
c© 2006 by Ajay Sudarshan Tirumala. All rights reserved.

AN ASSUMPTIONS MANAGEMENT FRAMEWORK FOR SYSTEMS SOFTWARE

BY

AJAY SUDARSHAN TIRUMALA

B.E., University of Mysore, 1998
M.S., University of Illinois at Urbana-Champaign, 2001

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2006

Urbana, Illinois

ABSTRACT

Critical systems in areas ranging from avionics to consumer car control systems are being

built by integrating commercial-off-the-shelf (COTS) components. Software components used

in these systems need to satisfy many formally unexpressed, yet necessary conditions, termed

as assumptions, for their correct functioning. Invalid assumptions have been determined to be

the root cause of failures in many such systems; for example, in the Ariane 5 rocket failure.

In the current software engineering practices, many of these assumptions are not recorded in

a machine-checkable format, which makes validating the assumptions a manual and an error-

prone task.

This thesis examines this problem in detail and evolves a framework, called the assumptions

management framework (AMF), which provides a vocabulary for discussing assumptions, a

language for encoding assumptions in a machine-checkable format and facilities to manage the

assumptions in terms of composition and setting policies on assumption validation. A relevant

subset of assumptions can be validated or flagged as invalid automatically as the system evolves.

AMF allows the assumption specification process to blend with the components’ source-code

and architecture specification. This enables AMF to be applied to existing systems with minor

or no modifications in components’ implementation and design. Performance and scalability

tests show that the AMF implementation is scalable to be applied to large-scale systems.

Case-studies were conducted on representative systems to study the nature and number of

defects caused by invalid assumptions. It was found that a significant number of defects in

the systems studied had invalid assumptions as the root-cause. It was found that AMF has

the ability to encode and validate majority of the assumptions that caused defects in these

systems. This can prevent such defects in the future or warn in advance of potential defects

when assumptions are invalid. Analyzing and correcting one of the invalid assumptions in

Iperf, an end-to-end bandwidth measurement tool, resulted in significantly better bandwidth

iii

estimates by Iperf across high-bandwidth networks. In most cases, it also resulted in savings

of over 90% in terms of both network traffic generated and bandwidth measurement times.

iv

To Appa, Amma, Ruchi and Anisha.

v

ACKNOWLEDGMENTS

A dedicated long-term goal, like finishing a Ph.D., requires a lot of things to fall in place,

both personally and professionally. I am grateful to have had this opportunity.

My adviser, Prof.Lui Sha, has been a constant source of inspiration. I am particularly

grateful to him for introducing me to the system integration problem. He is one of the few

advisers who always makes so much time to discuss research with his students. This thesis

would not have taken shape without his suggestions and guidance, based on his vast experience,

brilliant insight, and his innumerable rounds of feedback. This apart, his personal stories

and remarkable anecdotes about every possible situation in life are etched permanently in my

memory.

I was fortunate to have a very helpful committee, and I have enjoyed working closely with

them. Dr.Peter Feiler was key in shaping the implementation part of the thesis, by giving me

an opportunity to work under him and learn AADL and related tools for a summer. Also, I

am very thankful that he was able to attend my final defense in person, traveling all the way

from Pittsburgh (CMU). Prof.Marco Caccamo provided me an opportunity to work with a real-

time networking protocol - RI-EDF. Prof.Jennifer Hou provided an opportunity to study the

assisted living project, which has helped me understand the system integration problem better.

Prof.Grigore Rosu provided valuable inputs into the language part of the implementation for

AMF. Outside of my committee, Dr.Les Cottrell provided me an opportunity and the resources

to test Iperf across various nodes across the world. I am grateful to all of them.

My friends and lab-mates ensured that graduate school was not all work and no play.

My lab-mates - Qixin, Sumant, Sathish, Hui, Xue, Kihwal and especially Tanya were great

comrades and have made my path towards my Ph.D. a joyful one. My association with “Asha

for education” during my graduate school re-emphasized the value for education, and that it

should not be taken for granted. I also met my loving and charming wife, Ruchi, while I was

vi

working for Asha. My room-mates Girish, Arun and Ashvin have shared my food and my

whims; I thank them for that.

My family members have played the most important part in this seemingly daunting journey.

It was an enjoyable one for me because of them. Appa and Amma placed utmost confidence

in my abilities and supported wholeheartedly, my decision to pursue a Ph.D. Amma’s outlook

on never compromising on education set the seeds for my undertaking this task. This whole

endeavor would not have been possible without Amma’s and Appa’s sacrifices and selflessness,

something I immensely owe them for. Ruchi was there with me during the hardest years of

my Ph.D., and she was extremely loving and supportive. At the same time, she has performed

phenomenally in her research also; a balancing act that I am slowly learning from her. She also

opened my mind to various fields and activities outside of college and my research. Anisha was

a close friend to me, in addition to being a sister and a responsible daughter; being there with

Appa and Amma, while I was away from home. I was lucky to have Radha Chitti’s family in

town, which made me feel I was not very far away from “desh”. Ruchi’s parents (Papa and

Mummy) placed a lot of confidence in me and I am grateful to them for this.

The Champaign-Urbana community has made me feel at home and I never felt like an

outsider even though I had come from 6000 miles away. The College of Engineering and the

Department of Computer Science have always set high standards and made this task worth

undertaking. I am extremely indebted to NSF and DARPA for funding me throughout my

Ph.D.

In spite of all the support, any shortcomings of the thesis are entirely due to the me. I

dedicate this thesis to Appa, Amma, Ruchi and Anisha.

vii

TABLE OF CONTENTS

CHAPTER PAGE

LIST OF FIGURES . xii

1 Introduction . 1
1.1 Incidents of System Failures Due to Invalid Assumptions 1

1.1.1 Ariane 5 Disaster . 1
1.1.2 Child-seat Airbag Incident . 2

1.2 Sources of Assumptions . 3
1.2.1 COTS and Custom Software Components 3

1.2.1.1 Benefits and Drawbacks of COTS Adoption 4
1.2.2 Software Engineering Practices . 5
1.2.3 Inadequacy of Current Software Interfaces 5

1.3 Motivation . 7
1.4 Organization of the Report . 9

2 Overview: Definitions, Challenges and the Building Blocks 10
2.1 Definitions . 10
2.2 Challenges in Designing a Framework for Managing Assumptions 11
2.3 The Building Blocks of AMF . 13

2.3.1 Classification of Assumptions - Building a Vocabulary 13
2.3.2 A Language for Managing Assumptions 14
2.3.3 Composition of Assumptions and Guarantees 16
2.3.4 Integration with Programming Language and Architecture Description . . 16
2.3.5 Policies on Assumption Selection and Validation 18

2.4 Summary . 18

3 Classification of Assumptions and Guarantees 19
3.1 The Assumptions Interface or the Assumption Set 19
3.2 Classification of Assumptions . 20

3.2.1 Time-frame of Validity of Assumptions . 20
3.2.2 Criticality of Assumptions . 21
3.2.3 Compositional Scope of Assumptions . 23

3.3 Guarantees: Machine Generated Versus Human Entered 23
3.4 Revisiting the Sensor - Data Collector Example 24
3.5 Domain Specific Classification of Assumptions . 24
3.6 Summary . 24

viii

4 AMF Language Design . 27
4.1 Pre-requisites for Encoding Assumptions Using AMF 27
4.2 AMF Language Capabilities . 28
4.3 Definitions and Structure of Assumption Management Objects 28

4.3.1 Assumptions of Library and Services Objects 31
4.4 A System View Example . 31
4.5 The Language and the AMF Compiler . 33
4.6 Language Extensions to Support Method Invocation 37
4.7 Summary . 38

5 Composition of Assumptions and Guarantees 40
5.1 Composition Overview . 41
5.2 Composition in Presence of Library Services . 42

5.2.1 Composition Rules . 42
5.2.2 Algorithm to Compose Assumptions and Guarantees 44
5.2.3 A Note on Lemma 5.2.2 . 47

5.3 Preserving Composability . 47
5.4 Summary . 48

6 Vertical Assumptions Management . 49
6.1 Interfacing AMF with Programming Languages 50

6.1.1 An Example . 50
6.1.2 Pre-Requisites for Encoding Assumptions on the Source-Code 51
6.1.3 Procedure for Encoding Assumptions on the Source Code 52

6.2 Integration with AADL . 54
6.2.1 The Architecture Analysis and Description Language (AADL) 55

6.3 Mapping Assumptions to Component Failures . 56
6.4 Summary . 58

7 Implementation of the Assumptions Management Framework 59
7.1 Structure of the Implementation Objects . 59
7.2 Specifying Assumptions . 62

7.2.1 The AMF Text Based Input . 62
7.2.2 The AMF GUI Based Input . 64

7.3 Composing Assumptions . 65
7.4 Validation of Assumptions . 65
7.5 Services for Dynamic Validation of Assumptions 67
7.6 Integration with Java Source Code . 68
7.7 Integration with AADL . 69
7.8 Policies on Assumption Selection and Validation Times 70
7.9 Summary . 73

8 Case studies of Representative Projects . 75
8.1 Case-Study Hypotheses . 75
8.2 Pilot Projects Selection and Plan for the Case-Study 76

8.2.1 Pilot Projects Selection . 76
8.2.2 Testing the Hypothesis . 77

ix

8.3 Description of the Project Functionality . 78
8.3.1 Iperf . 78
8.3.2 TinyOS . 80
8.3.3 Inverted Pendulum Control System . 80

8.4 Case Study Results . 82
8.4.1 Testing Hypothesis 1 for TinyOS . 82
8.4.2 Testing Hypothesis 1 for Iperf . 84

8.5 Results Summary and Key Observations . 87
8.6 Summary . 88

9 Analyzing and Correcting the Key Invalid Assumption of Iperf 89
9.1 Key Assumptions of Iperf and the Errors They Cause 89
9.2 Modified Algorithm of Iperf . 91

9.2.1 TCP Congestion Windows . 91
9.2.2 Algorithm to Validate the End of Slow-Start Assumption 92

9.3 Implementation and Results . 92
9.3.1 Implementation . 92
9.3.2 Testing environment . 93
9.3.3 Experimental Results . 94

9.4 Summary . 95

10 Evaluation of AMF and Comparison with Related Work 97
10.1 Evaluation of AMF - Performance and Scalability 97

10.1.1 Performance of the Composition Matching Algorithm 97
10.1.2 Performance of Parsing, Code-Generation and Java Compilation 99
10.1.3 Evaluating the Time to Validate Assumptions 100

10.2 Evaluation of AMF in Encoding and Validating Assumptions 101
10.3 Related Work and Comparison with AMF . 103

10.3.1 Design by Contract . 103
10.3.2 Real-time CORBA . 104
10.3.3 VEST . 105
10.3.4 SpecTRM . 106
10.3.5 Impact Analysis in Real-Time Systems . 107
10.3.6 Industry Solutions for Specific Problems 108
10.3.7 Source-Code Related Assumptions Testing and Model-Checking 108

10.4 Summary . 109

11 Conclusions . 111
11.1 Further Applications and Extensions . 113

11.1.1 Domain Specific Assumption Libraries . 113
11.1.2 Applying AMF to Large-Scale Sensor Networks 113

APPENDIX A Assumptions in Iperf, TinyOS and IPCS 115
A.1 Description of the Inverted Pendulum Control System 115
A.2 List of Defects Considered in Iperf . 119
A.3 List of Defects Considered in TinyOS . 123

x

APPENDIX B The AMF Language Grammar rules in Bachus-Naur form 126

REFERENCES . 132

Author’s biography . 138

xi

LIST OF FIGURES

Figure Page

1.1 A Simple Acoustic Sensor Transmitting Audio Data to a Computer 6

3.1 Assumption Set Example . 20
3.2 Assumptions and Guarantees Classification Example 25

4.1 Notations in AMF Rules . 29
4.2 Extended Notations in AMF for Library and Service Objects 31

5.1 Composition Example: Acoustic Sub-system . 42
5.2 Notations in AMF Rules . 43
5.3 Algorithm to Find Matched Assumptions and Guarantees 44

6.1 Sample of AADL Specification of the Acoustic Sensing System 54
6.2 Specifying Assumptions Within AADL . 56

7.1 Class Diagram for the Assumption Object Implementation using EMF 61
7.2 Syntax Errors in Textual AMF Specification . 63
7.3 Model Based GUI to Specify the Assumptions 64
7.4 Sample Results of Composition . 65
7.5 Screen Indicating the List of Violated Assumptions 66
7.6 Integrated Environment for Assumptions, Architecture and Source-Code 71

8.1 Iperf Bandwidth Measurement Tool . 78
8.2 The Inverted Pendulum Controller . 81
8.3 System View with Plant Proxy . 82
8.4 Summary of Testing Hypothesis 1 for Iperf and TinyOS 87

9.1 Estimated Slow-start Times for Various Bandwidth-delay Products 90
9.2 Algorithm to Detect the End of TCP Slow-start Using Web 100 93
9.3 Slow-start Validated Quick Mode v/s 20 Second Measurements 94
9.4 Throughput and Congestion Window (SLAC → Caltech) 95

10.1 Performance of the Composition Matching Algorithm Implementation 98
10.2 Parsing, Code-Generation and Compilation Performance 99
10.3 Average Assumption Validation Times . 100
10.4 Contracts Example . 103

xii

10.5 Example of Impact Analysis Framework . 107

A.1 Assumptions Made by the Software Components 118

B.1 The AMF Design Using UML Notation . 131

xiii

CHAPTER 1

Introduction

Embedded and real-time systems, ranging from cruise control systems in cars to control

systems in satellite landing gear are being built using custom and commercial-off-the-shelf

software components. The paradigm of complete in-house development of all the hardware

and software components for a mission or a project is getting to be obsolete. Even within

the same organization, software development is a highly distributed activity and the costs for

integrating the software components developed by different teams is non-trivial, with companies

like IBM spending over 50% of the product development budgets towards integration and system

testing [1]. The problem is magnified further in embedded and real-time systems software

development where many environmental assumptions are not recorded in a machine checkable

format. Manual testing for validity of these assumptions is time consuming, not cost effective

and prone to errors.

Most importantly, there have been catastrophic accidents resulting in loss of revenue in

tune of hundreds of millions of dollars [2] and loss of lives [3]; and invalid assumptions were

determined to be the cause of failures in these systems.

1.1 Incidents of System Failures Due to Invalid Assumptions

1.1.1 Ariane 5 Disaster

One of the most prominent failures due to an invalid assumption made by a software com-

ponent is that of the Ariane 5 rocket. The summary of the expert analysis in [2] is as follows -

“In about 40 seconds after initiation of the flight sequence, at an altitude of about 3700 meters,

the launcher veered off its flight path, broke up and exploded”. Ariane 5 had reused the same

1

software which was used by Ariane 4. There was an operand overflow in the Inertial Reference

System(SRI) module, due to a conversion of a 64-bit floating point value to a 16-bit signed

integer value. The error occurred because the Ariane 5 was a much bigger rocket than the

Ariane 4 and had a higher value for the horizontal velocity component, which overflowed a

16-bit variable.

Analysis: Though a simplification, this is a classic case of reuse of a software component with

invalid assumptions made on the environment and other components in the system. Though this

fact “The horizontal velocity value of Ariane 5 is higher than Ariane 4” was known beforehand,

it was not documented in a machine-checkable format. Thus, the assumption made by the old

software that the horizontal velocity variable will never overflow 16-bits was left unchecked, it

was violated and caused the accident.

1.1.2 Child-seat Airbag Incident

The Ariane 5 disaster was an incident where an invalid assumption was made on the validity

of the input-output values for a software component. In many cases, due to efficiency concerns

and resource constraints in embedded systems, many implicit assumptions are made by real-

time software components, and there is no physical representation of these assumptions in

the code. And in some cases, the individual software component’s (say component X’s) code

embed the assumptions and these assumptions are not exposed in the software interface. There

is no viable method to validate these assumptions other than manually testing the components

under varying operating conditions. Thus, any software component that uses component X

may not be aware of the assumptions made by X. The following example is a case where an

environmental assumption made by a component was not propagated to other components in

the system and the assumption was violated.

There was an fatality in a car due to airbag deployment in the child-seat. In short, the

following analysis was given for the accident by experts [3]. The airbag controller for the

car was designed not to deploy the airbags in a seat in the presence of a child-seat in the

particular seat. However, the airbag control system consisted of primary and backup controllers.

The (environmental condition of) the presence of the child-seat was known to the primary

airbag controller. In certain extreme temperature and humidity conditions, the primary airbag

2

controller relinquishes control and the simpler backup controller takes charge. The backup

airbag controller deployed all airbags on impact causing the fatality.

Analysis: There can be two possibilities. The first being - the backup controller having a

simple logic of deploying all the airbags on impact, irrespective of the presence of the child-seat

and thus causing the fatality. The second being - the backup controller having the capability

of individual control of airbags but the environmental assumption of presence of child seat not

being exposed explicitly to the backup controller module, and thus causing the fatality.

1.2 Sources of Assumptions

There are various reasons for the origin of invalid assumptions. First, existing software

practices for a particular domain are being applied to other domains without suitably altering

the practices for the new domain. Software development has evolved into a highly distributed

activity. There is a lot of emphasis placed on reuse of software components. Even critical

systems like software in rockets and satellites reuse software components rather than build

them from scratch. As mentioned by Booch in [4], “One person’s system is another person’s

subsystem”. Not all software is being built with the possibility of it being used as a subsystem

of a larger system. In other words, software needs to be built with composition in mind. This

is elaborated in Sections 1.2.1 and 1.2.2. Next, there are limitations in the existing software

interfaces that prevent the encoding of assumptions in a manner that enables efficient validation

of these assumptions. This is elaborated in Section 1.2.3.

1.2.1 COTS and Custom Software Components

Commercial sector, space and defense organizations alike are moving towards using COTS

and custom software components to build complex systems.

For example, companies like BMW, Daimler-Chrysler, Philips Semiconductors, Freescale,

and Bosch, are working together to develop and establish FlexRay, a communication system

for advanced automotive control applications as the standard for next generation automobile

applications. They plan to replace traditional braking systems with electromechanical braking

systems (EMB), and this EMB system is to use the FlexRay as the fault-tolerant communication

3

protocol [5]. In effect, the braking systems in different cars will use FlexRay as a COTS software

for their messaging sub-system.

This is also the case with multi-million dollar projects which organizations like NASA and

Lockheed Martin are undertaking. For example, a small sub-system of a large-scale project, the

ground based command system for the NASA’s Hubble space telescope consists of 30 COTS

components [6].

1.2.1.1 Benefits and Drawbacks of COTS Adoption

This development of widespread adoption of COTS and concurrent software development

has the following benefits.

• Distributed expertise: Organizations need not incur the cost of developing expertise in all

the technologies they will be using to develop a system.

• Reusable technologies: Custom software components can be developed to provide solutions

which can be used in various products.

• Faster turn-around time: The availability of custom software components saves develop-

ment time.

• Uniform integration process: Exposing functionalities as software interfaces ensures a

uniform integration process for organizations that use these COTS components.

But these benefits do come at a cost, especially for integrating embedded and real-time

systems. COTS and custom software components give rise to black-box interfaces, they expose

a traditional software interface, which is used to exchange data and most of the assumptions are

embedded in the code or documentation for the component which are generally not machine-

checkable. This amounts to increased manual testing efforts to ensure that the software runs in

various environments and varying assumptions. This is one of the sources of assumptions. Also,

a survey conducted as a part of this thesis, on an open-source operating system for embedded

sensor network devices, TinyOS [7], revealed that there are more defects that are related to

invalid assumptions than algorithmic defects.

4

1.2.2 Software Engineering Practices

In addition to making the assumptions machine-checkable, it is realized that we need to

synchronize assumptions throughout the software life-cycle.

There has been a substantial body of research in the field of requirements engineering. As

early as 1987, F. Brooks stated “The hardest single part of building a software system is deciding

precisely what to build. No other part of the conceptual work is as difficult as establishing

the detailed technical requirements, including all the interfaces to people, to machines, and to

other software systems”. There has been traditionally been acceptable synchronization between

low-level design (UML diagrams) and code with mature tools [8] available for object-oriented

design. But, though there has been some work in formal requirements engineering [9] [10],

synchronization between requirements and code has been a very hard problem.

The study conducted on the simple inverted pendulum control system, consisting of four

software components, found that there are over forty implicit assumptions made by the software

components that are not represented in the software interface [11]. Most of these assumptions

need manual validation during system evolution. While every detail is taken into consideration

while developing the requirements and designing the components, it is found that very few

assumptions can be discerned from the interface for the components, which in many cases, is

the only way to examine a component.

The issue of synchronizing and tracking assumptions made across the software life cycle,

especially the ones which are not ultimately physically represented as code is addressed in this

research. We term this process of tracking the assumptions across the software life-cycle as

vertical assumption tracking. This is extremely vital if programming paradigms like extreme

programming [12] (where continuous refinements are made to requirements and code in tandem)

need to be applied to engineering real-time systems software effectively.

1.2.3 Inadequacy of Current Software Interfaces

The inadequacy of current software interfaces is illustrated using a simple example. An

acoustic sensor (or sensor for short), like a Berkeley MICA mote, is used to sample the acoustic

strength in its vicinity and send the perceived strength to a component, data collector, residing

5

�����
�����
�����
�����

�����
�����
�����
�����

 Analysis Tools
Data Collector:

Acoustic signals

Acoustic sensor

Figure 1.1 A Simple Acoustic Sensor Transmitting Audio Data to a Computer

in a computer it is connected to. The sensor can be configured to report values periodically or

when the perceived audio signal strength is above a certain threshold value.

The sensor has a simple interface

event dataReady(uint16 t dataval)

to report its data values. While we can see that the software interface is very simple,

there are a number of environmental and operating assumptions that are not captured by this

interface. For example, the following are a few of the assumptions made by the data collector

on the sensor.

• the units of the acoustic data sent by the sensor

• the maximum sensing delay of the acoustic sensor

• the maximum jitter in sending periodic data values

6

• the maximum value (say in decibels, if that is the unit of measurement) that the sensor

can sense before the A/D converter saturates

• the granularity of the sensor readings.

In addition, there may be complex assumptions which may be related to multiple properties

of the sensor. For example, the data collector may make an assumption that the sensor’s

saturation value must be less than a limit even when the sensing error is taken into consideration.

We see that the number of assumptions outnumbers the number of parameters in the soft-

ware interface for this simple example. Also, some assumptions have no representation in the

code of the data collector or the sensor. This warrants a clean vocabulary or a language to rep-

resent assumptions and classify them. Cluttering existing software interfaces with assumptions

will needlessly burden programmers and may even make programs inefficient.

1.3 Motivation

The motivating factors for this endeavor are (a) the current driving cost in developing em-

bedded and real-time systems (b) the common set of problems faced by commercial, space and

defense agencies alike in developing such systems (c) inadequacy of current software interfaces

and software engineering practices to efficiently capture and validate assumptions.

The driving cost of developing new products in embedded and real-time systems has shifted

from design of efficient algorithms to integration issues involved in getting software developed

by disparate teams to work together. This is due to custom software development of individual

modules by different teams and/or adoption of COTS software. As mentioned in [13], where

fifteen different projects were studied, “projects using COTS were obliged to follow a process

quite different from traditional projects with more efforts put into requirements, test and in-

tegration and less into design and code”. Observing the current trend, it is conjectured that

majority of the real-time software projects will continue to follow this trend – increased cost

and resources towards integration of components developed by different teams or organizations.

Also, there is a common set of problems faced in the integration of embedded and real-time

systems, be it a company building products for mass consumption like Ford Motor Company,

or an organization like NASA, which builds satellites. This is due to the uniform pattern for

7

building such complex systems by integrating custom components. Sections 1.1.1 and 1.1.2 have

given instances of failures faced by automobile industry and international space agencies, which

can be traced back to invalid assumptions made by components. They have caused losses in

revenue to the tune of hundreds of millions of dollars and loss of lives. After a study of failures

of selective set of projects from Risks Digest [14], we have found that the integration of large-

scale software has proven to be non-trivial and multi-million dollar software projects have had

to be called off. For example, an Australian submarine project was called off with a decision

to “completely dump the software and start again, with the new system having less-integrated

architecture and utilizing more COTS components” [15].

When embedded system components are shipped as black-boxes with a software interface1

to access the component’s functionality, it makes the task of validating assumptions very hard.

Software interfaces in currently widely used programming languages contain syntactic infor-

mation about the data exchange, while it lacks information about the assumptions made on

the data values. It also lacks capabilities for encoding assumptions made on the environment

and other components. Encoding environmental and operating assumptions is a fundamental

requirement in developing embedded and real-time systems software. This is because real-time

systems are very closely tied in with the physical environment they operate in. In many cases,

like in sensors, they monitor, collect and/or transmit data about the environment itself. While

the actual data collected is critical, they form a small part of the complete software component.

Overall, there is definitely a need for a framework with a well-defined vocabulary to encode

assumptions in a machine-checkable format. It should flag the assumptions that are violated in

advance and minimize the human effort in validating the assumptions as repeated human-effort

is prone to errors. Other related goal is that it should work in tandem with existing software

components, and require minimal or no re-engineering effort. As many software components are

shipped without revealing the source code, the framework should allow encoding of assumptions

without involving modifications to the source code. A need for a framework with similar

objectives is independently stressed by the the ‘Mishap Investigation Board’ [16] of the ‘Mars

Climate Orbiter’ disaster, and the ‘Inquiry board’ [2] of the ‘Ariane 5’ disaster.

1By software interface, we mean the traditional interfaces in languages like C, Java, CORBA, etc., which is
used to exchange data between interacting software components.

8

1.4 Organization of the Report

With this introduction and motivation, the rest of the report is organized as follows.

Chapter 2 provides a high-level overview of the assumptions management framework. It

also provides some standard definitions, and lists the challenges in building a framework for

managing assumptions.

Chapters 3 – 7 describe the core of the assumptions management framework design and

implementation. Chapter 3 describes the classification of assumptions and guarantees and pro-

vides a basic vocabulary for assumptions. The basic dimensions of classification of assumptions

and guarantees is presented, upon which users can build custom classification schemes. Chap-

ter 4 describes the AMF language design. The language is designed to encode assumptions and

provide guarantees in a machine-checkable format. Chapter 5 describes the process of compo-

sition of assumptions and guarantees. This process finds the list of unmatched and matched

assumptions, which is an important step in building larger systems using smaller sub-systems.

Composition is also a pre-requisite for validation of assumptions. Chapter 6 describes how

assumption management blends with other aspects of software engineering. AMF integrates

assumptions specification with architecture description and the source-code of the components.

Chapter 7 describes the implementation of AMF.

Chapters 8 describes the case studies conducted on representative systems. These studies

were conducted to check if invalid assumptions caused defects in end-products in these systems.

The case-studies also helped analyze the characteristics of assumptions that cause defects and

helped refine the design of AMF. Chapter 9 provides the details of analyzing and correcting

an invalid assumption of Iperf, a bandwidth measurement tool, which resulted in significant

savings in network traffic generated and bandwidth measurement times.

