitations in the bulk and anyonic gapless edge modes.

Ref. [17] has a nice effective field theory description of QHE, in terms of K-matirx formalism and chiral

Luttinger liquids.

In this dissertation, we will introduce some new quantum Hall systems that are combinations of IQHE

and FQHE in the sense that they have properties from both IQHE and FQHE. For instance, these new states

have integer filling factors but they are intrinsically strongly interacting. Detailed constructions and analysis

will be presented in Chapter 2 with coupled wire models, which is introduced in the following subsection.
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Coupled wire construction

The coupled wire construction was first introduced in Ref. [18] to study the Abelian fractional quantum Hall

effect (FQHE). The basic idea is to start from arrays of 1D quantum wires aligned parallel on the 2D plane,

which is shown in Fig. 1.4 below. The magnetic field is turned on perpendicular to the plane. Then each wire

is described by a Luttinger liquid Hamiltonian and the interwire gapping interactions are turned on. The

result of this setup is that there is a gapped 2D bulk and 1D gapless modes on the boundary wires, which

describe precisely the same topological properties of the corresponding FQHE, including the edge states and

bulk quasiparticle excitations. The coupled wire construction was later generalized to non-Abelian FQHE

in Ref. [4] and other (2+1)D systems, such as dualities [19, 20], surface topological orders [21, 22, 23] and

(3+1)D systems like Dirac semimetals [24].

j j+1

kF,j kF,j+1 kF,j+1kF,j
L R RL

x

y

z

kx

E

EF

B
(a)

(b)

Figure 1.4: Adopted from Ref. [4]. (a) 1D array of quantum wires placed on the 2D plane. The magnetic
field is perpendicular to the plane. (b) The interwire and intrawire scattering processes at some fractional
filling factor.

The benefit of the coupled wire construction is that it has the desirable property that the Hamiltonian of

the system can be written down explicitly with the microscopic degrees of freedom of the system, compared

with the pure field theoretic analysis. We can construct the interactions and the excitations explicitly. Their

properties can be studied with conformal field theory (CFT), which is a powerful tool in discussing 2D

spacetime systems. The bulk-boundary correspondence is manifest in this concrete construction.

In this dissertation, in addition to the construction of novel quantum Hall systems, we will discuss

surface topological orders (STOs) of some topological systems with the coupled wire construction. These

STOs can be constructed from current algebras of ADE classifications in Lie algebra language. Microscopic

Hamiltonians, ground states, quasiparticle excitations and duality properties will be detailed in Chapter 3.
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Symmetries in topological systems

A symmetry is an important part of a topological system. One of the most famous examples is the time-

reversal invariant topological insulators in both 2D [25, 26] and 3D [27, 28, 29] systems. The nontrivial phase

is protected by both time-reversal and U(1) symmetries. If we break either of these symmetries explicitly or

spontaneously, the resulting phase can be adiabatically connected to a trivial phase. For fermion systems, at

the free fermion level, topological phases have been classified in different spacetime dimensions according to

Altland-Zirnbauer (AZ) ten-fold symmetry classes, based on time-reversal symmetry, particle-hole symmetry

and chiral symmetry, in physics language. [30, 31, 32] After that some more symmetries are added into the

classification scheme. More details can be found in Ref. [33]. However, when interactions are taken into

account, the classification would collapse for some cases. [34, 35] The reduction of the classification in the

presence of interactions was conjectured correctly to be related with global anomalies in Ref. [36] and studied

systematically in Ref. [37]. During the same period of time, a new concept was born, namely, “symmetry

protected topological phases” or “SPT phases” in short, which is more relevant to this dissertation. SPT

phases have been discussed for both bosonic and fermionic systems. There are some characteristic properties

for SPT phases, for instance, in d spatial dimensions,

• the system has a finite energy gap for all excitations in the bulk;

• the system is invariant under some symmetry group G that is neither explicitly nor spontaneously

broken;

• there is a unique ground state on all closed d-manifolds for a particular topological phase;

• Two inequivalent phases cannot be adiabatically connected without breaking the symmetry G or closing

the energy gap;

• if there is a nonempty boundary, the boundary theory cannot be a trivial gapped theory.

Here a trivial state means a product state or an atomic insulator. SPT phases were first discussed for

1D Haldane spin chains in Ref. [38]. Then they were generalized to different dimensions and classified by

different schemes, like group cohomology [39], cobordism group [40], K-matrix formalism [41], to list a few.

The study of SPT phases deepens our understanding between condensed matter physics and high energy

physics, especially the relation between quantum phases and quantum anomalies.

In this dissertation, we analyze and classify SPT phases in (2+1)D systems from the perspective of the

boundary conformal field theory (BCFT). The basic idea is to start from the (1+1)D CFT with a well-defined

boundary state. Then we will check the consistency between the global symmetry and the Cardy condition,

5



which is a consistency requirement for BCFT. Then we use the bulk-boundary correspondence to diagnose

and classify the (2+1)D SPT phases. Details will be presented in Chapter 4.

To summarize the Introduction, we discuss some applications of CFTs on topological phases of matter.

The structure of the dissertation is as follows. Chapter 2 introduces the coupled wire construction of some

novel quantum Hall systems and their interesting properties. Chapter 3 continues the coupled wire model

on the surface of (3+1)D topological systems and studies their surface topological orders (STOs). Chapter 4

discusses the detection and classification of SPT phases with boundary conformal field theories (BCFTs). We

conclude the dissertation and discuss some of the future work in Chapter 5. Some details of the calculations

and background knowledge are relegated in Appendix A and B.
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Chapter 2

Coupled wire construction of Quantum Hall

systems

This chapter is largely based on Ref. [42]. Ordinarily, the indistinguishability of quantum particles is em-

bodied by either bosonic or fermionic statistics. In two dimensions, however, the complexity of quantum

many-body interference phenomena is brought to a new level of depth as anyon statistics becomes a possi-

bility [43, 44, 45]. The magnetic-quenched kinetic energy of the lowest Landau level in a (2+1)D electron

gas makes fractional quantum Hall fluids the paradigmatic anyonic system [14]. The remaining Coulomb

interactions establish long-range entanglement in these phases, where topological order develops with gapless

charge and energy transporting edge-modes and whose bulk excitations display anyonic behavior.

While a sensitive competition among phases is ubiquitous in fractional quantum Hall systems, less diver-

sity is discussed at integral quantum Hall (IQH) plateaus, prompting the question: can interactions drive

topological phase transitions in Hall fluids at integral magnetic filling fractions? Here we answer this query

in the affirmative, providing explicit examples based on exactly solvable coupled-wire constructions [18] and

showing that such transitions are traceable by changes in the Wiedemann-Franz law [46].

To direct our construction towards a noteworthy scenario, we take the point of view that while all anyons

are remarkable, not all anyons are equally remarkable. The class of non-Abelian anyons is characterized

by a degenerate Hilbert space which can be navigated by adiabatic particle exchanges. These (braiding)

operations offer a promising approach to encode and manipulate gates for quantum information. With

such goal in mind, one of the most distinguished is the τ anyon of Fibonacci topological order [45, 47],

obeying the fusion rule τ ×τ = I+τ and offering a venue for universal (braiding-based) topological quantum

computing. Previous attempts at building models for Fibonacci topological order included the ν = 12/5
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fractional quantum Hall phase of Read and Rezayi [48], a trench construction between ν = 2/3 fractional

quantum Hall and superconducting states [49], and a recent interacting Majorana model based on a tricritical

Ising coset construction [50]. Contrasting with these previous proposals, we set here to build a model for

Fibonacci order in homogeneous systems (no heterostructures), in terms of regular complex fermions and,

most importantly, at integral magnetic filling fractions.

Fibonacci topological order can be found in Wess-Zumino-Witten (WZW) conformal field theories (CFTs)

based on the Lie groups G2 and F4 at level 1 [51, 49] (c.f. Appendix A). Remarkably, an embedding exists

from (G2)1× (F4)1 into a larger (E8)1 WZW CFT [52]. The E8 group corresponds to the largest exceptional

Lie algebra [53] and is the starting point of our discussion. Due to its internal algebraic structure 1, (E8)1

only corresponds to trivial topological order, not supporting fractional excitations, similar to IQH plateaus.

This suggests the existence of an incompressible fluid, here constructed and dubbed the E8 quantum Hall

state, that competes with some IQH phase. Indeed, the E8 quantum Hall state is found to develop at filling

fraction ν = 16, and its (E8)1 edge CFT displays a chiral central charge cE8 = 8 [54, 55, 11] with even-charged

bosonic edge modes. It is set apart from the standard ν = 16 IQH liquid with c = 16 and fermionic edge

modes. Finally, explicitly building the mentioned conformal embedding, we partition the E8 state into two

new G2 and F4 quantum Hall states with chiral central charges cG2 = 14/5 and cF4 = 26/5. These display

topological order while remaining at integer filling fraction ν = 8, with even charged edge modes. We end

up by showing that these two Fibonacci phases are related by an unconventional particle-hole conjugation

based on an unifying description coming from the Lie group E8.

2.1 Novel quantum Hall state

2.1.1 E8 quantum Hall state

We begin with an array of electron wire bundles (Fig. 2.1 black lines) with vertical positions y = dy, d being

their displacement and y an integer label. Each bundle contains N wires carrying, at the Fermi level, left

(L) and right (R) moving fermions whose annihilation operators admit a bosonized representation

cσya (x) ∼ exp
[
i
(
Φσya (x) + kσyax

)]
, (2.1)

forming a U(N)1 WZW theory. Here, a = 1, . . . , N indexes the wires, x is the coordinate along them,

σ = R,L = +,− is the propagation direction and kσya is the Fermi momentum of each channel. The bosonic
1namely, the minimal even unimodularity of its root lattice
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11×Dirac electrons =U(11)

E8

y+1

y−1

y

y−2

B

3×Dirac fermions = U(3)

1

1

at level 1

E8

Hf
intra

HE8

inter

Figure 2.1: Coupled-wire model of the E8 quantum Hall state at filling ν = 16. Black lines represent
bundles with 11 electron wires, each carrying a counter-propagating pair of Dirac fermions, in the presence
of a magnetic flux (green). Yellow boxes represent an unimodular basis transformation U (det(U) = 1)
restructuring U(11)1 → U(3)1 × (E8)1. The recombined fermionic U(3)1 triplets and the bosonic (E8)1 are
coupled through intra-bundle and inter-bundle backscatteings Hintra and Hinter defined in (2.9) and (2.10).
The 2D bulk is fully gapped leaving just the chiral (E8)1 modes at the edges.

variables obey the commutation relations

[
∂xΦσya (x) ,Φσ

′

y′a′ (x′)
]

= 2πiσδσσ
′
δaa′δyy′δ (x − x′) . (2.2)

To couple the fermions of different bundles and introduce a finite excitation energy gap, while leaving

behind gapless chiral (E8)1 edges, two ingredients are necessary: (i) a basis transformation that extracts the

(E8)1 degrees of freedom from U(N)1 (Fig. 2.1 yellow boxes) and (ii) backscattering interactions between L-

and R-movers of different bundles to gap out all low energy channels throughout the bulk (Fig. 2.1 dashed

arcs).

Regarding ingredient (i), it suffices to generate the eight simple roots basis of the E8 root lattice. These

assume, under bosonization, the general ansatz [54]

[EE8 ]σyαI ∼ exp
[
i
(
Φ̃σyI (x) + k̃σyIx

)]
, I = 1, ..., 8. (2.3)
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Here αI is a simple root vector of E8 so that

[
∂xΦ̃σyI(x), Φ̃σ

′

y′I′(x′)
]

= 2πiσδσσ
′
KE8
II′δyy′δ(x − x′), (2.4)

and KE8
II′ = αI ·αI′ is the Cartan matrix of E8. The challenge here is to represent the E8 roots as products

of electron operators, so that their bosonized variables are related to the electronic ones by an integer-valued

transformation Φ̃σyI = Uσσ
′

Ia Φσ′ya. As a consistency condition from (3.5) and (2.4), σ′′Uσσ′′Ia Uσ
′σ′′

I′a = σδσσ
′
KE8
II′ .

From (2.1), the E8 roots momenta and charges are related to the fermionic ones similarly: k̃σyI = Uσσ
′

Ia kσ
′

ya

and q̃σI = Uσσ
′

Ia qσ
′

a , respectively. Such a basis transformation exists, but is not unique, and requires, in

particular, N > 8 wires. To fix a solution, we demand the extra modes to correspond to a trivial fermionic

sector. This way, one of the simplest constructions contains N = 11 wires, decomposing into a E8 and three

U(1) sectors 2. In practice, we write

U =

U++ U+−

U−+ U−−

 (2.5)

as unimodular matrix, decomposing UηUT = KE8 ⊕ I3 ⊕ (−KE8) ⊕ (−I3), where ησσ′ = σδσσ
′ . For our

particular construction,
2In fact, a solution exists for N = 9 wires also, where the E8 quantum Hall phase develops at filling fraction ν = 32, higher

than our present solution. Also, the Dynkin labels 4, 5, 6 and 8 in this construction are neutral, leaving an SO(8) subsector
with trivial x-momenta. A main consequence is that the embedding of G2 currents also carry trivial momenta, and Fibonacci
phases can never be stabilized.
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(U++|U+−) = (U−−|U−+) = (2.6)

−1 −1 −1 −1

1 1

−1 1

−1 1

−1 −1

1 1

−1 1

−1 1 1 1 1 −1

1 1 1

3 −5 −2 −1 −2 2 2 2 −2 2 2

2 1 −1 −1 −1 1 −1 −1 −1 3



where the rows and columns of Uσσ′ are respectively labeled by I, a = 1, . . . , 11. Rows I = 1 to 8 associate

to the simple roots of E8, whose charge assignment is (q̃I=1,...,8) = (−4, 2, 0, 0,−2, 2, 0, 2). Rows 9 to 11

correspond to recombined (spin |h| = 1/2) Dirac fermions fσyn ∼ exp
[
iUσσ

′

I=8+n,a(Φσ′ya + kσ
′

yax)
]
, for n = 1, 2, 3,

that generate U(3)1. They are also integral products of the original electrons and carry odd electric charges

(q̃n=1,..,3) = (3, 1, 1).

Returning now to ingredient (ii), electron backscattering interactions generally require momentum com-

mensurability to stabilize oscillatory factors [56]. To tune these phases, and break time-reversal as necessary

in a quantum Hall fluid, we introduce a magnetic field perpendicular to the system (Fig. 2.1 green crosses).

The Fermi momenta of the electron channels become spatially dependent as

kσya = eB

~c
y + σkF,a, (2.7)

according to the Lorenz gauge Ax = −By and where kF,a are the bare Fermi momenta in the absence of

field. The associated magnetic filling fraction can be expressed as

ν =
1

2π
∑
a 2kF,a

Bd/φ0
= ~c
eBd

∑
a

2kF,a, (2.8)

where φ0 = hc/e is the magnetic flux quantum.
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At this point we introduce the wire-coupling interactions

Hy,fintra = uintra

3∑
n=1

fRyn
†
fLyn + h.c., (2.9)

Hy+1/2,E8
inter = uinter

8∑
I=1

[EE8 ]Ry,αI
†

[EE8 ]Ly+1,αI +H.c.. (2.10)

From (2.3), and the corresponding bosonization of fσyn, (2.9) and (2.10) carry the expected momentum-

dependent oscillating factors eikx which average out in the thermodynamic limit. Demanding the vanishing

of these oscillations, i.e. requiring the backscattering interactions to conserve momentum, fixes a unique

choice of ratios between the bare kF,a. Most remarkably, this identically fixes ν = 16 (c.f.Appendix A).

Under the conditions above, and in a periodic geometry with Nl bundles, the intra- and inter-bundle

backscattering Hamiltonians introduce 11×Nl independent sine-Gordon terms satisfying the Haldane’s nul-

lity condition [57]. At strong coupling, the coupled-wire model therefore possesses a finite energy excitation

gap.

The E8 quantum Hall phase carries distinctive phenomenology. Opening the periodic boundary condi-

tions leaves behind, at low energies, eight chiral E8 boundary modes along the top and bottom edges, as

illustrated in Fig. 2.1. As consequence of the discrepancy between the magnetic filling factor and the number

of E8 edge modes, we predict an unconventional Wiedemann-Franz law [46] for the E8 quantum Hall phase.

A general set of gapless edge modes, as in regular IQH states, carries the differential thermal and electric

conductances (or, equivalently, Hall conductances) [58, 59, 60, 61, 62]

κxy = c
π2k2

B

3h T, σxy = ν
e2

h
, (2.11)

where e is the electric charge, h is Planck’s constant, kB is Boltzmann constant, c is the chiral central charge

and T is the temperature. For a standard IQH state, c = ν identic to the number of chiral Dirac electron

edge channels. A deviation away from c/ν = 1 indicates the onset of a strongly-correlated many-body

phase. Here, the E8 quantum Hall phase carries 8 chiral edge bosons and therefore cE8 = 8, while ν = 16 is

necessary to stabilize the phase. This leads to a modified Wiedemann-Franz law, where cE8/ν = 1/2.

We note in passing that the E8 state is topologically related to a thin slab of a 3D efmf topological

paramagnet with time-reversal symmetry-breaking top and bottom surfaces [63, 64]. Like a topological

insulator, hosting a 1D chiral Dirac channel with (c, ν) = ±(1, 1) along a magnetic surface domain wall, the

efmf topological paramagnet supports a neutral chiral E8 interface with (c, ν) = ±(8, 0) between adjacent

time-reversal breaking surface domains with opposite magnetic orientations [6, 5, 65, 33]. Comparing (c, ν) =

12



y

y+1

y−1
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HG2

intra

HF4

inter

G2 at level 1F4 at level 1
F4

Hf
intra

Figure 2.2: The coupled wire model (2.13) for the F4 Fibonacci quantum Hall state at filling ν = 8.

(8, 16) = (16, 16) − (8, 0), the charged edge modes of the E8 quantum Hall state are therefore equivalent

to the neutral E8 topological paramagnet surface interface up to 16 chiral Dirac channels, which exists on

the edge of the conventional ν = 16 IQH state. In fact, the matrices KE8 and I16 ⊕ (−KE8) are related

by a charge preserving stable equivalence [66]. Finally, the unimodularity of the E8 lattice entails that all

primary fields of the edge E8 CFT are integral products of the simple roots (2.3), which are even products

of electron operators. Hence, ignoring any edge reconstruction, the edge modes of the E8 state support only

evenly charged bosonic gapless excitations.

2.1.2 G2 and F4 Fibonacci quantum Hall states

The E8 state constructed above serves as a stepping stone for building a coupled wires model of phases

carrying (G2)1 or (F4)1 WZW CFTs at the edges. These correspond to phases with Fibonacci topological

order. To build these models, we proceed with a conformal embedding of G2×F4 into E8, guaranteed by the

relationship among central charges cE8 = 8 = 14/5 + 26/5 = cG2 + cF4 [54, 52]. The conformal embedding

is carried out by an explicit choice of the generators of F4 and G2, denoted by [EF4 ]σy,α and [EG2 ]σy,α, where

α are vectors in the F4 or G2 root lattices ∆F4 or ∆G2 , respectively. This embedding is also not unique, and

is chosen by a particular decomposition SO(7)×SO(9) ⊆ SO(16) ⊆ E8 that relies on refermionizing the E8

generators into bilinear products of 8 non-local Dirac fermions. Subsequently, a specific choice is made to

embed G2 into SO(7) and extend SO(9) into F4. This construction is presented in detail in Appendix A. The

found operators are linear combinations of the E8 generators, which are even products of electron operators,

and therefore carry even electric charge and spin 1.

Similar to the E8 state, the coupled wire models for the F4 and the G2 quantum Hall phases are based

on an array of 11-wire bundles. Fig. 2.2 shows the schematics of the backscattering terms in the F4 quantum
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Hall Hamiltonian. The G2 state can be described using a similar diagram by switching the roles of G2

and F4. The models are written with the intra-bundle backscattering (2.9), which leaves behind a counter-

propagating pair of E8 modes per bundle. The G = F4 or G2 currents are then dimerized within or between

bundles according to

Hy,Gintra = uintra
∑
α∈∆G

[EG ]Ry,α
†

[EG ]Ly,α + h.c.

Hy+1/2,G
inter = uinter

∑
α∈∆G

[EG ]Ry,α
†

[EG ]Ly+1,α + h.c.

(2.12)

The F4 and G2 quantum Hall states consist, respectively, of the ground states of the following models,

H[F4] =
Nl∑
y=1

(
Hy,fintra +Hy,G2

intra

)
+
Nl−1∑
y=1
Hy+1/2,F4

inter , (2.13)

H[G2] =
Nl∑
y=1

(
Hy,fintra +Hy,F4

intra

)
+
Nl−1∑
y=1
Hy+1/2,G2

inter . (2.14)

The momentum-conservation conditions have to be reimplemented to the many-body interactions in ei-

ther (2.13) or (2.14). Each phase is stabilized by its own distribution of electronic momenta kσya (c.f.Appendix A),

but both have the same magnetic filling ν = 8. At strong coupling, H[F4] (H[G2]) gives rise to a finite ex-

citation energy gap in the bulk, but leaves behind a gapless chiral F4 (G2) WZW CFT at level 1 at the

boundary. As a consequence, the Wiedemann-Franz law is again unconventional in these phases, displaying

cF4/ν = 13/20 and cG2/ν = 7/20.

According to the bulk-boundary correspondence, the anyon content of the F4 and G2 phases can be read

from their boundary theories. In addition to the vacuum 1, each edge carries a Fibonacci primary field

τ̄ for (F4)1 and τ for (G2)1, with conformal scaling dimensions 3/5 and 2/5 respectively. Each consists

of a collection of operators, known as a super-selection sector, that corresponds to the 26 dimensional (7

dimensional) fundamental representation of F4 (G2) that rotates under the WZW algebra. Our construction

allows an explicit parafermionic representation of these fields (c.f. Appendix A). Here, we notice that since the

current operators [EF4 ]α are even combinations of electrons, the Fibonacci operators within a super-sector

differ from each other by pairs of electrons, and therefore correspond to the same anyon type. Moreover, they

all have even electric charge and therefore the gapless chiral edge CFT only supports even charge low-energy

excitations. An analogous analysis follows for the G2 case.
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2.2 Particle-hole conjugation

The G2 and F4 Fibonacci states at ν = 8 half-fill the E8 quantum Hall state, which has ν = 16. Re-

markably, they are related under a notion of particle-hole (PH) conjugation that is based on E8 bosons

instead of electrons. A similar generalization of PH symmetry has been proposed for parton quantum Hall

states [67]. The PH conjugation manifests in the edge CFT as the coset identities (G2)1 = (E8)1/(F4)1

and (F4)1 = (E8)1/(G2)1, which reflect the equality TG2 + TF4 = TE8 between energy-momentum tensors

(c.f. Appendix A). The coset E8/G can be understood as the subtraction of the WZW sub-algebra G from

E8. The coset identities are direct consequences of the conformal embedding (G2)1 × (F4)1 ⊆ (E8)1.

The conventional PH symmetry of the half-filled Landau level has been studied in the coupled wire

context [19, 68, 20, 69]. Here, the E8-based PH conjugation has a microscopic description as well. It is

represented by an anti-unitary operator C that relates the E8 bosonized variables between the two Fibonacci

states

CΦ̃Ry,IC−1 = Φ̃Ly,I − qIx/2

CΦ̃Ly,IC−1 = Φ̃Ry−1,I − qIx/2
(2.15)

while leaving the recombined Dirac fermions unaltered, CfσynC−1 = fσyn. Since the E8 root structure is uni-

modular the PH conjugation (2.15) is an integral action of the fundamental electrons, CcJC−1 =
∏
J′(cJ′)

mJ
J′ ,

where mJ
J′ are integers, J, J ′ are the collections of indices y, a, σ, and the product is finite and short-ranged so

that it only involves nearest neighboring bundles |y−y′| ≤ 1. The PH conjugation switches between intra- and

inter-bundle interactions of theG2 and F4 currents, exchanging the two Fibonacci phases CH[F4]C−1 = H[G2]

and CH[G2]C−1 = H[F4]. Lastly, the coupled wire description artificially causes the PH conjugation to be

non-local. Similar to an antiferromagnetic symmerty, C2 unitarily translates the E8 currents from y to y−1.

We have some comments on the particle-hole conjugate. In general, when the chiral central charge

c ∈ 8Z, there exist some “trivial” theories, like the E8 state that we construct. [70, 71] By “trivial”, it means

that the bulk is topologically trivial, without even fermionic excitations. Let’s call it “1”. Then if there

exists some CFT ⊂ “1”, then we can obtain CFT = “1”
CFT by some particle-hole conjugation operation C.

Note that C is not unique. There can be different definitions of particle-hole conjugation. In this sense, the

particle-hole conjugate of a state is not unique unless the particle-hole operation is specified. It has been

discussed in high energy physics and mathematical physics, like string theories, monster groups, Niemeier

lattices [70, 71], although the term “particle-hole” conjugate is not used. To our understanding, they are

closely related.
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Chapter 3

Coupled wire models of surface topological or-

ders

This chapter is largely based on Ref. [72]. This chapter will not focus on the distinction between SPT and

SET, and its general results will be applicable to both situations.

The surface of an SPT/SET state can obtain a finite excitation energy gap by (a) breaking the relevant

symmetry, or (b) developing a surface topological order that supports fractional surface quasiparticle excita-

tions that are absent in the bulk. For example, the Dirac surface state of a topological insulator can acquire

a finite Dirac mass by breaking time reversal or a superconducting pairing gap by breaking charge conser-

vation. On the other hand, it can gain a many-body energy gap while preserving all symmetries. However,

the symmetric surface must carry topological order, such as the T-Pfaffian, that supports quasiparticle and

charge fractionalization [73, 74, 75, 76]. The main focus of this chapter is to develop an exactly solvable

model technique in describing a collection of prototype classes of Abelian SPT/SET surface states.

We will focus on three classes of surface states that corresponds to the ADE classification of simply-laced

Lie algebra [54]. These simple affine Lie algebras at level 1 were explored as conformal field theories that

effectively describes the 1 + 1D boundary edge states of 2 + 1D Abelian topological phases [77, 78]. In this

chapter, we discover a relationship between the ADE classification and SPT/SET surface states. The A-class

corresponds to a series of charge U(1) conserving gapped surface states that live on the symmetry breaking

boundary surfaces of topological (crystalline) insulators [79] or fractional topological insulators [80]. The

D-class corresponds to a series of superconducting gapped surface states of topological superconductors [30,

32]. The E-class corresponds to three exceptional surface states of a topological paramagnet [63, 64].

For simplicity, we only consider Abelian surface topological orders, whose quasiparticle excitations can be
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fractional but cannot support non-local quantum information storage. The non-simply-laced simple Lie

algebras in the B,C, F,G series corresponds to non-Abelian surface topological orders, and will not be

addressed in this chapter.

We will explore these correspondences using the exactly solvable coupled-wire model technique on the

surface SPTs/SETs. In general, coupled wire models may have several advantages compared with the more

conventional pure field theoretic approaches. One can write down microscopic many-body interacting Hamil-

tonians explicitly in terms of local electronic degrees of freedom. In many situations, these Hamiltonians

can be theoretically designed in a way so that they are exactly solvable and do not require a mean-field

approximation. In addition, one can also perform explicit symmetry and duality transformations on the

local fields and study the topological properties of the ground states, quasiparticle excitations as well as

their braiding statistics.

Generalizing sliding Luttinger liquid theories [81, 82, 83, 84, 85], the coupled wire construction was first

developed in Ref. [18] to study the Laughlin [86] and Haldane-Halperin hierarchy [87, 88] fractional quantum

Hall (FQH) states. Later this construction was applied to non-Abelian FQH states [4, 89, 90, 91, 92], anyon

systems [77, 93, 23], spin liquids [94], studies on duality [19] and many other areas in two spatial dimensions.

Recently, the coupled wire construction has also been applied to study three spatial dimensional Abelian

and non-Abelian topological systems [95, 96, 97], Dirac (semi)metals [24], Weyl (semi)metals [98], Dirac

superconductors [99] and other strongly correlated fractional topological systems [100].

The application of the coupled-wire technique on the surface of an SPT/SET relies on an anisotropic

reduction of low-energy surface degrees of freedom onto a 2D array of parallel 1D wires. The simplest example

were demonstrated on the surface a topological insulator [101] with a magnetic surface stripe order with

alternating magnetic orientations (see figure 3.1). The Dirac surface state becomes massive in the interior of

each magnetic strip. This leaves behind chiral Dirac channels with alternating propagating directions that

live along the interfaces between strips where the magnetic order flips. A similar construction was also applied

to the surface of topological superconductors [21]. In this chapter, instead of deriving from the 3D bulk of

an SPT/SET, we begin with the assumption that an array of chiral channels – each described by certain

conformal field theory (CFT) related to one of the ADE affine Lie algebras at level 1 – can be generated

by similar alternating symmetry-breaking stripe order on the surface of an SPT/SET. This assumption

can be verified in the three prototype examples of topological (crystalline) insulators, superconductors and

paramagnets mentioned above. On the other hand, it may also be applicable to other more exotic types of

SPT/SET such as fractional topological insulators and superconductors.

17



3D SPT

alternating symmetry

breaking surface order

alternating chiral channels

...
...

y+1

y−1

y

y−2

Hdimer

Hdimer

(a)

(c)

...
...

y+1

y−1
y−2

y

(b)

Hbc

G
GA GB

G
GB GA

Figure 3.1: Coupled wire description of a topological surface state. (a) Emergence of surface channels
through alternating symmetry breaking. (b) Gapless surface state resulting from uniform competing inter-
channel backscattering Hbc. (c) Surface gapping through channel bipartition and non-competing inter-
channel dimerization Hdimer.

3.1 Summary of results

Figure 3.1 summarizes the coupled wire models that describes the surface ADE topological orders of

SPTs/SETs. The surface state of a generic SPT/SET gains a finite excitation energy gap in the inte-

rior of each symmetry-breaking strip. The remaining gapless degrees of freedom are localized along 1D

interfaces between adjacent strips with distinct symmetry-breaking orders. The low-energy degrees of free-

dom along each interface are effectively described by a conformal field theory (CFT), or more precisely, an

affine Kac-Moody current algebra (also known as an affine Lie algebra [54] or Wess-Zumino-Witten (WZW)

theory [55, 11]). In single-body mean-field topological band insulators and superconductors, the gapless

modes along these line interfaces, or line defects in general, were completely classified [102]. Such an inter-

face host a number of copies of chiral Dirac (or Majorana) fermions that propagate in a single-direction and

is described a U(N)1 (resp. SO(N)1) current algebra. However, our surface wire construction does not only

restrict to the non-interacting case. It also applies to general SPTs/SETs such as fractional topological insu-

lators, which lead to fractional surface Parton Dirac U(N)1/ZN orbifold channels [103, 67], and topological

paramagnets, which lead to surface E8 channels [104].

