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Abstract

We study two related but distinct aspects of avalanches in physical systems. The first is the study of

avalanches that we have observed in stars. We apply results from the mean field avalanche model to

observations made by the Kepler spacecraft and the VIRGO instrument, looking at several stars including

our own Sun and Tabby’s star.

In this examination, we use the stars’ light curve, their integrated flux as a function of time, to extract

avalanche information. Dimming events on the Sun are fairely well understood, and we find that there is

scaling even in the Sun’s data, likely caused by sunspots or combinations of such spots. We also look at

Tabby’s star, where the anomalous dimming has not been explained, and show that there is also avalanche

scaling seen in this extraordinary star.

We then look at avalanches at finite but low temperature in plastic deformation. The slow plastic

deformation of materials under stress, known as creep motion, has long been studied in material’s science.

We hypothesize that at low temperatures, this deformation is the result of temperature activated avalanches.

In order to explore this idea, we develop an extension of the mean field model to incorporate temperature.

This model poses a problem since it requires exponentially many evaluations of rate constants when simulated

using a kinetic monte carlo algorithm. We solve this problem by using a recursive strategy to pair down the

number of evaluations and effectively choose the appropriate rate constants.

Finally, we evaluate theoretically the interevent time distribution between these thermally activated

avalanches. We identify high and low temperature regimes, at which the character of the distributions

changes dramatically. We use simulations to verify our results, and connect them to experimental efforts

currently underway to determine these distributions.
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Chapter 1

Introduction

1.1 Avalanches and Crackling Noise

Noise is a constant and ubiquitous feature of nature. The types and forms of noise are too varied to count.

The most significant type of noise in this thesis is known specifically as crackling noise [1]. Crackling noise is

particularly interesting because it is associated with a specific mechanism of relaxation known as avalanches.

When the word avalanche is used, it is usually used in the context of a runaway chain reaction that only

slows down as the result of either external forces or limits of the system size. In the context of this thesis,

avalanches adapt a broader meaning, specifically as the causes of crackling noise.

The examples of systems that exhibit crackling noise in nature are both plentiful and varied. A well-

studied example of crackling noise is the Barkhausen noise exhibited by certain types of magnets [2, 3, 4].

Other examples include solar flares [5], earthquakes [6, 7], the dynamics of superconductors [8, 9], the

pinning of driven charge density waves by disorder [10], interfaces advancing in a random medium [11, 12],

and plastic deformation of nanocrystals and bulk metallic glasses under stress [13, 14, 15]. Our list is by no

means exhaustive, but shows that such phenomena are common.

In fact, what is so special about crackling noises and avalanches is that although these phenomena occur

in so many different places, they share a distinct set of common properties. Because noise is in general a

stochastic process, these properties are all exhibited as statistical similarities in the avalanches observed.

When determining whether a system exhibits avalanches, it is common to rely not upon a single event, but

a broad range of events that show a common pattern in their statistics. The exact property shared by all

avalanche phenomena is self-similarity over a regime known as the scaling regime [16, 1], both in how these

phenomena physically manifest themselves (their physical size, their evolution in time, etc.) [6, 17, 18, 4], but

also in how their statistics are self-similar over a certain range [17, 7]. The precise meaning of self-similarity,

as well as its causes, are the domain of the renormalization group [19, 20, 10, 1].
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1.2 Avalanches in Magnetic Materials

Crackling noise [1] in the context of magnets is often known as Barkhausen noise [3], but it has been shown

to occur in many magnetic materials exhibiting hysteresis [21, 16, 1]. Although we do not focus only on

magnetic avalanches, they offer an instructive and simplified version of avalanches we study. A magnetic

material, initially in some magnetic field, has large magnetic domains pointing along this magnetic field.

As the magnetic field is slowly driven towards zero and flipped in the opposite direction, there are at first

slight domain flips between the original domain orientation and its reverse. These flips can happen in a

continuous fashion, so that the domains slowly realign themselves with the magnetic field. However, when

disorder is added to the system, it is often observed that these domains flip in random bursts [21, 2] rather

than continuously. These random bursts are identified as avalanches.

Two conditions are generally observed to be needed for avalanches. The first is the presence of a driving

force. Avalanches only occur when the driving force changes, in this case the magnetic field. The second is

the presence of disorder in the system. This disorder is fundamental for some form of avalanches [21, 22] to

occur in the system. If there is too much disorder is in the system, the domain walls remain pinned to a given

orientation despite the opposition of the magnetic field. Once the magnetic field becomes large enough, the

whole system flips at once. Alternatively, if there is too little disorder is in the system, the domain walls flip

in small bursts, the result being a smoother flow between polarities. There is a middle ground of disorder

at which the avalanches occur over a broad range of sizes [22]. The width of this broad range of sizes (here

the number of flipped cells in a given avalanche) is tuned based on the tuning parameter, the disorder.

1.3 Plastic Deformation Through Avalanches

Plastic deformation through avalanches is another extensively studied area of crackling noise [13]. It will be

one of the main focuses of this thesis. Plastic deformation is the permanent distortion of a material when

it is subject to tensile, compressive, shearing, or torsional stress. Both crystalline materials [23, 24, 14]

and amorphous materials [25, 15, 26] are theorized and experimentally shown [14, 15] to plastically deform

through avalanches. Like magnetic avalanches, there is both a driving force and disorder in these systems

[27]. In this case the driving force is the stress on the system. The disorder is built into the system in the

form of irregular defects [27] such as dislocations in crystalline materials [28] or shear transformation zones

[29, 30] in bulk metallic glasses.

We restrict ourselves to plastic deformation of crystalline materials and bulk-metallic glasses. Crystalline

materials are usually single crystals such as Al or Cu. The crystalline materials that have been shown
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to have avalanches are primarily face-centered cubic, body-centered cubic, and hexagonally close packed

crystals [14, 31]. Similarly, the bulk-metallic glasses have also been shown to undergo plastic deformation

through avalanches [15, 26]. Bulk-metallic glasses (BMGs) are amorphous materials, in that they do not

form crystalline structures because they are usually alloys that are cooled too quickly to form crystals.

An example of a BMG is Zm45Hf12Nb5Cu15.4Ni12.6Al10 which has been experimentally shown to exhibit

avalanche phenomena [15].

In order to study plastic deformation in a general setting, we use a simplified model of two interfaces

sliding against each other, similar to a fault zone that slides during an earthquake [13]. Initially let us think

about the interface at zero temperature. Then the only relevant variation the interface experiences is a stress

Σ, and the interface responds by sliding at a velocity v. In order to think about plasticity, it is necessary

that the interface remains pinned for small stresses, with the source of this pinning being the disorder in the

material. As stress increases, it reaches what is known as a critical stress. This critical stress Σc is the point

at which the interface begins sliding. In other words, v = f(Σ−Σc), where f(x) = 0 for x < 0, and a priori

f(x) can be any arbitrary function (if there is hysteresis, it does not even have to be single valued [21]).

This equation, analogous to equations of state in classical equilibrium statistical mechanics, is an expression

of the material properties at a given force. The equation v = f(Σ−Σc) is a similar to an equation of state,

in that it gives us the value of one parameter v, at a fixed value of another parameter Σ, similar to how

equation of state for liquids relates pressure, volume, and temperature. Note that in general, there is a

another parameter in all of our equations, the system size, which we denote by the number of particles N .

For the present discussion, assume that we study the system in the thermodynamic limit N → ∞, but in

chapter 6 we will consider finite but large N .

In the simplest case, when Σ is near Σc the function f(Σ − Σc) turns out to be a power law, and is

related to the scale invariance of the crackling noise as mentioned above. Therefore v ∼ (Σ − Σc)
β , which

defines the exponent β. One method to derive β is through the renormalization group [10, 11, 6, 1, 13], and

this exponent β is expected to be universal [32, 19]. Here, universality means that the exponent depends

only on the dimensions of the system (the number of free parameters needed to describe the system), the

symmetries of the system, and how the interactions between elements in the system scale at long distances.

In contrast to the exponent β, the critical force Σc is not universal. It depends on the specific details of

the system we are studying, and even on the specific sample being studied. However, the critical force is

important, as it defines the critical point at which many quantities exhibit scale invariance. We will discuss

the details of such critical points when reviewing the general theory of avalanches in chapter 4.
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1.3.1 Plastic deformation in crystalline materials

In crystalline materials, the primary source of plastic deformation comes from the movement of dislocations

[33]. Similarly, the disorder can either be provided through defects besides dislocations, such as point defects

[34] that are common in alloyed materials, or through emergent phenomena such as jamming [35, 36]. It is

surprising that different mechanisms of dislocation pinning can lead to similar behavior, for example with

β being the same in both cases, but this has been observed in simulations [35], although it has not been

theoretically justified.

Unlike the case of a simple picture with a single dislocation, in real plastic deformation, there are many

dislocations that interact to result in deformation. We do not discuss detail the theory of dislocations, but

we do need information about how the dislocations interact with one another. As is probably clear, the

lattice distortions will cause stresses in the crystal. These stresses cause the formation of a glide plane along

which the crystal deforms [37, 38]. These glide planes are the faults we discussed earlier, and we assume that

they have formed when considering crystal deformation. When talking about a glide plane of dislocations,

it turns out that the interaction between pieces of dislocations scales as 1/r3 along the plane [6, 39]. This

force is long range, and as we will show later this is crucial for developing a mean field theory that has been

shown to agree with simulations of 3 dimensional dislocation dynamics [40, 41]. In general, we denote long

range interactions to be interactions that scale as 1/rd+1 or more slowly for arbitrary dimensions d. Here

d = 2 since we are talking about the glide plane along which the dislocations have formed.

1.3.2 Plastic deformation in amorphous materials

Unlike crystalline materials, where the source of plastic deformation is clear and well established, amorphous

materials are much more complex. We focus particularly on bulk-metallic glass in this thesis, otherwise

known as amorphous metals. It has long been argued that the source of plastic deformation of amorphous

materials is due to free volume [42]. Here, free volume can be best visualized as vacancies in the packing

of atoms in amorphous materials. This free volume allows atoms to slide past one another, usually through

what is known as a shear transformation zone (STZ) [29, 30]. Although the precise mechanism is still

controversial (whether by sliding [30] or through vacancies [29]), the basic idea is of an STZ is of a local

cluster of atoms that undergoes an activation from one low energy state to another via a higher energy (and

more densely packed) state [43, 42]. Experimental characterization of STZs agree very well with theoretical

developments [44, 45, 46, 47, 48].

Because of the slightly more vague structure of shear transformation zones, exact stress and strain fields

are more complicated in these cares. What is known about STZs is that they likely involve 100s of atoms
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that rearrange themselves when a material experiences a load [47]. Rather, many authors rely either on two

state models (active vs. not active) [43], molecular dynamics simulations [43, 49], or because they involve

a significant number of atoms, simplified continuum dynamics models [50, 51]. We focus especially on the

latter, where it has been found that the most effective description of stress transfer due to slipping STZs

are the stress fields of ellipsoidal inclusions (Eshelby inclusions) [52], which has been shown experimentally

using colloidal glasses as a prototype of an amorphous solid [50]. Here, an ellipsoidal inclusion is a region

within an elastic solid with an ellipsoidal boundary inside a homogeneous medium that has been deformed

[52].

Similar to the discussion on crystalline materials, the ellipsoidal inclusion has a long range interaction

with other ellipsoidal inclusions, with the interaction strength going as 1/r3 [52]. Once again, we see long

range interactions at play, which will be important in justifying use of mean field theory as a collective model

of local slips with similar stress distributions resembling to leading approximation to ellipsoidal inclusions.

1.4 12 Decades of Scaling

In the previous discussion, we saw that avalanches occur in a wide range of systems. Although the details of

each system are different, there are a few underlying principles which are common between these systems.

The first is that each system is not in equilibrium, and that there is a force driving the system out of

equilibrium. The second is the presence of disorder in each of these systems, and usually this disorder

is quenched [53]. Here quenched means that the disorder is not part of the dynamics of the theory, and

is present as a type of background heterogeneity. However, note that the quenched randomness we talk

about may also have some history dependence [6, 17]. Although disorder is sometimes part of the dynamics,

especially in the case of jamming [36], we will take the independence of the disorder from the dynamics as

a simplifying assumption. Finally, the interactions between elements in the system are long ranged. Given

that these are fairly generic requirements, it comes as no surprise that avalanche behavior, and specifically,

mean-field avalanche behavior is seen in over 12 decades of length scales [54], from nanocrystals [14] to

earthquakes [55, 6, 7, 56, 57] to stars [5, 58, 59].

1.4.1 Avalanches in Stars and the Kepler Spacecraft

One of the main aspects of this thesis will discuss avalanches in stars. A basic understanding of stellar

properties is vital to understanding the classification of stars and why Tabby’s star [60] is such a strange

star. Of the stellar properties that are directly visible to astronomers, the two easiest to measure are
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the temperature and the luminosity. The temperature is measured using the peak of the spectrum of the

star (assuming black body radiation), while the luminosity is measured using the apparent luminosity (i.e.

luminosity as observed on Earth) and some independent measure of distance, typically either parallax,

through the use of standard candle stars [61] for which the luminosity is a known value, or even through the

Hertzsprung-Russell diagram plotted below [62].

Figure 1.1: The Hertzsprung-Russell diagram [63], detailing how stellar properties are related to one another.

The temperature is plotted on an inverse loglog plot against the luminosity (with the Sun having luminosity

1). The main sequence is highlighted as the primary line that sweeps through the diagram. Above the

temperature axis are labels for the various stellar spectral classes. On the x axis, we see that the color changes

from red (cool) to blue (hot), as blue wavelengths are shorter and more energetic than red wavelengths.

A simple physical observation based on the Stefan-Boltzmann law is that the luminosity L ∝ T 4R2.

It is natural to plot the luminosity of observed stars as a function of temperature, and this results in the

Hertzsprung-Russell diagram. One expects the luminosity to scale as a power of the temperature, and for

the most part this is the case on what is known as the main sequence. The exponent is somewhat higher

than 4 as hotter stars also tend to be larger, but the relationship holds fairly well. Stellar classifications are

based on temperature, and are defined with the letters O, B, A, F , G, K, and M , with O being the hottest
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and M being the coolest stars. In addition, for each letter there is a numeric digit with 0 being the hottest

and 9 being the coolest. For example, the Sun is a type G2 star, and specifically known as a G2V star,

where the V means the Sun is on the main sequence.

Historically the primary avalanches which have been observed in stars are stellar flares [58], and their

analogue on the Sun known as solar flares [5]. These avalanches are thought to be connected to the star’s

magnetic field [5, 64, 65]. As was shown in a recent paper, data besides solar flares can also be seen to have

properties akin to avalanches [59]. This data was extracted from the Kepler spacecraft. Initially, Kepler was

launched to study distant planets around other stars, known as exoplanets [66]. The goal was to observe

about 150,000 stars simultaneously and look for signatures of very minute and periodic dimming events that

indicated an exoplanet was orbiting a far away star.

It turned out that Kepler could be used for all sorts of fascinating explorations of stars. As mentioned

before, when stars have exceptionally strong flares, it was possible to spot these with Kepler [58, 67, 68],

and this led to another type of power law that is seen in the Kepler data. Additionally, one could look at

how the luminosity of red giants oscillates [69], which ushered in a new age of looking at the internals of

these mysterious stars, a field known as astroseismology. We will show below that the Kepler data can also

be used to find evidence of avalanches. The most striking example of this is Tabby’s star [60], for which

there are dimming events on the order of 20% of the total luminosity of the star. Unlike the case of other

extraordinary stars studied using Kepler, Tabby’s star is thoroughly average in most ways except for these

dimming events. The exact mapping of the dimming events to avalanches is slightly complex, but has been

used previously [5].

1.5 Introduction to the Theory of Avalanches

Given all of these examples, we have mentioned earlier the common thread that connects them. This is

the mean field theory of avalanches [6, 17, 7, 13]. We will go over some simple concepts and results from

this theory, and develop more formal arguments later. As a theory of avalanches, the primary quantities

of interest are the size of the avalanche and the duration of the avalanche. Traditionally, the size of a slip

avalanche is the total, time-integrated displacement during an avalanche, otherwise known as the potency

[13]. For example, if we denote u(x, t) to be the discontinuity along a fault that is slipping during an

avalanche, the size would be

S =

∫
D
d2xdtu(x, t) (1.1)
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where x denotes coordinates along the fault, t denotes the time, and D denotes the domain over which the

avalanche occurred. Similarly, the duration is defined as the time over which the avalanche occurs.

This interpretation of avalanche size makes sense when talking about earthquakes [6], plastic deformation

[13], granular deformation [25], or other slip events. We denote such events as slip avalanches rather than

just avalanches, although we will sometimes use the words interchangeably. Luckily, the definition also

generalizes to the astrophysics case (in astrophysics magnetic avalanches may be more common [16, 21, 22]).

Here, u(x, t) is not a discontinuity along a fault, but a change in luminosity from a predefined ambient

luminosity. The surface in this case is the surface of the star (usually), and this definition is similar to one

used for solar flares [5]. The size of an avalanche is the total time integrated luminosity, which is known

as the radiant fluence (or change thereof), otherwise known as the energy per unit surface area. What is

important is that although the interpretation of u(x, t) has changed, the definition of the size and duration

remains unaltered. The need for an ambient field, in this case played by the star’s ambient luminosity, is

also not entirely without precedent. This is common in many interface slipping problems [70], where one is

looking for avalanches above the critical stress. Recall from earlier that above the critical force, the interface

acquires a velocity v ∼ (Σ − Σc)
β . In this case, near Σc, avalanches can still be defined by looking at

variations around this slipping velocity.

The problem is then reduced to finding evidence of avalanches in the data that show evidence of scaling.

For all purposes, these events can be considered random because of the requirement of quenched randomness

as mentioned above. Therefore, we usually talk about avalanche size and duration distributions. Renormal-

ization predicts in the simplest case that the avalanche size p(S) ∼ S−τf(S/Smax) [10, 11, 21, 22, 17, 13]

near a critical point. Mean field theory predicts this exponent τ = 3/2 [21, 22, 17], although this exponent

has been known for a much longer time in the theory of branching processes [71]. Here f(S/Smax) is an

arbitrary function that approaches unity when S � Smax and decays quickly for S > Smax. Similarly,

the theory predicts p(T ) ∼ T−αg(T/Tmax) [10, 11, 21, 22, 17], with g(x) playing the same role as f(x)

above. It is notable that in MFT, the predicted form of f(x), g(x) → e−x for large x [17]. Other predic-

tions include the detailed forms of averaged shapes of avalanches, spatial correlation functions, and so forth

[22, 18, 72, 73, 74, 75, 76].

1.5.1 Non-equilibrium Critical Phenomena

All of these predictions rely upon the renormalization group applied to non-equilibrium situations [1]. The

renormalization group (RG) is the application of scale transformations to systems, as in the familiar case of

the Ising model [19]. The exact prescription [20, 77] does not rely on the assumption of equilibrium. Instead,
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it is relies on coarse graining and then rescaling [78]. The term coarse graining is somewhat vague, and many

methods exist to coarse grain, including majority rule and averaging for Ising spins [77] to momentum coarse

graining [6, 22] in field theory. After coarse graining, the units of measurement must be rescaled so that the

original units can be mapped to the rescaled values.

The upshot of all of this is that under this repeated application of RG transformations (i.e. under repeated

coarse graining and rescaling), the system’s various interactions all flow along with the rescaling value, so

that each of the infinitely many interactions flow with application of the RG transformations [77]. Most of

these interactions turn out to be unimportant for large systems, and flow towards zero. There are specific

points in this flow which are fixed points that are invariant under the RG transformation. These points are

clearly scale invariant, as rescaling does not change their nature. In the equilibrium case these fixed points

either define a phase of the matter, or they define a phase transition between two phases [20, 78, 77]. This

analogy is carried through to the non-equilibrium case, even though in the nonequilibrium case the focus is

no longer on the states but on the paths that a system can follow [10, 11, 22]. For an interface under stress

Σ, the interface can be either stuck at low stresses (Σ < Σc) or moving at high stresses (Σ > Σc). Between

these two regimes is a critical stress Σ = Σc corresponding to a renormalization fixed point where the power

law scaling behavior and scale invariance is observed [17, 1]. Near a critical fixed point one finds universal

behavior, because it is associated with a diverging correlation length that dominates the dynamics so that

microscopic details do not matter near Σc [32, 19]. For a large class of theories, the renormalization flow

results in the same fixed points.

Scale invariance is directly related to the power laws we often see in avalanche phenomena. To be precise,

scale invariance of f(x) is the property that f(λx) = λ∆f(x). The exact solution to this functional equation

is known as a homogeneous function [77], which for a single variable is a power law. For mean field theory,

the exponents are denoted by different greek letters. For the size distribution the exponent is τ = 3/2, while

for the duration the exponent is α = 1. In addition to this, the size versus duration also scales with an

exponent σνz = 1/2, so that T ∼ Sσνz, where σ, ν, and z all define other exponents [22, 6, 13, 25].

The full description of these scaling laws, as well as how renormalization works for these types of problems

is covered in the appendices. Here we will give a plausible argument that the upper critical dimension dc,

the point at which mean field theory applies, is 2, in order to later justify the use of mean field theory. First,

to fix notation (sometimes dc is taken to be 3, even though the problem has not changed [11]), the dimension

we refer to is the dimension of the interface. If we consider our earlier discussion, this is the number of

degrees of freedom of x in u(x, t), for which we have already fixed at 2 in the problems we discuss.

The argument is actually very old [79], similar to Imry-Ma type of arguments for random field Ising
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spins [80, 6, 13]. We take as our model system a set of spins with long range positive interactions in a d

dimensional space. We could instead talk about a d dimensional interface, but the spin picture is somewhat

less difficult to imagine. The interactions prevent the spins from adopting any non-uniformity, instead

snapping it back to the average value. The disorder causes the spins to point in random directions. These

two forces oppose each other, as our spins wants to be very ordered because of the long range interactions,

and very disordered because of the defects. Then over long length scales, the interaction strength between

spins scales as 1/Ld+1 because the spins have long range interactions, as mentioned above (i.e. for d = 2,

the interaction strength between spins scales as 1/L3) [39, 41, 13]. Since the spins span a d dimensional

space, the total interaction strength (i.e. integrate the interaction strengths of the spins over a space Ld)

scales as Ld/Ld+1 = L−1. Similarly, the sum of many random forces will slowly go to zero, and will go to

zero as L−d/2, the familiar expression for averaging random interactions. These two quantities scale at the

same rate at d = 2, suggesting that there is a balance between interaction and disorder here. Above this

dimension, the random forces go to zero faster than the interactions, resulting in a rigid set of spins that

will point in the same direction. Below this dimension, the random forces will dominate the interactions

over long length scales resulting in a very heterogeneous set of spins. Therefore, d = 2 is the upper critical

dimension. Note that for short range interactions, this is no longer true as the interactions scale as L−d−2,

and the upper critical dimension is instead dc = 4. Renormalization calculations agree with this heuristic

argument [6, 13, 40].

1.6 Overview of This Thesis

In this thesis, we will examine two related but different problems involving avalanches. The first is the

application of the avalanche model developed for plasticity and magnets [13] to stellar avalanches. We will

begin by describing the observations of Tabby’s star [60], which is an extraordinary F class star on the main

sequence. We will describe in detail the analysis we did on the Kepler data set of this star, the surprising

discovery of the power laws in many of the avalanche statistics, and how Tabby’s star compares to other

F class stars on the main sequence. We will conclude by describing others’ possible explanations for the

behavior of Tabby’s star as well as our own understanding of the star up to this point.

Second, we will apply the same analysis that led us to the conclusions for Tabby’s star to our own Sun.

Unlike Tabby’s star, the Sun is a very ordinary G class star (i.e. it is slightly cooler). However, data on the

Sun is much more readily available, and we have used data from the VIRGO instrument aboard the SoHO

spacecraft [81] to extract light curves equivalent to what was done with Tabby’s star. This data is very clean
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and provides us opportunities to explore physical mechanisms that might lead to non-secular, non-periodic

dimming in stars like Tabby’s star.

We will then change directions to focus on thermal effects on avalanches. Much work has been done

in this direction, both theoretically [82, 83, 84, 85] and experimentally [86, 87, 88, 89, 90]. We will first

describe where the current state of this work is at, and then we will discuss the practical challenges in

obtaining accurate avalanche distributions theoretically, computationally, and experimentally. With this in

hand, we will describe how we have developed a new algorithm that circumvents some of these challenges

and offers more insight into how thermal effects change the avalanche distributions. Finally, we will describe

interevent times between avalanches. We will take a deep look at the mean field model, and how avalanches

can arise in such a model at finite temperature. Then with the aid of the algorithms developed above, we

will describe how to theoretically derive interevent time distributions for the mean field model, and show

that these distributions agree with the simulations. We will close by describing experiments that can test

these predictions in real materials.
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Chapter 2

Avalanches and Criticality in the
Highly Variable Tabby’s Star (KIC
8462852)

2.1 Tabby’s Star

The Kepler spacecraft was conceived with the goal of finding extrasolar planets by measuring the time-

varying light flux, defined as power received in the 423-897 nm wavelength range, from about 150,000

stars [91, 92, 93]. As mentioned above, these light curves have proved useful for other purposes, such as

astroseismology [94]. Unexpectedly, these light curves are also responsible for the discovery of anomalies

associated with the star KIC 8462852 [60]. KIC 8462852, also known as Tabby’s star, is classified as an

F class star, not too disimilar from the Sun. However, the Kepler data has shown drops in flux by more

than 20%, as well as irregular smaller variations in flux in excess of similar fluctuations in many other stars

[60]. The unique characteristics of this light curve have motivated much interest in Tabby’s star. We show

that the statistics of the fluctuations, are similar to those often seen in ferromagnets and plastic flow and to

predictions from a mean field theory [16, 7, 13]. As mentioned before, we draw a formal analogy between the

fluctuations in Tabby’s star and avalanches in these materials. In astrophysical systems, avalanche statistics

have been found to describe the distribution of energies of x-ray emission from stellar flares [5], x-rays seen

from soft gamma repeaters [95], and a variety of other phenomena [96].

We list a few of the stellar properties of Tabby’s star. It is labeled an F3V star, which means that it

is slightly hotter than the Sun and lives on the main sequence in the Hertzsprung-Russell diagram. It also

implies that the star is middle aged, similar to our Sun. It is located 1,420 light years away, and has a mass

of 1.43 M�, a radius of 1.58 R�, a luminosity of 4.68 L�, and a temperature of 6750 K [60] (compared to

5800 K of the Sun), where M�, R�, and L� denote the mass, radius, and luminosity of the Sun. It has a

rotation period of 0.88 days [60], which we discuss below. Comparatively our Sun has a rotation period of

24 days. The temperature, luminosity, and mass of Tabby’s star are relatively common for F class stars, but

the rotation rate is faster than most main sequence stars in the Kepler catalog [97, 98] of comparable mass

and temperature. The median rotation rate of F class like Tabby’s star (an F3 main sequence star) is about

3 days [97], as compared to Tabby’s star, which has a rotation rate of 0.88 days.
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In order to analyze the avalanche properties, we extract the exponents from the light curve (flux vs.

time) of Tabby’s star. These exponents are extracted using the complementary cumulative distribution

function (CCDF). The use of the CCDF is justified because a power law probability density function (PDF)

p(S) = (S/Smin)−τf(S/Smax) will have a CCDF

C(S, Smax) =

∫ ∞
S

(S′/Smin)−τf(S′/Smax)dS′ ∼ S1−τF (S/Smax). (2.1)

where C(S, Smax) is the CCDF, and F (S/Smax) =
∫∞

1
u−τf(uS/Smax)du. The advantage of using CCDFs

instead of PDFs is that such a statistic is not sensitive to choice of binning, which is necessary to analyze

PDFs. In the above analysis, the integral extends to infinity with a cutoff function f(x). If S denotes the

avalanche size, the regime Smin < S < Smax is known as the scaling regime, over which the power law is

most clearly manifest in the CCDF. In principle Smin is set by some physical lower limit, such as the lattice

size. In practice however, it is mostly set by the noise floor, past which avalanche phenomena cannot be

distinguished from other forms of noise (most notably white noise). Smax is set by tuning parameters, such

as in plastic deformation, where the stress Σ sets the maximum avalanche size. In real systems, Smax is also

sensitive to the system size. There may be other tuning parameters such as rotation rate, mass, or even

stellar age, that can cause Smax to vary. A wide scaling regime indicates that the system has avalanches that

span a broad range of sizes and durations, and that it is near a non-equilibrium phase transition. In some

systems, very large avalanches sensitive to the system size can also occur. These avalanches are characterized

as large earthquake-like, system spanning events [6, 13] that have different statistics and modified dynamics

from small avalanches. Motivated by the large dimming events in Tabby’s star, we have analyzed also the

small dimming events (those on the order 10−5 − 10−3 of the median value) and compared their statistics

to those of avalanches in magnets and plastic flow. As mentioned above, the avalanche sizes here represent

the amount by which the radiated energy per unit surface area drops below its average value, during an

avalanche, i.e. the reduction in radiant fluence (energy per unit surface area) from the quiescent stellar

output. This is very much in analogy to solar and stellar flares [5, 58] and soft-gamma repeaters [95], where

avalanches are defined by the total amount of energy released in excess of an average rate, rather than the

amount by which it drops below the average value. We have analyzed the the statistics of these brightening

events, which do not show large variations like the dimming events, and found that the statistics of these

brightening events have statistics similar to the dimming events for small avalanches.
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2.2 Data Analysis

In order to extract and interpret the dimming events, we define an dimming event avalanche (we refer to it as

an avalanche) as a dimming event in the light curve which drops below a specified threshold. We choose the

threshold to be the median value of the light curve. This was done because Tabby’s star has large dimming

events that will bias the mean value. The median value is used as an estimate of the quiescent stellar

output. As mentioned before, it is analogous to the velocity of two interfaces sliding in plastic deformation.

The use of a threshold is very common in extracting avalanches [4] from data, although it results in some

unwanted free parameters. Also, in addition to the dimming events, in the appendices we show statistics for

the brightening events, which are events above the threshold value.

In Tabby’s star, there is a periodic 0.88 day signal, most often reported as a rotation signal [60]. We use

a notch filter to remove this signal and its two higher harmonics. The presence of the 0.88 day signal may

signal that Tabby’s star has starspots, as stellar rotation does not usually cause periodic modulation of this

magnitude otherwise [97]. If the 0.88 day signal is from rotation, it is likely that Tabby’s star has a large

magnetic field [64]. Because of the high rotation rate, techniques for measuring this magnetic field, such as

Zeeman-Doppler imaging [99] might prove unreliable, but as far as we are aware this magnetic field has not

been measured in any detail.

Figure 2.1: (a) The light curve of Tabby’s star over the entire observation period we analyzed. We normalized

the flux to the median flux in this data. (b) An example of avalanches in Tabby’s star. Here the red line

denotes the threshold value, which we have set to the median flux value. Taken from [59].

The entire observation period of the Kepler data spans a four-and-a-half year period, yielding about 1,000

avalanches. In that four-and-a-half year period, there have been 9 large avalanches, with troughs greater
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than 1% of the total solar output. We show above in fig. 2.1 the light curve and an example of avalanches.

The large events immediately stand out, and large orbiting bodies resulting in these events have been ruled

out since the discovery of the light curve [60]. We discuss possible explanations below.

Figure 2.2: All plots are on a loglog scale. The highlighted (red) region denotes the scaling regime (a-d). In

(a) and (b) the black crosses represent the 9 largest avalanches. In (a), (b), and (c) the dashed line denotes

the power law with the measured exponent (Table 2.1). (a) The CCDF of avalanche sizes. (b) The CCDF of

avalanche durations. (c) The avalanche magnitude vs. duration. The dots denote logarithmic bins in size.