Chapter 10 evaluates the performance and scalability of AMF implementation. The ability

of AMF to encode and validate assumptions encountered in the case-study is also evaluated. It

also describes the related work and compares it with AMF.

Finally, the conclusions and future applications and extensions of AMF are presented in

Chapter 11.

9

CHAPTER 2

Overview: Definitions, Challenges and the Building Blocks

This chapter provides an overview of the assumptions management framework. Some stan-

dard definitions, which are also used in the subsequent chapters, are given in Section 2.1. The

challenges involved in designing a framework to manage assumptions is listed in Section 2.2.

This is followed by a high-level description of the building blocks of the assumptions manage-

ment framework (AMF) in Section 2.3.

2.1 Definitions

The example of the acoustic sensor providing sampled acoustic data to a computer connected

to it (explained in Section 1.2.3) is used in this section to explain the definitions.

From hereon, a component will denote an entity with a well-defined functionality and an

interface. The interface allows invocation of the component’s functionality and provides access

to the output generated by the component. Components can denote software, hardware or

composite entities. In the example, sensor and data collector are components. data collector

is a software component. Sensor is a composite component; sampling acoustic signals at a

configured rate via the sensor hardware, and making available the sampled values for export to

a software entity, via the sensor software.

The interface of a component contains i) a list of parameters with the syntax for each of

the parameters needed to invoke the functionality of the component and/or access the output

generated by the component and ii) a unique identifier, usually the name of the interface. It is

similar to a software interface in programming languages like C or Java. For example, interface

10

in Figure 1.1 is used by the sensor to export the acoustic signal samples for the data collector.

It is specified in nesC, a language for embedded systems software.

An assumption made by a component C1 on a component C2 is a necessary condition that

needs to be satisfied by the C2 for i) the correct functioning of C1 and/or the system that

contains C1 or ii) for functioning of C1 or the system containing C1 at a desired performance

level. For example, for the correct functioning of the data collector, the sensor needs to provide

the acoustic samples in the expected units. Also, the sensor needs to provide data at a particular

granularity. Providing data at a coarser granularity will not affect the functionality of the data

collector, but may lead to poor performance.

Other salient points to note about an assumption are that an assumption may not be related

to the data-types of the components’ interfaces. Also, C2 can represent the environment in which

C1 resides in. For example, C1 can represent a networking application and C2 can represent

the operating system on which C1 runs.

A guarantee provides values to evaluate a particular assumption. Based on the values pro-

vided, the assumption will be satisfied or not. In a programming language paradigm, if assump-

tions are analogous to function definitions (returning boolean values) or assertions, guarantees

are analogous to calls to the functions.

In systems larger than this example, the components may not directly interact with each

other, but may still make assumptions on each other. This will be illustrated in the case study

in Section 8.3.3, which deals with a system consisting of four components.

2.2 Challenges in Designing a Framework for Managing As-

sumptions

Invalid assumptions have caused multi-million dollar failures [2] and in some cases have

resulted in loss of human lives [3]. The case studies, described in detail, in Chapter 8 have

confirmed that invalid assumptions are indeed a cause of defects in systems whose functionality

is tied with the external environment. The three main sources of assumptions mentioned

in Section 1.2 are i) Current software engineering practices ii) COTS and custom software

components iii) Inadequacy of current software interfaces.

11

A framework for managing assumptions needs to ensure that the following challenges are

met1.

• Currently, there is a need for a vocabulary for managing assumptions. For example,

‘When should an assumption be validated?’ In other words, ‘what is the time-frame of

validity of an assumption?’

• There is a need for a language to encode assumptions in a machine-checkable format that

reduces human effort in the long-term.

• If the framework is to be used for the COTS domain, in many cases, there is a requirement

that there are minor or no source-code modifications. Source-code modifications may

violate certification of critical components. Hence, the framework must be able to work

independent of the component’s source-code.

• The process of assumptions management should blend into the software-engineering life-

cycle rather than requiring a completely new process. Wherever possible, the assumptions

should be able to directly reflect the properties exposed by the component’s source code

and their architecture description. Rather than requiring a new language for the com-

ponent’s source code and architecture description, the framework should ensure that it

works together with these existing software engineering aspects.

• As new classes of assumptions are encountered, specific to various domains, the framework

should be able to include them seamlessly; i.e., the assumptions management framework

itself must be extensible.

• A sample code-base of a medium sized project runs into hundreds of thousands of lines.

The framework should be scalable to encode assumptions of this order.

• As complex systems are built using sub-systems, the framework should have the capability

of exposing only properties and assumptions that are relevant to a particular context of

composition; i.e., the framework should provide support for composing assumptions

1The Ariane 5 ‘Inquiry board’ mentions the following. “Identify all implicit assumptions made by the code
and its justification documents on the values of quantities provided by the equipment. Check these assumptions
against the restrictions on use of the equipment.” This matches very closely with the objective of the assumptions
management framework.

12

• As with any framework, it should be user-friendly, in terms of providing a graphical user

interface and an intuitive language to encode the assumptions.

The following section provides a high-level overview of the design of AMF, which gives the

reader an idea of how these challenges are met. Chapters 3 – 6 explain these concepts in further

detail. Some of the challenges, like usability, scalability and the ability to encode assumptions,

and are related to the implementation of AMF. They are described in Chapters 7 and 10.

2.3 The Building Blocks of AMF

The Assumptions Management Framework (AMF) provides a conceptual foundation for

encoding, managing and validating assumptions. AMF builds a vocabulary for assumptions

and guarantees with its classification scheme. The language for encoding assumptions helps in

(a) allowing assumptions that can be expressed in predicate logic to be recorded in a machine

checkable format (b) assisting component developers to provide guarantees for assumptions

exposed, since the composition matching algorithm finds matched and unmatched assumptions

(and guarantees). AMF allows policies to be set on when to validate assumptions and what

assumptions to validate, since the back-end of AMF is designed in a way that it is amenable to

database operations. AMF allows assumptions to be specified directly on the source code and

the architecture description of the components.

2.3.1 Classification of Assumptions - Building a Vocabulary

In the simple sensor - data collector system presented in Section 1.2.3, which consisted only

of two components, over a dozen assumptions were encountered. This example is rich enough

to explain the basic dimensions of classification that an assumption takes.

The first dimension of classification is the time-frame of validity of an assumption. Static

assumptions are those, whose validity does not change during the lifetime of the software; for

example, the units of acoustic intensity exported by the sensor software. System configuration

assumptions are those, whose validity changes between executions or they may be specific to

the component’s environment or hardware properties. For example, the maximum jitter is a

characteristic of a particular sensor hardware. Dynamic assumptions are those, whose validity

13

may change during the execution of the system. For example, there may be a function which

detects the aging of the sensor hardware during runtime.

The second dimension of classification relates to the criticality of an assumption. Critical

assumptions are those, whose violation will cause the system core functionality to be com-

promised or the system to fail; for example - the units of measurement of acoustic data is

critical for the correct functioning of the data collector. Non-critical assumptions are those,

whose violation will not cause the core system functionality to be compromised, but may cause

performance degradation and/or compromise of non-core functionality. For example, the gran-

ularity of readings affects the performance of the system in which the data collector is in, but

does not affect its functionality.

The third dimension of classification relates to abstracting relevant assumptions as systems

get larger. In simple terms, while building a larger component by composing a set of smaller

sub-components, assumptions are public when they need to be exposed as a part of the larger

component or when they need to be satisfied by guarantees from external components. As-

sumptions are private when they are satisfied by internal sub-components and are not exposed

as a part of the larger component.

Guarantees are classified based on how the values provided by them are obtained. Human-

entered guarantees are those, whose values are entered by humans explicitly while encoding the

guarantees. For example, the sensor error value obtained from a data-sheet will be explicitly

entered by a human. Machine-generated guarantees are those, whose values are obtained by

executing a routine. For example, the operating system name of the sensor proxy will be

obtained by executing a routine during or just before its execution. Hybrid guarantees are

those, which have both human-entered and machine-generated values. For example, if sensor

proxy uses TCP/IP, the bound address will be machine-generated and the port number will be

a human-entered value.

End-users can build on top of this basic classification scheme to provide domain specific

classification information.

2.3.2 A Language for Managing Assumptions

The AMF language reflects AMF system view. In short, AMF views a system as a set

of components. A component in a system has a set of dependent components, that it makes

14

assumptions on or provides guarantees for. An assumption has a name, a set of input (formal)

parameters, the body of the assumption - a boolean-valued function, and its classification

information. A guarantee provides values to evaluate an assumption. The assumption is valid

if the values provided by the guarantee evaluates the assumption body to a boolean value -

TRUE.

The language is explained in Chapter 4. For example, in the sensor - data collector system,

the components are sensor and data collector. The sensor makes assumptions on the data

collector and vice-versa. An assumption made by the data collector and the corresponding

guarantee is encoded as shown.

componentDefinitions name=DataCollector {

about Sensor {

assumes min_saturation_value(double error, int saturation_value) {

(1.0 + error) * 100.0 < saturation_value

}

{Criticality=CRITICAL_LEVEL_A}

{ValidityTimeFrame=SYSTEM_CONFIGURATION};

// Other assumptions and guarantees about the Sensor

};

// Assumption Guarantee Sets for other components

};

componentDefinitions name=Sensor {

about DataCollector {

guarantees min_saturation_value {

double error = 0.1;

int saturation_value = 128;

}

{GuaranteeType=HUMAN_ENTERED};

};

// Assumption Guarantee Sets for other components

};

The logic to express assumptions encompasses most logical operators in a high-level language

like C or Java. The language makes provisions for components that may not know the set of

dependent components in advance, like operating systems and middleware components, to

15

express their assumptions. AMF also provides extensions to the language to express complex

assumptions and guarantees using method invocations in high-level languages.

2.3.3 Composition of Assumptions and Guarantees

As systems get larger, it is important to match assumptions and guarantees formed by

internal sub-components, so that the integrator of the larger component is not required to

provide guarantees for such matched assumptions. The algorithm for composition needs to take

care of library components, like operating systems and middleware that do not know the set of

dependent components in advance. Such components expose a set of library assumptions; they

require guarantees to be provided for library assumptions from every dependent component

that uses the library. For example, an operating system (say Linux) will require that every

component that executes on it is compatible with a particular version of the operating system,

though it may not know the list of such components in advance. The composition matching

algorithm matches the assumptions exposed by components with guarantees from the respective

dependent components.

The list of unmatched assumptions helps component developers to provide guarantees for

exposed assumptions.

AMF provides a composition matching algorithm that has a linear running time (Θ(na+ng),

for na assumptions and ng guarantees), when there are no library assumptions and guarantees.

In presence of library assumptions and guarantees, it has a running time of Θ(na +ng + ña.nax);

the additional factor is on the order of the average number of guarantees to be provided per

library assumption (nax) times the number of library assumptions (ña) .

Composition is also a pre-requisite for validation of assumptions. Only matched assumptions

can be validated.

2.3.4 Integration with Programming Language and Architecture Description

AMF language specification allows the body of the assumptions to directly invoke routines

on the source code of the components. This allows a tight integration between the properties

exposed by the source-code of the components and the assumptions based on these proper-

ties. Assumption violations are automatically flagged, if changes in the source-code violate any

assumptions. Similarly, AMF maintains compatibility with the names and types of compo-

16

nents described in the architecture description with the names of components in assumption

definitions. It flags component names used in assumption definitions that do not have a corre-

sponding definition in the architecture description. AMF also flags assumptions that are made

between components whose types are not compatible.

For example, if there are two components, Kernel and InitRoutines developed by different

developers, then if the Kernel exposes a property in its source code, the InitRoutine module can

make an assumption directly based on this property. A snippet of the code and the assumption

are as shown below.

// Source code of Kernel component

public int getInitSleepInterval() {

return INIT_INTERVAL;

}

// Assumption definitions

componentDefinitions name=Kernel {

about InitRoutines {

assumes maxStartupDelay(int maxDelayInMilliSec) {

maxDelayInMilliSec <= Kernel.getInitSleepInterval();

}

// Classification info ...

};

};

Also, in some cases, invoking methods in the source code becomes necessary. The values

for certain guarantees cannot be entered while encoding the assumptions and guarantees. The

values need to be obtained before or during execution of the component. For example, if there

is an assumption that a component must run on Linux, this guarantee cannot be encoded before

hand. Before execution, the component provides the name of the operating system by executing

a routine to obtain the operating system name. The guarantee is encoded as shown below.

componentDefinitions name=Kernel {

about * {

guarantees operatingSystemName {

String osName = Lib.getOsName();

}

};

};

17

2.3.5 Policies on Assumption Selection and Validation

AMF is designed to store all the assumption definitions in an XML format, which is amenable

to database operations. One of the case studies on an inverted pendulum control system (ex-

plained in Appendix A.1), consisting of only four components uncovered over forty assumptions.

Hence, setting policies on when to validate assumptions and what assumptions to validate is

vital, as systems get larger.

For the sensor - data collector system, examples of useful policies are (a) validate all system-

configuration changes of the sensor and data-collector, when the sensor hardware changes. (b)

validate all the critical assumptions of the sensor and data-collector (when these components

are a part of a larger sub-system and validating all assumptions is costly).

Using tools like XPath [17], setting policies on fetching assumptions and validating a relevant

subset of assumptions is made possible.

2.4 Summary

This chapter provided the key definitions for the following terms - component, interface,

assumption and guarantee. It listed the challenges in designing a framework for managing

assumptions. It provided a high-level description of the building blocks of AMF - the classifi-

cation scheme of assumptions and guarantees, the language, composition of assumptions and

guarantees, integration of assumption definitions with software engineering aspects like source

code and architecture description and policies on assumption selection and validation.

18

CHAPTER 3

Classification of Assumptions and Guarantees

The sensor data-collector system presented in Section 1.2.3 had one parameter and one

return value in its exposed interface, but over a dozen assumptions were uncovered1. The

simple acoustic sensor system was an actual sub-system of a larger system that was used to

classify objects like persons, persons with metallic objects and large vehicles in a field using

acoustic, magnetic and infra-red sensors [18]. One can see how the number of assumptions in

such a complex system can grow rapidly. The inverted pendulum control system (explained in

Appendix A.1) with four defined interfaces for components had over forty assumptions when

invalidated could cause the system to fail. This warrants that the assumptions are classified for

easier manageability.

This chapter provides a basic classification of assumptions based on the assumption’s time-

frame of validity, scope and criticality. Also, guarantees are classified as human-entered or

machine-generated based on how the values for the guarantees are obtained. Every assumption

or guarantee will take on this basic dimensions of classification. Domain experts can optionally

build a domain-specific classification on top of this scheme, which also briefly discussed at the

end of this chapter.

3.1 The Assumptions Interface or the Assumption Set

Recall that, for the acoustic sensor system presented in Section 1.2.3, the sensor component

has a simple interface to report its data values to the data collector. This interface is as shown

below.

1This trend was also observed in the case studies that were conducted.

19

event dataReady(uint16 t dataval)

There are a number of assumptions made by the data collector on the sensor for its func-

tioning. The sensor needs to provide matching guarantees to the data collector for the correct

functioning of the data collector or the system in which the data collector is a part of. The

assumptions exposed by the data collector for the sensor will form the assumption set of the

data collector (for the sensor). The formal definition is given below.

Max error in readings

Saturation value for readings

Max sensing jitter

Granularity of readings

Jitter specification units

Max error in readings

Saturation value for readings

: Decibels

Max sensing jitter

Maximum sensing delay

Granularity of readings

: 10 ms

: 10%

: ms

: 100 (Db)

: 0.1 Db

: 4 ms

Jitter specification units

= {Decibels}

< 50ms

<= 10%

<= 10ms

= {ms}

<= 100

<= 0.1

Acoustic intensity data units

Maximum sensing delay

Acoustic intensity data units

DATA COLLECTOR ASSUMPTIONS SENSOR GUARANTEES

Figure 3.1 Assumption Set Example

The assumption set of a component C1 for a component C2 consists of a set of assumptions

exposed by C1 that need to be satisfied by guarantees provided by C2. For example, the

assumption set of the data collector for the sensor is shown in Figure 3.1.

This assumption set will be used as an example to explain the various dimensions a particular

assumption and guarantee can take.

3.2 Classification of Assumptions

3.2.1 Time-frame of Validity of Assumptions

While designing embedded and real-time systems, not all assumptions need to be validated

at all times. The validity of some of the assumptions changes only when the software is changed.

The validity of some assumptions never changes per mission or a single execution of the sys-

tem, but may change between executions. The validity of some assumptions changes during

20

execution, but at a rate much lower than the real-time data flow. Based on this observation,

we have the following classification of assumptions.

1. Static assumptions: These are assumptions whose validity does not change during the

lifetime of the software. For example, the units in which the acoustic intensity is exported

to the data collector is a property of the sensor software.

2. System configuration assumptions: These are assumptions whose validity does not

change during a mission or execution of the system. They may change between the exe-

cutions or they may be specific to the hardware environment. For example, the maximum

jitter is a characteristic of a particular sensor hardware. Different hardware will guarantee

different values for this parameter. This will have to be configured per hardware.

3. Dynamic assumptions: These are assumptions whose validity may change during the

execution of the system. For example, there may be a function which detects the aging

of the sensor hardware. The validity of the readings will be based on the result of this

function. Since, this may happen during the mission or execution of the system, the

related assumption is a dynamic assumption.

This dimension of classification is vital in increasing the efficiency of assumption checks.

For example, static assumptions check can be triggered by a change in the software components

in the system. System configuration assumptions checks can be triggered whenever the hard-

ware or the environment of the system changes, or just before the execution begins. Dynamic

assumptions may need to be validated using run-time monitors. Next, different kinds of tools

need to be used to ensure the validity of different classes of assumptions within this dimension.

For example, dynamic assumptions require techniques like monitor oriented programming [19],

or require changes in the source-code of the components. Static and system configuration as-

sumptions can be checked offline or just before the component begins its execution.

3.2.2 Criticality of Assumptions

In critical systems, components in the system will have a core functionality and if a com-

ponent is unable to carry out its core functionality, it will be declared to have failed. In

safety-critical systems, not satisfying the core functionality may also affect the safety of the

21

system. We have seen that when some assumptions are violated, the system core functionality

is compromised or the system fails. For example, the assumptions on the acoustic intensity

data units and saturation value for sensor need to be satisfied by the data collector for the

correct functioning of a classification system that uses these samples.

There are some assumptions, when violated, do not cause the core functionality of the sys-

tem to be compromised, but may cause noticeable performance degradation. For example, if

the granularity of the sensor readings is different from the assumed value, it causes a perfor-

mance degradation in the classification system that the data collector is a part of, but the core

functionality is not compromised.

This observation leads us to the following classification of assumptions. The particular

classification system described below is chosen to ensure that the criticality levels can easily be

translated to avionics software certification standards like DO-178B [20].

1. Critical assumption: These are assumptions, whose violation will cause the system

core functionality to be compromised or the system to fail. This assumption will have a

rank of A, the highest rank.

2. Non-critical assumption: These are assumptions, which when violated will not cause

the core system functionality to be compromised, but there may be performance degrada-

tion and/or compromise of non-core functionality. Users and system designers can rank

the criticality from B through E, with B being the highest rank.

Since the number of assumptions in systems can be very high, it is not always feasible

to validate all of them during different phases of development. A prioritization according to

criticality permits critical assumptions to be validated first, despite the fact that full certifi-

cation may require complete validation. This classification can also serve as an input to some

dependency management tools that check for the net impact on the system, when a particular

assumption is violated. For example, a dependency management tool can check if violation of a

non-critical assumption will cascade into a violation of a critical assumption. This classification

can also be an input to the tools providing or certifying service gradations.

22

3.2.3 Compositional Scope of Assumptions

The third basic dimension of classification of an assumption is its compositional scope. From

hereon, scope will be used to denote compositional scope. As it is found that the number of

assumptions grow rapidly with increasing number of components, it is useful to classify assump-

tions according to their scope to simplify assumptions management for the system integrators

and developers. This will be very useful in the context of composition of assumptions, a concept

that will be discussed in Section 5.2.

In simple terms, assumptions are public assumptions when they need to be satisfied by

external components and private assumptions are satisfied by internal sub-components.

Given a system consisting of many components, AMF automatically finds assumptions made

by internal components that are matched by guarantees from the dependent components. These

assumptions are classified as private and the rest of the assumptions that need to be satisfied

by external components are classified as public. The algorithm for composing assumptions [11]

is described in Section 5.2.

3.3 Guarantees: Machine Generated Versus Human Entered

The guarantees provided to evaluate an assumption can be values entered directly by the

developer or architect or they can be routines that obtain the values during system-configuration

time or runtime.

For example, if there is an assumption that the data collector module needs to run on a

Linux machine, the assumption can be encoded during system development time. The guarantee

needs to be evaluated just before the data collector module is started to ensure that it runs on

Linux. Hence, the guarantee cannot be a value directly entered by the developer, it will be a

routine which will be executed to obtain the operating system type.

On the other hand, there may be properties that cannot be explicitly obtained by a routine

and the values need to be entered by the developer or architect. For example, the computations

within the data collector may assume that the sensor data exported is in Decibels. This property

may be embedded in the sensor software and may need to be explicitly entered by the developer

or architect of the sensor software.

Based on these observations, we classify guarantees as:-

23

• Human-entered guarantees: These are guarantees whose values are explicitly entered by

the user (architect or developer) of the system.

• Machine-generated guarantees: These are guarantees, for which, the developer or the

architect encodes the routine to obtain the values. The actual values are obtained by

executing the routing during system-configuration, system evolution or runtime.

• Hybrid guarantees: These are guarantees where some of the values are explicitly entered

by humans (human-entered) and some of the values are encoded as routines and the actual

values are obtained by executing the routines (machine-generated).

This classification for guarantees is useful in prompting users to provide guarantees values

for human-entered guarantees whenever there are changes in the relevant component. Also,

it simplifies and reduces errors in the user-interface design of the assumptions management

framework. End-users of the framework are forbidden to provide direct values for machine

generated guarantees and the parameters that are machine-generated for hybrid guarantees.

3.4 Revisiting the Sensor - Data Collector Example

With the classification scheme in place, Figure 3.2 shows how the assumptions made by the

data collector on the sensor will be classified. The context of composition is assumed to be the

sensor - data collector system. Thus, all assumptions are assumed to be public assumptions.

3.5 Domain Specific Classification of Assumptions

The above classification system forms the base for assumptions classification in AMF. AMF

allows domain-specific assumptions to be built on top of these basic dimensions of assumptions.

For example, domain experts from real-time systems can build a timing and scheduling related

assumptions library.

3.6 Summary

This chapter presented the basic classification of assumptions and guarantees. The concept

of assumption set is also introduced. The basic dimensions of classification for an assumption

24

Assumption

- Guarantee

Parameters Expression Classification

Intensity data
units

intensity units A: inten-
sity units.equals(“Decibels”)

G: intensity units: “Decibels”

A ∈ Static, CriticalLevelA
G ∈ Human-entered

Max delay max delay A: max delay < 50
G: max delay: 10

A ∈ System Configura-
tion, CriticalLevelA
G ∈ Human-entered

Max error max error A: max error < 0.15

G: max error: 0.1

A ∈ System Configura-
tion, CriticalLevelA
G ∈ Human-entered

Max jitter max jitter A: max jitter < 10

G: max jitter: 4

A ∈ System Configura-
tion, NonCriticalLevelB
G ∈ Human-entered

Delay (and jit-
ter) units

delay units A: delay units.equals(“ms”)

G: delay units: ms

A ∈ System Configura-
tion, CriticalLevelA
G ∈ Human-entered

Saturation
value

error,
max saturation

A: (1+error)*100 <

max saturation

G: error: getErr(), max saturation:
125

A ∈ System configuration,
CriticalLevelA
G ∈ Hybrid

Granularity granularity A: granularity <= 0.2

G: granularity: 0.1

A ∈ System configuration,
NonCriticalLevelB
G ∈ Human-entered

OS osName A: osName.contains(“Linux”)

G: osName: getOsName()

A ∈ System configuration,
CriticalLevelA
G ∈ machine-generated

Figure 3.2 Assumptions and Guarantees Classification Example

25

are (i) time-frame of validity - static, system configuration or dynamic; (ii) criticality - critical

and four levels of non-critical; and (iii) scope - public and private. Guarantees on the other

hand can be machine-generated, human-assisted or hybrid. These dimensions of classification

help in managing the assumptions better, enables a more efficient validation scheme and are

helpful in the context of composition. While every assumption and guarantee takes these basic

dimensions, domain specific classification schemes can be built on top of the basic dimensions.

26

CHAPTER 4

AMF Language Design

One of the primary objectives of AMF is to encode assumptions in a machine-checkable for-

mat. This chapter lists the pre-requisites for encoding assumptions for a system of components.

The AMF system view is presented, and the AMF language design reflects the AMF system

view. After a comprehensive example of the AMF system view, the important language rules

of AMF are presented, with examples of assumption definitions based on these rules.

4.1 Pre-requisites for Encoding Assumptions Using AMF

There are some pre-requisites for applying AMF to a system.

• The system (to which AMF is applied) can be partitioned into a well-defined set of

components.

• As per the definition of a component in Section 2.1, a component should have a well-

defined functionality, and an interface using which we can invoke the functionality and

access the results.

• Encoding static and system-configuration assumptions for a component does not warrant

access to the source code of the component; although AMF has provisions to encode

assumptions related to properties in the source-code of the component and automatically

track them and validate them when these properties change.

• Encoding dynamic assumptions in a software component necessitates changes in the ex-

ecution logic of the component, to insert calls to test the validity of the assumptions in

appropriate places in the source-code.

27

• If AMF is used in conjunction with an architecture description language , with facilities

to track changes in the system architecture (like AADL [21]), AMF allows assumptions

between hardware and software components to be encoded. Changes is the system con-

figuration can automatically trigger assumption checks.

4.2 AMF Language Capabilities

AMF allows encoding of assumptions in predicate logic. The AMF language is designed to

encode assumptions for both static and dynamic architectures. In static architectures, every

component in the system has a fixed set of dependent components and assumptions are encoded

directly for every dependent component. In dynamic architectures, the components in the

system may not be aware of the set of dependent components in advance (while encoding

assumptions).

The (basic) dimensions of the assumptions are encoded along with the assumptions itself.

The AMF compiler provides a fairly rich expressive power for encoding the body of the

assumption - most logical expression in C or Java, barring expressions involving pointer arith-

metic, returning a boolean value is permissible within AMF syntax. This includes function

invocations to obtain properties at system-configuration, code compilation or runtime.

For dynamic architectures, or systems where a component may not know in advance the set

of other components that may use its services, a component may expose its assumptions and

guarantees as a library set of assumptions and guarantees. This allows AMF to be used for

applications such as middleware and operating systems.

4.3 Definitions and Structure of Assumption Management Ob-

jects

The set of notations used in this section are given in Figure 5.2. As a general mnemonic,

c will denote a component, a an assumption and g a guarantee. The sets of components,

assumptions and guarantees and will be denoted using the respective upper-case alphabets.

The system as viewed by AMF consists of a set of n components

C = {ci | ci is a component, 1 ≤ i ≤ n} (4.1)

28

Notation Meaning

C = {c1, . . . , cn} Set of n components. Elements of C are individual components.

