
Formal Specification and Verification of Java

Refactorings

Alejandra Garrido and José Meseguer

Technical Report UIUCDCS-R-2006-2731
(Engineering No. UILU-ENG-2006-1771)

Department of Computer Science.
University of Illinois at Urbana-Champaign, Urbana IL 61801, USA.

{garrido, meseguer}@cs.uiuc.edu
May 2006

Abstract. There is an extensive literature about refactorings of object-
oriented programs, and many refactoring tools for the Java programming
language. However, except for a few studies, in practice it is difficult to
find precise formal specifications of the preconditions and mechanisms of
automated refactorings. Moreover, there is usually no formal proof that a
refactoring is correct, i.e., that it preserves the behavior of the program.
We present an equational semantics based approach to Java refactoring.
Specifically, we use an executable Java formal semantics in the Maude
language to: (i) formally specify a number of useful Java refactorings;
and (ii) give detailed proofs of correctness for two of those refactorings,
showing that they are behavior-preserving transformations. Besides the
obvious benefits of providing rigorous specifications for refactoring tool
builders and rigorous correctness guarantees, our approach has the addi-
tional advantage of its executability: our formal refactoring specifications
can be used directly to refactor Java programs and yield a provably cor-
rect Java refactoring tool. Another important advantage of our approach
is its extensibility by new user-defined refactorings that, when defined in
terms of a basic library of verified refactorings, can be guaranteed to be
correct by construction.

1 Introduction

Refactorings were defined by Opdyke and Johnson [1] in 1990 as transformations
of the source code that make it easier to understand and reuse, while preserving
its behavior. The term ‘refactoring’ differs from program restructuring in that
transformations are applied

“not so much to infuse structure into a poorly structured program, but

rather to refine the design of an already structured program, and make it

easier to reuse.” [2]

In his thesis [2], Opdyke provides a catalog of low-level refactorings for C++ code
and precisely describes the preconditions and mechanisms for each one. Roberts

does a similar job for Smalltalk code [3]. There have been many publications
about refactoring object-oriented programs [4–8], and numerous Java refactoring
tools have been built [9–12], but there is usually no documentation specifying
precisely the preconditions and mechanisms of refactorings, nor there is any
proof of correctness.

In order to guarantee the correctness of refactoring tools, two tasks are abso-
lutely essential: (1) refactoring themselves should be formally specified; and (2)
each refactoring should be proved correct, i.e., behavior-preserving, with respect
to the language’s formal semantics. We address tasks (1) and (2) for some Java
refactorings in this paper. As further explained in the Related Work section,
other researchers have also made contributions in this direction for different lan-
guages, including [13–18]. However, most of that work, with the exception of [13,
14], has concentrated primarily on task (1).

Our approach to tasks (1) and (2) is based on an equational executable se-
mantics of sequential Java specified in Maude [19, 20] as part of the JavaFAN
project [21]. In fact, the Java semantics in [21] includes also the concurrent fea-
tures; however, in this work we restrict ourselves to the sequential fragment,
which is specified as an equational theory. Our formal specification of several
frequently-used Java refactorings (task (1)) extends this equational Java seman-
tics and has the important advantage of being executable. This means that the
formal definitions of refactorings are at the same time their implementation,
yielding a Java refactoring tool for free from such definitions. It also means that
there is no gap between specification and implementation, so that any refactoring
specification proved correct will indeed operate correctly as specified.

We give also a detailed mathematical proof of correctness (task (2)) for two
of those refactorings. That is, we show that they preserve program behavior
with respect to the formal Java semantics. Without a formal semantics of the
underlying language such mathematical proofs of correctness would of course be
impossible. Our proofs do indeed make essential use of the equational axioms
defining the Java semantics and also of the formal refactoring specifications.

Besides the obvious benefits of providing rigorous specifications for refactor-
ing tool builders and rigorous correctness guarantees, plus the already-mentioned
benefit of obtaining a provably correct Java refactoring tool for free from the for-
mal specifications, a further important advantage of our approach is its extensi-
bility : the algebraic approach we propose makes it straightforward for a user to
introduce new user-defined refactorings. Such user-defined refactorings can be
defined as algebraic expressions in terms of a basic library of already verified
refactorings, and can then be guaranteed to be correct by construction, without
any need for additional verification. Finally, our approach is not restricted to
Java or OOP: it can be used in conjunction with any language for which an
equational or rewriting logic semantics has been provided. We have, for exam-
ple, applied the same methodology described in this paper to the C Preprocessor
(Cpp), i.e., we have used Maude to specify Cpp refactorings on top of a formal
specification of Cpp, which allowed us to prove Cpp refactorings correct based
on the semantics of the language [22].

This paper is organized as follows. The next subsection describes other efforts
to formalize refactorings. Section 2 gives an overview of rewriting logic specifi-
cation for the Java syntax and semantics on which we base our work. Section
3 first describes some generic operations that are used by different refactorings.
It then provides details of the specification of ‘Pull Up Method ’, ‘Push Down

Method ’, ‘Push Down Field ’, ‘Pull Up Field ’ and ‘Rename Temporary ’ and then
describes how refactorings can be composed to create new refactorings. Section
4 presents the formal proofs of correctness for ‘Push Down Method ’ and ‘Pull
Up Field ’ and Section 5 concludes with some remarks and future work.

1.1 Related work

We discuss related work on formal approaches to refactoring and also some
related work on program transformation.

Most formal approaches to refactoring focus on task (1), that is, on giving a
precise formal specification of refactorings. Work in this direction includes [13–
18]. Several formalisms are used for this purpose. For example, [15, 16] represent
programs as graphs and use graph rewriting to specify refactorings. Instead, [17]
uses monads and polymorphic functions in Haskell to specify refactorings in a
language-generic way. The work in [18, 13, 14] agrees in specifying refactorings
as transformation rules with formal predicates for applicability preconditions.
In [18] the emphasis is on allowing user-defined refactorings by composing basic
ones, whereas in [13, 14] refactorings are viewed as bi-directional transformation
rules for which preconditions are specified for use in each direction. Our approach
to task (1) has some similarities with [15–17], since we represent programs as
terms and specify refactorings equationally as conditional term rewrite rules,
which are similar to both graph rewrite rules with applicability constraints and
to functional program definitions. What the approaches in [15–18] lack in relation
to our work is a formal semantics of the underlying programming language.

Task (2), in the full sense of proving behavior preservation with respect to
the language semantics, is studied much less often, or is even despaired of as in
[16], where it is asserted (pg. 253) that “all researchers agree that a full guaran-
tee of preservation of behavior is impossible,” although [16] nevertheless shows
some preservation of static properties. We of course beg to disagree with such
pessimism. In fact, the work in [13, 14] has shown how, for a simplified Java-like
sequential language, refactorings can be formally proved correct with respect to
an axiomatic, weakest precondition (WP) semantics. Our work is indeed in the
same spirit as [13, 14], but addresses Java itself, and uses a different semantics
(algebraic, instead of axiomatic) with two important advantages: (1) executabilty,
since for us both the Java semantics and the refactoring specifications are exe-
cutable and yield Java tools; and (2) extensibility, since our language definitions
are modular and will support reasoning about refactorings in a more general
context such as multithreaded programs (already supported with a rewriting
semantics in [21]), whereas extensibility of a WP semantics with new features
such as exceptions or concurrency would be a nontrivial and perhaps problematic
task.

We can also mention some related work on program transformation. Visser
[23] surveys several approaches and extensions to term rewriting, like different
strategies for tree parsing, tree traversal and programmable transformations.
Examples of these approaches are those in Stratego [24] and ASF+SDF [25].
However, these approaches to program transformation differ from refactoring in
that transformation rules are usually applied to the entire program, with the
objective of normalizing the program or optimizing it [23].

