
Equality of Streams is a Π0
2-Complete Problem

Grigore Roşu
Department of Computer Science, University of Illinois at Urbana-Champaign

grosu@cs.uiuc.edu

Abstract
This paper gives a precise characterization for the complexity of the
problem of proving equal two streams defined with a finite number
of equations: Π0

2. Since the Π0
2 class includes properly both the

recursively enumerable and the co-recursively enumerable classes,
this result implies that one can find no mechanical procedure to
say when two streams are equal, as well as no procedure to say
when two streams are not equal. In particular, there is no complete
proof system for equality of streams and no complete system for
dis-equality of streams.

1. Introduction
Streams can be equivalently regarded as functions on natural num-
bers in a trivial way, by associating to each natural number n the
element on the n-th position in the stream. Since the equality of
functions on natural numbers is an arbitrarily complex problem, so
is the equality of streams in general. However, there is a relatively
broad interest in streams defined in a particular but intuitive and
meaningful way, namely equationally. For example, the usual ze-
ros and ones streams containing only 0 and 1 bits, respectively, as
well as a blink stream of alternating 0 and 1 bits and the zip binary
operation on streams, can be defined equationally as follows:

zeros = 0 : zeros
ones = 1 : ones
blink = 0 : 1 : blink
zip(B : S, S′) = B : zip(S′, S)

Lazy evaluation languages, such as Haskell, support streams de-
fined equationally as above.

Streams can be formally defined many different, but ultimately
equivalent ways; e.g., as a coinductive type [4], as a final coalgebra
[8], as an observational specification [2] or as a hidden logic theory
[6]. All these approaches build upon the observation that streams
cannot be defined using ordinary algebraic arguments, such as
the ordinary semantics of equational specifications; one reason
for this is that equational specifications allow too many models,
making it impossible to prove any meaningful property on streams.
Consider, for example, infinite streams of bits together with their
usual constructor : and together with the streams and stream
operations defined equationally above. Then note that the expected
properties zip(zeros, zeros) = zeros, zip(ones, ones) = ones and
zip(zeros, ones) = blink cannot be proved equationally, not even

[copyright notice will appear here]

making use of induction, because they actually do not hold in the
initial model of the equations above. Indeed, in the initial model,
zeros and zip(zeros, zeros) are two different equivalence classes of
terms, both closed under concatenation with 0; there is nothing in
the ordinary equational setting to make such stream terms equal.

There are several approaches to proving streams equal, such as
coinduction in a coalgebraic equational specification of streams [8],
context induction [5] in an observational equational framework, or
circular coinduction [6] in a hidden logic framework; the first two
need human support, while the latter is automatic. By circular coin-
duction, for example, one can prove the equality zip(zeros, ones) =
blink as follows: (1) check that the two streams have the same head,
0; (2) take the tail of the two streams and generate the correspond-
ing new goal zip(ones, zeros) = 1:blink, which becomes the next
task; (3) check that the two new streams have the same head, 1; (4)
take the tail of the two new streams; after simplification one gets the
new goal zip(zeros, ones) = blink, which is nothing but the orig-
inal proof task; (5) conclude that zip(zeros, ones) = blink holds.
The intuition for the above “proof” is that the two streams have
been exhaustively tried to be distinguished by iteratively checking
their heads and taking their tails. Ending up in circles (we obtained
the same new proof task as the original one) means that the two
streams are indistinguishable, so equal.

Since some algorithms and/or proof systems can show many
challenging equalities of streams and seem not to fail even on large
and tricky examples, one may be (wrongly) tempted to prove them
complete; by a complete algorithm in this context we mean one
which answers “yes” on precisely the inputs consisting of pairs
of equal streams - on the others it may either not terminate, or
terminate with an output different from “yes”. Also, since equa-
tional logic is complete, one may (wrongly) think that streams
defined equationally must also admit some complete proof sys-
tem. Moreover, since two different streams must differ on some
position of finite index, one could (also wrongly) think that at
least one can detect when two streams are not equal. The Π0

2-
completeness result in this paper tells us that there is actually no
algorithm or proof system that is complete for equality of streams
in general, as well as no algorithm or proof system that is com-
plete for dis-equality of streams. Recall that Π0

2 is the class in the
arithmetic hierarchy which properly extends both classes r.e. (re-
cursively enumerable) and co-r.e., and contains predicates of the
form P (a) := (∀x)(∃y)R(a, x, y) where R is a primitive recur-
sive predicate [7].

