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ABSTRACT

Applications in various fields, such as machine learning, scientific computing

and signal/image processing, need to deal with real-world input datasets.

Such input datasets are usually discrete samples of slow-changing, continu-

ous data of physical phenomena, like temperature maps and images. Due to

the continuous nature of the physical phenomena, these datasets often con-

tain data points with similar or even identical values. Eventually, it results in

repeated operations performed on the same or similar data points, i.e. redun-

dant computation. Redundant computation can be exploited to improve the

energy/power efficiency and performance of processors, especially when the

benefits from process technology scaling and power scaling keep diminishing.

This dissertation first proposes a cost-effective generalized scalar execution

architecture for GPUs, called G-Scalar. It exploits the redundant computa-

tion performed on identical data. G-Scalar offers two key advantages over

prior architectures supporting scalar execution for only non-divergent arith-

metic/logic instructions. First, G-Scalar is more power efficient as it can also

support scalar execution of divergent and special-function instructions, the

fraction of which in contemporary GPU applications has notably increased.

Second, G-Scalar is less expensive as it can share most of its hardware re-

sources with register value compression, of which adoption has been strongly

promoted to reduce high power consumption of accessing the large register

file. Compared with the baseline and previous scalar architectures, G-Scalar

improves power efficiency by 24% and 15%, respectively, at a negligible cost.

Lock and Load (LnL) architecture is then proposed to extend the cov-

erage to redundant computation on similar data, by enabling approximate

computing. In the LnL architecture, approximate computing is triggered

by similarity of values returned by load instructions, and then approxima-

tion is applied to the annotated code region following the load instructions.

Such a design reduces the overhead of checking eligibility of approximation
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for every instruction and allows us to deploy more sophisticated techniques

for checking the eligibility of approximation and approximating the output

values for all the skipped threads at the end. LnL is further enhanced to

fuse the same approximated instructions from multiple warps into a single

instruction, exploiting the fact that only a subset of threads in approximated

warps are executed and many execution lanes are left unused by the skipped

threads. This not only improves the performance but also reduces energy

consumption, as it reduces the number of fetched, decoded, scheduled and

executed instructions. Our experiment shows that LnL can improve energy

efficiency and performance by 62% and 23%, respectively.

Finally, we propose AxMemo to exploit the computation redundancy on

CPUs. Inspired by LnL, AxMemo focuses on memoizing relatively large

blocks of code with a variable number of inputs. In contrast, existing mem-

oization techniques mostly replace costly floating-point operations that have

a limited number of inputs with memory lookup. Since AxMemo aims to re-

place long sequences of instructions with a few lookup operations, it alleviates

the von Neumann and execution overheads of passing instructions through

the processor pipeline altogether. To address the challenge of handling vari-

ous numbers of inputs, we develop a novel use of Cyclic Redundancy Check-

ing (CRC) to hash the inputs and use the hash as lookup tags. It enables

AxMemo to efficiently memoize relatively large code regions with variable

input sizes and types using the same underlying hardware. Our experiment

shows that AxMemo offers 2.82× speedup and 63% energy reduction, with

mere 0.2% of quality loss averaged across ten benchmarks. These benefits

come with an area overhead of just 2.08%.
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CHAPTER 1

INTRODUCTION

The improvement of the computation capability of processors has been driven

by the combination of process technology scaling and architecture innova-

tions. Semiconductor process technology scaling allows us to integrate more

hardware resources into the integrated circuit (IC) chips and make the new

architectural features possible. From another aspect, it is the architecture

innovations that allow the extra hardware resources to be fully utilized. How-

ever, the effectiveness of such an approach is getting more and more limited,

because semiconductor technology scaling is approaching its fundamental

physics limit [1]. Though the transistor feature size is still shrinking, the

failing power scaling limits further integration of hardware resources. Power

and thermal constraints have become a major bottleneck, causing problems

such as dark silicon [2].

As it is becoming increasingly more difficult to further improve processor

performance, we propose an alternative approach in this dissertation. Instead

of trying to complete computation faster by adding more and more hardware

resources, we try to reduce the amount of needed computation. To achieve

this goal, we exploit the data similarity and computation redundancy that

exist in many applications.

Literally, data similarity simply means that a set of data has similar values

(according to certain application-specific metric, such as the absolute differ-

ence of the values compared to a threshold). Many applications have input

datasets that show data similarity, such as input images for machine learning

applications. Data similarity can be exploited to improve energy efficiency.

However, not all such cases can be exploited to improve energy efficiency. For

instance, consecutive memory addresses appear to be similar, but the data

returned by memory accesses to those memory locations can be drastically

different, and none of the operations can be eliminated without introducing

significant error. Therefore, we only consider an input dataset having data
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similarity if the input data points have similar value and the corresponding

outputs are also similar. In such cases, some of the computation can be

eliminated and the outputs can be estimated from other data points.

A major source of data similarity is that applications need to process real-

world data. These data are sampled from certain physical phenomena, such

as heat maps and images. Due to the nature of the phenomena, the sampled

data are often continuous and slow-changing. These data usually further

show “spatial correlation”, where a data point is similar compared with its

“neighbors”. A simple example of such a case is a heat map of a surface with

small temperature variation. In the heat map example, the “neighbors” are

naturally the neighboring data points on the heat map grid. The correlation

can provide even more opportunity for optimization.

When multiple instances of the exact same sequence of instructions take

identical inputs and generate identical outputs, we consider that the compu-

tation performed is redundant. Eliminating computation redundancy is an

effective way to improve the energy efficiency of processors. There are many

different ways to exploit computation redundancy at different granularities.

However, the core idea is the same, which is reusing the computation results

produced earlier during the execution. A key challenge for this problem is

how to detect when redundant computation happens, and how to “store” and

“reuse” previous results efficiently. To address the problem, different proces-

sor architectures with different execution models require different schemes

to exploit the computation redundancy. Also, we need to focus on differ-

ent parts of the processor for different architectures. For example, execution

units consume a major portion of the total dynamic energy for graphics pro-

cessing units (GPUs) [3], while for CPUs, energy spent on execution units

can be trivial compared to the front-end and scheduling logic [4]. Therefore,

it is important to choose the right targets for the schemes to exploit compu-

tation redundancy. In this dissertation, we implement different techniques

for GPU and CPU to exploit the computation redundancy, respectively.

1.1 Related Work

Prior work has proposed various techniques to improve power and energy

efficiency by reducing computation redundancy. Scalar execution on GPU
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avoids the redundant computation in the single-instruction, multiple-data

(SIMD) pipelines [5, 6, 7]. Scalar execution converts a SIMD instruction into

a single-instruction, single-data, or“scalar”, instruction when the operands

have the same values across the SIMD lanes. Yilmazer et al. further proposed

to group more than one scalar instructions together and execute them in an

execution pipeline in a batch [8]. However, all these scalar execution archi-

tectures only exploit scalar opportunity among non-divergent instructions,

i.e. SIMD instructions whose lanes are all active. In contrast, we extend the

concept of scalar instructions to divergent instructions.

Lee et al. proposed to analyze instructions eligible for scalar executions

at compile-time [9]. However, this approach is purely for code analysis and

limited by compile-time information and cannot exploit value similarity orig-

inated from executing load instructions. Collange et al. proposed methods

to dynamically detect uniform and affine vectors in GPUs [10], which is tag-

based and limited to a subset of the registers. Kim et al. proposed affine

execution unit to explore the affine instructions [11]. However, it is only

applicable to limited types of instructions.

Many approximation techniques have also been proposed [12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. These proposals use a variety

of techniques to apply approximation, including data similarity exploita-

tion [12, 13], neural network [17, 18, 25], loop perforation [21], memoiza-

tion [23], operation substitution [20, 24, 26], and various approximate circuit

techniques [14, 15, 16, 19, 22]. Among all the previous work, SAGE [12]

and Warp Approximation [13] are the most relevant ones. Compared with

scalar execution, these approximation techniques relax the constraints on the

operand values and further exploit the opportunity to reduce redundant com-

putation when the applications are fault-tolerant. SAGE proposed to fuse

multiple threads into one thread. However, it relies on compilers to generate

multiple versions of approximated kernels and requires tuning at runtime to

choose the proper kernel for the target output error. Warp Approximation

also checks operand values at runtime. Because it checks the operands of

every instruction, it has to use a simple comparison scheme and fails to ex-

ploit the cases when the values are arithmetically similar but architecturally

different.

Memoization is another useful technique for reducing redundant computa-

tion. However, it is traditionally used in very limited scope, such as avoid-
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ing unnecessary expensive arithmetic operations [27]. More recently, there

have been proposals using both software-based and hardware-based tech-

niques for more general-purpose memoization. Razlighi et al. [28] proposed

a memoization-based neural network that does not need multipliers. It im-

plemented LUTs with content addressable memories (CAMs) to replace the

multipliers in neural networks. However, this implementation is only for neu-

ral networks and is not suitable for other applications. Brumar et al. [29]

proposed a software implementation for task-level memoization. This ap-

proach is limited to task-based programs and the pure software approach

only benefits a few benchmarks due to the large performance overhead.

Tuck et al. [30] proposed a memoization method using their hardware-based

memory access disambiguation approach. However the memoization itself

is still software-based and brings little speedup. Connors et al. [31] pro-

posed a compiler-directed instruction-level computation reuse, and Tsumura

et al. [32] proposed an auto-memoization processor. These two proposals need

either significant modification to the processor pipeline or complex hardware

to track the input trees, which do not justify the relatively small performance

improvement. Imani et al. [33] proposed memoization scheme on GPU us-

ing resistive content addressable memory (CAM). The CAM-based design is

expensive and requires significant modification to the baseline GPU archi-

tecture. Sinha and Zhang [34] proposed a memoization-based approximate

computing design on FPGA. However, this proposal only works for recon-

figurable logic, because it cannot handle different number of inputs without

using reconfigurable logic. Zhang and Sanchez [35] proposed to leverage

caches for memoization. This proposal uses the concatenated inputs as LUT

tag and it can only support up to 128 bits of total input, and the authors

mostly showed the effectiveness of the scheme with one-input or two-input

functions.

