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ABSTRACT

Sequential hypothesis testing is applied in this thesis to make two contribu-
tions to the classification of electroencephalography (EEG) data for use in
non-invasive brain computer interfaces (BCIs).

The first contribution is a variable window-length classification method for
use in a steady-state visual evoked potential (SSVEP)-based BCI. Instead of
relying on a fixed window-length strategy—where a pre-specified amount of
data is collected before classification is attempted—a sequential probability
ratio test is used and data is collected until a confidence threshold is met.
This variable window-length strategy was tested using a simple experiment
where one of five visual stimuli were presented one at a time to three par-
ticipants. An analysis of the data collected during this simple experiment
show that the information transfer rate was improved by 43% when using
the variable window-length strategy as compared to the fixed window-length
strategy.

The second contribution is an analysis showing that it is possible to clas-
sify expected versus unexpected endings to strongly constrained sentences at
better than chance accuracies using single trials of EEG. This better than
chance classification accuracy is demonstrated for features based on two dif-
ferent event-related potentials (ERPs) elicited in response to the neural pro-
cessing of meaning-related information—the N400 and the frontal positiv-
ity (FP). Using an existing dataset, classification accuracies were computed
for features based on each of the two brain signals for three different classi-
fiers (Naïve Bayes [NB]; linear discriminant analysis [LDA]; and support vec-
tor machines [SVM]), three different electrode groupings, and three different
ways of analyzing the individual trials (single trial classification; classification
after averaging multiple trials; and the sequential classification of trials using
a sequential probability ratio test [SPRT]). Using single trials of EEG, fea-
tures based on the N400, and all 26 EEG electrodes, classification accuracy
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with an LDA classifier was 59.96%. In analyses with features based on both
the N400 and FP, classification accuracies were higher (59.25%) when three
trials were averaged together before classification than they were with single
trials. The initial tests with the SPRT classifier were mixed. Classification
accuracies were higher for SPRT (when using the same features) than for NB
(but not for LDA or SVM) when single trials or the average of multiple trials
were used for classification. The analyses of classification accuracies using
features based on the N400 and FP, development of the ERP Classification
GUI, and the SPRT classifier represent significant steps toward the devel-
opment of a new BCI paradigm based on the processing of meaning-related
information.
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CHAPTER 1

INTRODUCTION

Brain-computer interfaces (BCIs) are devices that enable people or animals
to communicate information to artificial systems through brain activity. The
first BCI—as well as the term brain-computer interface itself—was described
in 1973 by Jacques J. Vidal [1] based on his work (and that of his students,
see Glassman [2] and Schwartzmann [3]) at the University of California, Los
Angeles. Since their invention, the majority of research on the development of
BCIs has the goal of enabling people who have severe motor disabilities—such
as late stage amyotrophic lateral sclerosis (ALS) [4, 5, 6]—to communicate.
In these individuals, ordinary methods of communication (e.g., speaking, sign
language, eye movements, etc.) are no longer possible. Since BCIs do not
rely on muscle activity, they may provide the only means for these individuals
to communicate with the world around them.

Most BCIs (including the BCI described in Vidal’s [1] original experimen-
tal setup), measure brain activity using electroencephalography (EEG). EEG
measures the electrical activity, most likely from excitatory and inhibitory
post synaptic potentials, naturally generated in the brain [7]. This elec-
trical activity, when synchronous, causes small changes in voltage that can
be measured from the surface of the scalp using electrodes. These signals
are subsequently filtered (generally between 0.1 and 100 Hz), amplified, and
digitized. The resulting digital signals are then translated into commands
and these commands are used to control artificial systems. This translation
process—the mapping of EEG signals into computer commands—is referred
to as classification and represents a critical component in the design of BCIs.

The challenges inherent to the design of a classification system for BCIs
have been apparent since Vidal’s original experiments [1]. EEG signals have
a low signal-to-noise ration (SNR); there is only a limited amount of data
that can be collected during a laboratory experiment, and there are large
differences in the signals elicited from different paradigms and individuals.
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As such, the overall design of the classification system depends on a set
of design choices, including: the BCI paradigm, preprocessing of the EEG
signals, feature extraction, and the choice of a classifier.

The design of any classification system for use in a BCI depend on what
brain signal is acquired and which protocol is used to acquire it. There
are many different brain signals that can be used to control a BCI, such as
imagined movements (motor imagery BCIs), responses evoked by unexpected
stimuli (P300), or frequency entrained responses to repetitively flashing lights
(steady-state visual evoked potentials [SSVEPs]). Each of these signals has
distinct advantages and disadvantages. For example, the signals used to
control a motor imagery BCI can be generated endogenously by users [8],
whereas P300 and SSVEP-based BCIs require external stimuli to evoke brain
activity. The experimental protocol used to acquire a signal from a user is
also important. A BCI that elicits a P300 using a picture of a face has better
performance than one that uses simple flashes of light [9]. In SSVEP-based
BCIs, the amplitude of the evoked response is dependent on the frequency
of the stimulus [10]. Although it is beyond the scope of this thesis, the
specific ways in which a user interacts with the BCI has a major impact
on classification performance; Akce, Norton, and Bretl [11] demonstrated
the effect of the design of the user interface on the performance of SSVEP-
based BCIs. Finally, the majority of research on BCIs has concentrated on
the use of motor imagery, the P300, or SSVEPs, but there are a number of
other brain signals that can be used to control a BCI. These include signals
related to visual spatial attention [12], spatially distinct sounds [13], and the
processing of meaning-related information [14] (discussed in Chapter 3).

After the signal has been acquired, it can be manipulated to eliminate ar-
tifacts or reduce noise. Steps taken to accomplish these goals are collectively
known as preprocessing. There are many different ways to preprocess EEG
data, but three of the most common are re-referencing, filtering, and artifact
rejection. All EEG signals reflect voltage differences between two electrodes,
the specific electrode being discussed and a reference electrode. The process
of changing the electrode used as a reference after data acquisition is known
as re-referencing and is common when working with EEG. A number of noise
sources can be eliminated through filtering. A low-pass filter, for instance,
may be used to remove high-frequency noise caused by muscle artifacts or
a notch filter may be used to remove power line noise [15]. Slightly more
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complicated than standard filtering is the removal of artifacts caused by eye
movements. Fascinatingly, Vidal [1] called the removal of eyeblinks “solved
to a large extent”. Yet, researchers are still investigating methods to remove
eyeblink artifacts from EEG recordings. These methods include regression
[16] and independent component analysis (ICA) [17].

After the data is preprocessed, indicators of specific types of brain activity
or “features” are extracted. The purpose of these features is to enable the
definition of numerical differences between different types of brain activity. It
is possible to define these numerical differences using the raw data, but this
can degrade classification performance due to overfitting. One advantage of
working with EEG data is that decades of experimental analyses have iden-
tified potential features for use in classification. The P300, for example, was
first described by Sutton et al. in 1965 [18] and has been under investigation
ever since. In the case of SSVEP-based BCIs, features based on the Fourier
transform and canonical correlation analysis (CCA) [19] have proven to be
effective for use in BCIs. After identifying these potential features, they must
be evaluated. This evaluation process can be done in many different ways
and represents an active area of research [20].
The final step in the design of a classification system is the choice of clas-

sifier. The simplest form of a classifier is a threshold. If the value of a
feature or probability of some event exceeds a certain level then a selection
is made. More advanced classifiers, such as naïve Bayes (NB), linear dis-
criminant analysis (LDA), step-wise linear discriminant analysis, or support
vector machines (SVM) exploit numerical differences between the features to
discriminate between different types of brain activity (for a review see [21]).
In addition to those listed above, here we consider a type of classifier known
as a sequential classifier. Instead of making a decision immediately after
data comes in, sequential classifiers may decide to collect more data before
making a decision. In some ways they are similar to placing a threshold on
top of another classification system.
In this thesis, we consider two classification problems for the development

of BCIs. In Chapter 2, we consider the application of a sequential hypothesis
test to the classification of visual targets used in an SSVEP-based BCI. Then,
in Chapter 3, we present initial results from classification analyses—including
preprocessing, feature extraction, and the accuracy of different classifiers—of
EEG data collected during the reading of sentences. In this experiment, two