Despite its pessimistic flavor, this impossibility result actually
tells us two important facts: (1) that we should focus our efforts
on exploring heuristics or deduction rules to prove or disprove
equalities of streams that work well on examples of interest rather
than in general, and (2) that further restrictions are needed on the
original equational definition of the two streams in order to have
complete deduction systems or algorithms. Note, however, that the
equational definition that we will use to show the Π0

2-hardness is
very basic: it contains a finite set of binary predicates on streams,

1 2006/4/8

which can be actually replaced by binary predicates involving no
streams but only finite terms, together with only one operation
producing a stream that is defined in a guarded style, similarly
to the definition of zip. Therefore, (2) is probably hard to achieve
satisfactorily.

This paper is structured as follows. Section 2 defines streams
formally and shows that the satisfaction problem of an equality of
streams belongs to the class Π0

2. Section 3 shows how Turing ma-
chines can be specified both equationally and in terms of streams,
and how computation in a Turing machine can be regarded as both
equational deduction and rewriting. Finally, Section 4 shows how
to reduce the equality problem of streams to a problem known to
be Π0

2-complete, thus proving the remaining Π0
2-hardness result.

Finally, Section 5 concludes the paper.

2. Streams and Membership to Π0
2

Streams and equational definitions of streams can be formalized in
many different, but ultimately equivalent ways. In this paper we
choose to consider streams defined behaviorally, because this ap-
proach appears to require a minimal amount of formalization. Be-
havioral equational theories differ from ordinary equational theo-
ries in that equality is behavioral with respect to certain operations,
called behavioral or observational, in the sense of indistinguisha-
bility under experiments performed with those operations.

Streams have been shown to be definable as coalgebras [8],
as observational specifications [2], and as behavioral, or hidden
specifications [6], with only two observers for experiments, namely
taking the head and the tail of a stream; also, we have shown that the
satisfaction problem for behavioral specifications over finite data
in general is Π0

2-complete [3]. From these, we can deduce that the
stream equality problem belongs to the class Π0

2.
In this paper we give a precise characterization of the stream

equality problem, namely Π0
2-complete, thus showing that streams,

this canonical example of coalgebra, observational and/or behav-
ioral specification, already carries the worst-case complexity of be-
havioral equivalence. The proof of Π0

2-completeness of behavioral
satisfaction in behavioral logics presented in [3] was not based on
streams: it was based on a more complex encoding of the same
Π0

2-complete problem considered here.
We prefer to translate the behavioral Π0

2 membership argument
to streams, thus making this paper self-contained and the result
more insightful for streams, as opposed to proving that streams
form a particular behavioral theory and then using the general
Π0

2 membership result. The reader is not assumed familiar with
observational specification, behavioral satisfaction or coalgebra.

The membership of the stream equality problem to the Π0
2 class

follows by the completeness of first-order reasoning with equality:
we show that for any head/tail experiment, i.e., any position in
the two streams, there is some proof using standard first-order
reasoning that the elements corresponding to that position in the
two streams are equal. To make precise the connection between
equational definitions of streams and the completeness of first-
order reasoning, we take a semantic approach. From now on we
fix two sorts Bit and Stream, constants 0 and 1 of sort Bit, an
operation : of arity Bit × Stream → Stream, two operations
head : Stream → Bit and tail : Stream → Stream that we also call
behavioral or observers or deconstructors, and two equations

head(B :S) = B
tail(B :S) = S.

We let capital letters denote variables and do not mention their
sorts when they can be inferred from the context; for example, in
the equations above the sort of B is Bit and that of S is Stream.
Equations are assumed quantified universally by the variables that
appear in them. An equational definition of streams is an equational

theory, say S, consisting of the above signature possibly extended
with other operations, and of the above equations possibly extended
with other equations over the extended signature. In this paper it
suffices to consider only finite equational theories.

Let S be an equational definition of streams (Σ, E), where Σ is
its extended signature and E is its (finite) set of equations including
the two above. Note that Σ can have more sorts that just Bit and
Stream; in this paper, we also show examples referring to a sort
List for finite lists of bits.
Example. An equational definition of streams S can include, for
example, all those classic operations and equations in Section 1,
as well as the operations odd and even, also standard, that return
the streams of elements on the odd and even positions in a given
stream, respectively, defined mutually recursively as follows:

odd(B : S) = B : even(S)
even(B : S) = odd(S).