1.2 Dissertation Contributions and Organization

In this dissertation, we make the following observations:

1. We show that a significant fraction of instructions can be divergent and

eligible for scalar execution in many contemporary GPU applications.
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Therefore, scalar execution of such divergent instructions is critical for

pushing the power efficiency envelope.

2. We observe that many GPU applications show not only data similar-

ity, but also spatial correlation in the input dataset. Combined with

the fault-tolerant nature of the applications, we show that there are

abundant opportunities for exploiting these application characteristics.

3. We demonstrate that CPU applications also show a significant level of

computation redundancy, which can be exploited to improve energy-

efficiency and performance. We also explain that in order to improve

power efficiency on CPU, it is crucial to reduce the front-end overhead,

instead of focusing on the execution units only like previous work on

GPUs.

Based on these observation, we propose G-Scalar architecture [36] and Lock

and Load architecture [37] to exploit computation redundancy on GPUs, and

AxMemo architecture to exploit computation redundancy on CPUs. The

contributions are as follows:

1. We propose G-Scalar on GPU that can support scalar execution of

not only non-divergent arithmetic/logic instructions, but also divergent

and special-function instructions without requiring a dedicated scalar

execution pipeline. G-Scalar can improve the power efficiency of a

GPU similar to NVIDIA GTX 480 by 24% and 15%, compared with the

baseline and previous scalar execution GPU architectures, respectively.

2. We propose Lock and Load architecture on GPU to perform coarse-

grained, load-triggered approximation to reduce power consumption of

the GPU. The coarse-grained approximation scheme allows us to im-

plement our proposed Warp Fusion scheme to further improve GPU

performance. Lock and Load architecture along with the Warp Fu-

sion can improve energy efficiency and performance by 62% and 23%

respectively, using a GPU configuration similar to NVIDIA GTX 480.

3. We propose AxMemo on CPU to efficiently perform general-purpose,

approximate memoization. AxMemo replaces long sequences of instruc-

tions with a few lookup operations. It avoids the execution of those
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instructions completely, not just the computation in execution units.

AxMemo provides 2.64× average speedup and 2.58× average energy

reduction using a high-performance in-order (HPI) ARM processor as

baseline. These benefits come at the cost of 0.2% of average quality

loss and 2.08% area overhead.

To achieve these, we need to address various of challenges. For example,

tracking the value check results for register written by divergent instruction in

G-Scalar, efficiently checking and tracking load instructions in Lock and Load

and handling the variable number of inputs of the substituted computation

blocks in AxMemo. All these challenges are discussed and addressed in this

dissertation. The rest of the dissertation is organized as follows:

In Chapter 2, we first introduce the concept of scalar execution, which

avoids redundant computation on identical operand values. Then we propose

the G-Scalar architecture, a generalized scalar execution architecture that

supports scalar execution on divergent instructions. We describe the details

on how we implement efficient scalar detection, execution and register file

access optimization. Finally we show the evaluation set up and results for

G-Scalar.

In Chapter 3, we extend the idea of scalar execution from identical data to

similar data. We then propose Lock and Load architecture to exploit data

similarity. We study the application characteristics to justify our design deci-

sion for Lock and Load. Then we elaborate the design and implementation of

Lock and Load, including load value checking logic, instruction set extension

and so on. Finally we show the evaluation of Lock and Load.

In Chapter 4, we adapt the core idea of Lock and Load to CPU archi-

tecture and propose AxMemo, a general-purpose memoization scheme. We

elaborate the architecture and hardware design, instruction set extension,

lookup operations and lookup table implementation, and compiler support

for AxMemo. Then we evaluate the effectiveness of AxMemo.

The last chapter, Chapter 5, concludes the dissertation.
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CHAPTER 2

SCALAR EXECUTION ON GPU:
G-SCALAR ARCHITECTURE

2.1 Background

2.1.1 GPU Architecture and SIMT Execution Model

GPU Architecture: A graphics processing unit (GPU) typically consists

of a large number of small cores. These cores are simple, pipelined cores

with pipeline stages like Fetch, Decode, Scheduling and Execution. The

small cores are grouped into stream multiprocessors (SMs) with shared Fetch,

Decode, and Scheduling (FDS) logic. Each SM can be view as a larger core

with all execution units designed for single instruction, multiple data (SIMD)

operations. Although designed for graphics processing, GPUs are also widely

used to accelerate data-parallel general-purpose applications, therefore given

the name general-purpose GPUs (GPGPUs). GPUs are known to be highly

energy efficient for data-parallel applications compared with CPUs. There

are mainly two reasons for the high efficiency of GPUs. First, to hide the

operation latencies, GPUs do not have to use Out-of-Order (OoO) execution

to exploit instruction-level parallelism. Instead, GPUs exploit the abundant

data parallelism to issue independent instructions for hiding the latencies.

Without the power-hungry OoO logic, GPUs show significant improvement

in energy efficiency. Second, since GPUs are essentially SIMD processors, the

shared front-end amortizes the overhead associated with instruction fetching,

decoding and scheduling over many operations (typically 32 or 64). Together,

these two factors result in the high efficiency of GPUs.

In this work, we consider a GPU architecture that is similar to NVIDIA

GTX 480 as our baseline [38], shown in Figure 2.1. The baseline GPU archi-

tecture has 15 SMs. Each SM in the baseline GPU has a large 32768×4-byte

register file (i.e., 1024 vector registers, each of which consists of thirty-two
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R0

R1

R63

Figure 2.1: SM architecture of the baseline GPU similar to NVIDIA GTX
480 [38]. The major components include register file (RF), operand
collector (OC), arithmetic logic unit (ALU), load/store unit (MEM) and
special function unit (SFU).

4-byte registers). As a typical instruction operates on two or three vector

registers, the register file is partitioned into 16 banks. This allows an in-

struction to access multiple vector registers in a single cycle with single-port

SRAM arrays constituting each bank, but necessitates a 16 × 16 crossbar

between banks and 16 operand collectors supplying operands to SIMD ex-

ecution pipelines [39]. Each bank provides sixty-four 32 × 4-byte vector

registers and consists of eight 64× 128-bit single-port SRAM arrays. When

the GPU accesses a bank, all eight SRAM arrays are activated. As all the

operands are ready for an instruction, a scheduler dispatch the instruction

to an appropriate SIMD execution pipeline [39].

Each SM has three types of SIMD execution pipelines: (1) two 16-lane

arithmetic/logic, (2) one 16-lane memory, and (3) one 4-lane special-function

pipelines. Depending on the width of each execution pipeline, a warp is dis-

patched to the arithmetic/logic, memory and special-function pipelines over
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two, two, and eight batches, respectively. Since each SM has two arith-

metic/logic pipelines, up to two arithmetic/logic instructions can be dis-

patched in a single cycle.

SIMT Execution Model: To accommodate the underlying hardware ar-

chitecture, GPUs use an execution model called single instruction, multiple

thread (SIMT). The parts of the program that run on the GPU are called ker-

nels. A kernel consists of a large number of threads, conceptually organized

as a thread grid. All the threads have the same sequence of (static) instruc-

tions and each of them is only responsible for processing a small portion of

the input data. Ideally, the threads should run with no or little dependencies

with other threads, i.e. data parallelism. The thread grid is further divided

into thread blocks, which is the unit of dispatching to SMs. Finally, the

threads in thread blocks are grouped into 32-thread warps and executed in

lock-step.

Since all threads have the same static code and threads in a warp are

executed in lock-step (i.e. SIMD), GPUs need a mechanism to enable fine-

grained control for each thread in case of the so-called control flow divergence.

For example, in a kernel with an if else statement, half of the threads in a

warp take the if path and the rest take the else path. In the CPU program,

the thread can simply branch to the corresponding target address. However,

this is not possible for the GPU kernels, since the threads in a warp share

the front-end. Therefore, GPUs use a mask, called an active mask, to control

each thread in a warp. Each bit of the active mask marks if the corresponding

thread should be active or not for the current instruction.

As we mentioned earlier, GPUs do not have OoO logic. Therefore, GPUs

utilize the large number of active warps to hide the instruction latencies. The

mechanism is essentially the same as simultaneous multithreading (SMT). By

interleaving the instructions from different active warps, the latencies of most

of the instructions can be hidden. In other words, the GPUs keeps switching

context among the active warps. To support fast context switch, each SM in

the GPU has a large register file (RF) such that all the context of the active

warps can be saved in the RF at the same time. Such design allows GPUs

to switch the context among the active warps with no overhead.
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Background: Scalar Execution
• Detect/Execute scalar instructions

üScalar operand: same value across all 32 threads
üScalar instruction: all operands are scalar operands
üScalar execution: only one SIMD lane active for scalar instruction

8

R0: 0x3C 0x3C … 0x3C 0x3C
R1: 0x04 0x04 … 0x04 0x04

+

R0: 0x40 0x40 … 0x40 0x40

+ + +

R0: 0x3C 0x3C … 0x3C 0x3C
R1: 0x04 0x04 … 0x04 0x04

+

R0: 0x40 0x40 … 0x40 0x40

+ + +… …

scalar
execution

R0=R1+R0

Deactivated
Lanes

Figure 2.2: A conceptual illustration of scalar execution. The SIMD
instruction has two operands R0 and R1 that have same values and produce
the same results across all SIMD lanes.

2.1.2 GPU Power Reduction Techniques

A detailed analysis shows that the execution units and register file are the

two most power-consuming components in the GPU and consume about 24%

and 16% of total GPU chip power, respectively [3]. In compute-intensive ap-

plications, the percentage is even higher. Consequently, a large body of work

has been proposed to improve power efficiency of these two power-consuming

components, exploiting various characteristics of applications (e.g., [5, 40, 6,

7]).

A GPU register file is typically comprised of 32 × 4-byte vector registers,

each of which can supply source operands for 32 threads in a single warp [38].

It has been observed that the 32 (scalar) registers in a vector register often

store the same (scalar) value [5, 6, 7] or similar values [40, 13] at runtime.

Such value characteristics were exploited in two distinct ways to improve

power efficiency of GPUs: (1) scalar execution of instructions [5, 6, 7, 13]

and (2) register value compression [40].