3



types of sentences were presented. These two types of sentences differed in
how they ended. These different endings are known to elicit specific brain
signals believed to be related to the processing of meaning [22]. In addition,
we describe a graphical user interface to enable the analysis of any properly
formatted ERP dataset and report initial results on the use of the sequential
probability ratio test (SPRT) to classify this data. Finally, in Chapter 4, we
provide a brief conclusion.
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CHAPTER 2

SEQUENTIAL SELECTION OF
WINDOW-LENGTH FOR IMPROVED
SSVEP-BASED BCI CLASSIFICATION

2.1 Abstract

Brain-computer interfaces (BCI) utilizing steady-state visual evoked poten-
tials (SSVEPs) recorded by electroencephalography (EEG) have exciting po-
tential to enable new systems for disabled individuals and novel controls for
robotic and computer systems. To interact with SSVEP-based BCIs, users
attend to visual stimuli modulated at predetermined frequencies. A key
problem for SSVEP-based BCIs is to classify which modulation frequency
the user is attending, for which there is an inherent trade-off between speed
and accuracy. As SSVEP signals vary with time and stimulation frequency,
a fixed-length data window does not necessarily optimize this trade-off. We
propose a strategy, developed from sequential analysis, to vary the window-
length used for classification. Our proposed technique adapts to the data,
continuing to collect data until it is confident enough to make a classification
decision. Our strategy was compared to a fixed window-length method us-
ing a simple experiment involving five frequencies presented individually to
three participants. Using a canonical correlation analysis classifier to com-
pare the proposed variable-length scheme to a standard fixed-length scheme,
the variable-length approach improved the classifier information transfer rate
by an average of 43%.

2.2 Introduction

The direct classification of neural signals for the benefit of those with mo-
tor impairments or as an alternate input modality has intrigued researchers

This work has been previously published as [23] and is co-authored by E. Johnson, D.
Jones, D. Jun, and T. Bretl; c©2015 IEEE.
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since first proposed more than 40 years ago [1]. Using electroencephalog-
raphy (EEG), researchers have continued to develop brain computer inter-
faces (BCI) for communication and control, effectively translating electrical
brain activity into artificial commands. One class of BCI systems, based on
steady-state visual evoked potentials (SSVEP), relies on the brain’s response
to repetitive visual stimuli in the user’s environment [24]. These stimuli, such
as a flashing LED or computer screen, cause an entrainment between popu-
lations of neurons and the stimuli that can be selectively modulated through
the allocation of attention [25]. Based on the neural signatures measured by
EEG, this allocation of attention can be classified, effectively allowing the
user to control the input of a computer system without the need for motor
interaction. The BCI devices based on this paradigm have enabled text com-
munication for disabled individuals [26], been demonstrated for use in robotic
navigation tasks [27], and have been used as inputs for computer games [28].

Despite the promise demonstrated using these techniques their utility re-
mains limited for several reasons, including: their reliability [29], ease of use,
and overall system performance [30]. Considering the third of these three
limitations, BCI systems are commonly compared based on their informa-
tion transfer rate (ITR), measured in bits/second [31, 32]. Since ITR is a
function of accuracy, latency, and the number of classes, various schemes for
improving bitrate can be imagined. For instance, an easy way to improve
overall information throughput is to increase the number of classes available
to the user. Even if classification is relatively slow, a high ITR can be ob-
tained from a system with 48 classes [33]. Another approach is to improve
the speed and accuracy of classification.

Several classification methods currently dominate SSVEP-based BCI sys-
tems, including: power spectral density analysis (PSDA), minimum energy
combination (MEC) [34], and canonical correlation analysis (CCA) [19]. In
order to classify which of several frequencies a user is attending to, these
classifiers wait for a fixed length of input EEG data before making a deci-
sion. This “window-length” is chosen a priori by the system designer and
represents a trade-off between classification speed and accuracy.

However, there is no basis for assuming the window length must be fixed.
Sequential analysis [35] provides a framework that makes selecting the stop-
ping time (i.e., choosing the window length) a part of the classification task.
This methodology is commonly used in a wide range of applications including
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medical diagnostics and quality assurance in manufacturing. Straightforward
application of the sequential probability ratio test (SPRT) [36] (a standard
sequential procedure), to SSVEP classifiers is not immediately obvious due
to the lack of appropriate signal models.

In this chapter we propose a sequential test which is performed directly
in the classifier-feature space. This test accounts for the classification rule,
does not require modeling assumptions, and can handle nonlinear feature
mappings. We develop our variable-length window method for the CCA
classifier presented in [19], although the methodology outlined in this chapter
may be extended to other existing classification methods. We demonstrate,
based on a comparative study with a traditional CCA algorithm, that our
variable-length window method allows for classification on a short window-
length when signal quality is high, and automatically waits for more data
when signal quality is low. This sequential approach is shown to uniformly
outperform a fixed window-length method in terms of ITR and classification
accuracy.

2.3 Methodology

In this section, we first introduce notation for the CCA classifier [19], which
is then used to develop the proposed variable-length window method.

2.3.1 Stimulus-Frequency Classification Using CCA Features

The goal of the classification algorithm proposed in [19] is to infer the input
frequency from multi-channel EEG data:

1. Assume there areK possible stimulus frequencies andN EEG channels.

2. The window length is assumed to be L samples long, which is L/Fs

seconds, where Fs is the EEG sampling rate.

3. For a given stimulus frequency, CCA coefficients are computed using L
samples from each of the N channels. The data are represented by a
matrix X of dimension L×N .
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Figure 2.1: Plots of the CCA classifier decision rule for data of increasing
window lengths. Test data with f1 = 6 Hz and f2 = 8.57 Hz were divided
into three different lengths. As window length increases, the
discriminability of the two classes increases considerably. c©2015 IEEE.

4. The largest CCA coefficient, defined to be ρ(X; f) [37], is used as the
feature for classification:

f ∗ = arg max
f

ρ(X; f), f = f1, . . . , fK (2.1)

where f ∗ is the classified frequency.

2.3.2 A Sequential Approach to a Variable-Length Window

The proposed sequential test essentially uses all of the data collected thus far
to decide whether or not to continue collecting more data. To avoid requiring
any additional assumptions about the data model, we develop a sequential
test directly on the CCA feature space. This allows for direct comparison
between the variable-length window and standard CCA classification.
The decision to continue collecting data depends on the current level of

confidence as to which class the data belongs. The classification strategy in
Equation (2.1) for two classes f1 and f2 (i.e., K = 2) is shown graphically
as the solid line in each subplot of Figure 2.1. Each subplot corresponds
to a different window length L, and each sample corresponds to the features
extracted from an L×N block of raw EEG data. All features lying above this
line are classified as f2, and all features below it are classified as f1. Thus,
the classification boundary can be expressed as a hyperplane, h. Given the
features of a data block (ρ1 and ρ2), the distance from the classification
boundary, which expresses one’s confidence, is given as the distance from the
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hyperplane:

d(ρ1, ρ2) =

∣∣∣∣∣hT
[
ρ1

ρ2

]∣∣∣∣∣ =

∣∣∣∣∣[1,−1]

[
ρ1

ρ2

]∣∣∣∣∣ = |ρ1 − ρ2| (2.2)

As shown in the sequence of scatter plots, when the window-length L

increases, the confidence for every point also increases. This behavior has
been quantified in the related problem of detecting a sinusoidal signal in
Gaussian noise, where the Chernoff distance between the null and alternative
densities (or more generally the deflection coefficient) increases by a factor
of
√
L [35].

The key idea of our approach is that even when L is small, there are some
samples that could be classified correctly with high confidence. Identifying
these samples and classifying them early may help to reduce the effective
window length, when averaged over time.

Given a current window length L and data X (of dimension L × N), we
propose the following sequential test:

Require: confidence threshold, τ
Output: classification result, f ∗

1: procedure VaryWindowLength(L, X)
2: if d(ρ(X; f1), ρ(X; f2)) < τ then
3: L← L+B . increase window length
4: X ← [X;XB] . augment new data
5: return VaryWindowLength(L,X) . repeat
6: else
7: return f ∗ from (2.1) . classification task

Here, B is defined to be a step-size, which is a basic unit of growth, and XB

is the data matrix that corresponds to the new B samples for each of the
N channels. The classification task is carried out only when the minimum
distance from the boundary is satisfied; until then, the window length is
incrementally increased.

