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Abstract

Today’s large-scale distributed systems consist of a collection of nodes that have highly variable availability

— a phenomenon sometimes calledchurn. This availability variation is often a hindrance to achieving reliability

and performance for distributed applications such as multicast. This paper looks into utilizing and leveraging

availability information in order to provide availability-dependent message reliability for multicast receivers.

An application (e.g., a publish-subscribe system) may wantto scale the multicast message reliability on each

receiver according to its availability — different optionsare that the reliability is independent of the availability, or

proportional to it, or is some other arbitrary function of it. We propose several gossip-based algorithms to support

several such predicates. These techniques rely on each node’s availability being monitored in a distributed manner

by a small group of other nodes in such a way that the monitoring load is evenly distributed in the system. Our

techniques are light-weight, scalable, and are space- and time- efficient. We analyze our algorithms and evaluate

∗This work was supported in part by NSF CAREER grant CNS-0448246.
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them experimentally by using availability traces collected from real peer-to-peer systems.

1 Introduction

Gossip-based protocols are useful information dissemination techniques for many large-scale distributed system

applications such as publish-subscribe systems (e.g., RSS), multicast, peer-to-peer systems, and grid computing.

They exhibit several desired properties such as simplicity, scalability, and fault-tolerance [1,2]. Moreover, gossip-

based protocols are also resistant to churn — this is the dynamism due to highly variable availability of different

nodes in the system.

Several churn-resistant and scalable gossip-based multicast algorithms have been proposed in the past, e.g.,

[1–6]. However, to the best of our knowledge, none of these previous works provide support for availability-

dependent reliability predicates, which is the capabilityto set the multicast reliability at multicast receivers based

on the availability characteristics of the receivers. In the other words, we want to be able to specify and support a

system-wide predicate that relates the reliability at eachnode to its availability.

There are several reasons why multicast reliability at eachreceiver should be related to the receiver’s avail-

ability. The reasons are (1)fairness in reliability (high availability receivers get better reliability, but are not

over-burdened), (2)fighting freeloading(hosts that have low availability and contribute nothing tothe system, but

get high multicast reliability), and (3) being anincentivefor nodes to increase their own availability, which will

result in a more reliable and resource-efficient system.

In order to address these issues, this paper presentsAVCast, an availability-aware, gossip-based multicast proto-

col. AVCast currently allows a choice of two predicates thatspecify the availability-reliability relationship. Using

AVCast, we study the effects on multicast reliability of high-variance availability distributions across hosts. Note

that the termsnode, host, andreceiverhave the same meaning and will be used interchangeably throughout this

paper.
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This paper has three main research contributions. 1) We propose a decentralized monitoring protocol for each

member node to estimate the availability distribution of the system. 2) We create a generic framework to specify

a range of availability-dependent reliability predicates. 3) We implement two reliability predicates :uniform

reliability, andavailability-proportional reliability.

Note that the conventional definition of multicast reliability is not appropriate for churned hosts that frequently

switch their states between online and offline, since it is impossible for a node to receive a multicast message when

that node is currently offline (this paper does not consider any repair mechanisms for each node to retrieve missing

messages that were initiated during its offline period). Hence, we give a more appropriate definition of multicast

reliability for a churned host as follows.

Definition – Multicast Reliability for a Churned Host: Consider a hostx, and consider the number of multi-

cast messages whose propagation time (i.e., from multicastinitiation to multicast termination) completely overlaps

with the available times for hostx. Let f be the fraction of such messages received at hostx. Thenf is the multi-

cast reliability for hostx, denoted byrx.

Notice that this definition of reliability is different and is more correct from the traditional definition, as it

cleanly separates the unavailable times out of the reliability calculation.

The rest of this paper is organized as follows. Section 2 discusses some related works on churn-fairness studies

and multicast protocols. Section 3 presents basic conceptsand components of the AVCast system. Section 4 gives

a theoretical analysis of availability-aware reliabilityframework in AVCast. Section 5 proposes two reliability

predicates supported in AVCast. Section 6 shows the experimental results. Finally, Section 7 concludes the paper.
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2 Related Work

2.1 Churn and Fairness Studies

There have been several works [7–9] addressing the characteristics of churn in large-scale distributed appli-

cations such as distributed file-sharing and multicast systems. The studies have shown that churn has effect on

stability and performance of overlay networks and applications that are built on top of overlay networks. In order

to solve such problems, [10,11] have proposed techniques tobuild more churn-resistant overlay networks.

