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Abstract

This dissertation discusses some applications of conformal field theories (CFTs) in topological phases of
matter.

The first part is devoted to a discussion of coupled wire constructions of some novel quantum Hall systems.
Through a theoretical coupled wire model, we construct strongly correlated electronic integer quantum Hall
states with filling factor v = 16. The edge state is a bosonic chiral (Eg); CFT, which is closely related to
topological paramagnets in (34+1)d. As a distinguishing feature, these states support electric and thermal
Hall transport violating the Wiedemann-Franz law as (kqy/04y) / [(72k3T) /3€%] < 1. We further construct
two descendant non-Abelian quantum Hall states at filling v = 8, each carrying bosonic chiral (G2); or (Fy);
edge theories, and hosting Fibonacci anyonic excitations in the bulk. Finally, we discover a new notion of
particle-hole conjugation based on the Eg state that relates the G2 and Fy Fibonacci states, which is
reminiscent of similar physics in half-filled Landau level.

The second part is focused on the surface topological orders of 3D bulk topological systems. Symmetry-
protected and symmetry-enriched topological (SPT/SET) phases in three dimensions are quantum systems
that support non-trivial two-dimensional surface states. These surface states develop finite excitation energy
gaps when the relevant symmetries are broken. On the other hand, one-dimensional gapless modes can
populate along interfaces that separate adjacent gapped surface domains with distinct symmetry-breaking
orders. A surface strip pattern in general reduces the low-energy SPT/SET surface degrees of freedom onto
a 2D array of gapless 1D channels. These channels can be coupled to one another by quasiparticle tunneling,
and these inter-wire interactions collectively provide an effective description of the surface state. In this
part, we study a general class of symmetry-preserving or breaking SPT/SET surface states that admit finite
excitation energy gaps and Abelian topological orders via the coupled wire construction. In particular, we
focus on the prototype Abelian surface topological orders that fall under the ADFE classification of simply-
laced Lie algebras. We also elaborate on the emergent symmetry and duality properties of the coupled wire
models.

The third part is to discuss the relation between the conformal boundary state and (241)d SPT phases.
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We propose a diagnostic tool for detecting nontrivial symmetry-protected topological (SPT) phases protected
by a symmetry group G in 2 4+ 1 dimensions. Our method is based on directly studying the 1 + 1-dimensional
anomalous edge conformal field theory (CFT) of SPT phases. We claim that if the CFT is the edge theory
of an SPT phase, then there must be an obstruction to cutting it open. This obstruction manifests as
the non-existence of boundary states in the CFT that preserves both the conformal symmetry and the
global symmetry G. We discuss the relation between edgeability and gappability in the presence of G. We
study several examples including time-reversal symmetric topological insulators, Zy symmetric bosonic SPT

phases, and Zs x Z, symmetric topological superconductors.
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“When nothing seems to help, I go and look at a stonecutter hammering away at his rock perhaps a
hundred times without as much as a crack showing in it. Yet at the hundred and first blow it will split in

two, and I know it was not that blow that did it, but all that had gone before.”

— Jacob Riis



Chapter 1

Introduction

Since the discovery of topological insulators (TIs) and superconductors (TSCs) over the past decade [5, 6],
topological phases of matter have drawn the attention of both condensed matter and high energy physicists.
They are attractive not only because they present exotic properties in theory, but also because some of these
phenomena can be verified in materials. They introduce new frontiers in previously well-studied physical
concepts, such as quantum phase transitions in condensed matter physics and quantum anomalies in high
energy physics.

Topological phases are quantum phases that do not adiabatically connect to trivial ones. The ground
states of these phases are quantum mechanically entangled to an extent that any deformation path connecting
a topological state and a trivial state must go through a quantum phase transition where the bulk excitation
energy gap closes. For example, a topological insulating phase must be separated from a normal insulating
phase by a gapless Dirac/Weyl (semi)metallic phase or critical point [7]. This is intimately related to the
fact that, generically in three dimensional real space, a topological material and a normal one are distinctly
separated by an anomalous two dimensional surface. For example, the gapless Dirac surface state provides a
definitive measurable signature of a topological insulator [8]. Some topological phases require the presence
of symmetries. For example, topological insulators rely on time reversal symmetry, which protects the
Kramers degeneracy of the surface Dirac point, and charge conservation, which disallows pairing. In general,
symmetries provide a finer classification of topological phases by forbidding deformation paths that violate
them. These phases are referred to as symmetry-protected or symmetry-enriched topological (SPT/SET)
phases depending on whether the 3D bulk material supports integral or fractional quasiparticle excitations.
On the other hand, conformal field theories (CFTs) have wide applications in different fields, ranging from

mathematical physics [9, 10], high energy physics [11], to condensed matter physics.



Before we discuss specific topics, I would like to introduce some background information about the

development of topological systems.

Quantum Hall systems

Quantum Hall systems provide one of the biggest platforms for topological phases of matter. Since the
discoveries more than 30 years ago of the integer quantum Hall effect (IQHE) [12] and fractional quantum
Hall effect (FQHE) [13] in experiments, substantial theoretical and experimental work has appeared. There
are many excellent references on QHE, to list a few, Ref. [14, 15, 16]. Fig. 1.1,1.2 below show some of the

characteristic experimental results of QHE.
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Figure 1.1: Adopted from Ref. [1]. Some experimental setup and data for IQHE.
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There are some characteristic properties for QHE. For instance, the IQHE regime exhibits:

integral filling factors;

disorder, no interactions;

finite energy gap for excitations;

local excitations in the bulk and local gapless edge modes.

Fig. 1.3 shows some characteristics of IQHE.
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Figure 1.3: Adopted from Ref. [3]. (a) Landau levels with the finite size effect. The intersections between
the Fermi energies and the Landau levels represent the chiral modes on the boundary. (b) Classical picture
of the cyclotron motion of electrons in the bulk and on the edge. Iy is the magnetic length. (Illustration:
Alan Stonebraker /stonebrakerdesignworks.com).

Correspondingly, the FQHE regime exhibits:

fractional rational filling factors;

disorder and interactions;

finite energy gap for excitations;
e anyonic excitations in the bulk and anyonic gapless edge modes.

Ref. [17] has a nice effective field theory description of QHE, in terms of K-matirx formalism and chiral
Luttinger liquids.

In this dissertation, we will introduce some new quantum Hall systems that are combinations of IQHE
and FQHE in the sense that they have properties from both IQHE and FQHE. For instance, these new states
have integer filling factors but they are intrinsically strongly interacting. Detailed constructions and analysis

will be presented in Chapter 2 with coupled wire models, which is introduced in the following subsection.



Coupled wire construction

The coupled wire construction was first introduced in Ref. [18] to study the Abelian fractional quantum Hall
effect (FQHE). The basic idea is to start from arrays of 1D quantum wires aligned parallel on the 2D plane,
which is shown in Fig. 1.4 below. The magnetic field is turned on perpendicular to the plane. Then each wire
is described by a Luttinger liquid Hamiltonian and the interwire gapping interactions are turned on. The
result of this setup is that there is a gapped 2D bulk and 1D gapless modes on the boundary wires, which
describe precisely the same topological properties of the corresponding FQHE, including the edge states and
bulk quasiparticle excitations. The coupled wire construction was later generalized to non-Abelian FQHE
in Ref. [4] and other (241)D systems, such as dualities [19, 20], surface topological orders [21, 22, 23] and

(341)D systems like Dirac semimetals [24].
(@) 1z
| ayava
(b) i j+1
E

L R L R
kej ke, Kejer KEjt

Figure 1.4: Adopted from Ref. [4]. (a) 1D array of quantum wires placed on the 2D plane. The magnetic
field is perpendicular to the plane. (b) The interwire and intrawire scattering processes at some fractional
filling factor.

The benefit of the coupled wire construction is that it has the desirable property that the Hamiltonian of
the system can be written down explicitly with the microscopic degrees of freedom of the system, compared
with the pure field theoretic analysis. We can construct the interactions and the excitations explicitly. Their
properties can be studied with conformal field theory (CFT), which is a powerful tool in discussing 2D
spacetime systems. The bulk-boundary correspondence is manifest in this concrete construction.

In this dissertation, in addition to the construction of novel quantum Hall systems, we will discuss
surface topological orders (STOs) of some topological systems with the coupled wire construction. These
STOs can be constructed from current algebras of ADFE classifications in Lie algebra language. Microscopic

Hamiltonians, ground states, quasiparticle excitations and duality properties will be detailed in Chapter 3.



Symmetries in topological systems

A symmetry is an important part of a topological system. One of the most famous examples is the time-
reversal invariant topological insulators in both 2D [25, 26] and 3D [27, 28, 29] systems. The nontrivial phase
is protected by both time-reversal and U(1) symmetries. If we break either of these symmetries explicitly or
spontaneously, the resulting phase can be adiabatically connected to a trivial phase. For fermion systems, at
the free fermion level, topological phases have been classified in different spacetime dimensions according to
Altland-Zirnbauer (AZ) ten-fold symmetry classes, based on time-reversal symmetry, particle-hole symmetry
and chiral symmetry, in physics language. [30, 31, 32] After that some more symmetries are added into the
classification scheme. More details can be found in Ref. [33]. However, when interactions are taken into
account, the classification would collapse for some cases. [34, 35] The reduction of the classification in the
presence of interactions was conjectured correctly to be related with global anomalies in Ref. [36] and studied
systematically in Ref. [37]. During the same period of time, a new concept was born, namely, “symmetry
protected topological phases” or “SPT phases” in short, which is more relevant to this dissertation. SPT
phases have been discussed for both bosonic and fermionic systems. There are some characteristic properties

for SPT phases, for instance, in d spatial dimensions,
e the system has a finite energy gap for all excitations in the bulk;

e the system is invariant under some symmetry group G that is neither explicitly nor spontaneously

broken;
e there is a unique ground state on all closed d-manifolds for a particular topological phase;

e Two inequivalent phases cannot be adiabatically connected without breaking the symmetry G or closing

the energy gap;
e if there is a nonempty boundary, the boundary theory cannot be a trivial gapped theory.

Here a trivial state means a product state or an atomic insulator. SPT phases were first discussed for
1D Haldane spin chains in Ref. [38]. Then they were generalized to different dimensions and classified by
different schemes, like group cohomology [39], cobordism group [40], K-matrix formalism [41], to list a few.
The study of SPT phases deepens our understanding between condensed matter physics and high energy
physics, especially the relation between quantum phases and quantum anomalies.

In this dissertation, we analyze and classify SPT phases in (2+1)D systems from the perspective of the
boundary conformal field theory (BCFT). The basic idea is to start from the (14+1)D CFT with a well-defined

boundary state. Then we will check the consistency between the global symmetry and the Cardy condition,
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which is a consistency requirement for BCFT. Then we use the bulk-boundary correspondence to diagnose

and classify the (2+1)D SPT phases. Details will be presented in Chapter 4.

To summarize the Introduction, we discuss some applications of CFTs on topological phases of matter.
The structure of the dissertation is as follows. Chapter 2 introduces the coupled wire construction of some
novel quantum Hall systems and their interesting properties. Chapter 3 continues the coupled wire model
on the surface of (3+1)D topological systems and studies their surface topological orders (STOs). Chapter 4
discusses the detection and classification of SPT phases with boundary conformal field theories (BCFTs). We
conclude the dissertation and discuss some of the future work in Chapter 5. Some details of the calculations

and background knowledge are relegated in Appendix A and B.



Chapter 2

Coupled wire construction of Quantum Hall

systems

This chapter is largely based on Ref. [42]. Ordinarily, the indistinguishability of quantum particles is em-
bodied by either bosonic or fermionic statistics. In two dimensions, however, the complexity of quantum
many-body interference phenomena is brought to a new level of depth as anyon statistics becomes a possi-
bility [43, 44, 45]. The magnetic-quenched kinetic energy of the lowest Landau level in a (2+1)D electron
gas makes fractional quantum Hall fluids the paradigmatic anyonic system [14]. The remaining Coulomb
interactions establish long-range entanglement in these phases, where topological order develops with gapless
charge and energy transporting edge-modes and whose bulk excitations display anyonic behavior.

While a sensitive competition among phases is ubiquitous in fractional quantum Hall systems, less diver-
sity is discussed at integral quantum Hall (IQH) plateaus, prompting the question: can interactions drive
topological phase transitions in Hall fluids at integral magnetic filling fractions? Here we answer this query
in the affirmative, providing explicit examples based on exactly solvable coupled-wire constructions [18] and
showing that such transitions are traceable by changes in the Wiedemann-Franz law [46].

To direct our construction towards a noteworthy scenario, we take the point of view that while all anyons
are remarkable, not all anyons are equally remarkable. The class of non-Abelian anyons is characterized
by a degenerate Hilbert space which can be navigated by adiabatic particle exchanges. These (braiding)
operations offer a promising approach to encode and manipulate gates for quantum information. With
such goal in mind, one of the most distinguished is the 7 anyon of Fibonacci topological order [45, 47],
obeying the fusion rule 7 x 7 = I+ 7 and offering a venue for universal (braiding-based) topological quantum

computing. Previous attempts at building models for Fibonacci topological order included the v = 12/5



fractional quantum Hall phase of Read and Rezayi [48], a trench construction between v = 2/3 fractional
quantum Hall and superconducting states [49], and a recent interacting Majorana model based on a tricritical
Ising coset construction [50]. Contrasting with these previous proposals, we set here to build a model for
Fibonacci order in homogeneous systems (no heterostructures), in terms of regular complex fermions and,
most importantly, at integral magnetic filling fractions.

Fibonacci topological order can be found in Wess-Zumino-Witten (WZW) conformal field theories (CFTs)
based on the Lie groups G2 and Fj at level 1 [51, 49] (c.f. Appendix A). Remarkably, an embedding exists
from (G2)1 x (Fy)1 into a larger (Eg); WZW CFT [52]. The Es group corresponds to the largest exceptional
Lie algebra [53] and is the starting point of our discussion. Due to its internal algebraic structure !, (Eg);
only corresponds to trivial topological order, not supporting fractional excitations, similar to IQH plateaus.
This suggests the existence of an incompressible fluid, here constructed and dubbed the Fs quantum Hall
state, that competes with some IQH phase. Indeed, the Eg quantum Hall state is found to develop at filling
fraction v = 16, and its (Eg); edge CFT displays a chiral central charge cg, = 8 [54, 55, 11] with even-charged
bosonic edge modes. It is set apart from the standard v = 16 IQH liquid with ¢ = 16 and fermionic edge
modes. Finally, explicitly building the mentioned conformal embedding, we partition the Eg state into two
new Go and Fy quantum Hall states with chiral central charges c¢g, = 14/5 and ¢y, = 26/5. These display
topological order while remaining at integer filling fraction v = 8, with even charged edge modes. We end
up by showing that these two Fibonacci phases are related by an unconventional particle-hole conjugation

based on an unifying description coming from the Lie group FEg.

2.1 Novel quantum Hall state

2.1.1 Eg quantum Hall state

We begin with an array of electron wire bundles (Fig. 2.1 black lines) with vertical positions y = dy, d being
their displacement and y an integer label. Each bundle contains N wires carrying, at the Fermi level, left

(L) and right (R) moving fermions whose annihilation operators admit a bosonized representation
cga (x) ~ exp [z (<I>Za (x)+ kgax)] , (2.1)

forming a U(N); WZW theory. Here, a = 1,..., N indexes the wires, x is the coordinate along them,

o = R, L = +, — is the propagation direction and kj, is the Fermi momentum of each channel. The bosonic

Inamely, the minimal even unimodularity of its root lattice



—>»—— 11 x Dirac electrons =U(11),
—)»—— Fx atlevel |
—»—— 3 x Dirac fermions = U(3),

Figure 2.1: Coupled-wire model of the Fg quantum Hall state at filling v = 16. Black lines represent
bundles with 11 electron wires, each carrying a counter-propagating pair of Dirac fermions, in the presence
of a magnetic flux (green). Yellow boxes represent an unimodular basis transformation U (det(U) = 1)
restructuring U(11); — U(3)1 x (Es)1. The recombined fermionic U(3); triplets and the bosonic (Fg); are
coupled through intra-bundle and inter-bundle backscatteings Hintra and Hinter defined in (2.9) and (2.10).
The 2D bulk is fully gapped leaving just the chiral (Eg); modes at the edges.

variables obey the commutation relations
[aX@ga (%), BT ()] = 2780677 S By 6 (x — X)) (2.2)

To couple the fermions of different bundles and introduce a finite excitation energy gap, while leaving
behind gapless chiral (Eg); edges, two ingredients are necessary: (i) a basis transformation that extracts the
(Fg)1 degrees of freedom from U(N); (Fig. 2.1 yellow boxes) and (ii) backscattering interactions between L-
and R-movers of different bundles to gap out all low energy channels throughout the bulk (Fig. 2.1 dashed
arcs).

Regarding ingredient (i), it suffices to generate the eight simple roots basis of the Eg root lattice. These

assume, under bosonization, the general ansatz [54]

[Ep)0q, ~exp [i (87, (x) +kgx)], I =1,...8. (2.3)



Here iy is a simple root vector of Eg so that
[axég, (x), 871 (<) | = 2mio67 K56, 8(x —X'), (2.4)

and K IEIS, = oy - ap is the Cartan matrix of Eg. The challenge here is to represent the Eg roots as products
of electron operators, so that their bosonized variables are related to the electronic ones by an integer-valued
transformation ®7, = U7 ®7,. As a consistency condition from (3.5) and (2.4), " U7 U7 " = 0677 K17
From (2.1), the Es roots momenta and charges are related to the fermionic ones similarly: IEZ ;=077 ,kz‘j{;
and ¢7 = U7? /qg,, respectively. Such a basis transformation exists, but is not unique, and requires, in
particular, N > 8 wires. To fix a solution, we demand the extra modes to correspond to a trivial fermionic
sector. This way, one of the simplest constructions contains N = 11 wires, decomposing into a Fg and three
U(1) sectors 2. In practice, we write
Uttt uUt-

U= (2.5)
Ut U

as unimodular matrix, decomposing UnU”T = K7 @ I3 @ (—~K78) @ (~I3), where 7 = ¢6°°". For our

particular construction,

2In fact, a solution exists for N = 9 wires also, where the Eg quantum Hall phase develops at filling fraction v = 32, higher
than our present solution. Also, the Dynkin labels 4, 5, 6 and 8 in this construction are neutral, leaving an SO(8) subsector
with trivial x-momenta. A main consequence is that the embedding of G2 currents also carry trivial momenta, and Fibonacci
phases can never be stabilized.
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) =UTUT) = (2.6)

-1 -1 -1 -1
1 1
-1 1
-1 1
-1 -1
1 1
-1 1
-1 1 1 1 1 -1
1 1 1
3 -5|—-2 -1 -2 2 2 2 =2 2 2
2 1 -1 -1 -1 1 -1 -1 -1 3
where the rows and columns of U are respectively labeled by I,a =1,...,11. Rows I = 1 to 8 associate

to the simple roots of Eg, whose charge assignment is (§r=1,..s) = (—4,2,0,0,—-2,2,0,2). Rows 9 to 11
correspond to recombined (spin |h| = 1/2) Dirac fermions f;,, ~ exp iU}’géJrn’a((I)Z; + k;g(;x) ,forn=1,2,3,
that generate U(3)1. They are also integral products of the original electrons and carry odd electric charges
(Gn=1,..3) = (3,1,1).

Returning now to ingredient (ii), electron backscattering interactions generally require momentum com-
mensurability to stabilize oscillatory factors [56]. To tune these phases, and break time-reversal as necessary
in a quantum Hall fluid, we introduce a magnetic field perpendicular to the system (Fig. 2.1 green crosses).

The Fermi momenta of the electron channels become spatially dependent as

., B
kya = ﬁy + O—kF,a» (27)
according to the Lorenz gauge A, = —By and where kg, are the bare Fermi momenta in the absence of

field. The associated magnetic filling fraction can be expressed as

1
5= 0 2kFa he
= = g 2 2.
Y Bd/¢o eBd < WP (28)

where ¢g = hc/e is the magnetic flux quantum.
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At this point we introduce the wire-coupling interactions

3

T
Hg{tfra = Uintra, Z f:fn yLn + h.C., (29)
n=1
: T
+1/2,E R L
iynter/ f= Uinter Z [EES}y,aI [EEs]y-i-l,a] + H.c. (210)
I=1

From (2.3), and the corresponding bosonization of f7,, (2.9) and (2.10) carry the expected momentum-
dependent oscillating factors e’* which average out in the thermodynamic limit. Demanding the vanishing
of these oscillations, i.e. requiring the backscattering interactions to conserve momentum, fixes a unique
choice of ratios between the bare kp,. Most remarkably, this identically fixes v = 16 (c.f.Appendix A).

Under the conditions above, and in a periodic geometry with N; bundles, the intra- and inter-bundle
backscattering Hamiltonians introduce 11 x IN; independent sine-Gordon terms satisfying the Haldane’s nul-
lity condition [57]. At strong coupling, the coupled-wire model therefore possesses a finite energy excitation
gap.

The Eg quantum Hall phase carries distinctive phenomenology. Opening the periodic boundary condi-
tions leaves behind, at low energies, eight chiral Fg boundary modes along the top and bottom edges, as
illustrated in Fig. 2.1. As consequence of the discrepancy between the magnetic filling factor and the number
of Es edge modes, we predict an unconventional Wiedemann-Franz law [46] for the Eg quantum Hall phase.
A general set of gapless edge modes, as in regular IQH states, carries the differential thermal and electric
conductances (or, equivalently, Hall conductances) [58, 59, 60, 61, 62]

2k e?

T omy = v (2.11)

Kgy = C

where e is the electric charge, h is Planck’s constant, kg is Boltzmann constant, ¢ is the chiral central charge
and T is the temperature. For a standard IQH state, ¢ = v identic to the number of chiral Dirac electron
edge channels. A deviation away from ¢/v = 1 indicates the onset of a strongly-correlated many-body
phase. Here, the Es quantum Hall phase carries 8 chiral edge bosons and therefore cg, = 8, while v = 16 is
necessary to stabilize the phase. This leads to a modified Wiedemann-Franz law, where cg, /v = 1/2.

We note in passing that the Eg state is topologically related to a thin slab of a 3D eym; topological
paramagnet with time-reversal symmetry-breaking top and bottom surfaces [63, 64]. Like a topological
insulator, hosting a 1D chiral Dirac channel with (¢,v) = £(1,1) along a magnetic surface domain wall, the
eym; topological paramagnet supports a neutral chiral Eg interface with (c,v) = £(8,0) between adjacent

time-reversal breaking surface domains with opposite magnetic orientations [6, 5, 65, 33]. Comparing (c,v) =
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Figure 2.2: The coupled wire model (2.13) for the F; Fibonacci quantum Hall state at filling v = 8.

(8,16) = (16,16) — (8,0), the charged edge modes of the Fs quantum Hall state are therefore equivalent
to the neutral Eg topological paramagnet surface interface up to 16 chiral Dirac channels, which exists on
the edge of the conventional v = 16 IQH state. In fact, the matrices K and I ;5 @ (—K®) are related
by a charge preserving stable equivalence [66]. Finally, the unimodularity of the Eg lattice entails that all
primary fields of the edge Es CFT are integral products of the simple roots (2.3), which are even products
of electron operators. Hence, ignoring any edge reconstruction, the edge modes of the Fg state support only

evenly charged bosonic gapless excitations.

2.1.2 (G5 and F, Fibonacci quantum Hall states

The Eg state constructed above serves as a stepping stone for building a coupled wires model of phases
carrying (G2); or (Fy); WZW CFTs at the edges. These correspond to phases with Fibonacci topological
order. To build these models, we proceed with a conformal embedding of G5 x F} into Eg, guaranteed by the
relationship among central charges cg, = 8 = 14/5 4+ 26/5 = cq, + cp, [54, 52]. The conformal embedding
is carried out by an explicit choice of the generators of Iy and G2, denoted by [EF,]] ., and [Eg,]] o, where
a are vectors in the Fy or G2 root lattices Ag, or Ag,, respectively. This embedding is also not unique, and
is chosen by a particular decomposition SO(7) x SO(9) C SO(16) C Ejg that relies on refermionizing the Eg
generators into bilinear products of 8 non-local Dirac fermions. Subsequently, a specific choice is made to
embed G2 into SO(7) and extend SO(9) into Fy. This construction is presented in detail in Appendix A. The
found operators are linear combinations of the Fg generators, which are even products of electron operators,
and therefore carry even electric charge and spin 1.

Similar to the Fg state, the coupled wire models for the Fy and the G2 quantum Hall phases are based

on an array of 11-wire bundles. Fig. 2.2 shows the schematics of the backscattering terms in the F; quantum
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Hall Hamiltonian. The G2 state can be described using a similar diagram by switching the roles of Gs
and Fy. The models are written with the intra-bundle backscattering (2.9), which leaves behind a counter-
propagating pair of Fg modes per bundle. The G = F; or G5 currents are then dimerized within or between

bundles according to

R T L
i = Uimtra Y [Egly o [Egly o+ hec.

acAg

y+1/2,G
7-[ijnter/ = Uinter Z [Eg]y o7 [Eg]y+1 a + h.c.

aclAg

(2.12)

The F, and G5 quantum Hall states consist, respectively, of the ground states of the following models,

N N —1
HIF] =3 (Ml +HUE) + Z Hial ™, (2.13)
y*l
Nl 1
H(Gs) = Z (Ml + 1B + 3 M0 (2.14)
y=1 y=1

The momentum-conservation conditions have to be reimplemented to the many-body interactions in ei-
ther (2.13) or (2.14). Each phase is stabilized by its own distribution of electronic momenta &, (c.f.Appendix A),
but both have the same magnetic filling v = 8. At strong coupling, H[F,] (H[G2]) gives rise to a finite ex-
citation energy gap in the bulk, but leaves behind a gapless chiral Fy (Gy) WZW CFT at level 1 at the
boundary. As a consequence, the Wiedemann-Franz law is again unconventional in these phases, displaying
¢k, /v =13/20 and cg, /v = 7/20.

According to the bulk-boundary correspondence, the anyon content of the F; and G5 phases can be read
from their boundary theories. In addition to the vacuum 1, each edge carries a Fibonacci primary field
7 for (Fy); and 7 for (Gs);, with conformal scaling dimensions 3/5 and 2/5 respectively. Each consists
of a collection of operators, known as a super-selection sector, that corresponds to the 26 dimensional (7
dimensional) fundamental representation of Fy (G32) that rotates under the WZW algebra. Our construction
allows an explicit parafermionic representation of these fields (c.f. Appendix A). Here, we notice that since the
current operators [Er,] are even combinations of electrons, the Fibonacci operators within a super-sector
differ from each other by pairs of electrons, and therefore correspond to the same anyon type. Moreover, they
all have even electric charge and therefore the gapless chiral edge CFT only supports even charge low-energy

excitations. An analogous analysis follows for the G2 case.
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2.2 Particle-hole conjugation

The G5 and Fy Fibonacci states at v = 8 half-fill the Fg quantum Hall state, which has v = 16. Re-
markably, they are related under a notion of particle-hole (PH) conjugation that is based on Eg bosons
instead of electrons. A similar generalization of PH symmetry has been proposed for parton quantum Hall
states [67]. The PH conjugation manifests in the edge CFT as the coset identities (G2)1 = (Es)1/(Fy)1
and (Fy); = (Es)1/(G2)1, which reflect the equality T, + Tr, = Tr, between energy-momentum tensors
(c.f. Appendix A). The coset Eg/G can be understood as the subtraction of the WZW sub-algebra G from
Eg. The coset identities are direct consequences of the conformal embedding (G2)1 x (Fy)1 C (Eg);.

The conventional PH symmetry of the half-filled Landau level has been studied in the coupled wire
context [19, 68, 20, 69]. Here, the Eg-based PH conjugation has a microscopic description as well. It is

represented by an anti-unitary operator C that relates the Fg bosonized variables between the two Fibonacci

states
COR 7t =L, — q;x/2
Y, Y, (2.15)
C@j’lcfl = @5717] —qrx/2
while leaving the recombined Dirac fermions unaltered, C ;’nC*I = fyn- Since the Eg root structure is uni-

modular the PH conjugation (2.15) is an integral action of the fundamental electrons, Cc;,C~! =[], (CJ/)mj,,
where mg, are integers, J, J' are the collections of indices y, a, o, and the product is finite and short-ranged so
that it only involves nearest neighboring bundles |[y—y’| < 1. The PH conjugation switches between intra- and
inter-bundle interactions of the G and Fy currents, exchanging the two Fibonacci phases CH[F4]C™! = H[G2]
and CH[G2]C~! = H[Fy]. Lastly, the coupled wire description artificially causes the PH conjugation to be
non-local. Similar to an antiferromagnetic symmerty, C? unitarily translates the Fg currents from y to y — 1.