The threshold τ controls the trade-off between classification performance
and average speed. In practice, choosing the threshold should be done a
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priori, and is exactly analogous to how window-length is chosen in a fixed-
length strategy. Although the procedures are similar, the impact is quite
different, as our variable-length strategy will be able to make classifications
early, with minimal effect on performance. In fact, a fixed-length strategy is
actually a special case of our proposed algorithm, with τ = 0, and the initial
L chosen to be the fixed window-length.
Finally, note that we focus on binary classification for the remainder of the

chapter. The generalization (K > 2) is a straightforward extension using the
geometric hyperplane interpretation.

2.4 Experimental Setup

2.4.1 Subjects

Experiments were conducted at the University of Illinois BCI lab with the
authors as subjects. A James Long 128-channel EEG amplifier was used in
conjunction with a National Instruments DAQ to digitize EEG signals at
128 Hz. The data were passband filtered from 1 – 30 Hz by the amplifier.
EEG data were monitored during experimentation and logged by BCI2000
[38]. Participants were seated in a comfortable chair at 65 cm from a 24-inch
BenQ XL2420T computer monitor. Scalp recording impedances were kept
under 10 kΩ from sites (PO7, PO3, PO4, PO8, O1, OZ, O2) based on the
10-5 international system [39].

2.4.2 Stimuli and Procedure

Stimuli were implemented as a script in MATLAB in conjunction with the
Psychophysics Toolbox [40]. The experiment consisted of six blocks of stimuli
(6 Hz, 6.67 Hz, 7.5 Hz, 8.57 Hz, 10 Hz, and Null). During a block, a single
stimulus of a given frequency was presented to the participant. The stimuli
within each block were not randomized for this study as the emphasis was on
a direct comparison between the two algorithms. Each stimulus was a square
of identical size, subtending an angle 3.5◦ from fixation in each direction.
Each block was composed of 20 trials each 15 seconds in length. At the
beginning of each block, the participant was instructed to focus attention
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on the center of the flickering stimulus for the entire trial. There was a
three-second interval between each trial. Stimulus onset was captured with
a photodiode linked directly into the DAQ.

2.4.3 Analysis Techniques

All analyses were conducted offline following each experiment in the MAT-
LAB environment. In order to quantify the difference in performance between
the fixed-length window and our proposed variable-length window, the strate-
gies were tested using a set of two-class classification problems. To form the
two-class problems, each stimulus frequency was compared, one at a time,
against all other frequencies. This gave a total of 10 comparisons for each of
the three subjects. For each two-class problem, 20 trials of each frequency
formed the testing dataset. Each two-class problem, therefore, had 10 min-
utes of testing data. A two-class CCA classifier was applied to the testing
dataset, using both a fixed-length and variable-length window strategy.

Table 2.1: Performance of 3 subjects for fixed-length and variable-length
window ( c©2015 IEEE).

CCA (fixed-length window)
Participant Accuracy (%) AWL (s) Max ITR (bits/s)
A 94% 0.75 0.92
B 90% 0.58 0.96
C 88% 0.44 1.09
Average 91% 0.59 0.99

CCA (variable-length window)

Participant Accuracy (%) AWL (s) Max ITR (bits/s) % Max ITR
Improvement

A 96% 0.62 1.24 35.3%
B 94% 0.48 1.44 49.8%
C 95% 0.48 1.59 45.2%
Average 95% 0.53 1.42 43.4%
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2.4.4 Parameter Selection

Performance for the fixed-length window strategy was tuned by modifying
the window length. The window length varied from 1/8 seconds to 1 second
with 1/16 second steps. Changing the length of the fixed-length window
trades off between decision speed and decision accuracy. For the variable-
length strategy, the minimum block length was set at 1/8 second. To tune
performance of the variable-length strategy, the threshold τ was varied from 0
to 0.3 in steps of 0.01. Varying the threshold trades off between classification
speed and accuracy.

2.5 Results

For both fixed-length and variable-length strategies, the percent accuracy,
average window-length (AWL), and ITR was calculated and averaged over
all 10 two-class comparisons. The maximum ITR for each subject is reported
in Table 2.1 for both fixed and variable-length strategies. The variable-length
approach increases ITR by an average of 43% over all three subjects. For
our subjects, using a variable-length strategy is an effective way to improve
the performance of a CCA classifer.

In addition to the parameter configuration that maximizes ITR, it is possi-
ble to trace out the performance trade-off between classification accuracy and
average window length for the two strategies. The results are summarized in
Figure 2.2. For all three subjects, the classification performance curves for
the variable-length window exceeds the curve for the fixed-length window.
As the threshold for the variable-length window is lowered, it approaches the
performance for the fixed-length window.

2.6 Discussion

The maximum ITR achieved by each of the three subjects in the variable-
length window exceeded the performance of the fixed-length window. This
is very encouraging, and shows uniform improvement of our variable-length
approach. Performance numbers, however, are derived from idealized com-
parisons of ITR and are not directly comparable to performance numbers
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Figure 2.2: Classification accuracy vs average window length for all three
subjects averaged over 10 two-class comparison cases. For the fixed-length
window, the performance curve is generated by changing the length of the
fixed window. For the variable-length case, the performance curve is
generated by altering the decision threshold. These curves were then
linearly interpolated and averaged together across all 10 comparisons. For
all three subjects, the variable-length window performs uniformly better,
and approaches the performance of the fixed-window only for low average
window lengths. c©2015 IEEE.

from real-time BCI systems. The relative improvement of the variable-length
approach does suggest that incorporating this strategy will improve perfor-
mance.

Using this simple experimental data and CCA classification, the compar-
isons of fixed-length and variable-length windows validate the intuition for
applying sequential analysis. Because the quality of the data varies with
time, a variable-length window can exceed the performance of a fixed-length
window. We hypothesize that the variable-length strategy can be applied to
other SSVEP classifiers, such as PSDA and MEC [34], provided the perfor-
mance of the classifier improves as a function of the length of data used to
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classify.
Although the results in this study only consider the two-class case, the

variable-length strategy can be extended to the multiple-class case. For CCA,
this would involve finding the CCA correlation for each frequency of interest.
These features would form an n-dimensional hypercube, with hyperplane
decision boundaries.

Finally, this study does not apply any channel selection or denoising tech-
niques. Again, this is because these results demonstrate the relative improve-
ment of applying a variable-length window in place of a fixed-window, not
an absolute performance metric.

2.7 Conclusion and Future Work

Since SSVEP signals vary with time, conditions, and stimulation frequen-
cies, fixed-length windows are not necessarily optimal. This work proposed
a variable-length window method for classification using CCA for SSVEP-
based BCI. Our intuition about performance varying over time is consistent
with the obtained results. In particular, a variable window-length strategy is
shown to be uniformly better than a fixed window-length strategy, resulting
in an average ITR improvement of 43%. As demonstrated, our proposed ap-
proach does not require any additional assumptions or signal models relative
to existing CCA-based classifiers.

One implication of the achieved performance improvement is that faster,
more accurate classification may improve the overall usability of SSVEP-
based BCI systems. This may be particularly important for long-term appli-
cations, where attention and signal quality is expected to vary greatly due
to effects such as fatigue and variable recording conditions.

As our approach naturally lends itself to extensions, further studies could
consider multiple classes and other classification algorithms. Although cur-
rent results demonstrate the relative improvement of the variable-length
strategy over the fixed-length strategy, they do not yet demonstrate the
performance of a real-time BCI system; future work could also explore the
efficacy of this approach for online BCI tasks.
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CHAPTER 3

TOWARD A BRAIN-COMPUTER
INTERFACE BASED ON THE

PROCESSING OF MEANING-RELATED
INFORMATION

3.1 Abstract

In this chapter we show that it is possible to classify expected versus unex-
pected endings to strongly constrained sentences using single trials of EEG
data. Furthermore, we demonstrate this for features based on two different
brain signals elicited by the processing of meaning-related information—the
N400 and the frontal positivity (FP). Using an existing dataset, we assessed
the classification accuracy of features based on these two brain signals for:
three different classifiers, three different electrode groupings, and three differ-
ent analyses of the individuals trials (single-trial classification; classification
after averaging multiple trials; and classification using the sequential prob-
ability ratio test [SPRT]). All of these analyses were done using the Event-
related potential (ERP) Classification GUI, a MATLAB interface we devel-
oped for classification analyses on event-related potential datasets. When us-
ing 26 features—one from each electroencephalography (EEG) electrode—it
was possible to classify expected versus unexpected endings (N400 - 58.49%;
FP - 57.00%) at above chance accuracies. Averaging multiple trials together
before classification improved accuracy from 55.81% with single trials to
59.25% after averaging three trials. The results obtained using SPRT were
mixed (compared with the single trials or the average of multiple trials),
classification accuracy was higher than Naïve Bayes, but not support vector
machines or linear discriminant analysis. The analyses of classification ac-
curacy using features based on the N400 and FP, development of the ERP
Classification GUI, and the SPRT classifier represent significant steps toward
a new brain-computer interface paradigm based on the neural processing of

This work was done in collaboration with C. Smith, R. Hubbard, E. Johnson, D. Dickson,
K. Federmeier, and T. Bretl.
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meaning-related information.