Besides the effect of churn on stability and performance problem, [12] also exposed the correlation between

churn in global peer-to-peer applications and its effect toper-user fairness of quality of service. According to

the study, most file-sharing systems consist of a significantportion of free-riders, the system users who exploit

the benefit from the system without contributing to the system. Similarly, We quantitatively analyzes the effect

of churn to stability and reliability of distributed systems, particularly in application-level, gossip-based multicast

systems. Moreover, we presents a set of gossip-based multicast variation in order to ensure fairness in the term of

multicast reliability.

2.2 Reliable Gossip-based Multicast

Recently, reliable gossip-based multicast has become an active area of research. Over the past few years, several

gossip-based multicast protocols have been proposed [3–6,13]. We examine some of them here.

Gocast [6] implemented a proximity-aware multicast protocol on top of Resilient Overlay Network(RON) [14]

in order to achieve high throughput and low message delay. However, Gocast does not address effect of churn

to reliability of the multicast system. AVCast, on the otherhand, focus on relating system multicast reliability to

availability of the system itself. Such two works are orthogonal and thus a combination of the two approaches is

possible.

DOS-Resistant Unforgeable Multicast(Drum) [3] addressesreliability of multicast protocol under malicious
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denial of service attacks. AVCast tries to achieve best-effort multicast reliability on systems under non-malicious

churn. We consider the system model where nodes are not malicious, but can act selfishly by having low-

availability.

The work that is most similar from this paper is Araneola [13]. In Araneola, each node forms a hybrid of

deterministic and random overlay network and forwards messages deterministically to one of its neighbors. Ara-

neola is capable of achieving high reliability in the presence of low-rate churn. However, each node is required

to maintain a specific set of overlay network. AVCast addresses churn in more dynamic environment and hence

provides weaker guarantee on message delivery. The protocol proposed in AVCast can be applied to most overlay

and membership services.

3 Basic Approach

AVCast consists of two components: 1)monitoring and membership componentand 2)availability-aware

gossip-based multicast component. In AVCast monitoring protocol, each AVCast node acts as apinging node

that monitors the availability of a few other nodes – in turn,each of these pinged nodes is called atarget node.

Each target node’s availability is then monitored in a distributed fashion by a small group of pinging nodes. These

pinging nodes are selected randomly but consistently for each target node, so that each node only monitors a small

number of other target nodes. Note that the pinging and target node relationships are inverses of one another (a

nodex will be a pinging node of allx’s target nodes). Once the availability information has been obtained by the

membership component, each pinging node then uses the multicast component to forward multicast messages to a

number of target nodes. How target nodes are selected to receive forwarded messages depends on the availability-

dependent reliability predicate that is to be implemented.

This section details how the monitoring component and the multicast component operate. The mathematical

analysis of AVCast’s availability-dependent reliabilitypredicates will then be presented in Section 4.
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3.1 Monitoring and Membership Protocol

There are several simple methods to obtain the availabilityinformation of each node in the system (i.e., to select

the pinging set for a given node). We discuss some of these approaches below, along with their disadvantages.

• Each node measures its availability by itself and reports its own availability to other nodes. While this

method is simple and straightforward, it allows a selfish node to cheat, i.e., to lie about its availability.

• Each target node’s availability is measured by pinging nodes that are basically some of its neighbors in

an application-definedoverlay network. This method eliminates the above problem of cheating, but how

pinging nodes are determined is specific to the type of overlay network. In power-law overlays, for instance,

the high degree nodes would share a large pinging responsibility, thus causing load imbalance.

• Each node’s availability is measured by neighbor nodes specified by randomization techniques (e.g., via a

random walk). However, random walks can also make biased choices, e.g., in a star network [15], thus

causing load imbalance.