Another formalism for program transformation is the method based on WSL
(Wide Spectrum Language) [26]. It has an associated tool with a library of trans-
formations that have been proved correct, and the transformations are applied
to refine a specification or to abstract a program written in WSL. Translators
to/from WSL exist for IBM 370 Assembler and Jovial [26].

Ahrend, Roth and Sasse have used Maude and the formal specification of the
Java language written in Maude [21] to cross-validate the rules of a program-
ming language proof calculus called KeY [27, 28]. The rules in KeY are program
transformation rules that apply only to the first statement of the remaining
program [27, 28].

2 Maude Specification of the Java Semantics

Rewriting logic provides a powerful framework for specifying the semantics of
both sequential and concurrent programming languages by unifying SOS and
equational semantics [29]. Moreover, the Maude environment [19, 20] allows the
direct execution of semantic specifications as interpreters with high efficiency.

The semantics of the Java programming language is specified as a rewrite
theory (ΣJava, EJava, RJava), where the signature ΣJava specifies Java’s syntax,
EJava is a set of equations that specify the semantics of all the sequential features
of Java and of the auxiliary operations, and RJava is a set of labelled rules that
specify the semantics of all the concurrent features of Java [21]. The complete
specification can be found in [30]. In this work we will not consider the concurrent
aspects of Java, so we restrict ourselves to the equational theory (ΣJava, EJava).

The formal specification of a programming language is defined in Maude
by a sequence of modules [29]. Since we do not consider the concurrent as-
pects of Java in this presentation, we will only deal with functional modules.
A Maude’s functional module is a set of definitions that specify an equational
theory (Σ,E), with Σ a signature specifying a collection of sorts and operations
on these sorts, and E a collection of equational axioms. Such functional modules
are defined between the keywords fmod and endfm. Figure 1 shows three Maude
modules specifying the syntax of Java classes (CLASS-SYNTAX), field declarations
(FIELD-DECLARATION-SYNTAX) and methods (METHOD-DECLARATION-SYNTAX), ex-
tracted from [30]. In order to help understand Fig. 1, Maude’s basic syntax and
semantics is described below.

A Maude module extends a previously defined module by importing it with
the keyword pr (for ‘protecting’) or ex (for ‘extending’). There is a subtle differ-
ence between the two, but it is out of the scope of this presentation; a detailed

fmod CLASS-SYNTAX is pr TYPE .
sorts Modifier ClassMember ClassMembers ClassBody Supers Class .
subsort ClassMember < ClassMembers .
ops final static abstract public private protected transient native: -> Modifier .
op __ : Modifier Modifier -> Modifier [comm assoc prec 30] .
op ; : -> ClassBody .
op {} : -> ClassBody .
op {_} : ClassMembers -> ClassBody [prec 80] .
op noMember : -> ClassMembers .
op __ : ClassMembers ClassMembers -> ClassMembers [assoc prec 100 id: noMember] .
op extends_ : CType -> Supers [prec 85] .
op extends_implements_ : CType ITypes -> Supers [prec 85] .
op implements_ : IType -> Supers [prec 85] .
op _Class___ : Modifier Qid Supers ClassBody -> Class [prec 90] .
op _Interface_extends__ : Modifier Qid ITypes ClassBody -> Class [prec 90] .

endfm

fmod FIELD-DECLARATION-SYNTAX is ex CLASS-SYNTAX .
ex DECLARATION-SYNTAX .
sort FieldDeclaration .
subsort FieldDeclaration < ClassMember .
op __; : Modifier Declaration -> FieldDeclaration [prec 75] .

endfm

fmod METHOD-DECLARATION-SYNTAX is ex CLASS-SYNTAX .
ex DECLARATION-SYNTAX .
ex TYPE .
sorts MethodDeclaration Parameters .
subsort MethodDeclaration < ClassMember .
subsort Declaration < Parameters .
op void : -> Type .
op ‘(‘) : -> Parameters .
op _,_ : Parameters Parameters -> Parameters [assoc prec 80 id: ()] .
op _____ : Modifier Type Qid Parameters Block -> MethodDeclaration [prec 95] .
op ____throws__: Modifier Type Qid Parameters CTypes Block-> MethodDeclaration [prec 95].
--- constructors:

op ____ : Modifier Qid Parameters Block -> MethodDeclaration [prec 95] .
op ___throws__ : Modifier Qid Parameters CTypes Block -> MethodDeclaration [prec 95] .

endfm

Fig. 1. Specification of the syntax of classes, field declarations and methods

explanation can be found in [20]. Sorts are declared with the keywords sort

or sorts. For example, Class, ClassMember and FieldDeclaration are declared as
sorts in the Java syntax specification of Figure 1. The modules in the figure
use sorts declared in other modules, like Type for basic Java types, CType for
class types, Declaration which represents a variable declaration, and Qid, a sort
defined in Maude to represent quoted identifiers.

The set of declared sorts can be partially ordered by a subsort relationship.
The keywords subsort and the “<” character are used for this purpose. The
subsort relationship s ≤ s′ is interpreted semantically by the subset inclusion
As ⊆ As′ between the sets As and As′ of data elements associated to s and s′

in an algebra A [20]. In Figure 1, the expression
subsort FieldDeclaration < ClassMember

means that a FieldDeclaration is a ClassMember (note that the same is true for
a MethodDeclaration). Moreover, the expression
subsort ClassMember < ClassMembers

says that a ClassMember is a list of ClassMembers (a list with one element),
which makes it easy to deal with lists or single elements in the same way.

Operations are declared using the keyword op or ops followed by the name of
the operation(s), then a colon, then the sorts of the arguments, then an arrow,
and finally the sort of the result. Maude understands both prefix and mixfix
notation for operations. When declaring an operation with mixfix notation, un-
derscore characters are used to specify the places for the arguments. For example,
the operation
op {_} : ClassMembers -> ClassBody

constructs a ClassBody by placing a list of ClassMembers between curly braces.
Although not shown in Fig. 1, a Java program is defined to have sort Pgm and
is constructed with the following operation:
op __ : Classes Exp -> Pgm .

that is, a set of classes and an expression to evaluate.

A binary operation in Maude can be declared to satisfy some equational
axioms like associativity (with the keyword assoc), commutativity (with the
keyword comm), and identity with respect to an identity element (keyword id).
Moreover, precedence for an operation may be set with the keyword prec and a
natural number (the lower the number, the higher the precedence). An example
is the operation:
op __ : ClassMembers ClassMembers -> ClassMembers

[assoc pred 100 id: noMember] .

which concatenates ClassMembers by using empty juxtaposition syntax and declar-
ing the operation as associative, with a precedence of 100 and having noMember

as the identity element.

Other modules presented later in the paper use variable declarations and
equations. Mathematical variables are declared inside a module with the key-
words var or vars, followed by the variable name(s), a colon and the sort to
which the variable(s) belong. Equations define the properties that the operations
should satisfy. Equations start with the keyword eq followed by two expressions
separated by an “=” character. As a final note on the Maude syntax, comments
can be added by preceding them with three asterisks or three dashes.

The semantics of Java in Maude uses continuation-passing style [29] to cap-
ture the next statement or expression to execute. Continuations in Maude are
first-order structures resembling stacks [29]. The continuation is part of a State

data structure, which also includes the current state of the memory and environ-
ment. The elements of the state have sort StateAttribute and are specified with
constructor operators that take as argument the value that each one stores. The
StateAttributes are:

– Context: specified with the constructor c, which takes three elements:

• Continuation: wrapped with operation k, it includes ContinuationItems
that are concatenated with the operator ->.

• Environment: wrapped with operation e, and mapping variable names
to locations.

• Current object: on which the current method is executed. It is specified
with three components: the static type, the dynamic type and the object
environment, all wrapped by the operation o.