In this chapter, we explore the possible surface interactions that lead to non-trivial Abelian surface topo-

logical orders regardless of whether the interactions preserve or break the relevant symmetries of the under-

lying SPT/SET. In other words, the surface topological orders are not necessarily anomalous and for some

cases, are realizable in non-holographic pure 2D systems. Instead, we are interested in surface states that fa-

cilitate non-trivial quasiparticle fractionalization through surface many-body interactions. The coupled wire
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construction provides an exact solvable description of such interactions. The oscillating symmetry-breaking

surface stripe order requires the propagating directions of the gapless interface channels to alternate. The

gapping interactions are theoretically constructed (see figure 3.1(c)) by first decomposing the current algebra

G along each interface channel into two decoupled fractional components

G ∼ GA × GB , (3.1)

and subsequently backscattering the two current components to adjacent interfaces in opposite directions

H = u
∑
y even

JyGA · J
y+1
GA + u

∑
y odd

JyGB · J
y+1
GB . (3.2)

The collection of backscattering interaction between fractional Kac-Moody currents is a 2+1D generalization

of the 1+1D AKLT spin chain [105, 106], and leads to fractional gapped quasiparticle excitations. We apply

the models to the A, D and E series, where the decomposition (3.1) is given by (3.105) for the A classes,

(3.72) for the D classes, and (3.141) for exceptional E classes.

In addition to the exactly solvable model, the coupled wire construction also provides an explicit de-

scription of symmetries and dualities. Although time reversal symmetry is necessarily broken by each chiral

channel, the array of channels with alternating propagating directions collectively recovers an emergent anti-

ferromagnetic time reversal (AFTR) symmetry, which accompanies local time reversal with a half-translation

y → y + 1. We will elaborate on how the AFTR symmetry is preserved in the D class and how it is bro-

ken in the A and E classes. On the other hand, duality is also a central theme in theoretical physics.

It is a powerful technique that relates distinct theories with no a priori common origins. For example,

the order and disorder (i.e. low and high temperature) phases of the 2D classical Ising model are related

by the Kramers-Wannier duality. [107] Duality provides a field theoretical mapping between weakly and

strongly interacting phases. Recently, there has been some work on non-supersymmetric dualities at the

field theoretical level [108, 109, 110, 111]and the concept of duality has also been established in a coupled

wire description of composite Dirac fermions [19]. In this chapter, we perform similar constructions to the

gapped surface ADE topological orders. Although it is mentioned in Introduction, Table 3.1 summarizes the

3d bulk SPT/SET phases corresponding to the ADE classifications of surface topological orders discussed

in this chapter. For a coupled wire construction of these 3d bulk systems, we will discuss it elsewhere.

The outline of this chapter is as follows. In Sec. 3.2, we explicitly demonstrate the coupled wire construc-

tion in two simple and specific examples, and elaborate on the central themes that can be systematically

carried over to the general scenarios. Sec. 3.3 briefly reviews the coupled wire derivation of the duality
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Classification 3d bulk SPT/SET Section in this chapter
Class A TCI, FTI Sec. 3.5
Class D TSC Sec. 3.4
Class E TP, E8 QH [42] Sec.3.6

Table 3.1: 3d bulk SPT/SET topological phases corresponding to the surface topological orders of ADE
classifications discussed in this chapter. TCI=topological crystalline insulator, FTI=fractional topological
insulator, TSC= topological superconductor, TP=topological paramagnet [63, 64], QH = quantum Hall.

between free Dirac fermion and QED3 proposed in Ref. [19]. Sec. 3.4 reviews the coupled wire models for

surface Majorana fermions discussed in Ref. [21] and discuss their duality properties. Next, we introduce

the topological orders and duality properties of the A and E classes systematically in Sec. 3.5 and 3.6 re-

spectively. Appendix B.1 is a brief review of the Haldane’s nullity gapping condition [112] for bosonized

sine-Gordon models. Appendix B.2 contains the relevant background information of the ADE classifications

and their representations.

3.2 General coupled wire construction of surface gapping

interactions

The coupled wire construction provided exactly solvable many-body interacting models of surface states of

symmetry protected topological (SPT) phases. Examples include the T-Pfaffian surface state of a topological

insulator [101], and the SO(3)3-like surface state of a topological superconductor [21]. These surface states

preserve the relevant symmetries of the SPT phase. The T-Pfaffian surface state [74, 73, 75, 76] preserve time-

reversal and charge conservation, while the SO(3)3-like superconducting surface preserve time-reversal [113].

They arise as a consequence of strong many-body interaction beyond the single-body mean field description.

The massless Dirac (Majorana) fermion on the surface of a topological insulator (resp. superconductor)

cannot acquire a single-body mass term without breaking the relevant symmetries. In general, the surface

state of a SPT phase can only develop a finite excitation energy gap while preserving symmetries by many-

body interactions that introduce additional surface topological order. This allows fractional quasiparticle

surface excitations to emerge that carry fractional properties, such as electric charge and exchange statistics.

For example, the T-Pfaffian surface state supports excitations with fractionally quantized electric charge in

units of e/4.

The coupled wire description of topological surface states is based on an anisotropic surface arrangement

where the relevant symmetries emerge in the long wavelength low energy limit. The surface of a topological

insulator (superconductor) can be mimicked by an array of 1D chiral Dirac (resp. Majorana) channels with
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alternating propagating directions (see figure 3.1). Electronic quasiparticles propagate continuously along

each channel and tunnel discretely from one wire to the next. The inter-channel tunneling amplitude is

suppressed by an energy barrier, which comes from symmetry breaking interactions that remove or integrate

out low-energy electronic degrees of freedom in the surface strips between channels. For example, the

symmetry breaking interactions are given by the Dirac (Majorana) mass on the surface of a topological

insulator (resp. superconductor). The symmetry breaking interactions correspond to order parameters, such

as magnetization or pairing phase. These symmetry breaking order parameters alternate from strips to strips

(see figure 3.1(a)). For example, the surface magnetization flips between adjacent strips. Consequently, the

1D interface, where the Dirac mass changes sign, bounds the chiral Dirac mode in low-energy. Similarly, the

pairing phase conjugates from one strip to the next, and therefore the interface between adjacent surface

strips hosts the chiral Majorana mode. Symmetry is restored in an “antiferromagnetic” manner because the

order parameters are conjugated by the symmetry between neighboring strips and the propagating directions

are reversed by the symmetry between neighboring channels.

The coupled wire Hamiltonian consists of the kinetic energy of each chiral channelHyKE and backscattering

coupling potentials Hy+1/2
bc between neighboring channels, where each channel is labeled by an integer y that

represents its vertical position in the array (see figure 3.1(b) and (c)). The antiferromagnetic symmetry

requires the inter-channel backscatterings to have uniform strength. In other words, symmetry forbids inter-

channel dimerization, where counter-propagating channels are pairwise coupled. Under a dimerization where

the strength of Hy+1/2
bc alternates between even and odd y, the surface state acquires a symmetry breaking

energy gap. Similar to the Su-Schrieffer-Heeger model [114], there are two topologically distinct gapped

phases – one where Hy+1/2
bc is stronger for even y and channels are paired between y = 2n and 2n+ 1, and

the other where Hy+1/2
bc is stronger for odd y and channels are paired between y = 2n − 1 and 2n. The

critical point that separates these two phases has uniformHy+1/2
bc (see figure 3.1(b)). It preserves the relevant

symmetry and has vanishing energy gap. For example, the array of chiral Dirac (Majorana) channels under

uniform inter-channel coupling recovers the massless Dirac (resp. Majorana) fermions on the surface of a

topological insulator (resp. superconductor).

The uniform backscattering model that preserves the antiferromagnetic symmetry is gapless because

adjacent backscattering terms compete. Moreover, the antiferromagnetic symmetry forbids any channel

dimerization. On the other hand, if each channel can be fractionalized and bipartitioned into two decoupled

components, then they can be backscattered and dimerized in opposite directions (see figure 3.1(c)). This is

a higher dimensional analogue of the Haldane integral spin chain [115, 116] and the AKLT spin chain [105,

106], where the integral spin on each site is fractionalized into a pair of half-integral spins and they are
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independently dimerized with neighboring ones. The backscattering of these fractional degrees of freedom

are now non-competing because they act on orthogonal Hilbert spaces. Moreover, the antiferromagnetic

symmetry is preserved if the dimerization strength Hy+1/2
dimer is uniform. The channel fractionalization is

stabilized by the many-body inter-channel backscattering Hy+1/2
dimer , which are combination of products of

local electronic operators.

In this chapter, we consider a variety of SPT phases, whose surface state can be mapped into an array of

integral electronic channels. The SPT phase could be protected by certain combinations of global symmetries

such as time-reversal and local symmetries represented by a continuous group. Instead of elaborating on the

3D SPT phases, we target surface topological order and begin with the general assumption that the surface

array of chiral channels is supported by some unknown 3D SPT bulk. In particular, we focus on situations

where these channels can be bosonized. Before inter-channel coupling, each channel can be described in low-

energy by a conformal field theory (CFT), which falls under the ADE classification of affine Lie algebra [54]

at level one. The A-series consists of the Lie algebras Ar = SU(r+1), where r is the rank of the algebra. The

D-series consists of Dr = SO(2r), and the E-series consists of the exceptional E6, E7 and E8. These algebras

form the fractional degrees of freedom under the bipartition of channels. Their general construction will be

discussed in upcoming sections. In this section, we present the main ideas in the coupled wire construction

by demonstrating the A3 = SU(4) and D3 = SO(6) case.

3.2.1 SO(6) and U(4) as illustrative examples

In this subsection, we take the SO(6) and U(4) surface models as examples to illustrate the coupled wire

construction. In particular, we demonstrate the inter-channel backscattering sine-Gordon interactions. The

ground state of each of these interactions exhibits an angle order parameter, which is the ground state

expectation value of the angle variable in the sine-Gordon potential. These angle order parameters can take

discrete values in a lattice, which will be referred to as the “Haldane’s dual lattice”. We also present the

fractional gapped excitations that corresponds to deconfined kinks of the sine-Gordon interactions. These

excitations can be created or destroyed by bosonized vertex operators, whose exponents lie also in the dual

lattice.

We begin with the SO(6)1 model. This model can be supported by the surface of a class DIII topological

superconductor [30, 32] with topological index N = 12. The surface carries 12 massless Majorana fermions,

which cannot be turned massive without breaking time reversal symmetry. The surface state can be mimicked

by a coupled wire model previously provided in Ref. [21]. An antiferromagnetic surface pair density wave –

where the surface is decorated by an array of parallel strips with alternating time-reversal breaking pairing
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phases ϕ = ±π/2 – supports an array of chiral Majorana interfaces. Each is sandwiched between adjacent

strips with time-reversal conjugate Majorana mass, and carries 12 chiral Majorana ψ1
y, . . . , ψ

12
y , where y

labels the interface.

We group the Majorana fermions in two collections ψA,iy = ψiy and ψB,iy = ψ6+i
y , for i = 1, . . . , 6. Each

collection generates a SO(6) Wess-Zumino-Witten (WZW) algebra (also known as Kac-Moody or affine Lie

algebra) at level one. The algebra consists of current operators

JC,jky = iψC,jy ψC,ky (3.3)

for 1 ≤ j < k ≤ 6 and C = A,B. We first pair Majorana fermions into Dirac fermions cC,jy = (ψC,2j−1
y +

iψC,2jy )/
√

2, for j = 1, 2, 3, and bosonize each Dirac fermion cC,jy ∼ eiφ
C,j
y . The bosonized variables follow

the action with Lagrangian density

L0 =
∑
y

∑
C=A,B

 (−1)y

2π

3∑
j=1

∂tφ
C,j
y ∂xφ

C,j
y +

3∑
j,j′=1

Vjj′∂xφ
C,j
y ∂xφ

C,j′

y

 , (3.4)

where Vjj′ is a non-universal velocity matrix. The alternating sign (−1)y signifies the alternating propagating

directions of the channels. The action dictates the equal-time commutation relation

[
φC,jy (x), ∂x′φC

′,j′

y′ (x′)
]

= 2πiδCC
′
δjj
′
δyy′δ(x− x′) (3.5)

or equivalently the time-ordered correlation function

φC,jy (z)φC
′,j′

y′ (z′) = −δCC
′
δjj
′
δyy′ log(z − z′) + . . . (3.6)

up to non-singular terms and Klein factors, where z ∼ τ + i(−1)yx is the (anti)holomorphic complex space-

time parameter.

The current operators (3.3) can be expressed in terms of the bosonized variables. There are 3 Cartan

generators

HC,j
y = i∂φC,jy ∼ cC,jy

†
cC,jy = iψC,2j−1

y ψC,2jy (3.7)
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that form a maximal set of mutually commuting Hermitian operators. In addition, there are 12 roots

EC,αy = exp
(
iαjφ

C,j
y

)
, (3.8)

which act as ladder operators on the root lattice. The root vectors α = (α1, α2, α3) all have integral entries

αj = 0,±1 and length square |α|2 = 2 so that there are two and only two non-zero entries. Each vertex

operator EC,αy can be expressed as a complex quadratic combination of Majorana fermions (3.3). The Cartan

generators and roots therefore generate the complexified SO(6) WZW algebra for each channel y and sector

C = A,B. One can pick a set of three linearly independent simple roots

RSO(6) =


−− α1 −−

−− α2 −−

−− α3 −−

 =


0 1 1

1 −1 0

0 1 −1

 . (3.9)

All 12 roots can be expressed as integral linear combination of the simple ones. The choice of simple roots

recovers the Cartan matrix of SO(6) by the inner product

KSO(6) = RSO(6)R
T
SO(6) =


2 −1 0

−1 2 −1

0 −1 2

 . (3.10)

The roots also generate and lie inside a face-centered cubic lattice FCC = spanZ{α1,α2,α3} in three

dimension. We refer to this as the root lattice.

Now we introduce the inter-channel backscattering sine-Gordon potential

Hdimer = −u2
∑
y

∑
α

EA,αy EB,−αy+1

= −u
∑
y

∑
α

cos
(
α · 2Θy+1/2

)
, (3.11)

where 2Θy+1/2 = (2Θ1
y+1/2, 2Θ2

y+1/2, 2Θ3
y+1/2) and 2Θj

y+1/2 = φA,jy − φB,jy+1. In a periodic cylinder geometry

with L = 2l channels, there are 3L counter-propagating pairs of bosons and there are also 3L linearly

independent sine-Gordon angle variables α · 2Θy+1/2. The angle variable satisfy the “Haldane nullity”
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gapping condition [112]

[
α · 2Θy+1/2(x),α′ · 2Θy′+1/2(x′)

]
= 0. (3.12)

There are actually 12L sine-Gordon terms because there are 12 roots in SO(6). However, only 3L of them

are linearly independent, but the redundant sine-Gordon terms do not compete. Collectively, they pin the

angle variables

α ·
〈
2Θy+1/2

〉
∈ 2πZ (3.13)

in the ground state, for all root vectors α. Since the roots generate a FCC lattice, eq.(3.13) requires the

ground state expectation values of the angle variables
〈
2Θy+1/2

〉
to lie in the body-centered cubic (BCC)

reciprocal lattice

LΘ ≡ {2Θ : α · 2Θ ∈ 2πZ}

= 2πBCC = spanZ {2πβ1, 2πβ2, 2πβ3} ,
(3.14)

R∨SO(6) =


−− β1 −−

−− β2 −−

−− β3 −−

 =


1/2 1/2 1/2

1 0 0

1/2 1/2 −1/2

 . (3.15)

Here, βI = 1
2εIJKα

J ×αK/
[
α1 · (α2 ×α3)

]
are the simple dual roots so that αI ·βJ = δIJ . In Lie algebra

language, βI are called fundamental weights. In the following discussion, we use the terms “simple dual

roots”, “primitive reciprocal vectors” and “fundamental weights” interchangeably. We refer to the lattice

LΘ of simultaneous minima of the sine-Gordon potentials as the “Haldane’s dual lattice”. In Lie algebra

language, spanZ{β1,β2,β3} are called weight lattice. To comply with physics community, we use “Haldane’s

dual lattice” in the following discussions.

The inter-channel backscattering interactions (3.11) therefore freeze the angle-variables and introduce an

finite excitation energy gap. Deconfined excitations are of the form of kinks where the expectation value〈
2Θy+1/2(x)

〉
jumps discontinuously along x from one lattice value to another. They can be represented

using fractional vertex operators

V C,γy (x0) = exp
[
iγjφ

C,j
y (x0)

]
(3.16)

that corresponds to a primary field of SO(6)1, where γ = (γ1, γ2, γ3) can take non-integral entries. For
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example, the vertex operator V A,γy (x0) creates a kink for
〈
2Θy+1/2(x)

〉
at x0 because

V A,γy (x0)†2∂xΘj
y+1/2(x)V A,γy (x0)

= 2∂xΘj
y+1/2(x) + i

[
γkφ

A,k
y (x0), 2∂xΘj

y+1/2(x)
]

= 2∂xΘj
y+1/2(x)− 2π(−1)yγjδ(x0 − x) (3.17)

from the equal-time commutation relation (3.5). Integrating the above equation x near x0, we see the vertex

operator creates a discontinuity for
〈
2Θy+1/2(x)

〉
, where it jumps by −2πγ from x < x0 to x > x0. The

excitation is deconfined if the angle-variable on both sides of x0 minimizes all the sine-Gordon potentials in

(3.11). Otherwise, it will cost a linearly diverging energy to pull apart from its anti-partner. This restricts

the jump of height of the kink 2πγ to also live in the Haldane’s dual lattice LΘ. In other words, deconfined

excitations are represented by vertex operators V C,γy (3.16) where γ lives in the BCC lattice (3.14). Similarly,

we have

V B,γy (x0)†2∂xΘj
y−1/2(x)V B,γy (x0) = 2∂xΘj

y−1/2(x) + 2π(−1)yγj(.x0 − x). (3.18)

It shows that if γ is one of the reciprocal vectors in the BCC lattice (3.14), then V C,γy creates a deconfined

quasiparticle excitation in the form of a kink of the sine-Gordon angle order parameter
〈
2Θy−1/2(x)

〉
.

It is crucial to recognize that in general the kink excitations may be fractional, in which case they must

come in kink and anti-kink pairs. The notion of “quasi-locality” is set by the 3D SPT/SET bulk, which may

already support long-range entangled topological order and carry non-trivial quasiparticle and quasi-string

excitations. We will address this issue soon after the description of SO(6) primary fields and Wilson strings

below. At the moment, we consider “quasi-local” surface vertex operators that consists of a product of

both the A and B sectors. We see that the combination V A,γy (x0)V B,γy (x0) creates a kink-antikink pair in〈
2Θy+1/2(x)

〉
and

〈
2Θy−1/2(x)

〉
. The kink and anti-kink can be separated vertically by applying the string

of vertex operators

χA,γy,y′(x0) =
y′∏

y′′=y
V A,γy′′ (x0)V B,γy′′ (x0), (3.19)

on the ground state, where y′ > y. This create a kink and anti-kink pair in
〈
2Θy′+1/2(x)

〉
and

〈
2Θy−1/2(x)

〉
without creating extra kinks in between (see figure 3.2). This is because the effect of V A,γy′′ (x0) and V B,γy′′+1(x0)

cancel. Physically what happens is that a pair of kink-antikink excitations are created in each wire in between

26



and consequently the quasiparticle is transported, which is explicitly shown in Eq. (3.17) and (3.18) In this

sense, these excitations are deconfined along the y direction. It should be noticed that the kink-anti-kink pair

can only be created by the operator string (3.19), which is constructed by the series of “quasi-local” operators

V A,γy′′ (x0)V B,γy′′ (x0). They cannot be created by V A,γy′ (x0)V B,γy (x0) alone without a string in between because

of surface locality. We will address the surface “quasi-localilty” later.

The quasiparticle kinks can be moved in the x-direction by applying

ρy(x, x0) = e
i
∫ x
x0
γj∂x′φ

C,j
y (x′)

, (3.20)

which moves a quasiparticle excitation from x0 to x on the same wire, without creating extra kinks in

between. Together with (3.19), they describe the two-dimensional local motion of the quasiparticle kinks.
...

...

y+1

y−1

y

y−2

G
GA GB

G
GA GB

kink

anti-kink

= V
A,γ
¯y′′ (x0)V

B,γ
¯y′′ (x0) =

y′′ y′′ y′′
A B

Figure 3.2: A string of “quasi-local” operators (3.19) creates a pair of fractional surface excitations in the
form of a kink and anti-kink pair of the sine-Gordon order parameter

〈
2Θy−1/2(x)

〉
.

These deconfined excitation operators form representations of the SO(6)1 affine Lie algebra. They obey

the operator product expansion with the current generators (3.7) and (3.8)

HC,j
y (z)V C,γy (z′) = γj

z − z′
V C,γy (z′) + . . . ,

EC,αy (z)V C,γy (z′) = (z − z′)α·γV C,α+γ
y (z′) + . . . . (3.21)

In particular, primary fields are vertex operators with bounded singularities α · γ ≥ −1. More precisely,

each primary field is represented by a super-selection sector of vertex operators {V C,γ1

y , . . . , V C,γ
r

y } that

transform under

EC,αy (z)V C,γ
a

y (z′) =
(Eαρ )ab
z − z′

V C,γ
b

y (z′) + . . . (3.22)

where Eαρ is the r-dimensional irreducible matrix representation of the root Eα of SO(6). The current
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operators Eα are therefore raising and lowering operators that rotate V γ → V α+γ if α · γ = −1. The

singular factor 1/(z − z′) reflects the unit scaling dimension of the current operators, and higher order

non-singular terms are non-universal.

The SO(6) affine Lie algebra at level 1 has four primary fields labeled by 1, ψ, s+, s−. They corre-

sponds to the trivial, vector, even and odd spinor representations of SO(6) respectively. We now show

their corresponding super-sectors of vertex operators. The primary field ψ at wire y and sector C = A,B is

generated by {e±iφ
C,1
y , e±iφ

C,2
y , e±iφ

C,3
y }, which form the 6-dimensional vector representation of SO(6). These

vertex operators can also be decomposed into real and imaginary components eiφ
C,j
y = ψC,2j−1

y + iψC,2jy ,

where ψC,1y , . . . , ψC,6y are Majorana fermions with spin (i.e. conformal scaling dimension) hψ = 1/2. The

even/odd twist primary fields s± are generated by eiε·φ/2, where ε = (ε1, ε2, ε3) and εj = ±1. ε is even

(odd) if ε1ε2ε3 = +1 (resp. −1). The collection of even (odd) vertices form the even (resp. odd) spinor

representation of SO(6). These vertices operators have spin hs± = 3/8.

Using eq.(3.17), the vector primary field ψAy at x0 creates an 2π kink of the sine-Gordon angle variable

so that

〈2Θy+1/2(x0 + δ)〉 − 〈2Θy+1/2(x0 − δ)〉 = −2π(−1)yej , (3.23)

where the expectation values are taken with respect to the excited state eiφ
A,j
y (x0)|GS〉. On the other hand,

the spinor primary fields (s±)Ay at x0 creates a π kink where

〈2Θy+1/2(x0 + δ)〉 − 〈2Θy+1/2(x0 − δ)〉 = −π(−1)yε. (3.24)

Since the “heights” of the kinks, which are given by the right hand side of the two equations above, belong

to the Haldane’s dual lattice LΘ (see eq.(3.14)), the primary fields correspond to deconfined excitations that

only cost a finite amount of energy to create and do not cost energy to move.

At this point, it is essential to address the surface “quasi-locality”’ and take into account the 3D bulk

SPT/SET state that supports the surface state. The 12 Majorana fermions ψA,1y , . . . , ψA,6y and ψB,1y , . . . , ψB,6y

associates a SO(12)1 WZW algebra along each wire y. The primary fields in the SO(12)1 CFT are quasi-

particle excitations that are supported by the 3D bulk, and should not be treated as fractional excitations

allowed by the surface gapping interactions. For the purpose of describing the surface topological order,

primary fields in SO(12)1 should be regarded as “quasi-local” in the sense that such an excitation can be

present without having a partner on the surface. This is because its partner can exist in the 3D bulk. On

the other hand, the surface backscattering potential (3.11) allows additional fractional excitations that must
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come in pairs on the boundary surface. These are quasiparticles that do not connect to any bulk excitations.

The SO(12)1 WZW algebra that associates to the “quasi-local” primary field excitations is generated by

the Cartan operators HA,j
y , HB,j

y defined in (3.7) as well as the the 60 roots

Eλy = exp
[
i
(
λAj φ

A,j
y + λBj φ

B,j
y

)]
(3.25)

where the root vectors λ = (λA1 , λA2 , λA3 , λB1 , λB2 , λB3 ) have integral entries λCj = 0,±1 and length square

|λ|2 = 2 so that there are two and only two non-zero entries. The simple roots can be chosen to be

RSO(12) =



−− λ1 −−

−− λ2 −−
...

...
...

−− λ5 −−

−− λ6 −−


=



1 −1 0 . . . 0 0

0 1 −1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 −1

0 0 0 . . . 1 1


. (3.26)

The “quasi-local” surface excitations that connect to the 3D bulk are represented by the vertex operator

V l
y (x0) = exp

[
i
(
lAj φ

A,j
y (x0) + lBj φ

B,j
y (x0)

)]
(3.27)

where the weight vectors l = (lA1 , lA2 , lA3 , lB1 , lB2 , lB3 ) satisfy

λ · l ∈ Z (3.28)

for all SO(12) roots λ. The weight vectors are integral combinations of the simple dual roots or fundamental

weights

R∨SO(6) =


−− l1 −−

...
...

...

−− l6 −−

 =


1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1
2

1
2

1
2

1
2

1
2 −

1
2

1
2

1
2

1
2

1
2

1
2

1
2

 , (3.29)

which obey λI · lJ = δIJ . The entries of a general weight vector l is either all integers or all half-integers.

It is useful to notice that there is a tensor product structure (referred to as conformal embedding or level
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rank duality in the CFT context [54])

SO(12)1 ⊇ SO(6)1 × SO(6)1 (3.30)

that splits the “quasi-local” SO(12)1 primary fields (3.27) into the fracrtional SO(6)A1 and SO(6)B1 compo-

nents

V l
y (x0) ∼ exp

(
ilAj φ

A,j
y (x0)

)
exp

(
ilBj φ

B,j
y (x0)

)
= V A,lAy V B,lBy . (3.31)

In particular, if γ = (γ1, γ2, γ3) lies inside the BCC Haldane dual lattice (3.14), then the combination

V A,γy V B,γy is a SO(12)1 primary field and therefore represents a “quasi-local” excitation that connects to

the 3D bulk. This shows that the vertex operator string (3.19) composes of “quasi-local” excitations. For

example, in the class DIII topological superconductor case, a hc/2e flux vortex inside the bulk corresponds

to the vertex V εy for each layer y that interests flux vortex, where ε = (1/2, . . . , 1/2). It associates to the

vertex operator string
∏y1
y=y0

V εy on the surface, and create a pair of π-kink quasiparticle excitations (see

figure 3.3). Each vertex operator V εy is “quasi-local” as it connects to the bulk, but the π-kink excitations

are fractional. They are supported by the surface backscattering interactions and can only exist on the

boundary surface.

π-kink
π-kink

hc/2e flux

Figure 3.3: A hc/2e flux vortex in the topological superconducting bulk associates to a string of vertex
operators on the surface (represented by the blue stars) and create a pair of π-kink excitations (red dots).

Next, we illustrate the U(4)1 model. The array of wire is now supported on the surface of some three di-

mensional symmetry protected topological state (see figure 3.1(a)), and each wire hosts eight Dirac fermions.

The 3D SPT state can be a topological crystalline insulator [79] with mirror Chern number 8 that supports

8 massless surface Dirac cones. It can be a topological paramagnet [63, 64] that supports 8 neutral Dirac

fermion along a time reversal breaking domain wall. Alternatively, it can also be a fractional bosonic topo-
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logical insulator where a local boson is fractionalized into 8 parton Dirac fermions and the surface hosts

8 parton Dirac cones. In this chapter, we do not focus on the origin of the wire array, but instead we

concentrate on its symmetric gapping interactions.

Here, the 8 Dirac fermions of each wire is decomposed into two groups cAj = cj ∼ eiφ
A
j and cBj = c4+j ∼

eiφ
B
j , for j = 1, 2, 3, 4. Each sector is described by a U(4) Kac-Moody conformal field theory at level 1. The

bosonized variables follow the action with Lagrangian density

L0 =
∑
y

∑
C=A,B

 (−1)y

2π

4∑
j=1

∂tφ
C,j
y ∂xφ

C,j
y +

4∑
j,j′=1

Vjj′∂xφ
C,j
y ∂xφ

C,j′

y

 , (3.32)

where Vjj′ is a non-universal velocity matrix. We further decompose each sector C = A,B into

U(4)1 ∼ U(1)4 × SU(4)1. (3.33)

U(1)4 represent the diagonal component and is generated by the bosonized variable

4φCρ,y = α0 · φCy = φC,1y + . . . φC,4y , (3.34)

where α0 = (1, 1, 1, 1). Although in this chapter we do not focus on charge conservation, for the charge

preserving SPT states, the U(1)4 sector is solely responsible for electric charge transport. The SU(4) Kac-

Moody current algebra at level 1 is generated by the 3 Cartan generators

HC,j
y = i∂φC,jy − i∂φC,j+1

y (3.35)

for j = 1, 2, 3, and the 12 roots

EC,αy = exp
(
iαjφ

C,j
y

)
(3.36)

where the root vectors α = (α1, α2, α3, α4) ∈ ∆SU(4) has entries αj = 0,±1, length square |α|2 = 2 and is

traceless α1 + α2 + α3 + α4 = 0. The SU(4)1 represents electrically neutral degrees of freedom if the SPT

state preserves charge symmetry. It also completely decoupled from U(1)4 as all the roots α are orthogonal

to α0.
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One can pick the simple roots of SU(4) to be

RSU(4) =


−− α1 −−

−− α2 −−

−− α3 −−

 =


1 −1 0 0

0 1 −1 0

0 0 1 −1

 . (3.37)

This recovers the Cartan matrix of SU(4)

KSU(4) = RSU(4)R
T
SU(4) =


2 −1 0

−1 2 −1

0 −1 2

 , (3.38)

which is identical to that of SO(6) (see eq.(3.10)). Consequently, as an affine Lie algebra or a Kac-Moody

algebra, SU(4) and SO(6) are equivalent. For instance, they have the identical dimension d = 15 and

rank r = 3. The root structures of the two are also isomorphic except the SO(6) roots are presented in

three dimensions whereas the SU(4) ones are presented in a 3D orthogonal complement of (1, 1, 1, 1) in

four dimensions. The equivalence implies the SU(4) roots span a face-centered cubic root lattice FCC =

spanZ{α1,α2,α3}.

The inter-channel backscattering sine-Gordon potential (see also figure 3.1(a)) is

Hdimer = HU(1)4 +HSU(4)1 , (3.39)

HU(1)4 = −u
∑
y

cos
(
4φAρ,y − 4φBρ,y+1

)
= −u

∑
y

cos
(

2Θ1
y+1/2 + . . .+ 2Θ4

y+1/2

)
,

HSU(4)1 = −u2
∑
y

∑
α

EA,αy EB,−αy+1

= −u
∑
y

∑
α

cos
(
α · 2Θy+1/2

)
,

where 2Θy+1/2 = (2Θ1
y+1/2, 2Θ2

y+1/2, 2Θ3
y+1/2, 2Θ4

y+1/2) and 2Θj
y+1/2 = φA,jy − φB,jy+1. Similar to the SO(6)1

Hamiltonian (3.11), the backscattering term here also introduces a finite excitation energy gap. The angle

variables of the sine-Gordon Hamiltonian obey the Haldane nullity gapping condition (c.f. (3.12)). The

SU(4) current-current backscattering provides more than enough gapping terms, and linearly dependent

redundant terms are non-competing if u > 0. The ground state expectation values of the angle variables
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〈2Θy+1/2〉 belongs in the “Haldane’s dual lattice”

LΘ ≡
{

2Θ : α · 2Θ,α0 · 2Θ ∈ 2πZ
}

(3.40)

so that the sine-Gordon energy (3.39) is minimized. The dual lattice can be decomposed into two orthogonal

components

LΘ = LU(1)
Θ + LSU(4)

Θ , (3.41)

LU(1)
Θ = spanZ{2πβ0},

LSU(4)
Θ = 2πBCC = spanZ{2πβ1, 2πβ2, 2πβ3},

where the primitive reciprocal vectors of LU(1)
Θ and LSU(4)

Θ are

βµ = 1
3!εµνλσ

αν ∧αλ ∧ασ

α0 · (α1 ∧α2 ∧α3) , (3.42)

β0 = 1
4(1, 1, 1, 1),

R∨SU(4) =


−− β1 −−

−− β2 −−

−− β3 −−

 = 1
4


3 −1 −1 −1

2 2 −2 −2

1 1 1 −3

 .