• To overcome limitations of approaches mentioned above AVCast uses aconsistent randomizationto select

the pinging set. AVCast uses a low-overhead, decentralized, hash function-basedprotocol to determine

pinging nodes for each target node. Using a globally consistent hash function, denoted byH, each node can

verify its pinging nodes and target nodes in a consistent manner across the system, thus eliminating problems

of selfish nodes cheating and adversarial peers controllingthe system. Further, the uniformly random nature

of the functionH ensures better load balance than the previous approaches above.

In the AVCast membership protocol, a nodex maintains links pointing to two sets of nodes. The first set is

called thepinging setof x (PSx), which containsx’s pinging nodes whose duties are to monitorx’s availability

and to probabilistically forward multicast messages tox. The second set of nodes is the target set ofx (TSx),

which contains all nodes whose availabilityx is monitoring. Notice thatx ∈ PSy if and only if y ∈ TSx. A node
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x treats the availability distribution obtained fromTSx as a sample of system’s global availability distribution.

According to [16], havingTS andPS of sizeO(logN), whereN is the approximate total number of offline and

online nodes in the system, is enough to provide accuracy in availability estimation and achieve good scalability in

multicasting. Note thatN is consistently known or approximated beforehand by using size estimation algorithms

such as [17] ( [17] provides an estimated number ofonline nodes, denoted byn, which is different fromN ,

However, we can calculateN from n and average system availabilityE[a] with the equationN = n/E[a]).

Another way to estimateN is by settingN to the power of 2 that is closest to the scale of the system. We do not

envision this to be a hindrance since most peer-to-peer systems, in spite of churn, have stable system sizes [7].

The availability membership protocol is described in Figure 1 and Figure 2. Besides its own id number, each

nodex maintains two node-specific parameters used to determine sizes of pinging set and target set,Kx
in andKx

out.

A nodex will add a nodey to its target setTSx (andy will add x to PSy) if and only if

H(x, y) <
√

Kx
out.K

y
in/N (1)

whereH is a globally consistent hash function known to every node.H could be a SHA-1 or a MD5 hash function,

but with the result normalized to the range[0, 1]. Initially, each nodex sets itsKx
in andKx

out values to a value of

K (a known priori of all nodes set to a value that isO(logN)). Note thatK is the expected size ofPS andTS.

However, if a nodex finds its pinging set or target set smaller or larger thanK, it can adjust itsKin andKout

parameters to balance the size of itsTS andPS respectively. Such procedure is calledrebalancing operation.

The rebalancing operation will be discussed later in this section.
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procedure join()
1: if x joins for the first timethen
2: y← random node
3: send〈REQ, x,Kx

in,Kx
out〉 to y

4: else
5: PSx← persistent storage
6: TSx← persistent storage
7: Kx

in ← persistent storage
8: Kx

out ← persistent storage
9: end if

procedure update(y,Ky
in,Ky

out)

1: if H(x, y) <
√

Kx
out.K

y
in/N then

2: addy into TSx

3: end if
4: if H(y, x) <

√

Ky
out.K

x
in/N then

5: addy into PSx

6: end if

Figure 1. Availability Membership Protocol

receive〈REQ, y,Ky
in,Ky

out〉

1: multicastsend(〈ADV , y,Ky
in,Ky

out〉)

receive〈ADV , y,Ky
in,Ky

out〉

1: update(y,Ky
in,Ky

out)
2: if y ∈ TSx or id′ ∈ PSx then
3: send〈REP, x,Kx

in,Kx
out〉 to y

4: end if
receive〈REP, y,Ky

in,Ky
out〉

1: update(y,Ky
in,Ky

out)

Figure 2. Membership Message Handlers

every period T1

1: if |PSx| < (1− α)K then
2: Kx

in ← (1 + β)Kx
in

3: end if
4: if |PSx| > (1 + α)K then
5: Kx

in ← (1− β)Kx
in

6: end if
7: if |TSx| < (1− α)K then
8: Kx

out ← (1 + β)Kx
out

9: end if
10: if |TSx| > (1 + α)K then
11: Kx

out ← (1− β)Kx
out

12: end if
13: if Kx

in or Kx
out is changedthen

14: multicastsend(〈ADV , x,Kx
in,Kx

out〉)
15: end if

Figure 3. Rebalance Operation

every period T2

1: for each nodey ∈ TSx do
2: send〈PING, x〉 to y
3: if receive〈PONG〉 back fromy before timeout