Also, one can define a sort List for finite lists of bits together with
a special constant list nil : → List, and overload the constructor
operation : to one of arity Bit×List→ List. Then one can define
an operation repeat : List→ Stream generating a stream repeating
infinitely a finite list as follows:

repeat(L) = aux(L, L)
aux(B : L′, L) = B : aux(L′, L)
aux(nil, L) = aux(L, L),

where aux : List× List→ Stream is an auxiliary operation.
Intuition and common sense tell us that the definitions above are

all “correct”, in the sense that they indeed define unique behaviors
for the corresponding operations. But how about a stream m (or
a constant operation m : → Stream) defined equationally as
m = 0 : even(m)? This equation is not a correct definition of m,
because it admits more than one solution: e.g., both the stream of
zeros and the stream starting with zero and followed by ones. We
do not investigate the interesting problem of well-definedness of
streams here, but only mention that one possible definition of well-
definedness can be given semantically: a stream is well-defined in a
given equational specification S iff it has the same elements in the
same order in any model of S. �

A model of streams is any set AStream together with two func-
tions Ahead : AStream → {0, 1} and Atail : AStream → AStream.
Given any model of streams (AStream, Ahead, Atail), we can de-
fine a behavioral equivalence as indistinguishability under exper-
iments with head and tail as follows: a, a′ ∈ AStream are behav-
iorally equivalent, written a ≡ a′, iff Aγ(a) = Aγ(a′) for any
{head, tail}-experiment γ, i.e., a head followed by a finite num-
ber of tail operations, where Ahead(tail(···tail(∗)))(a) is a shorthand
for Ahead(Atail(· · ·Atail(a))). In other words, two streams in the
model AStream are behaviorally equivalent iff they can produce the
same elements in the same order when requested. Note that some
models can encode streams in less conventional ways, e.g., as infi-
nite binary trees traversed in breadth-first order when requested to
produce elements (with Ahead and Atail), or as real numbers, etc.
It is easy to see that ≡ is a congruence for Ahead and Atail (i.e.,
if a ≡ a′ then Ahead(a) = Ahead(a

′) and Atail(a) ≡ Atail(a
′)),

and that it is the largest such congruence. One can easily show that
models of streams are particular hidden algebras in the sense of
[6], or particular coalgebras over a functor Set → Set that takes
a set X to {0, 1} × X [8]. The reader needs not be familiar with
observational logic, or hidden algebra or coalgebra; we just want
to re-emphasize that streams can be formalized many (apparently)
different but ultimately equivalent ways.

If Σ is a signature over streams, then a Σ-model of streams,
or simply a Σ-model, is a Σ-algebra A that protects the bits and
preserves the behavioral equivalence on streams, i.e., a pair con-

2 2006/4/8

sisting of a family of sets (called carriers) {As | s ∈ Sorts(Σ)}, in
particular a set of “streams” AStream, and of a family of functions
{Aσ : As1 × Asn → As | σ : s1 × sn → s ∈ Operations(Σ)},
with the following important restrictions: (AStream, Ahead, Atail)
is a model of streams and its behavioral equivalence ≡ is a Σ-
congruence, ABit = {0, 1}, A0 = 0, and A1 = 1. We ambigu-
ously let ≡ denote the behavioral equivalence on AStream extended
with identity relations on all the other sorts, including ABit. Let
str = str’ be a Σ-equation over variables V and A a Σ-model.
Then A (behaviorally) satisfies the equation (∀V) str = str’, writ-
ten A |≡ (∀V) str = str’, iff θ∗(str) ≡ θ∗(str′) for any (appropriate
many-sorted) mapping θ : V → A, where θ∗ is its unique exten-
sion to Σ-terms. If V is empty then, for aesthetic reasons, we omit
it as part of an equation. If E is an equational specification (Σ, E),
then we write A |≡ E for some Σ-model A whenever A behaviorally
satisfies all the equations in E, and E |≡ e for some Σ-equation e
whenever A |≡ E implies A |≡ e for all Σ-models A. One can now
easily show that the specification in Section 1 behaviorally satisfies
equations like zip(zeros, ones) = blink. We next define the stream
equality problem formally:

INPUT: An equational stream definition E = (Σ, E) and
a Σ-equation e of sort Stream;
OUTPUT: E |≡ e?

PROPOSITION 1. If E = (Σ, E), A is a Σ-model of streams, and e
is any Σ-equation, then

(1) A |≡ e iff A/≡ |= e, where the latter is standard first-order with
equality (FOL=) satisfaction;

(2) If e has the sort Bit, then E |≡ e iff EBit |= e, where the lat-
ter is standard satisfaction in FOL= and EBit is the FOL=

specification extending E with the formulae ¬(0 = 1) and
(∀B :Bit) B = 0 ∨B = 1.

