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ABSTRACT

Formal methods have been used in analyzing cryptographic protocols since the 1980’s.

Formal analysis of cryptographic protocols involves properties that are generally undecid-

able; however it can often be automated. Maude-NPA is a special-purpose tool for verifying

cryptographic protocols. Based on rewriting logic, Maude-NPA performs backward sym-

bolic model checking on the unbounded session model, considering user defined signature

and a wide range of equational theories. In this way, various properties, including secrecy,

authentication and indistinguishability can be verified.

This thesis investigates and advances cryptographic protocol modeling and analysis, with

a focus on extending the specification and analysis capabilities of the Maude-NPA tool.

In particular, (i) it presents a hierarchy of FVP theories for approximating the algebraic

property of homomorphic encryption over an Abelian group, which enables analysis of pro-

tocols having homomorphic encryption over abelian group in Maude-NPA; (ii) it extends the

strand space model with support for choice, and develops a protocol process algebra with

choice constructors; as a result, a new specification language is provided for Maude-NPA,

and protocols with choices can be model and analyzed naturally in Maude-NPA; (iii) it de-

velops a methodology for modular analysis of protocol composition for private channels: the

security properties of the composed protocols are decomposed into corresponding properties

of each component protocols. In each of these areas (i)-(iii), experiments are performed in

Maude-NPA to illustrate and validate these approaches.
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CHAPTER 1: INTRODUCTION

There is a long history of analyzing cryptographic protocols using formal methods. Formal

methods have been effective in revealing subtle flaws that would otherwise remain buried

in protocols [1, 2, 3, 4, 5, 6]. One important advantage of verifying cryptographic protocols

using formal methods is that some of the verification methods allow automatic verification.

For example, by modeling the protocol using a process algebra model (i.e., CSP [7]) and

using the general purpose model checker FDR, Lowe [1] found the man-in-the-middle attack

for Needham-Shroeder public key protocol [8], a protocol that had been widely used before

the attack was found. At around the same time, Mitchell et al. [9] also used the Murphi

[10] model checker for analyzing variations on the TLS protocol, and Lawrence C. Paulson

[11] used Isabelle/HOL theorem prover to verify security properties of TLS.

Being inspired by the benefits of formal analysis, a number of special-purpose tools for

symbolic verification of cryptographic protocols have been developed [12, 13, 14, 15, 16, 17,

18, 19]. These tools assume a Dolev-Yao model [20], in which the communication is fully

controlled by the intruder who can eavesdrop the communication, redirect messages, create

and send new messages or change messages. Messages exchanged are represented by elements

in a term algebra and the cryptographic primitives are represented by function symbols.

That is, cryptographic functions are treated symbolically assuming perfect cryptography.

Although there can be attacks that are possible in the computational model but are not

captured in the symbolic model due to the abstract representations and assumptions like

perfect cryptography, the symbolic proofs are relatively easier to be automated and can still

capture many practically relevant attacks.

The state space of the protocols is generated by considering both the expected protocol

behaviors and the actions of the intruder. The security properties are verified by exhaus-

tively searching the state space of the protocols for security violations (model checking

approach), or constructing proofs for theorems stating the security properties by induction

on traces (the theorem proving approach). Some of the tools lean more towards the theorem

proving approach. The Tamarin tool [13] specifies protocols using multiset rewriting rules.

The properties are specified in a guarded fragment of first-order logic and checked against

the traces of the transition system by constructing proofs automatically or interactively.

The analyzer Proverif [12] represents the protocol by Horn clauses, and verifies the security

properties through resolution theorem proving. Many other tools are based on the model

checking approach, more specifically, symbolic model checking, in which messages and states

are represented as symbolic patterns. The tool Scyther [21, 15] represents protocol behavior
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as events, sets of events as symbolic trace patterns, and performs backwards search to check

whether the trace patterns can be realized. AVISPA [14] includes a set of model checkers,

e.g., CL-Atse [17], SAT-MC [18] and OFMC [19], which share a common front end. In

Maude-NPA [16], cryptographic protocols are represented as rewrite theories, and the secu-

rity properties are specified as attack states and are verified by performing backwards (i.e.,

from an attack state to an initial state) symbolic reachability analysis based on backwards

narrowing and equational unification. But Maude-NPA also has theorem proving aspects in

terms of managing the state space, which we will mention later.

The state space generated can be infinite. Durgin et al. [22] have shown that the se-

crecy problem is undecidable for unbounded number of sessions and nonces. But it was

later shown by Rusinowitch and Turuani [23, 24] that it is NP-complete if the number of

sessions is bounded, assuming just encryption and decryption primitives. Inspired by this

result, some tools choose to analyze protocol for bounded sessions. For example, the Scyther

tool we mentioned before gives options for choosing between bounded session analysis and

unbounded session analyses. The model checkers CL-Atse, SAT-MC and OFMC perform

analysis assuming bounded sessions. Instead, Proverif, Tamarin and Maude-NPA perform

analysis on an unbounded session model, and therefore they cannot guarantee termination.

Proverif uses abstraction, while Maude-NPA has a built-in induction procedure that rules

out certain non-terminating paths. Tamarin combines induction and heuristics. When the

automatic proof construction cannot terminate, it also allows interactive proof by the user.

When it comes to modeling protocols, there have been two popular ways, used in both tools

and hand written formal proofs. One is process algebra and another one is strand spaces. In

the strand space model [25], the local behaviors of each role is denoted by a strand, which is a

sequence of send and receive events. In the process algebra model (e.g., applied pi calculus)

[26, 27], each role is represented by a process that sends and receives messages from the

network (via channels). Protocol specification in Maude-NPA is based on the strand space

model. Strands are used to represent both the actions of honest principals, with a strand

specified for each protocol role, and the actions of an intruder. Each strand consists of a

sequence of input/output message terms, denoting receiving and sending messages.

Much of the early research in symbolic verification of cryptographic protocols assumed

a free algebra model, in which the crypto system is treated as a ”black box”, the intruder

can learn the original plain text from an encrypted message only when it knows the exact

decryption key. This is the approach taken by the previously mentioned papers [1] and [9].

It has been realized that such an assumption can be too strong. There can be attacks missed

by the verification tools because of that [28, 29, 30]. Therefore, protocol verification con-

sidering the algebraic properties of the cryptographic primitives have become an important
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feature of cryptographic protocol analysis tools. We have seen continuing effort on extend-

ing the tools to handle additional theories [31, 16, 32, 33, 34, 35, 36]. These tools represent

states as symbolic patterns and algebraic properties as equational theories. The algebraic

properties are then considered in the analysis by exploring the states via unification modulo

an equational theory describing the algebraic properties.

One desirable property of the unification algorithm used in cryptographic protocol analysis

is that it can easily accommodate combinations of theories of interest and can be integrated

with state space exploration techniques. Variant unification, first formalized as a general

approach in [37], although used for specific theories much earlier than that (e.g. in [38,

31, 39]), satisfies all these properties. Thus, it is used by many cryptographic protocol

analysis tools in one form or another, including ProVerif [38], OFMC [31], Maude-NPA [16]

and Tamarin [35]. Thanks to its rewriting semantics, Maude-NPA has shown its great

advantages in handling algebraic properties based on variant unification.

Although protocols may be designed alone and analyzed alone, they do not always work

alone. It is also not uncommon that protocols are designed with assumptions that will be

guaranteed by other protocols. The importance of understanding composition has been ac-

knowledged [40, 41, 42, 43, 44, 45, 46]. Maude-NPA has extended its language and semantics

to provides both a specification language and automatic verification methods that support

protocol composition [47, 48], which also provides a base for further study on problems

related to protocol composition in Maude-NPA as done in this thesis.

1.1 SUMMARY OF CONTRIBUTIONS

In this thesis, we present the techniques that we have developed to extend Maude-NPA’s

capabilities on modeling and analyzing cryptographic protocols. We present our research

results in addressing the following challenges:

• How to analyze protocols in which the algebraic properties of the cryptographic prim-

itives cannot be represented by equational theories having the finite variant property?

• How can we naturally model and analyze protocols with choice?

• How can we analyze protocols that are built by composing subprotocols while avoiding

state explosion problems?
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1.1.1 Theories of Homomorphic Encryption, Unification, and the FVP.

Variant unification requires, among other things, that the equational theory be decom-

posable into a set of axioms B and a set of convergent rewrite rules R such that R has

the finite variant property with respect to B [37, 49, 50]. Meaning that, for each term t

in the theory, there is a finite number of most general normal forms for the set of normal

forms of all substitution instances of t. Although most theories that arise in cryptographic

protocols have decompositions suitable for variant unification, there is one major exception:

the theory that describes encryption that is homomorphic over an Abelian group. That is,

a homomorphic property of the form epX ˚ Y,Kq “ epX,Kq ˚ epY,Kq where ˚ obeys the

Abelian group axioms. AGH (the case where ˚ is an abelian Group) is a property belonging

to a number of different cryptographic algorithms, starting with RSA in the late 70’s [51].

In Chapter 3 we address this problem by studying various approximations of homomorphic

encryption over an Abelian group. We construct a hierarchy of theories approximating

homomorphic encryption. The theories are verified to have the finite variant property. As a

result, we have developed finitary unification algorithms for these theories, many for which

are new unification results that had not previously been developed. We also construct

a rough metric about the complexity of a theory with respect to variant unification, i.e.,

variant complexity. We specify different versions of protocols using the different theories,

and analyze them in the Maude-NPA cryptographic protocol analysis tool to assess their

behavior. This provides an experimental evaluation of the performance tradeoff between the

faithfulness and variant complexity of the theories used in the analysis.

1.1.2 Protocol Process Algebra and Strands with Choice.

Roles in cryptographic protocols do not always have a linear execution: they may include

choice points causing the protocol to continue along different paths. The strand space model

[25] does not support choice in its original form; strands describe linear sequences of input

and output messages, without any branching. One response to dealing with this limitation,

and to formalizing strand spaces in general has been to embed the strand space model in

some other formal system that supports choice [52, 53, 54].

To provide support for choice, a commonly used construct, Chapter 4 describes a choice

model that we have developed for the Maude-NPA. We develop and give formal semantics to

a process algebra for cryptographic protocols that supports a rich taxonomy of choice prim-

itives for composing strand spaces, including deterministic and non-deterministic choices.

We have integrated the process algebra syntax in Maude-NPA. This allows one to write
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protocols using the process syntax, which is more convenient for expressing choice than

the strand space syntax. Its expressive power and naturalness are illustrated with various

examples. The correctness of our approach is supported by a soundness and completeness

proof of an extended strand space choice semantics with respect to the process algebra

semantics.

1.1.3 Modular Verification of Sequential Composition for Private Channels.

Security protocols often depend on other protocols to generate the keys and other values

they use to communicate securely. This can be modeled in terms of protocol composition: the

protocol receiving the keys runs as a subroutine of the protocol that generates the keys. But

examining composed protocols can lead to state space explosion. Although some previous

results on protocol composition and analyzing composed protocol in Maude-NPA had been

developed [47, 48], those earlier approaches still lacked effective modular analysis techniques.

In Chapter 5, we present a modular verification methodology in which, given parametric

specifications of a key establishment protocol P and a protocol Q providing private channel

communication, verification of security properties of their sequential composition P ; Q can

be reduced to verification of corresponding properties for P , and of an abstract version Qα

of Q. Our results both support a large class of equational theories and security properties

and provide effective tool support via Maude-NPA. The semantic basis of this methodology

is provided by two simulation relations.

1.2 THESIS PLAN

The rest of this thesis is organized as follows. In Chapter 2 we recall some preliminaries

needed for understanding this thesis. In Chapter 3 we provide a summary of Maude-NPA,

the cryptographic protocol analyzer that the techniques of this thesis are based on. Chapter

4 introduces the FVP theories we developed for homomorphic encryption. We present in

Chapter 4 the protocol process algebra with choice, and its soundness and completeness

results. Chapter 5 presents a methodology for modular analysis of sequential protocol com-

positions for private channels in Maude-NPA. Chapter 6 concludes the thesis and discusses

some possible future work.
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CHAPTER 2: PRELIMINARIES

We follow the classical notation and terminology for term rewriting and for rewriting logic

and order-sorted notions, see [55, 56]. We assume an order-sorted signature Σ “ pS,ď,Σq

with poset of sorts pS,ďq. We also assume an S-sorted family X “ tXsusPS of disjoint variable

sets with each Xs countably infinite. TΣpX qs is the set of terms of sort s, and TΣ,s is the set

of ground terms of sort s. We write TΣpX q and TΣ for the corresponding order-sorted term

algebras. For a term t, Varptq denotes the set of variables in t.

A substitution σ P SubstpΣ,X q is a sorted mapping from a finite subset of X to TΣpX q.
Substitutions are written as σ “ tX1 ÞÑ t1, . . . , Xn ÞÑ tnu where the domain of σ is Dompσq “

tX1, . . . , Xnu and the set of variables introduced by terms t1, . . . , tn is written Ranpσq. The

identity substitution is denoted id. Substitutions are homomorphically extended to TΣpX q.
The application of a substitution σ to a term t is denoted by tσ. For simplicity, we assume

that every substitution is idempotent, i.e., σ satisfies Dompσq X Ranpσq “ H. This ensures

tσ “ ptσqσ. The restriction of σ to a set of variables V is written σ|V . Composition of

two substitutions σ and σ1 is denoted by σσ1. A substitution σ is a ground substitution if

Ranpσq “ H.

Positions in a term are represented by sequences of natural numbers denoting an access

path in the term when viewed as a tree. The top or root position is denoted by the empty

sequence Λ. Given U Ď Σ Y X , PosUptq denotes the set of positions of a term t that are

rooted by symbols or variables in U . The set of positions of a term t is written Posptq, and

the set of non-variable positions PosΣptq. The subterm of t at position p is written t|p and

trusp denotes the term t where t|p is replaced by u.

A Σ-equation is an unoriented pair t “ t1, where t, t1 P TΣpX qs for some sort s P S. Given Σ

and a set E of Σ-equations, order-sorted equational logic induces a congruence relation “E

on terms t, t1 P TΣpX q. The E-equivalence class of a term t is denoted by rtsE and TΣ{EpX q
and TΣ{E denote the corresponding order-sorted term algebras modulo E. An equational

theory pΣ, Eq is a pair with Σ an order-sorted signature and E a set of Σ-equations. The

E-subsumption preorder ĚE (or just Ě if E is understood) holds between t, t1 P TΣpX q,
denoted t ĚE t

1 (meaning that t is more general than t1 modulo E), if there is a substitution

σ such that tσ “E t
1; such a substitution σ is said to be an E-match from t1 to t. A set E

of Σ-equations is regular if for each t “ t1 in E, Varptq “ Varpt1q. A set E of Σ-equations

is sort-preserving if for each t “ t1 in E and for each substitution σ, tσ has sort s iff t1σ has

sort s. A set E of Σ-equations uses top-sort variables if for each t “ t1 in E, the sort of each

variable in Varptq Y Varpt1q is a top sort in the sort order pS,ďq.
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For a set E of Σ-equations, an E-unifier for a Σ-equation t “ t1 is a substitution σ

such that tσ “E t1σ. For Varptq Y Varpt1q Ď W , a set of substitutions CSUW
E pt “ t1q

is said to be a complete set of unifiers for the equality t “ t1 modulo E away from W

iff: (i) each σ P CSUW
E pt “ t1q is an E-unifier of t “ t1; (ii) for any E-unifier ρ of t “

t1 there is a σ P CSUW
E pt “ t1q such that σ|W ĚE ρ|W ; (iii) for all σ P CSUW

E pt “ t1q,

Dompσq Ď pVarptq Y Varpt1qq and Ranpσq XW “ H. If the set of variables W is irrelevant

or is understood from the context, we write CSUEpt “ t1q instead of CSUW
E pt “ t1q. An

E-unification algorithm is complete if for any equation t “ t1 it generates a complete set of

E-unifiers. A unification algorithm is said to be finitary and complete if it always terminates

after generating a finite and complete set of solutions.

A rewrite rule is an oriented pair l Ñ r, where1 l R X and l, r P TΣpX qs for some sort s P S.

An (unconditional) order-sorted rewrite theory is a triple pΣ, E,Rq with Σ an order-sorted

signature, E a set of Σ-equations, and R a set of rewrite rules.

The rewriting relation on TΣpX q, written t ÑR t1 or t Ñp,R t1 holds between t and t1 iff

there exist p P PosΣptq, l Ñ r P R and a substitution σ, such that t|p “ lσ, and t1 “ trrσsp.

The subterm t|p is called a redex. The relation ÑR{E on TΣpX q is “E;ÑR;“E, i.e., tÑR{E t
1

iff there exists u, u1 s.t. t “E uÑR u
1 “E t

1. Note that ÑR{E on TΣpX q induces a relation

ÑR{E on the free pΣ, Eq-algebra TΣ{EpX q by rtsE ÑR{E rt
1sE iff t ÑR{E t1. The transitive

(resp. transitive and reflexive) closure of ÑR{E is denoted Ñ`

R{E (resp. Ñ˚
R{E).

TheÑR{E relation can be difficult to compute. However, under the appropriate conditions

it is equivalent to the R,E relation in which it is enough to compute the relationship on

any representatives of two E-equivalence classes. A relation ÑR,E on TΣpX q is defined as:

tÑp,R,E t
1 (or just tÑR,E t

1) iff there exist p P PosΣptq, a rule l Ñ r in R, and a substitution

σ such that t|p “E lσ and t1 “ trrσsp. We denote by t!R,E the R,E-normal form of term t.

A decomposition pΣ, B,Rq of an equational theory pΣ, E Z Bq is a rewrite theory that

satisfies the following properties: (i) B is regular, sort-preserving and uses top-sort variables,

(ii) B has a finitary unification algorithm, and (iii) the rules R are the left-to-right orientation

as rules of the equations E and are convergent modulo B, i.e., sort-decreasing, confluent,

terminating, and coherent modulo B. Given a decomposition R “ pΣ, B,Rq, a variant of

a term t is a pair pt1, θq such that t1 is a ÑR,B-canonical form of the substitution instance

tθ, i.e., there is a term t2 such that tθ Ñ˚
R,B t2, t2 is a ÑR,B-normal form, and t1 “B t2. A

1We do not impose the requirement Varprq Ď Varplq, since extra variables (e.g., choice variables) may
be introduced in the righthand side of a rule. Rewriting with extra variables in righthand sides is handled
by allowing the matching substitution to instantiate these extra variables in any possible way. Although
this may produce an infinite number of one-step concrete rewrites from a term due to the infinite number
of possible instantiations, the symbolic, narrowing-based analysis used by Maude-NPA and explained below
can cover all those infinite possibilities in a finitary way.
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decomposition pΣ, B,Rq of an equational theory pΣ, E Z Bq has the finite variant property

(FVP) if there is a complete and finite set of variants for each term (see [50, 57] for details). If

a decomposition pΣ, B,Rq of an equational theory pΣ, EZBq has the finite variant property,

there is an algorithm to compute a finite complete set CSUEZBpt “ t1q of pE Z Bq-unifiers

[57].

Let t be a term and W be a set of variables such that Varptq Ď W , the R,E-narrowing

relation on TΣpX q is defined as t ;p,σ,R,E t
1 (;σ,R,E if p is understood, ;σ if R,E are also

understood, and ; if σ is also understood) if there is a non-variable position p P PosΣptq,

a rule l Ñ r P R properly renamed s.t. pVarplq Y Varprqq X W “ H, and a unifier σ P

CSUW 1

E pt|p “ lq for W 1 “ W Y Varplq, such that t1 “ ptrrspqσ. For convenience, in each

narrowing step t;σ t
1 we only specify the part of σ that binds variables of t. The transitive

(resp. transitive and reflexive) closure of ; is denoted by ;` (resp. ;˚). We may write

t; k
σ t
1 if there are u1, . . . , uk´1 and substitutions ρ1, . . . , ρk such that t;ρ1 u1 ¨ ¨ ¨uk´1 ;ρk t

1,

k ě 0, and σ “ ρ1 ¨ ¨ ¨ ρk.

8



CHAPTER 3: OVERVIEW OF MAUDE-NPA

In this chapter, we give a summary of Maude-NPA, the cryptographic protocol analyzer

that this thesis is based on. Further details can be found in [58, 59, 16, 60].

3.1 STATE, STRANDS, PROTOCOL SPECIFICATION

In Maude-NPA, a protocol is modeled as a set of rewrite rules. Specifically, as a rewrite

theory P that describes the actions of honest principals communicating across a network con-

trolled by an intruder. That is, P is a rewrite theory of the form pΣSSP , ESSP , R
´1
BP
q, where

(i) the signature ΣSSP includes predefined symbols and user-definable symbols denoting the

cryptographic functions of the protocol and are based on a parametric sort Msg of messages,

(ii) the algebraic properties ESSP include the algebraic properties of the cryptographic func-

tions and the strand notation, and (iii) the transition rules R´1
BP

are defined on states, i.e.,

terms of a predefined sort State. They are reversed for backwards symbolic execution. The

states are modeled as elements of an initial algebra TΣSSP {ESSP
, i.e., an ESSP -equivalence

class rtsESSP
P TΣSSP {ESSP

with t a ground ΣSSP -term.

A state in Maude-NPA has the form

tS1 & ¨ ¨ ¨ &Sn & tIKuu

where & is an infix associative-commutative union operator with identity symbol H. Each

element in the set is either a strand Si or the intruder knowledge tIKu at that state.

The intruder knowledge tIKu belongs to the state and is represented as a set of facts using

comma as an infix associative-commutative union operator with identity element empty.

There are two kinds of intruder facts: positive knowledge facts (the intruder knows m, i.e.,

mPI), and negative knowledge facts (the intruder does not yet know m but will know it in

a future state, i.e., mRI), where m is a message expression.

A strand [25] Si specifies the sequence of messages sent and received by a principal exe-

cuting the protocol and is represented as a sequence of messages

rmsg˘1 ,msg˘2 ,msg˘3 , . . . ,msg˘k´1,msg˘k s

with msg˘i either msg´i (also written ´msgi) representing an input message, or msg`i (also

written `msgi) representing an output message. Note that each msgi is a term of the special

sort Msg. Variables of a special sort Fresh are used to represent pseudo-random values
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(nonces) and Maude-NPA ensures that two distinct fresh variables will never be merged.

Strands are prefixed with all the fresh variables r1, . . . , rk created by that strand, i.e.,

:: r1, . . . , rk :: rmsg˘1 ,msg˘2 , . . . ,msg˘k s

.

Strands are used to represent both the actions of honest principals (with a strand specified

for each protocol role) and also the actions of an intruder. In Maude-NPA strands evolve

over time; the symbol | is used to divide past and future. That is, given a strand

r msg˘1 , . . . , msg˘i | msg˘i`1, . . . , msg˘k s,

messages msg˘1 , . . . ,msg˘i are the past messages, and messages msg˘i`1, . . . ,msg˘k are the

future messages (msg˘i`1 is the immediate future message). A strand rmsg˘1 , . . . ,msg˘k s is

shorthand for rnil | msg˘1 , . . . ,msg˘k , nils. An initial state is a state where the bar is at the

beginning for all strands in the state, and the intruder knowledge has no fact of the form

mPI. A final state is a state where the bar is at the end for all strands in the state and

there is no intruder fact of the form mRI.

Example 3.1. The Needham-Schroeder public key (NSPK) protocol [8] is as follows:

1. AÑ B : pkpB,A;NAq

2. B Ñ A : pkpA,NA;NBq

3. AÑ B : pkpB,NBq

where NA and NB are nonces generated by the respective principals.

To specify the honest protocol participants, we represent each role in the protocol as a

strand. There are two roles in the NSPK protocol, we therefore define two strands:

:: r ::

[nil | +(pk(B, A;n(A,r))), -(pk(A, n(A,r);NB)), +(pk(B, NB)), nil]

:: r’ ::

[nil | -(pk(B, A;NA)), +(pk(A, NA;n(B,r’))), -(pk(B, n(B,r’))), nil]

The intruder capabilities are specified in Maude-NPA by Dolev-Yao strands. A Dolev-Yao

strand consists of a sequence of negative messages, followed by a single positive message.

Example 3.2. The Dolev-Yao strands for the NSPK protocol are as follows.
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:: nil :: [ nil | -(X), -(Y), +(X ; Y), nil ] &

:: nil :: [ nil | -(X ; Y), +(X), nil ] &

:: nil :: [ nil | -(X ; Y), +(Y), nil ] &

:: nil :: [ nil | -(X), +(sk(i,X)), nil ] &

:: nil :: [ nil | -(X), +(pk(A,X)), nil ]

The symbol & is the union operator for sets of strands. The operator ; denotes concatenation

of messages. If the intruder knows messages X and Y , he can construct X;Y . If he knows

X;Y , he can find X and Y . The operators sk and pk denote encryption with a private key

and encryption with a public key respectively. The principal’s name is used to stand for

the key. The intruder can only apply the sk operator using his own identity. Note that the

shared variables are automatically renamed when necessary.

Attack patterns define final states used for backwards search. The attack patterns are

specified symbolically as terms (with variables) whose instances are the final attack states

we are looking for. Since more than one attack patterns can be specified, we designate each

attack pattern with a natural number.

Example 3.3. In the NSPK protocol, to check the secrecy attack in which an instance of

Bob’s role has finished its execution (by having the vertical bar at the end), and the intruder

has learned the nonce, n(b,r’), generated by this Bob’s instance, we specify the following

attack pattern:

eq ATTACK-STATE(0) =

:: r’ ::

[ nil,

-(pk(b,a ; NA)),

+(pk(a, NA ; n(b,r’))),

-(pk(b,n(b,r’))) | nil ]

|| n(b,r) inI

|| nil || nil || nil

[nonexec] .

3.2 ALGEBRAIC PROPERTIES

Maude-NPA performs symbolic reachability analysis modulo the equational theory ex-

pressing the algebraic properties of the protocol cryptographic functions. This makes Maude-

NPA verification much stronger than verification methods based on a purely syntactic view
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of the algebra of messages. It is well-know that protocols ”proved” secure without taking into

account the algebraic properties of their cryptographic functions can sometimes be broken

[28, 29, 30] .

There are three types of algebraic properties that can be specified in Maude-NPA:

1. axioms, allowing any combination of associativity (A), commutativity (C), and identity

(U) axioms,

2. equations, also called variant equations, and

3. metadata equations, the equations associated to dedicated unification algorithms.

Example 3.4. In NSPK, we consider the cancellation between encryption and decryption,

which is defined by the variant equations as follows:

eq pk(A:Name,sk(A:Name,X:Msg)) = X:Msg [variant] .

eq sk(A:Name,pk(A:Name,X:Msg)) = X:Msg [variant] .

Maude-NPA uses variant narrowing [57] for unification of symbolic terms modulo the

variant equations and the axioms specified for the algebraic properties of the protocol. In

order for variant narrowing to provide a finite set of unifiers, an equational theory T “

pΣ, E Y Bq describing the algebraic property of cryptographic functions in a protocol is

required to satisfy the following requirements:

1. The axioms B can be any combination of associativity (A), commutativity (C), and

identity (U) axioms.

2. The equations E, when oriented as left-to-right rewrite rules, are sort-decreasing, con-

fluent, terminating and coherent modulo B, and satisfy the finite variant property.

Confluence. The equations E are confluent modulo B if and only if for each term t in the

theory, if t ÝÑ˚
E{B u and t ÝÑ˚

E{B v, then there are terms w1, w2 such that: u ÝÑ˚
E{B w1,

v ÝÑ˚
E{B w2, and w1 “B w2.

Termination. The equations E are terminating modulo B if and only if all rewrite se-

quences terminate; that is, there is no infinite sequence of rewrites:

t0 ÑE{B t1 ÑE{B t2 . . . tn ÑE{B tn`1 . . .

Confluence, termination and sort-decreasingness can be checked in the Maude Formal

Environment (MFE) [61].
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Coherence. For Maude-NPA, coherence is mainly an issue for A, AC and ACU symbols.

Given a set E of oriented equations, the following method [58] can be applied to make E

coherent modulo such axioms. For any symbol f which is AC, and for any equation of

the form fpu, vq “ w in E, add the equation fpfpu, vq, xq “ fpw, xq, where x is a new

variable. If f is ACU with identity symbol e, we replace the equation fpu, vq “ w by

the extended equation fpfpu, vq, xq “ fpw, xq. If f is associative only, add the equations

fpx, fpu, vqq “ fpx,wq, fpfpu, vq, yq “ fpw, yq, and fpx, fpfpu, vq, yqq “ fpx, fpw, yqq. Note

that some equations may already be coherent modulo AC or ACU, so the extra equations

are not needed.

The Finite Variant Property. The essential condition for Maude-NPA is the finite

variant property [62]. This condition is satisfied by many useful cryptographic theories. We

have defined this property in the Preliminaries.

Note that whether or not an equational theory has the finite variant property is undecid-

able [63]. However, there is a semi-decision procedure [64] that works well in practice. This

check can be performed in Maude by using the get variants command: if for each oper-

ator f : S1 S2 ¨ ¨ ¨Sn Ñ S in the theory, the set of variants obtained by the get variants

command for the term fpX1 : S1, . . . , Xn : Snq is finite, then the theory has the finite variant

property. If any such term fpX1 : S1, . . . , Xn : Snq has an infinite set of variants (which

in practice will be suggested by Maude not terminating its process of generating variants),

then the theory does not have the finite variant property.

3.3 BACKWARDS AND FORWARDS REACHABILITY ANALYSIS

Maude-NPA analyzes cryptographic protocols by performing backwards search from a

user-specified final state while considering the algebraic propertied of the cryptographic

primitives that are specified in the form of an equational theory. Since the number of states

TΣSSP {ESSP
is in general infinite, rather than exploring concrete protocol states rtsESSP

P

TΣSSP {ESSP
Maude-NPA explores symbolic strand state patterns rtpx1, . . . , xnqsESSP

P

TΣSSP {ESSP
pX q on the free pΣSSP , ESSP q-algebra over a set of variables X . In this way, a

state pattern rtpx1, . . . , xnqsESSP
represents not a single concrete state but a possibly infinite

set of such states, namely, all the instances of the pattern rtpx1, . . . , xnqsESSP
where the

variables x1, . . . , xn have been instantiated by concrete ground terms.

The backwards semantics of Maude-NPA is expressed in terms of the following forward

rewrite rules RBP that describe how a protocol moves from one state to another via the

intruder’s interaction with it.
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tSS & rL | M´, L1s & tMPI, IKuu Ñ tSS & rL,M´ | L1s & tMPI, IKuu (-)

tSS & rL | M`, L1s & tIKuu Ñ tSS & rL,M` | L1s & tIKuu (+)

tSS & rL | M`, L1s & tMRI, IKuu Ñ tSS & rL,M` | L1s & tMPI, IKuu (++)

@ rl1, u
`, l2s P P : tSS& r l1|u

`, l2 s& tuRI, IKuu Ñ tSS& tuPI, IKuu (&)

where L and L1 are variables denoting a list of strand messages, IK is a variable for a set of

intruder facts (mPI or mRI), SS is a variable denoting a set of strands, and l1, l2 denote a list

of strand messages. The set R´1
BP

of backwards state transition rules is defined by reversing

the direction of the above set of rules t(-), (+), (++)u Y (&). The intruder knowledge acts

as the only communication channel. The Rule (-) denotes receiving a message. Rules (+)

and (++) describe sending a message. Extra strands necessary to reach an initial state

are dynamically added by (&), a set of protocol-specific rewrite rules. In the backwards

executions of (&), (++), uRI marks when the intruder learnt u.

In the backwards semantics, Maude-NPA attempts to find a path from an initial state

to the attack pattern via backwards narrowing (narrowing using the rewrite rules with the

orientation reversed). That is, a narrowing sequence from an initial state to an attack state

is searched in reverse as a backwards path from the attack state to an initial state. Maude-

NPA attempts to find paths until it can no longer form any backwards narrowing steps, at

which point it terminates. If at that point it has not found an initial state, the attack pattern

is shown to be unreachable modulo ESSP . Note that Maude-NPA places no bound on the

number of sessions, so reachability is undecidable in general. However, the tool makes use

of a number of sound and complete state space reduction techniques that help to identify

unreachable and redundant states, and thus make termination more likely.

The forwards semantics of Maude-NPA [60] is expressed in terms of rewrite rules RFP that

describe how protocol transitions from one state to another via the intruder’s interaction

with it. The rewrite rules RFP are extracted from the strand specification SSpecP of a

protocol. A state consists of a multiset of partially executed strands and a set of terms

in the intruders knowledge. Unlike the backwards semantics, only the part of the strand

that has already executed is present in the state, and each such partial strand instantiates a

prefix of a strand in P . One progresses by either: (i) adding a positive message to an existing

strand, denoting sending out a message, (ii) adding a negative message to an existing strand

only if it is already present in the intruders knowledge, which denotes receiving a message
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or (iii) starting a new strand. For example, the intruder encryption capability denoted by

the strand r´pKq,´pMq,`pepK,Mqs has the following associated rewrite rules:

tSS& tKPI, IKu u Ñ tSS& r´pKqs& tKPI, IKu u

tSS& r´pKqs& tMPI, IKu u Ñ tSS& r´pKq,´pMqs& tMPI, IKu u

tSS& r´pKq,´pMqs& tIKu u Ñ tSS& r´pKq,´pMq,`pepK,Mqs

tepK,MqPI, IKu u

where SS denotes a set of strands and IK a set of intruder knowledge facts. In this way, a

protocol P defined in Maude-NPA by an equational theory pΣSSP , ESSP q and strand spec-

ification SSpecP also defines a corresponding rewrite theory pΣSSP , ESSP , RFPq defining its

rewriting logic forward semantics.

The forwards execution of a protocol begins with an “empty” initial state, that is, a state

with the empty set of strands and intruder knowledge. The protocol is executed to determine

whether or not an attack state can be reached, where an attack state is a ground instance

of a state pattern specified by the user. One progresses by applying rewrite rules to states.

3.4 SEQUENTIAL PROTOCOL COMPOSITION

To support sequential protocol composition, strands can be extended with synchronization

messages [48] of the form

tRole1 Ñ Role2 ; ; mode ; ; wu

where Role1, Role2 are constants of sort Role provided by the user, mode can be either

1-1 or 1-* representing a one-to-one or one-to-many synchronization (whether an output

message can synchronize with one or many input messages), and w is a term representing the

information passed along in the synchronization messages. These synchronization messages

are intended for reasoning about child protocols that use information received from the

parent protocols, e.g., a session key establishment protocol that uses a master key received

from a master key establishment protocol.

Intuitively, the sequential composition of two strands describes a situation in which one

strand (the child), can only execute after another strand (the parent) has completed its

execution. Each composition of two strands is obtained by matching the output parameters

of the parent strand with the input parameters of the child strand in a user-specified way.

Note that it may be possible for a single parent strand to have more than one child strand.
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Definition 3.1 (Sequential Strand Composition[48]). Given two strands paq :: ÝÑra :: rt
ÝÑ
Iau,

ÝÑ
Ma, t

ÝÑ
Oaus and pbq :: ÝÑrb :: rt

ÝÑ
Ib u,

ÝÑ
Mb, t

ÝÑ
Obus that are properly renamed to avoid variable shar-

ing, a sequential strand composition is a triple of the form pa, b,MODEq, where a and b

denote the parent and child roles, respectively, and MODE is either 1-1 or 1-*, indicating

a one-to-one or one-to-many composition. This triple satisfies the following conditions for

consistency:

1. both
ÝÑ
Oa and

ÝÑ
Ib have the same length, i.e.

ÝÑ
Oa “ m1, . . . ,mn and

ÝÑ
Ib “ m1

1, . . . ,m
1
n, and

2. there exists at least one substitution σ such that
ÝÑ
Oa “EP

ÝÑ
Ibσ.
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CHAPTER 4: THEORIES OF HOMOMORPHIC ENCRYPTION,
UNIFICATION, AND THE FINITE VARIANT PROPERTY

4.1 INTRODUCTION

Recent advances in the automated analysis of cryptographic protocols [31, 16, 32, 66,

34, 35] have demonstrated that state exploration via unification modulo theories is often

manageable and can make a substantial difference to the expressiveness of the system model

and the accuracy and effectiveness of the formal analysis. In systems of this type, protocol

execution paths are computed by unifying messages received with messages sent. Since

equational properties are usually involved, the unification must be modulo the equational

theory describing those properties. The technique of variant unification, first formalized as

a general approach in [37], although used for specific theories much earlier than that (e.g. in

[38, 31, 39]), is used by many cryptographic protocol analysis tools in one form or another,

including ProVerif [38], OFMC [31], Maude-NPA [16] and Tamarin [35].

In order for variant unification to work, the equational theory pΣ, E Z Bq of interest

must be decomposable into pΣ, B,Rq, where: (1) B is regular and has a finitary unification

algorithm, (2) R are the rules obtained by orienting the equations E from left to right;

they are confluent, terminating, and coherent modulo B (for simplicity, we will simply say

from now on that the rules R are convergent modulo B) and (3) R has the finite variant

property (FVP) [50] with respect to B; i.e., for each term t there is a finite set of most

general pairs tpσ1, t1q, . . . , pσn, tnqu (called variants) of ÑR,B-normalized substitutions and

terms such that tσi normalizes to ti modulo B. Fortunately, many cryptographic theories

of interest can be decomposed in this way, with B being any combination of A, C, and U

axioms.

However, there is one important family of theories that fails to have a decomposition that

satisfies our requirements: H for a homomorphic property of the form epX˚Y,Kq “ epX,Kq˚

epY,Kq where ˚ may or may not have other properties. AGH (the case where ˚ is an Abelian

group) is a property belonging to a number of different cryptographic algorithms, starting

with RSA in the late 70’s [51], and from early on it was realized to have a number of potential

applications, including anonymous payment systems [67], computation on encrypted data

[68], and voting [69].

The fact that the theory AGH by itself does not satisfy our needs does not mean that all

is lost, however. But it does mean that we must investigate approximations that give us the

1This chapter is based on the paper [65], joint work with Santiago Escobar, Catherine A. Meadows, José
Meseguer and Paliath Narendran.
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ability to model a broad class of protocols while still satisfying the conditions necessary for

variant based unification. First, we could use a dedicated unification algorithm for AGH, as

we did in [70] for H; however, this is not satisfactory, see Section 4.2.2 for the reasons. Second,

we can use an under-approximation of AGH, as we did in [70] with only one homomorphic

encryption operator. Third, we can embed AGH or a subtheory in a richer theory; this may

introduce false paths when verifying a protocol, but these can be discarded upon inspection.

Fourth, we can use a combination of under and over-approximations in the same theory.

Such a strategy of course requires a fair amount of experimentation, both in checking

for FVP and in using the theories in protocol analysis. Although necessary and sufficient

conditions for FVP have been known for some time [50, 57], checks for these conditions are

not straightforward to implement. Indeed, this turns out to be an undecidable problem [63].

However, a new semi-decision procedure for FVP has been developed which works well

in practice as already explained in Section 3.2. The other properties of a decomposition

pΣ, B,Rq can be checked via the use of the Maude Formal Environment [61]. Thus it has

become straightforward for us to verify that an equational theory has the properties we need.

The ability to generate all the variants of each term of the form fpX1, . . . , Xnq for each

f P Σ also gives us a measure of the overhead introduced by using this theory in a variant-

based cryptographic protocol analysis tool: the larger the number of variants produced, the

larger the number of variants of a state generated by a unification-based protocol analysis

tool, and thus the larger the number of states generated during a search, and the longer the

time required to generate them. We refer to this, admittedly quite rough, measure as the

variant complexity of the equational theory.

All these capabilities taken together greatly facilitate the definition and verification of

theories with the finite variant property, and allow us to refine our strategy for generating

theories with FVP decompositions. We start with a non-FVP theory such as homomorphic

encryption, or a theory with an unacceptably large variant complexity. First, we add equa-

tions that we conjecture achieve a finite number of variants. Then we check for convergence

modulo B using Maude tools. If convergence is not satisfied we add additional equations

(possibly suggested by Maude Church-Rosser checker’s output) and try again. Once we are

satisfied that the theory is convergent modulo B, we then use Maude to check for FVP

and compute its variant complexity. We can then test the theory using Maude-NPA. If the

performance is unacceptable we go through the process again, introducing under or over

approximations to achieve a lower variant complexity. If the performance is acceptable we

may again try to tweak the theory, but in this case to increase its faithfulness to the theory

of interest rather than reducing variant complexity. We note that use of under approxi-

mation means that Maude-NPA may miss attacks (that is, it affects completeness), while
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over approximation means that Maude-NPA may find spurious attacks (that is, it affects

soundness). Thus, ultimately we would expect to use several different theories, some under

and some over approximations to approximate a theory of interest.

4.1.1 The contributions

The contributions of this chapter are thus fourfold. First, we develop a general strategy for

approximating theories without FVP or with high variant complexity by using a combination

of under-approximation (eliminating equations from a theory or substituting them by weaker

ones) and over-approximation (adding additional function symbols and equations), and then

computing the variant complexity. The use of Maude to verify convergence modulo B and

to compute the variant complexity greatly facilitates the experimentation needed to carry

this strategy out.

Secondly, we apply the strategy to develop a hierarchy of theories approximating homo-

morphic encryption that are verified to have the finite variant property.

Thirdly, as a result of proving the finite variant property for the theories in the hierarchy,

we automatically obtain unification algorithms for these theories, which to the best of our

knowledge are new unification results except for the already known H and AGH cases.