Scalar Execution. For a SIMD instruction, we call an operand “scalar

operand” when all the SIMD lanes have the same value for that operand,

like the operand R0 and R1 in Figure 2.2. If all its operands are scalar

operands, the instruction can use scalar execution to reduce the redundant

computation. Conceptually, we can execute the instruction in only one of

the SIMD lanes and deactivate the other lanes, then duplicate the results for

the deactivated lanes.

To reduce redundant computations and thus power consumption of execu-

tion pipelines, prior work proposed various scalar execution architectures to

execute such instructions using a dedicated scalar execution pipeline [5, 6, 7].
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Abstract  
The GPU has provide higher throughput by integrating more 
execution resources into a single chip without unduly com-
promising power efficiency. With the power wall challenge, 
however, increasing the throughput will require significant 
improvement in power efficiency. To accomplish this goal, 
we propose G-Scalar, a cost-effective generalized scalar exe-
cution architecture for GPUs in this paper. G-Scalar offers 
two key advantages over prior architectures supporting scalar 
execution for only non-divergent arithmetic/logic instruc-
tions. First, G-Scalar is more power-efficient as it can also 
support scalar execution of divergent and special-function in-
structions, the fraction of which in contemporary GPU appli-
cations has notably increased. Second, G-Scalar is less expen-
sive as it can share most of its hardware resources with regis-
ter value compression, of which adoption has been strongly 
promoted to reduce high power consumption of accessing the 
large register file. Compared with the baseline and previous 
scalar architectures, G-Scalar improves power efficiency by 
24% and 15%, respectively, at a negligible cost. 

1. Introduction 
A GPU typically consists of a large number of cores sharing 
Fetch, Decode, and Scheduling (FDS) logic. Although de-
signed for graphics processing, GPUs are also used to accel-
erate data-parallel general-purpose applications. The compu-
tational complexity of both graphics and general-purpose ap-
plications has been steadily increasing, driving the demand 
for more GPU computing capability. The improvement of 
GPU computing capability has been primarily accomplished 
by integrating more hardware resources and increasing the 
operating frequency. However, the effectiveness of such tech-
niques is limited by the power and thermal constraints, espe-
cially when semiconductor technology scaling approaches its 
fundamental physics limit [1].  

A detailed analysis shows that the execution units and 
register file are the two most power-consuming components 
in the GPU and consume about 24% and 16% of total GPU 
chip power, respectively [2]. In compute-intensive applica-
tions, the percentage is even higher. Consequently, a large 
body of work has been proposed to improve power efficiency 
of these two power-consuming components, exploiting vari-
ous characteristics of applications (e.g., [3, 4, 5, 6]). 

A GPU register file is typically comprised of 32×4-byte 
vector registers, each of which can supply source operands for 
32 threads in a single warp [7]. It has been observed that 32 
registers in a vector register often stores the same (scalar) 

value [3, 5, 6] or similar values [4, 8] at runtime. Such value 
characteristics were exploited in two distinct ways to improve 
power efficiency of GPUs: (1) scalar execution of instructions 
[3, 5, 6, 8] and (2) register value compression [4].  

When an instruction operates only on scalar values, all 32 
threads of a warp compute the same value. To reduce redun-
dant computations and thus power consumption of execution 
pipelines, prior work proposed scalar execution architectures 
to execute such instructions using a dedicated scalar execu-
tion pipeline [3, 5, 6]. The scope of scalar execution was ex-
panded to instructions operating on vector registers storing 
similar values [8] although the benefit is primarily from oper-
ating on scalar values. An orthogonal approach to exploit 
value similarity was register value compression, which re-
duces high power consumption of accessing registers [4]. 

 As GPUs began to support more general-purpose appli-
cations, the fraction of divergent instructions in contemporary 
GPU applications has significantly increased, and various op-
timization techniques have been proposed to efficiently han-
dle them (e.g., [9, 10, 11, 12, 13, 14, 15]). Especially, we ob-
serve that many divergent instructions are also eligible for 
scalar execution (denoted by divergent scalar instructions) if 
we consider only 4-byte register values in active lanes in a 
divergent path. Figure 1 shows that 28% of total instructions 
are divergent instructions and 45% of total divergent instruc-
tions are divergent scalar instructions in these benchmarks. 

Despite such a high percentage of divergent scalar in-
structions in contemporary GPU applications, prior architec-
tures do not support scalar execution of divergent instructions. 
Furthermore, they do not consider scalar execution of special-
function instructions such as sin, cos and exp, as imple-
menting a separate Special-Function Unit (SFU) for a scalar 
execution pipeline incurs a very high chip cost. For example, 
NVIDIA GTX 480 provides only one 4-lane SFU per Stream 
Multiprocessor (SM) [7] partly due to its chip cost, while spe-
cial-function instructions consume 3~24× more energy than 

Figure 1: Percentage of divergent instructions and divergent 
scalar instructions in total instructions. 
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Figure 2.3: Percentage of divergent instructions and divergent scalar
instructions in total instructions.

The scope of scalar execution was expanded to instructions operating on vec-

tor registers storing similar values [13] although the benefit is primarily from

operating on scalar values.

As GPUs began to support more general-purpose applications, the fraction

of divergent instructions in contemporary GPU applications has significantly

increased, and various optimization techniques have been proposed to effi-

ciently handle them (e.g., [41, 42, 43, 44, 45, 46]). Specifically, we observe

that many divergent instructions are also eligible for scalar execution (de-

noted by divergent scalar instructions) if we consider only 4-byte register

values in active lanes in a divergent path. Figure 2.3 shows that 28% of total

instructions are divergent instructions and 45% of total divergent instructions

are divergent scalar instructions in these benchmarks.

Despite such a high percentage of divergent scalar instructions in contem-

porary GPU applications, prior architectures do not support scalar execution

of divergent instructions. Furthermore, they do not consider scalar execution

of special-function instructions such as sin, cos and exp, as implementing a

separate Special-Function Unit (SFU) for a scalar execution pipeline incurs

a very high chip cost. For example, NVIDIA GTX 480 provides only one

4-lane SFU per SM [38] partly due to its chip cost, while special-function

instructions consume 3∼24× more energy than typical arithmetic/logic in-

structions [3]. Hence, ignoring divergent code regions or special-function

instructions while exploiting register value locality will undeniably reduce

the effectiveness of prior techniques.

Data Compression. Data compression also exploits the data similarity

to reduce power consumption. For on-chip memory value compression, the

11



base-delta-immediate (BDI) compression scheme [47] has been used [40, 48,

49, 50]. It exploits the observation that values stored in a cache line [47] or

a vector register [40] are similar. For example, if eight 4-byte values from

a given SIMT pipeline are 0xC04039C0, 0xC04039C8, ..., and 0xC04039F8,

the first value becomes the base value, and 0x00, 0x08, ..., and texttt0x38

become the delta values for the eight 4-byte values. Consequently, a 256-

bit (=8×4-byte) value can be compressed to a 96-bit value (i.e., 32-bit base

and 8×8-bit delta values, respectively) and stored in a vector register in a

compressed format. Such an implementation of the compression hardware

for BDI typically requires N 32-bit adders/subtractors [47] where N is the

number of 4-byte values in a cache line or a vector register.

In this work, we propose G-Scalar, a GPU architecture to cost-effectively

support generalized scalar execution of instructions. Prior scalar execu-

tion architectures require a dedicated scalar execution pipeline [5, 6, 7],

and/or only support scalar execution of non-divergent arithmetic/logic in-

structions [5, 6, 7, 13]. Consequently, supporting the scalar execution of only

non-divergent arithmetic/logic instructions may significantly limit the ben-

efit for many GPU applications. In contrast, G-Scalar can support scalar

execution of not only non-divergent arithmetic/logic instructions but also

divergent and special-function instructions without any dedicated scalar ex-

ecution pipeline, as it can share most hardware resources with our register

value compression scheme. In particular, when a GPU adopts our low-cost

register value compression technique, G-Scalar can support generalized scalar

execution practically at no cost.

2.2 Register Value Compression

Our key contribution is G-Scalar, generalized scalar execution architecture

that supports scalar execution of not only non-divergent arithmetic/logic but

also divergent and special-function instructions. Before explaining G-Scalar

in depth, however, we need to describe our enhanced GPU microarchitecture

to cost-effectively support a register value compression technique, as G-Scalar

is built upon this microarchitecture enhancement.

12



3 

 

notes that the first n MSBs of the operand values are the 
same; “0-byte” denotes that the operands have no same 
bytes. If all 4 bytes of all operands have the same value, they 
are scalar operands (“scalar” in Figure 1). As seen in Figure 
1, the average percentage of (non-divergent) scalar, 3-, 2-, 
and 1-byte categories are 36%, 17%, 4%, and 7%, respec-
tively. 

Prior work exploits scalar operands by augmenting a 
dedicated scalar RF [6, 7, 8]. However, as shown in Figure 
1, a significant number of vector registers do not store scalar 
operands but they still have the same value for the same first 
1, 2 or 3 MSBs across all threads in the warp. The previous 
architectures cannot benefit from the use of scalar RF for 
such operands. Besides, with the current trend of deploying a 
larger RF and use of 8- and 10-transistor SRAM cells to tol-
erate every-increasing process variations [16], the energy 
consumption per RF access is to further increase. In this 
section, exploiting similarity amongst operand values in a 
vector register, we propose a scheme that can efficiently 
encode/decode operand values in each vector register and 
supply them for SIMT execution pipelines. 

3.1 Encoding Scheme 
For energy-efficient RF accesses, we should store/retrieve 
bytes with the same value across a 32×4-byte vector register 
only once per access. To support such energy-efficient RF 
accesses, we propose a register value encoding scheme that 
is much simpler than BDI [12]. Using the same example for 

BDI in Section 2.2, we illustrate our encoding scheme in 
Figure 2. Compared with BDI, we do not subtract the base 
value from each operand. Instead, we directly compare all 4-
byte values in a vector register byte by byte to check wheth-
er all byte[i] are the same or not. The encoded value only 
contains the base value and the different bytes, along with 
the encoding bits. In our encoding scheme, base value can be 
any of the operands, but we always use the first operand for 
simplicity. In this example, we can achieve the same com-
pression ratio as BDI. 