Similar to the SO(6)1 case, the deconfined excitations of the sine-Gordon model (3.39) are kinks of the

angle variables where 〈2Θy+1/2〉 jumps discontinuously from one value to another in LΘ. The kinks can be

created by fractional vertex operators V C,γy = exp
[
iγjφ

C,j
y

]
(c.f. (3.16)), where in this case the fractional

lattice vectors are four dimensional γ = (γ1, γ2, γ3, γ4). Excitations can be decomposed into U(1)4 and

SU(4)1 components that associates to kinks of HU(1) and HSU(4) in (3.39) respectively. For U(1)4, the

primary fields [n]ρ are vertex operators einφ
C
ρ,y = ein(φC,1y +...+φC,4y )/4, where n is an integer. They carry spins

(or conformal scaling dimensions) h[n]ρ = n2/8.

For SU(4)1, certain vertex operators can be grouped together into super-selection sectors {V C,γ1

y , . . . , V C,γ
r

y }

and corresponds to a primary field of SU(4)1. Vertices of each super-sector transform among each other under

the SU(4)1 affine Lie algebra (c.f. (3.22)). As SU(4)1 and SO(6)1 are equivalent, there is a one-to-one corre-

spondence between the primary fields. Using the same notation in SO(6)1, the primary fields 1, ψ, s+, s− of

SU(4)1 corresponds to the trivial, vector, fundamental and anti-fundamental representations of SU(4). The

primary field ψ corresponds to the super-sector of 6 vertex operators eiγ
ψ·φCy , where γψ = (1, 1,−1,−1)/2

or any permutation of the entries. The super-sector of the primary field s± consists of the 4 vertex operators
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eiγ
s± ·φCy , where γs± = ±(3,−1,−1,−1)/4 or any permutation of the entries. The spins (i.e. conformal

scaling dimensions) of the primary fields are hψ = 1/2 and hs± = 3/8, which unsurprisingly match that of

the primary fields of SO(6)1.

Before we end this section, let us take a closer look at the sine-Gordon terms for SU(4)1 sector. Usually

we take u > 0 such that the sine-Gordon terms are pinned at their respective minima to gap out the system

from the renormalization group (RG) analysis. What if u < 0 or even u is a complex parameter? This

is related to the duality properties of ADE surface topological orders discussed later. So let us study the

general structure of sine-Gordon terms when u = |u|eiϑ is complex valued. The general sine-Gordon is

HSU(4)1 = −|u|2
∑
y

∑
α∈∆+

(
EA,αy EB,−αy+1 eiϑ + EA,−αy EB,αy+1 e

−iϑ
)

= −|u|
∑
y

∑
α∈∆+

cos
(
α · 2Θy+1/2 + ϑ

)
, (3.43)

where ∆+ is the set of positive roots. In this case, we find that as long as ϑ 6= π, the system is gapped;

when ϑ = π the system becomes gapless. Reversing the sign of Θy+1/2 is equivalent to taking the complex

conjugate of u, namely,

2Θy+1/2 → −2Θy+1/2 ⇔ u→ u∗ ⇔ ϑ→ −ϑ, (3.44)

which is also equivalent to a reflection with respect to the real axis in the u complex plane. The duality

transformation on the u-plane is shown in Fig. 3.4. Since SO(6)1 has the same root structure as SU(4)1,

the above analysis also works for SO(6)1 theory. The ground state structure is shown in Fig. 3.5.

|u|
Im(u)

Re(u)

–|u|

–|u|
|u|
P

Q
ϑ

D̂

Figure 3.4: Duality transformation of the sine-Gordon term on the u-plane. D̂ is the duality operator. Under
D̂, points on the circle with radius |u| is reflected with respect to the real axis. P,Q are self-dual points.
P describes a gapless point, which can be seen in Fig. 3.5(c). Other points on the circle describe gapped
phases.
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Figure 3.5: The ground state expectation values of 〈2Θy+1/2〉 that minimize the sine-Gordon Hamiltonian
(3.43) for (a) ϑ = 0, (b) ϑ = −3π/5 and (c) ϑ = π. The plots are taken over the fundamental region in
R

3 modulo the Haldane dual lattice LSU(4)
Θ in (3.41). The sine-Gordon Hamiltonian generically has a finite

energy gap and a single minimum for −π < ϑ < π. At ϑ = π, there are gapless Goldstone modes on the
boundary of the fundamental region.

3.3 Review of free Dirac fermion/3d QED duality

In this section, we review the coupled wire derivation of the free Dirac fermion/QED3 duality following

Ref. [19, 20]. Written explicitly, the duality says

SDirac =
∫
dx3 iΨ̄γµ(∂µ − iAµ)Ψ

l

SQED3 =
∫
dx3 i ¯̃Ψγµ(∂µ − iaµ)Ψ̃ + 1

4π εµνρAµ∂νaρ, (3.45)

where aµ is a dynamical U(1) gauge field and Aµ is a background U(1) field. Since in 2+1d, a single copy of

Dirac fermion with unit charge suffers from the traditional “parity” anomaly, the duality is better understood

to hold at the surface of a 3+1d topological insulator. We add quotation marks for “parity” because strictly

speaking, parity is in the connected component of the rotation group in 2+1d. Therefore, the anomaly is

better called as an anomaly of time-reversal symmetry T or reflection symmetry R. Detailed clarifications can

be found in Ref. [117]. Several derivations have been given from the field-theoretic perspectives. Specifically,

what they have done is to start from the conjectured fermion/boson duality, which is the duality between a

single free Dirac fermion and a complex boson coupled to a dynamical U(1) gauge field at the O(2) Wilson-

Fishier fixed point with quartic interactions. [110, 111] Then they perform flux attachment to the original

duality to obtain the fermion/fermion duality. The same can be performed at the coupled wire level, which

may be clearer in the sense that one can see the explicit interactions at the microscopic level. We now review

it below.

Let us start from the array of 1D chiral electron wires, each aligned along x-direction. The Hamiltonian
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can be written as

H =
∑
y

∫
dx vx(−1)yψ†y(−i∂x)ψy − vy(−1)y(ψ†yψy+1 + h.c.), (3.46)

where in Eq. (3.46) y is the wire label along y-direction. Wires labeled by even y carry right-moving electrons

and odd y carry left-moving electrons. The first term in Eq. (3.46) describes the kinetic energy of electrons

and the second term describes uniform inter-wire hopping between neighboring wires (see figure 3.1(b)).

Using a two-component spinor Ψ(x, y) = (ψ2y(x), ψ2y+1(x))T , Eq. (3.46) can be rewritten in the continuum

limit as

H =
∫
dxdyΨ†[vxσz(−i∂x) + vyσ

y(−i∂y)]Ψ, (3.47)

where the sum
∑
y is replaced by

∫
dy. Eq. (3.47) therefore recovers the effective Hamiltonian for a single

copy of Dirac fermion in 2+1d. Now let us bosonize the Dirac fermion on each wire by ψy = eiφy , where φy

is a chiral boson field satisfying the commutation relation

[φy(x), φy′(x′)] = δyy′(−1)yiπsgn(x− x′) + iπsgn(y′ − y), (3.48)

where sgn(s) = s/|s| and sgn(0) = 0. The first and second terms of Eq. (3.48) give the correct anticommu-

tation relations of fermions in the same wire and between different wires, respectively. Written in terms of

boson fields, the original Dirac action in Eq. (3.45) becomes

SDirac =
∑
y

∫
dxdt

[ i(−1)y

4π ∂xφy∂tφy + vx
4π (∂xφy)2 + vy(−1)y cos (φy − φy+1)

]
. (3.49)

Under renormalization group (RG) flow, this theory remains gapless due to the competition between neigh-

boring sine-Gordon terms.

...
...

φ2y+3

φ2y+2

φ2y+1

φ2y

φ2y−2

φ2y−1

...
...

...
...

ϕ2y, θ2y

ϕ2(y+1), θ2(y+1)

ϕ2(y−1), θ2(y−1)

Figure 3.6: Pictorial illustration of the duality transformation in Eq. (3.50) or (3.51). Two flux quanta from
+∞ and −∞ attached to each pair of wires.
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Now let us perform the duality transformation

φ̃y(x) =
∑
y′

sgn(y − y′)(−1)y
′
φy′(x) ≡

∑
y′

Dyy′φy′(x). (3.50)

This duality transformation (3.50) is a flux attachment (see figure 3.6). Using the non-chiral basis between

wire 2y and 2y + 1, ϕ2y, θ2y = (φ2y ± φ2y+1)/2, Eq. (3.50) is equivalent to

ψ̃†2y/2y+1 ∼ ψ
†
2y+1/2y

∏
y′>y

e2iθ2y′
∏
y′<y

e−2iθ2y′ , (3.51)

where e2iθ2y brings a 2π phase slip in ϕ2y. Eq. (3.51) can be understood as bringing two fluxes from positive

and negative infinities to the fermion at wire 2y/2y + 1. One can check that under duality (3.50), the

equal-time commutation relation only changes by a sign

[φ̃y(x), φ̃y′(x′)] = −[φy(x), φy′(x′)]. (3.52)

Physically it means that the dual fermions eiφ̃y have opposite chiralities with the original ones. After duality

transformation, the original action (3.49) for the Dirac fermion becomes

S̃Dirac =
∑
y

∫
dxdt

{−i(−1)y

4π ∂xφ̃y∂tφ̃y + vx
4π (∂xD−1

yy′ φ̃y′)
2 + vy(−1)y cos (φ̃y − φ̃y+1)

}
. (3.53)

One can see that in the dual action (3.53), the first and last terms have the same form as the original

action (3.49). However, the second term is highly non-local. To resolve this, one introduces two Lagrangian

multipliers ã0,y, ã1,y on each wire and rewrite Eq. (3.53) as

L̃Dirac =
∑
y

−i(−1)y

4π ∂xφ̃y∂tφ̃y + LQED3 , (3.54)
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where

LQED3 = L0 + Lstaggered-CS + LMaxwell + Ltunnel,

L0 =
∑
y

i(−1)y

2π ∂xφ̃yã0,y +
∑
y

ṽx
4π (∂xφ̃y − ã1,y)2,

Lstaggered-CS =
∑
y

i(−1)y

8π (∆ã0,y)(ã1,y+1 + ã1,y),

LMaxwell =
∑
y

1
16π

[
1
vx

(∆ã0,y)2 + vx(∆ã1,y)2
]
, (3.55)

and ∆ãi,y ≡ ãi,y+1− ãi,y. Now one can see that the dual Dirac theory is nothing but QED3, where ã0,y, ã1,y

are now the emergent U(1) gauge field under the gauge fixing ã2,y = 0. The theory is invariant under the

gauge transformation

φ̃y → φ̃y + fy,

ã0,y → ã0,y + ∂tfy,

ã1,y → ã1,y + ∂xfy,

ã2,y+1/2 → ã2,y+1/2 + (fy+1 − fy), (3.56)

if we restore the ã2,y+1/2 component. Introducing these emergent gauge fields in the path integral only

contributes an irrelevant overall multiplicative factor, which is unimportant. Thus the duality between a

single Dirac fermion and QED3 is established at the path integral level.

Let us now take a look at how symmetries transform under duality. If we define time reversal (TR)

symmetry and particle-hole (PH) symmetry on the basis Ψ as

T : Ψ→ iσyΨ, C : Ψ→ iσyΨ†, (3.57)

then under the duality transformation (3.50) with some modifications to the transformation of φ vari-

ables, [20] we have

T̃ : Ψ̃→ iσyΨ̃†, C̃ : Ψ̃→ iσyΨ̃. (3.58)

We see that TR and PH symmetries are exchanged under duality. In the following discussion of the surface

topological orders of ADE classifications, the generalization of the duality transformation for the single
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Dirac fermion will be utilized.

3.4 D-series: SO(N) surface theory

3.4.1 Surface massless Majorana fermions in a coupled wire model

The coupled wire model for D-series has been discussed in Ref. [21] for the Majorana surfaces of topological

superconductors. A particular case for SO(6) was demonstrated in section 3.2. We here describe the general

construction. The generic coupled wire Hamiltonian for N copies of surface massless Majorana fermions is

the sum

H0 +Hbc =
∞∑

y=−∞
ivx(−1)jψTy ∂xψy +

∞∑
y=−∞

ivyψ
T
yψy+1, (3.59)

where the integer y labels the wire in the vertical direction (see figure 3.1), and ψ = (ψ1, . . . , ψN ) is an N -

component Majorana fermion. Majorana fermions on adjacent wires have opposite chiralities. The uniform

non-dimerizing backscattering terms in Hbc on the second line compete with neighboring ones, and the

Hamiltonian describes N massless Majorana fermions with linear dispersion in both the x and y directions.

In this chapter, we are interested in Abelian surface topological phases, and for this reason, we restrict

N = 2r > 4. On each wire, Majorana fermion pairs form Dirac fermions, which can then be bosonized

cay = 1√
2
(
ψ2a−1
y + iψ2a

y

)
∼ eiφ

a
y , a = 1, . . . , r. (3.60)

The bosons satisfy the equal-time commutation relation

[
φay(x), φa

′

y′(x′)
]

= iπ(−1)y
[
δyy′δ

aa′sgn(x− x′)

+ δyy′sgn(a− a′)
]

+ iπsgn(y′ − y), (3.61)

where terms on the second line enforces mutual anticommutation product relations between Dirac fermions,

and sgn(x) = x/|x| = ±1 for x 6= 0 and sgn(0)=0. The first line of Eq. (3.61) is equivalent to the commutator

between conjugate fields

[
∂xφ

a
y(x), φa

′

y′(x′)
]

= 2iπ(−1)yδyy′δaa
′
δ(x− x′), (3.62)
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which is dictated by the “pq̇” term of the Lagrangian density

L0 = 1
2π
∑
y

r∑
a=1

(−1)y∂xφay∂tφay. (3.63)

The total Lagrangian density can be written in terms of boson fields as L = L0 −H0, where

H0 = Vx
∑
y

r∑
a=1

∂xφ
a
y∂xφ

a
y (3.64)

is the non-universal sliding Luttinger liquid (SLL) component along each wire. The non-dimerizing backscat-

tering terms in (3.59) can also be bosonized, and take the form of Hbc = Vy
∑
y

∑r
a=1 cos

(
φay − φay+1

)
. How-

ever, we suppress these single-body terms throughout this section for the following reason. The bosonized

Hamiltonian density (3.64) has an additional local gauge symmetry

φay → φay + 2πma
y (3.65)

where m1
y, . . . ,m

r
y are either all integers or all half-integers. This represents a local Z2 gauge symmetry that

transforms the Majorana fermions according to

ψjy → (−1)Myψjy, (3.66)

where My ≡ 2ma
y modulo 2. Eq. (3.66) is violated by the fermionic Hamiltonian density (3.59). Instead, the

fermionic H0 and Hbc in (3.59) are only symmetric under a global Z2 symmetry where m = my is uniform.

Throughout this section, we focus on a bosonic coupled wire surface constructions that preserve the local Z2

symmetry (3.66). For example, the model mimics the surface of a bosonic topological superconductor that

supports emergent Majorana fermion coupled with a Z2 gauge theory. The vectors my = (m1
y, . . . ,m

r
y)T

that correspond to the gauge transformation (3.65) live in a lattice

Lrgauge =
{
m : 2ma ∈ Z,m1 ≡ . . . ≡ mr mod 1

}
= spanZ

{
1
2ε = 1

2(ε1, . . . , εr)T : εa = ±1
}
. (3.67)
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In this section, we focus on scenarios where r = 2n is even. In this case, we further restricts the gauge

vectors my in (3.65) to live in the even lattice

Lr,+gauge = spanZ

{
1
2ε+ : εa+ = ±1,

r∏
a=1

εa+ = +1
}

(3.68)

for r = 2n ≥ 4. The r = 2 case is special and corresponds to the decomposable algebra SO(4) = SU(2) ×

SU(2), where the even gauge lattice is L2,+
gauge = spanZ

{
(1,−1)T , (1/2, 1/2)T

}
.

Before moving on, we briefly comment on the symmetries of the model. If the surface state is supported

by a bulk time-reversal symmetry-protected topology, then the coupled wire model exhibits an antiferro-

magnetic time-reversal (AFTR) symmetry, [21] which accompanies the time-reversal that flips the fermions’

propagating direction with a half-translation that moves y → y+1. In this case, the equal-time commutation

relation (3.61) needs to be modified to

[
φay(x), φa

′

y′(x′)
]

= iπ(−1)max{y,y′}[δyy′δaa′sgn(x′ − x)

+ δyy′sgn(a− a′) + sgn(y − y′)
]
, (3.69)

to accommodate the antiferromagnetic symmetry

T cayT −1 = (−1)yca†y+1, T φayT −1 = φay+1 + πy. (3.70)

The discretization of surface state by a coupled wire construction and its effect on symmetries was explained

by the symmetry extension pattern discussed in Ref. [117, 118] when gapped symmetric boundary states

are constructed. The AFTR symmetry protects an odd number of surface massless Majorana fermions from

single-body backscattering. There can be additional global symmetries, such as mirror, that further protects

an arbitrary number of surface Majorana’s. In this work, we do not focus on a particular symmetry, but in-

stead concentrate on the many-body gapping potential based on a fractionalization scheme (see figure 3.1(c))

that can preserve a range of symmetries. In this section, we also require the many-body gapping potential

to respect the local Z2 gauge symmetry (3.66).
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3.4.2 Gapping potentials for surface Majorana fermions

The simplest gapping terms are single-body backscattering ones, such as

Hdimer = iu
∑
y

r∑
a=1

ψayψ
r+a
y+1 (3.71)

that dimerize Majorana channels and introduce mass to all Majorana fermions. Unfortunately, these single-

body dimerizations do not respect the local Z2 symmetry (3.66). Nevertheless, they illustrate the idea of

decomposition of the degrees of freedom along each wire: N = 2r = r + r. In each pair, the two sets of

Majorana fermions ψ1
y, . . . , ψ

r
y and ψr+1

y , . . . , ψ2r
y are backscattered independently to adjacent wires in the

opposite directions. By introducing this single-body backscattering term, we explicitly break and split the

SO(2r)1 symmetry into SO(r)1 × SO(r)1 along each wire.

With this idea in mind, we can introduce a second type of gapping terms, which preserve the local

Z2 symmetry (3.66). From the decomposition of the SO(2r) WZW Kac-Moody algebra (also known as

conformal embedding)

SO(2r)1 ⊃ SO(r)A1 × SO(r)B1 , (3.72)

we can introduce the two-body Kac-Moody current backscattering interactions

Hdimer = u
∑
y

JSO(r)B
y · JSO(r)A

y+1 (3.73)

for positive u (see figure 3.1(c)). The A sector contains ψ1
y, . . . , ψ

r
y and the B sector contains ψr+1

y , . . . , ψ2r
y .

We will show that (3.73) introduces a non-vanishing excitation energy gap in the next subsection.

The SO(2r)1 WZW theory along the y-th wire is generated by the chiral current operator

J (a,b)
y = (−1)yiψayψby. (3.74)

Based on (3.72), we can decompose the current operators into two sets: SO(r)A1 contains J (a,b) for 1 ≤ a <

b ≤ r and SO(r)B1 contains J (a,b) for r + 1 ≤ a < b ≤ 2r. We can see that these two sets of operators

decouple in the sense that their operator product expansions (OPE) are trivial up to non-singular terms.

Moreover, the Sugawara energy-momentum tensor [54] of the total SO(2r)1 algebra decomposes into two
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decoupled parts,

TSO(2r)1 = TSO(r)A1 + TSO(r)B1 , (3.75)

TSO(r)A1 = 1
2(r − 1)

∑
1≤a<b≤r

J (a,b)J (a,b)

= −1
2

r∑
a=1

ψa∂ψa, (3.76)

TSO(r)B1 = 1
2(r − 1)

∑
r+1≤a<b≤2r

J (a,b)J (a,b)

= −1
2

2r∑
a=r+1

ψa∂ψa. (3.77)

The interaction (3.73) can be expressed using the Majorana fermions

Hdimer = u
∑
y

∑
1≤a<b≤r

ψr+ay ψr+by ψay+1ψ
b
y+1. (3.78)

We notice in passing the following observations. First, it breaks O(2r) symmetry into O(r)A×O(r)B , which

transforms

ψay → (O(−1)y )abψby, ψr+ay → (O(−1)y )abψr+by , (3.79)

whereO is an r×r orthogonal matrix. Second, there are alternative interaction terms, such as ψayψbyψr+ay+1ψ
r+b
y+1,

that can compete with (3.78). However, as long as mirror symmetry is broken, one of these can be dominant

and lead to a finite energy gap. Third, (3.78) is marginally relevant. The renormalization group (RG)

equation for u is [119]

du

dl
= +4π(r − 2)u2, (3.80)

showing that the interaction strength is growing at low energy limit when r > 2, which is the case that we

discuss.

Excitation energy gap

We now review that (3.78) introduces a non-vanishing excitation energy gap. A proof can also be found in

Ref. [21]. We focus on a single coupled pair of counter-propagating SO(r)1 channels (see figure 3.1(c)) at

some even y. After relabeling ψr+ay = ψaR and ψay+1 = ψaL for a = 1, . . . , r, the interaction term between the
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y-th and (y + 1)-th wires becomes the O(r) Gross-Neveu (GN) model [120]

HGN = −u2 (ψR ·ψL)2. (3.81)

It is known that the GN model has an energy gap when r > 2. For even r = 2n, we can use (3.60) to pair

Majorana fermions into Dirac fermions

caR/L = 1√
2

(ψ2a−1
R/L + iψ2a

R/L) ∼ eiφ
a
R/L , a = 1, . . . , n. (3.82)

Eq. (3.81) bosonizes into

HGN ∼ u
n∑
a=1

∂xφ
a
R∂xφ

a
L − u

∑
a1 6=a2

∑
±

cos (2θa1 ± 2θa2)

= u

n∑
a=1

∂xφ
a
R∂xφ

a
L − u

∑
α∈∆

cos (α · 2Θ), (3.83)

where 2Θ = (2θ1, . . . , 2θn), 2θa = φaR − φaL, and α = (α1, . . . , αn)T are the SO(2n) roots that lives in

∆ =
{
α ∈ Z

n : |α|2 = 2
}
. (3.84)

As a matter of fact, a subset of the sine-Gordon terms in (3.83) will be sufficient in introducing an energy

gap. We take

−u
n∑
I=1

cos (αI · 2Θ) = −u
n∑
I=1

cos
(

n∑
J=1

KIJ(φ′JR − φ′JL )
)

= −u
n∑
I=1

cos (nTI KΦ), (3.85)

where αI = (αI1, . . . , αIn) are the n linearly independent simple roots of SO(2n) (c.f. (3.9) for SO(6))

RSO(2n) =


−− α1 −−

...
...

...

−− αn −−

 =



1 −1 0 . . . 0 0

0 1 −1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 −1

0 0 0 . . . 1 1


. (3.86)
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Here K = (KIJ)n×n = RSO(2n)R
T
SO(2n) is the Cartan matrix of SO(2n), and K = K⊕ (−K) = diag(K,−K)

includes both theR and Lmovers. Φ = (φ′R,φ
′
L)T , for φ′R/L = (φ′1R/L, . . . , φ′nR/L) and φaR/L = (RTSO(2n))aJφ′JR/L =

(αJa )φ′JR/L, are the bosonized variables in the Chevalley basis, and nJ = (eJ , eJ)T . The “pq̇” component of

the Lagrangian density expressed in terms of the Chevalley basis is

L0 = 1
2π

n∑
a=1

∂xφ
a
R∂tφ

a
R − ∂xφaL∂tφaL = 1

2π∂xΦ
TK∂tΦ. (3.87)

The n vectors nI are linearly independent and satisfy “Haldane’s nullity gapping condition” [112]

nTI KnJ = 0, for I, J = 1, . . . , n. (3.88)

This shows (3.85) introduces a finite excitation energy gap.

The additional linearly dependent sine-Gordon terms in (3.83) are complementary when u > 0, and

they collectively pin the non-competing ground state expectation values α · 〈2Θ〉 ∈ 2πZ. This defines the

“Haldane’s dual lattice” (c.f. (3.14) for SO(6))

LΘ ≡ {2Θ : α · 2Θ ∈ 2πZ for all α ∈ ∆}

= 2πBCCn = spanZ {2πβ1, . . . , 2πβn} ,
(3.89)

where the simple dual roots βI are

βI = 1
n! det(RSO(2n))

εIJ1...Jn−1α
J1 ∧ . . . ∧αJn−1

R∨SO(2n) =


−− β1 −−

...
...

...

−− βn −−



=



1

1 1

1 1 1
...

...
...

. . .

1 1 1 . . . 1

1/2 1/2 1/2 . . . 1/2 1/2 −1/2

1/2 1/2 1/2 . . . 1/2 1/2 1/2



. (3.90)
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The dual lattice LΘ (up to a factor of 2π) is the body-centered cubic lattice (BCC) in n dimensions, whose

lattice vectors have either all integral or all half-integral entries. The mutual commutativity between the

angle variables 2θa ensures that (3.83) introduces a finite excitation energy gap. Details of the Haldane’s

nullity gapping condition for the K-matrix formalism is reviewed in Appendix B.1.

When r = 2n + 1 is odd, Eq. (3.73) can still be applied to introduce a finite energy gap. However, the

gapping Hamiltonian here cannot be fully bosonized because of the extra odd Majorana fermion. Since this

situation has been discussed in detail in Ref. [21], it will not be repeated here.

Quasiparticle excitations

The quasiparticle excitations of the sine-Gordon gapping potential (3.83) take a similar structure to that

of the SO(6) case described in section 3.2. Here, we only present the main results. A quasiparticle ex-

citation at (x0, y0) can be created by a fractional vertex operator V C,γy0
(x0) = exp

[
iγaφ

C,a
y0

(x0)
]
, where

C = A,B, a = 1, . . . , n and φA,a = φa, φB,a = φn+a are the bosonized variables for the Dirac fermions

cb = (ψ2b−1 + iψ2b)/
√

2 ∼ eiφ
b , for b = 1, . . . , r = 2n. The vector γ = (γ1, . . . , γn) that corresponds to

deconfined excitations can take all integral or all half-integral entries, and therefore it lives on the BCC

dual lattice LΘ defined in (3.89). There are four primary fields of the SO(2n)1 WZW CFT that generate

all deconfined excitations. Each primary field is a super-selection sector of vertex operators that form an

irreducible representation of the SO(2n)1 algebra (c.f. (3.22)). The first is the trivial vacuum excitation

1 that corresponds to the trivial representation of SO(2n). The fermionic primary field ψ consists of the

vertex operators {eiφ
C,1
y0 (x0), . . . , eiφ

C,n
y0 (x0)}. Each of the vertex operators has conformal scaling dimension

hψ = (−1)y0/2, and creates a 2π kink to the ground state expectation value 〈2Θy0±1/2〉 at x0 (c.f. 3.23),

where the sign depends on C = A,B. Each of the two spinor primary fields s± consists of the set of frac-

tional vertex operators eiε·φ
C
y0 (x0)/2, where the vector ε = (ε1, . . . , εn) has unit entries and

∏
a εa = 1 for s+

and −1 for s−. The two super-sectors corresponds to the even and odd spinor representations of SO(2n).

Each of the vertex operators has a conformal scaling dimension hs± = (−1)y0n/8, and creates a π-kink of

〈2Θy0±1/2〉 at x0 (c.f. 3.24).

The four primary fields 1, ψ, s+, s− in SO(2n)1 follow a set of pair operator product expansion formulas.

Consequently, the four types of quasiparticle excitations in the coupled wire model follow the corresponding
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fusion rules

ψ × ψ = 1, ψ × s± = s∓,

s± × s± =

 1, for even n

ψ, for odd n
.

(3.91)

3.4.3 Duality transformation of the Hamiltonian and the symmetry

We now study the duality properties of the gapped surface. The duality transformation here generalizes

that in Ref. [19].

φ̃ay(x) =
∑
y′

sgn(y − y′)(−1)y
′
φay′(x), (3.92)

where the flavor index a is a spectator in the transformation. Physically it means that we bring two flux

quanta from positive and negative infinities to each flavor of chiral fermions independently. Equivalently, we

define the duality according to a particular U(1)rsubgroup of SO(2r). We can check that the dual field φ̃aj

preserves the commutation relation of the original boson field, up to a minus sign

[
φ̃ay(x), φ̃a

′

y′(x′)
]

= −
[
φay(x), φa

′

y′(x′)
]
. (3.93)

Physically, the dual fermion defined by ψ̃ay(x) = eiφ̃
a
y(x) still satisfies the correct fermion anticommutation

relation, but it has the opposite chirality of the original fermion on each wire. After duality transformation,

the kinetic energy term in Eq.(3.64) becomes highly nonlocal in terms of the dual bosons. This can be

resolved by introducing emergent gauge fields aaj (x) for each flavor of bosons (c.f. the review in Sec.3.3), and

such description will not be repeated here. Instead, we focus on the gapping terms. Under Eq. (3.92), we

have

φ̃ay+1 − φ̃ay = (−1)y+1(φay+1 − φay). (3.94)

Thus the sine-Gordon term in (3.83) keeps its original form, namely,

−u
∑
α∈∆

cos
(
α · 2Θ̃

)
= −u

∑
α∈∆

cos
(
α · 2Θ

)
, (3.95)

where 2Θ̃a ≡ φ̃aj − φ̃aj+1. The sine-Gordon gapping potential is therefore self-dual.
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There is a comment on this duality transformation. This self-dual interaction is a special case of the more

general case, where the coefficient u of the current-current interaction is complex valued, as we discussed

in Sec. 3.2. Without loss of generality, we assume that |u| = 1. Thus we can write u = eiθ. Eq. (3.95)

corresponds to θ = 0. As we vary θ, in addition to cosine terms, there are sine terms from current-current

interaction, which flip sign under duality transformation, seen from Eq. (3.94). Thus the ground state

structure would rotate in the Haldane lattice space correspondingly. Then the duality transformation is a

reflection with respect to the real axis in the complex u plane. When δ = π, the interaction becomes self-dual

again. But now the system becomes gapless. Therefore, the phase diagram on the u plane is a unit circle

centered at the origin, with self-dual points located at θ = 0, π. All the points describe a gapped system

except θ = π.

We notice in passing the duality transformation of the antiferromagnetic time-reversal symmetry. Under

the definition (3.70),

T φ̃ayT −1 = −φ̃ay+1 −
π

2 (−1)y+1. (3.96)

The additional minus sign in front of φ̃ay+1, when compared with (3.70), means T : c̃→ c̃ now preserves dual

Dirac fermion number, whereas T : c→ c† flips the original ones. The AFTR symmetry therefore carries an

additional particle-hole component when transferred across the duality.