Ci = {ci1 , . . . , cim} The dependent component set for a component ci. Every cij , 1 ≤
j ≤ m, that ∈ Ci also ∈ C.

Aij The set of assumptions that the component ci makes on the
dependent component cij

Gij Guarantee set analogous to Aij

ak an assumption

gk a guarantee

na, ng Total number of assumptions and guarantees in the system re-
spectively

Figure 4.1 Notations in AMF Rules

Every component ci in the system has a dependent component set with m dependent com-

ponents

Ci = {cij | cij is a dependent component of ci, cij ∈ C, cij 6= ci, 1 ≤ j ≤ m} (4.2)

The component ci makes assumptions on or provides guarantees for every dependent com-

ponent cij , (1 ≤ j ≤ m) in the set Ci. A component is allowed to have no elements in the

dependent component set, Ci can have a value of ∅. Every component in the dependent com-

ponent set Ci is also contained in the set of components of the system C,

Ci ⊂ C (4.3)

The set Aij , where each element of the set is an assumption made by ci on component cij

referred to as the assumption set from ci to cij ,

Aij = {ak | ak is an assumption by ci on cij , 1 ≤ k ≤ p} (4.4)

The set Gij , where each element of the set is a guarantee provided by ci for cij referred to

as the guarantee set from ci to cij ,

Gij = {gk | gk is a guarantee from ci for cij , 1 ≤ k ≤ q} (4.5)

There are some restrictions on Aij and Gij . For every dependent component, there is at

least an assumption or a guarantee,

Aij ∪Gij 6= ∅ (4.6)

29

Hence, the sets Aij and Gij cannot simultaneously be ∅.
An assumption consists of

• a name, f

• a list of parameters (x1, . . . , xr) with their type information,

• a predicate or the body of the assumption (a boolean-valued function)

f(Xr)→ {TRUE,FALSE},

• classification information, a set of ordered pairs indicating the classification dimension

name and a value

A guarantee consists of

• name of the assumption to which this guarantee is for, f

• a list of parameter values (with type information) (val1, . . . , valr) used to evaluate the

predicate in the assumption,

• classification information ordered pairs.

If (val1, . . . , valr) are the values provided for (x1, . . . , xr), by a guarantee for an assumption

named f , the assumption is said to be valid if f(val1, . . . , valr) = TRUE. Otherwise, the

assumption is said to be invalid.

An important property of the predicate in the assumption, (which will be useful during

implementation of the predicate) is that it is a pure-function. It does not modify any of the

parameter-values nor have any side-effects. This will enable the assumptions to be checked

during system-configuration or runtime without modifying the properties of the system whose

assumptions are being validated.

In summary, AMF language is designed in a way that it views the system to be a set

of components, C = {c1, . . . cn}. Each component ci has a dependent component set Ci =

{ci1 , . . . , cim}, whose elements (components) on which ci makes assumptions on or provide

guarantees for. For each dependent component cij , there is an assumption set Aij = {a1, . . . , ap}
and a guarantee set Gij = {g1, . . . , gq}, at least one of which is not ∅. Assumptions have a name,

list of formal parameters, a boolean-valued predicate along with the classification information.

30

Guarantees have the name of the assumption to which they provide guarantees for, a list of

formal-parameter instances to evaluate the assumption and the classification information. The

assumption holds good if the function is evaluated to true with the values provided by the

guarantee.

4.3.1 Assumptions of Library and Services Objects

Notation Meaning

Ãi Set of library (mandatory) assumptions of a component ci.

ãk A library (mandatory) assumption

G̃i Set of library (optional) guarantees of a component ci

g̃k A library (optional) guarantee

Figure 4.2 Extended Notations in AMF for Library and Service Objects

Some library and services components like operating system or middleware services may not

know the list of components that utilize their services in advance (at the time of encoding the

assumptions). Hence, such a component, ci, must be able to specify assumptions that must be

satisfied by every other component that uses the services of ci. These assumptions are called

as mandatory assumptions. Also, ci must be able to provide guarantees that any component

that uses the services of ci can optionally use. These guarantees are called optional guarantees.

Hence a component ci, that is a library or a service, can specify a set of (pm) mandatory

assumptions,

Ãi = {ãk | ãk is a mandatory assumption of ci, 1 ≤ k ≤ pm} (4.7)

Similarly, ci can specify a set of (qo) optional guarantees,

G̃i = {g̃k | g̃k is an optional guarantee of ci, 1 ≤ k ≤ qo} (4.8)

4.4 A System View Example

The sensor data-collector example is used in this section to help follow the definitions in

Section 4.3.

31

This is a simple system with two components, the sensor and the data-collector.

c1 = sensor

c2 = data collector

C = {sensor, data collector}

n = 2

The data-collector (c1) makes assumptions on the sensor (c2). The number of dependent

components of the data-collector, m = 1.

C2 = {c1}

The data collector makes the following assumptions (as shown in the Figure 3.2) on the

sensor. We just show the names below. For the body of the assumption, formal-parameters

and the classification information, please refer to Figure 3.2.

a1 : name = intensity data units, parameters : x1 = intensity units(String)

body = intensity units.equals(“Decibels”)

classification = {{V alidity time frame, “Static”}{Criticality, “Critical Level A”}}

a2 : name = max delay, . . .

a3 : name = max error, . . .

a4 : name = delay jitter units, . . .

a5 : name = saturation value, . . .

a6 : name = granularity, . . .

a7 : name = os, . . .

A21
= {a1, . . . ,a7}

Similarly, there are guarantees provided by the sensor to the data collector. Again, refer to

32

Figure 3.2 for the complete list of guarantees, with the classification information.

g1 : name = intensity data units, values : intensity units(String) : “Decibels”

classification{{Guarantee Type, “Human entered”}}

g2 : name = max delay, . . .

...

g7 : name = os, . . .

G12
= {g1, . . . ,g7}

There are guarantees provided by the data collector, like the software version number and

the machine-architecture for which the software is built, which any component that uses the

services of the data collector can make use of.

g̃1 : name = version, values : minor(int) : 2,major(int) : 3

classification{{Guarantee Type, “Human entered”}}

g̃2 : name = architecture, . . .

G̃1 = {g̃1, g̃2}

4.5 The Language and the AMF Compiler

The AMF language syntax allows expressing the structure of assumptions presented in

Equations 4.1 – 4.8.

The most important language rules for the AMF compiler is shown below in Bachus-Naur

form1.

• The definitions consists of the component definitions of one or more components. C =

{ci | ci is a component, 1 ≤ i ≤ n}. Every component is identified by a unique name.

AMF Compiler Rules:

componentDefinitionsSet: (componentDefinitions)+ ;

componentDefinitions: ‘componentDefinitions’ nameClause componentBody ;

nameClause: ‘name’ ‘=’ IDENTIFIER ;

1This section does not deal with the implementation of the language. Also, it does not list the comprehensive
set of rules. For the complete set of rules in BNF, please refer to Appendix B.

33

Example:

componentDefinitions name=DataCollector

// data-collector definitions body ...

componentDefinitions name=Sensor

// sensor definitions body ...

• The dependent component set for a component: Ci = {cij | cij is a dependent component

of ci, cij ∈ C, cij 6= ci, 1 ≤ j ≤ m}. Each cij has an about clause in AMF language.

AMF Compiler Rules:

componentBody: ‘{’ (assumptionGuaranteeSet)+ ‘}’ ‘;’ ;

assumptionGuaranteeSet: ‘about’ IDENTIFIER assumptionGuaranteeSetBody

Example:

componentDefinitions name=DataCollector {

about Sensor

// body of the assumptionGuaranteeSet for the sensor

}

...

• Equations 4.4, 4.5 and 4.6 state that there is an assumption-set and a guarantee-set for a

component ci on its dependent component cij , at least one set of which is not empty.

AMF Compiler Rules:

assumptionGuaranteeSetBody: ‘{’ (assumption | guarantee)+ ‘}’ ‘;’ ;

assumption: ‘assumes’ IDENTIFIER ‘(’ formalParamList ‘)’

assumptionBody

classificationInfo ;

guarantee: ‘guarantees’ IDENTIFIER guaranteeBody classificationInfo ;

Example:

componentDefinitions name=DataCollector {

about Sensor {

assumes intensity_data_units(/* formalParamList */) {

// assumption body

}

// classification info for intensity_data_units

// other assumptions and guarantees

}

} ...

34

• The basic data types of the formal-parameters supported by AMF are byte, short, int,

long, float, double, char, boolean and String. These types have the usual semantics of the

respective types in the Java programming language. Provisions are made in the AMF

compiler to build complex data types based on these basic types.

• The precedence relationship (and the appropriate operands) for the operators in AMF

are similar to those in a high-level programming language like Java or C. In addition to

these operators, AMF also supports method invocation as an operator; this will be dealt

in detail in subsequent chapters. The basic operations supported by AMF in increasing

order of precedence are as follows.

1. Logical OR ‘||’

2. Logical AND ‘&&’

3. Bit-wise OR ‘|’,

4. Exclusive OR ‘̂’,

5. Bitwise AND ‘&’,

6. Equality ‘=’, Inequality ‘! =’

7. Less-than ‘<’, Greater-than ‘>’, Less-than-or-equal-to ‘<=’,

Greater-than-or-equal-to ‘>=’

8. Left-shift ‘<<’, Signed right-shift ‘>>’, Unsigned right-shift ‘>>>’

9. Addition ‘+’, Subtraction ‘-’,

10. Multiplication ‘*’, Division ‘/’, Modulo ‘%’,

11. Unary minus ‘-’, Unary plus ‘+’,

12. Bit-wise compliment ‘~’ , Logical NOT ‘!’,

The important compiler rules for parameters, types and the body of an assumption and

guarantee is given below. A logicalORExpression is a recursive definition that includes all

operations listed here. Please see the Appendix B for the complete set of rules.

35

AMF Compiler Rules:

formalParamList : ‘(’ paramDecl (‘,’ paramDecl)* ‘)’ ;

paramDecl : paramType IDENTIFIER ;

paramType : ‘byte’ | ‘short’ | ‘int’ | ‘long’ | ‘float’ | ‘double’

| ‘char’ | ‘boolean’ | ‘String’ ;

assumptionBody : ‘{’ logicalOrExpression ‘}’ ;

guaranteeBody : ‘{’ (paramType IDENTIFIER ‘=’ paramValue ‘;’)+ ‘}’ ‘;’ ;

classificationInfo : (criticalityClause)? (validityTimeFrameClause)?

(scopeClause)? ;

validityTimeFrameClause : ‘{’ ‘ValidityTimeFrame’ ‘=’ timeFrameConsts ‘}’ ;

timeFrameConsts : ‘STATIC’ | ‘SYSTEM_CONFIGURATION’ | ‘DYNAMIC’ ;

// Other classificationInfo clauses.

Example:

componentDefinitions name=DataCollector {

about Sensor {

assumes min_saturation_value(double error, int saturation_value) {

(1.0 + error) * 100.0 < saturation_value

}

{Criticality=CRITICAL_LEVEL_A}

{ValidityTimeFrame=SYSTEM_CONFIGURATION};

// Other assumptions and guarantees about the Sensor

};

// Assumption Guarantee Sets for other components

};

componentDefinitions name=Sensor {

about DataCollector {

guarantees min_saturation_value {

double error = 0.1;

int saturation_value = 128;

}

{GuaranteeType=HUMAN_ENTERED};

};

// Assumption Guarantee Sets for other components

};

• AMF allows specification of library (mandatory) assumptions and library (optional) guar-

antees as in Equations 4.7 and 4.8 for components that may not know the set of dependent

36

components in advance. The dependent component set rule is modified as follows which

allows this. The example states that every component that uses the services of the data-

collector must guarantee that it supports 32-bit data structures. Also, any component

can optionally use the guarantee that the data-collector holds a buffer of 1024 values.

AMF Compiler Rules:

assumptionGuaranteeSet: ‘about’ (IDENTIFIER|‘*’) assumptionGuaranteeSetBody

Example:

componentDefinitions name=DataCollector {

about * {

assumes dataImportExportArch(int widthInBits) {

widthInBits >= 32;

}

{Criticality=CRITICAL}

{ValidityTimeFrame=SYSTEM_CONFIGURATION};

guarantees dataBufferSize {

int size = 1024;

}

{GuaranteeType=HUMAN_ENTERED};

}

} ...

4.6 Language Extensions to Support Method Invocation

In the sensor - data collector example, the data collector needs to run on Linux. The data

collector is a part of a larger classification system. There is an environmental assumption made

by the system that the operating system is Linux. This guarantee cannot be provided at the

time of encoding the assumptions, it needs to be checked during the system configuration time.

Next, if the error of the sensor and the saturation value is provided in decibels, the data-

collector may need to normalize the error value calculate the Gaussian error. These type of

mathematical functions are available as libraries in high-level programming languages like Java.

It is appropriate to use them instead of providing an implementation in AMF that replicates

this function.

37

For these reasons, AMF provides method invocation as a language extension. AMF also

provides optional declarations to enable declaration of a language and importing libraries.

Using the language extension, values for guarantees can be obtained by invoking a high-level

programming language method at system-configuration or runtime. Complex assumptions can

make use of standard or custom library functions in high-level programming languages.

Please see Appendix B for the rules for method invocation. An example of an assumption

and a guarantee is given below.

componentDefinitions name=DataCollector {

{ language=JAVA;

import edu.uiuc.cs.rtsl.amf.AMFLibrary;

}

about * {

guarantees operatingSystem {

String osName = AMFLibrary.getOsName();

}

}

about Sensor {

assumes maxGaussianError(double errInDb, double saturationInDb) {

AMFLibrary.normalize(errInDb,saturationInDb) < 0.15;

}

}

}

4.7 Summary

This chapter explained the AMF language definitions. AMF views the system as a set of

components. Every component has a set of dependent components that it makes assumptions

on or provides guarantees for. An assumption has a uniquely identifiable name, a set of input

parameters (each with a pre-defined type and a name), a boolean-valued function and classifi-

cation information. A guarantee has a name of the assumption for which it provides values; a

type, name and value for each corresponding parameter of the assumption.

The logic to express the assumptions encompasses most logical operators in a high-level

language like C or Java. AMF also allows components that may not know the set of dependent

components in advance, like operating systems and middleware components, to express their

38

assumptions. These assumptions must be satisfied by every dependent component. Also, such

components may provide guarantees that dependent components may optionally use.

AMF has language extensions that makes provisions for complex assumptions and guaran-

tees to be expressed as method invocations in high-level languages.

39

CHAPTER 5

Composition of Assumptions and Guarantees

One of the prime objectives of AMF is to introduce the concept of manageability of as-

sumptions. The inverted pendulum control system (IPCS) had over forty assumptions with

just four components. The system exposed three software interfaces (sensor, controller and the

actuator). The sensor - data collector example had over a dozen assumptions with a single

software interface between the sensor and the data collector. One can see how the number

of assumptions will explode as systems get larger. The next generation of software must be

capable of handling system of systems. A recent study [22] states that the software challenge

of the future is to manage systems of systems whose size may run into a billion lines of code.

The system’s architect must be abstracted from low-level and unwanted details of sub-systems.

At the same time, one must be able to validate the functionality of each of the sub-systems,

preferably automatically.

Automatically matching assumptions with guarantees and validating a relevant subset of

assumptions is vital from an assumptions management perspective. This will warrant being

able to set policies on the set of assumptions. For example, we must be able to automatically

validate all the static assumptions of a component, when the code for the component changes.

In short, managing assumptions consists of (a) abstracting internal assumptions of sub-

components in the larger context of integration (b) being able to validate a relevant subset of

assumptions in an efficient manner (c) allow for the evolution of assumptions themselves [11].

40

5.1 Composition Overview

Composing components involves combining a group of related components into a new entity.

The new entity will have a well-defined functionality that uses the services of its sub-components

and has a well-defined interface to invoke this new functionality. It is similar to the faćade

pattern [23] in the software-engineering paradigm. A few properties of the new entity can be

directly obtained from its sub-components. Other properties need to be generated based on the

properties of the sub-components. This whole process is termed as composition of components.

From an assumptions management perspective, composition involves the following.

• Assumptions are matched with their respective guarantees and all assumptions that have

matching guarantees that can be validated are tagged as private. The integrator of the

larger sub-system, of which the new entity is a part of, is abstracted from these private

assumptions.

• All assumptions made by the component on external components and those not having

matching guarantees are tagged as public assumptions. The integrator of the larger sub-

system needs to be aware of these public assumptions.

• In presence of library components, the matching process for assumptions and guarantees

needs to follow the algorithm in Section 5.2.

• New assumptions and guarantees are generated to reflect the properties of the composed

entity.

For example, as shown in Figure 5.1, the sensor, data collector along with the data analyzer

and validator are composed to form the acoustic sub-system. This sub-system is a part of a

larger classification system, that classifies objects based on readings from acoustic, magnetic and

infra-red sensors. In the acoustic sub-system, most of the assumptions (system-configuration

and static) made by the data collector on the sensor can be matched and validated within the

sub-system itself. If required, new assumptions and guarantees based on the assumptions and

guarantees of the set of components being composed are generated.

41

Net Max Delay
=
sum(Max Delay i)

Max Delay 1

Max Delay 2Max Delay 3

Max Delay 4
Subsystem
Acoustic

Acoustic
 Sensor

Data validator

Data
Collector

Data
Analyzer

Figure 5.1 Composition Example: Acoustic Sub-system

5.2 Composition in Presence of Library Services

For explaining the composition rules, a convenience operator match(ax, gy) is introduced,

which means that gy is a matching guarantee for ax. Also, tag(ax,M) tags an assumption ax

as matched. tag(ax, U) will tag an assumption ax as unmatched. Note that finding a matching

guarantee for an assumption is not enough to tag the assumption as matched. For a library

assumption, every component that uses this library must provide a matching guarantee to tag

the assumption as matched. These are combined rules below take care of library assumptions

and guarantees.

5.2.1 Composition Rules

1. For a library assumption ãx we use the following rule to tag it as matched.

((ãx ∈ Ãi) ∧ tag(ãx,M))↔ (∀(cj)((ci ∈ Cj)→

(∃(gy)(gy ∈ Gji
∧match(ãx, gy))) ∨ (∃(g̃y)(g̃y ∈ G̃j ∧match(ãx, g̃y)))) (5.1)

The explanation for this rule is as follows:-

A library assumption ãx of a component ci is tagged as matched, i.e.,

((ãx ∈ Ãi) ∧ tag(ãx,M)), if and only if, for every component that has ci as a dependent

42

Notation Meaning

na, ng, ña, ñg Total number of assumptions, guarantees, library assumptions
and library guarantees in the system respectively

n eai
The number of components that provide guarantees to the li-
brary assumption ãi

tag(,M) can be any assumption or guarantee. Tag as matched
tag(, U) can be any assumption or guarantee. Tag as unmatched
match(ax, gy) Guarantee gy matches assumption ax

Figure 5.2 Notations in AMF Rules

component, i.e., ∀(cj)(ci ∈ Cj), a matching guarantee must be provided for ãx; this

matching guarantee can be a guarantee explicitly for the component ci or it can be a

library guarantee i.e., (∃(gy)(gy ∈ Gji
∧match(ãx, gy)))∨(∃(g̃y)(g̃y ∈ G̃j∧match(ãx, g̃y))).

2. For an assumption that is not a library assumption, we use the following rule to tag it as

matched.

((ax ∈ Aij) ∧ tag(ax,M))↔

(∃(gy)((gy ∈ Gji
) ∧match(ax, gy))) ∨ (∃(g̃y)((g̃y ∈ G̃j) ∧match(ax, g̃y))) (5.2)

The expression in (5.2) states that an assumption ax made by a component ci on a de-

pendent component cj is declared as matched, i.e., ((ax ∈ Aij) ∧ tag(ax,M)), if and

only if, it is matched by a guarantee in the set Gj i or by a library guarantee in G̃j ,

i.e., (∃(gy)(gy ∈ Gji
∧match(ax, gy))) ∨ (∃(g̃y)(g̃y ∈ G̃j ∧match(ax, g̃y))).

3. For a guarantee explicitly made for a component (not a library guarantee), we use the

following rule to tag it as matched.

((gy ∈ Gij) ∧ tag(gy,M))↔

(∃(ax)((ax ∈ Aji
) ∧match(ax, gy))) ∨ (∃(ãx)((ãx ∈ Ãj) ∧match(ãx, gy))) (5.3)

The expression in (5.3) states that a guarantee gx provided by a component ci for a

dependent component cj is declared as matched, i.e., (gy ∈ Gij ∧ tag(gy ,M)), if and

only if, it is matched either by an explicit assumption ay belonging to Aj i or by a library

assumption in Ãj , i.e., (∃(ax)(ax ∈ Aji
∧match(ax, gy)))∨(∃(ãx)(ãx ∈ Ãj∧match(ãx, gy)))

43

4. All library guarantees are tagged as matched by default. This is because of the definition of

a library guarantee, where any dependent component can optionally make an assumption

on it.

∀(ci)((g̃y ∈ C̃i)↔ (tag(g̃y ,M))) (5.4)

5. All other assumptions and guarantees are declared as unmatched.

5.2.2 Algorithm to Compose Assumptions and Guarantees

procedure matchAssumptionsAndGuarantees (C) //C - set of components

MA ← ∅, MG ← ∅ //matched assumptions set and matched guarantees set (1)

UA ← ∅, UG ← ∅ //unmatched assumptions set and unmatched guarantees set (2)

Add every assumption to the set MA //tag all as matched (3)

Add every library guarantee g̃y to the set MG and other guarantees to the set UG (4)

for each component ci ∈ C do (5)

for each component cij ∈ Ci do// every dependent component of ci (6)

//Every cij
has a set Aij

, Aij
can be ∅

for each assumption ax ∈ Aij do // assumptions specific to cj (7)

call assignToCorrectSet(ax,ci,cij) (8)

if C̃i! = ∅ // there are library assumptions (9)

for each component cj that has ci in its Cjdo (10)

for each assumption ãx in C̃i do// every library assumption (11)

call assignToCorrectSet(ãx,ci,cj) (12)

procedure assignToCorrectSet(a,ci,cj)
//a - assumption made by ci (can specifically be for cj or can be a library assumption),
//cj - dependent component.

//Every cj has sets Gji
and eGj , both of which can be ∅

if a matches with a guarantee (gy ∈ Gji
) or (g̃y ∈ G̃j) (13)

if a matched with gy ∈ u g set (14)

Remove gy from UG and add it to MG // Tag gy as matched (15)

else (16)

if (a ∈MA) Remove a from MA and add it to UA// Tag a as unmatched (17)

Figure 5.3 Algorithm to Find Matched Assumptions and Guarantees

In this section, the algorithm for implementing the rules 1 - 5 is given. The algorithm takes

into consideration the the structure of assumptions management objects as specified by the

AMF language in Chapter 4. The end result of the algorithm is the following:-

44

• All unmatched assumptions are in the set UA

• All matched assumptions are in the set MA

• All unmatched guarantees are in the set UG

• All matched guarantees are in the set MG

The explanation of the algorithm is as follows. Lines (1) and (2) initialize all the four sets

to an empty-set. In line (3), every assumption is tagged as matched or added to MA. In

line (4), every library guarantee is tagged as matched or is added to the set MG, and every

other guarantee is tagged as unmatched, added to the set UG. Lines (5) through (12) loops for

every component ci. Lines (6) through (8) handle assumptions by a component ci specifically

for each of its dependent components cij ; lines (9) through (12) handle library assumptions of

component ci, or the set of assumptions in C̃i.

Lines (13) through (17) describe a procedure that moves assumptions and guarantees to the

correct matched or unmatched set. If an assumption does not match either with a guarantee

from its dependent component set or a library guarantee in its dependent component set, it

is tagged as unmatched and moved to UA. If the assumption matches a guarantee, which is

in the unmatched guarantees set, UG, the guarantee is moved to the matched guarantees set,

MG.

For the following, na and ng are the total number of assumptions in the system that are

made specifically for a dependent component. ña and ñg are the number of library assumptions

and guarantees in the system. Constants are denoted by k1, k2,

Lemma 5.2.1. In a system with a total of na assumptions and ng guarantees, with no library

assumptions or guarantees, the worst-case running time of composition algorithm is Θ(na+ng).

It is linear in the number of assumptions and guarantees in the system.

Proof. Lines (1) and (2) execute once, their total execution time is a constant, say k1. Line (3)

executes once for each assumption; since there are no library assumptions, the total execution

time is k2.na, where k2 is the constant execution time of line (3). Similarly, line (4) executes

once for each guarantee, and since there are no library guarantees, its total execution time is

k3.ng. Line (8) executes once for each assumption explicitly made by a component ci on a

45

dependent component cij . Since there are na such assumptions, it executes na times. Hence,

the assignToCorrectSet procedure is called na times.

If there is a limit on the length of the names of assumptions and guarantees, a universal hash

function can be designed that can check for the presence of a string in a hashtable in constant

amortized time. This is equivalent to set membership. Line (13) executes 2 set membership

functions, with a constant execution time of k4. Similarly line (14) executes for a constant time

k5. Lines (15) and (17) also have constant execution times, say k6 and k7, respectively.

The worst-case running time of the algorithm in absence of library assumptions and guar-

antees

= k1 + k2.na + k3.ng + (k4 + k5 + k6 + k7).na

= k1 + k3.ng + k8.na, where k8 = k2 + k4 + k5 + k6 + k7,

= Θ(na + ng)

Before stating the next lemma, a few notations are recalled. ña will represent the total

number of library assumptions present in the system. If all the library assumptions in the system

are labeled ã1, ã2, . . ., then n eai
, (1 < i < ña) will represent the total number of components that

should provide a guarantee for the assumption ãi, for ãi to be tagged as matched. A notation

nax is introduced for convenience to indicate the average of n eai
for all ña library assumptions.

Lemma 5.2.2. In a system with a total of na assumptions and ng guarantees made specifically

to other components, ña library assumptions, the worst-case running time for the composition

algorithm is Θ(na + ng + ña.nax), where nax is the average number of dependent components

for a component having a library assumption.

Proof. The presence of library assumptions will make the algorithm execute the additional lines

(10) through (12). If the ña library assumptions are labeled ã1, ã2, . . . , then line (12) is executed
∑

fna

i=0 n eai
times. As shown in Lemma 5.2.1, the execution time for the procedure in lines (13)

through (15) is a constant, say k9.

The worst-case execution time of the composition algorithm in presence of library assump-

tions and guarantees

46

= Θ(na + ng) +

fna∑

i=0

k9.n eai

= Θ(na + ng) + k9.

fna∑

i=0

n eai

= Θ(na + ng) + k9.ña.nax

= Θ(na + ng + ña.nax)

5.2.3 A Note on Lemma 5.2.2

In absence of library assumptions, the composition matching algorithm has a worst case run-

ning time as linear in the order of number of assumptions and guarantees. Library assumptions

mandate guarantees from every dependent component using the library. Hence, component

developers need to pay attention as to what constitutes a library assumption. Identifying a set

of dependent components in the system, and having assumptions specific to dependent compo-

nents is an important step. This step also reduces the human effort required to maintain the

assumptions in the long-term, since fewer unmatched assumptions will be flagged.