Proof: (1) If the sort of the equation e is different from Stream,
then (1) holds vacuously because ≡ is the identity relation in A on
those sorts. Now suppose that e is an equation of sort Stream of
the form (∀V) str = str’. If A |≡ e then let θ≡ : V → A/≡ be
any “valuation” mapping of V into A/≡, and let θ : V → A be
a mapping “choosing” for each stream equivalence class θ≡(v) in
A/≡ an arbitrary representative, θ(v). Since A |≡ e, it follows that
θ∗(str) ≡ θ∗(str’). On the other hand, since ≡ is a congruence
for all the operations in Σ, it follows that the equivalence classes
of θ∗(str) and θ∗(str’) are precisely θ∗≡(str) and θ∗≡(str’), respec-
tively. Therefore, θ∗≡(str) = θ∗≡(str’), that is, A/≡ |= e. Con-
versely, if A/≡ |= e then let θ : V → A be any mapping and
define θ≡ : V → A/≡ where θ≡(v) is the equivalence class of
θ(v). As above, since ≡ is a congruence for the operations in Σ, it
follows that the equivalence classes of θ∗(str) and θ∗(str’) are pre-
cisely θ∗≡(str) and θ∗≡(str’), respectively. On the other hand, since
A/≡ |= e, it follows that θ∗≡(str) = θ∗≡(str’), which implies that
θ∗(str) ≡ θ∗(str’). Therefore, A |≡ e.

(2) Let e be an equation of sort Bit, and let us first assume that
E |≡ e. To show that EBit |= e, let us pick some Σ-algebra A such
that A |= EBit. Since ¬(0 = 1) and (∀B :Bit) B = 0 ∨ B = 1 are
in EBit, it follows that the carrier ABit of A has only two elements
and those correspond to the constant operations 0 and 1. Also,
since A |= E and since ≡ includes the identity relation, it follows
also that A |≡ E . Since E |≡ e, it follows that A |≡ e. Now since e
is of sort Bit on which the equivalence relation ≡ is precisely the
identity, it follows that A |= e. Therefore, EBit |= e. Conversely,
let EBit |= e and let A be any Σ-model of streams such that
A |≡ E . By (1), it follows that A/≡ |= E . Moreover, since ABit
contains precisely two elements which correspond to the constants
0 and 1, and since ≡ is the identity on the sort Bit, it follows that

A/≡ |= EBit, so A/≡ |= e. By (1) it now follows that A |≡ e.
Therefore, E |≡ e. �

THEOREM 1. (Π0
2-membership) For any equational stream defi-

nition E = (Σ, E) and any Σ-equation (∀V) str = str’ of sort
Stream, E |≡ (∀V) str = str’ if and only if EBit |= (∀V) γ(str) =
γ(str’) in FOL= for all {head, tail}-experiments γ, i.e., terms of
the form head followed by a finite number of tail operations. In
particular, the stream equality problem is Π0

2.

Proof: The first part follows by (2) in Proposition 1, noticing that
E |≡ (∀V) str = str’ if and only if E |≡ (∀V) γ(str) = γ(str’)
for all {head, tail}-experiments γ, the latter following immediately
from the definition of |≡ . For the membership to the Π0

2 class
part we use the fact that |= in FOL= admits complete deduction:
E |≡ (∀V) str = str’ if and only if (for any experiment γ, there is
some equational proof πγ such that EBit`πγ (∀V) γ(str) = γ(tr’)).
Since checking a given first-order proof is a decidable problem, the
problem of proving stream equality belongs to the class Π0

2. �
Note that we have under-used the completeness of FOL= in the

proof of membership to Π0
2 above, because the FOL= specification

EBit has only two non-equational formulae, namely the negation
and the disjunction in 2 in Proposition 1. When proving member-
ship to a complexity class, for the sake of generality, one would
like to show it for as unrestricted problems as possible. In our case,
we believe that the Π0

2-membership result above holds for a larger
class of stream definitions than just equational. However, as shown
in [6], there are some intricate technical problems with conditional
equations when conditions have a “hidden” sort, Stream in our case,
related to the intuition that one needs an infinity number of experi-
ments to check whether a conditional equation apply; in particular,
a result like the one in Proposition 1 does not hold. This makes
us conjecture that the Π0

2-membership result can be extended to
more general FOL= definitions of streams E in which equations of
streams appear only on positive positions, i.e., ones without nega-
tions preceding them. In this paper, however, we limit ourselves to
just equational definitions of streams.

We will show in Section 4 that the equality problem of two equa-
tionally defined streams is actually Π0

2-complete. The hardness part
of the proof is by reduction to a problem known to be Π0

2, namely
the TOTALITY problem saying whether a Turing machine halts on
all inputs, or, in other words, whether a partially recursive function
is total. The Π0

2-hardness results that follow work for equational
definitions that are so basic that they would straightforwardly imply
the Π0

2-completeness of the stream equality problem for any stream
definitional setting including equations of streams for which a prop-
erty of the form E |≡ e iff EBit |= e (like the one in 2 in Proposition
1) holds for any equation of sort Bit, where the latter satisfaction
relation admits complete deduction.