Fourthly, we have performed a careful experimental evaluation of the performance tradeoff

between the faithfulness with which the theory models cryptographic operations and the

number of variants, giving us a better understanding of how variant complexity affects

performance of automated protocol analysis tools. We used the most promising theories

from the point of view of variant complexity and reasonable expressiveness to specify and

analyze different versions of two protocols using the unification-based cryptographic protocol

analysis tool Maude-NPA [16]. In one of the protocols, two principals A and B want to learn

the result of performing the operation ˚ on their respective secret information DA and DB

without revealing the information to each other, or DA ˚ DB to anyone else. Each one

encrypts its information using a homomorphic encryption algorithm and sends it to a server,

who performs the operation ˚ on the encrypted data and sends it to A and B who decrypt

the result to obtain DA ˚ DB. In [70] it was shown that the protocol was subject to an

authentication attack if a principal was unable to tell whether it had received valid data or

nonsense. In that paper * was a free operator, so the theory E had a trivial decomposition,

in which R “ H and B “ E. We show in the present work that in the case where ˚ is a group

operator it is also subject to a secrecy attack: A can simply compute D´1
A ˚ pDA ˚ DBq to

obtain DB. In the other protocol, two principals A and B intend to agree on a secret while

using a hash to protect the integrity of the messages. But the hash function is flawed in the

19



XORH8 AGH8oooo

2XORH48
33

OOOO

2AGH2276 //

OOOO

oooo 2AGHD2279 // // 2XORHD51

PXorAAH22
&

OO

11 PXorAAHD
28
&

OO

PXorH12
&

OO

22 PXorHD
18
&

OO

APGAAH32
&

//

OO

cccc

APGAAHD38
&

OO

:: ::

APGH20
&

55

22

OOOO

APGHD26
&

jj

OOOO

PGAAH22
&

OO

// PGAAHD38
&

OO

PGH20
&

//

OO

55

PGHD26
&

OO

jj

H8
&

//

OO

HD13
&

OO

H8 //

OO

HD8

OO

3H4 //

OO

3HD29

OO

Figure 4.1: Relations between the theories discussed in this work

sense that it is homomorphic. As a result, there is an authentication attack in which the

responder B may think that he has shared a secret with A when A actually didn’t participant

in the protocol. This attack was also found in [70]. We were able to found this attack using

theories presented in this work. We also present a fix that can prevent the attack when ˚ is

a free operator, which is the case that is shown in [70], but cannot prevent the attack when

˚ has a richer axioms. To our knowledge, this is the first successful use of a cryptographic

protocol analysis tool to analyze homomophic encryption over theories obeying nontrivial

equational theories.

The theories for which we have found variant-based unification algorithms using our strat-

egy are summarized in Figure 4.1. We explain the notation in Figure 4.1 as follows. A full

arrow denotes theory inclusion, a full arrow with two heads denotes a theory quotient, and

a dotted arrow denotes a generalization, which is not a theory inclusion, but where more

equations and/or axioms have been added. All theories are described in Section 4.3 and

involve the function epX,Kq where e is an encryption operator, X is a term of sort Message,

and K is a term of sort Key or Keys depending on the theory, where such sorts are always

subsorts of Message. H denotes the homomorphic equation epX ˚Y,Kq “ epX,Kq ˚ epY,Kq.

kH denotes the bounded homomorphism theory, in which sorts are used to restrict the num-
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Theories Over-Approximation

kH -

H& Over approximation of H via use of multiset of keys.

PGH&, PGAAH&,
APGH&, APGAAH& Over approximation of H via use of multiset of keys.

PXorH&, Over approximation of H via use of multiset of keys.

PXorAAH& Over approximation of Group Axioms*.

2AGH -

2XORH Over approximation of Group Axioms*.

* Note that this is not an over-approximation when the encryption function
being modeled is indeed a homomorphism over Xor.

Table 4.1: Summary of Over approximations w.r.t. AGH

Theories Under-Approximation

kH Under approximation of H via bound on message length.
No group axioms.

H& No group axioms.

PGH&

PGAAH&

APGH&

APGAAH& Under approximation of associativity axiom.
PXorH&

PXorAAH&

2AGH Under approximation of H via use of two groups instead of one*.
Under approximation of encryption via bound on number of keys.

2XORH Under approximation of H via use of two groups instead of one*.
Under approximation of encryption via bound on number of keys.

* Note that this is not an under-approximation when the encryption function
being modeled is indeed a homomorphism from one group to another.

Table 4.2: Summary of Under approximations w.r.t. AGH

ber of variants of hpxq that can be computed. The symbol & represents the addition of

an AC binary function symbol & on terms of a new sort Keys; it can be thought of as a

multiset union operator. This introduces an over approximation if the order of applications

of encryption to a message matters. PG adds an inverse p q´1, a constant 1 and equations

making ˚ a pre-group operator (unit, inverses, but no associativity, also known as a loop,

see [71] ), while APG makes ˚ an Abelian pre-group operator (commutativity, unit, inverses,

but no associativity). PXor makes ˚ a pre-Exclusive-or operator (Exclusive-or without asso-

ciativity). AA denotes an under approximation of associativity. D denotes the decryption

equation dpepX,Kq, Kq “ X; this says that the result of decrypting an encrypted message is

the original message. 2AGH denotes homomorphic encryption that maps one Abelian group
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to another: epX ˚a Y q “ epXq ˚b epY q. The operators ˚a and ˚b are Abelian group operators

(commutativity, unit, inverses, associativity). Notice that, there is no key explicitly defined

in 2AGH, since encryption with a specific key is implicitly captured by the definition of the

encryption operator e. 2XORH denotes homomorphic encryption over two Xor operators,

which is an over approximation of 2AGH. In all cases the axioms B are either B “ H or the

union of all the equations defining C and AC properties. We also note that in many cases

we completed the theory to ensure convergence; these are described in detail in Section 4.3.

The superscript number of each theory denotes the “variant complexity” and denotes the

sum of the number of variants obtained for each function symbol in the theory (excluding

constants). If the superscript is 8, this means that the theory doesn’t have the FVP. The

details of over approximation and under approximation w.r.t. AGH of all theories are given

in Tables 4.1 and 4.2 respectively. The theories with a decryption operator are omitted from

Tables 4.1 and 4.2 .

The rest of this chapter is organized as follows. In Section 4.2 we give the motivation of

FVP in terms of cryptographic protocol analysis. In addition we describe related work in

unification and apply it to show that none of the possible decompositions of AGH satisfy

the necessary conditions for variant unification. In Section 4.3 we present the various homo-

morphic theories we investigated and their properties. In Section 4.4 we present the results

of performing experiments on several representative theories, using Maude-NPA to analyze

protocols specified using these theories. We conclude in Section 4.5.

4.2 MOTIVATION AND RELATED WORK

In this section we discuss the related work that precedes and motivates the work presented

in this chapter. This is divided into two parts. The first motivates our interest in FVP in

terms of its application to cryptographic protocol analysis. The second gives a brief history of

work on unification modulo one-sided distributivity that applies to homomorphic encryption

and uses these results to show that no decomposition of AGH satisfies all the conditions

necessary for the finite variant property, and thus demonstrates the need for other solutions

such as theory approximations.

4.2.1 Motivation

Unification-based cryptographic protocol analysis tools are used to analyze cryptographic

protocols in which an attacker interacting with the protocol may cause security properties to

be violated. Actions of principals are modeled symbolically using logical variables, and paths
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through protocols are computed by unifying messages expected by a principal with messages

sent by a principal, often modulo some equational theory that describes the properties of

the crypto algorithms used.

Any unification technique used in cryptographic protocol analysis must satisfy two prop-

erties. First of all, it must behave well with respect to composition, especially of disjoint

theories, since cryptographic protocols often combine different algorithms described by dif-

ferent theories. Although methods for combining unification algorithms of disjoint theories

are well-known [72, 73], the solution in the general case can be highly nondeterministic and

inefficient, so more efficient special algorithms are desirable.

The second property that must be satisfied is a little more subtle, and has to do with the

fact that many of the state space reduction techniques used require that terms in the state

be in some kind of normal form with respect to the theory E Z B used. Generally this is

expressed by writing EZB as a decomposition pR,Bq where B is regular and has a finitary

unification algorithm, and R are the rules obtained by orienting E, which are convergent

modulo B. This ensures enough stability in normal form representations of terms so that

syntactic state space reduction techniques can be applied.

Both the first and second desiderata of unification-based cryptographic can be achieved, if

the decomposition pR,Bq has the finite variant property, via variant unification as described

in Chapter 2. Since the first step of variant unification requires the computation of all the

irreducible variants of each side of the unification problem, and a solution is discarded if

a solution makes either side reducible, variant unification guarantees the irreducibility con-

straint required by state space reduction techniques. Moreover, variant unification behaves

well under composition, at least in the area of cryptographic protocol analysis. First of all,

the axioms B are relatively few and well-understood. Moreover, if the combination of the

two theories also has a finite variant decomposition, then the same finite variant algorithm

can be applied as well.

Not surprisingly many tools have followed approaches similar, if not identical, to variant

unification. Both Maude-NPA [16] and Tamarin [35] use variant-based unification explicitly.

Indeed support for variant-based unification is built into Maude 2.7. Moreover, other tools

have used approaches that have many features in common with variant-based unification.

For example, ProVerif [38, 74] and OFMC [31, 75] both compute the variants of protocol

rules, modulo the free theory for ProVerif, and modulo the free theory or AC for OFMC.

This has the effect of computing the variants of both sides of the unification problem. More

recently, variants have been applied to expanding the capacity of ProVerif to deal with AC

theories. Thus, in [66] Küsters and Truderung implement a special case of the exclusive-or

theory in the ProVerif tool by expressing it as a rewrite theory with the finite variant property
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with respect to the free theory and computing variants that are unified syntactically. This

requires some restrictions on the syntax of the protocol, however. Similar approaches have

been applied by Küsters and Truderung for modular exponentiation [32], and Arapinis et al.

[34] for commuting encryption and AC theories.

Variant-based unification does have some drawbacks, however. First of all, it can be ineffi-

cient for theories of high variant complexity. This can be mitigated by the use of asymmetric

unification [76], in which only the variants of the right-hand side of a unification problems

are computed, and irreducibility constraints are also enforced only on the right-hand sides.

This requires the use of specialized asymmetric unification algorithms, so combination is no

longer as straightforward, but it is still possible to apply the state space reduction techniques,

and efficiency gains, as shown in [76], can be dramatic.

A more serious problem arises when a theory of interest fails to have an FVP decomposition

at all. Fortunately, most theories of interest to cryptographic protocol analysis are FVP

with respect to a decomposition in which B is either the empty theory or any combination

of A, C, and U axioms. However, there is one notable exception, the theory of encryption

homomorphic over another operator, that is epX ˚ Y,Kq “ epX,Kq ˚ epY,Kq where ˚ is an

operator that may have some other equational properties, shown not to satisfy FVP when

the homomorphic equation is in R by Comon and Delaune in [50]. Comon and Delaune

consider the case in which e has only one argument and ˚ is exclusive-or, but their case can

be considered as corresponding to a degenerate case of e with two arguments, in which only

one key is used. Moreover, their counterexamples apply to any sub theory of the theory they

use for ˚, including the Abelian group theory, AC, and the free theory.

Comon and Delaune prove their result by producing counterexamples to a property that

they show to be equivalent to FVP. However, it is also easy to produce direct counter

examples. Assuming that the distributive equation is oriented as the rewrite rule epX ˚

Y q Ñ epXq ˚ epY q, then the irreducible variants of epZq are rpepZq, ιq, pepZ1q ˚ epZ2q, tZ ÞÑ

Z1 ˚ Z2uq, . . .s. If the equation is oriented as epXq ˚ epY q Ñ epX ˚ Y q, then the variants of

epZ ˚W q are rpepZ ˚W q, ιq, pepepZ1 ˚W1qq, tZ ÞÑ epZ1q,W ÞÑ epW1quq, . . .s.

4.2.2 Related Work in Equational Unification and its Application to Decompositions of
AGH

Equational theories that include a homomorphic property appear in many applications,

and thus there is a long history of research on unification in this area. As in Comon and

Delaune, the homomorphic operator under consideration generally has only one argument.

However, as shown before, this theory can be considered as applying to a degenerate case of
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homomorphic encryption in which only one key is used and so is still relevant.

The earliest work on homomorphic theories is by Tiden and Arnborg [77] who gave a

unification algorithm modulo the theory of one-sided distributivity:2 x ˚ py ` zq “ px ˚ yq `

px ˚ zq. The complexity of their algorithm is exponential. A polynomial-time algorithm for

unifiability (existence of a unifier) modulo this theory was developed by Marshall [78, 79].

An alternative unification algorithm using a very different approach was developed by Hai

Lin in his dissertation [80, 81]. This algorithm for the equational property epX ˚ Y,Kq “

epX,Kq ˚ epY,Kq in which ˚ is a free operator was implemented in Maude-NPA and several

protocols were tested [70].

Theories of homomorphisms of the form epx ˚ yq “ epxq ˚ epyq, where the ˚ operator has

additional properties, were first considered by Nutt [82] and also by Baader [83, 84]. The

unification problem is decidable when ˚ is an Abelian group [84] and undecidable when ˚ only

has the associative and commutative properties [85]. The decidability results were extended

to one-sided distributivity in [86, 87]. Liu in [88] gives a dedicated algorithm for the case in

which ˚ is exclusive-or.

We make use of all these previous results to study the decompositions of AGH and show

that none of them meet our needs. We give the equations for AGH below (ignoring equations

needed to complete the theory for coherence):

px ˚ yq ˚ z “ x ˚ py ˚ zq (4.1)

x ˚ y “ y ˚ x (4.2)

x ˚ 1 “ x (4.3)

x ˚ pxq´1
“ 1 (4.4)

ep1q “ 1 (4.5)

epx ˚ yq “ epxq ˚ epyq (4.6)

We note that although unification modulo AGH itself is finitary, this does not help us

for variant-based unification, since AGH is not regular. Indeed, because of the need for

regularity of B (without it a convergent decomposition becomes practically impossible),

Eq. 4.4 must be in R for any decomposition pΣ, B,Rq. Moreover, because commutativity

can not be written as a rewrite rule, and because unification modulo associativity without

commutativity is not finitary, Eqs. 4.1 and 4.2 must be in B.

We also know that if Eq. 4.6 is in R, then the decomposition will fail to have the fi-

nite variant property, as we have noted earlier. Thus the only choices left for B are B1 “

2Note: in this theory the operation ` corresponds to our use of ˚ and ˚ corresponds to our use of e.

25



t4.1, 4.2, 4.3, 4.5, 4.6u, B2 “ t4.1, 4.2, 4.6u, B3 “ t4.1, 4.2, 4.5, 4.6u, andB4 “ t4.1, 4.2, 4.3, 4.6u.

Unification for B1 and B2 is known to be undecidable [85]. The theories B3 and B4 have not

been as well studied, but we note that the problems epxq “? x and x˚x “? x have nonfinitary

solutions for B3 and B4 respectively. For the former, the set of mgu’s is txÑ 1, xÑ 1˚1, . . .u;

for the latter it is txÑ ep1q, xÑ epep1qq, . . .u.

4.3 FVP THEORIES OF HOMOMORPHIC ENCRYPTION

In this section we present all these theories mentioned in Figure 4.1. All the theories are

based on the following homomorphic theory.

Definition 4.1. The homomorphic theory is defined as TH “ pΣH,H, RHq. The signature

ΣH is defined by sorts tKey,Msgu with the subsort relation Key ă Msg, the binary operator

˚ : Msg ˆ Msg Ñ Msg, the encryption operator e : Msg ˆ Key Ñ Msg. and possible

symbols for constructing keys. The set RH of rules contains only the following rule, which

is a variation of Equation (4.6), where X, Y are of sort Msg and K is of sort Key:

epX ˚ Y,Kq Ñ epX,Kq ˚ epY,Kq (4.7)

The bounded homomorphism theories kH and kHD are presented in Section 4.3.1, in

which the number of message concatenations by ˚ are bounded taking advantage of sorts.

The theories H& and HD& for homomorphic encryption with a multiset of keys are presented

in Section 4.3.2.1, in which an AC binary function symbol & on keys is introduced, and the

homomorphic encryption thus uses a multiset of keys instead of a key. The theories PGH&,

PGHD& for homomorphic encryption over a Pre-Group are presented in Section 4.3.2.2.

Besides the AC binary function symbol & on keys, these theories also feature an inverse

operation p q´1, a unit constant 1 and equations making the binary operator ˚ a pre-group

operator (unit, inverses, but no associativity). The theories are extended with associativity

approximation in PGAAH& and PGAAHD&. Theories APGH&, APGHD& denoting ho-

momorphic encryption over an Abelian Pre-Group are presented in Section 4.3.2.3. Based

on homomorphic encryption over a Pre-Group, the operator ˚ is further interpreted as an

Abelian pre-group operator (commutativity, unit, inverses, but no associativity). The theo-

ries APGH&, APGHD& are extended with associativity approximation in APGAAH& and

APGAAHD& respectively. Theories PXorH&, PXorHD& denoting homomorphic encryption

over a Pre-Xor operator are presented in Section 4.3.2.4. Based on homomorphic encryp-

tion over an Abelian Pre-Group, the operator ˚ is now interpreted as a pre-Xor operator

(exclusive-or without associativity). The theories PXorAAH& and PXorAAHD& extend
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PXorH& and PXorHD&, respectively with associativity approximations. Theories 2AGH

and 2AGHD are presented in Section 4.3.3.1, and 2XORH in Section 4.3.3.2. 2AGH denotes

homomorphic encryption that maps one Abelian group to another. 2XORH denotes homo-

morphic encryption over two Xor operators, which is an over approximation of 2AGH. We

have proved that these theories all have the FVP. Therefore, they can be often combined

with other theories with disjoint symbols, which is another great benefit of our approach.

As an example, we presented in each Section the theories that can be combined with TPK,

a theory denoting another encryption which is not homomorphic. The combined theories

kHPK, kHDPK, H&PK, HD&PK, ... all have the FVP.

We also note that, any FVP decomposition pΣ, B,Rq has a fixed minimal set of variants

determined by the symbols in Σ. We use this to introduce the notion of variant complexity,

which can be used as a rough metric of the complexity inherent in using a particular theory.

Definition 4.2. For T “ pΣ, B,Rq, the decomposition of an FVP theory, the variant com-

plexity is defined as the sum vcpT q “
ř

fPΣ vpfq, where vpfq is the cardinality of the complete

and finite set of variants of fpv1, . . . , vnq where v1, . . . , vn are distinct variables of the biggest

possible sorts making fpv1, . . . , vnq well typed.

Example 4.1. Consider the theory with sorts tMsg,Keyu, operators: e : Msg ˆ Key Ñ

Msg, d : Msg ˆ Key Ñ Msg and rule dpepX,Kq, Kq “ X, where X is of sort Msg, and

K is of sort Key. The variant complexity of this theory is 3, since the term epX,Kq has

1 variant: pepX,Kq, ιq and the term dpX,Kq has 2 variants: pdpX,Kq, ιq and pX1, tX Ñ

epX1, K1q, K Ñ K1uq, with X,X1 variables of sort Msg and K,K1 variables of sort Key.

4.3.1 Theory of Bounded Homomorphism

In this section, we first introduce equational theories for bounded homomorphism. The

length of possible message concatenations is bounded by introducing a new sort SingleMsg,

which is a subsort of Msg. The theories TkH and TkHD thus obtained are convergent and

FVP. We also illustrate in this section that TkH and TkHD can be combined with some other

commonly used theories while remaining FVP.

Definition 4.3 (TkH). The bounded homomorphic theory is defined as TkH “ pΣkH,H, xRH

k
q

for k the bound. The signature ΣkH is defined by adding sort SingleMsg to the previous sorts

Msg and Key with the subsort relation Key ă SingleMsg ă Msg. The signature ΣkH contains

an overloaded definition of the encryption operator, i.e.,

e : SingleMsg ˆ KeyÑ SingleMsg and e : Msg ˆ KeyÑ Msg.
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The equation (4.7) of RH is replaced in xRH

k
by the following rules: for all 1 ă j ď k, add

epS1 ˚ ¨ ¨ ¨ ˚Sj, Kq Ñ epS1, Kq ˚ ¨ ¨ ¨ ˚ epSj, Kq to xRH

k
, where the operator ˚ denotes message

concatenation, K is a variable of sort Key, and S1, . . . , Sk are variables of sort SingleMsg.

For k “ 3, the set of rules in xRH

3
is:

epS1 ˚ S2, Kq Ñ epS1, Kq ˚ epS2, Kq

epS1 ˚ S2 ˚ S3, Kq Ñ epS1, Kq ˚ epS2, Kq ˚ epS3, Kq

The theory T3H is convergent and have the FVP. Indeed, vcpT3Hq “ 4, since vp˚q “

1, vpeq “ 3. To show that the theory T3H has FVP, we verified the confluence of T3H using

Maude CRC tool, terminating using Maude MTT tool and the variant complexity using

Maude by variant generation.

Note that in order to derive a bounded homomorphic theory we need to take advantage

of the order-sorted technique by declaring a subsort SingleMsg, and the homomorphic en-

cryption operator e is overloaded. Also note that the bound k is usually chosen depending

on different applications. Although the bounded homomorphic theory is an underapproxi-

mation of the theory TH, in concrete applications, with a properly chosen bound k, manual

reasoning based on the results we get from using the bounded theory TkH could be used to

overcome the restriction of underapproximation.

Example 4.2. Consider the following unification problem:

X:Msg ˚ Y :Msg “?

epdatapA:Name, r:Freshq ˚ datapB:Name, r1:Freshq, K:Keyq

in the theory T3H, where data : NameˆFreshÑ Data is an additional operator that generates

principal’s secrets, and we assume that a secret is a single message, i.e., the subsort relation

Data ă SingleMsg. We get the following unifier by variant based unification:

t X:Msg ÞÑ epdatapA1:Name, r1:Freshq,K1:Keyq,

Y :Msg ÞÑ epdatapB1:Name, r2:Freshq,K1:Keyq,

A:Name ÞÑ A1:Name, r:Fresh ÞÑ r1:Fresh,

B:Name ÞÑ B1:Name, r1:Fresh ÞÑ r2:Fresh,

K : Key ÞÑ K1:Key u

Decryption operators are usually used in protocols to denote principals’ ability to extract

information out of certain encrypted messages. We can extend the theory TkH by adding a
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decryption operator d and the equations capturing the encryption/decryption cancellation

relation between d and the homomorphic encryption operator e. We refer to the resulted

theory as TkHD.

Definition 4.4 (TkHD). The bounded homomorphic theory with decryption is defined as

TkHD “ pΣH Y ΣkH Y ΣDec,H, xRH

k
Y RDec Y RkH-Decq. The signature ΣDec contains the

overloaded decryption operator d with typings:

d : Msg ˆ KeyÑ Msg, d : SingleMsg ˆ KeyÑ SingleMsg.

The encryption/decryption cancellation properties are captured by the rules RDec, where X

is of sort Msg and K is of sort Key:

epdpX,Kq, Kq Ñ X dpepX,Kq, Kq Ñ X

The rules RkH-Dec capture the homomorphic property of the decryption operation, and are

needed for the theory to be convergent. For all 1 ă j ď k, we add dpS1 ˚ ¨ ¨ ¨ ˚ Sj, Kq Ñ

dpS1, Kq ˚ ¨ ¨ ¨ ˚ dpSj, Kq to RkH-Dec, where the operator ˚ denotes message concatenation,

K is a variable of sort Key, and S1, . . . , Sk are variables of sort SingleMsg. The rules for

bound k “ 3 are as follows:

dpS1 ˚ S2, Kq Ñ dpS1, Kq ˚ dpS2, Kq

dpS1 ˚ S2 ˚ S3, Kq Ñ dpS1, Kq ˚ dpS2, Kq ˚ dpS3, Kq

We can follow the same approach as in theory TkH to compute the variant complexity and

verify that the theory TkHD has the finite variant property. The variant complexity of the

theory T3HD is 29.

Example 4.3. To illustrate the decryption operation, we consider the following unification

problem:

X:Msg ˚ Y :Msg “?

dpepdatapA:Name, r:Freshq ˚ datapB:Name, r1:Freshq, K:Keyq, K:Keyq

in the theory T3HD, where data : Name ˆ Fresh Ñ Data is an additional operator that

generates principal’s secrets, and we assume the subsort relation Data ă SingleMsg. We get

the following unifier by variant based unification:
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t X:Msg ÞÑ datapA1:Name, r1:Freshq, Y :Msg ÞÑ datapB1:Name, r2:Freshq,

A:Name ÞÑ A1:Name, r:Fresh ÞÑ r1:Fresh,

B:Name ÞÑ B1:Name, r1:Fresh ÞÑ r2:Fresh,

K : Key ÞÑ K1:Key u

The theory TkH and TkHD can be extended by adding axioms to the free operator ˚, while

remaining FVP.

Definition 4.5 (TkHAC ). The theory TkHAC extends TkH by adding associativity and commu-

tativity axioms to ˚, i.e., TkHAC “ pΣkH, BAC , xRH

k
q for k the bound, where the set of axioms

BAC includes the associativity and commutativity (AC) axioms of the binary operator ˚.

The theory TkHDAC extends the theory TkHD in the same way.

4.3.1.1 Combining TkH with theories having disjoint symbols.

Cryptographic protocols usually use more than one kind of encryption. Since the theory

TkH is FVP, the general variant-based unification algorithm can be applied, which can easily

be combined with other theories with disjoint symbols. Consider the theory TPK defined

below, which has the FVP.

Definition 4.6 (TPK). The theory TPK is defined as: TPK “ pΣPK,H, RPKq, where ΣPK

is defined by two sorts tName,Msgu with the subsort relation Name ă Msg, together with

operators pk : MsgˆNameÑ Msg and sk : MsgˆNameÑ Msg, where pk and sk represent

encrypt a message with public key and private key respectively. The encryption/decryption

cancellation property is described in RPK as follows:

skppkpX,Aq, Aq “ X pkpskpX,Aq, Aq “ X

where X is a variable of sort Msg and A is a variable of sort Name.

Combining the theories TkH and TPK, we obtain the theory TkHPK “ TkHYTPK, which has

the FVP. The same proof approach as in theory TkH can be applied. Also, by combing the

theories TkHD and TPK, we get the theory TkHDPK “ TPK Y TkHD, which also has the FVP.

Example 4.4. Consider the same unification problem as in Example 4.2

X:Msg ˚ Y :Msg “?

epdatapA:Name, r1:Freshq ˚ datapB:Name, r1:Freshq, K:Keyq
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in the theory T3HPK we get the same unifier as in Example 4.2 using variant based unification.

As another example, consider the theory TXor “ pΣXor, BXor, RXorq, where ΣXor is defined

by sorts tNonce,NSetu with the subsort relation Nonce ă NSet, together with the exclusive-

or operator ‘ : NSet ˆ NSet Ñ NSet and the identity 0 :Ñ NSet. The axioms BXor are

associativity and commutativity axioms for ‘. The exclusive-or rules RXor are as follows:

N ‘N “ 0 N ‘ 0 “ N N ‘N ‘M “M

where N and M are variables of sort NSet. The theory TXor has the finite variant property.

Therefore, by combining the theory TkH with TXor, we obtain the theory TkH-Xor “ TkHYTXor,

which is also FVP.

4.3.2 Homomorphic Theories: Theory of Homomorphic Encryption with a Multiset of
Keys

Since neither AGH nor H have the FVP, we have extended H with a new presentation of

epM, Kq built on top of a new symbol & , which is associative and commutative (AC), and

keeps all the keys used for homomorphic encryption in a multiset. Since nested encryptions

with the same subset of keys can be flattened using AC, together with orienting the equation

4.7 as epX,Kq ˚ epY,Kq Ñ epX ˚ Y,Kq, this theory has the FVP. But one side effect is that

the order of applications of homomorphic encryption to a message becomes immaterial.

This is not a standard property of encryption, homomorphic or not, so in most cases, the

multiset AC axioms are over approximations that are used to get the finite variant property.

Soundness (i.e., any attacks found are real attacks) is lost since the over approximation may

introduce spurious attacks, but they can be discarded upon inspection. Also, we note that

there are a few cases, such as Distributed ElGamal [89], in which encryption does satisfy

this multiset condition, so this may be useful for reasoning about an additional class of

crypto-algorithms as well.

In this section, we first introduce the theory TH&
, which consists of homomorphic encryp-

tion over a free operator and uses a multiset of keys. This theory is convergent and has the

FVP. Indeed, vcpTH&
q “ 8.

The theory TH&
is then enriched with group operators and axioms. Since the FVP is lost

again when adding the full group axioms due to the fact that confluence requires adding

an infinite number of extra rules, associativity is approximated by a sub-theory. We call a

group without associativity a pre-group. The theory TPGH&
, which is obtained by extending

the TH&
to homomorphic encryption over a pre-group operator is convergent and has the
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FVP. Indeed, vcpTPGH&
q “ 20.

The theory TH&
is then further enriched with Abelian group operators and axioms. Again,

associativity is approximated. The theory TAPGH&
, which is obtained by extending the TH&

to homomorphic encryption over an Abelian pre-group operator is convergent and has the

FVP. Indeed, its variant complexity is vcpTAPGH&
q “ 20.

The theory TH&
can also be enriched with an Xor operator and axioms. Associativity of

the Xor operator is also approximated. The theory TPXorH&
, which is obtained by extending

the TH&
to homomorphic encryption over a pre-Xor operator is convergent and has the FVP.

Indeed, its variant complexity is vcpTPXorH&
q “ 12.

4.3.2.1 Theory of Homomorphic Encryption over a Free Operator.

In this section we introduce the theories of homomorphic encryption over a free operator

with a multiset of keys (with/without the identity). We started with the theory TH&
, which

is then extended with a decryption operation in THD&
, a projection operation over the free

operator in TH�
&

. The identity of the multiset of keys is included in the theory TH˝&

Definition 4.7 (TH&
). The theory for homomorphic encryption with a multiset of keys is

defined as TH&
“ pΣH&

, BH&
, RH&

q. The signature ΣH&
is defined by sorts tKey, Keys, Msgu

with the subsort relation Key ă Keys, Keys ă Msg, and operators

& : Keysˆ KeysÑ Keys, ˚ : Msg ˆMsgÑ Msg, e : Msg ˆ KeysÑ Msg

where ˚ is a free operator, which can be understood as list concatenation operator, & de-

notes a multiset union operator that is associative and commutative, and e denotes message

encryption. The axioms BH&
are AC for & . There are five rules defined in RH&

.

epX,Uq ˚ epY, Uq Ñ epX ˚ Y, Uq (4.8)

epepX, V q, Uq Ñ epX,U&V q (4.9)

epX,U&V q ˚ epY, Uq Ñ epepX, V q ˚ Y, Uq (4.10)

epX,Uq ˚ epY, U&V q Ñ epX ˚ epY, V q, Uq (4.11)

epX,U&V q ˚ epY, U&W q Ñ epepX, V q ˚ epY,W q, Uq (4.12)

where X, Y are variables of sort Msg, and U, V,W are variables of sort Keys. The equation

(4.8) is the reversed version of (4.7). The equation (4.9) captures the property that a nested
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encryption is simplified into an encryption with a multiset of keys, which is the key point for

achieving a theory having the FVP. The remaining rules describe the homomorphic property

of an encryption with respect to a multiset of keys, and are added for confluence of the theory.

Note that the order of key application is immaterial in this theory. When the order of the

key application matters, the set of actual attack states will be a subset of the attack states

with this theory.

Example 4.5. The unification problem of Example 4.2 returns the same unifiers with this

new theory TH&
as with the previous theory TkH.

The extension of TH&
with a decryption operator is denoted THD&

. The theory obtained

is convergent and has the FVP (vcpTHD&
q “ 13).

Definition 4.8 (THD&
). The theory THD&

is defined by extending TH&
with a decryption

operator d : Msg ˆ Keys Ñ Msg together with additional rules RH&-Dec which describe

encryption/decryption cancellation properties with respect to a multiset of keys:

dpepX,Uq, Uq Ñ X

dpepX,U&V q, Uq Ñ epX, V q

dpepX,Uq, U&W q Ñ dpX,W q

dpepX,U&V q, U&W q Ñ dpepX, V q,W q

with X of sort Msg, and U, V,W of sort Keys.

Example 4.6. The unification problem of Example 4.3 returns the same unifiers with this

new theory THD&
as with the previous theory T3HD.

We can also add projection operators to the theory TH&
(resp. THD&

) to extract messages

from concatenated messages. The theory TH�
&

(resp. THD�
&

) is obtained by adding the

projection operator p1 and p2, which are defined as: p1 : MsgÑ Msg, p2 : MsgÑ Msg to the

signature ΣH&
(resp. ΣHD&

), together with the following rules to RH&
(resp. RHD&

):

p1pX ˚ Y q Ñ X p1pepX,Uqq Ñ epp1pXq, Uq

p2pX ˚ Y q Ñ Y p2pepX,Uqq Ñ epp2pXq, Uq

where X, Y, Z are variables of sort Msg, and U is a variable of sort Keys.

The theories TH�
&

and THD�
&

have the FVP.

33



Example 4.7. Consider the following unification problem:

epX:Msg, K:Keyq “?

p1pepdatapA:Name, r:Freshq ˚ datapB:Name, r1:Freshq, K 1:Keyq

in the theory THD�
&

, where data : Name ˆ Fresh Ñ Data is an additional operator denoting

a principal’s secrets, and we assume the subsort relation Data ă Msg. We get the following

unifier by variant based unification:

t X:Msg ÞÑ datapA1:Name, r1:Freshq, K:Key ÞÑ K1:Key,

A:Name ÞÑ A1:Name, r:Fresh ÞÑ r1:Fresh,

B:Name ÞÑ B1:Name, r1:Fresh ÞÑ r2:Fresh,

K 1 : Key ÞÑ K1:Key u

An identity of the multiset of keys can be added to the theory TH&
, which we call the

theory TH˝&
. The signature ΣH&

is extended with a new sort NeKeys denoting a non-empty

set of keys, with the subsort relation Key ă NeKeys and NeKeys ă Keys. The operators

& is overloaded by : & : NeKeys ˆ NeKeys Ñ NeKeys. The axioms BH˝&
extends BH&

by

including ACU for & . A new rule epX,nullq Ñ X is added to RH&
, and rules 4.10 and

4.11 in RH&
thus become redundant, i.e., the set of rules in the theory RH˝&

is:

epX,nullq Ñ X

epepX, V q, Uq Ñ epX, V&Uq

epX,K&V q ˚ epY,K&Uq Ñ epepX, V q ˚ epY, Uq, Kq

where U and V are variables of sort Keys, and K is a variable of sort NeKey.

Example 4.8. Consider a similar unification problem as in Example 4.2

X:Msg ˚ Y :Msg “?

epdatapA:Name, r:Freshq ˚ datapB:Name, r1:Freshq, K:Keysq

in the theory TH˝&
, we get the same unifier as in Example 4.2 together with the following

extra unifier by variant based unification.
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t X:Msg ÞÑ datapA1:Name, r1:Freshq, Y :Msg ÞÑ datapB1:Name, r2:Freshq,

A:Name ÞÑ A1:Name, r:Fresh ÞÑ r1:Fresh,

B:Name ÞÑ B1:Name, r1:Fresh ÞÑ r2:Fresh,

K : Key ÞÑ null u

This extra unifier can be excluded by changing the variable K in the unification problem

to be of sort NeKeys instead of Keys.

The theory TH&
has the FVP, therefore the general variant-based unification algorithm

can be applied. Thus, TH&
can be combined with other theories with disjoint symbols. For

example, consider the theory TPK that we introduced in Section 4.3.1. By combining the

theory TH&
with TPK, we obtain the FVP theort TH&PK “ TH&

Y TPK. Similarly, combining

the theory THD&
with TPK, we get the FVP theory THD&PK “ TPK Y THD&

.

4.3.2.2 Theory of Homomorphic Encryption over a Pre-Group.

In this section we extend TH&
to be a homomorphic encryption over a pre-group. For the

reasons that we mentioned before, associativity is under approximated by a sub-associativity

theory.

Definition 4.9 (TPG). The pre-group theory is defined as TPG “ pΣPG,H, RPGq. There is

only one sort Msg, and three group operators t ˚ , ´1, 1u, where ˚ : MsgˆMsgÑ Msg

is the group operator, ´1 : MsgÑ Msg generates the inverse of an element and the constant

1 is the identity. The set of rules RPG contains all group axioms except associativity, where

X is a variable of sort Msg:

X ˚ 1 Ñ X 1 ˚X Ñ X

X ˚X´1
Ñ 1 X´1

˚X Ñ 1

pX´1
q
´1
Ñ X 1´1

Ñ 1

Definition 4.10 (TPGH&
). The theory for homomorphic encryption with a multiset of keys

over pre-group is defined as TPGH&
“ pΣH&

Y ΣPG, BH&
, RPGH&

q, where RPGH&
“ RPG Y

RH&
YRPGH&-Aux. The set of rules RH&

is as defined in the theory TH&
in Definition 4.7 and

RPG is as defined in the theory TPG in Definition 4.9. The following set of rules RPGH&-Aux

is added to complete the theory:

ep1, Uq Ñ 1 pepX,Uqq´1
Ñ epX´1, Uq
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with X of sort Msg and U of sort Keys.

Example 4.9. Recall the unification problem in Example 4.2, with an instance of theory

TPGH&
, we get all the unifiers in Example 4.2, together with the following unifiers:

tX:Msg ÞÑ epdatapA1:Name, r1:Freshq ˚ datapB1:Name, r2:Freshq,K1:Keyq,

Y :Msg ÞÑ 1, K:Key ÞÑ K1:Key,

A:Name ÞÑ A1:Name, r:Fresh ÞÑ r1:Fresh,

B:Name ÞÑ B1:Name, r1:Fresh ÞÑ r2:Fresh, u

tY :Msg ÞÑ epdatapA1:Name, r1:Freshq ˚ datapB1:Name, r1:Freshq,K1:Keyq,

X:Msg ÞÑ 1, K:Key ÞÑ K1:Key,

A:Name ÞÑ A1:Name, r:Fresh ÞÑ r1:Fresh,

B:Name ÞÑ B1:Name, r1:Fresh ÞÑ r2:Fresh u

Adding associativity approximation to TPG. Although the theory TPG defines a group

without associativity, we can provide several sound approximations of associativity by adding

a subtheory of the full associativity theory. This is an under approximation and the com-

pleteness (i.e., if there is an attack, an attack will be found) is lost since there may be attacks

that can show up with full associativity theory but cannot be found with a sub-associativity

theory. Here we introduce some of the possible sub-associativity theories as examples to

illustrate this approach. The first associativity approximation below captures the property

that a term of sort Nonce can be canceled by its inverse when they are in the two separate

ends of a sequence of terms of sort Msg.

Definition 4.11 ( TPGAA). The theory for a pre-group with associativity approximation

TPGAA is defined as TPGAA “ pΣPG Y tNonceu,H, RPG Y RPGAAq. We assume the subsort

relation Nonce ă Msg. The sub-associativity axioms RPGAA are specified as follows, where

X is a variable of sort Msg and N is a variable of sort Nonce:

pN´1
˚Xq ˚N Ñ X N ˚ pX ˚N´1

q Ñ X

pN ˚Xq ˚N´1
Ñ X N´1

˚ pX ˚Nq Ñ X

For different applications, different approximation can be chosen. We list below some

alternative sub-associativity axioms of RPGAA, which are combined with the pre-group theory

TPG in the same way as in TPGAA.
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1. Alternative sub-associativity axioms RPGAA1 . This captures the property that a term

of sort Nonce can be canceled by its inverse when they are next to each other but not

associated together.

pX ˚N´1
q ˚N Ñ X N ˚ pN´1

˚Xq Ñ X

pX ˚Nq ˚N´1
Ñ X N´1

˚ pN ˚Xq Ñ X

2. Alternative sub-associativity axioms RPGAA2 . This captures the property that a term

of sort Nonce can be canceled by its inverse when they are in the two separate ends of

a sequence of terms of sort Msg.

pN ˚Xq ˚N´1
Ñ X pX ˚Nq ˚N´1

Ñ X

N´1
˚ pX ˚Nq Ñ X N´1

˚ pN ˚Xq Ñ X

3. Alternative sub-associativity axioms RPGAA3 . This captures the property that a term

of sort Msg can be canceled by its inverse when they are separated by a nonce.

pX´1
˚Nq ˚X Ñ N X ˚ pX´1

˚Nq Ñ N

pN ˚X´1
q ˚X Ñ N X ˚ pN ˚X´1

q Ñ N

pX ˚Nq ˚X´1
Ñ N X´1

˚ pX ˚Nq Ñ N

pN ˚Xq ˚X´1
Ñ N X´1

˚ pN ˚Xq Ñ N

X ˚ pX ˚N´1
q
´1
Ñ N X ˚ pN´1

˚Xq´1
Ñ N

pX ˚N´1
q
´1
˚X Ñ N pN´1

˚Xq´1
˚X Ñ N

where X is a variable of sort Msg and N is a variable of sort Nonce.

Remark 4.1. Notice that, in order to get a sound sub-associativity approximation for this

theory, it is crucial to take advantage of the order-sorted type structure.

We can also add associativity approximation to the theory of homomorphic encryption

over a pre-group by combining TPGH&
with TPGAA.

Definition 4.12 (TPGAAH&
). Combining the theories TPGH&

and TPGAA, we obtain the theory

TPGAAH&
“ TPGH&

Y TPGAA.

With different associativity approximations, we similarly obtain the theories TPGAA1H&
“

TPGH&
Y TPGAA1 and TPGAA2H&

“ TPGH&
Y TPGAA2 . For the alternative associativity ap-

proximation TPGAA3 , the following auxiliary rules RAA3Aux
are needed, i.e., TPGAA3H&

“
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TPGH&
Y TPGAA3 YRAA3Aux

.

epX,Uq ˚ pN ˚ epX´1, Uqq Ñ N epX,Uq ˚ pepX´1, Uq ˚Nq Ñ N

pN ˚ epX´1, Uqq ˚ epX,Uq Ñ N pepX´1, Uq ˚Nq ˚ epX,Uq Ñ N

pepX,Uq ˚Nq ˚ epX´1, Uq Ñ N pN ˚ epX,Uqq ˚ epX´1, Uq Ñ N

epX´1, Uq ˚ pN ˚ epX,Uqq Ñ N epX´1, Uq ˚ pepX,Uq ˚Nq Ñ N

The theories TPGH&
and TPGAAH&

can be extended by adding a decryption operator, and/or

associativity approximations, while remaining FVP.