– Memory: specified with the constructor m, it maps locations to values.
– Next free location in memory: specified with a natural number wrapped with

operation n.
– Classes: the cl operation wraps the list of all class definitions used in the

program.
– Static environment: wrapped with the operation s, the static environment

includes all static attributes of all classes.
– Output: this is the accumulated output that is wrapped inside the construc-

tor out and its value is returned at the end of the computation.

To execute a program, the operation run is called on a Pgm, that is, a set of
classes Cl and an expression E, and the operation creates the initial state, which
includes Cl and a continuation with E as the next expression to evaluate. The
result is the final value of the state attribute out. In the Appendix, we present
more details about semantic definitions. The full specification used for the Java
semantics can be found in [30].

3 Formal Semantics of Java Refactorings

This section presents the formal specifications of five Java refactorings: ‘Pull Up
Method ’, ‘Push Down Method ’, ‘Push Down Field ’, ‘Pull Up Field ’ and ‘Rename
Temporary ’. Their preconditions and transformations are based on the formal
specification of the Java syntax presented in the previous section.

The module JAVA-REF in Figure 2 specifies the basic syntax of refactoring
operations. It defines three sorts and three overloaded versions of the operation
<- that applies a refactoring to different parts of the code:

– a JavaRefactoring is applied to a Pgm (a Java program) and returns a trans-
formed Pgm (or the same Pgm if the preconditions do not hold); an example
is the refactoring ‘Rename Field ’;

– a JavaClassesRefactoring is applied to a set of Classes and returns the same
or a transformed set of Classes; an example is the refactoring ‘Push Down

Method ’;
– a JavaBlockRefactoring is applied to a Block and returns the same or a trans-

formed Block. An example is ‘Rename Temporary ’ refactoring.

During the course of specifying refactorings, we have created some generic
operations that were found applicable in many refactorings. These operations are
important, since they ease the introduction of new refactorings. We present a
few of them in the first subsection. The complete formal specification of auxiliary
operations and refactorings in this section can be found in [30].

Finally, the last subsection describes how refactorings can be composed to
create new refactorings.

fmod JAVA-REF is
pr PGM-SYNTAX .
sorts JavaRefactoring JavaBlockRefactoring JavaClassesRefactoring .
op _<-_ : Pgm JavaRefactoring -> Pgm .
op _<-_ : Classes JavaClassesRefactoring -> Classes .
op _<-_ : Block JavaBlockRefactoring -> Block .

endfm

Fig. 2. Module JAVA-REF

3.1 Generic Auxiliary Operations

In this subsection we list a few of the generic auxiliary operations used in the
refactorings described later.

getMethod. This is an example of a query operation. The typing of this oper-
ation is:
op getMethod : Class Qid Types -> ClassMembers

where the first argument is the class that defines the method, the second is
the method name, and the third is the parameter types. The return value has
sort ClassMembers to account for the possibility of a noMember value (see Fig. 1).

noSuperCalls. This is an example of the kind of test operations invoked during
the checking of preconditions. Its typing is: op noSuperCalls : Block -> Bool

and it checks whether the method body represented by the parameter contains
any method calls using “super”.

usesVar. This operation checks whether a block refers to a variable. Its signa-
ture is: op usesVar : Block Var -> Bool .

moveClassMemberMult. This operation is called from every refactoring where
there is a class member (a field or a method) that should be removed from a
set of classes and added to another set of classes. Examples of these refactorings
are Push Down Method, Push Down Field, and Pull Up Field. The typing of this
operation is:
op moveClassMemberMult : ClassMember Classes Classes -> Classes.

where the first parameter is the field or method to be moved, the second rep-
resents the classes (or a single class) from where the member is to be removed,
the third parameter is the set of classes (or single class) to which the member is
added, and the return value is the set of all transformed classes.

removeAll. This operation is called after the previous one to remove from
the set of all classes those that have been modified, and return the remaining,
unchanged classes. Its typing is:
op removeAll : Classes Classes -> Classes .

The semantics is very general and just removes from the first set of classes the
ones in the second set given as parameter.

3.2 Pull Up Method Refactoring

This refactoring helps to generalize a method by moving it from a class to its
superclass. Our implementation does not require that all subclasses define the
method to be pulled up, but instead just removes the method from all subclasses
that define it in the same way, and adds the method to the superclass. The mod-
ule defining the semantics of this refactoring appears in Figure 3. The operation
that carries out this refactoring is specified as follows:

op PullUpMethod : Qid Qid Types -> JavaClassesRefactoring.

eq Cl <- PullUpMethod(CN, MN, TS)

= if precondsPullUpMethodHold(Cl, CN, MN, TS)

then applyPullUpMethod(Cl, CN, MN, TS)

else Cl fi .

The input parameters are: the name of the subclass (CN), the method name (MN)
and argument types (TS). The refactoring is applied on the program’s set of
classes (Cl) and if the preconditions hold, the transformation is applied; other-
wise, the same set of classes is returned without changes. The preconditions for
this refactoring are the following:

1. The input is valid, i.e., there is a class named CN which defines a method MN

with parameter types TS.

2. Class CN has a superclass different than Object.

3. The body of MN(TS) does not refer to the fields defined in CN.

4. The superclass of CN does not define MN(TS) with a different body.

5. The body of MN does not call other methods using super.

Some equations in Fig. 3 that check preconditions have been numbered to provide
easy reference with the previous list. The operation checkBodyWSClass, which
checks if the superclass of CN defines MN(TS), compares the method bodies using
the operator == predefined in Maude. This condition could be relaxed to allow for
renaming of temporal variables, by defining an appropriate comparison operation
for method bodies.

Note the use of the attribute [owise] (otherwise) in the fifth equation of
Fig. 3, which makes it applicable when all the previous equations have failed to
apply, i.e., the set Cl is not empty but it does not contain a class named CN. The
attribute [owise] can be desugared into an equivalent conditional specification
[20].

The operation applyPullUpMethod carries out the transformation by calling
moveMethodUp. The latter first moves the method from CN to the superclass
by calling moveClassMember, which is an auxiliary operation that removes the
member from the first class and adds it to the second class, if the second class
does not already defines the member. Finally, the auxiliary operation remove-

ClassMemberFromSiblings removes the method MN(TS) from sibling classes of CN
that define it with the same body.

fmod PULL-UP-METHOD is
pr JAVA-REF . pr CLASS-REF-HELPERS .
var Cl:Classes. vars CN MN SCN: Qid. var TS:Types. var md:Modifier. var sp:Supers.
var cb:ClassBody. vars C SC :Class. var T:Type. var pl:Parameters.
vars block sblock :Block. var CM:ClassMember. var CTs:CTypes.

op PullUpMethod : Qid Qid Types -> JavaClassesRefactoring .
eq Cl <- PullUpMethod(CN, MN, TS)
= if precondsPullUpMethodHold(Cl, CN, MN, TS)

then applyPullUpMethod(Cl, CN, MN, TS)
else Cl fi .

op precondsPullUpMethodHold : Classes Qid Qid Types -> Bool .
eq precondsPullUpMethodHold(noClass,CN,MN,TS) = false. ---no classes in the program ***1
eq precondsPullUpMethodHold(Cl, ’Object, MN, TS) = false . ***2
eq precondsPullUpMethodHold(((md Class CN sp cb) Cl), CN, MN, TS)
= checkMethod(getMethod(cb, MN, TS), (md Class CN sp cb), Cl, MN, TS).