(d) The power spectral density. Here the dashed line is the power law with exponent -1.5, which matches

well with the predicted value of the slope 1/σνz, where σνz was defined from the slope of (c). Incidentally,

the slope appears to cross over at frequencies below the scaling regime (put in exact value) to 1/σνz, which

is the mean field value. Taken from [59].
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Exponent Tabby’s star Mean Field

τ 1.60±0.10
0.13 3/2

α 2.09±0.07
0.40 2

σνz 0.67±0.04
0.02 1/2

τ−1
α−1 0.55±0.46

0.14 1/2

Table 2.1: Avalanche exponents for Tabby’s star and the mean field avalanche model [17]. In order to extract

the exponents τ and α we used a maximum likelihood approach [100]. The uncertainties obtained from the

variation of threshold and variation of the scaling regime were much larger than that from bootstrapping, so

we used these uncertainty values in the table (see the appendices). The actual error bars may be larger; the

maximum likelihood method we have implemented does not take into account the decaying cutoff function

[2]. Taken from [59].

Figure 2.2 shows the power law behavior of avalanche size distributions in KIC 8462852, which spans

nearly 4 decades of size (highlighted in red). The exponents we extract are present in table 2.1. The

exponents τ and α are close to their mean field values, while the exponent σνz slightly deviates from the

mean field prediction. The exponents τ and α were extracted using the maximum likelihood method, as

the exponents of power laws are not accurately captured using least squares fitting of CCDFs [100]. Details

of the maximum likelihood procedure are presented in the appendicies. We do not use the standard error

(∆̂ − 1)/
√
N of the estimated exponents ∆̂ = τ or ∆̂ = α, where N is the number of samples [100]. This

error is too small to be reasonable when we evaluated it, so we instead choose to vary our free parameters.

These free parameters are the scaling regime and threshold that we have chosen (see the appendices). The

exponent σνz is found using standard least squares fitting of log(T ) versus log(S) where T and S are the

duration and size. The error here is the maximum of the standard error obtained from least squares fitting

and the error obtained from varying our free parameters.

The power spectral density, the magnitude squared of the Fourier transform of the light curve, is expected

to follow a power law as well. The slope of this power law is 1/σνz [18] and we plot this slope in fig. 2.2(d).

The power spectral density plotted here is not the raw power spectral density, as the large avalanches

completely mask the features of the CCDF. They have been removed before plotting the CCDF, along with

the rotation signal, which is visible as notches in fig. 2.2(d). The scaling regimes are highlighted in red in

fig. 2.2. The scaling regimes are found using scaling collapses, as defined below (also see the appendices).

One test of consistency with theoretical predictions [14] is the exponent relation (τ −1)/(α−1) = σνz. This

is satisfied by size and duration distributions of Tabby’s star to within error bars.
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In addition to the sizes and durations of the avalanches, we can look at the average temporal profiles

(shapes) of the dimming events for further confirmation of our model. The Kepler spacecraft took data

every 30 minutes. Since the events in the regime we are interested in are on the order of hours to days, we

have enough temporal resolution to analyze the specific avalanche shapes. These shapes give us a powerful

method to confirm that Tabby’s star indeed has avalanche processes near criticality. Near criticality, the

theory of non-equilibrium critical phenomena posits that the average avalanche shapes will exhibit well-

defined universal profiles [17, 4]. This universal profile is not visible for single avalanches because the

avalanches are stochastic, and must be averaged over a fixed variable such as size or duration.

(a) (b)

Figure 2.3: The collapses of avalanches after averaging over duration (a) and size (b). We plot every 10th

error bar to prevent cluttering. The insets show the original averages before rescaling. The data is inverted

from the original Kepler data, so that the dimming events are presented as positive excursions instead of

negative excursions. Redder colors correspond to longer avalanches, while bluer colors correspond to shorter

avalanches. The value of the factor σνz was taken to be 0.67, the measured value. In (a) the rescaled time is

t/T , where T is the total duration. The scaling factor T 0.5 = T 1/σνz−1. In (b) the dashed black line shows

the best fit mean field theory prediction for the collapsed function. The rescaled time is t/Sσνz = t/S0.67

and the scaling factor S1−σνz = S0.33. Taken from [59].

There are two types of averaging to find universal profiles, both dependent on the exponent relation

Sσνz ∼ T . First, in fig. 2.3(a) we plot the average over duration T . We denote V (t) to be the median light

flux minus the actual light flux as a function of time t during a dimming event [4]. Given that the average

avalanche profiles are expected to be universal [4, 1], we expect that 〈V (t) | T 〉 = G(t/T ), where G(t/T ) is

our scaling function. Then in analogy with other scale invariant quantities, we expect that as T varies, we

can rescale G(t/T ). If T → T ′, then G(t/T ) → (T ′/T )∆G(t/T ). Here ∆ = 1/σνz − 1, as T 1/σνz ∼ S and
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S/T is approximately the avalanche amplitude.

In practice, there are no avalanches that have the exact same duration. Therefore, we average over bins

between 0.85T < T < 1.15T for varying T . We space the value of T so that the bins do not overlap, thereby

ensuring independence between bins. The avalanches are first interpolated to a fixed number of time points

so that they can be averaged. The scaling collapse, which is the main fig. 2.3(a) is produced by dividing

the avalanches by a factor of T 1/σνz−1 and rescaling time to t/T , where σνz = 0.67. Scaling collapses with

0.60 < σνz < 0.71 are also reasonable. In fig. 2.3(a) the inset shows the original averages before rescaling.

A second natural type of averaging involves averages over avalanches of the same size S [17, 18, 4], which

we show in fig. 2.3(b). We average over bins between 0.85S < S < 1.15S. To average over size, we first zero

padded the avalanches to the longest avalanche in the bin before averaging. After averaging, we rescaled the

temporal coordinate by Sσνz, which is again derived from the relation T ∼ Sσνz. As above, the avalanche

amplitude is also rescaled by a factor of S/T ∼ S/Sσνz = S1−σνz. Here we used the value of σνz = 0.67.

Scaling collapses with 0.60 < σνz < 0.71 are also reasonable. The inset of fig. 2.3(b) shows the original

averages before rescaling.

We have used these scaling collapses to find the scaling regime in fig. 2.2. In order to do this, we checked

for consistency, by first choosing a scaling regime that we found reasonable, seeing if the shape collapses

worked for this scaling regime, and varying until the avalanche shapes collapsed within the selected scaling

regime. We found this method to be effective here, and it provided a method of finding the scaling regime

with fewer free parameters to adjust.

2.3 Potential Explanations

2.3.1 Overview of Potential Explanations

Beyond the dimming seen in Tabby’s star on the scale of the Kepler observations, there are reports that

have confirmed that a longer term dimming of Tabby’s star can be seen over several 10s of years [101]. This

discovery, and subsequent confirmation [102] (although not without debate [103]) added to the enigma of

Tabby’s star. If we ignore the longer term dimming for the moment, there are a few possible explanations

of the dimming events in the Tabby’s star light curve. Exoplanets are often ruled out because the size of

these planets would be too large and because of the lack of periodic dimming events.

Two of the most popular explanations for the anomalous dimming of Tabby’s star are dust and exocomets

(i.e. comets orbiting Tabby’s star). Dust is often ruled out because of the lack of infrared (IR) excess [104],

which is a simple result of black body radiation between the dust between the star and our line of sight to
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the star. A large cloud of dust orbiting (loosely) Tabby’s star would absorb much of the light emitted by

the star. It would then reradiate at a lower peak wavelength owing to its lower temperature. As Tabby’s

star has dimming events on the order of 20% of the total light flux, one would imaging a significant amount

of IR excess in the black body curve of Tabby’s star, which is not observed. However it was argued recently

that dust is a possible explanation within the parameters of plausible dust models [105].

The other possibility of occulting material causing the dimming of Tabby’s star is exocomets, originally

proposed in the first analysis of Tabby’s star [60]. However, to cause the larger dimming events in Tabby’s

star, there would have to be a swarm of such comets that orbited the star in a highly elliptical orbit. This

elliptical orbit would explain why no dimming events are observed for long periods of time, and why such

dimming events happen over an incredibly short duration. Recent models show that this is a possibility

[106], but more data is needed, especially of larger dimming events. Post Kepler data, taken from the

period of 2016 to 2018, shows that dimming events are presently occurring in Tabby’s star, although with

peak amplitudes of about 2-3% of the star’s total flux [107]. However, it is interesting to note that these

observations were taken over multiple bands, and they showed a preferential reddening (i.e. blue light from

Tabby’s star exhibited larger dimming), which runs counter to the exocomet hypothesis.

We presented in our paper [59] the possibility that these events are intrinsic to the stellar photosphere.

It was independently proposed that such dimming events could be caused by the intrinsic reduction of heat

transport efficiency in the star [108]. We do not speculate as to the exact physical mechanism here.

2.3.2 Similarities to Other Stars

Besides Tabby’s star, we have analyzed the light curves of several stars monitored by Kepler. We have not

systematically explored every star in the Kepler catalogue, but we have focused particularly on stars with

fast rotation rates [64] and magnetic activity [65]. We looked through a total of 123 stars. Three stars,

KIC 4638884, KIC 7771282 [64], and KIC 5955122 [65], were found to have avalanche shape collapses and

statistics that matched the avalanche model predictions. Most of the stars that we analyzed do not exhibit

evidence of avalanches, either lacking the statistics or having avalanche shapes that did not collapse. For

these three stars, we plot the relevant statistics and shapes in the appendices.
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Figure 2.4: The size CCDFs of the four stars labeled in the figure. Data points marked with a squares

were used in the calculation of the moments. Data points marked in black crosses were not included in the

calculation of the moments. The scaling regime of KIC 8462852 is between 5 × 10−6 − 2.4 × 10−3 in size.

The other stars have similar scaling regimes, approximately between 5 × 10−6 − 1× 10−4. In the inset the

rescaled CCDFs were plotted to show that there is a possible relationship between these four stars. We

chose the mean field exponent τ = 1.5 in the collapse, but values between 1.3 < τ < 1.6 produce reasonable

results. In KIC 8462852, the 9 largest avalanches were not used in the calculation of the moment. Taken

from [59].
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Figure 2.5: The light curves of the three stars we analyzed in the text. (a) The light curve of KIC 4638884.

(b) The light curve of KIC 5955122. (c) The light curve of KIC 7771282. The light curves all show larger

than usual variations in luminosity due to magnetic activity.

Exponent KIC 4638884 KIC 5955122 KIC 7771282 Tabby’s Star

τ 1.50±0.14
0.09 1.72±0.12

0.18 1.63±0.08
0.24 1.60±0.10

0.13

α 1.68±0.28
0.18 2.08±0.5

0.3 2.02±1.17
0.29 2.09±0.07

0.40

σνz 0.71±0.04
0.07 0.75±0.04

0.06 0.74±0.04
0.08 0.67±0.04

0.02

τ−1
α−1 0.74±0.58

0.32 0.67±0.40
0.32 0.62±0.35

0.29 0.55±0.46
0.14

Table 2.2: We list the exponents and uncertainties of the exponent values for each of the stars analyzed that

matched closely with Tabby’s star. The exponents and uncertainties are obtained using methods detailed in

the appendices. The lower and upper errors are the largest deviations observed using these methods. The

value of (τ − 1)/(α − 1) is listed because for avalanche dynamics it is expected that (τ − 1)/(α − 1) = σνz

[14], and this is satisfied to within error bars for each of the 4 stars. The CCDFs of duration, size versus

duration, and power spectral densities are plotted in the appendix to chapter 2. Taken from [59].

In fig. 2.4, fig. 2.5, and table 2.2 above, we show information about the stars we analyzed. We plot the

size CCDFs for the 4 stars (Tabby’s star is KIC 8462852) in fig. 2.4 and the light curves of each of these stars

in fig. 2.5. Each of these stars had been marked as magnetically active stars with slightly larger than usual

variations in the light flux. Note however that the variations are still small (on the order of 10−5 − 10−4 of

the total flux) relative to Tabby’s star, with the largest small events being the rarest due to the power law

decay. We plot the remaining statistics in the appendices. If the stars are near an underlying critical point,

then universality predicts that the avalanche distributions are of the form C(S, Smax) = S1−τF (S/Smax)

for S > Smin [14, 54]. Similar to how the avalanche shape collapses worked, this scaling form allows us to

perform a scaling collapse, which we show in the inset of fig. 2.4. In order to perform this scaling collapse,
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we used the second moment 〈S2〉 as a proxy of Smax. The nth avalanche moment scales as

〈Sn〉 =

∫
Snp(S)dS =

∫
Sn−τf(S/Smax)dS ∼ Sn+1−τ

max (2.2)

implying that Smax scales as 〈S2〉
1

3−τ . Therefore we rescale the sizes of avalanches of each star by the second

moment found within the scaling regime [54]. In fig. 2.4 we show the sizes we excluded as the black crosses.

Values of τ that produced acceptable scaling collapses were approximately 1.3 < τ < 1.6, but we used the

mean field value of 1.5 in the inset of fig. 2.4. In order to do the scaling collapse, we excluded the Gaussian

noise regime for each of the stars (avalanches on the order of 10−10 to 10−6) and we also excluded the 9

largest avalanches in Tabby’s star. We did this because the data suggests that the largest avalanches seen

in Tabby’s star have modified dynamics, which could be similar to weakening and hardening in plastic flow

[13], and large avalanches would also be sensitive to the system size.

The scaling collapse in fig. 2.4 implies several important conclusions. First, the stellar variability in the

stars KIC 4638884, KIC 7771282, and KIC 5955122 are the result of magnetic activity in the star. Magnetic

activity has been known for a long time to cause variability in total solar output [109]. If the scaling collapse

is to be believed, then the stellar variability in Tabbys star may also be the result of magnetic activity, or the

underlying thermodynamic processes that cause the magnetic activity. Second, the variability of stars in the

Kepler catalogue that display power laws suggest that if Tabbys star is the result of avalanches on the stars

photosphere, it is likely due to tuned criticality rather than self-organized criticality. We do not speculate

what these tuning parameters are, but near a critical phase transition, avalanche sizes would diverge quickly.

This would also explain the relative rarity of a light curve such as Tabby’s star.
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Figure 2.6: The CCDFs of the dimming events to the brightening events in Tabby’s star, where dimming

events are labeled as below threshold, and brightening events are labeled above threshold. We see the that

small events (those with size less than 10−4) are almost identical for the dimming and brightening events,

but past this size the relative frequency of the larger dimming events is bigger than those of the brightening

events.

In fig. 2.6 we plot the brightening events, that is those events above the threshold value.To be precise, they

are defined as the excursions of the light curve above the median value. We see that there is a remarkable

similarity between the CCDFs of the brightening events for small events (those with size less than 10−4) but

there is a divergence at this point.

Importantly, we analyzed the small dimming (and above, the brightening) events in Tabby’s star, but

it was the large dimming events that drew our attention in the first place. Based on the data, the small

events follow a model of avalanche dynamics described above, although the exponents are not exactly mean

field exponents. The large events, even with the new observations [107] do not constitute enough events

to perform a statistical analysis. We can speculate that the large events are similar to large avalanches

observed in bulk metallic glasses [15], and could be caused by weakening. Here, the weakening would be

a free parameter in the theory that can cause runaway events that span the system size and deviate from

power law scaling.

In many other stars, stellar variability is often attributed to regions of intense stellar magnetic activity

[110, 111] or exotic stars with large magnetic fields [95]. There is a rough agreement between all of the

exponents that we have observed, and those reported for stellar superflares [58, 112, 67, 68]. Here superflares

are large stellar flares that are visible even against the bright light of the originating star. Kepler superflare
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studies have reported exponents of τ ∼ 1.6 − 2.3, α ∼ 2, and σνz ∼ 0.5 − 1 [58, 112, 67, 68]. The value

of τ = 1.60 is close to the value of 1.67 given for the energy released by bursts of x-rays from soft gamma

repeaters [95].

This is not to suggest that each of these stars has the exact same physical mechanism underlying its

activity. It is unlikely that soft gamma repeaters, which are neutron stars, and stars with superflares, which

are usually main sequence stars, behave similarly. Rather, it is an appeal to universality, that the avalanche

type behavior seen in all of these examples is the result of interactions, which may be long range, and similar

in dimensionality, symmetry, and quenched disorder. The argument for the stellar magnetic field as the

source of avalanches in Tabby’s star is supported by fig. 2.4, where the magnetically driven stars’ CCDFs

collapse well with Tabby’s star. It is also supported by table 2.2, which shows that we have extracted

avalanche exponents from each of the stars’ light curves that, although not in perfect agreement, do agree

to within error bars of each other.

In order to further examine the possibility that the stellar variability is intrinsic, and look at possible

mechanisms of this variability, we have also explored a different dataset. This dataset, taken from the

Variability of Solar Irradiance and Gravity Oscillations (VIRGO) photometer on the Solar and Heliospheric

Observatory (SoHO) spacecraft has similar properties to the Kepler data. It is a look at the total output of

the Sun, known as the total solar irradiance, and it will be the subject of the next chapter. We have found

that even in the Sun, there may be avalanches, and unlike Tabby’s star, the variability of the Sun is better

understood.
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Chapter 3

Avalanches in VIRGO Data from the
Sun

3.1 VIRGO Data and Purpose

As in the previous chapter, we apply the methods of avalanche behavior to the light from Sun. We use data

collected by the VIRGO (Variability of Solar Irradiance and Gravity Monitoring) instrument [81] over the

years of 1996 - 2008. The VIRGO instrument collects light curve data (flux vs. time) similar to Kepler

aboard the SoHO (Solar and Heliospheric Observatory) spacecraft. In the case of VIRGO, the data is

collected from two three-channel sun photometers, which measure the total spectral irradiance (TSI) around

402, 500, and 862 nm.

Similar to Kepler, VIRGO measures the data continuously with a frequency of once per minute, and it

has done so for the past 18 years. Of the 18 years available from VIRGO, we obtained access to 12 years

of unfiltered data from the 500 nm sun photometer. The original purpose of VIRGO was for gathering

helioseismology data [81] on the Sun to probe the stellar interior [81, 94, 69]. Unlike the application of our

avalanche methods to Tabby’s star, the Sun is relatively well understood, and we have found evidence that

similar – though not exactly the same – type of avalanche behavior occurs on the Sun’s photosphere (the

Sun’s surface).

The Sun is a relatively normal G class star, and has a temperature of 5800 K, slightly below Tabby’s

star. By comparison with Tabby’s star, light from the Sun does not experience huge dimming. However,

small dimming events in the Sun still show statistics that follow the predictions of an avalanche model [13].

Importantly, the VIRGO instrument has the fidelity to measure these dimming events. The small oscillations

in the Sun’s brightness due to standing waves on the Sun [81] are on the order of 10−5 − 10−4 of the total

solar irradiance (TSI) and of similar amplitude to the dimming events we observe.

Also unlike Tabby’s star, where the cause of the dimming events are unknown, we believe that the small

dimming events on the Sun’s photosphere are the result of a continuum of events of varying size, with the

largest events being the groups sunspots that are so readily visible on the Sun [113].

As we have mentioned before, there are already dramatic examples of avalanche phenomena in solar
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and stellar physics. Here we describe in detail how the generation of solar flares can be interpreted as an

avalanche phenomenon [5]. Solar flares are sudden releases of energy in the Sun’s corona, which is a layer of

plasma that surrounds the Sun [114].

Solar flares are likely caused by magnetic reconnection of the magnetic field that threads around the

Sun. This magnetic field may have discontinuities, which are possible when sheets of charged particles

thread between them. When the discontinuity angle between two fields exceeds an angle θ > θc, there is

a catastrophic reconnection event that ejects charged particles out into space [5]. As mentioned before,

the energy released by these events (as measured in the X-ray band) [115] shows scaling with an exponent

measured between 1.5 and 2 [114] over 12 decades of energy scales. We propose similar scaling is present for

sunspots and other dimming events on the Sun’s photosphere.

3.2 Data Analysis
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Figure 3.1: (a) The light curve of extracted from the VIRGO data over the entire observation period of

12 years. We normalized the flux to the mean flux in this data, so what is plotted is F (t)/Fmean. The yellow

curve is F̄ (t)/Fmean and is the smoothed data used as the threshold value. The smoothing window size was

40000 minutes, or about 28 days. The 8 red demarcations represent the 8 regions we have split the data

into. In region 2 there were several days of missing data, so we extended this region to include more data.

(b) An example of avalanches in the VIRGO data. Here the red line denotes the threshold value, which we

have set to the median flux value.

Similar to how the analysis was done in Tabby’s star, we define a dimming event as the total loss of radiant

flux relative to the quiescent flux of the Sun. The quiescent flux can be found using either the mean or the
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median value. The median value was used in the Kepler data analysis, but we choose the mean value here

to make the interpretation simpler. Note that because of the lack of large outliers, using the mean value

or the median value does not change the results of the analysis. The duration is again defined as the time

the light curve spends below the threshold, which we have taken to be the mean value of the flux. Fig. 3.1

shows the full light curve as well as an example of an avalanche in the VIRGO data.

The data was taken during solar cycle 23, beginning in 1996 and ending in 2008 (the cycle lasted 12

years). The solar cycle is a variation of solar properties that repeats once every 11-12 years, during which

the Sun’s magnetic field flips polarity [113]. The full period is in fact double (22-24 years) because of this

polarity switching, but most properties do not depend on the polarity of the Sun’s magnetic field. The

primary variations in the Sun are thought to be the presence of sunspots and flares (solar activity) and

variations in the total solar irradiance [109]. The TSI varies in phase with the solar cycle, with an amplitude

of about 0.1 % of the mean output of 1361.5 W/m2 [116, 117, 118].

As visible in the data above, the solar cycle causes large variations in the data that cannot be ignored

when trying to extract avalanches. In order to analyze the VIRGO data, we sliced it into 8 equal regions of

about 550 days. We chose 8 regions as a compromise between gathering enough avalanches within a region

and our temporal resolution between regions. Note that in region 2, we were missing about 150 days of data,

so this region has a range of about 700 days instead of 550 days.

The solar cycle has clear minima and maxima. The minima correspond to times during which the Sun’s

overall magnetic field is like a dipole similar to a bar magnet. The maxima correspond to times during which

the solar magnetic field is unstable, as it is in the process of switching between polarities. This magnetic field

is generated by complex fluid motions of the stellar interior and the rotation of the Sun, known as the solar

dynamo [119]. In this data, regions 1 and 8 correspond to the solar minima, while regions 2-7 correspond

to either transitory periods or the solar maxima. As is expected, the TSI varies far more during the solar

maximum than the solar minimum.

To handle the overall variation of the TSI during the solar cycle, in addition to splitting the data into

several pieces we also needed a more flexible approach to choosing our threshold. As is easily visible in

fig. 3.1, the data varies on the largest time scales available, and any constant threshold (i.e. the mean

solar output) would only pick up these very large variations. Since we are looking for small variations

(on the order of 0.01 − 0.1% of the TSI), we needed to subtract the largest variations, often called secular

variations in the VIRGO data. In order to do this we used a simple window filter with a window of

about 27 days, as we were mostly interested on variations smaller than this scale. If we call the raw

VIRGO data F (t), this window filter produced data which we call F̄ (t). Finally, we also extracted the
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mean value of the data over the entire period of observation, which we call Fmean. This mean is used to

normalize the data so that we can look at solar variations as a function of the total fraction of solar output.

First we divide both F (t) and F̄ (t) by the mean value Fmean to normalize the data. Then we subtract

F (t)/Fmean − F̄ (t)/Fmean = (F (t) − F̄ (t))/Fmean = V̄ (t). This is the same normalization used in the

previous chapter [59]. We also filter the short frequency data here, with a window filter of size 30 minutes.

This window filter smooths short term oscillations of the type used for helioseismology [81]. We call the final

signal we obtain V (t).

We grant that there are several free parameters in this data analysis that were set by hand. First,

the choice of window size to extract the threshold, and second, the choice of window size to filter small

oscillations. These small oscillations are the result of linear gravitational and pressure waves that constantly

occur on the photosphere [81] that do not correspond to avalanche phenomena, which are nonlinear. In order

to provide more certainty that the exact choice of such parameters does not reflect, in the appendices we

show that varying these parameters of choice does not significantly alter the distributions of size or duration.

Specifically, we have varied the filtering window for the threshold F̄ (t)/Fmean from 13 days to 40 days, and

found very little variation in the distributions. We have also varied the offset of the threshold by a factor

of 10−5. Finally, we have varied the filtering window at high frequencies from 10 minutes to 60 minutes

with little variation of the size and duration distributions. We believe the conclusions we reach are robust

to these variations, and have included the variations of the distributions in our estimation of the error bars

of the exponents that we extract.

In each of the 8 regions, we have between 600 and 3000 avalanches, with regions 1 and 8 having the

largest number of avalanches. The intermediate regions have fewer avalanches because many of the events

in these regions are larger, and therefore less likely to return to the mean threshold.
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Figure 3.2: We show the dimming event avalanches for all 8 regions. Brightening events are shown in the

appendices. The solid black lines are guides for the eye, with slope as the average exponent of regions 1

and 8. The highlighted black symbols denote the scaling regime for regions 1 and 8, and denote the range

over which we took avalanches for all the regions for studying the avalanche shapes. (a) The avalanche size

CCDFs.. The avalanche sizes grow larger as the solar maximum approaches, but this also destroys the power

law behavior. (b) The avalanche duration CCDFs, which show behavior that is similar to the size CCDFs.

(c) The size versus duration. (d) The power spectral density (PSD) for each of the 8 regions. There was

a multiplicative offset (which is a constant offset on a loglog) applied to each region as the PSDs would

overlap otherwise. We show the PSDs before we apply high pass filtering to their light curves, showing the

solar oscillations at the highest frequencies visible in the PSDs (with about 5 minute periods). The solid

black lines show the binned PSDs which are averaged over several intervals of frequency to remove noise,

while the black line on the bottom left denotes the expected slope 1/σνz of the PSDs in the scaling regime.

The alternating white and black regions of the binned curve show the scaling regime as 1/Tmax to 1/Tmin

extracted from (b).
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Exponent Region 1 Region 8 Tabby’s Star Mean Field

τ 1.74±0.30
0.2 1.80±0.2

0.3 1.60±0.10
0.13 3/2

α 2.00±0.3
0.5 2.04±0.5

0.4 2.09±0.07
0.40 2

σνz 0.79±0.04
0.04 0.80±0.04

0.03 0.67±0.04
0.02 1/2

τ−1
α−1 0.74±1.3

0.3 0.77±0.8
0.5 0.55±0.46

0.14 1/2

Table 3.1: Avalanche exponents for regions 1 and 8 and the mean field avalanche model [16, 17, 1, 13] . In

order to extract the exponents τ and α we used a maximum likelihood approach [100]. The uncertainties

were obtained from the variation of threshold, the scaling regime, and the two filter windows, which were

the highpass filter and filter to determine the threshold (see the chapter 3 appendices). The actual error

bars may be larger; the maximum likelihood method we have implemented does not take into account the

decaying cutoff function [2]. For convenience, we have also included the exponents extracted from Tabby’s

star using a similar analysis, which we reported in the previous chapter [59].

Below we plot the avalanche statistics for fig. 3.2. Here we again focus on the three exponents we can

most easily extract from the data, τ , α, and σνz, which come from the size, duration, and size versus

duration plots. As mentioned above, the power law is expected to only hold in the scaling regime, and we

only consider two regions, regions 1 and 8, to show true scaling behavior. These regions correspond to the

solar minima. In table 3.1 we report the avalanche statistics for regions 1 and 8, as well as the mean field

model.

Like Tabby’s star, we determine this scaling regime from the avalanche collapses and the statistics, by

alternately choosing a scaling regime and then checking if the avalanches collapse within this regime until

a consistent scaling regime is chosen. This has the added benefit of reducing the degrees of freedom in

our statistical analysis. These scaling regimes are shown in fig. 3.2 as the black markers. Regions 1 and

8 clearly have scaling behavior over at least two decades of size (fig. 3.2a-b) while the other regions show

larger avalanches that seem to deviate from pure power law scaling. Avalanches larger than the avalanches

in the scaling regime are fairly narrowly distributed, since the corresponding CCDFs drop off quickly and

the PDFs are the negative derivatives of these quantities. Typically, large avalanches are those that are

longer than 3 days in fig. 3.2a-b. These large avalanches may be the result of either merging of small

events, which is a constraint of looking at the total integrated solar flux, or because they are the result

of a runaway nucleation process similar to those in plasticity and magnetism [13]. The primary limitation

on our scaling regimes in this case was the power spectral density (fig. 3.2d), which shows an anomalous

curving for avalanches of duration shorter than 8 hours. The black lines represent the binned PSD, which
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is averaged over several frequency intervals in order to remove the noise. The broken black and white line

in fig. 3.2d is the expected scaling regime 1/Tmax to 1/Tmin from fig. 3.2b. The PSD is expect to scale as

f−1/σνz [18], which approximately happens over the small scaling regime, as plotted by the black line on

the lower left corner of fig. 3.2d. The exponents are also consistent, with the standard exponent relation

(τ − 1)/(α− 1) = σνz [14, 120] holding well within error bars.

One observation is that the avalanche processes causing dimming events on the Sun are the result of

tuned criticality [16] rather than self-organized criticality. This is most clearly visible in the size and du-

ration CCDFs (fig. 3.2a-b), where the variation with the solar cycle is clearest. Similar to Tabby’s star,

an underlying tuning parameter must be varying during the solar cycle that causes variations in Smax and

Tmax.
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Figure 3.3: The scaling collapse of avalanche shapes for fixed duration 〈V (t)|T 〉. (a) The region 1 scaling

collapse. (b) The region 8 scaling collapse. The other scaling collapses are plotted in the appendices. We

used the value of σνz = 0.79 for these scaling collapses, which resulted in the avalanche height being rescaled

by T 1/σνz−1 = T 0.26, while the durations were all normalized to the between 0 and 1 (so t → t/T ). The

insets show the avalanches before the rescaling. Each avalanche is color coded consistently between the

main figure and the inset. We found that only regions 1 and 8 had satisfactory scaling collapses. The other

regions did not have shapes that collapsed well, even though the value of σνz does not vary between regions

by much (see fig. 3.2). This result can be explained by the fact that regions 1 and 8 have the largest scaling

regimes, and therefore are expected to be closest to a critical point. Shape collapses are expected to work

best close to a critical point [4].

We show in fig. 3.3 the avalanche shapes in regions 1 and 8 for averaged duration 〈V (t)|T 〉. The analysis
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for each of the regions was described in the previous chapter. Regions 1 and 8 also produced the largest

number of avalanches, and we extracted avalanches from all regions in the highlighted (black) part of the

CCDFs in fig. 3.2. We performed a scaling collapse for each of these regions, which we show in the appendices.

In order to perform a scaling collapse, we used the averaged measured value of σνz = 0.79, but scaling

collapses using 0.70 < σνz < 0.85 worked reasonably well, and may give us a different bound on the

uncertainty in σνz.
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Figure 3.4: The scaling collapse of avalanche shapes for fixed size 〈V (t)|S〉. (a) The region 1 scaling collapse.

(b) The region 8 scaling collapse. The other scaling collapses are plotted in the appendices. We used the

value of σνz = 0.79 for these scaling collapses, which resulted in the avalanche height being rescaled by

S1−σνz = S0.21, while the durations were all normalized to the between 0 and Sσνz (so t → t/Sσνz). The

insets show the avalanches before the rescaling. Each avalanche is color coded consistently between the

main figure and the inset. We found that only regions 1 and 8 had satisfactory scaling collapses. The other

regions did not have shapes that collapsed well, even though the value of σνz does not vary between regions

by much (see fig. 3.2).This result can be explained by the fact that regions 1 and 8 have the largest scaling

regimes, and therefore are expected to be closest to a critical point. Shape collapses are expected to work

best close to a critical point [4].

In fig. 3.4 we did a similar analysis for the avalanche shapes in regions 1 and 8 averaged over size 〈V (t)|S〉.

The analysis was exactly the same as what was done in the previous chapter. We show the other regions

in the appendices. Again values of 0.70 < σνz < 0.85 worked reasonably well, but we used the value of

σνz = 0.79. We have also plotted in the dotted black line the mean field scaling form g(x) = x exp(−Ax2),

where x = t/Sσνz and A is non-universal [17]. This form did not fit well with the scaling collapses in this

case.
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3.3 Sunspot Physics

It has been established [109] that dimming variations in the total solar irradiation are likely due to sunspots

or their precursors. Therefore we propose that the dimming avalanches that we see here are the result of

sunspots and their precursors, known as solar pores [121].