5.3 Preserving Composability

Matching assumptions and guarantees in presence of library assumptions forms the core of

the composition.

For assumptions management to be scalable and applicable for a larger systems in a uniform

fashion, it is important that composition preserves the concept of a component - providing a

functionality accessible using a well-defined interface. This will enable recursive application of

composition in a uniform manner.

For example, the acoustic sensor, data collector, data validator and the data analyzer are

composed to form the acoustic subsystem as shown in Figure 5.1. The acoustic subsystem needs

to have a well-defined functionality and an interface to invoke the functionality and access the

results. The integrator or architect of the classification system uses the acoustic subsystem on

47

the whole. He(She) should not deal with the internal assumptions of the acoustic subsystem

that are matched and validated.

At the same time, an internal system-configuration change (say, the sensor hardware) should

trigger an assumptions validation of the system-configuration assumptions of the sensor and

its dependent components. If they are still valid, the propagation of the system-configuration

changes stop here. Otherwise, the system configuration changes need to be propagated to the

higher level component, the acoustic subsystem, and so on recursively.

5.4 Summary

This chapter introduced the concept of composition of assumptions and guarantees. This

concept is tied with the concept of composition of smaller sub-components to form larger

components, which is the process followed to build most systems using COTS components.

Composition of assumptions and guarantees involves matching assumptions and guarantees that

are satisfied within the set of sub-components themselves, so that the higher level integrator is

abstracted from these details. At the same time, assumption violations in the sub-components

are reported. Composition rules and the algorithm for matching assumptions and guarantees

presented in this chapter handle the presence of library assumptions and guarantees also. The

worst case running time of the algorithm is linear in the number of non-library assumptions

and guarantees in presence of no library assumptions, (Θ(na + ng)). Library assumptions add

to the running time in the order of the average number of guarantees per library assumption

times the number of library assumptions, (Θ(na + ng + ña.nax
)). In addition to finding the

unmatched assumptions and guarantees, new assumptions and guarantees can be introduced

for the component formed by the composition of related sub-components. In order to apply

composition in a uniform fashion for larger systems formed by composition of smaller sub-

systems, the concept of component, with a well-defined functionality and a well-defined interface

to invoke the functionality is to be preserved.

48

CHAPTER 6

Vertical Assumptions Management

Composition of assumptions, which is explained in Chapter 5 helps manage assumptions

across different component development teams. It also helps in managing assumptions in the

process of building larger components using a set of related sub-components.

The other source of assumptions is the software engineering practice within a team itself.

For example, a software component, in addition to the actual code, may have requirements

documents, design documents, test cases, an architecture description document that describes

the interactions within a component, to name a few. Enabling a machine-checkable framework

to track these assumptions across the software development life-cycle is one of the objectives

of AMF. The whole process of managing assumptions that arise out of software-engineering

process is termed as vertical assumptions management. A wide-array of research falls into

this category, but in terms of making assumptions machine-checkable, AMF tries to tackle the

following.

• Tracking assumptions between the code developed by different developers within the same

component, i.e., tying assumptions with the actual code. This is the primary objective.

• Tracking assumptions between the high-level architecture description and the actual in-

teractions within a component.

• Enabling AMF language extensions to allow examination of system-wide impact of as-

sumption failures, using dependency management tools.

49

6.1 Interfacing AMF with Programming Languages

It is very common in software development that changing one component’s code affects

other components in an unexpected fashion. Sometimes, components get so monolithic that it

is very difficult to track assumptions made by different modules within the component itself.

For example, organizations have provided patches for their patched patches [24]. In some

instances, it is not possible to modify source code; and in some instances, the source code

becomes monolithic and unreadable if assumptions are encoded along with the core algorithm

implementation. These reasons force developers to document assumptions in a natural language.

While AMF is not intended to replace natural language documentation, wherever possible,

making the assumptions machine-checkable will result in significant savings in repeated manual

testing efforts, which tends to be error-prone.

Ensuring correct behavior of the individual modules falls under the domain of model check-

ing and unit testing. While dealing with the source code, AMF is aimed at making assumptions

made by software components on other software components and the environment machine

checkable.

6.1.1 An Example

An example from Etherware [25], a middleware for networked control systems, implemented

in Java, is presented here. Etherware requires that three basic services (the scheduler, network

messenger, and the time service) are started before starting other services. Etherware assumes

that the basic services start within two seconds, which is a reasonable assumption that works for

most systems. When Etherware is run in a resource-constrained environment, this assumption

may be violated. While running on an embedded computer, the delay for initializing the services

was over two seconds on multiple occasions.

In this case, the assumption for maximum allowed delay to start the basic services can

directly reference the source code of the component, where that parameter is declared. This

ensures that when changes are made to this value, if it violates the assumption for maximum

permissible delay, an assumption violation will show up.

The start-up routine in the Kernel is as shown below.

50

// Start the basic services

setupBasicConfiguration();

// Sleep so that service initialization over the network is completed

try {

Thread.sleep(INIT_INTERVAL);

} catch (InterruptedException e) {

e.printStackTrace();

}

// Start other services

The Kernel is called by the main routine, which we name InitRoutine. Depending on

the type of system that Etherware runs on, InitRoutine may require different values for the

maximum initialization sleep interval.

The following is required of AMF when the InitRoutine and the Kernel modules are devel-

oped by different developers. Kernel makes an assumption that the maximum permissible delay

for startup is less than the value indicated by the variable INIT INTERV AL. InitRoutine

provides a guarantee for this value based on the type of system that it runs on. The developer

of the Kernel must encode the assumption in a way that it directly gives the value set for

the INIT INTERV AL variable. This ensures that changes in the source code will trigger an

assumptions check and if there is an assumption violation, it will show up.

6.1.2 Pre-Requisites for Encoding Assumptions on the Source-Code

There are some pre-requisites for the assumptions made by the software to be directly

checked in AMF, as and when there are changes in the source code.

• The software should export the properties that need to be validated as the return value

of a function, (public function in case of an object oriented language). This enables the

standard AMF language extension to be used to obtain this property. AMF language

extensions make it possible to encode method invocations as a part of the body of the

assumptions.

• The function used to obtain the property that needs to be validated must be a pure

function. In other words, it should not (i) modify any global property of the component

51

or the system containing the component, nor (ii) should the function modify any of its

input parameters. These rules ensure that AMF never accidentally alters the properties

of the system, whose assumptions are being validated.

Validation of assumptions does consume CPU and memory; hence, AMF may alter the

schedulability and resource related properties of the system, in which assumptions are

being validated. This does not matter for validation of system-configuration or static

assumptions. While validating dynamic assumptions, if the system being validated is

a real-time system, one needs to ensure that the resource allocation takes care of the

resources required for validation of assumptions also.

The rule of non-modifiable input parameters for a function can be automated for most

programming languages - like Java (by declaring parameters for the functions as final)

and C (where parameters are passed by value by default).

6.1.3 Procedure for Encoding Assumptions on the Source Code

The following procedure is used to encode assumptions and guarantees that directly reflect

the properties of variables in the source code. The procedure given here is for Java.

• Find the list of properties that are present in the source code that need to be monitored

by assumptions or provided by guarantees. For example, the Kernel module needs to

monitor INIT INTERV AL in an assumption.

• Export all properties that need to be directly monitored in assumptions and provided in

guarantees as the return value of a public function. For example, the Kernel exports the

INIT INTERV AL variable using a public function.

public int getInitSleepInterval() {

return INIT_INTERVAL;

}

• Encode the assumption or the guarantee using the public function. (i) In the optional

declaration part of AMF, indicate the language in which the method invocation is encoded.

(ii) Indicate the set of classes imported by the component to specify the assumption (iii)

52

Encode the body of the assumption making use of the public functions from the imported

classes.

componentDefinitions name=Kernel {

{language=JAVA;

import ether.etherware.kernel.Kernel;

}

about InitRoutines {

assumes maxStartupDelay(int maxDelayInMilliSec) {

maxDelayInMilliSec <= Kernel.getInitSleepInterval();

}

// Classification info ...

};

}

The developer of InitRoutine provides a guarantee based on the type of system. A

test routine is used that checks for various parameters of the system and estimates the

maximum delay that will be encountered to start the basic services in the system.

componentDefinitions name=InitRoutines {

{language=JAVA;

import ether.etherware.diagnosis.TestMachineParams;

}

about Kernel {

guarantees maxStartupDelay {

int maxStartupDelay = TestMachineParams.getMaxStartDelayEstimate();

}

// Classification info ...

};

}

The above procedure ensures that wherever possible, AMF can validate assumptions based

on the properties of the source code itself. This becomes important as the size of components

get bigger and there are multiple developers involved in developing a component. AMF en-

sures that developers can make assumptions about source code developed by other developers

without modifying their sources. While AMF cannot completely replace natural language doc-

53

umentation, wherever possible, enabling assumptions on the source code to be encoded in a

machine checkable format saves human testing effort.

6.2 Integration with AADL

Embedded system components are generally composite components containing both hard-

ware and software components. Most hardware components export their properties in the form

of data sheets, which precludes any machine-checkable assumptions to be encoded on them.

To enable machine checkable assumptions, the properties of the hardware sub-systems must be

exported by a software proxy. A unified framework to encode properties of software and hard-

ware components with a well-defined syntax and semantics is necessary. Such a framework in

conjunction with AMF can be used to trigger assumption checks when properties of hardware

components change. The Architecture Analysis and Description Language (AADL) is chosen

for this.

system ActousticClassifier
end ActousticClassifier;

process DataCollector
features

Output: out data port AppData;
Input: in data port AppData;

properties

Compute Execution Time => 0 ms .. 10ms
in binding (powerpc.speed 350Mhz);

—- Other properties
end DataCollector;

—- Similar definitions for
—- sensor device and sense process
system implementation AcousticClassifier.Basic

subcomponents

dc : process DataCollector;
sensor : device Sensor;
—- other parts of the system

connections

data port sensor .Output -> dc .Input
in modes (stable);

—- other connections
properties

—- standard properties
end AcousticClassifier.Basic;

Figure 6.1 Sample of AADL Specification of the Acoustic Sensing System

54

6.2.1 The Architecture Analysis and Description Language (AADL)

AADL provides a framework for specifying the architecture of real-time and embedded

systems incorporating both the hardware and software components’ properties and behavior

or functionality. Specifically, the standard has precise definitions of key hardware components

like Processor, Bus, Memory, Device and software components like Process, Thread, Thread

Group, Subprogram, Data and composite components like System. The AADL specification [21]

contains a well-defined syntax for specification of the system architecture. Importantly, for

AMF, it contains the semantics, standard properties and processing requirements for each of

the components mentioned above. Every component has features, which are attributes or

properties of the components that are exposed to other components. It is equivalent to a public

interface of the component. Components can specify attributes which are non-standard using

the Properties construct. The Properties construct is a set of name-value pairs per component

or component instance.

A part of the specification of the data collector component in AADL is given in Figure 6.1.

The data collector component specifies its standard input and output as a part of its features.

Properties like execution time for a software component on a particular processor can also be

specified. The sub-components and connections (interactions) for a component are specified

along with its implementation specification.

AADL is an extensible language; it allows other analysis tools to be plugged-in as annexes.

AADL provides a well-defined procedure for annexes to access the components and their prop-

erties defined in the AADL name-space. Annexes can use this information for domain specific

analysis. The AMF language is made available as an annex plug-in for AADL. AADL has a

set of approved plug-ins that can be used for tasks like ensuring schedulability and ensuring

resource constraints are met while designing real-time systems. The AMF plug-in can be used

to ensure that assumptions on the operating environment and assumptions made by software

on hardware and vice versa are satisfied. An example of the assumptions made by the data

collector on the sensor is shown in Figure 6.2. It shows how the assumptions specification is

combined with the AADL specification of the system in Figure 6.1.

With the integration with AADL, AMF utilizes the name-space of AADL to get the com-

ponent types. This ensures that the names used within AMF are consistent with those in the

55

process DataCollector
features

Output: out data port AppData;
Input: in data port AppData;

properties

Compute Execution Time => 0 ms .. 10ms
in binding (powerpc.speed 350Mhz);

—- Other properties

annex assumptions {**

// assumptions specified in AMF specification language

componentassumptions name=DataCollector {
// Dependent component Sensor

about Sensor {
assumes saturationValueLimit

(float maxSensorError, float saturationValue) {
(1 + maxSensorError)*50 < saturationValue

}
{Criticality= CRITICAL LEVEL A}
{ValidityTimeFrame= SYSTEM CONFIGURATION};

guarantees dataImportControl {
int importInterface = PS2 BIDIRECTIONAL;

}

// Other assumptions and guarantees

**}
end DataCollector;

Figure 6.2 Specifying Assumptions Within AADL

architecture definitions. Also, AADL specification lists the component types that can interact

with each other. Using this information, AMF ensures that meaningful component types make

assumptions on each other. For example, it is not meaningful for a component of type Memory

to make assumptions on a component of type Thread Group.

6.3 Mapping Assumptions to Component Failures

It is logical to record the immediate impact of an assumption violation along with the

assumption itself. There are specialized dependency management tools like DMF [26] to analyze

the system-wide impact of an error given the error propagation rules between immediately

interacting components. By using a standard vocabulary to record the immediate impact

on an assumption violation, assumption violations can serve as inputs to these dependency

management tools. Hence, the system-wide impact of an assumption violation can be discerned.

56

To enable this, a language extension is needed to allow the encoding of immediate impact

on assumption violation. This is as shown below. The impactConsts clause encodes all the

standard failures present in the DMF.

classificationInfo : (criticalityClause)? (validityTimeFrameClause)?

(scopeClause)? (violationImpactClause)? ;

validityTimeFrameClause : ‘{’ ‘ViolationImpact’ ‘=’ (impactConsts| IDENTIFIER) ‘}’ ;

impactConsts : ‘VALUE_ERROR’ | ‘CRASH’ | ‘LOCKUP’ | ‘SUSPEND’ | ‘OMISSION’

‘STATE_TRANSITION_ERROR’ | ‘BYZANTINE’ | ‘DEADLINE_MISS’ | ‘BUDGET_OVERRUN’

| ‘RESOURCE_SHARING_ERROR’ ;

Based on this extension, immediate impact on assumption violation can be recorded as

follows.

componentDefinitions name=DataCollector {

about Sensor {

assumes min_saturation_value(double error, int saturation_value) {

(1.0 + error) * 100.0 < saturation_value

}

{ViolationImpact=VALUE_ERROR}

// Other info

};

// assumption Guarantee Sets for other components

};

The error propagation rules will be encoded in DMF as shown below. The first line of the

rules in DMF syntax states that the value error in the data collector will cause a value error in

the data analyzer component. The complete list of similar error propagation rules for a system

will be encoded in DMF.

DataCollector.VALUE_ERROR -> DataAnalyzer = VALUE_ERROR

DataAnalyzer.VALUE_ERROR -> // Other error propagation rules...

Given this information, system-wide impact of the assumption min saturation value being

violated can be found using DMF. Thus, language extensions in AMF enable it to work with

useful tools that allow studying the system-wide impact of assumption violations.

57

6.4 Summary

From a software-engineering perspective, assumptions arise during system design (like ar-

chitecture description), system analysis, coding, integration and testing phases. This warrants

that the AMF language makes it amenable to easily specify assumptions during these phases.

The whole process of managing these assumptions that arise out of the software-engineering

process is termed as vertical assumptions management.

AMF language extensions allow specification of assumptions directly on the source-code

of the components. This allows assumption violations to be detected when properties in the

source code changes. This becomes important as the components get bigger and there are

multiple developers involved in developing a component. AMF ensures that developers can

make assumptions about source code developed by other developers without modifying their

sources.

AMF language can be an annex sub-language of AADL. Importantly, for AMF, AADL en-

ables properties of hardware components and software components to be exported in a machine-

checkable format. AADL also provides a well-defined grammar and semantics for specifying

system architecture using hardware and software components. Integration with an architecture

description language like AADL helps end-users specify assumptions between hardware and

software components, along with the system architecture itself.

AMF provides language extensions that enable the users to encode the immediate impact

of assumption violations using standard vocabulary used by dependency management tools.

These language extensions of AMF allows assumptions to be specified directly on the source

code, with minor or no source code modifications required; assumptions to be specified along

with the system architecture description and allows analysis tools to detect impact of assump-

tion violations. This easy integration with various aspects of software engineering makes as-

sumptions specification blend into the software engineering life cycle.

58

CHAPTER 7

Implementation of the Assumptions Management Framework

The assumptions management framework (AMF) is implemented in Java using the Eclipse

Modeling Framework (EMF) [27]. The grammar for the AMF Language is specified using

ANTLR [28]. The implementation provides facilities to specify assumptions using a text-based

interface and a model-based graphical user interface. It provides automatic composition and

validation facilities. The AMF objects can be saved in a well-defined XML format that makes it

amenable for database operations. Users can set policies on when to validate assumptions and

what assumptions need to be validated. The framework also provides source-code integration for

Java projects to directly specify assumptions on the source code, language extensions to specify

complex assumptions and guarantees as methods and integration with the Architecture Analysis

and Description Language (AADL) framework’s toolkit (called OSATE). AMF provides user-

friendly error-reporting that enables the user to directly view the source of the error, like AMF

errors in AADL annex definitions, errors in Java sources generated by AMF, or assumption

definitions themselves.

7.1 Structure of the Implementation Objects

EMF was chosen for the implementing AMF for the following features that AMF makes

extensive use of.

• EMF provides a code generation framework that takes care of generating appropriate

accessor method stubs for the fields in the objects. Directives can be provided to EMF to

specify whether the field is changeable - this will make EMF only provide a get() method

and not a set() method; whether the field is volatile - indicating that the value of this

59

field needs to be calculated on the fly and no storage is allocated to it; whether a field is

transient - indicating that the field should not be serialized when the object is serialized;

whether the field is unsettable - indicating that the user should be able to query whether

any value was explicitly set to this field; whether the field the contained - indicating that

the actual object representing the field and not a reference to the field is stored during

serialization.

For example, formal parameters are a part of the assumption object and hence, contain-

ment will be set to true. An assumption contains at least one formal parameter. This is

specified as below. EMF will take care of serialization; it will make sure that the there is

at least one formal-parameter present for an assumption.

/**

* @model type="FormalParameter" containment="true" lower="1"

*/

EList getFormalParameters();

The printable name for an assumption is a qualified name of the assumption containing

the component name, the dependent component name and the assumption name, with a

separator between these names. These values can be obtained on the fly and there needs

to be no storage associated with this function. Also, this field need not be serialized and it

cannot be changed manually. This is specified as follows. EMF will handle serialization.

It will create a stub for a method in its implementation class which can be filled to create

this functionality.

/**

* @model changeable="false" volatile="true" transient="true"

*/

String getPrintableName();

• It provides type-safe enumerations with default values that can be set to fields. For

example, by default all assumptions have the composition scope as PUBLIC. The scope

is also a required field and one can query if the value for this field was explicitly set. This

is specified as follows

/**

* @model required="true" default="Public" unsettable="true"

*/

Scope getScope();

60

• EMF automatically provides a model-based GUI reflecting the overall design. This is

shown in Section 7.2.2.

• EMF separates the object implementation from the interface of the object. It provides de-

fault factory methods to create the implementation objects that hides the implementation

details from the end-users.

Figure 7.1 Class Diagram for the Assumption Object Implementation using EMF

EMF objects are created to accurately reflect the structure of the assumption management

objects described in Chapter 4. For example, an assumption has a name, the body of the

assumption and a set of formal parameters to invoke the assumption, in addition to its classifi-

cation and set containment information. The EMF objects may contain other implementation

specific parameters for an object. For example, every assumption will have a printable name

and an alternate matching guarantees name. The part of the design of the assumptions object

using EMF is as shown in Figure 7.1. It only includes the fields to and from the assumption

object. Please refer to Appendix B for the complete design.

61

7.2 Specifying Assumptions

Assumptions can be specified either using a model-based GUI, which is generated by EMF

or in a textual format.

7.2.1 The AMF Text Based Input

The parser for the textual format is constructed using the ANTLR Parser generator [28].

The input for the parser is the AMF definitions that adhere to the grammar specified in Ap-

pendix B and the output of the parser is the Java (EMF) object representing the AMF defini-

tions.

In addition to adhering to the grammar, the parser ensures the uniqueness of component

names, uniqueness of dependent component names within a component, unique names for as-

sumptions and guarantees, and unique formal parameter names. The parser creates appropriate

EMF objects representing the assumption definitions as and adds it to the root of the tree rep-

resenting AMF definitions. On successfully parsing the entire textual input, it returns the root

object. Otherwise, it reports the errors and returns a null Java object.

ANTLR allows actions to be taken when particular clauses in the grammar are success-

fully parsed. Actions for a clause are specified within braces after the clause is recognized.

An example of the action taken when a formal parameter in an assumptions is recognized is

given below. A formal parameter contains a type, which is parsed by the grammar clause

primitiveDataType and a name represented by the token IDENT , which is unique for an

assumption. After the respective clauses are parsed successfully, actions to be taken can be

specified in Java. As shown in the example below, the actions on successful parsing of a clause

are between the braces (‘{’ and ‘}’). In the example, currentFPTable represents a hashtable

that stores the names of the formal parameters for the current assumption; af is the factory

object to create the EMF implementation objects; currentAssumption represents the assump-

tion being parsed. If a parameter with the same name as IDENT already exists, an error is

reported by the parser. Otherwise, it is added to the hashtable of existing parameters.

62

param: primitiveDataType {

FormalParameter fp = af.createFormalParameter();

fp.setDataType(currentType);

currentFP = fp;

}

i:IDENT^ {

if (!currentFPTable.containsKey(i.getText())) {

currentFP.setParameterName(i.getText());

currentAssumption.getFormalParameters().add(currentFP);

currentFPTable.put(i.getText(),"");

}

else {

reportError("Duplicate parameter: " + i.getText(), i.getLine());

error = true;

}

}

;

The parser recursively constructs the assumptions definitions tree represented by the textual

input in this fashion. The Eclipse based implementation has error reporting features that takes

the user directly to the line where there is a syntax error as shown in Figure 7.2. In the figure,

the user has forgotten a closing parenthesis “)”.

Figure 7.2 Syntax Errors in Textual AMF Specification

AMF provides an unparser implementation to allow the user to extract from the Java

(EMF) object, the textual AMF definitions that adhere to the standard syntax.

63

7.2.2 The AMF GUI Based Input

Figure 7.3 Model Based GUI to Specify the Assumptions

AMF implementation also provides a model-based GUI, which is automatically generated

by EMF, based on the model definitions of the assumptions management objects and the

implementation methods provided. This helps the user to specify assumptions without learning

the AMF language syntax. The model-based GUI automatically fills in the default values for the

fields, and only allows valid values for enumerations, which simplifies assumptions specification.

The user can save the definitions in XML format and load the XML file to create the Java

(EMF) object representing the assumptions definitions. An example of creating assumption

definitions for the sensor - data collector system is shown in Figure 7.3.

The AMF unparser can be used to convert the Java (EMF) object into textual definitions.

64

7.3 Composing Assumptions

AMF implements the composition algorithm is presented in Section 5.2. The algorithm

makes extensive use of Java Hashtable class to test for the presence of an assumption or a

guarantee in their respective matched and unmatched sets. After the composition routine is

executed, AMF internally stores the list of matched assumptions and guarantees, and the list

of unmatched assumptions and guarantees. It provides functions to the users to access the list

of matched and unmatched assumptions and guarantees. It also provides query functions to

check if an assumption or a guarantee is matched or unmatched, given its fully qualified name

(component name, dependent component name and assumption/guarantee name).

End-users or system integrators can make use of the list of unmatched assumptions to

decide which assumptions should be tagged as PUBLIC assumptions. Composition is also

a pre-requisite for validation of assumptions. Only matched assumptions can proceed to the

validation stage.

Figure 7.4 Sample Results of Composition

AMF displays the list of unmatched assumptions and guarantees as shown in Figure 7.4.

7.4 Validation of Assumptions

After the composition, all matched assumptions and guarantees can proceed to the validation

stage. AMF generates Java code to represent the body of the assumption. Since there is a one-

to-one correspondence between the basic data-types supported by AMF and the basic data-types

65

present in Java, the body of the assumption directly translates into a Java method. All the

types have native support in any Java implementation and no imports are required.

AMF generates one Java class per component, with all the assumptions for its dependent

components as public static functions that can be invoked. This implementation detail is

abstracted from the end-user and the implementation can change in the future without affecting

the user’s perception of AMF functionality. For example, AMF can directly generate Java byte-

code wherever possible, or AMF can generate executables if it is only being used for a particular

platform. This particular implementation choice was made to enable AMF to maximize the

portability without modifying the definitions or the code generated.

AMF reports all the validation errors (invalid assumptions) as problem markers in Eclipse.

Users can click on each of the markers, and AMF will display the guarantee which caused

the assumption to be violated. For example, Figure 7.5 represents a screen showing that two

assumptions are violated. When the user clicks on the problem markers, AMF displays the

guarantee that caused the assumption to be violated.

Figure 7.5 Screen Indicating the List of Violated Assumptions

66

7.5 Services for Dynamic Validation of Assumptions

The entire AMF implementation can be hosted in a server outside Eclipse using a command

line interface or direct Java function calls to invoke all the features mentioned below. In

particular, the AMF definitions object exposes the following classes of services.

• APIs to compose, compile the definitions and generate and compile Java code: These APIs

are used whenever the system architecture changes or the composition context changes.

• APIs to obtain the list of matched and unmatched assumptions (or guarantees).

• APIs to query for a particular assumption (or a guarantee) and check whether it is matched

or unmatched, given the fully-qualified name. These APIs are more efficient than obtain-

ing the list and searching for the assumption or the guarantee; they use the internal

hash-table.

• APIs to save the entire definitions in XML format; this will save the classification infor-

mation also, which will make enforcing policies on validating assumptions easier.

• APIs to unparse the definitions into an output stream. This enables obtaining the defini-

tions in textual format that conforms to the AMF language syntax from the Java(EMF)

object.

• Validate a particular assumption given its fully qualified name. If the assumption is

a library assumption, qualified names for each matching guarantee can be individually

called.

In particular, the service – validation of a particular assumption given its name – is the key

for dynamic assumptions validation. After composition, compilation and the code-generation

phase, if an assumption that needs to be validated is tagged as matched, users can use this

service to validate the assumption. AMF can invoke routines that obtain the values for the

guarantees and check if the assumption is valid.

While the implementation of the framework takes efficiency into concern (14,000 assump-

tions and guarantees were composed in under in 900ms, parsing and code-generation time of

the same set, with over 113,000 lines as input, was under 14 seconds), the current AMF im-

plementation does not provide hard-guarantees on the upper-bound for validation time. The

67

implementation is quite efficient for validating assumptions in soft real-time systems. The class

load-time for a guarantees class consisting of 800 guarantees was about 15 milli-seconds, and

the average validation time for an assumption consisting of 3 formal parameters and 3 boolean

operations was about 250 micro-seconds. The majority of this time was spent in (i) translating

the assumption name into the method name to be invoked and (ii) finding the method within

the class to be invoked. The actual method execution time was inconsequential1.