eq precondsPullUpMethodHold(Cl, CN, MN, TS) = false [owise] . ***1

op checkMethod : ClassMembers Class Classes Qid Types -> Bool .
eq checkMethod(noMember, C, Cl, MN, TS) = false . ---no method MN(TS) ***1
eq checkMethod((md T MN pl block), C, Cl, MN, TS) = not usesAny(block, fields(C)) ***3

and checkSuperClass(block, getSuperClass(C, (C Cl)), MN, TS) .
eq checkMethod((md T MN pl throws CTs block),C,Cl,MN,TS) = not usesAny(block,fields(C))

and checkSuperClass(block, getSuperClass(C, (C Cl)), MN, TS) .
op checkSuperClass : Block Classes Qid Types -> Bool .
eq checkSuperClass(block, noClass, MN, TS) = false . ---superclass not available ***2
eq checkSuperClass(block, SC, MN, TS)
= checkBodyWSClass(block, getMethod(SC, MN, TS)) ***4

and noSuperCalls(block, SC) . ***5
op checkBodyWSClass : Block ClassMembers -> Bool .
eq checkBodyWSClass(block, noMember) = true .
eq checkBodyWSClass(block, (md T MN pl sblock)) = (block == sblock) .
eq checkBodyWSClass(block, (md T MN pl throws CTs sblock)) = (block == sblock) .

op applyPullUpMethod : Classes Qid Qid Types -> Classes .
eq applyPullUpMethod(((md Class CN sp cb) Cl), CN, MN, TS)
= moveMethodUp(getMethod(cb, MN, TS), ((md Class CN sp cb) Cl), CN,

SuperClass(#c(CN), ((md Class CN sp cb) Cl))) .
op moveMethodUp : MethodDeclaration Classes Qid CType -> Classes .
eq moveMethodUp(MD, Cl, CN, #c(SCN))
= removeClassMemberFromSiblings(MD, CN, moveClassMember(MD, Cl, CN, SCN)) .

endfm

Fig. 3. Specification of Pull Up Method

3.3 Push Down Method Refactoring

With this refactoring, a user selects a method MN in a class CN and, if the pre-
conditions hold, MN is moved from CN to all subclasses of CN. Figure 4 shows the
module specifying this refactoring. The main operation is specified similarly to
PullUpMethod with:
op PushDownMethod : Qid Qid Types -> JavaClassesRefactoring.

with the same parameter types. The operation PushDownMethod, when applied
to a set of classes Cl, first checks the preconditions by calling precondsPush-

DownMethodHold, and if the result is true applies the transformation by calling
applyPushDownMethod. Otherwise, it just returns the same set of classes Cl.
This is simply specified with the first equation in module PUSH-DOWN-METHOD

(see Figure 4).

fmod PUSH-DOWN-METHOD is
pr JAVA-REF . pr CLASS-REF-HELPERS .
vars Cl SubCl:Classes. vars CN MN:Qid. var C:Class. var md:Modifier. var CM:ClassMember.
var TS:Types. var sp:Supers. var cb:ClassBody. var pl:Parameters.
var block:Block. var MD:MethodDeclaration. var T:Type.

op PushDownMethod : Qid Qid Types -> JavaClassesRefactoring .
eq Cl <- PushDownMethod(CN, MN, TS)
= if precondsPushDownMethodHold(Cl, CN, MN, TS)

then applyPushDownMethod(Cl, CN, MN, TS) else Cl fi .

op precondsPushDownMethodHold : Classes Qid Qid Types -> Bool .
eq precondsPushDownMethodHold(noClass, CN, MN, TS) = false . ***1
eq precondsPushDownMethodHold(((md Class CN sp cb) Cl), CN, MN, TS)
= isAbstract(md) and ***2

precondsPushDownMethodHold((md Class CN sp cb), getMethod(cb,MN,TS),
subclasses(#c(CN),Cl), Cl).

eq precondsPushDownMethodHold(Cl, CN, MN, TS) = false [owise] . ***1
op precondsPushDownMethodHold : Class ClassMembers Classes Classes -> Bool .
eq precondsPushDownMethodHold(C, noMember, SubCl, Cl) = false . ***1
eq precondsPushDownMethodHold(C, CM, noClass, Cl) = false . ---no subclasses ***5
eq precondsPushDownMethodHold(C, (md T MN pl block), SubCl, Cl)
= not isStatic(md) and noSuperCalls(block) and ***3,4

noCallsToSuper(SubCl, MN, GetTypes(pl)). ***5
eq precondsPushDownMethodHold(C, (md T MN pl throws CTs block), SubCl, Cl)
= not isStatic(md) and noSuperCalls(block) and noCallsToSuper(SubCl, MN, GetTypes(pl)).

op applyPushDownMethod : Classes Qid Qid Types -> Classes .
eq applyPushDownMethod(((md Class CN sp cb) Cl), CN, MN, TS)
= applyPushDownMethod(getMethod(cb, MN, TS), (md Class CN sp cb),

subclasses(#c(CN),Cl), Cl).
op applyPushDownMethod : MethodDeclaration Class Classes Classes -> Classes .
eq applyPushDownMethod(MD, C, SubCl, Cl)
= (moveClassMemberMult(MD, C, SubCl) removeAll(Cl, SubCl)) .

endfm

Fig. 4. Specification of Push Down Method

The preconditions for this refactoring are the following (note that some equa-
tions in Fig. 4 are numbered on the right to provide easy reference with the
following list):

1. The input is valid, i.e., there is a class named CN which defines a method MN

with parameter types TS.

2. Class CN is abstract, i.e., it has been defined with the modifier abstract.

3. Method MN(TS) is not static.

4. The body of MN does not call other methods using super.

5. Class CN has subclasses, and none of the subclasses call MN by way of super.

The mechanics of applyPushDownMethod are to retrieve the method MN(TS)

from the class CN, retrieve CN’s subclasses, and call the overloaded version of
applyPushDownMethod. The latter first calls the auxiliary operation moveClass-

MemberMult to move the MethodDeclaration MD from the superclass C to all
subclasses SubCl, and then calls the operation removeAll, to append to the re-
sult of moveClassMemberMult (the changed classes), the rest of the classes that
have not been changed.

3.4 Push Down Field Refactoring

This refactoring is helpful when a field FN is defined in a class CN but is only used
in some subclasses of CN, so FN is moved to those subclasses. Figure 5 shows the
module that specifies this refactoring. The typing of the operation that carries
out this refactoring is:
op PushDownField : Qid Qid -> JavaClassesRefactoring.

where the first argument is the name of the superclass (CN) and the second
argument is the field name (FN).

The preconditions for this refactoring are the following:

1. The input is valid, i.e., there is a class named CN which defines a field FN.
2. The class CN is abstract or the field FN is not public.
3. Class CN has subclasses.
4. There are no methods in CN that refer to FN.

The preconditions are checked by operation precondsPushDownFieldHold (note
that we have numbered again the equations for precondsPushDownFieldHold for
easy reference with the previous list). In turn, the operation checkFieldAccess

checks that class CN defines a field FN and calls the auxiliary operation method-

sAccessField, which returns true if the field passed as first argument is accessed
by any of the methods specified as second argument.

If the preconditions hold, the transformation is carried out with operation
applyPushDownField, which similarly to the previous refactoring, also uses move-

ClassMemberMult to move the field from the superclass to only those subclasses
that refer to FN (the operation classesAccessField returns from a set of classes
those that access the specified field).

3.5 Pull Up Field Refactoring

This refactoring is used when all subclasses of a class CN define the same field
FN, which should be therefore abstracted to the superclass CN. Figure 6 shows
the formal specification of this refactoring. The operation that applies the refac-
toring is PullUpField, which receives the class name CN and the field name FN as
parameters, and in the same way as in the previous refactorings, carries out the
transformation if the preconditions hold.

The preconditions for this refactoring are:

1. There is a class named CN in the set of classes.
2. Class CN has at least one subclass.
3. Class CN does not define the field FN.
4. All subclasses of CN define the field FN.

These preconditions are checked by operation precondsPullUpFieldHold (again,
the equations in Fig. 6 are numbered to show which equation checks each pre-
condition).