Sunspot structure is broadly defined by a dark umbra and a lighter but still dark penumbra. The

penumbra is the region that surrounds the dark umbra of a sunspot. Solar pores are sunspots without these

penumbra. The formation of sunspots is thought to be complex, and many attempts have been made at

simulating the underlying magnetohydrodynamic equations to find evidence of formation [122]. However,

the primary cause of sunspot formation has been known for many years [113] as the emergence of magnetic

flux from the Sun’s photosphere. This magnetic flux inhibits heat conduction to the surface of the Sun

[123] thereby causing a cooling at the surface of the sun. Although exact values from spot to spot vary,

the reduction in light flux from a sunspot is on the order of Fss/F� = 1/5 of the photosphere’s average

luminosity, where Fss is the light flux from the sunspot and F� is the average light flux from the Sun. Given

the Stefan-Boltzmann law of L ∼ T 4, this implies a reduction in temperature of the spot by about 30%, or

a cooling from 5800 K to 4000 K. The diameter of sunspots varies wildly between 1500 − 2000 km to over

6×104 km, with fields on the order of 1500−3000 gauss on the surface [123]. It is worth deriving from these

quantities that even the smallest dimming events in the scaling regime, those on the order of 5× 10−5 of the

TSI (see the insets of fig. 3.3) would have to result from a single spot radii of about 6000 km, or multiple spots

of smaller radius that have equivalent area. This follow simply from the fact that Ldim/L� = (L�−Lss)/L�

where Ldim is the dimming luminosity, L� is the average Sun’s luminosity. The luminosity of the sunspot

is related to the flux as Lss ∼ FssR
2
ss, while the total average luminosity of the sun is L� = F�R

2
�, where

Rss is the radius of the sunspot and R� is the radius of the Sun. Then Ldim/L� = 1 − FssR2
ss/(F�R

2
�).

Above we have assumed that the area of the sunspot scales with with radius as A ∼ R2, and that the flux

Fss is the average sunspot flux. This is true because sunspots have been observed to have only barely fractal

properties with df ≈ 2 [124, 125, 126].

It is believed that sunspots grow and shrink depending on the accumulation of magnetic flux tubes [123,

127]. Different flux tubes emerge, combine, disperse, and disappear in order to maintain the fundamental

constraint of Gauss’s Law for magnetic fields. These magnetic fields change dynamically in response to the

convective motions beneath the Sun’s surface. The energy lost from the reduction in luminosity must go

somewhere, and it has been thought for a long time that this energy is radiated into the chronosphere (the

layer of plasma around the Sun) or back deep into the interiors of the Sun through the generation of Alfvén

waves [123, 128], which are uniquely hydromagnetic waves in plasmas.
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We hypothesize that such sunspots and their precursors are the result of avalanche processes similar to

the mean field model [17, 1, 13]. There are two points that we wish to clarify when attributing the sunspot

dynamics to avalanche processes. The first is that the dimming detected by the VIRGO data is integrated

over the entire hemisphere visible to the instrument. Hence sunspots (and pores, their precursors) cannot

be isolated from the data set alone. The dimming might be the result of several sunspots, and this is likely

for larger dimming events given that the total flux piercing the Sun’s surface must sum to zero. This is

the cause of the sunspot twinning often observed [113], where one sunspot follows another sunspot, with

opposite magnetic flux polarities seen in each of the spots to conserve magnetic flux. Note that for long

range models, the avalanches need not be connected in space [6].

The second problem is the rotation of the Sun relative to VIRGO, which introduces a time dependence

to any dimming event we measure. We believe this effect is negligible given that the events in the scaling

regime that we are interested in have durations which are at most 3 days (fig. 3.2), much less than the

12 day half period of the Sun’s rotation. Since we are most interested in seeing scaling behavior, as well as

extracting the exponents τ , α, and σνz, our analysis is likely not sensitive to effects related to a dimming

event that might be obfuscated by the rotation of the Sun.

3.4 Several Predictions on the Spatial Properties of Sunspots

We briefly mentioned above the fractal properties of sunspots and their precursors [124, 125, 126]. We

described this as a barely fractal property, as the fractal dimension of the sunspots was found to be almost

2 (i.e. the area A ∼ R2). This and other spatial properties of sunspots may also follow from the avalanche

model in general. If we take the solar surface as a two-dimensional surface with coordinates x, then sunspots

and pores could be described as the dimming of the surface relative to average light flux u(x, t). To be

precise, at each point x on the photosphere, and for time t from some starting time, the function u(x, t)

denotes the reduction of light flux on the Sun’s photosphere from the average value. As we will describe in

more detail in the appendices, the cutoff Sc is closely related to the correlation length ξ1/σν ∼ Sc. Here the

correlation length is defined as the the length 〈u(x′, t)u(x, t)〉 ∼ C(|x′ − x|/ξ), where the angular brakets

represent averaging over space, and | · | represents the vector magnitude. The function C(|x′ − x|/ξ) decays

rapidly when |x′−x| > ξ. Note that ξ diverges at the critical point, which results in the power law behavior

of the correlation length at the critical point. From the form of this, we can see that the correlation length

would represent a radial dimension, and the cutoff size would represent an area, so we would find that 1/σν

is the fractal dimension of the events.
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As it turns out, the exponent σνz is the dimension we measured in our size versus duration, so this

implies that the duration T ∼ ξz, where z is the exponent of time. For models with long range interactions,

z = 1, while for short range interactions z = 2 [6]. If we take at face value the fractal dimension of sunspots,

then σν = 1/2, implying that z ∼ 1.6, in between long and short range interactions. However, if the fractal

dimension of the model varies from 2 because the fractal dimensions of individual sunspots may not be the

same as the fractal dimensions of collection of dimming avalanches, this is no longer true. We expect that

two new telescopes, the Daniel K. Inouye Solar Telescope [129] and European Space Telescope [130] will help

resolve some ambiguities, as they will collect high resolution and long-time images of the Sun.

Besides the correlation length, another quantity, known as the roughness, is also predicted to scale with

distance. The term roughness comes from the theory of elastic manifolds [11], but the predictions are generic.

The roughness involves the integrated intensity loss

U(x, t) =

∫ t

0

u(x, t′)dt′ (3.1)

where 0 denotes the start of an avalanche. Then it is expected that 〈(U(x′, t)−U(x, t))2〉 ∼ |x′ − x|2ζ . The

exponent ζ is universal [6]. For interface depinning models [11], the avalanche size exponent is conjectured

to obey τ = 2 − γ/(d + ζ), where we assume that for 2 dimensional events d = 2 [75]. The value of γ is

an analogue of the range of interactions that produce the avalanches, with the exact relation being that the

interaction range scales in k-space as |k|γ . Therefore, for γ = 2, we have short range elastic interactions

from laplacians, while for longer range interactions γ < 2 [6]. Therefore the roughness exponent is important

to determine the long distance effective range of the interaction.

The variation of the size and duration distributions between the solar minimum and maximum is in-

dicative of tuned criticality. All avalanche phenomena have some form of driving force, and it is thought

that large convection cells beneath the photosphere drive the formation of sunspots [131]. The presence of

more toroidal fields (fields pointing along the azimuthal axis) during the solar maximum as well as more

turbulent motion in the convective cells could couple together to form larger sunspots that cause larger

dimming events. Such a picture might offer a framework to interpret the tail of the distributions in regions

2-7, which are the solar transition and maximum. The merging of events of smaller size could cause the

events to increase beyond the maximum size Smax, which is set by the tuning parameters of the system. A

related argument shows that for systems with duration exponents α < 2, it is possible for a driven system to

have system spanning avalanches, which would also result in an exponential distribution with a large bump

near the end [132] for similar reasons (i.e S > Smax). The avalanches in the bump are likely runaway events
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that reach larger scales than most avalanches in the system.

We have proposed that non-equilibrium critical phenomena are a natural setting to analyze how sunspots

behave the Sun’s photosphere. The events we have described are almost certainly generated by the Sun’s

magnetic field, which itself is generated by the turbulent motion of the components of the Sun [131]. In the

appendices to chapter 3, we also analyze the brightening events. These show behavior similar to the dimming

events, although they are almost certainly not the result of solar flares, as most flares are obfuscated by the

general light from the Sun [133]. Often flares are measured by looking at entirely different wavelength regimes

(such as X-ray [5]), which were unfortunately not available from VIRGO. The exponents we extracted are

very close to the dimming event exponents. When compared with the exponents from solar flares, both

dimming and brightening event exponents are somewhat larger than the value of the energy exponent 1.4

[5] for solar flares, with error bars not reported. Based on similar studies of solar flares in Kepler stars [58],

we estimate the error bars of the energy exponent are are likely ±0.2 − ±0.3. We hope that some of the

physical mechanisms that we have elucidated here can also be applied to other stars, in particular Tabby’s

star.
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Chapter 4

Creep and Avalanches at Finite
Temperature

4.1 Creep

In this chapter we give a basic introduction to the theory of creep in solids. We introduce an equation

that describes creep behavior in disordered materials and study the renormalization of this equation at

zero and finite temperature. In addition, we use the renormalization picture to draw conclusions about the

characteristics of the disorder potential and study the mean field theory of plastic deformation and creep.

Creep in solids is the slow plastic deformation of solids under a load. The study of creep is an actively

evolving field, and there are a wide variety of mechanisms that result in creep deformation of materials.

Creep mechanisms are best understood for crystalline materials, where they can broadly be classified as

either dislocation creep or diffusion creep [134]. Dislocation creep arises at relatively low temperature and

high stresses. It is a result of the pinning of dislocations by defects in the crystalline structure [135] or

through the jamming with other dislocations [136]. In fact, the point of alloying metals and work hardening

is partially to help prevent dislocation gliding [137] by either introducing defects or producing dislocation

jamming. Here dislocation gliding means the motion of the dislocation parallel to its slip plane (i.e. for

an ideal edge dislocation, parallel to the Burger’s vector). Diffusion creep in crystalline materials arises in

the opposite conditions, when the temperature is relatively high and the stress is low. Here the primary

mechanisms are either the diffusion of atoms into vacancies [138], diffusion along grain boundaries (for

polycrystalline materials) [139], or dislocation climb (i.e. for an ideal edge dislocation, motion perpendicular

to the Burger’s vector) [140].
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Figure 4.1: The various creep regimes that most crystalline materials exhibit, plotted as time after loading

versus strain of the material. The initial jump occurs essentially instantaneously on the creep time scales

because of the initial application of the stress to the system. After this, there is a period known as the

primary stage of creep. During the primary stage, the strain ε grows as ε ∝ t1/3 known as the Andrade

power law. Then the secondary stage sets in, during which ε ∝ t. Finally, there is a rapid acceleration that

occurs before the rupture event that destroys the material.

Despite the various mechanisms that cause crystalline creep and the variety of crystalline materials that

exhibit creep, there are some very standard sets of behavior that occur in all materials shown in fig. 4.1.

These are the three stages of creep that are known as the primary, secondary, and final stages [141]. Initially

the material is deformed because an instantaneous load is applied to it. Then in the primary stage of creep,

the material undergoes deformation along what is known as the Andrade power law regime [142]. Here the

strain ε grows as ε ∝ t1/3. Then the material enters into the secondary stage, where ε ∝ t, before finally

accelerating until rupture in the final stage.

The mechanisms of creep for bulk metallic glasses (BMG) are not as well understood [42]. Here BMGs,

otherwise known as amorphous metals [143], are (usually) alloys that have been cooled quickly enough

to prevent formation of a crystalline structure on the atomic scale. This is in contrast to polycrystalline

materials where grains of crystalline structure exist. BMGs often have to be cooled at rates of 105−106 K/s

[143] in order to prevent crystallization. The combination of glassiness with the properties of metallic

elements allows these materials to display a remarkable array of properties, such as high tensile strength (up

to 3GPa), resistance to corrosion, and the ability to be easily processed [143]. However, their amorphous

nature also makes them difficult to analyze analytically, as dislocations no longer mediate plastic deformation.

Instead it is thought that the deformation occurs through the activation of shear transformation zones (STZs)

previously mentioned [30, 144]. At fixed stress, STZs cannot be activated unless there is either continuous

flow of the glassy system, or by thermal activation [145]. We study the latter case, in which the STZ is
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assumed to be static until the activation event occurs.

For the remainder of this thesis, we will focus on the steady state regime of creep motion, in which the

strain increases at a constant rate [42, 146]. We hypothesize that the creep of materials in the steady state

regime, when the temperature is low and the stress is high, is due to many small avalanche-like jumps, rather

than continuous deformation. We do not take into account diffusion, so that in our cases no diffusion creep

occurs. Our primary systems of interest are crystalline materials undergoing dislocation mediated creep, and

BMGs undergoing activation of shear transformation zones [147, 13, 14, 15]. Our primary contribution is to

look at avalanches at finite temperature, and in particular to derive certain properties about times between

such events.

4.2 The Zero Temperature Model of Plastic Deformation and

Slip Avalanches

One generic but very important trait of plastic deformation of crystalline materials and BMGs is the for-

mation of shear/glide plane. In the steady state creep regime of materials in which we are interested, the

deformation localizes in slip planes, known as shear/glide planes or shear bands [30, 37, 148, 42, 149]. These

are planes along which the material deforms, and we assume a priori that these planes have formed. This

changes the character of the interaction terms that we describe. We will be more specific after introducing

the continuum model.
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StressE

Figure 4.2: Figures (a-d) taken from [14]. (a) A standard experimental setup with a Nb nanopillar before

compression. (b) The pillar after compression, which clearly shows the plastic deformation along glide planes

that resulted from the stress. (c) A stress versus strain curve, which shows characteristic serrated behavior.

The sudden jumps in strain are the slip avalanches. (d) A schematic of the experiment. (e) A schematic of

the slip plane.

At zero temperature, the model has been known for some time [17, 13]. In the model, it is assumed that

the displacement along the slip plane can be described by a function u(x, t) which represents the displacement

of the material. For this displacement, the standard equation of motion assumes the overdamped condition,

which basically means that the mass term (second order time derivative) and higher orders time derivatives

are neglected. The kernel of interaction J̃(x−x′, t− t′) is in general dependent on both position and history

of the sample. The unique feature of the model is the addition of quenched (non-dynamical) pinning forces

f(x, u(x, t). Finally the term ζ(x, t) will describe the thermal noise, which is an idealized noise with delta

function correlations (we describe it more precisely below). The equation of motion is [6, 17, 13]

η∂tu(x, t) =

∫
d2x′dt′J̃(x− x′, t− t′)(u(x′, t′)− u(x, t)) + Σ(x, t) + f(x, u(x, t)) + ζ(x, t) (4.1)

where Σ(x, t) is the stress applied to the system, which we will often take to be uniform and time independent

or varying linearly with time (Σ = vt). The term η is the friction, viscosity, or damping coefficient.

In order to specify exactly what we mean by the pinning force and the thermal noise, we need to specify

the form of these functions. Since we expect these terms to be random, we specify their distributions. We

make an even more narrow assumption, that these terms are both Gaussian distributed with mean zero and
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time independent. The noise term is correlated as typical uncorrelated noise

〈ζ(x, t)ζ(x′, t′)〉 = 2ηTδ(x− x′)δ(t− t′) (4.2)

so that the equation of motion is a Langevin type of equation [150]. Here 〈·〉 is the thermal average. This

essentially states that we treat the problem at time scales much longer than atomic time scales. Finally, the

pinning force is similar to the thermal noise, except

f(x, u(x, t))f(x′, u(x′, t′)) = δ(x− x′)∆(u− u′) (4.3)

where u′ = u(x′, t′) and ∆(u) is a symmetric function, and the overbar denotes the average over different

realizations of the quenched pinning forces. Note that this means there exists a non-trivial correlation of

pinning force as the interface advances (i.e. the correlation along the u direction is not a delta function).

From the equation of motion, there is a simple but important consequence which can be derived im-

mediately. We assume that T = 0 for this argument, and it does not apply for T > 0. If we have two

interfaces, both experiencing the same random disorder f(x, u(x, t)), with ua(x, t) > ub(x, t) at some time

t for all x (i.e. one interface is ahead of the other), and J̃(x − x′, t − t′) is a convex function, then this

remains true for all times t′ > t. This is known as Middleton’s theorem [151]. It implies that if an interface

is stationary at some fixed stress and disorder, then all interfaces are stationary at that fixed stress and

disorder. Alternatively, if an interface is moving at some fixed stress and disorder, then all interfaces are

moving at that fixed stress and disorder. What this implies is that for a fixed disorder in an infinite sys-

tem, there is a unique uniform stress Σc at which interfaces begin moving. And what is more, because the

pinning force f(x, u(x, t)) is random, it is expected that this critical stress is unique in an infinite system,

and common among all disorder realizations, since random motion of the interface will randomly sample the

pinning forces, resulting in an averaged behavior.

As it stands, the basic points are that the theory (1) has a driving force Σ(x, t), (2) has quenched

disorder f(x, u(x, t)), and (3) has a dynamical noise term ζ(x, t). It is practically impossible to directly

solve this equation, so we often rely on various approximation methods. One of the most successful of these

approximation methods is to turn this equation into a path integral, and treat it using the path integral

formalism [152, 153], known as the Martin-Siggia-Rose (MSR) formalism.
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4.3 Scaling Theory at Finite Temperature

Very briefly, we go over the scaling behavior of mean field theory, derived before for zero temperature

[6, 17, 13] and finite temperature [154, 155] based on analogy with equilibrium critical phenomena.
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Figure 4.3: A simulation of mean field creep motion using equation 4.1 that we performed with a pinning

force similar to previously used pinning forces [154]. (a) The plot of velocity versus force for two conditions,

one with T = 0 (blue) and one with T > 0 (red). The T = 0 curve shows the sudden onset of finite velocity

after the critical stress. The T > 0 curve shows the thermal rounding. (b) An example of the velocity as

a function of time. The presence of sudden bursts can be clearly seen, along with the thermal noise that is

common in finite temperature simulations.

The simulations in fig. 4.3 were done using the continuous mean field creep model (defined below), where

the interaction term was replaced by a constant J , and hence models long range interactions that result in

creep motion. To review, the blue curve in fig. 4.3(a) shows the onset of finite velocity of the interface after

the stress exceeds the critical stress Σc, which here is near 0.9. Near the critical force, the velocity will scale

as

v ∼ (Σ− Σc)
β , (4.4)

where in mean field theory β = 1 [6, 13]. The basic interpretation of this result is that the velocity is similar

to an order parameter, while the stress is the control parameter. However, this result should not be taken too

literally, as there are many differences between non-equilibrium critical phenomena and equilibrium critical

phenomena. In addition, the correlation length ξ, defined above, scales as ξ ∼ |Σ−Σc|−ν . The divergence at

Σc shows the onset of an infinite avalanche where the interface acquires a finite velocity. This is encapsulated

in the relation

Smax ∼ (Σ− Σc)
−1/σ ∼ ξ−1/σν . (4.5)
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Another scaling relation, long assumed but never fully derived, is that the energy barriers

∆E ∼ (Σc − Σ)γ (4.6)

where γ is known as the energy exponent, which can also be interpreted as ∆E1/γ ∼ Σc − Σ. The origin

of this assumption is in Anderson’s theory of flux creep [156, 157]. Several others have each found different

exponents for various problems, such as for charge density waeves γ = 3/2 [155], the short range interface

depinning γ = 1 [158], or the long range plasticity model γ = 2 [154]. Although not visible for small stresses

in fig. 4.3(a), the T > 0 curve has v > 0 for all stresses Σ > 0. This is due to thermal activation, as seen

in fig. 4.3(b). Given the assumption eq. 4.6, temperature fluctuations needed to activate a site would be on

the order of ∆E, so that in order to activate sites with barriers ∆E, kBT ≥ ∆E. The temperature T causes

deviations from the critical point at T = 0. However, near the critical point T causes deviations which can

be predicted using the theory of critical phenomena [155, 154]. On average, the activated energy barriers

are those of order kBT , as (on average) the temperature cannot overcome energy barriers with ∆E > kBT ,

so we will have that the temperature can overcome barriers of average size size ∆E ∼ kBT . This average

energy barrier means that the average velocity v ∼ (Σc − Σ)β ∼ ∆Eβ/γ so that

v ∼ (kBT )β/γ , (4.7)

where kB is the Boltzmann constant and T is the temperature. This finite velocity is known as the thermal

rounding, and is a common feature of creep motion. We hypothesize that the thermal rounding, at least

when Σ < Σc, is due to thermal activation such as that seen in fig. 4.3(b). As another example, since we

know that ξ ∼ (Σc − Σ)−ν then ξ ∼ ∆E−ν/γ or ξ ∼ (kBT )−ν/γ . This results in a maximum avalanche size

of (at Σc = Σ)

Smax ∼ (kBT )−
1
γσ (4.8)

where we used eq. 4.5. The result indicates that near criticality, the avalanche sizes actually shrink with

temperature. The physical explanation of this is that the thermal noise smooths the avalanches, so that

instead of huge excursions around the average velocity v, the avalanches are small excursions around this

velocity. Our primary interests are in looking at quantities not accessible based on scaling theory, in particular

the distribution of times between such thermal activation events. The interevent time distribution is difficult

to derive from scaling theory, but easily accessed experimentally.
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4.4 Overview of Renormalization at Finite Temperature

4.4.1 Outline of the Renormalization Procedure

In order to further develop the theory, we need to solve eq. 4.1 and find the probability density P(u, f, ζ),

which is a probability density over the space of functions u(x, t) as well as f and ζ. An equivalent and often

easy method of deriving the probability density is to find the generating functional Z [159]. For simplicity,

let us write the equation of motion as ∂tu−F (u, J̃ , f,Σ, ζ) = 0, where F is the somewhat complicated right

side of eq. 4.1, and we have absorbed η into the other constants. One can write the generating functional as

〈Z[w]〉 = 〈ei
∫
wu〉 (4.9)

where w is an auxiliary variable, and again 〈·〉 and · represent the thermal and disorder averages respectively.

Note that we are being schematic so we have not written down the various function arguments for u and w,

as these can be inferred easily. Then we can find all correlation functions by simply differentiating 〈Z〉 with

respect to w. We impose a delta functional constraint, which basically says that the function u must obey

the equations of motion

Z =

∫
Duδ

(
∂tu(x, t)− F (u, J̃ , f,Σ, ζ)

)
J (u, ∂tu, J̃ , f,Σ)ei

∫
wu. (4.10)

Here Du is the measure over function space and J is the Jacobian determinant, which is necessary because

〈Z[w = 0]〉 = 1 [159] is required if the probability density is to be normalized to 1. Now we want to take

advantage of the Fourier identity

δ(x) =

∫
dk

2π
eikx (4.11)

but in a functional space with u(x, t) being the x and another field û(x, t) being k [159]. This will allow us

to write the partition function

Z =

∫
DuDû exp

(
i

∫
d2xdtû(x, t)

(
∂tu(x, t)− F (u, J̃ , f,Σ, ζ)

))
J (u, ∂tu, J̃ , f,Σ)ei

∫
wu =∫

DuDû exp

(
iSeq(û(x, t), u(x, t)) + i

∫
u(x, t)w(x, t)

)
J (u, ∂tu, J̃ , f,Σ) (4.12)

where Seq =
∫
d2xdtû(x, t)

(
∂tu(x, t)− F (u, J̃ , f,Σ, ζ)

)
. Note that this generating function is in analogy

to but distinct from the equilibrium statistical mechanics partition function, as it contains forces and time

derivatives instead of simply energy. It also contains an auxiliary field û(x, t). This auxiliary field is a
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necessity in order to analyze the classical stoachastic system with the path integral [152]. We will ultimately

be averaging over disorder and variations in temperature to find the mean behavior. Recall that 〈·〉 is

averaging over temperature and · is averaging over disorder in this chapter, so the mean behavior of u(x, t) =

δ〈Z[w]〉
δiw

∣∣
w=0

is

〈u(x, t)〉 =

〈∫
DuDûu(x, t) exp (iSeq)J (u, ∂tu, J̃ , f,Σ)

〉
. (4.13)

Next we want to find the response function R(x,x′, t, t′), which is the response of u(x, t) to a small pertur-

bation at time x′, t′ which we write as δΣδ(x′ − x)δ(t′ − t) = δΣ(x′, t′). Adding this response function to

Seq, we get Seq− δΣ(x′, t′) = ∂tu(x, t)−F (u, J̃ , f,Σ, ζ)− δΣ(x′, t′). Since δΣ is considered small, we expand

the exponential term

exp

(
−i
∫
d2xdtû(x, t)δΣ(x′, t′)

)
≈ 1− i

∫
dxdtû(x, t)δΣ(x′, t′) = 1− iû(x′, t′)δΣ (4.14)

neglecting higher order terms. Here we integrated out the δ functions in the definition of δΣ(x′, t′). Calling

the perturbed field u′(x, t), this results in

〈u′(x, t)〉 =

〈∫
DuDûu(x, t) exp

(
iSeq +

∫
iû(x, t)δΣ(x′, t′)

)
J

〉
(4.15)

〈u′(x, t)〉 = 〈u(x, t)〉 −
〈∫
DuDûu(x, t)iû(x′, t′)δΣ exp (iSeq)J

〉
(4.16)

〈δu(x, t)〉 = −
〈∫
DuDûu(x, t)iû(x′, t′)δΣ exp (iSeq)J

〉
(4.17)

where the δΣ can be pulled out since it is not integrated. Then the response function

R(x,x′, t, t′) =
〈δu(x, t)〉

δΣ
= −〈u(x, t)iû(x′, t′)〉 (4.18)

which means that û(x′, t′) can be interpreted as field that, when coupled with u(x, t) gives the response

function. And this response function plays a role analogous to the propagator in field theory [152, 10, 11, 22].

Now we want to consider averaged quantities 〈Z[w]〉 averaged over both temperature and disorder. Just

like in spin glass theory [53], averaging over disorder f is a complicated business often involving repli-

cas [53] or supersymmetry [160]. The approach we take has been known for some time [159, 153, 161].

As we show in the appendix to this chapter, we will need the equal time response function R(x,x′, t, t)

in order to perform renormalization calculations. In the Itô convention from stochastic calculus, this re-

sponse function R(x,x′, t, t) = 0 [153, 10]. It turns out this also vastly simplifies the Jacobian determinant
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J (u, ∂tu, J̃ , f,Σ) = 1 [10, 11, 22, 161]. Since the determinant J = 1, we can directly average the argu-

ments of the generating functional without invoking replicas or supersymmetry. The two terms which we

have to average are the terms in an exponential eq. 4.12, of the form exp
(
−i
∫
û(x, t)f(x, t, u(x, t)

)
and

exp
(
−i
∫
û(x, t)ζ(x, t)

)
. To average over disorder, we must expand the exponential, remembering that when

averaging over odd powers of f , we get zero because the mean of f is zero. We neglect the arguments of

the functions since they are inessential, and do not write the parts that are not averaged over to simplify

notation so that

e−i
∫
ûf =

∞∑
k=0

(−i
∫
ûf)k

k!
=

∞∑
k=0

(−i
∫
ûf)2k

(2k)!
(4.19)

e−i
∫
ûf =

∞∑
k=0

(−i
∫
ûf)k(−i

∫
ûf)k

(2k)!
=

∞∑
k=0

(−
∫
ûû′)kff ′k

(2k)!
(4.20)

e−i
∫
ûf =

∞∑
k=0

(2k − 1)!!(−
∫
û∆(u− u′)û′)k

(2k)!
=

∞∑
k=0

(−
∫
û∆(u− u′)û′)k

2k(k)!
(4.21)

e−i
∫
ûf = e

1
2

∫
iûiû′∆(u−u′). (4.22)

Here û = û(x, t), û′ = û′(x, t′), u = u(x, t), u′ = u(x, t′), f = f(u(x, t),x), f ′ = f(u(x, t′),x), (2k − 1)!! =

(2k− 1)(2k− 3) · · · 1 is the double factorial that arises because of Wick contractions of powers of f , and we

have used the result of the variance eq. 4.3. Eq. 4.22 is standard and can be seen in almost all approaches

to the field theory of equation 4.1 [6, 10, 11, 85]. The temperature average follows exactly the same steps,

except there is a factor of 2 because of the definition eq. 4.2. The result for temperature is therefore

〈e−i
∫
d2xdtûζ〉 = eηT

∫
d2xdtiûiû (4.23)

where we plugged in the variance 〈ζζ ′〉 = 2ηTδ(x−x′)δ(t− t′) and integrated out the delta functions. Given

this, let us reintroduce the variables from eq. 4.1 to rewrite Seq so that

〈Z[w]〉 =

∫
DuDû exp

∫
d2xdtiû(x, t)

(
η∂tu(x, t)−

∫
d2x′dt′J̃(x− x′, t− t′)(u(x′, t′)− u(x, t))− Σ(x, t)

)
×

exp

(
−i
∫
d2xdtû(x, t)f(u(x, t),x)

)〈
exp

(
−i
∫
d2xdtû(x, t)ζ(x, t)

)〉
exp

(
i

∫
d2xdtw(x, t)u(x, t)

)
.

(4.24)
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Plugging in eq. 4.22 and eq. 4.23 we get

〈Z[w]〉 =∫
DuDû exp

∫
d2xdtiû(x, t)

(
η∂tu(x, t)−

∫
d2x′J̃(x− x′, t− t′)(u(x′, t′)− u(x, t))− Σ(x, t)

)
×

exp

(
−1

2

∫
d2xdtd2x′û(x, t)∆(u(x, t)− u(x′, t))û(x′, t)

)
×

exp

(
−ηT

∫
d2xdtû(x, t)û(x, t)

)
exp

(
i

∫
d2xdtw(x, t)u(x, t)

)
(4.25)

From this we can read off the action

S =

∫
d2xdtiû(x, t)

(
η∂tu(x, t)−

∫
d2x′J̃(x− x′, t− t′)(u(x′, t′)− u(x, t))− Σ(x, t)

)
− 1

2

∫
d2xdtdt′iû(x, t)iû(x, t′)∆(u− u′)− ηT

∫
d2xdtiû(x, t)iû(x, t) (4.26)

where the action is defined as 〈Z[w]〉 =
∫
DuDûeSei

∫
wu. Note that sometimes one sees the form with a

factor of i factored out. We keep the i in the action because the combination iû is what appears in each of the

integrals. Also it is sometimes useful to consider the generating functional 〈Z[w, v]〉 =
∫
DuDûeSei

∫
wu+i

∫
vû

[10]. The resulting action does not change compared to eq. 4.26.

At this point we make some simplifications. As mentioned in the introduction, the interactions between

slips of dislocations and STZs scales as J̃(x − x′) ∼ J/|x − x′|3, with no time dependence, where the J

denotes the strength scale of the interactions. The simplification of all positive interactions and the decay

of the interactions [6, 13] is justified because we are concerned with creep during the steady state regime,

after glide planes have formed (see fig. 4.2 for the zero temperature case). Once these planes are formed the

leading term in the interaction kernels is a long range positive factor which scales as 1/|x|3. We also assume

Σ is uniform and has no time dependence either, as this is the case we are most interested in (i.e. creep due

to static stress).

The strategy to approach critical phenomena in field theory is to use renormalization [19, 20]. In order

to renormalize, we set a microscopic scale r0, and coarse grain and rescale our coordinates as we increase

our scale as

r` = e`r0. (4.27)

Here ` controls the scale at which we consider the action eq. 4.26 after renormalization, so for larger `, the

action will be renormalized to a coarser scale. For an infinitesimal increase δ` we then have r`+δ` = (1+δ`)r`.

It is often convenient to consider the equations in momentum space, for which Λ = 1/r0, and Λ` = Λe−`.
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Then the ultimate goal of the renormalization group (RG) procedure is to find out how the action eq. 4.26

changes as a function of the dimensionless scale `. It turns out that each variable in the action rescales with

`. Easiest to understand are the position variables d2x→ e2`d2x. All other exponents change based on this

rescaling [10, 11, 22, 1] .