3.2 Microarchitecture Support 
Figure 3 depicts necessary microarchitecture changes to 
support the register value encoding scheme for hypothetical 
16-lane SIMT pipelines. The baseline RF bank is comprised 
of 4 SRAM arrays (8 for 32-lane SIMT pipeline), each of 
which stores four 4-byte operands. Suppose we desire to 
retrieve only byte[0] of each operand to decode/reconstruct 
16 4-byte operands. In a traditional RF architecture, byte[0] 
of 16 operands are distributed across all four SRAM arrays. 

Figure 1: RF access distribution for operand values. “scalar” means all the operands are identical and “n-byte” means the first n MSBs 
of the operand values are the same. “divergent” means the operands are accessed by a divergent instruction. 
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Figure 2.4: Proposed compression technique. Byte-wise comparison results
are stored in compression bits enc[3:0]. 1 (0) means all bytes are (not)
the same. op denotes an operand stored in a 4-byte register.

2.2.1 Compression Scheme

Exploiting value similarity, we first propose a register value compression tech-

nique with a lower cost than BDI [47]. Using the same example in Section 2.1,

we illustrate our compression technique in Figure 2.4. Instead of subtracting

the base value from each operand, our compression technique directly com-

pares all 4-byte values in a vector register byte by byte to check whether or

not byte[i] for every op has the same value. In this example, the byte-

wise comparison determines that byte[3] (=0xC0), byte[2] (=0x40), and

byte[1] (=0x39) have the same values across op[0], op[1], ..., op[7]. That

is, 0xC04039 becomes the base value, and byte[0] from each op (= 0xF8,

..., 0xC8, 0xC0) becomes the delta value for each op. Consequently, our com-

pression technique stores the 3-byte base value and 8 different bytes with

the corresponding encoding bits (11102). In our compression technique, the

base value can be up to 4 bytes (for a vector register storing a scalar value),

and we always use bytes from op[0] for the base value for simplicity. Note

that our technique is more efficient than BDI in hardware implementation

although it does not provide the same compression ratio as BDI in some

special cases, especially when the hexadecimal representation of two similar

values differs widely.
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notes that the first n MSBs of the operand values are the 
same; “0-byte” denotes that the operands have no same 
bytes. If all 4 bytes of all operands have the same value, they 
are scalar operands (“scalar” in Figure 1). As seen in Figure 
1, the average percentage of (non-divergent) scalar, 3-, 2-, 
and 1-byte categories are 36%, 17%, 4%, and 7%, respec-
tively. 

Prior work exploits scalar operands by augmenting a 
dedicated scalar RF [6, 7, 8]. However, as shown in Figure 
1, a significant number of vector registers do not store scalar 
operands but they still have the same value for the same first 
1, 2 or 3 MSBs across all threads in the warp. The previous 
architectures cannot benefit from the use of scalar RF for 
such operands. Besides, with the current trend of deploying a 
larger RF and use of 8- and 10-transistor SRAM cells to tol-
erate every-increasing process variations [16], the energy 
consumption per RF access is to further increase. In this 
section, exploiting similarity amongst operand values in a 
vector register, we propose a scheme that can efficiently 
encode/decode operand values in each vector register and 
supply them for SIMT execution pipelines. 

3.1 Encoding Scheme 
For energy-efficient RF accesses, we should store/retrieve 
bytes with the same value across a 32×4-byte vector register 
only once per access. To support such energy-efficient RF 
accesses, we propose a register value encoding scheme that 
is much simpler than BDI [12]. Using the same example for 

BDI in Section 2.2, we illustrate our encoding scheme in 
Figure 2. Compared with BDI, we do not subtract the base 
value from each operand. Instead, we directly compare all 4-
byte values in a vector register byte by byte to check wheth-
er all byte[i] are the same or not. The encoded value only 
contains the base value and the different bytes, along with 
the encoding bits. In our encoding scheme, base value can be 
any of the operands, but we always use the first operand for 
simplicity. In this example, we can achieve the same com-
pression ratio as BDI. 

3.2 Microarchitecture Support 
Figure 3 depicts necessary microarchitecture changes to 
support the register value encoding scheme for hypothetical 
16-lane SIMT pipelines. The baseline RF bank is comprised 
of 4 SRAM arrays (8 for 32-lane SIMT pipeline), each of 
which stores four 4-byte operands. Suppose we desire to 
retrieve only byte[0] of each operand to decode/reconstruct 
16 4-byte operands. In a traditional RF architecture, byte[0] 
of 16 operands are distributed across all four SRAM arrays. 

Figure 1: RF access distribution for operand values. “scalar” means all the operands are identical and “n-byte” means the first n MSBs 
of the operand values are the same. “divergent” means the operands are accessed by a divergent instruction. 
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Figure 2: Proposed encoding scheme. Byte-wise comparison 
results are store in encoding bits enc[3:0]. “1” (“0”) means all bytes 
are (not) the same. “op” denotes operand. 
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Figure 3: A RF bank for 16-lane SIMT encoding architecture. 
BVR and EBR denote base value register and encoding bit reg-
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ing bit, base value register and encoding bit register. 

[3] [2] [1] [0]

16  4 (= 64) bytes

[3] [2] [1] [0]

modified crossbar (write-back path)

4 bytes

op[15] op[14]

modified crossbar (read path)

RF value decoding

[3] [2] [1] [0]

op[0]

EBR+BVR

enc[3:0] op[0]

3
array[1]array[2]array[3]

byte[3]

eq[3]

byte[2]

eq[2]

byte[1]

eq[1] = = = =
all one detector

16 bytes byte[0] of op[15] to [0]

eq[0]2

array[0]1

Figure 2.5: Microarchitecture to support register value compression for
16-lane SIMT. BVR and EBR denote base value register and compression bit
register, respectively. op, enc, BVR and EBR denote operand, compression
bit, base value register and compression bit register.

2.2.2 Microarchitecture Support

Figure 2.5 depicts necessary microarchitecture changes to support our register

value compression technique for a hypothetical 16-lane SIMT pipeline. In the

baseline register file, a bank is comprised of four SRAM arrays (eight for a

32-lane SIMT pipeline), each of which stores four 4-byte values. Suppose

that we desire to retrieve only byte[0] of each 4-byte value to reconstruct

sixteen 4-byte values. In a traditional register file, byte[0] of sixteen 4-byte

values are distributed across all four arrays. Thus, we still need to activate

all four arrays.

To support power-efficient accesses of the register file for our register value

compression technique, we propose to reorder bytes such that an array stores

only byte[i] of all sixteen 4-byte values in a vector register, as illustrated

in Figure 2.5 ( 1 ). This allows us to activate only one array to retrieve/store

byte[i] of all sixteen 4-byte values. For example, we only activate array[0]

to retrieve/store byte[0] of all sixteen 4-byte values (op[0], op[1], ...,
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Thus, we still need to activate all four SRAM arrays. 
To support energy-efficient RF accesses for our register 

value encoding scheme, we propose to shuffle the bytes such 
that an SRAM array stores only byte[i] of operands in a vec-
tor register, as illustrated in Figure 3 (n). This allows us to 
activate only one SRAM array to retrieve/store byte[i] of 
operands. For example, we only activate array[0] to re-
trieve/store byte[0] of all 16 operands (op[0], op[1], …, 
op[15]) from/to an RF bank. 

However, we need to unshuffled the bytes before send-
ing them to the SIMT pipelines. After analyzing the baseline 
GPU architecture, we propose slightly changing the existing 
crossbar between the RF banks and operand collectors [11] 
as a cost-effective way of shuffling/unshuffling bytes. Figure 
4 illustrates part of a modified (write-back path) crossbar 
designed for a hypothetical 2-lane SIMT pipeline and two 
RF banks of 2×2-byte vector registers; the gray switches 
represent the switches in the traditional crossbar and the red 
arrows depict the data flow. This modification simply re-
arranges the crossbar switches, practically incurring no pen-
alty for performance, power or chip space. Furthermore, 
bytes of each operand corresponding to the base value of a 
vector register are not stored to RF after encoding the vector 
register value, and thus they are not sent over the crossbar 
when retrieved. Consequently, our register value encoding 
scheme reduces not only the energy consumption of access-
ing RF but also that of sending operands through a large 
crossbar. Lastly, we only need minor modifications on the 
arbiter and the control signals of switches, but we see that 
such modifications are very insignificant. Note that we al-
ways store bytes to a bank in a shuffled way whether or not a 
vector register is encoded. 

The RF encoding in [5] uses BDI algorithm to encode 
the registers. However, the Δ part can have different sizes for 
different registers, such as 1-byte for register 1 and 3-byte 
for register 2. Therefore, BDI algorithm requires a relatively 
complex data-moving logic to pack the encoded data. When 
the data size gets larger, the situation gets worse. In [12], 32-
byte cache line is used as baseline. If we apply BDI to a 128-
byte register (256-byte in AMD GPUs), the long wires of the 
data-moving logic can be power/area consuming. Compared 
with cache compression, RF encoding/compression logics 
are tightly coupled with the core. A complex layout may 
even affect other components in the core. 

The comparison logic depicted in Figure 3 (o) gener-

ates the encoding bits (enc[3:0]) which are used not only to 
determine which SRAM array(s) should be activated but 
also to decode/reconstruct all operands of a vector register 
from its encoded value. The comparison logic is almost the 
same as the logic depicted in prior work [6], but we compare 
values byte by byte instead of 4-byte word by word. Our 
circuit-level analysis shows that one cycle is sufficient for 
each comparison logic to generate its “eq” signal assuming a 
typical implementation of all one detector. Then eq[3:0] sig-
nals are encoded such that enc[3:0] bits store 00002, (“0-
byte”), 10002 (“1-byte”), 11002 (“2-byte”), 11102 (“3-byte”), 
and 11112 (“scalar”). Lastly, we store enc[3:0] and the base 
value of a vector register in an encoding bit register (EBR) 
and a base value register (BVR), respectively, as illustrated 
in Figure 3 (p); we simply store the first operand (op[0]) of  
a vector register to a BVR.  