Definition 4.13 (TPGHD&
). The theory TPGHD&

is defined by extending the theory TPGH&

with the decryption operator d : Msg ˆ Keys Ñ Msg, together with the equation RH&-Dec

introduced in Definition 4.8, and the auxiliary rule

dp1, Uq Ñ 1

Definition 4.14 (TPGAAHD&
). Adding the same associativity approximation to TPGHD&

, we

obtain the theory TPGAAHD&
“ TPGHD&

Y TPGAAH&
.

Similarly, adding different alternative associativity approximations to TPGHD&
, we achieve

the FVP theories TPGAA1HD&
“ TPGHD&

Y TPGAA1, TPGAA2HD&
“ TPGHD&

Y TPGAA2H&
, and

TPGAA3HD&
“ TPGHD&

Y TPGAA3H&
.

Example 4.10. Consider the following unification problem:

X:Nonce “?

dpepnpA:Name, r:Freshq ˚ npB:Name, r1:Freshq, K:Keyq, K:Keyq

˚ invpnpA:Name, r:Freshqq.

in the theory TPGAAHD&
, where n : Name ˆ Fresh Ñ Nonce is an additional operator that

generates nonces. We get the following unifier by variant based unification:

tX:Nonce ÞÑ npB1:Name, r2:Freshq, K : Key ÞÑ K1:Key

A:Name ÞÑ A1:Name, r:Fresh ÞÑ r1:Fresh,

B:Name ÞÑ B1:Name, r1:Fresh ÞÑ r2:Freshu

The theory TPGH&
can also be combined with the theory TPK defined in 4.3.1. The resulting

theory TPGH&PK “ TPGH&
YTPK also has the FVP. Similarly, we can also combine the theory
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TPGHD&
or TPGAAH&

with TPK and derive more theories enjoying the finite variant property.

4.3.2.3 Theory of Homomorphic Encryption over an Abelian Pre-Group.

We further approximate the theory AGH by adding a commutative axiom to the binary

group operator in the pre-group. This provides a theory for homomorphic encryption over

an Abelian pre-group.

Definition 4.15 (TAPG). The theory of Abelian pre-groups TAPG “ pΣAPG,

BAPG, RAPGq is obtained from the theory of pre-group TPG by adding as axioms BAPG the

commutativity equation X ˚ Y “ Y ˚ X. Because of commutativity, the rules 1 ˚ X Ñ X

and X ˚X´1 Ñ 1 in TPG become redundant.

We can similarly provide a sound approximation of associativity by adding a subtheory of

the full associativity theory. Here again, we introduce some possible sub-associativity theo-

ries for Abelian pre-group as examples to illustrate this approach. The first approximation

captures the property that a term of sort Nonce can be canceled by its inverse when they

are in the two separate ends of a sequence of terms of sort Msg. Since ˚ is commutative in

Abelian pre-groups, less rules are needed comparing to the ones for pre-groups (e.g., TPGAA).

Definition 4.16 (TAPGAA). The theory for an Abelian pre-group with associativity approx-

imation TAPGAA is defined as TAPGAA “ pΣAPG Y tNonceu, BAPG, RAPG Y RAPGAAq. We

assume the subsort relation Nonce ă Msg. The sub-associativity rules RAPGAA are specified

as follows:

pN´1
˚Xq ˚N Ñ X pN ˚Xq ˚N´1

Ñ X

with X of sort Msg and N of sort Nonce.

We also present a theory for an Abelian pre-group with an alternative associative approxi-

mation TAPGAA1. The theory TAPGAA1 combines a sub-associativity theory with the Abelian

pre-group theory TAPG in the same way as in TAPGAA, except that it uses an alternative set

of sub-associativity rules RAPGAA1. This captures the property that a term of sort Msg can

be canceled by its inverse when they are separated by a nonce. The sub-associativity rules

are as follows:

pX´1
˚Nq ˚X Ñ N pX ˚Nq ˚X´1

Ñ N

X ˚ pX ˚N´1
q
´1
Ñ N
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The homomorphic encryption with a multiset of keys over an Abelian pre-group is thus

defined by combining the theories TH&
and TAPG as follows:

Definition 4.17 (TAPGH&
). The theory of homomorphic encryption with a multiset of keys

over an Abelian pre-group is defined as TAPGH&
“ pΣH&

YΣAPG, BAPGH&
, RPGH&

YRPGH&-Auxq.

The axioms BAPGH&
define the commutativity property of ˚ and AC of & .

Example 4.11. For the unification problem in Example 4.2, with an instance of the theory

TAPGH&
, we found the unifiers described in Example 2, together with the following unifier:

tX ÞÑ epdatapB1:Name, r1:Freshq,K1:Keyq,

Y ÞÑ epdatapA1:Name, r1:Freshq,K1:Keyq,

A:Name ÞÑ A1:Name, r1:Fresh ÞÑ r1:Fresh,

B:Name ÞÑ B1:Name, K : Key ÞÑ K1:Keyu

The theory TAPGH&
can be extended by adding a decryption operator, and/or associativity

approximations. Both extensions have the FVP.

Definition 4.18 (TAPGHD&
). TAPGHD&

is obtained by adding decryption operator d : Msgˆ

Keys Ñ Msg to the signature of TAPGH&
, together with the set of encryption/decryption

cancellation equations RH&-Dec in Definition 5, and together with the auxiliary rule dp1, Uq Ñ

1.

By Combining the theory TAPGH&
with TAPGAA, we obtain the theory of homomorphic

encryption with a multiset of keys over Abelian pre-group with associativity approximation,

which is defined as: TAPGAAH&
“ TAPGH&

Y TAPGAA.

To combine the theory TAPGH&
with the alternative associativity approximation TAPGAA1,

the following auxiliary rules are added to achieve the theory TAPGAA1H&
:

pN ˚ epX´1, Uqq ˚ epX,Uq Ñ N pN ˚ epX,Uqq ˚ epX´1, Uq Ñ N

Adding the associativity approximation to TAPGHD&
, we obtain the theories TAPGAAHD&

“

TAPGHD&
Y TAPGAAH&

, and TAPGAA1HD&
“ TAPGHD&

Y TAPGAA1H&
.

We can combine the theory TAPGH&
with TPK to get the theory TAPGH&PK “ TAPGH&

YTPK,

which also has the finite variant property. Similarly, we can define the theory TAPGHD&PK “

TAPGHD&
YTPK. A similar combination approach can be applied to TAPGAAH&

and TAPGAA1H&

to obtain new theories with the FVP.
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4.3.2.4 Theory of Homomorphic Encryption over Pre-Xor.

Based on the theory of homomorphic encryption over an Abelian pre-group, in this section

we approximate the theory AGH by adding pre-Xor axioms instead of Abelian pre-group

axioms to the binary operator ˚. Again, associativity of ˚ is under approximated by a

sub-associativity theory. This provides a theory for homomorphic encryption over pre-Xor.

Definition 4.19 (TPXor). The pre-Xor theory is defined as TPXor “ pΣPXor, BPXor, RPXorq.

There is only one sort Msg, and two operators t ˚ , 1u, where ˚ : Msg ˆMsg Ñ Msg is

the binary Xor operator and the constant 1 is the identity. The axioms BPXor contain the

commutativity equation X ˚ Y “ Y ˚X. The rules RPXor are specified as follows, where X

is a variable of sort Msg:

X ˚X Ñ 1 X ˚ 1 Ñ X

The associativity of the Xor operator ˚ can be approximated as follows:

Definition 4.20 ( TPXorAA). The theory for a pre-Xor with associativity approximation

TPXorAA is defined as TPXorAA “ pΣPXor, BPXor, RPXorYRXorAAq. The set of sub-associativity

axioms RXorAA contains the equation

X ˚ pX ˚ Y q “ Y

where X and Y are variables of sort Msg.

Note that, although this associativity approximation contains only one equation, it still

covers a fair amount of different cases, since both X and Y have the top sort Msg.

Definition 4.21 (TPXorH&
). The theory for homomorphic encryption with a multiset of

keys over pre-Xor is defined by combining the theories TH&
and TPXor as follows: TPXorH&

“

pΣH&
Y ΣPXor, BH&

Y BPXor, RPXorH&
q, where RPXorH&

“ RPXor Y RH&
Y RPXorH&-Aux. The

set RPXorH&-Aux contains only one rule ep1, Uq Ñ 1, where U a variable of sort Keys.

Example 4.12. For the unification problem in Example 4.2, with an instance of the theory

TPXorH&
, we find all the unifiers described in Example 4.11, together with the following

unifier:
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tX:Msg ÞÑ Z:Msg, Y :Msg ÞÑ Z:Msg

A:Name ÞÑ C:Name, r:Fresh ÞÑ r1:Fresh,

B:Name ÞÑ C:Name, r1:Fresh ÞÑ r1:Fresh,

K : Key ÞÑ K1:Keyu

We can also add a decryption operator, and/or associativity approximations to the theory

of homomorphic encryption over Xor, while remaining FVP.

Definition 4.22 (TPXorAAH&
). Combining the theories TPXorH&

and TPXorAA, we obtain the

theory TPXorAAH&
“ TPXorH&

Y TPXorAA.

Definition 4.23 (TPXorHD&
). The theory TPXorHD&

is defined by extending the theory

TPXorH&
with the decryption operator d : Msg ˆ Keys Ñ Msg, together with the equation

RH&-Dec introduced in Definition 4.8, and the auxiliary rule dp1, Uq Ñ 1.

The theory that includes both the decrypiton operator and the associativity approximation

is: TPXorAAHD&
“ TPXorHD&

Y TPXorAAH&
.

Example 4.13. Consider the following unification problem:

X:Nonce “?

dpepepnpA:Name, r:Freshq, K 1:Keyq ˚ npB:Name, r1:Freshq, K:Keyq, K:Keyq

˚ epnpA:Name, r:Freshq, K 1:Keyq.

in the theory TPXorAAHD&
, where data : Nameˆ FreshÑ Data is an additional operator that

generates principal’s data, and we assume the subsort relation Data ă Msg. We get the

following unifier by variant based unification:

tX:Nonce ÞÑ npB1:Name, r2:Freshq, K : Key ÞÑ K1:Key

A:Name ÞÑ A1:Name, r:Fresh ÞÑ r1:Fresh,

B:Name ÞÑ B1:Name, r1:Fresh ÞÑ r2:Fresh,

K 1:Key ÞÑ K2:Keyu

4.3.3 Homomorphic Theories: Theory of Homomorphic Encryption over Two Groups

In this section we introduce theories of homomorphic encryption over two different groups.

Since this is essentially a function mapping from one group to another, it does not have

recursive calls, allowing the theories to have the FVP.
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We first introduce the theory T2AGH, which defines homomorphic encryption over two

Abelian groups. This theory is defined based on the decomposition of an Abelian group by

Lankford in [90], which was proved to have the FVP by [50, 57]. The theory TAG has the

FVP. Indeed, vcpT2AGHq “ 2276.

Notice that the variant complexity of the theory T2AGH is really high. To achieve a lower

variant complexity, we introduce the theory T2XORH, which defines a homomorphic encryp-

tion over two Exclusive-or(Xor) theories. This is an over approximation of homomorphic

encryption over two Abelian groups. The variant complexity of this theory is much lower,

indeed, vcpT2XORHq “ 48.

4.3.3.1 Theory of Homomorphic Encryption over Two Abelian Groups

Definition 4.24 (TAG). The theory of Abelian groups is defined as TAG “ pΣAG, BAG, RAGq.

The signature ΣAG is defined by sort AG and the set of Abelian-group operators

˚ : AGˆ AGÑ AG

´1 : AGÑ AG 1 :Ñ AG

The axioms BAG are associativity and commutativity axioms for ˚ .The set of rules RAG

define all other Abelian group axioms:

X ˚ 1 Ñ X

X ˚ pX´1
q Ñ 1

pX´1
q
´1
Ñ X

1´1
Ñ 1

X ˚ pX´1
˚ Y q Ñ Y

X´1
˚ Y ´1

Ñ pX ˚ Y q´1

pX ˚ Y q´1
˚ Y Ñ pXq´1

pX´1
˚ Y q´1

Ñ X ˚ pY ´1
q

X´1
˚ pY ´1

˚ Zq Ñ pX ˚ Y q´1
˚ Z

pX ˚ Y q´1
˚ pY ˚ Zq Ñ X´1

˚ Z

with X, Y, Z of sort AG.

Definition 4.25 (T2AGH). The theory of homomorphic encryption over two Abelian groups

is defined as T2AGH “ pΣ2AGH, B2AGH, R2AGHq. The signature Σ2AGH is defined by sorts

tAGa, AGbu , and the homomorphic encryption operator e : AGa Ñ AGb, together with

the set of group operators for the domain Abelian group AGa, which are t˚a, 1a,
´1au, and

the set of group operators for codomain Abelian group AGb, which are t˚b, 1b,
´1bu. Notice

that there is no key explicitly defined here, since encryption with a specific key is implicitly
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captured by the definition of the encryption operator e. The axioms B2AGH are AC axioms for

the binary Abelian group operators ˚a , ˚b . The set of rules R2AGH defines the remaining

Abelian group axioms of AGa and AGb, which are instances of RAG in TAG together with

the homomorphic property of e:

epXq ˚b epY q Ñ epX ˚a Y q

epXq ˚b epY q ˚b Z Ñ epX ˚a Y q ˚b Z

The following rules are added to complete the theory.

ep1aq Ñ 1b

epXq´1a Ñ eppXq´1bq

pepXq ˚b Zq
´1b Ñ epX´1aq ˚b pZ

´1bq

with X, Y of sort AGa, and Z of sort AGb

Example 4.14. Consider the following unification problem:

X:AGb “
?epdatapA:Name, r:Freshq ˚a datapB:Name, r1:Freshqq

˚b epdatapB:Name, r1:Freshq´1aq

in the theory T2AGH, where data : Name ˆ Fresh Ñ Data is an additional operator that

generates principal’s secrets, and we assume the subsort relation Data ă AGa. We get the

following unifier by variant based unification:

tX:AGb ÞÑ epdatapA1:Name, r1:Freshqq,

A:Name ÞÑ A1:Name, r:Fresh ÞÑ r1:Fresh,

B:Name ÞÑ B1:Name, r1:Fresh ÞÑ r2:Freshu

The unification problem:

X:AGb ˚b Y :AGb “
? epdatapA:Name, r:Freshq ˚a datapB:Name, r1:Freshq

in the theory T2AGH get 64 unifiers by variant based unification, which we omit here.

We can also extend T2AGH by adding decryption operator in the following way:

Definition 4.26 (T2AGHD). T2AGHD is obtained by adding a decryption operator d : AGb Ñ
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AGa to the signature of T2AGH, together with the rules dp1bq Ñ 1a and dpepXqq Ñ X with

X of sort AGa.

4.3.3.2 Theory of Homomorphic Encryption over Two Xor Operators

Definition 4.27 (T2XORH). The theory for homomorphic encryption over two Xor operators

is defined as T2XORH “ pΣ2XORH, B2XORH, R2XORHq. The signature Σ2XORH is defined by sorts

tXora, Xorbu, and the homomorphic encryption operator e : Xora Ñ Xorb, together with

the Xor operator and the corresponding identity of Xora, which are t˚a, 1au, and together

with the Xor operator and the corresponding identity of Xorb, which are t˚b, 1bu. Notice

again that there is no key explicitly defined here. The axioms B2XORH are associativity and

commutativity axioms for ˚a , ˚b . The set of rules R2XORH are defined as following:

X ˚a X Ñ 1a P ˚b P Ñ 1b

X ˚a 1a Ñ X P ˚b 1b Ñ P

X ˚a X ˚a Y Ñ Y P ˚b P ˚b QÑ Q

together with the homomorphic property of e:

ep1aq Ñ 1b

epXq ˚b epY q Ñ epX ˚a Y q

epXq ˚b epY q ˚b P Ñ epX ˚a Y q ˚b P

with X, Y of sort Xora, and P,Q of sort Xorb

We can also extend T2XORH by adding a decryption operator in the similar way as in

T2AGHD.

Definition 4.28 (T2XORHD). The theory T2XORHD is obtained by adding a decryption op-

erator d : Xorb Ñ Xora to the signature of T2XORH, together with rules dp1bq Ñ 1a and

dpepXqq Ñ X with X of sort Xora.

Example 4.15. Consider the following unification problem:

X:Xorb “
?

epdatapA:Name, r1:Freshq ˚a datapB:Name, r1:Freshqq ˚b epdatapB:Name, r1:Freshqq
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in the theory T2XORH, where data : Name ˆ Fresh Ñ Data is an additional operator that

generates principal’s secrets, and we assume the subsort relation Data ă Xora. We get the

following unifier by variant based unification:

tX:Xorb ÞÑ epdatapA1:Name, r1:Freshqq,

A:Name ÞÑ A1:Name, r:Fresh ÞÑ r1:Fresh,

B:Name ÞÑ B1:Name, r1:Fresh ÞÑ r2:Freshu

The unification problem:

X:Xorb ˚b Y :Xorb “
? epdatapA:Name, r:Freshq ˚a datapB:Name, r1:Freshq

in the theory T2XorH has 17 unifiers by variant based unification, which we omit here.

4.4 EXPERIMENTS

In this section we describe the experiments we have performed on various of the Multiparty

Computation Protocol and Homomorphic Hash Protocol that were previously specified and

analyzed in [70]. In that paper a number of protocols were analyzed in Maude-NPA using

a dedicated unification algorithm for equational theory H. That is, Equation (4.7) was

used and nothing else. This was necessary because the special-purpose unification algorithm

was not easily combinable with other theories. However, since in the present work we are

using variant unification, we have much more freedom with respect to the equations we can

include, as long as the theories satisfy FVP. Extra security properties are therefore analyzed

in this work thanks to the richer equational theories.

The experiments in this section serve several purposes. The first is to determine which of

the theories we have generated are suitable for cryptographic protocol analysis. The second

is to evaluate the variant complexity metric defined in this work. How well does lower

variant complexity correlate with performance, and if it does, at what point does higher

variant complexity begin to make analysis impossible? The third is to use the experimental

results to gain insights into how performance can be improved.

The protocols have been specified and analyzed using the Maude-NPA cryptographic

protocol analysis tool. One uses Maude-NPA by specifying an insecure state, called an
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attack state, from which Maude-NPA searches backwards. If it finds a path to an initial

state then it has found an attack on the protocol. If it terminates without reaching an initial

state then the attack state has been proven unreachable modulo the axioms of the given

equational theory.3

4.4.1 Multiparty Computation Protocol.

In the Multiparty Computation Protocol an initiator Alice and a responder Bob send

messages encrypted with a homomorphic public key encryption operator e to a server who

combines the encrypted data using an operator ˚. As a result of participating in the protocol,

both Alice and Bob are supposed to receive a homomorphically encrypted version of DA˚DB,

where DA is Alice’s secret data and DB is Bob’s secret data, without either learning the

other’s secret. However, it is possible for Alice to accept data that did not come from Bob

if she is not able to distinguish DA ˚DB from nonsense. If she is able to, no authentication

attack is possible. We specified two attack states: one in which Alice cannot reject nonsense,

and one in which she can.

The protocol itself proceeds as follows:

1. AÑ B : signpB;NA; pkpepDA, pkeypA,Bqq, Sq, Aq

A starts by encrypting her data first under the homomorphic public key, then under

the server’s public key. She then attaches a nonce and B’s name, signs it, and sends

it to B.

2. B Ñ A : signpNA;NB; pkpepDB, pkeypA,Bqq, Sq, Bq

B sends a similar message to A, including both his and A’s nonce.

3. AÑ S : signpA;B;NA;NB;pkpepDA, pkeypA,Bqq, Sq;

pkpepDB, pkeypA,Bqq, Sq, Aq
A sends a signed message containing both nonces and both encrypted data sets to S.

4. S Ñ A,B : signpA;B;NA;NB;

signpepDA, pkeypA,Bqq ˚ epDB, pkeypA,Bqq, Sq
The server combines both encrypted data sets using ˚ and sends the result to A and

B. They can now decrypt it to obtain DA ˚DB.

The attack runs as follows:

3Of course, if the given equational theory only under-approximates the intended equational theory, there
still may be an attack not detectable due to the under-approximation.
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1. AÑ IpBq : signpB;NA; pkpepDA, pkeypA,Bqq, Sq, Aq

A initiates the protocol with B.

2. I Ñ B : signpB;NA;E, Iq

I intercept’s A’s message, and uses it to create a message for B. The message E could

or could not be A’s encrypted data. This is irrelevant to the attack.

3. B Ñ A : signpNA;NB; pkpepDB, pkeypI, Bqq, Sq, Bq

B believes that he is talking to I and sends the corresponding reply message. I forwards

it to A.

4. AÑ S : signpA;B;NA;NB;

pkpepDA, pkeypA,Bqq, Sq; pkpepDB, pkeypI, Bqq, Sq, Aq
A now forwards both encrypted data sets to the server S, who removes the outer layer

of encryption, applies f , and sends the results back to A and B.

5. S Ñ A,B : signpA;B;NA;NB;

signpepDA, pkeypA,Bqq ˚ epDB, pkeypI, Bqq, Sq
If A now attempts to decrypt the result of S’s computation with her private key

corresponding to pkeypA,Bq, she will get nonsense, because one of the data sets was

encrypted with pkeypI, Bq. Depending upon whether or not A can recognize that she

has received nonsense, this can be used to prevent this attack.

We thus specify two versions of this protocol : one in which A verifies that she has received

epX ˚ Y, pkeypA,Bqq for some X and Y , and one in which she does not.

If, in addition, we assume that ˚ is an Abelian group operator, there are several attacks

in which Bob can learn Alice’s secret (and vice versa). In the first, Bob simply sends

the unit 1 as his data and receives DA ˚ 1 “ DA in return. In the second, Bob sends

his correct data and receives DA ˚ DB, and multiplies by pDBq
´1 to obtain DA. These

attacks, although simple, were of interest to us because they follow from the Abelian group

properties of ˚, and so we ran Maude-NPA on an attack state in which Bob learns Alice’s

secret, using the homormorphic encryption over an Abelian pre-group with associativity

approximation. To demonstrate the associativity approximation’s influence on performance,

we investigated two such theories: TAPGAAH1&
is the theory TAPGH&

with the approximation

equation: pD1 ˚D2q ˚ pD1q
´1 “ D2. TAPGAAH2&

is the theory TAPGH&
with the approximation

equation: pD1 ˚ Xq ˚ pD1q
´1 “ X with X of sort Msg, and D1 and D2 of sort Data, which

is a subsort of Msg. Notice that we start from an associativity approximation that is just

expressive enough for this specific protocol and then try a more expressive one.
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Steps T3H TH&
TAPGH&

States Time(ms) States Time(ms) States Time(ms)

Step 1 5 15941 8 1114538 11 4885493
Step 2 6 34298 9 1557783 13 4800678
Step 3 1 36514 2 2194422 2 8633163
Step 4 1 3084 1 6174 1 38997
Step 5 3 2409 3 5287 3 28363
Step 6 6 8106 6 29910 6 45339
Step 7 4 19615 4 103886 4 416986
Step ... ... ... ... ... ... ...
Step 15 5 44835 5 187119 5 321147

Table 4.3: Results for authentication of Bob to Alice

Steps T3H TH&
TAPGH&

States Time(ms) States Time(ms) States Time(ms)

Step 1 3 26183 4 1308574 8 3513537
Step 2 2 13251 3 1382475 6 4867452
Step 3 1 8489 1 2203056 1 8218407
Step 4 0 2974 0 4933 0 2775

Table 4.4: Results for authentication of Bob to a stronger Alice

Note that, additional equations needed can be approximated using attacker rules when

the theories themselves are not expressive enough. Approximation via attacker rules is less

expressive than using equational theories, but in some cases, depending both on the theory

and the protocol, they can be proven equivalent with respect to specific security properties.

We tried the authentication attack on the protocol specified with the theories TkH (bounded

homomorphism, variant complexity 4), TH&
(multi set of keys with free operator, variant

complexity 8), and TAPGH&
(Abelian pre-group,variant complexity 20). The results are

given in Table 4.3 for the insecure version of the protocol and Table 4.4 for the second

version of the protocol. We note that all the theories we obtained can be used for analyzing

this attack, since the higher the variant complexity, the longer the analysis time, we thus

consider only three equational theories. For the secrecy attack we investigated TAPGAAH1&

and TAPGAAH2&
as well as the theories T2AGH (homomorphism between two Abelian groups,

variant complexity 2276) and T2XOR (homomomorphism between two exclusive-or theories,

variant complexity 48), since Abelian group axioms are necessary for the secrecy attack.

The results for TAPGAAH1&
and TAPGAAH2&

are given in Table 4.5. The attack patterns are

specified in Maude-NPA as follows: the state ATTACK-STATE(0) indicates that Alice finished

her strand without the corresponding Bob’s strand and Alice cannot check the format of the
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received message.

eq ATTACK-STATE(0)

= :: r, r’ :: *** Alice ***

[ nil ,

+(sign(b; n(a,r); pk(e(data(a,r’),pkey(a,b)),s),a)),

-(sign(n(a,r); N; Y1 ,b )),

+(sign(a; b; n(a,r); N; pk(e(data(a,r’),pkey(a,b)),s); Y1, a)),

-(sign(a; b; n(a,r); N; X3 * X4, s )) | nil ]

|| empty

|| nil

|| nil

|| never(

:: r1, r2 :: ***Bob ***

[ nil |

-(sign(b; n(a,r); pk(e(data(a,r’),pkey(a,b)),s), a)),

+(sign(n(a,r); n(b,r1); pk(e(data(b,r2),pkey(a,b)),s), b)),

nil ]

& S:StrandSet || IK:IntruderKnowledge)

The state ATTACK-STATE(1) checks the same authentication property as ATTACK-STATE(0)

but with a stronger Alice who can tell whether she received nonsense or not.

eq ATTACK-STATE(1)

= :: r, r’ :: *** Alice ***

[ nil ,

+(sign(b; n(a,r); pk(e(data(a,r’),pkey(a,b)),s),a)),

-(sign(n(a,r); N; Y1, b)),

+(sign(a; b; n(a,r); N; pk(e(data(a,r’),pkey(a,b)),s); Y1, a)),

-(sign(a; b; n(a,r); N; e(X3 * X4, pkey(a, b)), s)) | nil ]

|| empty

|| nil

|| nil

|| never(

:: r1, r2 :: ***Bob ***

[ nil |

-(sign(b; n(a, r); pk(e(data(a,r’),pkey(a,b)),s), a)),

+(sign(n(a, r); n(b,r1); pk(e(data(b,r2),pkey(a,b)),s), b)),

nil ]

& S:StrandSet || IK:IntruderKnowledge)
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Tables 4.3 and 4.4 show the number of states generated by Maude-NPA and the amount

of time taken for each step of the backwards reachability analysis. In Table 4.3, for each

theory Maude-NPA found the authentication attack in six steps. However, in each case

Maude-NPA failed to terminate and kept generating five states after fifteen steps. Upon

investigation, these appeared to be infinite paths that were not discarded by the Maude-

NPA state space reduction techniques. As we can also see from the table, as the variant

complexity of theories involved in the specification grows, the number of states and the time

needed for Maude-NPA to find the attack also grows, as well as the time it takes to complete

each step. Furthermore, the time it takes to complete a step increases with the variant

complexity of the theory even when the number of states generated at the step is the same

for all three theories. We conjecture that this is the result of Maude-NPA generating many

states that are then removed by the state space reduction mechanisms. Greater variant

complexity means that more failed states are generated as well as successful ones.

For the second attack analysis, when Alice can tell whether she received nonsense or not,

we verified that there is no authentication attack between Alice and Bob. Table 4.4 shows

the number of states and attacks generated by Maude-NPA in each step for the attack state

with different theories described above. For each theory Maude-NPA terminated at Step 4.

We note a similar relationship between between performance and variant complexity as in

Table 4.3.

The secrecy attack is specified in Maude-NPA by following attack pattern:

eq ATTACK-STATE(2)

= :: r, r’ ::

[ nil ,

+(sign(i; N; pk(e(data(a,r’),pkey(a,i)),s),a)),

-(sign(n(a,r); N; Y1, i)),

+(sign(a; i; n(a,r); N; pk(e(data(a,r’),pkey(a,i)),s); Y1, a)),

-(sign(a; i; n(a,r); N; e(X1, pkey(a, i)), s )) | nil]

|| data(a, r’) inI

For the secrecy attack we found that the theories T2AGH and T2XOR gave very discouraging

results. For Theory T2AGH Maude-NPA was not even able to complete Step 1, even for a

simpler version of the protocol we constructed (see below). For theory T2XOR Maude-NPA

did a little better; it was able to complete Steps 1 and 2, but not Step 3. This is not

surprising, given the high variant complexity of the theories. We did not investigate these

two theories any further.
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Original
Steps TAPGAAH1&

TAPGAAH2&

States Time States Time

Step 1 8 133571 8 250829
Step 2 11 7196213 17 8383711
Step 3 13 13728328 44 25724593
Step 4 8 35712864 106 199325826
Step 5 8 21233267 (timeout)
Step 6 11 30402427
Step 7 23 40922662
Step 8 35 62267212
Step 9 (timeout)

Simplified
Steps TAPGAAH1&

TAPGAAH2&

States Time States Time

Step 1 12 36965 12 66910
Step 2 14 38855 32 67577
Step 3 11 52049 72 323521
Step 4 7 34262 179 1486682
Step 5 10 21881 482 15140859
Step 6 8 29695 (timeout)
Step 7 8 18233
Step 8 9 22508

... ... ...
Step 12 4 4534

Table 4.5: Results for secrecy

Even with TAPGAAH1&
and TAPGAAH2&

, Maude-NPA struggled to find the secrecy attack,

as we can see in Table 4.5 for TAPGAAH2&
. We thus tried Maude-NPA on a simpler version

of the protocol to get a better idea of the performance tradeoffs, omitting the checks for

authentication and freshness. This simplification is intended to reduce search space while

keeping the part of the protocol that is of interest to us. Maude-NPA was able to find

the two attacks in five steps for the simplified protocols. The search of the protocol with

TAPGAAH1&
terminated after 12 steps and 4 possible attack sequences were found, while the

one with TAPGAAH2&
took a much longer time for each search step and suffered from state

explosion. Even so, it was able to produce 5 attack sequences before the explosion.

Since the associativity approximation of TAPGAAH1&
is more restrictive than that of

TAPGAAH2&
(indeed it is a special case of it), less variants are generated for the same term,

which reduced the state generation time. This result thus shows the tradeoff needed between

a more general theory and performance in practice.
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4.4.2 Homomorphic Hash Protocol.

In this protocol, an initiator Alice and a responder Bob communicate to agree on a secret

Ns. The messages are encrypted using a shared key, together with a hash function for the

integrity of the messages. But let us suppose that the hash function h has a fatal flaw: the

hash function h is homomorphic. This flaw leads to a possible authentication attack. The

protocol proceeds as follows:

1. AÑ B : A;NA

The protocol starts by A sending her name and a nonce to B.

2. B Ñ A : NB; shkpNs ˚NA, KABq; shkphpNB ˚Ns ˚NA, KABq, KABq

After receiving the message from A, B generates his nonce and the intended secret Ns.

B then responds with his nonce, together with two messages that are encrypted with a

shared key. To guarantee the integrity, one of the encrypted messages includes a hash

of both A and B’s nonces and the secret.

3. AÑ B : shkpN 1
A, KABq; shkphpNB ˚N

1
A, KABq, KABq

A confirms that she received the message.

Now taking advantage of the homomorphic property of the hash function, an intruder can

pretend to be Alice and trick Bob into believing that he has agreed on a secret with Alice.

The flaw is as follows:

1. IpAq Ñ B : A;NI

I pretends to be A, and send B A’s name and its nonce.

2. B Ñ IpAq : NB; shkpNs;NI , KABq; shkphpNB ˚Ns ˚NI , KABq, KABq

B responds to A, which is intercepted by I.

3. IpAq Ñ B : shkpNs;NI , KABq; shkphpNB ˚Ns ˚NI , KABq, KABq

I sends B the encrypted part of the message that it intercepted in the previous step.

Since h is homomorphic over ˚, we have hpNB ˚ Ns ˚ NA, KABq “ hpNB KABq ˚

hpNs ˚NA KABq. Therefore one can send the confirmation message without knowing

KAB. Depending on whether B can tell the difference between a single nonce and a

combination of different nonces, B can be fooled into accepting the message he sent in

the second step of the protocol as a confirmation.

We tried the authentication attack on the protocol specified with the theories TkH (bounded

homomorphism), TH&
(multiset of keys with free operator), TPGH&

(homomorphism over
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pre-group), TAPGH&
(homomorphism over Abelian pre-group), TAPGH&

(homomorphism over

pre-Xor), and T2XORH (homomorphism between two exclusive-or theories). We note that all

the theories we obtained can be used for analyzing this attack. But Maude-NPA struggled to

finish even the first step with the theory T2AGH (homomorphism between two Abelian groups,

variant complexity 2276) due to the high variant complexity, we therefore omit it here. The

results are given in Table 4.6 for the protocol in which Bob cannot tell the difference between

a single nonce and a combination of different nonces. In Table 4.7, we give the results for

the protocol with a stronger Bob who can distinguish the difference between a single nonce

and a combination of different nonces.

The attack pattern is specified in Maude-NPA as follows, which indicates that principal

B, who is acting as the responder, finished his strand thinking that he agreed on a secret

with A, but A did not actually participate in the communication.

eq ATTACK-STATE(0)

= :: r, r’ ::

[ nil, -(a ; Na),

+(n(b, r) ; shk(h(n(b, r) * n(b, r’) * Na, mkey(a, b)),

mkey(a, b)) ; shk(n(b, r’) * Na, mkey(a, b))),

-(shk(h(n(b,r) * Na’, mkey(a, b)), mkey(a, b)) ;

shk(Na’, mkey(a, b))) | nil ]

|| empty

|| nil

|| nil

|| never(

( :: r1, r2 :: [nil | +(X), -(Y), +(Z), nil]

& S:StrandSet || K:IntruderKnowledge)

( :: r1, r2 :: [nil | +(X), nil]

& S:StrandSet || K:IntruderKnowledge))

Table 4.6 shows the number of states generated by Maude-NPA and the amount of time

taken for each step of the backwards reachability analysis. For each theory, except the theory

T2XORH, Maude-NPA found the authentication attack in two steps and terminated in six

steps. For the protocol with the theory T2XORH, Maude-NPA also found the authentication

attack in two steps, but it was not able to terminate. As we can see from the tables, as the

variant complexity of theories involved in the specification grows, the number of states and

the time needed for Maude-NPA to find the attack also grows in general.

But we also noticed an exception with the theory TPXorH&
, which generates more states

than the protocol using theory TAPGH&
. Upon inspection, by the construction of the terms
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Steps T4H TH&
TPGH&

States Time(ms) States Time(ms) States Time(ms)

Step 1 6 4225 3 1947 5 3174
Step 2 6 4613 4 2048 4 3497
Step 3 7 5825 6 2805 6 3097
Step 4 4 6866 8 6232 8 6938
Step 5 2 3190 4 5675 4 6096
Step 6 1 1692 1 3701 1 4032

Steps TAPGH&
TPXorH&

T2XorH

States Time(ms) States Time(ms) States Time(ms)

Step 1 5 2989 12 4640 14 10377
Step 2 4 3167 17 8767 15 18159
Step 3 6 2950 21 15340 19 22570
Step 4 8 6520 25 31086 23 42073
Step 5 4 5983 9 21238 13 35978
Step 6 1 3908 1 11924 15 31286
Step 7 1 0 1 0 20 101249
Step 8 1 0 1 0 ... timeout

Table 4.6: Results for authentication of A to B

in the protocol specification, the protocol using the theory TPXorH&
tends to generate not

only the states that are generated when using the theory TAPGH&
, but also some twin states

in which certain terms are unified. These twin states turn out to be unproductive states. By

adding disequality constraints in the attack pattern, we were able to reduce half of the states

while still terminating and found the stated authentication attack. This is also an example

showing that the patterns in the protocol specification may also influence the performance.

For the second attack analysis, when B can tell whether he received a nonce or not, we

verified that there is no authentication attack between A and B. Table 4.7 shows the number

of states and attacks generated by Maude-NPA in each step for the attack state with different

theories described above. For each theory Maude-NPA terminated within 4 steps. We note

a similar relationship between performance and variant complexity as in Table 4.6.

Another interesting observation is that, if in the second step the message that B sends

to A contains hpNs ˚ NA ˚ NB, KABq instead, this attack can be prevented for theories in

which ˚ is not commutative, even when B cannot tell the difference between a single nonce

and a combination of different nonces; but this fix cannot prevent this attack for theories in

which ˚ is commutative. The number of states generated by Maude-NPA and the amount of

time taken for each step of the backwards reachability analysis are given in Table 4.8. For

the protocols with theories T4H, TH&
and TPGH&

, Maude-NPA terminated in 5 steps without

finding this authentication attack. For the protocols with theories TAPGH&
and TPXorH&

,
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Steps T4H TH&
TPGH&

States Time(ms) States Time(ms) States Time(ms)

Step 1 1 1382 1 969 1 1043
Step 2 0 783 2 860 2 984
Step 3 0 0 1 1681 1 1826
Step 4 0 0 0 996 0 1077

Steps TAPGH&
TPXorH&

T2XorH

States Time(ms) States Time(ms) States Time(ms)

Step 1 1 984 4 2046 4 3771ms
Step 2 2 964 8 3015 6 5145
Step 3 1 1757 4 5204 2 8102
Step 4 0 1117 0 3317 0 3623

Table 4.7: Results for authentication of A to a stronger B

Maude-NPA found the authentication attack in 5 steps and terminated in 6 steps. For the

protocols with the theory T2XorH, Maude-NPA also found the authentication attack in 5

steps but did not terminate. We saw a similar relationship between performance and variant

complexity as in Table 4.6.

Steps T4H TH&
TPGH&

States Time(ms) States Time(ms) States Time(ms)

Step 1 3 2747 2 1595 4 2811
Step 2 1 2118 3 1329 3 2721
Step 3 1 965 3 2496 3 2705
Step 4 0 906 1 2541 1 2750
Step 5 0 0 0 772 0 826

Steps TAPGH&
TPXorH&

T2XorH

States Time(ms) States Time(ms) States Time(ms)

Step 1 4 2962 8 3843 8 8354
Step 2 4 2788 18 6578 18 13805
Step 3 7 4177 22 17146 16 32024
Step 4 6 6802 18 23796 16 40088
Step 5 3 5208 5 15533 7 34454
Step 6 1 2331 1 5310 11 13037
Step 7 1 0 1 0 19 416986
Step 8 1 0 1 0 ... timeout

Table 4.8: Results for authentication of A to B
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4.5 CONCLUDING REMARKS

The lack of FVP for H and AGH has made unification-based formal protocol analysis

difficult to perform by extensible and generic methods such as variant-based unification.

In this chapter we have addressed this problem by studying a hierarchy of theories for

homomorphic encryption that are all FVP. The existence of finitary unification algorithms

for these theories seems to be a new result in the area of unification theory. We have

also introduced variant complexity as a metric and shown how it affects performance. One

important lesson learned from our experiments in using these theories for protocol analysis

is that there is a tradeoff between theory accuracy (typically at the cost of higher variant

complexity) and efficiency of the analysis process. Our hierarchy allows users to choose the

right balance for their problem to negotiate this tradeoff.
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CHAPTER 5: STRAND SPACE WITH CHOICE VIA A PROCESS
ALGEBRA SEMANTICS

5.1 INTRODUCTION

In the course of developing a specification language suitable for the formal analysis of

cryptographic protocols, it has become clear that there are certain universal features that

can best be handled by accounting for them directly in the syntax and semantics of the formal

specification language, e.g., unguessable nonces, communication across a network controlled

by an attacker, and support for the equational properties of cryptographic primitives. Thus a

number of different specification languages have been developed that include these features.

At the same time, it is necessary to provide support for more commonly used constructs,

such as choice points that cause the protocol to continue in different ways, and to do so in

such a way that they are well integrated with the more specifically cryptographic features of

the language. However, in their original form most of these languages do not support choice,

or support it only in a limited way.

In particular the strand space model [25], one of the popular models designed for use

in cryptographic protocol analysis, does not support choice in its original form; strands

describe linear sequences of input and output messages, without any branching. One way of

dealing with this limitation, and of formalizing strand spaces in general, has been to embed

the strand space model in some other formal system that supports choice, e.g., event-based

models for concurrency [52], Petri nets [53], or multi-set rewriting [54]. However, we believe

that there is an advantage in introducing choice in the strand space model itself, while

proving soundness and completeness with another formal system in order to validate the

augmented model. This can allow us to concentrate on handling the different types of choice

that commonly arise in cryptographic protocols.

5.1.1 Contributions

We address the problem of representing choice in the strand space model, particularly

as it is used in the Maude-NPA cryptographic protocol analysis tool. We have identified a

class of choices which includes finite branching and some cases of infinite branching. At the

theoretical level, we provide a bisimulation result between the expected forwards execution

semantics of the new process algebra and the original symbolic backwards semantics of

1This chapter is based on the paper [91], joint work with Santiago Escobar, Catherine A. Meadows, José
Meseguer and Sonia Santiago.
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Maude-NPA. This requires extra intermediate forwards and backwards semantics that are

included in this chapter, together with all the proofs. What these results make possible

is a sound and complete symbolic reachability analysis method for cryptographic protocols

with choice modulo equational properties of the cryptographic functions satisfying the finite

variant property (FVP). At the tool level, we have fully integrated the process algebra

syntax, and its transformation into strands, and have developed new methods to specify

attack states using the process notation in the recent release of Maude-NPA 3.0 (see [58]).