To successfully renormalize the theory, we also need to define the upper critical dimension, which for our

case is dc = 2 as described before, and consider the case where our dimension is arbitrary d ≤ dc. Here, the

coupling includes the highly non-linear function ∆(u−u′) in eq. 4.26, as this is the only integral that involves

more than 2 powers of u(x, t) and û(x, t). In fact, it will be an unfortunate but necessary for renormalization

we will have to consider ∆(u − u′) as a coupling function, and renormalize this entire function [10]. To do

this, we Taylor expand the function ∆(u − u′) to arbitrary powers (u − u′)k, renormalize each power as a

vertex, and then resum the results to obtain the full renormalization of ∆(u− u′).

At this point we will not go into the details of the renormalization procedure [10, 162, 11, 163] which have

been known at finite temperature for short range potentials [85]. A derivation for long range interactions

is available in the appendices to chapter 4. Let us define all the relevant variables. As above, let J denote

the strength of the interactions so that J̃(x − x′) = J/|x − x′|3 in eq. 4.26. It turns out that the the

coupling J is not renormalized due to a symmetry of the equations of motion (known as statistical tilt

symmetry [10]). In order to renormalize at finite temperature, we need to introduce a finite velocity v for

the interface. It is convenient to renormalize the product ηv, since this combination appears in the action

eq. 4.26 after we switch the a moving frame. Explicitly, if we go to the moving frame u(x, t)→ u(x, t) + vt,

then η∂tu(x, t)→ η∂tu(x, t) + ηv. We have to rescale some of the variables in the action eq. 4.26 to simplify

the equations later, so we define

T̃ =
TΛdSd
JΛ

(4.28)

κ =
ηv

JΛ
(4.29)

Σ̃ = Σ− ηv (4.30)

∆̃(u) =
ΛdSd∆(u)

(JΛ)2
(4.31)

to simplify the renormalization equations below, where Λ = 1/r0 is the momentum scale defined above, Sd

is the surface area of the unit d− 1-dimensional sphere (i.e. S2 = 2π). In our case, we have defined d = 2,

but we write for generic d since this is required by renormalization.
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4.4.2 Results Derivable from Renormalization

As we infinitesimally change the scale factor ` the equations for renormalization are (see appendix for chapter

4) [10, 11, 85, 1, 13]

∂` ln T̃ = −θ + 2κ

∫ ∞
0

dtte−t∆̃′′′(κt) (4.32)

∂` lnκ = (1− ζ)−
∫ ∞

0

dtte−t∆̃′′(κt) (4.33)

∂`Σ̃ = (1− ζ)Σ̃ + JΛ

∫ ∞
0

dte−t∆̃′(κt) (4.34)

∂`∆̃(u) = (ε− 2ζ)∆̃(u) + ζu∆̃(u) + T̃ ∆̃′′(u) +

∫ ∞
0

∫ ∞
0

dtdt′e−t−t
′
∆̃′′(u)[∆̃((t′ − t)κ)− ∆̃(u+ (t′ − t)κ)]

− ∆̃′(u− t′κ)∆̃′(u+ tκ) + ∆̃′((t+ t′)κ)[∆̃′(u− t′κ)− ∆̃′(u+ tκ)]. (4.35)

Here ζ is the roughness, ζ = ε/3 where ε = 2 − d, θ = 2ζ + 1 − ε, and ∂` = ∂
∂` . To remind the reader of

the various quantities, T̃ , κ, Σ̃, and ∆̃ are defined above in eqs. 4.28-4.31. J and Λ are the strength of the

interactions and the inverse of the short distance cutoff 1/r0, defined above. In the equations, we need to

integrate over the function ∆̃(u), and the variables of integration are labeled t and t′ in eqs. 4.32-4.35. We

have assumed that each of the variables is implicitly a function of the scale `, which we have no written

explicitly to reduce the number of arguments and simplify writing the equations. The equations are the

result of the unfortunate fact that one of the coupling terms in the action eq. 4.26 is ∆(u − u′), which is

a function. And as it turns out, the Taylor expansion of this function is marginal in d = 2 for all terms

in the expansion [163], thus leaving us to renormalize a function (hence why the renormalization procedure

is sometimes called functional renormalization [10, 11], although this term is used in other contexts as well

[164]).

The variables T̃ and Σ̃ are rescaled temperature and stress appearing in the action, defined by eq. 4.28

and eq. 4.30. ∆̃ is a rescaled version of the disorder correlator defined by eq. 4.31, and its flow is the primary

quantity that controls how the system behaves. The variable κ defined in eq. 4.29 can be thought of as

generated by the finite velocity v for T > 0, and is translated into a position variable because there is a time

scale t = c/r`η = cΛ/η. The first 3 terms on the right hand size of eq. 4.35 are first order corrections to the

disorder correlator. The large integral term on the right hand size of eq. 4.35 is responsible for the difficulty

of analytically analyzing eq. 4.35 at finite velocity (i.e. finite κ). One thing to note is that in d = 2, ζ = 0

and ε = 0, so that θ = 1. This means that the temperature is formally irrelevant, unlike the other three

terms. Of course, this temperature is actually dangerously irrelevant, as it can easily be seen that as long

as ∆′′′ > 0 and κ > 0 in eq. 4.32 the temperature will eventually grow, because the term κ will grow (it is
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formally relevant).

We will only approach these equations approximately in a sense made precise below. Unfortunately

equation 4.35 is prone to pathological behavior at the origin (i.e. when u = u′ as we will see) and therefore

very difficult to analyze numerically [85]. A small simplification is that we will look at only d = 2, so that

many of the constants can be set to zero. A much larger simplification is that we look at only near the

critical point, at which v ≈ 0 and T ≈ 0, with 1 − Σ/Σc � 1. This model has been analyzed at the upper

critical dimension before for short range forces dc = 4 at zero temperature [165], and the analysis here is

similar, except we adapt it to long range forces at finite temperature.

At the upper critical dimension for long range interactions with d = dc = 2, near zero velocity, we can

take κ→ 0. This means that the terms in ∆̃(x+ κ(t− t′)) ≈ ∆̃(x) +O(κ) and ∆̃′(x± κt) ≈ ∆̃′(x) +O(κ),

where x is either 0 or u depending on the argument in eq. 4.35. Then the integrals can be carried out exactly

so that eq. 4.35 becomes

∂`∆̃(u) = ∆̃′′(u)(T̃ + ∆̃(0)− ∆̃(u))− ∆̃′(u)2 (4.36)

which is a much simpler equation. First, setting T̃ = 0, we can take two derivatives with respect to u, giving

∂`∆̃
′(u) = ∆̃′′′∆̃(0)− 3∆̃′′(u)∆̃′(u)− ∆̃′′′(u)∆̃(u) (4.37)

∂`∆̃
′′(u) = ∆̃(4)∆̃(0)− 4∆̃′′′(u)∆̃′(u)− ∆̃(4)(u)∆̃(u)− 3∆̃′′(u)2 (4.38)

∂`∆̃
′′(0) = −3∆̃′′(0)2 (4.39)

where in the last line we have that ∆′′′(0) = 0 by symmetry. Since eq. 4.39 has no other derivatives of ∆̃,

we can solve it using separation of variables

∂∆̃′′(0)

∂`
= −3∆̃′′(0)2 (4.40)∫

d∆̃′′(0)

∆̃′′(0)2
= −3

∫
d` (4.41)

− 1

∆̃′′(0)
= −3`+ c (4.42)

∆̃′′(0) =
1

3`− c
(4.43)

with c = −1/∆̃′′0(0) by plugging in ` = 0. This results in

∆̃′′(0) = 1/(3`+ 1/∆̃′′0(0)) (4.44)
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that diverges when

` = `c = − 1

3∆̃′′0(0)
, (4.45)

where ∆̃0 is the initial disorder correlator before renormalization. Note that ∆̃′′0(0) < 0 is necessary because

∆̃0(0) is a correlation function, which must be maximum when the two disorder realizations are equal (i.e.

when there is no relative shift in correlating the disorders, so that u = 0). The physical length is obtained

by plugging in `c into eq. 4.27,

Lc = r0e
`c = Λ−1e`c (4.46)

which is known as the Larkin length [79], and is the scale at which the disorder starts to dominate the

interaction forces. In the context of long range forces, this means that below the length scale L < Lc, the

disorder is weaker than the interactions and can be neglected when solving the equations of motion eq. 4.1,

while above the length scale L > Lc, the disorder becomes relevant to solving the equations of motion eq. 4.1.

Luckily, a simple solution exists for eq. 4.36. We take ∆̃(u) = φ(`)ρ(ψ(`)z), where φ and ψ are functions

only of the scale parameter ` [165]. The reason we do this is that we wish to find a solution ∆̃(u) which is

invariant to changes in scale `, except for possible rescaling of the coordinates (ψ(`)), or as a factor of the

entire function (φ(`)). Here u = ψ(`)z, and z is a variable independent of `. Here one can consider ρ to

describe the shape of the disorder, φ to describe the scale of the disorder, and ψ to describe the range of the

disorder (i.e. ρ→ 0 for z � ψ(`)). Then plugging this into eq. 4.36, for which we detail the calculations in

the appendix to chapter 4, we get that

φ(`) = (3a2`)−1/3, ψ(`) = (3`/a)−1/3, a ≈ 1.55J2

2πc
(4.47)

d

dz
(zρ(z)) =

d2

dz2
(ρ2(z)/2− ρ(z)ρ(0)− T̂ ρ(z)) (4.48)

where T̂ = T̃ /φ and c =
∫∞
−∞ du∆̃0(u) (i.e. the total integral of the initial function before RG). The terms

φ and ψ determine the overall scale of ∆̃ and the width of ∆̃ respectively. Solving eq. 4.48 (again detailed

in appendix to chapter 4) we get that

ρ(z)− 1− (1 + T̂ ) ln(ρ(z)) =
z2

2
(4.49)

∆̃∗(u) = (3a2`)−1/3ρ(u/(3`/a)1/3) (4.50)

where eq. 4.49 and eq. 4.50 is similar to the equation derived for the upper critical dimension for short range

potentials [165], except for the addition of the term T̂ ln(ρ(z)) that occurs in eq. 4.49. This implicit equation

51



cannot be solved, but when plotted there are two important regimes, namely T̂ = 0 and T̂ > 0.
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Figure 4.4: A plot of the implicit function eq. 4.49 for T̂ = 0 and T̂ = 0.1. The most important point is to

note the cusp at T̂ = 0 and the rounding T̂ > 0 [85], which is important for analyzing the behavior of the

system, as the cusp at T̂ = 0 is non-analytic, and can only be expanded as ρ(z, T̂ = 0) ≈ 1−|z|+ 1
3z

2+O(|z|3)

[165].

We plot eq. 4.49 in fig. 4.4 for the two cases T̂ = 0 and T̂ = 0.1. Many of the conclusions derived

(which we summarize below) from renormalization that hold at d < dc = 2 hold for d = dc [85, 158]. In

fig. 4.4, we see that the function ρ(z) decays past about |z| = 1, so considering the full disorder correlator

∆̃∗(u) = φ(`)ρ(ψ(`)z) as a function of z, means that ∆̃∗(u) has scale 1/ψ(`). To remind the reader, z is the

scale independent coordinate of the scale indepedent part of the disorder correlator ρ(z). To be precise, we

define the scale of ρ(u) as arguments u > 1. Since the argument of ρ is u = ψ(`)z = 1, we have that the

scale of the disorder correlator is 1/ψ(`). At T̂ > 0, what happens is that the temperature regulates the

divergence seen in eq. 4.39 as ∆̃∗′′(0) ∼ 1/T̂ . This can be seen by implicitly differentiating eq. 4.48 twice

with respect to z, and then setting z = 0. This results in

ρ′′ − (1 + T̂ )
ρ′′

ρ
+ (1 + T̂ )

ρ′2

ρ2
= 1. (4.51)
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For T̂ > 0, one has that ρ(0) = 1, ρ′(0) = 0, so ρ′′(0)T̂ = 1, or ρ′′(0) = 1/T̂ .

Since the correlator is rounded at T̂ > 0, this suggests that for any T̂ > 0, there is a finite velocity v > 0

for any stress Σ > 0, and therefore κ > 0 is possible in eqs. 4.32-4.35. If κ > 0, then the precise study

of creep through these equations is difficult because the equations eqs. 4.32-4.35 are now nonlinear partial

integro-differential equations, for which there are no general analytical methods of solution. Although one

can derive velocity-force characteristics from eqs. 4.32-4.35 [85] when the stress Σ� Σc, or when the stress

Σ→ Σc, it is difficult to derive distributions of waiting times, which can be derived at T̂ = 0 for a system at

a slowly increasing force [75] Σ(t) = λt. The primary hypothesis we make about creep in materials is that

at low temperatures it is the result of many discrete activation events which we call slip avalanches that

result in a finite average velocity v > 0. At zero temperature in mean field theory, these slip avalanches have

been well understood [6, 13]. At finite temperature this is no longer true, and the concept of slip avalanches

is still unresolved. Simulations such as those plotted in fig. 4.3(b) suggest that the idea of slip avalanches

extends well to finite temperature, as long as the temperature is low.

A variety of exponents can be derived for the upper critical dimension using the ε expansion and then

setting ε = 0. For T̂ = 0, this has been done for long range forces [163], resulting in β = 1− 2ε/9, where β

was exponent relating velocity to force in eq. 4.4, ν = 1/(1− ε/3), 1/σ = (1− ε/3)(d+ ε/3) for the avalanche

cutoff Smax in eq. 4.5 with ε = 2− d. The expansions of ν and 1/σ are not to O(ε), but instead believed to

be exact relations [163]. These exponents do not depend on details of the system, instead depending only on

the dimension and the form but not the constants of eq. 4.1. Therefore they are expected to be universal.

At the upper critical dimension β = 1, ν = 1, and 1/σ = 2 if we neglect logarithmic corrections. However,

many different estimates of γ, the energy exponent in eq. 4.6 exist, with simple estimates setting γ = 2 [154]

while RG suggests (but it has not been rigorously shown) that γ = 1 for short range forces [158]. We show

in the appendices that the RG analysis for γ extends to long range forces as well. With doubts as to what

the exponent γ is at the upper critical dimension, we turn to a simpler theory to help us solve some of the

problems presented here, known as the mean field theory of plasticity [13].

4.5 Mean Field Theory of Creep

In order to better understand the theory of creep, we reduce all the interactions to mean field interactions. In

this case, mean field theory (MFT) applies for d = dc as long as we neglect the logarithmic corrections. This

often yields simpler equations that can be analytically tractable or simulated much more quickly [17, 13].

First, to reduce eq. 4.1 to a tractable mean field form, we have to discretize the equation. This results in
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discrete sites, which is the reason why we have drawn discrete cells in fig. 4.2. We split the system into N

sites. Here the sites should be thought of as discretizing the continuum theory, where u(x, t) is the continuum

variable we are discretizing. If we denote these sites as ui(t), then the equation of motion, derived from

eq. 4.1 is

η∂tui(t) =
J̃

N

∑
j

(uj(t)− ui(t)) + Σ + fi(ui(t)) + ζi(t) (4.52)

where f(u(x, t),x) → fi(ui(t)) and ζ(x, t) → ζi(t). Then fi(ui(t))fj(u′j(t)) = ∆(u − u′)δij and 〈ζiζj〉 =

δijδ(t− t′), so that all of the continuous x coordinates have been replaced with indices. Here δij denotes the

Kronecker delta. We denote J = J̃
N , and the need for the 1/N normalization occurs because coupling with

all sites would cause infinitely strong interactions otherwise.

The second big simplification we make is to discretize time. In this case, discretizing time imposes that

we neglect the ∂tui(t) in eq. 4.52 except during times when large changes in ui(t) occur. And this only

happens when ui(t) avalanches. Therefore, we must specify dynamics of how avalanches will occur in this

model. In this case, we take as our stress

si(t) = J
∑
j

(uj(t)− ui(t)) + Σ = J(ū(t)− ui(t)) + Σ (4.53)

where the ū(t) denotes the mean over all sites uj [6, 7, 13]. So in order to first incorporate the random forces

which pin the ui(t), we assume that each site is pinned to a stress, so that si does not change unless there is

an avalanche. The point at which si avalanches is when si > sf,i, where sf,i is known as the failure stress for

site i [7]. In this case, si relaxes down to an arrest stress which we call sa,i. The failure and arrest stresses

can be drawn from a random distribution, but we usually take the failure stress to be fixed at sf for all sites

to simplify the model [7]. We assume initially the stresses are uniformly distributed. After failure, the site’s

stress is redistributed to all other sites, so that each site j 6= i has δsj = −δsi/(N −1) = (sf − sa,i)/(N −1).

This increase in stress can cause another site to have sj > sf , which can result in a cascade, or slip avalanche.

The arrest stresses sa,i are distributed according to a distribution pa(sa) which we will consider to have mean

〈sa〉 = 0 and width 〈s2
a〉− 〈sa〉2 ∝W 2 � s2

f , where 〈·〉 denotes averaging over the distribution pa(sa) [7, 13].

For this model, the distribution of stresses can be worked exactly [7]. For later use we review some of

the material from [7]. We assume that Σ < Σc. After many failure events (needed to forget the initial

conditions) the system settles into a stable distribution, as shown in [7]. For a given arrest stress, the stable

distribution of stresses is distributed uniformly so that

p(s|sa) =
1

sm − sa
for sa ≤ s ≤ sm (4.54)
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where sm is a maximum stress. We will solve for sm below. Note that sm is the not the failure stress sf ,

because we have assumed that Σ < Σc, so sm < sf . Then p(s) =
∫
dsap(s|sa)pa(sa) or

p(s) =

∫ s

−W/2
dsa

pa(sa)

sm − sa
(4.55)

for any distribution that has a width W , and mean zero. If s > W/2 then the integral is clearly constant

and therefore

p(s) = p̄ = 〈(sm − sa)−1〉 (4.56)

is a uniform distribution.

If we order the stresses so that s0 > s1 > . . . > sN−1, then letting δsi = si − si+1, we observe that given

the uniform distribution eq. 4.56, the probability of observing si after observing si+1 does not change as we

move up in stress. Therefore δsi is an exponentially distributed variable with mean 1/p̄N , as was derived

for the mean field model of earthquakes [7]. We can express si as

si = sN−1 +

N−1∑
n=i

δsn (4.57)

〈si〉 = 〈sN−1〉+

N−1∑
n=i

〈δsn〉 ≈
N−1∑
n=i

n

Np̄
=
N − i
Np̄

(4.58)

where we assumed 〈sN−1〉 ≈ 0. From eq. 4.53, we have that

Σ = 〈s〉 =
1

N

∑
i

〈si〉 ≈
1

2p̄
≈ sm

2
− 〈s

2
a〉

2sm
+O(W 4/s3

m) (4.59)

where in the last line we expanded eq. 4.55 since W � sm. At Σc, we should have that sm = sf , since at

this point the infinite system should have at least one site that is always at the failure stress (i.e. it is in a

state of constant avalanching) resulting in

Σc ≈
sf
2
− 〈s

2
a〉
sf

(4.60)

We will use this result later in chapter 6.

At this point, we remind the reader of three different, but equivalent methods that describe the disorder.

The first is the original disorder force f(u), which we take as a function of u only since it is uncorrelated in

the x direction. The second is the disorder potential V (u), which is equivalent to the potential that would

arise from the disorder force f(u). The third is the disorder force correlator (which we call the disorder
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correlator) f(u)f(u′) = ∆(u− u′), which played a prominent role in the renormalization of the equations of

motion.

Various types of disorder forces f(u) (or equivalently disorder potential V (u)) will determine the exponent

γ, so that the energy barriers ∆E ∝ (Σc − Σ)γ . For smooth disorder forces (i.e. no discontinuity of

the derivative), this results in γ = 3/2 [155, 154]. We need a type of disorder force that will reproduce

the renormalized disorder correlator at zero temperature in eq. 4.50. The disorder force must result in a

correlator which is cusped at the origin, as shown in fig. 4.4, which as we have shown above is necessary for

the presence of a critical force. The zero temperature disorder correlator is known to arise from a potential

that meets at cusps [11].
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Figure 4.5: An example of the disorder potential V (u) in d = 1. The d = 2 case is readily understandable as

an extension of this potential. The cusped potential is an example of a potential that causes a cusped force

correlator f(u)f(u′) = ∆(u− u′), and is the result of RG flow [11, 166].

An example of the cusped potential is shown in fig. 4.5, which shows what are essentially a random

sequence of harmonic wells placed together. For this kind of cusped potential, the exponent γ = 2 [154], and

that this cusped potential is also responsible for another observed exponent, β = 1 [10, 6, 13]. Note that in

the case of a rounded potential (i.e. ∆′(0) = 0) the exponent γ = 3/2, and the exponent β = 3/2 [167]. Since

β = 1 is usually observed [13], we expect that at the prediction γ = 2 is the correct limit of the behavior at
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the upper critical dimension. We will use this result together with the critical force eq. 4.60 to determine

how the distribution of times between activation events (interevent times) changes with temperature and

applied stress in chapter 6. In the chapter 5 appendices, we will show how the cusped disorder potential

results in an energy barrier with exponent γ = 2 [154].
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Chapter 5

Simulation of Creep

5.1 Introduction

In the previous chapter, we found that plastic deformation, as we study it in d = 2 can be understood at the

level of mean field theory, as the equations describing creep have an upper critical dimension dc = 2. As we

showed before, for stresses Σ < Σc (the critical stress), motion of a shear plane is impeded by the presence

of disorder at T = 0. At T > 0, this no longer happens, because thermal activation above disorder energy

barriers will allow motion of the shear plane. Near T → 0 (for Σ < Σc) however, the motion of this plane

happens very slowly, and we will derive the distribution of times between such activation events, known as

the interevent times in chapter 6. In this chapter, we show how to simulate the slip events.

There have been many attempts to simulate creep motion. Perhaps the simplest method is to numerically

integrate a Langevin equation of the form

η∂tui =
∑
j

Jij(uj − ui) + Σ + fp,i(ui) + ζ, (5.1)

which has been done for short range interactions [168], but not long range interactions. The problem with

the Langevin approach is that creep motion is often so slow that simulation times can be very long. Here

ζ ∝
√
Tξ, where T is the temperature and ξ is a Gaussian random variable with mean zero and variance

1 [155]. Therefore for small T the problem is essentially that large values of the random number ζ will

not occur with a high frequency as a function of time. These simulation times diverge in the T → 0 limit

as eUc/T , where Uc is the energy barrier between metastable states. A similar problem will plague any

molecular dynamics simulations of creep [169, 170].

Another option is to use a form of activation dynamics coupled with the zero temperature mean field

equations given in mean field section of chapter 4. In these types of discrete simulations, the thermal noise ζ

is replaced by some other form of activation. The challenge of systematically replacing a Gaussian random

variable ζ with another form of noise is that it is not trivial to do this in a way that reproduces the statistics

58



observed through the more physical Langevin approach. A Kinetic Monte Carlo (KMC) approach is usually

adopted in this case [171, 172, 173, 174].

5.2 Kinetic Monte Carlo

The goal of Kinetic Monte Carlo algorithms when simulating thermal activation is to try transitioning the

simulated system from one metastable state to another. In order to add thermal activation to the zero

temperature model, we use a KMC algorithm. The advantage of using KMC is that such an algorithm

avoids the rejection sampling methods of Markov Chain Monte Carlo (MCMC) [175]. Rejection sampling

allows moves in MCMC to be rejected with some probability, typically dependent on temperature as pr/pa ∼

exp(−∆E/kBT ). Here ∆E is an energy barrier to activation with pr being the rejection probability, and

pa being the cumulative activation probability. At low temperatures, ∆E/kBT can be large, so that many

rejections happen before a valid activation event to another metastable state. However, KMC is particularly

suited to systems which evolve slowly with time. In lieu of a rejection probability, KMC keeps track of a

temporal variable t. The algorithm only considers valid movement between metastable states, and updates

the time variable t to keep track of how long the system spends in a given metastable state.

Let us review a derivation of the KMC algorithm from first principles because this will be important

in the following discussion [176]. Given a Langevin equation like eq. 5.1, we can recast our equation

to try and find the probability distribution. Let the state of the system at any time step be X(t) =

[s0(t), s1(t), . . . , sN−1(t)]T , where the si(t) are the various stresses mentioned in eq. 4.52 and the superscript

T means transpose. Let P{X(t) = sµ} represent the probability that X(t) = sµ at some time t, where sµ

represents different possible states of the vector [s0(t), s1(t), . . . , sN−1(t)]T . Greek subscripts like µ and ν

denote the enumeration of possible states of the full vector such as sµ = [s0(t), s1(t), . . . , sN−1(t)]T . Addi-

tionally, we must take into account the dynamics specified previously. Those dynamics were for a specific

transition, when the stress si exceeds the failure stress sf . In this case the allowed transition was to a state

with si = sa,i, where sa,i is the arrest stress. Therefore only transitions between si → sa,i are available. In

other words, either a site fails at a given transition or it remains pinned at a given stress si < sf . They can

be categorized as each site either failing or remaining pinned. Since each site can either remain pinned or

fail, each site has two possible transitions, so for N sites there are 2N possible transitions.

We are primarily interested in two quantities for Monte Carlo simulation. These are the transition rates

qsµsν from state sµ to state sν (the order of the subscripts is important in the definition of qsµsν ) and the
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probability that the state is in the state sµ, P{X(t) = sµ}. The transition rates qsµsν are defined as

P{X(t+ δt) = sν |X(t) = sµ} = qsµsν δt (5.2)

which gives the conditional probability that if X(t) = sµ at time t, X(t+ δt) = sν at some infinitesimal time

later t+ δt. Then the probability that at time t, the state is sµ, P{X(t) = sµ}, evolves to time t+ δt

P{X(t+ δt) = sµ} = P{X(t) = sµ}+
∑

sν 6=sµ

P{X(t+ δt) = sµ|X(t) = sν}P{X(t) = sν} (5.3)

−
∑

sν 6=sµ

P{X(t+ δt) = sν |X(t) = sµ}P{X(t) = sµ}

where the first term on the right hand side is the current probability P{X(t) = sµ}, the second term

represents the probability that any state sν transitions into sµ in time δt (and hence add to the probability),

and the third term represents all probability of transitioning from sµ to other states sν with within time δt

(and hence subtract from the probability). Using eq. 5.2 we have

P{X(t+ δt) = sµ} = P{X(t) = sµ}+
∑

sν 6=sµ

qsνsµδtP{X(t) = sν} − qsµsν δtP{X(t) = sµ} (5.4)

P{X(t+ δt) = sµ} − P{X(t) = sµ}
δt

=
∑

sν 6=sµ

qsνsµP{X(t) = sν} − qsµsνP{X(t) = sµ} (5.5)

dP{X(t) = sµ}
dt

=
∑

sν 6=sµ

qsνsµP{X(t) = sν} − qsµsνP{X(t) = sµ} (5.6)

which is known as the master equation of Markov chains [176]. Note that in assuming that P{X(t+δt) = sµ}

depends only on the time immediately prior in eq. 5.2, we have assumed the Markov property. Additionally,

by assuming the fact that the transition rates (defined in eq. 5.2) qsµsν are time independent, we have

assumed that we are dealing with a time-homogeneous Markov chain, where the rates do not depend on

time. This is justified since we are considering the steady state regime of creep motion, for which the system

has forgotten the initial conditions that cause creep motion, so we can ignore time dependence of qsµsν . As

consequence of the time independence of the rates qsµsν , we can find a simple expression for the interevent

time given the current state.

Let Tsµ denote the duration that the system is in state sµ. The duration Tsµ is important because

it represents how long the system spends in state sµ, which is important when considering the interevent

time between two events (transitions). The cumulative distribution function of Tsµ , denoted P (Tsµ > t)

is the simplest quantity we can use to find the distribution of Tsµ . We use the conditional probability
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P{X(t + δt) = sµ|X(t) = sµ} to help us with this problem. Here P{X(t + δt) = sµ|X(t) = sµ} is the

probability that the state remains in sµ for time δt, conditioned on the fact that at time t it is in state sµ.

We have

P (Tsµ > t+ δt) = P{X(t+ δt) = sµ|X(t) = sµ}P (Tsµ > t), (5.7)

In words, the above equation states that the probability that the system remains in state sµ at time t+ δt

is the probability that it has remained in state sµ till time t multiplied by the probability that it does not

transition within time δt. Since the state must remain in sµ or transition to another state sν 6= sµ,

P{X(t+ δt) = sµ|X(t) = sµ}+
∑

sν 6=sµ

P{X(t+ δt) = sν |X(t) = sµ} = 1 (5.8)

and we can apply eq. 5.2 so that

P{X(t+ δt) = sµ|X(t) = sµ} = 1−
∑

sν 6=sµ

P{X(t+ δt) = sν |X(t) = sµ} (5.9)

P{X(t+ δt) = sµ|X(t) = sµ} = 1−
∑

sν 6=sµ

qsµsν δt (5.10)

which we can then plug into eq. 5.7 to get

P (Tsµ > t+ δt) =

1−
∑

sν 6=sµ

qsµsν δt

P (Tsµ > t) (5.11)

P (Tsµ > t+ δt)− P (Tsµ > t)

δt
= −

∑
sν 6=sµ

qsµsνP (Tsµ > t) (5.12)

dP (Tsµ > t)

dt
= −

∑
sν 6=sµ

qsµsνP (Tsµ) (5.13)

rsµ =
∑

sν 6=sµ

qsµsν (5.14)

dP (Tsµ > t)

dt
= −rsµP (Tsµ) (5.15)

P (Tsµ > t) = e−rsµ t. (5.16)

Hence we arrive at the very simple exponential distribution to describe the persistence time of a state.

That we arrived at an exponential distribution is a little disturbing given that we have made only a

few simple assumptions, particularly that of the transitions qsµsν are time-independent and the system is

Markovian. However, as we will see, although the transitions qsµsν do not depend on time, implicitly they

must still depend on the state of the system. Therefore, we must integrate over all possible states to find
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the correct distribution of interevent times. Although Markov chains are often used to model systems with

a small number of states, in this case, the state of the system X(t) = sµ denotes not just a scalar quantity,

but a full vector of quantities describing the position discontinuities of the shear band.

The exponential waiting times hints at the possibility of simulating eq. 5.6 without fully integrating the

equation. Given an initial state sµ, the time to transition out of the state is just an exponential random

variable with mean 1/rsµ = 1/
∑

sν 6=sµ
qsµsν . Then the question becomes what state we land on after leaving

state sµ. Taking eq. 5.2, we can say that the transition

P{X(t+ δt) = sν |X(t+ δt) 6= sµ, X(t) = sµ}δt = P (Tsµ > t)qsµsν δt (5.17)

P{X(t+ δt) = sν |X(t+ δt) 6= sµ, X(t) = sµ} = qsµsνe
−rsµ t. (5.18)

Then the transition itself happens with certainty by integrating over time, giving a transition probability

Psµ→sν =

∫ ∞
0

dtqsµsνe
−rsµ t (5.19)

Psµ→sν =
qsµsν
rsµ

=
qsµsν∑

sν 6=sµ
qsµsν

. (5.20)

In eq. 5.20, states sν with larger transition rates qsµsν have a higher probability of being transitioned into.

In eq. 5.20, the sum over all states sν 6= sµ results in unity, confirming that the transition probabilities

assigned do represent a normalized probability distribution of states sν to select after transitioning from sµ.

Note that this is a probability distribution over all position states sν that can result after a transition out

of state sµ, since the various rates qsµsν depend on both the pre-transition state sµ and the various possible

post-transition states sν .

With the results eq. 5.16 and eq. 5.20, it is simple to specify the KMC algorithm [170]. Sometimes this

is known as the Bortz-Kalos-Lebowitz (BKL) algorithm [175] or the Gillespie algorithm [177]. We use the

term kinetic monte carlo in this thesis.

1. Calculate the total rate of transition out of state sµ

rsµ =
∑

sν 6=sµ

qsµsν . (5.21)

2. Select a random number ρ0 uniformly from [0, rsµ).
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3. The state sν that results after transitioning out of state sµ is selected as the state for which

sν−1∑
sκ 6=sµ

qsµsκ ≤ ρ0 <

sν∑
sκ 6=sµ

qsµsκ . (5.22)

where the sum is over all possible transitions sµ → sk, and we have assumed that they can be enumer-

ated s1, s2, . . . , sM . The schematic version of this will be shown below in fig. 5.1. This is equivalent to

sampling a random transition from the distribution Psµ→sν = qsµsν/rsµ .