3. Encoding Computation by Equational
Deduction and Rewriting

Equational encodings of general computation into equational de-
duction are well-known; for example, [1] shows such equational
encodings of computation, where the resulting equational specifi-
cations, if regarded as term rewrite systems (TRSs), are confluent
and terminate whenever the original computation terminates. Our
goal in this section is to discuss equational encodings of (Turing
machine) computation. These encodings will be used in Section
4 to show the Π0

2 hardness of the stream equality problem. Since
we believe that the Π0

2-hardness result can be useful in other set-
tings as well, for example in the context of infinitary rewriting, we
pay special attention to the minimality of the subsequent encodings.
By minimal encoding in this setting we mean restrictive resulting
equational specifications. For example, an equational specification

3 2006/4/8

which, when regarded as a TRS, is confluent and terminates on cer-
tain input terms is regarded as a restricted equational specification;
also, an equational specification using only sorts Bit and Stream is
regarded as restrictive, and so is considered the fact that the task to
prove is a ground (with no variables) equality. The equational en-
codings that follow can be faithfully used as TRS Turing-complete
computational engines, because each rewrite step corresponds to
precisely one computation step in the Turing machine. We discuss
two encodings in the sequel, the first suggesting the second. The
first encoding allows the use of any rewrite engine, with no reduc-
tion strategies, as a computational engine, while the second requires
the rewrite engine to use lazy evaluation.

3.1 Turing Machines
There are many equivalent definitions of Turing machines in the
literature. We prefer one adapted from [7], and describe it infor-
mally in the sequel. The reader is assumed familiar with basics of
Turing machines, the role of the following paragraphs being to es-
tablish our notations and conventions. Consider a mechanical de-
vice which has associated with it a tape of infinite length in both
directions, partitioned in spaces of equal size, called cells, which
are able to hold either a “0” or an “1” and are rewritable. The de-
vice examines exactly one cell at any time, and can perform any of
the following four operations (or commands):

1. Write a “1” in the current cell;

2. Write a “0” in the current cell;

3. Shift one cell to the right;

4. Shift one cell to the left.

The device performs one operation per unit time, and this perfor-
mance is called a step. Formally, let Q be a finite set of internal
states, containing a starting state qs and a halting state qh. Let
B = {0, 1} be a set of symbols (or bits) and C = {0, 1,→,←}
be a set of commands. Then a (deterministic) Turing machine is
a mapping M from Q × B to Q × C. We assume that the tape
contains only 0’s (or blanks) before the machine starts perform-
ing. A configuration of a Turing machine is a triple consisting of
an internal state and two infinite strings (notice that the two infinite
strings contain only 0’s starting with a certain cell), standing for the
cells on the left and for the cells on the right, respectively. We let
(q, L|R) denote the configuration in which the machine is in state
q, with left tape L and right tape R.

Given a configuration (q, L|R), the content of the tape is LR,
which is infinite at both ends. By convention, the current cell is the
first cell of the right string. We also let (q, L|R)→ (q′, L′|R′) de-
note the configuration transition under one of the four commands.
Given a configuration in which the internal state is q and the exam-
ined cell contains b, and if δ(q, b) = (q′, c), then exactly one of the
following configuration transitions can take place:

1. (q, L|bR)→ (q′, L|cR) if c = 0 or c = 1;

2. (q, L|bR)→ (q′, Lb|R) if c =→;

3. (q, Lb′|bR)→ (q′, L|b′bR) if c =←.

The machine starts performing in the internal state qs. If there
is no input, the initial configuration on which the Turing machine is
run is (qs, · · ·0· · ·0|0· · ·0· · ·). Sometimes, we wish to run a Turing
machine on a specific input, say x = b1b2· · ·bn. In this case, its
initial configuration is (qs, · · ·0· · ·0|b1b2· · ·bn0· · ·0· · ·). A Turing
machine stops when it first gets to its halting state, qh. Therefore,
a Turing machine carries out a uniquely determined succession of
steps, which may or may not terminate. It is well-known that Turing
machines can compute exactly the partial recursive functions [7].
From here on, let us fix a Turing machine M .

3.2 An Encoding Without Streams
Since at any moment the computation that already took place has
only used a finite number of cells, we can simulate the infinite tape
with two finite, but potentially arbitrarily long, tapes. Let us assume
finite lists of bits. These can be defined algebraically with two sorts,
say Bit and List, two constants 0 and 1 of sort Bit, one constant nil
of sort List, and one constructor operation : of arity Bit×List→
List. Let us also consider an operation q : List × List → Bit for
each state q ∈ Q; these operations corresponding to states in the
Turing machine can be regarded as “wrappers” of the infinite tape;
the equational specification and its corresponding TRS below will
encode the computation of M making use of terms of the form
q(L, R), regarded as configurations of M : the machine is in state
q, with left tape L and right tape R. With this intuition, we can
now naturally encode each transition δ(q, b) = (q′, c) in M where
q 6= qh with precisely one equation, as follows:

q(L, b : R) = q′(L, c : R) if c is 0 or 1,
q(L, b : R) = q′(b : L, R) if c is→, or
q(b′ : L, b : R) = q′(L, b′ : b : R) if c is←.