T0 then
4: marky as available
5: else
6: marky as unavialable
7: end if
8: recalculatey’s availability valueay

9: end for

Figure 4. Membership Maintenance Proce-
dure
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procedure multicast send(message)
1: for each nodey ∈ TSx do
2: sendmessage to n
3: end for

receive multicast message fromy
1: if y ∈ PSx then
2: for i = 1 to C do
3: for each currently online nodez ∈ TSx) do
4: with probability = p(az), forward message toz
5: end for
6: end for
7: end if

Figure 5. Availability-aware No-wait Gossiping protocol a t node x

Now, we focus on the action during the monitoring process. When a nodex joins the system for the first time,

it sends a REQ (request) message to an arbitrary nodez in the system (that nodez then becomesx’s contact

node). The REQ message containsx’s node id, andKx
in, andKx

out values. The contact nodez then uses an ADV

(advertise) message to forwardx’s request to all other nodes via a multicast. Any nodey that receives the ADV

message then evaluates the equation (1). If the condition istrue, it will addx into its pinging setPSy and sends a

REP (reply) message back tox. Similarly, nodey evaluates (using the same equation (1)) whether nodex should

belong toTSy. Upon receiving a REP message fromy, x can verify the equation (1) and addy into its target set

TSx (or PSx respectively). Note that thePSx andTSx lists are stored inx’s persistent storage so that ifx goes

offline and joins the system again, it can retrieve the information without needing a contact node.

Rebalancing operation: In practice, the distribution of the hash space may not be uniform, resulting in the

sizes ofPS andTS at each node being different fromK. To reduce the load variance across nodes, AVCast uses

a rebalance procedure shown in Figure 3. This procedure adjustsKin andKout of individual nodes in order to

keep the size ofPS andTS as close to the expected sizeK as possible. The rebalance procedure defines two

system-wide constants:α andβ. α andβ are preconfigured values ranging from 0 to 1.α can be considered as

the level of tolerance of link degree invariance, whileβ defines how reactive the rebalance procedure is. A nodex

whose target set contains more than(1+α)K members decreases itsKx
out value by the scale of(1−β). Similarly,

if x’s target set contains less than(1 − α)K members,x increases itsKx
out value by the scale of(1 + β). Every

time eitherKx
in or Kx

out is recomputed,x re-advertises its new parameters. Each nodex repeats the rebalancing

procedure until|TSx| and|PSx| are within range[(1−α)K, (1+α)K]. The smallerα is, the less load invariance

the system has and the more control message overhead incurred for the rebalancing procedure.
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The monitoring component operates in asynchronous protocol rounds (typically 5 to 10 seconds long) without

synchronization between nodes. During each round, at a nodex, it periodically sends PING messages to all target

nodes inTSx and waits for reply messages from them. Any target nodes thatfail to send back reply messages

before the next round will be considered unavailable duringthat round. Each node then stores its target nodes’ raw

availability traces in its persistent storage. To prevent excessive overhead, each pinging node uses the availability

trace fromT most recent rounds to calculate target nodes’ availabilityvalue, whereT is a globally defined constant

for the system. The availability value of a target nodey, denoted byay, measured at one of its pinging nodesx

is calculated as the fraction ofT most recent rounds thaty responded tox. The availability traces older thanT

rounds can be either discarded or aggregated into a coarser-scale archive, depending on the implementation of the

system.

3.2 Availability-aware Gossip-based Multicast Protocol

AVCast adopts an existing gossip-based multicast protocolcalledno-wait gossiping. This is not a new protocol,

but was proposed in [6]. Figure 5 shows the availability-aware version of no-wait gossiping protocol used in

AVCast. In AVCast, the sender nodex initiates a multicast by sending a multicast message to eachonline node

in its target setTSx. Upon receiving a multicast message, a node immediately forwardsC copies of the message,

each one toC selectedonlinetarget nodes, whereC is a globally defined constant. The way the online target nodes

are picked up is not uniform — instead, a nodey forwards the message to its online target nodez with probability

p(az), wherep(.) is a global probability function of availability, andaz denotesz’s availability as observed byy.

p(.) is chosen depending on the global predicate that is to be satisfied (Section 5). The effect of choosingC and

p(.) will also be analyzed quantitatively in Section 4.