7.6 Integration with Java Source Code

Section 6.1 explained in detail, the procedure to be followed to make assumptions directly

on the Java source code. In brief, the AMF implementation enables assumptions and the

source code for a component (currently Java source-code) to be within the same integrated

development environment and they can cross-reference each other. AMF language extensions

allow method invocations on the Java sources as a part of the body of the assumptions. For

soft-real time and non-real-time systems, users can make calls to validate assumptions from the

Java sources.

AMF provides facilities for assumptions to be validated from the source code. The assump-

tion validation can be triggered by calling the validateAssumptions library method provided

by AMF using the qualified assumption name as the input parameter. AMF will obtain the

parameters for the validation of the assumptions from the guarantees definitions; if needed,

methods are invoked to obtain the guarantee values.

For example, AMF implementation was used to encode and validate the assumptions in the

wireless-networked control system controlling a set of experimental toy cars. The whole system

was controlled by a middleware - Etherware [25]. Etherware makes an assumption that there is

no other instance of the middleware running on a machine and that the ports required to start

the basic services are available. Every other service that runs on Etherware depends on these

services. This assumption is encoded as follows.

1These numbers were obtained using a machine with an Intel T2300 processor running at 1.66 GHz, 1 GB of
memory, Windows XP operating system and JDK 1.5.

68

assumes canStartNetworkServicesOnPorts(String protocol, String address,

int datagramPort, int broadcastPort, int streamPort) {

((protocol != null) && (protocol.equals("TCP/IP"))

&& (EtherwareAssumptionsLib.datagramPortAvailable(address,datagramPort))

&& (EtherwareAssumptionsLib.datagramPortAvailable(address,broadcastPort))

&& (EtherwareAssumptionsLib.streamPortAvailable(address,streamPort)))

}

{Criticality=CRITICAL_LEVEL_5}

{ValidityTimeFrame=DYNAMIC}

{ViolationImpact=CRASH};

A library EtherwareAssumptionsLib was created that has methods

datagramPortAvailable() and streamPortAvailable() to check if a datagram or a stream port

is available. AMF implementation can directly reference these methods since the body of the

AMF code is in Java.

Etherware can also trigger an assumption validation routine directly from its Java source

code; Etherware can invoke the following routine each time it needs to start up on a new

machine.

validateAssumption(“Kernel :: Environment :: canStartNetworkServices”)

Assumptions can also be manually validated on demand by the user whenever there are

changes in the sources. Assumption violations will show up as shown in Figure 7.5.

AMF provides an integrated development environment for Java sources and assumptions

specification as shown in Figure 7.6. All the Java sources are under the source folder javasrc,

and the assumptions are specified under the folder assumptions. The code-base for the Java

code generated is also javasrc which enables assumptions to invoke the Java methods on the

sources and vice-versa.

7.7 Integration with AADL

Section 6.2 explained the process of integration of AMF with AADL. In brief, AMF im-

plementation is integrated with AADL’s open-source toolkit environment (OSATE) to unify

architecture and assumptions specification. AMF imports all the components declared in the

AADL namespace and matches it with the components declared in the AMF namespace. Any

69

components in AMF that are not declared in AADL namespace are flagged. Also, AMF obtains

the type information for each of the components from AADL and it ensures that components

of appropriate types can make assumptions on each other. For example, if a component-type

is Thread Group in AADL, it is not meaningful for it to make assumptions on a component

of type Memory. The assumptions may need to be restructured to ensure appropriate types

of components make assumptions on each other. AMF behaves as an annex sub-language of

AADL, which enables AMF to extract and use the namespace of AADL for component mapping.

AMF also provides methods to extract the assumptions from AADL as an XML object or

in the textual format that conforms to the AMF language syntax. In Figure 7.6, the folder aadl

has the textual AADL definitions and the folder aaxl has the XML representation of AADL

definitions.

The error-reporting of AMF translates syntax-errors and assumption violations directly into

errors in the respective AADL objects, when assumptions are defined as an annex to AADL

objects. Thus, there is uniform error reporting for architecture, assumptions and the source

code.

7.8 Policies on Assumption Selection and Validation Times

AMF allows any Java (EMF) object to be saved as an XML file representing the entire

definitions, using a feature provided by EMF. Also, AMF provides a library method to in-

voke assumption validation given its fully-qualified name as input. These two features makes

the framework very amenable for setting policies on when to validate assumptions and what

assumptions to validate.

For example, consider the partial definitions of the sensor − datacollector system. The

AMF definitions are as shown below.

70

Figure 7.6 Integrated Environment for Assumptions, Architecture and Source-Code

componentDefinition name=DataCollector{

about Sensor {

assumes minSaturationValue (double error, double saturation_value) {

(1 + error) * 100 < saturation_value

}

{Criticality=CRITICAL_LEVEL_5}

{ValidityTimeFrame=SYSTEM_CONFIGURATION};

assumes intensityUnits(String intensityUnits) {

‘‘Decibels’’.equals(intensityUnits)

}

{Criticality=CRITICAL_LEVEL_5}

{ValidityTimeFrame=STATIC};

};

};

When the Java object is saved in XML format, the contents are as shown below. The XML

representation preserves the structure of the definitions but it makes it amenable to database

71

query operations. XPath is used to select the required nodes within an XML document. In

very simple terms, XPath is a query language for XML documents. The input to this language

is a constraint based on XML node names, element contents, attribute names and values and

the output is a set of nodes within the document that match these constraints.

<componentDefinitions xmi:version="2.0">

<!-- other header declarations -->

<componentDefinition componentName="DataCollector">

<depComponentDefinitions owner="#//@assnGuarSetsList.0"

dependentComponentName="Sensor">

<assumption criticality="CRITICAL_LEVEL_5"

assumptionBody="(1 + error) * 100 < saturation_value"

assumptionName="minSaturationValue"

owner="#//@assnGuarSetsList.0/@assnGuarSetList.0"

validityTimeFrame="SYSTEM_CONFIGURATION">

<formalParameters dataType="double" parameterName="error"/>

<formalParameters dataType="double" parameterName="saturation_value"/>

</assumption>

<!-- other assumptions -->

</depComponentDefinitions>

</componentDefinition>

</componentDefinitions>

A sample of the useful queries for AMF are shown below.

• The query for selecting all the system-configuration assumptions is as follows.

//assumption/[@validityT imeFrame = “SY STEM CONFIGURATION”]

In XPath, ‘//’ is a global selector, it selects all nodes with the given constraint.

‘/’ is a local selector. Hence, within the selected nodes with the where node name is

assumption, the part of the query after ‘/’ is executed. The query part

@validityT imeFrame = “SY STEM CONFIGURATION” selects XML nodes that

have an attribute validityT imeFrame with a value SY STEM CONFIGURATION .

If this query is run on the definitions described in this section, it will return the assumption

minSaturationV alue.

• Similarly, the following query is used to select all the critical assumptions in the system.

//assumption/[@criticality = “CRITICAL LEV EL 5”]

72

• The following query selects all assumptions made by the datacollector on the sensor.

//assumption/[:: parent@dependentComponentName = “Sensor”/

:: parent@componentName = “DataCollector”]

XPath constraints can be in the form of a count of the number of XML elements or the

position of XML elements, or a logical expression containing a combination of constraints.

It provides selection of ancestors, descendants, siblings, immediate parents and children of

XML elements. This is sufficiently powerful to set policies to validate just the relevant set of

assumptions, which increases the efficiency of validation process. The JDK version 1.5 includes

an implementation of the XPath specification. For further reference, the user is directed to the

XML [29] and XPath [17] specifications.

7.9 Summary

AMF provides a model-based implementation for managing assumptions using the Eclipse

Modeling Framework (EMF).

Assumptions can be specified in a textual format that confirms to the AMF language syntax

specified in Appendix B. AMF provides a parser using the ANTLR Parser Generator to parse

the textual input and create the Java (EMF) objects. Assumptions can also be specified using

the model-based GUI, which is automatically generated by EMF.

AMF provides an implementation of the composition algorithm that helps the user find

the list of matched and unmatched assumptions (and guarantees). It also provides amortized

constant-time query operations after composition to check if an assumption (or guarantee) is

matched.

AMF generates Java code to represent the body of the assumptions; guarantees provide

values to invoke assumption validation. AMF provides functions to validate an assumption,

given its name. This, along with a set of functions that can be accessed natively using Java or

from command-line, helps in enabling dynamic assumptions validation. The implementation is

suitable for validating dynamic assumptions in non real-time or soft real-time systems.

Integration with Java source code allows users to invoke assumptions from the source-code or

for assumptions and guarantees to invoke methods on the source code. Integration with OSATE

73

helps in synchronizing the names of components in the architecture specification with the names

used in AMF. AMF ensures that assumptions exist between components of compatible types.

The facility of EMF to store the definitions in XML format makes it amenable to set policies

on when to validate assumptions and what assumptions to validate. This increases the efficiency

of validation.

AMF provides user-friendly error-reporting that enables the user to directly view the source

of the error, like AMF errors in AADL annex definitions, errors in Java sources generated by

AMF, or assumption definitions themselves. The error types handled include syntax errors in

assumptions specification, assumption violations, errors due to assumptions between compo-

nents of incompatible types.

74

CHAPTER 8

Case studies of Representative Projects

A set of representative projects were studied to determine if invalid assumptions caused

defects in end-products. In addition, these studies are invaluable in examining the nature

of assumptions that cause these defects. In this chapter, two hypotheses are stated relating

to the necessity and feasibility of assumption management frameworks. Defects in products

(software or hardware) that end-users encounter, is one of the acceptable benchmarks to gauge

the drawbacks of the products. For determining the necessity of an assumptions management

framework, the metric used was the number of defects in end-products that could be traced

back to invalid assumptions. Pilot projects were selected and case studies were performed to

accept or reject the hypotheses. The case studies were performed according to the case study

guidelines described by Kitchenham, Pickard and Pfleeger [30].

8.1 Case-Study Hypotheses

Since defects in products (logged by end-users) are used as a metric for the case-studies,

below is an explanation of what exactly constitutes as a defect due an invalid assumption.

The term defect due to an invalid assumption is defined as follows. If the root cause of

a defect in a component is due to (i) invalid assumption(s) made by a component on the

environment or other components in the system, or (ii) invalid assumption(s) made by the

environment or other components in the system on this component, it is classified as a defect

due to an invalid assumption.

The term algorithmic defects of a component is used to broadly classify defects due to an in-

correct algorithm or an incorrect implementation of an algorithm. They have the characteristic

75

that they are not related to any other component or the environment in which the component

functions in. Examples of algorithmic defects are the classic loop-off-by-one error and memory

related errors like memory leaks and dangling pointers.

The areas of model-checking and unit-testing deal with reducing algorithmic defects. The

scope of this research is to reduce defects due to invalid assumptions.

The statements of hypotheses for the case-studies are as follows:-

1. In systems whose functionality is closely tied with their environment, there is a higher

proportion of defects due to invalid assumptions than those related to algorithmic defects,

i.e., among the set of algorithmic defects and defects due to invalid assumptions, over

50% are due to invalid assumptions

2. For majority of the defects due to invalid assumptions (> 50%), we can encode these

assumptions in a machine checkable format and validate them or flag them as invalid

(which can prevent such defects or warn in advance when the assumptions are violated)

Hypothesis 1 is related to necessity of such a tool and hypothesis 2 is related to the fea-

sibility in reducing defects using an assumption management framework. This chapter deals

with proving hypothesis 1. Chapter 10 deals with hypothesis 2. The case-studies help in under-

standing the classes of errors in real-world systems. The observations made in the case-studies

were used to tailor the AMF design and implementation, explained in the following Chapters 3

– 7.

8.2 Pilot Projects Selection and Plan for the Case-Study

8.2.1 Pilot Projects Selection

Three pilot projects were chosen for the case study. The following criteria were used in the

pilot project selection

• The project functionality is closely tied in with the operating environment, which is the

characteristic of most embedded and real-time systems.

• The list of defects or the design of the project is publicly accessible for any end-user to

log and analyze the defects or study the design.

76

• Domain expertise (of the author) to analyze the cause of defects and study the underlying

assumptions, if any.

Based on the above criteria, the following three projects were selected.

1. Iperf: An open source network bandwidth measurement tool.

2. TinyOS: An open source operating system for embedded devices.

3. Inverted Pendulum Control System (IPCS): A real-time feedback control application that

balances an inverted pendulum.

Iperf and TinyOS have facilities, where end-users of the software can log defects and the

database of these defects is publicly accessible.

IPCS, on the other hand, is not a downloadable system and it does not have a public

repository of defects. It consists of both hardware and software components. It is analogous

to how practical systems are built using COTS software and hardware components; and hence

was chosen for the case-study.

Hypothesis 1 is tested for Iperf and TinyOS.

8.2.2 Testing the Hypothesis

The following methodology was used for testing the hypothesis 1. For Iperf and TinyOS,

defects were carefully chosen, to make the study as exhaustive as possible. Over 100 defects

were analyzed for each of them. The following actions were taken for each defect. If the defect

were clearly due to (an) invalid assumption(s), a score of 10 was given for the defect. If the

defect were clearly an algorithmic defect, and not related to invalid assumptions, a score of 0

was given. If the defect was related to, but not entirely due to invalid assumption(s), a score of

5 was given for the defect. Defects that were related to installation, compilation problems and

version control, were considered as defect with confounding factors and they were disregarded.

In summary, for each defect Di that was selected for analysis, a random variable Xi indi-

cating the score for the defect was assigned as follows.

77

Xi =





0, if Di is clearly not related to invalid assumptions;

5, if Di was related to, but not entirely due to invalid assumptions;

10, if Di was clearly due to invalid assumptions

(8.1)

Assuming a normal distribution of defects, the mean and standard deviation for the Xi’s

were calculated. As in standard hypothesis testing, the null hypothesis 1 was accepted if the

hypothesis was valid for the 95% confidence interval, and rejected if it was not valid for the 95%

confidence interval. In case of rejection of the null hypothesis, the probability of incorrectly

rejecting the hypothesis is given.

8.3 Description of the Project Functionality

A background of the projects being evaluated is given in this section to ensure that the

applications have close interactions with the environment and are suitable for the case studies.

8.3.1 Iperf

Figure 8.1 Iperf Bandwidth Measurement Tool

78

Iperf [31], [32] is a bandwidth measurement tool, which is used to measure the end-to-end

achievable bandwidth, using TCP streams, allowing variations in parameters like TCP window

size, number of parallel streams, Maximum Segment Size (MSS), read block sizes and TCP

no-delay option. End-to-end achievable bandwidth is the bandwidth at which an application

in one end-host can send data to an application in the other end-host. Iperf approximates the

cumulative bandwidth (the total data transferred between the end-hosts over the total transfer

period) to the end-to-end achievable bandwidth. Iperf is also used to measure the packet loss

and jitter for datagram packets.

Iperf belongs to the category of active bandwidth measurement tools, i.e., it actually sends

data for short periods of time to determine the available bandwidth. There has been some

research in the area of passive bandwidth measurement tools also, where the time separation

between reception times of packets of known length is used to determine the end-to-end achiev-

able bandwidth. This methodology does not work well in practice for high bandwidth networks

due to coalescing of multiple packets on reception and delivering a bunch of packets to the

application. For example, around 830,000 packets each of length 1500 bytes will be delivered to

the application every second if the achievable end-to-end bandwidth is 10Gbps. But practical

values of CPU interrupts are around 10ms in Linux, which means over 800 packets will be de-

livered on every interrupt. This renders passive measurement techniques not usable in practice

for high bandwidth networks.

Iperf works very closely with its operating environment. For correct operation, it makes

a number of assumptions. Most importantly, it assumes the operating system can guarantee

enough buffer size, that is greater than the bandwidth-delay product for the end-to-end appli-

cation. There are also assumptions made on the MTU, TCP MSS, the link layer compression

function in cases of dial-up networks, and the system bus bandwidth while measuring band-

width in high bandwidth networks. In addition, Iperf was originally designed for SunOS and

Linux, but, due to widespread use of Iperf, it has been ported to various platforms which have

resulted in platform specific assumptions.

Since Iperf is shipped as a complete software module with configurable parameters, entire

Iperf module is viewed as a single software component.

The list of Iperf assumptions that have resulted in defects is cataloged in Appendix A.2.

79

8.3.2 TinyOS

TinyOS [7] is an open-source operating system designed for wireless embedded sensor net-

work devices. It has an event driven architecture, and all the software functions that need to

be executed on the embedded sensors need to be loaded as a single application. TinyOS has

a single shared stack and there is no user/kernel space differentiation. The OS is designed for

low overhead, very small memory footprint and low power consumption. The memory for the

applications are assigned at compile time and there is no dynamic memory allocation and no

pointer arithmetic.

There are two basic constructs for execution in TinyOS. a) Tasks and b) Events. There are

two threads in TinyOS. One thread executes tasks with bounded number of pending tasks in

the queue. These tasks are executed in FIFO order. The other thread handles events; where

hardware interrupts trigger the lowest level events. Events can signal other events, post tasks

and/or call other commands. Software events propagate from lower level to upper level through

function calls.

TinyOS also makes quite a few assumptions on the hardware, operating environment and

the types of applications that run on it. Most of the data exported to applications are through

the sensors attached to the device. Hence, there are quite a few implicit assumptions made

on interpreting the data and commands to request the data. The list of defects due to invalid

assumptions is presented in Appendix A.3.

As in the case of Iperf, TinyOS can be viewed as a single software component for the user.

8.3.3 Inverted Pendulum Control System

Inverted Pendulum Control System (IPCS), is a simple real-time control system. Unlike

Iperf and TinyOS, there is no public repository of defects. On the other hand, the system is

built using integration of COTS components, and thus, this application will serve as a valuable

case-study for implicit assumptions made between the components. The system consists of 4

main software components.

• Physical plant : The inverted pendulum

• Sensor: Detects the angle and track position of the pendulum

80

• Controller: Calculates the new position of the pendulum, depending on the current posi-

tion in the track and the angle.

• Actuator: The component that sends the electrical signals to the DC motor of the cart

that carries the pendulum.

The components are shown in Figure 8.2. The plant (hardware) consists of a pendulum

which sits on a two dimensional linear track. The pendulum can be moved left or right on this

track, the pendulum sits on a cart which can be moved along the track. The movement of the

cart is controlled by a DC motor which gets its input from the actuator.

Actuator
Sensor

Controller

Track

Pendulum

Vertical Reference

Cart

Physical plant

Figure 8.2 The Inverted Pendulum Controller

As the inverted pendulum plant is a hardware which needs to be controlled, we abstract it

using a software component called the plant proxy which will export the important properties

of the inverted pendulum plant, and will interface with the hardware plant to expose these

properties. Thus the software components that we need to deal with are simplified and shown in

Figure 8.3. There are four software components - Plant proxy(PP), Actuator(A), Controller(C)

and Sensor(S).

Also, this system will highlight the interactions between the different sub-components that

are used to build the system. The list of assumptions made by the inverted pendulum is given

in Appendix A.1.

81

Actuator

Controller

SensorPlant proxy

Figure 8.3 System View with Plant Proxy

8.4 Case Study Results

8.4.1 Testing Hypothesis 1 for TinyOS

The SourceForge repository for TinyOS has around 160 defects which have been assigned

the status closed. Only closed defects were considered since we can have a higher confidence

level for the cause of the defect. Out of these 160 defects, many of the compile problems and

installation problems were discarded since we do not consider a product complete with these

problems 1. There were some problems which showed up in the end-product which were related

to incorrect assumptions made by the software on the environment during compilation and

install time. We do analyze these defects. After careful analysis, around 47 defects were chosen

for further consideration.

We encountered the following class of invalid assumptions among the 47 defects chosen for

analysis.

• Mode in which the software runs (simulation or actual run). Since the code written for

the actual run can be run in a simulator, the simulator makes incorrect assumptions on

the running environment. For example, in defect # 1084879, TinyOS makes an incorrect

assumption on the type of hardware the application will run on. In defect # 947169,

TOSSIM (TinyOS simulator) replies with an acknowledgment for a packet even when the

1Installation and compiler related problems are definitely not algorithmic defects. If they are considered as
assumption management issues, the hypothesis 1 will trivially hold good

82

node is switched off. This cannot happen in actual run. Most of the platform related

errors also belong to this class.

• Implicit assumptions on length of data structures. In defect # 1055439, the Bcast module

transmits only maximum length broadcast packets.

• Hardware limitations and resource related assumptions. Under certain overload condi-

tions, TinyOS timer cannot function well if granularity is less than 10ms. In defect #

913123, there is an undocumented TinyOS assumption which allows only 7 tasks to be in

the tasks queue at any point in time.

• Use of deprecated data structures. For example, in defect # 1033732, Java communication

tools make incorrect assumptions on message size.

• Value range errors. In defect # 979119, node ID is assumed to be 8-bits while 16 bit

node IDs are allowed. In defect # 900058, an int is used for measuring time, while the

value can be in the range of long. In defect # 833450, an incorrect answer is given with

negative arguments.

• Data interpretation errors. In defect # 891749, a module dumps low probability values in

exponential format, which cannot be read by the importing module. In defect # 960088,

a send command with length 0 can break the module.

At least 8 of the defects were related to assumptions made on parameters which are not

present in the software component.

All defects related to initialization, classical loop off-by-one cases, bit shifts, certain mutex

related defects were classified as algorithmic defects (related to model checking and/or unit

testing). Out of the 47 defects selected, 23 of them were consisting of confounding factors,

i.e., the root cause could also be traced to incorrect installation, compiler issues and/or version

control. They were filtered out. Out of the remaining defects studied, the following were the

values assigned to the score Xi for each defect.

• 15 defects were related to invalid assumptions. Out of these 11 of them clearly had invalid

assumptions as the root cause, and for every defect Di in this category, Xi was assigned

83

a score of 10. For every defect Di which was related to, but not entirely due to invalid

assumptions, Xi was assigned a score of 5.

• 9 defects were clearly not related to assumptions but were algorithmic defects and for

every defect Di in this category, Xi was assigned a score of 0.

For testing a hypothesis, the following procedure is used. If the obtained mean, µ, of the

Xis ≥ a minimum value µ0 for a normal distribution with n samples at a confidence level of

(1− α) ∗ 100%, then

• We normalize the distribution to N(0, 1) for n samples with mean X and standard devi-

ation σ and minimum expected value µ0 using u =
√

n(X−µ0)
σ

• For a confidence level of (1− α) ∗ 100%, the rejection test is u ≤ −Kα, where

∫ ∞

−Kα

1√
2π

e
−v2

2 dv = 1− α

The value of Kα is found from a reverse lookup in the standard Z-table which gives

P [Z < x] for different values of x, x being a N(0, 1) random variable.

For our case study, with values of α = 0.05 (95% confidence level), µx = 5.4167, σ =

4.6431, µ0 = 5, the value of u = 0.4397 and−K0.05 = −1.65. Since u > −K0.05, the hypothesis

1 is accepted at 95% confidence level

8.4.2 Testing Hypothesis 1 for Iperf

Classification of defects for Iperf was harder than TinyOS since Iperf has a mailing list for

issues and not a bug repository as in TinyOS. A concrete definition of the defect was formed

after analyzing a set of mails related to a defect. This step is laborious, but it gives a clearer

description of the cause of the defect. After this step, all defects that had a resolution and were

fixed, were treated similar to the closed status defects in TinyOS. After analyzing the list of

defects, 32 closed defects were selected. The analysis for each defect to assign scores was similar

to that of TinyOS.

These were the main classes of defects related to invalid assumptions.

• Overflow due to use of 32 bit data structures. Defect #feb03/msg00036 was due to in-

correct reports in operating systems which did not provide an equivalent of int 64. If

84

such systems are connected to high bandwidth networks, when the total amount of data

transferred is > 4GB, Iperf will have incorrect throughput summaries.

• TCP/UDP Window size assumptions. Defect # apr04/msg00013 was due to Iperf stati-

cally setting the minimum window size to 2048 bytes to prevent poor performance. This

will preclude testing in extremely low-end devices, like IP enabled sensors. Many other

operating systems have a minimum window size, example SunOS 8 has a minimum of

4.5KB and Linux has a minimum of 256 bytes. As mentioned in defect # jul03/msg00007,

Windows 95 and 98 do not support RFC1213 support for large window sizes. This will

preclude setting a window size of greater than 64KB2. Even in operating systems that

allow large window sizes (> 64K), the administrator(root) can set limits for the maximum

buffer size. A very important assumption is that TCP slow-start period is less than 2-3

seconds in most networks which enables Iperf to report fairly accurate bandwidth with

default options (single threaded and 10 second test).

• OS optimizations related assumptions. The window size requested by the user may not

be the exact size returned by the operating system, even if the requested value is less

than the maximum allowed window size, since operating systems optimize on various

factors like page size, etc. Defect # /jul03/msg00029 is related to this issue. Defect #

/aug03/msg00006 is caused because of the compression feature of systems connected to

dial-up networks. In such systems, the link layer compresses the data before transmission.

This can lead to higher bandwidth reported, if uncompressed data is used for bandwidth

measurement.

• OS non-conformance to specified standards. There were quite a few defects in this cat-

egory. For example, FreeBSD has a IPv6 network stack, but it has compatibility issues

with IPv6 and IPv4 working together. Windows NT discards ICMP error messages on

UDP errors. This will have the Iperf client waiting for a UDP FIN. Win2K does not

support setting of ToS (Type of Service) bits. Win32 has the UDP as a single thread per

port, which precludes server side UDP tests for multiple clients.

2As a general rule, the TCP window size must be at least equal to end-to-end bandwidth times the delay, for
TCP to hold the unacknowledged packets in the window for retransmission

85

• Feature interaction related assumptions. For example, in defect # /feb04/msg00008, when

users specify both number of packets and time to run in UDP mode, one of the option

is quietly ignored. When MTU option is set, it has to be less than TCP window size,

otherwise UDP FIN will not be received.

• Resource related assumptions (other than TCP/UDP windows). Iperf assumes system bus

bandwidth is greater than the end-to-end network bandwidth. This may not be true in

very high bandwidth networks (Iperf has been used to measure bandwidths greater than

10Gbps). Defect # /apr04/msg00023 was due to the user trying to launch 250 threads in

an Iperf client. Defect # /apr03/msg00008 occurs because Iperf uses a tight-loop timer

to measure the UDP jitter accurately at a specified bandwidth.

• Assumptions on default actions in presence of multiple alternatives. The defect

/feb03/msg00016 is due to the OS binding to the first available Network Interface Card

(NIC) in presence of multiple NICs in a machine. In defect # /mar04/msg00047, Win32

returns the local address, not the bound multicast address for the getSockName() API.

Similar scores were assigned to the random variables Xi’s and the following was the summary

of the Iperf defect analysis.

• 26 defects were related to invalid assumptions. Out of these 15 of them were only due to

invalid assumptions and for every defect Di in this category, Xi was assigned a score of

10. For every defect Di which was related to, but not entirely due to invalid assumptions,

Xi was assigned a score of 5; there were 11 defects in this category.