To state that the computation ends when the state qh is reached,
we add the equation

qh(L, R) = 1.

The equations above treat the common cases in which the tapes
are not nil when their first elements are needed. As shown later,
if one uses infinite streams instead of finite lists then the above
equations are sufficient. In the context of finite lists, to complete
the definition, we also need to provide corresponding equations for
the cases in which a tape is nil yet expected to provide a cell; in this
case, we assume the same behavior as if a zero cell were available:

q(L, nil) = q′(L, c : nil) if b is 0 and c is 0 or 1,
q(L, nil) = q′(0 : L, nil) if b is 0 and c is→,
q(b′ : L, nil) = q′(L, b′ : nil) if b is 0 and c is←,
q(nil, nil) = q′(nil, nil) if b is 0 and c is←,
q(nil, b : R) = q′(nil, 0 : b : R) if c is←.

Let EM be the equational specification above and letRM be the
corresponding TRS when all the equations are regarded as rewrite
rules, oriented from left to right.

PROPOSITION 2. The TRS RM is orthogonal, so confluent, and
the following are equivalent:

(1) The Turing machine M terminates on input b1b2 . . . bn;
(2) The term qs(nil, b1 : b2 : · · · : bn : nil) reduces to 1 inRM ;
(3) The ground equality qs(nil, b1 : b2 : · · · : bn : nil) = 1 can be

derived using EM .

Proof: Since for any q ∈ Q different from qh there is precisely
one rule whose left-hand-side (lhs) has the form q(L, 0 : R) and
precisely one whose lhs has the form q(L, 1 : R), it follows that
the lhs-es of the rules in the first group (treating the situations in
which the tapes are not nil when their first elements are requested)
cannot overlap. Also, note that lhs-es of the rules in the first group
cannot overlap with those in the second group, because the right
list arguments are non-nil in the former while, except for the last,
they are nil in the second; the last rule in the second group could
only possibly overlap with the last rule in the first group, but that
is not possible either because of their left list arguments (one is nil
while the other is non-nil). Finally, note that the rules in the third
group cannot overlap with each other either; the only ones which
could possibly overlap are the last three, but the nil vs. non-nil
characteristics of their list arguments exclude each other. Therefore,
theRM is orthogonal, so confluent.

4 2006/4/8

It is clear that any computation in M can be seamlessly simu-
lated byRM ; indeed, the computation in M on an input b1b2 . . . bn

can be simulated step-by-step by RM , starting with the term
qs(nil, b1 : b2 : · · · : bn : nil). Also, any rewrite sequence in RM

generates stepwise a corresponding computation in M , by simply
concatenating the reversed left list with the right one, and replacing
the two nils by infinite streams of zeros. Consequently, M reaches
its state qh during a computation if and only if the corresponding
rewriting sequence in RM ends with a term of the form qh(L, R).
The equivalence of (1) and (2) above follows from the fact that there
is only one way to reduce the term qs(nil, b1 : b2 : · · · : bn : nil) to
1, namely reducing it to qh(L, R) and then in one step to 1, and the
equivalence of (2) and (3) follows by the Church-Rosser property
of equational logic and the confluence ofRM . �

3.3 An Encoding Using Infinite Streams
The encoding of a Turing machine as an equational specification
presented above was chosen in such a way to ensure that it be-
comes operational when equations are regarded as rewrite rules
and applied unrestricted; in particular, the encoding of the infinite
tapes as finite lists ensured that one can use any rewrite engine,
with no restrictions or reduction strategies, to perform Turing ma-
chine computations. The price to pay for this was that empty lists
had to be treated in a special way. We can give a more elegant en-
coding of a Turing machine if we assume some special equational
infrastructure, that of infinite streams, together with a correspond-
ing reduction strategy when equations are regarded as rewrite rules.

As in the previous encoding, let us consider an operation q :
Stream × Stream → Bit for each state q ∈ Q and let us “encode”
each transition δ(q, b) = (q′, c) in M where q 6= qh with one
equation:

q(L, b : R) = q′(L, c : R) if c is 0 or 1,
q(L, b : R) = q′(b : L, R) if c is→, or
q(b′ : L, b : R) = q′(L, b′ : b : R) if c is←.