3.2 Introduction

Non-invasive brain-computer interfaces (BCIs) measure and interpret brain
activity in near real-time. The majority of research on the development of
BCIs concentrates on the use of a small number of paradigms; where each
paradigm relies on a particular brain signal (motor imagery, the P300 event
related potential [ERP], and steady-state visual evoked potentials [SSVEPs]).
There are, however, a number of other brain signals that could probably be
used as the basis of a BCI. For example, there are multiple neural signals
known to occur in response to unexpected endings in strongly constrained
sentences. These signals could be used in the development of BCIs based on
the processing of meaning-related information.

For the past 40 years, the neural mechanisms involved in the processing of
meaning-related information have been studied using ERPs [41]. By having
individuals silently read sentences—presented visually, one word at time—
while their brain activity was recorded, Kutas and Hillyard discovered that
semantically inappropriate words cause a negative deflection in electroen-
cephalography (EEG) activity. This negative deflection starts approximately
250 ms and peaks 400 ms after the onset of a semantically inappropriate word
[41] and is thus now known as the N400.

Further investigation of the N400 over the intervening years has shown that
the amplitude of the N400 is inversely related to cloze probability. In the
sentence reading protocol of Kutas and Hillyard [41], cloze probability is the
empirically determined probability that a specific word ends that sentence.
In other words, as the likelihood of a specific ending word in a sentence
increases, the greater the reduction in the N400 if that expected word is
observed.
This relationship between cloze and the N400 was further explored in a

study by Federmeier et al. [14]. In this study, two sets of sentences were
shown to participants, a set of strongly constrained sentences and a set of
weakly constrained sentences. In the strongly constrained sentences, a specific
word completed the sentence more than 67% of the time. In the weakly con-
strained sentences, on the other hand, a specific word completed the sentence
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less than 42% of the time. Within these two sets, there were different po-
tential endings, an expected ending and an unexpected ending. The expected
ending was the word, determined through a survey, that was most likely to
complete the sentence. The unexpected ending was a syntactically correct
(and plausible) word, but unlikely to end that particular sentence. Criti-
cally, the cloze probability of the unexpected endings in both the strongly
constrained sentences and weakly constrained sentences were controlled to
be equal. This enabled the dissociation of the effects of constraint from the
effects of cloze.

Federmeier et al. [14] replicated previous work showing that the reduction
in the N400 is graded by cloze. The N400 was smallest for expected endings
in strongly constrained sentences and second smallest for expected words in
weakly constrained sentences. There did not appear, however, to be any
difference in the amplitude of the N400 elicited in response to unexpected
endings in the strongly constrained sentences versus unexpected endings in
the weakly constrained sentences. Since the unexpected endings in these two
conditions had equal cloze—but different levels of constraint—it was inferred
that the N400 is not sensitive to the constraint of the sentence.

This study also revealed a second ERP component related to the processing
of meaning-related information. This component was sensitive to constraint;
it was only present in the EEG responses to strongly constrained sentences
with unexpected endings. Labeled the frontal positivity (FP) for its location
and positive voltage deflection, it has a frontal scalp distribution and appears
500–900 ms after the onset of the ending word. Federmeier et al. [14] cau-
tiously theorized that it might reflect a cognitive processing cost of making
strong predictions due to context.

While EEG has been instrumental in the investigation of the neural mech-
anisms underlying the processing of meaning-related information, there have
been few attempts [42, 43, 44] to build a BCI based on these signals. Fur-
thermore, there has been no work (that we are aware of) that has explored
the use of the multiple evoked (N400 and FP) EEG responses that occur in
response to the processing of meaning-related information in a BCI. Such
a BCI may have applications for healthy individuals, such as for recogni-
tion of implicit, but semantically important information in human-computer
interfaces [45].

Here, we took a first step toward the development of a BCI based on the
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neural processing of meaning-related information. We investigated whether
multiple neural responses to expected versus unexpected endings to highly
constrained sentences could be classified at above chance levels. In other
words, we analyzed whether it is possible to build a model of EEG responses
to each of these two endings and subsequently use that model to predict
whether someone had observed an expected or unexpected sentence ending
in a new response. For this analysis, we used the data from the study of
Federmeier et al. [14]. We based our classification features—numerical rep-
resentation(s) of the EEG data that enable responses to expected versus
unexpected sentence endings to be determined on known EEG responses to
meaning-related information, namely the N400 and the FP. (See [46] for an
in-depth discussion of machine learning topics such as features.) We also
considered whether the combination of features from both of these brain sig-
nals improved classification accuracy over each brain signal in isolation. In
addition, we compared several classifiers that use a fixed number of trials
before attempting to classify the user’s neural signals with a classifier that
utilizes the sequential probability ratio test (SPRT) [36].

The results of our analyses show that strongly constrained sentences with
expected endings can be separated from strongly constrained sentences with
unexpected endings with better than chance accuracies. When using a single
feature from each of the 26 EEG electrodes and the timing/frequency range
of the N400, classification accuracy with a naïve Bayes (NB) classifier was
above 60%.

3.3 ERP Classification GUI

An ongoing review we are conducting of the BCI literature shows that of the
more than 1500 publications with the phrase “brain-computer interface” or
“brain-machine interface” in the title or abstract (published before 2015), the
main contribution of nearly 400 of these papers were improvement to classi-
fication systems (unpublished data from Norton). Furthermore, nearly 100
of these papers (and perhaps more) used datasets from one of the BCI com-
petitions or another online data repository. Yet, the majority of researchers
conducting these analyses devised a set of custom analysis scripts and treat
each project as stand-alone and independent of one another.
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Figure 3.1: (left) The processing steps involved in most classification
analyses, including those reported here. (right) The ERP Classification
GUI.

Here, we create a system that allows many ERP datasets and classifica-
tion system to be analyzed. At a high level, all ERP classification problems
involve the same set of steps (Figure 3.1 [left]). Thus, instead of treating all
ERP problems as being unique and requiring a custom classification system,
we have created a graphical user interface (GUI) for handling ERP classifi-
cation problems in general. This GUI enables a classification analysis to be
performed on any ERP dataset of an appropriate structure. Once the data
are loaded, the user is able to make selections that define the exact settings
of the analysis to be performed. These settings include defining the subjects,
conditions to be compared, cross-validation method, features, dimensional-
ity reduction method, and classifier. Two design choice were made to reduce
complexity. First, only binary classifications are available. If the dataset
contains more than two distinct classes of data, the user must select which
two types of data they would like to compare during the analysis. Second,
we simplified the data format by assuming that artifact rejection is complete
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and that the individual trials have already been extracted. Existing EEG
analysis toolboxes, such as FieldTrip [47] or EEGLab [48], can be useful for
both of these pre-processing steps.

We provide additional details on this system—the ERP Classification GUI
(Figure 3.1 [right])—here and then use it to perform the classification anal-
yses on the data from Federmeier et al. [14].

3.3.1 Loading Data

ERP Dataset
Each ERP dataset is contained in a unique folder and is
composed of settings file and a set of data files. Each datafile
includes EEG data for one subject. Within the data file,
the EEG data are separated by condition. The format of
each condition is trials by timepoints by electrodes. Settings
variables are listed below.

s r a t e = va r i ab l e conta in ing the sampling
ra t e ;

t imepo int s = a vec to r o f time points , t h i s
enab l e s the user to d e f i n e when
st imulus onset occurred ;

condNames = names o f each cond i t i on ;
condDesc r ipt ions = d e s c r i p t i o n s o f each

cond i t i on ;
chanInfo = a l i s t o f the channe l s ;
dataFileNames = l i s t o f f i l e names

conta in ing the EEG data from each
sub j e c t ;

Figure 3.2: (left) A description of the variables and data files contained
within each ERP Classification GUI dataset. (right) The load menu enables
the user to select which dataset (from a list of all of the available datasets),
the individual data files that they wish to load, and the two conditions they
would like to perform their classification analysis on. Multi-class
classification is not currently possible.