We have some comments on the particle-hole conjugate. In general, when the chiral central charge
¢ € 8Z, there exist some “trivial” theories, like the Eg state that we construct. [70, 71] By “trivial”, it means
that the bulk is topologically trivial, without even fermionic excitations. Let’s call it “1”. Then if there
exists some CFT C “17, then we can obtain CFT = ﬁ by some particle-hole conjugation operation C.
Note that C is not unique. There can be different definitions of particle-hole conjugation. In this sense, the
particle-hole conjugate of a state is not unique unless the particle-hole operation is specified. It has been
discussed in high energy physics and mathematical physics, like string theories, monster groups, Niemeier
lattices [70, 71], although the term “particle-hole” conjugate is not used. To our understanding, they are

closely related.
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Chapter 3

Coupled wire models of surface topological or-

ders

This chapter is largely based on Ref. [72]. This chapter will not focus on the distinction between SPT and
SET, and its general results will be applicable to both situations.

The surface of an SPT/SET state can obtain a finite excitation energy gap by (a) breaking the relevant
symmetry, or (b) developing a surface topological order that supports fractional surface quasiparticle excita-
tions that are absent in the bulk. For example, the Dirac surface state of a topological insulator can acquire
a finite Dirac mass by breaking time reversal or a superconducting pairing gap by breaking charge conser-
vation. On the other hand, it can gain a many-body energy gap while preserving all symmetries. However,
the symmetric surface must carry topological order, such as the T-Pfaffian, that supports quasiparticle and
charge fractionalization [73, 74, 75, 76]. The main focus of this chapter is to develop an exactly solvable
model technique in describing a collection of prototype classes of Abelian SPT/SET surface states.

We will focus on three classes of surface states that corresponds to the ADFE classification of simply-laced
Lie algebra [54]. These simple affine Lie algebras at level 1 were explored as conformal field theories that
effectively describes the 1+ 1D boundary edge states of 2 + 1D Abelian topological phases [77, 78]. In this
chapter, we discover a relationship between the ADE classification and SPT/SET surface states. The A-class
corresponds to a series of charge U(1) conserving gapped surface states that live on the symmetry breaking
boundary surfaces of topological (crystalline) insulators [79] or fractional topological insulators [80]. The
D-class corresponds to a series of superconducting gapped surface states of topological superconductors [30,
32]. The E-class corresponds to three exceptional surface states of a topological paramagnet [63, 64].

For simplicity, we only consider Abelian surface topological orders, whose quasiparticle excitations can be
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fractional but cannot support non-local quantum information storage. The non-simply-laced simple Lie
algebras in the B,C| F,G series corresponds to non-Abelian surface topological orders, and will not be
addressed in this chapter.

We will explore these correspondences using the exactly solvable coupled-wire model technique on the
surface SPTs/SETs. In general, coupled wire models may have several advantages compared with the more
conventional pure field theoretic approaches. One can write down microscopic many-body interacting Hamil-
tonians explicitly in terms of local electronic degrees of freedom. In many situations, these Hamiltonians
can be theoretically designed in a way so that they are exactly solvable and do not require a mean-field
approximation. In addition, one can also perform explicit symmetry and duality transformations on the
local fields and study the topological properties of the ground states, quasiparticle excitations as well as
their braiding statistics.

Generalizing sliding Luttinger liquid theories [81, 82, 83, 84, 85], the coupled wire construction was first
developed in Ref. [18] to study the Laughlin [86] and Haldane-Halperin hierarchy [87, 88] fractional quantum
Hall (FQH) states. Later this construction was applied to non-Abelian FQH states [4, 89, 90, 91, 92], anyon
systems [77, 93, 23], spin liquids [94], studies on duality [19] and many other areas in two spatial dimensions.
Recently, the coupled wire construction has also been applied to study three spatial dimensional Abelian
and non-Abelian topological systems [95, 96, 97], Dirac (semi)metals [24], Weyl (semi)metals [98], Dirac
superconductors [99] and other strongly correlated fractional topological systems [100].

The application of the coupled-wire technique on the surface of an SPT/SET relies on an anisotropic
reduction of low-energy surface degrees of freedom onto a 2D array of parallel 1D wires. The simplest example
were demonstrated on the surface a topological insulator [101] with a magnetic surface stripe order with
alternating magnetic orientations (see figure 3.1). The Dirac surface state becomes massive in the interior of
each magnetic strip. This leaves behind chiral Dirac channels with alternating propagating directions that
live along the interfaces between strips where the magnetic order flips. A similar construction was also applied
to the surface of topological superconductors [21]. In this chapter, instead of deriving from the 3D bulk of
an SPT/SET, we begin with the assumption that an array of chiral channels — each described by certain
conformal field theory (CFT) related to one of the ADE affine Lie algebras at level 1 — can be generated
by similar alternating symmetry-breaking stripe order on the surface of an SPT/SET. This assumption
can be verified in the three prototype examples of topological (crystalline) insulators, superconductors and
paramagnets mentioned above. On the other hand, it may also be applicable to other more exotic types of

SPT/SET such as fractional topological insulators and superconductors.
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Figure 3.1: Coupled wire description of a topological surface state. (a) Emergence of surface channels
through alternating symmetry breaking. (b) Gapless surface state resulting from uniform competing inter-
channel backscattering Hp.. (c) Surface gapping through channel bipartition and non-competing inter-
channel dimerization Hgimer-

3.1 Summary of results

Figure 3.1 summarizes the coupled wire models that describes the surface ADE topological orders of
SPTs/SETs. The surface state of a generic SPT/SET gains a finite excitation energy gap in the inte-
rior of each symmetry-breaking strip. The remaining gapless degrees of freedom are localized along 1D
interfaces between adjacent strips with distinct symmetry-breaking orders. The low-energy degrees of free-
dom along each interface are effectively described by a conformal field theory (CFT), or more precisely, an
affine Kac-Moody current algebra (also known as an affine Lie algebra [54] or Wess-Zumino-Witten (WZW)
theory [55, 11]). In single-body mean-field topological band insulators and superconductors, the gapless
modes along these line interfaces, or line defects in general, were completely classified [102]. Such an inter-
face host a number of copies of chiral Dirac (or Majorana) fermions that propagate in a single-direction and
is described a U(N); (resp. SO(N)1) current algebra. However, our surface wire construction does not only
restrict to the non-interacting case. It also applies to general SPTs/SETs such as fractional topological insu-
lators, which lead to fractional surface Parton Dirac U(N);/Zy orbifold channels [103, 67], and topological
paramagnets, which lead to surface Eg channels [104].

In this chapter, we explore the possible surface interactions that lead to non-trivial Abelian surface topo-
logical orders regardless of whether the interactions preserve or break the relevant symmetries of the under-
lying SPT/SET. In other words, the surface topological orders are not necessarily anomalous and for some
cases, are realizable in non-holographic pure 2D systems. Instead, we are interested in surface states that fa-

cilitate non-trivial quasiparticle fractionalization through surface many-body interactions. The coupled wire
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construction provides an exact solvable description of such interactions. The oscillating symmetry-breaking
surface stripe order requires the propagating directions of the gapless interface channels to alternate. The
gapping interactions are theoretically constructed (see figure 3.1(c)) by first decomposing the current algebra

G along each interface channel into two decoupled fractional components

G~GaxGp, (3.1)

and subsequently backscattering the two current components to adjacent interfaces in opposite directions

H=u > I I 4ud 34 -4 (3.2)
y even y odd
The collection of backscattering interaction between fractional Kac-Moody currents is a 241D generalization
of the 1+ 1D AKLT spin chain [105, 106], and leads to fractional gapped quasiparticle excitations. We apply
the models to the A, D and E series, where the decomposition (3.1) is given by (3.105) for the A classes,
(3.72) for the D classes, and (3.141) for exceptional E classes.

In addition to the exactly solvable model, the coupled wire construction also provides an explicit de-
scription of symmetries and dualities. Although time reversal symmetry is necessarily broken by each chiral
channel, the array of channels with alternating propagating directions collectively recovers an emergent anti-
ferromagnetic time reversal (AFTR) symmetry, which accompanies local time reversal with a half-translation
y — y + 1. We will elaborate on how the AFTR symmetry is preserved in the D class and how it is bro-
ken in the A and E classes. On the other hand, duality is also a central theme in theoretical physics.
It is a powerful technique that relates distinct theories with no a priori common origins. For example,
the order and disorder (i.e. low and high temperature) phases of the 2D classical Ising model are related
by the Kramers-Wannier duality. [107] Duality provides a field theoretical mapping between weakly and
strongly interacting phases. Recently, there has been some work on non-supersymmetric dualities at the
field theoretical level [108, 109, 110, 111]and the concept of duality has also been established in a coupled
wire description of composite Dirac fermions [19]. In this chapter, we perform similar constructions to the
gapped surface ADFE topological orders. Although it is mentioned in Introduction, Table 3.1 summarizes the
3d bulk SPT/SET phases corresponding to the ADE classifications of surface topological orders discussed
in this chapter. For a coupled wire construction of these 3d bulk systems, we will discuss it elsewhere.

The outline of this chapter is as follows. In Sec. 3.2, we explicitly demonstrate the coupled wire construc-
tion in two simple and specific examples, and elaborate on the central themes that can be systematically

carried over to the general scenarios. Sec. 3.3 briefly reviews the coupled wire derivation of the duality

19



Classification | 3d bulk SPT/SET | Section in this chapter
Class A TCI, FTI Sec. 3.5
Class D TSC Sec. 3.4
Class E TP, Es QH [42] Sec.3.6

Table 3.1: 3d bulk SPT/SET topological phases corresponding to the surface topological orders of ADE
classifications discussed in this chapter. TCI=topological crystalline insulator, FTI=fractional topological
insulator, TSC= topological superconductor, TP=topological paramagnet [63, 64], QH = quantum Hall.

between free Dirac fermion and QEDj3 proposed in Ref. [19]. Sec. 3.4 reviews the coupled wire models for
surface Majorana fermions discussed in Ref. [21] and discuss their duality properties. Next, we introduce
the topological orders and duality properties of the A and E classes systematically in Sec. 3.5 and 3.6 re-
spectively. Appendix B.1 is a brief review of the Haldane’s nullity gapping condition [112] for bosonized
sine-Gordon models. Appendix B.2 contains the relevant background information of the ADEF classifications

and their representations.

3.2 General coupled wire construction of surface gapping
interactions

The coupled wire construction provided exactly solvable many-body interacting models of surface states of
symmetry protected topological (SPT) phases. Examples include the T-Pfaffian surface state of a topological
insulator [101], and the SO(3)s-like surface state of a topological superconductor [21]. These surface states
preserve the relevant symmetries of the SPT phase. The T-Pfaffian surface state [74, 73, 75, 76] preserve time-
reversal and charge conservation, while the SO(3)3-like superconducting surface preserve time-reversal [113].
They arise as a consequence of strong many-body interaction beyond the single-body mean field description.
The massless Dirac (Majorana) fermion on the surface of a topological insulator (resp. superconductor)
cannot acquire a single-body mass term without breaking the relevant symmetries. In general, the surface
state of a SPT phase can only develop a finite excitation energy gap while preserving symmetries by many-
body interactions that introduce additional surface topological order. This allows fractional quasiparticle
surface excitations to emerge that carry fractional properties, such as electric charge and exchange statistics.
For example, the T-Pfaffian surface state supports excitations with fractionally quantized electric charge in
units of e/4.

The coupled wire description of topological surface states is based on an anisotropic surface arrangement
where the relevant symmetries emerge in the long wavelength low energy limit. The surface of a topological

insulator (superconductor) can be mimicked by an array of 1D chiral Dirac (resp. Majorana) channels with

20



alternating propagating directions (see figure 3.1). Electronic quasiparticles propagate continuously along
each channel and tunnel discretely from one wire to the next. The inter-channel tunneling amplitude is
suppressed by an energy barrier, which comes from symmetry breaking interactions that remove or integrate
out low-energy electronic degrees of freedom in the surface strips between channels. For example, the
symmetry breaking interactions are given by the Dirac (Majorana) mass on the surface of a topological
insulator (resp. superconductor). The symmetry breaking interactions correspond to order parameters, such
as magnetization or pairing phase. These symmetry breaking order parameters alternate from strips to strips
(see figure 3.1(a)). For example, the surface magnetization flips between adjacent strips. Consequently, the
1D interface, where the Dirac mass changes sign, bounds the chiral Dirac mode in low-energy. Similarly, the
pairing phase conjugates from one strip to the next, and therefore the interface between adjacent surface
strips hosts the chiral Majorana mode. Symmetry is restored in an “antiferromagnetic” manner because the
order parameters are conjugated by the symmetry between neighboring strips and the propagating directions
are reversed by the symmetry between neighboring channels.

The coupled wire Hamiltonian consists of the kinetic energy of each chiral channel H% and backscattering
coupling potentials ’Hg:l/ % between neighboring channels, where each channel is labeled by an integer y that
represents its vertical position in the array (see figure 3.1(b) and (c)). The antiferromagnetic symmetry
requires the inter-channel backscatterings to have uniform strength. In other words, symmetry forbids inter-
channel dimerization, where counter-propagating channels are pairwise coupled. Under a dimerization where
the strength of ngl/ ? alternates between even and odd y, the surface state acquires a symmetry breaking
energy gap. Similar to the Su-Schrieffer-Heeger model [114], there are two topologically distinct gapped

yjl/ % s stronger for even y and channels are paired between y = 2n and 2n + 1, and

phases — one where H;

the other where ngl/ % is stronger for odd y and channels are paired between y = 2n — 1 and 2n. The

critical point that separates these two phases has uniform ’ngl/ 2

(see figure 3.1(b)). It preserves the relevant
symmetry and has vanishing energy gap. For example, the array of chiral Dirac (Majorana) channels under
uniform inter-channel coupling recovers the massless Dirac (resp. Majorana) fermions on the surface of a
topological insulator (resp. superconductor).

The uniform backscattering model that preserves the antiferromagnetic symmetry is gapless because
adjacent backscattering terms compete. Moreover, the antiferromagnetic symmetry forbids any channel
dimerization. On the other hand, if each channel can be fractionalized and bipartitioned into two decoupled
components, then they can be backscattered and dimerized in opposite directions (see figure 3.1(c)). This is

a higher dimensional analogue of the Haldane integral spin chain [115, 116] and the AKLT spin chain [105,

106], where the integral spin on each site is fractionalized into a pair of half-integral spins and they are
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independently dimerized with neighboring ones. The backscattering of these fractional degrees of freedom

are now non-competing because they act on orthogonal Hilbert spaces. Moreover, the antiferromagnetic

y+1/2

dimeris uniform. The channel fractionalization is

symmetry is preserved if the dimerization strength H

y+1/2

dimes » Which are combination of products of

stabilized by the many-body inter-channel backscattering H
local electronic operators.

In this chapter, we consider a variety of SPT phases, whose surface state can be mapped into an array of
integral electronic channels. The SPT phase could be protected by certain combinations of global symmetries
such as time-reversal and local symmetries represented by a continuous group. Instead of elaborating on the
3D SPT phases, we target surface topological order and begin with the general assumption that the surface
array of chiral channels is supported by some unknown 3D SPT bulk. In particular, we focus on situations
where these channels can be bosonized. Before inter-channel coupling, each channel can be described in low-
energy by a conformal field theory (CFT), which falls under the ADE classification of affine Lie algebra [54]
at level one. The A-series consists of the Lie algebras A, = SU(r+1), where r is the rank of the algebra. The
D-series consists of D,. = SO(2r), and the E-series consists of the exceptional Eg, E7 and Fg. These algebras
form the fractional degrees of freedom under the bipartition of channels. Their general construction will be
discussed in upcoming sections. In this section, we present the main ideas in the coupled wire construction

by demonstrating the A3 = SU(4) and D3 = SO(6) case.

3.2.1 SO(6) and U(4) as illustrative examples

In this subsection, we take the SO(6) and U(4) surface models as examples to illustrate the coupled wire
construction. In particular, we demonstrate the inter-channel backscattering sine-Gordon interactions. The
ground state of each of these interactions exhibits an angle order parameter, which is the ground state
expectation value of the angle variable in the sine-Gordon potential. These angle order parameters can take
discrete values in a lattice, which will be referred to as the “Haldane’s dual lattice”. We also present the
fractional gapped excitations that corresponds to deconfined kinks of the sine-Gordon interactions. These
excitations can be created or destroyed by bosonized vertex operators, whose exponents lie also in the dual
lattice.

We begin with the SO(6); model. This model can be supported by the surface of a class DIII topological
superconductor [30, 32] with topological index N = 12. The surface carries 12 massless Majorana fermions,
which cannot be turned massive without breaking time reversal symmetry. The surface state can be mimicked
by a coupled wire model previously provided in Ref. [21]. An antiferromagnetic surface pair density wave —

where the surface is decorated by an array of parallel strips with alternating time-reversal breaking pairing
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phases ¢ = £7/2 — supports an array of chiral Majorana interfaces. Each is sandwiched between adjacent
strips with time-reversal conjugate Majorana mass, and carries 12 chiral Majorana 1/);, . ,1/@27 where y
labels the interface.

We group the Majorana fermions in two collections 1%4,2’ = 1/); and z/Jf = @[JSH, fori=1,...,6. Each

collection generates a SO(6) Wess-Zumino-Witten (WZW) algebra (also known as Kac-Moody or affine Lie

algebra) at level one. The algebra consists of current operators
C,jk _ :1Cj, 1 Ck
7T =7, (3.3)

for 1 <j<k<6and C = A B. We first pair Majorana fermions into Dirac fermions cg*j = (wg’zj_l +

Cj
Y

zwg 23) /+/2, for j = 1,2, 3, and bosonize each Dirac fermion c?j ~ €%y The bosonized variables follow

the action with Lagrangian density

3 3
1y o o
Lo=2. > % D 0G0 + Y Vi g 0n0y | (3.4)
Jj=1

y C=A,B J,3'=1

where Vj;/ is a non-universal velocity matrix. The alternating sign (—1)¥ signifies the alternating propagating

directions of the channels. The action dictates the equal-time commutation relation

60 (2), 0,657 (x')} = 27i6CC 533§, 6(x — o) (3.5)
or equivalently the time-ordered correlation function

qbg’j(z)(bf,/’j/(z') = —6CC 976, log(z — 2') + . .. (3.6)

up to non-singular terms and Klein factors, where z ~ 7 4 i(—1)¥z is the (anti)holomorphic complex space-
time parameter.
The current operators (3.3) can be expressed in terms of the bosonized variables. There are 3 Cartan

generators

Cij _ i9hCii ~ il Cd _ ;0C2j-1,,C2)
H,/7 =i0¢, eyl ey =iy Py (3.7)
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that form a maximal set of mutually commuting Hermitian operators. In addition, there are 12 roots
Ca _ SeN
Ey % = exp (ia;¢y7) (3.8)

which act as ladder operators on the root lattice. The root vectors a = (a1, g, v3) all have integral entries
aj = 0,%1 and length square |a|*> = 2 so that there are two and only two non-zero entries. Each vertex
operator Eg ' can be expressed as a complex quadratic combination of Majorana fermions (3.3). The Cartan
generators and roots therefore generate the complexified SO(6) WZW algebra for each channel y and sector

C = A, B. One can pick a set of three linearly independent simple roots

— al —— 0 1 1
Rsoey=|-—— a* ——|[=1]1 -1 o0 |- (3.9)
— a® —— 0 1 -1

All 12 roots can be expressed as integral linear combination of the simple ones. The choice of simple roots

recovers the Cartan matrix of SO(6) by the inner product
Ksow) = Rso) Réowy = | -1 2 —1]- (3.10)

The roots also generate and lie inside a face-centered cubic lattice FCC = spany{a',a? a3} in three
dimension. We refer to this as the root lattice.

Now we introduce the inter-channel backscattering sine-Gordon potential

u
§ § : A, B,—a
Hdimer = 75 Ey 0(E‘y—‘,-l
y

= —uz Zcos (a . 2@y+1/2) , (3.11)
Yy «

where 20,1/5 = (20 20 2®2+1/2) and 207 = ¢l — gbyBjrjl. In a periodic cylinder geometry

1 2
y+1/2° y+1/2° y+1/2

with L = 2l channels, there are 3L counter-propagating pairs of bosons and there are also 3L linearly

independent sine-Gordon angle variables o - 20,,;/5. The angle variable satisfy the “Haldane nullity”
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gapping condition [112]

[ 20,1 1/2(z), 0 20, 11/2(z")] = 0. (3.12)

There are actually 12L sine-Gordon terms because there are 12 roots in SO(6). However, only 3L of them
are linearly independent, but the redundant sine-Gordon terms do not compete. Collectively, they pin the

angle variables

a-(20,,),) € 217 (3.13)

in the ground state, for all root vectors a. Since the roots generate a FCC lattice, eq.(3.13) requires the
ground state expectation values of the angle variables <2®y+1 /2> to lie in the body-centered cubic (BCC)

reciprocal lattice

Lo={20:a 20 c 277}

(3.14)
= 27BCC = spany {278,278, 2783},
— B, — /2 1/2 1/2
Réoy=|—— By — | =1 0o 0o [ (3.15)
— By —— 1/2 1/2 —1/2

Here, B; = teryxa’ x o/ [al - (a? x a?®)] are the simple dual roots so that a’ - 8; = ¢]. In Lie algebra
language, B; are called fundamental weights. In the following discussion, we use the terms “simple dual
roots”, “primitive reciprocal vectors” and “fundamental weights” interchangeably. We refer to the lattice
Lo of simultaneous minima of the sine-Gordon potentials as the “Haldane’s dual lattice”. In Lie algebra
language, spany {8, By, B3} are called weight lattice. To comply with physics community, we use “Haldane’s
dual lattice” in the following discussions.

The inter-channel backscattering interactions (3.11) therefore freeze the angle-variables and introduce an
finite excitation energy gap. Deconfined excitations are of the form of kinks where the expectation value

<2®y+1 /2 (x)> jumps discontinuously along = from one lattice value to another. They can be represented

using fractional vertex operators
V.2 () = exp [i7; 65 (wo)] (3.16)

that corresponds to a primary field of SO(6);, where v = (y1,72,73) can take non-integral entries. For
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example, the vertex operator VyA"V(xo) creates a kink for (20,1 /2(x)) at z¢ because

VA'Y(xO) 20, e’ +1/2( )VA"Y(xO)

= 20,07, 5 () + i [ (20),20,07 ., ()]
=20, @y+1/2( x) —2m(—1)¥7,0(zo — x) (3.17)

from the equal-time commutation relation (3.5). Integrating the above equation x near xg, we see the vertex
operator creates a discontinuity for <2(~)y+1/2(a:)>, where it jumps by —27~y from x < zg to © > xy. The
excitation is deconfined if the angle-variable on both sides of xy minimizes all the sine-Gordon potentials in
(3.11). Otherwise, it will cost a linearly diverging energy to pull apart from its anti-partner. This restricts
the jump of height of the kink 27 to also live in the Haldane’s dual lattice Lg. In other words, deconfined
excitations are represented by vertex operators Vyc"V (3.16) where « lives in the BCC lattice (3.14). Similarly,

we have
V.2 (20)120,0]_ (@) V,P7 () = 20,07 _, () + 2 (=1)¥y; (w0 — ). (3.18)

It shows that if -« is one of the reciprocal vectors in the BCC lattice (3.14), then Vnyv creates a deconfined
quasiparticle excitation in the form of a kink of the sine-Gordon angle order parameter <2®y_1 /2(9:)>.

It is crucial to recognize that in general the kink excitations may be fractional, in which case they must
come in kink and anti-kink pairs. The notion of “quasi-locality” is set by the 3D SPT/SET bulk, which may
already support long-range entangled topological order and carry non-trivial quasiparticle and quasi-string
excitations. We will address this issue soon after the description of SO(6) primary fields and Wilson strings
below. At the moment, we consider “quasi-local” surface vertex operators that consists of a product of
both the A and B sectors. We see that the combination VyA"Y (20)V,2 (20) creates a kink-antikink pair in
(20,11/2(x)) and (20,_; »(x)). The kink and anti-kink can be separated vertically by applying the string

of vertex operators
ny (x0) H V,,"Y (20)V.2 (20), (3.19)
//_y

on the ground state, where y' > y. This create a kink and anti-kink pair in (20,1 /2(x)) and (20, _1 »(z))
without creating extra kinks in between (see figure 3.2). This is because the effect of Vﬁ/’"’( 0) and V o (o)

cancel. Physically what happens is that a pair of kink-antikink excitations are created in each wire in between
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and consequently the quasiparticle is transported, which is explicitly shown in Eq. (3.17) and (3.18) In this
sense, these excitations are deconfined along the y direction. It should be noticed that the kink-anti-kink pair
can only be created by the operator string (3.19), which is constructed by the series of “quasi-local” operators
Vy‘?/"y(xo)Vﬁ"’(mo). They cannot be created by Vy‘é}’w (20)V,P (20) alone without a string in between because

of surface locality. We will address the surface “quasi-localilty” later.

The quasiparticle kinks can be moved in the x-direction by applying

i [© ~.0.,6C79 (2
py(,20) = ¢ oo 12218, (3.20)
which moves a quasiparticle excitation from xy to x on the same wire, without creating extra kinks in

between. Together with (3.19), they describe the two-dimensional local motion of the quasiparticle kinks.

r2

M - W W

Ay By A B
* p = V/,l(:I:O)VUN “(mo) = Wy Wy

Y Yy

Figure 3.2: A string of “quasi-local” operators (3.19) creates a pair of fractional surface excitations in the
form of a kink and anti-kink pair of the sine-Gordon order parameter (20,_1,5(x)).

These deconfined excitation operators form representations of the SO(6); affine Lie algebra. They obey

the operator product expansion with the current generators (3.7) and (3.8)

C,j c, _ My,
H 7 (2)Vy () = P @)+

C,a C, _ o C,ax
ES*(2)Vy Y (2) = (2= 2V 00 () + (3.21)

In particular, primary fields are vertex operators with bounded singularities o - v > —1. More precisely,
each primary field is represented by a super-selection sector of vertex operators {Vyc"yl,...,VyC"’T} that

transform under

" Ea a
O (o () = Elhyoat oy y (322)

z—2z"Y
where Ef¥ is the r-dimensional irreducible matrix representation of the root E* of SO(6). The current
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operators £ are therefore raising and lowering operators that rotate V¥ — V™ if a -+ = —1. The
singular factor 1/(z — 2’) reflects the unit scaling dimension of the current operators, and higher order
non-singular terms are non-universal.

The SO(6) affine Lie algebra at level 1 has four primary fields labeled by 1,%,s;,s—. They corre-
sponds to the trivial, vector, even and odd spinor representations of SO(6) respectively. We now show
their corresponding super-sectors of vertex operators. The primary field ¢ at wire y and sector C = A, B is
generated by {ej“"z’f’1 , etidy”? ) eii‘f’v?s}, which form the 6-dimensional vector representation of SO(6). These
vertex operators can also be decomposed into real and imaginary components ey’ = 1/15 25—t iwyc 27
where 1/)5’1, . ,wyc 6 are Majorana fermions with spin (i.e. conformal scaling dimension) hy = 1/2. The
even/odd twist primary fields s1 are generated by e ?/2 where e = (€1,€2,€3) and ¢; = £1. € is even
(odd) if e162e3 = 41 (resp. —1). The collection of even (odd) vertices form the even (resp. odd) spinor
representation of SO(6). These vertices operators have spin hs, = 3/8.

Using eq.(3.17), the vector primary field 7,/1;/4 at xg creates an 27 kink of the sine-Gordon angle variable

so that

(20, 41/2(z0 +0)) — (20,11 /2(20 — 9)) = —27(—1)"ey, (3.23)
where the expectation values are taken with respect to the excited state ety (@) |GS). On the other hand,

the spinor primary fields (si);/4 at xg creates a 7w kink where
(2011 /2(x0 +6)) — (20, 41/2(x0 — 9)) = —7(—1)"e. (3.24)

Since the “heights” of the kinks, which are given by the right hand side of the two equations above, belong
to the Haldane’s dual lattice Le (see eq.(3.14)), the primary fields correspond to deconfined excitations that
only cost a finite amount of energy to create and do not cost energy to move.

At this point, it is essential to address the surface “quasi-locality”’ and take into account the 3D bulk
SPT/SET state that supports the surface state. The 12 Majorana fermions 1;"!, ..., ;"¢ and 921, ... 45
associates a SO(12); WZW algebra along each wire y. The primary fields in the SO(12); CFT are quasi-
particle excitations that are supported by the 3D bulk, and should not be treated as fractional excitations
allowed by the surface gapping interactions. For the purpose of describing the surface topological order,
primary fields in SO(12); should be regarded as “quasi-local” in the sense that such an excitation can be
present without having a partner on the surface. This is because its partner can exist in the 3D bulk. On

the other hand, the surface backscattering potential (3.11) allows additional fractional excitations that must
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come in pairs on the boundary surface. These are quasiparticles that do not connect to any bulk excitations.
The SO(12); WZW algebra that associates to the “quasi-local” primary field excitations is generated by

the Cartan operators H;W, Hf’j defined in (3.7) as well as the the 60 roots
Ey =exp [i (Ao + AP o)) (3.25)

where the root vectors A = (A, A, A8, AP, AB, AF) have integral entries AY = 0,£1 and length square

IA|? = 2 so that there are two and only two non-zero entries. The simple roots can be chosen to be

— At 1 -1 0 0 0
— A - 0 1 -1 0 0
Rsoazy=1 : =+ +|=|+ + + . . (3.26)
S S 0 0 0 1 -1
— A 0 0 0 11

The “quasi-local” surface excitations that connect to the 3D bulk are represented by the vertex operator
Vyl(xo) = exp [i (lf¢;4’j(x0) + lqubyB’j(aco))] (3.27)
where the weight vectors 1 = (15,15, 15, 1P 1B 1P) satisfy
Alez (3.28)

for all SO(12) roots A. The weight vectors are integral combinations of the simple dual roots or fundamental

weights

- 13 —— 10000 O
11900 0
1 1
\/ . . .
Rgo(6) R 111100 |, (3.29)
2 2 2 2 2 2
1 1 1 1 1 1
o 16 o 2223232 2

which obey A -1; = 5§. The entries of a general weight vector 1 is either all integers or all half-integers.