4. Carry out the transition sµ → sν through the zero temperature algorithm [7]. We find the time elapsed

by drawing an exponential random variable with rate constant rsµ as the time needed to transition

out of state sµ.

5. Update the rates to reflect the new state, and begin again with step 1.

Figure 5.1: A schematic example of how step 3 in the KMC works. We call the current state sµ. We put all

the potential post-transition states sν into a list s1 to sMsµ
and calculate the rates qsµsν for each transition.

Here Msµ is the total number of transitions possible (which is dependent on the state sµ itself). Then we

sum these rates to get rsµ , and draw a random number ρ0 from [0, rsµ). We select the state to transition

to based on what index the inequality eq. 5.22 holds. For example, in the above picture, we would pick the

transition sµ → s3.

The most important part of this algorithm is that it is rejection free, so that at every time step of the

algorithm (steps 1-5 constitute 1 time step) the state transitions to a different state. This avoids the

problem of rejection based monte carlo, which would typically be stuck in a single metastable state if the

energy barriers are large relative to the temperature.
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Naively this algorithm would run in O(M) time, where M = 〈Msµ〉 is the average number of transitions

in each state sµ. Improvements have been made so that step 3 requires only O(log(M)) time, but those

also require the storage of O(M) partial sums [178]. If each rate changes at every step, then no algorithm

currently allows for less than O(M) time because of the calculation involved in step 1 and the update involved

in step 5.

5.3 Creep Using Kinetic Monte Carlo

In the simulation of creep, there are two problems faced in using KMC. The first is known as the futility

problem. If the system is stuck in a relatively flat well of the potential, transitions will move the system

locally within this flat well [179]. However, the system will not evolve because it will not escape this flat

well. This problem manifests itself in KMC by transitions to and from a given configuration repeatedly. We

avoid this problem by staying in the low temperature regime, and by assuming that the stress Σ/Σc on the

system close to unity. Near the critical stress, energy barriers for backwards slips are exponentially larger

than energy barriers for forward slips, as we will show below. Since we are concerned especially with creep

near the critical force Σc [155], we neglect backwards motion of the slip plane. We assume the scaling form

eq. 4.6 is the correct form of energy barrier scaling for the system. Each site can only slip forwards if it

overcomes an energy barrier

∆Ei = Ω(sf,i − si)γ = Ωδsγ , (5.23)

which is a common form for the energy barrier [155, 180, 154]. The exponent γ depends the shape of the

pinning potential, and with the cusped potential we plotted in fig. 4.5 the resulting value is γ = 2 [155, 154].

Here Ω is a constant independent of the stress. As a rough estimate to how good an approximation it is to

neglect backwards slips, we note that the forward energy barrier is ∆Ef ≈ Ω(Σc−Σ)γ , while the backwards

energy barrier is ∆Eb ≈ Ω(Σc + Σ)γ . Therefore, the ratio of probabilities of a backwards slip to a forwards

slip is approximately exp [−Ω((Σc + Σ)γ − (Σc − Σ)γ)/kBT ] ≈ exp [−Ω(2Σc)
γ/kBT ]� 1 for F close to Fc.

A slip forwards to another state means that the site i that has failed relaxes to its arrest stress sa,i, while

redistributing its previous stress si to all other sites. The redistribution of stress can result in an avalanche,

which will scramble the stresses of all other sites. This leads to the second problem encountered in KMC

simulations of creep.

The second problem faced by KMC methods to simulate creep is what we term the combination problem.

At the beginning of the KMC, we must calculate the total rate constant rsµ . Recalling our discussion about

the state of the system, we note that the state of the system is a vector quantity with N entries. Each site in
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the system can either fail or remain at its current stress, so each entry can be labeled by a 1 for failure and a

0 otherwise. Each KMC step can involve more than a single site, and it is known that large combinations of

activation events are required to properly simulate the creep problem [181, 182, 180] at finite temperature.

For proper KMC simulation, each possible combination of failing cells must be taken into account. For

N sites, each site has 2 transitions, either staying fixed or failing, resulting in 2N possible transitions. In

counting the number of transitions, the transition where all sites stay fixed should not be counted, so there

are 2N − 1 total transitions possible. In other words, a direct implementation of the algorithm would run

in O(2N ) time. Several other papers have attempted to address this problem in the context of short range

interactions, by assuming only sites locally connected to each other will fail [182] in their MC calculations or

assuming the temperature is so low that only single site failures are possible [180, 183]. In mean field theory,

this problem is more acute because each site is coupled to every other site, and the notion of locality does

not exist. This problem is also present in any system with long range interactions. Therefore, each possible

combination of site failures must be accounted for in a proper KMC simulation.

Our main contribution is to show that for a certain class of rate constants, there is an algorithm that

finds exactly the sum of all the rate constants within O(N2) time and O(N2) memory. In addition to this,

there is a related algorithm that finds a selected state that is needed to execute step 4 of the KMC with the

correct probability of transition in eq. 5.20.

In order to describe this algorithm, it is best to fix the notation for multiple activation events. First, we

will need notation for summing over multiple activation events. In this case, we will use numbered indices

i1, i2, . . . , im, where each index 1 ≤ ip ≤ N can run over the full set of possible values. Second we will

assume that the rate constants for single activation events are of the form ki = λ0e
−∆Ei/kBT , where ∆Ei

is the energy barrier of the ith site, and λ0 is a constant needed for correct units. For example, if the 3rd

site is considered, we will assume a rate constant of activation k3 = λ0e
−Ω(sf−s3)γ/kBT , where k3 denotes

that the third site is considered for failure. Again the constant λ0 is needed to correct units. In general this

simple form of activation rates is probably not true [184, 170], as the constant λ0 is not a true constant as

∆E varies. In other words, λ0 = λ0(∆Ei). However, both for simplicity, and because the dependence of λ0

on energy barriers is usually polynomial [184] rather than exponential, we expect to capture much of the

first order behavior by assuming λ0 is a constant as ∆E is varied. For general single activation events we

have

λi = e−Ω(sf−si)γ/kBT (5.24)

ki = λ0e
−Ω(sf−si)γ/kBT = λ0λi, (5.25)
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where again, we have assumed that λ0 is a constant of proportionality needed for correct units that to

lowest order does not vary as ∆E is varied. In trying to touch notation with the previous discussion,

ki = qsµsν = q[sµ,0,...,sµ,i,...,sµ,N−1]T→[sν,0,...,sν,i,...,sν,N−1]T . In this case, if the ith site has failed, then sν,i = sa,i

(the arrest stress for the ith site). The notation ki can also be extended to multiple slips by including more

indices so that

ki1,i2,...,im = λ0e
−Ω{(sf−si1 )γ+(sf−si2 )γ+...+(sf−sim )γ}/kBT = λ0λi1λi2 . . . λim . (5.26)

Since this form is more compact than writing sµ and sν for each specific combination of failures, we use

this notation in the following discussion. In eq. 5.26, we have made the important assumption that the rate

constants do not take into account interactions between sites. In reality this assumption is only valid up

to O(1/N) in mean field theory, because clearly if more than 1 site fails, their mutual interaction (since

J ∼ O(1/N) > 0) will make it easier for other sites to fail simultaneously. In fact, it is possible to take

into account the O(1/N) term and arrive at an algorithm which is accurate to O(1/N2), which we describe

in the appendices. This algorithm can be extended to O(1/N l) for any l, but unsurprisingly the time for

simulation then grows like O(N2l!). We will not pursue this line of inquiry as it is inessential in the limit

N →∞.

Let us call the current state of the system sµ. Then we must first compute rsµ . The general strategy to

compute rsµ is to compute the sum eq. 5.21 in terms of single site activations, pair activations, and so on,

which we label by an integer m. For example, m = 1 means we only consider single site failures, while m = 2

means we consider pairs of sites failing. Clearly 1 ≤ m ≤ N − 1. Of course, such a sum eq. 5.21 will then

take O(2N ) time, so to speed up the computation, we use results from computing the m − 1 combinations

of failed sites to compute the sum for m combinations of failed sites. First we write

rsµ =

N−1∑
m=1

N∑
1=i1<i2<...<im

ki1,i2,...,im =

N−1∑
m=1

Rm (5.27)

Rm =

N∑
1=i1<i2<...<im

ki1,i2,...,im (5.28)

where Rm is the sum of combinations of m sites failing, and the sum constraint i1 < i2 < . . . < im enforces

that two indices are never the same (no site can fail twice!).

Initially, it is useful to have precomputed the rate constants λi from eq. 5.24, of which there are N terms.

The starting point is to compute the m = 1 sum, which we will call R1. Using eq. 5.28 and eq. 5.26 this is
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just

R1 =

N−1∑
i=0

ki =

N∑
i=1

λ0λi =

N∑
i=1

λ0e
−Ω(sf−si)γ/kBT . (5.29)

This sum can be done in O(N) time. The m = 2 sum is more complicated, because it involves pairs of sites

i1, i2

R2 =

N∑
1=i1<i2

ki1,i2 =

N∑
1=i1<i2

λ0λi1λi2 = λ0

N−1∑
1=i1

λi1

N∑
i1<i2

λi2 . (5.30)

We can compute eq. 5.30 by keeping track of the partial sums while computing eq. 5.29 (dividing out the

inessential factor of λ0). Let us call these partial sums, which can be done with O(N) time and O(N) space

σ1,n =

N∑
i=n

λi. (5.31)

Then

R2 =

N−1∑
i1=1

λi1σ1,i1+1 (5.32)

which can be computed in O(N) time. Comparatively, a direct computation of R2 takes O(N2) time,

showing that for pairs we have a quadratic speedup. As a further example, let us compute

R3 =

N∑
1=i1<i2<i3

ki1,i2,i3 =

N∑
1=i1<i2<i3

λ0λi1λi2λi3 = λ0

N−1∑
i1=1

λi1

N−1∑
i1<i2

λi2

N∑
i2<i3

λi3 (5.33)

where we have again split the sum into pieces which can be computed from previous computations. Taking

the partial sums
N−1∑
i2=n

λi2

N∑
i2<i3

λi3 =

N−1∑
i2=n

λi2σ1,i2+1 = σ2,n (5.34)

can be done again in linear time while computing eq. 5.32. Then

R3 = λ0

N−2∑
i1=1

λi1σ2,i1+1 (5.35)

which can be done in linear time. So far we have a computation that can take about O(3N) time and O(3N)

memory. Computing the sum eq. 5.33 directly would take O(N3) time, as there are O(N3) terms. At this
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point, it is probably easier to approach the general case

Rm = λ0

N∑
1=i1<i2<...<im

λi1λi2 . . . λim (5.36)

Rm = λ0

N−m+1∑
i1=1

λi1

N−m+2∑
i1<i2

λi2 . . .

N∑
im−1<im

λim (5.37)

Rm = λ0

N−m+1∑
i1=1

λi1σm−1,i1+1 (5.38)

where

σm−1,i1+1 ≡
N−m+2∑
i2=i1+1

λi2σm−2,i2+1 (5.39)

with the triple equals sign mean we define σm−1,i1+1 as the quantity on the right hand side.

This should make the full recursive nature of the computation clear. Basically we keep track of the

partial sums σm−1,i to compute σm,i, which we then use to compute Rm using eq. 5.38. Now

rsµ =

N−1∑
m=1

Rm (5.40)

with each Rm taking O(N) time and storage. Since 1 ≤ m ≤ N−1 the resulting algorithm is O(N2) running

time and storage.

If we now go back to the KMC algorithm, we still need to draw a random new state from the probability

distribution qsµsν/rsµ , where ν 6= µ refers to a new state. Naively, this part of the computation is just as

difficult as the first part, requiring O(2N ) computations. However, we can leverage many of the computations

in the first part of the algorithm to reduce the time complexity to O(N2). The algorithm presented below

is similar to several combinatorial enumeration algorithms [185], except that it takes into account weighting

of the combinations correctly.

First, we must come up with a way to more systematically order the set of possible transitions. Let

{·} denote that a given set of sites fail. For example, {1, 2} means sites 1 and 2 fail. Then there is a well

defined ordering of possible transitions known as the dictionary order [185]. The formal definition is that if

we have 2 sets of n items {µ1, µ2, . . . , µn} and {ν1, ν2, . . . , νn}, then the first is less than the second if µi < νi

for the first i at which {µ1, µ2, . . . , µn} and {ν1, ν2, . . . , νn} differ. The ordering is similar to how words

in a dictionary are ordered, which explains the namesake. More concretely, an example of the ordering is
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{1, 2, 3} < {1, 2, 4} < {2, 3, 4} and so on. The full set of possible transitions can be ordered as

{1} < {2} < . . . < {N} < {1, 2} < {1, 3} < . . . < {N − 1, N} < {1, 2, 3} < . . . < {1, . . . , N}. (5.41)

As a reminder to the reader, we have found the total rate constant rsµ using eq. 5.40. We now need to

find the state sν to which sµ transitions. Given the general sum eq. 5.27, we can draw a random number

0 ≤ ρ0 < rsµ . The state that we select can be labeled by a set of integers {ν1, . . . , νn}, where we assume that

ρ0 selects a transition where n sites fail. The integers ν1, . . . , νn represent the sites that fail in a transition

selected by the random number ρ0. Recall from eq. 5.22 that the way this is done in KMC is to choose the

state with
∑sν−1

sκ 6=sµ
qsµsκ ≤ ρ0 <

∑sν
sκ 6=sµ

qsµsκ . Note that the sums in the inequality are arbitrarily ordered,

so that we can choose the dictionary ordering after labeling the sites from 1 to N . As we explain below, we

have already computed rsµ using dictionary ordering, we can take advantage of the ordering structure to

find our list of failed sites. Let us state how the dictionary ordering is used in eq. 5.27. The very first term

in computing rsµ is just the rate constant that the site labeled 1 fails. The next term is that the site labeled

2 fails, and so forth. The full set of these single failed sites is what we originally called R1, as defined in

eq. 5.29. The second set of terms starts with the combination of sites {1, 2} failing, and so forth. Therefore,

the sum is done in the dictionary order in our computation. Writing it out to be explicit,

rsµ =
∑
m

Rm = k1 + k2 + . . .+ kN + k1,2 + . . .+ k1,N + . . .+ kN−1,N + k1,2,3 + . . .+ k1,2,...,N . (5.42)

The ki1,...,in represent the sites i1, . . . , in slipping, and the sum is written dictionary order by comparing the

subscripts of the ks to the definition of dictionary ordering eq. 5.41 above.

One can think of computing rsµ as stacking boxes similar to figure 5.1, with the first layer of boxes being

all single failed sites, the second layer of boxes being double failed sites, and so forth. An example of this is

shown in the figure 5.2 below.
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Figure 5.2: A schematic example of the algorithm to be described, similar to fig. 5.1. We have set λ0 = 1

to simplify the number of variables. Here γ is a variable that keeps track of previous multipliers. We

show here an example of a single iteration of the algorithm, here the kth iteration. The random number

ρk selects the kth state that fails. In the case illustrated in the figure, that state is the third state from

the bottom (on the left hand side). As can be seen on the left hand side of the figure, γλnσl−1,n+1 +

γλn+1σl−1,n+2 < ρk < γλnσl−1,n+1 + γλn+1σl−1,n+2 + γλn+2σl−1,n+3. Therefore, 0 < ρk − γλnσl−1,n+1 +

γλn+1σl−1,n+2 < γλn+2σl−1,n+3, so we define ρk+1 = ρk − γλnσl−1,n+1 + γλn+1σl−1,n+2 and we know that

ρk+1 ∈ [0, γλn+2σl−1,n+3). Therefore, the factor σl−1,n+3 is then expanded (i.e. written term by term using

eq. 5.39) like the right hand side of the figure. In addition to this, the factor γ now becomes γλn+2. Since

this term is included, we know that n + 2 labels one of the sites that has failed. The new term, ρk+1, lies

within the expansion on the right hand side of the figure. This piece is then used to find the k + 1th failure

site (i.e. n + 5), which is in this case the second from the bottom on the right hand side. The algorithm

continues until l = 0, so that there are no more σl,n to expand. The set of sites is enumerated by listing off

the site selected by each ρk at each step.

To find the generic transition selected by the random number 0 ≤ ρ0 < rsµ , we should group as many

terms together as possible in the sum eq. 5.40 that computes rsµ . The very first thing we want to find is

how many sites have failed, which we call the zeroth layer. For example, if the KMC algorithm selects a

post-transition state using ρ0 where 3 sites have failed, then we know that R1 + R2 < ρ0 < R1 + R2 + R3,

since R1 and R2 denote the full sum of single and double failures, while R3 describes the full sum of triple

failures. In general, we know the Ri from the previous computation eq. 5.38, so if

R1 +R2 + . . .+Rn−1 < ρ0 < R1 +R2 + . . .+Rn−1 +Rn (5.43)
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then n sites have failed. Then the state we select can be labeled by a set of integers {ν1, . . . , νn}. We know

that 1 ≤ νp ≤ N , and since each νp with 1 ≤ p ≤ N is unique, we can order them so that ν1 < ν2 < . . . < νn.

In order to calculate the transition {ν1, . . . , νn}, we then have to plug in the definition of Rn using

eq. 5.38, since Rn represents the full sum of n sites failing. This is the next layer that we compute. We

know that the difference ρ1 = ρ0 − (R1 +R2 + . . .+Rn−1) is in the interval [0, Rn) by the above inequality

eq. 5.43. Next, we can plug in Rn using eq. 5.38. As a reminder, the equation defining Rn is

Rn = λ0

N−n+1∑
i1=1

λi1σn−1,i1+1. (5.44)

We know that 0 < ρ1 < Rn, but since we have already computed each term in the sum defining Rn, we can

actually find the index ν1 at which

λ0

ν1−1∑
i=1

λiσn−1,i+1 < ρ1 < λ0

ν1∑
i=1

λiσn−1,i+1. (5.45)

From here, want know that ρ1 has selected a state that includes an index ν1. In order to find further

indices, we must write out the terms in layer (i.e. write out the term λ0λν1
σn−1,ν1+1 just like the right

half of figure 5.2). We can define ρ2 = ρ1 − λ0

∑ν1−1
i=1 λiσn−1,i+1 since we will then know that ρ2 is in the

interval [0, λ0λν1σn−1,ν1+1). In addition, we now know that ν1 is one of the activated sites. We can expand

σn−1,i1+1 recursively using eq. 5.39, at each step subtracting the correct amount and multiplying by any

collected prefactors to find the indices ν2, . . . , νn.

Let us go through this procedure for the next layer to find ν2 before explaining the general algorithm.

The first thing we will do is expand σn−1,ν1+1 using eq. 5.39. We know that ρ2 ∈ [0, λ0λν1
σn−1,ν1+1), so we

must multiply our expansion of σn−1,ν1+1 by λ0λν1
.

Then to find the next index, which we call ν2, we simply look for the index

λ0λν1

ν2−1∑
i=ν1+1

λiσn−2,i+1 < ρ2 < λ0λν1

ν2∑
i=ν1+1

λiσn−2,i+1 (5.46)

Note that above the summation starts on ν1 + 1, and hence ν2 > ν1, as expected from our assumption that

ν1 < ν2 < . . . < νn. Now the next step is to define ρ3 = ρ2 − λν1

∑ν2−1
i=ν1+1 λiσn−2,i+1 and expand σn−2,ν2+1.

We will have a string of prefactors λ0λν1
λν2

. . . that we must track. We call this overall prefactor γ, initially

with γ = λ0. We specify the full algorithm now for finding these indices starting from ν1. For each iteration,

we let t be the iteration, starting with t = 1. We will terminate once we have all n sites. We will use the

notation σl,m to refer generically to the various sums we must expand using eq. 5.39.
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1. Initialize γ1 = λ0,m1 = 1, and l1 = n, where n is the number of sites that will fail determined by

eq. 5.45.

2. for t = 1, t ≤ n, t→ t+ 1

2.1. Expand σlt,mt using eq. 5.39 while keeping track of the total mulitplier γ

γtσlt,mt = γ

N−lt+1∑
i=mt

λiσlt−1,i+1 (5.47)

2.2. Find the index νt where

γ

νt−1∑
i=mt

λiσlt−1,i+1 < ρt < γ

νt∑
i=mt

λiσlt−1,i+1. (5.48)

2.3. Store the value νt, setting:

lt+1 = lt − 1 (5.49)

mt+1 = νt + 1 (5.50)

γt+1 = γtλνt (5.51)

ρt+1 = ρt − γ
νt−1∑
i=mt

λiσlt−1,i+1 (5.52)

The resulting set of indices {ν1, . . . , νn} will then determine the sites that fail. Since each index takes O(N)

time to search through the list of partial sums, the total time is O(Nn), with usual worst case time being

O(N2), as many sites can fail at high temperatures

This algorithm, and the extension to the case where interactions are taken into account, allow us to

simulate creep at finite temperatures T > 0, rather than constraining ourselves to the case T → 0 [180],

which has long been a problem with the simulations of creep. As an example, brute force simulation of

creep, as well as our method, are shown below in fig. 5.3.
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Figure 5.3: The time complexity of creep simulation as a function of the number of sites N . The blue dots

represent the brute force method, where each combination is manually computed. Our method is shown in

red. We also plot the N2 relation, showing that our algorithm scales well as N increases, as opposed to the

exponential scaling of the brute force method.

In the next chapter, we will use this algorithm, along with previous results from chapter 4, to derive the

interevent time distribution at various temperatures.
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Chapter 6

Simulation and Analytic Results for
the Interevent Time Distribution
During Creep

6.1 Introduction

Experiments in steady state creep often involve macroscopic measurements of time dependence of strain as a

function of temperature, load, or material variables such as composition [86, 146, 134, 186, 42, 87, 187, 89].

More precise experiments have resulted in the extraction of avalanche-like behavior during creep deformation

[88]. In these experiments, a threshold strain (of 15 nm) is set, and a machine is used to measure the strain

increase of a material under load. When the next threshold strain is reached, the approximate interevent

time (waiting time) distribution between original strain and the next threshold can be extracted in the steady

state regime [88] at various stresses and temperatures [90] (see fig. 6.1 for an intuitive picture of interevent

times). This interevent time distribution can be computed using the mean field model [13] introduced to

study the plastic deformation of materials. We derive a proposed analytic form for this distribution in

different regimes, and compare to experiments below. The one important assumption we make is that

the energy exponent eq. 4.6 γ = 2. Other promising studies of dislocation mediated creep in crystalline

materials has been performed using acoustic emission to study slip avalanches during creep motion of ice

[23, 24]. Unfortunately, these studies do not report the time between events.

Although interevent time studies are not new, often the conditions under which they are obtained preclude

them from study in this chapter. Two such studies are the interevent time between events in stressed paper

[188] and porous sandstone [189]. For paper, the creep measurements involved an increasing stress on the

paper, so that the stress was not constant. For porous sandstone, creep is thought reflect the collapse of

weakly bound grains [189] resulting from the slow viscous flow of the material, rather than from discrete

thermal activation. In our model, we assume the following:

1. At zero temperature, a slowly increasing (stress or strain) driven plastic deformation of the material

occurs in avalanches, whose statics and dynamics are well described by mean field theory [13].

2. During the creep situation modeled here, the stress on the material is constant, and near the failure
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stress of the material.

3. Creep is due to thermal activation, and the temperature is low enough that the interevent time is

larger than all other time scales, including the avalanche durations. We denote the temperature at

which other time scales reach the interevent time scale as Tf .

In the paper-fracture study [188] assumption 2 is invalid, since the stress is not constant, and in the porous

sandstone study [189] assumption 3 is invalid since creep is thought to be due to viscous flow of the material.

We will first discuss the model results and then discuss how experimental creep tests that fullfill the above

three assumptions can be implemented.

Figure 6.1: The strain vs. time at different temperatures. T is the temperature and E0 is the energy needed

to excite a weak spot, as defined below. We have observed through simulations that there are distinct

regimes, which we call the low and high temperature regimes. (a) The low temperature regime. We show

a schematic of an interevent (waiting) time between two events. In the low temperature regime the strain

curve is composed of large intermittent jumps followed by long quiet periods. (b) The analogous curve in the

high temperature regime. The curve is composed of much smaller, more frequent jumps, and the interevent

times are much shorter. The difference in scales is dramatic, and a result of the fact that the temperature

is 10× lower in (a) than in (b). The advantage of the KMC algorithm is the time scale is found indirectly

through the use of eq. 5.16 rather than direct simulation, which would be prohibitively long in simulating

(a).

A simulated example of strain curves is shown in Fig. 6.1. In Fig. 6.1a, the strain curve is obtained

for low temperatures, which shows jumps are followed by long interevent times. Fig. 6.1b shows the strain

curve for high temperatures, where jumps followed by short interevent times. The notion of low and high

temperature will be made precise below.
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6.2 Analytic Results

Recalling the mean field model presented in chapter 4, the stress on the system

si = J(ui − ū) + Σ, (6.1)

and the mean stress is s̄ = Σ. When site i fails (si > sf ), the reduction in stress of site i, δsi = sa,i − sf , is

compensated in an increase in stress δsj = (sf − sa,i)/(N − 1) for all other sites. This is the mechanism by

which slip avalanches are generated in the model. The scaling of the energy barrier as a function of stress is

given by

∆E = Ω(sf − s)γ . (6.2)

Physically, the γ = 2 exponent is the result of a cusped pinning potential [11, 166], which has long been

proposed to play an important role in avalanches in mean field theory [10]. To simulate the thermal activation,

we use the kinetic monte carlo (KMC) algorithm [170, 177]. We make a simplifying assumption that between

avalanches, a site remains at a fixed stress, and either slips because it is thermally activated or due to an

avalanche. The transition rates correspond to activation events, so that either a given site fails or it remains

at its current stress. The rates of each site failing are proportional to ki = λ0 exp(−∆E/kBT ) = λ0λi like

in eq. 5.25. Recalling that the total transition rate is the sum over all such failure events eq. 5.21

rsµ =

N−1∑
m=1

N∑
1=i1<i2<...<im

ki1,i2,...,im , (6.3)

where ki1,...,im = λ0λi1 . . . λim we use our modified KMC algorithm to take into account these combinations.

The KMC algorithm used here allows for multiple simultaneous activations and then allows for an avalanche

to develop following the zero temperature algorithm [7]. On the other hand, the KMC algorithm neglects

backwards motion (motion opposite the direction of force), which has vanishingly small probability for Σ

near Σc. Physically eq. 6.3 calculates a total transition rate rsµ by taking into account all transition paths.

Transition paths with large barriers are exponentially suppressed. As more transition paths with small

barriers become available, the total transition rate grows. Eq. 6.3 is the key equation that we will have to

estimate to arrive at analytic results.

We use the algorithm described in the previous chapter to model creep with N sites to simulate, resulting

in 2N − 2 transitions. Here we use these simulations to verify our analytic derivations. Results in Fig. 6.3

and Fig. 6.5 show the interevent time distributions at different temperatures for a fixed stress Σ = 0.98×Σc,

where Σc is the failure stress. The solid lines in Fig. 6.3 and Fig. 6.5 show the analytic forms derived below,

76



while the markers show simulated results.

To derive analytic distributions for the interevent time, we approximate eq. 6.3. At low temperatures, all

multiple activations are suppressed, so that only m = 1 activations are valid. In fact, in the low temperature

regime, we will consider only the smallest activation barrier to be thermally active. In the low tempeature

regime, the material has essentially one transition path between metastable states. This is the transition

path with the smallest energy barrier, so eq. 6.3 is well approximated by

rsµ(sm) ≈ λ0 exp(−∆Emin/kBT ) = λ0 exp(−Ω(sf − sm)2/kBT ), (6.4)

where sm is the maximum stress among the sites, and we have used the energy barrier scaling eq. 6.2.
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Figure 6.2: The distribution of maximum stresses for 3 different temperatures at fixed force Σ = 0.98×Σc,

number N = 1000, and width of arrest stresses W = 0.1×Σc. The total number of time steps is 104, which

does not include the time steps required to forget initial conditions. We set the total number of time steps

to forget initial conditions as 2000 time steps. The distribution is Gaussian in the limit N →∞, and clearly

not an extreme value distribution (which for a uniform distribution is exponential [190]). The reason for

this is that each step is not independent of the steps before it. The temperature kBT is defined relative to

E0. We define E0 below, with E0 = Ωs2
f , where sf is the failure stress. The mean value of this distribution

is approximately 0.98× sf as seen by the graphs, where the factor of 0.98 is the same as the Σ/Σc = 0.98.

The distribution of maximum stress is plotted in fig. 6.2, and it is easier to understand this distribution

rather than the distribution of minimum energy barriers. The maximum stress after many failure events

will be approximately normally distributed. This arises from the central limit theorem, because maximum

stress at any time is the sum of many random small stress increases from past sites that have slipped. We

show this more clearly in the appendices, and we derive the properties of this normal distribution. Note

that the distribution is not an extreme value distribution [84]. This is because the maximum stress is not

independent of stresses from previous iterations. Another important feature seen in fig. 6.2 is that the width
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of the maximum stress distribution is roughly independent of temperature for low temperatures.

For each given rate rsµ , the interevent time ∆t is exponentially distributed by eq. 5.16. The interevent

times are defined as the times between the activation events, and found directly from the KMC algorithm.

The reason that the full distribution of interevent times is not itself exponential is that the rates rsµ them-

selves are random. Therefore the distribution of ∆t given rsµ , p(∆t|rsµ) = rsµe
−rsµ∆t. Given a probability

distribution p(rsµ) for the rate constant rsµ , we can express the distribution of interevent times as

p(∆t) =

∫
drsµp(rsµ)p(∆t|rsµ) (6.5)

p(∆t) =

∫
drsµp(rsµ)rsµe

−rsµ∆t (6.6)

=

∫
dsmp(sm)rsµ(sm)e−rsµ (sm)∆t (6.7)

where we have used that p(rsµ)drsµ = p(sm)dsm by changing variables in the integration. This substitution

is valid because we are changing variables in a probability distribution. Here p(sm) is the probability

distribution of the maximum stress. Note that this is similar to several approaches taken for short range

theories [84], except we do not assume that sm follows an extreme value distribution [84]. As stated above,

we assume sm is normally distributed with mean µ and variance σ2. We make this assumption based on

empirical evidence (fig. 6.2) and through arguments in the appendix to this chapter. The essence of this

argument is that since each site is connected to every other site (i.e. the main assumption of mean field

theory), the maximum value of the stress at any given time is not an independent of the stress distribution

at previous times. Extreme value distributions rely on the assumption that the maximum value at any time

is a independent of the stress distribution at previous times [190], so it is not an extreme value distribution.

Rather, one has a situation in which the maximum value is the result of many small nudges from previous

slip avalanches, and hence by the central limit theorem should converge to a normal distribution

p(sm) =
1√

2πσ2
exp(−(sm − µ)2/2σ2). (6.8)

Then plugging in the approximation to rsµ(sm) eq. 6.4 and distribution of maximum stresses eq. 6.8 into

eq. 6.7

p(∆t) ∝
∫ sf

0

dsme
− (sm−µ)2

2σ2 −
Ω(sf−sm)2

kBT
−λ0∆te

−
Ω(sf−sm)2

kBT

. (6.9)

In chapter 4, we we showed that sf ≈ 2Σc. In the appendices, we show that µ ≈ 2Σ, and σ2 ≈ εsfW/N ,

where ε ≈ 1/8 for uniformly distributed arrest stresses. The integral eq. 6.9 cannot be performed analytically,

but saddle point analysis can be used to evaluate the integral. We define γ = kBT/(2Ωσ2) and ∆f =
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2
√

Ω(Σc − Σ)/
√
kBT . Then the integral results in:

p(∆t) ∼ 1

∆t0

(
∆t0
∆t

)1+γ

e
γ∆f

(
2

√
log
(

∆t
(γ+1)∆t0

)
−∆f

)
(6.10)

with details given in the appendix to chapter 6. The result eq. 6.10 is interpreted below in several different

limits.
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Figure 6.3: The analytic comparison to the theoretical distribution eq. 6.10. The solid lines represent the

analytic distribution, while markers represent binned values of the probability distribution from simulations.