To state that the computation ends when the state qh is reached, we
also add the equation

qh(L, R) = 1.

Let E∞M be the equational specification above and letR∞
M be the

corresponding TRS when all the equations are regarded as rewrite
rules, oriented from left to right, and reduction is “lazy”.

PROPOSITION 3. The TRS R∞
M is confluent and the following are

equivalent:

(1) The Turing machine M terminates on input b1b2 . . . bn;
(2) The term qs(zeros, b1 : b2 : · · · : bn : zeros) reduces to 1 in
R∞

M ;
(3) The ground equality qs(zeros, b1 : b2 : · · · : bn : zeros) = 1

can be derived using E∞M .

Proof: The proof is essentially the same as that of Proposition 2,
except for the confluence of R∞

M , which follows by noticing that
all its critical pairs, formed by unifying the variables L or R with
zeros or ones, are join-able. �

4. The Π0
2-Completeness of Stream Equality

We only need to show the Π0
2-hardness of the problem. We show

it by reduction to a problem known to be Π0
2-complete, described

below. We used a similar technique in [3] to show the Π0
2-hardness

of behavioral equivalence in general, via a complex encoding not
based on streams. From the perspective of behavioral equivalence,
what makes the result below interesting is that it holds for streams,
this very basic, canonical example of observational, behavioral, or
coalgebraic definition.

4.1 The Totality Problem
We claim that there are some Turing machines M , such that the
following problem, called TOTALITY:

INPUT: An integer k ≥ 0;
OUTPUT: Does M halt on all inputs 1j01k for all j ≥ 0?

is Π0
2-complete. It is obvious that TOTALITY is in Π0

2 for any Tur-
ing machine M . To show that it is Π0

2-hard, we may choose M
to be a universal Turing machine such that on input 1j01k, M
computes fk(j), where fk is the (partial) function computed by
Turing machine with Gödel number k under some canonical as-
signment of Gödel numbers to Turing machines. By appropriately
choosing conventions for Turing machines, fk(j) is defined if and
only if the Turing machine numbered k halts on input j. Therefore,
TOTALITY(k) has positive solution if and only if the function fk is
total. But the set {k | fk is total} is Π0

2-complete [7]. It follows that
TOTALITY is Π0

2-complete.
We henceforth fix some choice of M that makes the TOTALITY

problem Π0
2-complete.

4.2 Equality of Streams is Π0
2-Complete

We can now show that the problem of saying whether two equation-
ally (finitely) presented infinite streams are equal is Π0

2-complete.
The membership to Π0

2 part of the result was shown in Section 2
and followed by the completeness of the first-order logic of equal-
ity; the hardness part is shown by reduction to TOTALITY. To re-
duce the problem of equality of streams to the TOTALITY problem,
we need to define for any integer k ≥ 0 a pair of streams such that
M halts on all inputs 1j01k for all j ≥ 0 if and only if the two
streams are equal. We discuss two possible reductions in what fol-
lows. The first captures the essence of the difficulty of this problem
using a minimal “non-standard” infrastructure, namely by defining
only one stream operation: one generating a stream from a finite
input. While from an algebraic perspective this reduction shows
clearly the subtle role played by streams in the Π0

2 hardness, from a
coalgebraic perspective it has the drawback that it is based on a rel-
atively complex algebraic infra-structure of list of bits. To eliminate
any doubt that the hardness of the stream equality problem comes
from its algebraic infrastructure, we give a second reduction based
exclusively on streams of bits; this second reduction is purely coal-
gebraic, in the sense that the resulting encoding is a correct equa-
tional definition of streams in the particular model (coalgebra) of
streams.

The first reduction builds upon the encoding in Section 3.2. In
the context of EM , we can pick for any integer k ≥ 0 the pair of
streams

total?(0 : 1 : · · · : 1 : nil) ?
= ones

where there are k ones following the zero in the argument of total?
and where total? is the operation taking a (finite) list to an (infinite)
stream defined as follows:

total?(R) = qs(nil, R) : total?(1 : R).

As expected, the second reduction builds upon the encoding in
Section 3.3. In the context of E∞M , we can pick for any k ≥ 0 the
pair of streams

total?(0 : 1 : · · · : 1 : zeros) ?
= ones

where there are k ones following the zero in the argument stream of
total? and where total? is the operation taking a stream to a stream
defined as follows (now R is a stream variable):

total?(R) = qs(zeros, R) : total?(1 : R).

We only show the correctness of the second reduction; the first
one can be shown similarly.

5 2006/4/8

THEOREM 2. (Π0
2-hardness) For a given k ≥ 0, M halts on all

inputs 1j01k for all j ≥ 0 if and only if the equality of streams
total?(0 : 1 : · · · : 1 : zeros)=ones holds in E∞M , where there are k
bits of 1 following the bit 0 in the argument stream of total?.