Tt is useful to notice that there is a tensor product structure (referred to as conformal embedding or level
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rank duality in the CFT context [54])
SO(12); 2 S0(6)1 x SO(6)1 (3.30)

that splits the “quasi-local” SO(12); primary fields (3.27) into the fracrtional SO(6){' and SO(6)F compo-

nents
Vyl(xo) ~ exp (ilf¢£’j(xo)) exp (ilf¢yB’j (z0)) = VyA’lA VyB’lB. (3.31)

In particular, if v = (v1,72,73) lies inside the BCC Haldane dual lattice (3.14), then the combination
VyA"YVyB 7 i a SO(12); primary field and therefore represents a “quasi-local” excitation that connects to
the 3D bulk. This shows that the vertex operator string (3.19) composes of “quasi-local” excitations. For
example, in the class DIII topological superconductor case, a hc/2e flux vortex inside the bulk corresponds

to the vertex V7 for each layer y that interests flux vortex, where ¢ = (1/2,...,1/2). It associates to the

Y1

vertex operator string Hy:yo

V;; on the surface, and create a pair of 7-kink quasiparticle excitations (see
figure 3.3). Each vertex operator Vy; is “quasi-local” as it connects to the bulk, but the m-kink excitations
are fractional. They are supported by the surface backscattering interactions and can only exist on the

boundary surface.

he/2e flux

Figure 3.3: A hc/2e flux vortex in the topological superconducting bulk associates to a string of vertex
operators on the surface (represented by the blue stars) and create a pair of w-kink excitations (red dots).

Next, we illustrate the U(4); model. The array of wire is now supported on the surface of some three di-
mensional symmetry protected topological state (see figure 3.1(a)), and each wire hosts eight Dirac fermions.
The 3D SPT state can be a topological crystalline insulator [79] with mirror Chern number 8 that supports
8 massless surface Dirac cones. It can be a topological paramagnet [63, 64] that supports 8 neutral Dirac

fermion along a time reversal breaking domain wall. Alternatively, it can also be a fractional bosonic topo-
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logical insulator where a local boson is fractionalized into 8 parton Dirac fermions and the surface hosts
8 parton Dirac cones. In this chapter, we do not focus on the origin of the wire array, but instead we
concentrate on its symmetric gapping interactions.

A:

LA
Here, the 8 Dirac fermions of each wire is decomposed into two groups ¢j' = ¢; ~ e'?i and cf = C4aqj ~

ew?, for j = 1,2,3,4. Each sector is described by a U(4) Kac-Moody conformal field theory at level 1. The

bosonized variables follow the action with Lagrangian density

4 4
—1)¥ . ) ] ,
£0 = Z Z ( 27T) Zat¢57]8w¢57] + Z ‘/}j'aw¢57jaw¢g7] , (332)
j=1

y C=A,B j,'=1

where Vj;/ is a non-universal velocity matrix. We further decompose each sector C' = A, B into
U4); ~U(1)g x SU(4);1. (3.33)
U(1)4 represent the diagonal component and is generated by the bosonized variable
465, = o’ ¢ = ¢t + .. 651, (3.34)

where a = (1,1,1,1). Although in this chapter we do not focus on charge conservation, for the charge
preserving SPT states, the U(1)4 sector is solely responsible for electric charge transport. The SU(4) Kac-

Moody current algebra at level 1 is generated by the 3 Cartan generators
H = i0¢S7 — i0glIt! (3.35)
for 7 = 1,2, 3, and the 12 roots
Eg’a = exp (iajég’j) (3.36)

where the root vectors a = (a1, a2, a3, ) € Agy(s) has entries a; = 0, %1, length square |a|? = 2 and is
traceless oy + s + a3 + a4 = 0. The SU(4); represents electrically neutral degrees of freedom if the SPT
state preserves charge symmetry. It also completely decoupled from U(1),4 as all the roots e are orthogonal

to al.
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One can pick the simple roots of SU(4) to be

— o' — 1 -1 0 0
Rsyyy=|-—- o> ——|=]0 1 -1 0 |- (3.37)
— o 0 0 1 -1
This recovers the Cartan matrix of SU(4)
2 -1 0
Ksuw) = Rsuw Ry = | -1 2 -1, (3.38)
0o -1 2

which is identical to that of SO(6) (see eq.(3.10)). Consequently, as an affine Lie algebra or a Kac-Moody
algebra, SU(4) and SO(6) are equivalent. For instance, they have the identical dimension d = 15 and
rank r = 3. The root structures of the two are also isomorphic except the SO(6) roots are presented in
three dimensions whereas the SU(4) ones are presented in a 3D orthogonal complement of (1,1,1,1) in
four dimensions. The equivalence implies the SU(4) roots span a face-centered cubic root lattice FCC =
spany{al, a? a3}.

The inter-channel backscattering sine-Gordon potential (see also figure 3.1(a)) is

7'ldimer - HU(1)4 + HSU(4)1a (339)

HU(1)4 —u Z CcOS (4¢;}A’y - 4¢§y+1)
Yy

—chos (2@11#1/2 +...+ 2@§+1/2) ;
y
sU@)y, _ U A,a pB,—o
H ()1__52257; aEy+1
y o«

= 7“22(308 (0-20,41/2),
y o

j ; B s
where 20,1/, = (2@?1#1/2, 2@§+1/2, 2@2+1/2, 29;‘;+1/2) and QG;H/Q = ¢ — ¢, 7). Similar to the SO(6),
Hamiltonian (3.11), the backscattering term here also introduces a finite excitation energy gap. The angle
variables of the sine-Gordon Hamiltonian obey the Haldane nullity gapping condition (c.f. (3.12)). The

SU(4) current-current backscattering provides more than enough gapping terms, and linearly dependent

redundant terms are non-competing if w > 0. The ground state expectation values of the angle variables
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(2@, 1/2) belongs in the “Haldane’s dual lattice”
Lo={20:a-20,a" 20 € 217} (3.40)

so that the sine-Gordon energy (3.39) is minimized. The dual lattice can be decomposed into two orthogonal

components

Lo = LM +£2V™, (3.41)
Eg(l) = spanz {278y},
ZZ%UM) = 27BCC = spany {278, 2785, 2785},
where the primitive reciprocal vectors of Eg(l) and E“Z,UM) are
3 —ls o’ Aot Ao’ (3.42)
T30 (ol A a2 A ad)’ '
1
=—(1,1,1,1
ﬂo 4( 9y )a
—— B - 3 -1 -1 -1
1
RY?U(4) =|l—-—— By —— | = 1 2 2 =2 =2
—— By —— 1 1 1 -3

Similar to the SO(6); case, the deconfined excitations of the sine-Gordon model (3.39) are kinks of the
angle variables where (20,1 /) jumps discontinuously from one value to another in Lg. The kinks can be
created by fractional vertex operators V,%Y = exp [i;¢57] (c.f. (3.16)), where in this case the fractional
lattice vectors are four dimensional v = (y1,72,73,74). Excitations can be decomposed into U(1)4 and
SU(4); components that associates to kinks of HU™M) and HU® in (3.39) respectively. For U(1)4, the
primary fields [n], are vertex operators eindpy = (@) Ftey )/ 4 where n is an integer. They carry spins
(or conformal scaling dimensions) hp,j, = n?/8.

For SU(4);, certain vertex operators can be grouped together into super-selection sectors {Vyo"Y1 e Vyc,»y'”}
and corresponds to a primary field of SU(4);. Vertices of each super-sector transform among each other under
the SU(4); affine Lie algebra (c.f. (3.22)). As SU(4); and SO(6); are equivalent, there is a one-to-one corre-
spondence between the primary fields. Using the same notation in SO(6);, the primary fields 1,4, s, s_ of
SU(4); corresponds to the trivial, vector, fundamental and anti-fundamental representations of SU(4). The
—1)/2

or any permutation of the entries. The super-sector of the primary field st consists of the 4 vertex operators

primary field v corresponds to the super-sector of 6 vertex operators e”w'd’f, where v¥ = (1,1, -1,
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ey where 45t = +(3,—1,—1,—1)/4 or any permutation of the entries. The spins (i.e. conformal
scaling dimensions) of the primary fields are hy = 1/2 and hs, = 3/8, which unsurprisingly match that of
the primary fields of SO(6);.

Before we end this section, let us take a closer look at the sine-Gordon terms for SU(4); sector. Usually
we take u > 0 such that the sine-Gordon terms are pinned at their respective minima to gap out the system
from the renormalization group (RG) analysis. What if © < 0 or even u is a complex parameter? This
is related to the duality properties of ADFE surface topological orders discussed later. So let us study the

general structure of sine-Gordon terms when u = |u|e?” is complex valued. The general sine-Gordon is

SU (4 |ul A, B, —a_iv A,—o B, —id
H ()1:_72 ) (Ey Eyfy et H BTN e )

Yy a€lAy

= —|u Z Z cos (o 20,41/0 + V), (3.43)

Yy a€lAy

where Ay is the set of positive roots. In this case, we find that as long as ¥ # m, the system is gapped;
when o = 7 the system becomes gapless. Reversing the sign of @, /5 is equivalent to taking the complex

conjugate of u, namely,
20, 11/0 = =20, S u—u" &P — 0, (3.44)

which is also equivalent to a reflection with respect to the real axis in the u complex plane. The duality
transformation on the u-plane is shown in Fig. 3.4. Since SO(6); has the same root structure as SU(4)1,

the above analysis also works for SO(6); theory. The ground state structure is shown in Fig. 3.5.

Im(u) 4

Figure 3.4: Duality transformation of the sine-Gordon term on the u-plane. D is the duality operator. Under
D, points on the circle with radius |u| is reflected with respect to the real axis. P,Q are self-dual points.
P describes a gapless point, which can be seen in Fig. 3.5(c). Other points on the circle describe gapped
phases.
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Figure 3.5: The ground state expectation values of (2@, /) that minimize the sine-Gordon Hamiltonian

(3.43) for (a) ¥ = 0, (b) ¥ = —3n/5 and (c) ¥ = w. The plots are taken over the fundamental region in

R? modulo the Haldane dual lattice EgUM) in (3.41). The sine-Gordon Hamiltonian generically has a finite

energy gap and a single minimum for —7 < 9 < w. At 9 = 7, there are gapless Goldstone modes on the
boundary of the fundamental region.

3.3 Review of free Dirac fermion/3d QED duality

In this section, we review the coupled wire derivation of the free Dirac fermion/QEDj3 duality following

Ref. [19, 20]. Written explicitly, the duality says

SDirac = /dIB i\ij’}/u(au — ZAH)\I/

!

. = ~ 1
SQED, = /dr3 Uy (0, — tay,)V + Ee,pru&,ap, (3.45)

where a,, is a dynamical U(1) gauge field and A, is a background U (1) field. Since in 241d, a single copy of
Dirac fermion with unit charge suffers from the traditional “parity” anomaly, the duality is better understood
to hold at the surface of a 3+1d topological insulator. We add quotation marks for “parity” because strictly
speaking, parity is in the connected component of the rotation group in 2+1d. Therefore, the anomaly is
better called as an anomaly of time-reversal symmetry T or reflection symmetry R. Detailed clarifications can
be found in Ref. [117]. Several derivations have been given from the field-theoretic perspectives. Specifically,
what they have done is to start from the conjectured fermion/boson duality, which is the duality between a
single free Dirac fermion and a complex boson coupled to a dynamical U(1) gauge field at the O(2) Wilson-
Fishier fixed point with quartic interactions. [110, 111] Then they perform flux attachment to the original
duality to obtain the fermion/fermion duality. The same can be performed at the coupled wire level, which
may be clearer in the sense that one can see the explicit interactions at the microscopic level. We now review
it below.

Let us start from the array of 1D chiral electron wires, each aligned along z-direction. The Hamiltonian
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can be written as
H= Z/dm o (—1)Y0f (02 )by — vy (—1)Y (¥ hys1 + hoc), (3.46)
Y

where in Eq. (3.46) y is the wire label along y-direction. Wires labeled by even y carry right-moving electrons
and odd y carry left-moving electrons. The first term in Eq. (3.46) describes the kinetic energy of electrons
and the second term describes uniform inter-wire hopping between neighboring wires (see figure 3.1(b)).
Using a two-component spinor ¥(z,y) = (2, (), ¥2y+1(2))T, Eq. (3.46) can be rewritten in the continuum

limit as
H= /dxdy‘lﬁ[vxaz(—iaw) + vy0¥(—i0,)]|¥, (3.47)

where the sum Zy is replaced by [dy. Eq. (3.47) therefore recovers the effective Hamiltonian for a single
copy of Dirac fermion in 2+1d. Now let us bosonize the Dirac fermion on each wire by 1, = e'®v | where Dy

is a chiral boson field satisfying the commutation relation
[y (), Py ()] = byy (—1)Yimsgn(z — 2') + imsgn(y’ — y), (3.48)

where sgn(s) = s/|s| and sgn(0) = 0. The first and second terms of Eq. (3.48) give the correct anticommu-
tation relations of fermions in the same wire and between different wires, respectively. Written in terms of

boson fields, the original Dirac action in Eq. (3.45) becomes
Z(_l)y Vg 2 Y
SDirac = zy: dudt [Z—=0u6y 0y + 1~ (02y)® + vy(=1)" 03 (8 = dy11)]- (3.49)

Under renormalization group (RG) flow, this theory remains gapless due to the competition between neigh-

boring sine-Gordon terms.

P2y+3 ) L®

- :}—«’—(: #2040 B2t
G2y+1 oo 0

. Pay, by

P2y-1

bay—2 Pa(y-1): O2(y-1)

I

Figure 3.6: Pictorial illustration of the duality transformation in Eq. (3.50) or (3.51). Two flux quanta from
400 and —oo attached to each pair of wires.
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Now let us perform the duality transformation

Z sgn(y —y') Z Dy ¢y (x (3.50)

This duality transformation (3.50) is a flux attachment (see figure 3.6). Using the non-chiral basis between

wire 2y and 2y + 1, @y, 02y = (¢2y £ d2y+1)/2, Eq. (3.50) is equivalent to

;i T 20,/ —2if,,/
Vaysay1 ™~ Vayr1/2y H e H e, (3.51)

y'>y y'<y

where e?%2v brings a 27 phase slip in ©2y. Eq. (3.51) can be understood as bringing two fluxes from positive
and negative infinities to the fermion at wire 2y/2y + 1. One can check that under duality (3.50), the

equal-time commutation relation only changes by a sign

[6y(), by (&)] = =0y (@), by (2)]. (3.52)

Physically it means that the dual fermions ei® have opposite chiralities with the original ones. After duality

transformation, the original action (3.49) for the Dirac fermion becomes
S Z d:rdt ) Dy yOy by + "”(a D dy)? + vy (—1)Y cos (dy — dyr1) (3.53)
Dirac — Pyt y Ar z gy Py’ y y y+1) (- .

One can see that in the dual action (3.53), the first and last terms have the same form as the original
action (3.49). However, the second term is highly non-local. To resolve this, one introduces two Lagrangian

multipliers dg ,, @1, on each wire and rewrite Eq. (3.53) as

. T V.
Lome =3~ 0,6,08, + £qen, (3.54)

Y
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where

»CQEDS = »CO + »Cstaggcrcd—CS + »cMachll + »Ctunncla
i(-1)Y, -~ _ Uy ~ - 9
£O = ; ?(%%ao,y + ; E(am(by - al,y) 5

i(—1)Y N N
Estaggered—CS = Z (877) (AGO,y)(aLy"rl + alﬂ)a
Y

1 1 N N
Litaxwell = E Ton LI(A@O,y)2 +%(Aa1,y)1 ) (3.55)
Yy

and Ad; y = @ y+1 — @i,y. Now one can see that the dual Dirac theory is nothing but QED3, where g 4, @1,y
are now the emergent U(1) gauge field under the gauge fixing @s , = 0. The theory is invariant under the

gauge transformation

by = Oy + [y,
dO,y — do,y + atfy,
a'1,y — al,y + 8xfy;

Agyt1/2 = G2yt1/2 + (fyr1 — fy)s (3.56)

if we restore the @j41/2 component. Introducing these emergent gauge fields in the path integral only
contributes an irrelevant overall multiplicative factor, which is unimportant. Thus the duality between a
single Dirac fermion and QEDj3 is established at the path integral level.

Let us now take a look at how symmetries transform under duality. If we define time reversal (TR)

symmetry and particle-hole (PH) symmetry on the basis ¥ as
T:U =%, C:¥ —io?PT, (3.57)

then under the duality transformation (3.50) with some modifications to the transformation of ¢ vari-

ables, [20] we have
T:0 —io?0t, C:U —io?0. (3.58)

We see that TR and PH symmetries are exchanged under duality. In the following discussion of the surface

topological orders of ADE classifications, the generalization of the duality transformation for the single
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Dirac fermion will be utilized.

3.4 D-series: SO(N) surface theory

3.4.1 Surface massless Majorana fermions in a coupled wire model

The coupled wire model for D-series has been discussed in Ref. [21] for the Majorana surfaces of topological
superconductors. A particular case for SO(6) was demonstrated in section 3.2. We here describe the general
construction. The generic coupled wire Hamiltonian for N copies of surface massless Majorana fermions is

the sum

o0

oo

Ho+Hoe = D iva(=1)h, 0uth, + > vyt ah, 1, (3.59)

y=—00 y=—00

where the integer y labels the wire in the vertical direction (see figure 3.1), and ¥ = (¢*,...,%") is an N-
component Majorana fermion. Majorana fermions on adjacent wires have opposite chiralities. The uniform
non-dimerizing backscattering terms in Hy. on the second line compete with neighboring ones, and the
Hamiltonian describes N massless Majorana fermions with linear dispersion in both the x and y directions.
In this chapter, we are interested in Abelian surface topological phases, and for this reason, we restrict

N =2r > 4. On each wire, Majorana fermion pairs form Dirac fermions, which can then be bosonized

1 :ra
= g5 (T +ie) e, ot (360

The bosons satisfy the equal-time commutation relation

[G5(@), 6 ()] = im(=1)" 3,0 sgn(x — o)

+ 8yysgn(a — a’)] + imsgn(y’ — ), (3.61)

where terms on the second line enforces mutual anticommutation product relations between Dirac fermions,
and sgn(x) = x/|z| = £1 for x # 0 and sgn(0)=0. The first line of Eq. (3.61) is equivalent to the commutator

between conjugate fields

y!

06 (2), 6 (2')| = 20m(=1)70,,0°8(w — ), (3.62)
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which is dictated by the “pg” term of the Lagrangian density

Lo= o S5 (-1)105005 (3.63)

y a=1

The total Lagrangian density can be written in terms of boson fields as £ = Ly — Ho, where

Ho=Vo ) > 0:050:0% (3.64)

Yy a=1

is the non-universal sliding Luttinger liquid (SLL) component along each wire. The non-dimerizing backscat-
tering terms in (3.59) can also be bosonized, and take the form of Hyc =V, >, >0, cos (¢ — ¢4,,). How-
ever, we suppress these single-body terms throughout this section for the following reason. The bosonized

Hamiltonian density (3.64) has an additional local gauge symmetry
by — ¢y + 2mmy, (3.65)

where m,}/, ..., my are either all integers or all half-integers. This represents a local Z; gauge symmetry that

transforms the Majorana fermions according to
1/13]4 - (_1)My¢i7 (3.66)

where M,, = 2mj, modulo 2. Eq. (3.66) is violated by the fermionic Hamiltonian density (3.59). Instead, the
fermionic Ho and Hyp. in (3.59) are only symmetric under a global Z, symmetry where m = m,, is uniform.
Throughout this section, we focus on a bosonic coupled wire surface constructions that preserve the local Z5

symmetry (3.66). For example, the model mimics the surface of a bosonic topological superconductor that

supports emergent Majorana fermion coupled with a Z, gauge theory. The vectors m, = (mzlp . ,mg)T
that correspond to the gauge transformation (3.65) live in a lattice
Lhawge ={m:2m* € Z,m' =...=m" mod 1}
1 1 1 T a
= spany 55:5(5,...,5) tet =41y, (3.67)
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In this section, we focus on scenarios where r = 2n is even. In this case, we further restricts the gauge

vectors m,, in (3.65) to live in the even lattice

1 r
Ega—"l_lge = Spaly {2E+ : Ei = ila H 51 - +1} (368)

a=1

for r = 2n > 4. The r = 2 case is special and corresponds to the decomposable algebra SO(4) = SU(2) x
SU(2), where the even gauge lattice is £2;},. = spang {(1,—1)7,(1/2,1/2)"}.

Before moving on, we briefly comment on the symmetries of the model. If the surface state is supported
by a bulk time-reversal symmetry-protected topology, then the coupled wire model exhibits an antiferro-
magnetic time-reversal (AFTR) symmetry, [21] which accompanies the time-reversal that flips the fermions’
propagating direction with a half-translation that moves y — y+1. In this case, the equal-time commutation

relation (3.61) needs to be modified to

(@), a5 ()| = im(=1)m = 5,0 sgn(a’ — )

+ byysgn(a —a’) +sgn(y —y')], (3.69)
to accommodate the antiferromagnetic symmetry
TegT = (1), TogT ' =y +my. (3.70)

The discretization of surface state by a coupled wire construction and its effect on symmetries was explained
by the symmetry extension pattern discussed in Ref. [117, 118] when gapped symmetric boundary states
are constructed. The AFTR symmetry protects an odd number of surface massless Majorana fermions from
single-body backscattering. There can be additional global symmetries, such as mirror, that further protects
an arbitrary number of surface Majorana’s. In this work, we do not focus on a particular symmetry, but in-
stead concentrate on the many-body gapping potential based on a fractionalization scheme (see figure 3.1(c))
that can preserve a range of symmetries. In this section, we also require the many-body gapping potential

to respect the local Zs gauge symmetry (3.66).
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3.4.2 Gapping potentials for surface Majorana fermions

The simplest gapping terms are single-body backscattering ones, such as

7'Ldimer =1u Z Z 1/)51/1;1; (371)

y a=l1

that dimerize Majorana channels and introduce mass to all Majorana fermions. Unfortunately, these single-
body dimerizations do not respect the local Zs symmetry (3.66). Nevertheless, they illustrate the idea of
decomposition of the degrees of freedom along each wire: N = 2r = r 4+ r. In each pair, the two sets of
Majorana fermions z/J;, ..,y and ¢;+17 . ,w;r are backscattered independently to adjacent wires in the
opposite directions. By introducing this single-body backscattering term, we explicitly break and split the
SO(2r); symmetry into SO(r); x SO(r); along each wire.

With this idea in mind, we can introduce a second type of gapping terms, which preserve the local
Z5 symmetry (3.66). From the decomposition of the SO(2r) WZW Kac-Moody algebra (also known as

conformal embedding)
S0(2r); D SO(r)i x SO(r)®, (3.72)
we can introduce the two-body Kac-Moody current backscattering interactions

Hetimer = u Y 5007 350" (3.73)
Y

for positive u (see figure 3.1(c)). The A sector contains v,,...,v; and the B sector contains ¢y t1,... 42"
We will show that (3.73) introduces a non-vanishing excitation energy gap in the next subsection.

The SO(2r); WZW theory along the y-th wire is generated by the chiral current operator
) — . b
TSP = (=1)Viggaph. (3.74)

Based on (3.72), we can decompose the current operators into two sets: SO(r)i! contains J(*?) for 1 < a <
b < r and SO(T){B contains J(@® for r +1 < a < b < 2r. We can see that these two sets of operators
decouple in the sense that their operator product expansions (OPE) are trivial up to non-singular terms.

Moreover, the Sugawara energy-momentum tensor [54] of the total SO(2r); algebra decomposes into two
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decoupled parts,

Tsor), = Tsoma + Tsos, (3.75)

1
_ (a.b) J(ab)
Tsomt = 56— 1) > e

1<a<b<r

=5 S ueaur, (3.76)
a=1

1
_ (a,b) 7(a,b)
Tsomr = 56—y >, S

r+1<a<b<2r

1 2r . .
=—3 > wroye. (3.77)

a=r+1

The interaction (3.73) can be expressed using the Majorana fermions

Hamer =03 30wt ogrtipe b (3.78)
y 1<a<b<lr
We notice in passing the following observations. First, it breaks O(2r) symmetry into O(r)4 x O(r)®, which

transforms

e (AR T A i (O P T (3.79)

. . . . . . . b r+ +b
where O is an rxr orthogonal matrix. Second, there are alternative interaction terms, such as ¢g¢y b, 119, 17,
that can compete with (3.78). However, as long as mirror symmetry is broken, one of these can be dominant

and lead to a finite energy gap. Third, (3.78) is marginally relevant. The renormalization group (RG)

equation for w is [119]

d
di; = A (r — 2)u?, (3.80)

showing that the interaction strength is growing at low energy limit when r > 2, which is the case that we
discuss.
Excitation energy gap

We now review that (3.78) introduces a non-vanishing excitation energy gap. A proof can also be found in
Ref. [21]. We focus on a single coupled pair of counter-propagating SO(r); channels (see figure 3.1(c)) at

some even y. After relabeling 1/)5*“ =¢f and ¢y, =97 for a=1,...,r, the interaction term between the
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y-th and (y + 1)-th wires becomes the O(r) Gross-Neveu (GN) model [120]

Hay = =5 (r 1) (3.81)

It is known that the GN model has an energy gap when r > 2. For even r = 2n, we can use (3.60) to pair

Majorana fermions into Dirac fermions
1 s a
¢y = WL + W) ~ e a=1 . (3.82)
Eq. (3.81) bosonizes into

Hon ~u i: 0x¢p0:0% —u Y Y cos (207 +20°2)

a=1 a1#az =+
=u Z 0: %007 — u Z cos (- 20), (3.83)
a=1 acA

where 20 = (201,...,20"), 20% = ¢% — ¢4, and @ = (1, ..., )T are the SO(2n) roots that lives in
A={aeZ":|a®=2}. (3.84)

As a matter of fact, a subset of the sine-Gordon terms in (3.83) will be sufficient in introducing an energy

gap. We take

—chos(aI 120) = —uZCOS (ZKIJ( W - /LJ)>
I=1 J=1

I=1
= —chos (nTK®), (3.85)

I=1

where af = (af,...,al) are the n linearly independent simple roots of SO(2n) (c.f. (3.9) for SO(6))

n

1 -1 0 0 0
— a' —— 0 1 -1 0 0

Rsoem = ¢+ ¢ =i & oo (3.86)
—— o' —— 0 0 0 1 -1
0 0 0 11
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Here K = (K1)nxn = Rso(gn)Rgo(%) is the Cartan matrix of SO(2n), and K = K & (—K) = diag(K, —K)
includes both the R and L movers. ® = (¢}, ¢7,)", for ¢, = (¢/I%/L, s Opyp) and ¢, = (R:SFO(%))‘}QS'I{/L =
(ag)qﬁ'l‘{/L, are the bosonized variables in the Chevalley basis, and ny = (es,es)’. The “p¢” component of

the Lagrangian density expressed in terms of the Chevalley basis is
1 - a a a a 1 T
Lo= o ;amRatqu — 0,000, = -0, @TKO®. (3.87)
The n vectors n; are linearly independent and satisfy “Haldane’s nullity gapping condition” [112]
nfKn; =0, forI,J=1,...,n. (3.88)

This shows (3.85) introduces a finite excitation energy gap.
The additional linearly dependent sine-Gordon terms in (3.83) are complementary when u > 0, and
they collectively pin the non-competing ground state expectation values « - (20) € 27Z. This defines the

“Haldane’s dual lattice” (c.f. (3.14) for SO(6))

Lo={20:a 20 € 27Z for all a € A}

(3.89)
= 27BCC" = spany {2784,...,278,},
where the simple dual roots B; are
— 1 J1 Jn—1
51—m€lhmhfla AN.. N
— B, —
R§O(2n): : : :
-—— B
1
1 1
1 1 1
= . (3.90)
1 1 1 ... 1
1/2 1/2 1/2 ... 1/2 1/2 -1/2
1/2 1/2 1/2 ... 1/2 1/2 1/2
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The dual lattice Lg (up to a factor of 2) is the body-centered cubic lattice (BCC) in n dimensions, whose
lattice vectors have either all integral or all half-integral entries. The mutual commutativity between the
angle variables 260 ensures that (3.83) introduces a finite excitation energy gap. Details of the Haldane’s
nullity gapping condition for the K-matrix formalism is reviewed in Appendix B.1.