We conclude this section by making the following remarks. First, the duality transformation defined

in Eq.(3.92) is not unique. There are alternative duality transformations that converge to the same equal-

time commutation relation (3.93). Second, the duality transformation (3.92) does not work for the gapped

phase of SO(4). From Ref. [21], we see that SO(4) requires special attention because the usual decomposition

SO(4) ∼ SO(2)×SO(2) leads to Gross-Neveu interactions that only renormalize the boson velocities without

introducing an energy gap. For this purpose, an alternative decomposition is needed – SO(4) ∼ SU(2) ×

SU(2), and it leads to a special gapping potential. The SU(2) gapping potential is not self-dual under (3.92),

and in fact, the dual theory is highly non-local. We suspect the SO(4) ∼ SU(2) × SU(2) fractionalization

is self-dual under some alternative duality transformation that is out of the scope of this work.
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3.5 A-series: U(N) surface theory

3.5.1 Surface gapless Dirac Hamiltonian via coupled wire construction and

decomposition

In this section, we discuss the U(N)1 theories constructed from N Dirac fermions. The U(4)1 prototype

was discussed in section 3.2. Here we describe the general situations. The N surface Dirac fermions, with

Hamiltonian

H0 = iv

N∑
a=1

∑
s,s′=↑,↓

cas
†(σx∂x + σy∂y)ss′cas′ , (3.97)

can be supported by a topological bulk such as a reflection-symmetric topological crystalline insulator with

mirror Chern number N [121, 122]. By introducing alternating symmetry breaking Dirac mass on the

surface,

δV = ±m
N∑
a=1

∑
s,s′=↑,↓

cas
†(σz)ss′cas′ , (3.98)

the gapless electronic degrees of freedom are localized along an array of one-dimensional interfaces (see

figure 3.1(a)). Each interface, that is sandwiched between adjacent stripes with opposite Dirac masses, hosts

N chiral Dirac fermions that co-propagate in a single direction [102].

The Hamiltonian that describes the 1D arrays of low-energy Dirac channels is

HD,0 =
∞∑

y=−∞
ivx(−1)yc†y∂xcy, (3.99)

where cy = (c1y, . . . , cNy ) is an N -component chiral Dirac fermion. After bosonizing these Dirac fermions via

cay = eiφ
a
y , we can write Eq. (3.99) in the same form as Eq. (3.64), namely,

HD,0 = Vx
∑
y

N∑
a=1

∂xφ
a
y∂xφ

a
y, (3.100)

where Vx is some non-universal velocity. We can decompose a U(N)1 theory into a U(1) charge sector and

an SU(N) spin sector. This decomposition makes the physics richer than that of the D-series, which we will
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show later. The U(1) charge sector is represented by the diagonal

Φρy = Nφ̃ρy = φ1
y + . . .+ φNy (3.101)

and the neutral SU(N) sector is represented by

Φy,I =
N−1∑
J=1

K
SU(N)
IJ φ̃Jy =

N∑
a=1

αIaφ
a
y, (3.102)

where I = 1, . . . , N − 1. Here αI = (αI1, . . . , αIN ), for αaI = δaI − δaI+1, are the simple roots of SU(N). The

Cartan matrix of SU(N) is the inner product KSU(N)
IJ = αI · αJ . The roots of SU(N) form the collection

of integral vectors

∆SU(N) =
{
α ∈ Z

N : |α|2 = 2,
N∑
a=1

αa = 0
}
. (3.103)

Details can be found in Appendix B.2.

The “pq̇” term of the Lagrangian density decomposes into

L0 = 1
2π
∑
y

(−1)y
N∑
a=1

∂xφ
a
y∂tφ

a
y (3.104)

= 1
2π
∑
y

(−1)yN∂tφ̃ρy∂xφ̃ρy

+ 1
2π
∑
y

(−1)y
N−1∑
I,J=1

K
SU(N)
IJ ∂tφ̃

I
y∂xφ̃

J
y .

In this section, we focus on the partition N = p+ q that splits

U(N)1 ⊃ U(p)1 × U(q)1

⊃ (U(1)p × SU(p)1)︸ ︷︷ ︸
A−sector

× (U(1)q × SU(q)1)︸ ︷︷ ︸
B−sector

. (3.105)

The partition separate the Dirac fermions into two groups. The A sector consists of c1, . . . , cp, and the

B sector consists of cp+1, . . . , cp+q. We label the bosonized variables by φA,a = φa for a = 1, . . . , p and
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φB,b = φp+b for b = 1, . . . , q. The Lagrangian density (3.104) splits into

L0 = LA0 + LB0 (3.106)

LC0 = 1
2π
∑
y

(−1)y
r∑
c=1

∂xφ
C,c
y ∂tφ

C,c
y

= 1
2π
∑
y

(−1)yr∂tφ̃C,ρy ∂xφ̃
C,ρ
y

+ 1
2π
∑
y

(−1)y
r−1∑
I,J=1

K
SU(r)
IJ ∂tφ̃

C,I
y ∂xφ̃

C,J
y .

where the charged and neutral bosons φ̃C,ρ and φ̃C,I are defined similarly to (3.101) and (3.102), for C = A,B

and r = p, q respectively. As there are no cross terms in the Lagrangian density, the A and B sectors are

completely decoupled from one another.

If the surface Dirac fermions are supported from a mirror-symmetric topological bulk, the Dirac channels

are related by reflection

McayM
−1 = (−1)yica−y, MφayM

−1 = φa−y + (−1)y π2 . (3.107)

The surface array also admits an emergent anti-ferromagnetic time-reversal (AFTR) symmetry (c.f. (3.70)

in section 3.4)

T cayT −1 = (−1)ycay+1, T φayT −1 = −φay + 1− (−1)y

2 π. (3.108)

The symmetries obey the algebraic relation M2 = (−1)F , T 2 = (−1)F translationy→y+2 and TMT−1M−1 =

translationy→y+2, where (−1)F is the fermion parity number operator. Mirror and AFTR symmetry pre-

serving surface many-body gapping coupled wire models can be found in Ref. [23, 99]. Unlike the D-series

discussion in section 3.4, in this section, we focus on symmetry breaking many-body gapping potentials that

support to fractional quasiparticle excitations. For instance, the wire partition (3.105) respects neither one

of the symmetries.

3.5.2 Gapping terms for surface Dirac fermions

We now discuss symmetry breaking gapping interactions to (3.99). The array of Dirac channels can acquire

a finite excitation energy gap by backscattering dimerizations between adjacent wires. The simplest ones
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are the single-body dimerizations

H1−body = m
∑
y′

[
p∑
a=1

ca2y′−1
†ca2y′ + h.c.

+
q∑
b=1

cp+b2y′
†
cp+b2y′+1 + h.c.

]
. (3.109)

It partitions the N Dirac channels in a given wire into p + q, and backscatters the two sectors in opposite

directions. The backscatterings are therefore non-competing and introduce a single-body mass gap. In

this section, we focus on many-body backscattering dimerizations based on the decomposition (3.105). It

partitions the N Dirac fermions in any given wire into the U(1)p and U(1)q charged sectors and the SU(p)1

and SU(q)1 neutral sectors. By backscattering these decoupled sectors independently, the potentials

H = HAρ +HBρ +HASU(p)1
+HqSU(q)1

, (3.110)

HAρ = −vA
∑
y′

cos
(

ΦA,ρ2y′ − ΦA,ρ2y′+1

)
,

HBρ = −vB
∑
y′

cos
(

ΦB,ρ2y′−1 − ΦB,ρ2y′
)
,

HASU(p)1
= uA

∑
y′

JSU(p)
2y′ · JSU(p)

2y′+1 ,

HBSU(q)1
= uB

∑
y′

JSU(q)
2y′−1 · J

SU(q)
2y′ ,

introduce a finite excitation energy gap to the coupled wire model. Here ΦA,ρy = φ1
y + . . .+ φpy and ΦB,ρy =

φp+1
y + . . .+φp+qy are the bosonized variables that generate the charged U(1) sectors, where N = p+ q. The

neutral sectors are generated by the SU(r)1 Kac-Moody currents [54]

Jα,SU(p)
y =

p∑
a,a′=1

cay
†tαaa′c

a′

y ,

Jα,SU(q)
y =

q∑
b,b′=1

cp+by

†
tαbb′c

p+b′
y , (3.111)

where the fundamental matrix representations tαcc′ of SU(r), for r = p, q, are listed in Appendix B.2.
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The SU(r)1 backscattering dimerizations can be expressed in terms of bosonized variables.

HASU(p)1
= uA

∑
y′

 p∑
a,a′=1

V Aaa′∂xφ
a
2y′∂xφ

a′

2y′+1

−
∑

α∈∆SU(p)

cos
(
α · 2ΘA

2y′+1/2

) , (3.112)

HBSU(q)1
= uB

∑
y′

 q∑
b,b′=1

V Bbb′∂xφ
p+b
2y′−1∂xφ

p+b′
2y′

−
∑

α∈∆SU(q)

cos
(
α · 2ΘB

2y′−1/2

) , (3.113)

where 2ΘA
2y′+1/2 = (2ΘA,1

2y′+1/2, . . . , 2ΘA,p
2y′+1/2) has entries 2ΘA,a

2y′+1/2 = φa2y′ − φa2y′+1, and 2ΘB
2y′−1/2 =

(2ΘB,1
2y′−1/2, . . . , 2ΘB,q

2y′−1/2) has entries 2ΘB,b
2y′−1/2 = φp+b2y′ − φ

p+b
2y′ . Here the velocity terms V Ccc′ originate from

the backscatterings of the Cartan generators HI ∼ αI · ∂φ of SU(r)1, where αI are the simple roots of

SU(r) presented below eq.(3.102). The sine-Gordon terms are responsible in introducing a finite excitation

energy gaps in the neutral sectors, and they originate from the backscatterings of the raising and lowering

operator Eα ∼ eiα·φ, where α are the root vectors in ∆SU(r) defined in (3.103).

Similar to the D-series, the potentials (3.112) and (3.113) consists of more sine-Gordon terms than

necessary in order to introduce a finite excitation gap. Instead of summing over all root vectors α in ∆SU(r),

it suffices to include only a set of linearly independent simple roots α1, . . . ,αr−1, where we choose

RSU(r) =


−− α1 −−

...
...

...

−− αr−1 −−


(r−1)×r

=



1 −1 0 . . . 0 0

0 1 −1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 −1


(3.114)

so that K = (KIJ)n×n = RSU(r)R
T
SU(r) is the Cartan matrix of SU(r). All roots α are integer combi-

nations of the simple ones, and given uA, uB are positive, the redundant sine-Gordon gapping terms are

non-competing. Together with the gapping Hamiltonians Hρ in (3.110) for the charged sectors, they collec-
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tively pin the ground state expectation values of the angle variables to live in the dual lattice

LΘ ≡

2Θ ∈ R
r :

α · 2Θ,α0 · 2Θ ∈ 2πZ

α ∈ ∆SU(r),α
0 = (1, . . . , 1)

 (3.115)

so that all sine-Gordon terms in (3.110), (3.112) and (3.113) are simultaneously minimized (c.f. the discussion

on U(4) in section 3.2).

The dual lattice decomposes into the orthogonal U(1) and SU(r) sectors

LΘ = LU(1)
Θ ⊕ LSU(r)

Θ , (3.116)

LU(1)
Θ = spanZ{2πβ0},

LSU(r)
Θ = spanZ{2πβ1, . . . , 2πβr−1},

where the primitive reciprocal vectors of LU(1)
Θ and LSU(r)

Θ are

βI = 1
(r − 1)!εIJ...K

αJ ∧ . . . ∧αK

α0 · (α1 ∧ . . . ∧αr−1) , (3.117)

β0 = 1
r

(1, . . . , 1)

so that αµ · βν = δµν , for µ, ν = 0, 1, . . . , r − 1. Here, the entries of the reciprocal vectors βI = (β1
I , . . . , β

r
I )

of SU(r) take the explicit form

βaI =

 (r − I)/r, if a ≤ I

−I/r, if a > I
(3.118)

for I = 1, . . . , r − 1.
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A Z2 twist

Contrary to the D-series, here there is an alternative choice of gapping potentials, which involves the product

of the neutral and charged sectors

HZ2 = HAZ2
+HBZ2

, (3.119)

HAZ2
= −uA

∑
y′

cos
(

ΦA,ρ2y′ − ΦA,ρ2y′+1

)

×
p−1∑
I=1

cos
(
αISU(p) · 2ΘA

2y′+1/2

)
,

HBZ2
= −uB

∑
y′

cos
(

ΦB,ρ2y′−1 − ΦB,ρ2y′
)

×
q−1∑
I=1

cos
(
αISU(q) · 2ΘB

2y′−1/2

)
,

where 2ΘA
2y′+1/2 = (2ΘA,1

2y′+1/2, . . . , 2ΘA,p
2y′+1/2) has entries 2ΘA,a

2y′+1/2 = φa2y′ − φa2y′+1, and 2ΘB
2y′−1/2 =

(2ΘB,1
2y′−1/2, . . . , 2ΘB,q

2y′−1/2) has entries 2ΘB,b
2y′−1/2 = φp+b2y′ − φp+b2y′ . Here, unlike the previous sine-Gordon

terms in HCSU(r)1
in (3.112) and (3.113), the Z2 terms HC

Z2
in (3.119) consist of sums of only the simple roots

αISU(r) of SU(r) (see (3.114)).

Eq.(3.119) introduces a finite excitation energy gap. To see this, we notice each product of cosine terms

generates two sine-Gordon terms using the combine angle formula

cos
(

ΦC,ρy − ΦC,ρy+1

)
cos
(
αISU(r) · 2ΘC

y+1/2

)
= cos

(
α0
U(1)r · 2ΘC

y+1/2

)
cos
(
αISU(r) · 2ΘC

y+1/2

)
= 1

2 cos
[(
α0
U(1)r +αISU(r)

)
· 2ΘC

y+1/2

]
+ 1

2 cos
[(
α0
U(1)r −α

I
SU(r)

)
· 2ΘC

y+1/2

]
, (3.120)

where α0
U(1)r = (1, . . . , 1) is the r-dimensional charge vector and αISU(r), for I = 1, . . . , r are the simple

roots of SU(r). The combined angle variables satisfy the “Haldane nullity” gapping condition [112]

[(
α0
U(1)r + sαISU(r)

)
· 2ΘC

y+1/2,
(
α0
U(1)r′ + s′αI

′

SU(r′)

)
· 2ΘC′

y′+1/2

]
= 0 (3.121)

where C,C ′ = A (B) and r, r′ = p (q) for even (odd) y, y′ respectively, and s, s′ = ±. There are 2r− 2 sine-

Gordon terms between adjacent wires at each y+ 1/2. This provides more than enough sine-Gordon terms,
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when r ≥ 2, to introduce an energy gap for the r pairs of counter-propagating channels. The redundant terms

are non-competing and they collectively pin the bosonized angle variables 2ΘC
y+1/2 to the energy-minimizing

ground state expectation values in the dual lattice

LZ2
Θ ≡

{
2Θ ∈ R

r :
(
α0
U(1)r ±α

I
SU(r)

)
· 2Θ ∈ 2πZ

}
. (3.122)

LZ2
Θ contains twice as many lattice points as the original dual lattice LΘ in (3.115) for the previous

coupled wire model (3.110), and consequently, there are twice as many ground states between each adjacent

wires. The scalar products αµ ·2Θ can now either be all even or all odd multiples of 2π, for µ = 0, 1, . . . , r−1.

Therefore, the dual lattice admits a Z2 grading

LZ2
Θ = L0

Θ + L1
Θ. (3.123)

The even lattice L0
Θ = LΘ is identical to the dual lattice defined in (3.115). The odd lattice L1

Θ displaces

from the even one by half a lattice spacing

L1
Θ = 2πβ1/2 + L0

Θ. (3.124)

Here β1/2 can be chosen to be any vector so that α0 · β1/2 and αI · β1/2 are all half integers. For example,

one can take the entries of β1/2 = (β1
1/2, . . . , β

r
1/2) to be βa1/2 = (2+r−2ar+r2)/(4r) so that αµ ·β1/2 = 1/2

for µ = 0, 1, . . . , r − 1. The Hamiltonian HZ2 in (3.119), the half dual vector β1/2 as well as the odd lattice

L1
Θ all depend explicitly on the choice of simple roots αISU(r). They therefore explicitly breaks the SU(r)

symmetry. Distinct choices of simple roots correspond to inequivalent ground states with distinct odd angle

expectation values L1
Θ.
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At this point, one can also consider gapping potentials that sum over all roots of SU(r).

Heven = HAeven +HBeven, (3.125)

HAeven = −uA
∑
y′

cos
(

ΦA,ρ2y′ − ΦA,ρ2y′+1

)
×

∑
α∈∆SU(p)

cos
(
α · 2ΘA

2y′+1/2

)
,

HBeven = −uB
∑
y′

cos
(

ΦB,ρ2y′−1 − ΦB,ρ2y′
)

×
∑

α∈∆SU(q)

cos
(
α · 2ΘB

2y′−1/2

)
.

In this case, the Hamiltonian still introduces a finite excitation energy gap. However, the additional non-

simple root terms put extra restrictions to the ground state expectation values of 2ΘC
y+1/2. The angle values

minimize energy only when
(
α0
U(1)r ±αSU(r)

)
· 2Θ are all integer multiples of 2π, for all roots αSU(r).

This rules out the odd solutions in L1
Θ for r ≥ 3. For instance, α1 + α2 is also a root vector, and the

above restriction implies α0
U(1)r · 2Θ as well as αSU(r) · 2Θ to be full integer multiples of 2π. The energy-

minimizing angle variables to Hamiltonian (3.125) therefore must be even and live exclusively in L0
Θ. This is

not unexpected since the exactly solvable Hamiltonian (3.125) preserves the SU(r) symmetry and so must

its ground state. For instance, the angle values that belong to the SU(r)-breaking odd lattice L1
Θ in (3.124)

correspond to confined excitations that cost linearly diverging energy.

On the other hand, one can also consider another set of gapping potentials

Hodd = HAodd +HBodd, (3.126)

HAodd = uA
∑
y′

cos
(

ΦA,ρ2y′ − ΦA,ρ2y′+1

)
×

∑
α∈∆SU(p)

(−1)Tr(α) cos
(
α · 2ΘA

2y′+1/2

)
,

HBodd = uB
∑
y′

cos
(

ΦB,ρ2y′−1 − ΦB,ρ2y′
)

×
∑

α∈∆SU(q)

(−1)Tr(α) cos
(
α · 2ΘB

2y′−1/2

)
,

where (−1)Tr(α) is even (odd) if α = a1α
1 + . . .+ar−1α

r−1 is an even (resp. odd) combination of the simple

roots, for Tr(α) = a1 + . . .+ ar−1. Contrary to the even Hamiltonian (3.125), the odd Hamiltonian (3.126)

here has minimum energy when the angle variables live inside the odd lattice L1
Θ in (3.124) that breaks

57



SU(r).

These gapping potentials can be continuously deformed into one another, for example, via linear inter-

polation

Ht = (1− t)Heven + tHodd. (3.127)

The ground states between an adjacent pair of wires are specified by the even (odd) dual lattice L0
Θ (L1

Θ)

when t < 1/2 (t > 1/2) respectively. At the transition at t = 1/2, the Hamiltonian only carries sine-Gordon

terms from roots that are odd combinations of the simple ones. Consequently, the ground states are identical

to that of HZ2 and corresponds to the same Z2 graded angle expectation value structure LZ2
Θ in (3.122) and

(3.123). This transition is analogous to Zeeman transition across the ordered phase of the Ising model

HIsing = −J
∑
i

σzi σ
z
i+1 − h

∑
i

σxi −B
∑
i

σzi , (3.128)

where B is the magnetic field for the Zeeman coupling. When J > h and B = 0, the ordered phase has

two degenerate ground states specified by 〈σzi 〉 = ±1. The Zeeman coupling B introduces a preference of up

spins versus down ones, and breaks the degeneracy. Here, the parameter t − 1/2 in (3.127) takes a similar

role as the Zeeman field B.

In general, there is an intricate phase diagram when the strengths and signs of the sine-Gordon terms

cos (α · 2Θ) can vary from one to another. There are multiple distinct Z2 critical phases, where the ground

states between an adjacent pair of wires take a Z2 graded structure. In the thermodynamic limit with an

infinite number of wires, this introduces a diverging ground state degeneracy. This signifies a gap-closing

critical transition between distinct 2D gapped phases. On the other hand, the diverging degeneracy could

also be lifted if the theory is coupled with a Z2 gauge theory (similar to the one studied for the D-series in

section 3.4). These discussions are out of the scope of this article and we refer them to future works.

Quasiparticle excitations

The deconfined quasiparticle excitations of the coupled wire model (3.110) are kinks of the angle variables

〈2ΘC
y+1/2〉. Similar discussions were provided for U(4) in section 3.2. Here, we summarized the results for

the general U(N). The ground state expectation values 〈2ΘC
y+1/2〉 belong in the dual lattice LΘ defined

in (3.115). A quasiparticle excitation at (x0, y0) is a kink where the angle variable 〈2ΘC
y0+1/2(x)〉 jumps

discontinuously from one value to another in LΘ when x passes across x0. A quasiparticle excitation can

be created by acting a vertex operator V C,γy0
(x0) = exp

[
iγaφ

C,a
y0

(x0)
]

on a ground state, where C = A (B)
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and a = 1, . . . , r for r = p (q). These vertex operators are classified according to the primary fields of

the U(1)r × SU(r)1 Kac-Moody algebra. Each primary field is a super-selection sector of vertex operators

that form an irreducible representation of the U(1) × SU(r) (c.f. (3.22) for SO(6)1). For example, the

smallest primary field [1]ρ for the U(1)r charge sector is the single vertex operator eiφ̃
C,ρ
y0 (x0), where φ̃C,ρ =

ΦC,ρ/r = (φC,1 + . . . + φC,r)/r. It creates a fractional excitation with spin (equivalently, conformal scaling

dimension) 1/2r. General primay field excitations [m]ρ in the U(1)r sector are generated by higher order

copies eimφ̃
C,ρ
y0 (x0). They carry spin m2/2r and follow the fusion rule [m]ρ × [m′]ρ = [m+m′]ρ.

There are r primary fields in the SU(r)1 sector. Examples were presented for the SU(4)1 case in

section 3.2. Here, we demonstrate the general case. We begin with the smallest non-trivial primary field,

denoted by E1, that corresponds to the fundamental representation of SU(r). The super-selection sector E1

consists of the collection of vertex operators

EC,1y0
(x0) ∼ spanC

{
eiγ·φ

C
y0 (x0) : γ = σ(β1), σ ∈ Sr

}
(3.129)

where β1 is the primitive dual root (r−1,−1, . . . ,−1)/r (see (3.117) and (3.118)), and σ permutes the entries

of the r-dimensional vector. The super-selection sector irreducibly represents SU(r)1 in the sense that it

is closed under operator products with the SU(r)1 currents (c.f. (3.22)). Since all entries of β1 is identical

except one, there are exactly r permutations σ(β). Therefore E1 are generated by r vertex operators, which

form the fundamental representation of SU(r).

In general, the primary field Ec, for c = 1, . . . , r − 1, is the super-selection sector

EC,cy0
(x0) ∼ spanC

{
eiγ·φ

C
y0 (x0) : γ = σ(βc), σ ∈ Sr

}
, (3.130)

where the simple dual root βc was defined in (3.117) and (3.118). There are exactly Crc = r!/[c!(r − c)!]

entry permutations and therefore Ec forms a Crc dimensional irreducible representation of SU(r)1. Since

σ(βc) has c entries being (r − c)/r and r − c entries being −c/r, the primary field has spin (equivalently,

conformal scaling dimension)

hEc = c(r − c)2 + (r − c)c2

2r2 = (r − c)c
2r . (3.131)

Lastly, the trivial primary field is E0 = 1. The primary fields obey the fusion rules

Ec × Ec
′

= E[c+c′]mod r . (3.132)
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3.5.3 Duality transformation

We generalize the duality properties of the coupled wire model from that of the free Dirac fermion reviewed

in section 3.3. Under the duality transformation

φ̃ay =
∑
y′

sgn(y − y′)(−1)y
′
φay′ , (3.133)

the angle variables in the sine-Gordon terms in (3.110), (3.112) and (3.113) are self-dual up to a sign

2Θ̃A,a
2y′+1/2 ≡ φ̃

a
2y′ − φ̃a2y′+1 = −2θA,a2y′+1/2. (3.134)

Therefore, the sine-Gordon terms in (3.110), (3.112) and (3.113) are also self-dual

H̃Aρ = −vA
∑
y′

cos
(
α0
U(1)p · 2Θ̃2y′+1

)
= −vA

∑
y′

cos
(
α0
U(1)p · 2Θ2y′+1

)
= HAρ (3.135)

H̃ASU(p)1
= −uA

∑
y′

∑
α∈∆SU(p)

cos
(
α · 2Θ̃A

2y′+1/2

)
= −uA

∑
y′

∑
α∈∆SU(p)

cos
(
α · 2ΘA

2y′+1/2

)
= HASU(p)1

(3.136)

Similarly, the sine-Gordon terms for the B sector are also self-dual.

Lastly, we consider vertex operators that correspond to primary fields and create quasiparticle excitations.

The duality transformation (3.133) can be re-expressed in terms of the angle variables 2θay(x) as

φ̃a2y(x) = φa2y+1(x) +
∑
y′

sgn(y − y′)2θA,a2y′+1/2(x)

φ̃a2y+1(x) = φa2y(x) +
∑
y′

sgn(y − y′)2θA,a2y′+1/2(x)
,

and similarly for the B sector. We see that the dual vertex operators are dressed with non-local strings,

similar to (3.51) in section 3.3. When acting on a ground state, the angle variables 2θA,a2y′+1/2 are pinned and

can be replaced by their ground state expectation values. The non-local string therefore condenses into the

ground state leaving only complex phases behind.
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Like D-series, if we extend the coupling constants of the sine-Gordon terms uA/B to be complex valued,

then the ground state manifold change continuously as we vary the phases θA/B of uA/B . The self-dual

points are θA/B = 0, π and duality transformation (3.133) on the complex u plane is a reflection with respect

to the real axis. The ground state manifold can be visualized for SU(3) or SU(4) cases and it should be true

for the general SU(N) theories.

3.6 E-series surface theory

The exceptional Lie algebra E6, E7 and E8 are the remaining simply-laced Lie algebra in the ADE classi-

fication. We first discuss the E8 algebra. In addition to the conventional topological insulators that host

protected Dirac surface states, topological paramagnets [63, 64] are alternative time reversal and charge

U(1) symmetry preserving topological states enabled by interactions. These are short-ranged entangled

SPT states in three dimensions that do not exhibit bulk quasiparticle fractionalization or topological order.

However, they do carry anomalous surface states that cannot be supported in a pure two dimensional system.

We are interested in the efmf topological paramagnetic state. Like a conventional topological insulator, its

surface state is unstable against time reversal breaking perturbations. A finite excitation energy gap can

be introduced on the surface by a magnetic order without requiring surface topological order or fraction-

alization. The efmf topological paramagnet is distinct from a conventional topological insulator in that a

magnetic surface domain wall – a line interface that separates two time reversal breaking gapped surface

domains with opposite magnetic orientations – hosts quasi-one-dimensional low-energy electronic degrees of

freedom that are chiral only in energy but has no electric charge transport. Electronic quasiparticles are

chiral in the sense that they propagate in a single forward direction along the line interface. They collec-

tively account for a chiral heat current Ieng = IReng − ILeng that obey the differential thermal conductance

κ = dIeng/dT = c(π2k2
B/3h)T in low temperature T , where the central charge is c = 8. However, electric

charge transport is non-chiral in that the chiral electric current I = IR − IL does not response to change of

electric potential, σ = dI/dV = 0. These low-energy degrees of freedom can be effectively described by a

1 + 1D E8 Kac-Moody CFT at level 1. They can be described by the bosonized Lagrangian density

L0 = 1
2π

8∑
a=1

∂tφ
a∂xφ

a −
8∑

a,b=1
Vab∂xφ

a∂xφ
b

= 1
2π

8∑
I,J=1

(KE8)IJ∂tφ′I∂xφ′J −
8∑

I,J=1
V ′IJ∂xφ

′I∂xφ
′J , (3.137)
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where the “Cartan-Weyl” and “Chevalley” bosonized variables φ and φ′ are related by the basis transforma-

tion

φ′I = (K−1
E8

)IJΦJ =
8∑
a=1

(R−1
E8

)Iaφa,

RE8 =


−− α1 −−

...
...

...

−− α8 −−



=



1 −1 0 0 0 0 0 0

0 1 −1 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 1 −1 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 1 −1 0

0 0 0 0 0 0 1 −1

− 1
2 − 1

2 − 1
2 − 1

2 − 1
2

1
2

1
2

1
2



, (3.138)

and the Cartan matrix of E8

KE8 = RE8R
T
E8

(3.139)

(see Eq. (B.19) in Appendix B.2 for an explicit expression) has determinant 1 and is invertible.

Here, it is important to realize that the neutral fermionic vertex operators eiφa are non-local and frac-

tional. They are not the primary field excitations of the E8 CFT, which only supports local integral ex-

citations. Instead, the low-energy physical excitations are generated by the local bosonic vertex operators

eiΦI = eiKIJφ
′J = eiR

I
aφ
a . Since KE8 has integral inverse, eiφ′I = ei(K

−1)IJΦJ are also local and bosonic.

These are even integral combinations of electrons/holes, each of which is assumed to carry net zero electric

charge. All odd combinations of electrons/holes correspond to gapped fermionic excitations. They do not

contribute to the low-temperature chiral energy transport and are not described by the low-energy effective

E8 CFT.

The E8 Kac-Moody currents consist of the 8 Cartan generators ∂ΦI and the 240 roots Eα = eiα·φ. The
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240 roots can be decomposed into the 112 SO(16) roots and 128 spinor representations of SO(16).

∆E8 = ∆SO(16) ∪∆s− (3.140)

The 112 root vectors in ∆SO(16) were defined in (3.86) in section 3.4, and they take the form α = ±ea± eb,

where a 6= b. In this chapter, we adopt the convention where the E8 roots extends from that of SO(16) by

its odd spinors s−. The 128 odd spinor vectors in ∆s− take the form α = (ε1, . . . , ε8)/2 where εa = ±1 and

ε1 . . . ε8 = −1. All 240 roots of E8 are integral combinations of the simple ones defined by the row vectors

of RE8 in (3.138). Since eiRIaφa are bosonic integral combinations of local electrons, so are all the E8 current

operators.

We consider time reversal breaking stripes with alternating magnetic orientation on the surface of the efmf

topological paramagnet (c.f. figure 3.1). This reduces the low-energy electronic degrees of freedom to an array

of E8 wires with alternating propagating directions. Similar to the D-series coupled wire model discussed in

section 3.4, the E8 array exhibits an emergent antiferromagnetic time reversal symmetry, which composes

of a time reversal and a half-translation y → y+ 1. AFTR preserving fractionalization E8 ∼ SO(8)×SO(8)

and gapping interactions were studied in ref. [21]. Instead, in this section, we focus on AFTR symmetry

breaking gapping interactions based on asymmetric partitions of the E8 current algebra. In particular, we

concentrate on the conformal embeddings

E8 ⊇ E7 × SU(2), E8 ⊇ E6 × SU(3) (3.141)

that involve the other two exceptional simply-laced Lie algebras. The coupled wire model is constructed by

backscattering the two decoupled components E7 and SU(2) (or E6 and SU(3)) on each wire to adjacent

wires in opposite directions.

Before discussing these surface models, we first consider a set of simple gapping potentials that fully

dimerizes the E8 wires.