To decode 16 4-byte operands in the example illustrated 
in Section 3.1 (i.e., an “3-byte” case), we activate only ar-
ray[0] and a small SRAM array storing 4-byte BVR and 4-
bit EBR, instead of all four arrays. When all operands of a 
vector register have the same value (i.e., a “scalar” case), we 
activate only the small SRAM array storing BVR and EBR. 
The retrieved bytes from the activated array(s) are shuffled 
back to the standard order after they go through the modified 
crossbar. Then the bytes, which are not stored in RF, are re-
placed with the corresponding bytes from BVR by the de-
coding logic illustrated in Figure 5. In the example depicted 
in “Encoding Scheme,” the decoding logic selects byte[3], 
byte [2], and byte [1] from BVR while only byte[0] for each 
operand is from array[0] based on EBR (=11102). For the 
decoding logic, our conservative circuit-level analysis shows 
that one cycle is sufficient for the decoding logic. Note that 
even the baseline GPU should deploy some circuits to 
broadcast a value from the MEM pipeline to all SIMT lanes, 
e.g., when a warp issues a load instruction to the global 
memory and all threads in the warp attempt to load a value 
from the same address. 

In the example above, an RF bank for 16-lane SIMT 
pipelines is comprised of four 16-byte wide SRAM arrays. 
According to our experiment using a commercial memory 
compiler, a 16-byte (= 128-bit) SRAM array offers the opti-
mal design for an RF comprised of 16 8KB banks. There-
fore, an RF bank for 32-lane SIMT pipelines consists of 
eight 16-byte wide SRAM arrays; we use two SRAM arrays 
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Figure 4: Modified crossbar for byte shuffling. FU denotes a 
hypothetical 2-lane SIMT pipeline. 
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Figure 5: Decoding logic. “Select” is the selection signal gener-
ated using the four encoding bits in EBR. 

Figure 2.6: Adapted crossbar for reordering bytes. FU denotes a
hypothetical 2-lane SIMT pipeline.

op[15]) from/to a bank. However, we also need to reorder the bytes back

to the standard order before sending them to the SIMT pipeline.

After analyzing the baseline GPU architecture, we propose a slight adap-

tation of the existing crossbar between banks and operand collectors to cost-

effectively reorder bytes. Figure 2.6 illustrates a part of an adapted crossbar

(write-back path) designed for a hypothetical 2-lane SIMT pipeline and two

banks of 2× 2-byte vector registers. The gray switches represent switches in

the traditional crossbar and the red arrows depict the flow of values. This

adaptation simply rearranges the connection points of the crossbar switches,

practically incurring no penalty for performance, power or space. Further-

more, bytes of each 4-byte value corresponding to the base value of a vector

register are not stored to the register file after compressing the vector register

value, and thus they are not sent over the crossbar when retrieved. Conse-

quently, our compression scheme reduces not only the power consumption

of accessing vector registers but also that of sending values through a large

crossbar. Lastly, we need minor adaptations in the arbiter and control signals

of the switches. Nonetheless, we see that such adaptations are insignificant.

Note that we always store bytes to a bank in a reordered way whether or not

a vector register is compressed in this crossbar architecture. Hence, values

stored in registers are oblivious to the compression technique, significantly

simplifying the complexity to control the circuit.

In contrast, the register value compression based on BDI [40] requires a

relatively complex interconnect network to pack (unpack) compressed (de-

compressed) values, as the delta part can have diverse sizes for different
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registers, such as 1-byte for register 1 and 3-byte for register 2. As the num-

ber of bytes for a single compression operation (e.g., a vector register or a

cache line) increases, the complexity of the interconnect network increases

even more significantly. Note that BDI was originally proposed for cache

value compression where a cache line is comprised of 32 bytes [47], whereas

a vector register consists of 128 and 256 bytes for NVIDIA and AMD GPUs,

respectively [38, 51].

The comparison logic depicted in Figure 2.5 ( 2 ) generates encoding bits

(enc[3:0] in Figure 2.5) that are used not only to determine which array(s)

should be activated but also to decompress a compressed vector register

value. The comparison logic is almost the same as the logic depicted in

prior work [5], but it compares values byte by byte instead of 4-byte word

by word. Our circuit-level analysis shows that one cycle is sufficient for the

comparison logic to generate its eq signal, assuming a typical implementation

of all one detector. Then eq[3:0] signals are encoded such that enc[3:0]

bits store 00002, (no byte is the same across all 16 4-byte values), 10002

(byte[3] is the same), 11002 (byte[3:2] is the same), 11102 (byte[3:1]

is the same), and 11112 (byte[3:0] is the same or a vector register storing

a scalar value). Lastly, we store enc[3:0] and the base value of a vector

register in an encoding bit register (EBR in Figure 2.5) and a base value

register (BVR in Figure 2.5), respectively, as illustrated in Figure 2.5 ( 3 ); we

simply store the first operand value (op[0] in Figure 2.5) of a vector register

to a base value register.

To decode sixteen 4-byte operands in the example illustrated in Section 2.2.1

(i.e., byte[3:1] is the same across sixteen 4-byte values), we activate only

array[0] and a small array storing a 4-byte base value and 4-bit encoding

bits (BVR and EBR), instead of all four arrays (array[3:0]). For a vector

register storing a scalar value, we activate only the small array storing the

base value and encoding bits. The retrieved bytes from the activated ar-

ray(s) are reordered back to the standard order after they go through the

adapted crossbar. Then the bytes, which are not stored in the register file,

are replaced with the corresponding bytes from the base value register by the

decompression logic illustrated in Figure 2.7. In the example depicted in Sec-

tion 2.2.1, the decompression logic selects byte[3], byte[2], and byte[1]

from the base value register, while only byte[0] for each operand is from

array[0] based on the encoding bits (=11102). For the decompression logic,
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Figure 2.7: Decompression logic. select is the selection signal generated
using the four compression bits in EBR.

our conservative circuit-level analysis shows that one cycle is sufficient for the

decompression logic. Note that even the baseline GPU deploys some circuits

to broadcast a value from the memory pipeline to all SIMT lanes, e.g., when

a warp issues a load instruction to the global memory and all threads in the

warp attempt to load a value from the same address.

In the example above, a bank for 16-lane SIMT pipelines is comprised of

four 16-byte wide arrays. In our experiment, however, a memory compiler

synthesizes a bank consisting of eight arrays with 16-byte (= 128-bit) I/O

width, when it attempts to satisfy the timing constraint for given capacity

(= 8 KB), number of ports (= 1), and I/O width (= 1024 bits). That is,

we need to use two arrays to store byte[i] of all thirty-two 4-byte values of

a vector register. Since these two arrays can be activated independently, we

can optionally apply our register value compression technique to each half of

a vector register separately, denoted by half-register value compression. This

increases chances to partially compress more vector registers and support

more fine-grain scalar execution for some 32-lane SIMT architectures such as

Fermi [38] comprised of 16-lane pipelines at the cost of providing one more set

of base value and encoding bit registers per vector register. We will describe

how we can exploit this for more fine-grain scalar execution in Section 2.3.3.

2.2.3 Handling Branch Divergence

The register value compression technique described in Section 2.2.1 seam-

lessly works for non-divergent instructions. For a divergent instruction, only

17



some threads in a warp will be active and they will perform partial writes to

a vector register. Consequently, the baseline GPU supports per-word writes

to efficiently update vector register values for divergent instructions. For

compressed vector registers, however, we cannot perform partial updates un-

less we decompress it. That is, we always need to retrieve all the values of

a vector register before we compress it again, demanding read-modify-write

(RMW) operations.

Considering a high energy and performance penalty of such RMW op-

erations, we simply do not encode vector register values for divergent in-

structions. Although encoding bits are still generated, they are ignored by

another bit (denoted by D as in “divergent” and affixed to enc[3:0]). These

encoding bits are used to support scalar execution of divergent instructions

described in Section 2.3.2. Lastly, vector registers, which are already encoded

by previous non-divergent instructions, still can be decoded. If a divergent

instruction attempts to update values of a compressed vector register, we can

employ either hardware- or compiler-assisted techniques.

As a hardware-assisted technique, we can check whether or not the des-

tination vector register of a currently executed instruction is compressed

at the scoreboard stage. The scoreboard needs to check the active mask

of the instruction and the encoding bits of the destination vector regis-

ter. If the instruction is divergent and the destination vector register is

encoded, the GPU inserts a special register-to-register move instruction re-

trieving/decompressing the compressed destination vector register value and

store it back to the vector register without compressing it. This special move

instruction is designed to temporarily ignore the active mask. Prior work

reports that the hardware-based technique increases the number of dynamic

instructions by only 2% on average [40]. In addition to such a hardware-only

approach, a compiler-assisted technique can analyze the lifetime of registers

at compile time and identify which registers will store dead values [52]. This

information can avoid unnecessary special move instructions. Leveraging

such compile-time information, we may further reduce the overhead to less

than 2%.

As discussed earlier in this section, a divergent instruction needs to perform

partial updates to a vector register. The baseline GPU achieves this by

activating write-enable signals associated with active lanes; each array has

four write-enable signals for four 4-byte values. Since all 16 bytes of byte[i]
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are stored in one array in our compression technique, we need write-enable

signals for each byte in an array. Note that this does not change the number

of logical write-enable signals, but each 128-bit wide array needs 16 physical

write-enable signals. Analyzing circuit implementations of the write data-

path of arrays, we discover that providing 16 write-enable signals does not

require any change in the SRAM core. That is, we only need to connect more

write-enable signals to write-drivers of the SRAM I/O peripheral block in a

finer-grained way. Our circuit-level analysis shows that more write-enable

wires increase the area of a large memory array by less than 1%. This is

because the I/O circuit has a tight width pitch but a loose height pitch where

the write-enable signals run horizontally. Lastly, our compression technique

activates all four arrays for a divergent instruction partially updating its

destination register, as such a partial update is applied to a decoded vector

register value, and each byte of a 4-byte value is distributed across four

arrays. In contrast, the baseline architecture may activate fewer arrays for a

partial update depending on a given active mask value (M). This effect will

be accounted for our evaluation.

2.3 Scalar Execution Architecture

Prior work demonstrated that scalar execution of eligible non-divergent arith-

metic/logic instructions could significantly improve the performance and

power efficiency of GPUs [5, 6]. In this section, leveraging the enhanced

microarchitecture for our register value compression, we demonstrate that G-

Scalar can support scalar execution of eligible divergent and special-function

instructions. This greatly increases the percentage of scalar execution of

instructions practically at no cost.