The no-wait protocol is completely stateless in the sense that each node forwards a message to some of its target

nodesonly onceand immediately after it receives the message. We believe that this stateless property makes the

protocol appropriate to use in dynamic systems where nodes frequently go offline and online.

4 Analysis of Gossip-based Multicast Protocol

In this section, we analyze several characteristics of AVCast availability-aware gossip-based multicast protocol

introduced in Section 3.2. We show the effect of two global system parameters: the target selection probability

functionp(.) and the number of copies each node forwards per messageC. We also present the analysis of how
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differentp(.) andC affect the reliability predicate of the system in this section.

We model a multicast as a synchronous process operating in multiple protocol rounds (The termround here

is different from one in Section 3.1). The first round starts when the multicast is initiated and the last round

ends when the multicast dies out. For a given multicast message, at any time, eachonline node falls into one of

three categories:virgin nodes which have not yet received the message,activenodes which have just received the

message but have not yet forwarded the message, andinactivenodes which have already received and forwarded

the message. In the analysis, we assume that any node that wasonline when a multicast was initiated will stay

online during the entire period that the multicast is active. Since typical average multicast latencies are in the scale

of a few hundred milliseconds to a few seconds while typical online durations of nodes observed in [7] are in the

scale of several minutes, this assumption is reasonable. With this assumption, we can discard offline nodes and

focus on only online nodes in the analysis.

Recall that, in each round, each active node gossipsC copies of a message, one each toC selected online target

nodes and then becomes inactive. Virgin nodes that receive the gossip message then become new active nodes in

the next round. On the other hand, inactive nodes do nothing if they receive duplicates of the same message. The

multicast process stops when there is no active node left in the system.

Consider a system ofN nodes with an availability mass functionf (i.e. the fraction of overall system nodes

that have availability equal toa is f(a)). Hence, the average number of online nodes in the systemn at any time is

n =
∑

{a:f(a)6=0}

(af(a)N) = E[a]N,

whereE[a] is the mean availability of all nodes in the system. We also define theonlineavailability mass function

g(a) as the fraction of online nodes that have availabilitya. We can calculateg(a) from f(a) by the following

equation:

g(a) =
af(a)

E[a]
(2)

Now, for a given multicast, letxt, yt, andzt be the number of online nodes (with respect ton) that are active,

inactive, and virgin in the system at roundt respectively (xt + yt + zt = n at any roundt). Also, let gt(a) be

the fraction of virgin nodes that have availability equal toa at protocol roundt. Initially, a sender node initiates

a multicast by broadcasting the message to allKon online nodes in its target set (Kon is the number of online

target nodes, which is equal toKE[a] on average). In each of subsequent rounds, each active node forwards a

11



constant number of copiesC to its online target nodes using target probability function p(a). Hence the number

of messages forwarded in each roundt is equal toCxt. Thus, the protocol model at roundt + 1 can be described

by the following set of equations.

xt+1 = Expected number of virgin nodes that have received the message in roundt

=
∑

{a:gt(a)6=0}

(ngt(a)P[node receives the message])

=
∑

{a:gt(a)6=0}

(

ngt(a)(1 − (1− p(a))
CKonxt

n )
)

=
∑

{a:gt(a)6=0}

(

ngt(a)(1 − (1− p(a))
CKE[a]xt

n )
)

yt+1 = yt + xt

zt+1 = n− xt+1 − yt+1

gt+1(a) = gt(a)((1 − p(a))
CKE[a]xt

n )

with the initial conditions as

x0 = Kon = KE[a], y0 = 0, z0 = n− x0

and

g0(a) = g(a)(1 −
Kon

n
) = g(a)(1 −

K

N
)

whereE[a] =
∑

{a:f(a)6=0} (af(a)) = mean availability of the system

Note thatgt(a), the fraction of virgin nodes with availabilitya, keeps changing in each roundt. The intuition

behind this is that virgin nodes with different availability will be picked up to receive the message with different

probability.