The transformation is carried out by operation applyPullUpField, which in
turn calls moveClassMemberMult to move the field from the subclasses to the
superclass, and calls removeAll to get the subset of unchanged classes, just like
in previous cases.

fmod PUSH-DOWN-FIELD is
pr JAVA-REF . pr CLASS-REF-HELPERS .
var Cl:Classes. vars CN FN MN:Qid. var C:Class. var CM:ClassMember. var T:Type.
var md:Modifier. var sp:Supers. var cb:ClassBody. var F:FieldDeclaration.
var CMs:ClassMembers. var pl:Parameters. var block:Block. var SubCl:Classes.
op PushDownField : Qid Qid -> JavaClassesRefactoring .
eq Cl <- PushDownField(CN, FN)
= if precondsPushDownFieldHold(Cl, CN, FN)

then applyPushDownField(Cl, CN, FN) else Cl fi .

op precondsPushDownFieldHold : Classes Qid Qid -> Bool.
eq precondsPushDownFieldHold(noClass, CN, FN) = false . ***1
eq precondsPushDownFieldHold(((md Class CN sp cb) Cl), CN, FN)
= subclasses(#c(CN), Cl) =/= noClass and ***3

checkFieldAccess(getField((md Class CN sp cb), FN), (md Class CN sp cb), FN).
eq precondsPushDownFieldHold(Cl, CN, FN) = false [owise] . ***1
op checkFieldAccess: FieldDeclaration Class Qid -> Bool.
eq checkFieldAccess(noMember, C, FN) = false . ---class doesn’t define field ***1
eq checkFieldAccess(F, C, FN) = (isAbstractClass(C) or not isPublicField(F)) ***2

and not methodsAccessField(FN, methods(C)) . ***4

op applyPushDownField : Classes Qid Qid -> Classes .
eq applyPushDownField(((md Class CN sp cb) Cl), CN, FN)
= applyPushDownField((md Class CN sp cb),

classesAccessField(subclasses(#c(CN), Cl), FN), FN, Cl) .
op applyPushDownField : Class Classes Qid Classes -> Classes .
eq applyPushDownField(C, SubCl, FN, Cl)
= (moveClassMemberMultiple(getField(C, FN), C, SubCl) removeAll(Cl, SubCl)) .

endfm

Fig. 5. Specification of Push Down Field Refactoring

fmod PULL-UP-FIELD is
pr JAVA-REF . pr CLASS-REF-HELPERS .
var Cl:Classes. vars CN FN:Qid. var C:Class. var CM:ClassMember. var md:Modifier.
var cb:ClassBody. vars SubC SupC :Class. var SubCl:Classes. var sp:Supers.

op PullUpField : Qid Qid -> JavaClassesRefactoring .
eq Cl <- PullUpField(CN, FN)
= if precondsPullUpFieldHold(Cl, CN, FN)

then applyPullUpField(Cl, CN, FN) else Cl fi .

op precondsPullUpFieldHold : Classes Qid Qid -> Bool .
eq precondsPullUpFieldHold(noClass,CN,FN) = false. ***1
eq precondsPullUpFieldHold(((md Class CN sp cb) Cl), CN, FN)
= subclasses(#c(CN), Cl) =/= noClass and ***2

getField((md Class CN sp cb), FN) == noMember and ***3
allClassesDefineField(subclasses(#c(CN), Cl), FN) . ***4

eq precondsPullUpFieldHold(Cl, CN, FN) = false [owise] . ***1
op allClassesDefineField : Classes Qid -> Bool .
eq allClassesDefineField(noClass, FN) = true .
eq allClassesDefineField((C Cl), FN)
= (getField(C, FN) =/= noMember) and allClassesDefineField(Cl, FN) .

op applyPullUpField : Classes Qid Qid -> Classes .
eq applyPullUpField(((md Class CN sp cb) Cl), CN, FN)
= applyPullUpField(subclasses(#c(CN), Cl), (md Class CN sp cb), FN, Cl) .

op applyPullUpField : Classes Class Qid Classes -> Classes .
eq applyPullUpField((SubC SubCl), SupC, FN, Cl)
= (moveClassMemberMult(getField(SubC, FN), (SubC SubCl), SupC)

removeAll(Cl, (SubC SubCl))) .
endfm

Fig. 6. Specification of Pull Up Field Refactoring

3.6 Rename Temporary Refactoring

Renaming is probably the best known and most used refactoring. Figure 7 shows
the Maude specification of Rename Temporary Variable for Java. It differs from
the previous refactorings in several aspects: it is an example of a JavaBlockRefac-

toring, it does not involve code movement, and it requires the construction of
a symbol table of the block on which the refactoring is applied, to check vari-
able declarations and visibility. The operation that carries out this refactoring
is RenameTemp. It receives as parameters the Old name and the New name for
the variable, and the code location L of the selected declaration for Old. This
location helps to distinguish between different possible declarations of Old. The
location L is specified as a list of numbers (of sort NatList) that represents a path
from the root in the syntax tree and identifies the positions of the nested scopes
that contain the declaration for Old, with the entire list of numbers indicating
the position for the declaration itself. Each entry in the symbol table has an
associated NatList specifying the location of its declaration.

The preconditions for this refactoring are checked with operation precond-

sRenTempHold, which requires the construction of the symbol table. The oper-
ation computeSymbolTable is specified in module SYMBOL-TABLE. This module
is extended by the module ST-QUERIES, which specifies the operations isDec-

larationAt, used to check if there is a declaration for Old at location L, and
isNameVisible, to check that the New name is not visible in the scope of Old.

The operation applyRenTemp traverses nested blocks until the scope for the
selected variable Old is found (in the third equation for applyRenTemp), when
it calls replace to change each reference to Old by New. Intermediate scopes are
replaced by operation replaceSubtree. We only give a few equations for these two
operations but the other questions are very similar; they can be found in [30].

3.7 User-Definable Refactorings

Kniesel and Koch [18] argue that refactoring tools should allow the composition
of refactorings by end users. With our approach, composition of refactorings is
not only possible but easy, by arranging refactorings in a sequence with the <-
operator. For example, take the refactoring ‘Pull Up Field ’; as described in [6],
it is possible that originally, the fields to be pulled up do not have the same
name, so it is first necessary to give all fields the same name and then pull the
field up. Therefore, a user may want to define a refactoring ‘Rename And Pull
Up Field ’ applicable to this more general situation. It takes a class name, the
list of different field names in the subclasses and the target name for all fields,
and then first applies ‘Rename Field ’ to the fields in the subclasses and then
applies ‘Pull Up Field ’. This can be easily defined by the equation:

eq Cl <- RenameAndPullUpField(CN, LNs, TN)

= (Cl <- RenameFieldAny(subclasses(#c(CN), Cl), LNs, TN))

<- PullUpField(CN, TN) .

where Cl:Classes, CN,TN:Qid, LNs:QidList, and RenameFieldAny renames, in each
class received as first parameter, the fields with any of the names in the second
parameter, to the target name in the third parameter.

fmod RENAME-VAR-REF is
pr JAVA-REF. pr BLOCK-REF-HELPERS. pr ST-QUERIES.
var B: Block. vars Old New: Name. var L: NatList. var ST: SymbolTable.
vars bs NewS : BlockStatements. var N: Nat. vars St St’:Statement.
var dc:Declaration. var SE:StExp. vars E E’:Exp.

op RenameTemp : Name Name NatList -> JavaBlockRefactoring.
eq B <- RenameTemp(Old, New, L)
= if precondsRenTempHold(computeSymbolTable(B), Old, New, L)

then applyRenTemp(B, Old, New, front(L)) else B fi .

op precondsRenTempHold : SymbolTable Name Name NatList -> Bool.
eq precondsRenTempHold(ST, Old, New, L)
= isDeclarationAt(ST, Old, L) and not isNameVisible(ST, New, front(L)) .