Furthermore, we illustrate the expressive power and naturalness of adding choice to strand

spaces with various examples, and show how it can be effectively used in formal analysis.

5.1.2 Choice in Maude-NPA

Previous to this work, Maude-NPA offered some ways of handling choice, but its scope

was limited, and a uniform semantics of choice was lacking. Several kinds of branching

could be handled by a protocol composition method in which a single parent strand is

composed with one or more child strands. However, repurposing composition for branching

has its limitations. First of all, it is possible to inadvertently introduce non-deterministic

choice into what was intended to be deterministic choice by unwise choice of input and

output parameters. Secondly, the limitation to pattern matching rules out certain types

of deterministic choice conditioned on predicates that cannot be expressed this way, e.g.,

disequality predicates. Finally, implementation of choice via composition can be inefficient,

since Maude-NPA must evaluate all possible child strands that match a parent strand.

Maude-NPA, in common with many other cryptographic protocol analysis tools, also offers

a type of implicit choice that does not involve branching: non-deterministic choice of the

values of certain variables. For example, a strand that describes an initiator communicating

with a responder generally uses variables for both the initiator and responder names; this

represents a non-deterministic choice of initiator and responder identities. However, the

semantic implications of this kind of choice were not that well understood, which made it

difficult to determine where it could safely be used. Clearly, a more unified treatment of

choice was necessary, together with a formal semantics of choice.

In this work we have developed a taxonomy of choice features in which the categories

of deterministic and non-deterministic choice are further subdivided. First of all, non-

deterministic choice is subdivided into explicit and implicit non-deterministic choice. In

explicit non-deterministic choice a role2 chooses either one branch or another at a choice

2As further explained later, the behaviors of protocol participants, e.g., sender, receiver, server, etc., are
described by their respective roles.
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point non- deterministically. In implicit non-deterministic choice a logical choice variable

is introduced which may be non-deterministically instantiated by the role. Deterministic

choice is subdivided into (explicit) if-then-else choice and implicit deterministic choice. In

if-then-else choice a predicate is evaluated. If the predicate evaluates to true one branch is

chosen, and if it evaluates to false another branch is chosen. Deterministic choice with more

than two choices can be modeled by nesting of if-then-else choices. In implicit deterministic

choice, a term pattern is used as an implicit guard, so that only messages matching such

pattern can be chosen, i.e., accepted, by the role. Although implicit deterministic choice can

be considered a special case of if-then-else choice in which the second branch is empty, it is

often simpler to treat it separately. Classifying choice in this way allows us to represent all

possible behaviors of a protocol by a finite number of strands modeling possible executions,

while still allowing the variables used in implicit non-deterministic and deterministic choice

to be instantiated in a typically infinite number of ways.

5.1.3 A Motivating Example

In this section we introduce a protocol that we will use as a running example. It is a

simplified version of the handshake protocol in TLS 1.3 [92], a proposed update to the TLS

standard for client-server authentication. This protocol, like most other protocol standards,

offers a number of different choices that are applied in different situations. In order to

make the presentation and discussion manageable, we present only a subset here: the client

chooses a Diffie-Hellman group, and proposes it to the server. The server can either accept

it or request that the client proposes a different group. In addition, the server has the option

of requesting that the client authenticates itself. We present the protocol at a high level

similar to the style used in [92].

Example 5.1. We let a dashed arrow 99K denote an optional message, and an asterisk *

denote an optional field.

1. C Ñ S : ClientHello, Key Share

The client sends a Hello message containing a nonce and the Diffie-Hellman group it

wants to use. It also sends a Diffie-Hellman key share.

• 1.1 S 99K C : HelloRetryRequest

The server may optionally reject the Diffie-Hellman group proposed by the client

and request a new one.

• 1.2 C 99K S : DHGroup, Key Share

The client proposes a new group and sends a new key share.
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2. S Ñ C : ServerHello, Key Share,

{AuthReq*},{CertificateVerify}, {Finished}
The server sends its own Hello message and a Diffie-Hellman key share. It may option-

ally send an AuthReq to the client to authenticate itself with a public key signature

from its public key certificate. It then signs the entire handshake using its own public

key in the CertificateVerify field. Finally, in the Finished field it computes a MAC over

the entire handshake using the shared Diffie-Hellman key. The tu notation denotes a

field encrypted using the shared Diffie-Hellman key.

3. C Ñ S : tCertificateVerify*u, tFinishedu

If the client received an AuthReq from the server it returns its own CertificateVerify

and Finished fields.

5.1.4 Plan of the chapter

The rest of this chapter is organized as follows. We first define the process algebra syntax

and operational semantics in Section 5.2. In Section 5.3 we extend Maude-NPA’s strand

space syntax to include choice operators. The main bisimulation results between the ex-

pected forwards semantics of the process algebra in Section 5.2 and the original symbolic

backwards strand semantics of Maude-NPA of Section 3 are Theorems 5.4 and 5.5. They are

proved by introducing an intermediate semantics, a forward strand space semantics originally

introduced in [60]. First, in Section 5.3 we extend the strand space model with constraints,

since strands are the basis of both the forwards semantics and the backwards semantics of

Maude-NPA. In Section 5.4 we augment the forwards strand space semantics of [60] with

choice operators and operational semantic rules to produce a constrained forwards seman-

tics. In Section 5.5 we prove bisimilarity of the process algebra semantics of Section 5.2 and

the constrained forwards semantics of Section 5.4. In [60] the forwards strand space seman-

tics was proved sound and complete w.r.t. the original symbolic backwards semantics of

Maude-NPA and, therefore, such proofs had to be extended to handling constraints. In Sec-

tion 5.6 we augment the original symbolic backwards semantics of Maude-NPA with choice

operators and operational semantic rules to produce a constrained backwards semantics. In

Section 5.7 we then prove that the constrained backwards semantics is sound and complete

with respect to the constrained forwards semantics. By combining the bisimulation between

the process algebra and the constrained forwards semantics on the one hand (Theorem 5.1)

and the bisimulation between the constrained forwards semantics and the constrained back-

wards semantics on the other hand (Theorems 5.3 and 5.2) we obtain the main bisimulation
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results (Theorems 5.4 and 5.5). Finally, in Section 5.8 we describe how the process algebra

has been fully integrated into Maude-NPA and show some experiments that we have run

using Maude-NPA on various protocols exhibiting both deterministic and non-deterministic

choice. In Section 5.9 we discuss related work. Finally, we conclude in Section 5.10.

5.2 A PROCESS ALGEBRA FOR PROTOCOLS WITH CHOICE

In this section we define a process algebra that extends the strand space model to naturally

specify protocols exhibiting choice points. Throughout this chapter we refer to this process

algebra as the protocol process algebra.

The rest of this section is organized as follows. First, in Section 5.2.1 we define the syntax

of the protocol process algebra and state the requirements that a well-formed process must

satisfy. Then in Section 5.2.2, we explain how protocol specifications can be defined in this

process algebra. In Section 5.2.3 we then define the operational semantics of the protocol

process algebra. Note that the operational semantics of Maude-NPA given in Section 3

corresponds to a symbolic backwards semantics, while in Section 5.2.3 we give a rewriting-

based forwards semantics for process algebra. Sections 5.5 and 5.7 will relate these two

semantics using a bisimulation.

5.2.1 Syntax of the Protocol Process Algebra

In the protocol process algebra the behaviors of both honest principals and the intruder

are represented by labeled processes. Therefore, a protocol is specified as a set of labeled

processes. Each process performs a sequence of actions, namely, sending or receiving a

message, and may also perform deterministic or non-deterministic choices. The protocol

process algebra’s syntax is parameterized3 by a sort Msg of messages and has the following

syntax:

ProcConf ::“ LProc | ProcConf & ProcConf | H

LProc ::“ pRole, I, Jq Proc

Proc ::“ nilP | `Msg | ´Msg | Proc ¨ Proc |

Proc ? Proc | if Cond then Proc else Proc

Cond ::“ Msg ‰ Msg | Msg “ Msg

3More precisely, as explained in Section 5.2.2, they are parameterized by a user-definable equational
theory pΣP , EPq having a sort Msg of messages.
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• ProcConf stands for a process configuration, that is, a set of labeled processes. The

symbol & is used to denote set union for sets of labeled processes.

• LProc stands for a labeled process, that is, a process Proc with a label pRole, I, Jq.

Role refers to the role of the process in the protocol (e.g., initiator or responder). I

is a natural number denoting the identity of the process, which distinguishes different

instances(sessions) of a process specification. J indicates that the action at stage J of

the process specification will be the next one to be executed, that is, the first J ´ 1

actions of the process for role Role have already been executed. Note that we omit I

and J in the protocol specification when both I and J are 0.

• Proc defines the actions that can be executed within a process. `Msg , and ´Msg

respectively denote sending out or receiving a message Msg . We assume a single chan-

nel, through which all messages are sent to or received by the intruder. “Proc ¨ Proc”

denotes sequential composition of processes, where symbol _._ is associative and has

the empty process nilP as identity. “Proc ? Proc” denotes an explicit nondeterministic

choice, whereas “if Cond then Proc else Proc” denotes an explicit deterministic choice,

whose continuation depends on the satisfaction of the constraint Cond .

• Cond denotes a constraint that will be evaluated in explicit deterministic choices. In

this work we only consider constraints that are either equalities (“) or disequalities

(‰) between message expressions.

Let PS, QS, and RS be process configurations, and P, Q, and R be protocol processes.

Our protocol syntax satisfies the following structural axioms :

PS&QS “ QS&PS (5.1)

pPS&QSq&RS “ PS& pQS&RSq (5.2)

pP ¨ Qq ¨ R “ P ¨ pQ ¨ Rq (5.3)

PS&H “ PS (5.4)

P ¨ nilP “ P (5.5)

nilP ¨ P “ P (5.6)
The specification of the processes defining a protocol’s behavior may contain some variables

denoting information that the principal executing the process does not yet know, or that will

be different in different executions. In all protocol specifications we assume three disjoint

kinds of variables:

• fresh variables : these are not really variables in the standard sense, but names for

constant values in a data type Vfresh of unguessable values such as nonces. A fresh

variable r is always associated with a role ro P Role in the protocol. For each protocol

session i, we associate to r a unique name r.ro.i for a constant in the data type Vfresh.
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What is assumed is that if r.ro.i ‰ r1.ro1.j (including the case r.ro.i ‰ r.ro.j), the

values interpreting r.ro.i and r1.ro1.j in Vfresh are both different and unguessable. In

particular, for role ro P Role, the interpretation mapping I : tr.ro.i | i P Nu Ñ Vfresh

is injective and random. In our semantics, a constant r.ro.i denotes its (unguessable)

interpretation Ipr.ro.iq P Vfresh. Throughout this chapter we will denote this kind of

variables as r, r1, r2, . . ..

• choice variables : these are variables first appearing in a sent message `M , which

can be substituted by any value arbitrarily chosen from a possibly infinite domain.

A choice variable indicates an implicit non-deterministic choice. Given a protocol

with choice variables, each possible substitution of these variables denotes a possible

continuation of the protocol. We always denote choice variables by uppercase letters

postfixed with the symbol “?” as a subscript, e.g., A?, B?, . . ..

• pattern variables : variables first appearing in a received message ´M . These vari-

ables will be instantiated when matching sent and received messages. Implicit deter-

ministic choices are indicated by terms containing pattern variables, since failing to

match a pattern term may lead to the rejection of a message. A pattern term plays

the implicit role of a guard, so that, depending on the different ways of matching it,

the protocol can have different continuations. This kind of variables will be written

with uppercase letters, e.g., A,B,NA, . . ..

Note that fresh variables are distinguished from other variables by having a specific sort

Fresh. Choice variables and pattern variables can never have sort Fresh.

To guarantee the requirements on different kinds of variables that can appear in a given

process, we consider only well-formed processes. We make this notion precise by defining

a function wf : Proc Ñ Bool checking whether a given process is well-formed. A labeled

process is well-formed if the process it labels is well-formed. A process configuration is well-

formed if all the labeled process in it are well-formed. The definition of wf uses an auxiliary

function shVar : Proc Ñ VarSet , retrieving the “shared variables” of a process, i.e., the set

of variables that show up in all branches. Below we define both functions, where P, Q, and

R are processes, M is a message, and T is a constraint.

shVarp`M ¨ P q “ VarpMq Y shVarpP q

shVarp´M ¨ P q “ VarpMq Y shVarpP q

shVarppif T then P else Qq ¨Rq “ VarpT q Y pshVarpP q X shVarpQqq Y shVarpRq

shVarppP ? Qq ¨Rq “ pshVarpP q X shVarpQqq Y shVarpRq
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shVarpnilPq “ H

wf pP ¨ `Mq “ wf pP q if pVarpMq XVarpP qq Ď shVarpP q

wf pP ¨ ´Mq “ wf pP q if pVarpMq XVarpP qq Ď shVarpP q

wf pP ¨ pif T then Q else Rqq “ wf pP ¨Qq ^ wf pP ¨Rq

if P ‰ nilP and Q ‰ nilP and VarpT q Ď shVarpP q

wf pP ¨ pQ ? Rqq “ wf pP ¨Qq ^ wf pP ¨Rq if Q ‰ nilP orR ‰ nilP

wf pP ¨ nilPq “ wf pP q

wf pnilPq “ True.

Remark 5.1. Note that the well-formedness property implies that if a process begins with a

deterministic choice action if T then Q else R, then all variables in T must be instantiated,

and thus only one branch may be taken. For this reason, it is undesirable to specify processes

that begin with such an action. Furthermore, note that the well-formedness property avoids

explicit choices where both possibilities are the nilP process. That is, processes containing

either (if T then nil else nil), or (nil ? nil), respectively.

We illustrate the notion of well-formed process below.

Example 5.2. The behavior of a Client initiating an instance of the handshake protocol

from Example 5.1 with the Server, where the Server may or may not request the Client to

authenticate itself, may be specified by the well-formed process shown below:

pClientq ` phs;npC?, r1q;G?; genpG?q; keyGpG?, C?, r2qq ¨

´ phs;N ;G?; genpG?q;E;ZpAReq , G?, E, C?, r1, S,HMqq ¨

if pAReq “ authreqq

then

` pepkeyEpG?, E, C?, r1q,

sigpC,W pHM,AReq , S?, G?, E, C?, r1qq;

macpkeyEpG?, E, , C?, r1q,W pHM,AReq , S,G?, E, C?, r1qqqq ¨

else

` pepkeyEpG?, E, C?, r2q,

macpkeyEpG?, E, C?, r2q,W pHM,AReq , S,G?, E, C?, r1qqqq

where KeyG , Z and W are macros used to construct messages sent in the protocol. The

variables C? and G? are choice variables denoting the client and Diffie-Hellman group re-

spectively, and the variables r1 and r2 are fresh variables. All other variables are pattern

variables. In particular, the variable AReq is a pattern variable that can be instantiated to
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either authreq or noauthreq . The Client makes a deterministic choice whether or not to sign

its next message with its digital signature, depending on which value of AReq it receives.

Example 5.3. The behavior of a Server who may or may not request a retry from a Client

in an instance of the handshake protocol from Example 5.1 may be specified as follows:

pServerq : ´ phs;N ;G; genpGq;Eq¨

ppp`phs; retryq¨

´ phs;N 1;G1; genpG1q;E1q¨

` phs;npS?, r1q;G
1; genpG1q; keyGpG1, S?, r2q;

ZpAReq?, G
1, E1, S, r2, S?, HMqqq

?

p`phs;npS?, r1q;G; genpGq; keyGpG,S, r2q;

ZpAReq?, G,E, S, r2, S?, HMqqqqq

In this case the server nondeterministically chooses to request or not to request a retry.

In the case of a retry it waits for the retry message from the client, and then proceeds with

the handshake message using the new key information from the client. In the case when

it does not request a retry, it sends the handshake message immediately after receiving the

client’s Hello message. The variable r2 is a fresh variable, while S? and AReq? are choice

variables. S? denotes the name of the server, and AReq? is nondeterministically instantiated

to authreq or noauthreq .

Example 5.4. The following process does not satisfy the well-formedness property.

pRespq ´ ppkpB,A;NAqq¨

p`ppkpA, 1;npB, rqqq ? ` ppkpA, 2qqq ¨

` ppkpC?, npB, rqqq

The problem with this process is the fresh variable r appearing in message`ppkpC?, npB, rqqq,

since

r R shVarp´ppkpB,A;NAqq ¨ p`ppkpA, 1;npB, rqqq ? ` ppkpA, 2qqqq

more specifically, because it does not appear in message `ppkpA, 2qq, but r P Varp´ppkpB,A;

NAqq ¨ p`ppkpA, 1;npB, rqqq ? ` ppkpA, 2qqqq.
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5.2.2 Protocol Specification in Process Algebra

Given a protocol P , we define its specification in the protocol process algebra, written

PPA, as a pair of the form PPA “ ppΣPAP , EPAP q, PPAq, where pΣPAP , EPAP q is an equational

theory explained below, and PPA is a term denoting a well-formed process configuration

representing the behavior of the honest principals as well as the capabilities of the attacker.

That is, PPA “ pro1 qP1 & . . . & proiqPi, where each rok, 1 ď k ď i, is either the role of

an honest principal or identifies one of the capabilities of the attacker. PPA cannot contain

two processes with the same label, i.e., the behavior of each honest principal, and each

attacker capability are represented by a unique process. EPAP “ EP Y EPA is a set of

equations with EP denoting the protocol’s cryptographic properties and EPA denoting the

properties of process constructors. The set of equations EP is user-definable and can vary

for different protocols. Instead, the set of equations EPA is always the same for all protocols.

ΣPAP “ ΣP Y ΣPA is the signature defining the sorts and function symbols as follows:

• ΣP is an order-sorted signature defining the sorts and function symbols for the messages

that can be exchanged in protocol P . However, independently of protocol P , ΣP must

always have a sort Msg as the top sort in one of its connected components. We call

a sort S a data sort iff it is either a subsort of Msg, or there is a message constructor

c : S1...S...Sn Ñ S1, with S1 a subsort of Msg. The specific sort Fresh for fresh variables

is an example of a data sort. Choice and pattern variables have sort Msg or any of its

subsorts.

• ΣPA is an order-sorted signature defining the sorts and function symbols of the pro-

cess algebra infrastructure. ΣPA corresponds exactly to the BNF definition of the

protocol process algebra’s syntax in Section 5.2.1. Although it has a sort Msg for

messages, it leaves this sort totally unspecified, so that different protocols P may use

completely different message constructors and may satisfy different equational prop-

erties EP . Therefore, ΣPA will be the same signature for any protocol specified in

the process algebra. More specifically, ΣPA contains the sorts for process configura-

tions (ProcConf), labeled processes (LProc), processes (Proc), constraints (Cond), and

messages(Msg), as well as the subsort relations LProc ă ProcConf. Furthermore, the

function symbols in ΣPA are also defined according to the BNF definition.

Therefore, the syntax ΣPAP of processes for P will be in the union signature ΣPA Y ΣP ,

consisting of the protocol-specific syntax ΣP , and the generic process syntax ΣPA through

the shared sort Msg.
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5.2.3 Operational Semantics of the Protocol Process Algebra

Given a protocol P , a state of P consists of a set of (possibly partially executed) labeled

processes, and a set of terms in the intruder’s knowledge tIKu. That is, a state is a term of

the form tLP1 & ¨ ¨ ¨ &LPn | tIKuu. Given a state St of this form, we abuse notation and

write LPk P St if LPk is a labeled process in the set LP1 & ¨ ¨ ¨ &LPn.

The intruder knowledge IK models the single channel through which all messages are sent

and received. We consider an active attacker who has complete control of the channel, i.e, can

read, alter, redirect, and delete traffic as well as create its own messages by means of intruder

processes. That is, the purpose of some LPk P St is to perform message-manipulation actions

for the intruder.

State changes are defined by a set RPAP of rewrite rules, such that the rewrite theory

pΣPAP`State , EPAP , RPAP q characterizes the behavior of protocol P , where ΣPAP`State extends

ΣPAP by adding state constructor symbols. We assume that a protocol’s execution begins

with an empty state, i.e., a state with an empty set of labeled processes, and an empty

intruder knowledge. That is, the initial state is always of the form tH | temptyuu. Each

transition rule in RPAP is labeled with a tuple of the form pro, i , j , a, nq, where:

• ro is the role of the labeled process being executed in the transition.

• i denotes the identifier of the labeled process being executed in the transition. Since

there can be more than one process instance of the same role in a process state, i

is used to distinguish different instances, i.e., ro and i together uniquely identify a

process in a state.

• j denotes the process’ step number since its beginning.

• a is a ground term identifying the action that is being performed in the transition. It

has different possible values: “`m” or “´m” if the message m was sent (and added to

the intruder’s knowledge) or received, respectively; “m” if the message m was sent but

did not increase the intruder’s knowledge, “?” if the transition performs an explicit

non-deterministic choice, or “T ” if the transition performs a explicit deterministic

choice.

• n is a number that, if the action that is being executed is an explicit choice, indicates

which branch has been chosen as the process continuation. In this case n takes the

value of either 1 or 2. If the transition does not perform any explicit choice, then

n “ 0.
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Below we describe the set of transition rules that define a protocol’s execution in the

protocol process algebra, that is, the set of rules RPAP . Note that in the transition rules

shown below, PS denotes the rest of labeled processes of the state (which can be the empty

set H).

• The action of sending a message is represented by the two transition rules below.

Since we assume that the intruder has complete control of the network, it can learn

any message sent by other principals. Rule (PA++) denotes the case in which the sent

message is added to the intruder’s knowledge. Note that this rule can only be applied

if the intruder has not already learnt that message. Rule (PA+) denotes the case in

which the intruder chooses not to learn the message, i.e., the intruder’s knowledge

is not modified, and, thus, no condition needs to be checked. Since choice variables

denote messages that are nondeterministically chosen, all (possibly infinitely many)

admissible ground substitutions for the choice variables are possible behaviors.

tpro, i, jq p`M ¨ P q & PS | tIKuu

ÝÑpro,i,j,`Mσ,0q tpro, i, j ` 1q Pσ & PS | tMσPI, IKuu
if pMσPIq R IK
where σ is a ground substitution binding choice variables in M (PA++)

tpro, i, jq p`M ¨ P q & PS | tIKuu

ÝÑpro,i,j,Mσ,0q tpro, i, j ` 1q Pσ & PS | tIKuu

where σ is a ground substitution binding choice variables in M (PA+)

• As shown in the rule below, a process can receive a message matching a pattern M

if there is a message M 1 in the intruder’s knowledge, i.e., a message previously sent

either by some honest principal or by some intruder process, that matches the pattern

message M . After receiving this message the process will continue with its variables

instantiated by the matching substitution, which takes place modulo the equations EP .

Note that the intruder can “delete” a message via choosing not to learn it (executing

Rule PA+ instead of Rule PA++) or not to deliver it (failing to execute Rule PA-).

tpro, i, jq p´M ¨ P q & PS | tM 1PI, IKuu
ÝÑpro,i,j,´Mσ,0q tpro, i, j ` 1q Pσ & PS | tM 1PI, IKuu
if M 1 “EP Mσ (PA-)
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• The two transition rules shown below define the operational semantics of explicit deter-

ministic choices. That is, the operational semantics of an if T then P else Q expression.

More specifically, rule (PAif1) describes the then case, i.e., if the constraint T is sat-

isfied, the process will continue as P . Rule (PAif2) describes the else case, that is,

if the constraint T is not satisfied, the process will continue as Q. Note that, since

we only consider well-formed processes, these transition rules will only be applied if

j ě 1. Note also that since T has been fully substituted by the time the if-then-else

is executed, and the constraints that we considered in this chapter are of the form

m ‰EP m1 or m “EP m1, the satisfiability of T can be checked by checking whether

the corresponding ground equality or disequality holds.

tpro, i, jq ppif T then P else Qq ¨Rq & PS | tIKuu

ÝÑpro,i,j,T,1q tpro, i, j ` 1q pP ¨Rq & PS | tIKuu if T (PAif1)

tpro, i, jq ppif T then P else Qq ¨Rq & PS | tIKuu

ÝÑpro,i,j,T,2q tpro, i, j ` 1q pQ ¨Rq & PS | tIKuu if  T (PAif2)

• The two transition rules below define the semantics of explicit non-deterministic choice

P ? Q. In this case, the process can continue either as P , denoted by rule (PA?1), or

as Q, denoted by rule (PA?2). Note that this decision is made non-deterministically.

tpro, i, jq ppP ? Qq ¨Rq & PS | tIKuu

ÝÑpro,i,j,?,1q tpro, i, j ` 1q pP ¨Rq & PS | tIKuu (PA?1)

tpro, i, jq ppP ? Qq ¨Rq & PS | tIKuu

ÝÑpro,i,j,?,2q tpro, i, j ` 1qpQ ¨Rq & PS | tIKuu (PA?2)

• The transition rules shown below describe the introduction of a new process from the

specification into the state, which allows us to support an unbounded session model.

Recall that fresh variables are associated with a role and an identifier. Therefore, when-

ever a new process is introduced: (a) the largest process identifier piq will be increased
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by 1, and (b) new names will be assigned to the fresh variables in the new process.

The function MaxProcIdpPS, roq in the transition rule below is used to get the largest

process identifier piq of role ro in the process configuration PS. The substitution ρro,i`1

in the transition rule below takes a labeled process and assigns new names to the fresh

variables according to the label. More specifically, pro, i` 1, 1q Pkpr1, . . . , rnqρro,i`1 “

pro, i` 1, 1q Pkpr1, . . . , rnqtr1 ÞÑ r1.ro.i` 1, . . . , rn ÞÑ rn.ro.i` 1u. In a process state, a

role name together with an identifier uniquely identifies a process. Therefore, there is

a unique subset of fresh names for each process in the state. In the rest of this chapter

we will refer to this kind of substitutions as fresh substitutions.

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

@ proq Pk P PPA

tPS | tIKuu

ÝÑpro,i`1,1,A,Numq tpro, i` 1, 2q P 1k & PS | tIK 1uu

IF tpro, i` 1, 1q Pkρro,i`1 | tIKuu

ÝÑpro,i`1,1,A,Numq tpro, i` 1, 2q P 1k | tIK
1uu

where ρro,i`1 is a fresh substitution,

i “ MaxProcIdpPS, roq

,
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(PA&)

Note that A denotes the action of the state transition, and can be of any of the forms

explained above. The function MaxProcId is defined as follows:

MaxProcIdpH, roq “ 0

MaxProcIdppro, i, jqP&PS, roq “ maxpMaxProcIdpPS, roq, iq

MaxProcIdppro1, i, jqP&PS, roq “ MaxProcIdpPS, roq if ro ‰ ro1

where PS denotes a process configuration, P denotes a process, and ro, ro1 denote role

names.

Therefore, the behavior of a protocol in the process algebra is defined by the set of tran-

sition rules RPAP “ t(PA++), (PA+), (PA-), (PAif1), (PAif2), (PA?1), (PA?2)u Y (PA&).

Our main result is a bisimulation between the state space generated by the transition rules

R´1
BP

, associated to the symbolic backwards semantics of Section 3, and the transition rules

RPAP above, associated to the forwards semantics for process algebra. This is nontrivial,

since there are three major ways in which the two semantics differ. The first is that processes

“forget” their past, while strands “remember” theirs. The second is that Maude-NPA uses
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backwards search, while the process algebra proceeds forwards. The third is that Maude-

NPA performs symbolic reachability analysis using terms with variables, while the process

algebra considers only ground terms.

We systematically relate these different semantics by introducing an intermediate seman-

tics, a forward strand space semantics extending that in [60]. First, in Section 5.3 we extend

the strand space model with constraints, since strands are the basis of both the forwards

semantics and the backwards semantics of Maude-NPA. In Section 5.4 we augment the for-

wards strand space semantics of [60] with choice operators and operational semantic rules

to produce a constrained forwards semantics. In Section 5.5 we prove bisimilarity of the

process algebra semantics of Section 5.2 and the constrained forwards semantics of Section

5.4. In [60] the forwards strand space semantics was proved sound and complete w.r.t.

the original symbolic backwards semantics of Maude-NPA. But now such proofs have to

be extended to handle constraints. In Section 5.6 we also augment the original symbolic

backwards semantics of Maude-NPA with choice operators and operational semantic rules

to produce a constrained backwards semantics. In Section 5.7, we then prove that the con-

strained backwards semantics is sound and complete with respect to the constrained forwards

semantics. By combining the bisimulation between the process algebra and the constrained

forwards semantics on the one hand, and the bisimulation between the constrained forwards

semantics and the constrained backwards semantics on the other hand, we obtain the main

bisimulation result.

Besides provgiving a detailed semantic account of how the strand model can be extended

with choice features, the key practical importance of these bisimulation results is that, with

the relatively modest extensions to Maude-NPA described in Section 5.8.1 and supported by

its recent 3.0 release, sound and complete analysis of protocols with choice features specified

in process algebra is made possible.

5.3 CONSTRAINED PROTOCOL STRANDS WITH CHOICE

To specify and analyze protocols with choices in Maude-NPA, in this section we extend

Maude-NPA’s strand notation by adding new symbols to support explicit choices. We refer

to the strands in this extended syntax as constrained protocol strands.

In Section 5.3.1 we describe the syntax for constrained protocol strands. Then, in Sec-

tion 5.3.2 we define a mapping from a protocol specification in the protocol process algebra,

as described in Section 5.2.2, to a specification based on constrained protocol strands.
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5.3.1 Constrained Protocol Strands Syntax

In this section we extend Maude-NPA’s syntax by adding constrained messages, which are

terms of the form tCstr ,Numu, where Cstr is a constraint, and Num is a natural number

that identifies the continuation of the protocol’s execution, among the two possibilities after

an explicit choice point. More specifically, we extend the signature of strand set in the

Maude-NPA’s syntax as follows:

• A new sort Cstr represents the constraints allowed in constrained messages, containing

three symbols: (i) ? : Ñ Cstr, (ii) “ : Msg MsgÑ Cstr, and (iii) ‰ : Msg MsgÑ

Cstr.

• A new sort CstrMsg for constrained messages, such that CstrMsg ă SMsg, where SMsg

is an existing Maude-NPA sort denoting signed messages (i.e., messages with + or -).

Therefore, now a strand is a sequence of output, input and constrained messages.

• A new operator t , u : Cstr NatÑ CstrMsg constructs constrained messages.

We refer to this extended signature as ΣCstrSSP . Note that the protocol signature ΣP is

contained in Maude-NPA’s signature ΣSSP , and therefore in ΣCstrSSP . Furthermore, in the

constrained semantics we allow each honest principal or intruder capability strand to be

labeled by the “role” of that strand in the protocol (e.g., (Client) or (Server)). Therefore,

strands are now terms of the form pro, iqru1, . . . , uns, where ro denotes the role of the strand

in the protocol, i is a unique identifier distinguishing different instances of strands of the

same role, and each ui can be a sent or received message, i.e., a term of the form M˘, or a

constraint message of the form tCstr , Numu. We often omit i, or both ro and i for clarity

when they are not relevant.

5.3.2 Protocol Specification using Constrained Protocol Strands

The behavior of a protocol involving choices can be specified using the syntax presented

in Section 5.3.1 as described below.

Definition 5.1 (Constrained protocol strand specification). Given a protocol P , we define

its specification by means of constrained protocol strands, written PCstrSS , as a tuple of the

form PCstrSS “ ppΣCstrSSP , ESSP q, PCstrSS q, where ΣCstrSSP is the protocol’s signature (see

Section 5.3.1), and ESSP “ EP Y ESS is a set of equations as we defined in Chapter 3,

where EP denotes the protocol’s cryptographic properties and ESS denotes the protocol-

independent properties of constructors of strands. That is, the set of equations EP may
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vary depending on different protocols, but the set of equations ESS is always the same for

all protocols. PCstrSS is a set of constrained protocol strands as defined in Section 5.3.1,

representing the behavior of the honest principals as well as the capabilities of the attacker.

That is, PCstrSS is a set of labeled strands of the form: PCstrSS “ tpro1 qru1,1, . . . , u1,n1s &

. . . & promqrum,1, . . . , um,nmsu, where, for each rok such that 1 ď k ď i, rok is either the

role of an honest principal, or identifies one of the capabilities of the attacker. We note that

PCstrSS may contain several strands with the same label, each defining one of the possible

paths of such a principal.

The protocol specification described above can be obtained by transforming a specification

in the process algebra of Section 5.2.2 as follows. Given a protocol P , its specification in the

process algebra PPA, consists of a set of well-formed labeled processes. We transform a term

denoting a set of labeled processes into a term denoting a set of constrained protocol strands

by the mapping toCstrSS. The intuitive idea is that, since our process contains no recursion,

each process can be “deconstructed” as a set of constrained protocol strands, where each

such strand represent a possible execution path of the process.

The mapping toCstrSS is specified in Definition 5.2 below.

Definition 5.2 (Mapping labeled processes toCstrSS). Given a labeled process LP and a

process configuration LPS , we define the mapping toCstrSS : TΣPAP
pX q Ñ TΣCstrSSP

pX q
recursively as follows:

toCstrSSpLP & LPS q “ toCstrSS*pLP ,nilPq & toCstrSSpLPS q

toCstrSSpHq “ H

where H is the empty set of strands. toCstrSS* is an auxiliary mapping that maps a term

denoting a labeled process to a term that denotes a set of constrained protocol strands. It

takes two arguments: a labeled process, and a temporary store that keeps a sequence of

messages. More specifically, toCstrSS* : TΣPAP
pX q ˆ TΣCstrSSP

pX q Ñ TΣCstrSSP
pX q is defined

as follows:

toCstrSS*ppro, i, jq nilP , Lq “ pro, iq r L s

toCstrSS*ppro, i, jq `M . P,Lq “ toCstrSS*ppro, i, jq P, pL, `Mqq

toCstrSS*ppro, i, jq ´M . P, Lq “ toCstrSS*ppro, i, jq P, pL, ´Mqq

toCstrSS*ppro, i, jq (if T then P else Qq . R, Lq

“ toCstrSS*ppro, i, jq P . R, pL, tT, 1uqq &
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toCstrSS*ppro, i, jq Q . R, pL, t T, 2uqq

toCstrSS*ppro, i, jq pP ? Qq . R, Lq

“ toCstrSS*ppro, i, jq P . R, pL, t?, 1uqq &

toCstrSS*ppro, i, jq Q . R, pL, t?, 2uqq

where P , Q, and R denote processes, M is a message, T is a constraint, and L denotes a list

of messages, i.e., input, output or constraint messages.

Note that toCstrSS does not modify output and input messages, since messages are ac-

tually terms in TΣP pX q in both the protocol process algebra, and the constrained forwards

semantics. toCstrSS can be used both as a map between specifications, and as a map from

process configurations and strand sets appearing in states.

We illustrate the toCstrSS transformation with the example below.

Example 5.5. If we apply the mapping toCstrSS to the process in Example 5.3 we obtain

the following term which denotes a set of strands:

pServerq r t?, 1u,

´ phs;N ;G; genpGq;Eq,

` phs; retryq,

´ phs;N 1;G1; genpG1q;E1qq,

` phs;npS?, r1q;G
1; genpG1q; keyGpG1, S?, r2q;

ZpAReq?, G
1, E1, S, r2, S?, HMqqs &

pServerq r t?, 2u,

´ phs;N ;G; genpGq;Eq,

` phs;npS?, r1q;G; genpGq; keyGpG,S, r2q;

ZpAReq?, G,E, S, r2, S?, HMqqs

A protocol specification in the protocol process algebra can then be transformed into

a specification of that protocol in the constrained protocol strands described below using

toCstrSS.

Definition 5.3 (Specification transformation). Given a protocol P and its protocol process

algebra specification PPA “ ppΣPAP , EP YEPAq, PPAq, with PPA “ pro1qP1& . . .&pronqPn, its

specification by means of constrained protocol strands is PCstrSS “ ppΣCstrSSP , EP Y ESS q,

PCstrSS q with PCstrSS “ toCstrSSpPPAq.
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5.4 CONSTRAINED FORWARDS STRAND SEMANTICS

In this section we extend Maude-NPA’s rewriting-based forwards semantics in [60] by

adding new transition rules for constrained messages. We refer to this extended forwards

semantics as constrained forwards strand semantics. We show that the process algebra

semantics and the constrained forwards strand semantics are label bisimilar. Therefore,

protocols exhibiting choices can be specified and executed in an equivalent way in both

semantics.

In the constrained forwards strand semantics, state changes are defined by a set RCstrFP of

rewrite rules, so that the rewrite theory pΣCstrSSP , ESSP , RCstrFP q characterizes the behaviors

of protocol P .

The set of transition rules RCstrFP is an extension of the transition rules RFP in [60]. The

transition rules are generated from the protocol specification. A state consists of a multiset

of partially executed strands and a set of terms denoting the intruder’s knowledge. The

main differences between the sets RCstrFP and RFP are: (i) new transition rules are added

in RCstrFP to appropriately deal with constraint messages, (ii) strands are labeled with the

role name, together with the identifier for distinguishing different instances, as explained in

Section 5.3.1, (iii) transitions are also labeled, similarly as in the protocol process algebra,

(iv) the global counter for generating fresh variables is deleted from the state. Instead,

special unique names are assigned to fresh variable, which simplifies our notation.

In the constrained forwards strand semantics we label each transition rule similarly as in

Section 5.2.3, that is, using labels of the form pro, i, j, a, nq, where ro, i, a, and n are as

explained in Section 5.2.3, and j in this case is the position of the message that is being

exchanged in the state transition. Also, similar to Section 5.2.3, for transitions that send

out messages containing choice variables, all (possibly infinitely many) admissible ground

substitutions for the choice variables are possible behaviors. A similar mechanism for distin-

guishing different fresh variables is used as that explained in Section 5.2.3. Since messages

are introduced into strands in the state incrementally, we instantiate the fresh variables

incrementally as well. Recall that fresh variables always first show up in a sent message.

Therefore, each time a sent message is introduced into a strand in the state, we assign new

names to the fresh variables in the message being introduced. The function MaxStrId for

getting the max identifier for a constrained strand of a certain role is similar to MaxProcId

in Section 5.2.3.

Since now messages in a strand can be sent or received messages, i.e., terms of the form

m` or m´, as well as constraint messages tCstr ,Numu, we represent them in the rules below

simply as terms of the form ui when their exact form is not relevant. We will use the precise
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form of the message when disambiguation is needed.

Before explaining the new transition rules for constraint messages, we show how the tran-

sition rules in [60] are labeled.

The constrained forwards strand semantics extends Maude-NPA’s forwards semantics in

[60] by adding transition rules to handle constraint messages, i.e, messages of the form

tCstr ,Numu, where Num can be either 1 or 2. First, we add the two transition rules below

for the cases when such a constrained message comes from explicit choices. Note that, as

a consequence of well-formedness, the constraints introduce no new variables, and since the

constraints that we consider are of the form m ‰EP m1 or m “EP m1, the satisfiability of

Cstr can be checked by checking whether the corresponding ground equality or disequality

holds.
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@ proq ru1, . . . , uj´1, u
`
j , uj`1, . . . , uns P PCstrSS ^ ją1 :

tSS& tIKu& pro, iq ru1, . . . , uj´1su

Ñpro,i,j,pujρro,iσq`,0q

tSS& tujρro,iσPI, IKu& pro, iq ru1, . . . , uj´1, pujρro,iσq
`su

IF pujρro,iσPIq R IK

where σ is a ground substitution binding choice variables in uj ,

ρro,i “ tr1 ÞÑ r1.ro.i, . . . , rn ÞÑ rn.ro.iu is a fresh substitution.
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@ proq ru1, . . . , uj´1, u
`
j , uj`1, . . . , uns P PCstrSS ^ ją1 :

tSS& tIKu& pro, iq ru1, . . . , uj´1su

Ñpro,i,j,ujρro,iσ,0q

tSS& tIKu& pro, iq ru1, . . . , uj´1, pujρro,iσq
`su

where σ is a ground substitution binding choice variables in uj ,

ρro,i “ tr1 ÞÑ r1.ro.i, . . . , rn ÞÑ rn.ro.iu is a fresh substitution.

,

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

-

(F+)

77



$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

@ proq ru`1 , . . . , uns P PCstrSS :

tSS& tIKuu Ñpro,i`1,j,pu1ρro,i`1σq`,0q

tSS& pro, i` 1q rpu1ρro,i`1σq
`s& tu1ρro,i`1σPI, IKuu

IF pu1ρro,i`1σPIq R IK

where σ is a ground substitution binding choice variables in u1,

i “ MaxStrIdpSS, roq,

ρro,i`1 “ tr1 ÞÑ r1.ro.i` 1, . . . , rn ÞÑ rn.ro.i` 1u is a fresh substitution.
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@ proq ru`1 , . . . , uns P PCstrSS :

tSS& tIKuu Ñpro,i`1,j,u1ρro,i`1σ,0q

tSS& pro, i` 1q rpu1ρro,i`1σq
`s& tIKuu

where σ is a ground substitution binding choice variables in u1,

i “ MaxStrIdpSS, roq,

ρro,i`1 “ tr1 ÞÑ r1.ro.i` 1, . . . , rn ÞÑ rn.ro.i` 1u is a fresh substitution.
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@ proq ru1, . . . , uj´1, u
´
j , uj`1, . . . , uns P PCstrSS ^ j ą 1 :

tSS &tujPI, IKu& pro, iq ru1, . . . , uj´1su

Ñ
pro,i,j,u´j ,0q

tSS& tujPI, IKu& pro, iq ru1, . . . , uj´1, u
´
j su

,

/

/

/

/

/

.