The force was set at 0.98×Σc, where Σc is the critical force, with 100, 000 interevent times recorded at each

temperature and N = 1, 000 cells. The width of the arrest stress distribution is W = 0.1× Σc. In the inset

we show the same set of temperatures without taking into account the exponential term in equation 6.10,

which results in a power law that is very different from the simulated interevent distributions. We do this to

show that the exponential term in eq. 6.10 is very important to the shape of the distribution, and renders

it different from the pure power law derived for short range forces [84], which had no subleading terms. As

the coefficient γ = 4NTΣc/(WE0) increases, the exponential in equation 6.10 becomes more important,

and changes the shape of the distribution. Therefore it is necessary to include this term in the interevent

time distribution. For temperatures greater than kBT/E0 = 5 × 10−5, equation 6.15 better describes the

distribution of interevent times. This is the result of multiple activation pathways that invalidate using the

rate approximation assumption eq. 6.4, which assumes that the site with maximum stress is the site that

fails. 80



In the limit of small γ, corresponding to small kBT � 2Ωσ2, eq. 6.10 simplifies to p(∆t) ∼ ∆t−1−γ .

This power law has been derived before for short range disorder [84], where a similar power law was shown

with an exponent proportional to kBT . Our result deviates because of the second exponential term that

multiplies the power law in eq. 6.10, which causes changes in temperature to manifest in a much weaker

fashion than a pure power law (see fig. 6.3). Define an energy scale E0 = Ωs2
f . This energy corresponds to

exciting a cell from the zero stress to the failure stress in eq. 6.2. Then (see appendices for details)

γ = NTFc/(2εWE0). (6.11)

again, with ε = 1/8 for the uniformly distributed arrest stress. In the limit ∆f → 0 (too close to the failure

stress), our assumption 3 is violated, as avalanche durations diverge and are no longer shorter than interevent

times. For N → ∞, at fixed temperature, assumption 3 is also violated as there will always be sites near

enough to failure to shorten the interevent time until only continuous flow is possible. This physical problem

can be circumvented by taking T → 0 as N →∞ for the appropriate function of N . In fact, looking at the

form of γ, we can take T−1 ∼ N to keep γ constant.

The comparison between the analytic form eq. 6.10 and the simulation results is shown in Fig. 6.3.

The symbols represent simulated data, while the solid lines represent analytic predictions. As temperature

increases, interevent times become shorter. Physically the disorder prevents the system from jumping from

one metastable state to another and therefore longer interevent times are observed. For small disorder

W/Fc → 0, at fixed temperature T > 0 and fixed N , the exponent γ → ∞. In this case, the Gaussian

maximum stress distribution in eq. 6.9 becomes sharply peaked, so we approximate it by a delta function

p(sm) = δ(sm − µ). From this we get plugging into eq. 6.7

p(∆t) ∝
∫ sf

0

dsmδ(sm − µ)e
−

Ω(sf−sm)2

kBT
−λ0∆te

−
Ω(sf−sm)2

kBT

(6.12)

p(∆t) = λ̄ exp(−rsµ∆t), (6.13)

where rsµ = λ0 exp(−Ω(sf − µ)2/kBT ) is most likely value of the rate constant. This is expected, since in a

system without disorder only the force Σ can set how long an activation event will take (i.e. the distribution

of maximum stresses of fig. 6.2 is 0), and this leads to a highly peaked distribution of rate constants. In the

opposite direction, as W grows, we have an almost pure ∆t−1 power law for fixed N and T . The contrast

of these two regimes shows that without disorder, the system exhibits narrow interevent times, while for a

system with large amounts of disorder this distribution widens dramatically.
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In deriving eq. 6.10, we have assumed in eq. 6.4 that only the smallest energy barrier will play a role.

This is true at low temperature, when all other excitations are exponentially suppressed by an amount

exp(−(∆E −∆Emin)/kBT ). As temperature increases this is no longer true. If we order ∆Emin = ∆E0 <

∆E1 < . . . < ∆EN−1, then when kBT > 〈∆E1−∆E0〉 the second energy barrier will also contribute. Letting

∆En = Ω(sf −si(n))
2, where i(n) is the site that has the nth largest energy barrier, we have 〈∆E1−∆E0〉 =

Ω〈2sf (si(0) − si(1)) + s2
i(1) − s

2
i(0))〉. In the supplementary material [191], we show that 2〈sf (si(0) − si(1))〉 =

8ΣcΣ/N and 〈s2
i(1) − s

2
i(0)〉 = −8Σ2/N + O(1/N2). Therefore 〈∆E1 − ∆E0〉 = 8ΩΣ(Σc − Σ)/N . When

kBT > 8ΩF (Σc − Σ)/N , the system enters the high temperature regime. As either Σ approaches Σc or N

increases, the difference between energy barrier and the next largest energy barrier decreases rapidly. This

is true for a two reasons. First, Σ is the mean stress of the system in mean field theory, so even for fixed N ,

two stresses, say si(0) and si(1), are piled up near the failure stress sf since the stresses must increase as a

whole if the mean increases. Note that the stresses cannot exceed the failure stress, as that would result in

an avalanche immediately. Second, for fixed Σ, larger N means a larger density of stresses, decreasing the

overall energy spacing.

Physically, in the high temperature regime, there is more than one transition pathway for the material

to creep along between metastable states. Therefore, the interevent time distribution is a sum of several

exponentials of energy barriers in eq. 6.3. Each energy barrier can be written in terms of stress, so that

∆En = Ω(s2
f − 2sfsi(n) + s2

i(n)). Each si(n) = µn + σξ [191], where µn ≈ 2Σ(N − n)/N , σ2 ∝ 1/N as above,

and ξ a normally distributed random variable with mean 0 and variance 1, for the same reasons that we argue

that si(0) = sm is normally distributed. The nth largest stress (for n� N) is the sum of many iterations of

avalanches with randomized stress redistribution J(sf −sa,i)/(N−1) as mentioned above, and can therefore

be approximated as a normal distribution. We can neglect the quadratic term in s2
i(n) = µ2

n + 2σµnξ+σ2ξ2,

since σ2ξ2 ∼ O(1/N). Then each energy barrier is also a normally distributed variable as we neglect the ξ2.

Therefore, exponentials of energy barriers are lognormally distributed. The sum of lognormal variables can

be well approximated by a lognormal variable [192], so the total transition rate is λs(Ẽ) = exp
(
−∆Ẽ/T

)
.

∆Ẽ is an effective energy barrier, taking into account the different transition paths available to the material.

The effective energy barrier ∆Ẽ will be normally distributed with mean µE and variance σ2
E .
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Figure 6.4: The distribution of log(rsµ) at different temperatures. Here rsµ is the rate constant defined

in eq. 6.3. Clearly as the temperature increases, the mean value of the distribution also increases. The

distribution is sharply peaked and well-modeled by a Gaussian distribution with mean µE/T and variance

σE/T .

The mean and variance of this effective energy barrier are difficult to calculate analytically. However,

the form of the interevent time distribution can be found. The integration in the high temperature case is

similar to the low temperature calculation. The integral is

p(∆t) =

∫
d(∆Ẽ)p(∆Ẽ)λs(∆Ẽ)e−λs(∆Ẽ)∆t

=
1√

2πσ2
E

∫
d(∆Ẽ)e−(∆Ẽ−µE)2/σ2

E−∆Ẽ/T−∆te−∆Ẽ/T

. (6.14)

This integral is again intractable, but the saddle point equation can be solved exactly in this case yielding

p(∆t) =
e−

µE
T +

σ2
E

2T2

∆t0
√

1 +W (z)

(
W (z)

z

)T 2/σ2
E

e
− T2

2σ2
E

W (z)2

. (6.15)

Here W (z) is the Lambert-W function and z = ∆t/∆t0 exp(−µE/T + σ2
E/T

2)σ2
E/T

2. The calculations are

detailed in the supplementary material [191]. This high temperature distribution function is displayed for

different temperatures (within the high temperature regime) in Fig. 6.5.
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Figure 6.5: Comparing analytics with simulations; the higher temperature approximation to the interevent

time distribution. T is the temperature and E0 is the energy required to excite a weak spot from arrest to

failure. The units are the same as in Fig. 6.3, with the same simulation parameters. The solid lines represent

the analytic distribution equation 6.15, while markers represent binned values of the probability distribution

from simulations. We see here that the interevent times decay much faster, and do not follow a power law.

In Fig. 6.5 we show interevent time distributions (as the symbols) along with the analytic predictions

(as the solid lines) in the high temperature regime. The variance and mean were found from the simulation

directly, by finding the mean and variance of simulated effective energy barriers ∆Ẽ = −T log(λs). The

same simulation parameters used in the low temperature regime were used in producing Fig. 6.5, except the

temperature was higher.

Most current experiments cannot resolve a single interevent time, as the strain signal from a single slip

avalanche is usually below the noise threshold. In [88, 90], the interevent times were instead reported as

the times for the strain to increase by a fixed amount (15 nm in these measurements). In Fig. 6.6 we show

the interevent times at a fixed low temperature after setting different minimum thresholds for the strain

measured. We express this minimum threshold as the average number of avalanches required to traverse the

minimum threshold 〈M〉, which is well defined for fixed Σ, T , and N . We do this by recording the individual
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strain increases and summing the motion of the shear band until it reaches the next fixed strain amount.

The total interevent time is ∆tM =
∑M
i=1 ∆ti. Independent of 〈M〉, the distribution p(∆t〈M〉) is roughly

the same, with the only difference being the minimum value of the distribution p(∆t〈M〉). Heuristically, the

reason the distribution is invariant to finite sums is that the eq. 6.10 is roughly scale invariant. Concretely

this means that p(∆t〈M〉) ≈ 1/〈M〉ηp(∆t) for large ∆t, where η is an exponent describing the approximate

scaling behavior. However, note that because of the exponential term in eq. 6.10 the exponent η need not

be the same as γ in eq. 6.11. A more detailed version of this argument is presented in the supplementary

material [191].

Figure 6.6: Comparing analytics to simulations; the cumulative interevent times are defined as sums of M

individual interevent times during which the material has moved by a set distance. The main figure shows the

low temperature regime (kBT = E0×10−5). The solid line shows the analytic prediction at this temperature

and force. The inset shows the high temperature regime (kBT = E0×10−4). We vary the threshold distance

proportional to 〈M〉 to show the invariance of the low temperature distribution to such sums. Conversely,

the high temperature regime shows large variance between threshold distances. Therefore, by varying the

threshold distance, we can distinguish the two regimes.

The inset of Fig. 6.6 shows the cumulative interevent time in the high temperature regime. We see a

qualitatively different type of distribution of interevent times. The distribution is peaked for any appreciable

number of mean steps 〈M〉, and this peak itself depends on the value of 〈M〉. Therefore, a simple way

to distinguish the low and high temperature regimes is to vary the threshold of detection. In the high
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temperature regime the resulting distribution changes significantly like the inset of Fig. 6.6. In the low

temperature regime, only the minimum value of the distribution changes.

Recent bulk-metallic glass experiments using Pd77.5Cu6Si16.5 may satisfy the assumptions [88, 90] in our

description of creep. Creep interevent time distributions were found for different stresses and temperatures

[90]. These distributions were all close to power laws. In each case, two power laws with exponents of −1.5

and −0.8 were reported, with the crossover interpreted as the formation of a shear band in the metallic glass.

We suggest that the −0.8 power law is actually closer to the low temperature distribution eq. 6.10. As shown

in Fig. 6.3, the exponential factor in eq. 6.10 tends to decrease the slope on a log-log plot so that it remains

close to a −1 slope (the inset of Fig. 6.3 shows what happens with the pure power law). In addition, the

experiments have shown that the interevent time distribution does not change appreciably over the small

variation of temperature ((0.85− 0.97)× Tg) [90]. In Fig. 6.3 the temperature needed to be changed by at

least a factor of 2 to see an appreciable change in the interevent time distribution.

We propose that interevent times can be measured by both the methods presented in [88, 90] as well as

through acoustic emission [193, 24]. In these experiments [193, 24, 88, 90], the material (either ice or bulk

metallic glass) is held under a constant stress and it is thought that creep is caused by thermal activation.

We expect in the low temperature regime that the distribution can be described by eq. 6.10, with parameters

γ ∝ kBT/W , where W is the spread of disorder in the material, and ∆f ∝ (Σc − Σ). We predict that by

varying temperature and stress, it should be possible to observe the predicted variation in interevent time

distribution. The value of γ may also be varied by changing the spread of disorder in the material, although

this is a very difficult quantity to control in experiments. If it can be extracted from experiments, γ should

give information about the amount of disorder present in a material.
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Appendix A

Appendix to Chapter 2

A.1 Kepler Data

In this appendix, we show several plots and explain more of the data processing related to the discussion in

Chapter 2. The Kepler data was provided to us by the Mikulski Archive for Space Telescopes (MAST). The

light curve comes as a single processed file known as a single-aperture photometry (SAP) file. The SAP data

has many artifacts that are caused by variations extrinsic to the stars monitored by Kepler. The data is

correct by looking for trends along many different stars and extracting and correcting for these trends. This

corrected data is known as the pre-conditioned single aperture photometry (PDC-SAP) data. The PDC-SAP

data for all of the stars we used was validated based on the original SAP data as well as pixel-level data,

which also shows dimming events of the magnitude seen in the PDC-SAP data [65, 64, 60].

Although the PDC-SAP data was cleaned up significantly compared to the raw data, there were still

several steps that needed to be done to clean it up further. First, the data needed to be stitched together.

Since Kepler orbits the Sun, it occasionally needs to reorient itself to view the patch of space where the

stars are located. This process causes minute changes in the point-spread function of the sensors because

different sensors are collecting different sets of stars now. The solution is known as stitching, and in order

to do it we first used iterative sigma clipping, after which the data was normalized. We normalized to the

median value because of the large outliers in KIC 8462852. This lets us string together two discontinuous

sets of data.

The second problem was that some of the data was missing. These values needed to be filled in to

properly analyze the fourier spectrum. The suggested method to doing this is to interpolate the data, and

we chose to linearly interpolate the data since this is what is usually recommended. Linear interpolation

was used because it is the simplest of all interpolation kernels. After interpolation, standard filtering was

performed on the data. We did not Wiener filter the data [4] because no noise file was available. Using the

official Kepler photometric noise reported did not improve the processing. No other smoothing was done.

The next, and most involved part, was to filter the rotation signal (the 0.88 day periodicity in KIC
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8462852). The rotation signal was filtered in a two step processes. First, all the large avalanches were

removed from the light curve. These large avalanches are all drawn in fig. A.1.

Figure A.1: The light curve of KIC 8462852, with arrows pointing to the dimming events that were removed

before filtering. The dimming events were replaced by a constant value that kept the light curve continuous.

After filtering, the original large dimming events were once again added in to have a complete, filtered light

curve.

In order to remove these avalanches, we sampled the light curve at a very coarse grained scale, and then

fit the resulting set of points using cubic splines. Then we subtracted the spline data from the original light

curve. The purpose of removing the large avalanches was to prevent spurious ringing, which will occur since

many of the large avalanches have frequency components at the filtered frequencies. The resulting data was

filtered using a least-squares filter designed by the MATLAB firls program. The firls program, which stands

for finite impulse response least squares, was designed to produce filters which have a frequency profile that

fits a desired input profile. In our application, this profile was a band-stop filter [194]. The frequencies we

chose were fstop = 1/τrot, where τrot = 0.88 days and the two higher harmonics. The stop band had a roll-off

frequency of 0.95fstop and a stop band of 0.96fstop, as well as a symmetric return to the pass band. The

higher harmonics were implemented in the same way. We used the rotation period used for filtering of KIC

8462852 was reported in [60]. Finally, the large avalanches were added in again in order to have a complete,

filtered light curve.

For the other stars, we simply used the filter, without removing large events. The rotation periods of

KIC 4638884 and KIC 7771282 were reported in [64]. The shortest rotation period of KIC 5955122 [65] was

used for the filter of its light curve. The filtering of rotation for these stars was done for consistency in the
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data processing pipeline.

There were two main advantages to rotation filtering. First, without filtering, rotation dips would be

characterized as avalanches, and therefore skew the statistics of the avalanches. Second, before filtering the

rotations were visible when analyzing the avalanche shape information. This caused problems for the larger

avalanches (on the order of 10−3), ), since there were several oscillations during each large avalanche. It

also skewed the avalanche durations and sizes in unpredictable ways. However, one draw-back is that by

filtering out certain frequencies, we have also biased the data, since legitimate avalanches will also occur at

these frequencies. The impact was determined to be negligible since the effects of the filter are localized to

a small subset of frequencies.

A.2 Extracting Avalanche Statistics

A.2.1 Exponents

Statistical processing for Tabby’s star and the other stars is fairly standard in the field of power law statistical

processing [100]. We primarily deviated from the standard method because our distributions are only

expected to be power laws over certain ranges, the scaling regime. Therefore, we use the likelihood function

described in [195]

p(α|xi) =

N∏
i=1

α− 1

xmin

1

1−X1−α

(
xi
xmin

)−α
. (A.1)

Here the xi are the various points of data, either size or durations of avalanches. Also X = xmax/xmin, the

ratio of the range over which the power law is expected to hold. We use this likelihood function to find α,

by minimizing the logarithm of this function as a function of α.

In addition to finding the power law exponent, we also used eq. A.1 to find the uncertainties with regard

to the exponent. Although the bootstrap method is one way to find uncertainties [100], we found that varying

xmin, xmax, and the threshold was much more reflective of our data. We varied the threshold by 10−5 and

the values of xmin and xmax by ±64%. These uncertainties were reported in table 2.2. The upper error

there is the maximum value of the exponent we extracted, while the lower value is the minimum exponent

that we extracted.

A.2.2 Avalanche Shapes and the Scaling Regime

The avalanche shapes were averaged using methods outlined in chapter 2. Avalanches were binned logarith-

mically, with bin widths of 0.85− 1.15× Tcenter or 0.85− 1.15× Scenter. The center values were chosen so
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that no bins overlap, and since it can be presumed that the shapes are roughly independent of each other,

the averages in the bins are also independent.

Some amount of filtering was allowed when performing avalanche collapses. For each time point in an

average 〈V (t)|T 〉 or 〈V (t)|S〉, we also had a standard derviation
√

var(V (t)|T ) and
√

var(V (t)|S). The

criteria we used for rejecting an averaged shape was that maxt

(√
var(V (t)|T )

〈V (t)|T 〉

)
≤ 0.25. Typically, this meant

that we needed approximately 10 or so avalanches before we would use an avalanche average in our scaling

collapse. The value of 0.25 was chosen because it allowed us to compromise between selecting bins with

many avalanches and choosing enough bins to do good scaling collapses.

Perhaps by accident, we also found a reliable method of estimating the scaling regime in the data.

The scaling regime was determined simply by the range over which the avalanches had acceptable size

and duration shape collapses, while also maintaining consistency of the exponents. Note that this is really a

consistency criteria, since the scaling collapses depend on the exponents, which depend on the scaling regime.

We admit that this is a somewhat adhoc criteria, since what acceptable collapse means is not specified, but

it is certainly better than simply choosing a scaling regime. A simple improvement over this method would

be to select such a criteria systematically, but we did not pursue this any further.

A.3 The Stars KIC 4638884, KIC 7771282, and KIC 5955122

We have now looked through several hundred F class stars, and in the past we focused primarily on magnet-

ically active stars. Several references [64, 65] have already listed out about 22 such stars. We found 3 stars,

KIC 4638884, KIC 7771282, and KIC 5955122, conformed to predictions made by the mean field model. In

table 2.2, we list the exponents that we extracted for these stars. The scaling regimes for these stars is listed

below in table A.1.
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Star Duration Range (days) Size Range (fraction flux drop * days)

KIC 4638884 0.11− 1.71 2.1× 10−6 − 1.6× 10−4

KIC 5955122 0.13− 1.06 4.8× 10−6 − 2.6× 10−4

KIC 7771282 0.16− 1.44 1.7× 10−6 − 9.1× 10−5

KIC 8462852 (Tabby’s star) 0.18− 3.33 5.1× 10−6 − 2.4× 10−3

Table A.1: Here we list the scaling regimes found by scaling collapse of either size or duration avalanche

shapes. The scaling collapses for KIC 8462852 (denoted with an asterisk) are reported in chapter 2. The

scaling collapses for the other three stars are shown below. The scaling regime was found by an iterative

process detailed in the supplementary material. Avalanches above or below the scaling regime did not

collapse with avalanches in the scaling regime.

Now we list several figures which show the statistics for these stars.

Figure A.2: The light curves of the three stars. (a) The light curve of KIC 4638884. (b) The light curve of

KIC 5955122. (c) The light curve of KIC 7771282.
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Figure A.3: The statistics of KIC 4638884. The values of the exponents are listed in table 2.2. In figure

(a) and (b), the power law statistics of size and duration can be seen in associated CCDFs, with the scaling

regimes highlighted in red. The dashed lines in (a) and (b) are the maximum likelihood estimates of the

power laws. In figure (c) the related loglog plot of the magnitude vs. duration shows that there is a power

law relationship between size and duration, as predicted by theory. The dashed line is the least squares

estimate of the slope. For avalanches that are longer than those in the scaling regime defined by the shape

collapses, the exponent appears to approach close to the mean field value of 1/2. In (d) we show the power

spectral density, and plot the associated power law that the power spectral density is expected to obey. The

scaling regime can be found in table A.1.

Figure A.4: The avalanche shape collapses for KIC 4638884. The value of σνz used for the collapse was

the measured value σνz = 0.71. Values between 0.65 < σνz < 0.73 are also acceptable. (a) The duration

collapse. (b) The size collapse.
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Figure A.5: The statistics of KIC 5955122. The values of the exponents are listed in table 2.2. In figure

(a) and (b), the power law statistics of size and duration can be seen in associated CCDFs, with the scaling

regimes highlighted in red. The dashed lines in (a) and (b) are the maximum likelihood estimates of the

power laws. In figure (c) the related loglog plot of the magnitude vs. duration shows that there is a power

law relationship between size and duration, as predicted by theory. The dashed line is the least squares

estimate of the slope. For avalanches that are longer than those in the scaling regime defined by the shape

collapses, the exponent appears to approach close to the mean field value of 1/2. In (d) we show the power

spectral density, and plot the associated power law that the power spectral density is expected to obey. The

scaling regime can be found in table A.1.

Figure A.6: The avalanche shape collapses for KIC 5955122. The value of σνz used for the collapse was

the measured value σνz = 0.75. Values between 0.70 < σνz < 0.80 are also acceptable. (a) The duration

collapse. (b) The size collapse.
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Figure A.7: The statistics of KIC 7771282. The values of the exponents are listed in table 2.2. In figure

(a) and (b), the power law statistics of size and duration can be seen in associated CCDFs, with the scaling

regimes highlighted in red. The dashed lines in (a) and (b) are the maximum likelihood estimates of the

power laws. In figure (c) the related loglog plot of the magnitude vs. duration shows that there is a power

law relationship between size and duration, as predicted by theory. The dashed line is the least squares

estimate of the slope. For avalanches that are longer than those in the scaling regime defined by the shape

collapses, the exponent appears to approach close to the mean field value of 1/2. In (d) we show the power

spectral density, and plot the associated power law that the power spectral density is expected to obey. The

scaling regime can be found in table A.1.

Figure A.8: The avalanche shape collapses for KIC 7771282. The value of σνz used for the collapse was

the measured value σνz = 0.74. Values between 0.68 < σνz < 0.77 are also acceptable. (a) The duration

collapse. (b) The size collapse.
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Appendix B

Appendix to Chapter 3

In this appendix, we show several plots and explain in more detail the data processing related to chapter 3.

B.1 Avalanche Shape Collapses for Regions 2-7

In the following figures, we plot the remaining avalanche shapes and the collapses for both size and duration.

The primary purpose of these figures is for completeness. We do not claim that these are acceptable scaling

collapses.
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Figure B.1: The avalanche shape collapses for fixed duration for regions 2-7. The shapes are color coded to

coincide with the uncollapsed versions in the insets. (a) Region 2. (b) Region 3. (c) Region 4. (d) Region

5. (e) Region 6. (f) Region 7. The shapes were all collapsed using the same exponent σνz = 0.79. None of

the 6 regions shown here produces shape collapses as effectively as the shape collapse shown in fig. 3.3.
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Figure B.2: The avalanche shape collapses for fixed size for regions 2-7. The shapes are color coded to

coincide with the uncollapsed versions in the insets. (a) Region 2. (b) Region 3. (c) Region 4. (d) Region

5. (e) Region 6. (f) Region 7. The shapes were all collapsed using the same exponent σνz = 0.79. None of

the 6 regions shown here produces shape collapses as effectively as the shape collapse shown in fig. 3.4.

B.2 Data Preparation Robustness to Threshold Variation

B.2.1 Data Preprocessing and Threshold Variation

One of the major problems with processing the VIRGO data was that we could not use a constant threshold.

Therefore we wanted to go into some detail about the data preparation. The data processing pipeline

occurred in three steps. We were given access to the raw VIRGO data, not the VIRGO data that has been

filtered to remove long term variations. We had to do several filtering steps before we could use the data.

We removed bad time points from the light curve F (t), since there were certain times at which the VIRGO

instrument did not measure data. We then normalized the VIRGO data F (t) to the mean value (the median

or mean produces almost indistinguishable results). This data, F (t)/Fmean is then smoothed with a window

filter. We chose a time window of 40000 minutes, which is 28 days, because this window will smooth any

oscillations that we are interested in. This data can be written as F̄ (t)/Fmean. Then we subtracted the

two, resulting in a data set which we call V̄ = (F (t)− F̄ (t))/Fmean. Finally, we passed the subtracted data

through another filter, to filter out rapid oscillations. This was either a window filter of size 10 minutes, or

a Hamming window filter of a roll-off at about 10 minutes. Note that the sampling period is 1 minute. The

final result was then used in the data processing.

In order to show that the threshold F̄ /Fmean does not change the statistics we extracted, we also chose

window sizes of 20000 minutes (13 days) in fig. B.3 and 50000 minutes (34 days) in fig. B.4. No huge

variations were detected.
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Figure B.3: The dimming event statistics for a threshold found using a smoothing window of 20000 points

(13 days). There are no large differences between the overall distribution of sizes and durations versus the

original fig. 3.2. (a) The size CCDF. (b) The duration CCDF. (c) The size vs. duration. (d) The PSD.
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Figure B.4: The dimming event statistics for a threshold found using a smoothing window of 50000 points

(34 days). There are no large differences between the overall distribution of sizes and durations versus the

original fig. 3.2. (a) The size CCDF. (b) The duration CCDF. (c) The size vs. duration. (d) The PSD.
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B.2.2 Extraction of Avalanche Statistics

We used the maximum likelihood method outlined in appendix A.2.1 to find the power law exponents. We

also used the exact same methods outlined in appendix A.2.2 to find the shapes.

B.3 Brightening Events

In addition to the dimming events in the VIRGO data, we also took a look at the brightening events, which

follow statistics and predictions from the avalanche model [17]. The results are consistent with those of

the dimming events. From a purely theoretical point of view, one would expect brightening events that are

symmetric with the dimming events. The reason is that the velocity in the mean field model v is analogous

to the fluxF in the model of stars. In systems where there is a finite velocity (Σ > Σc), an avalanche is

defined as fluctuations around this velocity. Therefore, if we consider the finite flux as a velocity, we should

see brightening variations about this flux that also reflect statistics from the model [17].
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Figure B.5: The brightening statistics that are analogous to the dimming statistics in fig. 3.2. The lines are

slopes that have been averaged over the fits from regions 1 and 8. The black markers/highlighting represent

the scaling regimes, which are where we obtained avalanches for our collapses. (a) The size CCDF. (b) The

duration CCDF. (c) The size vs. duration. (d) The PSD.
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Exponent Region 1 Region 8 Mean Field

τ 1.83±0.2
0.2 1.66±0.1

0.1 3/2

α 1.95±0.2
0.2 1.90±0.1

0.2 2

σνz 0.81±0.03
0.03 0.82±0.03

0.03 1/2

τ−1
α−1 0.74±0.4

0.3 0.73±0.3
0.2 1/2

Table B.1: Avalanche exponents for regions 1 and 8 for the brightening events, and exponents for the

mean field avalanche model [17]. In order to extract the exponents τ and α we used a maximum likelihood

approach [100]. The uncertainties obtained from the variation of threshold, the scaling regime, and the two

filter windows, which were the highpass filter and filter to determine the threshold (see the appendices). The

actual error bars may be larger; the maximum likelihood method we have implemented does not take into

account the decaying cutoff function [2].

In fig. B.5, we show the CCDFs, size versus duration, and PSD for the brightening events (the PSD

is the same, since it does not depend on a threshold). In table A.1 we show the resulting exponents.

Some surprising characteristics that we find are that when the sizes and durations grow larger than a

characteristic size/duration (which depends on the region), the distribution transitions from a power-like

law to an exponential distribution. This could also be due to the merger of many smaller events.

Next we plot some shape collapses for fixed size and duration.
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Figure B.6: The brightening shape collapses that are analogous to the dimming shape collapses in fig. 3.3.

These are shape collapses at fixed duration. We have included the region 3 collapse in this figure for

comparison. (a) The region 1 collapse. (b) The region 3 collapse. (c) The region 8 collapse. The value of

σνz we used for 0.72.
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Figure B.7: The brightening shape collapses that are analogous to the dimming shape collapses in fig. 3.4.

These are shape collapses at fixed size. We have included the region 3 collapse in this figure for comparison.

(a) The region 1 collapse. (b) The region 3 collapse. (c) The region 8 collapse. The value of σνz we used

for 0.72.
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Figure B.8: The brightening shape collapses that are analogous to the dimming shape collapses in fig. B.1.

These are shape collapses at fixed duration. We have included the region 3 collapse in this figure for

comparison. (a) The region 2 collapse. (b) The region 4 collapse. (c) The region 5 collapse. (d) The region

6 collapse. (e) The region 7 collapse. The value of σνz we used for 0.72.
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Figure B.9: The brightening shape collapses that are analogous to the dimming shape collapses in fig. B.2.

These are shape collapses at fixed size. We have included the region 3 collapse in this figure for comparison.

(a) The region 2 collapse. (b) The region 4 collapse. (c) The region 5 collapse. (d) The region 6 collapse.

(e) The region 7 collapse. The value of σνz we used for 0.72.

We see that in each of these cases, regions 1 and 8 show the best collapses. We hope that this also provides

further evidence that near the solar minima, avalanche-like behavior can occur on the Sun’s photosphere.
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Appendix C

Appendix to Chapter 4

C.1 Response and Correlation Function at Zero Disorder

Much of the analysis in this section is based on [10, 11] and [85]. As a reminder, the action is

S =

∫
ddxdtiû(x, t)

(
η∂tu(x, t)−

∫
ddx′dt′J̃(x− x′, t− t′)(u(x′, t′)− u(x, t))− Σ(x, t)

)
− 1

2

∫
ddxdtdt′iû(x, t)iû(x, t′)∆(u− u′)− ηT

∫
ddxdtiû(x, t)iû(x, t) (C.1)

where we have used general d because we will be renormalizing. Before we continue, let us simplify by

assuming that J(x′ − x, t′ − t) = J(x′ − x)δ(t− t′), which eliminates the time integral.

Probably the biggest assumption that we make is that J̃(x−x′, t− t′) ∼ J/|x−x′|d+1 (where for d = 2,

scales like |x|−3), which means that we will ignore higher order terms (and in particular, ignore short range

terms like ∇2). The reason for this is that higher order terms will turn out to be irrelevant in the sense of

RG [19]. The action is

S =

∫
ddxdtiû(x, t)

(
η∂tu(x, t)−

∫
ddx′

J(u(x′, t)− u(x, t))

|x′ − x|d+1
− Σ(x, t)

)
− 1

2

∫
ddxdtdt′iû(x, t)iû(x, t′)∆(u′ − u)− ηT

∫
ddxdtiû(x, t)iû(x, t) (C.2)

We will simplify this action further, by going into a comoving frame. This means u → u + vt, where

v = 〈∂t1/Ld
∫
ddxu(x, t)〉 is the average velocity (Ld being the system size). In this case the action remains

the same, except that ∂tu→ ∂tu+ηv. In order to simplify this, we can absorb the ηv term into Σ, resulting in

Σ̃ = Σ−ηv defined in eq. 4.30. Also the term ∆(u′−u) = ∆(u(x, t′)−u(x, t))→ ∆(u(x, t′)−u(x, t)+v(t′−t)).