Given C, the number of copies forwarded per message, the availability distribution functionf(a), the total

number of nodes in the systemN , and the average size of pinging set and target setK as inputs, we can use the

model mentioned above to analyze several characteristics of the multicast as described below.

4.1 System-wide Multicast Reliability and Message Propagation Delay

The system-wide multicast reliability is defined as the fraction of online nodes that receive at least one copy of

multicast message. Thus, the system-wide multicast reliability R is

R =
yv

n
=

yv

NE[a]
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, wherev = the minimum value oft such thatxt = 0.

Hence, given the average size of the sender’s target setK (usually,K = O(log n)), the system availability mass

function f(a), and the target probability functionp(a), we can calculate the appropriate number of copiesC in

order to achieve desired system-wide multicast reliability. Calculating equations above can be locally performed at

each multicast node using the availability distribution from its target setTS. Note that each nodex in the system

can estimate the availability mass functionf asf(ay) = 1
|TSx|

for each nodey ∈ TSx.

The message propagation delay is the number of protocol rounds in which the system contains a least one active

node. Hence, the message propagation delayd can be defined as

d = v

wherev = the smallestt such thatxt = 0

4.2 Node-level Multicast Reliability

The node-level multicast reliability is defined as the probability that a node eventually receives at least one copy

of multicast message from its pinging set (from the definition in Section 1, this probability is given that the node

is available throughout the multicast period. According tothe equations, the multicast reliabilityr(a) at a node

whose availability equala can be estimated as follows.

r(a) = P [node receives at least one copy]

= 1− P [node receives no copies]

= 1−
∞
∏

t=1

[

(1− p(a))
CKE[a]xt

n

]

= 1− (1 − p(a))
CKE[a]yv

n

= 1− (1 − p(a))CKE[a]R (3)

where

v = the smallestt such thatxt = 0, andR = system-wide multicast reliability

The analysis shows that the system-wide multicast reliability has an effect on node-level multicast reliability,

no matter what node-level availabilitya or gossip target probabilityp(a) are chosen. Also, the relation between

expected global system-wide reliabilityR and local per-node reliabilityr can be described as
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R =
E[ra]

E[a]

where

E[ra] =
∑

{a:f(a)6=0}

(af(a)r(a))

5 Availability-dependent Reliability Predicates

Currently, AVCast supports two target probability functions, leading to two availability-reliability predicates.

The first predicate isuniform reliability, which all nodes receive roughly the same level of multicastreliability.

The second predicate isavailability-proportional reliability, where the reliability each node receives is equal to

the availability value of the node itself.

5.1 Uniform Per-Node Reliability (r =Constant)

According to the model presented in the previous section, specifying target selection probability functionp(a)

= 1
Kon

, whereKon is the number of available nodes in the target set, will result in a naive uniform gossip-based

multicast scheme where every available node in the pinging set is equally likely to be picked up as a message

receiver.

The node-level multicast reliabilityr(a) of a node with availabilitya in uniform gossip-based multicast can be

expressed as the following equation.

r(a) = 1− (1− p(a))CKRE[a]

= 1− (1−
1

Kon

)CKonR

≥ 1− e−RC

It can be seen that per-node reliabilityr(a) value does not depend on the per-node availabilitya value. Thus, the

quality of service each node obtains is equal to system-widereliability. Moreover, the system-wide reliability can

be expressed asR = E[ra]
E[a] = E[r]E[a]

E[a] ≥ 1− e−RC for this predicate.
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5.2 Availability-Proportional Reliability ( r = a)

Although defining the target selection policy function as a constant results in equality of node-level multicast re-

liability at each node, such a policy does not provide the fairness property because high-availability nodes achieve

the same level of multicast reliability as low-availability nodes. Since the fairness property is an important incen-

tive for users in many large-scale peer-to-peer applications, one might want to construct a multicast infrastructure

where multicast reliability at each node islinearly proportionalto the availability of the node itself.