The GUI is designed to handle multiple datasets with a common data
structure. To load a dataset into the GUI for use, a data folder (containing
all of the datasets) must first be defined. Within this data folder, each
dataset must be contained within a subfolder and this subfolder must contain
individual data files for each participant in the study and a single settings file.
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After the data folder location is passed to the GUI, it is possible to load all
of the datasets within that folder. The structure of each ERP Classification
GUI dataset and the load data menu are shown in Figure 3.2.

3.3.2 Cross-Validation

Figure 3.3: Cross-validation menu in the ERP Classification GUI.

When performing a classification analysis, the data must be separated into
a training set (used to train the model) and a testing set (used to validate
the model). Variations in the trials selected for each of these two datasets
cause differences in the classification accuracy. To help with this problem,
several different types of cross-validation methods are available (Figure 3.3).
During cross-validation, the classification process is repeated multiple times.
Each time, different subsets of the trials are placed into either the training
or testing set. This produces a more stable assessment of the classification
accuracy.

In our system, the user may select: no cross-validation, k-fold cross-
validation, leave-one-out cross-validation, and Monte Carlo based cross-
validation. As its name suggests, no cross-validation performs the requested
analysis a single time. This is not as accurate, but can be useful for testing.
In k-fold cross-validation, the data are divided into k chunks. All but one of
these chunks is used for training the data and then the last chunk is used for
testing the data. The system then iterates through the chunks, so that every
chunk is used as the testing set at least once. Leave-one-out cross-validation
is equivalent to k-fold cross-validation where k is equal to the number of trials
in the data. In other words, all but one of the trials are used in the training
set. k-fold cross-validation and leave-one-out cross-validation are discussed
further in Lemm et al. [49]. The final cross-validation method available is
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Monte Carlo based cross-validation. In this method, a user determined por-
tion of the data to be placed in the training set and the rest of the data are
used in the testing set. Once this proportion is defined, individual trials of
data are randomly selected to be placed in the training or testing set and the
classification analysis is performed. This process is completed many times
and the classification accuracy is defined as the average across all of those
repetitions.

3.3.3 Feature Selection

Figure 3.4: Feature selection and analysis menu in the ERP Classification
GUI.

The most important component of this GUI is its tool set for feature
selection (Figure 3.4). Currently, two kinds of features are available for use
in the classification analysis: time-domain features and frequency-domain
features.

When we refer to time-domain features, we are considering traditional
methods of ERP analysis [15]. These includes features such as peak am-
plitude and peak onset latency. The main GUI has a time-domain feature
sub-system that allows users to analyze ERPs and determine which of these
features could be useful for classification (Figure 3.5). There is a similar sub-
system for analyzing frequency-domain features that is beyond the scope of
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Figure 3.5: ERP Classification GUI time-domain feature analysis window.

this chapter. In ERP analysis, frequency-domain features are of interest to
analyze changes that are not phase-locked to the stimulus.

3.3.4 Dimensionality Reduction

If there are too many features, the classifier may overfit the data. If over-
fitting occurs, the classifier will work well with the data used to create the
model, but will not work well with new data. One way to avoid this is to
choose fewer features. Another way to solve the problem is to try to repre-
sent a larger number of features in a lower-dimensional space. This process,
known as dimensionality reduction, can improve classifier accuracy under the
right conditions. In the GUI, the only dimensionality reduction method that
has been implemented is principal component analysis (PCA). A discussion
of three different techniques for dimensionality reduction, including PCA,
can be found in [50].

3.3.5 Classifier

The final step before initiating the classification analysis is selecting the clas-
sifier and parameters of the classifier. There are multiple classifiers pro-
grammed into the GUI (Figure 3.6), they include: naïve Bayes (NB), lin-
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Figure 3.6: Classifier selection menu in the ERP Classification GUI.

ear discriminant analysis (LDA), support vector machines (SVM), maximum
likelihood (ML), and the sequential probability ratio test (SPRT) [36]. Each
of these classifiers can be used to separate the classes of EEG data, but each
accomplishes that task in a slightly different way. SVM and LDA are dis-
cussed by Lotte et al. [21] in their review on classifiers for BCI, Myung [51]
provides an excellent tutorial on ML (our version of ML assumes the data
are normally distributed), and a discussion of NB can be found in [52].

3.3.6 Output

The results are reported to the user as a confusion matrix and an overall
accuracy. This data can also be saved by the user for further analysis.

3.4 Method

The methods and materials used in this chapter have previously been de-
scribed in detail by Federmeier et al. [14].

3.4.1 Participants

Thirty-two college aged subjects participated in this study (16 women and
16 men). None of the subjects had any prior history of neurological illness.
Due to technical issues with the data, one subject was excluded from the
classification analysis.

24



Figure 3.7: Map of equally spaced EEG electrode locations [14] including
both electrode number and name. In addition, each electrode was assigned
to a cluster of 2–3 electrodes. The cluster that the electrode was assigned
to is denoted below each electrode name (in red). The figure was produced
using the topoplot function in EEGLab [48].

3.4.2 Signal Acquisition

A Grass amplifier was used to record EEG activity from 27 electrodes (Fig-
ure 3.7; 26 equally spaced electrodes [sometimes referred to as a geodesic
montage [14]] and an electrode on the right mastoid) at a sampling rate of
250 Hz. During acquisition, the data were recorded in reference to the left
mastoid at impedances of less than 5 kΩ and analog filtered (using a band-
pass filter [0.01–100 Hz] and a notch filter [60 Hz]). In addition to the EEG
electrodes, two channels of electrooculogram (EOG) data were also recorded.
These were used to detect horizontal eye movements and eyeblinks.

3.4.3 Procedure

Each of the participants read 282 sentences (from four conditions) while their
EEG was recorded. The four conditions were defined by two variables: con-
straint and ending. Sentences could either be strongly constrained or weakly
constrained. The constraint of a sentence was determined by that sentence’s
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cloze. Full details on how cloze was determined can be found in Federmeier et
al. [14]. For the present analysis, we considered the 141 strongly constrained
sentences used in the study of Federmeier et al. [14]. As previously discussed,
these strongly constrained sentences could have expected or unexpected end-
ing words. Each strongly constrained sentence with an expected ending had
a cloze probability of greater than 67%. The strongly constrained sentences
with an unexpected ending had an overall cloze probability of 3.1%. An ex-
ample sentence—taken from Table 2 in Federmeier et al. [14]—is shown in
Table 3.1. Of the 141 sentences, 71 ended in an expected word, while the
other 70 ended in an unexpected (but plausible) word.

Table 3.1: Example of a strongly constrained sentence with both an
expected and an unexpected (but plausible) ending. This example is take
from Table 2 of Federmeier et al. [14].

Sentence Expected Unexpected
He bought her a pearl necklace for her birthday collection

During the original experiments, each of the sentences were presented to
the participants on a computer screen, one word at a time. Each sentence
was preceded by a fixation (consisting of plus signs) that lasted for 500 ms.
After the fixation, an initial blank screen of variable length (500–1200 ms)
appeared. After the initial blank screen, each words was presented for 200
ms and followed by a blank screen for 300 ms. After the final word, there was
a 3000 ms pause between sentences. We refer to the EEG recorded during
the reading of the ending word of a single sentence as a trial.

3.4.4 Data Processing

Re-Referencing. The data were originally referenced to an electrode placed
on the left mastoid. During data processing, all of the data was re-referenced
to the average of two electrodes, the electrode on the left mastoid and another
electrode on the right mastoid.

Bandpass Filtering. After the data were re-referenced, they were digitally
filtered using a sixth-order (zero-phase) IIR-bandpass filter with a passband
between 0.5 and 100 Hz. This filter helped to remove high-frequency noise
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due to muscle activity or harmonics of 60 Hz as well as removed low-frequency
components due to wire movement.

Artifact Rejection and Filtering. Before the data was imported into the ERP
Classifier GUI, it was analyzed for artifacts. The sources of these artifacts
included amplifier blocking, horizontal eye movements, and eyeblinks.

