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MATHEMATICAL MODELS OF DAPHNIA EPIDEMICS

BY

VANESSA RIVERA QUIÑONES
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Abstract

Disease ecology studies the interactions among hosts, pathogens, and the environment and how

these shape the spread of disease. These interactions can be quite complex and lead to fascinating

dynamics. Our system of study, Daphnia has a lot of interesting and complex features that can

be analyzed with precision both biologically and mathematically. By using mathematical models

we can study the underlying biological mechanisms that drive and/or inhibit the spread of disease.

This dissertation explores, through a range of models, the many aspects that play a role in Daphnia

epidemics. We begin with simple models and build models with higher complexity by adding more

realistic biological assumptions.

From ordinary and partial di↵erential equation models to stochastic models, through the chap-

ters of this thesis, we zoom-in to the di↵erent aspects of Daphnia epidemics and and zoom-out to

the bigger story that connects them. We give precise conditions under which short-term evolution

of hosts can lead to the early termination of an epidemic. Moreover, overturning an assumption

about hosts’ ability to recover, we showcase the role of recovery from an infection in reducing dis-

ease prevalence and the number of secondary infections. Through this thesis we have gained more

insight into the biology of our system, and more importantly we open the door to new and exciting

questions. As new biological insights are discovered, we can use mathematical models to continue

to unravel the many aspects of Daphnia epidemics.
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Cáceres for your time and guidance. To the Cáceres Lab and my amazing collaborator Tara Stewart,

thank you for sharing your love for Daphnia with me.

Lastly, I owe much gratitude to the National Academy of Sciences Ford Foundation Predoctoral

Fellowship, and National Science Foundation, for the financial support from the grant DMS 1345032

MCTP: PI4: Program for Interdisciplinary and Industrial Internships at Illinois.

iv



Table of Contents

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Mathematics of Disease, Evolution, and Ecology . . . . . . . . . . . . . . . . . . . . 1
1.2 Why study Daphnia? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Overview: Modelling Daphnia Epidemics . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Short-term Evolution of Hosts . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Quantitative Genetics Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Discussion–Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 3 Long-term Evolution of Hosts . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Daphnia in their role as hosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Daphnia in their role as consumers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Discussion–Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 4 Resistance and Clearance in Daphnia Epidemics . . . . . . . . . . . . 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Basic Reproduction Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Discussion–Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 5 Demographic Stochasticity . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Discussion–Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Chapter 6 Age-Since-Infection Model . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Basic Reproduction Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4 Discussion–Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Chapter 7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

v



Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.1 Equilibrium Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.3 A Biologically Motivated Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.4 Trade-o↵ Invasibility Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.1 Endemic Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
B.2 Stability of Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
B.3 Elasticity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

C.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
C.2 Steady States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

vi



Chapter 1

Introduction

1.1 Mathematics of Disease, Evolution, and Ecology

As new diseases continue to appear in populations, questions regarding the distribution and

shape of infections have been of great interest to disease ecologists. Disease ecology focuses on the

study of the interactions between the host, pathogen, and environment and how they a↵ect the

spread of an infection. By studying these interactions we can obtain valuable insights on how an

epidemic could be prevented or minimized in a population.

Host

Pathogen Environment

(a)

()

Evolution

Epidemiology Ecology

(b)

Figure 1.1: (a) Main interactions of study in Disease Ecology. (b) Main frameworks from which
we will derive our mathematical models.

Some of the challenges that disease ecologists face is that each pairwise interaction in itself has

an great amount of biological complexity and depends greatly on the specific biological system under

study. Mathematical models have a long history improving our understanding of the mechanisms

that lie underneath these interactions. Host-parasite interactions have been studied extensively in

the past and continue to be a hot topic. Among the biological sciences, ecology has been one of the

first and most developed areas that has used quantitative models [19]. One of the most commonly
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used models in epidemiology are compartmental models, in which the population is divided into

distinct compartments with assumptions about the rate of transfer from one compartment to

another. The amount of compartments in which the population will be divided and structure

of the model depends on the characteristics of a particular disease. Are host able to recover from

the disease? Does the host gain immunity against reinfection? Is transmission direct or does

it happen indirectly through environmental factors? Does the infection progress in stages? The

answers to these questions will determine the characteristics of our models.

Daniel Bernoulli developed what was probably the first compartmental epidemic model in

1760 [5]. Some of the more well-known epidemiological models are the Susceptible-Infected (SI),

Susceptible-Infected-Recovered (SIR), and Susceptible-Exposed-Infected-Recovered (SEIR). As seen

in the early works of Anderson & May (1981), host–pathogen interactions can be understood from

compartmental models that can be refined to account for more biologically realistic scenarios [6].

While the stages of a disease can be more complex, as in many modelling scenarios, we can use these

models as a building block for more complicated models. There are many examples of infectious

diseases such as measles, influenza, tuberculosis, malaria, sexually transmitted diseases that have

been studied under this framework ([5], [57], [59]) providing evidence on how mathematical models

can give insight to epidemiological processes.

Another key component to understanding disease ecology is evolution. How organisms adapt to

changing environments has been a central question in biology and dates back to Darwin’s “On the

Origin of Species ” [35]. Adaptation generally refers to changes that lead organisms to be suited

to their local environment. The most common view of adaptation the process is as an optimization

process: Given a set of conditions only the “best” adapted (i.e. fittest) to these conditions prevails.

If only the best adapted prevail, how do we obtain diverse populations? What does mathematics

tell us about these biological processes? In his work, Darwin argues that the most diversified

descendants are favoured, which can lead to two distinct branches of sub-populations, ultimately

explaining the emergence of two species from one [48]. This evolutionary process could explain

the existence and drivers of diversity which can have implications in how diseases spread in a

population.

There has been evidence that diverse populations can increase or decrease disease prevalence
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(i.e. proportion of infected in a population) [30]. The e↵ect where populations of hosts with high

diversity inhibit disease spread is known as the dilution e↵ect. Biologists have adopted two main

perspectives on this e↵ect, mainly, that loss of diversity is correlated with higher levels of disease

prevalence; and conversely, that high parasite diversity needs high host diversity, thus increasing

diversity will increase diseases [56]. Untangling the main factors of this e↵ect can be complicated but

mathematical models can help us predict these outcomes. Diversity, also referred to as variation,

can happen at a genotypic level, where the composition of genes is altered, or at a phenotypic level,

where the composition of observable traits changes.

It has been shown that hosts can vary in their susceptibility to infection, and thus the harm

inflicted by a pathogen will vary among hosts ([14], [24], [25], [45], [41]). On one hand, this harm

is characterized by the host’s fitness, which accounts for the host’s reproductive success. On the

other hand, virulence, which can be defined as the cost to the host due to infection, translates into

the reduction in host fitness [3]. Pathogens can a↵ect host fitness and promote the evolution of

defense strategies including resistance (i.e. avoiding or fighting infection), control (i.e. reducing

parasite replication) and tolerance (i.e. living and reproducing with infection) [55].

The relationship between host susceptibility and virulence has been established by what is

known as the trade-o↵ hypothesis in which the parasite needs to harm the host in order to be

transmitted. It argues that transmission and duration of an infection cannot be simultaneously

maximized by a parasite. In fact, in the case of obligate killers such as Metschnikowia, the parasite

may be expected to evolve very high virulence [46]. However, if virulence plays a role in other

mortality sources (i.e. predation risk) other outcomes such as decreased virulence, evolutionary

branching, and evolutionary cycles are possible [34]. We will explore some of these outcomes in

more detail in Chapter 2.

Many studies have provided empirical support of the trade-o↵ hypothesis between virulence and

parasite transmission [3]. Three limitations of this hypothesis are that it relies on how virulence is

defined, trade-o↵s might not be unique, and testing the trade-o↵ hypothesis empirically is di�cult

[4]. Very little is known about the relationship between traits apart from what can be inferred from

experimental data and biologists’ understanding of the underlying mechanisms that come into play;

thus, this hypothesis has its fair share of critiques [22].
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The strength of the trade-o↵ hypothesis lies in its simplicity. Adding a simple constraint to an

epidemiological model allows one to make powerful predictions in evolutionary epidemiology [3].

Ecological and evolutionary dynamics can occur at similar or di↵erent timescales [23]. Thus, our

assumptions on the timescale at which these interactions happen will play a role in deciding which

mathematical framework to use. We will further study evolution in a short and long-term timescale

by incorporating di↵erent trade-o↵s in Chapter 2 and Chapter 3.

1.2 Why study Daphnia?

Understanding the interplay between ecology, epidemiology, and evolution from a theoretical

perspective has been a challenge. In the last few decades Daphnia, commonly known as the “water

flea”, has been a model system to provide insights about the connections between ecology, evolution,

and infectious diseases [31]. Their importance is highlighted by the wide ecological roles they play

which can be reviewed in the works of [70]. To study such interactions we focus on the zooplankter

Daphnia dentifera which may experience yearly epidemics of the virulent fungus Metschnikowia

bicuspidata in late summer and fall ([41], [42], [55]). We provide an illustration of the main

interactions in the Daphnia-Metschnikowia system in Figure 1.2.

Predators

Hosts

Resources

Infections

Spores

Figure 1.2: Main interactions among Daphnia, spores, resources, and predators.
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Daphnia become infected when they encounter the fungal spores that are present in the water

column through feeding. They are non-selective feeders and do not distinguish the fungal spores

that make them sick from the algae they consume. The parasite is obligate killer since it depends

on the host for reproduction and on the host’s death for transmission. Once consumed, the spores

must pierce the host’s gut wall to reproduce within the host. When infected hosts die, spores are

then released to the water column where they can infect new hosts.

In many midwestern lakes, Daphnia dentifera are preyed upon by visually oriented predators

such as the blue gill sunfish. Daphnia, which are normally translucent, become more opaque as the

infection progresses, and therefore more visible to predators [43]. Thus, infected host are preyed

upon at a higher rate. Once infected Daphnia are consumed by the bluegill fish, it leads to a net

loss of fungal spores [80].

Daphnia dentifera has been described as an ideal system to study host resistance since the

parasite that a✏icts it shows genetic diversity, which removes the possibility for coevolution. Thus,

one can test for parasite-driven evolution directly [74]. In the case of our system of study Daphnia–

Metschnikowia, this cost is compounded by the fact that infected individuals experience higher

predation rates that uninfected host. Host susceptibility and virulence are not the only trade-o↵

that has been observed in disease systems. Other examples of trade-o↵s suggested for the Daphnia

system include: fecundity-tolerance, feeding rate versus spore yield and fecundity. We explore some

of these trade-o↵s in more detail in Chapter 2 and Chapter 3.

1.3 Overview: Modelling Daphnia Epidemics

The use of compartmental models to understand the spread of disease in biological systems is

not unique for the Daphnia system. Other vector-borne diseases transmitted by various species of

mosquitoes such as the West Nile virus, dengue fever, malaria, Zika virus have been extensively

studied under this framework [82]. In fact, similar to Daphnia, bumble bees experience infection

through feeding, however the social hierarchy of bees requires a di↵erent definition of the com-

partments of the models ([16], [17], [29]). In this thesis, we build up from simple models and

add complexity as we study di↵erent questions regarding how disease spreads in the Daphnia-

Metschnokawia system. Here we provide a general overview of the models used throughout the
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main text in hopes that the reader can get a bigger picture of what our models will attempt to

answer and the assumptions that underlie them.

In Chapter 2, we use a Susceptible-Infected (SI) model (see Figure 1.3) to study the short-term

evolution of host in our system. Similar models have been used in the literature ([41], [45]). In this

formulation, we keep track of susceptible (S) and infected (I) individuals, and the transitions in/out

and between compartments. We focus mostly on three main types of interactions: births, deaths,

and infection. Using a Quantitative Genetics framework we show that the short-term evolution of

hosts, can lead to the termination of an epidemic and reduced peak disease prevalence. Assuming

a trade-o↵ among virulence and two traits: host susceptibility and predation selectivity; we show

virulence evolves to a lower value and increases disease prevalence.

S I

Births

Deaths

Infection

DeathsBirths

Figure 1.3: Illustration of Susceptible-Infected (SI) model.

The second model formulation we will use the Susceptible-Infected-Spore-Algae model, which

we denote by SIZA model as a short hand. Similar models to this formulation have been used

to understand the role that spores, resources (i.e algae) and competitors play in the spread of

disease [30]. By including the spore (Z) and algae (A) compartments, we can incorporate two

new interactions: feeding and the release of spores back into the system through the death of

infected individuals. This model extends our previous SI model (see Figure 1.4). We will use

this formulation in Chapter 3, to explore Daphnia’s role as consumers and how the long-term

interactions of these four compartments impact the evolutionary outcomes for our system.
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IS

ZA

Spore Release

Births Deaths

Births

Infection

Deaths

Feeding Rate

Loss Loss

Figure 1.4: Illustration of Susceptible-Infected-Spores-Algae (SIZA) model.

In Chapter 4, we expand this formulation further by introducing an exposed compartment

denoted by E (see Figure 1.5). Recent laboratory studies have data that newly suggests Daphnia

are able to recover from an infection [79]. For simplicity, we exclude from the figure the births

and death of susceptible, exposed, and infected individuals. In this joint work with Tara Stewart-

Merrill, we use a di↵erential equations model (i.e. SEIZAS model), to study how these immune

responses (clearance) and physiological barriers (resistance) impact the disease dynamics of our

system. We show that these recovery mechanisms reduce disease prevalence and the number of

secondary infections. In the absence of recovery, our system exhibits damped oscillations. Once

recovery is introduced, these oscillations begin to dampen at a faster rate.
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S E I

ZA

Exposure Infection

Resistance

Clearance

Spore Release

Loss

Feeding Rate

Loss

Figure 1.5: Illustration of Susceptible-Exposed-Infected-Spores-Algae (SEIZAS) model.

This inspired us to incorporate demographic stochasticity in our model, which has been shown

to prevent the dampening of oscillations observed in deterministic models. By using a stochastic

di↵erential equation formulation, we capture two behaviors: sustained oscillations and extinction of

the disease in Chapter 5. In Chapter 6, we incorporate clearance as a function of age since infection

using a partial di↵erential equation model. We show that clearance leads a reduction in secondary

infections and disease prevalence. However, when compared with a model without clearance, its

qualitative behavior does not change significantly. Finally, in Chapter 7 we provide an overarching

summary of our findings and propose further directions of research.
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Chapter 2

Short-term Evolution of Hosts

2.1 Introduction

When thinking about the processes that lead to biologically diverse populations, there has been

evidence that changes at the individual level (e.g. genetic variation) and at the population level

(e.g. introduction and persistence of new strategies or changes in the environment) exhibit very

interesting feedback loops ([24], [62]). For example, changes in the size of populations and hence in

the strength of the interaction among them can cause a change in the genotypes that are present

[13]. We are interested in studying through di↵erent evolutionary frameworks the conditions in

which these feedback loops result in changes in disease prevalence and duration of an epidemic. We

will do so under two frameworks: Quantitative Genetics and Adaptive Dynamics. In this chapter,

we will focus on using these methods to understand the short-term and long-term evolution of

epidemiological relevant traits for our system: host susceptibility, virulence, predation, among

others.

2.2 Quantitative Genetics Approach

Using Quantitative Genetic (QG) models we can study the evolution of a single trait due to

genetic variation. These models are derived from the assumption that traits are determined by a

large amount of genetic loci with small additive e↵ects [1]. Thus, genetic variation is incorporated

in these models by including the additive genetic variance of each trait of interest. This formulation

allows us to model the mean change of a specific trait over time when mutations arise at a similar

timescale as the ecology of a disease ([23], [66]). When evolutionary and ecological processes happen

at similar timescales (e.g. within an epidemic season), it is often referred to as rapid evolution. We
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can use the Quantitative Genetics approach to incorporate the genetic variation in the system and

study short-term evolutionary dynamics. One advantage of this approach is that is allows us to

couple the epidemiological and evolutionary processes with each other which can provide insights

for experimental tests.

Susceptible-Infected (SI) Model

As a starting point, we consider a susceptible–infected (SI) model based on [41]. In this formu-

lation, the susceptible class increases due to the births of both susceptible and infected individuals

at a rate (b). However, infected individuals experience a lower fecundity due to the infection which

we account with the parameter (⇢), for 0 < ⇢ < 1. Births are controlled by incorporating a crowd-

ing parameter (c) which can be interpreted as the inverse to carrying capacity. Susceptible hosts

die due to background mortality (d) and due to predation at a rate (pS). Note that, the death rate

of infected individuals is increased by v due to the infection (i.e virulence). Also, infected hosts are

being preyed upon more intensely at a rate ✓pS > pS due to selective predation arising from the

fact that as spores reproduce within the host they become more opaque and thus more visible to

predators. We can interpret ✓ as follows: if ✓ = 1, implies no preference among host, and if, ✓ > 1,

predators prefer infected prey. The model then reads:

dS

dt
=

Birthsz }| {
b(S + ⇢I)(1� c(S + I))�

Deathz }| {
(d+ pS)S�

Transmissionz}|{
�SI (2.1)

dI

dt
=

Transmissionz}|{
�SI �

Deathz }| {
(d+ v + ✓pS)I (2.2)

We are interested in obtaining the equation for the evolution of the mean transmission rate (�)

which quantifies host susceptibility to the infection. We follow the proposed general recipe provided

in [37] based on Quantitative Genetics, using the dynamical system (2.1)–(2.2) as an example.