op applyRenTemp : Block Name Name NatList -> Block.
eq applyRenTemp({ bs }, Old, New, (0 L)) = { applyRenTemp(bs, Old, New, L) } .
eq applyRenTemp(bs, Old, New, (N L))
= replaceSubtree(bs, N, applyRenTemp(subterm(bs, N), Old, New, L)).

eq applyRenTemp(bs, Old, New, nil) = replace(Old, New, bs) .

op replaceSubtree : BlockStatements Nat BlockStatements -> BlockStatements.
eq replaceSubtree(St, 0, NewS) = NewS .
eq replaceSubtree((St bs), 0, NewS) = (NewS bs) .
eq replaceSubtree((St bs), s(N), NewS) = (St replaceSubtree(bs, N, NewS)) .
eq replaceSubtree((if E St else St’ fi), 0, NewS) = (if E NewS else St’ fi) .
eq replaceSubtree((if E St else St’ fi), 1, NewS) = (if E St else NewS fi) .
eq replaceSubtree((if E St fi), 0, NewS) = (if E NewS fi) .
--- ... more equations for each kind of statement

op replace : Name Name BlockStatements -> BlockStatements.
eq replace(Old, New, {bs}) = { replace(Old, New, bs) } .
eq replace(Old, New, (St bs)) = replace(Old, New, St) replace(Old, New, bs) .
eq replace(Old, New, (dc ;)) = (replaceDecl(Old, New, dc) ;) .
eq replace(Old, New, (SE ;)) = (replaceStExp(Old, New, SE) ;) .
eq replace(Old, New, (if E St else St’ fi)) = (if replaceExp(Old, New, E)

replace(Old, New, St) else replace(Old, New, St’) fi) .
eq replace(Old, New, (while E St))
= while replaceExp(Old, New, E) replace(Old, New, St) .

--- ... more equations for each kind of statement and other replacing operations
endfm

Fig. 7. Specification of Rename Temporary Refactoring

Note that any user-definable refactoring constructed this way, as successive
application of a finite number of basic refactorings, will preserve program behav-

ior by construction, provided we have already verified that the basic refactorings
it uses do preserve such behavior.

4 Proving Correctness of Java Refactorings

4.1 Correctness of Push Down Method

Theorem 1. Applying PushDownMethod does not change the output of the pro-

gram:

run(Cl E) = run((Cl <- PushDownMethod(CN, MN, TS)) E)

where Cl:Classes, E:Exp, CN,MN:Qid and TS:Types.

Proof. If the return value of precondsPushDownMethodHold is false, no changes
are applied to the set of classes Cl and the theorem trivially holds. Otherwise,
we know that there is a class named CN in Cl, that it is abstract, it has a
non-static method MN(TS) and has at least one subclass. Let us call that sub-
class SubCN. Using this information and by applying the equations in module
PUSH-DOWN-METHOD, we can derive the following:

Cl <- PushDownMethod(CN, MN, TS)

= if precondsPushDownMethodHold(Cl, CN, MN, TS)

then applyPushDownMethod(Cl, CN, MN, TS) else Cl fi

= applyPushDownMethod(((md Class CN sp {CMs (m T MN pl block)})

(mds Class SubCN sps { CMsub }) Cl’), CN, MN, TS)

= applyPushDownMethod(getMethod(({CMs (m T MN pl block)}), MN, TS),

(md Class CN sp {CMs (m T MN pl block)}),

subclasses(#c(CN), Cl), Cl)

= moveClassMemberMultiple((m T MN pl block),

(md Class CN sp {CMs (m T MN pl block)}),

(mds Class SubCN sps { CMsub }))

removeAll((mds Class SubCN sps { CMsub }) Cl’,

(mds Class SubCN sps { CMsub }))

= ((md Class CN sp { CMs })

(mds Class SubCN sps {CMsub (m T MN pl block)}) Cl’)

assuming variables md,mds,m:Modifier, sp,sps:Supers, CMs,CMSub:ClassMembers,
T:Type, pl:Parameters, block:Block. Note that if the method MN(TS) has a
‘throw’ clause the equations above apply in the same way.

As described in Section 2, the operation run creates the initial program State,
which in turn creates a continuation where the expression E is the next step
to execute. From there, it may eventually happen that the method MN(TS) is
called. If it is never called, the theorem holds trivially. Otherwise, we know that
MN(TS) cannot be called on an instance of CN, because CN is abstract, and that
MN(TS) is static. Therefore, let us assume that it is called on an instance of
SubCN. The semantics of a method call is formally specified with the equations
that appear in Figure 8 in the Appendix. Upon an expression (E . mn El),
the semantics is to evaluate E to an object of the form o(CT,CT’,oEnv), then
evaluate the arguments El to a list of values Vl, and as specified in the second
equation that appears in Fig. 8, call GetMethod to obtain a MethodAux, which
is a representation of a method body to execute.

The key to proving this theorem lies in the operation GetMethod, which
before or after applying the refactoring, should return the same MethodAux. We
therefore need to prove the following equality:

GetMethod(CT, mn, Vl,

((md Class CN sp {CMs (m T MN pl block)})

(mds Class SubCN sps { CMsub }) Cl’))

= GetMethod(CT, mn, Vl,

((md Class CN sp { CMs })

(mds Class SubCN sps { CMsub (m T MN pl block) }) Cl’))

which is easily proven by evaluation of the equations in Fig. 8. Moreover, the
precondition that SubCN methods do not call super.MN ensures that MN will not
be searched starting from CN.

Also, the precondition that the body of MN does not call other methods using
super ensures that no errors will occur during the execution of MN. ut

4.2 Correctness of Pull Up Field

Theorem 2. Applying PullUpField does not change the output of the program:

run(Cl E) = run((Cl <- PullUpField(CN, FN)) E)

where Cl:Classes, E:Exp, and CN,FN:Qid.

Proof. If the return value of precondsPullUpFieldHold is false, no changes are
applied to the set of classes Cl and the theorem trivially holds. Otherwise, we
know that there is a class named CN in Cl, and that every subclass of CN defines FN
but CN does not. Let us call SubCN one of those subclasses. Using this information
and by applying the equations in module PULL-UP-FIELD we can derive the
following:

Cl <- PullUpField(CN, FN)

= if precondsPullUpFieldHold(Cl, CN, FN)

then applyPullUpField(Cl, CN, FN) else Cl fi

= applyPullUpField(((md Class CN sp { CMs })

(mds Class SubCN sps {CMsub (m T FN ;)}) Cl’), CN, FN)

= applyPullUpField(subclasses(#c(CN), Cl), (md Class CN sp { CMs }),

FN, (mds Class SubCN sps {CMsub (m T FN ;)}) Cl’)

= (moveClassMemberMultiple((m T FN ;),

(mds Class SubCN sps {CMsub (m T FN ;)}),

(md Class CN sp { CMs }))

removeAll((mds Class SubCN sps {CMsub (m T FN ;)}) Cl’,

(mds Class SubCN sps {CMsub (m T FN ;)})))

= ((md Class CN sp {CMs (m T FN ;)})

(mds Class SubCN sps { CMsub }) Cl’)

assuming variables md,mds,m:Modifier, sp,sps:Supers, CMs,CMSub:ClassMembers
and T:Type, besides the variables previously defined. Note that (m T FN ;) rep-
resents the declaration for field FN. Also, if there is more than one subclass, the
equations apply similarly.

As described in Section 2, the operation run creates the initial program State,
which in turn creates a continuation where the expression E is the next step to
execute. From there, if an object of type CN is created, it will have the additional
field FN but it will not be used (assuming we start from a correct program). So
there will not be any change in the functionality, and therefore in the output.