2.3.1 Efficient Scalar Execution

Our register value compression technique not only reduces the energy con-

sumption of register file and its crossbar but also easily determines how sim-

ilar the values of a vector register are. A vector register storing a scalar

value has its encoding bits (enc[3:0]) equal to 11112. This allows us to

easily support a scalar execution approach proposed by prior work [5] at
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practically no further hardware cost, because a base value register becomes

effectively a scalar register. When a non-divergent instruction operates on

two vector registers storing scalar values, only two 4-byte values are sent

from the corresponding base value registers to an appropriate SIMT pipeline

and only one execution lane in that SIMT pipeline will be active. Similar

to prior work [5], scalar execution of an instruction only needs to write-back

its computed value to a base value register and sets the encoding bits of

the destination vector register to 11112. Lastly, when at least one of vector

registers for an instruction is not a vector register storing a scalar value, the

instruction is not eligible for scalar execution, and the decompression logic

automatically decompresses vector registers storing scalar values.

Although the key high-level concept of identifying and executing scalar

instructions is the same as previous scalar execution architectures [5, 6, 7],

G-Scalar has notable advantages over previous scalar execution architectures.

First, G-Scalar effectively provides 16 banks for scalar values because each

bank has its own small array for base value registers. In contrast, we observe

that a single bank for scalar values in prior scalar execution architectures can

be a performance bottleneck for applications with many instructions eligible

for scalar execution. An instruction can access all of its vector registers in

parallel if there is no bank conflict. However, it always takes multiple cycles

for an instruction eligible for scalar execution to retrieve its register values

because there is only one bank for scalar values. Furthermore, when one

warp issues a scalar instruction, we observe that other warps are also likely

to issue scalar instructions. This is because the warps are executed roughly

at the same pace. Therefore, there can be a burst of scalar instructions, all

of which wait for accessing a single bank for scalar values at the operand

collectors. If all operand collectors are allocated, the warp schedulers must

stop issuing instructions from ready warps. With semiconductor technology

scaling, future GPUs also tend to have more hardware resources, such as

a larger register file with more banks and more SIMT execution pipelines.

Thus, relying on only a single bank for scalar values may not be a scalable

approach.

Second, G-Scalar does not need separate scalar execution pipelines. In-

stead, it leverages existing SIMT execution pipelines and clock-gates all but

one lane for scalar execution [3]. Note that prior work estimates that the

cost of supporting per-lane clock gating is very small [3]. We identify a few
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write-back its scalar value to BVR and set the encoding bits 
of the destination vector register to 11112. Lastly, when an 
instruction uses both scalar and vector operands, the decod-
ing logic automatically expand the scalar operand to a vector 
operand using the decoding logic.  

Although the key high-level concept of identifying and 
executing scalar instructions is the same as previous archi-
tectures [6, 7, 8], CoolScalar has some major advantages 
over previous architectures. First, CoolScalar effectively has 
16 scalar RF banks because each RF bank has its own BVR 
array that can operate independently from BVR arrays asso-
ciated with other RF banks. In contrast, we observe that a 
single scalar RF bank in prior work can be a performance 
bottleneck for applications with many scalar instructions. A 
vector instruction can access all of its operands in parallel if 
it has no bank conflict. However, it always takes multiple 
cycles for a scalar instruction to retrieve its operands be-
cause of only one scalar RF bank. Furthermore, when one 
warp issues a scalar instruction, we observe that other warps 
are also likely to issue scalar instructions. This is because the 
warps are executed roughly at the same pace. Therefore, 
there can be a burst of scalar instructions, all of which will 
be waiting for accessing a single scalar RF bank at the oper-
and collectors. If all operand collectors are allocated, the 
warp schedulers must stop issuing instructions from the ac-
tive warps. With semiconductor technology scaling, future 
GPUs also tend to have more hardware resources, such as 
larger RF, more register banks and more SIMT execution 
pipelines. Thus, relying on only a single scalar RF bank is 
not a scalable approach. 

Second, CoolScalar does not need separate scalar execu-
tion pipelines. Instead, it leverages existing SIMT execution 
pipelines and clock-gates all but one lane for scalar execu-
tion [4]. Note that prior work estimates that the (power) 
overhead of supporting even per-lane clock gating is negli-
gible (~0.3W) [4]. We identify a few reasons to obviate from 
implementing separate scalar execution pipelines. Since the 
SM front-end can schedule and issue only up to two instruc-
tions per cycle, a separate scalar execution pipeline may 
bring only little performance improvement because the 
front-end will soon become a performance bottleneck. Fur-
thermore, implementing even one more scalar SFU pipeline 

incurs a considerable penalty of chip power and space; a 
GTX 480 has only four SFU pipelines due to their large size 
in the baseline architecture. This is why the previous work 
implements the scalar execution pipeline only for ordinary 
ALU operations such as additions and multiplications. In 
contrast, CoolScalar can execute any vector instructions as 
scalar instructions because it uses the pipelines that are al-
ready in the baseline architecture. 

4.2 Divergent Scalar Instruction 
In previous work [6, 7, 8], a divergent instruction cannot be 
considered as a scalar instruction at all. However, we ob-
serve that approximately 50% of the instructions are diver-
gent in many GPGPU applications such as lbm [18] and 
heartwall [19]. Meanwhile, we discover that operands asso-
ciated with active lanes in a divergent path often have the 
same value. Suppose that a vector register has eight values 
AAABAABC after a partial write. We cannot treat it as a 
scalar operand for a non-divergent instruction, but we may 
treat it as a scalar operand for a divergent instruction with an 
active mask (M) value equal to 10101100 (i.e., A-A-AA--) 
as shown in Figure 6. To enable scalar execution for diver-
gent instructions, we first need to be able to compare the 
write-back values of a divergent instruction at run-time. 
Second, we must be able to detect whether or not a divergent 
instruction is eligible for scalar execution. Lastly, we must 
execute divergent scalar instructions correctly. 
Comparison of divergent write-back values. As depicted 
in Figure 3 (o), our comparison logic for encoding first 
compares each byte of a 4-byte write-back value to that of a 
write-back value in its neighboring lane. This implementa-
tion makes the comparison of write-back values impossible 
for a divergent instruction, since the inactive lanes of a di-
vergent instruction have no write-back values (or invalid 
values) and break the comparison chain. However, we tackle 
this problem by exploiting the following observation: 
providing a value from any active lane for inactive lanes 
should not change the outcome of comparison, because we 
are only checking whether or not all active lanes have the 
same write-back value (or scalar). Suppose a SIMT execu-
tion pipeline has four lanes while lane[0], lane[1], and 
lane[3] are active. The comparison of op[0], op[1], and op[3] 
is equivalent to that of op[0], op[1], op[0], and op[3]. We can 
accomplish such comparison by slightly modifying the com-
parison logic illustrated in Figure 3 (o).  

Figure 7(a) shows the modified comparison logic. We 
have a shared byte-wide bus that can be driven by a write-
back value from only one of active lanes. The logic detecting 
the leading one of a given 16-bit active mask value (M) 
(e.g., L[15:0] = 01000000000000002 for M[15:0] = 
01000000111110102) can enable only one tristate buffer 
connected to the write-back value from the first active lane 
(i.e., lane[14]). This allows us to send a write-back value 
from an active lane to all inactive lanes just for comparison 
purpose and check whether or not the operands of active 

Figure 6: An example for divergent scalar value. The 8-operand 
vector register shown in the figure is updated partially first, then read 
by another divergent instruction. 

B A C B B C B C BVR

active inactiveactive
maskA A A A

A A A B A A B C mask (10101100)

read by instruction with 
active mask = 10101100

A A A A divergent scalar operand

Figure 2.8: An example for divergent scalar value. M denotes active mask.
A vector register of eight values is updated partially first, then read by
another divergent instruction.

reasons to obviate from implementing separate scalar execution pipelines.

Since the front-end can schedule and issue only up to two instructions per

cycle, a separate scalar execution pipeline may bring only little performance

improvement because the front-end will soon become a performance bottle-

neck. Furthermore, implementing even one more SFU incurs a considerable

penalty of chip power and space. For example, a GTX 480 GPU has only

four SFUs per SM because each SFU consumes a large amount of chip power

and space. This is why a previous architecture implements the scalar execu-

tion pipeline only for arithmetic/logic instructions. In contrast, G-Scalar can

support scalar execution for any vector instructions, because it uses SFUs

that are already in the SIMT pipelines.

2.3.2 Scalar Execution of Divergent Instructions

No prior scalar execution architecture can support scalar execution of di-

vergent instructions [5, 6, 7, 13]. However, we observe that approximately

50% of executed instructions are divergent in some GPU applications such

as lbm [53] and heartwall [54]. Meanwhile, we discover that 4-byte values,

which are associated with active lanes in a divergent path, are often the same

in a vector register.

Suppose that a vector register has eight values, AAABAABC. We cannot

consider that such a vector register stores a scalar value for a non-divergent

instruction. Nonetheless, we may consider that the vector register stores a
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scalar value for a divergent instruction with an active mask (M) value equal to

10101100 (i.e., A-A-AA–), as shown in Figure 2.8. To support scalar execu-

tion for such divergent instructions, we need to slightly adapt the comparison

logic to correctly compare the (partial) write-back values of a vector regis-

ter updated by a divergent instruction and detect whether a given divergent

instruction is eligible for scalar execution.

As depicted in Figure 2.5 ( 1 ), our comparison logic for compression com-

pares each byte of a 4-byte write-back value to that of a 4-byte write-back

value in its neighboring lane. Such an implementation makes the comparison

of partial write-back values impossible for a divergent instruction, since the

inactive lanes of a divergent instruction do not have any valid write-back

values. This breaks the comparison chain in the comparison logic. However,

we tackle this challenge based on the following observation: providing a 4-

byte value from any active lane for values of inactive lanes should not change

the outcome of comparison, because we only check whether or not all active

lanes have the same write-back value. Suppose that a given SIMT execution

pipeline has four lanes, while lane[0], lane[1], and lane[3] are active.

The comparison of op[0], op[1], and op[3] is equivalent to that of op[0],

op[1], op[0], and op[3]. We can accomplish such a comparison by slightly

adapting the comparison logic detailed in Section 2.3.3.