Assuming that transmission, �, is the only phenotype of the host of interest, we can formulate the

following epidemiological model,

dS

dt
= f [S, I; ~p(�)], (2.3)

dI

dt
= r[S; ~p(�)]I, (2.4)
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where S and I are the density of susceptible and infected host, ~p is a vector of all parameters in the

model (some which could depend on �), f and r are the vectors of the expression for the dynamics

the susceptible and infected class, respectively. The coupled evolutionary-ecological-epidemiological

dynamics will be given by deriving an equation that describes the changes in host susceptibility

over time. A formulation to obtain the mean change of the host susceptibility over one generation

will be given by ([1], [2]),

��⇤ =
(Va/Vt)

R
(� � �⇤)W (�,�⇤)P (�,�⇤)d�

W
, (2.5)

where Va and Vt account for the additive and total phenotype variance, W is the individual fitness,

P denotes the probability density of trait values � in a population with mean trait �⇤ and W

represents the mean fitness of the population. The additive variance Va captures the deviation from

the mean phenotype due to inheritance between related allele’s and their e↵ect on the phenotype.

The total phenotype variance Vt captures the additive e↵ect of the total genetic and environmental

variation. We can rewrite W by approximating the fitness function by its Taylor series about

� = �⇤.

W (�,�⇤) = W (�⇤,�⇤) + (� � �⇤)
@W

@�

����
�=�⇤

+
1

2
(� � �⇤)2

@2W

@�2

����
�=�⇤

+
1

6
(� � �⇤)3

@3W

@�3

����
�=�⇤

+ ...

Under the assumption that � has a symmetric (usually normal) distribution function, all terms

proportional to odd powers of (� � �⇤) of the integral expansion of become zero, and thus we are

left with,

��⇤ =
Va

VtW

Z "
(� � �⇤)W (�⇤,�⇤) + (� � �⇤)2

@W

@�

����
�=�⇤

+ ...

#
P (�,�⇤)d�,

=
Va

VtW

Z "
(� � �⇤)2

@W

@�

����
�=�⇤

+ ...

#
P (�,�⇤)d�

⇡
✓

Va

VtW

◆ 
Vt
@W

@�

����
�=�⇤

!

Clonal reproduction is an important aspect in the analysis of phenotypic plasticity, meaning

the ability of one genotype to produce more than one phenotype when exposed to di↵erent envi-
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ronments. With Daphnia , it is possible to identify phenotypes that can a↵ect ecological dynamics

through rapid evolution and the genotypes that underlie them [70]. Since Daphnia are clonal or-

ganisms, they are a model system of study and we can interpret the additive genetic variance (Va)

as the variance among clones which we denote by (Vc).

��⇤ =

✓
Va

W

◆ 
@W

@�

����
�=�⇤

!
=

✓
Vc

W

◆ 
@W

@�

����
�=�⇤

!
(2.6)

We can define the fitness W of individuals with a particular trait value as the instantaneous

reproductive rate minus instantaneous death rate of individuals with that trait value [2]. Let

N = S+I denote the total population and suppose as in ([42], [45]) that the fitness W is maximized

when the growth rate of susceptible individuals is maximized, namely,

W (�) =
f(S, I;�)

N
=

b(S + ⇢I)(1� c(S + I))� (d+ pS)S � �SI

N

and that mean fitness will be given by W (�) = S/N . Thus, the equation for the mean change in

host susceptibility will be then given by,

d�

dt
= �VcI (2.7)

Equation (2.7) tells us that transmission is a decreasing function over time and it decreases pro-

portionally to the ratio of infected to susceptible hosts which is the same as the expression found

derived by (Du↵y and Sivars-Becker, 2007) ([45],[41]). However, to make this formulation biolog-

ically feasible � should always be positive or greater than zero (� � 0). Thus, as � decreases the

clonal variation must decrease as well. In particular, we can assume that the variance is propor-

tional to host susceptibility, V (�) = Vc� [42]. The full formulation for the dynamical systems is

then given by,

dS

dt
=

Birthsz }| {
b(S + ⇢I)(1� c(S + I))�

Deathz }| {
(d+ pS)S�

Transmissionz}|{
�SI (2.8)

dI

dt
=

Transmissionz}|{
�SI �

Deathz }| {
(d+ v + ✓pS)I (2.9)

d�

dt
= �Vc�I (2.10)
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Thus, the rate of host susceptibility depends on the density of infected host and mean host

susceptibility. Host susceptibility evolves more rapidly as the number of infected increases.

2.3 Numerical Results

To analyze the e↵ect of short-term evolution in host susceptibility, we performed numerical

simulations. We see from Figure 2.1 that as the clonal variability increases prevalence decreases

over time. In addition, the length of the epidemic decreases leading to a termination of the epi-

demic. These results indicate that variation in host susceptibility (i.e our transmission rate �) has

important implication on the outcome of an epidemic and may lead to it’s termination.
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Figure 2.1: Populations densities for di↵erent levels of clonal variance (Vc).

These results illustrate that variability among hosts can result in a reduction in both epidemic

duration and amount of infections due to short-term evolution of host susceptibility. This provides

evidence how coupling ecological and evolutionary dynamics alter the observed behavior in our

system. Mainly, as clonal variability among host increases we see a transition from an endemic to

a disease-free state. In particular, as Vc increases, the mean host susceptibility decreases until it

stabilizes at a fixed value corresponding to the absence of infected individuals. Also, the duration

of the epidemic is reduced for higher values of clonal variation. While in all cases peak prevalence is

13



achieved in 40 days, the termination of the epidemic ranges from 100 to 150 days for higher values

of clonal variation (i.e. Vc 2 {0.01, 0.02}). Peak prevalence which was around 30% when there was

no variation (Vc = 0), is reduced to approximately 23%.

Host susceptibility and virulence trade-o↵

Our model formulation assumes that other parameters in our model do not depend on host

susceptibility (�) and this is the only parameter that experiences genetic variation. There is

evidence that trade-o↵s can exist among traits and these can play a role in the spread of disease.

Thus, instead of focusing on the mean change in host susceptibility as in equation (2.10), we will

derive an expression for the mean change in virulence v. This will account for indirect e↵ects of

changes in virulence on host susceptibility. One of the most well studied one is the virulence-

transmission trade-o↵ in which the pathogen incurs in a cost when it increases transmission. Some

of the common trade-o↵s assumed in the literature ([21], [73], [76], [81]) include: �(v) = Cva,�(v) =

Cv

v + a
+B,�(v) =

1

A+Be�Cv
and �(v) =

Cv

v + a

✓
1�Ke�

(v�ṽ)2

�2

◆
. A common assumption is that

transmission increases with virulence at an decelerating rate (i.e. �0(v) > 0 and �00(v) < 0). One

could then consider how the evolution of virulence might a↵ect our results. Suppose that the trade-

o↵ between virulence and host susceptibility is given by �(v) =
Cv

(v + a)
. We can find values for C

and a by fitting this curve to two points, (0,0) and (0.05, 0.06).
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Figure 2.2: Examples of di↵erent trade-o↵s among host susceptibility and virulence.
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Changes in parasite virulence a↵ects can also a↵ect other sources of host mortality and lead

to more complicated interactions [34]. For example, if higher virulence leads to increased risk of

predation then the parasite could evolve to decreased levels of virulence [33], evolutionary branching

of the host [72], and even evolutionary cycles of virulence [61]. Since Daphnia experience selective

predation we are interested in understanding how this a↵ects the dynamics of our system. We can

derive an equation for the mean change in virulence, by

�v⇤ =

✓
g

W

◆✓
@W

@v

����
v=v⇤

◆
(2.11)

where g represents the genetic variance in virulence. Parasite fitness is maximized when the growth

rate of infected individuals is maximized,

W (v) =
�(v)SI � (d+ v + ✓pS)I

N
, and that mean fitness will be given by W (v) = I/N

Hence, the equation for the mean change in virulence will by given by,

dv

dt
= g

✓
S
d�

dv
� pS

d✓

dv
� 1

◆
(2.12)

Thus, the full formulation for the dynamical systems is then given by,

dS

dt
=

Birthsz }| {
b(S + ⇢I)(1� c(S + I))�

Deathz }| {
(d+ pS)S�

Transmissionz}|{
�SI

dI

dt
=

Transmissionz}|{
�SI �

Deathz }| {
(d+ v + ✓pS)I (2.13)

dv

dt
= g

✓
S
d�

dv
� pS

d✓

dv
� 1

◆

First, we study the case where ✓ is constant. From the model (2.13), we can compute the

equilibrium value for virulence by,

dv

dt
= g

✓
S
d�

dv
� 1

◆
= 0 ) d�

dv
=

1

S⇤

In this case, we see that g does not play a role in determining the equilibrium value for virulence
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since it does not depend on virulence itself. However, this doesn’t lead to significantly di↵erent

qualitative results. By solving for v, in the equation above, we obtain that, v⇤ =
p
ad+ a✓pS =

0.05664 for �(v) = Cv/(v + a), and v⇤ =
ad+ a✓pS

1� a
= 0.0631 for �(v) = Cva. To study the

e↵ect of letting ✓ be a function of virulence, we consider two trade-o↵s found in the literature: a

linear [33] and a saturating function of virulence [61]. Linear and saturating functional responses

for predators types have been analyzed for the Daphnia in [54] where predation is dependent on

predator density, a prey handle time, and attack risk. Here we only account for predation through

pS and the predator selectivity parameter ✓ which we allow to depend on virulence v as seen in

Figure 2.3.
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Figure 2.3: Selective predation parameter (✓) as a function of virulence (v).

In the first case, suppose ✓(v) = ✓0+✓1v, where ✓0 is the baseline predation increase experienced

by infected host, and ✓1 the rate at which it changes due to virulence. We fit this line across two data

points, mainly (0, 1) and (0.05, 9). To obtain, ✓(v) = 1+ 160v. Secondly, suppose ✓(v) =
m

e�lv + n
.

As v goes to infinity ✓(v) approaches the value m/n, and l allows us to control the shape of ✓ [61].

Ranges for ✓ (1  ✓  20) were chosen according to ([54], [77]), thus we take m = 20n so that ✓(v)

saturates to the value 20. In both cases, considering the e↵ect host susceptibility and predation

selectivity as a function of virulence leads to virulence decreasing and disease prevalence increasing

over time, as shown in Figure 2.4.
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Using equation (2.12) we see that for the linear case virulence stabilizes at v⇤ =

s
a(d+ ✓0pS)

1 + ✓1pS
=

0.01176. While we cannot solve for v⇤ explicitly for the saturating case we find that v⇤ = 0.01337

numerically. For g = 0, which corresponds to the case where there is no genetic variability, preva-

lence stabilizes at approximately 37%. When considering ✓(v) as a saturating function of virulence,

disease prevalence is increased from 70 % to 77% which is due to the fact virulence evolves to a

slightly higher value over time. Thus, accounting for the mean change of virulence over time leads

to roughly a 40% increase in disease prevalence.
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Figure 2.4: Populations densities for di↵erent levels of genetic variance g with �(v) = Ca
(v+a) .

(a) Linear functional response, ✓(v) = 1 + 160v. (b) Saturating functional response, ✓(v) =
m/(exp(�lv) + n), where m = 20n, n = 0.0526, l = 54.89.

2.4 Discussion–Future Directions

Using Quantitative Genetics, we have seen the e↵ects of short-term evolution of host susceptibil-

ity and predation selectivity in Daphnia populations. In our model given by equations (2.8)–(2.10)

genetic variability in host susceptibility leads to the early termination of an epidemic and lower

values of peak disease prevalence. This is due to the fact that mean host susceptibility decreases

over times as clonal variation increases which is also seen in the works of [45].
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By assuming an explicit trade-o↵ among both host susceptibility and virulence there was not

a significant di↵erence in the dynamics of our system. However, when both host susceptibility

and our predation selectivity parameter were taken as a function of virulence, we observed that

virulence evolves to a lower value and increases disease prevalence. Using a saturating trade-o↵

for our selective predation parameter leads to higher prevalence. This suggests the shape chosen

for the trade-o↵ among traits leads to quantitative but not qualitative di↵erences. Contrary to the

previous model, which only considered the evolution of host susceptibility, the amount of genetic

variance did not a↵ect the results significantly.

A future direction would be to also consider trade-o↵s that account for within-host replication

process and virulence. In his work (Day, 2002), provides evidence that virulence may evolve through

host exploitation [36]. Mainly, when pathogens rely on the host to increase their spore production

and the infected host’s death to be transmitted this can lead to increased virulence. When within-

host replication is taken into account new trade-o↵s can emerge for our system. Let ✏ denote the

level of within-host replication, we can write a functional form for our parameters by: v(✏) = ✏,

�(✏) = 2(1� exp(�⇠�✏)) exp(�✏),�(✏) = (1� exp(�⇠�✏)). In the next section, we incorporate the

e↵ects of long term evolution and how this may a↵ect the interaction among competing hosts with

di↵erent traits. In particular, we explore the e↵ect long-term variability and potential e↵ect of host

susceptibility on other parameters in our model using an Adaptive Dynamics framework.
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Chapter 3

Long-term Evolution of Hosts

3.1 Introduction

Another important approach to understanding the evolution of traits is Adaptive Dynamics

(AD) ([50], [68]). In contrast to models based on Quantitative Genetics, one central assumption

of this approach is that evolution happens at a slower timescale than ecological processes. This

approach allows us to consider the long-term behaviour of a system in which a new individual enters

a population that is at its equilibrium. In particular, it considers the situation when mutations are

of small e↵ect and happen rarely. This framework treats the host which has experienced mutations

as an invader. By applying an invasion analysis, we can then predict the outcome of the interactions

between a resident and mutant host. Will the resident or mutant population persist exclusively

or is there a possibility that they will coexist? Based on evolutionary game-theory, evolutionary

invasion analysis has become a widely used tool in evolutionary biology [58]. This theory has been

used to understand a variety of biological problems such as the maintenance of genetic variation,

co-evolutionary dynamics, diversification of species, among others ([39], [49], [60], [83]).

We will use the Adaptive Dynamics framework to derive an expression of the growth rate of

a rare mutant which is introduced to a population composed of resident traits, which we call the

invasion fitness function. In this context, the invasion fitness is defined as the growth rate of the

rare mutant y in a population of x as s(y, Ex). To distinguish this as the invasion fitness, where y is

rare we can also denote it as sx(y) for shorthand. Our invasion fitness tells us how a rare individual

with trait y grows in an environment determined by a population of traits x. In particular, we are

interested in deriving mathematical conditions that determine the competitive outcomes between

these two populations. To do this, we will analyze the properties of the invasion fitness function.

Since sx(x) = 0 by definition, the Taylor Expansion of sx(y) about y = x is given by,
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sx(y) ⇡ D1(x)(y � x) +
1

2
D2(x)(y � x)2 + ..., (3.1)

where D1(x) =
@sx(y)

@y

����
y=x

and D2(x) =
@2sx(y)

@y2

����
y=x

A mutant trait y can successfully invade if sx(y) > 0. Only mutants with y > x or y < x can

invade so that D1(x) is non-zero and the direction that the population evolves is certain. Since we

can define this invasion fitness for all pairs x and y, we can construct the fitness landscape, which

is a 3-D plot of x, y, and sx(y). On this landscape we can follow the evolution of the population. In

particular, we know that the population will move through the trait space according to the fitness

landscape until we have a point where D1(x) is equal to zero.

Definition 3.1.1. We call x⇤ an evolutionary singular strategy, if D1(x) =


@sx(y)

@y

�

y=x⇤
= 0.

The adaptive dynamics of the trait x will be determined by its fitness gradient D1(x).

dx

dt
= mD1(x) =

1

2
Nµ�2D1(x) (3.2)

where the parameter m is related to the mutation processes (i.e. mutation rate µ and variance

�), the population size N which for now we assume to be constant, though it could also depend

on the trait x ([28], [39]). Combining equations (3.1) and (3.2) we see that if D1(x) > 0, then

only mutants with y > x can invade and there will be an increase in x. If D1(x) < 0, then only

mutants with y < x can invade and there will be an decrease in x. However, we can’t predict the

evolution of this point using the fitness gradient D1(x). Therefore, we need other conditions to

help us classify the behavior of these points.

Any singularity can be categorized in one of eight types of singularities based on its second

derivative [20]. Let x⇤ denote an evolutionary singular strategy and consider the Taylor expansion

of the invasion fitness function about y = x⇤. By definition D1(x⇤) = 0 and sx⇤(x⇤) = 0; thus, our

invasibility condition depends on the second derivative of sx(y).

sx(y = x⇤) ⇡ sx⇤(x⇤) +D1(x)(x
⇤ � x) +

1

2
D2(x)(x

⇤ � x)2 + ... =
1

2
D2(x)(x

⇤ � x)2 + ...
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When D2(x) > 0 the invasion fitness function sx(y) has a local minimum with respect to y at

the critical point (x⇤, x⇤); therefore x⇤ can be invaded by near by traits. On the other hand, when

D2(x) < 0, sx(y) has a local maximum with respect to y and x⇤ cannot be invaded by nearby

traits. We summarize these conditions below,

sx(y) > 0 () D2(x) =


@2sx(y)

@y2

�

y=x=x⇤
> 0 () x⇤ can be invaded (3.3)

sx(y) < 0 () D2(x) =


@2sx(y)

@y2

�

y=x=x⇤
< 0 () x⇤ cannot be invaded (3.4)

However, it may be invaded by a distant mutant. Thus, another important question we must ask

is, can x⇤ be achieved through the evolution of the trait? In some cases, the answer is no. Because,

the population moves along the fitness gradient, we must have that sx(y) > 0 for values of y closer

to x⇤ than x (i.e. |x⇤ � x| > |x⇤ � y|) and conversely, sx(y) < 0 for values of x closer to x⇤ than y

(i.e. |x⇤ � y| > |x⇤ � x|). This occurs only if the derivative of the fitness gradient with respect to

x is negative, namely,

@D1(x)

@x

����
y=x=x⇤

=
@2sx(y)

@y2

����
y=x=x⇤

+
@2sx(y)

@x@y

����
y=x=x⇤

< 0 (3.5)

When a singularity is both evolutionary stable and convergence stable, meaning it satisfies

equations (3.4) and (3.5), it represents a stable endpoint of evolution. This type of singularity is

called a continuously stable strategy (CSS). We can have an evolutionary attractor or repellor, in

which the trait evolves to or away from this singular point, respectively.