When r = 2n + 1 is odd, Eq. (3.73) can still be applied to introduce a finite energy gap. However, the
gapping Hamiltonian here cannot be fully bosonized because of the extra odd Majorana fermion. Since this

situation has been discussed in detail in Ref. [21], it will not be repeated here.

Quasiparticle excitations

The quasiparticle excitations of the sine-Gordon gapping potential (3.83) take a similar structure to that
of the SO(6) case described in section 3.2. Here, we only present the main results. A quasiparticle ex-
citation at (xg,yo) can be created by a fractional vertex operator Vyfﬁ(xo) = exp [i7a 50’“(:50)}, where
C =AB, a=1,...,nand ¢ = ¢, ¢B® = $"T* are the bosonized variables for the Dirac fermions
& = (PP 4 i) V2 ~ e“”b, for b =1,...,7 = 2n. The vector v = (71,...,7) that corresponds to
deconfined excitations can take all integral or all half-integral entries, and therefore it lives on the BCC
dual lattice Lg defined in (3.89). There are four primary fields of the SO(2n); WZW CFT that generate
all deconfined excitations. Each primary field is a super-selection sector of vertex operators that form an
irreducible representation of the SO(2n); algebra (c.f. (3.22)). The first is the trivial vacuum excitation
1 that corresponds to the trivial representation of SO(2n). The fermionic primary field ¢ consists of the

- C,1 -, C,n
Wy (@) ¢y (*0)1 Each of the vertex operators has conformal scaling dimension

vertex operators {e
hy = (=1)¥°/2, and creates a 27 kink to the ground state expectation value (2@,,41/2) at zo (c.f. 3.23),
where the sign depends on C' = A, B. Each of the two spinor primary fields sy consists of the set of frac-
tional vertex operators e’ %o (@0) /9 where the vector € = (¢1,...,e,) has unit entries and [[,€0 =1fors;
and —1 for s_. The two super-sectors corresponds to the even and odd spinor representations of SO(2n).
Each of the vertex operators has a conformal scaling dimension hs, = (—1)¥n/8, and creates a m-kink of
(20, +1/2) at xo (c.f. 3.24).

The four primary fields 1,4, s1, s— in SO(2n); follow a set of pair operator product expansion formulas.

Consequently, the four types of quasiparticle excitations in the coupled wire model follow the corresponding

46



fusion rules

1/”“/):1’ 1/’><5i:5$7

1, for even n (3.91)
S+ X S = .
1, for odd n

3.4.3 Duality transformation of the Hamiltonian and the symmetry

We now study the duality properties of the gapped surface. The duality transformation here generalizes

that in Ref. [19].
Gy(x) = senly —y)(—1)Y ¢y (), (3.92)

where the flavor index « is a spectator in the transformation. Physically it means that we bring two flux
quanta from positive and negative infinities to each flavor of chiral fermions independently. Equivalently, we
define the duality according to a particular U(1)"subgroup of SO(2r). We can check that the dual field q@?

preserves the commutation relation of the original boson field, up to a minus sign

[6%(2), 6% ()] = —[¢2(2), ¢2 (2')]. (3.93)

Physically, the dual fermion defined by 1/35(9:) = ¢"%(®) gtill satisfies the correct fermion anticommutation
relation, but it has the opposite chirality of the original fermion on each wire. After duality transformation,
the kinetic energy term in Eq.(3.64) becomes highly nonlocal in terms of the dual bosons. This can be
resolved by introducing emergent gauge fields a?(x) for each flavor of bosons (c.f. the review in Sec.3.3), and
such description will not be repeated here. Instead, we focus on the gapping terms. Under Eq. (3.92), we

have
~Zﬂ - QZ)Z = (_1)y+1( Z+1 - ¢Z) (3~94)
Thus the sine-Gordon term in (3.83) keeps its original form, namely,

—u Z cos (a - 2@) =—u Z cos (- 20), (3.95)

acA acA

where 20¢ = é;l — N;? 1. The sine-Gordon gapping potential is therefore self-dual.
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There is a comment on this duality transformation. This self-dual interaction is a special case of the more
general case, where the coefficient u of the current-current interaction is complex valued, as we discussed
in Sec. 3.2. Without loss of generality, we assume that |u| = 1. Thus we can write u = . Eq. (3.95)
corresponds to § = 0. As we vary 6, in addition to cosine terms, there are sine terms from current-current
interaction, which flip sign under duality transformation, seen from Eq. (3.94). Thus the ground state
structure would rotate in the Haldane lattice space correspondingly. Then the duality transformation is a
reflection with respect to the real axis in the complex u plane. When § = 7, the interaction becomes self-dual
again. But now the system becomes gapless. Therefore, the phase diagram on the u plane is a unit circle
centered at the origin, with self-dual points located at § = 0,7. All the points describe a gapped system
except 0 = .

We notice in passing the duality transformation of the antiferromagnetic time-reversal symmetry. Under

the definition (3.70),

TOHyT = 4 — g(—l)y“- (3.96)

The additional minus sign in front of (Z)Z +1, when compared with (3.70), means 7 : ¢ — ¢ now preserves dual
Dirac fermion number, whereas 7 : ¢ — ¢! flips the original ones. The AFTR symmetry therefore carries an
additional particle-hole component when transferred across the duality.

We conclude this section by making the following remarks. First, the duality transformation defined
in Eq.(3.92) is not unique. There are alternative duality transformations that converge to the same equal-
time commutation relation (3.93). Second, the duality transformation (3.92) does not work for the gapped
phase of SO(4). From Ref. [21], we see that SO(4) requires special attention because the usual decomposition
SO(4) ~ SO(2)x SO(2) leads to Gross-Neveu interactions that only renormalize the boson velocities without
introducing an energy gap. For this purpose, an alternative decomposition is needed — SO(4) ~ SU(2) x
SU(2), and it leads to a special gapping potential. The SU(2) gapping potential is not self-dual under (3.92),
and in fact, the dual theory is highly non-local. We suspect the SO(4) ~ SU(2) x SU(2) fractionalization

is self-dual under some alternative duality transformation that is out of the scope of this work.
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3.5 A-series: U(N) surface theory

3.5.1 Surface gapless Dirac Hamiltonian via coupled wire construction and

decomposition

In this section, we discuss the U(NN); theories constructed from N Dirac fermions. The U(4); prototype
was discussed in section 3.2. Here we describe the general situations. The N surface Dirac fermions, with

Hamiltonian

N
Ho=iv) Y el (000 +0,0,)uch, (3.97)
a=1s,s'="1,|
can be supported by a topological bulk such as a reflection-symmetric topological crystalline insulator with
mirror Chern number N [121, 122]. By introducing alternating symmetry breaking Dirac mass on the

surface,

N
V=a4md Y cll(0.)ewcd, (3.98)
a=1s,s'=t,|
the gapless electronic degrees of freedom are localized along an array of one-dimensional interfaces (see
figure 3.1(a)). Each interface, that is sandwiched between adjacent stripes with opposite Dirac masses, hosts
N chiral Dirac fermions that co-propagate in a single direction [102].

The Hamiltonian that describes the 1D arrays of low-energy Dirac channels is

o0

Hpo= Y iva(—1)Yc}ducy, (3.99)

y=—00

where ¢, = (clll, e ,cé\’ ) is an N-component chiral Dirac fermion. After bosonizing these Dirac fermions via

cy = ey, we can write Eq. (3.99) in the same form as Eq. (3.64), namely,

N
Hoo=Vo 303 0,620,0¢, (3.100)

y a=1

where V, is some non-universal velocity. We can decompose a U(N); theory into a U(1) charge sector and

an SU(N) spin sector. This decomposition makes the physics richer than that of the D-series, which we will
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show later. The U(1) charge sector is represented by the diagonal
NP — 41 N
QY =Noy =, +...+ ¢, (3.101)

and the neutral SU(NN) sector is represented by
N-1 . N
o=y Kp N6 = als, (3.102)
J=1 a=1

where I =1,...,N — 1. Here o = (af,...,ak), for af = 67 — 6%, ,, are the simple roots of SU(N). The

SU(N) _
U

Cartan matrix of SU(N) is the inner product K7 a! - a’. The roots of SU(N) form the collection

of integral vectors

N
Asun) = {a ez |al’ =2, a,= 0} : (3.103)

a=1

Details can be found in Appendix B.2.

The “pg” term of the Lagrangian density decomposes into

1
2w
y

N
e R (3.104)

a=1

»CO =
1 - -
= 5= 2 (-1)'NOG 0.9

Y

N—-1
1 SU(N) 4 71 7J
+ 5o Ey (fl)yIEJ_lK,J 0,610, 67.

In this section, we focus on the partition N = p + ¢ that splits

U(N)1 D U(p)1 x U(g)

S (U(L), x SUP)) x (U(1), x SU()) (3.105)
A—sector B—sector

The partition separate the Dirac fermions into two groups. The A sector consists of ¢!,...,cP, and the

B sector consists of ¢Pt1, ... ¢Pt9. We label the bosonized variables by ¢*4¢ = ¢ for a = 1,...,p and
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¢t = ¢+t for b=1,...,q. The Lagrangian density (3.104) splits into

Lo=LY+ LY (3.106)
1 - c c
L5 = 5= D (D)"Y 0no] Oy
Yy c=1
1 . N
=5 (—1)Yr0 6 P 0u )
)
r—1
1 o - N
+ DD Y K3V 9,6570,6C.

y I,J=1

where the charged and neutral bosons ¢? and ¢! are defined similarly to (3.101) and (3.102), for C = A, B
and r = p, q respectively. As there are no cross terms in the Lagrangian density, the A and B sectors are
completely decoupled from one another.

If the surface Dirac fermions are supported from a mirror-symmetric topological bulk, the Dirac channels
are related by reflection

MM~ = (=1)Yic

“y MMt =9 + (1) (3.107)

2|3

The surface array also admits an emergent anti-ferromagnetic time-reversal (AFTR) symmetry (c.f. (3.70)
in section 3.4)

ag—1 Yy .a a—1 a 1_(_1)1/
TeT ™ = (—1)chy, THT 1= g3+ ——. (3.108)

The symmetries obey the algebraic relation M? = (—1), 72 = (—1)Ftranslation, ;1o and TMT- 1M1 =
translation,_,, 1o, where (—1)% is the fermion parity number operator. Mirror and AFTR symmetry pre-
serving surface many-body gapping coupled wire models can be found in Ref. [23, 99]. Unlike the D-series
discussion in section 3.4, in this section, we focus on symmetry breaking many-body gapping potentials that
support to fractional quasiparticle excitations. For instance, the wire partition (3.105) respects neither one

of the symmetries.

3.5.2 Gapping terms for surface Dirac fermions

We now discuss symmetry breaking gapping interactions to (3.99). The array of Dirac channels can acquire

a finite excitation energy gap by backscattering dimerizations between adjacent wires. The simplest ones
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are the single-body dimerizations

p
_ a T .a
Hi—body = m E E Coyr—1 Coy + h.c.

y’ La=1

q
;
+> Bt + hee. (3.109)

b=1

It partitions the N Dirac channels in a given wire into p + ¢, and backscatters the two sectors in opposite
directions. The backscatterings are therefore non-competing and introduce a single-body mass gap. In
this section, we focus on many-body backscattering dimerizations based on the decomposition (3.105). It
partitions the N Dirac fermions in any given wire into the U(1), and U(1), charged sectors and the SU(p):

and SU(q)1 neutral sectors. By backscattering these decoupled sectors independently, the potentials

A B A
H:H,D +Hp +HSU(]J)1 +H§'U(q)l7 (3.110)
’H;‘ = —v4 Zcos (@gf) - @g‘y’f)ﬂ) ,
y/
p = —UB Zcos (@i’ﬁl - @fy’/p) )
y/

A SU(p) | ySU(p)
Hsuy =) Joy"  Toy s

Y

X
W
Il

B SU(q) 1SU(q)
Hsu(g), = uB ZJZy’—Ill "Iy e
y/

introduce a finite excitation energy gap to the coupled wire model. Here @7‘3”3 = (bé + ...+ ¢} and @f’p =
¢1y’+1 +...+ ¢§+q are the bosonized variables that generate the charged U(1) sectors, where N = p+¢q. The

neutral sectors are generated by the SU(r); Kac-Moody currents [54]

p
o,SU(p) __ at,a a’
Jy (P) = E Cy ' taarCy »

a,a’=1
q " ,
J;»SU(Q) — Z EAL e AL (3.111)
b,b'=1

where the fundamental matrix representations t&, of SU(r), for r = p, q, are listed in Appendix B.2.

cc!
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The SU(r); backscattering dimerizations can be expressed in terms of bosonized variables.

P
A _ A a a’
Hsupy, = U’AE : § : Vaar 002y 0x P2y 11

y’ a,a’=1
- Z cos (a : 2@)‘24y,+1/2) , (3.112)
QGASU(p)
< b b
B B + +
HSU(q)l =Uup Z %b/awd)gy/ilaqugyz
y’ b,b/'=1

_> cos(a-zefy,,m) , (3.113)

a€Asu(q)
A _ Al Ap . A,a _ a a B _
where 205,14/, = (2®2y,+1/2,...,2@2y,+1/2) has entries 20", , = ¢5,, — ¢34, and 205, 5 =
B,1 B,q . . B,b _ p+b p+b . C . .
(2@23,/—1/2’ cee 2@2y,_1/2) has entries 262;/-1/2 = ¢5, — ¢y, - Here the velocity terms V, originate from

the backscatterings of the Cartan generators H! ~ a! - 9¢ of SU(r);, where a; are the simple roots of
SU(r) presented below eq.(3.102). The sine-Gordon terms are responsible in introducing a finite excitation
energy gaps in the neutral sectors, and they originate from the backscatterings of the raising and lowering
operator E® ~ ¢**'?_ where o are the root vectors in Asy(r) defined in (3.103).

Similar to the D-series, the potentials (3.112) and (3.113) consists of more sine-Gordon terms than

necessary in order to introduce a finite excitation gap. Instead of summing over all root vectors a in Agyr(,y,

it suffices to include only a set of linearly independent simple roots a',...,a” !, where we choose
N
Rsyy =

ol
(r—=1)xr

1 -1 0 ... 0 O

o 1 -1 ... 0 O

=1 _ o (3.114)
0 0 0 1 -1

so that K = (K1j)nxn = RSU(T)RgU(T) is the Cartan matrix of SU(r). All roots e are integer combi-
nations of the simple ones, and given ua,up are positive, the redundant sine-Gordon gapping terms are

non-competing. Together with the gapping Hamiltonians #, in (3.110) for the charged sectors, they collec-
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tively pin the ground state expectation values of the angle variables to live in the dual lattice

a-20,a°-20 € 217
Lo=(20cR": (3.115)
ac ASU(T),GO = (1,...,1)

so that all sine-Gordon terms in (3.110), (3.112) and (3.113) are simultaneously minimized (c.f. the discussion
on U(4) in section 3.2).

The dual lattice decomposes into the orthogonal U(1) and SU(r) sectors

Lo =LYMW g V0, (3.116)
e) )
Eg)(l) = span, {278},

[:%U(T) = spanZ{Qﬂ',Bp R 27.(.67*—1}7

where the primitive reciprocal vectors of Eg(l) and £gU(T) are

1 a’ A haf
ﬂf:mgu'“K(xO-(al/\.../\oﬂ“—l)’ (3.117)
1
=—(1,...,1
BO r(? bl )

so that e - B, = ¥, for u,v =0,1,...,r — 1. Here, the entries of the reciprocal vectors B; = (8},..., )

of SU(r) take the explicit form

(r=1)/r, ifa<I
Be = (3.118)
—1/r, ifa>1

forI=1,...,r—1.
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A ZQ twist

Contrary to the D-series, here there is an alternative choice of gapping potentials, which involves the product

of the neutral and charged sectors

Hz, =My, + HE, (3.119)
A A, A,
H7, = —ua Z cos (<I>2yf) — <I>2yf’+1)
y/
p—1
A
X Z cos (aéU(p) . 2(-)21],“/2) ,
I=1
’H]Zi = —up Zcos (@%,p_l — <I>QBy’,p)
y/
q—1
B
X Zcos (aéU(q) . 2@27/,1/2) ,
I=1
A Al A, . A, B
where 205, /5 = (2@2y,+1/2,...,2@2;“/2) has entries 2@2yf1+1/2 = ¢5, — 95,11, and 205, ;5 =
B,21 B, . Bb o ptb b . . .
(29214'71/2’ .. .,292y,‘171/2) has entries 262;/—1/2 = ¢12’y, — ¢’2)y, . Here, unlike the previous sine-Gordon

terms in ’HgU(r)l in (3.112) and (3.113), the Z5 terms HS, in (3.119) consist of sums of only the simple roots
agU(r) of SU(r) (see (3.114)).
Eq.(3.119) introduces a finite excitation energy gap. To see this, we notice each product of cosine terms

generates two sine-Gordon terms using the combine angle formula

c,
cos (ch’p - <I>y+p1) cos (a{gU(T) : 2@5“/2)
= cos (a%(l)r . 2@5“/2) cos (aéU(T) . 2@5“/2)
1 c
= 5008 {(a%u)r + agU(r)) '2@y+1/2}

1
+  cos [(a%(l)r - agU(r)) : 2(9;’“/2} : (3.120)

where a%(l)r = (1,...,1) is the r-dimensional charge vector and a{Q’U(r)’ for I = 1,...,r are the simple

roots of SU(r). The combined angle variables satisfy the “Haldane nullity” gapping condition [112]

[(aOU(l)T + SaéU(r)) : 2@5+1/27 (a(()](l)r/ + S/agU(r’)) '2@yc'+1/2} =0 (3.121)

where C,C" = A (B) and r,7’" = p (q) for even (odd) y,y’ respectively, and s, s’ = +. There are 2r — 2 sine-

Gordon terms between adjacent wires at each y 4+ 1/2. This provides more than enough sine-Gordon terms,
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when r > 2, to introduce an energy gap for the r pairs of counter-propagating channels. The redundant terms
are non-competing and they collectively pin the bosonized angle variables 2@5 +1/2 to the energy-minimizing

ground state expectation values in the dual lattice
t&={r0cr: (af, +aky,)) 20 € 27} (3.122)

Eéz contains twice as many lattice points as the original dual lattice Lg in (3.115) for the previous
coupled wire model (3.110), and consequently, there are twice as many ground states between each adjacent
wires. The scalar products a* -2 can now either be all even or all odd multiples of 27, for p = 0,1,...,r—1.

Therefore, the dual lattice admits a Z, grading
LE =L+ Ly, (3.123)

The even lattice LY = Lg is identical to the dual lattice defined in (3.115). The odd lattice £ displaces

from the even one by half a lattice spacing
Lo =275+ LY. (3.124)

Here 3, can be chosen to be any vector so that al- B1/2 and al - B2 are all half integers. For example,
one can take the entries of 8, ,, = (611/2, . ,6{/2) to be 37, = (2+7—2ar+r?)/(4r) so that at-Byy=1/2
for p=0,1,...,r — 1. The Hamiltonian Hz, in (3.119), the half dual vector B, ,, as well as the odd lattice
L all depend explicitly on the choice of simple roots aéU(r). They therefore explicitly breaks the SU(r)
symmetry. Distinct choices of simple roots correspond to inequivalent ground states with distinct odd angle

expectation values ['%9 .
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At this point, one can also consider gapping potentials that sum over all roots of SU(r).

Heven = HA L +HE (3.125)

A A,p A,p
Hiven = —Ua g cos (@2y, - <I>2y,+1

y/
X Z cos (a : 2@‘24y,+1/2) ,

acAsy(p)

B _ B,p B,p
Heven = —UB E cos (<I>2y,71 —®y
y/

X Z cos (a . 2@)%,71/2) .

OLEASU(Q)

In this case, the Hamiltonian still introduces a finite excitation energy gap. However, the additional non-
simple root terms put extra restrictions to the ground state expectation values of 2@5 +1/2- The angle values
minimize energy only when (aOU(l)T + aSU(T)) - 20 are all integer multiples of 27, for all roots asy(r)-

2 is also a root vector, and the

This rules out the odd solutions in £ for r > 3. For instance, a' + «
above restriction implies ag,(l)r - 20 as well as agy () - 20 to be full integer multiples of 27r. The energy-
minimizing angle variables to Hamiltonian (3.125) therefore must be even and live exclusively in £g. This is
not unexpected since the exactly solvable Hamiltonian (3.125) preserves the SU(r) symmetry and so must
its ground state. For instance, the angle values that belong to the SU(r)-breaking odd lattice Lg in (3.124)

correspond to confined excitations that cost linearly diverging energy.

On the other hand, one can also consider another set of gapping potentials

Hodd = H?dd + Hode> (3.126)

A § : A,p A,p
Hodd =UuUA COS ((pr/ - ®2y/+1
yl

% Z (_l)Tr(a) Ccos (OL . 261241/’4—1/2) s

QEASU(p)

B _ . B,p B,p
Hogd = UB E cos <<I>2y/_1 — &y
y/

X Z (—=1)T(@) ¢og (a : 2@23‘7/71/2) ,

O(EASU(Q)

where (—1)T(®) is even (odd) if @ = a1’ +...+a,_1a" ! is an even (resp. odd) combination of the simple
roots, for Tr(a) = a1 + ...+ ar—1. Contrary to the even Hamiltonian (3.125), the odd Hamiltonian (3.126)

here has minimum energy when the angle variables live inside the odd lattice £ in (3.124) that breaks
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SU(r).
These gapping potentials can be continuously deformed into one another, for example, via linear inter-

polation
H, = (1 — t)HCvcn + tHoda- (3127)

The ground states between an adjacent pair of wires are specified by the even (odd) dual lattice £ (Lg)
when ¢t < 1/2 (t > 1/2) respectively. At the transition at ¢ = 1/2, the Hamiltonian only carries sine-Gordon
terms from roots that are odd combinations of the simple ones. Consequently, the ground states are identical
to that of Hz, and corresponds to the same Z5 graded angle expectation value structure EZ@2 in (3.122) and

(3.123). This transition is analogous to Zeeman transition across the ordered phase of the Ising model

HIsing = _JZUZ;J,?+1 - hzaf - BZO’;, (3128)

where B is the magnetic field for the Zeeman coupling. When J > h and B = 0, the ordered phase has
two degenerate ground states specified by (67) = £1. The Zeeman coupling B introduces a preference of up
spins versus down ones, and breaks the degeneracy. Here, the parameter ¢ — 1/2 in (3.127) takes a similar
role as the Zeeman field B.

In general, there is an intricate phase diagram when the strengths and signs of the sine-Gordon terms
cos (a - 20) can vary from one to another. There are multiple distinct Z5 critical phases, where the ground
states between an adjacent pair of wires take a Z, graded structure. In the thermodynamic limit with an
infinite number of wires, this introduces a diverging ground state degeneracy. This signifies a gap-closing
critical transition between distinct 2D gapped phases. On the other hand, the diverging degeneracy could
also be lifted if the theory is coupled with a Z5 gauge theory (similar to the one studied for the D-series in

section 3.4). These discussions are out of the scope of this article and we refer them to future works.

Quasiparticle excitations

The deconfined quasiparticle excitations of the coupled wire model (3.110) are kinks of the angle variables
<2®,yc+1 /2)- Similar discussions were provided for U(4) in section 3.2. Here, we summarized the results for
the general U(N). The ground state expectation values <2®yCJrl /2) belong in the dual lattice Lo defined
in (3.115). A quasiparticle excitation at (zg,yo) is a kink where the angle variable (2@5:)+1/2($)> jumps
discontinuously from one value to another in Lg when x passes across xg. A quasiparticle excitation can

be created by acting a vertex operator V.S () = exp [i7a¢5:* (z0)] on a ground state, where C' = A (B)
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and a = 1,...,r for r = p (q). These vertex operators are classified according to the primary fields of
the U(1), x SU(r); Kac-Moody algebra. Each primary field is a super-selection sector of vertex operators
that form an irreducible representation of the U(1) x SU(r) (c.f. (3.22) for SO(6);). For example, the
smallest primary field [1], for the U(1), charge sector is the single vertex operator ei‘z’%p(“’), where ¢Cr =
OCP Jr = (¢C1 + ...+ ¢7)/r. Tt creates a fractional excitation with spin (equivalently, conformal scaling
dimension) 1/2r. General primay field excitations [m|, in the U(1), sector are generated by higher order
copies M Puo” (@) They carry spin m?/2r and follow the fusion rule [m], x [m'], = [m +m/],.

There are r primary fields in the SU(r); sector. Examples were presented for the SU(4); case in
section 3.2. Here, we demonstrate the general case. We begin with the smallest non-trivial primary field,

denoted by E', that corresponds to the fundamental representation of SU(r). The super-selection sector E*

consists of the collection of vertex operators

E%l(xo) ~ spang {ei'r-cbfo(wo) vy =0(By),0€ S,.} (3.129)
where 3, is the primitive dual root (r—1,—1,...,—1)/r (see (3.117) and (3.118)), and o permutes the entries

of the r-dimensional vector. The super-selection sector irreducibly represents SU(r); in the sense that it
is closed under operator products with the SU(r); currents (c.f. (3.22)). Since all entries of 8, is identical
except one, there are exactly r permutations o(3). Therefore E! are generated by 7 vertex operators, which
form the fundamental representation of SU(r).

In general, the primary field E¢, for c=1,...,r — 1, is the super-selection sector
Eg;’c(:vo) ~ spang {6”"1’50(10) vy =0(B.),0 € ST} , (3.130)

where the simple dual root 8, was defined in (3.117) and (3.118). There are exactly C%, = r!/[c!(r — ¢)!]
entry permutations and therefore E¢ forms a C! dimensional irreducible representation of SU(r);. Since
o(B.) has c entries being (r — ¢)/r and r — ¢ entries being —c/r, the primary field has spin (equivalently,

conformal scaling dimension)

c(r—c)?+(r—c)c® (r—c)c
. = = . 131
he 272 2r (3:131)

Lastly, the trivial primary field is E° = 1. The primary fields obey the fusion rules

E° x E¢ = Elet¢lmoa r (3.132)
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3.5.3 Duality transformation

We generalize the duality properties of the coupled wire model from that of the free Dirac fermion reviewed

in section 3.3. Under the duality transformation
= sen(y — o) (-1)" ¢y, (3.133)
yl
the angle variables in the sine-Gordon terms in (3.110), (3.112) and (3.113) are self-dual up to a sign
202 — @G = 2000 . (3.134)

2y'+1/2 — ¢2y 2y’ +1/2

Therefore, the sine-Gordon terms in (3.110), (3.112) and (3.113) are also self-dual

?—l;‘ = —vx Z cos (a%(l)p . 2(:-)2y/+1>
y/

—va Z cos (a%(l)p . 2®2y/+1) = 7—[;‘ (3.135)
y/

~ ~ A
’HgU(p)l = —uUy Z Z cos (a ‘ 2®2y,+1/2)

Y a€Asu(p)

= —uy Z Z cos (a : 2®9y’+1/2)

Y a€Asu(p)

= Heu (), (3.136)

Similarly, the sine-Gordon terms for the B sector are also self-dual.
Lastly, we consider vertex operators that correspond to primary fields and create quasiparticle excitations.

The duality transformation (3.133) can be re-expressed in terms of the angle variables 20 (z) as

Qggy(‘r) = ¢gy+1 + ngn y y Qy +1/2( )

i

03yi1(z) = 03, (x +ngny y) Qyﬂ/z()

and similarly for the B sector. We see that the dual vertex operators are dressed with non-local strings,
similar to (3.51) in section 3.3. When acting on a ground state, the angle variables 202Ay’/a+1 /o Are pinned and
can be replaced by their ground state expectation values. The non-local string therefore condenses into the

ground state leaving only complex phases behind.
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Like D-series, if we extend the coupling constants of the sine-Gordon terms u 4,5 to be complex valued,
then the ground state manifold change continuously as we vary the phases 64,5 of us/p. The self-dual
points are 64,5 = 0, 7 and duality transformation (3.133) on the complex u plane is a reflection with respect
to the real axis. The ground state manifold can be visualized for SU(3) or SU(4) cases and it should be true

for the general SU(N) theories.