Hdimer = u
∑
y′

JE8
2y′−1 · J

E8
2y′

= u
∑
y′

8∑
a=1

∂xφ
a
2y′−1∂xφ

a
2y′

− u
∑
y′

∑
α∈∆E8

cos
(
α · 2Θ2y′−1/2

)
, (3.142)

where the sine-Gordon angle parameter is Θa
2y′−1/2 = φa2y′−1 − φa2y′ . Similar to the coupled wire models in
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the previous sections, to simultaneously minimize the sine-Gordon terms in (3.142), the angle parameters

take ground state expectation values inside the dual lattice (c.f. (3.89))

LE8
Θ ≡ {2Θ : α · 2Θ ∈ 2πZ, α ∈ ∆E8},

= spanZ{2πβ1, . . . , 2πβ8}, (3.143)

βI = 1
8!εIJ1...J7

αJ1 ∧ . . . ∧αJ7

α1 · (α2 ∧ . . . ∧α8) ,

where α1, . . . ,α8 are the simple roots in (3.138). The primitive dual root vectors satisfy βI · αJ = δJI ,

i.e. R∨E8
RTE8

= I8×8, and they take the explicit form

R∨E8
=


−− β1 −−

...
...

...

−− β8 −−



= −1
2



−1 1 1 1 1 1 1 1

0 0 2 2 2 2 2 2

1 1 1 3 3 3 3 3

2 2 2 2 4 4 4 4

3 3 3 3 3 5 5 5

2 2 2 2 2 2 4 4

1 1 1 1 1 1 1 3

2 2 2 2 2 2 2 2



. (3.144)

The dual lattice is self-dual up to a 2π multiplicative factor in the sense that spanZ{α1, . . . ,α8} =

spanZ{β1, . . . ,β8} because

R∨E8
= RTE8

−1 = K−1
E8
RE8 (3.145)

and KE8 has integral inverse. This is consistent with the fact that the root lattice of E8 is unimodular.

Consequently, all deconfined excitations of the coupled wire model (3.142) that correspond to kinks of

〈2Θ2y′−1/2〉 ∈ LE8
Θ are local and can be created by integral combination of electron/hole operators.
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3.6.1 E7 × SU(2)

We now construct the coupled wire model that utilizes the partition E8 ⊃ E7 × SU(2) and describes a

gapped symmetry breaking surface of a topological paramagnet. Each E8 wire on the 2D surface array

(c.f. figure 3.1(c)) is decomposed into a E7 and a SU(2) Kac-Moody CFT at level 1. These two sectors

decouple from each other and act on orthogonal Hilbert spaces. This motivates the gapping Hamiltonian

H = u
∑
y′

JE7
2y′−1 · J

E7
2y′ + JSU(2)

2y′ · JSU(2)
2y′+1 (3.146)

that backscatters the two decoupled currents from a wire into adjacent wires in opposite directions. In the

following, we define the current embeddings of JE7 and JSU(2) into E8.

We begin with the new set of simple root vectors of E7 × SU(2)

αI = eI+1 − eI+2, i = 1, . . . , 6,

α7 = 1
2(−1,−1,−1,−1,−1, 1, 1, 1),

α8 = 1
2(−1, 1, 1, 1, 1, 1, 1, 1), (3.147)

where α1, . . . ,α7 are the simple root vectors of E7 and α8 generates SU(2). It is easy to see that the Cartan

K-matrix splits

KE7×SU(2) =
(
αI ·αJ

)
8×8 =

KE7 0

0 KSU(2)

 , (3.148)

where the explicit form of KE7 can be found in Eq. (B.19) in Appendix B.2 and KSU(2) = 2. The E7 root

system can be embedded in E8 by taking the subset

∆E7 =
{
α ∈ ∆E8 : α ·α8 = 0

}
⊆ ∆E8 . (3.149)

The 126 roots in ∆E7 is an extension of the 42 roots of SU(7) – a subgroup of E7 – by the weight vectors

of the irreducible representations 7, 7, 35, and 35.

∆E7 = ι∆SU(7) + 7 + 7 + 35 + 35. (3.150)

To illustrate this, we embed the root system of SU(7) (see (3.103)) in that of SO(16) ⊆ E8 by putting the
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7 dimensional root vectors α ∈ ∆SU(7) in the 8 dimensional space,

ι : α = (α1, . . . , α7) 7→ ια = (0, α1, . . . , α7),

ι∆SU(7) =
{
ια : α ∈ ∆SU(7)

}
.

(3.151)

Next, we observe that certain sub-collections of the E8 roots form the weight vectors of the representations

7, 7, 35, and 35. They are given by

7 = {e1 + ej : j = 2, . . . , 8} ,

7 = {−e1 − ej : j = 2, . . . , 8} ,

35 =

1
2(1, s2, . . . , s8) : s2, . . . , s8 = ±1,

8∑
j=2

sj = 1

 ,

35 =

1
2(−1, s2, . . . , s8) : s2, . . . , s8 = ±1,

8∑
j=2

sj = −1

 .

Each of these weight vectors is orthogonal to α8 and therefore decouples from the SU(2). While 7 and 7

can be embedded in the root system of SO(16), 35 and 35 can only be embedded in E8 as they consists of

half-integral vectors. Each of these collections of weight vectors γa corresponds to a super-selection sector of

vertex operators span{eiγa·φ} that transforms closely and irreducibly under the SU(7)1 Kac-Moody algebra

(c.f. (3.22)). Each sector splits into η ⊗ Ec, where Ec is a primary field of SU(7)1 and η is a primary field

of the coset (E7)1/SU(7)1, so that the combined spin (conformal scaling dimension) is 1.

The coupled wire model (3.146) can be expressed as a sum of sine-Gordon gapping interactions

H = −u
∑
y′

∑
α∈∆E7

cos
(
α · 2Θ2y′−1/2

)
− u

∑
y′

cos
(
α8 · 2Θ2y′+1/2

)
, (3.152)

where α8 is the root vector of SU(2) when embedded in E8 and we have suppressed the non-gapping Cartan

generator terms that renormalize velocities. Here, 2Θ = (2θ1, . . . , 2θ8) and 2θay+1/2 = φay − φay+1. The

sine-Gordon terms in the first line in (3.152) dimerize the E7 currents between wire 2y′ − 1 and 2y′ while

terms in the second line dimerize the remaining SU(2) currents between wire 2y′ and 2y′ + 1. Together,

they introduce a finite excitation energy gap.

Quasiparticle excitation can be created by primary fields of the E7 or the SU(2) sector. The semionic

primary field of SU(2) at wire y is the super-selection sector of vertex operators s ∼ span{eiβ8·φy , e−iβ8·φy}.

Here, the weight vector β8 = (−1, 1, . . . , 1)/4 = α8/2 is orthogonal to all E7 roots and has length square
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|β8|2 = 1/2. Consequently, the primary field decouples from the E7 sector and carries conformal scaling

dimension hs = |β8|2/2 = 1/4. Each of the vertex operators creates a bulk quasiparticle excitation in the

form of a kink of the sine-Gordon angle parameter between wire y and y+ 1 (y− 1) if y is even (resp. odd).

The anti-semionic primary field of E7 at wire y is the super-selection sector of vertex operators

s̄ ∼ span{eiβ·φy : β ∈ SE7}, (3.153)

where SE7 is the collection of dual vectors

SE7 = {β8 − eI − eJ : 2 ≤ I < J ≤ 8}

∪ {−β8 + eI + eJ : 2 ≤ I < J ≤ 8}

∪ {β8 + e1 − eI : 2 ≤ I ≤ 8}

∪ {−β8 − e1 + eI : 2 ≤ I ≤ 8}. (3.154)

This collection of 56 vertex operators form the 56 dimensional irreducible representation of E7 and corre-

sponds to the only non-trivial primary field of E7 at level 1. All weight vectors in SE7 are orthogonal to α8

and they all have length square |β|2 = 3/2. Therefore the primary field s̄ decouples from SU(2) and carries

conformal scaling dimension hs̄ = 3/4. It creates a kink of the sine-Gordon angle parameter between wire y

and y − 1 (y + 1) if y is even (resp. odd).

3.6.2 E6 × SU(3)

The discussion of E6 × SU(3) resembles that of E7 × SU(2). The gapping Hamiltonian takes the current

backscattering form

H = u
∑
y′

JE6
2y′−1 · J

E6
2y′ + JSU(3)

2y′ · JSU(3)
2y′+1 . (3.155)

E6 and SU(3) are embedded in the E8 by setting the simple roots

αI = eI+2 − eI+3, I = 1, . . . , 5,

α6 = 1
2(−1,−1,−1,−1,−1, 1, 1, 1),

α7 = (1,−1, 0, 0, 0, 0, 0, 0),

α8 = 1
2(−1, 1, 1, 1, 1, 1, 1, 1). (3.156)
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The Cartan K-matrix

KE6×SU(3) =
(
αI ·αJ

)
8×8 =

KE6 0

0 KSU(3)

 (3.157)

splits, and therefore the E7 and SU(2) sectors decouple. The explicit form of the Cartan matrices of E6

and A2 = SU(3) can be found in Eq. (B.19) Appendix B.2. The SU(3) root system, as embedded in E8,

consists of vectors in

∆SU(3) = {±α7,±α8,±(α7 +α8)} ⊆ ∆E8 . (3.158)

Like the roots of E7, the roots of E6 are the orthogonal complement of SU(3) in E8,

∆E6 = {α ∈ ∆E8 : α ·α7 = α ·α8 = 0} ⊆ ∆E8 . (3.159)

The 72 roots of E6 extend the 30 roots of SU(6) by including weight vectors of the irreducible representations

1, 1, 20, and 20.

∆E6 = ι∆SU(6) + 1 + 1 + 20 + 20. (3.160)

Here, ι embeds the SU(6) roots into E8 (c.f. (3.151) for the E7 case) so that the embedded simple SU(6)

roots are α1, . . . ,α5. The four irreducible representations of SU(6) involved in the extension have weight

vectors

1 = {e1 + e2}, 1 = {−e1 − e2},

20 =

1
2(1, 1, s3, . . . , s8) : s3, . . . , s8 = ±1,

8∑
j=3

sj = 0

 ,

20 =

−1
2 (1, 1, s3, . . . , s8) : s3, . . . , s8 = ±1,

8∑
j=3

sj = 0

 .

Up to non-gapping boson velocity terms, the coupled wire model (3.155) can be expressed as a sum of

sine-Gordon potentials

H = −u
∑
y′

∑
α∈∆E6

cos
(
α · 2Θ2y′−1/2

)
− u

∑
y′

∑
α∈∆SU(3)

cos
(
α · 2Θ2y′+1/2

)
, (3.161)
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where 2Θ = (2θ1, . . . , 2θ8) and 2θay+1/2 = φay − φay+1. The sine-Gordon terms in the first line in (3.161)

dimerize the E6 currents between wire 2y′− 1 and 2y′ while terms in the second line dimerize the remaining

SU(3) currents between wire 2y′ and 2y′ + 1. They can be shown to introduce a finite excitation energy

gap. The proof is similar to the previous cases for the A and D-series and will be omitted.

Quasiparticle excitations, in the form of kinks of angle parameters in (3.161), can be created by primary

fields eiβ·φ in the E6 and SU(3) Kac-Moody CFT at level 1. We begin with the SU(3) sector. The

fundamental representation corresponds to the primary field e+ ∼ span{eiβ·φ : β ∈ SSU(3)}, where the

weight vectors are

SSU(3) = {−β7,β8,β7 − β8}, (3.162)

β8 = 1
3(0, 0, 1, . . . , 1), β7 = α7 +α8 − β8.

The anti-fundamental representation corresponds to the hermitian conjugation e− = (e+)†. Both primary

fields carry conformal scaling dimension he± = 1/3.

The fundamental 27-dimensional representation of E6 corresponds to the primary field e+ ∼ span{eiβ·φ :

β ∈ SE6}, where the weight vectors are

SE6 = {−β8 + eI + eJ : 3 ≤ I < J ≤ 8}

∪ {β6 − eI + e8 : I = 3, . . . , 8}

∪ {−β1 − eI + e8 : I = 3, . . . , 8}, (3.163)

β6 = 1
6(−3,−3, 1, 1, 1, 1, 1,−5),

β1 = 1
6(−3,−3, 5,−1,−1,−1,−1,−1).

The anti-fundamental representation corresponds to the primary field e− ∼ span{e−iβ·φ : β ∈ SE6} = (e+)†.

The two primary fields both share the same conformal scaling dimension h
e±

= 2/3.

Duality properties for E-series

The ground state structure of E-series has similar behaviors like A- and D-series, namely, if we extend the

coupling constant of the sine-Gordon terms to complex regime, duality transformation acts as a reflection

with respect to the real axis of the complex plane of the coupling constant. Although we can’t visualize it

due to the high dimensionality of the root systems, it is reasonable to conclude that all the points on the
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complex plane describe a gapped surface except those points on the negative real axis.
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Chapter 4

Boundary conformal field theories and symme-

try protected topological phases

This chapter is larged based on Ref. [123].

4.1 Introduction

4.1.1 SPT phases and quantum anomalies

Symmetry-protected topological (SPT) phases are quantum states of matter with a global symmetryG, which

can be either an internal or a space-time symmetry [38, 39, 124, 6, 5, 122, 125, 33]. This symmetry prevents

one from adiabatically connecting an SPT state to a topologically trivial state, namely, a product state.

More precisely, this means that one cannot find a symmetry-preserving quasilocal unitary transformation

that maps an SPT state to a product state [38]. In fact, as long as the symmetry is unbroken (either explicitly

or spontaneously), the phase space of gapped systems is partitioned into topologically distinct sectors that

cannot be adiabatically connected to each other. The trivial state lies in the trivial (in the topological sense)

sector of this classification. We will henceforth refer to it as the trivial SPT phase.

The existence of SPT phases has a close connection with quantum anomalies which are purely quantum

phenomena without any classical analog. Crudely speaking, it is expected that on the d-dimensional bound-

ary of an SPT phase in d+1-dimensional space-time lives an interesting phase of matter which is anomalous

in the sense that it cannot exist on a pure d-dimensional spacetime manifold, but must always be realized

on the boundary of a d+ 1 manifold under the condition that the symmetry is realized in the same way as

in the bulk [41, 39, 126, 127, 128] .
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Put differently, consistency conditions of a conformal field theory (CFT) at the boundary and topological

properties of a bulk phase are closely related. Basically, a consistent CFT, when realized at the edge of a

bulk system, implies that the bulk is trivial, namely, continuously deformable to a trivial state. On the other

hand, if a bulk supports a CFT that is inconsistent as its boundary theory, the bulk cannot be deformed

into a trivial state. This leads us to the question: What are the criteria for a CFT to be consistent?

For a (2+1)d SPT phase, modular (non)invariance of its (1+1)d edge theory has been used as a diagnostic

for the (non)trivial bulk [129, 130]. For a nontrivial SPT phase protected by symmetry G, there is a conflict

between G and modular invariance of the edge CFT; more precisely, the edge theory orbifolded by G is not

modular invariant[129, 130]. A similar argument can be applied to boundary theories of SPT phases in space

dimensions higher than 2 [131, 132].

4.1.2 Edgeability

In this chapter, we will give further thought on consistency conditions of CFTs. We will rely on the simple

geometrical identity, ∂2 = 0, which essentially says there is no boundary to a boundary of a bulk system. This

would mean, in the context of SPT phases and their boundaries, that boundary theories of SPT phases are

not allowed to have boundaries. Conversely, it is likely that any “healthy” (conformal) field theories should

be possible to have boundaries − this may be a consistency condition of the (conformal) field theories.

In studies of surface topological orders of (3 + 1)d SPT phases, such a consistency condition was called

“edgeability” [63, 133]. (2 + 1)-dimensional surface theories are said to be “nonedgeable”, meaning that it

is not possible to create an edge between the theory in question and the vacuum. The only boundary that

one can possibly create is a domain wall. In contrast, any consistent (2 + 1)d theory should be “edgeable”

to the trivial vacuum. Here “edgeability” may be also called “cuttability”, meaning that the original theory

defined on a closed spacetime can be cut open.

We will follow this idea but focus on one lower dimension. In (1 + 1)d CFTs, in addition to modular

invariance, it is often claimed that a consistent conformal field theory with boundaries must have a complete

set of boundary states. (See, for example, Refs. [134, 135].) This reminds us of edgeability. In fact, the

construction of modular invariant partition functions are closely related to boundary conformal field theories

(BCFTs). The perspective from SPT phases gives us some insight about why BCFT is crucial for consistency,

which may look a little puzzling from other viewpoints. In order for a CFT to exist as a pure (1 + 1)d

system, both edgeability and modular invariance must be satisfied. (Once again, here edgeability may be

also called cuttability, meaning that the original closed (1 + 1)d CFT can be cut open into a well-defined

BCFT.) In many known cases, these two conditions are actually equivalent.
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Edgeablity Gappability

Boundary states

in (1+1)d CFTs
Gapped ground states

(= (1+1)d TQFT)

Anomalies

Figure 4.1: Edgeability and gappability of conformal field theories are closely related – they both diagnose
if they must be realized as a boundary of (topological) systems in one higher dimensions. Hence, edgeability
and gappability are both related to quantum anomalies.

The simplest examples of (non)edgeability can be provided by chiral edge theories of topologically ordered

phases, in which the chiral central charge is nonzero. In these edge theories, it is not possible to find

conformally invariant boundary conditions or boundary states. These conformal field theories are hence

non-edgeable and must be realized at the boundary of a (topological) phase in one higher dimensions.

In the context of SPT phases, Ref. [136], gives an explicit lattice construction of an (1 + 1)d CFT,

which is the edge theory of (2 + 1)d bosonic SPT phases protected by ZN on-site unitary symmetry. In

this construction, while the CFT is successfully put on a one-dimensional lattice, the ZN symmetry is not

realized in a purely local way – the action of the ZN transformation is non-on-site, and it involves links of

the lattice. It was claimed that its non-on-site symmetry has been gauged, which is equivalent to orbifolding

ZN symmetry. As we will clarify, within this CFT with the non-onsite action of the ZN symmetry (and its

lattice realization), it is not possible to make a boundary which is consistent with the ZN symmetry. Hence,

this theory is nonedgeable.

4.1.3 Gappability

Let us now also give a slightly different perspective from the correspondence between (1 + 1)d gapped states

and boundary states in CFTs. In Refs. [137, 138], (1 + 1)d conformal field theories perturbed by some

operators are considered. If the perturbation is such that it fully gaps out the theory, we flow from the

CFT to a massive phase. It was claimed that the ground state of the massive phase is described, with the

Hilbert space of the CFT, by a boundary state. In particular, in Ref. [137] this claim is explicitly verified for

various symmetry-protected topological phases in (1 + 1)d, which are obtained by perturbing CFTs. These

phases are fully gapped (1 + 1)d phases protected by a certain set of symmetries. In particular, topological

invariants, for instance, the group cocycle ε ∈ H2(G,U(1)) of the group cohomology classification of (1 +

1)d SPT phases [39, 126], can be fully extracted from boundary states that describe SPT phases.

In this chapter, instead of (1 + 1)d SPT phases, we are concerned with (2 + 1)d SPT phases, and in
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Figure 4.2: We claim that one cannot “cut” or “make a boundary” while preserving G symmetry for certain
CFTs and certain symmetry implementations. These symmetry implementations correspond precisely to
(2 + 1)d G-symmetric SPT phases and the corresponding CFTs are their edge theories.

particular their edge theories. In various examples, we establish a claim similar to the above claim for the

bulk (1 + 1) dimensions; we again establish a connection between gapped ground states in the edge theories

and conformal boundary states. The relation between edgeability and gappability is schematically illustrated

in Fig. 4.1. In particular, for the edge theories described by the K-matrix theory, we establish the connection

between Haldane’s null vector criterion for gapping potentials [112] and the boundary states.

More precisely, the main question we ask is which boundary conditions (including symmetry projections)

can be imposed on conformal field theories that are defined on the edge of (2 + 1)d systems with boundaries.

We show the equivalence between our BCFT formalism and the K-matrix formalism used in Ref. [41] and

show that those CFTs that admit a consistent boundary state correspond to edge theories of trivial SPTs

and those that do not admit a consistent boundary state correspond to edges of nontrivial SPTs.

This criterion is very similar to that imposed by the modular invariance of CFTs field theories on the

torus. Putting a theory on a torus in this context implies that it can be realized on a strictly (1 + 1)d

manifold and need not be realized on the boundary of an SPT phase[129, 130, 139, 140].

4.1.4 Working Principles

Following these motivations, let us now describe our strategy to detect and diagnose non-trivial SPT phases.

We claim that one cannot construct a symmetry invariant Cardy state (conformal boundary state) for a

CFT corresponding to the edge of a non-trivial SPT. As mentioned in the above example, this is due to the

fact that although one may be able to put the edge theory of an SPT on a lattice, G symmetry cannot be

implemented in an on-site way – this shows up as nonedgeablity.

A Cardy state in conformal field theory is a coherent state in the Hilbert space of the closed sector of the

CFT which satisfies an open-closed consistency relation, namely the Cardy condition [141, 142]. We show

that in the case of nontrivial SPT phases, it is not possible to implement the symmetry and simultaneously

satisfy the Cardy condition.
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We list our procedure for diagnosis of SPT phases as follows (see Fig. 4.2 for an illustration).

1. First, cut the 1d circle and impose appropriate boundary conditions on the two ends.

2. Second, solve for Ishibashi states [143] of this open system, which correspond to solutions to the

boundary conditions imposed.

3. Third, try to construct a boundary state that is a linear combination of Ishibashi states, which satisfies

the Cardy condition and is also symmetry invariant. If such a state exists, then there is no nontrivial

SPT phase in a (2 + 1)d bulk system; if such a state does not exist, then the corresponding (2 + 1)d

bulk is a nontrivial SPT phase.

4. Fourth, once we have detected nontrivial SPT phases, we can obtain its classification from the trans-

formation of the Cardy state under symmetry operation, which will be explained in detail in later

sections.

Using this technique, we can study SPT phases protected by space-time and/or some internal symmetries.

Examples include the time-reversal symmetric topological insulators, bosonic SPT phases with ZN symmetry,

and topological superconductors protected by Z2×Z2 symmetries. These examples have been also analyzed

in the literature by different methods [144, 145, 124, 146, 147].

The organization of the rest of the chapter is as follows. In Sec. 4.2, a brief introduction to BCFT

is provided. In Sec. 4.3, we study (2 + 1)d time-reversal symmetric topological insulators from the edge

theories and the corresponding symmetric Cardy boundary states. Edge theories of more general (2 + 1)d

SPT phases described by the K-matrix theories are considered in Sec. 4.4, where a connection between the

Cardy states and gapped phases in (1 + 1) dimensions is shown explicitly. Then we apply our approach to

topological superconductors in Sec. 4.5.

4.2 An introduction to BCFT

A boundary condition in a CFT defines a relation between the holomorphic and antiholomorphic sectors. In

other words, the two sectors are related to one another on the boundary via an automorphism of the form

S(z) = ρβ
(
S̄(z̄)

)
, (4.1)

where S belongs to some symmetry algebra, ρβ denotes an automorphism of the algebra of fields, and β

is a constant that parametrizes the boundary condition. S(z) and S̄(z̄) are fields which have the following
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expansion in terms of modes:

S(z) =
∑
n∈Z

Snz
−n−h, S̄(z̄) =

∑
n∈Z

S̄nz̄
−n−h̄, (4.2)

where h and h̄ are the conformal weights of S and S̄ respectively. In most general situations, S and S̄ are

the holomorphic and antiholomorphic components of the stress-energy tensor with h = 2. For CFTs with

current algebra symmetries, S and S̄ are taken to be the currents with h = 1.

In the closed picture, a boundary condition is represented by a state in the Hilbert space of a CFT

defined on a circle. According to Cardy, such a boundary state must transform consistently under the

S-modular transformation, namely, a π/2 rotation of the space-time manifold (worldsheet) illustrated in

Fig. 4.3. To construct physical boundary states obeying this consistency condition (the Cardy con-

dition), one first constructs a set of states, the so-called Ishibashi states, |i, β〉〉, which are annihilated

by the boundary conditions (known as gluing conditions) in the operator form after the π/2 rotation,[
Sn − ρβ

(
S̄n
)] worldsheet rotation−−−−−−−−−−−−→

[
Sn − (−1)hρβ

(
S̄n
)]

, namely,

[
Sn − (−1)hρ

(
S̄n
)]
|i, β〉〉 = 0. (4.3)

A Cardy state is a suitable superposition of the Ishibashi states that satisfy the Cardy condition, which is

an implementation of open-closed channel consistency:

Zαβ(−1/τ) = 〈Bα|e2πiτHclosed |Bβ〉, (4.4)

where Zαβ is the partition function computed in the open-channel picture, and given as a trace over the

open Hilbert space with boundary conditions α, β on the two ends, and τ is parameterized by the size of the

system [148]. The states |Bα〉 and |Bβ〉 which satisfy the above condition are the bona fide boundary states,

the Cardy states. For a more detailed introduction to boundary conformal field theory, see, for example,

Refs. [141, 142, 54, 148, 149, 150].

Symmetry invariant Cardy states and the obstruction A generic Cardy boundary state |B〉 (here

we are suppressing the label α, β specifying boundary conditions) lies in the subspace of the closed Hilbert

space and satisfies

(T − T̄ )|B〉 = 0 (on a boundary), (4.5)
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Figure 4.3: An illustration of the Cardy condition; a consistency condition for conformal boundary
states. For boundary states that preserve conformal symmetry, the open channel partition function
Zopen := TrHopen

[
e−(2πi/τ)Hopen

]
must equal the amplitude for a “Cardy” state A = 〈B|e2πiτHclosed |B〉.

where T and T̄ are the holomorphic and anti-holomorphic parts of the energy density operator, respectively.

In terms of the Virasoro generators, this condition can be written as

(Ln − L̄−n)|B〉 = 0. (4.6)

Equation (4.6) implies (c − c̄)|B〉 = 0, where c and c̄ represent the central charges for the holomorphic

and antiholomorphic sectors, respectively. Thus, as expected, one cannot construct (conformally invariant)

boundary states when c 6= c̄ since in this case, the (1 + 1)d CFT suffers from the (infinitesimal) gravitational

anomaly, and hence it must be realized as the boundary theory of an appropriate bulk system living in one

higher dimension.

For the rest of the chapter, we will deal with systems with the vanishing chiral central charge, c− c̄ = 0,

and hence there is no infinitesimal gravitational anomaly. We will also focus on (1 + 1)d CFTs for which one

can construct a modular invariant, if one is willing not to impose any additional symmetry. Hence, in the

absence of symmetries, the (1 + 1)d CFT can be safely gapped by adding a suitable perturbation. However,

if we impose some symmetry, e.g., if we consider (1 + 1)d CFTs realized potentially on the boundary of (2 +

1)d SPT phases, there may be a conflict between the symmetry and modular invariance. Once symmetry is

gauged (orbifold), the modular invariance may be spoiled. Conversely, if the modular invariance is enforced,

the symmetry must be broken.

At the level of BCFT, this would mean that one may not be able to construct boundary states which are

invariant under the symmetry. More precisely, we consider a symmetry that preserves T and T̄ , respectively,

or exchanges them. Classically, such a symmetry preserves the conformally invariant boundary condition
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T = T̄ along the boundary. However, once the theory is quantized, there may be an obstruction to construct

the corresponding a boundary state. A symmetry of a CFT (on a closed space-time manifold) is anomalous

if one cannot make a boundary that preserves this symmetry both classically and quantum mechanically.

Typically, this happens when there is a conflict between the Cardy condition (4.4) and the symmetry, so a

symmetric Cardy state does not exist. In this situation, the theory itself, together with the symmetry, cannot

be consistently defined and must appear as a boundary theory of a SPT phase with the same symmetry in

one higher dimensions. Nevertheless, by “stacking” copies of such SPT phases, the number of degrees of

freedom at boundaries increase, and the solution space of Eq. (4.5) is enlarged – it may be possible to find

a symmetric Cardy state if the number of the copies is large enough. When this occurs, the corresponding

CFT is anomaly free with respect to such a symmetry and can exist alone in its own dimension.

4.3 Edge theories of (2 + 1)d time-reversal symmetric

topological insulators

Let us begin with a simple example. Consider the edge theory of a (2 + 1)d time-reversal symmetric

topological insulator, which is described by (1 + 1)d massless Dirac fermions on a closed two-manifold Σ:

S = 1
2π

∫
Σ
dtdx

(
iψ̄R∂+ψR + iψ̄L∂−ψL

)
, (4.7)

where ∂± = ∂t ± ∂x. The system is invariant under both charge U(1)C and time-reversal symmetries, which

are defined as

U(1)C : ψR → e−iθψR, ψL → e−iθψL

Tη : ψR → ψL, ψL → ηψR, η = ±1. (4.8)

Here in principle we have two choices for time-reversal symmetry (characterized by η): T 2
1 = 1 and T 2

−1 =

(−1)F , where F is the total fermion number operator. By analyzing the stability (gappability) of the theory

(4.7), at least at the quadratic level (namely, by considering adding symmetry-respecting fermion mass

bilinears to the action), we know that η = 1 (η = −1) corresponds to the edge of the topologically trivial

(nontrivial) phase. It can also be shown the nontrivial topological phases form a Z2 class.

Now let us study the same problem (classification of topological insulators) by the BCFT approach.

Consider putting the theory (4.7) on a cylinder Σ with boundary at x = 0, π. Then we would like to know,
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based on the discussion in the previous sections, if there exists a Cardy boundary state, which satisfies

the conditions (4.4) and (4.5), invariant under U(1)C and Tη. If such a Cardy state does not exist, the

corresponding theory must be the edge of a (2 + 1)d topological insulator.

One obtains the boundary conditions by varying the action (4.7) on the cylinder Σ,

[
ψ̄RδψR + ψRδψ̄R − ψ̄LδψL − ψLδψ̄L

]∣∣
∂Σ = 0. (4.9)

This boundary condition can be solved by the following set of gluing conditions [151]:

Bβ type : ψL = e−iβψR, ψ̄L = eiβψ̄R,

Aα type : ψL = e−iαψ̄R, ψ̄L = eiαψR. (4.10)

The two kinds of boundary conditions have been labeled Bβ and Aα, respectively. Note that, as the bulk

theory respects all symmetries, the presence of boundary might in general break (some of) the symmetries.

To be specific, the Bβ boundary condition (with arbitrary β) preserves both U(1)C and T1, while either the

Bβ or the Aα boundary condition cannot preserve both U(1)C and T−1. Therefore, it is impossible to, at

least for a single copy of the theory (4.7), find a symmetric Cardy state with respect to both U(1)C and T−1,

because there is no such symmetry invariant boundary condition.

Let us first focus on the case of the symmetry group U(1)CoZ
T1
2 , where ZT1

2 is generated by T1. Although

the Bβ boundary condition preserves U(1)CoZ
T1
2 , we still have to check that the corresponding Cardy state

is also symmetry invariant.