Definition 3.1.2. An evolutionary singular strategy (ess) is convergence stable if the population

evolves towards x⇤ so that mutants are only invaded by the strategies close to x⇤.

However, if a singularity is convergence stable but not evolutionary stable, meaning equation

(3.5) holds but (3.4) fails, it leads to the evolution towards the singularity and the disruption of it

into two di↵erent traits. This type of singularity is called evolutionary branching point.

Definition 3.1.3. An evolutionary singular strategy is a branching point if the population

evolves towards x⇤ and around the critical point it is possible for both sy(x⇤) > 0 (x⇤ invasible by

nearby mutants) and sx⇤(x) > 0 (x⇤ can invade nearby populations).
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This last type of singularity could lead to an environment in which multiple traits coexist. We

are interested in studying if evolutionary branching is possible in our system.

3.2 Daphnia in their role as hosts

It has been shown in the past that host may experience evolutionary branching through the

evolution of di↵erent defense mechanisms. For example, hosts with di↵erent resistance and tolerance

mechanisms are able to coexist ([15], [26]). In addition, there is evidence that the presence of a

predator may lead to evolutionary branching of the host [72]. Thus, we study the role of these

mechanisms on the long-term outcomes when only infected individuals experience mutations, when

both susceptible and infected classes are a↵ected by mutations, and finally, how are these previous

results altered once we include resource acquisition.

To compare the e↵ects of short-term and long-term evolution in our system, we expand on the

SI model given by equations (2.1)–(2.2), previous susceptible-infected model given by introducing

mutant susceptible and infected classes Sm and Im when the resident population S, I have reached

an equilibrium as in ([25], [26]).

Only Infected Daphnia Mutate

To find the invasion fitness of a mutant strain, we extend the previous model to include a

resident, (S, I), and mutant host Im of the infected class by considering,

dS

dt
= b(S + ⇢I))(1� c(S + I + Im))� (d+ pS)S � (�(v)I + �(vm)Im)S,

dI

dt
= �(v)SI � (d+ v + ✓pS)I,

dIm
dt

= �(vm)SIm � (d+ vm + ✓pS)Im,

(3.6)

whereN = S+I+Im denotes the total population. Following the work of [81], in which only infected

individuals will experience mutations, we assume host susceptibility will depend on virulence. For

our system, we obtain six equilibrium points. The trivial equilibrium in which all populations

become extinct, (0, 0, 0), the disease free equilibrium, where I⇤ = I⇤m = 0, we see that the susceptible

class reaches Sdf =
1

c
(b�(d+pS)). If there are no longer any resident nor mutant infected host (i.e.
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I⇤ = 0 or I⇤m 6= 0), we obtain, (S⇤, 0, I⇤m) and respectively (S⇤, I⇤, 0) in which one host out-competes

the other and we one remains in the system. Finally, our equilibrium point of interest is when all

populations remain present (S⇤, I⇤, I⇤m).

One way to determine the invasion fitness function for our system is by performing a linear

stability analysis. First, we compute the Jacobian matrix for our system. The elements of the

jacobian matrix, ai,j , (i.e. the term in the ith row and jth column of J) are the per capita e↵ect of

species j on the rate of increase of species i, with all other species at their equilibrium.

J =

2

66664

@S0

@S
@S0

@I
@S0

@Im

@I0

@S
@I0

@I
@I0

@Im

@I0m
@S

@I0m
@I

@I0m
@Im

3

77775
=

2

64
Jres P

O Jmut

3

75

At the equilibrium where the resident populations is at it’s equilibrium and no mutant is present,

(S⇤, I⇤, 0), the invasion fitness for the rare mutant will be determined by the sub-matrix Jmut,

sv(vm) = �(vm)S⇤ � (d+ vm + ✓pS) (3.7)

= �(vm)


d+ v + ✓pS

�(v)

�
� (d+ vm + ✓pS) (3.8)

Assuming the same trade-o↵ among host susceptibility and virulence as in the previous section,

�(v) = Cv/(v + a), we can find the evolutionary stable strategy (ess) which makes equation (3.8)

equal to zero.
@sv(vm)

@vm

����
vm=v=v⇤

= �0(v⇤)


d+ v⇤ + ✓pS

�(v⇤)

�
� 1 = 0 (3.9)

Hence, v⇤ = (ad+ ✓pS)/(a� 1). which for our parameter values is equal to v⇤ = 0.0566 which

is not that di↵erent to our default value for virulence. This suggests that for an invader to survive

in the system under our chosen trade-o↵ it must evolve to have a similar virulence as the resident

strain.
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Susceptible and Infected Daphnia Mutate

Similarly, we can extend the previous model to incorporate the assumption that both susceptible

and infected host experience mutations as follows,

dS

dt
= b(S + ⇢I)(1� cN)� (d+ pS)S � �S(I + Im), (3.10)

dI

dt
= �S(I + Im)� (d+ v + ✓pS)I, (3.11)

dSm

dt
= bm(Sm + ⇢mIm)(1� cmN)� (d+ pS)Sm � �mSm(I + Im), (3.12)

dIm
dt

= �mSm(I + Im)� (d+ vm + ✓mpS)Im, (3.13)

where N = S + I + Sm + Im denotes the total population. This is following [25] in which infection

of either strain is related to the combined density of the infected. Here b denotes the maximal birth

rate from both susceptible (S) and infected class (I), however we assume infected individuals su↵er

from a lower fecundity rate which we account by (⇢), and that births will be density dependent

through consumption of resources (c). The susceptible class is reduced due to the background

mortality rate (d) and predation rate (pS). Individuals will become infected with host susceptibility

(�), which we allow to depend on the disease induced mortality (v).

The system (3.10)–(3.13) has six equilibrium points. The trivial equilibrium point (0, 0, 0, 0)

where both host classes become extinct is obtained by inspection. When there are no infected indi-

viduals present (i.e. I = Im = 0) then the disease-free equilibrium points are given by (Sdf , 0, 0, 0)

and (0, 0, S(m)
df , 0) where Sdf =

b� (d+ pS)

cb
and S(m)

df =
bm � (d+ pS)

cmbm
. Other equilibrium points

correspond to a single infected strain, namely, (S⇤, I⇤, 0, 0) and (0, 0, S⇤
m, I⇤m). Finally, we obtain the

endemic equilibrium (S⇤, I⇤, S⇤
m, I⇤m). In this formulation, we do not specify a particular functional

trade-o↵ between transmission and other model parameters.

Invasion Fitness Function: SI model

The invasion fitness function of a mutant can be derived in a variety of ways. One may chose

a biological argument that focuses on computing the average number of o↵-springs of the mutant

or study the stability of the equilibrium in which the resident population is at it’s steady state.

In this section, we give the derivation of the invasion fitness function for our models using linear
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stability analysis and verify this result by using a more biologically motivated analysis in Appendix

A.3. The Jacobian matrix for this model is given by,

J =

2

64
Jres P

O Jmut

3

75

So, the invasion fitness for the rare mutant will be determined by the sub-matrix Jmut at the

equilibrium point in which the resident population is at its steady state and the mutant is introduced

(i.e. (S⇤, I⇤, 0, 0)),

Jmut =

2

64
bm(1� cm(S⇤ + I⇤))� (d+ pS)� �(vm)I⇤ bm⇢m(1� cm(S⇤ + I⇤))

�mI⇤ �(d+ vm + ✓mpS)

3

75

has trace and determinant given by,

trace(Jmut) = bm(1� cm(S⇤ + I⇤))� (d+ pS)� �mI � (d+ vm + ✓pSm), and

det(Jmut) = (bm(1�cm(S⇤+I⇤))�(d+pSm)��mI⇤)(�(d+vm+✓mpSm))�b⇢m�m(1�cm(S⇤+I⇤))I⇤

If det(Jmut) > 0 we notice that trace(Jmut) < 0 so a su�cient condition for stability is given by

det(Jmut) > 0. After some algebraic manipulations that the fitness function is given by,

s(~p, ~pm) = bm(1�cmN⇤
r )�(d+pS)+

�mI⇤

(d+ vm + ✓mpS)
(bm⇢m(1�cmN⇤

r )�(d+vm+✓mpS)) (3.14)

This expression allows us to identify key parameters that could determine the competitive outcome

of the resistant versus mutant host traits. We can obtain by symmetry the invasion fitness function

for the resident host,

s(~pm, ~p) = b(1� cNm)� (d+ pS) +
�I⇤m

(d+ v + ✓pS)
(b⇢(1� cNm)� (d+ v + ✓pS)) (3.15)

Here N⇤
r and N⇤

m denote the total resident and invader population, respectively. Both the

resident and mutant host are able to coexist if s~p( ~pm) > 0 and s ~pm(~p) > 0. Note that the outcome

of evolutionary models under this framework rely on the assumption of the existence of a trade-o↵

and it’s shape. These boundaries will be connected by the trade-o↵ function.
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Numerical Results

One can visually analyze the outcomes of an invasion by using techniques such as trade-o↵

invasion plot (TIP). On a TIP, we obtain boundaries that indicate for which trait combinations the

resident trait can be invaded by a rare mutant trait, and reciprocally, when can a mutant strain be

invaded by a resident trait. To visualize these invasibility conditions, we use the fitness functions

and determine when the fitness of the resident trait is zero (i.e sx(y) = 0) and the fitness of the

mutant strain is zero (i.e. sy(x) = 0), respectively since a successful invasion will be achieved if the

value of sx(y) > 0 and sy(x) < 0 or, sx(y) < 0 and sy(x) > 0.

Using equations (3.14) and (3.15), we can obtain parameter regions where that capture the

di↵erent outcomes of competing between the resident and mutant host [27]. In Figure 3.1, we

compare how changes in host susceptibility (�) and other parameters related to infection that can

lead to coexistence of our populations. Mainly, we are see that host susceptibility in relation with

fecundity reduction (⇢), virulence (v), predator selectivity (✓) could potentially lead to coexistence.

The biggest coexistence region is given by a relationship between virulence and host susceptibility.

Host are able to coexist for higher values of virulence and lower values of host susceptibility.
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(a) Host Susceptibility vs. Virulence.

Figure 3.1: Trade-o↵ invasibility plot (TIP) for host susceptibility �m versus (a) virulence vm and
(b) fecundity reduction ⇢m (c) predator selectivity ✓m. Default values are (vm,�m) = (0.05, 0.06),
(⇢m,�m) = (0.75, 0.06), (✓m,�m) = (9, 0.06). The blue and red curves denote the fitness boundary
for the resident and mutant host, respectively. Coexistence regions correspond to the areas between
the two curves.
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Figure 3.1: (cont.) Trade-o↵ invasibility plot (TIP) for host susceptibility �m versus (a) virulence
vm and (b) fecundity reduction ⇢m (c) predator selectivity ✓m. Default values are (vm,�m) =
(0.05, 0.06), (⇢m,�m) = (0.75, 0.06), (✓m,�m) = (9, 0.06). The blue and red curves denote the
fitness boundary for the resident and mutant host, respectively. Coexistence regions correspond to
the areas between the two curves.

Geometrical Tools

When a functional trade-o↵ among traits can be established another visual way to see the

outcome of an series of invasions is using a Pairwise-Invisibility plot (PIP) [28]. These plots show,

for each resident trait value x all the values of y for which the fitness function sy(x) described
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above is positive and its intersection with the 45°line x = y will give us the singular points in which

the selection gradient vanishes. This allows us to classify points in which di↵erent evolutionary

behaviours can be observed. We see an geometrical example of these classifications in Figure 3.2.

Figure 3.2: Example of Pairwise-Invisibility Plots based on [28].

As discussed in ([20], [50], [28]), we can use a PIP plot to classify the behavior of singular

points, as follows:

(a) If a vertical line through the evolutionary singular points lies entirely in the positive region,

the singular point is uninvasible.

(b) If a horizontal line through the point lies entirely in the positive regions, the singular point

can invade when rare.

(c) If the line perpendicular to y = x lies in positive regions, the singular point leads to coex-

istence. Overlapping positive regions obtained by reflecting the image along the line y = x

determines which traits coexist.
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(d) If the positive region lies above the line y = x for values left of the singular point and below

the region for values right of the point, then the point is convergence stable.

Therefore, Figure 3.3a indicates that host susceptibility evolves until an optimal fitness and

there is no selective disruption for this trade-o↵ in the case where only infected individuals mutate.

Figure 3.3b illustrate that v⇤ is uninvasible but not convergence stable under our assumptions.

(a) Only infected Daphnia mutate. (b) Susceptible and Infected Daphnia Mutate

Figure 3.3: Pairwise Invasibility Plot under various assumptions and �(v) =
Ca

v + a
.

3.3 Daphnia in their role as consumers

We extend the previous model by also considering the resources that Daphnia consume since

host becomes infected by ingesting an the fungus Metschnikowia bicuspidata. There has been evi-

dence that Daphnia-dentifera exhibit a trade-o↵ between fecundity and resistance toMetschnikowia

biscupidata that is driven by a variation in feeding rate [44]. In particular, slow feeders consume less

fungal spores which acts as a resistance mechanism but leads to less energy to produce o↵spring.

In addition, Daphnia species that are less susceptible to a parasite create a dilution e↵ect that

inhibits outbreaks in Daphnia dentifera ([30], [53], [70]). Thus, consumption of resources plays and

important role in disease transmission.

Models which incorporate environmental transmission through free-living spores have been

studied in the past ([21], [69]). Their work suggests that evolutionary branching is possible when

considering di↵erent defense strategies or due to selective predation. However, their models do not
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consider the e↵ects other sources of resources may change the observed outcomes. To this end, we

include two new populations classes mainly algae (A) and fungal spores (Z).

dS

dt
=

Birthsz }| {
eSfS(A)(S + ⇢I)�

Deathsz }| {
(d+ pS)S�

Transmissionz }| {
µ
fS(A)

A
SZ (3.16)

dI

dt
=

Transmissionz }| {
µ
fS(A)

A
SZ �

Increased
mortalityz }| {

(d+ v + ✓pS)I (3.17)

dZ

dt
=

Spore
Releasez }| {

�eSfS(A)(d+ v)I

Mortalityz }| {
��Z �

Removalz }| {
fS(A)

A
(S + I)Z (3.18)

dA

dt
=

Logistic growthz }| {

r

✓
1� A

K

◆
A�

Algae
Consumptionz }| {

fS(A)(S + I) (3.19)

What we considered host susceptibility in our previous SI formulation, will be separated into

di↵erent mechanisms that contribute to transmission. Susceptible individuals move into the infected

class after being successfully infected by the parasite as governed by the transmission rate. The

transmission rate, in turn, depends on host density S, the hosts feeding rate fS(A), the relative

density of spores to algal resources Z/A, and the per spore infectivity µ. We assume that Daphnia

are non-selective feeders, hence the spores experience the same risk of being eaten as the algae.

Spore production (spore yield upon death of infected hosts) increases with host growth rate. We

use a functional response to model the intake rate of a consumer as a function of food density (A).

In the case of invertebrates such as Daphnia one can consider a Holling Type II given by,

fS(A) =
fS0A

hS +A
,

where fS0 denotes the maximal feeding rate and hS denotes the half-saturation constant. In

Figure 3.4, we see the behaviour of this function. In particular, for larger quantities of algae

fS(A) approaches it’s maximum value fS0 and at the half-saturation constant is where half of the

maximum intake is reached. This functional response gives us an idea on how much (fS0) and how

fast (hS) algae is consumed.
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Figure 3.4: Illustration of the Holling Type II functional response for the feeding rate fS(A) for
fS0 = 0.32 and hS = 0.05.

In this model, the birth rate depends on the feeding rate fS(A) and is proportional to the

conversion e�ciency eS of the consumed algal resources into Daphnia biomass. Susceptible Daphnia

die at a constant background rate d and are preyed upon at a constant rate pS . But this mortality

rate can vary among the host classes. Hence, spores (Z) are released in the water column at a

rate proportional to the per capita yield of spores �(A) = �eSfS(A) and the death rate of infected

hosts (d + v)I. Spores are removed from the water column when consumed by Daphnia at a rate

proportional to their feeding rate or by other causes (e.g., sinking, UV radiation) at a rate �.

Algae (A) grows logistically in the absence of any Daphnia at an intrinsic rate r and with carrying

capacity K.