3.6 E-series surface theory

The exceptional Lie algebra Eg, F7 and Eg are the remaining simply-laced Lie algebra in the ADFE classi-
fication. We first discuss the Eg algebra. In addition to the conventional topological insulators that host
protected Dirac surface states, topological paramagnets [63, 64] are alternative time reversal and charge
U(1) symmetry preserving topological states enabled by interactions. These are short-ranged entangled
SPT states in three dimensions that do not exhibit bulk quasiparticle fractionalization or topological order.
However, they do carry anomalous surface states that cannot be supported in a pure two dimensional system.
We are interested in the efmf topological paramagnetic state. Like a conventional topological insulator, its
surface state is unstable against time reversal breaking perturbations. A finite excitation energy gap can
be introduced on the surface by a magnetic order without requiring surface topological order or fraction-
alization. The efmf topological paramagnet is distinct from a conventional topological insulator in that a
magnetic surface domain wall — a line interface that separates two time reversal breaking gapped surface
domains with opposite magnetic orientations — hosts quasi-one-dimensional low-energy electronic degrees of
freedom that are chiral only in energy but has no electric charge transport. Electronic quasiparticles are
chiral in the sense that they propagate in a single forward direction along the line interface. They collec-
tively account for a chiral heat current le,s = Iglg - Ieﬁlg that obey the differential thermal conductance
K = dlong/dT = c(m?k%/3h)T in low temperature T, where the central charge is ¢ = 8. However, electric
charge transport is non-chiral in that the chiral electric current I = I* — I does not response to change of
electric potential, ¢ = dI/dV = 0. These low-energy degrees of freedom can be effectively described by a
14 1D Eg Kac-Moody CFT at level 1. They can be described by the bosonized Lagrangian density

8 8
1 a a a b
Lo= 2—; 016" 0x0" = Y Vap0u 026

a,b=1

8 8
1 /
=5 > (Ep)rod" 0.0 = 3 V],006" 0008, (3.137)

I,J=1 I,J=1
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where the “Cartan-Weyl” and “Chevalley” bosonized variables ¢ and ¢’ are related by the basis transforma-

tion

8
¢ = (K)o, = (Rp)ie",

a=1
Rg, =
e

1 -1 0 0 0 0 0 0

0 1 -1 0 0 0 0 0

0 0 1 -1 0 0 0 0

0 0 0 1 -1 0 0 0
= ) (3.138)

0 0 0 0 1 -1 0 0

0 0 0 0 0 1 -1 0

0 0 0 0 0 0 1 -1

1 1 _1 _1 _1 1 1 1

2 2 2 2 2 2 2 2

and the Cartan matrix of Eg

Kp, = R R}, (3.139)

(see Eq. (B.19) in Appendix B.2 for an explicit expression) has determinant 1 and is invertible.

Here, it is important to realize that the neutral fermionic vertex operators e?®” are non-local and frac-
tional. They are not the primary field excitations of the Eg CFT, which only supports local integral ex-
citations. Instead, the low-energy physical excitations are generated by the local bosonic vertex operators
ei®r = K119 — (IR0 Since Kp, has integral inverse, ¢'¢” = !5 )" ®s are also local and bosonic.
These are even integral combinations of electrons/holes, each of which is assumed to carry net zero electric
charge. All odd combinations of electrons/holes correspond to gapped fermionic excitations. They do not
contribute to the low-temperature chiral energy transport and are not described by the low-energy effective
Eg CFT.

The Eg Kac-Moody currents consist of the 8 Cartan generators ®; and the 240 roots E* = e*?. The
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240 roots can be decomposed into the 112 SO(16) roots and 128 spinor representations of SO(16).
Apy = Asoqe) UAs_ (3.140)

The 112 root vectors in Ago(16) Were defined in (3.86) in section 3.4, and they take the form a = +e, + e,
where a # b. In this chapter, we adopt the convention where the Eg roots extends from that of SO(16) by
its odd spinors s_. The 128 odd spinor vectors in Ag_ take the form o = (e1,...,e5)/2 where ¢, = +1 and
€1...65 = —1. All 240 roots of Fg are integral combinations of the simple ones defined by the row vectors
of R, in (3.138). Since ¢iRa®" are bosonic integral combinations of local electrons, so are all the Eg current
operators.

We consider time reversal breaking stripes with alternating magnetic orientation on the surface of the efmf
topological paramagnet (c.f. figure 3.1). This reduces the low-energy electronic degrees of freedom to an array
of FEg wires with alternating propagating directions. Similar to the D-series coupled wire model discussed in
section 3.4, the Fg array exhibits an emergent antiferromagnetic time reversal symmetry, which composes
of a time reversal and a half-translation y — y+ 1. AFTR preserving fractionalization Eg ~ SO(8) x SO(8)
and gapping interactions were studied in ref. [21]. Instead, in this section, we focus on AFTR symmetry
breaking gapping interactions based on asymmetric partitions of the Eg current algebra. In particular, we

concentrate on the conformal embeddings

that involve the other two exceptional simply-laced Lie algebras. The coupled wire model is constructed by
backscattering the two decoupled components E; and SU(2) (or Eg and SU(3)) on each wire to adjacent
wires in opposite directions.

Before discussing these surface models, we first consider a set of simple gapping potentials that fully

dimerizes the Eg wires.
E E
Haimer = U E J2;’—1 -JQ;,
y/

8
=uY Y 0u45, 10:05,

y' a=1

— UZ Z COS (a . 2@2;/,1/2) y (3142)

y’ OCGAES
where the sine-Gordon angle parameter is ©3,,_, 5 = ¢3,,_; — ¢5,,. Similar to the coupled wire models in
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the previous sections, to simultaneously minimize the sine-Gordon terms in (3.142), the angle parameters

take ground state expectation values inside the dual lattice (c.f. (3.89))

Lgs ={20:a-20 €21Z, acAg},

= spany{27B1,...,270s}, (3.143)
3 1 alt AL AaT7
= —¢ ,
FRrtTral (a2 A A ad)

1 8

where a?,...,a® are the simple roots in (3.138). The primitive dual root vectors satisfy B, - a’ = §7,

i.e. RY, RT, = Isxs, and they take the explicit form

— B, —
RY, = . .
—— By ——

-11 1 11111

o 0 2 2 2 2 2 2

11133 3 3 3

112 2 2 2 4 4 4 4
=-3 . (3.144)

3 333 3555

2 22 2 2 2 4 4

11111113

2 22 2 2 2 2 2
The dual lattice is self-dual up to a 27 multiplicative factor in the sense that spany{al,...,a®} =

spany{fB,...,Bs} because

Ry, = R, = K;'Rp, (3.145)

and Kpg, has integral inverse. This is consistent with the fact that the root lattice of Eg is unimodular.
Consequently, all deconfined excitations of the coupled wire model (3.142) that correspond to kinks of

(203, _1/2) € ﬁgs are local and can be created by integral combination of electron/hole operators.
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3.6.1 E;x SU(2)

We now construct the coupled wire model that utilizes the partition Eg D E7 x SU(2) and describes a
gapped symmetry breaking surface of a topological paramagnet. Each Eg wire on the 2D surface array
(c.f. figure 3.1(c)) is decomposed into a E7 and a SU(2) Kac-Moody CFT at level 1. These two sectors

decouple from each other and act on orthogonal Hilbert spaces. This motivates the gapping Hamiltonian

H=ud I 30+ 350 3500 (3.146)
yl

that backscatters the two decoupled currents from a wire into adjacent wires in opposite directions. In the
following, we define the current embeddings of J¥7 and JSU(®) into Fg.

We begin with the new set of simple root vectors of E7 x SU(2)

a' =ejp1—erpo, i=1,...,6,
1
a7 = 5(_1a _17 _1a _17 _1a 17 17 1)7
1
ab = 5(—1, 1,1,1,1,1,1,1), (3.147)
where !, ..., a” are the simple root vectors of E7 and a® generates SU(2). It is easy to see that the Cartan
K-matrix splits
Kg 0
Kp,xsu@ = (@' -a’), = ’ 7 (3.148)
0 Ksy)

where the explicit form of K, can be found in Eq. (B.19) in Appendix B.2 and K¢y (2) = 2. The E7 root

system can be embedded in Eg by taking the subset
Ap, ={a €A :a-a®>=0} C Ag,. (3.149)

The 126 roots in Ag, is an extension of the 42 roots of SU(7) — a subgroup of E; — by the weight vectors

of the irreducible representations 7, 7, 35, and 35.
Ag, = LASU(7) +7+7+ 35+ 35. (3.150)
To illustrate this, we embed the root system of SU(7) (see (3.103)) in that of SO(16) C Es by putting the
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7 dimensional root vectors e € Agy(7) in the 8 dimensional space,

tia=(a,...,a7) o= (0,01,...,07),
(3.151)

LASU(7) = {z,a oS ASU(?)} .

Next, we observe that certain sub-collections of the Eg roots form the weight vectors of the representations

7,7, 35, and 35. They are given by

7:{e1+ej:j:2,...,8},

7:{7e17ej:j:2,...,8},

8
1
35 = 5(1,827...,88)1827---758:i17228j:1 7
iz

N —

8
35 = *(—1,82,...788):Sz,...,SgZ:I:l,ZSj =-1
j=2

Each of these weight vectors is orthogonal to a® and therefore decouples from the SU(2). While 7 and 7
can be embedded in the root system of SO(16), 35 and 35 can only be embedded in Eg as they consists of
half-integral vectors. Each of these collections of weight vectors v* corresponds to a super-selection sector of
vertex operators span{e’Y”*®} that transforms closely and irreducibly under the SU(7); Kac-Moody algebra
(c.f. (3.22)). Each sector splits into n ® E°, where E° is a primary field of SU(7); and 7 is a primary field
of the coset (E7)1/SU(7)1, so that the combined spin (conformal scaling dimension) is 1.

The coupled wire model (3.146) can be expressed as a sum of sine-Gordon gapping interactions

H=—u Z Z cos (- 205, _1/5) — uz cos (a® 2@,/ 41/2) (3.152)
Yy a€lAg, y’

where a® is the root vector of SU(2) when embedded in Eg and we have suppressed the non-gapping Cartan
generator terms that renormalize velocities. Here, 2@ = (20',...,20%) and 200,15 = ¢ — ¢yp1- The
sine-Gordon terms in the first line in (3.152) dimerize the E; currents between wire 2y’ — 1 and 2y’ while
terms in the second line dimerize the remaining SU(2) currents between wire 2y’ and 2y’ + 1. Together,

they introduce a finite excitation energy gap.
Quasiparticle excitation can be created by primary fields of the E7 or the SU(2) sector. The semionic
primary field of SU(2) at wire y is the super-selection sector of vertex operators s ~ span{e?Ps @y e~ #Fs Py

Here, the weight vector By = (—1,1,...,1)/4 = a®/2 is orthogonal to all E; roots and has length square
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|Bs]? = 1/2. Consequently, the primary field decouples from the E; sector and carries conformal scaling
dimension hy = |Bg|?/2 = 1/4. Each of the vertex operators creates a bulk quasiparticle excitation in the
form of a kink of the sine-Gordon angle parameter between wire y and y+ 1 (y — 1) if y is even (resp. odd).

The anti-semionic primary field of E; at wire y is the super-selection sector of vertex operators
5 ~span{e®® : B € Sg. }, (3.153)
where Sg, is the collection of dual vectors

Sp;={Bs—er—e;:2<I1<J<8}
U{-Bs+er+es:2<1<J<8}
U{Bster—er:2<1<8}

U{-Bs—e+er:2<1<8} (3.154)

This collection of 56 vertex operators form the 56 dimensional irreducible representation of F7 and corre-
sponds to the only non-trivial primary field of E7 at level 1. All weight vectors in Sg, are orthogonal to a®
and they all have length square |3|?> = 3/2. Therefore the primary field § decouples from SU(2) and carries
conformal scaling dimension hz = 3/4. It creates a kink of the sine-Gordon angle parameter between wire y

and y — 1 (y+ 1) if y is even (resp. odd).

3.6.2 Ez x SU(3)

The discussion of Eg x SU(3) resembles that of E7 x SU(2). The gapping Hamiltonian takes the current

backscattering form
H=ud I 35+ 3500 3500 (3.155)
y/

Eg and SU(3) are embedded in the Eg by setting the simple roots

aI:eI+2_eI+37 I:17.._’57
1
af = o(=1,-1,-1,-1,-1,1,1,1),

o’ =(1,-1,0,0,0,0,0,0),

1
a® = 5-LLLLLL L), (3.156)
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The Cartan K-matrix

Kg 0
Kgysue = (@' -a’)y o = ° (3.157)

0 Ksya)

splits, and therefore the E7; and SU(2) sectors decouple. The explicit form of the Cartan matrices of Eg
and Ay = SU(3) can be found in Eq. (B.19) Appendix B.2. The SU(3) root system, as embedded in Es,

consists of vectors in
Asys) = {ta’, o, £(a” + a®)} C Ag,. (3.158)
Like the roots of E7, the roots of Eg are the orthogonal complement of SU(3) in Es,
Ap, ={a€Ap,:a-a’"=a-a® =0} C Ag,. (3.159)

The 72 roots of Eg extend the 30 roots of SU(6) by including weight vectors of the irreducible representations

1, 1, 20, and 20.
Ap, = LASU(G) +1+1+20+20. (3.160)

Here, ¢ embeds the SU(6) roots into Eg (c.f. (3.151) for the E7 case) so that the embedded simple SU(6)

5

roots are al,...,a®. The four irreducible representations of SU(6) involved in the extension have weight

vectors

1
20 = 5(171,337 588) $83,...,58 ::I:l’ S =0 ’
Jj=3
-1 :
20 = 7(1’ 17 53, 758) - 83, , 88 = ilv;ﬁg Sj = 0

Up to non-gapping boson velocity terms, the coupled wire model (3.155) can be expressed as a sum of

sine-Gordon potentials

H= _UZ Z cos (a . 2@2?/,1/2) — “Z Z cos (a . 2(-)2y/+1/2) , (3.161)

Yy a€Agg Yy a€lAgy(s)
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where 20 = (20',...,260%) and 20°

b1/ = @y — @yy1- The sine-Gordon terms in the first line in (3.161)

Y
dimerize the Eg currents between wire 2y’ — 1 and 2y while terms in the second line dimerize the remaining
SU(3) currents between wire 2y and 2y’ + 1. They can be shown to introduce a finite excitation energy
gap. The proof is similar to the previous cases for the A and D-series and will be omitted.

Quasiparticle excitations, in the form of kinks of angle parameters in (3.161), can be created by primary
fields e®¢ in the Eg and SU(3) Kac-Moody CFT at level 1. We begin with the SU(3) sector. The

fundamental representation corresponds to the primary field et ~ span{e?®® : 8 € Ssu(s) ), where the

weight vectors are

SSU(?)) = {_/875138a137_188}7 (3162)

ﬂgzl

3(0,071,...71), Br; = a7 + as — Bs.

The anti-fundamental representation corresponds to the hermitian conjugation e~ = (e™)f. Both primary
fields carry conformal scaling dimension h.+ = 1/3.
The fundamental 27-dimensional representation of Eg corresponds to the primary field et ~ span{e’?® :

B € Sg,}, where the weight vectors are

Sg,={-Bs+ter+te;:3<I<J<8}

U{ﬂ6—61+681123,...78}

U{—,Bl—e[+881[:3,...,8}, (3163)
1
ﬂ6 = 6(_37 _37 ]-v ]-7 ]-7 1a ]-» _5)7
1

B (-3,-3,5,—-1,—-1,—-1,—-1,-1).

"6

The anti-fundamental representation corresponds to the primary field e~ ~ span{e~#'¢ : 8 € Sg,} = (e™).

The two primary fields both share the same conformal scaling dimension h_x = 2/3.

Duality properties for E-series

The ground state structure of E-series has similar behaviors like A- and D-series, namely, if we extend the
coupling constant of the sine-Gordon terms to complex regime, duality transformation acts as a reflection
with respect to the real axis of the complex plane of the coupling constant. Although we can’t visualize it

due to the high dimensionality of the root systems, it is reasonable to conclude that all the points on the
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complex plane describe a gapped surface except those points on the negative real axis.
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Chapter 4

Boundary conformal field theories and symme-

try protected topological phases

This chapter is larged based on Ref. [123].

4.1 Introduction

4.1.1 SPT phases and quantum anomalies

Symmetry-protected topological (SPT) phases are quantum states of matter with a global symmetry G, which
can be either an internal or a space-time symmetry [38, 39, 124, 6, 5, 122, 125, 33]. This symmetry prevents
one from adiabatically connecting an SPT state to a topologically trivial state, namely, a product state.
More precisely, this means that one cannot find a symmetry-preserving quasilocal unitary transformation
that maps an SPT state to a product state [38]. In fact, as long as the symmetry is unbroken (either explicitly
or spontaneously), the phase space of gapped systems is partitioned into topologically distinct sectors that
cannot be adiabatically connected to each other. The trivial state lies in the trivial (in the topological sense)
sector of this classification. We will henceforth refer to it as the trivial SPT phase.

The existence of SPT phases has a close connection with quantum anomalies which are purely quantum
phenomena without any classical analog. Crudely speaking, it is expected that on the d-dimensional bound-
ary of an SPT phase in d+ 1-dimensional space-time lives an interesting phase of matter which is anomalous
in the sense that it cannot exist on a pure d-dimensional spacetime manifold, but must always be realized
on the boundary of a d + 1 manifold under the condition that the symmetry is realized in the same way as

in the bulk [41, 39, 126, 127, 128] .
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Put differently, consistency conditions of a conformal field theory (CFT) at the boundary and topological
properties of a bulk phase are closely related. Basically, a consistent CFT, when realized at the edge of a
bulk system, implies that the bulk is trivial, namely, continuously deformable to a trivial state. On the other
hand, if a bulk supports a CFT that is inconsistent as its boundary theory, the bulk cannot be deformed
into a trivial state. This leads us to the question: What are the criteria for a CFT to be consistent?

For a (24+1)d SPT phase, modular (non)invariance of its (14-1)d edge theory has been used as a diagnostic
for the (non)trivial bulk [129, 130]. For a nontrivial SPT phase protected by symmetry G, there is a conflict
between G and modular invariance of the edge CFT; more precisely, the edge theory orbifolded by G is not
modular invariant[129, 130]. A similar argument can be applied to boundary theories of SPT phases in space

dimensions higher than 2 [131, 132].

4.1.2 Edgeability

In this chapter, we will give further thought on consistency conditions of CFTs. We will rely on the simple
geometrical identity, 9> = 0, which essentially says there is no boundary to a boundary of a bulk system. This
would mean, in the context of SPT phases and their boundaries, that boundary theories of SPT phases are
not allowed to have boundaries. Conversely, it is likely that any “healthy” (conformal) field theories should
be possible to have boundaries — this may be a consistency condition of the (conformal) field theories.

In studies of surface topological orders of (3 + 1)d SPT phases, such a consistency condition was called
“edgeability” [63, 133]. (2 + 1)-dimensional surface theories are said to be “nonedgeable”, meaning that it
is not possible to create an edge between the theory in question and the vacuum. The only boundary that
one can possibly create is a domain wall. In contrast, any consistent (2 + 1)d theory should be “edgeable”
to the trivial vacuum. Here “edgeability” may be also called “cuttability”, meaning that the original theory
defined on a closed spacetime can be cut open.

We will follow this idea but focus on one lower dimension. In (1 4+ 1)d CFTs, in addition to modular
invariance, it is often claimed that a consistent conformal field theory with boundaries must have a complete
set of boundary states. (See, for example, Refs. [134, 135].) This reminds us of edgeability. In fact, the
construction of modular invariant partition functions are closely related to boundary conformal field theories
(BCFTs). The perspective from SPT phases gives us some insight about why BCFT is crucial for consistency,
which may look a little puzzling from other viewpoints. In order for a CFT to exist as a pure (1 + 1)d
system, both edgeability and modular invariance must be satisfied. (Once again, here edgeability may be
also called cuttability, meaning that the original closed (1 + 1)d CFT can be cut open into a well-defined

BCFT.) In many known cases, these two conditions are actually equivalent.
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Anomalies

Edgeablity Gappability
Boundary states Gapped ground states
in (1+1)d CFTs (= (+1)d TQFT)

Figure 4.1: Edgeability and gappability of conformal field theories are closely related — they both diagnose
if they must be realized as a boundary of (topological) systems in one higher dimensions. Hence, edgeability
and gappability are both related to quantum anomalies.

The simplest examples of (non)edgeability can be provided by chiral edge theories of topologically ordered
phases, in which the chiral central charge is nonzero. In these edge theories, it is not possible to find
conformally invariant boundary conditions or boundary states. These conformal field theories are hence
non-edgeable and must be realized at the boundary of a (topological) phase in one higher dimensions.

In the context of SPT phases, Ref. [136], gives an explicit lattice construction of an (1 + 1)d CFT,
which is the edge theory of (2 + 1)d bosonic SPT phases protected by Zx on-site unitary symmetry. In
this construction, while the CFT is successfully put on a one-dimensional lattice, the Z symmetry is not
realized in a purely local way — the action of the Zy transformation is non-on-site, and it involves links of
the lattice. It was claimed that its non-on-site symmetry has been gauged, which is equivalent to orbifolding
Z N symmetry. As we will clarify, within this CFT with the non-onsite action of the Z symmetry (and its
lattice realization), it is not possible to make a boundary which is consistent with the Z symmetry. Hence,

this theory is nonedgeable.

4.1.3 Gappability

Let us now also give a slightly different perspective from the correspondence between (1 + 1)d gapped states
and boundary states in CFTs. In Refs. [137, 138], (1 + 1)d conformal field theories perturbed by some
operators are considered. If the perturbation is such that it fully gaps out the theory, we flow from the
CFT to a massive phase. It was claimed that the ground state of the massive phase is described, with the
Hilbert space of the CFT, by a boundary state. In particular, in Ref. [137] this claim is explicitly verified for
various symmetry-protected topological phases in (1 + 1)d, which are obtained by perturbing CFTs. These
phases are fully gapped (1 4+ 1)d phases protected by a certain set of symmetries. In particular, topological
invariants, for instance, the group cocycle ¢ € H2(G, U(1)) of the group cohomology classification of (1 +
1)d SPT phases [39, 126], can be fully extracted from boundary states that describe SPT phases.

In this chapter, instead of (1 4+ 1)d SPT phases, we are concerned with (2 + 1)d SPT phases, and in
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4

‘é@ A

1+1d closed 1+1d open
CFT CFT

Figure 4.2: We claim that one cannot “cut” or “make a boundary” while preserving GG symmetry for certain
CFTs and certain symmetry implementations. These symmetry implementations correspond precisely to
(24 1)d G-symmetric SPT phases and the corresponding CFTs are their edge theories.

particular their edge theories. In various examples, we establish a claim similar to the above claim for the
bulk (1 + 1) dimensions; we again establish a connection between gapped ground states in the edge theories
and conformal boundary states. The relation between edgeability and gappability is schematically illustrated
in Fig. 4.1. In particular, for the edge theories described by the K-matrix theory, we establish the connection
between Haldane’s null vector criterion for gapping potentials [112] and the boundary states.

More precisely, the main question we ask is which boundary conditions (including symmetry projections)
can be imposed on conformal field theories that are defined on the edge of (2 4+ 1)d systems with boundaries.
We show the equivalence between our BCFT formalism and the K-matrix formalism used in Ref. [41] and
show that those CFTs that admit a consistent boundary state correspond to edge theories of trivial SPTs
and those that do not admit a consistent boundary state correspond to edges of nontrivial SPTs.

This criterion is very similar to that imposed by the modular invariance of CFTs field theories on the
torus. Putting a theory on a torus in this context implies that it can be realized on a strictly (1 + 1)d

manifold and need not be realized on the boundary of an SPT phase[129, 130, 139, 140].

4.1.4 Working Principles

Following these motivations, let us now describe our strategy to detect and diagnose non-trivial SPT phases.
We claim that one cannot construct a symmetry invariant Cardy state (conformal boundary state) for a
CFT corresponding to the edge of a non-trivial SPT. As mentioned in the above example, this is due to the
fact that although one may be able to put the edge theory of an SPT on a lattice, G symmetry cannot be
implemented in an on-site way — this shows up as nonedgeablity.

A Cardy state in conformal field theory is a coherent state in the Hilbert space of the closed sector of the
CFT which satisfies an open-closed consistency relation, namely the Cardy condition [141, 142]. We show
that in the case of nontrivial SPT phases, it is not possible to implement the symmetry and simultaneously

satisfy the Cardy condition.
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We list our procedure for diagnosis of SPT phases as follows (see Fig. 4.2 for an illustration).
1. First, cut the 1d circle and impose appropriate boundary conditions on the two ends.

2. Second, solve for Ishibashi states [143] of this open system, which correspond to solutions to the

boundary conditions imposed.

3. Third, try to construct a boundary state that is a linear combination of Ishibashi states, which satisfies
the Cardy condition and is also symmetry invariant. If such a state exists, then there is no nontrivial
SPT phase in a (2 + 1)d bulk system; if such a state does not exist, then the corresponding (2 + 1)d

bulk is a nontrivial SPT phase.

4. Fourth, once we have detected nontrivial SPT phases, we can obtain its classification from the trans-
formation of the Cardy state under symmetry operation, which will be explained in detail in later

sections.

Using this technique, we can study SPT phases protected by space-time and/or some internal symmetries.
Examples include the time-reversal symmetric topological insulators, bosonic SPT phases with Zy symmetry,
and topological superconductors protected by Zs x Z, symmetries. These examples have been also analyzed
in the literature by different methods [144, 145, 124, 146, 147].

The organization of the rest of the chapter is as follows. In Sec. 4.2, a brief introduction to BCFT
is provided. In Sec. 4.3, we study (2 + 1)d time-reversal symmetric topological insulators from the edge
theories and the corresponding symmetric Cardy boundary states. Edge theories of more general (2 4+ 1)d
SPT phases described by the K-matrix theories are considered in Sec. 4.4, where a connection between the
Cardy states and gapped phases in (1 + 1) dimensions is shown explicitly. Then we apply our approach to

topological superconductors in Sec. 4.5.

4.2 An introduction to BCFT

A boundary condition in a CFT defines a relation between the holomorphic and antiholomorphic sectors. In

other words, the two sectors are related to one another on the boundary via an automorphism of the form

S(z) = ps (5(2)). (4.1)

where S belongs to some symmetry algebra, ps denotes an automorphism of the algebra of fields, and 3

is a constant that parametrizes the boundary condition. S(z) and S(%) are fields which have the following
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expansion in terms of modes:

S(2) =) Suz"h S(z) =) Sz (4.2)

nez nez
where h and h are the conformal weights of S and S respectively. In most general situations, S and S are
the holomorphic and antiholomorphic components of the stress-energy tensor with h = 2. For CFTs with
current algebra symmetries, S and S are taken to be the currents with h = 1.

In the closed picture, a boundary condition is represented by a state in the Hilbert space of a CFT
defined on a circle. According to Cardy, such a boundary state must transform consistently under the
S-modular transformation, namely, a m/2 rotation of the space-time manifold (worldsheet) illustrated in
Fig. 4.3. To construct physical boundary states obeying this consistency condition (the Cardy con-
dition), one first constructs a set of states, the so-called Ishibashi states, |i,3)), which are annihilated

by the boundary conditions (known as gluing conditions) in the operator form after the 7/2 rotation,

[Sn — s (gn)] worldsheet rotation [Sn . (_1)hpﬁ (S,n)]7 namely,

(S = (=1)"p (Sn)] |2, 8)) = 0. (4.3)

A Cardy state is a suitable superposition of the Ishibashi states that satisfy the Cardy condition, which is

an implementation of open-closed channel consistency:
Zap(=1/7) = (B |e*™'THetomed | B), (4.4)

where Z,g is the partition function computed in the open-channel picture, and given as a trace over the
open Hilbert space with boundary conditions «, 8 on the two ends, and 7 is parameterized by the size of the
system [148]. The states |B,) and |Bg) which satisfy the above condition are the bona fide boundary states,
the Cardy states. For a more detailed introduction to boundary conformal field theory, see, for example,

Refs. [141, 142, 54, 148, 149, 150].

Symmetry invariant Cardy states and the obstruction A generic Cardy boundary state |B) (here
we are suppressing the label «, 8 specifying boundary conditions) lies in the subspace of the closed Hilbert

space and satisfies

(T —T)|B)=0 (on a boundary), (4.5)
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T S-transformation
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X Worldsheet rotation

Open CFT partition function Closed CFT amplitude
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time —>

Figure 4.3: An illustration of the Cardy condition; a consistency condition for conformal boundary
states. For boundary states that preserve conformal symmetry, the open channel partition function
Zopen 1= Ty, [e7 2 /T Hoven] must equal the amplitude for a “Cardy” state A = (B|e*™™Heiowed | B),

where T and T are the holomorphic and anti-holomorphic parts of the energy density operator, respectively.

In terms of the Virasoro generators, this condition can be written as
(Ln—L_)|B) =0. (4.6)

Equation (4.6) implies (¢ — ¢)|B) = 0, where ¢ and ¢ represent the central charges for the holomorphic
and antiholomorphic sectors, respectively. Thus, as expected, one cannot construct (conformally invariant)
boundary states when ¢ # ¢ since in this case, the (1 4+ 1)d CFT suffers from the (infinitesimal) gravitational
anomaly, and hence it must be realized as the boundary theory of an appropriate bulk system living in one
higher dimension.

For the rest of the chapter, we will deal with systems with the vanishing chiral central charge, ¢ — ¢ =0,
and hence there is no infinitesimal gravitational anomaly. We will also focus on (1 + 1)d CFTs for which one
can construct a modular invariant, if one is willing not to impose any additional symmetry. Hence, in the
absence of symmetries, the (1 + 1)d CFT can be safely gapped by adding a suitable perturbation. However,
if we impose some symmetry, e.g., if we consider (1 + 1)d CFTs realized potentially on the boundary of (2 +
1)d SPT phases, there may be a conflict between the symmetry and modular invariance. Once symmetry is
gauged (orbifold), the modular invariance may be spoiled. Conversely, if the modular invariance is enforced,
the symmetry must be broken.