Let us suppose that an object of class SubCN is created. The semantics spec-
ifying how an object is created appears in Figure 9 in the Appendix. The first
equation in that figure:

eq k((new CT (El)) -> K) = k((El) -> newObj(CT) -> K).

shows that when a ‘new’ expression is found, the semantics is to first evaluate
the arguments of the constructor and then apply the operation newObj. The

operation newObj calls itself on each class in the hierarchy from CT to Object,
and once Object is reached, it stacks the operation created in the continuation.
The fields of each class in the path from CT to Object are then ‘declared’, i.e.,
are added to the environment. At the end of the field declarations of each class,
the names in the global environment are moved to the current object environ-
ment, pairing them with the name of the class that declares them. For example,
suppose a class A with a field a and a subclass of A called B with a field b; if an in-
stance of B is created, its environment will look like (A, [a,La]) (B, [b,Lb])

where La and Lb are the locations for a and b respectively.
Let us then apply the equations involved in the creation of an instance of

SubCN, as defined in Figure 9. We will assume that the constructor does not take
any arguments and that the superclass of CN is Object. Otherwise there would
be extra steps involved below, but they do not interfere with the outcome of our
proof.

k((new SubCN ()) -> K)

= k(noVal -> newObj(SubCN) -> K)

= k(newObj(SubCN) -> endnew...

= k(newObj(SuperClass(SubCN, Cl)) -> newObj(SubCN) -> endnew...

= k(newObj(CN)-> newObj(SubCN)-> endnew...

= k(newObj(SuperClass(CN, Cl)) -> newObj(CN)->newObj(SubCN)->endnew...

= k(newObj(Object) -> newObj(CN) -> newObj(SubCN) -> endnew...

= k(created-> newObj(CN) -> newObj(SubCN) -> endnew...

At this point, the next equation will call the operation newObj on the class
CN and CN’s body, and a subsequent equation will call newObj on SubCN and
SubCN’s body. Before the refactoring, the declaration for FN will be added to
the environment when SubCN’s body is processed. After the refactoring has been
applied, the declaration for FN will be added to the environment earlier that
before, when CN’s body is processed, but since the environment is a commutative
data structure, the order of field declarations does not change the semantics of
the resulting object.

ut

5 Conclusions

We have presented an executable formal specification of five Java refactorings
that were developed on top of the formal specification of the Java programming
language, and we have given detailed proofs of correctness of two such refac-
torings based on the underlying Java semantics. This work shows how three
important goals can be simultaneously achieved within the same framework: (1)
formally specifying refactorings for a language; (2) proving them correct with
respect to the language semantics; and (3) deriving a provably correct refac-
toring tool from the formal refactoring specifications. However, this is work in
progress and further research is needed both for Java refactoring and to make
the technology more generic.

For Java, the obvious tasks ahead include: (i) extending the current library of
generic operations to facilitate the introduction of new refactorings; (ii) extend-
ing the library of basic refactorings to include most of the refactorings supported
by other tools and entirely new ones, for example for multi-threaded programs;
(iii) developing formal proofs of correctness for all those refactorings and also
mechanized versions of such proofs; (iv) developing a user interface for the Java
refactoring tool easing both refactoring application and introduction of new user-
defined refactorings; (v) integrating this tool within the JavaFAN environment
and experimenting with a substantial collection of case studies to evaluate the
tool in practice and compare it with other tools.

The semantics-based approach to refactoring is part of a broader effort to base
software tools on semantic definitions (see [29, 31, 32, 21, 28, 33]). A key emphasis
in this broader effort is the development of generic techniques, that can be ap-
plied to many concrete language instances. For example, the same methodology
applied here to Java has been applied in [22] to formally specify C preprocessor
refactorings and prove them correct. A longer-term goal is to develop a generic

library of provably correct refactorings, based on modular semantic definitions of
language features, so that a correct refactoring tool for a given language will be
derived automatically from a modular semantics for it.

Acknowledgements. We would like to thank Ralf Sasse for his help in this
project. This research has been supported in part by ONR Grant N00014-02-1-
0715.

References

1. Opdyke, W., Johnson, R.: Refactoring: An Aid in Designing Application Frame-
works and Evolving Object-Oriented Systems. In: Proc. of Sym. on OO Program-
ming Emphasizing Practical Applications (SOOPPA’90). (1990)

2. Opdyke, W.: Refactoring Object-Oriented Frameworks. PhD thesis, University of
Illinois at Urbana-Champaign (1992)

3. Roberts, D.: Eliminating Analysis in Refactoring. PhD thesis, University of Illinois
at Urbana-Champaign (1999)

4. Foote, B., Opdyke, W.: Lifecycle and refactoring patterns that support evolution
and reuse. In: Pattern Languages of Program Design I. Addison-Wesley (1995)

5. Tokuda, L., Batory, D.: Evolving object oriented designs with refactoring. In:
Proc. IEEE Conference on Automated Software Engineering (ASE). (1999)

6. Fowler, M.: Refactoring. Improving the Design of Existing Code. Addison-Wesley
(1999)

7. Ó Cinnéide, M.: Automated Application of Design Patterns: a Refactoring Ap-
proach. PhD thesis, Univ. of Dublin (2001)

8. Mens, T., Tourwé, T.: A Survey of Software Refactoring. IEEE Transactions on
Software Engineering 30(2) (2004)

9. Eclipse: Eclipse.org home. (http://www.eclipse.org)
10. IntelliJ: IDEA: the most intelligent Java IDE. (http://www.intellij.com/idea/)
11. Instantiations: jFactor. (http://www.instantiations.com/jfactor/)
12. Xref-Tech: Xrefactory for Java. (http://xref-tech.com/xrefactory-java/main.html)

13. Borba, P., Sampaio, A., Cavalcanti, A., Cornélio, M.: Algebraic Reasoning for
Object-Oriented Programming. Science of Computer Programming 52(1-3) (2004)

14. Cornélio, M.: Refactorings as Formal Refinements. PhD thesis, Univ. of Pernam-
buco, Brazil (2004)

15. Bottoni, P., Presicce, F.P., Taentzer, G.: Specifying Integrated Refactoring with
Distributed Graph Transformations. In: Proc. of AGTIVE 2003 (Lecture Notes in
Computer Science 3062). (2003)

16. Mens, T., Eetvelde, N.V., Demeyer, S., Janssens, D.: Formalizing Refactorings
with Graph Transformations. Journal of Software Maintenance and Evolution
17(4) (2005)

17. Lämmel, R.: Towards generic refactoring. In: Proc. of ACM SIGPLAN Workshop
on Rule-based Programming (RULE’02). (2002)

18. Kniesel, G., Koch, H.: Static composition of refactorings. Science of Computer
Programming 52(1-3) (2004)

19. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Quesada,
J.: Maude: specification and programming in rewriting logic. Theoretical Computer
Science 285 (2002) 187–243

20. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Olliet, N., Meseguer, J., Talcott,
C.: Maude Manual (Ver. 2.2), http://maude.cs.uiuc.edu/maude2-manual/. (2005)

21. Farzan, A., Chen, F., , Meseguer, J., Roşu, G.: Formal Analysis of Java Programs
in JavaFAN. In: Int. Conf. on Computer Aided Verification (CAV’04), Boston,
Mass. (2004)

22. Garrido, A., Meseguer, J., Johnson, R.: Algebraic Semantics of the
C Preprocessor and Correctness of its Refactorings. Technical Re-
port UIUCDCS-R-2006-2688, Univ. of Illinois at Urbana-Champaign.
https://netfiles.uiuc.edu/garrido/www/publications.html (2006)

23. Visser, E.: A Survey of Strategies in Rule-Based Program Transformation Systems.
Journal of Symbolic Computation 40(1) (2005)

24. Visser, E.: Program Transformation with Stratego/TX: Rules, Strategies, Tools,
and Systems in StrategoXT-0.9. In: Domain-Specific Program Generation. In:
LNCS vol.3016. Springer-Verlag. (2004)