Similar to our susceptible-infected (SI) model, we can analyze the outcome of rare mutant host

being introduced to the system, by expanding our previous model and considering the dynamics of

the resident (S and I) and a mutant host (Sm and Im) classes as follows,
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dS

dt
= eSfS(A)(S + ⇢I)� (d+ pS)S � µ

fS(A)

A
SZ

dSm

dt
= eSfSm(A)(Sm + ⇢mIm)� (d+ pS)Sm � µ1

fSm(A)

A
SmZ

dI

dt
= µ

fS(A)

A
SZ � (d+ v + ✓pS)I

dIm
dt

= µm
fSm(A)

A
SmZ � (d+ vm + ✓mpS)Im (3.20)

dZ

dt
= eSfS(A)�(d+ v)I + eSfSm(A)�m(d+ vm)Im � �Z

� fS(A)

A
(S + I)Z � fSm(A)

A
(Sm + Im)Z

dA

dt
= r

✓
1� A

K

◆
A� fS(A)(S + I)� fSm(A)(Sm + Im)

There are seven possible equilibrium solutions to this system. E0 = (0, 0, 0, 0, 0, 0), corre-

sponds to the total extinction of our six populations, and EA = (0, 0, 0, 0, 0,K), corresponds

to the survival of only the algae. The disease-free equilibrium, ES = (S⇤, 0, 0, 0, 0, A⇤) and

ESm = (0, S⇤
m, 0, 0, 0, A⇤

m) corresponds to a single uninfected strain. In the absence of infection,

the competition exclusion principle applies to our system. Suppose there are no spores present in

the system, (i.e. Z⇤ = 0) this leads to no infected host being present (i.e. I⇤ = I⇤m = 0). It follows

from equations (3.20) that,

eSfS(A) = (d+ pS) and eSfSm(A) = (d+ pS)

which implies that fS(A) = fSm(A). This leads to the coexistence of the single uninfected hosts

ES and ESm . If S 6= 0 this implies that eSfS(A) = (d+ pS) which allows us to obtain,

A⇤
C =

hS(d+ pS)

eSfS0 � (d+ pS)
and S⇤

C + S⇤
m,C =

r(1�A⇤
C/K)A⇤

C

fS(A⇤
C)

If the strains have di↵erent feeding rates, i.e. fS(A) 6= fSm(A) then either,

S⇤ = 0 and S⇤
m =

r(1�Am/K)Am

fS(Am)
or S⇤

m = 0 and S⇤ =
r(1�A/K)A

fS(A)

implying that the host with the best feeding rate “wins”. This simply illustrates what biologists
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refer to as the competitive exclusion principle, which illustrates how species competing for the same

limiting resource cannot coexist. As soon as one species has an advantage over the other, it will

dominate in the long-term. Another equilibrium point corresponds to the survival of either the

resident or mutant host (i.e.ESIZA or ESmImZA). Finally, our last equilibrium point corresponds to

the coexistence of the two strains, which we denote by E = ESIZASmIm = (S⇤, I⇤, Z⇤, A⇤, S⇤
m, I⇤m).

Invasion Fitness Function: SIZA Model

By taking the variables in the order S, I, Z,A, Sm, Im. At the equilibrium (S⇤, I⇤, Z⇤, A⇤, 0, 0),

the Jacobian takes the following form,

J =

0

B@
Jres P

O Jmut

1

CA

Here Jres is a 4 ⇥ 4 matrix representing the stability of the resident population SIZA in the

absence of the mutant strain Sm, Im (and therefore has negative eigenvalues since the resident

only equilibrium is stable in the absence of the mutant). O represents a 4⇥ 2 matrix in which all

elements are zero and therefore the 2⇥4 matrix P does not influence stability. Stability is therefore

determined by the 2⇥ 2 matrix Jmut which is defined as follows.

Jmut =

0

B@
eSfSm(A

⇤)� (d+ pS)� µm

⇣
fSm (A⇤)

A⇤

⌘
Z⇤ eSfSm(A

⇤)⇢m

µm

⇣
fSm (A⇤)

A⇤

⌘
Z⇤ �(d+ vm + ✓mpS)

1

CA

By computing the trace and determinant of the Jacobian matrix, we can derive the invasion

fitness function,

trace J = eSfSm(A
⇤)� (d+ pS)� µm

✓
fSm(A

⇤)

A⇤

◆
Z⇤ � (d+ vm + pS✓m),

det J =

✓
eSfSm(A

⇤)� (d+ pS)� µm

✓
fSm(A

⇤)

A⇤

◆
Z⇤
◆
⇥ {�(d+ vm + ✓mpS)}

�
✓
µm

✓
fSm(A

⇤)

A⇤

◆
Z⇤
◆
⇥ {eSfSm(A

⇤)⇢m}
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Note that if det J > 0, then

eSfSm(A
⇤)� (d+ pS)� µm

✓
fSm(A

⇤)

A⇤

◆
Z⇤ < 0

which implies that the trace of J is negative. Thus, the linear invasion stability is equivalent to the

positivity of det J. If the determinant is positive it means that the equilibrium (S⇤, I⇤, Z⇤, A⇤, 0, 0)

is stable. If the determinant is negative, then the equilibrium is unstable and the mutant (Sm, Im)

can invade. After some algebraic manipulation, we obtain the following invasion criterion,

sSIZA(~p, ~pm) = eSfSm(A
⇤)� (d+ pS)� µm

✓
fSm(A

⇤)

A⇤

◆
Z⇤ +

eSfSm(A
⇤)⇢m

d+ vm + ✓pS
⇥ µm

✓
fSm(A

⇤)

A⇤

◆
Z⇤

= eSfSm(A
⇤)� (d+ pS)� µm

✓
fSm(A

⇤)

A⇤

◆
Z⇤
✓
1� eSfSm(A

⇤)⇢m
d+ vm + ✓pS

◆
> 0 (3.21)

which is identical to equation (A.3) as expected. Similarly, to the previous section we can obtain

the invasion fitness function for the resident by symmetry,

sSIZA(~pm, ~p) = eSfS(A
⇤
m)� (d+ pS)� µ

✓
fS(A⇤

m)

A⇤
m

◆
Z⇤
m

✓
1� eSfS(Am⇤)⇢

d+ v + ✓pS

◆
> 0 (3.22)

In the next section, we consider the outcomes of an invasion for di↵erent parameter regions.

While we don’t specify a particular trade-o↵ we can get an idea of the invasion outcomes by plotting

the parameter regions where we observe the resident or invader exclusively and the coexistence.

Numerical Results

We assume a fixed resident strain which corresponds to the default values of our model without

the invader and a range of possible values for the invader. The resident strain is then paired up

with each invader parameter and the invasion fitness function (3.21)–(3.22) are evaluated in each

case. We obtain invisibility plots for but do not assume a specific trade-o↵ among the traits. Figure

3.5 shows that as the invader’s virulence increases the areas for coexistence increase for both the

maximal feeding rate and half-saturation constant. However, these exhibit inverse relationships to

virulence when the invasion fitness functions for the resident and invader are zero. In particular,

the maximum feeding rate increases while the half-saturation constant decreases as a function
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of virulence. This makes sense since the maximal feeding rate and half-saturation constant are

inversely related in the definition of fS(A). In Figure 3.6, we consider a trade-o↵ among the host’s

feeding rate (fS0 , hS) and per spore infectivity µ. We observe regions of coexistence are possible for

lower values of per spore infectivity. However, similar to the previous figure, the maximal feeding

rate and half-saturation constant exhibit an inverse relationship.
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Figure 3.5: Trade-o↵ invasibility plot (TIP) parameters related to transmission and virulence.
We compare the outcomes for di↵erent levels of virulence (vm) versus (a) the maximal feeding
rate (fSm), and (b) half-saturation constant (hSm). Default values are (vm, fSm) = (0.05, 0.32),
(vm, hSm) = (0.05, 0.05), and K = 2.

5 10 15

m

0.28

0.3

0.32

0.34

0.36

f S
m

Resident

Invader

Invader

Survives

Resident

Survives

(a)

6 8 10 12 14 16

m

0.1

0.2

0.3

0.4

0.5

0.6

h
S

m

Resident

Invader

Resident

Survives

Invader

Survives

(b)

Figure 3.6: Trade-o↵ invasibility plot (TIP) parameters related to per spore infectivity. We compare
the outcomes for di↵erent levels of infectivity (µm) versus (a) the maximal feeding rate (fSm),
and (b) half-saturation constant (hSm). Default values are (µm, fSm) = (10, 0.32), (µm, hSm) =
(10, 0.05), and K = 2.
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3.4 Discussion–Future Directions

Under the Adaptive Dynamics framework we explored the e↵ect of long-term mutations in

our system. Using the expression for our invasion fitness function, obtained trade-o↵ invisibility

plots (TIPs) for a wide combination of parameter ranges. Previously, it has been suggested that

Daphnia exhibit trade-o↵s among parasite transmission and birth rate in some lakes [9]. For

our SIZA model formulation, the birth rate of susceptible individuals depends on the conversion

e�ciency eS , feeding rate fS(A). We did not find evidence of a trade-o↵ among transmission

and the conversion e�ciency eS . We found coexistence regions for trade-o↵s among virulence (v),

per spore infectivity (µ), and feeding rate (fS0 , hS). Since births and transmissions are mediated

through feeding, it is di�cult to untangle the trade-o↵ among parasite traits and these two events.
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Chapter 4

Resistance and Clearance in Daphnia
Epidemics

4.1 Introduction

Daphnia epidemics vary from pond to pond and year to year. We are interested in understanding

transient dynamics that drive these changes. Until recent studies [79], recovery from an infection

was thought impossible for Daphnia populations. This assumption has led researchers to largely

ignore the within-host stages that encompass the process of infection. It has been shown that

infections, which are caused by the ingestion of fungal spores from the parasite Metschnikowia, can

be prevented due to physical structures of resistance in the host (i.e. a robust gut) and that only

a subset of early infections lead to late infections indicating that an immune response to infection

can lead to it’s clearance [79]. To account for host resistance, we introduce an exposed class, which

describes hosts that are under attack from fungal spores but are not infected yet. It has been

shown for other disease models, such as those for the West Nile virus, that adding an exposed

compartment leads to a reduction in the basic reproduction number ([12], [63], [84]). We will use

an ordinary di↵erential equation model, to incorporate these two new mechanisms of recovery:

resistance and clearance; and, determine their e↵ect on the basic reproduction number R0 and

disease prevalence.

SEIZA Model

To analyze the stages in which Daphnia progress through an infection, we divide the population

into three compartments: susceptible S, exposed E, and infected I. We denote the fungal spores

by Z and algea by A. We incorporate two new mechanisms for recovery: clearance c and resistance

� . Our system can be written as follows:
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dS

dt
=

Birthsz }| {
eSfS(A) (S + E + ⇢I)�

Deathsz }| {
(d+ pS)S�

Exposurez }| {
µ
fS(A)

A
SZ +

Clearancez}|{
cI +

Resistancez}|{
�E (4.1)

dE

dt
=

Exposurez }| {
µ
fS(A)

A
SZ �

Loss of Exposedz }| {
(d+ pS + � + ↵)E, (4.2)

dI

dt
=

Infectionz}|{
↵E �

Loss of Infectedz }| {
(d+ v + ✓pS + c)I, (4.3)

dZ

dt
=

Spore Releasez }| {
�eS

fS(A)

A
(d+ v)I �

Mortalityz}|{
�Z �

Spore Consumptionz }| {
fS(A) (S + E + I)

Z

A
(4.4)

dA

dt
=

Logistic Growthz }| {

r

✓
1� A

K

◆
A�

Algae Consumptionz }| {
fS(A) (S + E + I) . (4.5)

The susceptible class (4.1) increases due to births from susceptible, exposed, and infected hosts.

However, the infected class experiences a reduced birth rate due to the infection which we denote

by 0  ⇢ < 1. Births will depend on the feeding rate fS(A) and are proportional to the conversion

e�ciency eS of the consumed algae into Daphnia. Susceptible individuals move into the exposed

class at a rate dependent on the per spore infectivity µ, the feeding rate fS(A), the proportion of

spores to algae resources
Z

A
, and density of susceptible. We use a functional response to model the

intake rate of a consumer as a function of food density (A). In the case of invertebrates such as

Daphnia one can consider a Holling Type II given by,

fS(A) =
fS0A

hS +A
,

where fS0 denotes the maximal feeding rate and hS denotes the half-saturation constant. In

particular, for larger quantities of algae fS(A) approaches it’s maximum value fS0 and at the

half-saturation constant is where half of the maximum intake is reached.

The exposed class (4.2) is characterized by Daphnia that have consumed fungal spores but

have a structural defense that prevents infection [79]. Individuals in the exposed compartment,

can either transition to the susceptible class at a constant rate � or move to the infected class at

a rate ↵. Infected individuals may move to the susceptible class through clearance of the infection
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at a constant rate c.

Susceptible and exposed individuals die at a background mortality rate d and are preyed upon

at a rate pS . Infected individuals experience a higher death rate due to infection v and increased

predation at a rate ✓pS where ✓ > 1. As Daphnia become infected, they become more visible to

predators and hence are preyed upon at a higher rate. Spores (4.4) which reproduce within infected

hosts are released into the water column at a rate proportional to the spore yield �(A) = �eS
fS(A)

A ,

where �(A) represents the spores per death infected Daphnia, and the death rate of infected hosts

(d+ v)I. This spore yield formulation is di↵erent from those assumed in the previous chapters and

can be seen in Figure 4.1.
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Figure 4.1: Spore yield formulations: �(A) = �eSfS(A) (old) and �(A) = �eS
fS(A)

A (new).

Spores are removed from the water column by being consumed by Daphnia at a rate proportional

to the feeding rate fS(A) and due to other causes at a rate �. Finally, algae (4.5) grows logistically

at a intrinsic rate r with carrying capacity K and decreases due to consumption by all host classes.

In the model, our classes denote the density of hosts (i.e. S(t), E(t), and I(t)), fungal spores Z(t),

and algae A(t). To be biologically feasible each should always be positive or greater than zero. To

guarantee our model preserves this biological intuition we show the following,

Lemma 4.1.1. The subset ⌦ = {(S(t), E(t), I(t), Z(t), A(t))|S(t) � 0E(t) � 0, I(t) � 0, Z(t) �
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0, A(t) � 0} ⇢ R5 is forward invariant for our system.

Proof. If S = 0 we see from equation that (4.1), dS
dt � 0 for (S,E, I, Z,A) 2 ⌦. Similarly, from

equations (4.2)–(4.4), we obtain that E = 0, I = 0, and Z = 0 which implies that dE
dt � 0, dI

dt � 0,

and dZ
dt � 0 for (S,E, I, Z,A) 2 ⌦. Finally, if A = 0 we see from equation (4.5) that dA

dt � 0.

Equilibrium points

To understand the possible long term behaviour of our system we compute it’s equilibrium

points. We see by inspection that the trivial equilibrium E0 = (0, 0, 0, 0, 0) and the algae only

equilibrium EK = (0, 0, 0, 0,K) are admitted in our system. When there is no disease present

(i.e. E = I = Z = 0) we obtain the disease-free equilibrium, Edf = (Sdf , 0, 0, 0, Adf ) where

Adf = (d+pS)hS

eSfS0�(d+pS)
and Sdf =

eSr
⇣
1�

Adf
K

⌘
Adf

d+pS
. Finally, we obtain the endemic equilibrium where all

our populations are present Ee = (S⇤, E⇤, I⇤, Z⇤, A⇤). For mathematical convenience let us define,

R(A) =
µ↵�eS

fS(A)
A (d+ v)r(1� A

K )

(�+ r(1� A
K ))(d+ v + ✓pS + c)(d+ pS + � + ↵)

Then, we can write the endemic equilibrium densities as follows,

S⇤ =
(�+ r(1� A⇤

K ))(d+ v + ✓pS + c)(d+ pS + ↵+ �)

↵µ�eS(
fS(A⇤)

A⇤ )2(d+ v)
=

r(1� A⇤

K )A⇤

R(A⇤)fS(A⇤)
(4.6)

Z⇤ =
d+ pS + � + ↵

µfS(A⇤)
A⇤

eS(fS(A⇤)� fS(Adf ))h
(d+ pS + ↵)� eSfS(A)� ↵(eSfS(A⇤)⇢+c)

(d+v+✓pS+c)

i (4.7)

E⇤ =
r(1� A⇤

K )A⇤

R(A⇤)fS(A⇤)

eS(fS(A⇤)� fS(Adf ))h
(d+ pS + ↵)� eSfS(A)� ↵(eSfS(A⇤)⇢+c)

(d+v+✓pS+c)

i (4.8)

I⇤ =
↵r(1� A⇤

K )A⇤

(d+ v + ✓pS + c)R(A⇤)fS(A⇤)

eS(fS(A⇤)� fS(Adf ))h
(d+ pS + ↵)� eSfS(A)� ↵(eSfS(A⇤)⇢+c)

(d+v+✓pS+c)

i (4.9)

by using equation (4.5) we obtain a cubic polynomial in A⇤ which we can solve for A⇤ (see Ap-

pendix B). We are interested in how the equilibrium densities of our system depend on the carry-

ing capacity K, resistance �, and clearance c. In Figure 4.2, we see that for a carrying capacity

K < 1.0484 = Adf , only algae remains in the system. This corresponds to the scenario in which

resources are too low to sustain the host population. For intermediate values of K, the observe
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the disease-free equilibrium in which only the susceptible host and algae are present. Finally, for

higher resource availability we observe the endemic equilibrium in which all the populations are

present in our system. Thus, as K increases, the parasite is able to better sustain itself since there

are more susceptible hosts to infect.
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Figure 4.2: Equilibrium densities as a function of carrying capacity (K).

To compare how the equilibrium densities depend on resistance and clearance, we vary each

parameter � and c independently of each other over similar ranges while all other parameters remain

fixed. Figure 4.3 shows that, as resistance increases, the density of susceptible hosts increases

while the exposed, infected, and spore densities decrease. A similar behavior can be observed for

increasing values of clearance; however, for high clearance rates (c � 0.4) we transition from the

endemic to the disease-free equilibrium. This suggests that among our two mechanisms of recovery,

clearance has a higher impact in controlling the infection than resistance.
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Figure 4.3: Equilibrium densities as a function of clearance (blue line) and � = 0, and resistance
(red line) and c = 0 where 0  c, �  0.6. All other parameters are fixed at their default values.