Artifacts were labeled by an experienced investigator. Trials with horizon-
tal eye movements and amplifier blocking were removed from the dataset.
Eyeblinks were handled differently depending on the percent of trials with
blinks. If less than 15 percent of the trials contained eyeblinks, then eye-
blinks were simply rejected. If more than 15 percent of the trials contained
eyeblinks, then independent component analysis (ICA) was used to filter eye-
blinks from the data. ICA components were calculated using the EEGLab
toolbox in MATLAB [48]. Components related to eyeblinks were chosen by
the investigators.

3.4.5 Data Analysis

The goal of this analysis was to assess how well two different sentence end-
ings (expected and unexpected) from strongly constrained sentences could
be classified using EEG data. All data analysis was performed in MATLAB
using the ERP Classification GUI described in Section 3.3. All classification
analyses used the Monte Carlo method for cross-validation (100 repetitions).
These analyses were performed on the data from each of the 31 subjects in-
cluded in this study. All results are reported for the average across subjects
except where noted otherwise.

We conducted analyses to assess the classification accuracy of features
based on two brain signals (and their combination) related to the processing
of meaning-related information. These analyses considered three different
electrode groupings (single electrode, cluster of neighboring electrodes, and
all electrodes); three different classifiers (NB, SVM, LDA); and three analyses
of the individual trials (single trial classification, classification after averaging
multiple trials, and the sequential classification of trials using SPRT).

Features. We analyzed the classification accuracy of features based on two
different brain signals known to be elicited by unexpected endings to highly
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constrained sentences, the N400 [41] and FP [14].
The N400 is a negative centro-parietal deflection in EEG voltages in re-

sponse to the integration of meaningful information [53]. For the purpose of
this classification analysis, we define a feature based on the N400 as average
the voltage occurring 320–420 ms after the onset of the ending word. Simi-
larly to the analyses performed by Federmeier et al. [14], we further filtered
our data using an IIR bandpass filter from 0.001–20 Hz before feature ex-
traction. The grand average N400 for MiPa is shown in Figure 3.8. Before
measurements were taken, all of the individual trials were baselined to the
average of -200–0 ms before stimulus onset.

Table 3.2: For our analyses, three different groupings of EEG electrodes
were considered. One of these grouping was based on clusters of 2–3
neighboring electrodes. The clusters (and electrodes included in each
cluster) are listed.

Cluster Electrodes
1 2,4
2 3,5
3 6,8,16
4 7,9,17
5 10,11,14
6 12,13,15
7 18,22,24
8 19,23,25
9 20,21,26

In addition to the well-established N400, Federmeier et al. [14] reported a
second ERP—referred to as FP—elicited in response to unexpected endings
in strongly constrained sentences. Our definition of features based on FP was
the average voltage 620–720 ms after the onset of the ending word. We used
the same baseline for FP as we used for the N400. Since Federmeier et al.
[14] noted that this frontal positivity was slow, we low-pass filtered the data
at 5 Hz before extraction. The grand average frontal positivity for RMPf is
shown in Figure 3.9.
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Figure 3.8: Grand average ERP for strongly constrained sentences at MiPa.
The ERP elicited by expected versus unexpected endings are shown in dark
purple and dark green respectively. The time window of the baseline is
shaded in light purple. The time window of the N400 is shaded in light
green.

3.4.6 Electrode Grouping

For the electrode analyses we exclude a priori knowledge of the scalp distri-
bution of each of the three features and instead chose to analyze differences in
classification accuracy using three different electrode grouping methods. The
first method considered the classification accuracy of the features when using
individual electrodes. The second method of grouping used clusters of two
to three electrodes (Figure 3.7, Table 3.2). The analyses on the clusters con-
sidered each electrode in the cluster individually (i.e., not the average of the
electrodes). Thus, each observation—features extracted from one trial—in
this analysis had two to three features (as opposed to one feature in the single
electrode analyses). The final used features based on all 26 EEG electrodes
(i.e., there were 26 features).

3.4.7 Classifiers

During the aforementioned analyses we compared the classification accuracy
of our features and electrode groupings using three different classifiers: SVM,
LDA, and NB.
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Figure 3.9: Grand average ERP for strongly constrained sentences at
RMPf. The ERP elicited by expected versus unexpected endings are shown
in dark purple and dark green respectively. The time window of the
baseline is shaded in light purple. The time window of the frontal positivity
is shaded in light green. The data in this figure was low-pass filtered at 5
Hz before averaging and plotting.

3.4.8 Different Analyses of the Individual Trials

Finally, we compared three different analyses of the individual trials. The
first two analyses are referred to as fixed trial analyses, they use a predeter-
mined number of trials every single time, these are: a single trial analysis and
an analysis of classification accuracy when multiple (two or three) trials are
averaged together before classification. These fixed trial analyses used the
same classifiers as our other analyses (SVM, LDA, and NB). Finally, we also
analyzed the data using a sequential classifier (SPRT). Instead of making a
decision immediately after a trial is obtained, SPRT may decide to collect
more data before classifying.
For these analyses, we considered the classification accuracy using features

based on both the N400 and FP. The electrodes selected for each brain signal
were based on a priori knowledge of the spatial distributions of the of the
N400 (electrodes: 12, 13, 14, 15) and FP (electrodes: 1, 2, 3, 4, 5) [14, 54].

SPRT. SPRT [36]—following the notation and equations found in [55]—
allows us to test the hypothesis that observations (x; a vector of features) of
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a random variable (X; all of the trials available for a condition) are drawn
from one of two probability density functions (fi(x) for i = 0, 1). The null
hypothesis is:

H0 : X ∼ f0(x)

and the alternative hypothesis is:

Ha : X ∼ f1(x)

These hypotheses are tested using a likelihood ratio. For the first observation
(x1), the likelihood ratio is defined as:

Λ1 =
f0(x1)

f1(x1)

Here, we compute the log likelihood ratio, because its simplifies the calcula-
tions, as:

log(Λ1) = log(f0(x1))− log(f1(x1))

and test this against two decision boundaries A and B. A and B are defined
as:

A =
β

(1− α)
and B =

(1− β)

α
(3.1)

where α and β are the false positive and false negative error rates respectively.
If:

log(Λ1) < log(A) (3.2)

then we conclude that the null hypothesis H0 is true. Else If:

log(Λ1) > log(B) (3.3)

then we conclude that the alternative hypothesis Ha is true. Else:

log(A) ≤ log(Λ1) ≤ log(B) (3.4)

then we conclude that we are not confident enough to make a decision and
collect more data. In this case, we take another trial vector of features (x2)
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and repeat the process. The only difference is for trial j = 2...n:

log(Λn) =
n∑

j=1

log(f0(xj))− log(f1(xj)) (3.5)

In our specific case, we assume that X, f1(x), and f2(x) are well modeled
as multivariate normal distributions. Thus, we first need to estimate the
parameters (µi and Σi) for f0(x) and f1(x). This can be done using the
training data. µi is vector of composed of the mean values of each feature
from the training data for class i and Σi is the covariance matrix of the
training data for class i.

Once we have the parameters, we calculate the log likelihood (according
to the equation given in [56]) of a new data sample under each of the models
as:

log(fi(xn)) = −nr
2

log(2π)− n

2
log |Σi| −

1

2

n∑
j=1

(xj − µi)
TΣ−1

i (xj − µi)

where n represents the number of data samples being tested and r is the
dimensionality of the multivariate normal distribution. In our case, since we
are considering the data one sample at a time, our equation simplifies to:

log(fi(xn)) = −r
2

log(2π)− 1

2
log |Σi| −

1

2
(xn − µi)

TΣ−1
i (xn − µi) (3.6)

For our analyses, we assume that α = β = τ and test the accuracy of SPRT
for τ = 0.01, 0.02, ..., 0.40.

3.5 Results

The results are reported for classification using features based on each of
the two brain signals (by electrode grouping and classifier) and then for
the three different analyses of the individual trials. For each classification
analysis, significant increases in classification accuracy (from chance) were
determined using a random permutation test (Test 1 in [57]). For this random
permutation test, we used the same exact classification system as in our other
analyses, except: (1) we randomized the class labels and (2) we performed
500 repetitions of each classification analysis. No corrections for multiple
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comparisons were performed.