/

/

/

/

/

-

(F-)

$

’

’

’

’

’

&

’

’

’

’

’

%

@proq ru´1 , u2, . . . , uns P PCstrSS :

tSS& tu1PI, IKuu
Ñ
pro,i`1,1,u´1 ,0q

tSS & pro, i` 1q ru´1 s& tu1PI, IKuu
where i “ MaxStrIdpSS, roq
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@ proq ru1, . . . , uj´1, tCstr ,Numu, uj`1, . . . , uns P PCstrSS

^j ą 1 :

tSS &tIKu& pro, iq ru1, . . . , uj´1su

Ñpro,i,j,T,Numq

tSS& tIKu& pro, iq ru1, . . . , uj´1, tCstr ,Numusu

IF Cstr
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@ proq ru1, . . . , uj´1, t?,Numu, uj`1, . . . , uns P PCstrSS

^j ą 1 :

tSS &tIKu& pro, iq ru1, . . . , uj´1su

Ñpro,i,j,?,Numq

tSS& tIKu& pro, iq ru1, . . . , uj´1, t?,Numusu
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The following set of transition rules adds to the state a new strand whose first message is

a constraint message of the form t?,Numu:
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@ proq r t?,Numu, u2, . . . , uns P PCstrSS :

tSS& tIKuu

Ñpro,i`1,1,?,Numq

tSS & pro, i` 1q r t?,Numu s& tIKuu

where i “ MaxStrIdpSS, roq

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

(F?&)

Definition 5.4. Let P be a protocol with signature ΣCstrSSP and equational theory ESSP . We

define the constrained forwards rewrite theory characterizing P as pΣCstrSSP , ESSP , RCstrFP q

where RCstrFP “ (F++)Y (F+)Y (F++&)Y (F+&)Y (F-)Y (F-&)Y (Fif)Y (F?)Y (F?&).

5.5 BISIMULATION BETWEEN CONSTRAINED FORWARDS STRAND
SEMANTICS AND PROCESS ALGEBRA SEMANTICS

In this section we show that the process algebra semantics and the constrained forwards

strand semantics are label bisimilar. We first define PA-State and FW-State, the respective

notions of state in each semantics.
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Definition 5.5 (PA-State). Given a protocol P , a PA-State of P is a state in the protocol

process algebra semantics that is reachable from the initial state. The initial PA-State is

Pinit “ tH | temptyuu.

Definition 5.6 (FW-State). Given a protocol P , a FW-State of P is a state in the con-

strained forwards strand semantics that is reachable from the initial state. The initial FW-

State is Finit “ tH & temptyuu.

The bisimulation relation is defined based on reachability, i.e., if a PA-State and a FW-

State are in the relation H, then they both can be reached from their corresponding initial

states by the same label sequence. Note that we only consider states that are reachable from

the initial states.

Let us first define the notation of label sequence that we will use throughout.

Definition 5.7 (Label Sequence). An ordered sequence α of transition labels is defined by

using . as an associative concatenation operator with nil as an identity. The length of

a label sequence α is denoted by |α|. Given a label sequence α, we denote by α|pro,iq the

sub-sequence of labels in α that have ro as role name, and i as identifier, i.e., labels of the

form pro, i, , , q ( is a shorthand for denoting any term).

Definition 5.8 (Relation H). Given a protocol P , the relation H is defined as: H “

tpPst ,Fstq P PA-Stateˆ FW-State | D label sequence α s.t. Pinit Ñα Pst , Finit Ñα Fstu.

Recall that a process can be “deconstructed” by the mapping toCstrSS into a set of

constrained protocol strands, each representing a possible execution path. If a PA-State

Pst and a FW-State Fst are related by H, then an important observation is that there

is a duality between individual processes in Pst and strands in Fst : if there is a process

in the Pst describing a role’s continuation in the future, there will be a corresponding

strand in Fst describing the part of the process that has already been executed, and vice

versa. Another observation is that, since the intruder’s knowledge is extracted from the

communication history, following the definition of H, the states Pst and Fst have the same

communication history. Therefore, they have the same intruder’s knowledge. We formalize

these observations in Lemmas 5.1 and 5.2. These lemmas then lead us to the main result

that H is a bisimulation relation.

We now define the relation HLP Str , which relates a possibly partially executed labeled

process and a constrained strand. This relation defines the duality relation between a labeled

process and a constrained strand. If a labeled process LP is related to a constrained strand

Str by the relation HLP Str , then: (i) LP and Str denote the behavior of the same role
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with the same identity in the same protocol, and (ii) for any strand StrLP , StrLP denotes

a possible execution path of LP iff Str followed by StrLP forms a valid possible execution

path of the protocol.

Definition 5.9 (Relation HLP Str). Given a protocol P , and a possibly partially executed

labeled process LP of P , a possibly partially executed constrained strand Str of P , then

pLP, Strq P HLP Str iff

toCstrSSpLP q “ &tpro, iqruj`1, . . . , unsρro,iθ | D ground substitution θ

Dproqru1, . . . uj, uj`1, . . . , uns P PCstr s.t. Str “ pro, iqru1, . . . ujsρro,iθu

where &tS1, S2, . . . , Snu is a shorthand for a term S1&S2& . . .&Sn denoting a set of strands.

ρro,i “ tr1 ÞÑ r1.ro.i, . . . , rm ÞÑ rm.ro.iu for fresh variables r1, . . . , rm in ru1, . . . uj, uj`1, . . . ,

uns.

Example 5.6. Following Examples 5.3 and 5.5, we show a process LP and a strand Str that

are related by the relation HLP Str . LP (resp. Str) is the labeled process (resp. constrained

strand) of the Server role after making the first explicit nondeterministic choice.

LP “pServer , 1 , 2 q σp`phs; retryq ¨ ´phs;N 1;G1; genpG1q;E1q¨

` phs;npS?, r1q;G
1; genpG1q; keyGpG1, S?, r2q;

ZpAReq?, G
1, E1, S, r2, S?, HMqqq

Str “pServer , 1 q σr t?, 1u,´phs;N ;G; genpGq;Eqs

where σ is a ground substitution instantiating the pattern variables N , G, and E.

We then lift the duality relation between individual processes and strands to a duality

relation between a PA-State and a FW-State.

Definition 5.10 (Relation HPS FS ). Let Pst “ tLP1& . . .&LPn | tIKuu be a PA-State and

Fst “ tStr1& . . .&Strm&tIK1
uu be a FW-State, if pPst ,Fstq P HPS FS , then:

(i) For each labeled process LPk P Pst , 1 ď k ď n, there exists a strand Strk1 P Fst ,

1 ď k1 ď m, such that pLPk, Strk1q P HLP Str .

(ii) For each strand Strk1 P Fst , 1 ď k1 ď m, there exists a labeled process LPk P Pst ,

1 ď k ď n, such that pLPk, Strk1q P HLP Str .

The lemma below states that the relation H induces the duality relation HPS FS .

81



Lemma 5.1. Let Pst “ tLP1& . . .&LPn | tIKuu be a PA-State and Fst “ tStr1& . . .

&Strm&tIK1
uu be a FW-State, if pPst ,Fstq P H, i.e., exists a label sequence α such that

Pinit Ñα Pst, and Finit Ñα Fst, then pPst ,Fstq P HPS FS .

Proof. We first prove property (i). If |α| “ 0, since both the strand set and the process

configuration are empty, the statement is vacuously true.

Now suppose that |α| ą 0. Then, without loss of generality, assume there exists a labeled

process LPk “ ppro, i, jq Pkq in Pst , with i, j ě 1. Then there is at least one label in α of

the form pro, i, , , q ( is a short hand for any content), therefore, there is a strand Stk1 in

Fst of the form pro, iqrv1, . . . , vj1s.

We then show that the above-mentioned LPk and Strk1 are related by HLP Str , i.e., pLPk,

Strk1q P HLP Str . Since the state Fst is reachable from the initial state by the label sequence

α, and Strk1 P Fst, rv1, . . . , vj1s denotes exactly the sequence of messages in the unique

sequence of labels α|pro,iq. Moreover, j1 “ j ´ 1.

Since the process state Pst is reachable from the initial state Pinit by label sequence α, there

exists a unique process proqPspec in the specification PPA, and LPk represents all possible

behaviors of proqPspec after the sequence of transitions α|pro,iq. Therefore, toCstrSSpLPkq “

&tpro, iqruj, . . . , unsρro,iθ |

D ground substitution θ

Dproqru1, . . . , uj´1, uj, . . . , uns P toCstrSSpproqPspecq

s.t. pro, iqru1, . . . , uj´1sρro,iθ “ pro, iqrv1, . . . , vj´1su

By the correspondence between protocol specifications defined in definition 5.3 , PCstrF “
toCstrSSpPPAq. Also note that proqPspec is the only process in PPA that has ro as its role

name, therefore, toCstrSSpproqPspecq “ tproqru1, . . . , uns | proqru1, . . . , uns P PCstrF u. There-

fore, toCstrSSpLPkq “

&tpro, iqruj, . . . unsρro,iθ |

D ground substitution θ

Dproqru1, . . . , uj´1, uj, . . . , uns P PCstrF
s.t. pro, iqru1, . . . , uj´1sρro,iθ “ pro, iqrv1, . . . , vj´1su.

Therefore, pLPk, Strk1q P HLP Str .

The proof for property (ii) is similar to the one for property (i).

Lemma 5.2 below formalizes the observation that the equivalence of label sequence implies
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the same intruder knowledge.

Lemma 5.2. Given a PA-State Pst and a FW-State Fst such that pPst ,Fstq P H, i.e.,

there exists a label sequence α such that Pinit Ñα Pst and Finit Ñα Fst, then the contents of

intruder knowledge in Pst and in Fst are syntactically equal.

Proof. In both semantics the only transition rules that add new elements to the intruder’s

knowledge are the ones whose label is of the form pro, i, j,`m,nq. Therefore, given the two

states Pst and Fst as described above, their intruder’s knowledge can be computed from the

sequence of labeled transitions α as IK pPstq “ tmPI | p , , ,`m, q P αu “ IK pFstq.

Based on the lemmas above, we can now show that the relation H is a bisimulation. Since

the proof of Theorem 5.1 requires a somewhat lengthy case analysis, it has been moved to

Appendix B.

Theorem 5.1 (Bisimulation). H is a bisimulation.

5.6 CONSTRAINED BACKWARDS STRAND SEMANTICS

In this section we extend Maude-NPA’s symbolic backwards semantics with rules for

constrained messages of the form described in Section 5.3.1, so that it can analyze protocols

exhibiting explicit choices. We refer to this extended backwards semantics as constrained

backwards strand semantics. We then show that the constrained backwards strand semantics

is sound and complete with respect to the constrained forwards strand semantics presented

in Section 5.4, and the process algebra semantics presented in Section 5.2. This result allows

us to use Maude-NPA for analyzing protocols exhibiting choice, including both implicit and

explicit choices, and in particular any protocol specified using the protocol process algebra.

The strand space model used in the constrained backwards strand semantics is the same

as the one already used in Maude-NPA [16], except for the following differences:

• Maude-NPA explores constrained states as defined in [93], that is, states that have

an associated constraint store. More specifically, a constrained state is a pair xSt,Ψy

consisting of a state expression St and a constraint, i.e., a set Ψ understood as a

conjunction Ψ “
Źn

i“1ui “ vi of disequality constraints.

• Strands are now of the form ru1, . . . , ui | ui`1, . . . uns, where each uk can be of one of

these forms: (i) m` if it is a sent message, (ii) m´ if it is a received message, or (iii)

tCstr,Numu if it is a constrained message.
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State changes are described by a set R´1
CstrBP

of rewrite rules, so that the rewrite theory

pΣCstrSSP , ESSP , R
´1
CstrBP

q characterizes the behavior of protocol P modulo the equations ESSP

for backwards execution. The set of rules R´1
CstrBP

is obtained as follows. First, we adapt the

set of rules R´1
BP

in Chapter 3 to constrained states, which is an embedding of rules in R´1
BP

.

Their forwards version is shown below:

xtSS & proqrL | M´, L1s & tMPI, IKuu,Ψy
Ñ xtSS & proqrL,M´ | L1s & tMPI, IKuu,Ψy (B-)

xtSS & proqrL | M`, L1s & tIKuu,Ψy

Ñ xtSS & proqrL,M` | L1s & tIKuu,Ψy (B+)

xtSS & proqrL | M`, L1s & tMRI, IKuu,Ψy
Ñ xtSS & proqrL,M` | L1s & tMPI, IKuu,Ψy (B++)

@ proqrl1, u
`, l2s P P :

xttSS& proqr l1|u
`, l2 s& tuRI, IKuu,Ψy

Ñ xtSS& tuPI, IKuuu,Ψy

(B&)

where L and L1 are variables denoting a list of strand messages, IK is a variable for a set of

intruder facts (mPI or mRI), SS is a variable denoting a set of strands, and l1, l2 denote a

list of strand messages.

Then, we define new transition rules for constrained messages. That is, we add the reversed

version of the following rules:

xtSS& tIK 1u& proqrL | t?,Numu, L1su,Ψy

Ñ xtSS& tIK 1u& proqrL, t?,Numu | L1su,Ψy (B?)

xtSS& tIKu& proqrL | tM “EP M,Numu, L1su,Ψy

Ñ xtSS& tIKu& proqrL, tM “EP M,Numu | L1su,Ψy (Bif=)

xtSS& tIKu& proqrL | tM ‰M 1,Numu, L1su, pΨ^M ‰M 1qy

Ñ xtSS& tIKu& proqrL, tM ‰M 1,Numu | L1su,Ψy

if pΨ^M ‰EP M 1q is satisfiable in TΣCstrSSP {EP pX q (Bif‰)
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Rule (B?) processes a constraint message denoting an explicit non-deterministic choice

with constant “?”. The constraint store is not changed and no satisfiability check is required.

Rules (Bif=) and (Bif‰) deal with constrained messages associated to explicit determinis-

tic choices. Since the only constraints we allow in explicit deterministic choices are equalities

and disequalities, rule (Bif=) is for the case when the constraint is an equality, rule (Bif‰)

is for the case when the constraint is a disequality. The equality constraint is solved by

EP-unification. The constraint in a constrained state is therefore a disequality constraint,

i.e., Ψ “
Źn

i“1ui ‰EP vi. The semantics of such a constrained state, written rrxSt,Ψyss is

the set of all ground substitution instances of the form:

rrxSt,Ψyss “ tStθ | θ P rX Ñ TΣP s ^ uiθ ‰EP viθ, 1 ď i ď nu

The disequality constraints are then solved the same way as in [93].

Definition 5.11. Let P be a protocol with signature ΣCstrSSP and equational theory EP .

We define the constrained backwards rewrite theory characterizing P to be pΣCstrSSP , ESSP ,

R´1
CstrBP

q, where R´1
CstrBP

is the result of reversing the rewrite rules t(B-), (B+), (B++), (B?),

(Bif=), (Bif‰)u Y (B&).

5.7 SOUNDNESS AND COMPLETENESS OF CONSTRAINED BACKWARDS
STRAND SEMANTICS

The soundness and completeness proofs generalize the proofs in [60]. Recall that the state

in the constrained states of constrained backwards strand semantics is a symbolic strand

state, i.e., a state with variables. A state in the forwards strand semantics is a ground

strand state, i.e., a state without variables. The lifting relation defines the instantiation

relation between symbolic and ground states.

We define a symbolic state and a ground state as follows.

Definition 5.12 (Symbolic Strand State). Given a protocol P , a symbolic strand state S

of P is a term of the form:

S “ t :: r11 , . . . , rm1 :: ru11 , . . . ui1´1 | ui1 , . . . , un1s &

...

:: r1k , . . . , rmk :: ru1k , . . . , uik´1 | uik , . . . , unks & SS

tw1PI, . . . , wmPI, w11RI, . . . , w1m1RI, IKuu
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where for each 1 ď j ď k, there exists a strand rm1j , . . .mij´1,mij , . . . ,mnj s P PCstrSS and a

substitution ρj : X Ñ TΣP pX q such that m1jρj “EP u1j , . . . , mnjρj “EP unj , SS is a variable

denoting a (possibly empty) set of strands, and IK is a variable denoting a (possibly empty)

set of intruder’s knowledge facts.

Definition 5.13 (Ground Strand State). Given a protocol P , a ground strand state s of P
is a term without variables of the form:

s “ tru11 , . . . ui1´1s & ¨ ¨ ¨& ru1k , . . . , uik´1s &

tw1PI, . . . , wmPIu u

where for each 1 ď j ď k, there exists a strand rm1j , . . .mij´1,mij , . . . ,mnj s P PCstrSS and a

substitution ρj : X Ñ TΣP such that m1jρj “EP u1j , . . . , mijρj “EP uij .

The lifting relation in [60] is extended with constraints and constrained messages. Note

that the ui in the definition below can be sent messages, received messages, or constrained

messages.

Definition 5.14 (Lifting Relation). Given a protocol P , a constrained symbolic strand

state CstrS “ xS,Ψy and a ground strand state s, we say that s lifts to CstrS , or that

CstrS instantiates to s with a ground substitution θ : pVarpSq ´ tSS , IK uq Ñ TΣP , written

CstrS ąθ s iff

• for each strand :: r1, . . . , rm :: ru1, . . . ui´1 | ui, . . . , uns in S, there exists a strand

rv1, . . . vi´1s in s such that @1 ď j ď i´ 1, vj “EP ujθ.

• for each positive intruder fact wPI in S, there exists a positive intruder fact w1PI in

s such that w1 “EP wθ, and

• for each negative intruder fact wRI in S, there is no positive intruder fact w1PI in s

such that w1 “EP wθ.

• EP |ù Ψθ.

In the following we show the soundness and completeness of transitions in constrained

backwards strand semantics w.r.t. the constrained forwards strand semantics by proving

two lemmas stating the completeness and soundness of one-step transition in the constrained

backwards strand semantics w.r.t. the constrained forwards strand semantics. The soundness

and completeness result directly follows these two lemmas. In the proofs we consider only

transition rules added in both semantics to deal with explicit choices, that is, rules (Fif) Y
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CstrS
ąθ
��

CstrS 1oo

ąθ
1

��
s // s1

Figure 5.1: Lemma 5.3

(F?)Y (F?&) in the constrained forwards strand semantics and rules t(B?), (Bif=), (Bif‰)u

in the constrained backwards strand semantics. The proof of the soundness and complete-

ness of one-step transitions performed in the constrained backwards strand semantics using

rules t(B-), (B+), (B++)uY (B&) w.r.t to one-step transitions performed in the constrained

forwards strand semantics using rules (F++)Y (F+)Y (F++&)Y (F+&)Y (F-)Y (F-&) is

the same as in [60], since in these transitions no constraint is involved. Note that although

in [60], Choice Variables were not defined explicitly, the proof extends to strands with choice

variables naturally, since the lifting relation between a ground state and a symbolic state

does not need to be changed to cover choice variables. Since the strand labels are irrelevant

for the results of this section, we will omit them to simplify the notation from now on.

Also, we include the fresh substitution in the substitutions and do not separate the fresh

substitutions explicitly.

Extending the proofs in [60], we first prove how the lifting of a ground state to a symbolic

state induces a lifting of a forwards rewriting step in the forwards semantics to a backwards

narrowing step in the backwards semantics, i.e., the completeness of one-step transition.

The lemma below extends the lifting lemma in [60] to strands with constrained messages.

Lemma 5.3 (Lifting Lemma). Given a protocol P, two ground strand states s and s1, a

constrained symbolic strand state CstrS 1 “ xS 1,Ψ1y and a substitution θ1 s.t. s Ñ s1 and

CstrS 1 ąθ
1

s1, then there exists a constrained symbolic strand state CstrS “ xS,Ψy and a

substitution θ s.t. CstrS ąθ s and either CstrS
µ

ø CstrS 1 or CstrS “ CstrS 1.

The Lifting Lemma is illustrated by Figure 5.1.

Proof. As has been explained before, we only need to consider the new rules: (Fif), (F?),

(F?&). The proof in [60] is structured by cases, some of which having specific requirements

on intruder knowledge, or involve changes made to the intruder knowledge. Since all the

new rules we are considering do not have specific requirements on the intruder knowledge,

and do not change the intruder knowledge either, the cases that we need to consider are the

following (cases e and f in the proof in [60]), which involve the appearance or non-appearance

of certain strand(s):

e: There is a strand ru1, . . . , uj´1, uj, . . . , uns in PCstrSS , n ě 1, 1 ď j ď n, and a substitu-

tion ρ such that ru1, . . . , uj´1, ujsρ is a strand in s1 and ru1, . . . , uj´1, uj | uj`1, . . . , unsρ
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is a strand in S 1θ1.

f: There is a strand ru1, . . . , uj´1, uj, . . . , uns in PCstrSS , n ě 1, 1 ď j ď n, and a substitu-

tion ρ such that ru1, . . . , uj´1, ujsρ is a strand in s1 but ru1, . . . , uj´1, uj | uj`1, . . . , unsρ

is not a strand in S 1θ1.

Now we consider for the forward rewrite rule application in the step sÑ s1.

• Given ground states s and s1 s.t. s Ñ s1 using a rule in set (Fif), then there exists a

ground substitution τ , variables SS’ and IK’, and strand ru1, . . . , uj´1, tT,Numu, uj`1,

. . . , uns in PCstrSS , such that s “ tSS 1τ&tIK 1τu&proqru1τ, . . . , uj´1τ su, and s1 “

tSS 1τ&tIK 1τu&ru1τ, . . . , uj´1τ, tTτ,Numusu and Tτ “EP true. Since there exists

a substitution θ1 s. t. CstrS 1 ąθ
1

s1, we consider the following two cases:

– Case (e) The strand appears in S 1θ1. More specifically, ru1σ, . . . , uj´1σ,

tTσ,Numu | uj`1σ, . . . , unσs is a strand in S 1 s.t. σθ1 “EP τ . If the constraint

T is an equality constraint, since Tτ “EP Tσθ1 “EP true, and by the lifting

relation, EP |ù Ψ1θ1, rule (Bif=) can be applied for the backwards narrowing

CstrS 1
µ

ø CstrS , and CstrS ąθ s such that µθ “EP θ1. If the constraint T is a

disequality constraint, since Tτ “EP Tσθ1 “EP true, and by the lifting relation,

EP |ù Ψ1θ1, we have EP |ù Tσθ1 ^Ψ1θ1. Therefore, rule (Bif‰) can be applied for

the backwards narrowing, and CstrS ąθ s.

– Case (f) The strand does not appear in S 1θ1. Then θ1 makes S 1 a valid symbolic

strand state of s, i.e., S “ S 1 and CstrS 1 ąθ
1

s.

• Given ground strand states s and s1 s.t. s Ñ s1 using a rule in set (F?), then we

consider the following two applicable cases:

– Case (e) The strand appears in S 1θ1 and thus we can perform a backwards nar-

rowing step from CstrS 1 with rule (B?), i.e., CstrS 1; CstrS , and CstrS ąθ
1

s.

– Case (f) The strand does not appear in S 1θ1. Then θ1 makes CstrS 1 as a valid

constraint symbolic state of s, i.e., CstrS “ CstrS 1 and CstrS ąθ
1

s.

• Given states s and s1 s.t. s Ñ s1 using a rule in set (F?&), the proof is similar with

using a rule in the set (F?).

Theorem 5.2 below then follows straightforwardly.
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Figure 5.2: Lemma 5.4

Theorem 5.2 (Completeness). Given a protocol P, two ground strand states s, s0, a con-

strained symbolic strand state CstrS and a substitution θ s.t. (i) s0 is an initial state, (ii)

s0 Ñ
n s, and (iii) CstrS ąθ s. Then there exists a constrained symbolic initial strand state

CstrS 0, two substitutions µ and θ1, and k ď n, s.t. CstrS 0
k

øµ CstrS , and CstrS 0 ą
θ1 s0.

The Soundness Theorem from [60] can also be extended to constrained backwards and

forwards strand semantics. We first show that Lemma 2 in [60], which states the soundness

of one-step transition, still holds after extending it to constrained states. The Soundness

Theorem then follows straightforwardly.

Lemma 5.4. Given a protocol P, two constrained symbolic states CstrS “ xS,Ψy and

CstrS 1 “ xS 1,Ψ1y, a ground strand state s and a ground substitution θ, if CstrS
µ

ø CstrS 1

and CstrS ąθ s, then there exists a ground strand state s1 and a ground substitution θ1 such

that sÑ s1, and CstrS 1 ąθ
1

s1.

Lemma 5.4 is illustrated by the Figure 5.2.

Proof. We only need to consider the new rules: rule (Bif=), (Bif‰) and (B?).

1) If CstrS
µ

ø CstrS 1 using rule (B?), then there are associated rules in the sets (F?) and

(F?&).

2) If CstrS
µ

ø CstrS 1 using rule (Bif=), there is a strand ru1σ, . . . , uj´1σ | tpu “ vqσ,Numu,

uj`1σ, . . . , unσs in S, ru1σ
1, . . . , uj´1σ

1, tpu “ vqσ1, Numu | uj`1σ
1, . . . , unσ

1s in S 1 s.t. σ “EP

σ1µ, Ψ “EP Ψ1µ and uσ “EP vσ, where ru1, . . . , uj´1, tu “ v,Numu, uj`1, . . . , uns is a strand

in PCstrSS . Since CstrS ąθ s, there is a ground strand ru1σθ, . . . , uj´1σθs in s, and EP |ù Ψθ.

Therefore, EP |ù Ψ1µθ and uσθ “EP vσθ. By rule (Fif), sÑ s1, and CstrS 1 ąµθ s1.

If CstrS
µ

ø CstrS 1 using rule (Bif‰), there is a strand ru1σ, . . . , uj´1σ | tpu ‰ vqσ,Numu,

uj`1σ, . . . , unσs in S , ru1σ
1, . . . , uj´1σ

1, tpu ‰ vqσ1, Numu | uj`1σ
1, . . . , unσ

1s in S 1 s.t. σ “EP

σ1µ and Ψ “EP Ψ1µ^pu ‰ vqσ1µ, where ru1, . . . , uj´1, tu ‰ v,Numu, uj`1, . . . , uns is a strand

in PCstrSS . Since CstrS ąθ s, there is a ground strand ru1σθ, . . . , uj´1σθs in s, and EP |ù Ψθ.

Therefore, EP |ù Ψ1µθ ^ pu ‰ vqσ1µθ. By rule (Fif), sÑ s1, and CstrS 1 ąµθ s1.

The Soundness Theorem below shows that the backwards symbolic reachability analysis

is sound with respect to the forwards rewriting-based strand semantics.
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Theorem 5.3 (Soundness). Given a protocol P, two constrained symbolic strand states

CstrS 0,CstrS 1, an initial ground strand state s0 and a substitution θ s.t. (i) CstrS 0 is a

symbolic initial state, and (ii) CstrS 0
˚

ø CstrS 1, and (iii) CstrS 0 ą
θ s0. Then there exists

a ground strand state s1 and a substitution θ1, s.t. (i) s0 Ñ
˚ s1, and (ii) CstrS 1 ąθ

1

s1.

The soundness and completeness results in Theorems 5.3 and 5.2 together with the bisim-

ulation proved in Theorem 5.1 show that the backwards symbolic reachability analysis is

sound and complete with respect to the process algebra semantics.

Theorem 5.4 (Soundness). Given a protocol P, two constrained symbolic strand states

CstrS 0,CstrS , the initial FW-State Finit, a substitution θ, and the initial PA-State Pinit

s.t. (i) CstrS 0 is a symbolic initial strand state, and (ii) CstrS 0
˚

øµ CstrS , and (iii)

CstrS 0 ą
θ Finit. Then there exists a FW-State Fst such that CstrS ąθ

1

Fst, and therefore,

there is a PA-State Pst such that Pst H Fst.

Theorem 5.5 (Completeness). Given a protocol P, a PA-State Pst, a FW-State Fst, a

constrained symbolic strand state CstrS s.t. (i) Pst H Fst, (ii) CstrS ąθ
1

Fst. Then there

is a backwards symbolic execution CstrS 0
˚

øµ CstrS s.t. CstrS 0 is a symbolic initial strand

state as defined in Chapter 3, and CstrS 0 ą
θ Finit.

5.8 PROTOCOL EXPERIMENTS

In this section we describe some experiments that we have performed on protocols with

choice. We have fully integrated the process algebra syntax, and its transformation into

strands, and have developed new methods to specify attack states using the process notation

in the recent release of Maude-NPA 3.0 (see [58]).

5.8.1 Integration of the Protocol Process Algebra in Maude-NPA

We have fully implemented the process algebra notation in Maude-NPA. Strands represent

each role behavior as a linear sequence of message outputs and inputs but processes represent

each role behavior as a possibly non-linear sequence of message outputs and inputs. The

honest principal specification is specified in the process algebra syntax. In order for Maude-

NPA to accept process specifications, we have replaced the section STRANDS-PROTOCOL from

the Maude-NPA protocol template by a new section PROCESSES-PROTOCOL; see [58] for de-

tails. The intruder capabilities as well as the states generated by the tool still use the strand

syntax.
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Attack patterns may be specified using the process algebra syntax, under the label ATTACK-

PROCESS, or strand syntax, under the label ATTACK-STATE. We describe how they are specified

in the process algebra syntax below. An attack pattern describes a state consisting of zero or

more processes that must have executed, and zero or more terms in the intruder knowledge. It

may also contain never patterns, that is, descriptions of processes that must not be executed

at the time the state is reached. Never patterns can be used to reason about authentication

properties, e.g., can Alice execute an instance of the protocol, apparently with Bob, without

Bob executing an instance of the protocol with Alice?

Note that processes in an attack pattern cannot contain explicit nondeterminism (?) or

explicit deterministic choice (if), since one and only one behavior is provided in an attack

pattern. This is achieve by requiring that any constraint c appearing in an attack pattern

must be strongly irreducible, that is, it must not only be irreducible, but for any irreducible

substitution σ to the variables of c, σc must be irreducible as well.

That is, imagine a process i the form

´pm1q . ` pm2q . if exp1 “ exp2 then ` pm3q else ` pm4q

where each of the expressions exp1 and exp2 can evaluate to yes or no depending on the

substitutions applied to them.

Then in the attack pattern one must specify one and only one of the following possibilities

´ pm1q . ` pm2q . yes “ yes . ` pm3q

´ pm1q . ` pm2q . yes ‰ no . ` pm4q

´ pm1q . ` pm2q . no “ no . ` pm3q

´ pm1q . ` pm2q . no ‰ yes . ` pm4q

Finally, never patterns must satisfy a stronger condition: the entire never pattern must

be strongly irreducible. This condition is inherited from the original one in Maude-NPA.

5.8.2 Choice of Encryption Type

This protocol allows either public key encryption or shared key encryption to be used by

Alice to communicate with Bob. Alice initiates the conversation by sending out a message

containing the chosen encryption mode, then Bob replies by sending an encrypted message

containing his session key. The encryption mode is chosen nondeterministically by Alice.

Therefore, it exhibits an explicit nondeterministic choice. Below we show the protocol de-
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scription: the first one reflects the case in which public key encryption (denoted by PubKey)

is chosen.

1. AÑ B : A;B; PubKey

2. B Ñ A : pkpA,B;SKq

3. AÑ B : pkpB,A;SK;NAu

4. B Ñ A : pkpA,B;NAq

The second one reflects the case in which a shared key encryption (denoted by SharedKey)

is chosen.

1. AÑ B : A;B; SharedKey

2. B Ñ A : shkpkeypA,Bq, B;SKq

3. AÑ B : shkpkeypA,Bq, A;SK;NAq

4. B Ñ A : shkpkeypA,Bq, B;NAq

Note that A and B are names of principals, SK denotes the session key generated by B,

and NA denotes a nonce generated by A.

There are different ways of specifying this protocol as two process expressions. We have

chosen to treat the encryption mode as a choice variable which can be either public key

encryption or shared key encryption, and then the receiver will perform an explicit deter-

ministic choice depending on the value of this choice variable. The process specification is

as follows:

pInitq pp`pA? ; B? ; PubKeyq ¨ ´ppkpA?, B? ; SK qq

?

p`pA? ; B? ; SharedKeyq ¨ ´pepkeypA?, B?q, B? ; SK qq

pRespq ´ pA ; B ; TEncq ¨

if TEnc “ PubKey

then p`ppkpA,B ; skeypA,B , r 1qqq

else p`pepkeypA,Bq, B ; skeypA,B , r 1qqqq

We analyzed whether the intruder can learn the session key generated by Bob, when either

the public key encryption or shared key encryption is chosen, assuming both principals are

honest.
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--- initiator accepts session key for shared key encryption and

--- intruder learns it

eq ATTACK-PROCESS(2)

= -(a ; b ; mode) .

(mode neq pubkey) .

+(she(key(a, b), skey(b,r))) .

-(she(key(a, b), skey(b,r) ; N)) .

+(she(key(a, b), N))

|| skey(b,r) inI

|| nil [nonexec] .

--- initiator accepts session key for public key encryption and

--- intruder learns it

eq ATTACK-PROCESS(3)

= -(a ; b ; mode) .

(mode eq pubkey) .

+(pk(a, b ; skey(b, r))) .

-(pk(b, a ; skey(b,r) ; N)) .

+(pk(a, b ; N))

|| skey(b,r) inI

|| nil [nonexec] .

For this property, Maude-NPA terminated without any attack being found for any of the

two attack states.

5.8.3 Rock-Paper-Scissors

To evaluate our approach on protocols with explicit deterministic choices, we have used a

simple protocol which simulates the famous Rock-Paper-Scissors game, in which Alice and

Bob are the two players of the game. In this game, Alice and Bob commit to each other their

hand shapes, which are later on revealed to each other after both players committed their

hand shapes. The result of the game is then agreed upon between the two players according

to the rule: rock beats scissors, scissors beats paper and paper beats rock. They finish by

verifying with each other that they both reached the same conclusion. Thus, at the end of

the protocol each party should know the outcome of the game and whether or not the other

party agrees to the outcome. This protocol exhibits explicit deterministic choice, because
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the result of the game depends on the evaluation of the committed hand shapes according

to the game’s rule. Note that this protocol also exhibits implicit nondeterministic choice,

since the hand shape of the players are chosen by the players during the game.

The protocol proceeds as follows. First, both initiator and responder choose their hand

shapes and send them to each other using a secure commitment scheme. Next, they both

send each other the nonces that are necessary to open the commitments. Each of them then

compares the two hand shapes and decides if the initiator wins, the responder wins, or there

is a tie. The initiator then sends the responder the outcome. When the responder receives

the initiator’s verdict, it compares it against its own. It responds with “finished” if it agrees

with the initiator and “cheater” if it doesn’t. All messages are signed and encrypted, and

the initiator’s and responder’s nonces are included in the messages concerning the outcome

of the game. The actual messages sent and choices made are described in more detail below.

1. AÑ B : pkpB, signpA, commitpNA, XAqqq

2. B Ñ A : pkpA, signpB, commitpNB, XBqqq

3. AÑ B : pkpB, signpA,NAqq

4. B Ñ A : pkpA, signpB,NBqq

5. if pXA beats XBq

then R “ Win

else if pXB beats XAq

then R “ Lose

else if pXB “ XAq

then R “ Tie

else nilP

6. AÑ B : pkpB, signpA,NA;NB;Rqq

7. if pR “ Win&XA beats XBq

or pR “ Lose & XB beats XAq

or pR “ Tie & XA “ XBq

then B Ñ A : pkpA, signpB,NA;NB; finished qq

else B Ñ A : pkpA, signpB,NA;NB; cheater qq

One interesting feature of the Rock-Scissors-Paper protocol is that, in order to verify that

the commitment has been opened successfully, i.e., that the nonce received is the nonce used
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to create the commitment, one must verify that the result of opening it is well-typed, i.e.,

that it is equal to “rock”, “scissors”, or “paper”. This can be done via the evaluation of

predicates. First, we create a sort Item and declare the constants “rock”, “scissors”, and

“paper” to be of sort Item. Then we create a variable X : Item of sort Item. We then define

a predicate item? such that item?X : Item evaluates to true. Since only terms of sort Item

can be unified with X : Item, this predicate can be used to check whether or not a term is

of sort Item. The process specification for the initiator and the responder is as follows.

pInitiatorq ` ppkpB, sigpA, compnpA, rq, XAqqqq .

´ ppkpA, sigpB,ComXBqqq .

` ppkpB, sigpA, npA, rqqqq .

´ ppkpA, sigpB,NBqqq .

pif ppitem? openpNB,ComXBqq eq okq

then if ppXA beats openpNB,ComXBqq eq okq

then ` ppkpB, sigpA, npA, rq ; winqqq

else if ppopenpNB,ComXBq beats XAq eq okq

then ` ppkpB, sigpA, npA, rq ; loseqqq

else ` ppkpB, sigpA, npA, rq ; tieqqq

else nilP q .

´ ppkpA, sigpB, npA, rq;NBqq ; S:Statusq

pResponderq ´ ppkpB, sigpA,ComXAqqq .

` ppkpA, sigpB, compnpB, rq, XBqqqq .

´ ppkpB, sigpA,NAqqq .

` ppkpA, sigpB, npB, rqqqq .

´ ppkpB, sigpA,NA;Rqqq .

pif ppitem? openpNA,ComXAqq eq okq then

if pR eq winq

then if ppopenpNA,ComXAq beats XBq eq okq

then ` ppkpA, sigpB,NA;npB, rqqq ; finishedq

else ` ppkpA, sigpB,NA;npB, rqqq ; cheaterq
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else if pR eq loseq

then if ppXB beats openpNA,ComXAqq eq okq

then ` ppkpA, sigpB,NA;npB, rqqq ; finishedq

else ` ppkpA, sigpB,NA;npB, rqqq ; cheaterq

else if pR eq tieq

then if pXB eq openpNA,ComXAqq

then ` ppkpA, sigpB,NA;npB, rqqq ; finishedq

else ` ppkpA, sigpB,NA;npB, rqqq ; cheaterq

else nilP

else nilP q

We first tried to see whether the protocol can simulate the game successfully, so we asked

for different scenarios in which the player Alice or Bob can win in a round of the game.

Maude-NPA was able to generate the expected scenarios, and it did not generate any others.

We then gave Maude-NPA a secrecy attack state, in which the intruder, playing the role

of initiator against an honest responder, attempts to guess its nonce before the responder

receives its commitment.

eq ATTACK-PROCESS(1) =

-(pk(b,sig(i, ComXA:ComMsg))) .

+(pk(i,sig(b, com(n(b, r:Fresh), XB:Item)))) .

-(pk(b,sig(i, NA:Nonce)))

|| n(b, r:Fresh) inI

|| nil [nonexec] .

Finally we specified an authentication attack state in which we asked if a responder could

complete a session with an honest initiator with the conclusion that the initiator had carried

out its rule faithfully, without that actually having happened.

eq ATTACK-PROCESS(2) =

-(pk(b, sig(a, ComXA))) .

+(pk(a, sig(b, com(n(b,r), XB)))) .

-(pk(b, sig(a, NA))) .

+(pk(a, sig(b, n(b, r)))) .

-(pk(b, sig(a, NA ; win))) .

((item? open(NA, ComXA)) eq ok) .
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(win eq win) .

((open(NA, ComXA) beats XB) eq ok) .

+(pk(a, sig(b, NA ; n(b,r))) ; finished)

|| empty

|| never(

+(pk(b, sig(a, ComXA))) .

-(pk(a, sig(b, com(n(b,r), XB)))) .

+(pk(b, sig(a, NA))) .

-(pk(a, sig(b, n(b,r)))) .

(ok eq ok) .

(ok eq ok) .

+(pk(b, sig(a, NA ; win))) .

-(pk(a, sig(b, NA ; n(b,r))) ; finished)

|| empty ) [nonexec] .

For both of these attack states Maude-NPA finished its search without finding any attacks.

5.8.4 TLS

In Section 5.1.3 we introduced a simplified version of the handshake protocol in TLS 1.3

[92]. Even this simplified version produced a very large search space, because of the long list

of messages and the concurrent interactions of a big amount of choices. We are however able

to check the correctness of our specification by producing legal executions in Maude-NPA.

Unlike TLS 1.3, we intentionally introduced a “downgrade attack” in our version in which

the attacker can trick the principals into using a weaker crypto system. However, we have

not yet been able to produce this attack because of the very deep and wide analysis tree

(i.e., long reachability sequences with many branches) that is produced. We are currently

investigating more efficient ways of managing list processing.

5.9 RELATED WORK

As we mentioned in the introduction, there is a considerable amount of work on adding

choice to the strand space model that involves embedding it into other formal systems,

including event-based models for concurrency [52], Petri nets [53], or multi-set rewriting [54].

Crazzolara and Winskel model nondeterministic choice as a form of composition, where a

conflict relation is defined between possible child strands so that the parent can compose

97



with only one potential child. In [53] Fröschle uses a Petri net model to add branching to

strand space bundles, which represent the concurrent execution of strand space roles. Note

that we have taken the opposite approach of representing bundles as traces of non-branching

strands, where a different trace is generated for each choice taken. Although this results in

more bundles during forward execution, it makes little difference in backwards execution,

and is more straightforward to implement in an already existing analysis tool.

We also note that deterministic choice has been included in the applied pi calculus for

cryptographic protocols [94], another widely used formal model, based on Milner’s pi calculus

[95]. The applied pi calculus includes the rule if M “ N then P else Q, where P and Q are

terms. This is similar to our syntax for deterministic choice. However our long-term plan is

to add other types or predicates as well (e.g., M subsumes N) ; indeed our approach extends

to any type of predicate that can be evaluated on a ground state. Although the applied pi

calculus in its original form does not include nondeterministic choice, both nondeterministic

and probabilistic choice have been added in subsequent work [96].

In addition, Olarte and Valencia show in [97] how a cryptographic protocol modeling

language can be expressed in their universal timed concurrent constraint programming (utcc)

model, a framework that extends the timed concurrent constraint programming model to

express mobility. The language does not support choice, but utcc does. It seems that it

would not be difficult to extend the language to incorporate the utcc choice mechanisms.