4.2 Basic Reproduction Number

The basic reproduction number R0 is defined as the number of secondary infections produced

when a single infected individual is introduced into a completely susceptible population. The

expression for R0 gives us a threshold condition for the parasite’s persistence in the system. Using

the next-generation approach, R0 is computed as the spectral radius of the matrix FV �1, denoted

by ⇢(FV �1), where F is the transmission matrix describing the generation of secondary infections

in the E, I, Z compartments, and V is the transition matrix describing how individuals move in/out

of the E, I, Z compartments of our model ([38], [82]). It follows that,

F =

2

66664

0 0 µ
fS(Adf )

Adf
Sdf

0 0 0

0 0 0

3

77775
and V =

2

66664

d+ pS + � + ↵ 0 0

�↵ d+ v + ✓pS + c 0

0 ��eS
fS(Adf )

Adf
(d+ v) �+

fS(Adf )
Adf

Sdf

3

77775

Thus, the basic reproduction number is given by,
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R0 = ⇢(FV �1) = µ
fS(Adf )

Adf
Sdf

↵�eSfS(Adf )(d+ v)

Adf (�+
fS(Adf )

Adf
Sdf )(d+ pS + � + ↵)(d+ v + ✓pS + c)

(4.10)

To interpret (4.10) we see that R0 is proportional to the exposure rate per infective spore

propagule µ
fS(Adf )

Adf
Sdf , the rate of release of spores propagules per dead infected individual and

infection rate ↵�eS
fS(Adf )

Adf
(d+ v), the time individuals spend in the exposed and infected compart-

ments respectively, (d+ pS + � + ↵)�1 and (d+ v + ✓pS + c)�1, and life span of spore propagules,
⇣
�+

fS(Adf )
Adf

Sdf

⌘
. In the following theorem, we show that R0 provides a threshold such that when

R0 < 1, the disease dies out, and when R0 > 1, the parasite persists in the system.

Theorem 4.2.1. The disease-free equilibrium Edf = (Sdf , 0, 0, 0, Adf ) is locally asymptotically stable

if R0 < 1 and unstable if R0 > 1.

Proof. To analyze the stability of the disease-free equilibrium we compute the Jacobian matrix of

our system (see Appendix B) and evaluate it at the disease-free equilibrium Edf . At the disease-free

equilibrium, Edf = (Sdf , 0, 0, 0, Adf ) the eigenvalues of the Jacobian matrix satisfy,

(⇤2 �
⇥
r (1� 2Adf/K)� f 0

S(Adf )Sdf

⇤
⇤ + eSSdff

0(Adf )fS(Adf ))g(⇤) = 0 (4.11)

Let c1 = r (1� 2Adf/K)� f 0
S(Adf )Sdf and c0 = eSSdff 0(Adf )fS(Adf ) > 0, so that,

⇤2 � c1⇤ + c0 = 0 () ⇤ =
c1 ±

p
c21 � 4c0
2

(4.12)

the two eigenvalues will be negative or have negative real part if c1 < 0. After some algebraic

manipulation it can be shown that, c1 < 0 if and only if K � hS � 2Adf < 0. The remaining

eigenvalues satisfy the following cubic polynomial,

g(⇤) = ⇤3 + a2⇤
2 + a1⇤ + a0 = 0 (4.13)

Using the Routh Hurtwitz stability criterion (see Appendix B), g(⇤) has all roots in the open

left half plane if and only if a2, a1, a0 are positive and a2a1 > a0, where the coe�cients of g(⇤) are
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given by,

a2 = 2d+ v + (✓ + 1)pS + c+ � + ↵+ �+
fS(Adf )

Adf
Sdf > 0

a1 = (d+ v + ✓pS + c)(d+ pS + � + ↵) + (2d+ v + (✓ + 1)pS + c+ � + ↵)

✓
�+

fS(Adf )

Adf
Sdf

◆
> 0

a0 = (d+ v + ✓pS + c)(d+ pS + � + ↵)

✓
�+

fS(Adf )

Adf
Sdf

◆
(1�R0)

We see that a0 > 0 if and only if R0 < 1. Finally, after some algebraic manipulations we obtain,

a2a1 � a0 = a2(2d+ v + (✓ + 1)pS + c+ � + ↵)

✓
�+

fS(Adf )

Adf
Sdf

◆
+

(d+ v + ✓pS + c)(d+ pS + � + ↵)

✓
2d+ v + (✓ + 1)pS + c+ � + ↵+R0

✓
�+

fS(Adf )

Adf
Sdf

◆◆
> 0

Thus, the disease-free equilibrium is locally asymptotically stable if R0 < 1 and unstable otherwise,

as desired.

In the next theorem, we ascertain the stability of the remaining equilibrium points of our system

by using the standard linear stability analysis.

Theorem 4.2.2. (i) The trivial equilibrium E0 is a saddle for all parameter values. (ii) The algae

only equilibrium EK is linearly asymptotically stable for K < Adf and a saddle otherwise. (iii) The

equilibrium Edf is linearly asymptotically stable if K � hS � 2Adf < 0 and R0 < 1 (the parasite

cannot invade).

Proof. (i) It follows from the standard linear stability analysis, that at the trivial equilibrium

E0 = (0, 0, 0, 0, 0), we have the Jacobian is a diagonal matrix with eigenvalues given by ⇤1 =

�(d + pS) < 0,⇤2 = �(d + pS + ↵ + �) < 0,⇤3 = �(d + v + ✓pS + c)/↵ < 0,⇤4 = �� < 0, and

⇤5 = r > 0, thus the trivial equilibrium is unstable. (ii) Similarly for EK , the eigenvalues are given

by, ⇤1 = �� < 0,⇤2 = �r < 0,⇤3 = �(d + v + ✓pS + c) < 0,⇤4 = �(d + pS + ↵ + �) < 0, and

⇤5 = eSfS(K) � (d + pS). After some algebraic manipulation, we see that ⇤5 < 0 if and only if

K < Adf .

From these results we see that in general, E0 is unstable for this type of consumer resource

model. The equilibrium EK , is only stable when there are not enough resources available to sustain
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the host population, K < Adf . When K = Adf , the equilibrium EK undergoes a transcritical

bifurcation. It can be shown that A⇤ satisfies the following,

R(A⇤) = 1+M(A⇤)+
↵M(A⇤)

(d+ v + ✓pS + c)
, where M(A⇤) =

eS(fS(A⇤)� fS(Adf ))h
d+ pS + ↵� eSfS(A⇤)� ↵(eSfS(A⇤)⇢+c)

(d+v+✓pS+c)

i

When A⇤ = Adf then M(A⇤) = 0, R(A⇤) = R(Adf ) = R0 = 1, and S⇤ = Sdf . It follows from

equation (4.8), that at A⇤ = Adf , Z⇤ = 0, which leads to E⇤ = I⇤ = 0. Thus, we transition from

the endemic to the disease-free state. From equation (4.8), we see that for Z⇤ > 0 to be possible,

d+ pS + ↵� eSfS(A
⇤) = ↵+ eS(fS(Adf )� fS(A

⇤)) >
↵(eSfS(A⇤)⇢+ c)

d+ v + ✓pS + c
(4.14)

Condition (4.14) states that spores remain in the system as long as the net loss of exposed

individuals is greater than the proportion of gains and loss of infected individuals. Notice that

this condition does not depend on the resistance parameter �. Which could explain why resistance

reduces the spore populations at a much slower rate than clearance, as seen in Figure 4.3.

Model without Exposed Class

To compare the e↵ect of adding an exposed class to our system we compute the expression for

R0 for the model without the exposed class.

RSIZA
0 = µ

fS(Adf )

Adf
Sdf

�eSfS(Adf )(d+ v)

Adf (�+
fS(Adf )

Adf
Sdf )(d+ v + ✓pS + c)

(4.15)

By inspection, considering an exposed class reduces RSIZA
0 by a factor of E =

↵

(d+ pS + ↵+ �)
regardless of the resistance level. However, for a fixed infection rate ↵, this factor reduces R0 as �

increases which suggest that resistance reduces the amount of secondary infections in our system.

Furthermore, both R0 and RSIZA
0 are decreasing functions of clearance. Thus, the combined e↵ect

of the two recovery mechanisms and inclusion of an exposed class lead to a combined reduction in

secondary infections.
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Elasticity Analysis

Using our explicit expression for R0, we perform an elasticity analysis to determine how in-

fluential our model predictions are to particular parameters. This type of analysis is important

since it allows us to identify parameters that should be measured more precisely. A highly sensi-

tive parameter should be carefully estimated since a small change in that parameter could lead to

qualitatively di↵erent results. We can define the normalized forward sensitivity index for R0 for

the parameter p by,

IR0
p =

@R0

@p

p

R0
.

This expression approximates the fractional change in R0 due to fractional change in parameter

p while all other parameters remain fixed ([8], [32], [63], [75]). For example, we can interpret

elasticity in terms of percentages as follows, if IR0
p = 1, then a 1% increase in p leads to a 1%

change in R0. By considering the proportion instead of absolute changes in a parameter p, we can

compare the e↵ect of parameters that vary in scale or units.

Parameter Sensitivity Index
�
IR0
p

�
Parameter Sensitivity Index

�
IR0
p

�

↵ 0.3151 K 0.7465

c -0.24 � -0.6776

d -0.7435 µ 1.0

eS 5.4085 pS -4.1282

fS0 5.4085 r 0.6776

� -0.1370 � 1.0

hS -1.7465 ✓ -0.6

v 0.525

Table 4.1: Sensitivity of R0 to parameter values.

In Table 4.1, we see that the expressions for IR0
µ and IR0

� do not depend on other parameter

values. In addition, the variables with the highest index are eS and fS0 which reflects the fact

that infection is highly dependent on feeding and conversion of algae into Daphnia. As expected,

both resistance and clearance decrease the value of R0, however clearance has a higher influence in

decreasing R0.

We can further analyze the combined dependence of R0 on the infection rate ↵, resistance rate
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�, and clearance rate c by computing the value of R0 over a range of values of our parameters. In

Figures 4.4a and 4.4b we see that as resistance and clearance increase, larger values of infection rate

are needed to sustain the epidemic. For ↵ 2 [0, 0.7] there exist a threshold for which the disease

is controlled. In particular, a pathogen would not be able to persist for � � 0.55 and c � 0.35.

In Figure 4.4c, we combine the e↵ect of both resistance and clearance for a fixed infection rate,

↵ = 0.5. As resistance increases, we see that lower values of clearance are needed to contain the

disease.
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Figure 4.4: (a) R0 as a function of resistance and infection rate, c = 0.12. (b) R0 as a function of
clearance and infection rate, � = 0.1. (c) R0 as a function of clearance and resistance for ↵ = 0.5.
The black line serves as a visual aid for R0 = 1.

From our elasticity analysis of R0, we expect predation to have a big impact in the intensity of

an epidemic. In Figure 4.5, we see how lower values of predation lead to needing higher values of
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clearance and resistance to observe the disease free equilibrium (i.e. R0 < 1 ). This indicates that

predation plays an important role in suppressing the epidemic. In particular, if pS < 0.09, the en-

demic state persists our range of clearance values and for our range of resistance values if pS < 0.095.
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Figure 4.5: R0 as a function of clearance (left) and resistance (right) for pS = 0.09. The magenta
line serves as a visual aid for R0 = 1.

4.3 Numerical Experiments

We analyzed the transient and long-term behaviour of our system under di↵erent assumptions

by plotting how population densities change over time. Figure 4.6 shows when there is no recovery

(i.e. � = 0 and c = 0) the system exhibits higher levels of oscillations that dampen over time. As we

incorporate resistance or clearance, the height of the oscillations decreases. However, once clearance

is introduced the populations stabilize at a much faster rate and converge to either the endemic or

disease-free equilibrium. We repeat our numerical simulations to consider a lower predation rate

pS = 0.09. As seen in Figure 4.7, once the predation rate is reduced prevalence increases and the

oscillations become more pronounced and dampen at a slower rate.
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Figure 4.6: Simulations of our ODE system for di↵erent recovery scenarios. Clearance and resis-
tance (blue), only clearance (green), only resistance (black), no recovery (red). Initial Conditions:
(0.5,0,0,0.001,1.5) and pS = 0.1.
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Figure 4.7: Simulations of our ODE system for di↵erent recovery scenarios. Clearance and resis-
tance (blue), only clearance (green), only resistance (black), no recovery (red). Initial Conditions:
(0.5,0,0,0.001,1.5), pS = 0.09.

Initial conditions will play a big role in the dynamics observed for our system. Figures 4.8
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and 4.9 show that for high susceptible initial populations and low spore dose (which is what you

would expect at the start of an epidemic), there is large peak at the beginning of epidemic which

reaches very low densities in approximately 100 days for pS = 0.1 and 70 days for pS = 0.09, and

is proceeded by small oscillations after a period of time. For pS = 0.1, this period is around 250

days while for pS = 0.09 this period is approximately 180 days.

This is a big contrast to the previous scenarios in which the we observe oscillations that are

frequent and dampen over time. For our default predation rate, pS = 0.1, we see that only in

the case where there is higher level of resistance and clearance is the disease controlled. But

similar to Figure 4.7, when predation is lower, pS = 0.09, oscillations remain present for a longer

period of time. In fact, in 4.9, even when resistance and clearance are high, the exposed and spore

populations which had remained close to zero begin to increase at around 800 days.
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Figure 4.8: Simulations of our ODE system for di↵erent recovery scenarios. Clearance and resis-
tance (blue), only clearance (green), only resistance (black), no recovery (red). Initial Conditions:
(0.9,0,0,0.001,1.5) and pS = 0.1.
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Figure 4.9: Simulations of our ODE system for di↵erent recovery scenarios. Clearance and resis-
tance (blue), only clearance (green), only resistance (black), no recovery (red). Initial Conditions:
(0.9,0,0,0.001,1.5) and pS = 0.09.

4.4 Discussion–Future Directions

In models of disease such as the West Nile Virus and Malaria, the inclusion of an exposed class

leads to the reduction of R0 [5] and disease prevalence [67], which we observe also for our system.

When considering two recovery mechanisms, resistance and clearance, this reductions is made more

significant. In the absence of recovery, we have shown our system undergoes damped oscillations

for a long period of time. As we include resistance and clearance, this dampening occurs at a

much faster rate. Additionally peak disease prevalence, which can be analyzed as the peaks of

our observed oscillations is reduced. When comparing the e↵ects of resistance versus clearance, we

have shown that clearance has a much larger e↵ect in reduction both secondary infections (i.e. R0)

and disease prevalence. There has been evidence that considering a model with non-exponentially

distributed exposed and infectious periods, might lead to an increase in R0 and periodic behavior

[65]. It has been shown that adding non-exponential infection distributions destabilizes the endemic

equilibrium in an SIR model. Including more realistic infectious periods could allow us to account

for recurrent outbreaks of Daphnia epidemics.
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Our results also showcase the importance of initial conditions for our system. When there is a

high level of susceptible individuals (S(0) = 0.9) and low spore densities (Z(0) = 0.001), our model

predicts a high prevalence peak which is followed by low values (⇡ 10�6) and begins to rebound.

In [65], the author argues that the ability of infected individuals to rebound from low levels is a

unrealistic feature of deterministic epidemic models. To explore this further we will reformulate

our model as a stochastic model in Chapter 5 and analyze it’s behavior.

Another future direction for this work would be to translate the disease progression stages

discussed in [79] into stages in our infectious class. So far we have assumed the rates of resistance

and clearance remain constant over time; thus the chance of recovery within a given time interval

is constant, regardless of the time since infection. We will study clearance as a fuction of age since

infection in Chapter 6.
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Chapter 5

Demographic Stochasticity

5.1 Introduction

Many disease models used to describe populations dynamics rely on deterministic di↵erential

equations to track changes in populations over time. The use of deterministic models in ecology

and epidemiology has a long history and a strong body of research. These models are still widely

used to understand population dynamics [78]. They are characterized by the basic reproduction R0

(i.e. the amount of secondary infections produced by a single infected individual in a completely

susceptible population), which if greater than one, predicts that the populations will eventually

converge to an endemic equilibrium usually through damped oscillations ([7], [52]). However, it has

been recognized that these models can have limitations in capturing the behavior of a system when

there exists a very low number of infected individuals or when modeling recurrent outbreaks which

would exhibit sustained oscillations [65]. The threshold conditions for R0 found in Chapter 4 may

not hold for stochastic models. Mainly, the disease may go extinct even if R0 > 1, depending on

the stochastic fluctuations [67].

For example, diseases such as measles, whopping cough, avian flu exhibit sustained oscillations

that capture recurrent disease dynamics. Many types of extensions of the Susceptible-Infected-

Recovered (SIR) models have resulted in sustained oscillations. Some of these extensions show that

sustain oscillations can happen implicitly or through the periodical forcing of model parameters

such as transmission [12]. In his work (Barlett, 1957), recognized that by adding stochastic terms

associated with the discrete nature of births, deaths, immigration and emigration processes (i.e.

demographic stochasticity) one could bridge the gap between what the theory predicted and the

observed statistics for measles epidemics ([11], [18]).