According to node-level reliability analysis (i.e., equation (3)),

r(a) = 1− (1− p(a))CKRE[a]

However, we wantr(a) to be equal toa to satisfy the predicate. Replacingr(a) with a in the above equation,

the new equation is

a = 1− (1− p(a))CKRE[a]

Also, sincer(a) = a, global system-wide reliabilityR can be expressed as

R =
E[ra]

E[a]
=

E[a2]

E[a]

By replacingR and rearranging the equation, the target probability function can be expressed as a function of

availability as follows.

p(a) = 1− (1− a)
1

CKE[a2]

Notice thatE[a2] at nodex can be calculated based onTSx’s availabilities. With the formula above, each node

x can adjust itsC value locally so that
∑

z∈TSx
(p(az)) ≥ 1.0. The rest of the protocol is the same as the main

protocol framework described in Section 3.2.

6 Experimental Results

We have evaluated the AVCast protocol via simulation. Our implementation of AVCast contains almost 3,000

lines of C++ code including the membership and the gossipingprotocols. The availability distribution of nodes

in the experiment is obtained from Overnet file-sharing system trace [7], which has average availability roughly
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equal to 0.3. In the simulation, the system consisting of 1442 nodes runs the multicast protocol for 6,000 protocol

rounds (each round lasts around 5 seconds in practical). Forsimplicity, round are synchronized throughout the

system in the simulation. At the beginning of each round, each node randomly tosses a number between 0 and 1

to decide whether it is online or offline throughout that round (each node stays online if the number is less than its

availability value). During the first 3,000 rounds, each peer runs the availability monitoring and view rebalance

operations. During the last 3,000 rounds, a randomly selected online node initiates one multicast message to the

system per round. Each multicast message’s propagation is assumed to die out within a single round because nodes

in the no-wait gossiping scheme forward a message all at once, resulting in a very quick multicast process. Hence,

we can also assume that a node is either fully offline or fully online for a given message. Setting round duration

to 5 seconds is reasonable since a multicast typically completes within 5 seconds while the monitoring process

can achieves high accuracy. The average system reliabilityis the average fraction of online nodes that receives

message in each of 3,000 rounds. The average node reliability of each node is measured by the number of rounds

the node receives messages, divided by the number of rounds the node is online.

We first discuss the effectiveness of the membership protocol under differentα (balance sensitivity) andK

(expected size ofTS andPS parameters). The effectiveness will be measured in terms of(1) how well the load is

balanced throughout all nodes, (2) how accurately the availability distribution each node perceives from its target

set, and (3) the number of control message overhead incurredfrom the rebalancing operations. Then we evaluate

the availability-aware gossiping protocol in both predicates: uniform node reliability and availability-proportional

node reliability. Our evaluation is also based on how well the node reliability distribution implements the pred-

icates. We test each predicates with different number of copies C and the average target set sizeK parameters.

Unless explicitly stated, each experiment is done with the following default parameter values: rebalance sensitivity

α = 0.05, balance aggressivenessβ = 0.1, total number of nodesN = 1, 442.

6.1 Availability Membership

At time t = 0 in the simulation, all of 1,442 nodes were brought up online and thus each node knows all of its

target set. During eacht betweent = 0 andt = 3, 000, each node runs the view rebalance operation in order to

keep its target size to3logN = 3log(1, 442) = 31. In the rebalance operation, we varyα, the sensitivity factor,

from 0.1 to 0.01 and fixβ, the aggressiveness factor, at 0.1. Att = 3, 000, we observe the size of target set at each

node and the availability distribution each node has recorded from its target set.
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Figure 6. The monitoring component

6.1.1 Local view balance

Figure 6(a) shows the distribution of sizes of the target setat each node att = 3, 000. Note that the results are also

similar to the distribution of sizes of the pinging set. The smallerα is, the more consistent the sizes of the target

set are. As the result also applies to the pinging set of each node, smallerα leads to a more balanced load across

all nodes. However, settingα too small may cause oscillations and frequent view changes.

6.1.2 Accuracy

We use the average system availability each node observes from its target set as a measurement of how accurately

each node perceives the availability condition of the system. Figure 6(b) shows the result of the system with

different target set sizes. Notice that as the bigger the view size is, the more accurate system availability each node

perceives. However, it seems not to have too much of a difference betweenK = logN andK = 3logN .