At the level of BCFT, this would mean that one may not be able to construct boundary states which are
invariant under the symmetry. More precisely, we consider a symmetry that preserves T and T, respectively,

or exchanges them. Classically, such a symmetry preserves the conformally invariant boundary condition
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T = T along the boundary. However, once the theory is quantized, there may be an obstruction to construct
the corresponding a boundary state. A symmetry of a CFT (on a closed space-time manifold) is anomalous
if one cannot make a boundary that preserves this symmetry both classically and quantum mechanically.
Typically, this happens when there is a conflict between the Cardy condition (4.4) and the symmetry, so a
symmetric Cardy state does not exist. In this situation, the theory itself, together with the symmetry, cannot
be consistently defined and must appear as a boundary theory of a SPT phase with the same symmetry in
one higher dimensions. Nevertheless, by “stacking” copies of such SPT phases, the number of degrees of
freedom at boundaries increase, and the solution space of Eq. (4.5) is enlarged — it may be possible to find
a symmetric Cardy state if the number of the copies is large enough. When this occurs, the corresponding

CFT is anomaly free with respect to such a symmetry and can exist alone in its own dimension.

4.3 Edge theories of (2 + 1)d time-reversal symmetric
topological insulators

Let us begin with a simple example. Consider the edge theory of a (2 + 1)d time-reversal symmetric

topological insulator, which is described by (1 + 1)d massless Dirac fermions on a closed two-manifold X:

1 _ _
S = g [ dtde (iGnd i+ i01001). (4.7)

where 01 = 0; + 9,.. The system is invariant under both charge U(1)¢ and time-reversal symmetries, which

are defined as

Ul)e g = e Ppp, op — ey

Ty:Yr —p, Yr—mpr, n==xL (4.8)

Here in principle we have two choices for time-reversal symmetry (characterized by n): 72 = 1 and T2, =
(—=1)¥, where F is the total fermion number operator. By analyzing the stability (gappability) of the theory
(4.7), at least at the quadratic level (namely, by considering adding symmetry-respecting fermion mass
bilinears to the action), we know that n = 1 (n = —1) corresponds to the edge of the topologically trivial
(nontrivial) phase. It can also be shown the nontrivial topological phases form a Z class.

Now let us study the same problem (classification of topological insulators) by the BCFT approach.

Consider putting the theory (4.7) on a cylinder ¥ with boundary at = 0, 7. Then we would like to know,
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based on the discussion in the previous sections, if there exists a Cardy boundary state, which satisfies
the conditions (4.4) and (4.5), invariant under U(1)c and 7,. If such a Cardy state does not exist, the
corresponding theory must be the edge of a (2 + 1)d topological insulator.

One obtains the boundary conditions by varying the action (4.7) on the cylinder ¥,
[ORrOVR + YROVR — YL0YL — YLoYL] |, = 0. (4.9)
This boundary condition can be solved by the following set of gluing conditions [151]:

Bg type: ¢ =e Py, o =ePyp,

Aq type:  Yp =e Y, P = Yp. (4.10)

The two kinds of boundary conditions have been labeled Bg and A,, respectively. Note that, as the bulk
theory respects all symmetries, the presence of boundary might in general break (some of) the symmetries.
To be specific, the Bg boundary condition (with arbitrary 3) preserves both U(1)c and Ty, while either the
Bg or the A, boundary condition cannot preserve both U(1)c and 7_;. Therefore, it is impossible to, at
least for a single copy of the theory (4.7), find a symmetric Cardy state with respect to both U(1)¢ and 7_1,
because there is no such symmetry invariant boundary condition.

Let us first focus on the case of the symmetry group U(1)¢ % ZJ*, where ZJ* is generated by 7;. Although
the Bz boundary condition preserves U(1)¢ x Z;i, we still have to check that the corresponding Cardy state
is also symmetry invariant.

We impose boundary conditions By, Bg at © = 0, m, respectively. In order to satisfy the boundary

conditions, we define a mode expansion

dr= > e dp= Y (e,

rezZ+8/2n reZ—B)2n
Yr= Y. e dr= > gu(t)e (4.11)
reZ+p/2n r'e€Z—B/2m

The mode operators satisfy the following algebra:

{wr(t)7 wil (t)} = 27T§r+r’,07
{0 (8), 90 (1)} = {1(1), 01, (1)} = 0. (4.12)
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We define the normal ordering with respect to a vacuum |0, 3) which is annihilated by ¢, (> 0) and Py
(= 0):

- 1/)—7“1/}7" if r > 0,
Sy = (4.13)

—p_, ifr < 0.

The Hamiltonian and U(1)¢ charge operator F' take the form

_ w8 (8] 1)1
H, = Z 7‘-¢—r1/)r~+2(27r—[27r}—2> e

reZ+4
n s B 1
F= T === - = 4.14
Z V-r¥r +27T 27 2 ( )
rezZ+£

The open-channel partition function with insertion of symmetry flux e=27/@=1/2F on the cylinder with

(gspacm ﬂtime) = (7T, 27TT) is

Za(T) = Try, [6*2”(“*1/2)F€72wTH0]

9 {5/2”‘1/2} (0,4T)

—(a—1/2)
= , . (4.15)
n(iT)
To construct the Cardy states, we work in Euclidean signature, by performing the Wick rotation t = —ir,

and consider boundary conditions in the closed channel [after the space-time cylinder has been rotated by

/2, namely, (', 7") = (7, —z)]:
Py = e*iﬁe*”mwﬁ%, Y = eiﬁe*i”/%ﬂ%, (4.16)
where we have introduced the notation

¢3~2 = eiﬂ'/4wR7 1;3% = eiﬂ'/41LR7

w/L - 67i7r/4l¢)ln 1L/l, = eiiﬂp/47/;L7 (417)

for the fields with respect to the coordinate system after the 7/2 space-time rotation.
In Euclidean signature, the original time-reversal symmetry 7, which is an anti-unitary operator in the
Lorentz signature, becomes the unitary (CP), symmetry, the product of charge conjugation and spatial

reflection that flips 7 to —7. From the relation (4.17), this (CP), is further translated to (CP)_,, which acts
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on the fermions as

(CP)L,, : (e, 7) — /290 (=o', '),

(2,7 — ne_i”m?%%(—x', 7). (4.18)

Therefore, under the 7/2 space-time rotation (together with an analytic continuation from the Lorentz to

Euclidean signature), we have the following correspondence:

T2 =n" < (CP)2, = (-, n==+l (4.19)

One can check that (CP)’; preserves the boundary condition (4.16) as 7; preserves the Bg-type boundary
condition in (4.10).

Now, since we inserted a U(1)¢c charge operator in the trace when evaluating the open-channel partition
function, the corresponding boundary states in the closed channel must lie in the subspace of the Hilbert

space of the twisted fields that satisfy

Uh(a! +2m ) = 2P (!, ),

O (x4 2m,7') = 2™ (2!, 7). (4.20)
(Here we compactify the space direction as &’ = 2’ 4+ 2x.) Hence, we get the following mode expansions:

V= Y U™ A= Y e

reéZ+a r'eZ—a
W= Y e g = 3T e (4.21)
FeEZ—a 7 eEZ+a

where w’ = 2’ + i7’. The Hamiltonian is

He= Y el gni+ Y 7ol o

reZ+a reEZ—a

1 1\? 1 1\? 1

“(a—la] - = - —al+ =) - =, 4.22
+2<a [a] 2> +2<a+[ a]+2) 15 (4.22)

The ground state |0), _, is defined to be the state annihilated by 4. (r > 0), ., (' > 0), ¥4 (7 >

0), ¥ (> 0).
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The gluing condition (4.16) for the mode operators takes the form

Yl =iey | VreZ+a,

YL = ie_mzzl_r, vr' e Z —a. (4.23)

An incoming boundary state that solves the above gluing condition is

1Bg)a =exp [ ie™? Y "¢ i, +ie? Y @ 4, | [0)a, -, (4.24)

r’'>0 r>0

while the outgoing boundary state is

o(Bs| = a—a{0lexp [ e 3" Ll +ie7 3" gLyl | (4.25)

>0 r>0

Then the closed-channel partition function on the cylinder with (Bspace; ltime) = (27, 7wL) is given by

5/27"*1/21| (0’ ’iL_l)

g
_ —(a—1/2)
a{Bole™ ™| Bg)a = 4.26
< 0‘6 | ﬁ> n(ZL_l) ( )
Identifying 7= L™, we find that |Bg), is indeed a Cardy state that satisfies the Cardy condition
Zg(T) = o(Bole™H¢| Bg),. (4.27)

It is clear that the state |Bg), is invariant under both U(1)¢ and (CP)’_; (corresponding to 7). This is

verified by looking at the symmetry action on the modes (deduced from (4.18) and (4.21) at 7/ = 0):

UL vy — e 9, i) — e 4]

(CP)_,, = by — e”/QQZ;, oL — —ne™ 2L, p = =£1. (4.28)

Note that we have assumed the ground state |0), _, is also invariant under all symmetries. On the other

hand, the state |Bg), is only invariant under U(1)¢; it is not invariant under (CP)’,; (corresponding to
T_1).

Let us now consider two copies of complex fermions {¢1 g, ¥1,1,¥2 Rr, %2} One can show that it is

now possible to construct a U(1)¢ % ZZ’I symmetric Cardy state. One considers the following boundary
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conditions (before 7/2 space-time rotation):

Y.L =e Py p, b1 = ePho g,

Yo =e P2y g, o p = ey g, (4.29)

which preserve U(1)¢ x Z;’l if §1 = B2 = 7. The corresponding (total) Cardy state is the tensor product of

the outgoing boundary states associated with these two boundary conditions,

‘Bﬁ17ﬁ2>a = |Bﬁl>a & |Bﬁ2>aa (4.30)

which is invariant under both U(1)¢ and (CP)] (corresponding to 7_1).

In summary, a single copy (two copies), or in general, any number of copies (an even number of copies)
of the theory (4.7) can be consistently formulated, in the presence of U(1)¢ and 77 (7-1) symmetries, on
a cylinder 3. Therefore, the BCFT approach agrees with the classification of (2 + 1)d fermionic SPT
phases with U(1)¢c and time-reversal symmetries given by the gappability argument. In fact, there is a
correspondence between the form of Cardy boundary states and gapped phases in (1 + 1) dimensions.
In the following section, we study theories of multicomponent bosons, which describe (the edges of) more

general SPT phases in (2 + 1) dimensions, and will see such correspondence explicitly.

4.4 More general SPT phases in (2 + 1)d

4.4.1 Canonical quantization

Let us consider the edge of a (2 + 1)d Abelian SPT phase (either fermionic or bosonic ones) described by

the K-matrix theory of multicomponent compactified boson fields [41],

1

S =i [ PelKn060.6" - Vis0,00,67]. (4.31)

where K is a 2N x 2N integer-valued symmetric matrix and I,J = 1,...,2N. We are interested in studying
SPT phases, namely, those that have no topological order, hence we will restrict ourselves to theories with
det K = 1. Moreover, since SPT phases can be adiabatically connected to trivial phases in the absence of
symmetry, their edge theories are always non-chiral. V7; in Eq. (4.31) is a non-universal positive definite
matrix, which does not affect the topological properties of the theory; ¢! are compact U(1) bosons that

satisfy the compactification condition ¢! = ¢! + 27n!,n! € Z. When put on a cylinder of circumference 2,
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they satisfy the commutation relations

(020 (2), 0,07 (2/)] = Y 2mi( K1) 0,0(x — 2’ + 2m).

me”Z

It is more convenient to carry out the quantization in the redefined basis ! which we define by diagonalizing

the K matrix as [140]
Ap=¢, ATpA =K, (4.32)

where A € O(2N) and 7 is a diagonal matrix with +1 on the diagonal. To have a non-chiral theory,
we assume 7] has equal number of +1 and —1 in its diagonal. Without loss of generality we assume n =
diag(1,...,1,—1,...,—1). The theory has N copies of nonchiral bosons. The action in the ¢ basis takes the

form

5= % / &’z [(90) " 0(0:9) — (9:9)" (9:0)] (4.33)

where we have chosen V such that AVAT = lyy. The Hamiltonian and momentum operators are obtained

from the action (4.33) as

H= ﬁ /d:v [(0:0)" (0:0)]
pP= % dx [(820)"1(02¢)]. (439

After basis transformation, the redefined bosons satisfy the compactification condition
ol ~ ol + 27 (An)", nl ez, (4.35)
and the canonical commutation relation

(020" (2), 0utp” (2)] = 2mi(n™ )" 02 > 6(x — 2’ + 2mm).

me”Z
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The mode expansion compatible with the equations of motion, d;¢!n;; — 9,9 = 0, and the compactification

conditions takes the form

2w 1 2nri . I
I _ I 11 I I _—25 " [t4sgn(n’")x]
=@y + t +sgn Tlag + a.e” L . 4.36
¥' = o+ [t +sen(n)alag \/Qééo (4.36)
Since [¢f, af] = 2min’’ and p{ ~ p{ + 27(An)?,
ol e (Am) 'z, m! ez, (4.37)

where v! is the eigenvalue of a. The mode operators obey the following canonical commutation relation:

[al,al] =né""6pimo, n,m#£0. (4.38)

n)-’'m

4.4.2 Ishibashi states

States that represent a conformal invariant boundary condition are called Ishibashi states. They satisfy
[L, — L_,]|I)) =0, (4.39)

where L, and L, are the holomorphic and antiholomorphic Virasoro generators, respectively. For the K-

matrix theory defined in Eq. (4.33), they are given by

1
Lr = 5 Z : (arfn,L)Tan,L 5

nez
- 1
RS A (a0
nez
where
a,T :(ar,L,anR)T = (ai, A aiv, aiw'l, . 7af‘N)T (4.41)

are operators that appear in the mode expansion (4.36). While the general solution of (4.39) is not known,

a sufficient condition for it is given by [152]

(ar,L — Ra_.g)[v) =0, VreZ, (4.42)
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where the matrix R € O(N) does not depend on r. Solutions to Eq. (4.42) have the form
= —(a—p Ra_, , 4.43
V) = exp (,«5:1 (a—rz)" Ra ,R> v) (4.43)

where |v) are eigenstates of al with eigenvalues v that are characterized by Eq. (4.37). The Ishibashi
condition in Eq. (4.42) can be further simplified by a basis transformation, after which R is rotated to be

+1. Let us clarify this point. The Ishibashi condition in Eq. (4.42) is equivalent to

o1 = Ron. (4.44)
Now we can choose a B € O(2N) to be
1 0
B-= . (4.45)
0 R
If we redefine the boson fields
/
LN Y e B (4.46)
R PR
then Eq. (4.44) becomes
¢r/r = LR (4.47)

In terms of the mode operators, we have the Ishibashi condition

(ar.p Fa_,g)v) =0, Vrez (4.48)

This basis rotation and Eq. (4.32) can be simultaneously done if we define A’ = BA. In the following
discussion, we assume this has been done. To lighten the notation, we drop the prime on the field and mode

operators.
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4.4.3 Equivalence between the Ishibashi condition and Haldane’s null vector

condition

Haldane’s null vector condition of N copies of nonchiral compactified massless bosons states: if there is a

set of N linearly independent integer vectors {1;} satisfying the condition
I'K~';=0, V¥ij=1,---,N, (4.49)

then we can find a potential which can gap out the N-component boson theory completely. [41] This
condition comes from the locality requirement such that all the bosons can be pinned at the minimum values
in the gapping potentials simultaneously. When Haldane’s null vector condition is met, one can find the

gapping potential

Sgapping = Z a / dt dzcos(1- ¢+ o), (4.50)
{1
where {1} is a set of independent gapping vectors.

In this section, we discuss the equivalence between the Ishibashi condition and Haldane’s null condition.
We will establish their equivalence at the level of Cardy states, from which the correspondence between
Cardy states and gapped phases (from condensation of independent elementary bosons in the language of
Ref. [41]) is manifest.

We start from the total Cardy state for the N-copy boson system
B, {ai}) = ®L, |B, i), (4.51)

where [148]

1 N0
B i) = 777 > e v, (4.52)

n,€Z

(the repeated indices 7 are not summed over) is the Cardy state for the ith copy of the system and
|Vz>>nL —e Zv->0(1/7")(vi,L'a—r,L)(Vi,R'afr‘R)‘nivi>, n; € Z, (4.53)

is an Ishibashi state satisfying the Ishibashi condition (4.48). Here {v; = (v;r,Vig) |i=1,...,N and v; =

—v; r} is a set of linearly independent 2N-component vectors that generates, with integer coeflicients, all
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the solutions satisfying both Eqgs. (4.37) and (4.48).

Note that the Cardy state (4.51) satisfies the Cardy condition automatically, since it is the direct product
of decoupled Cardy states, each one satisfying Cardy condition separately. Now we want to rewrite Eq.
(4.51) in another form in which the connection to the gapping potentials satisfying Haldane’s null condition

is manifest. First, let us write the ground state in a coherent state, namely,
[ngv;) = emiviteo|0); = einiei o)), (4.54)

where [0); = [0);,z ® |0);,r is the true vacuum associated with the new zero modes v; /g - aor/r and
{e; ;== A~lv;} is a set of linearly independent integer vectors [by the definition of {v;} defined in Eq.
(4.37)]. Plugging Egs. (4.52)- (4.54) into Eq. (4.51), we obtain

|B, {041‘}> _ ®£\;1 (211/4 Z gimic o= ZT>O(1/T)(VLL'@T,L)(Vi.R'aT,R)ei'rliei‘(b()|0>i>
n;e€Z

1 — N ) (Vi a Vi Q.
— 2N/4—1e Zi:l Zmo(l/ Y(vi,L-a—r,L)(Vi,R'G—rR) Z cos [ni(e; - o + ;)]|0)1 @ -+ @ [0) v
{n:€Z}

(4.55)

Note that the cosine term in the last line of Eq. (4.55) is nothing but a gapping potential, and the
summation is over all the lattice constructed from the elementary or primitive lattice vectors introduced
in Ref. [41]. Then we conclude that in the N-boson system, once we have a Cardy state satisfying the
Ishibashi condition, Haldane’s null vector condition is also implied, since gapping vectors satisfy Haldane’s
null condition.

Conversely, given a set of N vectors satisfying Haldane’s null vector condition, we can always find the set
of primitive lattice vectors. Let us assume this is done. Then we can construct the Cardy state by following
Eq. (4.55) backward, from the bottom to the top line. This state satisfies the Ishibashi condition and Cardy

condition manifestly.

4.4.4 Symmetry analysis

In the following subsections, in order to facilitate the discussion, we use different bases interchangeably. One
can easily see their relations from Eqgs. (4.32) and (4.46).

We consider an on-site discrete Abelian symmetry group G with the group action of the form

g:p—=>o0+0¢% Vged, (4.56)
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where we assume that d¢9 is constant. From the mode expansion of ¢, we can read off that § only acts on

the zero mode ¢g ,
g:do— ¢o+0¢7, VgeG, (4.57)

Hence a complete set of symmetry invariant gapping potentials, related by boundary conditions, is described

by
G:(1Tpg+a) = (1T¢ + a) mod 277Z. (4.58)

From the discussion in Sec. 4.4.3, if we have a set of symmetry invariant Haldane vectors, we can find a set
of decoupled symmetry invariant Ishibashi states, with which we can construct a symmetry invariant Cardy

state. We will show it in the following discussion with two examples.

4.4.5 Example: 7, symmetric bosonic SPT

Let us consider the simple case of Zs symmetric bosonic SPT phases. The edge theory is described by

c [(0:0)" K (0:d) — v(0:0)" (829)] , (4.59)

1
CArw
where K = 0®. The Z5 symmetry, Zo = {e, g}, acts on the ¢ fields as

1
J: P — P +7 . (4.60)

P2 P2 q

The theory describes a trivial and a nontrivial SPT phases for ¢ = 0, 1 respectively.
As claimed above, for a trivial SPT phase, that is, for which one can find a symmetric gapping potential,
there exists a symmetry invariant boundary state. The conditions to be satisfied by a set of symmetric

gapping vectors {1;} are

1] K11, =0,

1o+ )i = (17 ¢ +a) mod 27 Vi, j. (4.61)

Since for the present case we only consider a single nonchiral boson, we need to find a single gapping vector

1. In the case for ¢ = 0 the above conditions are satisfied by 1 = (0,1)7. Hence the symmetric gapping term
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is cos(¢2 + ). In the chiral basis, this corresponds to cos (¢, — ¢r)/V?2).
On the other hand, this gapping potential corresponds to the Dirichlet boundary state that has the gluing

condition ag,;, — ap,g = 0. The Ishibashi state takes the form

V) —e2rap(I/Mara,

ao,.L = ao,R); (4.62)
and the Cardy state is

1 . oo ” —
1B.60) =57~ 3 eindo Lo (Umaraor oy (4.63)
nez

where ¢ specifies the position of the Cardy state with the Dirichlet boundary condition.

On the other hand, in the nontrivial case, namely, for ¢ = 1, one cannot find a nontrivial symmetric
gapping vector as the conditions (4.61) imply that 11/2 = 0 and [* + 1% = 0 mod 2. These cannot be satisfied
simultaneously for any nontrivial 1.

However, we expect [41, 39, 126] a Z5 classification so that two copies of the above theory must be trivial.
This double copy is described by ¢ := (¢!, ¢?, ¢%,¢*)T and K = 0% @ 0®. The symmetry action on the two

copies is taken to be identical. In order to be Z; symmetric the two gapping vectors must satisfy

D2+ 21+ 2+ 12 =,

2
> 17 =0mod 2, (4.64)
n=1

which comes from Eq. (4.61). These conditions can be satisfied simultaneously by the following two gapping

vectors:

—_
o

(4.65)

—
flary
I
e} s}
—
)
|

[
o
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This choice is not unique, for example an alternate choice of gapping vectors could be

2
o — — (=)
2
| o o —
—

For the set {1}, the gapping terms are

Lgapping

= Acos (¢" + ¢* + ) + N cos (¢° —

(;33 + Oé/)

1
= Acos | — + + — +
(\/i(wm ©1,R T P2,L — P2,R) )

1
+ X\ cos (\/?(‘PI,L —¢1,R— ¥2,L —P2,R) + 0/>

where we define basis transformed bosons

The mode expansion of ®; is

Q1 =

s

D; r

)

1 7 1 1 7
where by o = ﬁ(al,o,L—i-ag,o,L), bio = ﬁ(aLo,R—az,o,R% bao = ﬁ(al,O,L —agp,r) and bp o =

Dy g —*2(%71 L+e2L),
®1 R —%(801,12 — ©2.r)
Oy 1, —%(‘PLL —2,L),
Dy g = %(@1 R+ $2.R)

= Acos (P1, + P1,r + ) + N cos (Pa,1, + P2 g + ),

21
q)zOL+ L(t+x ZQJr szr (2mir/L) (Hz)7
r;éO
2
— (1)7, _ 7] bzr —(2mir/L)(t— 32)
oR+ — 7 (t 0+ — 7 go

(4.66)

(4.67)

(4.68)

(4.69)

_%(GI,O,R‘F

az,0,r). The oscillator modes b; , for the redefined bosons can be written in terms of mode operators in the

original basis based on Eq. (4.68).
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The redefined mode operators satisfy the following commutation relation:
[bi,m s bjn] = Mbrmtn,00i5, (4.70)

and there is a similar relation for the right-moving mode operators.
Hence the symmetry invariant Ishibashi states corresponding to gapping vectors 1; and 1y can now be

written in terms of symmetric bosons ®; 1, + ®; g,
- Vb, —rbi, T
[vidn =¢ Yoo (L/m)bi —rbi, lbio = —bio=n). (4.71)

We note that these Ishibashi states which are essentially Neumann states for ®; are manifestly symmetric

as the bosons ®; 1, + ®; r are symmetric. The Cardy state constructed from the Ishibashi states is
1 . 1 )
|B7 {ai}> = (21/4 ZGZ et |V1>>n1> &® <21/4 ZEZ ezn2a2V2>>n2> . (472)
ni ng

To show that this satisfies the Cardy condition, we first compute the amplitude. The closed sector Hamil-

tonian factorizes in b* basis as

He= Y [;(bf])erZbirbiJeriTi - 0;45 (4.73)

1=1,2 >0 >0

Note that this Hamiltonian is not the physical Hamiltonian that we started with for the boson system with
boundaries, but the Hamiltonian obtained after we perform the S-transformation between space and time.

The amplitude decomposes as
A= (B {ai}|q™|B,{0:}) = @iz12 | (B ailg™ | B, o) (4.74)

where ¢ = exp(—2nL) and we have used the decomposition of the Hamiltonian. Both the decomposed parts

give rise to the following modular function [149]:

i 1 1
Ba i H Ba i) — Ko . 5 4.75
(B0l B0 = g (0.5

which transforms to the open channel partition function under modular S transformation and hence satisfies

the Cardy condition. The subscript “/N” stands for Neumann boundary conditions.
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4.4.6 Generalization to Zy cases

The discussion on Zs symmetric bosonic SPT phases can be generalized to case of Z symmetry. As before
[41] the edge of a Z y symmetric SPT is described by a K-matrix Luttinger liquid with K = ¢* in Eq. (4.31).

The symmetry acts as

J: — + — , (4.76)

where § is the generator of Zy group. When ¢ = 0, this corresponds to a trivial SPT phase and ¢ =
1,...,N — 1 corresponds to nontrivial SPT phases. In analogy to the analysis for the Z, case, one cannot
find a symmetric gapping vector when ¢ # 0. This further implies the inability to find a symmetry invariant
Cardy state. However, NV copies of a nontrivial Z SPT phase can be deformed to a trivial phase, hence we
expect to construct a symmetric boundary state for this enlarged theory.

We consider K = @Y 0%, namely, N copies of non-chiral bosons. In this case, the Zy symmetry
transformation is simply copies of the above transformation, namely

1 1

K N G . i=1,...,N. (4.77)

N
¢? ¢? q

>

To completely gap out the system, we need N 1 vectors that satisfy

IVK~'; =0,

g17¢ g7 =17 p mod 21 Vi, j. (4.78)

Equation (4.78) is equivalent to

M=

(li2alj2.a—1 +l?a—1l?a) — 0’

Q
Il
—

2271+ ql?* = Omod N Vi, j. (4.79)

WE

Q
I
-
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Here we choose a simple set of 1 vectors,

{1}:1, =(1,0,1,0,--- ,1,0)"
1, = (0,1,0,-1,0,0,---,0,0)"
13 = (0,070,1,0,—1,0,0,"' 7030)T

1y = (0,0,---,0,1,0,-1)T. (4.80)

We can check that in this set, the 1 vectors are linearly independent. Then following what is done from Eq.

(4.67), we can write down the gapping potential term

LI g = Aicos($] + Ok + -+ PN + 1)+

:Alcos(¢>1+a1)+--~,

where the redefinitions are

31 T(% + 3+t on)
i3 7(% ¢3)
Py = \%(ﬁv—l — %), (4.81)

based on the gapping vectors in Eq. (4.80). Then the ®; fields can be expanded in terms of b fields like those
in Eq. (4.69). Then the analysis of Cardy states and the amplitude between boundary states follow that of
the Z5 case.

We work in the “®;-bosonic” basis. In this basis, the Ishibashi states are taken as Neumann free boson

states and are manifestly Z symmetric. They take the form

1 1 - -
[Vi)n = NP { E :sz;—rbz',—r} bio = —bio =n), (4.82)
N

r>0

where b; , and Bi,,. are left and right mode operators corresponding to the boson ®; and bi70,l_)i,0 are defined
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similarly as those in Eq. (4.71). The Cardy state for ®; takes the form

1 inog
B i) = 777 > e v (4.83)

nez

The complete boundary state is a tensor product of individual boundary states corresponding to vectors in

{1},

1B, {a;}) =N, |B, ). (4.84)

4.4.7 General symmetry groups

Finally, let us consider a more generic symmetry group G acting on the boson fields:
Gg:o—=Ugp+d¢?, Vged. (4.85)
The mode operators transform under g € G as
g:ar = Ugar, o — Ugpo + d¢7. (4.86)

In this case, we need to consider both the zero mode part and the oscillator part in Eq. (4.55). In the previous
discussion, we had U, = [. Thus we could focus on the zero mode part, namely, the gapping potential of
Eq. (4.55). To simplify the discussion, we take one copy of compactified boson fields. In this case, n = o*
and the mass matrix coupling the left and right moving mode operators can be taken as M = ¢” from Eq.

(4.48). Then the invariance of the Hamiltonian or the action of the theory gives the constraints
UlU, =13, Ulo*Uy=+o°. (4.87)

Then we have the following general solutions U, = o%,i0Y,0?. When U, = 0%, we have UgTMUg = M,
which means that the oscillator part in Eq. (4.55) is invariant. However, when Uy = io0¥ or o%, we have
U gT MU, = —M, meaning that the oscillator part would flip sign. Physically, it means that the boundary
state changes into a Dirichlet boundary state from the Neumann boundary state. It is reminiscent of T
duality in string theory. In this case, the zero mode part is usually not invariant. Therefore, for general
symmetry groups, we can focus on the zero mode part, which is equivalent to the gapping potential analysis

in Ref. [41]. We will have more discussions on duality in Sec. 5.
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4.5 (241)D topological superconductors

In this section, we study the (2+1)d topological superconductors protected by Zs x Zy symmetry.