While stochastic e↵ects are preset in all populations, they are particular relevant when popula-
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tions sizes are small. It has been shown that deterministic models with added stochasticity could

give recurrent dynamics by constantly perturbing the system away from its steady state. Whereas

deterministic models treat the number of individuals in each state as a continuous variable stochas-

tic models treat the number of individuals as discrete, and the process is more appropriately

modeled as a Markov Chain. The phenomena where a system with stochastic fluctuation sustains

an oscillatory behavior while the deterministic model converges to an stable equilibrium is know

as coherence resonance ([7], [52]).

5.2 Stochastic Model

Stochastic models are characterized by considering the probability of an individual in a popula-

tion transitioning to di↵erent compartments of our system. As in [7], to compare the deterministic

and stochastic simulations we introduce a scale factor ⌦ to account for the fact we would measure

individuals rather than the population densities. One can interpret ⌦ as the size of our population

or in this case our system. In other stochastic disease models this has usually been related to only

the hosts population size. In our case, we can interpret ⌦ as the overall size of the system including:

hosts, spores, and algae.

To determine which parameters need re-scaling, we analyzed how each parameter’s units scaled

when we consider that the population is now given by the number of individuals in each class. Only

the spore release (�), half saturation constant (hS), and the carrying capacity (K) did not scale

linearly with our units; therefore, they must be re-scaled.

dS

dt
= eSfS(A) (S + E + ⇢I)� (d+ pS)S � µ

fS(A)

A
SZ + cI + �E (5.1)

dE

dt
= µ

fS(A)

A
SZ � (d+ pS + � + ↵)E, (5.2)

dI

dt
= ↵E � (d+ v + ✓pS + c)I, (5.3)

dZ

dt
= �eS⌦

fS(A)

A
(d+ v)I � �Z � fS(A) (S + E + I)

Z

A
(5.4)

dA

dt
= r

✓
1� A

⌦K

◆
A� fS(A) (S + E + I) . (5.5)
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where fS(A) is now given by,

fS(A) =
fS0A

hS⌦ +A

Starting from our ODE model, we can obtain a stochastic model by interpreting the deter-

ministic rates (e.g. births, deaths, exposure, etc.) as stochastic rates. We summarize the types of

events, the transition probabilities, and the e↵ect of each event on the population. In this stochastic

framework, we take into account our populations S,E, I, Z and denote s, e, i, z as the number of

individuals in each class. Denote the general state of the system as n = (s, e, i, z). The transition

probability per unit time from state n to the state n0 will be denoted as T (n0|n) in which n0 is

obtained by shifting each state variable in n by +1 or �1.

Event E↵ect Transition Probabilities

s ! s+ 1 eSfS(a) (s+ e+ ⇢i)�t

Births/Gain z ! z + 1 �⌦eS
fS(a)

a (d+ v)i�t

a ! a+ 1 ra�t

s ! s� 1 (d+ pS)s�t

e ! e� 1 (d+ pS)e�t

Deaths/Loss i ! i� 1 (d+ v + ✓pS)i�t

z ! z � 1 �z + fS(a) (s+ e+ i) z
a�t

a ! a� 1 r a2

⌦K + fS(a) (s+ e+ i)�t

Exposure (s, e) ! (s� 1, e+ 1) µfS(a)
a sz�t

Infection (e, i) ! (e� 1, i+ 1) ↵e�t

Clearance (s, i) ! (s+ 1, i� 1) ci�t

Resistance (s, i) ! (s+ 1, e� 1) �e�t

Table 5.1: Transition probabilities for di↵erent events.

By using the transition probabilities in Table 5.1, we can construct the master equation ([7],

[47]) which describes the evolution over time of our system.

dP (n; t)

dt
=
X

n0 6=n

T (n|n0)P (n0; t)�
X

n0 6=n

T (n0|n)P (n; t) (5.6)
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where n = (s, e, i, z, a) represents the state of the system, P (n|n0), is the probability of the system

in the state n at time t, and the change of this quantity with time is given by the sum of transitions

into the state n from all the other states n0, and minus the sum of transitions out of the state n

into all the other states n0. We summarize the types of events, the transition probabilities, and the

e↵ect of each event in Table 5.1.

Due to the complexity of this equation, studying it analytically is a challenge. We can further

study the master equation (5.6) numerically by implementing stochastic simulations in MATLAB

using Gillespie’s algorithm [51]. Both this algorithm and the master equation are derived from the

same Markovian assumptions thus there is an exact correspondence among the two [19]. In the

Gillespie algorithm, the state of the system is updated by determining the time to the next event,

and which event will occur next. This algorithm assumes that at any given time step only one

event can occur and that times are exponentially distributed. A brief outline of the algorithm is

given below ([11], [78]).

Step 1: Initialize populations, parameters, and denote by ei the transition probability corresponding

to each possible event in Table 5.1.

Step 2: Select two random numbers from an uniform distribution between (0, 1), (i.e. u1, u2 2

U(0, 1)).

Step 3: Compute the time when the next event occurs: tj+1 = tj + �t where �t =
� log(u1)P

i ei

Step 4: To select which event occurs we divide the interval [0, 1] = (0, p1] [ (p1, p2] [ ... [ (pN�1, 1]

into sub-intervals corresponding to the probability of each event happens pi. If u2 2 (pi, pi+1]

event ei happens.

Step 5: Update populations according to Table 5.1 and repeat.

5.3 Numerical Results

Using the Gillepsie algorithm we obtained sample stochastic realizations of our model. In

Chapter 4, we noticed that predation plays a big role in the observed behaviour of the determinstic

version of our model. Thus, we perform our simulations for pS = 0.1 and pS = 0.09. In Figure
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5.1, we compute the frequency of the disease-free and endemic equilibria for di↵erent values of ⌦.

Recall, we can think of ⌦ as the size of our system, thus our populations are proportional to ⌦. In

the case where populations are small ⌦ = 1000, we only observe the disease-free equilibrium for all

values of pS considered. This suggest in contrast to the results presented in Chapter 4, that when

populations are too low we should expect the extinction of the parasite. As the size of the system

increases we start to observe the endemic equilibrium at a higher frequency.
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Figure 5.1: Frequency of disease-free (blue) and endemic (red) equilibria for di↵erent scale factor
values ⌦ = {2000, 4000, 6000, 8000, 10000}.

In fact, as shown in Figures (5.2)–(5.5), when the system is large enough (i.e. large values for

⌦), our realizations exhibit sustained oscillations while our deterministic model shows dampening.

Thus, under this formulation sustained oscillations are possible for large enough populations. The

stochastic realizations exhibit sustained oscillation regardless of the rate of predation pS . For

pS = 0.1, these oscillations show higher variation when compared to its deterministic counterpart.

When pS = 0.09, the stochastic realization follows the deterministic behaviour more closely.
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Figure 5.2: Deterministic (black line) vs. Stochastic (other curves) simulation with scale factor
⌦ = 5000, pS = 0.1, c = 0.12, and � = 0.1.
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Figure 5.3: Deterministic (black line) vs. Stochastic (other curves) simulation with scale factor
⌦ = 5000, pS = 0.09, c = 0.12, and � = 0.1.
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Figure 5.4: Deterministic (black line) vs. Stochastic (other curves) simulation with scale factor
⌦ = 10000, pS = 0.1, c = 0.12, and � = 0.1.
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Figure 5.5: Deterministic (black line) vs. Stochastic (other curves) simulation with scale factor
⌦ = 10000, pS = 0.09, c = 0.12, and � = 0.1.
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The Gillespie algorithm generates exact realizations of the stochastic process when parameters

are time-independent, however, it is computationally intensive for large systems since it tracks each

transition in the population. To further understand the e↵ect of the magnitude of the scale factor

in the dynamics of our stochastic system, we analyzed the computational time of our simulations

for di↵erent values of ⌦. As seen in Figure 5.6, regardless of the values for rate of predation pS ,

as ⌦ increases, the computational time increases. While this is not a constraint for the amount of

samples considered in this section, it could become a computational constraint for larger amounts

of samples.
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Figure 5.6: Computational time of simulations for di↵erent scale factor values ⌦ = {2000, 4000,
6000, 8000, 10000}.
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5.4 Discussion–Future Directions

Using a stochastic formulation of the model presented in Chapter 4 we have shown two behaviors

not captured by our deterministic model: sustained oscillations and parasite extinction for low spore

populations. This opens the door for questions regarding the biological assumptions made in our

modeling framework. By introducing a scale factor, we studied how the size of our system leads to

di↵erent behaviors for our system. In particular, as the size of the system increases we observed

the endemic equilibrium at a higher frequency; however, it increases computational time. This is

due to the fact that as the system of the size increases the time to extinction is longer. Sustained

oscillations have been also observed, when transmission is modeled as a function of time. In many

models of recurrent epidemics, account for seasonal forcing by assuming that the contact rate is a

periodic function of time ([12], [18], [64], [78]). A future direction for this work would be to include

these seasonal e↵ects.
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Chapter 6

Age-Since-Infection Model

6.1 Introduction

Age of infection has been shown to influence host fecundity and mortality through parasite

virulence. Specifically, in many systems, mortality increases, while fecundity decreases as the

disease progresses. In their work, (Rapti and Cáceres, 2016) showed how the timing of intrinsic

mortality, which tends to increase with age, and extrinsic mortality, which tied to predators, a↵ects

the size of epidemics [77]. The ability of the infected host to recover through clearance of the

infection may also depend on the age of infection. The longer an individual remains infected, the

more unlikely it will be to recover from the disease. These changes, in turn, a↵ect the between-

host transmission. To investigate how these mechanisms a↵ect disease transmission, we extend

the model presented in [77] to include a recovery mechanism and investigate how epidemiological

relevant quantities such as disease prevalence and the basic reproductive number R0 depend on

them.

The objective of the model is to investigate how clearance, as a function of age of infection,

influences the disease dynamic for the Daphnia-Metschnikowia system. Using a partial di↵erential

equation (PDE) formulation, we explicitly model disease induced mortality and recovery as func-

tions of the age of infection. There are two independent variables in our system: the time t and the

age of infection 0  a  a0, where a0 is the maximum age of infection. Here S, I, Z, and A denote

the susceptible and infected hosts, the pathogen spores, and the algal resources, respectively. The

coupled di↵erential equations model reads:
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dS

dt
=

Birthsz }| {

eSfS(A)

✓
S +

Z a0

0
⇢(a)I(t, a)da

◆
�

Deathsz }| {
(d+ pS)S�

Transmissionz }| {
µ
fS(A)

A
SZ +

Clearancez }| {Z a0

0
c(a)I(t, a)da (6.1)

@I

@t
+

@I

@a
= �(

Deathz }| {
d+ v(a) + ✓(a)pS +

Clearancez}|{
c(a) )I, I(t, 0) =

Initial Conditionsz }| {
µ
fS(A)

A
SZ (6.2)

dZ

dt
=

Spore Releasez }| {
�eSfS(A)

Z a0

0
(d+ v(a))I(t, a)W (a)da�

Spore Lossz }| {

�Z � fS(A)

✓
S +

Z a0

0
I(t, a)da

◆
Z

A
(6.3)

dA

dt
=

Logistic Growthz }| {

r

✓
1� A

K

◆
A�

Algae Lossz }| {

fS(A)

✓
S +

Z a0

0
I(t, a)da

◆
. (6.4)

We incorporate a new transitions from the infected class to the susceptible class due to clearance

of the disease. We consider the e↵ect of the time and an individual remains infected by allowing

the parameters relevant to the infection class to depend on age of infection (a).
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Figure 6.1: Parameters as a function of age. a) fecundity parameter, ⇢(a) = 0.5⇢0(1�tanh(a�h⇢))
with ⇢0 = 0.84. b) disease-induce mortality v(a) = 0.5v0(1 + tanh(a � hv), with v0 = 0.22. c)

selective predation parameter ✓(a) = 1+0.5(✓0�1)(1+tanh(a�h✓)) with ✓0 = 5 and half-saturation
constant h✓ = 15. d) within-host pathogen load W (a) = 1/(1 + exp(�0.99 + 9.6582))

.
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We use a partial di↵erential equation (PDE) to describe the dynamics of the infected host, where

the number of infected host in a time t in a particular age range [a1, a2] is given by
R a2
a1

I(t, a)da.

Infected individuals su↵er from a reduction in fecundity (⇢(a)), disease induced mortality (i.e.

virulence, v(a)), a higher rate of predation which we account by the selective predation parameter

(✓(a)), and are able to remove the infection due to clearance (c(a)).

Spores reproduce within the infected host and are released to the system after infected individ-

uals die due to background mortality (d) and virulence. To account for this process, we incorporate

W (a) as a weight that represent the within-pathogen load as a function of age of infection. Previ-

ous studies have shown that W (a) = 1
1+exp(�0.99a+0.96582) , establishing that weight is an increasing

function of age since infection (see Figure 6.1) [10].
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Figure 6.2: Recovery due to clearance as a function of age, c(a) = 0.5c0(1� tanh(a� hc))

Steady States

The system admits four steady states. The first two are the trivial steady state E0 = (0, 0, 0, 0)

and the algae-only steady state EA = (0, 0, 0,K), which exist for all parameter values. Next,

is the disease-free steady state Edf = (Sdf , 0, 0, Adf ) is given by Adf = (d+pS)hS

eSfS0�(d+pS)
and Sdf =

eSr
⇣
1�

Adf
K

⌘
Adf

d+pS
. It is biologically feasible if eSfS0� (d+pS) which essentially states that the growth
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rate of the susceptible hosts is higher than their death rate and Adf < K which states that the

resource requirement for the host is less than the carrying capacity. Finally, there is the endemic

steady state Ee = (Se, Qe, Ze, Ae), where Qe =
R a0
0 Ie(a)da is the total infected host population.

The steady state population densities are given in Appendix B and are found as functions of the

algae equilibrium density Ae which satisfies a cubic polynomial. The dependence of Ee on various

parameters related to clearance (i.e. c0, hc), host intrinsic (i.e. v0, hv), and extrinsic mortality (i.e.

✓0, h✓) will provide us with new insights on the role of each mechanism in disease dynamics.

6.2 Basic Reproduction Number

One of the most important and common metrics of epidemics is the basic reproductive ratio

R0. It is equal to the number of secondary infections produced by a single infectious host in a

population of entirely susceptible hosts [57]. It is therefore an important quantifier of epidemic

frequency and severity. We can obtain R0 by linearization of the system around the disease-free

equilibrium point. This yields a linear eigenvalue problem for the time-independent perturbations

corresponding to an eigenvalue ⇤. The characteristic equation of this eigenvalue problem is

R(⇤) ⌘ µ
fS(Adf )

Adf
Sdf

�eSfS(Adf )
R1
0 W (a)(d+ v(a))e�

R a
0 (⇤+d+v(⌧)+✓(⌧)pS+c(⌧))d⌧da

⇤ + �+
fS(Adf )

Adf
Sdf

= 1. (6.5)

When ⇤ = 0 expression (6.5) implies R(0) = R0, where R0 is the basic reproduction ratio of the

system given by the equation

R0 = µ
fS(Adf )

Adf
Sdf

�eSfS(Adf )
R a0
0 W (a)(d+ v(a))e�

R a
0 (d+v(⌧)+✓(⌧)pS+c(⌧))d⌧da

�+
fS(Adf )

Adf
Sdf

. (6.6)

Equation (6.6) states that R0 depends on the average spore release over the lifespan of the infected

host �eSfS(Adf )
R a0
0 W (a)(d+v(a))e�

R a
0 (d+v(⌧)+pS✓(⌧)+r(⌧))d⌧da, the transmission rate per infective

propagule µ
fS(Adf )

Adf
Sdf , and the lifespan of the free-living infective prapagules

⇣
�+

fS(Adf )
Adf

Sdf

⌘�1
.

Theorem 6.2.1. If R0 < 1 then the disease-free equilibrium is locally asymptotically stable, and if

R0 > 1 it is unstable.

Proof. If ⇤ is real in (6.5), then it follows by a simple di↵erentiation that dR
d⇤ < 0. Hence, if
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R0 = R(0) > 1 it follows that the equation R(⇤) = 1 has real positive solutions ⇤ which implies

the disease-free equilibrium is unstable. Similarly, if R0 < 1 then the same argument shows that

the equation R(⇤) = 1 has no real positive solutions. Finally, it remains to show that it does not

have complex solutions with positive real part either. Let ⇤ = x + iy be complex. Then, if x � 0

and if one sets ⇤0 = �+
fS(Adf )

Adf
Sdf , and

g(a) = �eSfS(Adf )W (a)(d+ v(a))e�
R a
0 (d+v(⌧)+pS✓(⌧)+c(⌧))d⌧µ

fS(Adf )

Adf
Sdf ,

it follows that 1 = |R(⇤)| =
���
R1
0 g(a)e�xae�iyada

x+⇤0+iy

��� 
R1
0 g(a)e�xada

x+⇤0
= R(x)  R(0) = R0. Hence,

if R0 < 1 then the disease-free equilibrium is locally asymptotically stable, and if R0 > 1 it is

unstable.

6.3 Numerical Results

In this section, we analyze how the dependence of R0 on the disease-induced mortality (v) and

extrinsic mortality (✓pS) due to predation is a↵ected by clearance.
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Figure 6.3: The left panel shows R0 as a function of hv for various values of h✓ with ✓0 = 3 when
there is no clearance (dashed line) and there is clearance (solid line). The right panel shows R0 as
a function of v0, for various values of ✓0. The red line is shown as reference to R0 = 1.