We impose boundary conditions B0, Bβ at x = 0, π, respectively. In order to satisfy the boundary

conditions, we define a mode expansion

ψL =
∑

r∈Z+β/2π

ψr(t)eirx, ψ̄L =
∑

r′′∈Z−β/2π

ψ̄r′(t)eir
′x,

ψR =
∑

r∈Z+β/2π

ψr(t)e−irx, ψ̄R =
∑

r′∈Z−β/2π

ψ̄r′(t)e−ir
′x. (4.11)

The mode operators satisfy the following algebra:

{ψr(t), ψ†r′(t)} = 2πδr+r′,0,

{ψr(t), ψr′(t)} = {ψ†r(t), ψ
†
r′(t)} = 0. (4.12)
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We define the normal ordering with respect to a vacuum |0, β〉 which is annihilated by ψr (≥ 0) and ψ̄r′

(≥ 0):

: ψ̄−rψr :=


ψ̄−rψr if r ≥ 0,

−ψrψ̄−r if r < 0.
(4.13)

The Hamiltonian and U(1)C charge operator F take the form

Ho =
∑

r∈Z+ β
2π

r : ψ̄−rψr : +1
2

(
β

2π −
[
β

2π

]
− 1

2

)2
− 1

24 ,

F =
∑

r∈Z+ β
2π

: ψ̄−rψr : + β

2π −
[
β

2π

]
− 1

2 . (4.14)

The open-channel partition function with insertion of symmetry flux e−2πi(a−1/2)F on the cylinder with

(`space, βtime) = (π, 2πT ) is

Za0β(T ) = TrHo
[
e−2πi(a−1/2)F e−2πTHo

]
=
ϑ
[
β/2π−1/2
−(a−1/2)

]
(0, iT )

η(iT ) . (4.15)

To construct the Cardy states, we work in Euclidean signature, by performing the Wick rotation t = −iτ ,

and consider boundary conditions in the closed channel [after the space-time cylinder has been rotated by

π/2, namely, (x′, τ ′) = (τ,−x)]:

ψ′L = e−iβe−iπ/2ψ′R, ψ̄′L = eiβe−iπ/2ψ̄′R, (4.16)

where we have introduced the notation

ψ′R = eiπ/4ψR, ψ̄′R = eiπ/4ψ̄R,

ψ′L = e−iπ/4ψL, ψ̄′L = e−iπ/4ψ̄L, (4.17)

for the fields with respect to the coordinate system after the π/2 space-time rotation.

In Euclidean signature, the original time-reversal symmetry Tη, which is an anti-unitary operator in the

Lorentz signature, becomes the unitary (CP)η symmetry, the product of charge conjugation and spatial

reflection that flips τ to −τ . From the relation (4.17), this (CP)η is further translated to (CP)′−η, which acts
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on the fermions as

(CP)′−η : ψ′R(x′, τ ′)→ eiπ/2ψ̄′L(−x′, τ ′),

ψ′L(x′, τ ′)→ ηe−iπ/2ψ̄′R(−x′, τ ′). (4.18)

Therefore, under the π/2 space-time rotation (together with an analytic continuation from the Lorentz to

Euclidean signature), we have the following correspondence:

T 2
η = ηF ←→ (CP)′2−η = (−η)F , η = ±1. (4.19)

One can check that (CP)′−1 preserves the boundary condition (4.16) as T1 preserves the Bβ-type boundary

condition in (4.10).

Now, since we inserted a U(1)C charge operator in the trace when evaluating the open-channel partition

function, the corresponding boundary states in the closed channel must lie in the subspace of the Hilbert

space of the twisted fields that satisfy

ψ′R(x′ + 2π, τ ′) = e2πiaψ′R(x′, τ ′),

ψ′L(x′ + 2π, τ ′) = e2πiaψ′L(x′, τ ′). (4.20)

(Here we compactify the space direction as x′ ≡ x′ + 2π.) Hence, we get the following mode expansions:

ψ′R =
∑
r∈Z+a

ψ′re
irw′ , ψ̄′R =

∑
r′∈Z−a

ψ̄′r′e
ir′w′ ,

ψ′L =
∑

r̃∈Z−a
ψ̃′r̃e
−ir̃w′ , ψ̄′L =

∑
r̃′∈Z+a

¯̃ψ′r̃′e−ir̃
′w′ , (4.21)

where ω′ = x′ + iτ ′. The Hamiltonian is

Hc =
∑
r∈Z+a

r : ψ̄′−rψ′r : +
∑

r̃∈Z−a
r̃ : ψ̄′−r̃ψ′r̃ :

+ 1
2

(
a− [a]− 1

2

)2
+ 1

2

(
a+ [−a] + 1

2

)2
− 1

12 . (4.22)

The ground state |0〉a,−a is defined to be the state annihilated by ψ′r (r ≥ 0), ψ̄′r′ (r′ > 0), ψ̃′r̃ (r̃ ≥

0), ¯̃ψ′r̃′ (r̃′ > 0).
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The gluing condition (4.16) for the mode operators takes the form

ψ′r = ieiβψ̃′−r ∀r ∈ Z + a,

ψ̄′r′ = ie−iβ ¯̃ψ′−r′ ∀r′ ∈ Z− a. (4.23)

An incoming boundary state that solves the above gluing condition is

|Bβ〉a = exp

ie−iβ ∑
r′≥0

ψ′−r′
¯̃ψ′−r′ + ieiβ

∑
r>0

ψ̄′−r
˜ψ′−r

 |0〉a,−a, (4.24)

while the outgoing boundary state is

a〈Bβ | = a,−a〈0| exp

ieiβ ∑
r′≥0

ψ̃′r′ ψ̄
′
r′ + ie−iβ

∑
r>0

¯̃ψ′rψ′r

 . (4.25)

Then the closed-channel partition function on the cylinder with (βspace, `time) = (2π, πL) is given by

a〈B0|e−πLHc |Bβ〉a =
ϑ
[
β/2π−1/2
−(a−1/2)

]
(0, iL−1)

η(iL−1) . (4.26)

Identifying T = L−1, we find that |Bβ〉a is indeed a Cardy state that satisfies the Cardy condition

Za0β(T ) = a〈B0|e−πLHc |Bβ〉a. (4.27)

It is clear that the state |Bβ〉a is invariant under both U(1)C and (CP)′−1 (corresponding to T1). This is

verified by looking at the symmetry action on the modes (deduced from (4.18) and (4.21) at τ ′ = 0):

U(1)C : ψ′r → e−iθψ′r, ψ̃′r → e−iθψ̃′r

(CP)′−η : ψ′r → eiπ/2 ¯̃ψ′r, ψ̃′r → −ηeiπ/2ψ̄′r, η = ±1. (4.28)

Note that we have assumed the ground state |0〉a,−a is also invariant under all symmetries. On the other

hand, the state |Bβ〉a is only invariant under U(1)C ; it is not invariant under (CP)′+1 (corresponding to

T−1).

Let us now consider two copies of complex fermions {ψ1,R, ψ1,L, ψ2,R, ψ2,L}. One can show that it is

now possible to construct a U(1)C o Z
T−1
2 symmetric Cardy state. One considers the following boundary
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conditions (before π/2 space-time rotation):

ψ1,L = e−iβ1ψ2,R, ψ̄1,L = eiβ1 ψ̄2,R,

ψ2,L = e−iβ2ψ1,R, ψ̄2,L = eiβ2 ψ̄1,R, (4.29)

which preserve U(1)C oZ
T−1
2 if β1 = β2± π. The corresponding (total) Cardy state is the tensor product of

the outgoing boundary states associated with these two boundary conditions,

|Bβ1,β2〉a = |Bβ1〉a ⊗ |Bβ2〉a, (4.30)

which is invariant under both U(1)C and (CP)′1 (corresponding to T−1).

In summary, a single copy (two copies), or in general, any number of copies (an even number of copies)

of the theory (4.7) can be consistently formulated, in the presence of U(1)C and T1 (T−1) symmetries, on

a cylinder Σ. Therefore, the BCFT approach agrees with the classification of (2 + 1)d fermionic SPT

phases with U(1)C and time-reversal symmetries given by the gappability argument. In fact, there is a

correspondence between the form of Cardy boundary states and gapped phases in (1 + 1) dimensions.

In the following section, we study theories of multicomponent bosons, which describe (the edges of) more

general SPT phases in (2 + 1) dimensions, and will see such correspondence explicitly.

4.4 More general SPT phases in (2 + 1)d

4.4.1 Canonical quantization

Let us consider the edge of a (2 + 1)d Abelian SPT phase (either fermionic or bosonic ones) described by

the K-matrix theory of multicomponent compactified boson fields [41],

S = 1
4π

∫
d2x

[
KIJ∂tφ

I∂xφ
J − VIJ∂xφI∂xφJ

]
, (4.31)

where K is a 2N ×2N integer-valued symmetric matrix and I, J = 1, . . . , 2N . We are interested in studying

SPT phases, namely, those that have no topological order, hence we will restrict ourselves to theories with

detK = 1. Moreover, since SPT phases can be adiabatically connected to trivial phases in the absence of

symmetry, their edge theories are always non-chiral. VIJ in Eq. (4.31) is a non-universal positive definite

matrix, which does not affect the topological properties of the theory; φI are compact U(1) bosons that

satisfy the compactification condition φI ≡ φI + 2πnI , nI ∈ Z. When put on a cylinder of circumference 2π,
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they satisfy the commutation relations

[
∂xφ

I(x), ∂xφJ(x′)
]

=
∑
m∈Z

2πi(K−1)IJ∂xδ(x− x′ + 2πm).

It is more convenient to carry out the quantization in the redefined basis ϕI which we define by diagonalizing

the K matrix as [140]

Aφ = ϕ, AT ηA = K, (4.32)

where A ∈ O(2N) and η is a diagonal matrix with ±1 on the diagonal. To have a non-chiral theory,

we assume η has equal number of +1 and −1 in its diagonal. Without loss of generality we assume η =

diag(1, . . . , 1,−1, . . . ,−1). The theory has N copies of nonchiral bosons. The action in the ϕ basis takes the

form

S = 1
4π

∫
d2x

[
(∂tϕ)T η(∂xϕ)− (∂xϕ)T (∂xϕ)

]
, (4.33)

where we have chosen V such that AVAT = I2N . The Hamiltonian and momentum operators are obtained

from the action (4.33) as

H = 1
4π

∫
dx
[
(∂xϕ)T (∂xϕ)

]
,

P = 1
4π

∫
dx
[
(∂xϕ)T η(∂xϕ)

]
. (4.34)

After basis transformation, the redefined bosons satisfy the compactification condition

ϕI ∼ ϕI + 2π (An)I , nI ∈ Z, (4.35)

and the canonical commutation relation

[
∂xϕ

I(x), ∂xϕJ(x′)
]

= 2πi(η−1)IJ∂x
∑
m∈Z

δ(x− x′ + 2πm).
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The mode expansion compatible with the equations of motion, ∂tϕIηII−∂xϕI = 0, and the compactification

conditions takes the form

ϕI = ϕI0 + 2π
L

[t+ sgn(ηII)x]aI0 + 1√
2

∑
r 6=0

aIre
− 2πri

L [t+sgn(ηII)x]. (4.36)

Since
[
ϕI0, a

J
0
]

= 2πiηIJ and ϕI0 ∼ ϕI0 + 2π(An)I ,

vI ∈ (Am)I Z, mI ∈ Z, (4.37)

where vI is the eigenvalue of aI0. The mode operators obey the following canonical commutation relation:

[
aIn, a

J
m

]
= nδIJδn+m,0, n,m 6= 0. (4.38)

4.4.2 Ishibashi states

States that represent a conformal invariant boundary condition are called Ishibashi states. They satisfy

[Lr − L̄−r]|I〉〉 = 0, (4.39)

where Lr and L̄r are the holomorphic and antiholomorphic Virasoro generators, respectively. For the K-

matrix theory defined in Eq. (4.33), they are given by

Lr = 1
2
∑
n∈Z

: (ar−n,L)Tan,L :,

L̄r = 1
2
∑
n∈Z

: (ar−n,R)Tan,R :, (4.40)

where

aTr =(ar,L, ar,R)T := (a1
r, . . . , a

N
r , a

N+1
r , . . . , a2N

r )T (4.41)

are operators that appear in the mode expansion (4.36). While the general solution of (4.39) is not known,

a sufficient condition for it is given by [152]

(ar,L −Ra−r,R)|v〉〉 = 0, ∀r ∈ Z, (4.42)
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where the matrix R ∈ O(N) does not depend on r. Solutions to Eq. (4.42) have the form

|v〉〉 := exp
( ∞∑
r=1

1
r

(a−r,L)TRa−r,R

)
|v〉, (4.43)

where |v〉 are eigenstates of aI0 with eigenvalues vI that are characterized by Eq. (4.37). The Ishibashi

condition in Eq. (4.42) can be further simplified by a basis transformation, after which R is rotated to be

±1. Let us clarify this point. The Ishibashi condition in Eq. (4.42) is equivalent to

ϕL = RϕR. (4.44)

Now we can choose a B ∈ O(2N) to be

B =

1 0

0 R

 . (4.45)

If we redefine the boson fields ϕ′L
ϕ′R

 =±B

ϕL
ϕR

 , (4.46)

then Eq. (4.44) becomes

ϕ′L/R = ±ϕ′L/R. (4.47)

In terms of the mode operators, we have the Ishibashi condition

(a′r,L ∓ a′−r,R)|v〉〉 = 0, ∀r ∈ Z. (4.48)

This basis rotation and Eq. (4.32) can be simultaneously done if we define A′ = BA. In the following

discussion, we assume this has been done. To lighten the notation, we drop the prime on the field and mode

operators.
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4.4.3 Equivalence between the Ishibashi condition and Haldane’s null vector

condition

Haldane’s null vector condition of N copies of nonchiral compactified massless bosons states: if there is a

set of N linearly independent integer vectors {li} satisfying the condition

lTi K−1lj = 0, ∀i, j = 1, · · · , N, (4.49)

then we can find a potential which can gap out the N -component boson theory completely. [41] This

condition comes from the locality requirement such that all the bosons can be pinned at the minimum values

in the gapping potentials simultaneously. When Haldane’s null vector condition is met, one can find the

gapping potential

Sgapping =
∑
{l}

cl

∫
dt dx cos (l · φ+ αl), (4.50)

where {l} is a set of independent gapping vectors.

In this section, we discuss the equivalence between the Ishibashi condition and Haldane’s null condition.

We will establish their equivalence at the level of Cardy states, from which the correspondence between

Cardy states and gapped phases (from condensation of independent elementary bosons in the language of

Ref. [41]) is manifest.

We start from the total Cardy state for the N -copy boson system

|B, {αi}〉 =⊗Ni=1 |B,αi〉, (4.51)

where [148]

|B,αi〉 = 1
21/4

∑
ni∈Z

einiαi |vi〉〉ni (4.52)

(the repeated indices i are not summed over) is the Cardy state for the ith copy of the system and

|vi〉〉ni = e
−
∑

r>0
(1/r)(vi,L·a−r,L)(vi,R·a−r,R)|nivi〉, ni ∈ Z, (4.53)

is an Ishibashi state satisfying the Ishibashi condition (4.48). Here {vi = (vi,L,vi,R) | i = 1, ..., N and vi,L =

−vi,R} is a set of linearly independent 2N -component vectors that generates, with integer coefficients, all
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the solutions satisfying both Eqs. (4.37) and (4.48).

Note that the Cardy state (4.51) satisfies the Cardy condition automatically, since it is the direct product

of decoupled Cardy states, each one satisfying Cardy condition separately. Now we want to rewrite Eq.

(4.51) in another form in which the connection to the gapping potentials satisfying Haldane’s null condition

is manifest. First, let us write the ground state in a coherent state, namely,

|nivi〉 = einivi·ϕ0 |0〉i = einiei·φ0 |0〉i, (4.54)

where |0〉i = |0〉i,L ⊗ |0〉i,R is the true vacuum associated with the new zero modes vi,L/R · a0,L/R and

{ei := A−1vi} is a set of linearly independent integer vectors [by the definition of {vi} defined in Eq.

(4.37)]. Plugging Eqs. (4.52)- (4.54) into Eq. (4.51), we obtain

|B, {αi}〉 = ⊗Ni=1

(
1

21/4

∑
ni∈Z

einiαie
−
∑

r>0
(1/r)(vi,L·a−r,L)(vi,R·a−r,R)

einiei·φ0 |0〉i

)

= 1
2N/4−1 e

−
∑N

i=1

∑
r>0

(1/r)(vi,L·a−r,L)(vi,R·a−r,R) ∑
{ni∈Z}

cos [ni(ei · φ0 + αi)]|0〉1 ⊗ · · · ⊗ |0〉N .

(4.55)

Note that the cosine term in the last line of Eq. (4.55) is nothing but a gapping potential, and the

summation is over all the lattice constructed from the elementary or primitive lattice vectors introduced

in Ref. [41]. Then we conclude that in the N -boson system, once we have a Cardy state satisfying the

Ishibashi condition, Haldane’s null vector condition is also implied, since gapping vectors satisfy Haldane’s

null condition.

Conversely, given a set of N vectors satisfying Haldane’s null vector condition, we can always find the set

of primitive lattice vectors. Let us assume this is done. Then we can construct the Cardy state by following

Eq. (4.55) backward, from the bottom to the top line. This state satisfies the Ishibashi condition and Cardy

condition manifestly.

4.4.4 Symmetry analysis

In the following subsections, in order to facilitate the discussion, we use different bases interchangeably. One

can easily see their relations from Eqs. (4.32) and (4.46).

We consider an on-site discrete Abelian symmetry group G with the group action of the form

ĝ : φ→ φ+ δφg, ∀g ∈ G, (4.56)
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where we assume that δφg is constant. From the mode expansion of φ, we can read off that ĝ only acts on

the zero mode φ0 ,

ĝ : φ0 → φ0 + δφg, ∀g ∈ G, (4.57)

Hence a complete set of symmetry invariant gapping potentials, related by boundary conditions, is described

by

ĝ : (lTφ0 + α)→ (lTφ0 + α) mod 2πZ. (4.58)

From the discussion in Sec. 4.4.3, if we have a set of symmetry invariant Haldane vectors, we can find a set

of decoupled symmetry invariant Ishibashi states, with which we can construct a symmetry invariant Cardy

state. We will show it in the following discussion with two examples.

4.4.5 Example: Z2 symmetric bosonic SPT

Let us consider the simple case of Z2 symmetric bosonic SPT phases. The edge theory is described by

L = 1
4π
[
(∂xφ)TK(∂tφ)− v(∂xφ)T (∂xφ)

]
, (4.59)

where K = σx. The Z2 symmetry, Z2 = {e, g}, acts on the φ fields as

ĝ :

 φ1

φ2

→
 φ1

φ2

+ π

 1

q

 . (4.60)

The theory describes a trivial and a nontrivial SPT phases for q = 0, 1 respectively.

As claimed above, for a trivial SPT phase, that is, for which one can find a symmetric gapping potential,

there exists a symmetry invariant boundary state. The conditions to be satisfied by a set of symmetric

gapping vectors {li} are

lTi K−1lj = 0,

ĝ(lTi φ+ α)ĝ−1 = (lTi φ+ α) mod 2π ∀i, j. (4.61)

Since for the present case we only consider a single nonchiral boson, we need to find a single gapping vector

l. In the case for q = 0 the above conditions are satisfied by l = (0, 1)T . Hence the symmetric gapping term
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is cos(φ2 + α). In the chiral basis, this corresponds to cos
(
(ϕL − ϕR)/

√
2
)
.

On the other hand, this gapping potential corresponds to the Dirichlet boundary state that has the gluing

condition a0,L − a0,R = 0. The Ishibashi state takes the form

|v〉〉 =e
∑∞

r>0
(1/r)a−r ā−r |a0,L = a0,R〉, (4.62)

and the Cardy state is

|B,φ0〉 = 1
ND

∑
n∈Z

einφ0e
∑∞

r>0
(1/r)a−r ā−r |a0,L = a0,R = n〉, (4.63)

where φ0 specifies the position of the Cardy state with the Dirichlet boundary condition.

On the other hand, in the nontrivial case, namely, for q = 1, one cannot find a nontrivial symmetric

gapping vector as the conditions (4.61) imply that l1l2 = 0 and l1 + l2 = 0 mod 2. These cannot be satisfied

simultaneously for any nontrivial l.

However, we expect [41, 39, 126] a Z2 classification so that two copies of the above theory must be trivial.

This double copy is described by φ := (φ1, φ2, φ3, φ4)T and K = σx ⊕ σx. The symmetry action on the two

copies is taken to be identical. In order to be Z2 symmetric the two gapping vectors must satisfy

l1i l
2
j + l2i l

1
j + l3i l

4
j + l4i l

3
j = 0,

2∑
n=1

lni = 0 mod 2, (4.64)

which comes from Eq. (4.61). These conditions can be satisfied simultaneously by the following two gapping

vectors:

l1 =



1

0

0

1


, l2 =



0

1

−1

0


. (4.65)
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This choice is not unique, for example an alternate choice of gapping vectors could be

l̃1 =



0

1

1

0


, l̃2 =



1

0

0

−1


. (4.66)

For the set {l}, the gapping terms are

Lgapping = λ cos
(
φ1 + φ4 + α

)
+ λ′ cos

(
φ2 − φ3 + α′

)
= λ cos

(
1√
2

(ϕ1,L + ϕ1,R + ϕ2,L − ϕ2,R) + α

)
+ λ′ cos

(
1√
2

(ϕ1,L − ϕ1,R − ϕ2,L − ϕ2,R) + α′
)

= λ cos (Φ1,L + Φ1,R + α) + λ′ cos (Φ2,L + Φ2,R + α′), (4.67)

where we define basis transformed bosons

Φ1,L := 1√
2
(
ϕ1,L + ϕ2,L

)
,

Φ1,R := 1√
2
(
ϕ1,R − ϕ2,R

)
,

Φ2,L := 1√
2
(
ϕ1,L − ϕ2,L

)
,

Φ2,R :=− 1√
2
(
ϕ1,R + ϕ2,R

)
. (4.68)

The mode expansion of Φi is

Φi,L = Φi,0,L + 2π
L

(t+ x)bi,0 + 1√
2

∑
r 6=0

bi,re
−(2πir/L)(t+x),

Φi,R = Φi,0,R + 2π
L

(t− x)b̄i,0 + 1√
2

∑
r 6=0

b̄i,re
−(2πir/L)(t−x), (4.69)

where b1,0 = 1√
2 (a1,0,L+a2,0,L), b̄1,0 = 1√

2 (a1,0,R−a2,0,R), b2,0 = 1√
2 (a1,0,L−a2,0,L) and b̄2,0 = − 1√

2 (a1,0,R+

a2,0,R). The oscillator modes bi,r for the redefined bosons can be written in terms of mode operators in the

original basis based on Eq. (4.68).
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The redefined mode operators satisfy the following commutation relation:

[bi,m, bj,n] = mδm+n,0δij , (4.70)

and there is a similar relation for the right-moving mode operators.

Hence the symmetry invariant Ishibashi states corresponding to gapping vectors l1 and l2 can now be

written in terms of symmetric bosons Φi,L + Φi,R,

|vi〉〉n = e
−
∑

r>0
(1/r)bi,−r b̄i,−r |bi,0 = −b̄i,0 = n〉. (4.71)

We note that these Ishibashi states which are essentially Neumann states for Φi are manifestly symmetric

as the bosons Φi,L + Φi,R are symmetric. The Cardy state constructed from the Ishibashi states is

|B, {αi}〉 =
(

1
21/4

∑
n1∈Z

ein1α1 |v1〉〉n1

)
⊗

(
1

21/4

∑
n2∈Z

ein2α2 |v2〉〉n2

)
. (4.72)

To show that this satisfies the Cardy condition, we first compute the amplitude. The closed sector Hamil-

tonian factorizes in bi basis as

Hc =
∑
i=1,2

[
1
2(bi0)2 +

∑
r>0

bi−rb
i
r +

∑
r>0

b̄i−r b̄
i
r −

c+ c̄

24

]
. (4.73)

Note that this Hamiltonian is not the physical Hamiltonian that we started with for the boson system with

boundaries, but the Hamiltonian obtained after we perform the S-transformation between space and time.

The amplitude decomposes as

A = 〈B, {αi}|qHc |B, {αi}〉 = ⊗i=1,2

[
〈B,αi|qH

i

|B,αi〉
]
, (4.74)

where q = exp(−2πL) and we have used the decomposition of the Hamiltonian. Both the decomposed parts

give rise to the following modular function [149]:

〈B,αi|qH
i

|B,αi〉 = 1
N 2
N

1
η(2iL) , (4.75)

which transforms to the open channel partition function under modular S transformation and hence satisfies

the Cardy condition. The subscript “N” stands for Neumann boundary conditions.
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4.4.6 Generalization to ZN cases

The discussion on Z2 symmetric bosonic SPT phases can be generalized to case of ZN symmetry. As before

[41] the edge of a ZN symmetric SPT is described by a K-matrix Luttinger liquid with K = σx in Eq. (4.31).

The symmetry acts as

ĝ :

 φ1

φ2

→
 φ1

φ2

+ 2π
N

 1

q

 , (4.76)

where ĝ is the generator of ZN group. When q = 0, this corresponds to a trivial SPT phase and q =

1, . . . , N − 1 corresponds to nontrivial SPT phases. In analogy to the analysis for the Z2 case, one cannot

find a symmetric gapping vector when q 6= 0. This further implies the inability to find a symmetry invariant

Cardy state. However, N copies of a nontrivial ZN SPT phase can be deformed to a trivial phase, hence we

expect to construct a symmetric boundary state for this enlarged theory.

We consider K = ⊕Ni=1σ
x, namely, N copies of non-chiral bosons. In this case, the ZN symmetry

transformation is simply copies of the above transformation, namely

ĝ :

 φ1
i

φ2
i

→
 φ1

i

φ2
i

+ 2π
N

 1

q

 , i = 1, . . . , N. (4.77)

To completely gap out the system, we need N l vectors that satisfy

lTi K−1lj = 0,

ĝ lTi φ ĝ−1 = lTi φ mod 2π ∀i, j. (4.78)

Equation (4.78) is equivalent to

N∑
α=1

(
l2αi l2α−1

j + l2α−1
i l2αj

)
= 0,

N∑
α=1

l2α−1
i + ql2αi = 0 mod N ∀i, j. (4.79)
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Here we choose a simple set of l vectors,

{l} : l1 = (1, 0, 1, 0, · · · , 1, 0)T

l2 = (0, 1, 0,−1, 0, 0, · · · , 0, 0)T

l3 = (0, 0, 0, 1, 0,−1, 0, 0, · · · , 0, 0)T

...

lN = (0, 0, · · · , 0, 1, 0,−1)T . (4.80)

We can check that in this set, the l vectors are linearly independent. Then following what is done from Eq.

(4.67), we can write down the gapping potential term

L{l}gapping = λ1 cos (φ1
1 + φ1

3 + · · ·+ φ1
N + α1) + · · ·

= λ1 cos
(
Φ1 + α1

)
+ · · · ,

where the redefinitions are

Φ1 = 1√
N

(
φ1

1 + φ1
3 + · · ·+ φ1

N

)
Φ2 = 1√

2
(
φ2

1 − φ2
2
)

...

ΦN = 1√
2
(
φ2
N−1 − φ2

N

)
, (4.81)

based on the gapping vectors in Eq. (4.80). Then the Φi fields can be expanded in terms of b fields like those

in Eq. (4.69). Then the analysis of Cardy states and the amplitude between boundary states follow that of

the Z2 case.

We work in the “Φi-bosonic” basis. In this basis, the Ishibashi states are taken as Neumann free boson

states and are manifestly ZN symmetric. They take the form

|vi〉〉n = 1
N i
N

exp
{
−
∑
r>0

1
r
bi,−r b̄i,−r

}
|bi,0 = −b̄i,0 = n〉, (4.82)

where bi,r and b̄i,r are left and right mode operators corresponding to the boson Φi and bi,0,b̄i,0 are defined
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similarly as those in Eq. (4.71). The Cardy state for Φi takes the form

|B,αi〉 = 1
21/4

∑
n∈Z

einαi |vi〉〉n. (4.83)

The complete boundary state is a tensor product of individual boundary states corresponding to vectors in

{l},

|B, {αi}〉 =⊗Ni=1 |B,αi〉. (4.84)

4.4.7 General symmetry groups

Finally, let us consider a more generic symmetry group G acting on the boson fields:

ĝ : ϕ→ Ugϕ+ δϕg, ∀g ∈ G. (4.85)

The mode operators transform under g ∈ G as

ĝ : ar → Ugar, ϕ0 → Ugϕ0 + δϕg. (4.86)

In this case, we need to consider both the zero mode part and the oscillator part in Eq. (4.55). In the previous

discussion, we had Ug = I. Thus we could focus on the zero mode part, namely, the gapping potential of

Eq. (4.55). To simplify the discussion, we take one copy of compactified boson fields. In this case, η = σz

and the mass matrix coupling the left and right moving mode operators can be taken as M = σx from Eq.

(4.48). Then the invariance of the Hamiltonian or the action of the theory gives the constraints

UTg Ug = I2, UTg σ
zUg = ±σz. (4.87)

Then we have the following general solutions Ug = σx, iσy, σz. When Ug = σx, we have UTg MUg = M ,

which means that the oscillator part in Eq. (4.55) is invariant. However, when Ug = iσy or σz, we have

UTg MUg = −M , meaning that the oscillator part would flip sign. Physically, it means that the boundary

state changes into a Dirichlet boundary state from the Neumann boundary state. It is reminiscent of T

duality in string theory. In this case, the zero mode part is usually not invariant. Therefore, for general

symmetry groups, we can focus on the zero mode part, which is equivalent to the gapping potential analysis

in Ref. [41]. We will have more discussions on duality in Sec. 5.

95



4.5 (2+1)D topological superconductors

In this section, we study the (2+1)d topological superconductors protected by Z2 × Z2 symmetry.

From the discussion in the last section, we have seen that the construction of a symmetric boundary state

is closely related to finding a gapping potential to gap a given (edge) CFT without spontaneous symmetry

breaking. In this section, we show that there is another way to construct a symmetric Cardy boundary state

by considering only the fundamental boundary conditions of the free fermions.

An example is the class of (2 + 1)d topological superconductors protected by a Z2 × Z2 unitary on-site

symmetry. The classification of these topological superconductors is Z8 [129, 153]. Again, we consider the

edge theories, which can be described by the Nf copies of real fermion fields in 1 + 1 dimensions. For

Nf = 1, they are described by the action

S = 1
2π

∫
d2xiΨ̄γµ∂µΨ (4.88)

Upon picking a Clifford basis where γ0 = σx and γ1 = iσy and writing Ψ = (ψL, ψR), one can decompose

a Majorana fermion into two Majorana-Weyl fermions. This action is invariant under a Z2 × Z2 symmetry

group that is generated by the fermion number parity for each chirality.

4.5.1 Quantization and boundary states

Due to the fermionic nature of the fields, there are two sectors depending on the periodicity of the fields

under rotations by 2π. The real fermion could have Ramond sector (R) or antiperiodic, Neveu-Schwarz (NS)

sector, boundary conditions along the spatial direction. For the closed system, the left and right moving

fermion fields are decoupled. We can choose boundary conditions independently for them. Therefore, there

are four sectors corresponding to the boundary conditions:

(L,R) =(R,R),(R,NS),(NS,R),(NS,NS). (4.89)

The fermionic mode expansion takes the form

ψL(x, t) =
√

2π
L

∑
r

ψre
−(2πir(t+x)/L),

ψR(x, t) =
√

2π
L

∑
r

ψ̃re
−(2πir(t−x)/L), (4.90)
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where the mode operators satisfy {ψr, ψr′} = δr+r′,0, {ψ̃r, ψ̃r′} = δr+r′,0 and {ψr, ψ̃r′} = 0 and r ∈ Z(+1/2)

for the Ramond and Neveu-Schwarz sectors respectively.