From the discussion in the last section, we have seen that the construction of a symmetric boundary state
is closely related to finding a gapping potential to gap a given (edge) CFT without spontaneous symmetry
breaking. In this section, we show that there is another way to construct a symmetric Cardy boundary state
by considering only the fundamental boundary conditions of the free fermions.

An example is the class of (2 + 1)d topological superconductors protected by a Zy x Z, unitary on-site
symmetry. The classification of these topological superconductors is Zg [129, 153]. Again, we consider the
edge theories, which can be described by the Ny copies of real fermion fields in 1 4+ 1 dimensions. For

Ny =1, they are described by the action
1 9 .=
S = o d°ziv~y"0, ¥ (4.88)

Upon picking a Clifford basis where 4 = ¢® and y! = io¥ and writing ¥ = (¢1,%r), one can decompose
a Majorana fermion into two Majorana-Weyl fermions. This action is invariant under a Zy X Zs symmetry

group that is generated by the fermion number parity for each chirality.

4.5.1 Quantization and boundary states

Due to the fermionic nature of the fields, there are two sectors depending on the periodicity of the fields
under rotations by 27. The real fermion could have Ramond sector (R) or antiperiodic, Neveu-Schwarz (NS)
sector, boundary conditions along the spatial direction. For the closed system, the left and right moving
fermion fields are decoupled. We can choose boundary conditions independently for them. Therefore, there

are four sectors corresponding to the boundary conditions:
(L, R) =(R,R),(R,NS),(NS R), (NS NS). (4.89)

The fermionic mode expansion takes the form

|27 .
wL (‘T7 t) = L ET : ¢T67(27rlr(t+x)/lj)a
2m 7 _(2mir(t—)/L)
'll)R(!L‘,t) = T Z'(/]re ; (490)
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where the mode operators satisfy {¢,., ¥, } = 6y4.7 0, {1/3,«, 1[%/} = 0ptrr 0 and {¢y, z/?rr} =0andr e Z(+1/2)

for the Ramond and Neveu-Schwarz sectors respectively.

Boundary state: By varying the action (4.88) and requiring the boundary variation to vanish, one can
read off the suitable boundary conditions to be {1 £ ¥r}|s=0 = 0. In order to construct the Cardy state,
we rotate the space-time cylinder by /2 such that the manifold has a temporal boundary. Upon space-
time rotation the boundary conditions transform to {1y £ it)r} [t=0 = 0 These are the relevant boundary
conditions for constructing the Ishibashi and Cardy states. The Ishibashi states satisfy the following gluing

conditions:

(r + ind—i) [m) = 0, (4.91)

where n = £1. Since this is a free theory, the solutions to the above gluing condition are known. There are

two solutions for each n corresponding to the NS-NS and R-R sectors. These Ishibashi states are [148]

— e_iﬁ ZT>0 Yoy ‘0>

) NS-Ns NS-NS,

Mg = e~ 20 VI iy (4.92)

where |0)ys—ns and |n)g—pg denote the nondegenerate vacuum in the NS-NS sector and the degenerate
ground state associated with the n boundary condition in the R-R sector, respectively.

Before moving onto the discussion of topological superconductors we note the crucial fact that unless
we can construct a Cardy state with only a single boundary condition (namely, n = +1 or —1) in the NS
sector, it is impossible to satisfy the Cardy condition without including both sectors. This can be seen by

considering the overlap of real-fermion Ishibashi states [154],

ws{nle e ) s = fﬂ(jf))
ws{(nle 27| — ) g = f’?(fjf))
—onLH. B 99(2iL)
R<<7l|e LH TI>>R = W7
r{nle”?™ e[ —n)r =0, (4.93)

where Y5 3 4 are the Jacobi 6 functions. Under modular S transformation, these modular functions transform
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as

¥3 =172t U3(it)
n(2L) n(it)
194 L=1/2t 192 (Zt)
n(2iL) n(it) ’
P9 L=1/2t U4(it)
n(2iL) n(it)

(4.94)

One can see that unless one can construct a Cardy state with a single Ishibashi state (either n = +1 or —1),
the S-transformation mixes the R-R and N.S-N S sectors.
We define the fermion number parity operators, (—1)f and (—1)F , for the left and right moving fermions,

respectively, which generate Z5 xZ5 symmetry. By construction, these satisfy the following (anti)commutation

relations: {(—1)¥ 4.} = {(—1)15,1/;7«} =0, and [(—1)F71;r] = [(—1)F71/1r] =0.

the NS-NS sector: It is straightforward to check that the Zy x Z5 invariant boundary state in the NS-NS

sector is

|B)ns-Ng = % [+)Ns-ns — =) Nsns]s (4.95)

since we have

(=D Ihvsns = (~D)F Inhns.ns = =| = n)ns-ns, (4.96)

as the vacuum |0) ys_ns is the eigenstate of both (—1)F and (—l)F with the eigenvalue —1. It can be seen
that both n = +1 Ishibashi states are needed to construct a fermion parity invariant boundary state in the

NS-NS sector. We need to include the R-R sector in order to construct a symmetric Cardy state.

the R-R sector: The R-R sector is a bit more subtle because of the presence of zero modes. Let us define

Iy = %(1/)0 + ito), (4.97)
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which satisfies the anticommutation relations {T';,I'_} =1 and {I'y, Ty} = {T'_,T'_} = 0. In terms of the

zero mode operators, the fermion parity operators take the following form

(—1)F =v2po =Ty +T_,

(—1)F =iv2pg =T, —T_. (4.98)
The vacuum in the two sectors n = 4 can be defined as

= +) = e*|0),

n=~)=e""T_]0), (4.99)

where @ are arbitrary phase factors.
It can be shown that a fermion parity invariant Ishibashi state does not exist for a single fermion flavor

in the R-R sector and consequently we cannot construct a fermion parity invariant boundary state.

4.5.2 Boundary states and the Zg classification

Having found out that, for a single copy of fermions, it is not possible to construct a Cardy state that
preserves the fermion number parity, we now proceed to analyze multiple copies of real fermions. We will
show that for 8n copies of fermions, there exists a fermion number parity conserving Cardy state. This
implies a Zg classification of topological superconductors. This agrees with results in Refs. [153, 129].

The boundary condition for Ny copies of fermions is
M M =0, M =1,...,Ny. (4.100)

More generally, we may take 7™ to be different for different copies. But since later we will take direct a
product of Ishibashi states with the same 7 value, it is always possible to transform such boundary conditions
to the identical n case. There could be mixing between different copies, which is the most general case. We
do not discuss it here. Since one can already construct an NS-NS Ishibashi state for a single flavor of real
fermions, we will focus our discussion on the R-R sector. We follow the convention in Ref. [155].

We first assume that Ny is even, namely, Ny = 2n,n € Z. It is convenient to define

1
ret .= 72(¢§“*1 +ip3®), a=1,...,n, (4.101)
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which satisfy the algebra {T'%*,T'*~} = §ob, {T'e+ T'’+} = {T'%~ T®~} = 0. Then the Ishibashi vacua |n)%z

must satisfy
(T8~ i) |m%g = 0. (4.102)
The solution to this constraint is given by
e = e 2" T (0) g, (4.103)

where the Fock vacuum is defined as I'*~|0)grr = ['**|0)gr = 0. Finally, the Ishibashi state in the R-R

sector can be written as

Ny

—i ; M M
M) R = e 20 2onia VI 0, (4.104)

By construction, (—1) anticommutes with left-moving fermionic modes, but commutes with all other
modes, while (—1)F anticommutes with all right-moving fermionic modes, but commutes with all other

modes. From the expressions (4.103) and (4.104), we thus have

(~1)FBPl) g = | — 1) kR (4.105)

provided (—1)¥|0)grr = (—=1)¥'|0)grr = |0)rr. On the other hand, the fermion number parity operators can
also be represented, in the space of the ground states in the R-R sector, in terms of the zero mode operators

as

(~)F = (1) I (1 —2rere),

a=1
_ 1\" & -~
-F == 1— 20 7). 4.106
0f = (5) T1 ) (1.106)
Using the above relations, one can show
D mer = (0" [ = M%r: DT )%R ="l = 0%r, (4.107)
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which implies, as the action of (—1)F(F) on the non-zero modes is as before,

(=D Y rr = (=)™ | =) rr, (=1 [M)rR =1"| = n)RE. (4.108)

Now, it seems there are two different ways of how (—1)¥ (F) acts on the Ishibashi states, namely, Eqs (4.105)
and (4.108). To avoid this ambiguity, we must require n = 0 mod 4 or Ny =0 mod 8 to have a well-defined
fermion number parity for each chirality.

Therefore, the symmetry invariant boundary state in the R-R sector takes the form

|B>RR: %{'"’_»RRJ’_l_»RR}, Nf =0 mod 8. (4109)

The total Cardy states are now the combination of both the NS-NS and R-R parts

1 )
|B>:|: = N (|B>NSNS + Z|B>RR), Nf =0 mod 8. (4110)

The factor £¢ between the NS-NS and the R-R components are both allowed to satisfy the Cardy condition,
which also fixes the normalization factor N.

Finally for odd number of flavors of real fermion, there would always be one singlet, which is not paired
up. Thus it is impossible to construct a fermion parity invariant boundary state. Therefore the classification

is indeed Zg.

4.5.3 Boundary conditions, gapping potentials and triality

So far, we have only discussed the transformation of boundary states under symmetry operation. But what
would happen to the gapping potential? Is it also invariant under symmetry operation? Here we would like
to clarify two points: (1) if we can find a symmetry invariant boundary state, then there should exist a set
of boundary conditions that is also invariant under the symmetry transformation; (2) symmetry invariant

gapping potentials do not guarantee that the corresponding boundary state is also symmetry invariant.

The case of Ny =8 As we have shown before, for eight copies of Majorana fermions, we can construct
a fermion parity invariant boundary state, which also satisfies the Cardy condition. We will now try to
identify the corresponding boundary conditions following the triality used in Ref. [156].

The boundary conditions and the fermion representation we are using in the notes are given in the vector

representation of SO(8) algebra. For this algebra, we know that it has an important property—the triality.
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In the vector representation, we can bosonize the (complex) fermions as
haj = €700, PTed = gl (4.111)
where a, j = 1,2. Then under the fermion parity operator (—1)f, the boson fields change as
(1) " @aj (1) = daj + . (4.112)

Thus for each individual complex fermion, the boundary condition is not invariant under this Z, symmetry.
Now let us use triality to write the fermions in the spinor (c) representation. In this representation, we use

a new set of boson fields to bosonize the (complex) fermions.

¢Ch = % Z ¢o¢j7

J=12
5 1 z\a
(b‘p = § Z (U )a¢aj’
a,j=1,2
=3 Y )i
= 9 jPajs
a,j=1,2
1 z z\J
K=y Y 03 ()b (1113)
a,j=1,2

In this basis, with the transformation (4.112), we can easily check that
(-1)F¢i(=1)F = ¢" mod 27, i = ch,sp,fi,X. (4.114)

A similar analysis can be used for the (—I)F operator. Then, by adding gapping potentials, ¢¢ defined in
Eq. (4.113) can be pinned at their ground state values simultaneously. Furthermore, by fermionizing these

bosons to define new fermion operators, C;, 7 = ch,sp,fl,X via
Ci=e 4" (4.115)
the boundary conditions can be expressed in terms of C;, namely,
Cr.ch = Crchy Cr,si = CR g1,

Crsp=—CRrsp, CrLx = Cjz,x at the boundary. (4.116)
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Then it is manifest that these boundary conditions are invariant under the transformations defined in Eq.

(4.112).

The case of Ny =4 Let us make the relation between boundary conditions, boundary states and gapping
potentials clear. Given a boundary condition, we can obtain a boundary state as the solution to the boundary
condition. In this sense, there is a one-to-one correspondence between boundary conditions and boundary
states. On the other hand, different gapping potentials can correspond to the same boundary condition. In
terms of gapping vectors, it means that primitive and non-primitive lattice vectors can represent the same
boundary condition. In this sense, the correspondence between gapping vectors and boundary conditions or
boundary states is many to one. Therefore, the symmetry invariance of a specific set of gapping potentials
does not imply the symmetry invariance of the boundary condition or the boundary state. Let us take an
example to clarify this point. In Ref. [157], the authors show that for two copies of Dirac fermions, which is
equivalent to four copies of Majorana fermions, there exists a set of symmetry invariant gapping potential,
which is equivalent to the boundary condition. Specifically, in their language of Dirac fermions, the gapping

potentials

Vi oc 3 pibd by 01 + Hee. = cos (2601 + 205),

Vo o Q/JIR'LZ};LwleQR + H.c. = cos (2601 — 26,) (4.117)

are invariant under fermion parity projection. Here 6, = 3 (¢a,r — $a,r),a = 1,2 where w; g X ePar
and ¢; ; o el However, the Zy x Zy symmetry is spontaneously broken, namely, the single-particle
backscattering terms do not have vanishing vacuum expectation values (vev), WI rU1L) # 0, <¢; r2r) # 0.
In their language, the boundary condition corresponds to the vev. Even if the gapping potential is symmetry
invariant, the vev is not invariant. This is consistent with our analysis that there is no fermion parity invariant

boundary state for four copies of Majorana fermions.
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Chapter 5

Conclusions and outlook

In this dissertation, we have discussed some applications of conformal field theories in topological phases of
matter.

In Chapter 2, we have constructed new quantum Hall states via coupled wire models. We would like to
suggest some possible experimental signatures of such quantum Hall states here. As mentioned, the most
evident phenomenological distinction of the Eg, G5 and Fj states are modified Wiedemann-Franz laws with
distinct ¢/v ratios. Their presence in low temperature at filling v = 16 or 8 could be verified by thermal Hall
transport measurements. Similar thermal conductance observations have recently been recently performed
for other fractional quantum Hall states [158, 159]. Moreover, all three quantum Hall states proposed in
this chapter carry bosonic edge modes that only support even charge gapless quasiparticles. This gives rise
to a distinct shot noise signature across a point contact below the energy gap. The anyonic statistics of the
Fibonacci excitations in the G, and Fj states can be detected by Fabry-Perot interferometry.

In Chapter 3, we systematically studied Abelian surface topological orders that fall under the ADE
classification of simply-laced Lie algebras, as well as their symmetries and dualities properties via coupled
wire models. A summary was given in section 3.1 in the introduction. Here, we further elaborate on
particular results that were not covered in section 3.1. The SPT/SET surface degrees of freedom were first
projected onto an array of wires with alternating propagating directions by a generic symmetry-breaking
surface stripe order. These chiral wires were then decomposed and backscattered to neighboring wires,
thereby obtaining a finite excitation energy gap. We derived the exactly solvable ground state structures
as well as the properties quasiparticle excitations by studying the inter-wire sine-Gordon Hamiltonians of
the bosonized variables. Specifically, for the D-series, the antiferromagnetic time-reversal symmetry defined

in Ref. [21] was dualized to a particle-hole-like symmetry. For the A-series, the mixing between the U(1)
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charge and the neutral SU(N) sectors allowed us to construct a theory that supports m-fluxes that mimics a
Z5 orbifold/gauge theory. Throughout the ADFE discussions, we noticed that all the current backscattering
interactions were self-dual in the sense that their dualized gapping terms had the same form as their original
ones, except for the special D-series case of SO(4) which required alternative treatment and was out of the
scope of this chapter.

We provides several future directions along the discussion in Chapter 3. (1) Based on the ADFE classifica-
tions that are explored here as parent states, it is interesting to study the descendant topological states, for
instance, Eg quantum Hall state. [42] (2) Our analysis can be systematically generalized to non-simply-laced
affine Lie algebras. There has already been some specific progress in this direction [21, 22]. (3) The general
ground state degeneracy (GSD) and modular properties when the model is compactified on a closed surface
need to be carefully addressed in future works. This is especially the case for the non-Abelian theories. GSD
of orbifold structures that support w-fluxes, similar to those appeared in the A series, should also be explic-
itly analysed. (4) The duality analysis suggests the coupled wire models are particular exact solvable points
that belong in a moduli space of surface states that bridges between different dual phases through phase
transitions. It would be interesting to explore these moduli spaces of surface states in a controlled but per-
haps non-exactly solvable coupled wire manner. Moreover, it would be interesting to utilize the coupled wire
constructions to establish the dualities between non-Abelian gauge theories proposed recently [108, 109]. (5)
Topological phases and dualities in 3 4+ 1D systems can also be studied using the coupled wire construction.
There have already been several attempts [24, 96, 97] in particular situations, and it would be interesting to
perform a systematically exploration that encompasses and classifies phases with similar properties.

In Chapter 4, we have discussed the (1 + 1)d edge theories of (2 + 1)d SPT phases from the perspective
of boundary CFT. We argue that, if a (1 + 1)d CFT is realized as an edge theory of a (2 + 1)d SPT phase,
it is not possible to find a Cardy boundary state preserving the symmetry of the SPT phase. And vice versa:
when it is not possible to find a symmetry-preserving Cardy boundary state in a (1 + 1)d CFT, the CFT
must be realized as an edge theory of a (2 + 1)d SPT phase. In short, boundaries of SPT phases are not
“edgeable,” and, conversely, “nonedgeable” CFTs must be realized as an edge theory of a bulk theory in one
higher dimension.

We also observed that the edgeablity condition in CFTs are naturally related to the gappability condition.
This can be seen most straightforwardly if one invokes the identification between boundary states and gapped
ground states (states obtained from a CFT by adding a massive perturbation). Thus, (in)ability to find a
symmetry-preserving boundary state means (in)ability to find a symmetry-preserving gapped state. In turn,

this also provides an alternative point of view on the relation between BCFT and the modular invariance. It
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should be noted that, in higher-dimensional SPT phases, the gappability condition is replaced by a “weaker”
condition; (2 + 1)d boundaries of (3 4+ 1)d nontrivial SPT phases are either ingappable or topologically
ordered, if the symmetry of SPT phases is preserved. Nevertheless, the edgeablity condition is still valid
even for boundaries of higher-dimensional SPT phases. Thus, the edgeablity condition has some precedence
over the gappability condition in general, although they seem equivalent in (1 + 1)d edges of bulk (2 + 1)d
SPT phases.

In the following, let us make a few more comments before closing.

Symmetry actions on boundary states

First, let us summarize the way symmetries act on boundary states in CFTs. In particular, we contrast
physics of (2 + 1)d and (1 + 1)d SPT phases. Let us consider a CFT with a global unitary symmetry
G (spatial and time-reversal symmetries may be discussed in a similar fashion). We consider conformally
invariant boundary states {|B,)} realized in the CFT, where a labels the boundary states. Then, for a
symmetry operation g € G, one expects the following possible behaviors of {|B,)} under g: In the first case,

the action of g on boundary states is given by

g‘Ba>h :ga(g|h)|Ba>h- (51)

Here, |B,)p is a boundary state in the sector twisted by h € G, and g,(g|h) is a phase factor. namely,
boundary states are invariant under the symmetry, up to a phase factor. As claimed in Ref. [137], this case
is relevant to the physics of boundaries of (1 + 1)d SPT phases. In Ref. [137], the correspondence between
gapped ground states of (1 + 1)d SPT phases and boundary states in CFTs was made. These boundary
states are anomalous in the sense that when acted with symmetry they give rise to anomalous U(1) phases,
Eq. (5.1). Furthermore, the anomalous phase £(g|h) is related to the two cocycles in H?(G,U(1)), which
gives the classification of (1 + 1)d SPT phases protected by G. (These phases, however, only appear in
boundary states in twisted sectors, namely, the sectors with twisted boundary conditions by a group element
in G.)

On the other hand, there are cases in which a boundary state |B,) is mapped to another boundary state

| B,/ ), which can be different from the original one:

9|Ba) = |Ba)- (5.2)

We further distinguish the following two cases: (a) There is a subset of boundary states which are mapped
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to themselves for all symmetry operations g € G. (b) None of the boundary states remain invariant under
g € G. Case (a) is a typical situation when the (1 + 1)d CFT can be realized on its own right, without
referring to higher-dimensional bulk systems. On the other hand, Case (b) is relevant to (2 + 1)d SPT

phases, as we have discussed for the bulk of the chapter.

Boundary states and locality

In Eq. (5.2), it should be noted that the right-hand side is not given by a superposition of |B,), but by a
single boundary state. In fact, superpositions of |B,) in general do not satisfy the Cardy condition, and are
disqualified as a physical boundary state. [In this respect, the symmetry transformation law in Eq. (5.2) is
analogous to anyonic symmetry which acts on (2 + 1)d topologically ordered phases by permuting anyons.] In
the present context, this is in perfect agreement with the standard theory of spontaneous symmetry breaking.
When spontaneous symmetry breaking happens, ground states having different expectation values of an order
parameter should not be superposed in the thermodynamic limit. (These states are “superselected.”) The
overlap of these states vanishes in the thermodynamic limit, and hence a given ground state with a definite
value of the order parameter cannot be mixed by any physical (local) operation. (However, the overlap
between different boundary states may not be zero, and defines the Affleck-Ludwig ¢ function.)

In some sense, one can think of Cardy states setting the notion of locality. It should be noted that there
are multiple sets of solution to the Cardy equations, which correspond to different modular invariant bulk
partition functions.

Let us further illustrate the notion of locality set by the Cardy states: As we demonstrated through
various examples, when none of the boundary states are invariant under symmetry G, the CFT must be
realized as an edge theory of a bulk nontrivial SPT phase protected by on-site unitary symmetry G. In the
edge theory, the criticality (gapless spectrum) is enforced by the symmetry G. This is quite different from
criticalities (conformal field theories) that occur in isolated (1 + 1)d systems; there are typically perturbations
at a critical point which are G symmetric. By perturbing the critical point by such perturbation, it may be
possible to flow into a gapped phase where the G symmetry is preserved. This suggests that the symmetry
G acting within the edge theory of a nontrivial SPT phase is not an ordinary symmetry. In fact, as noted

in Ref. [136], the symmetry G is realized non-locally or as a non-on-site symmetry within the edge theory.

Duality and triality

Another canonical example is provided by the Z, symmetric topological superconductor discussed in Sec.

4.5. The edge theory in this case is described by the action (4.88). Here, the Zy symmetry flips the sign of

107



the mass term, and hence enforces the criticality. In the language of the (1 4+ 1)d transverse-field quantum
Ising model (or the 2d Ising model), this is nothing but the Kramers-Wannier duality. It is a non-local
operation which exchanges the Ising spin operator ¢ and the disorder operator p.

Let us have a look at how this Zs symmetry acts on boundary states. In the critical Ising model, there
are three physical conformal boundary conditions: the free condition |f), and the fixed ones |+) and |-).
The periodic (R) sector contains three scalar fields: the identity, the spin field o, and the energy density ¢, of
chiral conformal weight 0, 1/16, and 1/2 respectively. They lead to three Ishibashi states |0)r, |15 )&, and
|1)r. The second, antiperiodic (NS) sector contains a single scalar field, the disorder field y, with the same

conformal weight 1/16 as the spin field, and gives rise to one Ishibashi state |%>>NS~ The Cardy boundary

states are given in terms of these Ishibashi states as

4 = 5 100 £ V2l T n + I
17 = 100+ VE'l s — 5D 53)

which, in terms of the Ising spin variables, correspond to the fixed boundary condition with spin pointing
up/down at the boundary, and the free boundary condition. The Kramers-Wannier duality exchanges the
free boundary condition |f) and one of the fixed boundary conditions (|+)). This is so since the duality
transformation exchanges o and p, and hence the Ishibashi states |1/16))g and |1/16))ns. (In fact, Ref. [160]
proposed a method to diagnose the existence of the Kramers-Wannier duality, for a given CFT, by using
boundary states.)

Let us next consider Ny copies of (2 + 1)d topological superconductors protected by Z, symmetry, as
discussed. We will focus on the cases where Ny is even. In these cases, spin operators (analog of ¢ and p in

the critical Ising model) in the edge theory are given by
s % Z sadf 1
Of = €' v ,  Sa= :|:§ (5.4)

in the bosonized language (in the right-moving sector). These operators are an intertwining (vertex) operator
that maps the untwisted sector to the twisted sectors specified by s. By state-operator correspondence, these
operators are identified with a state in the corresponding twisted sector. (Note that there is ground-state
degeneracy for the R sectors.) Thus, we have a set of states {|0)ns,|s)r}. These states appear when one

constructs boundary states, and are exchanged under the action of the unitary Zs symmetry. (Here, this is
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not the Zg symmetry.) The spin operators satisfy
O5:(2)0% (w) = =0 ()0 (=), (5.5)

where s-s" = (1/4) > (£1). This phase can be made an integer when the number of complex fermions is a

multiple of 4 (namely, the number of real fermions is a multiple of 8, N; = 8n) and if we choose
s=(1/2,1/2,---) or & =(-1/2,-1/2,---). (5.6)

The unitary Z, symmetry can exchange spin operators ©%, as the Kramers-Wannier duality of the critical
Ising model exchanges o and . However when Ny = 8n, the spin operators are mutually local. Hence in this
case, the Zs symmetry is not a duality (or non-local) symmetry. Rather, it is a (part of) triality symmetry.

Finally, recall that the presence of boundary breaks the Kramers-Wannier duality. This is another

indication that the Kramers-Wannier duality is nonlocal.
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Appendix A

Details of Chapter 2

In this appendix, we provide further details about the results quoted in Chapter 2. We start in Section A.1 by
detailing the momentum conservation conditions of the backscattering interactions of our Eg model described
in the main text. This assigns the corresponding Fermi momenta kp, of the 11 electronic channels in each
bundle in this phase, importantly fixing the filling fraction of the Fg quantum Hall state to be v = 16. In the
following Section A.2, we provide the details for extending the Es model by decomposing the (Eg), current
algebra into (G2),; x (Fy);, also known as a conformal embedding. With the explicitly built operators,
transformations between the original electronic momenta and the G5 or Fy currents can be again arranged.
With these currents, the coupled-wire model for the G5 and F, Fibonacci phases of the main text can
be considered explicitly. The necessary backscattering current interactions again constrain the momentum
distributions, as shown in Section A.3; both G5 and F} phases Fibonacci are found to exist at magnetic filling
fractions v = 8. Finally, in Section A.4, we focus on the relationship between Fibonacci topological order
and G2 and Fy current algebras. Using the bulk-boundary correspondence, this is achieved by presenting
the modular content of the chiral (G3); and (Fy); WZW edge CFTs. Finally, we finish by exploring
the relationship between the G5 and Fj groups and Fibonacci anyons, illustrating also their irreducible

transformation properties as fundamental representations of their corresponding Lie algebras.

A.1 E8 Quantum Hall state and momentum commensurability
conditions

We explore in more details the properties of the emergent Es WZW current algebra at level 1 in each of the

11-wire bundle. The Eg currents were introduced in the main text using the unimodular matrix U defined
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q=2

O—® —
qg=—2 q=2

Figure A.1: The Dynkin diagram of Eg and the charge assignment ¢ (in units of e) of the simple roots
(EEs)ga,, for I =1,...,8. Uncolored entries are electrically neutral.

in (2.6) and (2.5). The bosonized variables ®7, of the electron operators (2.1) are related to the (i)ZI of the
FEs simple roots operators (2.3) by the linear transformation ég  =Ug? ,<I>Z;. This transformation induces
a linear mapping between the associated charges and momenta of the fundamental electrons and of the Fg

simple roots, given by
a7 =Uf'ql K = UR ke (A1)

For instance, the electric charge assignments g; of the 8 simple roots in the Dynkin diagram in Fig A.1
can be derived using the above formula by substituting the unit electric charge qg/ = 1 for all electronic
channels.

As mentioned in the main text, a principal step in building the coupled wire model relies in demanding
commensurability conditions in the intra- and inter-bundle backscattering interactions (2.9) and (2.10). This
requirement takes the form of 11 vanishing (mod 27) linear equations for the 11 unknown momenta, with

coefficients that are also linear in the inverse of the filling fraction v; these equations are given by

(U = Ui ) (o~ k) =0 T=1,...8 (A2)

(Uid - Uiy (Kl — kL) =0 1=9,10,11, (A.3)

From the Fermi momenta kj, = (eB/hc)y + okr,, of the 11 electronic channels (see Eq. (2.7)), one sees that
the magnetic filling fraction appears only in the Eg inter-bundle terms. Equating the determinant of this

linear system to zero, so that a non-trivial solution to kr, exist, we fully fix the filling v as

2048(v — 16)

This result could have been alternatively obtained from a corresponding effective Chern-Simons field theory,
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which determines v = 7 (K¥*)~1q = 16, where the charge assignments q = (—4,2,0,0,—2,2,0,2) were
given in Fig. A.1, for both chiralities, and where K% is the Cartan matrix of Eg. Enforcing this filling frac-
tion, the momentum commensurability condition has a unique solution (up to a single free Fermi-momentum

parameter k). The momenta of the 11 bare electrons are given by

kyi=kyo= iykp, kys=kyr= 3 (y — o) kp, (A.5)
o o o o o 1
ky,4 = ky,S = ky,ﬁ = ky,S = ky,9 = 5 (y + 20) ka (AG)
1 1
9,10 = B (y+30) kp, k1 = 3 (y —30) kr. (A7)

With these, the 0 = L and R channels of any of the three recombined fermions fy,, for n = 1,2, 3, share the
same momentum, and therefore the oscillatory terms in the intra-bundle backscattering interactions (2.9)

cancel. Similarly, the inter-bundle terms in (2.10) also conserve momentum, as l%ff’l = ];yLH,I forI=1,...,8.