Including clearance reduces the value of R0 for all parameter values as expected. In Figure

6.3a, we compare the e↵ect of the half-saturation constants on R0 in the cases without clearance
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(dashed lines) and with clearance (solid lines). From the panel on the left we see that the maximum

value for R0 happens when virulence kills the host in approximately 8-10 days (i.e. hv ⇡ 8 � 10)

regardless of their clearance status. When we include clearance we see that the predator is able to

control the epidemic when it can detect its prey in less than h✓ ⇡ 11.3 days, in contrast to h✓ ⇡ 8

days in the absence of clearance. For the epidemic to ensue, the predator must detect the prey at a

slower time scale and the pathogen should kill in approximately 5  hv  15 days. We see that the

pathogen can reduce its success by killing the host too soon or too late and hence making infected

individuals more visible to predators.

This general behavior remains in both cases and suggests that clearance has the same e↵ect as

delaying the detection of infected host by the predator for intermediate values of disease induced

mortality. We study the e↵ect of the maximum intensity of virulence (v0) and predation (✓0) in

Figure 6.3b. We see that R0 is an increasing function of v0 and a decreasing function of ✓0. With

clearance, as ✓0 increases the parasite needs higher values of v0 in order for the epidemic to persist.
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Figure 6.4: The left panel shows R0 as a function of v0 for various values of ✓0 when there is no
clearance. The right panel shows the same functional dependence of R0 on v0 for various values of
✓0 when we include clearance.

In Figure 6.4a, we compare the e↵ect of the maximum predation intensity (✓0) and predator

detection (h✓) on R0. As ✓0 increases, R0 decreases indicating that as predators eat infected hosts

at a higher rate, it becomes more di�cult for the pathogen to persist. In the presence to clearance,

as h✓ increases the higher R0 is, however lower values of ✓0 are needed in order to control the
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disease. In particular, for late detection by the predator (i.e h✓ = 20) we see that, when clearance

is possible, there is a threshold of ✓0 for which the epidemic is controlled, ✓0  8. We can compare

the joint e↵ect of maximum predation and virulence intensity in Figure 6.4b. In the case where

there is no recovery, we see that there is a threshold in which if the pathogen kills too soon or too

late the disease is contained. This is also the case when clearance is present if virulence is high

enough. In contrast, when we include clearance, we notice that the disease is controlled for values

of v0  0.11, for all values of hv. This indicates that no matter how fast the pathogen kills the

host, if virulence is below this threshold, the disease will be contained.
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Figure 6.5: (a) Clearance c(a) = 0.5c0(1 � tanh(a � hc)) with a maximum value of c0 = 0.05 and
various half-saturation constants hc = {5, 10, 15}. (b) R0 as a function of hc for various values of
c0 when ✓0 = 3. The default values for the following sections will be c0 = 0.05 and hc = 10.

Prevalence

Prevalence which is estimated as the proportion of infected individuals in the population,

P =
Qe

Se +Qe
, is an indicator of the burden of a disease in a population. Here, we show how

prevalence depends on our model parameters and how it’s a↵ected by clearance. In Figures (6.6)–

(6.9) by including clearance, prevalence is reduced for all our parameters. Thus we will focus on

the the implications of clearance in the viable parameter ranges for which we observe the endemic

equilibrium. For example, as shown in Figure 6.6a, higher values of the maximum virulence v0

(i.e. v0 & 0.15) are needed to observe the endemic equilibrium. This is due to the fact that as v0

increases so does the infected population Qe while the susceptible population Se decreases.
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Figure 6.6: The left panel shows disease prevalence as a function of v0, and the four panels on
the right show the dependence of the endemic equilibrium values on v0. The red line denotes the
instance with no recovery and the blue line with recovery.

In Figure 6.7a, prevalence as a function of hv displays an increment to a maximum at interme-

diate values of hv ⇡ 11 at which point it begins to decrease. At this optimal value, we see that

the susceptible population experiences a minimum, while the total infected populations reaches a

maximum. In both cases, if the parasite kills the host too soon or too late, (i.e. hv too low or too

high) prevalence is zero. However when clearance is included, we can observe the endemic state for

a more narrow range of values of hv. Thus, when clearance is present, for the pathogen to prevail

in the system it needs to kill the host between a period of 8 to 13 days (hv 2 [8, 13]) rather than 5

to 17 days (hv 2 [7, 14]) in the absence of clearance.
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Figure 6.7: The left panel shows disease prevalence as a function of hv and the four panels on the
right show the dependence of the endemic equilibrium values on hv. The red line represents when
there is no recovery, the blue line when there is recovery.

As seen in Figure 6.8a, predators reduce disease prevalence by reducing the infected population

and increasing the susceptible population. Interestingly, the most dramatic e↵ect of clearance can

be seen in the maximum predation detection, where only for ✓0 . 8, the endemic state persists.

This indicates that when clearance is possible, lower values of predator intensity are enough to end

the epidemic.
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Figure 6.8: The left panel shows disease prevalence as a function of ✓0 , and the four panels on the
right show the dependence of the endemic equilibrium values on ✓0.
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Figure 6.9: The left panel shows disease prevalence as a function of h✓ when there is recovery, and
the four panels on the right show the dependence of the endemic equilibrium values on h✓.

Finally in Figure 6.9a, we see that prevalence increases with h✓. Both the total population of

infected Qe and density of spore increase with h✓, however the susceptible population decreases.

Combining Figure 6.8b and 6.9b we see that the predator needs to kills with high intensity and

speed to have the maximum e↵ect in reducing disease prevalence. When including clearance, the

values for which this maximum reduction occurs are shifted, and the predator must kill the host

at a latter time in order for the endemic state to persist, h✓ & 13 days.
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Figure 6.10: The left panel shows disease prevalence as a function of hc and the four panels on the
right show the dependence of the endemic equilibrium values on hc.
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Figure 6.11: The left panel shows disease prevalence as a function of c0 and the four panels on the
right show the dependence of the endemic equilibrium values on c0.

In Figure 6.11, we analyze how the speed of clearance and it’s intensity impact disease preva-

lence. Prevalence is a decreasing function of both c0 and hc. As the intensity of clearance increases

the total population of infected Qe and spore density Ze decrease while the susceptible population

increases. A similar behavior is observed as hc increases (i.e. when as infected clear the infection

faster). This suggest clearance decrease disease prevalence and might indicate optimal immune

responses that would allow the host population to suppress the pathogen in the system.

6.4 Discussion–Future Directions

By using a PDE epidemiological model that incorporates clearance along with mortality as a

function of age since infection, we have computed relevant quantities R0 and infection prevalence.

We have shown that clearance suppresses the intensity of an infection and in combination with

high intensity of virulence and predation can lead to the termination of an epidemic. In [77], an

age since infection model without clearance was analyzed and we used it as a basis of comparison

to our model. Qualitatively, these models do not di↵er much in their behavior.

Modeling clearance as a function of age of infection decreases the basic reproduction number R0

and reduces disease prevalence which is expected when including a recovery mechanism in a sys-

tem. However, the parameter regions that lead to the persistence of the pathogen are significantly
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reduced. This implies that to persist the pathogen needs to become more virulent and at inter-

mediate rates. On the opposite end, predators, which for our system tend to suppress infection,

must detect the infected prey at a lower rate and a higher intensity for the pathogen to persist. In

fact, higher predation intensity is shown to terminate an epidemic which was not possible without

clearance for the parameter values considered. These findings can be used to further understand

the evolution of virulence and possibly other parameters in our system.
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Figure 6.12: Di↵erent shapes for clearance as a function of age since infection: Linear (red),
c(a) = 0.5c0(1� tanh(m(a� hc))), where m denotes a factor which alters the slope of the curve.

Future directions for this work could include studying the SEIZAS model introduced in Chap-

ter 4 under this framework. As discussed in Chapter 4, resistance is due to a physical barrier (i.e.

the host’s gut thickness) and thus would not depend on age since infection. Finally, experimental

data could lead to more realistic descriptions of clearance as a function of age since infection for

our system. Thus, studying di↵erent shapes for clearance and their e↵ect on R0 and prevalence

might be an useful proxy while more data is gathered.
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Chapter 7

Conclusions

In Chapter 2, we showed that the short-term evolution of hosts, can lead to the termination of

an epidemic and reduced peak disease prevalence. Assuming an explicit trade-o↵ among virulence

and two traits: host susceptibility and predator selectivity; we showed virulence evolves to a lower

value and increases disease prevalence. In Chapter 3, we analyzed the e↵ect of long-term evolution

of host in our system. We determined regions of coexistence between a resident host and a mutant

invader by assuming an implicit trade-o↵ among relevant parameters such as virulence, predator

selectivity, host susceptibility. While regions of coexistence are possible in our system, the traits

considered evolve to an optimal value; thus, evolutionary branching under our assumptions is not

possible for our system.

In Chapter 4, we studied how immune responses and physiological barriers impact the disease

dynamics of our system. These recovery mechanisms reduce disease prevalence and the number of

secondary infections. In the absence of recovery, our system exhibits damped oscillations. Once

recovery is introduced, these oscillations begin to dampen at a faster rate. This inspired us to

incorporate demographic stochasticity in our model. By using a stochastic di↵erential equation

formulation, we capture two behaviors: sustained oscillations and extinction of the disease in

Chapter 5. In Chapter 6, we show that clearance as a function of age since infection, leads to a

reduction in secondary infections and disease prevalence. However, when compared with a model

without clearance, its qualitative behavior does not change significantly.

One of the most exciting aspects of this work is that it opens the door to new biological questions

to address. Using new experimental data, we could identify appropriate trade-o↵s for our system.

There is evidence that trade-o↵s among recovery, virulence, and host-susceptibility are possible

([3], [25], [34]). In addition, we could use these two frameworks to study the evolution of host

immunity through our models [40].
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Appendix A

In this Appendix, we provide the expression for the equilibrium densities for the two models

proposed in Chapter 2 and Chapter 3. The parameters for the SI model are given in Table A.1

while the parameters for the SIZA model are given in Table A.2.

A.1 Equilibrium Points

Using equations (2.1)–(2.2), we obtain that the endemic equilibrium of our SI model is given

by,

S⇤ =
(d+ v + ✓pS)

�
(A.1)

I⇤ =
b⇢� (� + bc+ bc⇢)S⇤ +

p
(b⇢� (� + bc+ bc⇢)S⇤)2 + 4bc⇢(b� (d+ pS + bcS⇤)S⇤)

2bc⇢

Using equations (3.17)–(3.19) we obtain that the endemic equilibrium of our SIZA model is given

by,

S⇤ =
(d+ v + ✓pS)A⇤

µfS(A⇤)

�+ r(1� A⇤

K )

�eSfS(A⇤)(d+ v)
, (A.2)

I⇤ =
1

R(A⇤)

r(1� A⇤

K )A⇤(eSfS(A⇤)� eSfS(Adf ))

fS(A⇤)(d+ v + ✓pS � ⇢eSfS(A⇤))
, (A.3)

Z⇤ =
(d+ v + ✓pS)A⇤

µfS(A⇤)

eS(fS(A⇤)� fS(Adf )

d+ v + ✓pS � ⇢eSfS(A⇤)
.

For the equilibrium points to be biologically feasible, the expressions (A.3)–(A.4) must be greater

than or equal to zero. Since fS(A) is an increasing function of algae, if Adf < A⇤, then d + v +

✓pS � ⇢eSfS(A⇤) > 0.

Finally, we solving equation (3.19) leads to a cubic polynomial expression for A⇤ given by

p(A) = a3A3 + a2A2 + a1A+ a0 = 0 the coe�cients of the polynomial are given by,
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a3 = r(d+ v + ✓pS)(v + (✓ � 1)pS + eSfS0(1� ⇢))� rµ�eSfS0(d+ v)(d+ v + ✓pS � ⇢eSfS0),

a2 = rµ�eSfS0(d+ v)((d+ v + ✓pS � rhoeSfS0)K � (d+ v + ✓pS)hS)

+ r(d+ v + ✓pS)(v + (✓ � 1)pS)hS

� (v + (✓ � 1)pS + eSfS0(1� ⇢))(d+ v + ✓pS)((�+ r)K � rhS), (A.4)

a1 = (d+ v + ✓pS)(rµ�eSfS0(d+ v)KhS � (v + (✓ � 1)pS)((�+ r)K � rhS)hS

� (�+ r)(v + (✓ � 1)pS + eSfS0(1� ⇢))KhS),

a0 = �(d+ v + ✓pS)(�+ r)(v + (✓ � 1)pS)Kh2S .

A.2 Parameters

Variable Unit

t time day
S(t) susceptible hosts nL�1

I(t) infected hosts nL�1

Parameter Value

b : maximum birthrate 0.4 /day
c : density-dependent reduction in host fecundity 0.05 nL�1

d : background mortality 0.05 /day
f : fecundity reduction due to infection 0.75
pS : fish predation rate 0.03 /day
✓: selective predation parameter 9
v: virulence 0.05 /day
Vc: clonal variability 0-0.02

Table A.1: Variables and parameters for SI model. The values of the various parameters, unless
specified in the text, are the ones given in [45].
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SIZA and SIEZA Model

Variable Unit

t time day
S(t) susceptible hosts mg C/L
E(t) exposed hosts mg C/L
I(t) infected hosts mg C/L
Z(t) fungal spores mg C/L
A(t) algae mg C/L

Parameter Value

eS : conversion e�ciency 0.6 mg C / mg C
fS0 : maximal feeding rate 0.32/day mg C/mg C
hS : half saturation constant 0.50 mg C/L
⇢ : fecundity reduction due to infection 0.9
pS : predation rate 0.1/day
d : background mortality 0.03/day
µ : per spore infectivity 10 mg C/mg C
v : virulence 0.05 /day
✓ : selective predation parameter 3
� : resistance rate 0.1, 0 – 0.6/day (*)
c: clearance 0.12, 0 – 0.6/day (*)
↵ : infection rate 0.5/day
� : spore release parameter 31 days ⇥ mg C / mg C ⇥ mg C/L
� : spore loss rate 0.2/day
r : algal net maximal growth rate 0.2/day
K : algal carrying capacity 2.0 mg C/L

Table A.2: Variables and parameters for SEIZA model. The values of the various parameters,
unless specified in the text, are the ones given in [30]. (*) Denotes parameters considered in this
study.

A.3 A Biologically Motivated Approach

To give a more meaningful interpretation of our invasion fitness function we use a method

provided in ([25], [69]). We can verify both these derivations, by using linear stability analysis

which we explain in detail in Chapter 3. Consider an attempted invasion, characterized by the

alone densities, i.e. where the mutant strain is alone in the host population. Assume the invader

is initially uninfected and suppose it remains infected for a period of time TS and that it becomes

infected for a period of time TI . Let RS and RI denote the growth rates for Sm and Im during

these time periods. We want to find the average increase in the mutant population per invader. If

this expression is positive then the invasion will be successful. Our invasion fitness function will be

then given by sp(pm) = RSTS +RITI , where p and pm denote the parameters corresponding to the
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resident and mutant traits respectively. We compute RS and RI by considering the growth rate of

net change due to births and deaths of susceptible and infected classes.

SI model

At the equilibrium given by (S⇤, I⇤, 0, 0), we obtain the following expressions for the SI model,

RS =
@

@Sm
[bm(Sm + ⇢mIm)(1� cmN)� (d+ pS)Sm]

����
(S⇤,I⇤,0,0)

= bm(1� cm(S⇤ + I⇤))� (d+ pS)

RI =
@

@Im
[bm(Sm + ⇢mIm)(1� cmN)� (d+ vm + ✓mpS)Im]

����
(S⇤,I⇤,0,0)

= bm⇢m(1� cm(S⇤ + I⇤))� (d+ vm + ✓mpS) (A.5)

TS =
1

@
@Sm

[(d+ pS)Sm + �mSm(I + Im)]

����
(S⇤,I⇤,0,0)

=
1

d+ pS + �mI⇤

Since the only possibilities for the invader to die is when it remains uninfected or infected, we can

use the following relationship to determine TI ,

Probability of
dying while uninfectedz }| {

(d+ pS)TS +

Probability of
dying while infectedz }| {

(d+ vm + ✓mpS)TI = 1, we obtain,

TI =
(d+ pS + �mI⇤)� (d+ pS)

(d+ pS + �mI⇤)(d+ vm + ✓mpS)
=

�mI⇤

(d+ pS + �mI⇤)(d+ vm + ✓mpS)

Omitting the common positive factor, our invasion fitness function for the mutant is,

sp(pm) = bm(1�cmN⇤)�(d+pS)+
�mI⇤

(d+ vm + ✓mpS)
(bm⇢m(1�cm(N⇤))�(d+vm+✓mpS)) (A.6)

SIZA model

Now, consider an attempted invasion, characterized by the alone densities, i.e. where the mutant

strain is alone in the host population, S⇤, I⇤, Z⇤ and A⇤. As in [25], we want to find the average

increase in the resident population per invader since if this is positive then the invasion will be

successful. Assume the invader is initially uninfected and suppose it remains uninfected for a period

of time TS and that it becomes infected for a period of time TI . Let RS and RI denote the growth
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rates for S and I during these time periods. At the equilibrium (S⇤, I⇤, Z⇤, A⇤, 0, 0) we obtain,

RS =
d

dSm
[eSfSm(A)(Sm + ⇢mIm)� (d+ pS)Sm] = eSfSm(A

⇤)� (d+ pS)

RI = eSfSm(A
⇤)⇢m � (d+ vm + ✓mpS)

TS =

✓
d

dSm


(d+ pS)Sm + µ1

fSm(A)

A
SmZ

�◆�1

=

✓
(d+ pS) + µm

fSm(A
⇤)

A⇤ Z

◆�1

Note, that the probability of the invader dying while uninfected is given by (d+ pS)TS and the

probability of dying while infected is (d+ vm + ✓mpS)TI . Since these are the only two possibilities

we have, (d+ pS)TS + (d+ vm + ✓mpS)TI = 1, solving for TI we obtain,

TI =

 
1� (d+ pS)

(d+ pS) + µm
fSm (A⇤)

A⇤ Z⇤

!
⇥ 1

(d+ vm + ✓mpS)
=

µ1
fSm (A⇤)

A⇤ Z⇤

(d+ pS + µm
fSm (A⇤)

A⇤ Z⇤)(d+ vm + ✓mpS)

Thus, the number of o↵-springs per invader is:

sp(pm) = RSTS+RITI =
eSfSm(A

⇤)� (d+ pS)⇣
d+ pS + µm

fSm (A⇤)
A⇤ Z⇤

⌘+
(eSfSm(A

⇤)⇢m � [d+ vm + ✓mpS ])µm
fSm (A⇤)

A⇤ Z⇤

(d+ pS + µm
fSm (A⇤)

A⇤ Z⇤)(d+ vm + ✓mpS)

Neglecting the positive common factor we obtain,

sp(pm) = eSfSm(A
⇤)� (d+ pS) + (eSfSm(A

⇤)⇢m � (d+ vm + ✓mpS))
µm

fS1 (A
⇤)

A⇤ Z⇤

(d+ vm + ✓mpS)

which shows invasion at equilibrium is successful if and only if sp(pm) is positive. Here p, pm denote

the parameter values for the resident and mutant populations respectively. Note, even though this

expression explicitly depends on the equilibrium densities of the resources (i.e. algae and spores),

S⇤ and I⇤ will appear implicitly in Z⇤ and A⇤.