• Some defects were clearly not related to assumptions but were algorithmic errors and for

every defect Di in this category, Xi was assigned a score of 0. There were 6 defects in

this category.

For Iperf’s case study, with values of α = 0.05 (95% confidence level), µ = 6.40625, σ =

3.8592, µ0 = 5, the value of u is 2.0612 and −K0.05 = −1.65. The hypothesis is trivially satisfied

as u > −K0.05

86

TinyOS Iperf

Total # of Defects Considered 24 32
of Defects with Xi = 10 11 15
of Defects with Xi = 5 4 11
of Defects with Xi = 0 9 6
µx 5.417 6.4063
σx 4.643 3.8592
u 0.440 2.0612
−K0.05 -1.65 -1.65
Accept/Reject Hyp 1 Accept Accept

Figure 8.4 Summary of Testing Hypothesis 1 for Iperf and TinyOS

8.5 Results Summary and Key Observations

For both Iperf and TinyOS, it is proven that there are more defects in the released software

due to invalid assumptions than defects that are classified as algorithmic defects. As described

in Appendix A, in the IPCS application also, the software components make a large number of

assumptions on the operating environment and other software components. Invalidating any of

these assumptions during system evolution (like replacing the pendulum plant, software) will

cause the system to fail.

Many of the assumptions are related to parameters which are not ultimately represented in

the physical code.

The classes of defects studied in this case study suggests that we need to deal with assump-

tions in various dimensions.

First, the time of encoding and checking the assumptions. Assumptions in the class of length

of data structures, the rules for interpreting the data do not change as long as the software does

not change. Assumptions like OS specific optimizations can only be checked when the software

is deployed/compiled for a particular platform. Assumptions like mode of running can only be

checked only during the actual run of the software.

Second, some of the invalid assumptions cause performance degradation while others cause

the system to fail. For example, Iperf UDP mode will hog the CPU at low bandwidth transmis-

sions, while OS’s inability to grant adequate window size will result in Iperf reporting incorrect

87

results. Thus, criticality versus performance (various gradations) is another dimension for clas-

sifying the assumptions.

Next, the number of assumptions uncovered suggests that when larger systems are built

using these systems as sub-components, managing the assumptions is important. Abstracting

assumptions that are not needed for the larger composition context is necessary.

These set of observations refined the design of our framework described in the Chapters 3

– 7.

8.6 Summary

In this chapter, the hypotheses pertaining to the necessity and feasibility of an assumptions

management framework were stated. The necessity of an assumptions management framework,

by studying small but complete systems, was confirmed. The necessity of a framework with

similar objectives has been independently stressed by the ‘Mishap Investigation Board’ of the

‘Mars Climate Orbiter’ [16] disaster, and the ‘Inquiry board’ of the ‘Ariane 5’ [2] disaster.

Iperf and TinyOS had a significant number of defects that users encountered, with invalid

assumptions as the root cause.

88

CHAPTER 9

Analyzing and Correcting the Key Invalid Assumption of Iperf

In this chapter, an in depth look is taken at one of the assumptions made by Iperf that lead

to erroneous reports in some cases and poor performance in other cases.

To recap, Iperf is a bandwidth measurement tool which is used to measure the end-to-end

achievable bandwidth, using TCP streams, allowing variations in parameters like TCP window

size and number of parallel streams. End-to-end achievable bandwidth is the bandwidth at

which an application in one end-host can send data to an application in the other end-host.

Iperf approximates the cumulative bandwidth (the total data transferred between the end-hosts

over the total transfer period) to the end-to-end achievable bandwidth.

9.1 Key Assumptions of Iperf and the Errors They Cause

The default mode of Iperf makes the following critical assumptions:

Slow-start duration assumption: TCP slow-start duration will be less than 2 seconds for

most networks.

End of slow-start assumption: Majority of the data transferred is after the end of slow-start

phase.

Based on these assumptions, Iperf runs for a default time of 10 seconds while running

bandwidth tests. The time to run is a configurable parameter, but the user must discern that

Iperf was not out of slow-start phase for over 2 seconds to re-run it longer than 10 seconds.

This requires manual inspection of the periodic bandwidth reports.

When the assumption on the TCP slow-start duration holds good, it will ensure that the

cumulative data transferred by Iperf in 10 seconds a fairly accurate representation of the end-

89

0.01

0.1

1

10

100

1000

10000

0.1 1 10 100 1000

Sl
ow

-s
ta

rt
du

ra
tio

n
(s

ec
on

ds
)

Bandwidth-delay (MB)

100Mbps 200ms x x 1Gbps 200msx 10Gbps
 200 ms

100Mbps
1Gbps

10Gbps

Figure 9.1 Estimated Slow-start Times for Various Bandwidth-delay Products

to-end achievable bandwidth. The duration of slow-start is roughly

dlog2(ideal window size in MSS)e ∗ RTT , where MSS is the TCP maximum segment size

and RTT is the round-trip-time(delay) between the nodes. In practice, it is a little less than

twice this value because of delayed acknowledgments. Estimated slow-start times for various

bandwidth-delay products is shown in Figure 9.1. Since Iperf runs at the application layer in the

network stack, it has no means of finding out the duration of slow-start. TCP is implemented

in the operating system kernel and it abstracts this information. This can cause the following

problems.

Case when assumption violation proves critical: Consider an end-to-end transfer

across a 1 Gbps network with a round trip delay (RTT) of 200 ms. The bandwidth-delay product

for 1 Gbps network with an RTT of 200 ms is equivalent to 16667 1500-byte segments. The slow-

start duration, when a single TCP stream is used, will be approximately dlog2(16667)e ∗ 2 ∗ 0.2,
which is 5.6 seconds. This will cause a lower than achievable bandwidth to be reported by Iperf

when it is run for the default (10s) duration. This is a critical error.

Case when assumption violation leads to poor performance: Consider a case where

the machines are connected in the same network, with a round-trip delay of 5 ms, and the

achievable bandwidth between the machines is 10 Mbps. Iperf can report accurate bandwidth

by running for well under a second. Running for 10 seconds wastes a lot of bandwidth. It causes

a non-critical error, since bandwidth reported is correct (core functionality is not compromised),

90

but it sends over 10 times the amount of data required to measure the achievable bandwidth.

This leads to very poor performance.

9.2 Modified Algorithm of Iperf

The summary of the modified algorithm that takes care of the TCP slow-start duration

assumption is as follows.

Step I: Ensure that the end of slow-start assumption is satisfied, i.e., automatically detect

when the TCP connection is out of the slow-start phase for a transfer.

Step II: Transfer data for a small period of time, say 1 second, using the same connection.

Since TCP will be in steady-state, measuring the amount of data transferred for a short period

of time will suffice.

To explain the modified algorithm, a brief background of TCP congestion windows is re-

quired.

9.2.1 TCP Congestion Windows

TCP Reno, the default implemented version in most operating systems, doubles the conges-

tion window every RTT until it reaches the threshold congestion window size or it experiences

a retransmission timeout. After the slow-start period, Reno sets the threshold window to half

the congestion window where (if) it experienced a loss. Later, in the steady state, it increases

its congestion window at a rate of one segment per RTT.

TCP Vegas doubles the congestion window only every other RTT so that a valid comparison

of the actual and expected rates can be made [33]. It calculates the actual sending rate (ASR)

and expected sending rate (ESR). It tries to keep Diff = ASR − ESR between α and β. It

increases the congestion window linearly if Diff < α and decreases it linearly if Diff > β. It

tries to keep Diff in the range α < Diff < β. The most common values of α and β are 1 and

3 MSS respectively. Though TCP Vegas is fairer than TCP Reno, TCP Vegas clients may not

receive a fair share of bandwidth while competing with TCP Reno clients [34] and hence TCP

Vegas is not implemented in many practical systems.

91

9.2.2 Algorithm to Validate the End of Slow-Start Assumption

The objective of the algorithm is to determine the end of slow-start as fast as possible to

minimize the amount of network traffic generated. The algorithm is designed for TCP Reno

and it works for TCP Vegas without any modifications. Iperf uses Web 100 [35], which is a

tool that exports key TCP-related variables to the application, in real-time, using the proc file

system in Linux.

The algorithm is as shown in Figure 9.2. The procedure is called immediately after a

connection is setup. It exits when the connection is out of slow-start. Initially, a flag is set

indicating that the connection is in slow-start; as in Line (1) in the algorithm. The maximum

segment size or the MSS value for the connection is initialized from Web 100. The congestion

window value is initialized to zero; as in Line (3); and is continuously updated every iteration in

the loop. The difference in the congestion window sizes between successive iterations determine

whether the connection is out of slow start.

Inside the loop, Iperf sets the value for the RTT obtained from Web 100, as in Line (5).

Sometimes, when no acknowledgments are obtained, RTT may be invalid. When the RTT is

invalid, the process (or thread) sleeps for 20 milli-seconds; otherwise the thread sleeps for twice

the duration of the RTT; as in Lines (6)-(9). The congestion window value is compared with

the previously obtained congestion window value; as in Lines (10)-(12).

If the RTT is valid, then if the connection is out of slow-start, the difference in congestion

windows is less than three times the value of MSS. In extremely low-bandwidth networks, the

congestion window will never change and will always be below four times the RTT. If either of

these conditions are satisfied; as in Lines (13)-(15), the connection is determined to be out of

slow-start.

9.3 Implementation and Results

9.3.1 Implementation

Iperf runs in a client-server mode between the machines that the achievable bandwidth

is to be measured. All the code changes in Iperf are confined to the client and only the host

running the client needs a Web100-enabled kernel. The remote hosts, running Iperf servers, can

92

procedure DetectEndOfSlowStartForAConnection
//Entry - start of connection, Exit - end of slow-start

set slow start in progress ← true//Connection initially in slow-start (1)

set mss ← mss value from web100 (2)

set new congestion window ← 0//Used for comparison of old and new congestion window values (3)

while (slow start in progress) (4)

set rtt ← smoothed rtt value from web100 (5)

if (rtt is valid) (6)

sleep for a duration of (2*rtt) (7)

else (8)

sleep for a duration of 20 ms (9)

set old cwnd ← new cwnd (10)

set new cwnd ← congestion window value from web100 (11)

set diff cwnd ← |new cwnd - old cwnd| (12)

if (rtt is valid) (13)

if (((old cwnd = 4*mss) and (diff cwnd < 3*mss)) or (14)

((old cwnd < 4*mss) and (diff cwnd = 0))) (15)

set slow start in progress ← false (16)

Figure 9.2 Algorithm to Detect the End of TCP Slow-start Using Web 100

run the standard Iperf available for various operating systems. Using the Web100 user-library

(userland), we can read the variables out of the Linux proc file system. The library routine to

validate the end of slow-start assumption was around 150 lines of code.

9.3.2 Testing environment

For the testing environment, Iperf servers were running as a part of the IEPM-BW frame-

work [36] on various nodes across the world. Bandwidth was measured from Stanford Linear

Accelerator Center (SLAC) to twenty high performance sites across the world. These sites

included various nodes spread across US, Asia (Japan) and Europe (UK, Switzerland, Italy,

France). The operating systems in the remote hosts were either Solaris or Linux. The band-

widths to these nodes varied from 1 Mbps to greater than 400 Mbps. A local host at SLAC which

ran Linux 2.4.16 (Web100-enabled kernel) with a dual 1130 MHz Intel Pentium 3 processor was

used for the client.

93

9.3.3 Experimental Results

Achievable bandwidth was measured by running Iperf for 20 seconds, since the 10 second

measurement, which is the default running time, would not suffice for a few high bandwidth-

delay networks from SLAC; for example from SLAC to Japan. The 20 second measurements

were compared with the bandwidths obtained by running Iperf, after end-of-slow-start assump-

tion was satisfied. Bandwidth estimates obtained after the end-of-slow-start assumption was

satisfied were differing by less than 10% when compared to the 20 second Iperf tests as shown

in Figure 9.3.

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Ba
nd

wi
dt

h
(M

bp
s)

Node numbers

Quick mode v/s 20s measurements

20s measurements
Quick mode measurements

Figure 9.3 Slow-start Validated Quick Mode v/s 20 Second Measurements

The instantaneous bandwidth (InstBW in Figure 9.4) was calculated every 20ms averaged

over the last 500 ms, and found that it increases and decreases with the congestion window

as expected. The transfer from SLAC to Caltech shown in Figure 9.4 is the behavior which is

expected in most transfers. The maximum TCP window size at both ends was 16 MB, which

was greater than the bandwidth-delay product of about 800KB. The RTT is about 24ms (but

Linux TCP stack rounds off the RTTs in 10s of milli-seconds).

In the SLAC → Japan transfer, across a high latency network, where the RTT was 140 ms,

the bandwidth-delay product was about 6MB and the maximum TCP window size was 16MB.

94

0

200

400

600

800

1000

1200

0 4000 8000 12000 16000 20000
0

100

200

300

400

500

600

700

800

900

1000

Co
ng

es
tio

n
W

in
do

w(
KB

)

In
st

 B
W

(M
bp

s)
,C

um
u

BW
 (M

bp
s)

Time(ms)

SLAC->CALTECH (Max TCP Win=16M)

Congestion Window(KB)
Inst BW(Mbps)

Cumu BW (Mbps)

Figure 9.4 Throughput and Congestion Window (SLAC → Caltech)

In this case, the slow-start validated quick mode measurement gives a almost the exact value

of the bandwidth, and results in savings of well over 90% of data transferred. The graphs of all

the transfers similar to the one in Figure 9.4 are made available online [37].

9.4 Summary

This chapter explained the key assumption of Iperf, on the duration of slow-start. Iperf

assumes that slow-start duration is less than 2 seconds and that most of the data transferred

is after the end of slow-start. This is true for most networks, but the assumption is invalid

for high-bandwidth networks. It requires manual inspection of periodic bandwidth reports for

the user to discern the slow-start duration. This results in incorrect bandwidth reports, when

Iperf is used to measure bandwidths across high bandwidth networks (like Gigabit networks) or

even across high latency networks (like a transfer from US to Japan). Also, in many local area

network bandwidth measurements, the slow-start duration is much less than the 2 seconds, and

a measurement of about 1 second would suffice, instead of the default 10 seconds. Again, this

requires manual inspection of bandwidth reports.

The modified algorithm ensures that the slow-start assumption of Iperf is first validated,

i.e., Iperf can detect when it is out of slow-start, and later the bandwidth is measured for a

95

short period, (1 second). This modified algorithm, results in (i) correct bandwidth reports for

low-bandwidth and high-bandwidth networks alike, and (ii) savings of about 90% in terms of

both network traffic generated and measurement times.

96

CHAPTER 10

Evaluation of AMF and Comparison with Related Work

The first part of this chapter provides an evaluation of AMF in terms of performance,

scalability and its ability to encode and validate assumptions. The second part of the chapter

is devoted to related work and it compares AMF with the related work.

10.1 Evaluation of AMF - Performance and Scalability

This section describes the performance tests performed on AMF implementation. All the

performance tests were conducted on a machine with an Intel T2300 processor, 1 GB of RAM

running Windows XP. The Java version used was J2SE version 1.5. AMF implementation was

invoked from a command-line interface (not within Eclipse). To test the scalability of AMF,

the size of input in terms of number of assumptions and guarantees were increased from 1400 to

14000 in steps of 1400. The number of lines in the input was increased from 11300 to 113000 in

steps of 11300. The tests recorded the times for composition, parsing, code-generation and Java

compilation. Tests were also conducted for validation of assumptions without calls to library

functions. These validation tests exerted the AMF translation times from fully-qualified names

to method names and the method lookup within the guarantees class, in addition to executing

the body of the assumption.

10.1.1 Performance of the Composition Matching Algorithm

Section 5.2 gives the matching algorithm for the composition of components, that finds the

list of matched and unmatched assumptions (and guarantees). For a system with no library as-

97

sumptions, the time complexity was Θ(na+ng), where na and ng are the number of assumptions

and guarantees in the system respectively.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 2000 4000 6000 8000 10000 12000 14000

Co
m

po
sit

io
n

tim
e

(m
s)

No. of assumptions and guarantees

Composition (matching) times

Figure 10.1 Performance of the Composition Matching Algorithm Implementation

The running time in presence of library assumptions and guarantees is Θ(na +ng + ña.nax
),

where ña is the number of library assumptions and nax is the average number of components

that need to provide guarantees for each library assumption. This aspect is entirely dependent

on the architecture specification. If all library assumptions are matched, then there are a total

of na + ng + ña.nax
assumptions and guarantees in the system and the composition time is

linear in the order of number of assumptions and guarantees in the system. On the other hand,

if most of the library assumptions have no matching guarantees from all the components that

should provide matching guarantees, then on an average for each library assumption, there are

nax
matching checks in dependent components to tag the assumption as unmatched.

Assumptions (non-library) were created in increasing numbers from 1400 assumptions and

guarantees through 14000 assumptions and guarantees, in steps of 1400. Each result was

averaged over 3 executions. As expected, the composition times grew almost linearly on the

whole. While inspecting composition times in shorter time-frames, there were sharp increments

in composition times, followed by relatively slower increments in composition times. It is due

to the following reason. Java’s implementation of Hashtable tries to keep the load factor below

98

0.75. When the number of elements in the Hashtable increases beyond this factor, it creates a

new Hashtable with a little over double the current capacity and copies the contents of the old

Hashtable to the new one. Even with this factor taken into account for the running time, the

amortized worst-case complexity of the algorithm is linear. The results of the performance test

for the composition matching algorithm is shown in Figure 10.1

10.1.2 Performance of Parsing, Code-Generation and Java Compilation

0

5000

10000

15000

20000

25000

30000

35000

0 20000 40000 60000 80000 100000 120000
Lines in definitions

Parse, code-gen and compile times

Parse time(ms)
Code generation time(ms)
Java compilation time(ms)

Figure 10.2 Parsing, Code-Generation and Compilation Performance

To test the scalability of AMF, the size of the textual input was increased from 11300 lines

to 113000 lines of code in steps of 11300 lines. Also, correspondingly the number of components

increased from 200 to 2000. AMF generates one Java class per component. The main steps in

initializing the framework for an input specification is to (i) parse the input; if no syntax errors

are found (ii) run the composition matching algorithm (iii) generate Java code for the matched

assumptions and guarantees (iv) compile the Java code.

In the particular set of inputs, all assumptions and guarantees were matched. The results

of this scalability test is presented in Figure 10.2. The total time for parsing, composition,

code-generation and compilation is 80 seconds for 113000 lines of code, with 2000 components.

It is also noticed that the code-generation time for the Java classes is a constant factor more

99

that the Java compilation time. This is an acceptable benchmark since the Java compiler is a

native Windows executable and the code generation is through Java code that has additional

overhead.

10.1.3 Evaluating the Time to Validate Assumptions

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000 3500 4000

Av
er

ag
e

va
lid

at
io

n
tim

e
(m

icr
o-

se
co

nd
s)

No. of assumptions

Average assumption validation times

Figure 10.3 Average Assumption Validation Times

Since AMF provides facilities to validate assumptions given the name of the assumption, the

time to validate an assumption was tested. For this, assumptions were generated with simple

logical and arithmetic operations - average of 5 logical and arithmetic operators per assumption,

and on an average 3 input formal parameters per assumption. There were no external method

calls from the assumptions. This test was designed to evaluate the translation and method

lookup time in addition to the execution of the body of the assumption. Assumptions were

generated (with matching guarantees) from 400 through 4000 in steps of 400 and the average

time to validate an assumption given its name was evaluated. For a given set of assumptions,

all the assumptions were validated once by calling the validateAssumption() method given the

assumption name. The average assumption validation time was almost a constant, as expected.

The results of this test are shown in Figure 10.3.

100

10.2 Evaluation of AMF in Encoding and Validating Assump-

tions

There are two primary factors that evaluate the effectiveness AMF for managing assump-

tions. AMF must be able to encode the assumption in a machine checkable format and be able

to set a policy on when to validate the assumption. The next factor is the ability of AMF to

validate the assumption.

In terms of encoding the assumption in a machine-checkable format, it is possible to encode

all the assumptions in the defect list (those entirely due to invalid assumptions) in a machine-

checkable format.

In terms of validation of the assumptions, all static and system-configuration assumptions

can be validated before execution of the component begins. For this, access to the binaries and

in some cases the source code of the component, and the documentation of the APIs exposed

by the components are required.

Dynamic assumptions require modification of the source-code of the components. Also,

a translation between the native language in which the component is developed to Java is

required for invoking assumptions validation from the source-code of the component. In some

cases, like assumption validation from Iperf source-code, this is not a problem if a middleware

service like CORBA [38] is used, which allows components developed using different languages

to communicate in a standard format. For TinyOS, this poses a problem, since the resources

in sensors are constrained and it is currently not feasible and not practical to allow such costly

calls to be made from the source-code of the component. This can be addressed by developing

translations between AMF and other languages that components use, when these components

cannot invoke Java or middleware routines. The method body of the assumptions and the

guarantees need to be translated to the native language of the component.

Here are the list of assumptions that are classified as dynamic assumptions.

• Iperf: Assumption that the network is the bottleneck will be invalid during high band-

width transfers. Host configuration can be the bottleneck for the bandwidth reported in

high bandwidth networks. Based on the bandwidth measured, Iperf needs to report a

warning when bandwidth nears or exceeds a limit dependent on the host configuration.

Need to modify the Iperf source to check this assumption before final bandwidth report.

101

• Iperf: User application assumes both requests from (-t) and (-f) options are satisfied,

when used together. When user application specifies the time-to-run (-t) option and the

file-transfer (-f) option, depending on the network bandwidth and the time for which Iperf

is run, one of the requests may not be satisfied. Need to modify Iperf source to check this

assumption before final bandwidth report.

• Iperf: Assumption made by bidirectional tests about the maximum data transferred. Iperf

source needs to be modified to check if this assumption on the maximum data transferred

holds good before final bandwidth reports.

• Iperf: User application’s assumption on Iperf’s CPU utilization. Iperf uses tight-loop

timers to precisely measure delay and jitter for UDP transfers. This may spike CPU

utilization and cause problems for the user application. This is not exactly a defect, but

a warning needs to be printed in such cases.

• TinyOS: Assumption on packet-sizes. TinyOS source needs to be modified to check if the

assumption on maximum length packets holds good.

• TinyOS: Assumption due to mode of running: During simulation, TOSSIM [39] assumes

all nodes are ON by default. This assumption needs to be validated during runtime in

TOSSIM, which will prevent TOSSIM from delivering packets to nodes that are turned

off. This can never happen in an actual run.

• TinyOS: Assumption due to mode of running: During simulation (in TOSSIM), invalid

assumption about the address type causes all listeners to reply to unicast packets. Need

to validate the assumption that listener address is multicast during simulation. This can

never happen in an actual run.

• TinyOS: An assumption (undocumented) that allows only 7 tasks to be in the queue.

When tasks are posted dynamically (during execution), this assumption must be validated

or an error must be reported.

Iperf source can be easily modified to incorporate these assumption validation routines from

its source code. Iperf is implemented in C/C++, which is supported by middleware frameworks

like CORBA. On the other hand, TinyOS runtime assumptions, like maximum number of tasks

102

in the queue and assumption on packet sizes require a translation from AMF to nesC. Hence,

AMF currently cannot be used to validate these dynamic assumptions (4 of them) of TinyOS.

The part of setting policies on when to validate assumptions is possible through saving

the assumption definitions in the back-end XML format and fetching appropriate assumptions

using XPath queries. This is explained in detail in Section 7.8.

Overall, AMF can be directly used to encode and validate all the assumptions, but for the

four mentioned above. Validation of dynamic assumptions requires source code modifications

in the logic (like the 4 assumptions of Iperf). 33 assumptions required no modifications of

the source code, but for exporting the properties to enable a clean interface to validate the

assumptions. This exporting of properties from the source code does not alter the behavior of

the components.

10.3 Related Work and Comparison with AMF

10.3.1 Design by Contract

put-child (new: NODE) is
– Add new to the children of current node

require
new /= Void

do
... Insertion algorithm ...

ensure
new.parent = Current;
child-count = old child-count + 1

end – put-child

Figure 10.4 Contracts Example

Figure 10.4 is an example taken from [40]. It explains the key principles of ‘Design by

Contract’. The main concepts of contracts are the notion of pre-conditions and post-conditions.

For a routine or a function, pre-conditions are assertions that need to be satisfied by the caller

(or the client) and post-conditions are assertions that are guaranteed by the supplier (the called

routine). In addition to pre-conditions and post-conditions, there are class-invariants which

need to be satisfied by all the instances of the class, and every routine must ensure that the

class-invariants are preserved on exit, if they are satisfied on entry.

103

Hence, contracts is very useful in exposing restrictions of variables which are ultimately

represented as code. It is strongly tied up with the source code. A variety of cases can be

handled by contracts. For example in [41], it is explained how the Ariane 5 disaster could

have been averted by using ‘Design by Contract’. In fact, this principle is highly suitable for

specifying constraints on variables and objects that are physically represented as code. But,

contracts cannot handle assumptions made by the software components that do not have a

physical representation in the source code. In the example presented in Section 1.2.3, the

maximum sensing delay, maximum jitter are not represented in the code and we cannot use

contracts to ensure that the clients (callers of the routine) make incorrect assumptions about

these parameters. It is typical in real-time systems software that all the assumptions are not

ultimately represented as code.

Also, with the current COTS and custom software methodology, certain software modules

are shipped with certification for properties like safety. The certification is subject to not

modifying the source code. In such cases, it is difficult to apply the ‘Design by Contract’

principle. We will need a mechanism which can encode the assumptions made by the certified

module explicitly, but without modifying the source-code.

In summary, ‘Design by Contract’ is an extremely useful principle and can be used to check

for assumptions made on the variables present in the code. But, it cannot be effectively applied

to encode assumptions made on parameters not present in the code, and in cases where the

source code cannot be modified.

10.3.2 Real-time CORBA

CORBA [38] was developed as a middleware solution for integrating diverse applications

within distributed heterogeneous environments. The main focus of CORBA was to provide

a platform that allows for seamless integration of applications abstracting the communication

layers or the network between the interacting applications. However, CORBA did not have

provisions for specifying end-to-end QoS requirements / real-time constraints. To this end,

Real-time CORBA developed by Schmidt et.al. [42] concentrated on providing specification

mechanisms and architectural support to deliver end-to-end QoS to applications.

104

Notably, RT-CORBA provides standard interfaces that allow applications to configure and

control processor, memory and communication resources through standard (ORB) operations.

They also have an implementation of RT-CORBA, the details of which are available in [43].

RT-CORBA has been effective in making explicit the resources an application requires out of

a distributed system and providing architectural support to guarantee these real-time require-

ments [44]. It is also effective in masking the complexity of mapping intermediate (network

and processor) priorities and managing resources in these intermediate components (networks

and processors). This in turn enables a software component to make explicit some of the as-

sumptions a component makes w.r.t the environment, mainly the resources. It still cannot

handle negotiation of semantic assumptions which real-time systems components make on the

environment and other components.