Boundary state: By varying the action (4.88) and requiring the boundary variation to vanish, one can

read off the suitable boundary conditions to be {ψL ± ψR} |x=0 = 0. In order to construct the Cardy state,

we rotate the space-time cylinder by π/2 such that the manifold has a temporal boundary. Upon space-

time rotation the boundary conditions transform to {ψL ± iψR} |t=0 = 0 These are the relevant boundary

conditions for constructing the Ishibashi and Cardy states. The Ishibashi states satisfy the following gluing

conditions:

(
ψk + iηψ̃−k

)
|η〉〉 = 0, (4.91)

where η = ±1. Since this is a free theory, the solutions to the above gluing condition are known. There are

two solutions for each η corresponding to the NS-NS and R-R sectors. These Ishibashi states are [148]

|η〉〉NS-NS = e
−iη
∑

r>0
ψ−rψ̃−r |0〉NS-NS ,

|η〉〉R-R = e
−iη
∑

r>0
ψ−rψ̃−r |η〉R-R, (4.92)

where |0〉NS−NS and |η〉R−R denote the nondegenerate vacuum in the NS-NS sector and the degenerate

ground state associated with the η boundary condition in the R-R sector, respectively.

Before moving onto the discussion of topological superconductors we note the crucial fact that unless

we can construct a Cardy state with only a single boundary condition (namely, η = +1 or −1) in the NS

sector, it is impossible to satisfy the Cardy condition without including both sectors. This can be seen by

considering the overlap of real-fermion Ishibashi states [154],

NS〈〈η|e−2πLHc |η〉〉NS = ϑ3(2iL)
η(2iL) ,

NS〈〈η|e−2πLHc | − η〉〉NS = ϑ4(2iL)
η(2iL) ,

R〈〈η|e−2πLHc |η〉〉R = ϑ2(2iL)
η(2iL) ,

R〈〈η|e−2πLHc | − η〉〉R = 0, (4.93)

where ϑ2,3,4 are the Jacobi θ functions. Under modular S transformation, these modular functions transform
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as

ϑ3

η(2iL)
L=1/2t−−−−−→ ϑ3(it)

η(it) ,

ϑ4

η(2iL)
L=1/2t−−−−−→ ϑ2(it)

η(it) ,

ϑ2

η(2iL)
L=1/2t−−−−−→ ϑ4(it)

η(it) . (4.94)

One can see that unless one can construct a Cardy state with a single Ishibashi state (either η = +1 or −1),

the S-transformation mixes the R-R and NS-NS sectors.

We define the fermion number parity operators, (−1)F and (−1)F̃ , for the left and right moving fermions,

respectively, which generate Z2×Z2 symmetry. By construction, these satisfy the following (anti)commutation

relations: {(−1)F , ψr} = {(−1)F̃ , ψ̃r} = 0, and [(−1)F , ψ̃r] = [(−1)F̃ , ψr] = 0.

the NS-NS sector: It is straightforward to check that the Z2×Z2 invariant boundary state in the NS-NS

sector is

|B〉NS-NS = 1√
2
[
|+〉〉NS-NS − |−〉〉NS-NS

]
, (4.95)

since we have

(−1)F |η〉〉NS-NS = (−1)F̃ |η〉〉NS-NS = −| − η〉〉NS-NS , (4.96)

as the vacuum |0〉NS-NS is the eigenstate of both (−1)F and (−1)F̃ with the eigenvalue −1. It can be seen

that both η = ±1 Ishibashi states are needed to construct a fermion parity invariant boundary state in the

NS-NS sector. We need to include the R-R sector in order to construct a symmetric Cardy state.

the R-R sector: The R-R sector is a bit more subtle because of the presence of zero modes. Let us define

Γ± := 1√
2

(ψ0 ± iψ̃0), (4.97)
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which satisfies the anticommutation relations {Γ+,Γ−} = 1 and {Γ+,Γ+} = {Γ−,Γ−} = 0. In terms of the

zero mode operators, the fermion parity operators take the following form

(−1)F =
√

2ψ0 = Γ+ + Γ−,

(−1)F̃ = i
√

2ψ̃0 = Γ+ − Γ−. (4.98)

The vacuum in the two sectors η = ± can be defined as

|η = +〉 = eiΦ+ |0〉,

|η = −〉 = eiΦ−Γ−|0〉, (4.99)

where Φ± are arbitrary phase factors.

It can be shown that a fermion parity invariant Ishibashi state does not exist for a single fermion flavor

in the R-R sector and consequently we cannot construct a fermion parity invariant boundary state.

4.5.2 Boundary states and the Z8 classification

Having found out that, for a single copy of fermions, it is not possible to construct a Cardy state that

preserves the fermion number parity, we now proceed to analyze multiple copies of real fermions. We will

show that for 8n copies of fermions, there exists a fermion number parity conserving Cardy state. This

implies a Z8 classification of topological superconductors. This agrees with results in Refs. [153, 129].

The boundary condition for Nf copies of fermions is

ψM + iηψ̃M = 0, M = 1, . . . , Nf . (4.100)

More generally, we may take ηM to be different for different copies. But since later we will take direct a

product of Ishibashi states with the same η value, it is always possible to transform such boundary conditions

to the identical η case. There could be mixing between different copies, which is the most general case. We

do not discuss it here. Since one can already construct an NS-NS Ishibashi state for a single flavor of real

fermions, we will focus our discussion on the R-R sector. We follow the convention in Ref. [155].

We first assume that Nf is even, namely, Nf = 2n, n ∈ Z. It is convenient to define

Γa± := 1√
2

(ψ2a−1
0 ± iψ2a

0 ), a = 1, . . . , n, (4.101)
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which satisfy the algebra {Γa+,Γb−} = δab, {Γa+,Γb+} = {Γa−,Γb−} = 0. Then the Ishibashi vacua |η〉0RR

must satisfy

(Γb− + iηΓ̃b−)|η〉0RR = 0. (4.102)

The solution to this constraint is given by

|η〉0RR = e−iη
∑

b
Γb+Γ̃b− |0〉RR, (4.103)

where the Fock vacuum is defined as Γa−|0〉RR = Γ̃a+|0〉RR = 0. Finally, the Ishibashi state in the R-R

sector can be written as

|η〉〉RR = e
−iη
∑

r>0

∑Nf

M=1
ψM−rψ̃

M
−r |η〉0RR. (4.104)

By construction, (−1)F anticommutes with left-moving fermionic modes, but commutes with all other

modes, while (−1)F̃ anticommutes with all right-moving fermionic modes, but commutes with all other

modes. From the expressions (4.103) and (4.104), we thus have

(−1)F (F̃ )|η〉〉RR = | − η〉〉RR, (4.105)

provided (−1)F |0〉RR = (−1)F̃ |0〉RR = |0〉RR. On the other hand, the fermion number parity operators can

also be represented, in the space of the ground states in the R-R sector, in terms of the zero mode operators

as

(−1)F =
(

1
i

)n n∏
a=1

(
1− 2Γa+Γa−

)
,

(−1)F̃ =
(

1
i

)n n∏
a=1

(
1− 2Γ̃a+Γ̃a−

)
. (4.106)

Using the above relations, one can show

(−1)F |η〉0RR = (−i)n | − η〉0RR, (−1)F̃ |η〉0RR = in| − η〉0RR, (4.107)
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which implies, as the action of (−1)F (F̃ ) on the non-zero modes is as before,

(−1)F |η〉〉RR = (−i)n | − η〉〉RR, (−1)F̃ |η〉〉RR = in| − η〉〉RR. (4.108)

Now, it seems there are two different ways of how (−1)F (F̃ ) acts on the Ishibashi states, namely, Eqs (4.105)

and (4.108). To avoid this ambiguity, we must require n = 0 mod 4 or Nf = 0 mod 8 to have a well-defined

fermion number parity for each chirality.

Therefore, the symmetry invariant boundary state in the R-R sector takes the form

|B〉RR = 1√
2
{|+〉〉RR + |−〉〉RR} , Nf = 0 mod 8. (4.109)

The total Cardy states are now the combination of both the NS-NS and R-R parts

|B〉± = 1
N

(|B〉NSNS ± i|B〉RR) , Nf = 0 mod 8. (4.110)

The factor ±i between the NS-NS and the R-R components are both allowed to satisfy the Cardy condition,

which also fixes the normalization factor N .

Finally for odd number of flavors of real fermion, there would always be one singlet, which is not paired

up. Thus it is impossible to construct a fermion parity invariant boundary state. Therefore the classification

is indeed Z8.

4.5.3 Boundary conditions, gapping potentials and triality

So far, we have only discussed the transformation of boundary states under symmetry operation. But what

would happen to the gapping potential? Is it also invariant under symmetry operation? Here we would like

to clarify two points: (1) if we can find a symmetry invariant boundary state, then there should exist a set

of boundary conditions that is also invariant under the symmetry transformation; (2) symmetry invariant

gapping potentials do not guarantee that the corresponding boundary state is also symmetry invariant.

The case of Nf = 8 As we have shown before, for eight copies of Majorana fermions, we can construct

a fermion parity invariant boundary state, which also satisfies the Cardy condition. We will now try to

identify the corresponding boundary conditions following the triality used in Ref. [156].

The boundary conditions and the fermion representation we are using in the notes are given in the vector

representation of SO(8) algebra. For this algebra, we know that it has an important property–the triality.
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In the vector representation, we can bosonize the (complex) fermions as

ψαj = e−iφαj , ψ†αj = eiφαj , (4.111)

where α, j = 1, 2. Then under the fermion parity operator (−1)F , the boson fields change as

(−1)Fφαj(−1)F = φαj + π. (4.112)

Thus for each individual complex fermion, the boundary condition is not invariant under this Z2 symmetry.

Now let us use triality to write the fermions in the spinor (c) representation. In this representation, we use

a new set of boson fields to bosonize the (complex) fermions.

φch = 1
2
∑

α,j=1,2
φαj ,

φsp = 1
2
∑

α,j=1,2
(σz)ααφαj ,

φfl = 1
2
∑

α,j=1,2
(τz)jjφαj ,

φX = 1
2
∑

α,j=1,2
(σz)αα (τz)jjφαj . (4.113)

In this basis, with the transformation (4.112), we can easily check that

(−1)Fφi(−1)F = φi mod 2π, i = ch,sp,fl,X. (4.114)

A similar analysis can be used for the (−1)F̃ operator. Then, by adding gapping potentials, φi defined in

Eq. (4.113) can be pinned at their ground state values simultaneously. Furthermore, by fermionizing these

bosons to define new fermion operators, Ci, i = ch,sp,fl,X via

Ci = e−iφ
i

, (4.115)

the boundary conditions can be expressed in terms of Ci, namely,

CL,ch = CR,ch, CL,fl = CR,fl,

CL,sp = −CR,sp, CL,X = C†R,X at the boundary. (4.116)
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Then it is manifest that these boundary conditions are invariant under the transformations defined in Eq.

(4.112).

The case of Nf = 4 Let us make the relation between boundary conditions, boundary states and gapping

potentials clear. Given a boundary condition, we can obtain a boundary state as the solution to the boundary

condition. In this sense, there is a one-to-one correspondence between boundary conditions and boundary

states. On the other hand, different gapping potentials can correspond to the same boundary condition. In

terms of gapping vectors, it means that primitive and non-primitive lattice vectors can represent the same

boundary condition. In this sense, the correspondence between gapping vectors and boundary conditions or

boundary states is many to one. Therefore, the symmetry invariance of a specific set of gapping potentials

does not imply the symmetry invariance of the boundary condition or the boundary state. Let us take an

example to clarify this point. In Ref. [157], the authors show that for two copies of Dirac fermions, which is

equivalent to four copies of Majorana fermions, there exists a set of symmetry invariant gapping potential,

which is equivalent to the boundary condition. Specifically, in their language of Dirac fermions, the gapping

potentials

V1 ∝ ψ†1Rψ
†
2Rψ2Lψ1L + H.c. = cos (2θ1 + 2θ2),

V2 ∝ ψ†1Rψ
†
2Lψ1Lψ2R + H.c. = cos (2θ1 − 2θ2) (4.117)

are invariant under fermion parity projection. Here θa = 1
2 (φa,R − φa,L) , a = 1, 2 where ψ†a,R ∝ eiφa,R

and ψ†a,L ∝ eiφa,L . However, the Z2 × Z2 symmetry is spontaneously broken, namely, the single-particle

backscattering terms do not have vanishing vacuum expectation values (vev), 〈ψ†1Rψ1L〉 6= 0, 〈ψ†2Rψ2L〉 6= 0.

In their language, the boundary condition corresponds to the vev. Even if the gapping potential is symmetry

invariant, the vev is not invariant. This is consistent with our analysis that there is no fermion parity invariant

boundary state for four copies of Majorana fermions.
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Chapter 5

Conclusions and outlook

In this dissertation, we have discussed some applications of conformal field theories in topological phases of

matter.

In Chapter 2, we have constructed new quantum Hall states via coupled wire models. We would like to

suggest some possible experimental signatures of such quantum Hall states here. As mentioned, the most

evident phenomenological distinction of the E8, G2 and F4 states are modified Wiedemann-Franz laws with

distinct c/ν ratios. Their presence in low temperature at filling ν = 16 or 8 could be verified by thermal Hall

transport measurements. Similar thermal conductance observations have recently been recently performed

for other fractional quantum Hall states [158, 159]. Moreover, all three quantum Hall states proposed in

this chapter carry bosonic edge modes that only support even charge gapless quasiparticles. This gives rise

to a distinct shot noise signature across a point contact below the energy gap. The anyonic statistics of the

Fibonacci excitations in the G2 and F4 states can be detected by Fabry-Perot interferometry.

In Chapter 3, we systematically studied Abelian surface topological orders that fall under the ADE

classification of simply-laced Lie algebras, as well as their symmetries and dualities properties via coupled

wire models. A summary was given in section 3.1 in the introduction. Here, we further elaborate on

particular results that were not covered in section 3.1. The SPT/SET surface degrees of freedom were first

projected onto an array of wires with alternating propagating directions by a generic symmetry-breaking

surface stripe order. These chiral wires were then decomposed and backscattered to neighboring wires,

thereby obtaining a finite excitation energy gap. We derived the exactly solvable ground state structures

as well as the properties quasiparticle excitations by studying the inter-wire sine-Gordon Hamiltonians of

the bosonized variables. Specifically, for the D-series, the antiferromagnetic time-reversal symmetry defined

in Ref. [21] was dualized to a particle-hole-like symmetry. For the A-series, the mixing between the U(1)
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charge and the neutral SU(N) sectors allowed us to construct a theory that supports π-fluxes that mimics a

Z2 orbifold/gauge theory. Throughout the ADE discussions, we noticed that all the current backscattering

interactions were self-dual in the sense that their dualized gapping terms had the same form as their original

ones, except for the special D-series case of SO(4) which required alternative treatment and was out of the

scope of this chapter.

We provides several future directions along the discussion in Chapter 3. (1) Based on the ADE classifica-

tions that are explored here as parent states, it is interesting to study the descendant topological states, for

instance, E8 quantum Hall state. [42] (2) Our analysis can be systematically generalized to non-simply-laced

affine Lie algebras. There has already been some specific progress in this direction [21, 22]. (3) The general

ground state degeneracy (GSD) and modular properties when the model is compactified on a closed surface

need to be carefully addressed in future works. This is especially the case for the non-Abelian theories. GSD

of orbifold structures that support π-fluxes, similar to those appeared in the A series, should also be explic-

itly analysed. (4) The duality analysis suggests the coupled wire models are particular exact solvable points

that belong in a moduli space of surface states that bridges between different dual phases through phase

transitions. It would be interesting to explore these moduli spaces of surface states in a controlled but per-

haps non-exactly solvable coupled wire manner. Moreover, it would be interesting to utilize the coupled wire

constructions to establish the dualities between non-Abelian gauge theories proposed recently [108, 109]. (5)

Topological phases and dualities in 3 + 1D systems can also be studied using the coupled wire construction.

There have already been several attempts [24, 96, 97] in particular situations, and it would be interesting to

perform a systematically exploration that encompasses and classifies phases with similar properties.

In Chapter 4, we have discussed the (1 + 1)d edge theories of (2 + 1)d SPT phases from the perspective

of boundary CFT. We argue that, if a (1 + 1)d CFT is realized as an edge theory of a (2 + 1)d SPT phase,

it is not possible to find a Cardy boundary state preserving the symmetry of the SPT phase. And vice versa:

when it is not possible to find a symmetry-preserving Cardy boundary state in a (1 + 1)d CFT, the CFT

must be realized as an edge theory of a (2 + 1)d SPT phase. In short, boundaries of SPT phases are not

“edgeable,” and, conversely, “nonedgeable” CFTs must be realized as an edge theory of a bulk theory in one

higher dimension.

We also observed that the edgeablity condition in CFTs are naturally related to the gappability condition.

This can be seen most straightforwardly if one invokes the identification between boundary states and gapped

ground states (states obtained from a CFT by adding a massive perturbation). Thus, (in)ability to find a

symmetry-preserving boundary state means (in)ability to find a symmetry-preserving gapped state. In turn,

this also provides an alternative point of view on the relation between BCFT and the modular invariance. It
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should be noted that, in higher-dimensional SPT phases, the gappability condition is replaced by a “weaker”

condition; (2 + 1)d boundaries of (3 + 1)d nontrivial SPT phases are either ingappable or topologically

ordered, if the symmetry of SPT phases is preserved. Nevertheless, the edgeablity condition is still valid

even for boundaries of higher-dimensional SPT phases. Thus, the edgeablity condition has some precedence

over the gappability condition in general, although they seem equivalent in (1 + 1)d edges of bulk (2 + 1)d

SPT phases.

In the following, let us make a few more comments before closing.

Symmetry actions on boundary states

First, let us summarize the way symmetries act on boundary states in CFTs. In particular, we contrast

physics of (2 + 1)d and (1 + 1)d SPT phases. Let us consider a CFT with a global unitary symmetry

G (spatial and time-reversal symmetries may be discussed in a similar fashion). We consider conformally

invariant boundary states {|Ba〉} realized in the CFT, where a labels the boundary states. Then, for a

symmetry operation g ∈ G, one expects the following possible behaviors of {|Ba〉} under g: In the first case,

the action of g on boundary states is given by

g|Ba〉h = εa(g|h)|Ba〉h. (5.1)

Here, |Ba〉h is a boundary state in the sector twisted by h ∈ G, and εa(g|h) is a phase factor. namely,

boundary states are invariant under the symmetry, up to a phase factor. As claimed in Ref. [137], this case

is relevant to the physics of boundaries of (1 + 1)d SPT phases. In Ref. [137], the correspondence between

gapped ground states of (1 + 1)d SPT phases and boundary states in CFTs was made. These boundary

states are anomalous in the sense that when acted with symmetry they give rise to anomalous U(1) phases,

Eq. (5.1). Furthermore, the anomalous phase ε(g|h) is related to the two cocycles in H2(G,U(1)), which

gives the classification of (1 + 1)d SPT phases protected by G. (These phases, however, only appear in

boundary states in twisted sectors, namely, the sectors with twisted boundary conditions by a group element

in G.)

On the other hand, there are cases in which a boundary state |Ba〉 is mapped to another boundary state

|Ba′〉, which can be different from the original one:

g|Ba〉 = |Ba′〉. (5.2)

We further distinguish the following two cases: (a) There is a subset of boundary states which are mapped
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to themselves for all symmetry operations g ∈ G. (b) None of the boundary states remain invariant under

g ∈ G. Case (a) is a typical situation when the (1 + 1)d CFT can be realized on its own right, without

referring to higher-dimensional bulk systems. On the other hand, Case (b) is relevant to (2 + 1)d SPT

phases, as we have discussed for the bulk of the chapter.

Boundary states and locality

In Eq. (5.2), it should be noted that the right-hand side is not given by a superposition of |Ba〉, but by a

single boundary state. In fact, superpositions of |Ba〉 in general do not satisfy the Cardy condition, and are

disqualified as a physical boundary state. [In this respect, the symmetry transformation law in Eq. (5.2) is

analogous to anyonic symmetry which acts on (2 + 1)d topologically ordered phases by permuting anyons.] In

the present context, this is in perfect agreement with the standard theory of spontaneous symmetry breaking.

When spontaneous symmetry breaking happens, ground states having different expectation values of an order

parameter should not be superposed in the thermodynamic limit. (These states are “superselected.”) The

overlap of these states vanishes in the thermodynamic limit, and hence a given ground state with a definite

value of the order parameter cannot be mixed by any physical (local) operation. (However, the overlap

between different boundary states may not be zero, and defines the Affleck-Ludwig g function.)

In some sense, one can think of Cardy states setting the notion of locality. It should be noted that there

are multiple sets of solution to the Cardy equations, which correspond to different modular invariant bulk

partition functions.

Let us further illustrate the notion of locality set by the Cardy states: As we demonstrated through

various examples, when none of the boundary states are invariant under symmetry G, the CFT must be

realized as an edge theory of a bulk nontrivial SPT phase protected by on-site unitary symmetry G. In the

edge theory, the criticality (gapless spectrum) is enforced by the symmetry G. This is quite different from

criticalities (conformal field theories) that occur in isolated (1 + 1)d systems; there are typically perturbations

at a critical point which are G symmetric. By perturbing the critical point by such perturbation, it may be

possible to flow into a gapped phase where the G symmetry is preserved. This suggests that the symmetry

G acting within the edge theory of a nontrivial SPT phase is not an ordinary symmetry. In fact, as noted

in Ref. [136], the symmetry G is realized non-locally or as a non-on-site symmetry within the edge theory.

Duality and triality

Another canonical example is provided by the Z2 symmetric topological superconductor discussed in Sec.

4.5. The edge theory in this case is described by the action (4.88). Here, the Z2 symmetry flips the sign of

107



the mass term, and hence enforces the criticality. In the language of the (1 + 1)d transverse-field quantum

Ising model (or the 2d Ising model), this is nothing but the Kramers-Wannier duality. It is a non-local

operation which exchanges the Ising spin operator σ and the disorder operator µ.

Let us have a look at how this Z2 symmetry acts on boundary states. In the critical Ising model, there

are three physical conformal boundary conditions: the free condition |f〉, and the fixed ones |+〉 and |−〉.

The periodic (R) sector contains three scalar fields: the identity, the spin field σ, and the energy density ε, of

chiral conformal weight 0, 1/16, and 1/2 respectively. They lead to three Ishibashi states |0〉〉R, | 1
16 〉〉R, and

| 12 〉〉R. The second, antiperiodic (NS) sector contains a single scalar field, the disorder field µ, with the same

conformal weight 1/16 as the spin field, and gives rise to one Ishibashi state | 1
16 〉〉NS. The Cardy boundary

states are given in terms of these Ishibashi states as

|±〉 = 1√
2

[
|0〉〉R ±

√
2

4
| 1
16 〉〉R + |12 〉〉R

]
,

|f〉 = |0〉〉R +
√

2
4
| 1
16 〉〉NS − |

1
2 〉〉R, (5.3)

which, in terms of the Ising spin variables, correspond to the fixed boundary condition with spin pointing

up/down at the boundary, and the free boundary condition. The Kramers-Wannier duality exchanges the

free boundary condition |f〉 and one of the fixed boundary conditions (|+〉). This is so since the duality

transformation exchanges σ and µ, and hence the Ishibashi states |1/16〉〉R and |1/16〉〉NS. (In fact, Ref. [160]

proposed a method to diagnose the existence of the Kramers-Wannier duality, for a given CFT, by using

boundary states.)

Let us next consider Nf copies of (2 + 1)d topological superconductors protected by Z2 symmetry, as

discussed. We will focus on the cases where Nf is even. In these cases, spin operators (analog of σ and µ in

the critical Ising model) in the edge theory are given by

ΘsR = ei
∑

a
saφ

a
R , sa = ±1

2 (5.4)

in the bosonized language (in the right-moving sector). These operators are an intertwining (vertex) operator

that maps the untwisted sector to the twisted sectors specified by s. By state-operator correspondence, these

operators are identified with a state in the corresponding twisted sector. (Note that there is ground-state

degeneracy for the R sectors.) Thus, we have a set of states {|0〉NS, |s〉R}. These states appear when one

constructs boundary states, and are exchanged under the action of the unitary Z2 symmetry. (Here, this is
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not the Z
f
2 symmetry.) The spin operators satisfy

ΘsR(z)Θs
′

R (w) = e2πis·s′sgn(x−x′)Θs
′

R (w)ΘsR(z), (5.5)

where s · s′ = (1/4)
∑
a(±1). This phase can be made an integer when the number of complex fermions is a

multiple of 4 (namely, the number of real fermions is a multiple of 8, Nf = 8n) and if we choose

s = (1/2, 1/2, · · · ) or s′ = (−1/2,−1/2, · · · ). (5.6)

The unitary Z2 symmetry can exchange spin operators ΘsR, as the Kramers-Wannier duality of the critical

Ising model exchanges σ and µ. However when Nf = 8n, the spin operators are mutually local. Hence in this

case, the Z2 symmetry is not a duality (or non-local) symmetry. Rather, it is a (part of) triality symmetry.

Finally, recall that the presence of boundary breaks the Kramers-Wannier duality. This is another

indication that the Kramers-Wannier duality is nonlocal.
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Appendix A

Details of Chapter 2

In this appendix, we provide further details about the results quoted in Chapter 2. We start in Section A.1 by

detailing the momentum conservation conditions of the backscattering interactions of our E8 model described

in the main text. This assigns the corresponding Fermi momenta kF,a of the 11 electronic channels in each

bundle in this phase, importantly fixing the filling fraction of the E8 quantum Hall state to be ν = 16. In the

following Section A.2, we provide the details for extending the E8 model by decomposing the (E8)1 current

algebra into (G2)1 × (F4)1, also known as a conformal embedding. With the explicitly built operators,

transformations between the original electronic momenta and the G2 or F4 currents can be again arranged.

With these currents, the coupled-wire model for the G2 and F4 Fibonacci phases of the main text can

be considered explicitly. The necessary backscattering current interactions again constrain the momentum

distributions, as shown in Section A.3; both G2 and F4 phases Fibonacci are found to exist at magnetic filling

fractions ν = 8. Finally, in Section A.4, we focus on the relationship between Fibonacci topological order

and G2 and F4 current algebras. Using the bulk-boundary correspondence, this is achieved by presenting

the modular content of the chiral (G2)1 and (F4)1 WZW edge CFTs. Finally, we finish by exploring

the relationship between the G2 and F4 groups and Fibonacci anyons, illustrating also their irreducible

transformation properties as fundamental representations of their corresponding Lie algebras.

A.1 E8 Quantum Hall state and momentum commensurability

conditions

We explore in more details the properties of the emergent E8 WZW current algebra at level 1 in each of the

11-wire bundle. The E8 currents were introduced in the main text using the unimodular matrix U defined
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Figure A.1: The Dynkin diagram of E8 and the charge assignment q (in units of e) of the simple roots
(EE8)σyαI , for I = 1, . . . , 8. Uncolored entries are electrically neutral.

in (2.6) and (2.5). The bosonized variables Φσya of the electron operators (2.1) are related to the Φ̃σyI of the

E8 simple roots operators (2.3) by the linear transformation Φ̃σyI = Uσσ
′

Ia Φσ′ya. This transformation induces

a linear mapping between the associated charges and momenta of the fundamental electrons and of the E8

simple roots, given by

q̃σI = Uσσ
′

Ia qσ
′

a , k̃σyI = Uσσ
′

Ia kσ
′

ya. (A.1)

For instance, the electric charge assignments qI of the 8 simple roots in the Dynkin diagram in Fig A.1

can be derived using the above formula by substituting the unit electric charge qσ′a = 1 for all electronic

channels.

As mentioned in the main text, a principal step in building the coupled wire model relies in demanding

commensurability conditions in the intra- and inter-bundle backscattering interactions (2.9) and (2.10). This

requirement takes the form of 11 vanishing (mod 2π) linear equations for the 11 unknown momenta, with

coefficients that are also linear in the inverse of the filling fraction ν; these equations are given by

(
U++
I,a − U

+−
I,a

) (
kRya − kLy+1a

)
= 0 I = 1, ..., 8 (A.2)(

U++
I,a − U

+−
I,a

) (
kRya − kLya

)
= 0 I = 9, 10, 11. (A.3)

From the Fermi momenta kσya = (eB/~c)y +σkF,a of the 11 electronic channels (see Eq. (2.7)), one sees that

the magnetic filling fraction appears only in the E8 inter-bundle terms. Equating the determinant of this

linear system to zero, so that a non-trivial solution to kF,a exist, we fully fix the filling ν as

2048(ν − 16)
ν

= 0 =⇒ ν = 16. (A.4)

This result could have been alternatively obtained from a corresponding effective Chern-Simons field theory,
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which determines ν = q̃T (KE8)−1q̃ = 16, where the charge assignments q̃ = (−4, 2, 0, 0,−2, 2, 0, 2) were

given in Fig. A.1, for both chiralities, and where KE8 is the Cartan matrix of E8. Enforcing this filling frac-

tion, the momentum commensurability condition has a unique solution (up to a single free Fermi-momentum

parameter kF ). The momenta of the 11 bare electrons are given by

kσy,1 = kσy,2 = 1
2ykF , k

σ
y,3 = kσy,7 = 1

2 (y − σ) kF , (A.5)

kσy,4 = kσy,5 = kσy,6 = kσy,8 = kσy,9 = 1
2 (y + 2σ) kF , (A.6)

kσy,10 = 1
2 (y + 3σ) kF , kσy,11 = 1

2 (y − 3σ) kF . (A.7)

With these, the σ = L and R channels of any of the three recombined fermions fσyn, for n = 1, 2, 3, share the

same momentum, and therefore the oscillatory terms in the intra-bundle backscattering interactions (2.9)

cancel. Similarly, the inter-bundle terms in (2.10) also conserve momentum, as k̃Ry,I = k̃Ly+1,I for I = 1, . . . , 8.

A.2 A G2 x F4 conformal embedding into E8

A.2.1 From E8 to SO (16)

The exceptional E8 Lie algebra has dimension 248, which separates into 8 Cartan generators and 240 roots

in the root lattice ∆E8 . The Cartan generators are mutually commuting operators while the roots are

raising and lowering operators of the “spin” eigenvalues. Here, we present a full bosonized description of

the E8 WZW current algebra at level 1 based on the 8 aforementioned simple roots in (2.3) and relate this

description to an SO(16) embedding. This will later facilitate the G2 × F4 ⊆ E8 embedding.

We begin by fermionizing the 8 simple roots operators. This expresses each E8 root as either a pair or a

half-integral combination of a set of 8 non-local Dirac fermions dσyI ∼ exp
[
i(φσyI(x) + kσyIx)

]
. The bosonized

variables and momenta are related to that of the 8 simple roots by

Φ̃σyI = RI
′

I φ
σ
yI′ , k̃σyI = RI

′

I k
σ
yI′ , (A.8)
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where the 8× 8 R matrix is

R =


1 −1

1 −1
1 −1

1 −1
1 −1

1 1
− 1

2 −
1
2 −

1
2 −

1
2 −

1
2 −

1
2 −

1
2 −

1
2

1 −1

 (A.9)

The lines of the R matrix form a set of primitive basis vectors that are commonly adopted to generate the

E8 root lattice in R
8.