The Tamarin protocol analysis tool [98] includes deterministic branching, which was used

extensively in the analysis of TLS 1.3 [99]. In particular, it includes an optimization for

roles of the form P.pif T then Q else Rq.S; when backwards search is used, it is sometimes

possible to capture such an execution in terms of just one strand until the conditional is

encountered, thus reducing the state space. Our approach produces two strands, but since

the process algebra semantics makes it easy to tell whether or not R behaves “essentially”

the same no matter if P or Q is chosen, we believe that we have a pathway for including

such a feature if desired.

5.10 CONCLUDING REMARKS

We have presented an extension to the strand space model that allows for both determin-

istic and nondeterministic choice, together with an operational semantics for choice in strand

spaces that not only provides a formal foundation for choice, but allows us to implement it

directly in the Maude-NPA cryptographic protocol analysis tool. In particular, we have ap-

plied Maude-NPA to several protocols that rely on choice in order to validate our approach.

This work not only provides a choice extension to strand spaces, but extends them in other
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ways as well. First of all, it provides a process algebra for strand spaces. In addition, the

process algebra semantics provides a new specification language for Maude-NPA that we

believe is more natural for users than the current strand-space specification language.
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CHAPTER 6: MODULAR VERIFICATION OF SEQUENTIAL
COMPOSITION FOR PRIVATE CHANNELS

6.1 INTRODUCTION

Security protocols often depend on other protocols to generate the keys and other values

they use to communicate securely. This can often be modeled in terms of protocol composi-

tion: the protocol receiving the keys runs as a subroutine of the protocol that generates the

keys. But examining composed protocols can be unwieldy, leading to state space explosion.

Researchers have developed two primary ways of approaching this problem. One is to

think of the parent protocol as creating secure channels that the child protocol can use

for secure communication. Another approach is to perform modular verification, in which

the two protocols are analyzed separately, and conclusions about the composition are made

based on the results.

Secure channels and modular verification are closely related, and indeed we can think of

them as two different kinds of decomposition, the main difference being that the channels

specified in one approach are left implicit in the other. However, they have usually been

treated separately. But the close relationship raises the possibility that techniques developed

for one can be used for another.

In this chapter we take advantage of this relationship to make use of a construct used by

Cheval, Cortier, and Le Morvan [101] to reason about secure channels to prove results about

modular decomposition. This construct is called an encapsulation. It is a combination of

different cryptographic operators that are used to provide functionality such as confidential-

ity and authentication. But its usefulness for modular composition lies in the fact that it is

impossible for encapsulations to leak the keys used to construct them, so that any leakage

that occurs must be the fault of the protocol providing the keys. We can thus think of an

encapsulation together with the keys used to implement it as providing a secure communica-

tion channel, although unlike [101], we do not define the properties of the channels explicitly;

rather they are verified implicitly by the separate analyses of the parent protocol and the

child protocol.

Example 6.1. We use the Passive Authentication (PA) protocol [101] as a running example,

which provides an authentication mechanism proving that the content of the RFID chip in an

E-passport is authentic. We describe below the PA protocol, between a passport (B) and a

1This chapter is based on the paper [100], joint work with Santiago Escobar, Catherine A. Meadows and
José Meseguer.
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reader (A). A secure channel between principals A and B is represented as an encapsulation

expression EpM,
ÝÑ
Kq where M is the payload message and

ÝÑ
K is a list of yet unspecified keys.

AÑ B : Epread,ÝÑKq

B Ñ A : Epdata; signphpdataq, skpBqq,
ÝÑ
Kq

In this protocol, data is the passport information, h is a hash function, signpM,Kq is signing

message M with key K, and skpBq is the signing key of B.

A protocol using channels is parametric in several ways: (i) what keys
ÝÑ
K are actually

needed by such encapsulation, and (ii) how is the encapsulation E actually obtained using

cryptographic primitives. In [101], the encapsulation associated to protocol PA is achieved

by using symmetric encryption and MAC with two respective keys, K1 and K2. The encap-

sulation can be seen as a macro:

EpM,K1, K2q “ sencpM,K1q;macpsencpM,K1q, K2q.

To obtain the actual keys K1 and K2, we first run a key establishment protocol that is

sequentially composed with PA. The cryptographic protocol analysis tool Maude-NPA [60]

was extended in [48] with a specification language, a semantics, and automatic verification

methods that support sequential protocol composition. We use this extension in this chapter.

Example 6.2. Let us consider the Basic Access Control (BAC) protocol [101] for access

control on private data, which can be used as the key establishment protocol for the PA

protocol.

AÑ B : challenge

B Ñ A : NB

AÑ B : sencpNA;NB;KA, Keq,macpsencpNA;NB;KA, Keq, Kmq

B Ñ A : sencpNB;NA;KB, Keq,macpsencpNB;NA;KB, Keq, Kmq

where sencpM,Keq denotes symmetric encryption of message M using a shared key Ke and

macpM,Kmq denotes MAC using a shared key Km.

The sequential protocol composition BAC ; PA is then achieved by running one protocol

after the other and passing information from BAC to PA.
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Our contributions. The main contribution of this chapter is a modular verification method-

ology. Given parametric specifications of a key establishment protocol P and a protocol Q

providing private channel communication, security and authenticity properties of their se-

quential composition P ; Q can be reduced to: (i) verification of corresponding properties

for P , and (ii) verification of corresponding properties for an abstract version Qα of Q

in which keys inherited by Q from P have been suitably abstracted. The semantic ba-

sis of this methodology is provided by two simulation relations HP and HQ of the form

P
HP
ÐÝ P ; Q

HQ
ÝÑ Qα that essentially “project out” states of P ; Q to, respectively, states

of P and states of Qα. This then ensures that given an attack state for P ; Q, if no attack

of types (i), resp. (ii), exists for P , resp. Q, no such attack of the specified kind exists

for P ; Q. In addition we offer tool support via the Maude-NPA cryptographic protocol

analysis tool [60]. Furthermore, we are able to easily handle algebraic properties of P , Q,

and the encapsulation E , (e.g. Diffie-Hellman exponentiation used in the IKEv1 protocol;

see Section 6.6) as long as they satisfy the finite variant property, which is also supported

by Maude-NPA.

Plan of the chapter. The rest of this chapter is organized as follows. In Section 6.2 we

recall protocol composition in Maude-NPA, and present the specification of the motivating

example. In Section 6.3 we present an approach to the modeling of channels with secu-

rity assumptions in Maude-NPA. In Section 6.4 we present a modular method for reducing

reachability properties of P ;Q to corresponding properties for P and Q’s abstraction Qα.

In Section 6.5 we explain how this modular methodology is supported by Maude-NPA. In

Section 6.6 we present some example protocols we analyzed using our modular approach.

We discuss some related work in Section 6.7 and conclude in Section 6.8.

6.2 PROTOCOL COMPOSITION IN MAUDE-NPA

Recall that, to support sequential protocol composition, strands can be extended with

synchronization messages that are intended for reasoning about child protocols that use

information received from parent protocols, e.g. a session key establishment protocol that

uses a master key received from a master key establishment protocol. Intuitively, sequential

composition of two strands describes a situation in which one strand (the child), can only

execute after another strand (the parent) has completed its execution. Each composition

of two strands is obtained by matching the output parameters of the parent strand with the

input parameters of the child strand in a user-specified way.
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Example 6.3. The PA protocol of Example 6.1 is specified in Maude-NPA by two strands

associated to the reader (A) and passport (B) roles. To be composable with a previous

key establishment protocol, these strands have input parameters (inside a synchronization

message’s curly braces). The passport strand is as follows, where Prev2 is a variable of sort

Role leaving the parent strand unspecified:

pPA.Bq :: r1 :: rnil | tPrev2Ñ PA.B ; ; 1´1 ; ; A;B;K1;K2u,

´pEpread,K1,K2qq,

`pEpdatapB, r1q; signphpdatapB, r1qq, skpBqq,K1,K2qq, nils

Example 6.4. The BAC protocol of Example 6.2 is specified in Maude-NPA by two strands

associated to the reader (A) and passport (B) roles. To be usable for sequential composi-

tion with another protocol, these strands have output parameters (inside a synchronization

message’s curly braces). The strand associated to the passport (B) is as follows:

pBAC.Bq :: r, r2 :: rnil |

´pchallengeq, `pnpB, rqq,

´psencpNA;npB, rq;KA, kepB,Aqq;

macpsencpNR;npB, rq;KA, kepB,Aqq, kmpB,Aqqq,

`psencpnpB, rq;NA; keypB, r2q, kepB,Aqq;

macpsencpnpB, rq;NA; keypB, r2q, kepB,Aqq, kmpB,Aqqq,

tBAC.B Ñ PA.B ; ; 1´1 ; ; A;B;

f1pKA, keypB, r2qq; f2pKA, keypB, r2qqu, nils

Example 6.5. Given the protocol specification of PA in Example 6.3 and of BAC in Ex-

ample 6.4, both containing synchronization messages, a concrete state where a strand of the

passport role in BAC has been synchronized with a strand of the passport role in PA looks

as follows:

pBAC.Bq

r. . . , tBAC.BÑPA.B; ; 1´1; ;A;B; f1pKA, keypB, r2qq; f2pKA, keypB, r2qqu | nils &

pPA.Bq

rnil, tBAC.BÑPA.B; ; 1´1; ;A;B; f1pKA, keypB, r2qq; f2pKA, keypB, r2qqu | . . .s
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6.3 PROTOCOL SPECIFICATION WITH ENCAPSULATIONS

In this section we define the specification of secure channels using encapsulations with

protocol composition. The specification consists of the composition of two main protocols:

(i) a key establishment protocol (P ) as the parent protocol, and (ii) the key application

protocol (Q) as the child protocol. Private communication in protocolQ is achieved by means

of encapsulations (patterns constructed with cryptographic primitives) taking advantage of

the keys established by protocol P . The relation between the protocol P and protocol Q is

defined by the map ρP , which relates the principals in Q to a list of keys that are established

in P . The map ρP defines the interface for composing protocols P and Q. We will first

show in Section 6.3.1 the specification of the protocol Q with encapsulation. The map ρP is

defined in Section 6.3.2. In Section 6.3.3, we define the admissible composition of protocols

P and Q.

Notation. In the rest of this chapter we will use S to denote states, SS to denote the set of

strands in a state, and IK to denote the intruder knowledge set in a state. Different subscripts

are used to distinguish states, strands and intruder knowledge of different protocols. The

subscript ; (resp. P , resp. Qα ) denotes protocol P ;ρQ (resp. P , resp. Qα ). For example,

S; denotes a state of protocol P ;ρQ. Given a set of strands SS , we denote by SS |Q and SS |P

the strands in the strand set SS that are (partial) instances of strands in the protocol Q

and protocol P respectively. SS |HS denotes the strands in SS that are instances of honest

protocol strands (without the input/output parameters), and SS |DY denotes the strands in

SS that are instances of Dolev-Yao strands.

6.3.1 Protocol Q with Encapsulations

In this section, to specify and analyze protocols using encapsulations in Maude-NPA, we

add special sorts and operations to the Maude-NPA message notation that we introduced

in Section 6.2. Messages sent and received through encapsulations are denoted by terms

constructed using these special sorts and operations.

A protocol Q providing private communication is such that all input and output messages

in a strand are actually sent through (possibly different) encapsulations. Its specification has

the form Q “ ppΣQ, EQq, SSpecQq, where the signature ΣQ is a disjoint union of ΣCh Z ΣQ0

and where:

1. ΣCh is the signature of encapsulation operators used in the private channels, which
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have the general form:

E : QMsg ˆ QKey ˆ ¨ ¨ ¨ ˆ QKeyÑ EMsg

where QMsg denotes the sort of payload messages sent through the encapsulation,

QKey denotes the sort of keys used in the encapsulation, and EMsg is the sort of

encapsulated messages, representing message transmission. There is also a general sort

Msg of Maude-NPA for messages, and subsort inclusions QMsg ă EMsg ă Msg and

QKey ă Msg. Note that the encapsulation is parameterized by sort QKey.

2. ΣQ0 is the signature of cryptographic functions used to actually achieve the encapsula-

tion, i.e., to give concrete meaning to the operator E in ΣCh. All operators in ΣQ0 are

of the general form f : S1 ˆ ¨ ¨ ¨ ˆ Sn Ñ EMsg, where tS1, . . . , Snu Ď tQKey, EMsgu.

3. EQ is a disjoint union EQ “ EE Z EQ0 Z BQ0 where EE are the definitional exten-

sions of the operators E in ΣCh. These are defined as equations having the form:

EpM,X1, . . . , Xnq “ tpM,X1, . . . , Xnq with tpM,X1, . . . , Xnq being a ΣQ0-term of sort

EMsg. BQ0 is a set of ΣQ0-axioms and EQ0 are Σ0-equations that are convergent

(confluent and terminating) modulo BQ0 and have finite variant property.

The encapsulation equations EE define how cryptographic primitives are used to imple-

ment private communication. We assume that the protocol Q is specified using protocol

composition to define how the extra parameters of an encapsulation (principal identifiers

and keys) are bound.

Example 6.6. In Example 6.3, the encapsulation symbol E : QMsg ˆ QKey ˆ QKey Ñ

EMsg for a secure communication is defined as the definitional extension EpM,K1, K2q “

sencpM,K1q;macpsencpM,K1q, K2q in EE . The two keys K1 and K2 are generated by a

key establishment protocol for the passport (B) and the reader (A). The signature ΣCh

contains the encapsulation operator E , and ΣQ0 contains the operator senc for symmetric

encryption and the operator mac for MAC. The encryption/decryption cancellation of senc

is represented in EQ0 .

We assume the following admissibility requirements on the definitional extension equations

EE of the encapsulation operators E :

• certain positions in the term tE associated by EE to the encapsulation operator E are

designated as non-payload positions and are not of sort QMsg;
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• it is impossible for the intruder to learn a term that only appears in non-payload

positions in such a term tE , and

• QKey is not a subsort of QMsg, and expressions of sort QKey only appear in non-

payload positions in tE .

For example, in sencpM,K1q;macpsencpM,K1q, K2q, the non-payload positions are 1.2,

2.1.2, and 2.2, i.e., the positions where K1 and K2 occur.

6.3.2 The Key Implementation Map ρ

We assume that a key establishment protocol P in the composition P ;ρQ is specified as

P “ ppΣP , EP YBP q, SSpecP q, where ΣP is the signature of protocol P . All message sorts

in P are subsorts of PMsg, including QKey. QKey denotes the sort for keys that are being

established in protocol P and will be used for implementing channels in protocol Q. Note

that terms of sort QKey are therefore allowed to show up in any messages in protocol P .

EP YBP defines the algebraic properties of protocol P . SSpecP is a set of strands specifying

both the capabilities of the attacker and the behavior of the honest principals.

Given a protocol Q, from the actual protocol composition P ; Q with a key establishment

protocol P it is possible to derive a key implementation map ρP that defines the list of keys

established by the protocol P . Indeed, we will denote a protocol composition as P ;ρ Q to

emphasize the specific key map ρ. The keys are assigned considering not only the type of

desired communication, but also the names and roles of the intended sender and the receiver

of each protocol. More specifically, a key implementation map ρP of protocol P is an indexed

family of mappings ρP “ tPRole P TΣP,Role | ρ
PRoleu where ρPRole denotes the keys established

by the role PRole. Each ρPRole takes two arguments: the first argument is a triple denoting

the sender’s name, sender’s role in protocol P and sender’s role in protocol Q; the second

argument is a triple denoting the receiver’s name, receiver’s role in protocol P and receiver’s

role in protocol Q. To simplify the presentation, we will refer to the triple as pA with A

denoting a name when the roles are understood from the context.

Example 6.7. Following Example 6.2, the key implementation map is:

ρBAC.BppB,BAC.B,PA.Bq, pA,BAC.A,PA.Aqq

“ tKPA.B
1B,A

ÞÑ f1pKA, keypB, r2qq,K
PA.B
2B,A

ÞÑ f2pKA, keypB, r2qqu,

ρBAC.AppB,BAC.B,PA.Bq, pA,BAC.A,PA.Aqq

“ tKPA.A
1B,A

ÞÑ f1pkeypA, r1q,KBq, K
PA.A
2B,A

ÞÑ f2pkeypA, r1q,KBqu

106



where A and B are variables denoting the reader and passport respectively, and KA, KB

are variables denoting keys. BAC.A, PA.A,BAC.B, PA.B are constants denoting roles.

Although the keys in ρBAC.B and ρBAC.A are syntactically different, keys can have common

instances, e.g. f1pkeypA, r1q, keypB, r2qq, which captures the idea that different roles may

have different views of the same message.

We assume the following admissibility requirements on ρ:

• Q keys are actual P keys of sort QKey. For any ρRolP p pA, pBq “ t
ÝÑ
X

RolQ
A,B ÞÑ

ÝÑ
Ku,

Varp
ÝÑ
Kq Ď VarpPP |RolP q, where

ÝÑ
K denotes a list of QKeys.

• Keys must include some random value of sort Fresh. For any ρRolP p pA, pBq “

t
ÝÑ
X

RolQ
A,B ÞÑ

ÝÑ
Ku, @Ki P

ÝÑ
K , there exists r:Fresh s.t. r P VarpKiq.

• Keys are disjoint. No two keys bound by ρRolP are unifiable.

• ρ is injective. For ρRolP p pA, pBq “ t
ÝÑ
X

RolQ
A,B ÞÑ

ÝÑ
Ku and ρRolP

1

p pA1,xB1q “ t
ÝÑ
X

RolQ
1

A1,B1 ÞÑ
ÝÑ
K 1
u,

we require that there exists a substitution θ such that p pA, pBqθ “ p pA1,xB1qθ iff there

exists σ such that
ÝÑ
Kθσ “EPYBP

ÝÑ
K 1θσ (resp. p

ÝÑ
Kθσq´1 “EPYBP

ÝÑ
K 1θσ for asymmetric

keys).

Since the key implementation map is derived from the protocol composition, the admissi-

bility requirement that Q keys are actual P keys of sort QKey is based on the requirements

on sequential protocol composition. Also because the keys passed from P to Q are intended

for implementing private channels, we thus consider it a good practice to ensure the unique-

ness of keys generated in different sessions of the key exchange protocol and the disjointness

of keys used for different purpose or shared between different principals.

Note that the mapping ρ can be made more precise by performing analysis in protocol

P , as long as it covers all possible keys that can be synchronized from protocol P to Q

in a reachable state. In order to allow all possible behaviors, key terms used in protocol

specifications can often be quite general. If it can be later verified by performing analysis in

P that in reality only certain key patterns can be passed to protocol Q, we then can consider

only these more concrete key patterns when analyzing protocol Q.

The encapsulation equations EE and the above map ρP jointly define a translation function:

pE , ρP q : TΣQpXqChMsg Ñ TΣQMsgYΣQKeyYΣQ0
pXq

which models the actual composition of all the strands involved between the key establish-
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ment protocol P and the protocol Q with private communication

EpM,X1
RolQ
A,B , . . . , Xnchop

RolQ
A,B

qρRolP
chop

p pA, pBq

The key implementation formalizes the synchronization of parameters in the sequential

protocol composition P ;ρQ in Maude-NPA. The keys generated by protocol P are transferred

to the key parameters in protocol Q by synchronizing the output parameters of the parent

protocol P and input parameters of child protocol Q according to ρP .

Example 6.8. The input/output parameters of the composed protocol BAC ;ρ PA are as

follows:

pBAC.Bq rnil | . . . , tBAC.B Ñ PA.B; ; 1´ 1; ;A;B;

f1pKr, keypB, r2qq; f2pKr, keypB, r2qqu, nils &

pPA.Bq rnil | tBAC.B Ñ PA.B; ; 1´ 1; ;A;B;K1;K2u, . . . , nils

6.3.3 The Admissible Composition P ;ρQ

The specification of the composed protocol P ;ρQ is defined as: P ;ρQ “ ppΣP ;ρQ,

EP ;ρQ YBP ;ρQq, SSpecP ;ρQq where ΣP ;ρQ “ ΣQYΣP , EP ;ρQ “ EQ YEP , BP ;ρQ “ BQ YBP ,

SSpecP ;ρQ “ SSpecP Y SSpecQ. The synchronization of input/output parameters of honest

strands are captured in the key implementation map ρ. To simplify the notation, we will

use E; for EP ;ρQ and B; for BP ;ρQ. We will refer to the child protocol in the composition

P ;ρQ as Qρ in the rest of this chapter.

We summarize the syntactic disjointness assumptions between protocols P and Qρ implied

by this setup as follows:

• all the messages in honest protocol strands of protocol Qρ are encapsulated, i.e., are

of sort EMsg, and all messages in protocol P are of a sort PMsg or subsorts of a sort

PMsg.

• all the messages that can be shared by protocol P and Qρ must be of sorts QKey, a new

sort Shared or subsorts of Shared. The sort Shared is introduced to denotes the messages

in ΣPMsg X ΣQMsg. And we assume that P and Qρ agree on the shared messages, i.e.,

pΣShared,

EShared YBSharedq “ pΣP , EP YBP qXpΣQMsg, EQMsg YBQMsgq. We assume that Shared ă

Public.
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Note that QKey is not a subsort of EMsg. Therefore the keys generated by protocol P

cannot be unified with encapsulations or payload messages in Qρ, i.e., messages of sort QMsg.

By the disjointness feature of this setup, all information synchronized through input-output

parameters in the protocol P ;ρQ are of sort QKey, Shared or subsort of Shared. This setup

is inspired by some of the common assumptions: (i) in the child protocol of P ;ρQ, the keys

used to implement encapsulations will never be sent in plain text or as a payload message;

(ii) protocols P , Q and encapsulations in E have disjoint encryption subterms.

Remark 6.1. As usual in Maude-NPA, we do not fix the primitives that can be used in either

P or Q. Moreover, P and Q do not have to use disjoint cryptographic primitives, as long as

the operators can be correctly overloaded.

Definition 6.1 (Admissible Composition). A composition P ;ρQ is admissible if the protocol

Q, the key implementation ρ and the protocol P satisfy the requirements in Section 6.3.1,

6.3.2 and 6.3.3 respectively.

In the rest of this chapter, we assume that the composed protocol P ;ρQ is admissible.

6.4 BEHAVIORAL DECOMPOSITION OF P ;ρQ

In this section we show that the admissible composed protocol P ;ρQ can be analyzed

by analyzing the protocols P and Qα (an abstraction of Qρ) separately. Two simulation

relations HP and HQ are defined and proved in Sections 6.4.1 and 6.4.2, respectively. The

reachable states in protocol P ;ρQ are related to reachable states of protocol P and reachable

states of protocol Qα via HP and HQ, respectively. Therefore, for any reachable attack state

in protocol P ;ρQ, there are corresponding attack states that are reachable in protocols P

and Qα. This then ensures that given an attack state for P ;ρQ, if no attack exists for P ,

resp. Qα, then no such attack exists for P ;ρQ.

6.4.1 Simulation of P ;ρQ by P

In this section we show that, given an admissible composed protocol P ;ρQ, the protocol

P can simulate protocol P ;ρQ, so that any QKey can be generated by P ;ρQ if and only if it

can be generated by P .

We first define the simulation relation below. The relation HP essentially projects out

from a state in the protocol P ;ρQ the strands that are instances of protocol P and the

subset of the intruder knowledge that is in the signature of protocol P . Note that we only

consider states that are reachable from initial states.
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Definition 6.2 (Relation HP ). Given an admissible composed protocol P ;ρQ and the key

establishment protocol P in P ;ρQ, let S; “ SS; & IK; denote a state that is reachable from

the initial state in protocol P ;ρQ, and SP “ SSP & IKP denote a state that is reachable

from the initial state in protocol P , the relation HP between reachable states in P ;ρQ and

in P is defined by the definitional equivalence pS;, SP q P HP if and only if:

(i) SS;|P |HS “EPYBP SSP |HS, and SS;|P |DY ĎEPYBP SSP |DY ,

(ii) IK;|ΣP “EPYBP IKP

We prove below that the relation HP is indeed a simulation relation. Before giving the

simulation proofs, we first show in the following lemma that the protocol decomposition pre-

serves the equality relation of terms in the signature ΣP , which is essential for the simulation

results below.

Lemma 6.1. Given an admissible composed protocol P ;ρQ and the key establishment pro-

tocol P in P ;ρQ, for any two terms t, t1 P TΣP pXq, t “EPYBP t
1 iff t “E;YB; t

1.

Proof. We recall that E; “ E 1P Z EShared Z E 1Q, B; “ B1P Z BShared Z B1Q, where EP “

E 1P ZEShared, EQ “ ESharedZE
1
Q, BP “ B1P ZBShared, BQ “ BSharedZB

1
Q. By the disjointness

of ΣQ and ΣP , for any rule l Ñ r in E;, if there exists a position pos in t, axioms B Ď B;,

and substitution σ such that t|pos “B lσ, then l Ñ r P EP , B Ď BP and trrσspos P TΣP pXq.

We therefore have that t ÑEP ,BP t1 iff t ÑE;,B; t1. Together with the coherence, confluence

and termination of ÑEP ,BP and ÑE;,B; , by successively applying the above argument, we

have t!EP ,BP “BP t!E;,B; . Therefore t!EP ,BP “BP t
1!EP ,BP iff t!E;,B; “B; t

1!E;,B; , which implies

t “EPYBP t
1 iff t “E;YB; t

1.

Corollary 6.1. Given an admissible composed protocol P ;ρQ and the key establishment

protocol P in P ;ρQ, we have the following equality between sets of terms:

tt P TΣP ;ρQ
pXq | t “E;YB; t

1 and t1 : QKeyu

“tt P TΣP ;ρQ
pXq | t “EPYBP t

1 and t1 : QKeyu

We refer to this set as rTQKeysEPYBP in the rest of this chapter.

We prove that HP is a simulation in the following theorem. The intuition that the relation

HP is a simulation is that, by the disjointness assumption, terms generated by protocol Qρ

cannot be used in (i.e., cannot match) any messages of protocol P , except for terms of sorts

QKey, and Shared or subsorts of Shared. By the protocol construction, Qρ cannot reveal

QKey, and the shared messages can be generated by Dolev-Yao transitions in protocol P .
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Theorem 6.1 (Soundness from P ;ρQ to P ). Given an admissible composed protocol

P ;ρQ, the key establishment protocol P , and the key application protocol Q, if a state S;

is reachable from the initial state of protocol P ;ρQ, then there exists a state SP that is

reachable from the initial state in protocol P such that pS;, SP q P HP .

Proof. We prove this theorem by induction on the number of steps that are taken to reach

state S;. Suppose S;init Ñ
n S; with n being the minimum number of steps to reach S;. We

prove that there exists a state SP such that SPinit Ñ
˚ SP and pS;, SP q P HP .

Base case. n “ 0: Since the initial states of both systems consist of the empty set of strands

and the empty set of intruder knowledge, proving that pS;init , SPinit q P HP is straightforward.

Induction Step. Suppose that the theorem is true for n “ k. We show that the theorem is

true for n “ k ` 1. Let S 1; be the state such that S;init Ñ
k S 1; Ñrl S;. Then, according to the

induction hypothesis, there exists a state S 1P such that SPinit Ñ
˚ S 1P and pS 1; , S

1
P q P HP . We

then prove by case analysis on the transition rule rl that is applied in the k` 1-th induction

step that there exists a state SP such that SPinit Ñ
˚ SP and pS;, SP q P HP .

1. If rl is of the form: rLs&SS&tIK u Ñ rL,`M s&SS&tIK ,Mu if M R IK , and rl

is generated from a strand in protocol specification of P , then there exists a strand

rls P S 1; , the strand rl,`ms P S;, a strand rL,`M,L1s in protocol specification of P ,

and a ground substitution σ such that rls “E;YB; rLsσ, and m “E;YB; Mσ. Since

rL,`M,L1s is a strand in the protocol specification of P , all variables in rL,`M,L1s

have sorts in ΣP . Also, by the disjointness of the signatures of protocol P and Q,

the range of the ground substitution σ only contains terms having sorts in TΣP
. Since

rls P S 1; and pS 1; , S
1
P q P HP , according to the definition of the relation HP , there exists a

strand rlps in the state S 1P such that rlps “EPYBP rls. Since rls “E;YB; rLsσ, by Lemma

6.1, rlps “EPYBP rLsσ. Also by Lemma 6.1, m “EpYBp Mσ. Since m is not in the

intruder knowledge of state S 1; , according to the definition of the relation HP , m is not

in the intruder knowledge of state S 1P . Thus S 1P Ñ SP by applying the rule rl with the

ground substitution σ, and therefore pS;, SP q P HP .

2. The cases where rl is generated according to a strand in protocol P and is of the

form rLs&SS&tIK u Ñ rL,`ms&SS&tIK u, or SS&tIK u Ñ r`M s&SS&tIK ,Mu, or

SS&tIK u Ñ r`M s&SS&tIK u can be proved in a way similar to the previous case.

3. If rl is of the form: rLs&SS&tIK ,Mu Ñ rL,´M s&SS&tIK ,Mu, and rl is generated

from a strand in protocol P , then there exists a strand rls P S 1; , a message m in

the intruder knowledge of state S 1; , a strand rL,´M,L1s in protocol P , and a ground

substitution σ such that rls “E;YB; rLsσ and m “E;YB; Mσ. Since rL,´M,L1s is
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a strand in the protocol P , all variables in rL,´M,L1s having sorts in ΣP . Also,

by the disjointness of the signatures of protocol P and Q, the range of the ground

substitution σ only contains ground terms in ΣP . Since rls P S 1; and pS 1; , S
1
P q P HP ,

according to the definition of the relation HP , there exists a strand rlps in S 1P such that

rlps “EPYBP rls. Since m P TΣP and is in the intruder knowledge of state S 1; , according

to the definition of the relation HP , there exists m1 in the intruder knowledge of state

S 1P such that m “EPYBP m
1. Since rls “E;YB; rLsσ and m “E;YB; Mσ, by Lemma 6.1,

lp “EPYBP Lσ and m1 “EPYBP Mσ. Thus S 1P Ñ SP by applying the rule rl with the

ground substitution σ, and therefore pS;, SP q P HP .

4. The case where rl is generated according to a strand in protocol P and is of the form

SS&tIK ,Mu Ñ r´M s&SS&tIK ,Mu can be proved in a way similar to the previous

case.

5. If rl is of the form: rLs&SS&tIK u Ñ rL,`M s&SS&tIK ,Mu if M R IK , and rl

is generated from a strand in protocol Q, then there exists a term m that is in the

intruder knowledge of the state S; but not in S 1; , such that m “E;YB; Mθ for some

ground substitution θ.

• If m “E;YB; m
1 with m1 of sort Shared or any subsort of Shared, according to the

assumption that sort Shared is a subsort of sort Public, m1 can be generated by the

intruder itself (i.e., Dolev-Yao strands) in protocol P . Therefore S 1P ÑDY SP with

m1 in the intruder knowledge of state SP , and the transition uses only Dolev-Yao

strands. Thus pS;, SP q P HP .

• Otherwise pS;, S
1
P q P HP .

6. For other cases, pS;, S
1
P q P HP . The synchronization steps are covered by this case.

It is now straightforward to show that the admissible composed protocol P ;ρQ can simu-

late protocol P .

Theorem 6.2 (Completeness from P ;ρQ to P ). Given an admissible composed protocol

P ;ρQ, the key establishment protocol P , and the key application protocol Q, if a state S is

reachable from the initial state in protocol P , the state S is also reachable from the initial

state of protocol P ;ρQ.
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Proof. Since the protocol P is the parent protocol of the protocol P ;ρQ, the protocol P ;ρQ

can perform exactly the same sequence of transitions from the initial state that the protocol

P performs to reach state S.

By Theorems 6.1 and 6.2, we can conclude that any authentication or secrecy property

of the QKeys holds in P if and only if it holds in P ;ρQ. In particular, this holds for the

following secrecy enforcing property.

Definition 6.3. A protocol P is Secrecy-Enforcing if any state where an honest principal

has accepted a list of QKeys to communicate with another honest principal and the intruder

learns any of the secret QKeys is unreachable in P.

That is, the state SP “ SSP&IKP cannot be reached from the initial states in protocol

P , if there exists a strand rls in the set of strands SSP in SP such that rls is an instance

of honest protocol strands in protocol P , the participants in rls do not include the intruder,

but the set of intruder knowledge IKP is not disjoint with the set of secret QKeys generated

from rls.

In the rest of this chapter, we assume that the key establishment protocol P is Secrecy-

Enforcing. Note that the intruder can still learn keys from communications in P , either

because some of the participants of the protocol are compromised or because the keys were

not intended to be secret in the first place.

6.4.2 Simulation of P ;ρQ by Qα

In this section we show that the reachability properties of the protocol P ;ρQ can be

simulated by an abstraction of Qρ, denoted Qα, where actual keys from an admissible P

are replaced by their abstraction using a mapping α. The inherited keys become in some

sense independent of the protocol P . The properties we show in this section will allow us to

reason about properties of P ;ρQ , especially properties about secret payload messages, by

analyzing the protocol Qα.

The key abstraction mapping α can be different for each specific protocol. Usually it is

enough to consider the abstraction of the key patterns that can be synchronized from proto-

col P to protocol Q in any reachable states, as specified by the mapping ρ. Let tpx1, . . . , xnq

denote any such key pattern. We assume that all such patterns are strongly irreducible, i.e.,

that they, and all their instances by irreducible substitutions, are irreducible by equations

EP modulo axioms BP . Note that in Q the sort QKey is parametric: it is instantiated to

different data types for keys depending on the choice of P . The central intuition about the
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abstract protocol Qα is that the keys that are instances of each key pattern tpx1, . . . , xnq in ρ

are abstracted by constructor terms using some new constructors Ω, possibly modulo some

axioms Bα. Furthermore, key terms that cannot unify with any of the key patterns, are

mapped to a special constant in Ω, e.g., c. In this way, Qα terms of sort QKey become con-

structor terms up to Bα-equivalence, thus greatly simplifying their representation. Different

choices of key abstraction are possible (see Example 6.9 below for a concrete illustration).

Here is the general method:

Definition 6.4 (Key Abstraction). A key abstraction α of protocol Qρ by protocol Qα is

defined as follows: (i) new key-building constructors Ω and axioms BΩ are specified, including

a special constant c in Ω, (ii) for each key pattern tpx1, . . . , xnq in ρ, a constructor Ω-term

utpxi1 , . . . , xikq with txi1 , . . . , xiku Ď tx1, . . . , xnu is chosen, and (iii) the key abstraction α is

defined by equations αptpx1, . . . , xnqq “ utpxi1 , . . . , xikq for each key pattern tpx1, . . . , xnq in

ρ, plus an additional “otherwise” default equation “αptq “ c rotherwises” (that applies to

any t that does not EP YBP -unify with any of the key patterns) subject to the requirements:

For each key pattern tpx1, . . . , xnq in ρ,

tpx1, . . . , xnq “EPYBP tpx
1
1, . . . , x

1
nq ñ utpxi1 , . . . , xikq “BΩ

utpx
1
i1
, . . . , x1ikq

which ensures that α maps EP Y BP -equivalence classes of keys in Qρ to BΩ-equivalence

classes of keys in Qα.

The key abstraction should be such that the abstract key implementation map for Qα

obtained by composing ρ with α satisfies the admissibility requirements as the original map

ρ (see Section 6.3).

Example 6.9. An example key abstraction α for a reader and a passport’s keys in a concrete

reachable state of the protocol PAρ according to the key mapping is:

αpf1pkeypreader, r1q, keyppassport, r2qqq “ k1preader, passport, r1q,

αpf2pkeypreader, r1q, keyppassport, r2qqq “ k2preader, passport, r2q

where Ω “ tk1, k2, cu and Bα “ H. This α satisfies the admissibility requirements, since it

ensures that every key is abstracted differently by using the participants of BAC and a fresh

variable that is involved in the key.

Note that the protocol Qα also extends Q with extra Dolev-Yao strands on abstract

keys such that if the intruder was able to generate or learn some QKey k from protocol
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P , then Qα can generate the abstract version αpkq, e.g., a Dolev-Yao strand of the form

:: nil :: rnil | ` pk1pi, A, r?qq, nils or rnil | ` pcq, nils. We refer to this set of extra

Dolev-Yao strands as DY Ω .

The key abstraction α is homomorphically extended to terms. We denote by tα the

term trαpt1q, . . . , αptnqsPos1,...,Posn where tt1, . . . , tnu is the set of top QKey subterms, and

Pos i “ tpij P Posptq | t|pij “EPYBP tiu. Given a substitution α, we use θα to denote the

substitution such that tx ÞÑ tα | x ÞÑ t P θu. Note that it is possible that a QKey term can

contain other QKey terms as subterms, but we do not need to consider those subterms that

are not at the top QKey position, since Q is parameterized by sort QKey.

Example 6.10. Consider the key abstraction map α of Example 6.9 and the following strand

Str in a state of protocol BAC ;ρ PA:

r ´ pEpRead, f1pkeypreader, r1q, keyppassport, r2qq,

f2pkeypreader, r1q, keyppassport, r2qqqqs

The set of top QKey subterms in this strand is:

tf1pnpreader, r1q, nppassport, r2qq, f2pnpreader, r1q, nppassport, r2qqu

and the result of applying α to Str is:

r´pEpRead, k1preader, passport, r1q, k2preader, passport, r2qqqs

Note that, for the sake of brevity, the encapsulation operator E has not been expanded into

its definition in this example.

Given a QKey abstraction α of a protocol Qρ, the protocol Qα with abstract QKeys is thus

specified as Qα “ ppΣQ Y Ω, EQα YBQαq, SSpecQαq, where ΣQ is the signature of protocol

Q and Ω is the set of constructors for abstracted keys as defined above. EQα “ EQ and

BQα “ BQ YBΩ. SSpecQα is a set of strands specifying both the capabilities of the attacker

and the behavior of the honest principals. SSpecQα “ SSpecQ|HSρα Y SSpecQ|DY Y ΩDY ,

i.e., the strands in the specification of the protocol Qρ are adapted to use abstracted keys

as follows: (i) the input parameters are removed from the strands of honest principals,

and the keys are instantiated by the corresponding abstracted keys according to the key

implementation map ρ and the key abstraction α, (ii) the intruder’s strands are extended

with the extra strands denoting intruder’s capability on generating abstracted keys.
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Figure 6.1: Proof of Lemma 6.2

We first show in the following lemma that the decomposition and key abstraction map

preserves equality of terms of sort or subsort of EMsg in the composed protocol.

Lemma 6.2. Given an admissible composed protocol P ;ρQ, and an admissible QKey ab-

straction α, for any terms t, t1 P TΣP ;ρQ
pXqEMsg, if t “E;YB; t

1, then tα “EQαYBQα t
1α.

Proof. Since EQα “ EQ, we only need to prove: if t “E;YB; t
1, then tα “EQYBQα t

1α. The

proof is based on the following observations:

1. By disjointness of ΣP and ΣQ, and the definition of EQ,

(a) for any rewrite rule l Ñ r in EQ, if there is a substitution θ and position pos s.t.

t!EP ,BP |pos “B lθ, and t Ñ t!EP ,BP rrθspos , then pos is not a QKey position and

does not have a QKey position as prefix,

(b) for any rewrite rule l Ñ r in EQ, if term v is a subterm of l (resp. r) and

v P rTQKeysEPYBP , then v P Varplq (resp. v P Varprq).

(c) for any rewrite rule l1 Ñ r1 in EP , if there is a substitution θ1 and position pos1

s.t. t|pos 1 “BP l
1θ1, and tÑ trr1θ1spos 1 , then t|pos 1 is of sort QKey or sort Shared or

subsort of Shared

2. By the convergence of ÑE;,B; , ÑEP ,BP and ÑEQ,BQα ,

(a) t “E;YB; t
1 iff t!E;,B; “B; t

1!E;,B; ,

(b) tα “EQYBQα t
1α iff ptαq!EQ,BQα “BQα pt

1αq!EQ,BQα ,

The intuition of the proof is illustrated in Figure 6.1. To show that if t “E;YB; t
1, then

tα “EQYBQα t
1α where BQα “ BQ YBα, we show that
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(i.) t!E;,B; “B; pt!EP ,BP q!EQ,BQ
We prove by contradiction that pt!EP ,BP q!EQ,BQ cannot be further rewritten. Suppose

there is a rule l Ñ r P E; and substitution θ such that pt!EP ,BP q!EQ,BQ |pos “B; lθ. By

the definition of !EQ,BQ , the rule l Ñ r cannot be in EQ. If l Ñ r is a rule in EP ´EQ,

then the redex pt!EP ,BP q!EQ,BQ |pos is a term of sort QKey and is introduced by rules in

EQ. By the disjointness of ΣP and ΣQ, if new QKeys are introduced to the terms by

applying rules in EQ, then there are variables of sort QKey on the r.h.s of the rule

that do no show up in the l.h.s, which is impossible by the assumption on rules in EQ.

By observation 2, we therefore have t!E;,B; “B; pt!EP ,BP q!EQ,BQ .

(ii.) if pt!EP ,BP q!EQ,BQ “B; pt
1!EP ,BP q!EQ,BQ ,

then pt!EP ,BPαq!EQ,BQα “BQα pt
1!EP ,BPαq!EQ,BQα

For any rewrite rule l Ñ r in EQ, if there is a substitution θ s.t. t!EP ,BP |pos “B; lθ,

and t!EP ,BP ÑEQ,BQ t!EP ,BP rrθspos , then by the definition of the key abstraction

α, plθqα “BQα pt!EP ,BP |posqα. By observation 1, since pos is not a QKey position

and does not have a QKey position as prefix, t!EP ,BP |posα “ t!EP ,BPα|pos , there-

fore plθqα “BQα t!EP ,BPα|pos . Also by observation 1, since all the terms of sort

QKey in l are variables, plθqα “ lpθαq. Therefore t!EP ,BPα|pos “BQα lpθαq. There-

fore t!EP ,BPα ÑEQ,BQα pt!EP ,BPαqrrθαspos “ t!EP ,BP rrθsposα. By successively apply-

ing the above argument, we have that if pt!EP ,BP q!EQ,BQ “B; pt
1!EP ,BP q!EQ,BQ , then

pt!EP ,BPαq!EQ,BQα “BQα pt
1!EP ,BPαq!EQ,BQα .