Figure 2.9a shows the adapted comparison logic. We have a shared byte-

wide bus that can be driven by a write-back value from only one of active

lanes. The logic detecting the leading one of a given 16-bit active mask value

(M) (e.g., L[15:0] = 01000000000000002 for M[15:0] = 01000000111110102)

can enable only one tristate buffer connected to the write-back value from the

first active lane (i.e., lane[14]). This allows us to send a write-back value

from an active lane to all inactive lanes just for a comparison purpose and

check whether or not active lanes operate on the same 4-byte value. Since

the comparison logic has enough timing slack, the adapted comparison logic

can still complete a comparison in one cycle according to our circuit-level

analysis.

As described in Section 2.2.3, we do not compress the destination register

of a divergent instruction. Nonetheless, we still generate its encoding bits

and store them to its encoding bit register. This is to indicate whether or

not 4-byte values, which correspond to active lanes of subsequent divergent

instructions, are the same (i.e., a vector register of a divergent scalar value).

22



 

LOD

L[15:0]

M[15:0]

=

L[15]

M[15]

all one detector

L[14]

M[14]

=

0  1

byte[i] of op[15] op[14]

(a)

7 

 

lanes are scalar. Since the comparison logic has enough tim-
ing slack (cf. Section 3.1), the modified comparison logic 
can still complete a comparison in one cycle according to 
our synthesis analysis. 
Detection of divergent scalar instruction. We do not en-
code the value of the destination register if the instruction is 
divergent as we described in Section 3.3, but we still gener-
ate its encoding bits and store them to its EBR. This is to 
indicate whether the register stores a divergent scalar value 
for subsequent divergent instructions. For example, 
if(r1==r2) in Figure 7(b) (n) starts branch divergence; 
Figure 7(b) (o) and (p) illustrate two following divergent 
paths. Since r2=r2*2 stores a divergent scalar operand 
with respect to a given active mask value in Figure 7(b) 
(o), the associated EBR (EBR(r2)) is set to 1111 indicat-
ing that r2 stores a divergent scalar value. However, r2 
stores a scalar operand only with respect to the current active 
mask value (M=10001111). The following instruction 
(r1=abs(r2)) in Figure 7(b) (p) is on the other divergent 
path and takes r2 as its operand. Although EBR(r2) indi-
cates that r2 is a scalar operand, we cannot execute 
r1=abs(r2) as a scalar instruction because the encoding 
bits of r2 are invalid with respect to the current active mask 
(M=01110000). From the example, we can see the oper-
ands in the active lanes (-2, 0, 1) are different indeed. 

To correctly determine whether a source register of a 
current instruction stores a scalar operand (with respect to its 
active mask), we need to remember which lanes were com-
pared to generate the encoding bits of the register (i.e., the 
active mask of the previous instruction that wrote its values 
to the register). Since we do not encode values of a divergent 
destination register and thus we do not need to store its base 
value to its BVR, we propose to store the associated active 
mask to its BVR (Figure 7(b) (o)).  

Depending on whether a register is updated by a non-
divergent or divergent instruction (D = 0 or 1), the interpre-
tation of enc[3:0] may vary and BVR may store a base or 
active mask value. When D is set to 1, we do not actually 
encode register values. Consequently, we ignore encoding 
bits and bring all operands from RF. However, when D and 
enc[3:0] are set to 1 and 1111, respectively, we compare the 

active mask value of the current instruction with  the BVR 
value of  the source register of the current instruction (Figure 
7(b) (p)). If these two values are matched, the source regis-
ter has a scalar operand; we still need to bring all operands 
from RF but activate only one lane for scalar execution. 
Otherwise, the instruction cannot be executed as a scalar 
instruction although enc[3:0] = 1111.  
Execution of divergent scalar instruction. Executing di-
vergent scalar instructions is the same as non-divergent sca-
lar instructions (i.e., only one lane is active).  However, re-
trieving operands and storing values from/to RF are different 
for a divergent scalar instruction. Since we disable register 
value encoding for divergent instructions, we store a scalar 
value to RF without encoding them; we leverage the existing 
broadcasting mechanism depicted in Figure 3 to broadcast 
the divergent scalar value to the register write paths associ-
ated with all active lanes. Although source operands have the 
same value with respect to a given active mask, we retrieve 
operands from RF. That is, divergent scalar execution does 
not reduce the power consumption of RF. 

4.3 Half-warp Scalar Execution 
As described in Section 3.1, we can optionally encode each 
half of a vector register separately, providing one more pair 
of BVR and EBR for each vector register. Leveraging the 
GPU’s half-warp execution architecture and the aforemen-
tioned half-register value encoding scheme, we can support 
scalar execution for half-warp. Suppose that enc[3:0] of the 
first half of a vector register (denoted by encL[3:0]) is 11002 
but enc[3:0] of the second half of the vector register 
(encH[3:0]) is 11112. In previous scalar execution architec-
tures, this vector instruction cannot be executed as a scalar 
instruction since some operands of the first half of the vector 
register do not have the same value. In contrast, CoolS-
calar’s half-warp scheme can still execute the “second half” 
of the vector instruction as a scalar instruction.  

In some occasions, the first and second halves of a vec-
tor register are scalar each, but they have two distinct scalar 
values. Unlike traditional scalar execution architectures, 
CoolScalar’s half-warp scalar scheme can execute one scalar 
instruction for each half warp. To indicate whether the first 
and second halves have the same value, we need another bit 

Figure 7: (a) The modified comparison logic for divergent instructions. (b) Example of checking active mask (denoted by M). (c) 
The modified comparison logic for half-warp scalar execution. FS denotes “full scalar”. 

 

  (a)                                                                      (b)                                                                           (c) 

r1:[2,-3,1,2,2,2,2,2]
r2:[2,-2,0,1,2,2,2,2]
if(r1==r2)

1

M=10001111
r2=r2*2
r2:[4,-2,0,1,4,4,4,4]
(divergent scalar)
BVR(r2)=10001111
EBR(r2)=1111

2

M=01110000
EBR(r2)==1111 but M!=BVR(r2)
r1=abs(r2)(vector exe)

3

(b)

Figure 2.9: (a) The adapted comparison logic for divergent instructions. (b)
An example of checking active mask (denoted by M).

For example, if(r1==r2) in Figure 2.9b ( 1 ) starts a branch divergence;

Figure 2.9b ( 2 ) and ( 3 ) illustrate two following divergent paths. Since r2

= r2*2 stores a (divergent) scalar value with respect to a given active mask

value in Figure 2.9b ( 2 ), the corresponding encoding bit register (EBR(r2))

is set to 11112 indicating that r2 stores a divergent scalar value. However,

r2 stores a scalar value only with respect to the current active mask value

(M = 10001111). The following instruction (r1 = abs(r2)) in Figure 2.9b

( 3 ) is on the other divergent path and operates on r2. Although EBR(r2)

indicates that r2 contains a scalar value, we cannot perform scalar execution

for r1 = abs(r2) because the encoding bits of r2 are invalid with respect

to the current active mask (M = 01110000). From this example, we can see

that the operand values in the active lanes (-2, 0, 1) are indeed different.

To correctly determine whether or not a current instruction operates on

vector registers of divergent scalar values with respect to its active mask, we

need to remember which lanes were compared to generate the corresponding

encoding bits (i.e., the active mask of the previous instruction that wrote its

values to the register). Since we do not encode values of a divergent desti-

nation register, we do not need to store its base value to the corresponding

base value register. Exploiting this, we propose to store the associated active

mask to its base value register (Figure 2.9b ( 2 )).

Depending on whether or not a register is updated by a non-divergent

or divergent instruction (D = 0 or 1), the interpretation of enc[3:0] may

change and the corresponding base value register may store a base or active

mask value. When D is set to 1, we do not actually compress register values.
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Consequently, we ignore the corresponding encoding bits and bring all values

from the register file. However, when D and enc[3:0] are set to 1 and 11112,

respectively, we compare the active mask value of a current instruction with

the value of a base value register corresponding to a vector register that the

instruction operates on (Figure 2.9b ( 3 )). If these two values are matched,

the source vector register contains a (divergent) scalar value. Note that we

still need to bring all 16 operand values from the register file, but we activate

only one lane for scalar execution. Otherwise, we cannot perform scalar

execution for the instruction although enc[3:0] is set to 11112.

Lastly, scalar execution of divergent instructions is the same as scalar in-

structions that are not divergent (i.e., only one lane is active), but retriev-

ing/storing values from/to the register file is different. As we disable the

register value compression for divergent instructions, we store a scalar value

to the register file without compressing the register value. In particular, we

leverage an existing mechanism depicted in Figure 2.5 to broadcast a diver-

gent scalar value to the write paths associated with all active lanes. Although

a source vector register stores the same value with respect to a given active

mask, we still retrieve the value from the register file.

2.3.3 Half-Warp Scalar Execution

As described in Section 2.2, we can optionally compress each half of a vector

register separately, providing one more pair of base value and encoding bit

registers for each vector register. Leveraging a half-warp execution architec-

ture in some GPUs [38] and our half-register value compression technique,

we can support half-warp scalar execution. Suppose that enc[3:0] of the

first half of a vector register (denoted by encL[3:0]) is 11002 but enc[3:0]

of the second half of the vector register (encH[3:0]) is 11112. In previous

scalar execution architectures, we cannot support scalar execution of such an

instruction, as some values of the first half of the vector register are not the

same. In contrast, we can still support scalar execution of such an instruction

for the second-half warp.

In some occasions, the first and second halves of a vector register are scalar

each, but they have two distinct scalar values. In contrast to traditional scalar

execution architectures, G-Scalar can support scalar execution for each half
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Figure 2.10: The adapted comparison logic for half-warp scalar execution.
FS denotes “full scalar”.

warp. To indicate whether or not the first and second halves have the same

value, we need another flag bit (FS in Figure 2.10); the modified comparison

logic for this architecture is depicted in Figure 2.10. This is necessary for

scalar execution of a full-warp using only one lane for all 32 threads.