Proof: Recall from Theorem 1 that for any streams str and
str’, the equality str = str’ holds whenever γ(str) = γ(str’)
can be proved ordinarily (i.e., using the complete derivation sys-
tems of FOL=) from E∞M for any “experiment” γ of the form
head(tail(· · · tail(?) · · ·)), where the dots stay for an arbitrary
number of tail operations and the star for the hole where the stream
to experiment upon is placed. By the definition of total?, the equal-
ity of streams total?(0 : 1 : · · · : 1 : zeros)=ones therefore holds
if and only if qs(zeros, 1 : · · · : 1 : 0 : 1 : · · · : 1 : zeros) = 1
for any arbitrary number of 1 bits before the 0 at the beginning
of the second argument stream of qs, which, by Proposition 3, is
equivalent to saying that M halts on all inputs 1j01k, for all j ≥ 0.
�

COROLLARY 1. Proving equality on streams defined equationally
is a Π0

2-complete problem.

Proof: It follows by Theorems 1 and 2. �

5. Conclusion
We gave a precise characterization for the complexity of stream
equality, namely Π0

2. The membership to the class Π0
2 followed

by the completeness of first-order logic of equality, and the Π0
2

hardness followed by an encoding of the totality problem for par-
tially recursive functions as a stream equality problem. Since the
Π0

2 class includes properly both the recursively enumerable and the
co-recursively enumerable classes, this result implies that one can
find no mechanical procedure to say when two streams are equal,
as well as no procedure to say when two streams are not equal. In
particular, there is no complete proof system for equality of streams
and no complete system for dis-equality of streams. Since streams
form a canonical example of coinductive type, of coalgebra, of ob-
servational specification and of hidden logic theory, the result in
this paper tells us that any complete deduction system for these
frameworks would impose restrictions on the input theory and/or
the task to be proved that may be unacceptable for many of us.

Acknowledgments
The motivation for this work came from several interesting discus-
sions at the Infinity Symposium 2006 in Amsterdam on the rela-
tionship between infinite rewriting, coalgebra, coinduction, as well
as their applications. In particular, it was not clear to us to what ex-
tent the Π0

2-completeness result in [3] applied to coalgebra as well,
or whether it was an artifact of the mixed algebraic and coalgebraic
particularities of hidden logics. Since streams form a canonical ex-
ample for all the approaches to behavioral equivalence, the idea of
proving a Π0

2-completeness result for streams took shape. The au-
thor would like to thank the organizers of and to the participants
to the Infinity Symposium, in particular to (alphabetically) Henk
Barendregt, Jörg Endrullis, Clemens Grabmayer, Jan Willem Klop,
Lawrence Moss and Jan Rutten for discussions and hints that moti-
vated this work. Also, special thanks to Traian Florin Şerbănuţă for
pointing several simplifications in a previous draft of this paper.

References
[1] J. Bergstra and J. V. Tucker. Equational specifications, complete

term rewriting systems, and computable and semicomputable algebras.
Journal of the Association for Computing Machinery, 42(6):1194–
1230, 1995.

[2] M. Bidoit, R. Hennicker, and A. Kurz. Observational logic, constructor-
based logic, and their duality. Theoretical Computer Science,
3(298):471–510, 2003.

[3] S. Buss and G. Roşu. Incompleteness of behavioral logics. In
H. Reichel, editor, Proceedings of Coalgebraic Methods in Computer
Science (CMCS’00), Berlin, Germany, March 2000, volume 33 of
Electronic Notes in Theoretical Computer Science, pages 61–79.
Elsevier Science, 2000.

[4] H. Geuvers. Inductive and coinductive types with iteration and
recursion. In B. Nordström, K. Pettersson, and G. Plotkin, editors,
Informal Proceedings Workshop on Types for Proofs and Programs,
Båstad, Sweden, 8–12 June 1992, pages 193–217. Dept. of Computing
Science, Chalmers Univ. of Technology and Göteborg Univ., 1992.

[5] R. Hennicker. Context induction: a proof principle for behavioral
abstractions. Formal Aspects of Computing, 3(4):326–345, 1991.

[6] G. Roşu. Hidden Logic. PhD thesis, University of California at San
Diego, 2000.

[7] H. Rogers Jr. Theory of Recursive Functions and Effective Computabil-
ity. MIT press, Cambridge, MA, 1987.

[8] J. Rutten. A tutorial on coinductive stream calculus and signal flow
graphs. Journal of Theoretical Computer Science, pages 443–481, Oct.
2005.

6 2006/4/8