(iii.) ptαq!EQ,BQα “BQα pt!EP ,BPαq!EQ,BQα

By observation 1c and since a term of sort QKey can never be a subterm of a term of

sort Shared, any rewrites on terms of sort Shared are either under a QKey position or in

parallel. And by the definition of the key abstraction α, tα “ESharedYBSharedYBα t!EP ,BPα.

Since EShared YBShared YBα Ď EQ YBQα , ptαq!EQ,BQα “BQα pt!EP ,BPαq!EQ,BQα .

which then implies that if t!E;,B; “B; t
1!E;,B; , then ptαq!EQ,BQα “BQα pt

1αq!EQ,BQα . Together

with the convergence, we have that t “E;YB; t
1 ô t!E;,B; “B; t

1!E;,B; ñ ptαq!EQ,BQα “BQα

pt1αq!EQ,BQα ô tα “EQYBQα t
1α.

We now define the simulation relation HQ between P ;ρQ and Qα. The relation HQ

essentially projects out from a state in the protocol P ;ρQ the strands that are instances of

strands in protocol Q together with the set of intruder knowledge that is in the signature of
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protocol Q, and then applies key abstraction on them. Again we only consider states that

are reachable from initial states.

Definition 6.5 (Relation HQ). Given an admissible composed protocol P ;ρQ and the ab-

stracted protocol Qα with α being an admissible QKey abstraction, let S; “ SS; & IK; denote

a state that is reachable from the initial state in protocol P ;ρQ, SQα “ SSQα & IKQα denote

a state that is reachable from the initial state in protocol Qα, S;|Q denote SS;|Q&IK;|ΣQρ ,

and SS |Q&IK |Q “ pS;|Qqα. The relation HQ between reachable states in P ;ρQ and in Qα

is then defined by the following definitional equivalence: pS;, SQαq P HQ iff:

(i) SS |Q ĎEQYBQα SSQα , SS |Q|HS “EQYBQα SSQα |HS ,

(ii) IK |Q “EQYBQα IKQα

where BQα “ BQ YBα.

We then show that HQ defines a simulation relation. The main reason for HQ being a

simulation is that, by the requirements on the key abstraction α, the abstraction preserves

equality and deducibility of keys in protocol Qρ. In the following we first show in Lemma

6.3 that a transition from a state in the composed protocol P ;ρQ induces a transition from

a corresponding state (i.e., related by HQ) in protocol Qα while preserving the relation HQ.

This will be used to prove Theorem 6.3, which allows us to simulate protocol P ;ρQ by

protocol Qα.

Lemma 6.3. Given an admissible composed protocol P ;ρQ, the secrecy enforcing key es-

tablishment protocol P , and the abstracted protocol Qα with α being an admissible QKey

abstraction, let S; be a state that is reachable in protocol P ;ρQ and SQα a state that is reach-

able in protocol Qα such that pS;, SQαq P HQ, if there exists a state S 1; such that S; Ñrl S
1
;

by applying the transition rule rl, then there exists a state S 1Qα of protocol Qα such that

SQα Ñ
˚ S 1Qα and pS 1; , S

1
Qαq P HQ.

Proof. The proof is by case analysis on the transition rule rl. Since the proof of this Lemma

requires a somewhat lengthy case analysis, the details of the proof have been moved to

Appendix C.

Theorem 6.3. Given an admissible composed protocol P ;ρQ, the secrecy enforcing key es-

tablishment protocol P , and the abstracted protocol Qα with α being an admissible QKey

abstraction, if a state S; is reachable from the initial state of protocol P ;ρQ, then there

exists a state SQα such that SQα is reachable from the initial state in protocol Qα, and

pS;, SQαq P HQ.
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Proof. Since the initial states of both systems consist of the empty set of strands and empty

set of intruder knowledge, therefore pS;init , SQαinit
q P HQ is straightforward. The proof of

this theorem is then a straightforward successive application Lemma 6.3.

From Theorem 6.3 we can conclude that if the intruder cannot learn the secret payload

message between two honest principals in protocol Qα, then the composed protocol P ;ρQ

also satisfies this property. These results, as well as those in Section 6.4.1, form the basis

for the modular verification of properties of the protocol P ;ρQ in Maude-NPA presented in

Section 6.5.

6.5 MODULAR VERIFICATION OF P ;ρQ IN MAUDE-NPA

In this section we show how the simulation results in Section 6.4 can be used in Maude-

NPA’s protocol analysis. We first present a methodology which, given an attack pattern

in protocol P ;ρQ, generates corresponding attack patterns in protocols P and Qα whose

reachability can then be analyzed by running Maude-NPA on protocol P and protocol Qα

separately. We then show the correctness of this methodology in Theorem 6.4, which relies

on lifting the simulation results in Section 6.4 to Maude-NPA’s backwards semantics.

Given an attack state pattern Att; of protocol P ;ρQ, we wish to obtain an attack state

pattern AttP for protocol P (according to Theorem 6.2) and an attack state pattern AttQ

for protocol Qα (according to Theorem 6.3). However, an attack state pattern Att; may not

include any strands of P and we need a completion mechanism which expands a given attack

state pattern so that each child strand in the attack state pattern has a parent strand that

is explicitly listed in the state. Following the semantics of sequential protocol composition

in Maude-NPA [48], the composition completion of an attack pattern does not change the

reachability of the attack pattern.

Definition 6.6 (Composition Completion). Given an attack state pattern Att; of protocol

P ;ρQ, w.l.o.g assume that the strands which are instances of strands in protocol Q in Att;

have the form:

Att;|Q “pb1q rta1 Ñ b1 ; ; Mode1 ; ;Mb1u, Lb1 | nils & . . .&

pbnq rtan Ñ bn ; ; Moden ; ;Mbnu, Lbn | nils

where @i P r1, ns, pbiq rtai Ñ bi ; ; Modei ; ;Mbiu, Lbis is an instance of a (possibly partial)

honest protocol strand of protocol Q, and all the QKeys in Lbi show up in Mbi . The

composition completion of Att; is yAtt; “ tyAtt;1, . . .
yAtt;mu with yAtt;jPr1,ms “ pAtt;YAttP jqθj,
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where AttP is defined as follows:

AttP “pa1q rLa1 , ta1 Ñ b1 ; ; Mode1 ; ;Ma1u | nils & . . . &

panq rLan , tan Ñ bn ; ; Moden ; ;Manu | nils

where @i P r1, ns, paiq rnil|Lai , tai Ñ bi ; ; Modei ; ;Maiu, nils P PP ;ρQ Y Att;|P , θj P

Unif EPYBP pMa1 “ Mb1 ^ . . . ^ Man “ Mbnq. We require that all the QKeys in yAtt; are

instances of the key patterns.

Example 6.11. Consider the following attack pattern in the protocol BAC ;ρ PA query-

ing whether the intruder can learn datappassport, r1q generated by the passport in the PA

protocol:

Att; “rnil, tBAC.B Ñ PA.B ; ; 1´ 1 ; ; passport; reader;K1;K2u,

´ pEpreadpreaderq,K1,K2qq,

` pEpdatappassport, r1q; signphpdatappassport, r1qq, skppassportqq,K1,K2qq

| nils & datappassport, r1qPI

where K1 and K2 denote the key terms f1pkeypreader, r1q, keyppassport, r2qq and f2pkey

preader, r1q, keyppassport, r2qq respectively.

The composition completion yAtt; of Att; is:

StrP&Att;rB ÞÑ passport, A ÞÑ reader,KA ÞÑ keypreader, r1qs

where StrP denotes the passport strand in Example 6.4. Note that the unification call

between the input and output synchronization messages gave also some instantiation for P

and, thus, we use LP to denote StrP rB ÞÑ passport, A ÞÑ reader,KA ÞÑ keypreader, r1qs.

Note that in the case where two participants of a protocol P can swap roles in protocol Q,

the unification of the input and output synchronization messages will produce all different

combinations.

Given an attack state pattern Att; in the protocol P ;ρQ, we follow the following steps to

check whether the attack state pattern Att; can backwards reach an initial state in protocol

P ;ρQ:

1. Composition Completion: we first generate the composition completion yAtt; “ tyAtt;1,

. . . yAtt;mu of Att;.
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2. For each composition completed state yAtt;j “ SS ; & IK ; in yAtt;, we analyze the

reachability of yAtt;j as follows:

(a) Reachability in P : check the attack pattern SP “ SS ;|P&IK ;|ΣP pXq in protocol P .

If SP cannot backwards reach an initial state, skip the step (b), and mark the

reachability of the state yAtt;j as false.

(b) Reachability in Qα: check the attack pattern SQ “ pSS ;|Q&IK ;|ΣQρ pXqqα in pro-

tocol Qα. If SQ cannot backwards reach an initial state, mark the reachability of

the state yAtt;j as false.

If the reachability of all the states in yAtt; are marked as false, then the attack state Att;

cannot reach an initial state, i.e., the protocol P ;ρQ is secure with respect to the attack

state Att;. Note that extra analysis may be executed in P in order to generate some specific

key abstraction mappings.

The correctness of this approach is proved in the following theorem. The proof is based on

lifting Theorems 6.1 and 6.3 to symbolic states according to the soundness and completeness

of Maude-NPA’s backwards operational semantics w.r.t. the forwards semantics [60].

Theorem 6.4 (Symbolic Modular Verification Theorem). Given an admissible composed

protocol P ;ρQ, the secrecy enforcing key establishment protocol P , the abstracted protocol

Qα with α being an admissible QKey abstraction, a symbolic attack state Att; of proto-

col P ;ρQ, if Att; can backwards reach an initial state in protocol P ;ρQ, then there exists

a state yAtt;j “ SS ;&IK ; in the set of composition completion of Att;, such that SP “

SS ;|P&IK ;|ΣP pXq can backwards reach an initial state in protocol P , and SQα “ pSS ;|Q&

IK ;|ΣQρ pXqqα can backwards reach an initial state in protocol Qα.

To prove Theorem 6.4, in the following we prove auxiliary Lemmas 6.4, 6.5 and 6.6. We

first show in Lemma 6.4 that if the attack pattern Att; can backwards reach an initial state

in protocol P ;ρQ, then there exists yAtt;j in the set of composition completion of Att; that

can backwards reach an initial state. By lifting the results that we have proved in Section

6.4, we then show in Lemmas 6.5 and 6.6, respectively, that if yAtt;j can backwards reach an

initial state, then the state SP can backwards reach an initial state in protocol P and the

state SQα can backwards reach an initial state in protocol Qα. The proof of Theorem 6.4

then follows straightforwardly.

We show in the following Lemma that the composition completion of an attack pattern

does not change the reachability of the attack pattern.
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Lemma 6.4. Given an admissible composed protocol P ;ρQ and an attack pattern Att; of

protocol P ;ρQ, if Att; can backwards reach an initial state in protocol P ;ρQ, then there exists

a state yAtt;j in the composition completion yAtt; of Att; which can backwards reach an initial

state in P ;ρQ.

Proof. According to Maude-NPA’s semantics of protocol composition, if the attack pattern

Att; can backwards reach an initial state, then each child strand in Att; can backwards

synchronize with a parent strand such that the composed strand can reach an initial state.

The proof of this Lemma is then straightforward, since the composition completion explores

all possible parent strand that can synchronize with the child strands in Att;.

In the following, we lift the protocol composition modularity results that we have proved

in Section 6.4 to symbolic backwards analysis. We first recall the lifting relation that is

defined in [60].

Definition 6.7 (Lifting Relation [60]). Given a protocol P , a symbolic state S and a ground

state s, we say that s lifts to S, or that S instantiates to s with a ground substitution

θ : pVarpSq ´ tSS , IK uq Ñ TΣ written S ąθ s iff

• for each strand :: r1, . . . , rm :: rLs in S, there exists a strand rls in s such that l “EP Lθ.

• for each positive intruder fact wPI in S, there exists a positive intruder fact w1 in s

such that w1 “EP wθ, and

• for each negative intruder fact wRI in S, there is no positive intruder fact w1 in s such

that w1 “EP wθ.

where SS and IK are variables denoting unspecified set of strands and knowledge.

We then lift Theorem 6.1 in Section 6.4 to symbolic backwards reachability semantics in

the following Lemma 6.5.

Lemma 6.5. Given an admissible composed protocol P ;ρQ, the secrecy enforcing key estab-

lishment protocol P , and an attack pattern Att; of protocol P ;ρQ, let yAtt;j “ SS ;&IK ; be

a state in the composition completion of Att;, where SS ; and IK ; denote the set of strands

and intruder knowledge of yAtt;j respectively. If yAtt;j can backwards reach an initial state in

protocol P ;ρQ, then the state SP “ SS ;|P&IK ;|ΣP pXq can backwards reach an initial state in

protocol P .
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Proof. Since the state yAtt;j can backwards reach an initial state S0 in protocol P ;ρQ, by

soundness of Maude-NPA’s backwards operational semantics w.r.t. the forwards semantics,

there is a grounding substitution θ and a ground state s; “ ss;&ik; where ss; and ik; denote

the set of ground strands and intruder knowledge of s; respectively, such that s; is reachable

from the initial state s0 in the forward semantics in P ;ρQ and yAtt;j ą
θ s;. By Theorem

6.1, there exists a state sP that is reachable from the initial state in protocol P such that

ps;, sP q P HP . By the definition of ąθ, for any strand L in SS ;, there is a strand l “E;YB; Lθ

in ss;. By the disjointness of the signatures of protocol P and protocol Q, if L P SS ;|P , then

l P ss;|P , and l “EPYBP Lθ. Similarly, if a message M is in IK ;|ΣP pXq, there is a message m in

the intruder knowledge of sP such that m “EPYBP Mθ. Since Att; is an attack pattern, there

is no negative intruder fact wRI in Att;. Therefore SP ą
θ sP . Therefore, by completeness of

Maude-NPA’s backwards operational semantics w.r.t. the forwards semantics, SP can reach

an initial state in protocol P .

We then lift Theorem 6.3 in Section 6.4 to symbolic backwards reachability semantics in

Lemma 6.6.

Lemma 6.6. Given an admissible composed protocol P ;ρQ, the secrecy enforcing key estab-

lishment protocol P , the abstracted protocol Qα with α being an admissible QKey abstraction,

and an attack pattern Att; of protocol P ;ρQ, let yAtt;j “ SS ;&IK ; be a state in the composi-

tion completion of Att;, where SS ; and IK ; denote the set of strands and intruder knowledge

of yAtt;j respectively. If yAtt;j can backwards reach an initial state in protocol P ;ρQ, then the

state SQα “ pSS ;|Q&IK ;|ΣQρ pXqqα can backwards reach an initial state in protocol Qα.

Proof. Since the state yAtt;j can reach an initial state in protocol P ;ρQ, by soundness of

Maude-NPA’s backwards operational semantics w.r.t. the forwards semantics, there is a

ground state s; “ ss;&ik; and a substitution θ such that s; is reachable from the initial

state in the forward semantics in P ;ρQ and yAtt;j ą
θ s;. By Theorem 6.3, there exists a

ground state sQα that is reachable from the initial state in the forward semantics in protocol

Qα, and ps;, sQαq P HQ. By the definition of ąθ, for any strand L in SS ;, there is a strand

l “E;YB; Lθ in ss;. By the disjointness of the signatures of protocol P and protocol Q, if

L P SS ;|Q, then l P ss;|Q. By the definition of HQ, since ps;, sQαq P HQ and l P ss;|Q, lα

is a strand in sQα . By the requirements on the attack patterns and the key abstraction α,

Lθα “ pLαqθ|VarpLαq. Therefore lα “EQYBQα pLαqθ|VarpLαq. Similarly, if a message Mα is in

the intruder knowledge of SQα , there exists a message m in the intruder knowledge of sQα

such that mα “EQYBQα pMαqθ|VarpMαq . Since Att; is an attack pattern, there is no negative

intruder fact wRI in Att;. Therefore SQα ą
θ1 sQα , where θ1 Ď θ. Then by completeness of
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Maude-NPA’s backwards operational semantics w.r.t.the forwards semantics, SQα can reach

an initial state in protocol Qα.

Theorem 6.4 is now a straightforward corollary. It shows that the symbolic reachability

analysis of the composed protocol P ;ρQ can be reduced to the symbolic reachability analysis

of the parent protocol and the abstracted child protocol separately. The proof of Theorem

6.4 is a straightforward application of Lemma 6.4, Lemma 6.5 and Lemma 6.6.

Example 6.12. As an example of modular protocol analysis, we continue with the protocol

BAC ;ρ PA and Example 6.11. We first check that the protocol BAC is secrecy-enforcing;

therefore the intruder cannot learn K1 or K2. We then check in protocol BAC the attack

state pattern in which the strand LP finished execution. Maude-NPA found an initial state.

To generate the key abstraction α, we also check in protocol BAC the attack pattern in

which the passport’s (resp. reader’s) strand finished execution without the corresponding

reader’s (resp. passport’s) strand (an authentication attack). Maude-NPA terminated with-

out reaching any initial states. We therefore obtain protocol PAα from PA by removing the

input synchronization message and replacing the two keys by k1pA,B,RAq and k2pA,B,RBq

respectively with RA, RB of sort Fresh?, a super sort of Fresh. The attack pattern of Exam-

ple 6.11 is now written according to the key abstraction α and the specification of protocol

PAα as:

rnil,´pEpreadpreaderq, k1preader, passport, r1q, k2preader, passport, r2qq,

` pEpdatappassport, r1q; signphpdatappassport, r1qq, skppassportqq,

k1preader, passport, r1q, k2preader, passport, r2qqq | nils

& datappassport, r1qPI

Maude-NPA terminated without finding any initial states, i.e., this attack cannot happen.

We therefore conclude that the intruder cannot learn the secret payload.

6.6 EXPERIMENTS

In this section we describe some experiments that we have performed. using the Maude-

NPA cryptographic protocol analysis tool.
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6.6.1 BAC-PA.

The basic access control protocol (BAC) and passive authentication protocl (PA) [102]

are used in E-passport to protect the content of the RFID chip. The BAC protocol is used

for preventing skimming, the session keys established by this protocol are used to secure

further communication. The BAC protocol starts with a challenge, which is then followed

by a mutually authenticated communication between the passport and the reader. One of

the protocols that can use the secure communication established by the BAC protocol is the

PA protocol. The PA protocol protects the integrity of the content stored in the passport by

first hashing the data and then having it signed by the Document Signers. Protocols BAC

and PA proceed as explained in Examples 6.1 and 6.2. Our model is similar to [101].

We used Maude-NPA to search for the attack state in which the intruder can learn the

stored data from the communication of an honest passport and an honest reader. We first

analyze in the protocol BAC alone whether the intruder can learn the generated session

keys from an honest passport and reader. Maude-NPA terminated without any attack being

found, therefore the protocol BAC is secrecy-enforcing.

eq ATTACK-STATE(0) =

:: r, r2 :: [ nil, -(challenge), +(n(passport, r)),

-(senc(ke(passport, reader), Nr; n(passport, r); Kr);

mac(km(passport, reader), senc(ke(passport, reader),

Nr; n(passport, r); Kr))),

+(senc(ke(passport, reader), n(passport, r); Nr;

key(passport, r2)); mac(km(passport, reader),

senc(ke(passport, reader), n(passport, r);

Nr; key(passport, r2))))

| nil ]

|| f1(Kr, key(passport, r2)) inI

eq ATTACK-STATE(2) =

:: r, r2 :: [ nil, -(challenge), +(n(passport, r)),

-(senc(ke(passport, reader), Nr; n(passport, r); Kr);

mac(km(passport, reader), senc(ke(passport, reader),

Nr; n(passport, r); Kr))),

+(senc(ke(passport, reader), n(passport, r); Nr;

key(passport, r2)); mac(km(passport, reader),

senc(ke(passport, reader), n(passport, r);

Nr; key(passport, r2))))
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| nil ]

|| f2(Kr, key(passport, r2)) inI

There are two other attack patterns that use reader’s strand and are similar to ATTACK-

STATE(0) and ATTACK-STATE(2). We omit those two attack patterns for the sake of

brevity.

Note that the search space can be reduced by searching whether the intruder can learn

keyppassport, r2q and Kr, respectively, instead of f1pKr, keyppassport, r2qq and f2pKr, keyp

passport, r2qq, since the QKeys constructed using f1 and f2 only show up in the output

parameters.

We then analyze in protocol BAC the attack patterns denoting regular executions with

the reader, passport and their keys being honest. Maude-NPA terminated with initial states

being found. To avoid repetition, here we only list the passport’s strand.

eq ATTACK-STATE(5) =

:: r, r2 :: [ nil,

-(challenge),

+(n(passport, r)),

-(senc(ke(passport, reader), Nr; n(passport, r); key(reader, r1));

mac(km(passport, reader), senc(ke(passport, reader),

Nr; n(passport, r); key(reader, r1)))),

+(senc(ke(passport, reader), n(passport, r); Nr; key(passport, r2));

mac(km(passport, reader), senc(ke(passport, reader),

n(passport, r); Nr; key(passport, r2)))

| nil ]

|| empty

We therefore analyze in the protocol PA with an admissible key abstraction whether the

intruder can learn the honest passport’s stored data from the communication of a reader and

passport assuming the honest session keys being secure. The attack pattern is as follows:

eq ATTACK-STATE(1) =

:: r1, r2 :: [ nil ,

+(E(read(reader), k1(reader, passport, r1), k2(reader, passport, r2))),

-(E(Dt; sign(sk(passport), h(Dt)),

k1(reader, passport, r1), k2(reader, passport, r2)))

| nil]

|| Dt inI
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For this property, Maude-NPA terminated without any attack being found. We then can

conclude that the intruder cannot learn an honest passport’s data from its communications

with a reader using the composition of the protocols BAC and PA.

We also checked whether the intruder can trick the reader into accepting a passport’s data

whose certificate is forged by the intruder. That is, the reader and a passport agreed on a

session key in the BAC protocol, but then in protocol PA, the passport data that is sent to

the reader is certificated by the intruder. The attack pattern is as follows:

eq ATTACK-STATE(3) =

:: r1, r2 :: [ nil ,

+(E(read(reader), k1(reader, passport, r1), k2(reader, passport, r2))),

-(E(data(passport, r’); sign(sk(i), h(data(passport, r’))),

k1(reader, passport, r1), k2(reader, passport, r2))) | nil]

|| empty

For this property, Maude-NPA terminated without any attack being found. We then can

also conclude that the intruder cannot forge the certificate.

Note that although the BAC protocol can be cracked by brute-force key search, that is an

attack that is out of the scope of this analysis tool.

6.6.2 BAC-AA.

The session keys established in the BAC protocol can also be used to secure communi-

cations in the Active Authentication (AA) protocol [102], which prevents passport cloning.

The protocol AA starts when the reader sends a challenge to the passport. After receiving

the challenge, the passport generates its own random string, concatenates it with the re-

ceived challenge, signs the concatenated message with its signing key and sends it back to

the reader. More specifically, the protocol AA proceeds as follows:

1. AÑ B : sencpinit;Nr,K1q;macpsencpinit;Nr,K1q,K2q

2. B Ñ A : sencpsignpNp;Nr, skq,K1q;macpsencpsignpNp;Nr, skq,K1q,K2q

where A and B denote the reader and the passport respectively. K1 and K2 denote the

session keys generated in protocol BAC. Nr and Np denote random nonces generated by

the reader and passport respectively. senc denotes shared key encryption, mac denotes a

MAC, signpM,Kq denotes message M signed with key K, and sk denotes the signing key.
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We used Maude-NPA to search for the attack state in which the intruder can learn the

stored data or the signing key of a passport. Since we already verified that the BAC pro-

tocol is secrecy enforcing, we therefore analyze in the protocol AA with an admissible key

abstraction that the intruder cannot learn the nonce that is generated by the passport or the

signing key of the passport assuming the honest session keys being secure. For this property,

Maude-NPA terminated without any attack being found. The attack patterns are as below.

Here we only list the attack patterns for the reader’s strand. There are two other similar

attack patterns for the passport’s strand. We omitted those here.

eq ATTACK-STATE(1) =

:: r, r1, r2 :: [ nil ,

+(E(init; q(reader, r),

k1(reader, passport, r1), k2(reader, passport, r2))),

- E(sign(sk(passport), q(passport, r’); q(reader, r)),

k1(reader, passport , r1), k2(reader, passport , r2)))

| nil]

|| q(passport, r’) inI

eq ATTACK-STATE(3) =

:: r, r1, r2 :: [nil ,

+(E(init ; q(reader, r),

k1(reader, passport, r1), k2(reader, passport, r2))),

-(E(sign(sk(passport), q(passport, r’); q(reader, r)),

k1(reader, passport, r1), k2(reader, passport, r2)))

| nil]

|| sk(passport) inI

We also verified that the reader cannot finish the protocol with a passport whose signature

cannot be verified. The attack pattern is listed below. Maude-NPA terminated without any

attacks being found for this attack pattern.

eq ATTACK-STATE(4) =

:: r, r1, r2 ::

[nil, +(E(init; q(reader, r),

k1(reader, passport, r1), k2(reader, passport, r2))),

-(E(sign(sk(i), q(passport, r’); q(reader, r)),
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k1(reader, passport, r1), k2(reader, passport, r2)))

| nil]

|| empty

6.6.3 IKEv1.

The Internet Key Exchange (IKE) [103], is a protocol suite in IPSec that establishes session

keys for protecting the remainder of the sessions. There are two phases in IKE, where Phase

1 generates a key SKEYID that is used to generate three keys SKEYIDa, SKEYIDe and

SKEYIDd that are passed on to the Phase 2 protocol. Phase 1 is in turn divided into two

modes, Main Mode, in which identities are always encrypted, and Aggressive Mode, in which

they are not. The Phase 2 mode, called Quick Mode, is used to generate session keys. There

are many ways to mix and match the protocols, which greatly increases the complexity of

formal analysis. So the ability to analyze the Phase 1 and Phase 2 protocols separately

would be preferable.

As an example, we experimented with a slightly simplified version of the Aggressive Mode

with digital signatures (AMid) and the Quick Mode without perfect forward secrecy (QM)

in IKE version 1. The Aggressive Mode proceeds as follows:

1. AÑ B : SA; gxA ;NA; IDpAq

2. B Ñ A : SA; gxB ;NB; IDpBq; sigpSA, skpBq,

prfpSA, prfpSA, gxA˚xB , NA;NBq, g
xB ; gxA ;SA; IDpBqqq

3. AÑ B : sigpSA, skpAq, prfpSA, prfpSA, gxA˚xB , NA;NBq, g
xA ; gxB ;SA; IDpAqqq

This protocol has a Diffie-Hellman exponentiation as a core part. The Quick Mode without

perfect forward secrecy proceeds as follows:

1. AÑ B : MID ; epSA,SKEYIDe, prfpSA,SKEYIDa,MID ;SA1;MAq;SA
1;MAq

2. B Ñ A : MID ; epSA,SKEYIDe, prfpSA,SKEYIDa,MID ;MA;SA1;MBq;SA
1;MBq

3. AÑ B : MID ; epSA,SKEYIDe, prfpSA,SKEYIDa,MID ;MA;MBqq

where SKEYIDa and SKEYIDe denote the keys generated in protocol AMid and passed to

QM, and NA, NB, MA and MB denote nonces. The fact that security associations may

specify algorithms is modeled by making the security association SA one of the arguments
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in the cryptographic functions prf , e, and sig.

To check that the intruder cannot learn the generated session key, we first check in the

AMid protocol that the key SKEYID exchanged between honest participants cannot be

learned by the intruder. Note that the keys SKEYIDa, SKEYIDe and SKEYIDd are gener-

ated based on the key SKEYID . Moreover, the keys SKEYIDa, SKEYIDe and SKEYIDd

never show up in the protocol strands of the Aggressive Mode. Therefore, it is enough to just

check the secrecy of the key SKEYID . For this property, Maude-NPA terminated without

any attack being found. Therefore we can conclude that AMid is secrecy-enforcing.

eq ATTACK-STATE(4) =

:: r3, r4 :: [ nil ,

-(sa1; ExpA; NA; id(a)),

+(sa1; exp(g, c(b, r3)); n(b, r4); id(b); sig(sa1, sk(b),

prf(sa1, prf(sa1, exp(ExpA, c(b, r3)), NA; n(b, r4)),

exp(g, c(b, r3)); ExpA; sa1; id(b)))),

-(sig(sa1, sk(a), prf(sa1, prf( sa1,

exp(ExpA, c(b, r3)), NA; n(b, r4)),

ExpA; exp(g, c(b, r3)); sa1; id(a))))

| nil]

|| exp(ExpA, c(b, r3)) inI

eq ATTACK-STATE(6) =

:: r1, r2 :: [ nil,

+(sa1; exp(g, c(a, r1)); n(a, r2); id(a)),

-(sa1; ExpB; NB; id(b); sig(sa1, sk(b), prf(sa1,

prf(sa1, exp(ExpB, c(a, r1)), n(a, r2); NB),

ExpB; exp(g, c(a, r1)); sa1; id(b)))),

+(sig(sa1, sk(a), prf (sa1, prf(sa1,

exp(ExpB, c(a, r1)), n(a, r2); NB),

exp(g, c(a, r1)); ExpB; sa1; id(a))))

| nil]

|| exp(ExpB, c(a, r1)) inI

We were able to find the authentication attack that is mentioned by Cremers in [6], in

which Alice may think that she shared a key with Bob, but Bob actually did not accept that

key. The attack pattern is as follows:

eq ATTACK-STATE(2) =
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:: r1, r2 :: [ nil,

+( sa1; exp(g, c(a, r1)); n(a, r2); id(a)),

-(sa1; ExpB; NB; id(b); sig(sa1, sk(b) ,

prf(sa1, prf(sa1, exp(ExpB, c(a, r1)), n(a, r2); NB),

ExpB; exp(g, c(a, r1)); sa1; id(b)))),

+(sig(sa1, sk(a), prf(sa1,

prf(sa1, exp(ExpB, c(a, r1)), n(a, r2); NB),

exp(g, c(a, r1)); ExpB; sa1; id(a)))) | nil]

|| empty || nil || nil

|| never (

:: r3, r4 :: [ nil |

-(sa1; exp(g, c(a, r1)); n(a, r2); id(a)),

+(sa1; ExpB; NB; id(b); sig(sa1, sk(b),

prf(sa1, prf(sa1, exp(ExpB, c(a, r1)), n(a, r2); NB),

xpB; exp(g, c(a, r1)); sa1; id(b)))), nil]

& S:StrandSet || K:IntruderKnowledge)

Although this authentication property failed, the intruder still cannot learn or forge that

session key. Thus our composition result can be applied. Actually, we can verify that the

AMid protocol satisfies a weaker authentication property: if both honest Alice and Bob

finished their strand and passed the keys to protocol Q, then they must agreed on the same

key. This property is described in the following attack pattern, in which both Alice and Bob

finished their strand in the same section, but the key that Alice received is different from

the key that is generated by Bob. For this property, Maude-NPA terminated without any

attack being found.

eq ATTACK-STATE(10) =

:: r1, r2 :: [ nil,

+(sa1; exp(g, c(a, r1)); n(a, r2); id(a)),

-(sa1; ExpB; NB; id(b); sig(sa1, sk(b) ,

prf(sa1, prf(sa1, exp(ExpB, c(a, r1)), n(a, r2); NB),

ExpB; exp(g, c(a, r1)); sa1; id(b)))),

+(sig(sa1, sk(a), prf(sa1,

prf(sa1, exp(ExpB, c(a, r1)), n(a, r2); NB),

exp(g, c(a, r1)); ExpB; sa1; id(a)))) | nil]

&

:: r3, r4 :: [ nil ,

-(sa1; ExpA; n(a, r2); id(a)),
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+(sa1; exp(g, c(b, r3)); n(b, r4); id(b); sig(sa1, sk(b) ,

prf(sa1, prf(sa1, exp(ExpA, c(b, r3)), n(a, r2); n(b, r4)),

exp(g, c(b, r3)); ExpA; sa1; id(b)))),

-(sig(sa1, sk(a), prf(sa1, prf(sa1, exp(ExpA, c(b, r3)),

n(a, r2); n(b, r4)), ExpA; exp(g, c(b, r3)); sa1; id(a))))

| nil] || ExpA != exp(g, c(a, r1))

We then check in QM with an admissible key abstraction that if the keys SKEYIDa,

SKEYIDe and SKEYIDd generated by honest principals cannot be learned by the intruder,

then the secrets that are used for constructing the final session keys cannot be learned by the

intruder either. Here we only present the attack patterns for the initiator’s strand. There

are two other similar attack patterns for the responder’s strand, that we omit.

eq ATTACK-STATE(2) =

:: r, r’, r1, r2 :: [nil ,

+(m(a, r); e(sa1, k1((a, r1)*(b, r2)), prf(sa1,

k2((a, r1)*(b, r2)),m(a, r); qsa1; q(a, r’)); qsa1; q(a, r’))),

-(m(a, r); e(sa1, k1((a, r1)*(b, r2)), prf(sa1,

k2((a, r1)*(b, r2)),m(a, r); q(a, r’); qsa1; MB); qsa1; MB)),

+(m(a, r); e(sa1, k1((a, r1)*(b, r2)), prf(sa1,

k2((a, r1)*(b, r2)),m(a, r); q(a, r’); MB)))

| nil]

|| q(a, r’) inI

eq ATTACK-STATE(3) =

:: r, r’, r1, r2 :: [nil ,

+(m(a, r); e(sa1, k1((a, r1)*(b, r2)), prf(sa1,

k2((a, r1)*(b, r2)),m(a, r); qsa1; q(a, r’)); qsa1; q(a, r’))),

-(m(a, r); e(sa1, k1((a, r1)*(b, r2)), prf(sa1,

k2((a, r1)*(b, r2)),m(a, r); q(a, r’); qsa1; MB); qsa1; MB)),

+(m(a, r); e(sa1, k1((a, r1)*(b, r2)), prf(sa1,

k2((a, r1)*(b, r2)), m(a, r); q(a, r’); MB))) | nil]

|| MB inI

Another variant of Aggressive Mode uses public key encryption (AMpk) in which both

participants’ identities and nonces are protected by public key encryption. The protocol

proceeds as follows:
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1. AÑ B : SA; gxA ; tNAupkpBq; tIDpAqupkpBq

2. B Ñ A : SA; gxB ; tNBupkpAq; tIDpBqupkpAq;

prfpSA, prfpSA, hpSA,NA;NBqq, g
xB ; gxA ;SA; IDpBqq

3. AÑ B : prfpSA, prfpSA, hpSA,NA;NBqq, g
xA ; gxB ;SA; IDpAqq

where NA and NB denote Nonces. The fact that security associations may specify algorithms

is modeled by taking the security association SA as one of the arguments in the cryptographic

functions prf and h.

Similarly, to check the secrecy of the QKeys, it is enough to check the secrecy of the keys

SKEYID and gxA˚xB . We therefore check in the AMpk protocol that the keys SKEYID

and gxA˚xB exchanged between honest participants cannot be learned by the intruder. For

this property, Maude-NPA terminated without any attack being found. Therefore we can

conclude that AMpk is secrecy-enforcing. Here we only present the attack patterns for the

responder’s strand. There are two other similar attack patterns for the initiator’s strand

that we omit.

eq ATTACK-STATE(4) =

:: r’, r3, r4 :: [ nil ,

-(sa1; ExpA; pk(id(a), b); pk(NA, b)),

+(sa1; exp(g, c(b, r3)); pk(id(b), a); pk(n(b, r4), a);

prf(sa1, prf1(sa1, h(sa1, NA; n(b, r4))),

exp(g, c(b, r3)); ExpA; sa1; id(b))),

-(prf(sa1, prf1(sa1, h(sa1, NA; n(b, r4))),

ExpA; exp(g, c(b, r3)); sa1; id(a)))

| nil ] || exp(ExpA, c(b, r3)) inI

eq ATTACK-STATE(5) =

:: r’, r3, r4 :: [ nil ,

-(sa1; ExpA; pk(id(a), b); pk(NA, b)),

+(sa1; exp(g, c(b, r3)); pk(id(b), a); pk(n(b, r4), a);

prf(sa1, prf1(sa1, h(sa1, NA; n(b, r4))),

exp(g, c(b, r3)); ExpA; sa1; id(b))),

-(prf(sa1, prf1(sa1, h(sa1, NA; n(b, r4))),

ExpA; exp(g, c(b, r3)); sa1; id(a)))

| nil ] || h(sa1, NA; n(b, r4)) inI
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We can also check that the authentication attack in protocol AMid does not happen in

protocol AMpk . The following attack pattern denotes that the initiator finished her strand

with the responder without the corresponding responder’s strand. Maude-NPA terminated

without finding any attack for this property.

eq ATTACK-STATE(2) =

:: r, r1, r2 :: [ nil ,

+(sa1; exp(g, c(a, r1)); pk(id(a), b); pk(n(a, r2), b)),

-(sa1; ExpB; pk(id(b), a); pk(NB, a);

prf(sa1, prf1(sa1, h(sa1, n(a, r2); NB)),

ExpB; exp(g, c(a, r1)); sa1; id(b))),

+( prf(sa1, prf1(sa1, h(sa1, n(a, r2); NB)),

exp(g, c(a, r1)); ExpB; sa1; id(a)))

| nil]

|| empty || nil || nil

|| never

(:: r’, r3, r4 :: [ nil |

-(sa1; exp(g, c(a, r1)); pk(id(a), b); pk(n(a, r2), b)),

+(sa1; ExpB; pk(id(b), a); pk(NB, a);

prf(sa1, prf1(sa1, h(sa1, n(a, r2); NB)),

ExpB; exp(g, c(a, r1)); sa1; id(b))), nil]

& S:StrandSet || K:IntruderKnowledge)

Since we already checked in QM that if the keys SKEYIDa, SKEYIDe and SKEYIDd

generated by honest principals cannot be learned by the intruder, then the secrets that

are used for constructing the final session keys cannot be learned by the intruder either.

Therefore, we can conclude that the intruder cannot learn the session key of honest principals

generated by running protocol AMpk followed by protocol QM.

6.6.4 Simplified EAP-IKEv2 and IEEE802.11 Handshake

The protocol uses a version of IKEv2 [104] in the EAP framework as a parent protocol to

agree on a master key. The master key is then used in a 4-way handshake protocol in IEEE

802.11i [105] to generate a pairwise transient keys. Due to performance issues, we had to

simplify the protocol while preserving the security property that we intend to analyze. We
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refer to this simplified version the IKEv2-like protocol and 4-way-handshake-like protocol.

The protocols proceed as follows:

1. AÑ B : gxi ;NA;SA

2. B Ñ A : gxr ;NB;SA

3. AÑ B : epSA, prf1pSA,NA;NB; gxi˚xr , eiq, IDpAq; signpSA, SA; gxi ;

NA;NB;macpSA, prf1pSA,NA;NB; gxi˚xr , piq, IDpAqq, Aqq

4. B Ñ A : epSA, prf1pSA,NA;NB; gxi˚xr , erq, IDpBq; signpSA, SA; gxr ;

NB;NA;macpSA, prf1pSA,NA;NB; gxi˚xr , prq, IDpBqq, Bqq

1. AÑ B : MA

2. B Ñ A : MB;SA;macpSA,MB, prfpSA, IDpBq; IDpAq;MB;MA,MSKqq

3. AÑ B : MA;SA;macpSA,MA;SA, prfpSA, IDpBq; IDpAq;MB;MA,MSKqq

4. B Ñ A : Finished;macpSA,F inished, prfpSA, IDpBq; IDpAq;MB;MA,MSKqq

where NA, NB denote nonces in the IKEv2-like protocol, MA, MB denote nonces in the

4-way-handshake-like protocol, and IDpAq, IDpBq denote identities. The fact that security

associations may specify algorithms is modeled by taking the security association SA as one

of the arguments in the cryptographic functions se, prf and mac.

To check that the intruder cannot learn the generated session key, we first check in the

IKEv2-like protocol that the master key exchanged between honest participants cannot be

learned by the intruder. Similarly, the master key is generated based on the seed key, and it

never shows up in the protocol strands of the parent protocol. Therefore, it is enough to check

the secrecy of the seed key. For this property, Maude-NPA terminated without any attack

being found. Therefore we can conclude that the IKEv2-like protocol is secrecy-enforcing.

The attack patterns analyzed by Maude-NPA are as follows:

eq ATTACK-STATE(2) =

:: r1, r2 :: [nil ,

+(exp(g, c(a, r1)); n(a, r2); sa),

-(exp(g, NSB) ; NB; sa),

+(e(sa, id(a); sign(sa, exp(g, c(a, r1)), n(a, r2), NB, mac(sa,

id(a), prf1(sa, exp(g, NSB*c(a, r1)), n(a, r2), NB, pi)), a),

prf1(sa, exp(g, NSB*c(a, r1)), n(a, r2), NB, ei))),

-(e(sa, id(b); sign(sa, exp(g, NSB), NB, n(a, r2), mac(sa, id(b),
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prf1(sa, exp(g, NSB*c(a, r1)), NB, n(a, r2), pr)), b),

prf1(sa, exp(g, NSB*c(a, r1)), NB, n(a, r2), er)))

| nil]

|| exp(g, NSB*c(a, r1)) inI

eq ATTACK-STATE(3) =

:: r3, r4 :: [nil,

-(exp(g, NSA); NA; sa),

+(exp(g, c(b, r3)); n(b, r4); sa),

-(e(sa, id(a); sign(sa, exp(g, NSA), NA, n(b, r4), mac(sa,

id(a), prf1(sa, exp(g, NSA*c(b, r3)), NA, n(b, r4), pi)), a),

prf1(sa, exp(g, NSA*c(b, r3)), NA, n(b, r4), ei))),

+(e(sa, id(b); sign(sa, exp(g, c(b, r3)), n(b, r4), NA, mac(sa,

id(b), prf1(sa, exp(g, NSA*c(b, r3)), n(b, r4), NA, pr)), b),

prf1(sa, exp(g, NSA*c(b, r3)), n(b, r4), NA, er)))

| nil]

|| exp(g, NSA*c(b, r3)) inI

Even with this simplified IKEv2-like protocol, Maude-NPA still suffered from state explo-

sion. To reduce the search space, we used never patterns [58]. One of the never patterns

stops the intruder from trying to use the secret to construct other keys. The other one stops

the intruder from trying to find the secret from another session of the same strand, since we

know from the protocol that the keys are freshly generated in each session.