A.2 A G2 x F4 conformal embedding into E8

A.2.1 From Fg to SO (16)

The exceptional Eg Lie algebra has dimension 248, which separates into 8 Cartan generators and 240 roots
in the root lattice Ag,. The Cartan generators are mutually commuting operators while the roots are
raising and lowering operators of the “spin” eigenvalues. Here, we present a full bosonized description of
the Es WZW current algebra at level 1 based on the 8 aforementioned simple roots in (2.3) and relate this
description to an SO(16) embedding. This will later facilitate the Go x Fy C Eg embedding.

We begin by fermionizing the 8 simple roots operators. This expresses each Eg root as either a pair or a
half-integral combination of a set of 8 non-local Dirac fermions dfj; ~ exp [i( or(x) + k;’lx)}. The bosonized

variables and momenta are related to that of the 8 simple roots by

b7, = Ry 69, k= Rikjp, (A.8)
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where the 8 x 8 R matrix is
R= et (A.9)

The lines of the R matrix form a set of primitive basis vectors that are commonly adopted to generate the
Eg root lattice in R3.

The R-matrix decomposes the Cartan matrix K ¢ of Fg into K¢ = RRT. Consequently, under the trans-
formation (A.8), the equal-time commutation relation (2.4) becomes {5&%’1 (x), ‘ZSZ’II’ (X')| = 2mic677 811/ 6 (x—
x). This ensures the vertex operators dJ; ~ exp [i(¢7;(x) + kJ;x)] to represent spin 1/2 Dirac fermions. As
we argue next, these fermions do not associate to natural excitations in the bulk or the edge of the quantum

Hall states. Inverting the matrix (A.9) and multiplying by our original unimodular transformation U, one

(e

va involve half-integral

sees that all b1 expressed in terms of the original electronic bosonized variables ®
coefficients. The non-locality is also revealed by their even charge assignments ¢ = 0, 2. The pair creation
of such non-local Dirac fermions requires a linearly divergent energy in the coupled wire model and, as a
result, these fermions do not arise as deconfined bulk excitations or gapless edge primary field. They should
only be treated as artificial fields introduced to describe the WZW current algebra. Henceforth, where it
leads to no confusion, we are suppressing the o,y indices for conciseness.

By decomposing the 8 Dirac fermions into 16 Majorana fermions as dy = (o7_1 + il/}gl)/\/i, the Fjg
WZW current algebra can be related to an SO(16); WZW current algebra. In terms of root systems, Ag, is
shown to be an extension of Ago(16), as follows. The root lattice of SO(16)1, Ago(i6), contains 22xC5 =112
elements, with C* being the binomial coefficient. The elements are given by bosonic spin 1 fermion pairs
dlid}—L, ~ ei(i¢1i¢f’), where 1 < I < I’ < 8. Besides the root system of SO(16);, to generate the root
system of A g, we include the SO(16) 128 = 27 even spinors. The even spinors can be represented by bosonic
spin 1 half-integral combinations d;I/Q ~ ei61¢1/2, where ¢/ = +1 and Hé;:l ¢! = +1. By combining the
even spinors with root lattice of SO(16), the 112 4+ 128 = 240 roots of Es can be represented by the vertex

operators

(Bl ~ exp [ia (65:(x) + kgx)] = exp [ia! (R UF (@51,(0) + kgox)] (A.10)
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where the root vectors a = (a?, ..., a8) are

8
AES—{OLEZS:aQ—Q}U{a—;:GI—ﬂ:LHES—l}. (A.11)
I=1

Each root vector a can be expressed as a linear combination o/ = a! R, with the R matrix given in (A.9)
and a! integer coefficients, which are the entries of the root vectors in the Chevalley basis. This integer
combination ensures that every Fg root operator in (A.11) is an integral combination of local electrons (2.1).
Since each of these vertex operators is a spin-1 boson, it must be an even product of electron operators and
therefore must carry an even electric charge.

The fermionization of the Eg presented above allows us to represent each and every Fg root using a
vertex operator [Epg,]7, ~ exp [io( or kglx)] (see (A.10)), where dj; ~ exp [i(¢ZI + k:;lx)] are 8 non-
local Dirac fermions and a are Cartan-Weyl root vectors in Ag, (recall (A.8) and (A.11)). To complete the
algebra structure, the 8 Cartan generators of Eg, which are identical to the Cartan generators of SO(16), are

given by the number density operators [Hg,|7; ~ i0¢7; ~ (df I)ng ;- This also allows an explicit conformal

embedding of the G2 and Fy WZW CFTs in the Eg theory at level 1.

A.2.2 From SO (16) to G2 X F4

The embedding (G2); x (Fy)1 C (Es)1 can be intuitively understood as follows. First, G2 C SO (7) C
SO (16) C Eg. By decomposing the Dirac fermions into Majorana components dy = (a7 1 +14t27)/v/2, the
SO(16); currents are bilinear combinations of the 16 Majorana fermions. The (G3); current operators have
free field representations using 11, ..., ¢z, which generate the SO(7);. Second, SO(9) C F, C Eg. The root
system of F; composes of (i) the 24 (long) roots, (ii) the 8 vectors, and (iii) the 16 (even and odd) spinors of
SO(8), all of which act on g, ..., 115. As we will see, accompanying the SO(8) vectors with the remaining
Majorana g in SO(9) and the SO(8) spinors with two special emergent fermions, we are able to to embed
the Fy currents in Fg in a way that is fully decoupled from Gs. To abridge, G5 is a bit smaller than SO(7)
while Fy is a bit bigger than SO(9), and the two WZW algebras at level 1 completely decomposes (Es);.
To construct the embedding explicitly, we start by representing the SO(7) Kac-Moody currents with
Majorana fermions as J§O(7) = —i: PiAfh; ¢ /2, where A® are generators of the SO(7) Lie algebra. We
introduce the complex fermion combinations and bosonized representations, ¢; = (¥2;-1 + it02;)/ V2 = ei®’

where the bosons obey
. . v i . .
(¢ ()¢ (w)) = =7 log (= — w) + Tsgn (j — ), (A.12)
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with the sgn accounting for mutual fermionic exchange statistics. We then follow reference [161] to embed

G2 generators into SO(7). The resulting Cartan generators H, éz of Gy are

/1 /1
HE, (2) = Z\fﬁ (—20¢' +0¢° + 0¢°), HE, (z) = Z\E (09 — 0¢%) . (A.13)
while the positive long roots are
BL, (2) = =799 B (5) = —l@a=9), 3, (z) = —il02m0), (A.14)

To bosonize the positive short roots, we need ¥7; = (e”"L + e‘i¢4) /\/5, yielding

1 r .
4 — = | _p—i(p1tg2) _ ( i(p3+da) _ —¢a) }
Eg, (2) el e i ) ,
1 7 .
Egz (Z) = % -_e—l(¢1+¢3 4 ( i(p2t+a) _ —¢4)>} ; (A_15)
1 7 . ) )
Eg2 (Z) — ﬁ _,el(¢2+¢3) — (6*1(451*(174) _ 6*1(¢1+¢>4)>] )

The negative roots can be obtained by simple Hermitian conjugation.

Now we move on to Fy. Our goal is to define the Fy currents in terms of SO(16) degrees of freedom in
a way that the operators decoupled from Gz, in the OPE sense. Since we used the SO(7) part, generated
by fermions ;. 7 to define the Gy operators, we may facilitate the decoupling of the currents by using
the remaining SO(8) subalgebra, generated by 9 . 16. This is achieved by carefully sewing Fy into the full

degrees of freedom of SO(16). The Cartan generators can be chosen to be the ones in the SO(8) subalgebra
Hi, (2) = i0¢4qa, a=1,...,4. (A.16)

The group Fj has 48 roots, 24 short and 24 long. The 24 long roots are identical to those of SO(8), and
may be written in bosonized form as

B2 () = e, (A.17)

where g = ... = ay = 0 and (as,...,as) € Z4|(as,...,as)|” = 2. The 24 short roots of Fy correspond
to 8 vector and 16 spinor representations of SO(8). To write the 8 vector roots, we increment the vertex

operators with fermion g, obtaining

_ 1 /. .
Ezj:[f ~ thgeFifite 7 (el(‘f"‘im“) + el("z"li‘z’““)) . (A.18)
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Finally, the 16 spinors read
Eot ~ ppei=9/2, (A.19)

where the spinor labels are s+ = (0,0,0,0, s5, sg, 7, Sg) with s5sgs7sg = £1; the critical step here lies in the

inclusion of the Majorana fermions

<W+ei(¢1+¢2+¢3+¢4)/2 4 h.C.) . = 1 (w_ei(¢1+¢2+¢3—¢4)/2 4 h.C.) (A.20)

¢+: \/5

Sl

where wy are U(1) phases to be determined. Combining the vertices with the fermions,

E;Z ~ % (w+6i(¢1+¢'2+¢3+¢4+S+'¢)/2 + erei(faﬁq*¢'2*¢3*¢4+S+'¢)/2) , (A21)
Ep, ~ % (W—ei(‘bl*%*%*m“—'¢)/2 - wiei(fd’l7¢27¢3+¢4+S_4¢)/2) : (4.22)

Our goal is to decouple the G2 and F currents in the SO(16) embedding. Computing the OPEs between
all G5 and F); operators, one recognizes that singular terms only arise between G short roots and Fj short
roots from SO(8) spinors. These singular terms, however, can be made to vanish with an appropriate choice
of wy following

wi + e AT =w_ — e/ = 0. (A.23)
Distinct solutions only differ by a sign, which can be absorbed in the Majorana fermion 1. We pick

wy =38y =eTi/8, (A.24)
This completes the proof that the Gy and Fy embeddings decouple and act on distinct Hilbert spaces.
As a non-trivial check of the conformal embedding, one may compute the energy-momentum tensors,

seeing that the Eg tensor decouples identically into those of G2 and Fy under the construction above. By

definition, WZW energy momentum tensors at level 1 read [54]

3-3)(2)

(
T(z) = ———2, A25
6= Ty o (4.25)
with J¢ a Sugawara current, g dual coxeter number, and the normal ordering defined as
(JOT) (2) = —— 7{ W ra () Jo (2. (A.26)
2 J, w— 2
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The contraction of the Sugawara currents can be written in the Cartan-Weyl basis

J-3)(2)=>_ (H'H) Z E*F%) (A.27)

where the a sum is over the full root lattice, while j sums over the generators of the Cartan subalgebra. We
have absorbed the normalization factors into the root operators.
We are then ready to verify the energy-momentum tensor decoupling via the conformal embedding.

Under the SO(16) embedding, the Eg tensor reduces to

0¢ - 0¢

TE& (Z) = 2

(A.28)

which is, in fact, of the same form of the SO(16) energy-momentum tensor.
To fully verify the conformal embedding, one may compute the energy momentum tensors of the G, and
F, CFTs. This calculation requires lengthy but straightforward bookkeeping, and will not be presented in

here. The operators T¢, and T’r, are found to be

3 3
To. (2) =~ | [ 2200300 | ()= 3 [ 2065 | ()] = 5 (00u060) 2)

+ % {cos [2 (g o (z))] — cos [2 (g — ¢ (z))] + cos [2¢4 (z)}} ) (A.29)
and
1o 1< 2 3
Tr.(2) = -5 ; (96,085) (2) + 2 Z:j 005 | ()| = 15 (964964) (2)
- % {cos {2 (% o (z))} — cos {2 (% — - (z))} + cos [2¢4 (2)]} , (A.30)

where ¢4 = ¢1 + ¢p2 + ¢3 £ 4. The sum of these two expressions returns T, as it should, finishing the

verification of the conformal embedding.
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A.3 G2 and F4 quantum Hall states momentum
commensurability conditions

To stabilize the G, and Fy Fibonacci phases, a process of fixing a distribution of Fermi momenta for the 11
electronic channels (2.1) in the coupled wire model is necessary. This is analogous to the one used for the
Eg Quantum Hall state. Applying the process for the F; Fibonacci phase, i.e. demanding commensurability
conditions on the momenta so that oscillatory terms cancel from interactions in (2.13), results in the unique

non-trivial solution (up to the single free parameter k)

o1 =kyo=ky o= (y—o0)kr, k3= (y—20)kr,
k;A = k;5 = k;fﬁ = k;s = kZ,9 = (y +20) kp,

kyi0=(y+30)kp, ky1 = (y —40)kp, v =8. (A.31)

Similarly, demanding momentum commensurability in (2.14), one obtain the Fermi momentum distribu-

tion for the coupled wire model for the G2 Fibonacci quantum Hall state.

kg1 =kyo=kys=kyj = (c+y)kp,

va=kys=k o=k s=kjg=kyqg=Fky0=ykr, v=2_8. (A.32)

Y, Yy

A.4 Fibonacci primary field representations in the G2 and F4

WZW CFTs at level 1

Our prime motivation for studying (G2); and (Fy); WZW theories stems from the claim that both carry
excitations in the form of Fibonacci anyons. Here we will provide a short demonstration of that, and then
follow with a coset construction that allows us to profit from the embeddings discussed up to now to explicitly
build the corresponding Fibonacci primary fields.

To see that the only excitations in (G2); and (Fy); are Fibonacci anyons, we can start by noticing that
at level 1, these theories contain only 1 non-trivial primary field besides the vacuum [. We name these fields
7 for (G2); and 7 for (Fy);. Following, we invoke the Gauss-Milgram formula; this formula is an avatar
of the bulk-boundary correspondence. It connects quantities that point to the bulk anyon excitations of a

topological phase to the CFT degrees of freedom that live at its boundary. Stating the formula explicitly,
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we have

> d20, = De™"s, (A.33)

where D? = Yo d? is the total quantum order and d, are called quantum dimensions, quantities that
characterize bulk anyons, while 8, = e**""« are conformal spins, determined quantum dimentions h,, and
c is the chiral central charge; the latter two quantities characterize the CFT at the edge of the topological
phase. The sum is over all primary fields of the CFT or, correspondingly, all anyons. By definition dj = 1
and hy = 0. Furthermore, the conformal dimension of a primary field a of a WZW theory is completely
determined by its Lie algebra content by h, = %, [54] where k is the level, g is the dual coxeter number
and C; is the quadratic Casimir of the representation. Collecting these numbers, h, = 2/5 and hz = 3/5,

leaving a single unknown in the Gauss-Milgram formula, namely d, or d- for G5 or Fy. Solving for these,

1+V5
2 b

d, =d> = (A.34)

which is the Golden ratio expected for Fibonacci anyons. Since the quantum dimensions obey a algebraic
version of the fusion rulesy, these follow imediately as 7 x 7 = [ + 7. Equivalently, the fusion rules can be
explicitly determined by the modular (2 x 2) S-matrices of the theory using the Verlinde formula.

We thus established that the chiral (G2); and (Fy); WZW edge CFTs contain primary fields that obey
the Fibonacci fusion rules. They correspond to Fibonacci anyonic excitations in the 2D bulk, and thus we
refer to them as Fibonacci primary fields. Let us now construct explicit expressions for them based on our
conformal embedding here developed.

The non-trivial primary fields [7] and [7] are associated with the fundamental irreducible representations
of their respective exceptional Lie algebras. FEach of them consists of a super-selection sector of fields,
[7] = span{Ty}m=1,..7 and [T] = span{T;};=1, .26, that rotate into each other by the WZW algebraic

actions

1 1 /

(T w) + o (B (@))g W) = ——pr(B) Tw) s (A35)

(o 2] 7m(w) = -

where z,w ~ "1™ are radially ordered holomorphic space-time parameters, v and B are the roots of Go
and Fy, and pg, and pp, are the 7- and 26-dimensional irreducible matrix representation of the Gy and
F, algebras. Here, we provide a parafermionic representations of these fields that constitute the Fibonacci
super-sectors. Using the coset construction, each Fibonacci field 7,,, 7; can be expressed as a product of

two components: (1) a non-Abelian primary field of the Z3 parafermion CFT or the tricritical Ising CFT,
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respectively, and (2) a vertex operator of bosonized variables.

The (G2)1 WZW CFT can be decomposed into two decoupled sectors using its SU(3); sub-algebra.

(G2)1

(G2)1 ~ SU(3)1 X SU(S)l

= SU(3)1 x Z3 parafermion. (A.36)

For instance, the decomposition agrees with the partition of the energy-momentum tensors Tz, = T(q,), /su(3), =
T(Gy), — Tsv(3), and central charges c((G2)1) = 14/5 = ¢(SU(3)1) +¢(Z3) = 2 +4/5. First, we focus on the
SU(3); sub-algebra. Using the aforementioned fermionization of Ejg, the six roots of SU(3) coincide with
the long roots of Gy, eFi(®1=62)  oFilé2=0s) +i(#1-¢3) The SU(3); WZW sub-algebra has three primary
fields, [, [£] and [€71], with conformal dimensions hy = 0 and hg = hg—1 = 1/3. [ denotes the trivial vacuum,

while [£] and [£71] are three-dimensional super-selection sectors of fields

[€] = span {ei(¢1+¢2*2¢3)/3’ ei(¢2+¢3*2¢1)/37 ei(¢3+¢1*2¢2)/3} ,

| | | (A.37)
[€~1] = span {671(¢1+¢272¢3)/3, g~ i(92+63-201)/3 eﬂ(¢3+¢1,2¢2)/3} 7

that rotate according to the two fundamental representations of SU(3). For example, under the SU(3);

roots,

¢i160(2)=91(D)] il (W) +0e(W) =200 (W], (ilba()+oeW)=260W] /(7 _ ) 4. .. (A.38)

The 7-dimensional fundamental representation of Gy decomposes into 1 + 3 + 3 under SU(3) and each
component is associated to a distinct SU(3); primary field.

Next, we focus on the (G2)1/SU(3)1 coset, which is identical to the Z3 parafermionic CFT. It supports
three Abelian primary fields I, ¥, ¥~! and three non-Abelian ones 7,s,e~!. They have conformal dimensions

h =0, hg =hg-1 =2/3, h, =2/5 and h. = h.—1 = 1/15. They obey the fusion rules
Ux =01 UxT =] rxV=¢c 7xUt=c"t 7 x7=0147. (A.39)
The Fibonacci primary field of (G2); is the 7-dimensional super-selection sector

[l=(eheEaE)oE" o[E)
T, Eei(¢1+¢2_2¢3)3, Eei(¢2+¢3_2¢1)/3, Eei(¢3+¢1—2¢2)/37

= span (A.40)
E_le_i(¢1+¢2_2¢3)/3, 5—1e—i(¢2+¢3—2¢1)/3’ e le—i(d3+¢d1—2¢2)/3
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All seven fields share the same conformal dimension h, = 2/5. For example, h.ge] = 1/15+1/3 = 2/5. The
super-sector splits into three components under SU(3). However, they rotate irreducibly into each other
under Gs.

The Fibonacci primary field of (Fy); can be described in a similar manner. First, using the SO(9);

sub-algebra, the WZW CFT can be factored into two decoupled sectors

(Fa)1

(Fy)1 ~ SO(9)1 x SO(O),

= S0(9); x (tricritical Ising). (A41)

Like the previous G2 coset decomposition, here the energy-momentum tensor and central charge also de-
compose accordingly: ¢((Fy)1) = 26/5 =9/2+ 7/10, where 9/2 and 7/10 are the central charges for SO(9),
and the tricritical Ising CFTs. The Fibonacci super-selection sector of (Fy); consists of fields, which are
linear combinations of products of primary fields in SO(9); and the tricritical Ising CFTs.

We first concentrate on SO(9);. It supports three primary fields I, [¢] and [X] with conformal dimensions
hi1 =0, hy =1/2 and hy, = 9/16 and respectively associate to the trivial, vector and spinor representations
of SO(9). Using the fermionization convention of Eg, the SO(9); theory is generated by the 9 Majorana
fermions s, . . . , 16, where the last 8 Majorana fermions are paired into the 4 Dirac fermions d; = (o7_1 +
itar)/V2 ~ €1 for I = 5,6,7,8. The vector primary field consists of any linear combinations of these
9 fermions [¢)] = span{tsg,...,1¥16}. We arbitrarily single out the first Majorana fermion g, which is not

paired with any of the others, and associate it to an Ising CFT. This further decomposes
S0(9); = Ising x SO(8);. (A.42)

The spinor primary field of SO(9); decomposes into a product between the Ising twist field o and the SO(8);

Spinors.

.8
[X] = span {Uexp <;Zel¢1> 20,68 :il}. (A.43)
I=5

The conformal dimension of ¢ is 1/16 and that of the SO(8); spinors are 1/2. Thus, they combine to the
appropriate conformal dimension of hy, = 9/16 for each field in the set. The dimension of the SO(9) spinor
representation is 2* = 16. The 26-dimensional fundamental representation of F; decomposes into 1+ 9+ 16
under the SO(9) sub-algebra, and each component is associated to a unique SO(9); primary field.

We now focus on the (Fy)1/50(9)1 coset, which is identical to the tricritical Ising CFT, or equivalently,
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the minimal theory M(5,4). The theory has six primary fields arranged in the following conformal grid

fls |1 G3q | Do | Pig 3/2 | 7/16 | 0

T | sT| ST P30 | Po2 | P12 3/5 | 3/80 | 1/10

conformal dimensions

f77’ ST T q)l’g @2)2 @3’2 1/10 3/80 3/5

I s | f D1 | Doy | D3 0 |7/16| 3/2

They obey the fusion rules

nl

fxf=Lsxf=ssxs=1+ffxT=f7,sxT7=s7,Tx7T=01+
The Fibonacci primary field of (Fy); is the 26-dimensional super-selection sector

[fl=(Fehe (fre)® (st [X])

8 .
~ j=8,...,16
=span{ 7, fTY;, STo exp ig elor |
! 2 5 8
I=5 €,...,ec==1

(A.44)

(A.45)

(A.46)

Each of these fields carry the identical conformal dimension h7z = 3/5. For example, the second field f7[]

has the combined conformal dimension 1/10 + 1/2 = 3/5, and the third s7[¥] has 3/80 + 9/16 = 3/5.

Although the super-sector splits into three under SO(9)1, it is irreducible under (Fy);.
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Appendix B

Details of Chapter 3

B.1 Gapping conditions for K-matrix formalism

B.1.1 Gapping terms for the general K-matrix theory

We briefly review the gapping condition and the gapping term for the general K-matrix theory. Assume we

have two effective Lagrangians on the boundary of a (2+1)d system:

1
EL = 7EKILJ61>¢%8T¢§ + VII:]a-’L‘ %8T¢§7

1

L
R 47

K500 70,075 + V50,07 0,07, (B.1)

where KT and K have the same dimension N and signature, and V' and V'’ are some symmetric non-

universal potentials. Define K = K @ (—~K%). The completely gapping condition or Haldane’s nullity

condition [112] is that there exists N 2N-component linearly independent integer vectors £; = (Ef,EiL )

b

called null vectors, satisfying
IKe; =0, i,j=1,...,N. (B.2)
Then the whole gapping term is written as

N
Hgapping = Z C; cos (E?Ktb + ozi), (B.3)

i=1

where ® = (¢%, ¢*)T and «; are some undetermined variables, which can be fixed by the specific theory.
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Actually if we only impose that we can pin the gapping terms simultaneously to their minima, we only

need nTK_lnj =0fori,j=1,...,N, where n; are integer vectors. However, if we further require that the

%

gapping terms are composed of local operators, we need n; = K¢;, which gives Eq.(B.2).

One corollary is that when K = K| then we can always choose 1 = 1F to gap out the whole system,

as long as there are enough linearly independent N-component integer vectors 11*.

B.1.2 Gapping conditions in different basis

For a general K-matrix theory with simply-laced algebra, we can write the kinetic term in two equivalent

ways

Lo = % / dadt K1,0:¢" 0r¢'”,
us

with the canonical quantization

[0 (x), 000" ()] = 2miK [} (z — ).

We can choose simple roots for the current algebra a; such that a; - a; = K;;. We denote

(B.5)

as the matrix formed by these simple roots, where r is the rank of the Lie algebra. Then we have RRT = K.

Now we make a basis transformation
o' = Z Ryr¢"”.
J
Then we can check that Eq. (B.5) becomes

(¢! (2), 0 ¢’ ()] = 2mi6" 7 6(2 — '),
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where we have used RT K~'R = 1, which is obvious. If £ = (£, £}) is a set of 2r-component Haldane null

vectors, they should satisfy the nullity condition
(EHTKE =0, Vi,j=1,...,r (B.9)
in the ¢/ basis, where K = K @ (—K), or
0o W — L 0, =0, Yi,j=1,...,r (B.10)
in the ¢! basis.

B.2 Simply-laced Lie algebras and their representations

We review the simpled-laced Lie algebras, namely, ADFE classifications, and their representations here. [54]
“Simply-laced” means that all roots ¢ of the corresponding algebras have identical length, which are usually
normalized to be |a| = v/2. Let r be the rank of an algebra G, namely, the maximal number of mutually

commuting generators of G. Then in Cartan- Weyl basis, we have

[H',E*] = a'E®,

o —a 2 - 17t - [ a5
(B>, E~°] |a|2;aH :;aH,
EotB fa+ B eA,
[E>, EP] o for a # B. (B.11)
0 otherwise
All roots of G can be obtained from r simple roots au, ..., a, by linear combinations. The choice of simple

roots is not unique. For SU(r + 1) algebras, it can be chosen as

xy =er —e€erqq, I:L...,T, (B.12)

where e are unit basis vectors of R"™1. For SO(2r) algebras, it can be chosen as

er—ery forI=1,...,r—1,
o — (B.13)

e._1+e, for I =,
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where e; are unit basis vectors of R". For E-series, simple roots are usually taken at one’s convenience. We
have shown some particular choices in the main text.
The fundamental representation t* of SU(r + 1) algebra have properties
Tr(tt?) = 59,

a 1
za:tijtZl = 05101 — mdij(skla (B.14)

Z fabefava = 2(r + 1)0cq,
a,b

where fup are the structure constants of the SU(r + 1) algebra. The vector representation of SO(2r) Lie

algebra has an explicit matrix representation

ty =ty =1i(0;0; —0767), 1<r<s<2r
Tr(t*t?) = 264, (B.15)

Zt?j Y= 2<_6ik5jl + 5i15jk>7 (B.16)
a
and the structure constant can be written as

fabc = f(rs)(pq)(mn) = (5Tm5nq55p - 5m55nq57’p)
+ (6mp63q6n'r - 5np63q6rm)

+ (6prans(5mq - 5rq5n55mp)- (Bl?)

The Cartan matrix K of the algebra G is an r x r matrix defined by

20 o %
Kpy=="1-%= Z

1y = ZailaiJ. (B.18)
ey ]? :

i=1

It is easy to see that the Cartan matrix for simply-laced algebras are symmetric. Cartan matrices for

simply-laced algebras are listed below.
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Ksur1) =

8

Kg, =

0 0
-1 0
2 0
0 2
0 -1
0 0 0
-1 0 0
2 -1 0
-1 2 -1
0o -1 2
0 0 -1
0 0 0
0 0 -1
0 0 0
-1 0 0
2 -1 0
-1 2 -1
0o -1 2
-1 0 0

-1
0
» Ksor)y =
0
0
0
0 0
0 0
0 0
0 0
, Kg, =
0 -1
-1 0
2 0
0 2

o o o o o

o o o o

o o o o

Sometimes it is convenient to use Chevalley basis as it is directly related to the Cartan matrix:

h! =

with the commutation relations

(!, B**7] = £ K B+,

T T
E o' H' = E a'tH',
=1 i=1

a2 &

(B~ E~*7] = §"7h7.

(B.19)

(B.20)

(B.21)

In Chapter 3, we are focused on the level-1 algebras of ADFE classifications, in which there exist free
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field representations. To be specific, SO(2r); algebras (D-series), can be constructed by 2r independent

Majorana fermions 1® with operator product expansions (OPEs)

di; .
Yi(2) Y (w) ~ —2—, Qi =1,...,2r

Z—w

The current operators can be constructed with these free Majorana fermions as

() = 5 S Wit (2),

2

where normal ordering is assumed. One can check that these currents satisfy the current algebra

J2) I (w) ~ __HOab_ + Z 7z'fachC(w)7

(z —w)® (z —w)

where fqp. are called structure constants.

For SU(r + 1), algebras (A-series), we can use r independent free bosons ¢ with OPEs
¢'(2)¢" (w) ~ =bijIn (z —w), 6,5 =1,...,7.
The currents in Cartan-Weyl basis can be constructed as

Hi(z) = i/ (2),

E%(z2) = Co' @ P(2)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

where ¢4 is a correction factor ensuring the correct OPEs. This bosonic construction also works for D-series

if we pair up Majorana fermions and then bosonize them.

For (Eg); algebras (E-series), we can follow the same construction as in A-series with 8 independent free

bosons to construct the currents, with the vector and spinor representations of SO(16) algebra introduced

in the main text. F; and Fg algebras can be constructed from the corresponding conformal embeddings,

respectively.
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