We can split the action into two parts, the quadratic and nonquadratic actions. The quadratic action is

Sq =

∫
ddxdtiû(x, t)

(
η∂tu(x, t)−

∫
ddx′

J(u(x′, t′)− u(x, t))

|x′ − x|d+1

)
− ηT

∫
ddxdtiû(x, t)iû(x, t) (C.3)
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while the nonquadratic action is

Snq = −
∫
ddxdtiû(x, t)Σ̃(x, t)− 1

2

∫
ddxdtdt′iû(x, t)iû(x, t′)∆(u′ − u+ v(t′ − t)). (C.4)

Note that we consider the term ∆(0) to be nonquadratic. What this means is that we consider quantities

to order ∆0, and the vertex
∫
iûiû∆(0) is first order in ∆. Therefore ∆ acts as a perturbation in our

picture, although of course, to first order this perturbation is computed exactly. The quadratic part can be

simplified further by transforming to the Fourier domain (q, ω) and considering only the long wavelength

behavior |q| → 0. In this case the interaction kernel

∫
ddx′

J(u(x′, t′)− u(x, t))

|x′ − x|d+1
= J |q|u(q, t) (C.5)

which is necessarily the behavior for long wavelengths based on dimensional analysis and isotropy. More

rigorously, we know that
∫
ddx′ J(u(x′,t′)

|x′−x|d+1 is a convolution, so it results in multiplication in the Fourier domain.

The Fourier transform of J̃(x) = J̃(q) must scale as |q|, but also at q = 0, the Fourier transform must equal∫
ddxJ̃(x) =

∫
ddx/|x|d+1. This means there must be an constant J̃(q) = JC|q| + J̃(0)δ(q), since the

integral of
∫
ddx/|x|d+1 6= 0. This constant term cancels the second term in the integral in eq. C.5. We

absorb the constant C into the definition of J since it does not change the results.

In this case the quadratic action can be written

Sq =

∫
ddqdωiû(−q,−ω) (iωηu(q, ω)− J |q|u(q, ω)− ηT iû(q, ω)) . (C.6)

Then we can write this quadratic action as a an integral over a quadratic form, evaluated for the pair of

fields iû, u. In this case

[iû(−q,−ω) u(−q,−ω)]

 ηT iηω − J |q|

−iηω − J |q| 0


iû(q, ω)

u(q, ω)

 (C.7)

where the minus sign in the quadratic form matrix comes from the fact that the arguments ω is swapped with

−ω in the conjugate. Then the inverse of the quadratic form matrix will be the various (unrenormalized, or

”bare”) correlation functions. The inverse is

 0 1
J|q|−iηω

1
J|q|+iηω

ηT
(J|q|)2+(ηω)2

 . (C.8)
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From this it is easy to read off the response function

R(q, ω) = 〈iû(−q,−ω)u(q, ω)〉 =
1

J |q| − iηω
(C.9)

and the correlation function

C(q, ω) = 〈u(−q,−ω)u(q, ω)〉 =
ηT

(J |q|)2 + (ηω)2
(C.10)

while 〈û(−q,−ω)û(q, ω)〉 = 0. We will need the q, t response and correlation functions, as we need to impose

the constraint that

R(q, t, t) = 0. (C.11)

These are

R(q, t− t′) =
Θ(t− t′)

η
e−J|q||t−t

′|/η (C.12)

C(q, t− t′) = T
e−J|q||t−t

′|/η

J |q|
(C.13)

where Θ(t) is the step function.

C.2 Rescaling the Action

The general strategy now is to find a rescaling of the action that keeps the quadratic part of the action

eq. C.6 invariant to a scale transform. Before we attempt this, we need one more result, known as statistical

tilt symmetry [11, 85]. Take the action eq. C.6 and eq. C.4, and do a shift of u(q, ω)→ u(q, ω)+ |Jq|−1w(q).

Note that w(q) is time independent. Then S → S −
∫
ddqdωiû(−q,−ω)w(q) (the iωw(q) term turns to

∂tw(x) = 0 because of the time independence). Assume that w(x) → 0 as |x| → ∞, so that we can safely

change variables of integration without worrying about boundary value terms. Then changing variables is

simply a shift in integration, so

∫
DuDûueS =

∫
DuDû

(
u(q, ω) + |Jq|−1w(q)

)
eS−

∫
ddqdωiû(−q,−ω)w(q). (C.14)
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Taking the functional derivative evaluated at the null function δ/δw(q)|w(q)=0, we get

0 =

∫
DuDû|Jq|−1eS − u(q, 0)iû(−q, 0)eS (C.15)∫ ∞

0

dtRr(q, t) = 〈u(q, 0)iû(−q, 0)〉 = |Jq|−1

∫
DuDeS = |Jq|−1 (C.16)

where we know from the fact that the Jacobian is 1 that
∫
DuDeS = 1, and Rr(q, t) is the full renormalized

action. What this means is that the constant J does not get renormalized, and remains invariant under any

RG transformation.

Now we perform a simple scale transform q′ = bq, so that

Sq =

∫
ddq′b−ddω′b−ziû(−q′,−ω′)

(
iω′η′b−zu(q′, ω′)− J |q′|b−1u(q′, ω′)− η′T ′iû(q′, ω′)

)
. (C.17)

where z is the dynamical exponent defined so that ω′ = bzω and J is invariant. In order for this action to

remain invariant û(−q′,−ω′)u(q′, ω′) = b−d−2zû′(−q′,−ω′)u′(q′, ω′) = b−d−z−1û′(−q′,−ω′)u′(q′, ω′) which

gives us that z = 1. Here u′ and û′ denote the rescaled fields.

The nonquadratic action Snq also has a quadratic piece. This piece comes from the Taylor expansion of

∆(u(x, t) − u(x, t′) + v(t − t′)) =
∑
n ∆(n)(v(t − t′))/n!(u(x, t) − u(x, t′))n evaluated at n = 0, where ∆(n)

is the nth derivative of ∆. This results in

∫
ddxdtdt′iû(x, t)iû(x, t′)∆(v(t− t′)) =

∫
ddqdωiû(−q,−vω)iû(q, vω)∆(ω) (C.18)

which must remain constant since ∆(0) does not depend on rescaling. Then

∫
ddq′b−ddω′b−ziû(−q′,−ω′)iû(q′, ω′)∆(0). (C.19)

This implies that û(−q′,−ω′)û(q′, ω′) = bd+zû′(−q′,−ω′)û′(q′, ω′) = bd+1û′(−q′,−ω′)û′(q′, ω′) or b
d+1

2 û(q′, ω′) =

û′(q′, ω′) where û′(q′, ω′) is the rescaled field. Then bd/2−1u(q′, ω′) = u′(q′, ω′).

Now if we are performing an iterative RG, the we will rescale b < 1 since we want q′/q < 1, as q→ 0 is

the long wavelength limit. Therefore relevant variables will have an exponent that is negative as they will

grow larger, while irrelevant variables will have an exponent which is positive, as they will grow smaller.

The field u is marginal when d = dc = 2 and relevant when d < dc = 2, since d/2 − 1 < 0 for d < dc so u′

grows with shrinking b. What is key is the terms which we call nonquadratic. This includes the linear term
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Σ̃
∫
ddqdtiû, which can easily be handled, and the truly nonlinear term

∫
ddxdtdt′∆(u(x, t′)− u(x, t) + v(t′ − t))iû(x, t)iû(x, t′). (C.20)

Since ∆(x) is a function, we can hope that it has a Taylor expansion near 0. Such terms would be of the

form ∫
ddxdtdt′

∆(n)(v(t′ − t))
n!

(u(x, t′)− u(x, t))niû(x, t)iû(x, t′) (C.21)

Here ∆(n) represents a derivative of ∆(x). Expanding this in terms of q, ω would be messy. Instead, we just

observe that q′ = bq → x′ = b−1x, and ω′ = bzω → t′ = b−zt, but otherwise nothing changes. Therefore

u(x′, t′) = bd/2−1u′(x′, t′) and û(x′, t′) = b1+d/2û′(x′, t′). The vertex ∆(n) then rescales like b−n(d/2−1), and

the whole vertex is marginal when d = dc = 2. In other words, all derivatives are marginal and hence the

entire function is marginal. As promised, we have to renormalize infinitely many variables here. Note that

this isn’t a problem for us, since we have a finite cutoff Λ.

Before we consider perturbations from the disorder ∆, we want to comment on the general structure

of the RG. In RG we will be transforming the various constants infinitesimally, so the rescaling factor

δb = be−δ` = b(1− δ`). We will do this in generic d < dc, taking ε = dc − d to be a ”small” parameter, with

the hopes that ε can be continued to large values, since the only physical value we can have is d = 1 or 2,

so ε = 1 or 0. As we transform equations, we will find that certain quantities grow or shrink depending on

ε and `.

C.3 Scaling Relations

Let us write some exponents in terms of ε to simplify things. We let ζ be the scaling dimension of the field

u(x, t) and d − θ be the scaling dimension of û(x, t). The stress Σ̃ scales as d − θ − z − d = −θ − z. The

exponents θ and ζ are therefore of O(ε), although they are not equal to the naive scaling dimensions. We

need several exponent relations now [11, 163]. Since we are tuning the stress Σ, we can define the correlation

length ξ ∼ (Σ− Σc)
−ν . This also implies that

ν =
1

θ + z
. (C.22)

Any deformation δu ∼ ξζ then, by the above definition.
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From eq. C.16, we can use the definition of the response function

δu(q, ω = 0)

δΣ(q, ω = 0)
=

∫
dtRr(q, t) ∼

1

|q|
(C.23)

to relate δu ∼ ξζ , δΣ ∼ ξ−1/ν , and |q| ∼ ξ−1 to get ζ + 1/ν = 1 or

ν =
1

1 + ζ
. (C.24)

We will use the identity θ + z = 1 + ζ by combining eqs. C.22 and C.24 several times.

C.4 Coarse Graining and the Renormalization Equations

The second step in RG is to define a coarse graining procedure. To be general, let u = [iû u]T , the vector

of fields we are renormalizing. The path integral defining the theory can be written

Z =

∫ u(Λ)

u(0)

DueS . (C.25)

Here the u(0) and u(Λ) are schematic representations for fields u with zero momentum to fields u with

momentum Λ, which is the highest momentum in the theory. This can be coarse grained by considering

Z =

∫ u(bΛ)

0

Du
∫ u(Λ)

u(bΛ)

DueS =

∫ bΛ

0

DueS̃ (C.26)

where S̃ is a new effective action. The primary idea behind renormalization is that the terms in S̃ should

be of the same form as the terms in S, from which we can have a well defined flow of each term. We now

transform coordinates so that q′ = bq (i.e. Λ′ = bΛ). As we can do this iteratively, it is good to think

of b = (1 − δ`). Now of course, in doing this, we will have scaling for each of the terms in the action so

that we do not have any dangling powers of b. All of these terms can be handled, except the nonquadratic

term ∆(u − u′). If ε > 0, this term grows exponentially. So we actually have to do a double expansion,

known as the ε expansion [20] with ε close to 0, since we can only handle the nonlinear term ∆(u − u′)

perturbatively (i.e. for small values). In our case, this perturbative expansion is good as long as the starting

point ∆0(u− u′) of the expansion is small, since we are most interested in the ε = 0 case.

Going into more detail now, we split the fields u<, û< and u>, û>. Here u> and û> define fields that
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have large momenta |q| ∈ [bΛ,Λ]. The generating functional

Z =

∫
DuDûeSq+Snq =

∫
Du<Dû<Du>Dû>eSq(u

<+u>,û<+û>)+Snq(u
<+u>,û<+û>) (C.27)

Z =

∫
Du<Dû<Du>Dû>eSq(u

<,û<)+Sq(u
>,û>)eSnq =

∫
Du<Dû<eSq(u

<,û<)〈eSnq 〉q (C.28)

Z =

∫
Du<Dû<eSq(u

<,û<)+ln〈eSnq 〉q (C.29)

Z =

∫
Du<Dû<eSq(u

<,û<)+〈Snq〉q+ 1
2 (〈S2

nq〉q−〈Snq〉
2
q)+... (C.30)

where 〈·〉q is the mean with respect to the quadratic action over the variables u> and û>.

It is somewhat easier to do part of the action in the position basis x, t because the ∆(u − u′) term is

difficult to handle in the momentum basis.

Snq = −
∫
ddxdti(û<(x, t) + û>(x, t))Σ̃

−1

2

∫
ddxdtdt′i(û<(x, t)+û>(x, t))i(û<(x, t′)+û>(x, t′))∆(u<(x, t′)+u>(x, t′)−u<(x, t)−u>(x, t)+v(t′−t)).

(C.31)

To calculate 〈Snq〉, we first average over the term with Σ̃ which is zero. The second term is a somewhat

unwieldy problem which can be significantly simplified by transforming

∆(x) =

∫
dp

2π
eipx∆(p) (C.32)

with x = u<(x, t′) + u>(x, t′) − u<(x, t) − u>(x, t) + v(t′ − t). The average 〈Snq〉q includes the terms

〈û<û<∆〉q = û<û<〈∆〉q, 〈2û>û<∆〉q = 2û<〈û>∆〉q and 〈û>û>∆〉q. If we represent everything in terms

of the Fourier transform eq. C.32, we can simplify these expressions. Recalling our correlation functions

eq. C.12 and eq. C.13, we find

〈
eip(u>(x,t)−u>(x,t′))

〉
q

= e(ip)2(C>(0,0)−C>(0,(t−t′))) (C.33)〈
û>(x, t)eip(u>(x,t)−u>(x,t′))

〉
q

= ipe(ip)2(C>(0,0)−C>(0,t−t′))R>(0, (t− t′)) (C.34)〈
û>(x, t)û>(x, t′)eip(u>(x,t)−u>(x,t′))

〉
q

= 0 (C.35)

which can be found by Taylor expanding the exponentials. Here R>(0, t − t′) and C>(0, t − t′) are in the

x, t basis for bΛ < |q| < Λ.
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We can simplify things by considering that both C> an R> must be of order d`, and in particular using

eqs. C.12 and C.13 we have

C>(0, τ) = TΛdSd
e−cΛτ/η

cΛ
d` (C.36)

R>(0, τ) =
Θ(τ)

η
ΛdSde

−cΛτ/ηd` (C.37)

where Sd is the surface area of the d sphere. Therefore we only need to analyze terms that are up to first

order in C> and R>.

Now we look at the various terms. First from eq. C.34,

−
∫
ddxdtdt′iû<(x, t)R>(0, (t− t′))

∫
p

ipeik(u<(x,t)−u<(x,t′)+v(t−t′))∆(p)e(ip)2(C>(0,0)−C>(0,(t−t′))) (C.38)

has one power of û<(x, t). Therefore it can act as a correction to either Σ̃ or η∂tu(x, t). The Σ̃ correction

term is the 0th order correction on expanding exp(ip(u<(x, t)−u<(x, t′))) = 1+ ip(u<(x, t)−u<(x, t′))+ . . .

and the correlation functions in the exponent. This term reads

−
∫
ddxdtdt′iû<(x, t)R>(0, (t− t′))

∫
p

ipeipv(t−t′)∆(p) (C.39)

where the operators C> disappear because of the R> which is already of order d`. If we substitute in

τ = t− t′ then we have

δΣ̃ =

∫
ddxdtiû<(x, t)

∫
dτ
dp

2π
R>(0, τ)ipeipvτ∆(p). (C.40)

where the negative sign disappers because the Σ̃ also has a negative sign in front. The first order correction

ip(u<(x, t)− u<(x, t′)) ≈ ip∂tu<(x, t)(t− t′) which results in

δη = −
∫
ddxdtiû<(x, t)∂tu

<(x, t)

∫
dτ
dp

2π
R>(0, τ)τ(ip)2eipvτ∆(p) (C.41)

which is clearly a correction to η. We want to put this in terms of C>(0, τ), so since Θ(τ)∂tC
>(0, τ) =
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TR>(0, τ) from eq. C.36 and eq. C.37, so

dv = TR>(0, τ) (C.42)

u = τeipvτ (C.43)

v = C>(0, τ) (C.44)

du = (1 + ipvτ)eipvτ (C.45)

Then

Tδη = −
∫
dτ
dp

2π
(1 + ipvτ)eipvτ (ip)2C>(0, τ) (C.46)

What about other terms, such as ∂2
t u and (∂tu)2 and so forth? These terms turn out to be irrelevant, as the

extra powers of z ensure that they shrink upon renormalization [10]. Therefore they can be ignored safely.

The second term to look at is from eq. C.33,

−
∫
ddxdtdt′iû<(x, t)iû<(x, t′)

∫
p

eip(u
<(x,t)−u<(x,t′)+v(t−t′))∆(p)e(ip)2(C>(0,0)−C>(0,t−t′)). (C.47)

This term must generate the disorder potential, as well as corrections to the ηT term and the disorder

potential. Let us expand

−
∫
ddxdtdt′iû<(x, t)iû<(x, t′)

∫
p

eip(u
<(x,t)−u<(x,t′)+v(t−t′))∆(p)(1+(ip)2(C>(0, 0)−C>(0, t−t′))) (C.48)

Then

−
∫
ddxdtdt′iû<(x, t)iû<(x, t′)

∫
p

eip(u
<(x,t)−u<(x,t′)+v(t−t′))∆(p) = (C.49)

−
∫
ddxdtdt′iû<(x, t)iû<(x, t′)∆(u<(x, t)− u<(x, t′) + v(t− t′))) (C.50)

will generate the vertex itself, the left over

−
∫
ddxdtdt′iû<(x, t)iû<(x, t′)

∫
p

eip(u
<(x,t)−u<(x,t′)+v(t−t′))∆(p)(ip)2(C>(0, 0)− C>(0, t− t′)). (C.51)

will correct the vertex and the product ηT . The C>(0, 0) term corrects the vertex, since it doesn’t alter the
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integral
∫
dtdt′u<(x, t)u<(x, t′), so

δ∆ =

∫
dp

2π
eip(u

<(x,t)−u<(x,t′)+v(t−t′))∆(p)(ip)2C>(0, 0) (C.52)

The left over, when projected to u(x, t) = u(x, t′) in the outside integral

δ(ηT ) = −
∫

dp

2π
dτeipvτ∆(p)(ip)2C>(0, τ). (C.53)

will correct ηT .

To calculate the correction to temperature, we must use the product rule, so that δ(ηT ) − Tδη = ηδT .

This gives a corrections

ηδT =

∫
dp

2π
dτvτ∆(p)eipvτ (ip)3C>(0, τ) (C.54)

δη = −
∫

dp

2π
dτR>(0, τ)(ip)2eipvτ∆(p) (C.55)

δΣ̃ =

∫
dp

2π
dτR>(0, τ)ipeipvτ∆(p) (C.56)

δ∆(u) =

∫
dp

2π
eipu∆(p)(ip)2C>(0, 0) (C.57)

We have an almost closed set of equations C.54-C.57. The only missing piece is that v will be coupled

with η once we plug in eqs C.36 and C.37. Since v is not corrected by the interaction (as 〈∂tu〉 no powers

of û) vδη = δ(vη), so

ηT ′ = (1 + (ε− 1− 2ζ)d`)ηT +
TΛdSd
cΛ

∫
dp

2π
dτe−cΛτ/ηipvτ∆(p)eikpτ (ip)2d` (C.58)

f ′ = (1 + (1− ζ)d`)f +
ΛdSd
η

∫
dp

2π
dτΘ(τ)e−cΛτ/ηipeipvτ∆(p)d` (C.59)

(ηv)′ = (1 + (1− ζ)d`)ηv − ΛdSd
η

∫
dp

2π
dτvΘ(τ)e−cΛτ/η(ip)3eipvτ∆kd` (C.60)

∆′(u′) = (1 + (ε− 2ζ)d`)∆(u) + ζh∂u∆(u)d`+
TΛdSd
cΛ

∆′′(u)d`. (C.61)

which hopefully shows why we chose the rescalings in eq. 4.28-eq. 4.31. The full set of equations is almost

complete, the last step being to calculate the second order or one loop correction to the vertex ∆.
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C.4.1 Second Order Vertex Correction

Before we conclude, we need to calculate second order expansions for ∆, because the vertex must be corrected

to second order to correctly calculate first order in ε. We managed to calculate first order quantities without

diagrams, because these were simple enough to do with an expansion. Second order quantities will be

done using diagrams which were first developed for application to charge density waves [10]. The rules are

somewhat complex because the vertex is nonlocal in time.

𝑡" 𝑡"#

(a) (b) (c)

Figure C.1: The diagrams we will need. (a) The half propagator, which represents either u(x, t) or û(x, t)

depending on whether it enters or leaves a vertex. Arrows pointing towards a vertex are u(x, t), arrows

pointing away are û(x, t). (b) The diagram representing the correlation function eq. C.13, which shows two

arrows pointing towards each other, meaning a term like u(x, t)u(x′, t′). (c) The vertex ∆(u−u′+v(t1−t′1))ûû′

(where primes denote time differences). We expand ∆(u− u′+ v(t1− t′1)) into a Taylor series, which results

in powers of u. Here we draw an example of a diagram with three u and u′ entering into the vertex, but in

general it is best to think of this diagram as a sum of diagrams with m,n arrows entering into each vertex,

with the derivative of the vertex being the m + nth derivative. The dotted line means that the arguments

are considered at different times. This diagram would represent a term (−1)3 (6
3)
3!

d6

du6 ∆(u)|v(t−t′)u
3u′3û′û.

For the m,nth vertex, the term would be (−1)n
(m+n

n )
(m+n)!

dm+n

dum+n∆(u)|v(t−t′)u
mu′nû′û. When an arrow leaves

one vertex (û) and enters another (u), one has a contraction ûu, which results in a propagator R(q, t+1 − t1).

Remembering that R(q, 0) = 0 by definition, it implies that t+1 > t1.

The description of how the diagrams work is given above, and is also the exact prescription given in [10].

The biggest challenge is to sum up infinitely many diagrams consistently and carefully. The diagram we are

interested in corrects the vertex, which means it has a ûû′ behavior. According to fig. C.1, this diagram

would have two vertexes like fig. C.1(c), which would then have to be connected because only two arrows

can leave the diagram to get the ûû′ behavior.
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Figure C.2: The diagrams relevant for renormalizing the vertex. For brevity we have only drawn single

incoming lines to each vertex, but in reality one is summing over all powers of (uu′)n. The intuition behind

interpreting these diagrams is that for each outgoing line from a vertex that connects to another vertex,

an incoming line from that vertex must be taken. The taken vertex results in a power one power smaller

in the expansion series, so one is summing (uu′)n−1/n!. Since there are n ways to take a vertex, there is

also a factor of n that multiplies each diagram. Therefore what it does is effectively take the derivative, as

xn/n!→ xn−1/(n− 1)!. As the arrows can only connect past times to future times, we have denoted future

times with a + superscript, based on previous notation [10]. (a) Each vertex gets hit by a single propagator.

Therefore one has a correction of the form ∆′(u)2. (b) Both propagators hit the upper vertex, therefore one

has ∆′′(u)∆(u) correction. (c) Again a correction of type ∆′′(u)∆(u). (d) A correction of type ∆′(u)2.

To one loop we will add terms to the disorder. We consider the diagrams from above. Let us call

τ1 = t+1 − t1 and τ2 = t+2 − t2. Then (a) results in

Da =

∫ Λ

Λ(1−d`)
dt1dt2

ddq

(2π)d
〈û(−q, t1)u(q, t+1 )〉〈û(−q, t2)u(q, t+2 )〉

×
∑
m,n

Tm,n
(n− 1)!m!

un−1(x, t+1 )um(x, t2)
∑
k,l

Tk,l
(k − 1)!l!

uk−1(x, t+2 )ul(x, t1)

= −
∫
dτ1dτ2

SdΛ
de−JΛ(τ1+τ2)/η

η2
d`∆′(u(x, t+1 )− u(x, t+2 − τ2)− v(t+1 − t

+
2 + τ2))×

∆′(u(x, t+2 )− u(x, t+1 − τ1) + v(t+2 − t
+
1 + τ1)) (C.62)
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where Tm,n =
(
m
n

)
(−1)n∆(m+n)(v(t− t′)), which results in a correction

−
∫
t>0,t′>0

e−t−t
′
∆′(u+ tλ)∆′(u− t′λ) (C.63)

after substituting t = Jτ1Λ/η and t′ = Jτ2Λ/η. The second diagram results in

Db =

∫ Λ

Λ(1−d`)
dt1dt2

ddq

(2π)d
〈û(−q, t1)u(q, t+1 )〉〈û(−q, t′1)u(q, t+1 )〉

×
∑
m,n

Tm,n
(n− 2)!m!

un−2(x, t+1 )um(x, t2)
∑
k,l

Tk,l
k!l!

uk(x, t′1)ul(x, t1)

= −
∫
dτ1dτ2

SdΛ
de−JΛ(τ1+τ2)/η

η2
d`∆′′(u(x, t+1 )− u(x, t2)− v(t+1 − t2))×

∆(u(x, t+1 − τ1)− u(x, t+1 − τ2) + v(τ2 − τ1)). (C.64)

The third in

Dc =

∫ Λ

Λ(1−d`)
dt1dt2

ddq

(2π)d
〈û(−q, t1)u(q, t+1 )〉〈û(−q, t2)u(q, t+2 )〉

×
∑
m,n

Tm,n
(n− 1)!(m− 1)!

un−1(x, t+1 )um−1(x, t+2 )
∑
k,l

Tk,l
k!l!

uk(x, t+1 − τ1)ul(x, t+2 − τ2)

= −
∫
dτ1dτ2

SdΛ
de−JΛ(τ1+τ2)/η

η2
d`∆′′(u(x, t+1 )− u(x, t+2 )− v(t+1 − t

+
2 ))×

∆(u(x, t+1 − τ1)− u(x, t+2 − τ2) + v(t+1 − t
+
2 + τ2 − τ1)), (C.65)

which results in a correction

−
∫
t>0,t′>0

e−t−t
′
∆′′(u)∆(u+ (t′ − t)λ). (C.66)

And finally

Dd =

∫ Λ

Λ(1−d`)
dt1dt2

ddq

(2π)d
〈û(−q, t1)u(q, t+1 )〉〈û(−q, t′1)u(q, t+1 )〉

×
∑
m,n

Tm,n
(n− 2)!m!

un−2(x, t+1 )um(x, t2)
∑
k,l

Tk,l
k!l!

uk(x, t′1)ul(x, t1)

= −
∫
dτ1dτ2

SdΛ
de−JΛ(τ1+τ2)/η

η2
d`∆′′(u(x, t+1 )− u(x, t2)− v(t+1 − t2))×

∆(u(x, t+1 − τ1)− u(x, t+1 − τ2) + v(τ2 − τ1)), (C.67)

These together will result in the second order correction in eq. 4.35.
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C.5 Solution of the Disorder Correlator Renormalization at the

Upper Critical Dimension

The analysis here is close to [165]. We will solve eq. 4.35 with the assumptions that κ → 0, fixed T̃ , and

ε = 0 (the upper critical dimension). The RG equation with these assumptions is

∂`∆̃(u) = T̃ ∆̃′′(u) + ∆̃′′(u)(∆̃(0)− ∆̃(u))− ∆̃′2 (C.68)

We make the assumption that ∆̃(u) = φ(`)ρ(zψ(`)), which is known as the automodel form [165]. We plug

in this form to obtain

φ′ρ(zψ) + zψ′φρ′(zψ) = T̂ φ2ψ2ρ′′(zψ) + φ2ψ2ρ′′(zψ)(ρ(0)− ρ(zψ))− φ2ψ2ρ′(zψ)2 (C.69)

where ψ′ = ∂`ψ, φ′ = ∂`φ and T̂ = T̃ φ. The form of the equation now suggests that one can set

φ′ = −φ2ψ2 (C.70)

ψ′ = −φψ3 (C.71)

where the minus signs maintain consistency with [165]. Letting ψz = u means that

(uρ)′ = ρ′2 − T̂ ρ′′ − ρ′′(ρ(0)− ρ). (C.72)

We need one more constraint, in particular dividing ψ′/φ′ = ψ/φ, so that ψ/φ = a is a constant yet to be

determined. Solving for ψ and φ through separation of variables and using ψ/φ = a we get

φ(`) = (3a2`)−1/3 (C.73)

ψ(`) = (3`/a)−1/3. (C.74)

One can write the right hand side of eq. C.72 as (ρ2/2− ρ(ρ(0)− T̂ ))′′, which immediately yields

uρ = (ρ2/2− ρ(ρ(0)− T̂ ))′ + k = ρρ′ − ρ′(ρ(0)− T̂ ) + k. (C.75)

Plugging in at u = 0 gives 0 = ρ(0)ρ′(0)− ρ′(0)ρ(0)− ρ′(0)T̂ + k. We now use that if T̂ > 0, then no cusp

forms, which a priori is an assumption that is true as we have seen (see fig. 4.4). Then ρ′(0) = 0 so that
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k = 0. On the other hand, if T̂ = 0 then k = 0 since the terms cancel. Then

u = ρ′ − ρ′/ρ(ρ(0)− T̂ ) (C.76)

u2

2
= ρ− ln(ρ)(ρ(0)− T̂ ) + d. (C.77)

Plugging in again at u = 0 gives 0 = ρ(0) − ln(ρ(0))(ρ(0) − T̂ ) + d. We simply let ρ(0) = 1 since any scale

can be absorbed into φ(`), so that d = 1 [165]. Then finally

u2

2
= ρ− ln(ρ)(ρ(0)− T̂ ) + 1. (C.78)

To find the constant a = ψ/φ, we note that the original equation C.68 implies that

∂`

∫ ∞
−∞

∆̃(u)du = (T̂ + ∆̃(0))∆̃′
∣∣∞
−∞ − ∆̃′∆̃

∣∣∞
−∞ = 0 (C.79)

where we assume that ∆̃′ → 0 and ∆̃ → 0 as |u| → ∞. Therefore
∫

∆̃ = c is a conserved quantity in the

first order RG [165]. Since ∫ ∞
−∞

∆̃du = c = φ/ψ

∫ ∞
−∞

ρdz, (C.80)

we must have that

a =

∫ ∞
−∞

ρdz/c ≈ 1.55J2

2π
∫

∆du
(C.81)

where we have input the original physical constants. Note that the numerical integration
∫∞
−∞ ρ ≈ 1.55 has

been obtained for T̂ = 0 [165], and is not exactly true for T̂ > 0. We only make the approximation here

because we are usually dealing with small T̂ near 0, so the numerical result still holds.
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Appendix D

Appendix to Chapter 5

D.1 Derivation of Energy Barriers for a Cusped Potential

We will derive the energy barriers for generic coupling Jij with ϕ = 2 anf stress Σ. We derive it for generic

coupling because we need this result to derive the algorithm for coupled sites. We make the assumption

that the pinning potential for each site is independent and (fig. 4.5) the same as presented in [11] based on

renormalization arguments. Therefore Up,i(ui) = Up,i(ai) − sf,i(ai − ui) + ωi/2(ai − ui)2, where sf,i is the

failure force, 2ai is the length of the well, and ωi controls the depth of the well. All three of these numbers

sf,i, ai, ωi can be random in the most generic version mean field theory [6]. It is customary to set sf,i to be

fixed, although it is easy to change this in the algorithm. The full energy is

E =
∑
i

Up,i(ui) +
1

2

∑
i<j

Jij(ui − uj)2 − Σ
∑
i

ui. (D.1)

Differentiating eq. D.1, we can find the minimum value, which gives the metastable point um,i for each

index i in terms of δsi(ui) = sf,i − si(ui). Let us first recall the stress equation eq. 4.53 for general Jij

si(ui) =
∑
j

Jij(ui − uj)− Σ (D.2)

sf,i + ωi(ui,m − ai) +
∑
j

Jij(ui,m − uj)− Σ = 0 (D.3)

sf,i + ωi(ui,m − ai)− si(ui,m) = 0 (D.4)

um,i = ai − δsi/ωi (D.5)

where we denote δsi = δsi(um,i). This is the difference between the metastable stress and the failure stress.