3.5.1 Brain Signal and Electrode Grouping

Single Electrode. Classification accuracies when using a single a feature from
a single electrode were not significantly better than chance for any electrode,
classifier, or feature.

Cluster of Neighboring Electrodes. When using clusters of neighboring elec-
trodes, there were clusters where the classification accuracy was slightly (but
significantly) better than chance for features based on both the N400 and
FP.

Figure 3.10: Classification accuracy for the analyses using features based on
the N400 and clusters of neighboring electrodes (by cluster and classifier).
Chance classification accuracy (p > 0.05) is indicated by the shaded area.
Classification accuracy that is significantly better than chance (p < 0.05) is
denoted with a *.
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For the N400 based features (Figure 3.10) with the LDA classifier, there
were three clusters where the classification accuracy was better than chance:
Cluster 1 (53.23%), Cluster 4 - (52.88%), and Cluster 8 - (52.94%).

Figure 3.11: Classification accuracy for the analyses using features based on
FP and clusters of neighboring electrodes (by cluster and classifier).
Chance classification accuracy (p > 0.05) is indicated by the shaded area.
Classification accuracy that is significantly better than chance (p < 0.05) is
denoted with a *.

For features based on FP (Figure 3.11), Clusters 1 and Cluster 2 had
classification accuracy that was significantly better than chance for both
SVM (Cluster 1 - 53.35%; Cluster 2 - 53.47%) and LDA (Cluster 1 - 53.55%;
Cluster 2 - 53.53%). In addition, when using LDA, Cluster 3 had significantly
better than chance classification accuracy (52.99%)

Since classification was better for the clusters of neighboring electrodes
than for the individual electrodes (there were clusters of neighboring elec-
trodes [but no individual electrodes] with better than chance classification
accuracy) we report the classification accuracies of the individual subjects
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averaged across clusters in Figures 3.12 and 3.13. Visualizations of classifi-
cation accuracy by subject and cluster of neighboring electrodes are shown
in Figures 3.14 and 3.15.

Figure 3.12: Classification accuracy by subject and classifier for features
based on the N400 (averaged across clusters of neighboring electrodes).
Chance classification accuracy (p > 0.05) is indicated by the shaded area.
Classification accuracy that is significantly better than chance is denoted
as: p < 0.05 with * and p < 0.01 with **.

Classification accuracies varied considerably between participants. Consid-
ering features based on the N400, subjects 1, 10, 13, 15, 18, 27, and 31 all had
classification accuracies that were better than chance (p < 0.01) when using
either SVM or LDA. Subjects 10 and 15 even had classification accuracies
above 60%. The results for NB were slightly different. Data from subjects
7, 12, 23, and 26 classified at better than chance accuracies (p < 0.05) with
NB, but not with the other two classifiers.
The classification accuracies when using FP were significantly better than

chance for subjects 3, 7, 11, 12, 14, 18, 20, 21, 22, 25, and 28 for at least one
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Figure 3.13: Classification accuracy by subject and classifier for features
based on FP (averaged across clusters of neighboring electrodes). Chance
classification accuracy (p > 0.05) is indicated by the shaded area.
Classification accuracy that is significantly better than chance is denoted
as: p < 0.05 with * and p < 0.01 with **.

of the classifiers.
Since multiple participants had above chance classification accuracies for

each of the brain signals, we analyzed the correlation between classification
accuracy when using features based on the N400 versus features based on
FP. No significant correlations (p > 0.5) were found for any of the three
classifiers.
The variance of classification accuracy between subjects appears to be

larger than the variance between clusters of neighboring electrodes within
subjects for features based on both the N400 and FP (visualized in Figures
3.14 [N400] and 3.15 [FP]). When considering the data from the LDA clas-
sifier, the mean variance between subjects was 22.82% for features based on
the N400 and 19.88% for features based on FP; the within subject variance
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Figure 3.14: Classification accuracy by subject, cluster of neighboring
electrodes, and classifier for the features based on the N400. Higher
classification accuracies are represented in lighter yellows; lower
classification accuracies are represented in darker blues.

was 1.87% for the clusters of neighboring electrodes using features based on
the N400 and 1.91% for FP.

All Electrodes. Classification accuracy for all three classifiers (SVM, LDA,
and NB) and features based on both brain signals was better than chance
when using all 26 EEG electrodes (Figure 3.16). Overall, the average classifi-
cation accuracy—across subjects and classifiers—of the N400-based features
(58.49%) was slightly higher than the average classification accuracy of the
FP-based features (57.00%). For the N400-based features, SVM (57.38%)
and LDA (59.96%) had similar classification accuracy, while NB had an av-
erage classification accuracy of higher than 60% (60.13%). For the features
based on FP, SVM (57.67%) and LDA (58.40%) were similar; classification
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Figure 3.15: Classification accuracy by subject, cluster of neighboring
electrodes, and classifier for the features based on FP. Higher classification
accuracies are represented in lighter yellows; lower classification accuracies
are represented in darker blues.

accuracy using NB was 54.94%.

3.5.2 Different Ways of Analyzing the Individual Trials

Here, we report the results from three different analyses of the individual
trials. The classification analyses in this section used features based on both
the N400 and FP. When averaging across subjects, classification accuracy
was above chance for all three classifiers when using single-trials, the aver-
age of two trials before classification, and the average of three trials before
classification. Figure 3.17 (left bar in each subplot) shows the average clas-
sification accuracy for the single trial analysis (for each classifier). All three
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Figure 3.16: Classification accuracy by brain signal and classifier averaged
across subjects with a feature from each of the 26 EEG electrodes. Chance
classification accuracy (p > 0.05) is indicated by the shaded area.
Classification accuracy that is significantly better than chance is denoted
as: p < 0.05 with * and p < 0.01 with **.

classifiers were able to classify the single trials of EEG at better than chance
accuracies using features based on both the N400 and FP. SVM (57.29%) and
LDA (57.30%) each had similar classification accuracy. Averaging multiple
trials together before classification improved overall accuracy (Figure 3.17
[right two bars in each subplot]). For SVM (60.97%) and LDA (61.30%),
average classification accuracy when averaging three trials together before
classification was higher than 60%. NB classification accuracy was worse
for this combined feature set when using single trials (53.07%), averaging
two trials together before classification (54.75%), or averaging three trials
together before classification (55.49%).
Initial results of the sequential classification of trials using SPRT resulted

in slightly lower classification accuracy (on average) than the fixed trial anal-
yses. Figure 3.17 shows the results of the SPRT classifier (for different values
of τ) overlaid on the results from the fixed trial analyses. Figure 3.18 shows
the classification accuracy (left) and number of trials per classification at-
tempt (right) as a function of the τ . As τ decreased, SPRT appeared to have
higher classification accuracy than Naïve Bayes, but have similar or worse
classification accuracy than LDA or SVM. The maximum accuracy for SPRT
was 59.23% for a τ = 0.04 which required 4.5 trials per classification attempt.
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Figure 3.17: Comparison of single trial classification accuracy, classification
accuracy when averaging multiple trials together before classification, and
the sequential classification of trials using (SPRT). Each dark purple dot
represents the classification accuracy of SPRT for a different value of τ .
Each light purple dot represents the classification accuracy of SPRT for a
different value of τ when the labels were randomized. Chance classification
accuracy (p > 0.05) is indicated by the shaded area. Classification accuracy
that is significantly better than chance is denoted as: p < 0.05 with * and
p < 0.01 with **.