For example, if there are two components in the system a velocity sensor ‘X’ and a data

collector ‘Y’ using RT-CORBA to communicate with each other, RT-CORBA can be used to

specify and validate the maximum acceptable delay between the components, since this concerns

the resources being used in the system. On the other hand, RT-CORBA cannot be used (and

was not meant) to specify semantic assumptions the software components make like units of

velocity, granularity of readings, minimum and maximum readings which can be considered valid

etc.

In summary, RT-CORBA is effective in making explicit the resource assumptions that the

software components make on the environment, but it was not meant to handle other envi-

ronmental and semantic assumptions that the real-time system software components typically

make.

10.3.3 VEST

The Virginia Embedded Systems Toolkit (VEST) [45] is an tool for composing real-time

systems. It is built using the Generic Modeling Environment [46]. VEST has a prescriptive

aspects library, using which language independent advice can be applied to a design. It provides

for dependency checks on aspects. It also provides a composition environment (GUI) to compose

embedded systems, perform dependency checks, and invoke prescriptive aspects of a design. The

prescriptive aspects can be used to compose non-functional properties. However, it is remote

from the actual running code where the software interfaces are actually used.

105

For example, for the acoustic sensor example in Section 1.2.3, VEST can be used to check

if the sensor meets the data collector’s requirements varying various real-time parameters like

maximum delay, etc. Also, VEST can allow analysis of different aspects like redundancy and/or

persistence of data. However, VEST cannot pinpoint that the implemented software interface

of the module makes semantic assumptions on the units of acoustic data, sensing delay etc.,

while there is only one 16 bit value returned by the dataReady event.

We believe that our research will compliment modeling tools like VEST, since our research

makes the assumptions on the implemented / shipped software interfaces explicit and machine

checkable, and tools like VEST perform dependency analysis (like whether timing requirements

are met) on inter-connected real-time components.

10.3.4 SpecTRM

SpecTRM (Specification Toolkit and Requirements Methodology) is designed to assist in

the development of software-intensive safety critical systems [47] [48]. The whole of SpecTRM

methodology is based on a human-centric safety driven process of requirements methodology.

The methodology is supported by an artifact called intent specification [49] [50]. This is an easy

to read software model which can be executed and analyzed by formal methods also. Intent

Specification starts from a human-readable specification for each requirement and this passes

through various stages – system purpose, system design principles, black-box behavior, physical

representation and system operations.

SpecTRM allows for forward and backward references during intent specification at various

stages. For example, a clause in the system design principles stage may refer to a clause at the

system purpose stage and vice-versa. The only part which is not formally tracked is assumptions

which are just mentioned in human-readable format.

The following example taken from [49] will make it clearer. “R1: Provide collision avoidance

protection for any two aircraft closing horizontally at any rate up to 1200 knots Assumption:

This requirement is derived from the assumption that commercial aircraft can operate up to

600 knots and ... ”

In SpecTRM, the requirement R1 can be formally tracked across various stages of the

software life-cycle. But, the assumption on the requirement is only stated informally and is not

tracked across the software life-cycle. Also, SpecTRM translates the requirements into an FSM

106

component PendulumController is
in setpoint: SETPOINT;
in status: STATUS;
out actuator: VOLTAGE;

end PendulumController;
in setpoint: SETPOINT (cm) is

range - (Track.Length/2 - Stability Range) to Track.Length/2 - Stability Range;
delta - Max Step Size to Max Step Size;
every 200 ms;

end setpoint;

Figure 10.5 Example of Impact Analysis Framework

with all the transition rules [51]. Tools like these are useful in designing safety critical systems

from the scratch.

But, while building systems out of COTS systems, it is firstly very difficult to analyze the

internal transition rules of the shipped component, we need to work on the software interface

and the assumptions made by the software component. In the example in Section 1.2.3, if

the acoustic sensor is shipped by vendor A and the data collector by vendor B, we will only

have the software interface and the assumptions made by the software component (usually as

data-sheets) to work with.

In summary, SpecTRM is useful in building safety-critical systems from scratch, but while

working with COTS systems (and black-box interface components) which only expose a software

interface and a set of assumptions, it is difficult to apply this tool.

10.3.5 Impact Analysis in Real-Time Systems

In [52], an approach for modeling architecture for real-time systems and recording time-

sensitive properties is discussed. Their work identifies semantic inconsistencies and system

impact on the result of a change in the system. Their approach also deals with encoding

undocumented assumptions. In this aspect, this work is closely related to what we are trying

to achieve.

It makes use of the architecture description language (ADL) to specify component input

and output ports. Also, it can make use of the ADL to describe the connections between

107

components. For a Pendulum controller part of the component specification is shown in Figure

10.5, this example is taken from [52].

AMF, on the other hand, works with architecture specification (AADL), dependency man-

agement tools like DMF, and provides native integration with Java source code. Also, the

classification of assumptions introduced in AMF makes it very easy to manage assumptions as

the number of assumptions grows.

10.3.6 Industry Solutions for Specific Problems

There have been industry solutions which are specific to the kind of products developed

by individual industries. Notable solution in the areas of industrial automation, consumer

electronic devices, timing property specification and cell-phones/PDAs have been mentioned

below.

In the area of industrial automation, IEC standard for the development and use of compo-

nentized software for Programmable Logic Controllers (PLCs) was developed by PLCopen [53],

a consortium of PLC users and producers.

For consumer electronics devices, Philips has developed and has been using an architectural

description language to build products like TVs, VCRs, recorders and combinations using a

component model called Kaola [54], [55], [56].

There have been some tools developed by Articus Systems for operation with the use of

Rubus [57] for syntactic support of system data and support for specifying timing properties.

PECOS is a similar project [58] is aimed at embedded devices like cell-phones and PDAs.

These models though very useful for specific domains, do not address the problem of integrating

a large scale system from COTS components which may contain both real-time and non-real-

time systems and from varied vendors.

10.3.7 Source-Code Related Assumptions Testing and Model-Checking

The concept of having monitors and proving the correctness of programs has its beginnings

in the 1960s and 1970s [59], [60], but it has remained an elusive problem in terms of a com-

plete solution. This is due to the inherent complexity of software. But, there have been many

attractive solutions in specific areas within this field. Recently, there has been some work in

specifying assumptions on the source-code and documenting assumptions on the architecture.

108

Explicitly modeling assumptions in product families which provides a basis for formally docu-

menting assumptions and their relations with architectural artifacts is dealt in [61]. This work

helps in understanding the software engineering and design decisions. Model checking tools

like [62] have been very effective in guaranteeing the assumptions of the source code with the

assumptions made at the design level. There are model-checking tools that aid programming

by providing monitors for assertions made in temporal logic [63]. In JavaMOP [19], after the

monitor (assertion) is setup, it provides violation handlers that are executed when the assertion

is violated and validation handlers that are executed when the assertions are validated. There

have been a large body of work that concentrates on the assume-guarantee methodology on

the source code [64], [65], [66] and the design of the software. Interesting and one of the first

applications of formal methods to software is described in [67].

To the best of the author’s knowledge, the work in this thesis is the first to introduce the

concept of classification and manageability of assumptions. Also, the work in this thesis targets

environmental assumptions that are outside the software and are the root cause of many defects

as encountered in the case studies.

10.4 Summary

This chapter provided an evaluation of AMF, in terms of its scalability, performance and

its ability to encode and validate the assumptions encountered in the case studies.

The performance of the composition matching algorithm was as expected. It grew linearly

with a running time of 1.8 seconds to compose 14,000 assumptions and guarantees. There were

temporary surges in the running times due to the implementation of Hashtable in Java, which

is used by the algorithm implementation to check for set membership. In terms of parsing,

code-generation and Java code compilation, AMF provided an acceptable performance with

performing all three tasks under 80 seconds when the input definitions was 113000 lines with

2000 components and 14000 assumptions. The assumption validation time was found to be a

constant (independent of the size of the input), as expected. The maximum validation time

was never over 500 micro-seconds, with simple assumptions consisting of 3 input parameters,

5 arithmetic and logical operations. Most of the time was spent in looking up the assumption

109

method body, given its name, and translating the input qualified assumption body to its method

name.

In terms of effectively encoding and validating assumptions, AMF was able to encode and

validate 33 out of the 41 assumptions that caused defects in Iperf and TinyOS, with minor or no

modifications to the source code. Also, with a middleware framework, AMF has the capability

to encode dynamic assumptions for systems like Iperf. For systems like TinyOS, AMF needs

to generate code in nesC language for the body of the assumption. Hence, 4 of the dynamic

assumptions in TinyOS cannot be currently handled by AMF.

This chapter also provides comprehensive set of related work and compares their work with

AMF.

110

CHAPTER 11

Conclusions

Invalid assumptions have been the root cause of failures in projects like the Ariane 5 and

the Mars Climate Orbiter. The inquiry boards of these projects have independently stressed

the development of a framework with objectives similar to that of AMF [2], [16].

This thesis examined this problem in detail and evolved a framework, which provides a

vocabulary for discussing assumptions, a language for encoding assumptions in a machine-

checkable format and facilities to manage the assumptions in terms of composition and setting

policies on assumption validation. AMF allows assumption specification process to blend with

source-code and architecture specification. This enables AMF to be applied to existing systems

with minor or no modifications.

AMF provides a basic classification system for assumptions and guarantees, for easier man-

ageability. Users can build domain specific classification schemes on top of this. This is ex-

plained in Chapter 3. The basic dimensions of classification for an assumption are (i) time-frame

of validity (ii) criticality and (iii) scope. Guarantees are classified based on whether the values

are provided explicitly by humans or they are obtained by executing a routine.

AMF provides a user-friendly language, as explained in Chapter 4, with minimal number

of keywords for encoding assumptions and guarantees in a system. The logic to express the

assumptions encompasses most logical operators in a high-level language like C or Java. AMF

language makes provisions for components that may not know the set of dependent components

in advance, like operating systems and middleware components, to express their assumptions.

AMF also provides extensions to the language to express complex assumptions and guarantees

using method invocations in high-level languages.

111

Composition of assumptions and guarantees allows AMF to be applied to larger systems

in a scalable format, as explained in Chapter 5. AMF has a composition matching algorithm

that runs in linear time (Θ(na +ng), for na assumptions and ng guarantees), when there are no

library assumptions and guarantees. In presence of library assumptions and guarantees, it has a

running time of Θ(na +ng + ña.nax); the additional factor is on the order of the average number

of guarantees to be provided per library assumption times the number of library assumptions.

All matched and validated assumptions can be tagged as private, and can be abstracted from

the higher level system architecture. This greatly increases scalability.

AMF language specification allows assumptions to be directly invoked on the source code

of the components. It is also integrated with AADL to allow a uniform view of components in

terms of system architecture specification and assumptions specification. AADL integration also

allows properties of hardware components to be exposed in a machine-checkable format. AMF

provides language extensions that enable users to encode the immediate impact of assumption

violations using standard vocabulary used by dependency management tools. This process to

enabling AMF to encode assumptions across various aspects of software-engineering is termed

as vertical assumptions management, which is explained in Chapter 6.

AMF provides a model-based implementation for managing assumptions using the Eclipse

Modeling Framework (EMF), as explained in Chapter 7. Assumptions can be specified in a

textual format or using a model-based GUI, which is automatically generated by EMF. AMF

provides an implementation of the composition algorithm and amortized constant-time query

operations after composition to check if an assumption (or guarantee) is matched. AMF provides

functions to validate assumptions given its name. This, along with a set of functions that can

be accessed natively using Java or from command-line, helps in enabling dynamic assumptions

validation. The implementation is suitable for validating dynamic assumptions in non real-time

or soft real-time systems. The facility of EMF to store the definitions in XML format makes it

amenable to set policies on when to validate assumptions and what assumptions to validate.

Case-studies were conducted on representative projects, as explained in Chapter 8, to study

the defects caused due to invalid assumptions and the nature of these assumptions. It was found

that in two of the systems studied, there were a significant proportion of defects due to invalid

assumptions than algorithmic defects. This independently provided a basis for developing AMF.

The case-studies were also useful in studying the nature of the assumptions that cause defects.

112

The case studies helped rectify one of the key invalid assumptions of Iperf. The modified

algorithm that first validates the assumption and then performs bandwidth tests results in

correct bandwidth reports for low-bandwidth and high-bandwidth networks alike, and savings

of about 90% in terms of both network traffic generated and measurement times, which is

explained in Chapter 9.

The evaluation of AMF, which is explained in Chapter 10, in terms of scalability and

performance indicated that AMF is scalable to be applied for large-scale systems. Also, AMF

had capability to encode and validate majority of the assumptions encountered in the case-

studies that lead to defects.

11.1 Further Applications and Extensions

11.1.1 Domain Specific Assumption Libraries

In addition to the basic classification scheme provided in AMF, one can develop domain

specific assumptions and guarantees for components of the domain. These libraries can assist

in rapid encoding of assumptions and increasing the applicability of AMF in specific domains.

For example, one can develop deadline and resource specific assumptions for real-time sys-

tems. As shown, in one study of e-simplex [68], the following critical assumption made by

e-simplex about the system was revealed. E-simplex is the only (real-time) process running in

the processor. Any process with a lower-priority than that of the complex controller which runs

in the same processor may miss its deadline. Such assumptions are common in most real-time

systems, and a library of such assumptions with a useful vocabulary will increase applicability

of AMF. Similar libraries can be developed for real-time networking domain. For example, for

correct operation, the real-time networking protocol, FAI-EDF [69] makes many assumptions

like a) precise MAC layer time-stamping is available b) nodes do not send packets greater than

their alloted budget c) all nodes can perform carrier-sensing function correctly.

11.1.2 Applying AMF to Large-Scale Sensor Networks

Sensor networks is a very interesting field of application for AMF, for it encompasses var-

ious domains such as networking, computational systems, sensor and control systems. Sensor

networks are meant to monitor and sometimes control their environment. Based on the case

113

studies, a large number of assumptions that can be encoded in a machine-checkable format is

foreseen for such systems. The model-based GUI for AMF allows people with relatively less

programming language experience to encode assumptions. The default values are filled in au-

tomatically and only valid values are allowed for enumerations (like classification information),

which makes the task of encoding assumptions a lot simpler. It will be interesting to study the

applicability of AMF for such large-scale systems.

114

APPENDIX A

Assumptions in Iperf, TinyOS and IPCS

The assumptions made by Iperf and TinyOS that lead to defects are discussed here. This

was used as the basis for the case studies. Also, a description of the system architecture and

the assumptions of the Inverted Pendulum Control System (IPCS) is given.

A.1 Description of the Inverted Pendulum Control System

Software interfaces in the system

There are four directly interacting software interfaces in the Inverted Pendulum Control

System (IPCS). These software interfaces that are used to exchange real-time data during the

operation of the system.

• Plant proxy → sensor

• Sensor → Controller

• Controller → Actuator

• Actuator → Plant proxy

A study was conducted on the source code of the IPCS system. It was found that the

software interfaces were inadequate to represent the assumptions made on the environment and

on other components in the system. Some assumptions were embedded in the source code as a

part of the implementation. Some did not have a representation even in the source code.

For example, the software interface for the controller was as follows:

115

float calc command cx(float angle, float track);

The controller obtains the angle and track information from the sensor and it calculates the

new value of the voltage that is to be given by the actuator to the DC motor controlling the

cart. The only inference from the software interface is that the controller receives two 32-bit

floating point parameters which represent the current angle and track positions respectively,

and it returns an 32-bit floating point value which represents a voltage to be given by the

actuator to the plant.

This simplistic interface is sufficient only when the whole system is developed by a single

team where all the implicit assumptions are known, but in the IPCS, the physical plant (with

a plant proxy) is supplied by a one vendor, the controller and the sensor are obtained from

different vendors.

Assumptions made by the software components

It was found that over 40 assumptions were made by the software components. A few critical

ones are listed below.

For a particular set of components interacting with each other through a software interface,

it was observed that assumptions were made by both the provider and the caller of the software

interface. Assumptions were also discovered between components that did not interact directly.

The assumptions between the set of components are as below.

1. Plant proxy ↔ Sensor

(a) Track position units (meters in the source code)

(b) Angle units

(c) Maximum permissible velocity of the cart

(d) Valid positions of the cart on the track

(e) Reference line to measure the inclination of the pendulum (not found in source code,

but assumed to be vertical)

2. Sensor ↔ Controller

(a) Maximum permissible sensing delay

116

(b) Maximum permissible jitter in sensing delay

(c) Units of track position

(d) Units of angle of inclination

(e) Reference point of track position (end of track or center of track)

(f) Reference values for angles (horizontal/vertical)

(g) Maximum permissible error in sensing track position

(h) Maximum permissible error in sensing angle position

3. Controller ↔ Actuator

(a) Voltage units

(b) (Control) Computational delay

(c) Valid values for voltage

(d) Actuation delay

(e) Minimum delay needed between new control commands

(f) Maximum permissible delay between new control commands

4. Actuator ↔ Plant proxy

(a) Unit displacement/acceleration per unit volt

(b) Maximum velocity of displacement

(c) Frictional constants of the cart w.r.t the track

5. Controller ↔ Plant Proxy

(a) Mass of the cart

(b) Mass of the pendulum

(c) Frictional constants of the pendulum w.r.t the cart

(d) Length of the pendulum

(e) (Various) electrical constants of the DC motor

(f) Wear of the motor gear (determines if/when the cart needs to be replaced and the

displacement per unit voltage)

117

6. Global environmental system assumptions like control loop delay, etc.

Overall, over 40 assumptions made by the components that were not reflected in the software

interface 1. Any violation of the assumptions listed above will cause the inverted pendulum

control system to fail. For example, if the pendulum is replaced and the new pendulum has

a different mass (it will violate the controller assumption) and the system will fail.

In addition, one notices that though the controller and the plant proxy do not interact

directly using software interfaces, assumptions exist between the controller and the plant proxy.

Actuator

Controller

Plant proxy Sensor

Software Interface

A makes assumptions
about B

A B

A B
(A provider, B caller)

Figure A.1 Assumptions Made by the Software Components

Figure A.1 illustrates the system architecture alongside the set of components that have

assumptions between them. It shows that (i) assumptions are made both by the provider and

caller of the software interface (ii) assumptions exist even between components that do not have

a direct interface in the system architecture.

Summary of observations

• The system consisted of four software components.

• There are over forty assumptions made by the software components about each other,

about the physical plant and the environment. (even though, we did not study the

electrical characteristics of the DC motor and the assumptions made on it).

• The system will fail if any of the assumptions listed above are violated.

1This statistic does not consider the DC motor assumptions, the full details of the motor constants are
available in [70]

118

• Assumptions exist even between components that do not interact with each other through

software interfaces.

• In directly interacting components, assumptions are made by the caller about the provider

and vice-versa.

• Some assumptions are made about the system as a whole (global assumptions) and the

operating environment

A.2 List of Defects Considered in Iperf

The table below indicates the list of defects considered in Iperf after interpreting the mails

in the mailing lists. Relative links to the mail threads are given as identification for the defects.

Interested readers can get further information from the website:

http://archive.ncsa.uiuc.edu/lists/iperf-users/ .

For all defects that have a score of 10, (defects that have the root cause as an invalid assump-

tion), and a few defects with a score of 5, the classification information for the assumption and

guarantee that is used to prevent the defect in future is given. The classification information

is abbreviated as follows. For assumptions, for time-frame of validity, the notations are St for

static, SyCn for system configuration, Dy for dynamic. For criticality, the notations are Cr -

critical and NoCrX - non-critical at a level X. For guarantees, the notations are HmEn for

human-entered values, McGn machine-generated values, Hyb for hybrid values.

Link (Iperf) Brief Analysis Score Classification

/feb03

/msg00036.html

Incorrect throughput summaries. As-

sumes transfers are less than 4GB

when using Linux 7.1. Did not find

equivalent of int64 in Linux 7.1

10 A ∈ SyCn,Cr

G ∈McGn

/feb03

/msg00031.html

User assumption on output format of

Iperf. Causes problems while parsing

Iperf output in a machine.

5

119

Link (Iperf) Brief Analysis Score Classification

/feb03

/msg00018.html

Assumes compatibility between IPv4

and IPv6 in FreeBSD APIs. Causes

UDP mode to fail.

5

/feb03

/msg00016.html

Assumes the first available NIC is con-

nected to the multicast network

10 A ∈ SyCn,Cr

G ∈McGn

/feb03

/msg00005.html

Iperf expects ICMP messages on UDP

errors. WinNT discards ICMP mes-

sages on UDP errors.

10 A ∈ SyCn,NoCr3

G ∈McGn

/mar03

/msg00008.html

User application assumes bandwidth

reports on clients and server are the

same. Not an Iperf defect, but explicit

documentation required.

10 A ∈ St,NoCr3

G ∈ HmEn

/mar03

/msg00002.html

User application assumes a different

definition of jitter. Iperf uses the stan-

dard definition of jitter as in RTP

5

/mar03

/msg00000.html

User application assumes a different

formula for data-rate calculation. Not

an Iperf defect.

5

/apr03

/msg00008.html

Iperf tight-loop timers increases CPU

utilization. May need to make explicit

the CPU requirements of Iperf

5

/apr04

/msg00013.html

User application unable to set mini-

mum window size for Iperf transfer.

Actually, different operating systems

have different statutes. For example,

Solaris has a minimum of 4.5K, Linux

256 bytes. Iperf also has limitations

on minimum window size of 2K to pre-

vent poor performance (2K).

10 A ∈ SyCn,Cr

G ∈McGn

120

Link (Iperf) Brief Analysis Score Classification

/apr04

/msg00023.html

User application assumes Iperf can

launch over 250 threads, but there are

OS specific limits

10 A ∈ SyCn,Cr

G ∈McGn

/apr04

/msg00001.html

Another jitter definition related as-

sumption in the user application re-

garding PerfSocket UDP version.

10 A ∈ St,NoCr3

G ∈ HmEn

/apr04

/msg00028.html

For bi-directional tests, the conditions

that are required for the tool to func-

tion correctly are not specified explic-

itly

5

/apr03

/msg00000.html

Iperf assumes operating system sup-

port for Type Of Service (ToS)bits,

which is not true for Win2K

5 A ∈ SyCn,NoCr3

G ∈McGn

/jun03

/msg00025.html

Iperf assumes that the OS kernel al-

lows setting different MTUs

5 A ∈ SyCn,Cr

G ∈McGn

/jun03

/msg00004.html

Read buffer size set by user-app must

be greater than the OS default MTU

size.

10 A ∈ SyCn,NoCr3

G ∈McGn

/jun03

/msg00001.html

Bi-directional testing assumes data

transferred is less than 4 GB

10 A ∈ St, Cr

G ∈ HmEn

/jul03

/msg00022.html

Depending on the amount of data

transferred, the -f option (that allows

a file to be transferred) and the -t op-

tion (that allows transfer at least for

a particular duration of time) may be

incompatible

10 A ∈ Dy,Cr

G ∈McGn

/jul03

/msg00007.html

Iperf assumption on the OS for

RFC1213 support for large window

sizes

10 A ∈ SyCn,NoCr3

G ∈McGn

121

Link (Iperf) Brief Analysis Score Classification

/aug03

/msg00006.html

Iperf assumes no data compression in

the entire path. Results in higher

bandwidth reports in dial-up networks

with link layer compression.

5 A ∈ SyCn,Cr

G ∈McGn

/aug03

/msg00003.html

Iperf TCP mode may run for slightly

longer than requested time. This is

due to waiting of final acknowledg-

ment.

5

oct03

/msg00011.html

Assumes multi-threaded UDP port,

which is invalid for many versions of

Win32

10 A ∈ SyCn,NoCr3

G ∈McGn

/oct03

/msg00004.html

Sometimes, the host system config-

uration is the bottleneck for high-

bandwidth transfers. Based on sys-

tem configuration and bandwidth re-

ported, Iperf needs to give users a hint

on potential invalid reports

5 A ∈ Dy,Cr

G ∈McGn

/feb04

/msg00008.html

When user application specifies both

-n (number of packets) and -t (time

to run) one of the option is silently

ignored by Iperf.

10 A ∈ St,NoCr3

G ∈ HmEn

/mar04

/msg00047.html

Iperf assumes getSockName() API re-

turns the bound multicast address.

In Win32, the local address not the

bound multicast address,is returned

by the API

10 A ∈ SyCn,NoCr3

G ∈McGn

/mar04

/msg00025.html

Maximum TCP window size is depen-

dent on not just on the OS but also on

a system administrator set value.

10 A ∈ SyCn,NoCr3

G ∈McGn

122

Iperf defects determined

as algorithmic defects

/feb03/msg00007.html, /feb03/msg00000.html,

/jun03/msg00012.html, /jun03/msg00007.html,

/jul03/msg00029.html, /feb03/msg00011.html

A.3 List of Defects Considered in TinyOS

The following is the list of defects considered in TinyOS. Since TinyOS (unlike Iperf) has

a SourceForge defects database, the defects below are those which are not marked as duplicate

and which are marked as closed. Selecting only closed defects provides a higher confidence in

the defect analysis for determining whether or not the defect is related to invalid assumptions.

The table below lists the defects that were related to invalid assumptions with a brief analysis.

A list of defects that were related to installation and version control is also provided. Similarly,

a list of defects due to algorithmic defects is given.

ID (TinyOS) Brief Analysis Score Classification

1084879 PowerTOSSIM module assumes by

default that the sensor board type is

Mica.

10 A ∈ SyCn,Cr

G ∈McGn

1055439 Bcast module assumes maximum sized

payload and all packets are transmit-

ted as maximum length (28 bytes)

packets

10 A ∈ Dy,NoCr

G ∈McGn

1052596 Deluge module does not work un-

der heavy load; results in not send-

ing replies to ping requests via

TOS BCAST ADDR.

5

1119642 In Bcast module, TinyOS timers do

not function well if timer granularity

is < 10ms.

10 A ∈ St, Cr

G ∈McGn

123

ID (TinyOS) Brief Analysis Score Classification

1033732 OP, a Java module depends on the

variable maxMessageSize in MoteIf

module to determine maximum trans-

fer size, which is invalid

5 A ∈ St,NoCr

G ∈ HmEn

1017509 TOSSIM, the simulator for TinyOS

ignores parity errors. In some rare

cases, broken packets pass through

CRC check and garbage is delivered

to the application

5

979119 MintRoute module assumes Node ID

is no more than 8 bits. Causes lookups

to fail when more than lower 8 bits is

used to determine Node ID

10 A ∈ St, Cr

G ∈ HmEn

960088 QueueSendMsg module assumes mes-

sage length is always > 0. There can

be messages with no payload, which

can cause this module to crash.

10 A ∈ St, Cr

G ∈ HmEn

947169 Assumption on the mode of running.

In simulation, the node state is ig-

nored and packets are delivered when

the node is turned off, which can never

happen in an actual run

10 A ∈ Dy,NoCr

G ∈ HmEn

938259 Invalid assumption in TOSSIM about

a node’s address causes all listeners to

reply to unicast packets. Cannot hap-

pen in an actual run

10 A ∈ Dy,NoCr

G ∈ HmEn

913123 An undocumented assumption that al-

lows only posting of 7 tasks at a time.

10 A ∈ Dy,Cr

G ∈McGn

124

ID (TinyOS) Brief Analysis Score Classification

900058 TOSSIM simulator assumes time can

be measured in int, while actual val-

ues run into the range of long long.