25. van den Brand, M., Klint, P., Vinju, J.: Term Rewriting with Traversal Functions.
(ACM Transaction on Software Engineering and Methodology)

26. Ward, M., Bennett, K.: Formal Methods to Aid the Evolution of Software. Int.
Journal of Software Engineering and Knowledge Engineering 5(1) (1995)

27. Sasse, R.: Taclets vs. Rewriting Logic - Relating Semantics of Java. Master’s
thesis, Fakultät für Informatik, Universität Karlsruhe, Germany, Technical Report
No. 2005-16 (2005)

28. Ahrendt, W., Roth, A., Sasse, R.: Automatic Validation of Transformation Rules
for Java Verification against a Rewriting Semantics. In: Int. Conf. on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR’05), Jamaica (2005)

29. Meseguer, J., Roşu, G.: The Rewriting Logic Semantics Project. In: Proc. of
Structural Operational Semantics (SOS’05). (2005)

30. Garrido, A.: Java Refactoring in Maude.
(https://netfiles.uiuc.edu/garrido/www/JavaRef/)

31. Farzan, A., Meseguer, J., Roşu, G.: Formal JVM Code Analysis in JavaFAN. In:
Proc. of AMAST’04. (2004)

32. Farzan, A., Meseguer, J.: Partial Order Reduction for Rewriting Semantics of
Programming Languages. Technical Report UIUCDCS-R-2005-2598, University of
Illinois at Urbana-Champaign (2005)

33. Chen, F., Hills, M., Roşu, G.: A Rewrite Logic Approach to Semantic Definition,
Design and Analysis of Object-Oriented Languages. Technical Report UIUCDCS-
R-2006-2702, Univ. of Illinois at Urbana-Champaign (2006)

Appendix

sorts MethodAux MethodList .
subsort MethodAux < MethodList .
op ._ -> _ : MName Continuation -> Continuation .
op fn (_,_,_) -> _ : Object MName ValueList Continuation -> Continuation .
op m : CType Types Parameters Block -> MethodAux .
op none : -> MethodList .
op _,_ : MethodList MethodList -> MethodList [assoc comm id: none] .

var E:Exp. var mn:MName. var El:Exps. var K:Continuation. vars CT CT’ CT’’:CType.
var T:Type. var block:Block. var md:Modifier.
var Vl:ValueList. var cnt:Context. var Env:Env. var oEnv:ObjEnv. var pl:Parameters.
vars Cl Cl’:Classes. var Tl:Types. var Ml:MethodList. vars Xc mc:Qid. var CM:ClassMembers.
eq k((E . mn El) -> K) = k((E, El) -> . (mn) -> K) .
eq c(k((o(CT, CT’, oEnv), Vl) -> . (mn) -> K), cnt), cl(Cl)
= c(k(GetMethod(CT’, mn, Vl, Cl) -> fn (o(CT, CT’, oEnv), mn, Vl) -> K), cnt), cl(Cl) .

eq k(m(CT’’, Tl, pl, block) -> fn(o(CT, CT’, oEnv), mn, Vl) -> K), e(Env), o(obj)
= k(set(pl, Vl) -> (block -> endfn(obj, Env) -> K)), e(noEnv), o(o(CT’’, CT’, oEnv)) .

op GetMethod : CType MName ValueList Classes -> MethodAux .
eq GetMethod(CT, mn, Vl, Cl) = GetMethod(GetMethods(CT, mn, Cl), Vl, Cl) [owise] .

--- first find all methods named mn and then filter by parameter types
op GetMethod : MethodList ValueList Classes -> MethodAux .
eq GetMethod((m(CT, Tl, pl, block), Ml), Vl, Cl) =

if Compatible(pl, Vl, Cl) then m(CT, Tl, pl, block) else GetMethod(Ml, Vl, Cl) fi .

op GetMethods : CType MName Classes -> MethodList .
eq GetMethods(CT, mn, Cl) = Compact(GetMethodList(CT, mn, Cl, Cl), Cl) .

op GetMethodList : CType MName Classes Classes -> MethodList .
eq GetMethodList(CT, mn, noClass, Cl’) = none .
eq GetMethodList(CT, mn, ((md Class Xc sp cb) Cl), Cl’) =

(if SuperOf(#c(Xc), CT, Cl’) then GetMethodList(CT, mn, #c(Xc), cb) else none fi),
GetMethodList(CT,mn,Cl,Cl’) .

op GetMethodList : CType MName CType ClassBody -> MethodList .
eq GetMethodList(CT, mn, CT’, {CM}) = GetMethodList(CT, mn, CT’, CM) .
op GetMethodList : CType MName CType ClassMembers -> MethodList .
eq GetMethodList(CT, mn, CT’, noMember) = none .
eq GetMethodList(CT, #m(mc), CT’, ((md T mc pl block) CM)) =

(m(CT’, GetTypes(pl), pl, block) fi fi), GetMethodList(CT, #m(mc), CT’, CM) .

op Compact : MethodList Classes -> MethodList .
eq Compact((m(CT, Tl, pl, block), m(CT’, Tl, pl’, block’), Ms), Cl) =

Compact(((if SuperOf(CT, CT’, Cl) then m(CT’, Tl, pl’, block’)
else m(CT, Tl, pl, block) fi), Ms), Cl) .

Fig. 8. Semantics of a method call

op newObj _ -> _ : CType Continuation -> Continuation .
op newObj (_,_) -> _ : CType ClassBody Continuation -> Continuation .
op newObj (_,_) -> _ : CType ClassMembers Continuation -> Continuation .
op endnew (_,_,_) -> _ : ValueList Object Env Continuation -> Continuation .
op created -> _ : Continuation -> Continuation .

vars CT CT’:CType. var El:Exps. var K:Continuation. var Vl:ValueList. var Env:Env.
var obj:Object. var Xc:Qid. var m:Modifier. var dc:Declaration. var MD:MethodDeclaration.
eq k((new CT (El)) -> K) = k((El) -> newObj(CT) -> K).
eq k(Vl -> newObj(CT) -> K), e(Env), o(obj)
= k(newObj(CT) -> endnew(Vl,obj,Env) -> K), e(Env), o(obj) .
eq k(newObj(Object) -> K), e(Env), o(obj)
= k(created -> K), e(noEnv), o(o(Object, Object, noObjEnv)).
eq c(k(newObj(CT) -> K), e(Env), cnt), cl(Cl)
= c(k(newObj(SuperClass(CT, Cl)) -> newObj(CT) -> K), e(noEnv), cnt), cl(Cl) [owise] .
eq c(k(created -> (newObj(#c(Xc)) -> K)), cnt), cl((m Class Xc sp CB) Cl)
= c(k(newObj(#c(Xc), CB) -> K), cnt), cl((m Class Xc sp CB) Cl) .
eq k(newObj(CT, {CMs}) -> K) = k(newObj(CT,CMs) -> K).
eq k(newObj(CT, (MD CMs)) -> K) = k(newObj(CT, CMs) -> K) .
eq k(newObj(CT, ((m dc ;) CMs)) -> K) = k(dc -> newObj(CT, CMs) -> K) [owise] .
eq k(newObj(CT, noMember) -> K), e(Env), o(o(CT’, CT’, oEnv))
= k(created->K), e(noEnv), o(o(CT,CT,(CT,Env) oEnv)).
eq k(created -> (endnew(Vl, obj, Env) -> K)), e(noEnv), o(o(#c(Xc), #c(Xc), oEnv))
= k((o(#c(Xc), #c(Xc), oEnv), Vl) -> . (#m(Xc)) -> (o(#c(Xc), #c(Xc), oEnv) -> K)),

e(Env), o(obj).

Fig. 9. Semantics of ‘new’