We also checked that the following authentication attack does not happen in the IKEv2-

like protocol. The attack pattern describes the scenario where the initiator finished her

strand without the corresponding responder finishing the responder’s strand. This is spec-

ified by having an instance of the responder’s strand in the never pattern. Maude-NPA

terminated without finding any attack for this property. There is another similar attack

pattern specifying that the responder finished her strand without the corresponding initia-

tor’s strand. Maude-NPA also terminated without finding any attack. We omit the details

here.

eq ATTACK-STATE(4)

= :: r1, r2 ::

[ nil,

+(exp(g, c(a, r1)); n(a, r2); sa),

-(exp(g, NSB); NB; sa),
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+(e(sa, id(a); sign(exp(g, c(a, r1)), n(a, r2), NB, mac(sa,

id(a), prf1(sa, exp(g, NSB*c(a, r1)), n(a, r2), NB, pi)),a),

prf1(sa, exp(g, NSB*c(a, r1)), n(a, r2), NB, ei))),

-(e(sa, id(b); sign(sa, exp(g, NSB), NB, n(a, r2),mac(sa,

id(b), prf1(sa, exp(g, NSB*c(a, r1)), NB, n(a, r2), pr)),b),

prf1(sa, exp(g, NSB*c(a, r1)), NB, n(a, r2), er)))

| nil]

|| empty || nil || nil

|| never(

(:: r3, r4 ::

[ nil |

-(exp(g, c(a, r1)); n(a, r2); sa),

+(exp(g, NSB); NB; sa),

-(e(sa, id(a); sign(exp(g, c(a, r1)), n(a, r2), NB, mac(sa,

id(a),prf1(sa, exp(g, NSB*c(a, r1)), n(a, r2), NB, pi)),a),

prf1(sa, exp(g, NSB*c(a, r1)), n(a, r2), NB, ei))),

+(e(sa, id(b); sign(sa, exp(g, NSB), NB, n(a, r2), mac(sa,

id(b),prf1(sa, exp(g, NSB*c(a, r1)), NB, n(a, r2), pr)),b),

prf1(sa, exp(g, NSB*c(a, r1)), NB, n(a, r2), er))),

nil] & S:StrandSet || K:IntruderKnowledge)

For these authentication attack patterns, Maude-NPA also suffered from state explosion.

To reduce the state space, we again used never patterns to reduce the search space. Since

we already checked that the intruder cannot learn the secret keys of the communication of

two honest principals, never patterns are added to prevent the intruder from trying to find

the secret keys, or trying to use the secret key to construct other messages.

We then check in the 4-way-handshake-like protocol with an admissible key abstraction

that if the master keys generated by honest principals cannot be learned by the intruder, then

the pairwise transient key of honest principals is secure. Maude-NPA terminated without

finding any attack for this property. Therefore, we can conclude that the intruder cannot

learn the pairwise transient key of honest principals in the composed protocol. Here we

only present the attack patterns for the responder’s strand. There is another similar attack

pattern for the initiator’s strand that is omitted here.

eq ATTACK-STATE(3)

= :: r, r2, r3 :: [ nil,

-(NA),

+(q(b, r); qsa; mac(qsa, q(b, r); qsa,
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prf(qsa, id(b); id(a); q(b, r); NA, k((a, r2)*(b, r3))))),

-(NA; qsa; mac(qsa, NA; qsa,

prf(qsa, id(b); id(a); q(b, r); NA, k((a, r2)*(b, r3))))),

+(fin; mac(qsa, fin,

prf(qsa, id(b); id(a); q(b, r); NA, k((a, r2)*(b, r3)))))

| nil]

|| prf(qsa, id(b); id(a); q(b, r); NA, k((a, r2)*(b, r3))) inI

6.7 RELATED WORK

The earliest work on modular verification of composed security protocols concentrated

on parallel composition of protocols, where two or more protocols run in parallel but are

not (or at least not intentionally) sharing any data. Conditions that make modular parallel

composition possible, and that can be verified on the protocols running in isolation, were

set forth by Guttman and Thayer in [42]. Later work by Cortier et al. in [43] develops

syntactically checkable conditions that guarantee modular parallel composition.

One of the most important applications of modular verification, however, is the case of

sequential composition, in which one protocol (the parent) provides information such as keys,

that are used by another protocol (the child). Generally, results in this area describe a set

of (mostly syntactic) conditions on parent and child to ensure that the two protocols do

not interfere with each other, and a set of security properties, so that, if the conditions are

satisfied, and parent and child each satisfy a security property separately, then so does the

sequential composition. Modeling of this type of composition is generally done in one of

two ways. One, also referred to as vertical composition in [106], is to think of the parent

protocol as providing secure channels through which the child protocol communicates. The

other is to have the parent protocol provide keys and other information directly to the child

protocol.

Work on composition via channels includes that of Mödersheim et al. [106, 107] and

that of Cheval et al. [101]. Mödersheim et al. do not impose explicit syntactic conditions

on the composed protocols; instead they require that the protocols be secure under parallel

composition, which can be verified either syntactically or non-syntactically. This allows them

to reason about such constructs as self-composition. Cheval et al. do put syntactic conditions

on the composed protocols, and also make use of a construct called an encapsulation, that

provides a term constructed via cryptographic operations on inherited keys, that achieves

a concrete representation of a secure channel. Encapsulations have multiple uses: they
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protect keys, guarantee that child and parent cannot be confused with each other, and, by

providing authentication and confidentiality functionality, provided concrete representations

of secure channels. In our work we show that they can be useful for modular verification for

composition via inheritance as well.

Work on modular verification for composition via inheritance, to which our work belongs,

includes [108, 109, 110, 111, 112, 113]. Like ours, these works concentrate on showing that,

assuming certain syntactic conditions are satisfied, then, if the individual protocols satisfy

certain security properties, the composed protocol satisfies a certain security property. These

properties range from very specific (e.g. the security properties satisfied by a PKI in [112])

to very broad (e.g. the secrecy and authentication properties covered in [113]). In our work,

we use simulation to prove results about reachability properties in general. In addition we

note that, although [108] offers tool support via Scyther, and [111, 109, 110, 112] extend

to equational theories, to the best of our knowledge ours is the first work to both support

equational theories and offer tool support.

6.8 CONCLUDING REMARKS

We have presented a method for modular verification of sequentially composed protocols

that enables verification of reachability properties that can be decomposed into reachability

properties for the component protocols. In addition, our work both supports equational

theories and offers tool support.
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK

This thesis extends the earlier publications [65, 91, 100]. It enhances Maude-NPA’s capa-

bilities for modeling and analyzing cryptographic protocols in terms of: (i) handling combi-

nations of equational theories that could not be handled before; (ii) modeling and analyzing

protocols with choices, which could not be model and analyzed naturally in Maude-NPA

before; and (iii) analyzing in a modular way composed protocols whose search space is too

large to be handled in Maude-NPA in practice.

7.1 FVP APPROXIMATIONS OF HOMOMORPHIC ENCRYPTION

We have developed a hierarchy of theories for approximating the algebraic property of

homomorphic encryption and homomorphic encryption over abelian groups. All the theories

we developed have the finite variant property, and therefore variant unification can be applied

for analyzing protocols with these theories. The existence of finitary unification algorithms

for many of these theories was not known before our work. The notion of variant complexity

is introduced for the first time in the literature as a metric of performance. The experiments

revealed the tradeoffs between the expressiveness of the theory and the performance of the

analysis.

The work also points out a number of avenues for future work. In particular, it demon-

strates that state space reduction techniques applied after a state is generated are likely not

to be adequate by themselves for addressing performance issues when dealing with theories

of high variant complexity. This points out the need for techniques that can be applied

earlier in the state generation process. Another way to deal with theories not having the

finite variant property would be to develop and implement new ways to integrate variant

unification and specially implemented dedicated unification algorithm. Although there are

general algorithms for combining unification algorithms for different theories, e.g., [89], they

can be highly nondeterministic. Therefore careful design and implementation of such a com-

bination algorithm would be needed to avoid a combination algorithm that is too slow to be

practical.

7.2 PROTOCOL PROCESS ALGEBRA AND STRANDS WITH CHOICE

We have defined a protocol process algebra that supports both deterministic and nonde-

terministic choice. We also developed a choice extension of strand spaces, together with an
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operational semantics for choice in strand spaces. We proved the properties establishing a se-

mantic connection between the process algebra and the extended strand space, and therefore

made it possible to integrate this process algebra into Maude-NPA’s existing implementa-

tion. This process algebra therefore provides a new specification language for Maude-NPA

that is more natural for specifying choices in protocols.

The process algebra specification language for Maude-NPA also potentially helps us to

relate the strand space model to other formal notations for protocol analysis based on process

calculi, e.g. systems based on the applied pi calculus. This gives us a better basis for

comparison with these systems.

By extending the strand space model, we have also provided a means for evaluating both

equality and disequality predicates in the strand space model in Maude-NPA. This allows

us to implement features such as type checking in Maude-NPA. This proved to be very

helpful, for example, in our specification of the Rock-Scissors-Paper protocol as we described

earlier. The expressiveness of Maude-NPA can be further enhanced by extending the types

of predicates that can be evaluated, e.g., by including predicates for subsumption and their

negations.

Another direction for future work is to include more features in the protocol process

algebra. For example, extending the syntax and semantics of the process algebra to support

protocol composition, or adding support for specifying indistinguishability properties. This

can possibly lead to more natural ways to specify some protocols and properties in Maude-

NPA.

Since our protocol process algebra supports a rich taxonomy of choice behaviors and

can model systems that are highly nondeterministic, the application of our approach is

not limited to cryptographic protocol analysis. For example, the technique of using choice

variables modeling implicit nondeterministic choices could be used in modeling the behaviors

of players in highly nondeterministic games.

7.3 MODULAR VERIFICATION OF SEQUENTIAL COMPOSITION FOR PRIVATE
CHANNELS

We have presented a method for modular verification of sequentially composed protocols

for private channels. This enables decomposing the verification of reachability properties of

the composed protocol into reachability properties for the component protocols. We also

support a large class of equational theories. We have performed experiments on a suite of

non-trival protocols in Maude-NPA to illustrate and validate our approach.

One future direction is to further explore the properties of encapsulation to explicitly
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define the properties of the channels used by the child protocol. This should simplify the

analysis of the child protocol even further and increase modularity.

Actually, most of the child protocols that we have seen are simpler than the associated

key exchange protocol. According to the experiments that we have performed, after the

key abstraction, Maude-NPA was able to analyze the child protocol without too much per-

formance trouble. From the experiments that we have performed, we have observed per-

formance difficulties in analyzing key exchange protocols even just by themselves. This is

because the key exchange protocols usually involve many steps of communication together

with cryptographic primitives having non-trival algebraic properties. Therefore, another fu-

ture work direction would be investigating techniques specifically focused on improving the

performance of analyzing key exchange protocols.
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APPENDIX A: MAUDE SPECIFICATIONS FOR FVP THEORIES OF
HOMOMORPHIC ENCRYPTION

A.1 THEORY OF BOUNDED HOMOMORPHISM.

In this section we present the Maude specifications for the main theories that we mentioned

in Section 4.3.1.

fmod 3H is

sorts Key SingleMsg Msg .

subsort Key < SingleMsg < Msg .

op e : Msg Key -> Msg .

op e : SingleMsg Key -> SingleMsg .

op _*_ : Msg Msg -> Msg [gather (e E)] .

op _*_ : SingleMsg SingleMsg -> Msg [gather (e E)] .

var X : Msg .

var K : Key .

var S1 S2 S3 : SingleMsg .

eq e(S1 * S2, K) = e(S1, K) * e(S2, K) .

eq e(S1 * S2 * S3, K) = e(S1, K) * e(S2, K) * e(S3, K) .

endfm

fmod 3HD is including 3H .

op d : Msg Key -> Msg .

op d : SingleMsg Key -> SingleMsg .

var X : Msg .

var K : Key .

var S1 S2 S3 : SingleMsg .

eq e(d(X, K), K) = X .

eq d(e(X, K), K) = X .

eq d(S1 * S2, K) = d(S1, K) * d(S2, K) .

eq d(S1 * S2 * S3, K) = d(S1, K) * d(S2, K) * d(S3, K) .

endfm
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fmod PK is

sort Name Msg .

subsort Name < Msg .

op pk : Msg Name -> Msg .

op sk : Msg Name -> Msg .

vars X Y Z : Msg . vars A : Name .

eq sk(pk(X, A), A) = X .

eq pk(sk(X, A), A) = X .

endfm

fmod 3HPK is

including 3H + PK .

endfm

fmod 3HDPK is

including 3HD + PK .

endfm

A.2 THEORY OF HOMOMORPHIC ENCRYPTION OVER A FREE OPERATOR.

In this section we present the Maude specifications for the main theories that we mentioned

in Section 4.3.2.1.

fmod H& is

sorts Key Keys Msg .

subsort Key < Keys < Msg .

op _*_ : Msg Msg -> Msg .

op _&_ : Keys Keys -> Keys [assoc comm] .

op e : Msg Keys -> Msg .

vars X Y Z : Msg .

vars U V W : Keys .

eq e(e(X, V), U) = e(X, U & V) .
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eq e(X, U) * e(Y, U) = e(X * Y, U) .

eq e(X, U & V) * e(Y, U) = e(e(X, V) * Y, U) .

eq e(X, U) * e(Y, U & V) = e(X * e(Y, V), U) .

eq e(X, U & V) * e(Y, U & W) = e(e(X, V) * e(Y, W), U) .

endfm

fmod HD& is including H& .

sort Name Fresh .

subsort Name < Msg .

op d : Msg Keys -> Msg .

vars X : Msg .

vars U V W : Keys .

eq d(e(X, U), U) = X .

eq d(e(X, U & V), U) = e(X, V) .

eq d(e(X, U), U & W) = d(X, W) .

eq d(e(X, U & V), U & W) = d(e(X, V), W) .

endfm

fmod H&PK is

including H& + PK .

endfm

fmod HD&PK is

including HD& + PK .

endfm

A.3 THEORY OF HOMOMORPHIC ENCRYPTION OVER A PRE-GROUP.

In this section we present the Maude specifications for the main theories that we mentioned

in Section 4.3.2.2.

fmod PG is

sorts Msg .

op _*_ : Msg Msg -> Msg .
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op inv : Msg -> Msg .

op 1 : -> Msg .

vars X : Msg .

eq X * 1 = X .

eq 1 * X = X .

eq X * inv(X) = 1 .

eq inv(X) * X = 1 .

eq inv(inv(X)) = X .

eq inv(1) = 1 .

endfm

fmod PGAA is including PG .

sorts Nonce .

subsort Nonce < Msg .

vars X : Msg .

var N : Nonce .

eq (inv(N) * X) * N = X .

eq N * (X * inv(N)) = X .

eq (N * X) * inv(N) = X .

eq inv(N) * (X * N) = X .

endfm

fmod PGH& is including PG .

sorts Key Keys .

subsort Key < Keys < Msg .

op _&_ : Keys Keys -> Keys [assoc comm] .

op e : Msg Keys -> Msg .

vars X Y Z : Msg .

vars U V W : Keys .

eq e(e(X, V), U) = e(X, U & V) .

eq e(X, U) * e(Y, U) = e(X * Y, U) .
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eq e(X, U & V) * e(Y, U) = e(e(X, V) * Y, U) .

eq e(X, U) * e(Y, U & V) = e(X * e(Y, V), U) .

eq e(X, U & V) * e(Y, U & W) = e(e(X, V) * e(Y, W), U) .

eq e(1, U) = 1 .

eq inv(e(X, U)) = e(inv(X), U) .

endfm

fmod PGHD& is including PGH& .

op d : Msg Keys -> Msg .

var X : Msg .

vars U V W : Keys .

eq d(e(X, U), U) = X .

eq d(e(X, U & V), U) = e(X, V) .

eq d(e(X, U), U & W) = d(X, W) .

eq d(e(X, U & V), U & W) = d(e(X, V), W) .

eq d(1, U) = 1 .

endfm

fmod PGAAH& is including PGAA + PGH& .

endfm

fmod PGAAHD& is including PGAA + PGHD& .

endfm

A.4 THEORY OF HOMOMORPHIC ENCRYPTION OVER AN ABELIAN
PRE-GROUP.

In this section we present the Maude specifications for the main theories that we mentioned

in Section 4.3.2.3.

fmod APG is

sorts Msg .

op _*_ : Msg Msg -> Msg [comm] .

op inv : Msg -> Msg .

147



op 1 : -> Msg .

vars X Y Z : Msg .

eq X * 1 = 1 .

eq X * inv(X) = 1 .

eq inv(inv(X)) = X .

eq inv(1) = 1 .

endfm

fmod APGAA is including APG .

sorts Nonce .

subsort Nonce < Msg .

vars X Y Z : Msg .

vars N : Nonce .

eq (inv(N) * X) * N = X .

eq (N * X) * inv(N) = X .

endfm

fmod APGH& is including APG .

sorts Key Keys .

subsort Key < Keys < Msg .

op _&_ : Keys Keys -> Keys [assoc comm] .

op e : Msg Keys -> Msg .

vars X Y Z : Msg .

vars U V W : Keys .

eq e(1, U) = 1 .

eq inv(e(X, U)) = e(inv(X), U) .

eq e(e(X, V), U) = e(X, U & V) .

eq e(X, U) * e(Y, U) = e(X * Y, U) .

eq e(X, U & V) * e(Y, U) = e(e(X, V) * Y, U) .

eq e(X, U) * e(Y, U & V) = e(X * e(Y, V), U) .

eq e(X, U & V) * e(Y, U & W) = e(e(X, V) * e(Y, W), U) .
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endfm

fmod APGHD& is including APGH& .

op d : Msg Keys -> Msg .

vars X : Msg .

vars U V W : Keys .

eq d(1, U) = 1 .

eq d(e(X, U), U) = X .

eq d(e(X, U & V), U) = e(X, V) .

eq d(e(X, U), U & W) = d(X, W) .

eq d(e(X, U & V), U & W) = d(e(X, V), W) .

endfm

fmod APGAAH& is including APGH& + APGAA .

endfm

fmod APGAAHD& is including APGHD& + APGAA .

endfm

A.5 THEORY OF HOMOMORPHIC ENCRYPTION OVER PRE-XOR.

In this section we present the Maude specifications for the main theories that we mentioned

in Section 4.3.2.4.

fmod PXOR is

sorts Msg .

op _*_ : Msg Msg -> Msg [comm] .

op 1 : -> Msg .

vars X Y Z : Msg .

eq X * X = 1 .

eq X * 1 = X .

endfm
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fmod PXORAA is including PXOR .

vars X Y Z : Msg .

eq X * (X * Y) = Y .

endfm

fmod PXORH is including PXOR .

sorts Key Keys .

subsort Key < Keys < Msg .

op _&_ : Keys Keys -> Keys [comm assoc] .

op e : Msg Keys -> Msg .

vars X Y Z : Msg .

vars U V W : Keys .

eq e(1, U) = 1 .

eq e(e(X, V), U) = e(X, U & V) .

eq e(X, U) * e(Y, U) = e(X * Y, U) .

eq e(X, U & V) * e(Y, U) = e(e(X, V) * Y, U) .

eq e(X, U) * e(Y, U & V) = e(X * e(Y, V), U) .

eq e(X, U & V) * e(Y, U & W) = e(e(X, V) * e(Y, W), U) .

endfm

fmod PXORHD is including PXORH .

op d : Msg Keys -> Msg .

vars X Y Z : Msg .

vars U V W : Keys .

eq d(1, U) = 1 .

eq d(e(X, U), U) = X .

eq d(e(X, U & V), U) = e(X, V) .

eq d(e(X, U), U & W) = d(X, W) .

eq d(e(X, U & V), U & W) = d(e(X, V), W) .

endfm

fmod PXORAAH is including PXORH + PXORAA .

endfm
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fmod PXORAAHD is including PXORHD + PXORAA .

endfm

A.6 THEORY OF HOMOMORPHIC ENCRYPTION OVER TWO ABELIAN
GROUPS.

In this section we present the Maude specifications for the main theories that we mentioned

in Section 4.3.3.1.

fmod 2AGH is

sorts AG1 AG2 Msg .

subsort AG1 AG2 < Msg .

op _+_ : AG1 AG1 -> AG1 [comm assoc] .

op - : AG1 -> AG1 .

op 0 : -> AG1 .

op _*_ : AG2 AG2 -> AG2 [comm assoc] .

op inv : AG2 -> AG2 .

op 1 : -> AG2 .

op e : AG1 -> AG2 .

vars X Y Z : AG1 .

vars P Q R : AG2 .

eq X + 0 = X .

eq X + (-(X)) = 0 .

eq X + (-(X) + Y) = Y .

eq -(-(X)) = X .

eq -(0) = 0 .

eq (-(X)) + (-(Y)) = -(X + Y) .

eq -(X + Y) + Y = -(X) .

eq -(-(X) + Y) = X + (-(Y)) .

eq -(X) + (-(Y) + Z ) = -(X + Y) + Z .

eq -(X + Y) + (Y + Z) = -(X) + Z .

eq P * 1 = P .
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eq P * inv(P) = 1 .

eq P * (inv(P) * Q) = Q .

eq inv(inv(P)) = P .

eq inv(1) = 1 .

eq inv(P) * inv(Q) = inv(P * Q) .

eq inv(P * Q) * Q = inv(P) .

eq inv(inv(P) * Q) = P * inv(Q) .

eq inv(P) * (inv(Q) * R) = inv(P * Q) * R .

eq inv(P * Q) * (Q * R) = inv(P) * R .

eq e(0) = 1 .

eq inv(e( X)) = e(-(X)) .

eq inv(e( X) * P) = e(-(X)) * inv(P) .

eq e(X) * e(Y) = e(X + Y) .

eq e(X) * e(Y) * P = e(X + Y) * P .

endfm

fmod 2AGHD is including 2AGH .

op d : AG2 -> AG1 .

var X : AG1 .

eq d(1) = 0 .

eq d(e(X)) = X .

endfm

A.7 THEORY OF HOMOMORPHIC ENCRYPTION OVER TWO XOR OPERATORS.

In this section we present the Maude specifications for the main theories that we mentioned

in Section 4.3.3.2.

fmod 2XORH is

sorts Xor1 Xor2 .

op _+_ : Xor1 Xor1 -> Xor1 [comm assoc] .

op 0 : -> Xor1 .

op _*_ : Xor2 Xor2 -> Xor2 [comm assoc] .
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op 1 : -> Xor2 .

op e : Xor1 -> Xor2 .

vars X Y Z : Xor1 .

vars P Q R : Xor2 .

eq X + X = 0 .

eq X + X + Y = Y .

eq X + 0 = X .

eq P * P = 1 .

eq P * P * Q = Q .

eq P * 1 = P .

eq e(0) = 1 .

eq e(X) * e(Y) = e(X + Y) .

eq e(X) * e(Y) * P = e(X + Y) * P .

endfm

fmod 2XORHD is including 2XORH .

op d : Xor2 -> Xor1 .

var X : Xor1 .

eq d(1) = 0 .

eq d(e(X)) = X .

endfm
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APPENDIX B: PROOF OF THEOREM 5.1

We present the proof of Theorem 5.1 in this section.

Proof. Since Pinit Ñnil Pinit and Finit Ñnil Finit, therefore, pPinit, Finitq P H. We then prove

that: for all PA-State Pstn, and FW-State Fstn, if pPstn,Fstnq P H, and there exists a

PA-State Pstn`1 such that Pstn Ña Pstn`1, then there exists a FW-State Fstn`1 such that

Fstn Ña Fstn`1 and pPstn`1,Fstn`1q P H. If pPstn,Fstnq P H, by definition of the relation

H, there exists a label sequence α s.t. Pinit Ñα Pstn and Finit Ñα Fstn. Suppose that

there exists state Pstn`1 such that Pstn Ña Pstn`1. We prove by case analysis on label a

that there exists Fstn`1 such that Fstn Ña Fstn`1. The fact that pPstn`1,Fstn`1q P H then

follows this by the definition of relation H.

In the rest of this proof, L,L1 and L2 denote lists of messages, M,M 1 and m denote

messages, P,Q and R denote processes, PS denotes a process configuration, SS denotes a

set of constrained protocol strands, IK and IK 1 denote the set of messages in the intruder’s

knowledge.

1) a “ pro, i, j,`m, 0q : if j ą 1, according to the semantics, Pstn Ña Pstn`1 by applying

rule (PA++), the state Pstn is of the form tpro, i, jq p`M ¨ P q & PS | tIKuu s.t.

there exists a ground substitution σ binding the choice variables in M and m “ Mσ,

the state Pstn`1 “ tpro, i, j ` 1q Pσ & PS | tm P I, IKuu and mPI R IK. Since

Pstn H Fstn, by Lemmas 5.1 and 5.2, Fstn is of the form tpro, iq rLs & SS & tIKuu s.t.

pro, i, jq p`M ¨P qHLP Str pro, iq rLs. Let proq rL1, L2s be a constrained strand in PCstrSS

s.t. there exists a ground substituion θ s.t. L1ρro,iθ “ L. By the definition of relation

HLP Str and mapping toCstrSS, the first message of L2 is `M 1, s.t. M 1ρro,iθ “ M .

Then since Mσ “ m and mPI R IK, the rule (F++) can be applied for the rewrite

Fstn Ña Fstn`1, where Fstn`1 “ tpro, iq rL,`ms & SS & tmPI, IKuu.

If j “ 1, Pstn Ña Pstn`1 by applying rule (PA&), there exists a process proq p`M ¨

P q in PPA and a ground substitution σ s.t. Mρro,iσ “ m. Since toCstrSSpPPAq “

PCstrSS , by the definition of toCstrSS, for all strands of role ro in PCstrSS , the first

message is `M . Without loss of generality, let Pstn be tPS | tIKuu, and Fstn be

tSS & tIK 1uu. Since the rule (PA&) can be applied, mPI R IK. By Lemma 5.2,

IK “ IK 1. Moreover, by Lemma 5.1, MaxStrIdpSS, roq “ MaxProcIdpPS, roq, and

since MaxProcIdpPS, roq`1 “ i, by applying the rule (F++&) we get Fstn Ña Fstn`1.

2) a “ pro, i, j,Mσ, 0q: similar to case 1.
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3) a “ pro, i, j,´m, 0q: if j ą 1, according to the semantics, Pstn Ña Pstn`1 by applying

rule (PA-), Pstn is of the form tpro, i, jq p´M ¨P q & PS | tmPI, IKuu s.t. m “EP Mσ

for some ground substitution σ and Pstn`1 “ tpro, i, j ` 1q Pσ & PS | tmPI, IKuu.
Since Pstn H Fstn, by Lemmas 5.1 and 5.2, Fstn “ tpro, iq rLs & SS & tmPI, IKuu
s.t. pro, i, jq p´M ¨ P q HLP Str proq rLs. Let proq rL1, L2s P PCstrSS s.t. there ex-

ists a ground substitution θ s.t. L1ρro,iθ “ L, then by definition of HLP Str and

toCstrSS, the first message of L2 is ´M 1 s.t. M 1ρro,iθ “ M . Since m “EP Mσ,

rule (F-) can be applied to get the transition Fstn Ña Fstn`1, where Fstn`1 “

tpro, iq rL,´ms & SS & tmPI, IKuu.

If j “ 1, Pstn Ña Pstn`1 by applying rule (PA&), there exists a process proq p´M ¨

P q in PPA and a ground substitution σ s.t. Mρro,iσ “ m. Without loss of generality,

let Pstn be tPS | tIKuu. Then mPI P IK. Since toCstrSSpPPAq “ PCstrSS , by the

definition of toCstrSS, for all strands of role ro in PCstrSS , the first message is ´M .

By Lemma 5.2, mPI is in the intruder knowledge of Fstn. Moreover, by Lemma

5.1, MaxStrIdpSS, roq “ MaxProcIdpPS, roq, and since MaxProcIdpPS, roq ` 1 “ i, by

applying the rule (F-&) we get Fstn Ña Fstn`1.

4) a “ pro, i, j, T, 1q: according to the transition rules, Pstn Ña Pstn`1 by applying rule

(PAif1). Therefore Pstn is of the form tpro, i, jq ppif c then P else Qq ¨Rq& PS | tIKuu,

Pstn`1 “ tpro, i, j ` 1q pP ¨ Rq & PS | tIKuu and c “EP true. Since Fstn H Pstn,

by Lemma 5.1, Fstn “ tproq rLs & SS & tIK 1uu s.t. pro, i, jq ppif c then P else Qq ¨

Rq HLP Str pro, iq rLs. By the definition of the relation HLP Str and the mapping

toCstrSS, there exists proq rL1, tC, 1u, L2s P PCstrSS and a ground substitution θ s.t.

L “ L1ρro,iθ, and Cρro,iθ “ c. Since c “EP true, the rule (Fif) can be applied for the

rewrite Fstn Ña Fstn`1, where Fstn`1 “ ttproq rL, tt, 1us & SS & tIK 1uu

5) a “ pro, i, j, T, 2q: similar to case 4.

6) a “ pro, i, j, ?, 1q: if j ą 1, Pstn Ña Pstn`1 by applying rule (PA?1). Therefore Pstn

is of the form tpro, i, jq ppP ? Qq ¨ Rq & PS | tIKuu and Pstn`1 “ tpro, i, j ` 1q pP ¨

Rq& PS | tIKuu. Since Fstn H Pstn, by Lemma 5.1, Fstn “ tpro, iq rLs& SS & tIK 1uu

s.t. pro, i, jq ppP ? Qq ¨Rq HLP Strpro, iq rLs. By the definition of HLP Str and toCstrSS,

there is a strand pro, iq rL1, t?, 1u, L2s P PCstrSS s.t. L “ L1θ. Therefore, rule (F?) can

be applied for the rewrite Fstn Ña Fstn`1, and Fstn`1 “ tpro, iq rL, t?, 1us & SS

& tIK 1uu.

If j “ 1, Pstn Ña Pstn`1 by applying rule (PA&). Therefore, there exists a process

proq ppP ? Qq ¨Rq in PPA. Since toCstrSSpPPAq “ PCstrSS , by the definition of toCstrSS,
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there is a strand of role ro whose first message is p?, 1q in PCstrSS . Moreover, by Lemma

5.1, MaxStrIdpSS, roq “ MaxProcIdpPS, roq, and since MaxProcIdpPS, roq ` 1 “ i, by

applying the rule (F?&) we get Fstn Ña Fstn`1.

7) a “ pro, i, j, ?, 2q similar to case 6.

Similarly, we can prove that for all PA-State Pstn, and FW-State Fstn, if pPstn,Fstnq P H,

and there exists a FW-State Fstn`1 such that Fstn Ña Fstn`1, then there exists a PA-State

Pstn`1 such that Pstn Ña Pstn`1 and pPstn`1,Fstn`1q P H

156



APPENDIX C: PROOF OF LEMMA 6.3

We present the proof of Lemma 6.3 in this section.

Proof. The proof is by case analysis on the transition rule rl. To simplify the presentation,

we say that a transition rule is labeled with `P (resp. `Q ) if the transition rule is associated

with a strand in protocol P (resp. Q) in the forward semantics.

• If rl is of the form: rLs&SS&tIK u Ñ rL,`M s&SS&tIK ,Mu if M R IK or SS&tIK u

Ñ r`M s&SS&tIK ,Mu if M R IK , and is labeled with `P , then there exists a message

m in the intruder knowledge of state S 1; but not in the intruder knowledge of state S;

such that m “E;YB; Mθ for some ground substitution θ.

– If m “E;YB; m
1 such that m1 is of sort Shared or any subsort of Shared, then,

according to the assumption that sort Shared is a subsort of sort Public, m1 can be

generated by the intruder itself (i.e., Dolev-Yao strands) in protocolQα. Therefore

there exists a state S 1Qα such that SQα ÑDY S
1
Qα by applying Dolev-Yao strands

in protocol Qα such that m1 is in the intruder knowledge of the state S 1Qα . Thus

pS 1; , S
1
Qαq P HQ.

– if m P rTQKeysEPYBP , and αpmq is not in the intruder knowledge of state SQα ,

according to the requirement of key abstraction α, αpmq can be generated by

Dolev-Yao strands in protocol Qα. Therefore there exists a state S 1Qα such that

SQα Ñ S 1Qα by applying only Dolev-Yao strands and αpmq is in the intruder

knowledge of S 1Qα . Therefore pS 1; , S
1
Qαq P HQ.

– Otherwise, pS 1; , SQαq P HQ.

• if rl is of the form: rtIu, Ls&SS&tIK u Ñ rtIu, L,`M s&SS&tIK ,Mu if M R IK ,

rl is labeled with `Q and rtIu, L,`M s is an honest protocol strand, then there ex-

ists a strand rls in state S;, a strand rtuu, l,`ms and message m in state S 1; , a

strand rtIu, L,`M,L1s P SSpecQ, and disjoint ground substitutions σ and θ, such

that rls “E;YB; rLspσ Z θq and m “E;YB; Mpσ Z θq, where σ is the ground sub-

stitution representing the concrete synchronization of the input/output parameters.

According to the construction of protocol Q and the semantics of protocol composi-

tion, the substitution θ does not include any substitution on QKeys, i.e., all the terms

of sort QKey are grounded by substitution σ. By the definition of the relation HQ,

there exists a strand rl1s P SQα such that rl1s “EQYBQα rlsα. By Lemma 6.2, since
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rls “E;YB; rLspσ Z θq, rlsα “EQYBQα rLspσ Z θqα. By the construction of protocol Q,

all terms of sort QKey in L are variables, and since all the QKeys are grounded by

substitution σ, therefore, rl1s “EQYBQα rlsα “EQYBQα prLsσαqθ. By the construction

of the protocol Q, m is of sort EMsg or subsort of EMsg. Together with the fact that

m “E;YB; Mpσ Z θq, by Lemma 6.2, mα “EQYBQα Mpσ Z θqα. Similarly, since all

QKeys are grounded by substitution σ, mα “EQYBQα pMσαqθ. Since rtIu, L,`M,L1s

is an honest protocol strand in protocol Q, rL,`M,L1spσ1αq is an honest protocol

strand of protocol Qα where σ1 is a substitution such that σ1δ “EPYBP σ with δ a

ground substitution. By the definition of the key abstraction α, σα “Bα pσ
1αqδ1 with

δ1 “ δ|Ranpσ1αq. By the construction of protocol Qα, Dompσ1q X Dompθq “ H and

Ranpσ1q X Dompθq “ H. Therefore, the substitutions σ1α and δ1 are both disjoint

with the substitution θ. Therefore, rlsα “EQYBQα prLsσ
1αqpδ1 Z θq, and mα “EQYBQα

pMσ1αqpδ1 Z θq. Therefore, there exists a state S 1Qα such that SQα Ñ S 1Qα by taking

the transition rl1s&SSQα&tIKQαu Ñ rl1,`mαs&SSQα&tIKQα ,mαu, or the transition

rl1s&SSQα&tIKQαu Ñ rl1,`mαs&SSQα&tIKQαu if mα P IKQα , and pS 1; , S
1
Qαq P HQ.

• The case where rl is of the form rtIu, Ls&SS&tIK u Ñ rtIu, L,`M s&SS&tIK u, and

is associated to an honest protocol strand in protocol Q can be proved similarly.

• If rl is of the form: rLs&SS&tIK u Ñ rL,`M s&SS&tIK ,Mu, rl is labeled with `Q,

and rL,`M s is a Dolev-Yao strand, then there exists a strand rls in the state S;,

a strand rl,`ms in state S 1; , the Dolev-Yao strand rL,`M s P SSpecQ and a ground

substitution θ, such that rls “E;YB; rLsθ, and m “E;YB; Mθ. By the definition of the

relation HQ, there exists a strand rl1s in the state SQα such that rl1s “EQYBQα rlsα.

By Lemma 6.2, since rls “E;YB; rLsθ, rl
1s “EQYBQα prLsθqα. By the construction

of the protocol Q, the message m is of sort EMsg or subsort of EMsg. Therefore, by

Lemma 6.2, since m “E;YB; Mθ, mα “EQYBQα pMθqα. Since all QKeys in rL,`M s are

variables, therefore, rl1s “EQYBQα rLspθαq, and mα “EQYBQα Mpθαq. Since rL,`M s

is a Dolev-Yao strand in protocol Q, the strand rL,`M s is also a Dolev-Yao strand

in protocol Qα. Therefore, there exists a state S 1Qα such that SQα Ñ S 1Qα by taking

the transition rl1s&SSQα&tIKQαu Ñ rl1,`mαs&SSQα&tIKQα ,mαu, or the transition

rl1s&SSQα&tIKQαu Ñ rl1,`mαs&SSQα&tIKQαu if mα P tIKQαu, and pS 1; , S
1
Qαq P HQ.

• The case where rl is of the form rLs&SS&tIK u Ñ rL,`M s&SS&tIK u and is associ-

ated to a Dolev-Yao strand in protocol Q can be proved similarly.

• If rl is of the form: rtIu, Ls&SS&tIK ,Mu Ñ rtIu, L,´M s&SS&tIK ,Mu, rl is labeled

with `Q, and rtIu, L,´M s is an honest protocol strand, then there exists a strand
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rtuu, ls in state S;, a strand rtuu, l,´ms in state S 1; , a strand rtIu, L,´M,L1s P SSpecQ

and ground substitutions σ and θ such that rtuu, l,´ms “E;YB; rtIu, L,´M spσ Z θq,

where σ is the substitution representing the synchronization of the input/output pa-

rameters. According to the construction of protocol Q and the semantics of the pro-

tocol composition, the substitution θ does not include any substitution on QKeys,

i.e., all the terms of sort QKey are grounded by substitution σ. According to the

definition of the relation HQ, there exists a strand rl1s in the state SQα such that

rl1s “EQYBQα rlsα. By Lemma 6.2, since rls “E;YB; rLspσZθq, rl
1s “EQYBQα rLspσZθqα.

Since all the QKeys in strand rLs are variables and are grounded by the substitution

σ, rl1s “EQYBQα prLsσαqθ. Since m P TΣQρ , according to the definition HQ, there ex-

ists message m1 in the intruder knowledge of SQα such that m1 “EQYBQα mα. Since

m “E;YB; MpσZθq, by Lemma 6.2, mα “EQYBQα MpσZθqα. Similarly, since all QKeys

in M are variables and are grounded by the substitution σ, m1 “EQYBQα pMσαqθ. Since

rtIu, L,´M,L1s is an honest protocol strand in protocol Q, the strand rL,´M,L1spσ1αq

is in protocol Qα, where σ1 is a substitution such that σ1δ “EPYBP σ with δ a ground

substitution. According to the definition of the key abstraction α, σα “Bα pσ
1αqδ1

with δ1 “ δ|Ranpσ1αq. By the construction of protocol Qα, Dompσ1q X Dompθq “ H

and Ranpσ1q X Dompθq “ H. Therefore, the substitutions σ1α and δ1 are disjoint

with the substitution θ. Therefore, rl1s “EQYBQα rlsα “EQYBQα prLsσ1αqpδ1 Z θq,

and m1 “EQYBQα mα “EQYBQα pMσ1αqpδ1 Z θq. Therefore, there exists a state S 1Qα

such that SQα Ñ S 1Qα by taking the transition rl1s&SSQα&tIKQα ,m
1u Ñ rl1,´m1s&

SSQα&tIKQα ,m
1u, and pS 1; , S

1
Qαq P HQ.

• If rl is of the form rLs&SS&tIK ,Mu Ñ rL,´M s&SS&tIK ,Mu, rl is labeled with `Q,

and rLs is a Dolev-Yao strand, then there exists a strand rls P S;, a Dolev-Yao strand

rL,´M,L1s P SSpecQ and a substitution θ such that rl,´ms “E;YB; rL,´M sθ. Ac-

cording to the definition of the relation HQ, there exists a strand rl1s in SQα such that

rl1s “EQYBQα rlsα. By Lemma 6.2, since rls “E;YB; rLsθ, rl
1s “EQYBQα prLsθqα. Since

m P IK |ΣQρ , according to the definition HQ, there exists m1 in the intruder knowledge

of SQα such that m1 “EQYBQα mα. Since m “E;YB; Mθ, by Lemma 6.2, m1 “EQYBQα

pMσqα. Since all QKeys in rL,´M s are variables, l1 “EQYBQα lα “EQYBQα rLspθαq,

and m1 “EQYBQα mα “EQYBQα Mpθαq. Therefore, there exists a state S 1Qα such that

SQα Ñ S 1Qα by the transition rl1s&SSQα&tIKQα ,m
1u Ñ rl1,´m1s&SSQα&tIKQα ,m

1u,

and pS 1; , S
1
Qαq P HQ.
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• The case where rl is of the form SS&tIK ,Mu Ñ r´M s&SS&tIK ,Mu and is a Dolev-

Yao strand in protocol Q can be proved similarly.

• For other cases, pS 1; , SQαq P HQ. The synchronization steps are covered by this case.
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