For cell i, at the top of the barrier, the energy is

Ei =
∑
j 6=i

U(uj) + Up,i(ai) +
1

2

∑
j<k,j,k 6=i

Jjk(uj − uk)2 +
1

2

∑
j

Jij(uj − ai)2 − Σ
∑
j 6=i

uj − Σai. (D.6)
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This gives

∆Ei = Ei − E = sf
δsi
ωi
− (δsi)

2

2ωi
− Σδsi

ωi
+

1

2

∑
i>j

Jij
[
(uj − ai)2 − (uj − um,i)2

]
(D.7)

We have

(uj − ai)2 − (uj − um,i)2 = −2aiuj + a2
i + 2ujum,i − u2

m,i (D.8)

= (2uj − um,i − ai)(um,i − ai) = −(2uj − um,i − ai)δsi/ωi

We can then use this result to simplify eq. D.7

∑
j

Jij
[
(uj − ai)2 − (uj − um,i)2

]
=
δsi
ωi

∑
j

Jij [(ai − uj) + (um,i − xj)] (D.9)

Using eq. D.5 after adding and subtracting um,i we have

∑
j

Jij
[
(uj − ai)2 − (uj − um,i)2

]
=
δsi
ωi

∑
j

Jij [(um,i − uj) + (um,i − uj) + δsi/ωi] (D.10)

∑
j

Jij
[
(uj − ai)2 − (uj − um,i)2

]
=
δsi
ωi

2(Σ− si) +
δs2
i

ω2
i

J̃ (D.11)

where J̃ =
∑
j 6=i Jij . This gives us

∆Ei = (sf − si)
δsi
ωi
− δs2

i

2ωi
+
J̃δs2

i

2ω2
i

(D.12)

∆Ei =
(ω + J̃)δs2

i

2ω2
i

= Ωiδs
2
i (D.13)

Now if two cells are independent of each other (i.e. Jij = 0) fail, then clearly the energy barriers add

∆E = Ωi(δsi)
2 + Ωj(δsj)

2. (D.14)

Let us analyze what happens in general, when Jij 6= 0: Let S ⊆ {1, . . . , N} denote the set of indicies of
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the n failing cells, so that

E =
∑
i

Up(ui) +
1

2

∑
i>j

Jij(ui − uj)2 − Σ
∑
i

ui (D.15)

ES =
∑
j /∈S

U(uj) +
∑
j∈S

Up(aj) +
1

2

∑
j>k,j,k/∈S

Jjk(uj − uk)2 +
1

2

∑
j∈S,k/∈S

Jjk(aj − uk)2

+
1

2

∑
j>k,j,k∈S

Jjk(aj − ak)2 − Σ
∑
i∈S

ai − Σ
∑
i/∈S

ui (D.16)

Then subtracting the two terms, we get

∆ES =
∑
i∈S

(
sf
δsi
ωi
− (δsi)

2

2ωi
− Σδsi

ωi

)
+

1

2

∑
i∈S,j /∈S

Jij [(uj − ai)2 − (uj − ui)2]

+
1

4

∑
i,j∈S

Jij [(aj − ai)2 − (uj − ui)2] (D.17)

Note that we have changed from summing over i > j to summing over i, j in the second sum to simplify

later expressions. The first sum is invariant to this change since i and j are guaranteed to be unique (since

i ∈ S, j /∈ S). Then

1

2

∑
i∈S,j /∈S

Jij [(uj − ai)2 − (uj − ui)2] =
1

2

∑
i∈S

δsi
ωi

∑
j /∈S

Jij [(ai − uj) + (ui − uj)] (D.18)

1

4

∑
i,j∈S

Jij [(aj − ai)2 − (uj − ui)2] =
1

4

∑
i,j∈S

Jij [a
2
j − 2ajai + a2

i − u2
j + 2ujui − u2

i ]. (D.19)

The first sum eq. D.18 is familiar, and is similar to eq. D.11, except that we are summing over j /∈ S for

each i that is failing. These terms will result in terms similar to eq. D.11. Thus we can write

1

2

∑
i∈S,j /∈S

Jij [(uj − ai)2 − (uj − ui)2] +
1

4

∑
i,j∈S

Jij [(aj − ai)2 − (uj − ui)2] =

1

2

∑
i∈S

δsi
ωi

∑
j /∈S

Jij [(ai − uj) + (ui − uj)] +
1

4

∑
i∈S

δsi
ωi

∑
j∈S

Jij [(ai − uj)2 + (ui − uj)2]

+
1

4

∑
i,j∈S

Jij [2ajui + 2aiuj − 2uiuj − 2aiaj ] (D.20)

In the second sum on the right hand side of the equal sign, i, j ∈ S, so we can change it so that the sum is
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not repeating, and combine the two sums so that:

1

2

∑
i∈S

δsi
ωi

∑
j /∈S

Jij [(ai − uj) + (ui − uj)] +
1

4

∑
i∈S

δsi
ωi

∑
j∈S

Jij [(ai − uj)2 + (ui − uj)2] =

1

2

∑
i∈S

δsi
ωi

∑
j 6=i

Jij [(ai − uj) + (ui − uj)] (D.21)

The third sum is

1

4

∑
i,j∈S

Jij [2ajui + 2aiuj − 2uiuj − 2aiaj ] = −1

2

∑
i,j∈S

(aj − uj)(ai − ui) = −1

2

∑
i,j∈S

δsj
ωj

δsi
ωi
. (D.22)

Combining everything together, we have

∆ES =
∑
i∈S

∆Ei −
1

2

∑
i,j∈S

Jij
δsiδsj
ωiωj

(D.23)

∆ES =
∑
i∈S

ωi + J̃

2ω2
i

δs2
i −

1

2

∑
i,j∈S

Jij
δsiδsj
ωiωj

. (D.24)

Typically, for mean field theory, J̃ = O(JijN). Notice that the first term essentially quantifies how large

the barrier is if all sites failed individually, while the second sum is essentially a discount because the elastic

stiffness pulls the interface together. The second term is of order O(1/N) in mean field theory. As N →∞,

the second term becomes negligible. This is the expected behavior.

D.2 Algorithm in the Interacting Case

Here we describe how to extend the algorithm to the case of interactions. We take the very simple mean

field case with finite size effects. We fix N to be the number of sites, the set of failing sites to be S, with

|S| being the number of failing sites. In mean field theory, Jij = J̃/N . To simplify notation, we have set

λ0 = 1. The energy barrier

∆ES = Ω

N∑
i=1

(sf,i − si)2 − J̃/N
∑
i,j∈Π

(sf,i − si)(sf,j − sj). (D.25)

The constant Ω is the same as in eq. 5.23, while J̃/N = J is of order O(1/N). Then our previous approach

to summing the rate constants will not work, as

rij... 6= λiλj . . . . (D.26)
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Also, there is no simple way to factor the interaction

exp

J̃/NkBT ∑
i,j∈S

(sf,i − si)(sf,j − sj)

 (D.27)

so that a product of rate constants remains.

Therefore, we opt for an approximate treatment of this problem. Luckily, since J is of order 1/N , we

can expand

λS = exp(−∆ES/kBT ) (D.28)

= exp

(
− Ω

kBT

N∑
i=1

δs2
i

)1 +
J̃

NkBT

∑
i,j∈S

δsiδsj

 (D.29)

For small T , the exponential term supresses the inaccuracy of this expansion since Ω � J̃/N . For large

T , the expansion becomes more accurate, and again since Ω� J̃/N , the approximation term only matters

when the expansion is very nearly correct.

As above, we define

σl,n =

N−l+1∑
i=n

λiσl,i+1. (D.30)

In addition, we also define

βi = δsiλi. (D.31)

Then the sum of all 1 combinations is again (eq. 5.38)

R1 =

N−1+1∑
i=1

λi (D.32)

For all single site failures, there is no interaction term, as only one site has failed. However, for l > 1 sites,

given the set of failed sites S, we must take into account the interaction term. This term includes all pairs

of sites in S. The sum of all two combinations is now

R2 =

N−1∑
i=1

(
λiσ1,i+1 + Jβiγ

1,2
l,i+1

)
(D.33)

where we have absorbed J̃/NkBT into the definition of J to simplify later expressions and defined

γ1,2
1,n =

N∑
i=n

βiσ0,i+1 (D.34)
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with σ0,i+1 = 1. This takes into account the sum of the interaction terms. The superscript denotes the index

of the site we choose. For example, for γ1,2
l−1,n means we choose the first and second index of the product of

rate constants λi1λi2 . . . λil . Then

Rl =

N−l+1∑
i=0

(
λiσl−1,i+1 + Jβi

∑
m=1,n>m

γm,nl−1,i+1 + Jλi
∑

m>1,n>m

γm,nl−1,i+1

)
. (D.35)

Naively it would take O(Nl2) time to compute each layer, and with N layers, it would take O(N4) time.

We can simplify things by defining

χl,n =

N−l+1∑
i=n

∑
q

γ1,q
l−1,i+1 (D.36)

ξl,n =

N−l+1∑
i=n

∑
p,q>1

γp,ql−1,i+1 (D.37)

Rl =

N−l+1∑
i=0

(λiσl−1,i+1 + Jβiχl−1,i+1 + Jλiξl−1,i+1). (D.38)

Then along with σl,n, χl,n and ξl,n also obey recursion relations of the form

χl,n =

N−l+1∑
i=n

λiχl−1,i+1 +

N∑
i=n

βiσl−1,i+1 (D.39)

ξl,n =

N−l+1∑
i=n

βiχl−1,i+1 +

N∑
i=n

λiξl−1,i+1 (D.40)

Therefore one can compute the sum again in O(N2) time, keeping track of 2 extra variables. In fact, to

expand the sum when finding the failing sites, it is convenient to also keep track of

σ̃l,n =

N−l+1∑
i=n

βiσl−1,i+1 (D.41)

χ̃l,n =

N−l+1∑
i=n

βiχl−1,i+1 (D.42)

raising the total to five variables.

To implement the recursive subalgorithm in step 3 of the KMC algorithm, we follow almost exactly

the same steps described above. First, we search through
∑
lRl and find the total number of failed sites

ν. The algorithm is modified because we define a matrix of partial sums S. The indices are Sk,1 =∑k
i=1 λiσl,i+1, Sk,2 =

∑k
i=1 λiχl,i+1, Sk,3 =

∑k
i=1 λiξl,i+1, Sk,4 =

∑k
i=1 βiσl,i+1, and Sk,5 =

∑k
i=1 βiχl,i+1.

Then at each step, we multiply together S~γ to search for the next index. After the first step ~γ is defined as
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[λk1 , Jβk1 , Jλk1 , Jβk1 , Jλk1 ]T . Subsequently,

~γ ←



λkiγ0 + βkiγ4

λkiγ1 + βkiγ4

λkiγ2

λkiγ1 + βkiγ4

λkiλ
T
2


(D.43)

Graphically, fig. D.1 shows the assignment. These assignments follow from the definition of S, and any

permutation of the columns will also work as long as the assigments are correctly mapped.

Figure D.1: A graphical representation of the index swapping. This is necessary because of the way the

auxiliary variables χl,n and ξl,n were defined. The entire process is a vectorized generalization of the simpler

algorithm presented in the main work. The upper indices {0, 1, 2, 3, 4} represent the initial values of ~γ. The

upper values λki and βki represent multipliers of these values. The lower indices represent the updated

values of ~γ.
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Appendix E

Appendix to Chapter 6

E.1 The distribution of stresses

From [7], the distribution of stress for a given site is

p(s|sa) =
1

sm − sa
for sa ≤ s ≤ sm (E.1)

where sm is the maximum stress and sa is the arrest stress of that cell. We denote the distribution of arrest

stresses as ρ(sa) and assume that it has zero mean and variance 〈s2
a〉 � s2

m. We also assume that the arrest

stress has a finite width W , so 〈s2
a〉 ∼W 2 which implies W � sa. The distribution of stresses over the entire

system is therefore

p(s) =

∫ s

−W/2
dsap(s|sa)ρ(sa) (E.2)

p(s) =

{
f(s) =

∫ s
−W/2 dsa

ρ(sa)
sm−sa , for −W/2 ≤ s < W/2

p̄ = 〈(sm − sa)−1〉, for W/2 ≤ s ≤ sm

where the angular brackets denote averaging with respect to the arrest stress. The constant p̄ can be

evaluated by expansion as

p̄ =

∫ W/2

−W/2

dsaρ(sa)

sm − sa
(E.3)

=
1

sm

∫ W/2

−W/2

dsaρ(sa)

1− sa/sm
≈ 1

sm

∫ W/2

−W/2
dsaρ(sa)

[
1 +

sa
sm

+
s2
a

s2
m

]
(E.4)

=
1

sm

[
1 +
〈sa〉
sm

+
〈s2
a〉
s2
m

]
=

1

sm
+
〈s2
a〉
s3
m

(E.5)

which is approximately p̄ ≈ s−1
m since 〈s2

a〉 � s2
m.
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E.1.1 Variance of stresses

The stress on a specific site after a number of iterations is the sum of its arrest stress and the stress

redistributed to it by other failing sites. Therefore, to calculate the variance, we define a new variable

∆si = sf − sa,i. ∆si is used to determine the amount of stress site i redistributes onto all other sites.

Note that we no longer assume that s0 > s1 > . . . > sN−1, as we will need to keep track of each stress to

calculuate the variance. Let smax,i be stress of site i when it is the maximum stress in the system. Then

smax,i is determined by the initial arrest stress together with the contribution of all other ∆sj that have

failed:

smax,i(t) = sa,i(t) +

Ri,t∑
j 6=i

∆sj
N

. (E.6)

Here Ri,t is a random variable which determines the number of iterations a site waits in order to become

the site with the maximum stress starting from the arrest stress. It is reasonable that Ri,t = Ri relaxes to

a stationary process after many iterations for each stress. Then the variance is

var(smax,i(t)) = var(sa,i) + var

 Ri∑
j 6=i

∆sj
N

+ 2cov

 Ri∑
j 6=i

∆sj
N

, sa,i

 (E.7)

To evaluate the variance of a random sum of random variables, we rely on the conditional expectation

var

 Ri∑
j 6=i

∆sj
N

∣∣∣∣Ri = r

 = rvar

(
∆sj
N

)
+ (r2 − 〈Ri〉2)

〈
∆sj
N

〉2

(E.8)

var

 Ri∑
j 6=i

∆sj
N

 = 〈Ri〉var

(
∆sj
N

)
+ var(Ri)

〈
∆sj
N

〉2

. (E.9)

Similarly, the covariance can be handled by conditional expectation on both Ri and sa,i, so that

cov

 Ri∑
j 6=i

∆sj
N

, sa,i

∣∣∣∣R = r, sa,i = s

 = rs

〈
∆sj
N

〉
− 〈Ri〉〈sa,i〉

〈
∆sj
N

〉
(E.10)

cov

 Ri∑
j 6=i

∆sj
N

, sa,i

 = cov(Ri, sa,i)

〈
∆sj
N

〉
(E.11)

where we have used that ∆si is an independent identically distributed variable for each i, and sa,i is an

independent identitically distributed variable for each i. Finally, we have also used that Ri is independent

of each ∆si. Then the problem is essentially to compute each of these variances and covariances separately.
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First

var

(
∆sj
N

)
=

var(sa)

N2
, (E.12)

where we have removed the index j since the variables are identically distributed. Second, we know that a

site that starts with a large arrest stress has fewer steps to the maximum stress. Therefore

Ri = N
sm
sf
−N sa,i

sf
+ ξ. (E.13)

Here the term ξ is a random variable. In the mean field model, the only time that a given site can skip its

position when ordered sequentially (so s0 > s1 > . . . > sN−1) is if the stress is in the arrest stress portion

of the distribution, so s ∈ [−W/2,W/2]. In this case another site can fail with arrest stress higher than the

current site. Therefore, the random variable ξ represents how many places the given site has been skipped

or has skipped other sites. For any given distribution, the probability that P (sa,i > sa,j) = 1/2. Each skip

is a Bernoulli random variable, so it has variance 1/4, and on average each site has to travel NW/2sf steps.

Therefore,

var(ξ) ≈ NW

8sf
(E.14)

This gives us

var(Ri) =
N2

s2
f

var(sa) +
NW

8sf
(E.15)

cov(Ri, sa,i) = −N
sf

var(sa). (E.16)

Combining these equations together and plugging into eq. E.7, we get

σ2 = var(smax,i(t)) = 2var(sa) +
s2
f

N2

NW

8sf
− 2var(sa) (E.17)

σ2 =
Wsf
8N

(E.18)

E.1.2 Mean energy difference

We define ∆E0 < ∆E1 < . . . < ∆EN−1. Each ∆Ei = (sf − si)2, so when we expand

∆Ei = s2
f − 2sfsi + s2

i . (E.19)
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Each si is normally distributed with mean µi and variance σ2. We have found empirically that σ2 is constant

for i� N . If we let ξ be a standard normal distribution with zero mean and variance σ2, then si = µi +σξ.

Then expanding

∆Ei/Ω = s2
f − 2sfµi − 2(sf − µi)σξ + µ2

i + σ2ξ2 (E.20)

From eq. ?? in the supplementary, we can find expressions for µi so

〈∆Ei −∆Ei+1〉 = Ω(2sf (µi+1 − µi) + µ2
i − µ2

i+1) (E.21)

= Ω(4sfΣ/N − 8Σ2i/N) +O(1/N2) (E.22)

≈ 8ΩF (Σc − Σ)/N = 8ΩF 2 ∆Σ

NΣ
= 2E0

Σ∆Σ

NΣ2
c

. (E.23)

E.2 Saddle point approximations

Here we give details about the saddle point analysis of equations 8 and 11 in the main text.

E.2.1 Low Temperature

Set Ω = λ0 = 1 for simplicity. Let f(s) be be the argument of the exponential

f(s) =
(sm − µ)2

2σ2
+

(sf − sm)2

T
+ ∆t exp(−(sf − sm)2/T ) (E.24)

Shift variables so that u = (sf − sm)/
√
T and define ∆f = 2∆Σ/

√
T , where we have used that µ = 2F and

sf = 2Fc. The saddle point equation is f ′(u) = 0 or

α(u−∆f) + u = ∆tue−u
2

. (E.25)

We have set α = T/2σ2. Note the limits of integration now go between 0 and sf/
√
T . We can expand in

powers of α∆f , which we denote u0, u1, . . ., so to zeroth order we have:

u0 = log

(
∆t

α+ 1

)
. (E.26)

The first order term is

u1 =
α∆f

2(1 + α)u0
, (E.27)

127



and the second order term is

u2 =
α2∆f2(−3 + 2u0)

8(1 + α)2u2
0

. (E.28)

Expanding the argument of the exponential to second order we have

f(u) ≈ (1 + α)
(
1 + u2

0

)
− 2α∆fu0 +

∆f2α(2 + 2α− α/u0)

2(1 + α)
. (E.29)

Then we exponentiate this so

p(∆t) ∼
(

1 + α

∆t

)1+α

exp

(
−1− α+ α∆f

(
2

√
log

(
∆t

α+ 1

)
−∆f

)
+O(∆f2α2/ log(∆t))

)
(E.30)

Plugging in this form into the original equation, we can see that equation 6.10 in the main text emerges.

We take into account the Gaussian integral as well:

f ′′(u) = α+ 1−∆te−u
2/T +

2∆t

T
u2e−u

2/T (E.31)

f ′′(u) = −α∆f

u
+ 2(α+ 1)u2 − 2α∆fu ≈ O(∆f2α2u−2

0 ) (E.32)√
2π

f ′′(u)
= O(u0/∆fα) = O(log(∆t)) (E.33)

which is a logarithmic correction.

E.2.2 High Temperature

In the high temperature regime we have from equation 11 in the main text, the integral

p(∆t) =
1√

2πσ2
E

∫
exp

(
−E/T − (E − µE)2/(2σ2

E)−∆te−E/T
)

(E.34)

which yields the saddle point equation

∆te−E/T = 1 +
T

σ2
E

(E − µE) (E.35)

which upon substitution of y = E/T − µ/T + σ2/T 2 yields the solution

y = W

(
∆te−µE/T+σ2

E/T
σ2
E

T 2

)
= W (z) (E.36)
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where W (z) is the Lambert-W function and z = ∆te−µE/T+σ2
E/T

2

σ2
E/T

2. The Gaussian correction is

1/
√

∆t20(1 +W (z)) (E.37)

Plugging all of this into the integral we have

p(∆t) =
1

∆t0
√

1 +W (z)

(
W (z)

z

)T 2/σ2
E

e
− T2

2σ2
E

W (z)2−µET +
σ2
E

2T2
(E.38)

where we used the identity e−aW (z) = (W (z)/z)a.

E.3 Plausibility argument that p(∆tM) scales like p(∆t)

It is plausible that p(∆tM ) scales similarly to p(∆t). First take the complementary cumulative distribution

P (∆ti > ∆t) ∼ ∆t−α of each interevent time. We have ∆ti < ∆tM , and hence P (∆ti > ∆t) < P (∆tM >

∆t). Similarly, if all of ∆ti < ∆t/M , then ∆tM < ∆t, so
∑
i P (∆ti < ∆t/M) ∼ ∆t−α < P (∆tM < ∆t)

(by independence of each ∆ti). We can convert this so that
∑
i(1− P (∆ti > ∆t/M)) < 1− P (∆tM > ∆t)

so that P (∆tM > ∆t) <
∑
i P (∆ti > ∆t/M) ∼ ∆t−α. Hence C1∆t−α < P (∆tM > ∆t) < C2∆t−α for

large ∆t, so p(∆tM ) ∼ ∆t−1−α
M . In Fig. 4, the angular brackets denote the mean number of steps taken for

each of the thresholds set. We see that the interevent time distribution does not change near the tail of the

distribution regardless of the threshold set. In particular, the exponential term in eq. 6.10 does not seem to

cause huge deviation as more interevent times are summed together.
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[109] P. Foukal, C. Fröhlich, H. Spruit, and T. M. L. Wigley. Variations in solar luminosity and their effect
on the Earth’s climate. Nature, 443(7108):161–166, September 2006.

[110] Bradley E. Schaefer, Jeremy R. King, and Constantine P. Deliyannis. Superflares on Ordinary Solar-
Type Stars. The Astrophysical Journal, 529(2):1026, 2000.

[111] Han He, Huaning Wang, and Duo Yun. Activity Analyses for Solar-type Stars Observed with Kepler.
I. Proxies of Magnetic Activity. The Astrophysical Journal Supplement Series, 221(1):18, 2015.

[112] Takuya Shibayama, Hiroyuki Maehara, Shota Notsu, Yuta Notsu, Takashi Nagao, Satoshi Honda,
Takako T. Ishii, Daisaku Nogami, and Kazunari Shibata. Superflares on Solar-type Stars Observed
with Kepler. I. Statistical Properties of Superflares. The Astrophysical Journal Supplement Series,
209(1):5, 2013.

[113] H. W. Babcock. The Topology of the Sun’s Magnetic Field and the 22-YEAR Cycle. The Astrophysical
Journal, 133:572, March 1961.

[114] Paul Charbonneau, Scott W. McIntosh, Han-Li Liu, and Thomas J. Bogdan. Avalanche models for
solar flares (Invited Review). Solar Physics, 203(2):321–353, November 2001.

[115] E. N. Parker. Nanoflares and the solar X-ray corona. The Astrophysical Journal, 330:474–479, July
1988.

[116] G. A. Chapman, A. M. Cookson, and J. J. Dobias. Variations in total solar irradiance during solar
cycle 22. Journal of Geophysical Research: Space Physics, 101(A6):13541–13548, June 1996.

[117] P. Foukal and J. Lean. Magnetic modulation of solar luminosity by photospheric activity. The Astro-
physical Journal, 328:347–357, May 1988.

[118] Richard C. Willson. ACRIM3 and the Total Solar Irradiance database. Astrophysics and Space Science,
352(2):341–352, August 2014.

[119] Paul Charbonneau. Dynamo Models of the Solar Cycle. Living Reviews in Solar Physics, 7, 2010.

[120] Nir Friedman, Shinya Ito, Braden A. W. Brinkman, Masanori Shimono, R. E. Lee DeVille, Karin A.
Dahmen, John M. Beggs, and Thomas C. Butler. Universal Critical Dynamics in High Resolution
Neuronal Avalanche Data. Physical Review Letters, 108(20):208102, May 2012.

[121] I.-H. Cho, K.-S. Cho, S.-C. Bong, E.-K. Lim, R.-S. Kim, S. Choi, Y.-H. Kim, and V. Yurchyshyn.
Statistical Comparison Between Pores and Sunspots by Using SDO/HMI. The Astrophysical Journal,
811(1):49, 2015.

136



[122] Matthias Rempel and Rolf Schlichenmaier. Sunspot Modeling: From Simplified Models to Radiative
MHD Simulations. Living Reviews in Solar Physics, 8(1):3, December 2011.

[123] E. N. Parker. Sunspots and the physics of magnetic flux tubes. I - The general nature of the sunspot.
II - Aerodynamic drag. The Astrophysical Journal, 230:905–923, June 1979.

[124] L. M. Zelenyi and A. V. Milovanov. Fractal Properties of Sunspots. Soviet Astronomy Letters, 17:425,
November 1991.

[125] S. Criscuoli, M. P. Rast, I. Ermolli, and M. Centrone. On the reliability of the fractal dimension
measure of solar magnetic features and on its variation with solar activity. Astronomy & Astrophysics,
461(1):331–338, January 2007.

[126] B. Rajkumar, S. Haque, and W. Hrudey. Fractal Dimensions of Umbral and Penumbral Regions of
Sunspots. Solar Physics, 292(11):170, November 2017.

[127] Carolus J. Schrijver, Alan M. Title, Adriaan A. van Ballegooijen, Hermance J. Hagenaar, and
Richard A. Shine. Sustaining the Quiet Photospheric Network: The Balance of Flux Emergence,
Fragmentation, Merging, and Cancellation. The Astrophysical Journal, 487(1):424, 1997.

[128] Samuel D. T. Grant, David B. Jess, Teimuraz V. Zaqarashvili, Christian Beck, Hector Socas-Navarro,
Markus J. Aschwanden, Peter H. Keys, Damian J. Christian, Scott J. Houston, and Rebecca L. Hewitt.
Alfvn wave dissipation in the solar chromosphere. Nature Physics, 14(5):480, May 2018.

[129] Tritschler A., Rimmele T. R., Berukoff S., Casini R., Kuhn J. R., Lin H., Rast M. P., McMullin J.
P., Schmidt W., Wger F., and DKIST Team null. Daniel K. Inouye Solar Telescope: Highresolution
observing of the dynamic Sun. Astronomische Nachrichten, 337(10):1064–1069, November 2016.

[130] Collados M., Bettonvil F., Cavaller L., Ermolli I., Gelly B., Prez A., SocasNavarro H., Soltau D.,
Volkmer R., and the EST team null. European Solar Telescope: Progress status. Astronomische
Nachrichten, 331(6):615–619, June 2010.

[131] Peter V. Foukal. The Photosphere. In Solar Astrophysics, pages 133–166. Wiley-VCH Verlag GmbH,
2004.

[132] Robert A. White and Karin A. Dahmen. Driving Rate Effects on Crackling Noise. Physical Review
Letters, 91(8):085702, August 2003.

[133] A. Quesnel, B. R. Dennis, B. Fleck, C. Froelich, and H. S. Hudson. The Signature of Flares in VIRGO
Total Solar Irradiance Measurements. volume 428 of Astronomical Society of the Pacific Conference
Series, Northeast Harbor, Maine, March 2010.

[134] Jean-Paul Poirier. Creep of Crystals: High-Temperature Deformation Processes in Metals, Ceramics
and Minerals. Cambridge University Press, February 1985.

[135] A. H. Cottrell and B. A. Bilby. Dislocation Theory of Yielding and Strain Ageing of Iron. Proceedings
of the Physical Society. Section A, 62(1):49, 1949.

[136] D. Hull and D. J. Bacon. Chapter 7 - Jogs and the Intersection of Dislocations. In D. Hull and D. J.
Bacon, editors, Introduction to Dislocations (Fifth Edition), pages 137–155. Butterworth-Heinemann,
Oxford, January 2011.

[137] William D. Callister and David G. Rethwisch. Materials Science and Engineering: An Introduction.
John Wiley & Sons, December 2013.

[138] Conyers Herring. Diffusional Viscosity of a Polycrystalline Solid. Journal of Applied Physics, 21(5):437–
445, May 1950.

[139] R. L. Coble. A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials. Journal
of Applied Physics, 34(6):1679–1682, June 1963.

137



[140] F. R. N. Nabarro. Steady-state diffusional creep. Philosophical Magazine, 16(140):231–237, August
1967.

[141] F. R. N. Nabarro. Do we have an acceptable model of power-law creep? Materials Science and
Engineering: A, 387-389:659–664, December 2004.

[142] Edward Neville Da Costa Andrade. On the viscous flow in metals, and allied phenomena. Proc. R.
Soc. Lond. A, 84(567):1–12, June 1910.

[143] W. H. Wang, C. Dong, and C. H. Shek. Bulk metallic glasses. Materials Science and Engineering: R:
Reports, 44(2):45–89, June 2004.

[144] J. S. Langer. Shear-transformation-zone theory of plastic deformation near the glass transition. Physical
Review E, 77(2):021502, February 2008.

[145] S. G. Mayr. Activation Energy of Shear Transformation Zones: A Key for Understanding Rheology of
Glasses and Liquids. Physical Review Letters, 97(19):195501, November 2006.

[146] H. J. Frost and M. F. Ashby. Deformation-mechanism maps: the plasticity and creep of metals and
ceramics. Pergamon Press, 1982.

[147] Thiebaud Richeton, Jrme Weiss, and Franois Louchet. Dislocation avalanches: Role of temperature,
grain size and strain hardening. Acta Materialia, 53(16):4463–4471, September 2005.

[148] W. H. Jiang, G. J. Fan, F. X. Liu, G. Y. Wang, H. Choo, and P. K. Liaw. Rate dependence of shear
banding and serrated flows in a bulk metallic glass. Journal of Materials Research, 21(9):2164–2167,
September 2006.

[149] R. Maa, D. Klaumnzer, and J. F. Lffler. Propagation dynamics of individual shear bands during
inhomogeneous flow in a Zr-based bulk metallic glass. Acta Materialia, 59(8):3205–3213, May 2011.

[150] Robert Zwanzig. Nonequilibrium Statistical Mechanics. Oxford University Press, April 2001. Google-
Books-ID: 4cI5136OdoMC.

[151] A. Alan Middleton. Asymptotic uniqueness of the sliding state for charge-density waves. Physical
Review Letters, 68(5):670–673, February 1992.

[152] P. C. Martin, E. D. Siggia, and H. A. Rose. Statistical Dynamics of Classical Systems. Physical Review
A, 8(1):423–437, July 1973.

[153] Hans-Karl Janssen. On a Lagrangean for classical field dynamics and renormalization group calcu-
lations of dynamical critical properties. Zeitschrift fr Physik B Condensed Matter, 23(4):377–380,
December 1976.

[154] Michael P Leblanc. Avalanches in plastic deformation: maximum velocity statistics, finite tempera-
ture effects, and analysis of low time resolution data. PhD thesis, University of Illinois at Urbana-
Champaign, 8 2016.

[155] A. Alan Middleton. Thermal rounding of the charge-density-wave depinning transition. Physical
Review B, 45(16):9465–9468, April 1992.

[156] P. W. Anderson. Theory of Flux Creep in Hard Superconductors. Physical Review Letters, 9(7):309–
311, October 1962.

[157] P. W. Anderson and Y. B. Kim. Hard Superconductivity: Theory of the Motion of Abrikosov Flux
Lines. Reviews of Modern Physics, 36(1):39–43, January 1964.

[158] M. Mller, D. A. Gorokhov, and G. Blatter. Velocity-force characteristics of a driven interface in a
disordered medium. Physical Review B, 63(18):184305, April 2001.

138



[159] C. De Dominicis. Techniques de Renormalisation de la Théorie des Champs et Dynamique des
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