A.4 Trade-o↵ Invasibility Plots

Since the feeding rate fS(A) is a function of algae, we expect that the carrying capacity K will

play a role in our results. In this section, we show how the coexistence regions shown in Figure 3.6

change for di↵erent values of carrying capacity for the algae K.
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Figure A.1: Trade-o↵ invasibility plot (TIP) parameters related to per spore infectivity. We
compare the outcomes for di↵erent levels of infectivity (µm) versus (a) the maximal feeding
rate (fSm), and (b) half-saturation constant (hSm). Default values are (fSm , µm) = (0.32, 10),
(hSm , µm) = (0.05, 10), and carrying capacity K = 4.
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Figure A.2: Trade-o↵ invasibility plot (TIP) parameters related to per spore infectivity. We
compare the outcomes for di↵erent levels of infectivity (µm) versus (a) the maximal feeding
rate (fSm), and (b) half-saturation constant (hSm). Default values are (fSm , µm) = (0.32, 10),
(hSm , µm) = (0.05, 10), and carrying capacity K = 6.

This suggests that as the carrying capacity K increases the parameter regions for coexistence

become smaller.
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Appendix B

B.1 Endemic Equilibria

To find our endemic equilibrium, we solve equation (4.5) for Ae which after calculations will be

a root of the following cubic polynomial, p(Ae) = a3A3
e + a2A2

e + a1Ae + a0 = 0 where,

a3 = r↵(d+ pS + � + ↵)(d+ v + ✓pS + c)(v + (✓ � 1)pS)

a2 = ↵(2hSr �K(�+ r))(d+ pS + � + ↵)(d+ v + ✓pS + c)2

+ [(d+ pS + � + ↵)(K↵(c+ d+ pS)(�+ r)

� 2↵rhS + ↵�eS(d+ v)fS0µr(eSfS0 � (d+ pS + ↵)](d+ v + ✓pS + c)

+ �eS(d+ v)µr↵2fS0(eSfS0 + c)

a1 = ↵hS(hSr � 2K(�+ r))(d+ pS + � + ↵)(d+ v + ✓pS + c)2

+ [↵(d+ pS + � + ↵)hS(d+ pS + c)(�hSr + 2K(�+ r))

+ ↵�eS(d+ v)fS0µr(K((d+ pS + ↵)� eSfS0) + �hS(�(d+ pS + � + ↵) + 1))](d+ v + ✓pS + c)

+ ↵2�eS(d+ v)fS0µr(hSc�K(c+ eSfS0))

a0 = �Kh2S↵(�+ r)(d+ pS + � + ↵)(d+ v + ✓pS + v)2

+ K↵hS [(hS(�+ r)(c+ d+ pS)(d+ pS + � + ↵) + �eS(d+ v)fSµr(1� �))(d+ v + ✓pS + c)

� ↵c�eS(d+ v)fSµr]

B.2 Stability of Equilibria

In the Chapter 4, we used linear stability analysis to determine the stability our equilibrium

points. For the disease-free equilibrium we used the Routh-Hurwitz criterion which we state here

for completeness [71].

Definition B.2.1. Given a real polynomial, P (�) = a0�n + a1�n�1 + · · ·+ an�1�+ a5, the n⇥ n
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square matrix,

H =

2

66666666664

a1 a3 a5 · · · 0

a0 a2 a4 · · · 0

0 a1 a3 · · · 0
...

...
...

. . .
...

0 0 0 · · · an

3

77777777775

is called the Hurwitz matrix corresponding to the polynomial P (�).

Definition B.2.2. The leading principal minors are the determinants of the upper left 1⇥ 1, 2⇥

2, ..., n ⇥ n submatrices of Hn, the upper left k ⇥ k minors are denoted �k for k = 1, 2, ..., n. For

example, the leading principal minors of the Hurwitz matrices H1, H2, and H3 respectively are:

�1 = |a1|,�2 =

�������

a1 a3

a0 a2

�������
,�3 =

����������

a1 a3 a5

a0 a2 a4

0 a1 a3

����������

.

Theorem B.2.1. (Routh-Hurwitz Criterion) The eigenvalues of a Jacobian matrix J all have

negative real part if and only if all of the coe�cients of the characteristic polynomial of J are

positive and all leading principal minors of the Hurwitz matrix corresponding to the characteristic

polynomial are also positive.

In this section, we give the expression for the full Jacobian matrix for our system. Here we

denote N by the total host population, N = S + E + I. The stability analysis presented in the

main text is performed by evaluating J at each equilibrium point and computing its eigenvalues.

J =

2

66664

eSfS(A)�(d+pS)�µ
fS(A)

A Z eSfS(A)+� ⇢eSfS(A)+c �µ
fS(A)

A S eSf 0
S(A)(S+E+⇢I)�µ

⇣
fS(A)

A

⌘0
SZ

µ
fS(A)

A Z �(d+pS+↵+�) 0 µ
fS(A)

A S �µ
⇣

fS(A)
A

⌘0
SZ

0 ↵ �(d+v+✓pS+c) 0 0

� fS(A)
A Z � fS(A)

A Z �eS
fS(A)

A (d+v)� fS(A)
A Z ��� fS(A)

A N �eSf 0
S(A)(d+v)I�

⇣
fS(A)

A

⌘0
NZ

�fS(A) �fS(A) �fS(A) 0 r(1� 2A
K )�f 0

S(A)N

3

77775
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At the disease-free equilibrium, Edf = (Sdf , 0, 0, 0, Adf ) we have,

J

����
Edf

=

2

666664

0 eSfS(Adf )+� ⇢eSfS(Adf )+c �µ
fS(Adf )

Adf
Sdf eSf 0

S(Adf )Sdf

0 �(d+pS+↵+�) 0 µ
fS(Adf )

Adf
Sdf 0

0 ↵ �(d+v+✓pS+c) 0 0

0 0 �eS
fS(Adf )

Adf
(d+v) ���

fS(Adf )

Adf
Sdf 0

�fS(Adf ) �fS(Adf ) �fS(Adf ) 0 r
⇣
1�

2Adf
K

⌘
�f 0

S(Adf )Sdf

3

777775

At the endemic equilibrium (S⇤, E⇤, I⇤, Z⇤, A⇤),

eSfS(A
⇤) (S⇤ + E⇤ + ⇢I⇤)� (d+ pS)S

⇤ � µ
fS(A⇤)

A⇤ S⇤Z⇤ + cI⇤ + �E⇤ = 0

µ
fS(A⇤)

A⇤ S⇤Z⇤ � (d+ pS + � + ↵)E⇤ = 0

↵E⇤ � (d+ v + ✓pS + c)I⇤ = 0 (B.1)

�eS
fS(A⇤)

A⇤ (d+ v)I⇤ � �Z⇤ � fS(A
⇤) (S⇤ + E⇤ + I⇤)

Z⇤

A⇤ = 0

r

✓
1� A⇤

K

◆
A⇤ � fS(A

⇤) (S⇤ + E⇤ + I⇤) = 0

From which we obtain some useful equalities,

E⇤

S⇤ =
eS(f(A⇤)� f(Adf ))

d+ pS + ↵� eSfS(A⇤) + ↵(⇢eSfS(A⇤)+c)
d+v+✓pS+c

The jacobian matrix evaluated at the endemic equilibrium can be rewritten as,

2

66664

eSfS(A⇤)�(d+pS)�µ
fS(A⇤)

A⇤ Z⇤ eSfS(A⇤)+� ⇢eSfS(A⇤)+c �µ
fS(A⇤)

A⇤ S⇤ eSf 0
S(A)(S+E+⇢I)� (d+pS+�+↵)

hS+A⇤ E⇤

µ
fS(A⇤)

A⇤ Z⇤ �(d+pS+↵+�) 0 µ
fS(A⇤)

A⇤ S⇤ (d+pS+�+↵)
hS+A⇤ E⇤

0 ↵ �(d+v+✓pS+c) 0 0

� fS(A⇤)
A⇤ Z⇤ � fS(A⇤)

A⇤ Z⇤ fS(A)
A (�eS(d+v)�Z⇤) �(�+r(1�A⇤

K )) � �Z⇤
hS+A

�fS(A⇤) �fS(A⇤) �fS(A⇤) 0
A⇤r(K�hS�2A⇤)

K(hS+A⇤)

3

77775

Due to the complexity of the expressions found for the endemic equilibrium, we were not able

to find explicit expressions for the eigenvalues of the Jacobian matrix evaluated at the endemic

equilibrium.
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B.3 Elasticity Analysis

The analytic expressions for the elasticity analysis in Chapter 4 are given below.

IR0
↵ =

d+ � + pS
d+ pS + � + ↵

IR0
c =

�c

d+ v + ✓pS + c

IR0
d =

d

d� eSfS + pS
� d

(↵+ d+ � + pS)
+

d

d+ v
� d

c+ d+ pS✓ + v

� d(eSfShS�K)

((hSr(d+ pS) + (�+ r)K(d+ pS � eSfS)))(hS(d+ pS)�K(d+ pS � eSfS)))

IR0
eS = � [eSfS((K2(�+ r) + (h2Sr + 2KhSr))(d2 + p2S) +K2(e2Sf

2
S + 2dpS � 2eSfS(d+ pS))(�+ r)

((d+ pS � eSfS)((K + hS)(d+ pS)�KeSfS)(K(�+ r)(d+ pSKeSfS) + hSr(d+ pS)))

� 2KhSr(eSfS(d+ pS)� 2dpS) + 2dh2SpSr)]

((d+ pS � eSfS)((K + hS)(d+ pS)�KeSfS)(K(�+ r)(d+ pSKeSfS) + hSr(d+ pS)))

IR0
fS0

= IR0
eS

IR0
� =

��
↵+ d+ � + pS

IR0
hS

= �((e2Sf
2
SK

2(�+ r)� 2eSfSK(hSr +K(�+ r))(d+ pS) + (d2 + 2dpS + p2S)(h
2
Sr + 2hSKr +K2(�+ r)))

((�eSfSK + (d+ pS)(hS +K))(dhSr + hSpSr + dK(�+ r)� eSfSK(�+ r) +KpS(�+ r))))

IR0
K = � KhS�(d+ pS)(d+ pS � eSfS)

((K + hS)(d+ pS)�KeSfS)(K(�+ r)(d+ pS �KeSfS) + hSr(d+ pS))

IR0
� =

�K�(d+ pS � eSfS0)

K(�+ r)(d+ pS �KeSfS0) + hSr(d+ pS)

IR0
µ = 1

IR0
pS =

�pS
(↵µ(d� eSfS + pS)2r�(d+ v)(eSfSK � (d+ pS)(hS +K))2))

⇥ [(d+ pS + � + ↵)(d+ v + ✓pS + c)(hS(d+ pS) + (d+ pS � eSfS0)]

IR0
r =

K�(d+ pS � eSfS0)

K(�+ r)(d+ pS �KeSfS0) + hSr(d+ pS)

IR0
� = 1

IR0
✓ =

�✓pS
d+ v + ✓pS + c

IR0
v =

v(c+ ✓pS)

(d+ v)(d+ v + ✓pS + c)
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Appendix C

In this Appendix, we provide the parameters used for our age since infection model described

by equations (6.2)–(6.4) and the expressions for the endemic equilibrium.

C.1 Parameters

Variable Unit

t time, a age of infection day
S(t) susceptible hosts mg C/L
I(t, a) infected hosts mg C/(L day)
Z(t) fungal spores mg C/L
A(t) algae mg C/L

Parameter Value

eS : conversion e�ciency 0.6 mg C/ mg C
f0 : maximal feeding rate 0.32/day mg C/mg C
hS : half saturation constant 0.50 mg C/L
⇢(a) : fecundity reduction due to infection 0.05–1
pS : predation rate 0.1/day
d : background mortality 0.03/day
µ : per spore infectivity 10 mg C/mg C
v(a) : virulence 0.05-0.4 /day
✓(a) : selective predation parameter 1–20
� : spore release parameter 31 days ⇥ mg C / mg C
� : spore loss rate 0.2/day
r : algal net maximal growth rate 0.2/day
K : algal carrying capacity 2.0 mg C/L

Table C.1: Variables and parameters PDE model. The values of the various parameters, unless
specified in the text, are the ones given in [30].

C.2 Steady States

From equation (6.2) we obtain that I(a) = µfS(A)
A SZ

⇣
e�

R a
0 (d+v(⌧)+✓(⌧)pS+r(⌧))d⌧

⌘
, thus

Qe =

Z a0

0
Ie(a)da = µ

fS(Ae)

Ae
SeZe

Z a0

0
e�

R a
0 (d+v(⌧)+pS✓(⌧)+r(⌧)d⌧da = µ

fS(Ae)

Ae
SeZeJ0
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is the total infected host population and J0 is expected life-span of an infected host. Then, Ee is

described by the relationships

Se =
�+ r

�
1� Ae

K

�

�eSfS(Ae)(d�+ �)

1

µJ0
fS(Ae)

Ae

Qe =
r
�
1� Ae

K

�
Ae

fS(Ae)
� Se =

eSfS(Ae)� (d+ pS)
1
J0

�  eSfS(Ae)� ⌘
Se, (C.1)

Ze =
�eSfS(Ae)(d�+ �)

�+ r
�
1� Ae

K

� Qe.

Where we denote by,

J1 =

Z a0

0
W (a) exp

✓
�
Z a

0
(d+ v(⌧) + ✓(⌧)pS + c(⌧))d⌧

◆
da (C.2)

the expected value of within-host pathogen load in the lifespan of an infected host,

J2 =

Z a0

0
v(a)W (a) exp

✓
�
Z a

0
(d+ v(⌧) + ✓(⌧)pS + c(⌧))d⌧

◆
da (C.3)

the expected value of the disease-induced mortality over the lifespan of the infected host, and

J3 =

Z a0

0
⇢(a) exp

✓
�
Z a

0
(d+ v(⌧) + ✓(⌧)pS + c(⌧))d⌧

◆
da (C.4)

the expected value of the fecundity reduction parameter over the lifespan of the infected host,

J4 =

Z a0

0
c(a) exp

✓
�
Z a

0
(d+ v(⌧) + ✓(⌧)pS + c(⌧))d⌧

◆
da (C.5)

the expected value of the recovery over the lifespan of the infected host,

� =
J1
J0

, � =
J2
J0

, and  =
J3
J0

⌘ =
J4
J0

. (C.6)
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[42] M. A. Du↵y, S. R. Hall, C. E. Cáceres, and A. R. Ives. Rapid evolution, seasonality, and the
termination of parasite epidemics. Ecology, 90(6):1441–1448, 2009.

[43] M. A. Du↵y, S. R. Hall, A. J. Tessier, and M. Huebner. Selective predators and their parasitized
prey: are epidemics in zooplankton under top-down control? Limnology and Oceanography,
50(2):412–420, 2005.

[44] M. A. Du↵y, J. H. Ochs, R. M. Penczykowski, D. J. Civitello, C. A. Klausmeier, and S. R.
Hall. Ecological context influences epidemic size and parasite-driven evolution. Science,
335(6076):1636–1638, 2012.

91



[45] M. A. Du↵y and L. Sivars-Becker. Rapid evolution and ecological host–parasite dynamics.
Ecology Letters, 10(1):44–53, 2007.

[46] D. Ebert and W. W. Weisser. Optimal killing for obligate killers: the evolution of life histories
and virulence of semelparous parasites. Proceedings of the Royal Society of London. Series B:
Biological Sciences, 264(1384):985–991, 1997.

[47] R. Erban, J. Chapman, and P. Maini. A practical guide to stochastic simulations of reaction-
di↵usion processes. arXiv preprint arXiv:0704.1908, 2007.

[48] S. Genieys, N. Bessonov, and V. Volpert. Mathematical model of evolutionary branching.
Mathematical and Computer Modelling, 49(11-12):2109–2115, 2009.

[49] S. Génieys, V. Volpert, and P. Auger. Adaptive dynamics: modelling darwin’s divergence
principle. Comptes rendus biologies, 329(11):876–879, 2006.
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