6.1.3 Control Message Overhead

Figure 6(c) shows the control message overhead used in the rebalancing protocol during the first 100 rounds of the

rebalancing operation. Message overhead was high at first since all nodes were adjusting itsKout andKin values.

After few rounds, traffic load dropped drastically since most nodes were satisfied with their settings. According

to the result, the higherα is, the higher control message overhead incurred in the system. This is because more

nodes will need to rebalance their views due to the more strict constraint. .
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6.2 Availability-aware Gossiping

This section presents the result of the availability-awaregossiping betweent = 3, 000 andt = 6, 000 in the

simulation. The experiment is done with different view sizes K and differentα parameters. The results are

compared to the system where each node has global membershipknowledge.

6.2.1 Uniform Reliability

The results of the uniform gossip-based multicast simulation are shown in Figure 7. The overall conclusions are as

follows. It can be seen that each node merely obtains the samenode-level reliability, regardless of its availability

value. As the number of copies forwarded per message increases, the multicast reliability also increases. Also, the

equations derived in Section 4 predict the system-wide reliability accurately when the average target size is more

than2logN . Figure 7(a) displays the availability-reliability scatter plot where each point represents each node.

There are three sets of plots in the graph, representing three experiments with three differentC, the number of

copies forwarded per message. All three experiments used the average target size= 2logN andα = 0.05.
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Figure 7(b) demonstrates the average node reliability of system with different view sizesK and differentC

parameters without the rebalance procedure (simulations with rebalance procedure yield the similar result as ones

without rebalance procedure). The figure shows the effectiveness of system in the sense that setting target view

size more than or equal to2logN suffices to have the same performance as setting each node to have the global

membership knowledge. The performance difference betweensystems with different view sizes converges when

C is increased. The figure concludes that for the system sizes considered, settingK = 3logN andC = 4 results

in good performance while incurring reasonable space and network overhead.

Another perspective to evaluate the constant reliability predicate is the consistency in the quality of service

each node receives from the system. Figure 7(c) shows the standard deviation of node reliability in systems for

k = 3logN and differentα values. The result is consistent with the result from figure 7(a) that the standard

deviation increases asC increases from 1 to 2, but the standard deviation decreases as C increases beyond 2.

Also, the smallerα is, the smaller the standard deviation in the system. Generally, the standard deviations of node

reliability in local-view systems are comparable to the onein the global-view system.

In conclusion, the simulation shows that the system’s behavior in uniform gossiping follows the constant relia-

bility predicate very well. In addition, settingK = 3logN , C = 3, andα = 0.1 is an appropriate configuration.

6.2.2 Availability-proportional Reliability

This section presents the simulation result of the availability-proportional gossiping protocol. The experiment is

done with view sizeK = 3logN andα = 0.05. Figure 8(a) shows the scatter plot between the availability and the

reliability at each node. As shown in the figure, most nodes have multicast reliability at roughly the same level as

its availability, which is consistent with the availability-proportional predicate.

Figure 8(b) shows the cumulative distribution of nodes whose reliability differs from their availability in differ-

ent scales. As seen from the picture, around 60% of nodes in the system obtain multicast reliability that differs

from their availability within a value of 0.05 or less. Around 80% of nodes in the system obtain multicast reliabil-

ity that differs from their availability in the scale of 0.1.Only 2% of all nodes obtain the multicast reliability that

differs from their availability more than 0.2.

In conclusion, the availability-proportional gossiping protocol performs well in the sense that each node receives

the service with quality proportional to its contribution to the system. Only a few nodes receive a service with

quality significantly different from their behavior.
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7 Conclusions

This paper presented AVCast, an availability-aware membership management and multicast framework. AV-

Cast provides an availability-monitoring service and an availability-aware gossip-based multicast service for each

node in the system in a decentralized manner. The paper also presented a generic framework that allows an applica-

tion to adjust AVCast parameters in order to implement a multicast system with the desired availability-dependent

reliability predicate. Finally, the paper analyzed two reliability predicates that lead to system fairness — uni-

form per-node reliability and availability-proportionalper-node reliability. The experimental results validatedthe

correctness and applicability of the proposed schemes.
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