TheR-matrix decomposes the Cartan matrixKE8 of E8 intoKE8 = RRT . Consequently, under the trans-

formation (A.8), the equal-time commutation relation (2.4) becomes
[
∂xφ

σ
yI(x), φσ′y′I′(x′)

]
= 2πiσδσσ′δII′δyy′δ(x−

x′). This ensures the vertex operators dσyI ∼ exp
[
i(φσyI(x) + kσyIx)

]
to represent spin 1/2 Dirac fermions. As

we argue next, these fermions do not associate to natural excitations in the bulk or the edge of the quantum

Hall states. Inverting the matrix (A.9) and multiplying by our original unimodular transformation U , one

sees that all φσyI expressed in terms of the original electronic bosonized variables Φσya involve half-integral

coefficients. The non-locality is also revealed by their even charge assignments q = 0,±2. The pair creation

of such non-local Dirac fermions requires a linearly divergent energy in the coupled wire model and, as a

result, these fermions do not arise as deconfined bulk excitations or gapless edge primary field. They should

only be treated as artificial fields introduced to describe the WZW current algebra. Henceforth, where it

leads to no confusion, we are suppressing the σ, y indices for conciseness.

By decomposing the 8 Dirac fermions into 16 Majorana fermions as dI = (ψ2I−1 + iψ2I)/
√

2, the E8

WZW current algebra can be related to an SO(16)1 WZW current algebra. In terms of root systems, ∆E8 is

shown to be an extension of ∆SO(16), as follows. The root lattice of SO(16)1, ∆SO(16), contains 22×C8
2 = 112

elements, with Ckn being the binomial coefficient. The elements are given by bosonic spin 1 fermion pairs

d±I d
±
I′ ∼ ei(±φI±φI′ ), where 1 ≤ I < I ′ ≤ 8. Besides the root system of SO(16)1, to generate the root

system of ∆E8we include the SO(16) 128 = 27 even spinors. The even spinors can be represented by bosonic

spin 1 half-integral combinations dε
I/2
I ∼ eiε

IφI/2, where εI = ±1 and
∏8
I=1 ε

I = +1. By combining the

even spinors with root lattice of SO(16), the 112 + 128 = 240 roots of E8 can be represented by the vertex

operators

[EE8 ]σyα ∼ exp
[
iαI(φσyI(x) + kσyIx)

]
= exp

[
iαI(R−1)I

′

I U
σσ′

I′a (Φσ
′

ya(x) + kσ
′

yax)
]
, (A.10)
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where the root vectors α = (α1, . . . , α8) are

∆E8 =
{
α ∈ Z

8 : |α|2 = 2
}
∪

{
α = ε

2 : εI = ±1,
8∏
I=1

ε8 = 1
}
. (A.11)

Each root vector α can be expressed as a linear combination αJ = aIRJI , with the R matrix given in (A.9)

and aI integer coefficients, which are the entries of the root vectors in the Chevalley basis. This integer

combination ensures that every E8 root operator in (A.11) is an integral combination of local electrons (2.1).

Since each of these vertex operators is a spin-1 boson, it must be an even product of electron operators and

therefore must carry an even electric charge.

The fermionization of the E8 presented above allows us to represent each and every E8 root using a

vertex operator [EE8 ]σyα ∼ exp
[
iαI(φσyI + kσyIx)

]
(see (A.10)), where dσyI ∼ exp

[
i(φσyI + kσyIx)

]
are 8 non-

local Dirac fermions and α are Cartan-Weyl root vectors in ∆E8 (recall (A.8) and (A.11)). To complete the

algebra structure, the 8 Cartan generators of E8, which are identical to the Cartan generators of SO(16), are

given by the number density operators [HE8 ]σyI ∼ i∂φσyI ∼ (dσyI)†dσyI . This also allows an explicit conformal

embedding of the G2 and F4 WZW CFTs in the E8 theory at level 1.

A.2.2 From SO (16) to G2 × F4

The embedding (G2)1 × (F4)1 ⊆ (E8)1 can be intuitively understood as follows. First, G2 ⊆ SO (7) ⊆

SO (16) ⊆ E8. By decomposing the Dirac fermions into Majorana components dI = (ψ2I−1 + iψ2I)/
√

2, the

SO(16)1 currents are bilinear combinations of the 16 Majorana fermions. The (G2)1 current operators have

free field representations using ψ1, ..., ψ7, which generate the SO(7)1. Second, SO(9) ⊆ F4 ⊆ E8. The root

system of F4 composes of (i) the 24 (long) roots, (ii) the 8 vectors, and (iii) the 16 (even and odd) spinors of

SO(8), all of which act on ψ9, ..., ψ16. As we will see, accompanying the SO(8) vectors with the remaining

Majorana ψ8 in SO(9) and the SO(8) spinors with two special emergent fermions, we are able to to embed

the F4 currents in E8 in a way that is fully decoupled from G2. To abridge, G2 is a bit smaller than SO(7)

while F4 is a bit bigger than SO(9), and the two WZW algebras at level 1 completely decomposes (E8)1.

To construct the embedding explicitly, we start by representing the SO(7) Kac-Moody currents with

Majorana fermions as JaSO(7) = −i : ψiΛaijψj : /2, where Λa are generators of the SO(7) Lie algebra. We

introduce the complex fermion combinations and bosonized representations, cj = (ψ2j−1 + iψ2j)/
√

2 = eiφ
j

where the bosons obey

〈
φj (z)φj

′
(w)
〉

= −δjj
′
log (z − w) + iπ

2 sgn (j − j′) , (A.12)

114



with the sgn accounting for mutual fermionic exchange statistics. We then follow reference [161] to embed

G2 generators into SO(7). The resulting Cartan generators H1,2
G2

of G2 are

H1
G2

(z) = i

√
1
6
(
−2∂φ1 + ∂φ2 + ∂φ3) , H2

G2
(z) = i

√
1
2
(
∂φ2 − ∂φ3) . (A.13)

while the positive long roots are

E1
G2

(z) = −ei(φ2−φ3), E2
G2

(z) = −ei(φ3−φ1), E3
G2

(z) = −ei(φ2−φ1). (A.14)

To bosonize the positive short roots, we need ψ7 =
(
eiφ4 + e−iφ4

)
/
√

2, yielding

E4
G2

(z) = 1√
3

[
−e−i(φ1+φ2) − i

(
ei(φ3+φ4) − ei(φ3−φ4)

)]
,

E5
G2

(z) = 1√
3

[
−e−i(φ1+φ3) + i

(
ei(φ2+φ4) − ei(φ2−φ4)

)]
,

E6
G2

(z) = 1√
3

[
−ei(φ2+φ3) − i

(
e−i(φ1−φ4) − e−i(φ1+φ4)

)]
.

(A.15)

The negative roots can be obtained by simple Hermitian conjugation.

Now we move on to F4. Our goal is to define the F4 currents in terms of SO(16) degrees of freedom in

a way that the operators decoupled from G2, in the OPE sense. Since we used the SO(7) part, generated

by fermions ψ1,...,7 to define the G2 operators, we may facilitate the decoupling of the currents by using

the remaining SO(8) subalgebra, generated by ψ9,...,16. This is achieved by carefully sewing F4 into the full

degrees of freedom of SO(16). The Cartan generators can be chosen to be the ones in the SO(8) subalgebra

Ha
F4

(z) = i∂φ4+a, a = 1, . . . , 4. (A.16)

The group F4 has 48 roots, 24 short and 24 long. The 24 long roots are identical to those of SO(8), and

may be written in bosonized form as

EαF4
(z) = eiα·φ, (A.17)

where α1 = . . . = α4 = 0 and (α5, . . . , α8) ∈ Z
4| |(α5, . . . , α8)|2 = 2. The 24 short roots of F4 correspond

to 8 vector and 16 spinor representations of SO(8). To write the 8 vector roots, we increment the vertex

operators with fermion ψ8, obtaining

E±aF4
∼ ψ8e

±iφ4+a ∼ 1√
2

(
ei(φ4±φ4+a) + ei(−φ4±φ4+a)

)
. (A.18)
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Finally, the 16 spinors read

E
s±
F4
∼ ψ±eis±·φ/2, (A.19)

where the spinor labels are s± = (0, 0, 0, 0, s5, s6, s7, s8) with s5s6s7s8 = ±1; the critical step here lies in the

inclusion of the Majorana fermions

ψ+ = 1√
2

(
ω+e

i(φ1+φ2+φ3+φ4)/2 + h.c.
)
, ψ− = 1√

2

(
ω−e

i(φ1+φ2+φ3−φ4)/2 + h.c.
)

(A.20)

where ω± are U(1) phases to be determined. Combining the vertices with the fermions,

E
s+
F4
∼ 1√

2

(
ω+e

i(φ1+φ2+φ3+φ4+s+·φ)/2 + ω∗+e
i(−φ1−φ2−φ3−φ4+s+·φ)/2

)
, (A.21)

E
s−
F4
∼ i√

2

(
ω−e

i(φ1+φ2+φ3−φ4+s−·φ)/2 − ω∗−ei(−φ1−φ2−φ3+φ4+s−·φ)/2
)
. (A.22)

Our goal is to decouple the G2 and F4 currents in the SO(16) embedding. Computing the OPEs between

all G2 and F4 operators, one recognizes that singular terms only arise between G2 short roots and F4 short

roots from SO(8) spinors. These singular terms, however, can be made to vanish with an appropriate choice

of ω± following

ω+ + e−iπ/4ω∗+ = ω− − e−iπ/4ω∗− = 0. (A.23)

Distinct solutions only differ by a sign, which can be absorbed in the Majorana fermion ψ±. We pick

ω+ = ei3π/8, ω− = e−iπ/8. (A.24)

This completes the proof that the G2 and F4 embeddings decouple and act on distinct Hilbert spaces.

As a non-trivial check of the conformal embedding, one may compute the energy-momentum tensors,

seeing that the E8 tensor decouples identically into those of G2 and F4 under the construction above. By

definition, WZW energy momentum tensors at level 1 read [54]

T (z) = (J · J) (z)
2 (1 + g) , (A.25)

with Ja a Sugawara current, g dual coxeter number, and the normal ordering defined as

(JaJa) (z) = 1
2πi

∮
z

dw

w − z
Ja (w) Ja (z) . (A.26)

116



The contraction of the Sugawara currents can be written in the Cartan-Weyl basis

(J · J) (z) =
∑
j

(
HjHj

)
(z) +

∑
α

(
E−αEα

)
(z) , (A.27)

where the α sum is over the full root lattice, while j sums over the generators of the Cartan subalgebra. We

have absorbed the normalization factors into the root operators.

We are then ready to verify the energy-momentum tensor decoupling via the conformal embedding.

Under the SO(16) embedding, the E8 tensor reduces to

TE8 (z) = −∂φ · ∂φ2 , (A.28)

which is, in fact, of the same form of the SO(16) energy-momentum tensor.

To fully verify the conformal embedding, one may compute the energy momentum tensors of the G2 and

F4 CFTs. This calculation requires lengthy but straightforward bookkeeping, and will not be presented in

here. The operators TG2 and TF4 are found to be

TG2 (z) = −1
2


 3∑
j=1

∂φj∂φj

 (z)− 1
5

 3∑
j=1

∂φj

2

(z)

− 1
5 (∂φ4∂φ4) (z)

+ 2
5

{
cos
[
2
(π

8 − φ+ (z)
)]
− cos

[
2
(π

8 − φ− (z)
)]

+ cos [2φ4 (z)]
}
, (A.29)

and

TF4 (z) =− 1
2

 8∑
j=5

(∂φj∂φj) (z) + 1
5

 3∑
j=1

∂φj

2

(z)

− 3
10 (∂φ4∂φ4) (z)

− 2
5

{
cos
[
2
(π

8 − φ+ (z)
)]
− cos

[
2
(π

8 − φ− (z)
)]

+ cos [2φ4 (z)]
}
, (A.30)

where φ± ≡ φ1 + φ2 + φ3 ± φ4. The sum of these two expressions returns TE8 , as it should, finishing the

verification of the conformal embedding.
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A.3 G2 and F4 quantum Hall states momentum

commensurability conditions

To stabilize the G2 and F4 Fibonacci phases, a process of fixing a distribution of Fermi momenta for the 11

electronic channels (2.1) in the coupled wire model is necessary. This is analogous to the one used for the

E8 Quantum Hall state. Applying the process for the F4 Fibonacci phase, i.e. demanding commensurability

conditions on the momenta so that oscillatory terms cancel from interactions in (2.13), results in the unique

non-trivial solution (up to the single free parameter kF )

kσy,1 = kσy,2 = kσy,7 = (y − σ) kF , kσy,3 = (y − 2σ) kF ,

kσy,4 = kσy,5 = kσy,6 = kσy,8 = kσy,9 = (y + 2σ) kF ,

kσy,10 = (y + 3σ) kF , kσy,11 = (y − 4σ) kF , ν = 8. (A.31)

Similarly, demanding momentum commensurability in (2.14), one obtain the Fermi momentum distribu-

tion for the coupled wire model for the G2 Fibonacci quantum Hall state.

kσy,1 = kσy,2 = kσy,3 = kσy,11 = (σ + y) kF ,

kσy,4 = kσy,5 = kσy,6 = kσy,7 = kσy,8 = kσy,9 = kσy,10 = ykF , ν = 8. (A.32)

A.4 Fibonacci primary field representations in the G2 and F4

WZW CFTs at level 1

Our prime motivation for studying (G2)1 and (F4)1 WZW theories stems from the claim that both carry

excitations in the form of Fibonacci anyons. Here we will provide a short demonstration of that, and then

follow with a coset construction that allows us to profit from the embeddings discussed up to now to explicitly

build the corresponding Fibonacci primary fields.

To see that the only excitations in (G2)1 and (F4)1 are Fibonacci anyons, we can start by noticing that

at level 1, these theories contain only 1 non-trivial primary field besides the vacuum I. We name these fields

τ for (G2)1 and τ̄ for (F4)1. Following, we invoke the Gauss-Milgram formula; this formula is an avatar

of the bulk-boundary correspondence. It connects quantities that point to the bulk anyon excitations of a

topological phase to the CFT degrees of freedom that live at its boundary. Stating the formula explicitly,
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we have ∑
a

d2
aθa = Dei2π c8 , (A.33)

where D2 ≡
∑
a d

2
a is the total quantum order and da are called quantum dimensions, quantities that

characterize bulk anyons, while θa = ei2πha are conformal spins, determined quantum dimentions ha, and

c is the chiral central charge; the latter two quantities characterize the CFT at the edge of the topological

phase. The sum is over all primary fields of the CFT or, correspondingly, all anyons. By definition dI = 1

and hI = 0. Furthermore, the conformal dimension of a primary field a of a WZW theory is completely

determined by its Lie algebra content by ha = Ca
2(k+g) , [54] where k is the level, g is the dual coxeter number

and Cτ is the quadratic Casimir of the representation. Collecting these numbers, hτ = 2/5 and hτ̄ = 3/5,

leaving a single unknown in the Gauss-Milgram formula, namely dτ or dτ̄ for G2 or F4. Solving for these,

dτ = dτ̄ = 1 +
√

5
2 , (A.34)

which is the Golden ratio expected for Fibonacci anyons. Since the quantum dimensions obey a algebraic

version of the fusion rulesy, these follow imediately as τ × τ = I + τ . Equivalently, the fusion rules can be

explicitly determined by the modular (2× 2) S-matrices of the theory using the Verlinde formula.

We thus established that the chiral (G2)1 and (F4)1 WZW edge CFTs contain primary fields that obey

the Fibonacci fusion rules. They correspond to Fibonacci anyonic excitations in the 2D bulk, and thus we

refer to them as Fibonacci primary fields. Let us now construct explicit expressions for them based on our

conformal embedding here developed.

The non-trivial primary fields [τ ] and [τ̄ ] are associated with the fundamental irreducible representations

of their respective exceptional Lie algebras. Each of them consists of a super-selection sector of fields,

[τ ] = span{τm}m=1,...,7 and [τ̄ ] = span{τ̄l}l=1,...,26, that rotate into each other by the WZW algebraic

actions

[EG2(z)]γ τm(w) = 1
z− wρG2(γ)m

′

m τm′(w) + . . . , [EF4(z)]β τ̄l(w) = 1
z− wρF4(β)l

′

l τ̄l′(w) + . . . , (A.35)

where z,w ∼ eτ+ix are radially ordered holomorphic space-time parameters, γ and β are the roots of G2

and F4, and ρG2 and ρF4 are the 7- and 26-dimensional irreducible matrix representation of the G2 and

F4 algebras. Here, we provide a parafermionic representations of these fields that constitute the Fibonacci

super-sectors. Using the coset construction, each Fibonacci field τm, τ̄l can be expressed as a product of

two components: (1) a non-Abelian primary field of the Z3 parafermion CFT or the tricritical Ising CFT,
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respectively, and (2) a vertex operator of bosonized variables.

The (G2)1 WZW CFT can be decomposed into two decoupled sectors using its SU(3)1 sub-algebra.

(G2)1 ' SU(3)1 ×
(G2)1

SU(3)1
= SU(3)1 × Z3 parafermion. (A.36)

For instance, the decomposition agrees with the partition of the energy-momentum tensors TZ3 = T(G2)1/SU(3)1 ≡

T(G2)1 − TSU(3)1 and central charges c((G2)1) = 14/5 = c(SU(3)1) + c(Z3) = 2 + 4/5. First, we focus on the

SU(3)1 sub-algebra. Using the aforementioned fermionization of E8, the six roots of SU(3) coincide with

the long roots of G2, e±i(φ1−φ2), e±i(φ2−φ3), e±i(φ1−φ3). The SU(3)1 WZW sub-algebra has three primary

fields, I, [E ] and [E−1], with conformal dimensions hI = 0 and hE = hE−1 = 1/3. I denotes the trivial vacuum,

while [E ] and [E−1] are three-dimensional super-selection sectors of fields

[E ] = span
{
ei(φ1+φ2−2φ3)/3, ei(φ2+φ3−2φ1)/3, ei(φ3+φ1−2φ2)/3

}
,

[E−1] = span
{
e−i(φ1+φ2−2φ3)/3, e−i(φ2+φ3−2φ1)/3, e−i(φ3+φ1−2φ2)/3

}
,

(A.37)

that rotate according to the two fundamental representations of SU(3). For example, under the SU(3)1

roots,

ei[φa(z)−φb(z)]ei[φb(w)+φc(w)−2φa(w)] ∼ ei[φa(w)+φc(w)−2φb(w)]/(z− w) + . . . . (A.38)

The 7-dimensional fundamental representation of G2 decomposes into 1 + 3 + 3 under SU(3) and each

component is associated to a distinct SU(3)1 primary field.

Next, we focus on the (G2)1/SU(3)1 coset, which is identical to the Z3 parafermionic CFT. It supports

three Abelian primary fields I,Ψ,Ψ−1 and three non-Abelian ones τ, ε, ε−1. They have conformal dimensions

hI = 0, hΨ = hΨ−1 = 2/3, hτ = 2/5 and hε = hε−1 = 1/15. They obey the fusion rules

Ψ×Ψ = Ψ−1, Ψ×Ψ−1 = I, τ ×Ψ = ε, τ ×Ψ−1 = ε−1, τ × τ = I + τ. (A.39)

The Fibonacci primary field of (G2)1 is the 7-dimensional super-selection sector

[τ ] = (τ ⊗ I)⊕ (ε⊗ [E ])⊕ (ε−1 ⊗ [E−1])

= span

 τ, εei(φ1+φ2−2φ3)3, εei(φ2+φ3−2φ1)/3, εei(φ3+φ1−2φ2)/3,

ε−1e−i(φ1+φ2−2φ3)/3, ε−1e−i(φ2+φ3−2φ1)/3, ε−1e−i(φ3+φ1−2φ2)/3

 (A.40)
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All seven fields share the same conformal dimension hτ = 2/5. For example, hε⊗[E] = 1/15+1/3 = 2/5. The

super-sector splits into three components under SU(3). However, they rotate irreducibly into each other

under G2.

The Fibonacci primary field of (F4)1 can be described in a similar manner. First, using the SO(9)1

sub-algebra, the WZW CFT can be factored into two decoupled sectors

(F4)1 ' SO(9)1 ×
(F4)1

SO(9)1
= SO(9)1 × (tricritical Ising). (A.41)

Like the previous G2 coset decomposition, here the energy-momentum tensor and central charge also de-

compose accordingly: c((F4)1) = 26/5 = 9/2 + 7/10, where 9/2 and 7/10 are the central charges for SO(9)1

and the tricritical Ising CFTs. The Fibonacci super-selection sector of (F4)1 consists of fields, which are

linear combinations of products of primary fields in SO(9)1 and the tricritical Ising CFTs.

We first concentrate on SO(9)1. It supports three primary fields I, [ψ] and [Σ] with conformal dimensions

hI = 0, hψ = 1/2 and hΣ = 9/16 and respectively associate to the trivial, vector and spinor representations

of SO(9). Using the fermionization convention of E8, the SO(9)1 theory is generated by the 9 Majorana

fermions ψ8, . . . , ψ16, where the last 8 Majorana fermions are paired into the 4 Dirac fermions dI = (ψ2I−1 +

iψ2I)/
√

2 ∼ eiφI , for I = 5, 6, 7, 8. The vector primary field consists of any linear combinations of these

9 fermions [ψ] = span{ψ8, . . . , ψ16}. We arbitrarily single out the first Majorana fermion ψ8, which is not

paired with any of the others, and associate it to an Ising CFT. This further decomposes

SO(9)1 = Ising × SO(8)1. (A.42)

The spinor primary field of SO(9)1 decomposes into a product between the Ising twist field σ and the SO(8)1

spinors.

[Σ] = span
{
σ exp

(
i

2

8∑
I=5

εIφI

)
: ε5, . . . , ε8 = ±1

}
. (A.43)

The conformal dimension of σ is 1/16 and that of the SO(8)1 spinors are 1/2. Thus, they combine to the

appropriate conformal dimension of hΣ = 9/16 for each field in the set. The dimension of the SO(9) spinor

representation is 24 = 16. The 26-dimensional fundamental representation of F4 decomposes into 1 + 9 + 16

under the SO(9) sub-algebra, and each component is associated to a unique SO(9)1 primary field.

We now focus on the (F4)1/SO(9)1 coset, which is identical to the tricritical Ising CFT, or equivalently,
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the minimal theory M(5, 4). The theory has six primary fields arranged in the following conformal grid

f s I

τ̄ sτ̄ f τ̄

f τ̄ sτ̄ τ̄

I s f

=

Φ3,1 Φ2,1 Φ1,1

Φ3,2 Φ2,2 Φ1,2

Φ1,2 Φ2,2 Φ3,2

Φ1,1 Φ2,1 Φ3,1

conformal dimensions−−−−−−−−−−−−−→

3/2 7/16 0

3/5 3/80 1/10

1/10 3/80 3/5

0 7/16 3/2

(A.44)

They obey the fusion rules

f × f = I, s× f = s, s× s = 1 + f, f × τ̄ = f τ̄ , s× τ̄ = sτ̄ , τ̄ × τ̄ = I + τ̄ . (A.45)

The Fibonacci primary field of (F4)1 is the 26-dimensional super-selection sector

[τ̄ ] = (τ̄ ⊗ I)⊕ (f τ̄ ⊗ [ψ])⊕ (sτ̄ ⊗ [Σ])

= span

τ̄ , f τ̄ψj , sτ̄σ exp
(
i

2

8∑
I=5

εIφI

)
:
j = 8, . . . , 16

ε5, . . . , ε8 = ±1

 . (A.46)

Each of these fields carry the identical conformal dimension hτ̄ = 3/5. For example, the second field f τ̄ [ψ]

has the combined conformal dimension 1/10 + 1/2 = 3/5, and the third sτ̄ [Σ] has 3/80 + 9/16 = 3/5.

Although the super-sector splits into three under SO(9)1, it is irreducible under (F4)1.
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Appendix B

Details of Chapter 3

B.1 Gapping conditions for K-matrix formalism

B.1.1 Gapping terms for the general K-matrix theory

We briefly review the gapping condition and the gapping term for the general K-matrix theory. Assume we

have two effective Lagrangians on the boundary of a (2+1)d system:

LL = − 1
4πK

L
IJ∂tφ

L
I ∂xφ

L
J + V LIJ∂xφ

L
I ∂xφ

L
J ,

LR = 1
4πK

R
IJ∂tφ

R
I ∂xφ

R
J + V RIJ∂xφ

R
I ∂xφ

R
J , (B.1)

where KR and KL have the same dimension N and signature, and V R and V L are some symmetric non-

universal potentials. Define K ≡ KR ⊕ (−KL). The completely gapping condition or Haldane’s nullity

condition [112] is that there exists N 2N-component linearly independent integer vectors `i = (`Ri , `
L
i )T ,

called null vectors, satisfying

`Ti K`j = 0, i, j = 1, . . . , N. (B.2)

Then the whole gapping term is written as

Hgapping =
N∑
i=1

Ci cos
(
`Ti KΦ + αi

)
, (B.3)

where Φ = (φR,φL)T and αi are some undetermined variables, which can be fixed by the specific theory.
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Actually if we only impose that we can pin the gapping terms simultaneously to their minima, we only

need nTi K−1nj = 0 for i, j = 1, . . . , N , where ni are integer vectors. However, if we further require that the

gapping terms are composed of local operators, we need ni = K`i, which gives Eq.(B.2).

One corollary is that when KR = KL, then we can always choose lRi = lLi to gap out the whole system,

as long as there are enough linearly independent N -component integer vectors lRi .

B.1.2 Gapping conditions in different basis

For a general K-matrix theory with simply-laced algebra, we can write the kinetic term in two equivalent

ways

L0 = 1
4π

∫
dxdt KIJ∂xφ

′I∂tφ
′J , (B.4)

with the canonical quantization

[φ′I(x), ∂x′φ′J(x′)] = 2πiK−1
IJ (.x− x

′). (B.5)

We can choose simple roots for the current algebra αI such that αI · αJ = KIJ . We denote

R =


−−−− α1 −−−−

...

−−−− αr −−−−

 (B.6)

as the matrix formed by these simple roots, where r is the rank of the Lie algebra. Then we have RRT = K.

Now we make a basis transformation

φI =
∑
J

RJIφ
′J . (B.7)

Then we can check that Eq. (B.5) becomes

[φI(x), ∂x′φJ(x′)] = 2πiδIJδ(x− x′), (B.8)
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where we have used RTK−1R = 1, which is obvious. If `i = (`iR, `
i
L) is a set of 2r-component Haldane null

vectors, they should satisfy the nullity condition

(`i)TK`j = 0, ∀i, j = 1, . . . , r, (B.9)

in the φ′I basis, where K = K ⊕ (−K), or

`iR · `
j
R − `

i
L · `

j
L = 0, ∀i, j = 1, . . . , r, (B.10)

in the φI basis.

B.2 Simply-laced Lie algebras and their representations

We review the simpled-laced Lie algebras, namely, ADE classifications, and their representations here. [54]

“Simply-laced” means that all roots α of the corresponding algebras have identical length, which are usually

normalized to be |α| =
√

2. Let r be the rank of an algebra G, namely, the maximal number of mutually

commuting generators of G. Then in Cartan-Weyl basis, we have

[
Hi, Eα

]
= αiEα,[

Eα, E−α
]

= 2
|α|2

r∑
i=1

αiHi =
r∑
i=1

αiHi,

[
Eα, Eβ

]
∝


Eα+β if α+ β ∈ ∆,

0 otherwise
for α 6= β. (B.11)

All roots of G can be obtained from r simple roots α1, . . . ,αr by linear combinations. The choice of simple

roots is not unique. For SU(r + 1) algebras, it can be chosen as

αI = eI − eI+1, I = 1, . . . , r, (B.12)

where eI are unit basis vectors of Rr+1. For SO(2r) algebras, it can be chosen as

α =


eI − eI+1 for I = 1, . . . , r − 1,

er−1 + er for I = r,

(B.13)
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where eI are unit basis vectors of Rr. For E-series, simple roots are usually taken at one’s convenience. We

have shown some particular choices in the main text.

The fundamental representation ta of SU(r + 1) algebra have properties

Tr(tatb) = δab,∑
a

taijt
a
kl = δilδjk −

1
r + 1δijδkl, (B.14)

∑
a,b

fabcfabd = 2(r + 1)δcd,

where fabc are the structure constants of the SU(r + 1) algebra. The vector representation of SO(2r) Lie

algebra has an explicit matrix representation

taij ≡ trsij = i(δri δsj − δrj δsi ), 1 ≤ r < s ≤ 2r,

Tr(tatb) = 2δab, (B.15)∑
a

taijt
a
kl = 2(−δikδjl + δilδjk), (B.16)

and the structure constant can be written as

fabc ≡ f(rs)(pq)(mn) = (δrmδnqδsp − δmsδnqδrp)

+ (δmpδsqδnr − δnpδsqδrm)

+ (δprδnsδmq − δrqδnsδmp). (B.17)

The Cartan matrix K of the algebra G is an r × r matrix defined by

KIJ = 2αTI αJ
|αJ |2

=
r∑
i=1

2αiIαiJ
|αJ |2

=
r∑
i=1

αiIα
i
J . (B.18)

It is easy to see that the Cartan matrix for simply-laced algebras are symmetric. Cartan matrices for

simply-laced algebras are listed below.
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KSU(r+1) =



2 −1 0 · · · 0 0

−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2 −1

0 0 0 · · · −1 2


, KSO(2r) =



2 −1 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2 −1 −1

0 0 0 · · · − 1 2 0

0 0 0 · · · − 1 0 2



, (r ≥ 4),

KE8 =



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 −1

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 0

0 0 0 0 −1 0 0 2



, KE7 =



2 −1 0 0 0 0 0

−1 2 −1 0 0 0 0

0 −1 2 −1 0 0 0

0 0 −1 2 −1 0 −1

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 0

0 0 0 −1 0 0 2



,

KE6 =



2 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 0 −1

0 0 −1 2 −1 0

0 0 0 −1 2 0

0 0 −1 0 0 2


. (B.19)

Sometimes it is convenient to use Chevalley basis as it is directly related to the Cartan matrix:

hI = 2
|αI |2

r∑
i=1

αiIH
i =

r∑
i=1

αiIH
i, (B.20)

with the commutation relations

[
hI , E±αJ

]
= ±KIJE

±αJ ,
[
EαJ , E−αJ

]
= δIJhJ . (B.21)

In Chapter 3, we are focused on the level-1 algebras of ADE classifications, in which there exist free
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field representations. To be specific, SO(2r)1 algebras (D-series), can be constructed by 2r independent

Majorana fermions ψi with operator product expansions (OPEs)

ψi(z)ψj(w) ∼ δij
z − w

, i, j = 1, . . . , 2r. (B.22)

The current operators can be constructed with these free Majorana fermions as

Ja(z) = 1
2
∑
i,j

(ψitaijψj)(z), (B.23)

where normal ordering is assumed. One can check that these currents satisfy the current algebra

Ja(z)Jb(w) ∼ kδab
(z − w)w +

∑
c

ifabcJ
c(w)

(z − w) , (B.24)

where fabc are called structure constants.

For SU(r + 1)1 algebras (A-series), we can use r independent free bosons φi with OPEs

φi(z)φj(w) ∼ −δij ln (z − w), i, j = 1, . . . , r. (B.25)

The currents in Cartan-Weyl basis can be constructed as

Hj(z) = i∂φj(z),

Eα(z) = cαe
iα·φ(z), (B.26)

where cα is a correction factor ensuring the correct OPEs. This bosonic construction also works for D-series

if we pair up Majorana fermions and then bosonize them.

For (E8)1 algebras (E-series), we can follow the same construction as in A-series with 8 independent free

bosons to construct the currents, with the vector and spinor representations of SO(16) algebra introduced

in the main text. E7 and E6 algebras can be constructed from the corresponding conformal embeddings,

respectively.
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