3.6 Discussion

The results of this study show that expected versus unexpected endings to
highly constrained sentences can be classified at better than chance accuracy
using single trials of EEG. They also show that this is true using features
based on either the N400 and/or the FP. Furthermore, an interface for per-
forming classification analyses on ERP datasets in MATLAB and a sequential
classifier based on SPRT are presented. In this discussion, we consider our
results, ways in which our classification analyses could be improved, and
potential directions for future work.
Of all of the single-trial analyses, classification accuracy was highest when

using features from all 26 EEG electrodes (for features based on the N400
or FP; Figure 3.16). Despite the limited number of trials, classification ac-
curacy was higher with more features (26, one for each electrode) than with
fewer features (1 for the individual electrode analyses or 2–3 for the analyses
using the clusters of neighboring electrodes). It is likely that the appropriate
electrodes to include for the features based on the N400 or FP is somewhere
between the number of electrodes included in the clusters and all of the elec-
trodes. Future work on the classification GUI should include more advanced
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Figure 3.18: (left) Classification accuracy as a function of τ for the SPRT
classifier. (right) Number of trials per classification attempt as a function of
τ for the SPRT classifier. Classification using the appropriate labels is
shown in dark purple and with randomized labels in light purple.

methods for selecting (or otherwise weighting) the electrodes to include in
the classifier, such as in [58] or those reviewed in [59].
Classification accuracy varied considerably between the subjects. When

averaging across the clusters of neighboring electrodes, the classification ac-
curacy of 11 subjects was above chance for features based on the N400 and
FP for at least one of the classifiers. Figures 3.19a and 3.19b provide further
evidence of the differences between individuals. Classification accuracy was
significantly higher than chance for S18, but not for S05. Likewise, there is a
visually apparent N400 for S18 (Figure 3.19b), but there do not appear to be
any differences in EEG responses to expected versus unexpected sentences
endings 320–420 ms after the onset of the final word for S05 (Figure 3.19a).
There are several potential explanations for these individual differences. The
simplest explanation is that the classification features (timing, filtering, etc.)
were not optimized to the individuals. It is possible that if we made differ-
ent design choices, there would be less variability across individuals. This
explanation, however, does not explain Figures 3.19a and 3.19b. It is also
possible that the individual differences are related to the task. Consider, the
data used in our analyses were originally collected for a psychological study
of the processing of meaning [14]. The task in this study was to sit in a room
and read sentences (one word at a time) for an hour. Some of the individual
subjects may have engaged well with the task, while others may not have
participated in the task at all. Given previous investigations on the role of
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(a) Subject S05

(b) Subject S18

Figure 3.19: Average ERP for strongly constrained sentences at MiPa
demonstrating the individual differences between subjects for (top) S05 and
(bottom) S18. The ERP elicited by expected versus unexpected endings are
shown in dark purple and dark green respectively. The time window of the
baseline is shaded in light purple. The time window of the N400 is shaded
in light green.
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engagement on classification performance when using a BCI [60], that a task
that is more engaging would reduce inter-subject variability. A better expla-
nation of these individual differences would enable researchers to understand
who might be able to use a BCI based on the processing of meaning-related
information.

For the analyses of the clusters of neighboring electrodes, the between sub-
ject differences in classification accuracy appear to be larger than the within
subject differences. The variance of classification accuracy between individu-
als is higher (∼20%) than the variance in classification accuracy between the
clusters of neighboring electrodes (∼2%). This is visualized in Figures 3.14
and 3.15; classification accuracy visually appears to be vertically striped.
A subject with high classification accuracy for Cluster 1 generally has high
classification accuracy for Cluster 2. Whereas, there are large differences in
classification accuracy for specific clusters across subjects. It is possible that
this is the result of our relatively naïve electrode selection methods. Brain
signals (such as the N400 or FP) vary across individuals in terms of timing,
spatial distribution, and frequency. Methods that allow individual optimiza-
tion of the features may improve overall classification accuracy. It may again
suggest (see above and Figures 3.19a and 3.19b) that research on the de-
velopment of a BCI based on the processing of meaning-related information
want to improve the method in which the N400 and FP are elicited. A task
that elicits these signals more consistently across individuals may be critical
to the development of this new BCI paradigm.

High classification accuracy with features based on the N400 was not pre-
dictive of high classification accuracy with features based on FP. An analysis
did not find a significant correlation between the classification accuracy of
features based on these two brain signals across subjects. Only three of the
19 subjects who had better than chance classification accuracy for either fea-
ture based on the N400 or FP (for one of the classifiers) had better than
chance classification accuracy for both. Therefore, it might be expected that
including features based on both brain signals would improve the number
of individuals with above average classification accuracy. Our preliminary
analysis using a combination of features based on both the N400 and FP did
not result in classification accuracies that were better than those based on
all EEG electrodes for features based on one of the brain signals. Further re-
search on how the features based on each of these signals could be combined
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may prove valuable.
Following well-established methods of ERP analysis [15], averaging mul-

tiple trials together improved overall classification accuracy. We also com-
pared the results from this averaging procedure with a sequential classifica-
tion method (SPRT) that allows the classifier to decide to wait for more data
if a certain confidence threshold is not met. Comparing the fixed strategy
with the sequential strategy, they both had higher classification accuracies
when more data was considered. The fixed strategy had a higher classifica-
tion accuracy (under the tested conditions) for two of the three classifiers
(SVM and LDA) than SPRT. Neither the fixed nor the sequential strategy,
however, uniformly outperformed the other approach. For our instantiation
of SPRT, we assumed that the data from each of the features was normally
distributed. It is possible that this assumption was significantly violated
by the data. A different choice of model may lead to higher classification
accuracies. It is also possible that SPRT is the wrong choice of sequential
classification method for this particular kind of classification problem. Fur-
ther analysis of the current data and refinement of the classifier is necessary
to answer these questions.

In this chapter, we described an EEG Classifier GUI for conducting classi-
fication analyses. While this GUI made it possible to test multiple classifiers
with a single click of the button and to reload specific parameters of analysis
for later use, there are many aspects of the system that could be improved.
For example, including automated feature selection methods would each en-
hance the usability of the system. In addition, extending the data visualiza-
tion interface to the time-frequency based feature analysis may help users to
understand their data.

The analyses described in this chapter are preliminary, but there are many
design choices (in addition to those covered earlier in this discussion) that
could affect the results. These include the following:

• Preprocessing
Here, we chose to use a linked mastoid reference and a specific bandpass
filters. Changing the choice of reference electrode(s) or using a different
filter could eliminate noise and improve overall classification accuracy.

• Choice of metric
Our N400 and FP-based features were computed as the mean voltage
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within a time window. The mean may be the wrong metric to use. The
EEG Classifier GUI also enables the use of other metrics, such as the
raw time points or the median of the time window. Any of these metrics
may be more predictive of expected versus unexpected endings in highly
constrained sentences and improve overall classification accuracy.

• Different features
In these analyses, we used time domain-based features. Frequency-
domain or spatial features, however, may also be useful for classifica-
tion. For example, BCIs based on changes in the sensory motor rhythm
depend on differences in the spatial distribution of signals recorded
from the scalp using EEG. Within the EEG Classification GUI, fea-
tures that are based on spatial information (such as common spatial
patterns [CSP] [58]) could be implemented and used to improve classi-
fication accuracy.

• Addition brain signals
We tested the classification accuracy of features based on two brain
signals related to the processing of meaning-related information in our
analyses. There are other brain signals, however, that could also have
been included in our analyses. For example, in a re-analysis of the data
from Federmeier et al. [14], Rommers et al. [54] found additional in-
duced (non-time locked) changes in EEG activity in response the pro-
cessing of meaning-related information. Specifically, Rommers et al.
[54] used a time-frequency analysis to show a stronger increase in theta
power (3–7 Hz) in response to unexpected words in highly constrained
sentences. This stronger theta increase was broadly distributed and
occurred 300–700 ms after the onset of the unexpected word. In addi-
tion to the theta changes, Rommers et al. [54] also noted alpha and
beta band changes in the EEG after unexpected endings to strongly
constrained sentences. Thus, including features related to changes in
theta, alpha, or beta power may improve overall classification accuracy.

All of these enhancements to the current classification system may prove
beneficial and represent potential directions for future work.

45



CHAPTER 4

CONCLUSION

In this thesis, we presented work on the application of sequential hypothesis
testing to the classification of electroencephalography (EEG) data for use in
brain-computer interfaces (BCIs). In Chapter 2 we demonstrated a sequen-
tial strategy for the classification of steady-state visual evoked potentials.
Under the conditions that we tested, this sequential strategy performed uni-
formly better than a fixed strategy. In Chapter 3, we presented work toward
the development of a BCI based on the processing of meaningful informa-
tion. Specifically, we demonstrated that it is possible to separate highly
constrained sentences with expected endings from highly constrained sen-
tences with unexpected endings using single trials of EEG data. We also
presented the ERP Classification GUI, an interface for performing classifi-
cation analyses on event-related potential (ERP) data. Finally, we obtained
initial results from a sequential classification strategy for ERP data using
a sequential probability ratio test. The work in each of these two chapters
improves our understanding of the development of classification systems for
EEG-based BCIs and may improve the overall performance of EEG-based
BCIs.
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