10 A ∈ St, Cr

G ∈ HmEn

896022 Inconsistencies between the opcode

names used by Bombilla and the ac-

tual set of opcodes provided

5

891749 LossyBuilder assumes TOSSIM can

read values provided in exponential

notation (like 8.99E-4)

10 A ∈ St,NoCr

G ∈ HmEn

833450 T imeUtil assumes time can only be

added and not subtracted (allows no

negative values for its addUint32()

function

10 A ∈ St, Cr

G ∈ HmEn

TinyOS defects deter-

mined as algorithmic

defects

1119642, 1004206, 1011809, 995187, 990531, 935051,

922122, 909284, 870244

TinyOS defects determined as

installation and version con-

trol related defects. Not con-

sidered for statistics

1160877, 1042429, 1040869, 1040856, 1014456,

992043, 959059, 952785, 952784, 959059, 952785,

952784, 945583, 928680, 907793, 896021, 828525,

814805, 808643 814752, 809601

125

APPENDIX B

The AMF Language Grammar rules in Bachus-Naur form

The grammar for the AMF parser is given below. The rule for logicalOrExpression is from

standard Java Language Syntax as described in the ANTLR Parser generator for Java. This

maintains compatibility between basic built-in types of AMF and the corresponding basic types

in Java. Also, only the grammar rules are given, the actions taken on successfully parsing the

rule are omitted for brevity. Tokens are in all upper-case letters and all parser rules start with

lower-case letters. The AMF parser accepts the rule componentDefinitionsSet .

// The set of component definitions

componentDefinitionsSet : (componentDefinitions)+;

// Component definition

componentDefinitions: COMPONENT_DEFINITION componentName componentBody;

// name {= id}

componentName: NAME assignID;

// The body for component definition

componentBody: LCURLY optionalDecl assnGuarSets RCURLY SEMI;

// Optional declarations

optionalDecl: (LCURLY (langDecl)? (importsDecl)* RCURLY)? ;

// Language declaration

langDecl: LANGUAGE ASSIGN languageName SEMI;

// Currently assumptions are generated in Java, only language supported

126

languageName: JAVA;

// Imports declaration

importsDecl: IMPORT IDENT (DOT IDENT)* (DOT! STAR)? SEMI! ;

// = identfier

assignID: ASSIGN! IDENT;

// Assumption guarantee sets for a component

assnGuarSets: (assumptionSet)+ ;

// One about clause per dependent component

assumptionSet: ABOUT idAssignSet ;

// name of dependent component and its definitions

idAssignSet: IDENT LCURLY (assumption|guarantee)+ RCURLY SEMI ;

// An assumption

assumption : ASSUMES assumesParamsAndBody;

// Assumption parameters and body

assumesParamsAndBody : IDENT assumesParams assumesBody

(critStmt)? (scopeStmt)?

(changeIntStmt)? (impactStmt)? SEMI ;

// Parameters for an assumption

assumesParams: LPAREN ((param) (COMMA param)*)? RPAREN ;

// Body of an assumption

assumesBody: LCURLY logicalOrExpression RCURLY ;

// Parameter declaration

param: primitiveDataType IDENT ;

// Primitive data type

primitiveDataType: BYTE_KW | SHORT_KW | INT_KW | LONG_KW | FLOAT_KW

| DOUBLE_KW | CHAR_KW | BOOLEAN_KW |STRING_KW ;

127

critConsts : CRITICAL_LEVEL_5 | NON_CRITICAL_LEVEL_4 | NON_CRITICAL_LEVEL_3

| NON_CRITICAL_LEVEL_2 | NON_CRITICAL_LEVEL_1 ;

critStmt : LCURLY! CRITICALITY^ ASSIGN! critConsts RCURLY! ;

scopeConsts : PUBLIC_ASSUMPTION | PRIVATE_ASSUMPTION ;

validityTimeFrameConsts: STATIC_CI | DYNAMIC_C | SYSTEM_CONFIGURATION_CI ;

scopeStmt : LCURLY SCOPE ASSIGN scopeConsts RCURLY;

changeIntStmt : LCURLY VALIDITY_TIME_FRAME ASSIGN validityTimeFrameConsts RCURLY;

// Guarantee

guarantee : GUARANTEES assumptionNameAndBody ;

// for a guarantee

assumptionNameAndBody : IDENT guaranteesBody;

// body for guarantee

guaranteesBody : LCURLY (paramValue)+ RCURLY SEMI ;

// Parameter type, name and value

paramValue : primitiveDataType IDENT ASSIGN (constant |

(primaryExpression dotMethodSubExpr)) SEMI!;

// logical or (||) Lowest precedence

logicalOrExpression : logicalAndExpression (LOR logicalAndExpression)* ;

// logical and (&&)

logicalAndExpression : inclusiveOrExpression (LAND inclusiveOrExpression)* ;

// bitwise or (|)

inclusiveOrExpression : exclusiveOrExpression (BOR exclusiveOrExpression)* ;

// exclusive or (^)

exclusiveOrExpression : andExpression (BXOR andExpression)* ;

128

// bitwise (&)

andExpression : equalityExpression (BAND^ equalityExpression)* ;

// equality/inequality (==/!=)

equalityExpression : relationalExpression ((NOT_EQUAL^ | EQUAL^ relationalExpression)*;

// boolean relational expressions

relationalExpression : shiftExpression ((LT | GT | LE | GE) shiftExpression)* ;

// bit shift expressions

shiftExpression : additiveExpression ((SL | SR | BSR) additiveExpression)*;

// binary addition/subtraction

additiveExpression : multiplicativeExpression ((PLUS | MINUS) multiplicativeExpression)*;

// multiplication/division/modulo

multiplicativeExpression : unaryExpression ((STAR | DIV | MOD) unaryExpression)*;

// Unary expression

unaryExpression : INC unaryExpression | DEC unaryExpression

| MINUS unaryExpression | PLUS unaryExpression

| unaryExpressionNotPlusMinus ;

unaryExpressionNotPlusMinus : BNOT unaryExpression | LNOT unaryExpression |

postFixExpression ;

postFixExpression : primaryExpression (dotMethodSubExpr | (dotArraySubExpr)?);

// After a primary expression

dotMethodSubExpr : DOT IDENT LPAREN (expressionList)? RPAREN ;

dotArraySubExpr : LBRACK additiveExpression RBRACK;

expressionList : primaryExpression (COMMA! primaryExpression)*;

// the basic element of an expression

primaryExpression: constant | primitiveDataType (LBRACK RBRACK)*

|IDENT | LPAREN logicalOrExpression RPAREN;

129

constant : NUM_INT | CHAR_LITERAL | STRING_LITERAL | NUM_FLOAT | NUM_LONG |

NUM_DOUBLE | TRUE | FALSE | NULL;

validityTimeFrameClause : ‘{’ ‘ViolationImpact’ ‘=’ (impactConsts| IDENT) ‘}’ ;

impactConsts : ‘VALUE_ERROR’ | ‘CRASH’ | ‘LOCKUP’ | ‘SUSPEND’ | ‘OMISSION’

‘STATE_TRANSITION_ERROR’ | ‘BYZANTINE’ | ‘DEADLINE_MISS’ | ‘BUDGET_OVERRUN’

| ‘RESOURCE_SHARING_ERROR’ ;

// Standard Java/AMF Tokens

// NUM_INT | CHAR_LITERAL | STRING_LITERAL | NUM_FLOAT | NUM_LONG | NUM_DOUBLE

// recognize the standard java integer, character, string, float, long and double

// IDENT recognizes an indentifier

// Operators

LPAREN:’(’; RPAREN : ’)’; LBRACK : ’[’; RBRACK : ’]’; LCURLY : ’{’;

RCURLY: ’}’; COMMA : ’,’; DOT : ’.’; ASSIGN :’=’; EQUAL : "=="; LNOT:’!’;

BNOT : ’~’; NOT_EQUAL :"!="; DIV : ’/’; PLUS :’+’; MINUS : ’-’; STAR:’*’;

MOD : ’%’; SR :">>"; BSR : ">>>"; GE : ">="; GT :">"; SL :"<<";

LE : "<="; LT :’<’; BXOR :’^’; BOR:’|’; LOR : "||"; BAND :’&’;

LAND:"&&"; SEMI:’;’;

// AMF Constants / Tokens

COMPONENT_DEFINITION = "componentDefinition"; NAME = "name"; ABOUT = "about";

ASSUMES="assumes"; CRITICALITY="Criticality"; CRITICAL_LEVEL_5 = "CRITICAL_LEVEL_5";

NON_CRITICAL_LEVEL_4 ="NON_CRITICAL_LEVEL_4"; NON_CRITICAL_LEVEL_3="NON_CRITICAL_LEVEL_3";

NON_CRITICAL_LEVEL_2 ="NON_CRITICAL_LEVEL_2"; NON_CRITICAL_LEVEL_1="NON_CRITICAL_LEVEL_1";

VALIDITY_TIME_FRAME = "ValidityTimeFrame"; STATIC_CI = "STATIC"; DYNAMIC_CI = "DYNAMIC";

SYSTEM_CONFIGURATION_CI = "SYSTEM_CONFIGURATION"; SCOPE = "Scope";

PUBLIC_ASSUMPTION = "PUBLIC_ASSUMPTION"; PRIVATE_ASSUMPTION = "PRIVATE_ASSUMPTION";

BYTE_KW = "byte"; SHORT_KW = "short"; INT_KW = "int"; LONG_KW = "long";

FLOAT_KW = "float"; DOUBLE_KW = "double"; CHAR_KW = "char"; BOOLEAN_KW = "boolean";

STRING_KW = "String"; TRUE = "true"; FALSE = "false"; NULL = "null";

GUARANTEES = "guarantees"; COMPONENT_NAME = "componentName";

ASSUMPTION = "assumption"; LANGUAGE = "language"; JAVA = "JAVA"; IMPORT = "import";

130

Figure B.1 The AMF Design Using UML Notation

131

REFERENCES

[1] B. Hailpern and P. Santhanam, “Software debugging, testing and verification,” IBM Sys-

tems Journal, vol. 41, no. 1, pp. 4–12, 2002.

[2] ARIANE 5 Failure - Full Report [Online]. http://www.ima.umn.edu/ arnold/ disas-

ters/ariane5rep.html.

[3] S. Leue, “Baby death due to software-controlled air bag deactivation?,” ACM Risks Digest,

vol. 20, March 1999.

[4] G. Booch, “From small to gargantuan,” IEEE Software, vol. 23, no. 4, pp. 14–15, 2006.

[5] FlexRay - The communication system for advanced automative control applications.

http://www.flexray-group.com.

[6] T. Pfarr and J. Reis, “The integration of COTS/GOTS within NASA’s HST command

and control system.,” in Proceedings of the First International Conference on COTS-Based

Software Systems., Februrary 2002.

[7] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, ““System architecture

directions for networked sensors”,” in Proceedings of ACM ASPLOS, Nov 2000, pp. 93–104.

[8] IBM Rational Software [Online]. http://www.ibm.com/software/rational.

[9] E. Dubois, P. D. Bois, and A. Rifaut, “Structuring and expressing formal requirements for

composite systems,” in Proceedings of the Fourth International Conference on Advanced

Information Systems Engineering (CAiSE 92), 1992.

[10] S. Greenspan, J. Mylopoulos, and A. Borgida, “On formal requirements modeling lan-

guages: RML revisited,” in Proceedings of the 16th International Conference on Software

Engineering, May 1994.

132

[11] A. Tirumala, T. Crenshaw, L. Sha, G. Baliga, S. Kowshik, C. L. Robinson, and W. Wit-

thawaskul, “Prevention of failures due to assumptions made by software components in

real-time systems,” ACM SIGBED Review, vol. 02, July 2005.

[12] K. Beck, “Embracing change with extreme programming,” IEEE Computer, vol. 32, no. 10,

pp. 70–77, 1999.

[13] M. Morisio, C. Seaman, A. T. Parra, V. Basili, and S. E. K. amd S.E. Condon, “Investigat-

ing and improving a COTS-based software,” in Proceedings of the International Conference

on Software Engineering, 2000, pp. 32–41.

[14] Risks Forum Digest [Online]. http://catless.ncl.ac.uk/Risks.

[15] Q. Jones, “Software disaster leaves new australian submarine unfit,” ACM Risks Digest,

vol. 23, Nov 2003.

[16] Mars Climate Orbiter, Mishap Investigation Board, Phase I Report, Nov 1999.

ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO report.pdf.

[17] XML Path Language. http://www.w3.org/TR/xpath.

[18] L. Gu, D. Jia, P. Vicaire, T. Yan, L. Luo, A. Tirumala, Q. Cao, T. He, J. Stankovic,

T. Abdelzaher, and B. Krogh, “Lightweight detection and classification for wireless sensor

networks in realistic environments,” in Proceedings of Sensys, 2005, pp. 205–217.

[19] F.Chen and G.Rosu, “Towards Monitoring-Oriented Programming: A paradigm combining

specification and implementation,” in Electronic Notes in Theoretical Computer Science,

vol. 89, 2003.

[20] “Software considerations in airborne systems and equipment certification”, 1993. Radio

Technical Commission for Aeronautics RTCA DO-178B/EUROCAE ED-12B.

[21] “The SAE Architecture Analysis and Design Language (AADL) Standard”, Nov 2004. SAE

International Document Number AS5506.

[22] P. Feiler, R. Gabriel, J. Goodenough, R. Linger, T. Longstaff, R. Kazman, M. Klein,

L. Northrop, K. S. D. Schmidt, and K. Wallnau, Ultra-Large-Scale Systems: The Software

Challenge of the Future, June 2006.

133

[23] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: Elements of reusable

object-oriented software, Jan 1995.

[24] R. Thompson, “Microsoft patches their patched patches,” ACM Risks Digest, vol. 20, July

1999.

[25] G. Baliga, S. Graham, L. Sha, and P.R.Kumar, “Etherware: Domainware for wireless

control networks,” in Proceedings of International Symposium on Object-Oriented Real-

Time Distributed Computing (ISORC), 2004.

[26] H. Ding and L. Sha, “Dependency algebra: A tool for designing robust real-time systems,”

in Proceedings of the IEEE Real-Time Systems Symposium (RTSS), 2005.

[27] Eclipse Modeling Framework [Online:]. http://www.eclipse.org/emf.

[28] The ANTLR Parser Generator [Online:]. http://www.antlr.org.

[29] Extensible Markup language. http://www.w3.org/XML.

[30] B. Kitchenham, L. Pickard, and S. L. Pfleeger, “Case studies for method and tool evalua-

tion,” IEEE Software, vol. 12, no. 4, pp. 52–62, 1995.

[31] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, K. Gibbs, and M. Gates, Iperf - End-to-end

Bandwidth Measurement Tool, Mar 2003. http://dast.nlanr.net/Projects/Iperf/.

[32] A. Tirumala, L. Cottrell, and T. Dunigan, “End-to-end bandwidth measurement using

iperf and web100,” in Passive and Active Measurements, 2003.

[33] L.S.Brakmo and L.L.Peterson, “TCP Vegas: end-to-end congestion avoidance on a global

internet,” IEEE Journal in Selected Areas in Communication, vol. 13, pp. 1465–80, October

1995.

[34] J. Mo, R. La, V. Anantharam, and J.Walrand, “Analysis and comparison of tcp reno and

vegas,” in Proceedings of IEEE INFOCOMM, 1999.

[35] M. Mathis, J. Heffner, and R. Reddy, “Web100: Extended TCP Instrumentation,” ACM

Computer Communications Review, vol. 33, July 2003.

134

[36] The Internet End-to-end Performance Monitoring, Bandwidth to the world (IEPM-BW)

[Online:]. http://www-iepm.slac.stanford.edu/bw/index.html.

[37] Iperf quick mode measurements [Online:]. http://www-

iepm.slac.stanford.edu/bw/iperf res.html.

[38] S. Vinoski, “CORBA: integrating diverse applications within distributed heterogeneous

environments,” IEEE Communications Magazine, vol. 35, pp. 46–55, Feb 1997.

[39] P. Levis, N. Lee, M. Welsh, and D. Culler, ““TOSSIM: Accurate and scalable simulation

for entire TinyOS applications”,” in Proceedings of Sensys, 2003, pp. 126–137.

[40] B. Meyer, “Applying ‘design by contract’,” IEEE Computer, vol. 25, pp. 40–51, Oct 1992.

[41] J. Jazequel and B. Meyer, “Design by contract: the lessons of ariane,” IEEE Computer,

vol. 30, pp. 129–130, Jan 1997.

[42] D. Schmidt and F. Kuhns, “An overview of the Real-Time CORBA specification,” IEEE

Computer, vol. 33, pp. 56–63, Jun 2000.

[43] D. Schmidt, A. Gokhale, T. Harrison, and G. Parulkar, “An overview of the real-time

CORBA specification,” IEEE Communications Magazine, vol. 35, pp. 72–77, Feb 1997.

[44] Y. Krishnamurthy, I. Pyarali, C. Gill, L. Mgeta, Y. Zhang, Torn, and D. Schmidt, “The

design and implementation of real-time CORBA 2.0: dynamic scheduling in TAO,” in

Proceedings of Real-Time and Embedded Technology and Applications Symposium, May

2004, pp. 121– 129.

[45] J. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu, M. Humphrey, and B. Ellis, “VEST:

an aspect-based composition tool for real-time systems,” in Proceedings of the IEEE Real-

Time and Embedded Technology and Applications Symposium, 2003, pp. 58–69.

[46] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G. Nordstrom,

J. Sprinkle, and P. Volgyesi, “The generic modeling environment,” in Proceedings of WISP,

May 2001.

[47] G. Lee, J. Howard, and P. Anderson, Safety Critical Requirements Specification using

SpecTRM. http://www.safeware-eng.com.

135

[48] N. Leveson, Safeware: System Safety and Computers. Reading, Massachusetts: Addison-

Wesley Publishing Company, 1995.

[49] N. Leveson, “Intent specifications: an approach to building human-centered specifica-

tions,” in Proceedings of Third International Conference on Requirements Engineering,

1998, pp. 204–213.

[50] N. Leveson, M. Heimdahl, H. Hildreth, and J. Reese, “Requirements specification for

process-control systems,” Software Engineering, IEEE Transactions on, vol. 20, no. 9,

pp. 684–707, 1994.

[51] M. Heimdahl and N. Leveson, “Completeness and consistency in hierarchical state-based

requirements,” Software Engineering, IEEE Transactions on, vol. 22, no. 6, pp. 363–377,

1996.

[52] J. Li and P.H.Feiler, “Impact analysis in real-time control systems,” in Proceedings of IEEE

International Conference on Software Maintenance, 1999, pp. 443–452.

[53] PLCOpen. http://www.plc-open.org.

[54] R. Ommering, “Building product populations with software components,” in In Proceedings

of the 24th ACM International Conference on Software Engineering, 2002, pp. 255–265.

[55] R. Ommering, F. Linden, and J. Kramer, “The Koala component model for consumer

electronics software,” IEEE Computer, vol. 33, pp. 78–85, Mar 2000.

[56] A. Fioukov, E. Eskenazi, D. Hammer, , and M. Chaudron, “Evaluation of static properties

for component-based architectures,” in In Proceedings of the 28th Euromicro Conference,

2002, pp. 33–39.

[57] D. Isovic and C. Norstrom, “Components in real-time systems,” in In Proc. RTCSA 2002,

8th International Conference on Real-Time Computing Systems and Applications, Mar

2002.

[58] PECOS Project. http://www.pecos-project.org/publications.html.

[59] C. Hoare, “An axiomatic basis for computer programming,” Communications of the ACM,

vol. 12, no. 10, pp. 576–580, 1969.

136

[60] C. Hoare, “Monitors: An Operating System Structuring Concept,” Communications, 1974.

[61] P.Lago and H.V.Vliet, ““Explicit assumptions enrich architectural models”,” in Proceed-

ings of the 27th International Conference on Software Engineering, 2005, pp. 206–214.

[62] D. Giannakopoulou, C. Pasareanu, and J. Cobleigh, ““Assume-Guarantee Verification of

Source Code with Design-Level Assumptions”,” in Proceedings of the 26th International

Conference on Software Engineering, 2004, pp. 211–220.

[63] T. Ball and S. Rajamani, “Automatically validating temporal safety properties of inter-

faces,” Proceedings of the 8th international SPIN workshop on Model checking of software,

pp. 103–122, 2001.

[64] T. Henzinger, S. Qadeer, and S. Rajamani, “You assume, we guarantee: Methodology and

case studies,” CAV, vol. 98, pp. 440–451, 1998.

[65] T. Henzinger, S. Qadeer, S. Rajamani, and S. Tasiran, “An assume-guarantee rule

for checking simulation,” ACM Transactions on Programming Languages and Systems

(TOPLAS), vol. 24, no. 1, pp. 51–64, 2002.

[66] C. Pasareanu, M. Dwyer, and M. Huth, “Assume-guarantee model checking of software:

A comparative case study,” Theoretical and Practical Aspects of SPIN Model Checking,

vol. 1680, pp. 168–183, 1999.

[67] E. Clarke and J. Wing, “Formal methods: state of the art and future directions,” ACM

Computing Surveys (CSUR), vol. 28, no. 4, pp. 626–643, 1996.

[68] L. Sha, “Upgrading embedded software in the field: Dependability and survivability,” in

In Proceedings of EMSOFT, 2002.

[69] T. Crenshaw, A. Tirumala, S. Hoke, and M. Caccamo, “A fault-tolerant asynchronous

protocol for wireless communication among collaborating units,” in Euromicro Conference

on Real-time Systems (ECRTS), 2005.

[70] D. Seto and L. Sha, “A case study on analytical analysis of the inverted pendulum real-time

control system,” tech. rep., SEI-CMU, 1996. ESC-TR-99-023.

137

Author’s biography

Ajay Tirumala was born in Bangalore in 1977. He loves his hometown. He obtained his

Bachelors degree in Computer Science and Engineering from University of Mysore in 1998,

and later dabbled as a Senior Software Engineer for Novell. He decided to pursue graduate

studies in the other side of the world, surrounded by corn-fields, at University of Illinois at

Urbana-Champaign, from the Fall of 2000. His time at Urbana-Champaign was spent mostly

in falling in love with a charming girl, getting married; working with ‘Asha for education’ as a

volunteer, treasurer and president; training for and completing the Chicago marathon; biking;

and spending copious amounts of time having fun with friends and family. Along the way, he

managed to obtain his Masters (in 2001) and Doctoral (in 2006) degrees in Computer Science

from University of Illinois at Urbana-Champaign. He loves Urbana-Champaign too.

His research interests span the areas of embedded and real-time systems and software en-

gineering. His conference publications/presentations include ACM Sensys, ACM MobiHoc,

IEEE Real-time Systems Symposium, IEEE European Conference on Real-time Systems and

IEEE/ACM Super Computing; and journal/magazine publications include ACM Transactions

on Embedded Computer Systems and ACM SIGBED Review.

138

	LIST OF FIGURES
	Introduction
	Incidents of System Failures Due to Invalid Assumptions
	Ariane 5 Disaster
	Child-seat Airbag Incident

	Sources of Assumptions
	COTS and Custom Software Components
	Benefits and Drawbacks of COTS Adoption

	Software Engineering Practices
	Inadequacy of Current Software Interfaces

	Motivation
	Organization of the Report

	Overview: Definitions, Challenges and the Building Blocks
	Definitions
	Challenges in Designing a Framework for Managing Assumptions
	The Building Blocks of AMF
	Classification of Assumptions - Building a Vocabulary
	A Language for Managing Assumptions
	Composition of Assumptions and Guarantees
	Integration with Programming Language and Architecture Description
	Policies on Assumption Selection and Validation

	Summary

	Classification of Assumptions and Guarantees
	The Assumptions Interface or the Assumption Set
	Classification of Assumptions
	Time-frame of Validity of Assumptions
	Criticality of Assumptions
	Compositional Scope of Assumptions

	Guarantees: Machine Generated Versus Human Entered
	Revisiting the Sensor - Data Collector Example
	Domain Specific Classification of Assumptions
	Summary

	AMF Language Design
	Pre-requisites for Encoding Assumptions Using AMF
	AMF Language Capabilities
	Definitions and Structure of Assumption Management Objects
	Assumptions of Library and Services Objects

	A System View Example
	The Language and the AMF Compiler
	Language Extensions to Support Method Invocation
	Summary

	Composition of Assumptions and Guarantees
	Composition Overview
	Composition in Presence of Library Services
	Composition Rules
	Algorithm to Compose Assumptions and Guarantees
	A Note on Lemma 5.2.2

	Preserving Composability
	Summary

	Vertical Assumptions Management
	Interfacing AMF with Programming Languages
	An Example
	Pre-Requisites for Encoding Assumptions on the Source-Code
	Procedure for Encoding Assumptions on the Source Code

	Integration with AADL
	The Architecture Analysis and Description Language (AADL)

	Mapping Assumptions to Component Failures
	Summary

	Implementation of the Assumptions Management Framework
	Structure of the Implementation Objects
	Specifying Assumptions
	The AMF Text Based Input
	The AMF GUI Based Input

	Composing Assumptions
	Validation of Assumptions
	Services for Dynamic Validation of Assumptions
	Integration with Java Source Code
	Integration with AADL
	Policies on Assumption Selection and Validation Times
	Summary

	Case studies of Representative Projects
	Case-Study Hypotheses
	Pilot Projects Selection and Plan for the Case-Study
	Pilot Projects Selection
	Testing the Hypothesis

	Description of the Project Functionality
	Iperf
	TinyOS
	Inverted Pendulum Control System

	Case Study Results
	Testing Hypothesis 1 for TinyOS
	Testing Hypothesis 1 for Iperf

	Results Summary and Key Observations
	Summary

	Analyzing and Correcting the Key Invalid Assumption of Iperf
	Key Assumptions of Iperf and the Errors They Cause
	Modified Algorithm of Iperf
	TCP Congestion Windows
	Algorithm to Validate the End of Slow-Start Assumption

	Implementation and Results
	Implementation
	Testing environment
	Experimental Results

	Summary

	Evaluation of AMF and Comparison with Related Work
	Evaluation of AMF - Performance and Scalability
	Performance of the Composition Matching Algorithm
	Performance of Parsing, Code-Generation and Java Compilation
	Evaluating the Time to Validate Assumptions

	Evaluation of AMF in Encoding and Validating Assumptions
	Related Work and Comparison with AMF
	Design by Contract
	Real-time CORBA
	VEST
	SpecTRM
	Impact Analysis in Real-Time Systems
	Industry Solutions for Specific Problems
	Source-Code Related Assumptions Testing and Model-Checking

	Summary

	Conclusions
	Further Applications and Extensions
	Domain Specific Assumption Libraries
	Applying AMF to Large-Scale Sensor Networks

	APPENDIX A Assumptions in Iperf, TinyOS and IPCS
	Description of the Inverted Pendulum Control System
	List of Defects Considered in Iperf
	List of Defects Considered in TinyOS

	APPENDIX B The AMF Language Grammar rules in Bachus-Naur form
	REFERENCES
	Author's biography