Note that the enhanced microarchitecture for half register value compres-

sion can seamlessly handle the write-back from scalar execution of a half

warp. Moreover, it allows us to support half-warp scalar execution at practi-

cally no further hardware cost. Considering the complexity and benefit, we

support half-warp scalar execution only for non-divergent instructions in this

study. Lastly, this half-warp scalar execution allows even future GPUs with

wider SIMT pipelines (meaning possibly fewer full-warp scalar instructions)

to continuously benefit from scalar execution. However, implementing one

more set of base value and encoding bit registers increases the hardware cost

of the register file from 3% to 7%.

2.4 Evaluation

2.4.1 Methodology

We use GPGPUSim 3.2.2 [55] and GPUWattch [3] to evaluate the effective-

ness of G-Scalar and our register value compression technique. GPGPUSim

is configured to model a GPU architecture similar to NVIDIA GTX480 [38].

The key configuration parameters are tabulated in Table 2.1. GPUWattch
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Table 2.1: Simulator configuration.

and bring all values from the register file. However, when D 
and enc[3:0] are set to 1 and 11112, respectively, we 
compare the active mask value of a current instruction with 
the value of a base value register corresponding to a vector 
register that the instruction operates on (Figure 7(b) (p)). If 
these two values are matched, the source vector register con-
tains a (divergent) scalar value. Note that we still need to bring 
all 16 operand values from the register file, but we activate 
only one lane for scalar execution. Otherwise, we cannot per-
form scalar execution for the instruction although enc[3:0] 
is set to 11112.  

Lastly, scalar execution of divergent instructions is the 
same as non-divergent scalar instructions (i.e., only one lane 
is active), but retrieving/storing values from/to the register file 
is different. As we disable the register value compression for 
divergent instructions, we store a scalar value to the register 
file without compressing the register value. In particular, we 
leverage an existing mechanism depicted in Figure 3 to broad-
cast a divergent scalar value to the write paths associated with 
all active lanes. Although a source vector register stores the 
same value with respect to a given active mask, we still re-
trieve the value from the register file. 

4.3 Half-warp Scalar Execution 
As described in Section 3.1, we can optionally compress each 
half of a vector register separately, providing one more pair 
of base value and encoding bit registers for each vector regis-
ter. Leveraging a half-warp execution architecture in some 
GPUs [7] and our half-register value compression technique, 
we can support half-warp scalar execution. Suppose that 
enc[3:0] of the first half of a vector register (denoted by 
encL[3:0]) is 11002 but enc[3:0] of the second half of 
the vector register (encH[3:0]) is 11112. In previous sca-
lar execution architectures, we cannot support scalar execu-
tion of such an instruction, as some values of the first half of 
the vector register are not the same. In contrast, we can still 
support scalar execution of such an instruction for the second-
half warp.  

 In some occasions, the first and second halves of a vector 
register are scalar each, but they have two distinct scalar val-
ues. In contrast to traditional scalar execution architectures, 
G-Scalar can support scalar execution for each half warp. To 
indicate whether or not the first and second halves have the 
same value, we need another flag bit (FS in Figure 7(c)); the 
modified comparison logic for this architecture is depicted in 
Figure 7(c). This is necessary for scalar execution of a full-
warp using only one lane for all 32 threads.  

Note that the enhanced microarchitecture for half register 
value compression can seamlessly handle the write-back from 
scalar execution of a half warp. Moreover, it allows us to sup-
port half-warp scalar execution at practically no further hard-
ware cost. Considering the complexity and benefit, we sup-
port half-warp scalar execution only for non-divergent in-
structions in this study. Lastly, this half-warp scalar execution 
allows even future GPUs with wider SIMT pipelines (i.e., 
fewer full-warp scalar instructions) to continuously benefit 
from scalar execution. However, implementing one more set 
of base value and encoding bit registers increases the hard-
ware cost of the register file from 3% to 7%. 

5. Evaluation 
5.1 Methodology 
We use GPGPUSim 3.2.2 [25] and GPUWattch [2] to evaluate 
the effectiveness of G-Scalar and our register value compres-
sion technique. GPGPUSim is configured to model a GPU ar-
chitecture similar to NVIDIA GTX480 [7]. The key configu-
ration parameters are tabulated in Table 1. GPUWattch is also 
configured to estimate the power consumption of G-Scalar 
GPU. 

We use 17 benchmarks from Parboil [23] and Rodinia 
[24] benchmark suites that represent diverse GPU applica-
tions (cf. Table 2). Although one of our key contributions is 
scalar execution of divergent instructions, we exclude excep-
tionally divergent benchmarks (e.g., myocyte), while in-
cluding a fair number of non-divergent benchmarks (e.g., 
mri-q, sgemm, spmv). Lastly, we exclude unusually 
memory-intensive benchmarks (e.g., bfs), as the perfor-
mance and power consumption are dominated by the memory 
subsystem, whereas scalar execution architecture aims to im-
prove power efficiency of compute-intensive applications.  

Figure 8 plots value similarity of vector registers in these 
benchmarks. We collect values of vector registers by execut-
ing the benchmarks. We compare all thirty-two 4-byte values 
of each vector register byte by byte. “n-byte” denotes that the 
first n most significant bytes of all 4-byte values in a vector 
register are the same. As seen in Figure 8, the average per-
centage of (non-divergent) scalar, 3-, 2-, and 1-byte categories 
are 36%, 17%, 4%, and 7%, respectively. 

We synthesize the compressor and decompressor logic 
with a commercial 40nm standard cell library. The results 
shown in Table 3 include the additional 1024-bit pipeline reg-
isters for compressor and decoder each. Since we have one 

Table 1: Simulator configuration. 

# of SMs 15 Registers per SM 128KB 
SM Frequency 1.4GHz Register File Bank 16 
NoC Frequency 0.7GHz OC per SM 16 
Warp Size 32 Schedulers per SM 2 
SIMT EXE Width 16 L1$ per SM 16KB 
Threads per SM 1536 Memory Channels 6 
CTAs per SM 8 L2$ Size 768KB 

Table 2: Benchmarks. 

Rodinia Parboil 
Benchmark Abbr. Benchmark Abbr. 

b+tree BT cutcup CC 

backprop BP lbm LBM 

heartwall HW mri-grid MG 

hotspot HS mri-q MQ 

leukocyte LC sad SAD 

pathfinder PF sgemm MM 

srad_1 SR1 spmv MV 

srad_2 SR2 stencil ST 

  tpacf ACF 

Table 2.2: Benchmarks.

and bring all values from the register file. However, when D 
and enc[3:0] are set to 1 and 11112, respectively, we 
compare the active mask value of a current instruction with 
the value of a base value register corresponding to a vector 
register that the instruction operates on (Figure 7(b) (p)). If 
these two values are matched, the source vector register con-
tains a (divergent) scalar value. Note that we still need to bring 
all 16 operand values from the register file, but we activate 
only one lane for scalar execution. Otherwise, we cannot per-
form scalar execution for the instruction although enc[3:0] 
is set to 11112.  

Lastly, scalar execution of divergent instructions is the 
same as non-divergent scalar instructions (i.e., only one lane 
is active), but retrieving/storing values from/to the register file 
is different. As we disable the register value compression for 
divergent instructions, we store a scalar value to the register 
file without compressing the register value. In particular, we 
leverage an existing mechanism depicted in Figure 3 to broad-
cast a divergent scalar value to the write paths associated with 
all active lanes. Although a source vector register stores the 
same value with respect to a given active mask, we still re-
trieve the value from the register file. 

4.3 Half-warp Scalar Execution 
As described in Section 3.1, we can optionally compress each 
half of a vector register separately, providing one more pair 
of base value and encoding bit registers for each vector regis-
ter. Leveraging a half-warp execution architecture in some 
GPUs [7] and our half-register value compression technique, 
we can support half-warp scalar execution. Suppose that 
enc[3:0] of the first half of a vector register (denoted by 
encL[3:0]) is 11002 but enc[3:0] of the second half of 
the vector register (encH[3:0]) is 11112. In previous sca-
lar execution architectures, we cannot support scalar execu-
tion of such an instruction, as some values of the first half of 
the vector register are not the same. In contrast, we can still 
support scalar execution of such an instruction for the second-
half warp.  

 In some occasions, the first and second halves of a vector 
register are scalar each, but they have two distinct scalar val-
ues. In contrast to traditional scalar execution architectures, 
G-Scalar can support scalar execution for each half warp. To 
indicate whether or not the first and second halves have the 
same value, we need another flag bit (FS in Figure 7(c)); the 
modified comparison logic for this architecture is depicted in 
Figure 7(c). This is necessary for scalar execution of a full-
warp using only one lane for all 32 threads.  

Note that the enhanced microarchitecture for half register 
value compression can seamlessly handle the write-back from 
scalar execution of a half warp. Moreover, it allows us to sup-
port half-warp scalar execution at practically no further hard-
ware cost. Considering the complexity and benefit, we sup-
port half-warp scalar execution only for non-divergent in-
structions in this study. Lastly, this half-warp scalar execution 
allows even future GPUs with wider SIMT pipelines (i.e., 
fewer full-warp scalar instructions) to continuously benefit 
from scalar execution. However, implementing one more set 
of base value and encoding bit registers increases the hard-
ware cost of the register file from 3% to 7%. 

5. Evaluation 
5.1 Methodology 
We use GPGPUSim 3.2.2 [25] and GPUWattch [2] to evaluate 
the effectiveness of G-Scalar and our register value compres-
sion technique. GPGPUSim is configured to model a GPU ar-
chitecture similar to NVIDIA GTX480 [7]. The key configu-
ration parameters are tabulated in Table 1. GPUWattch is also 
configured to estimate the power consumption of G-Scalar 
GPU. 

We use 17 benchmarks from Parboil [23] and Rodinia 
[24] benchmark suites that represent diverse GPU applica-
tions (cf. Table 2). Although one of our key contributions is 
scalar execution of divergent instructions, we exclude excep-
tionally divergent benchmarks (e.g., myocyte), while in-
cluding a fair number of non-divergent benchmarks (e.g., 
mri-q, sgemm, spmv). Lastly, we exclude unusually 
memory-intensive benchmarks (e.g., bfs), as the perfor-
mance and power consumption are dominated by the memory 
subsystem, whereas scalar execution architecture aims to im-
prove power efficiency of compute-intensive applications.  

Figure 8 plots value similarity of vector registers in these 
benchmarks. We collect values of vector registers by execut-
ing the benchmarks. We compare all thirty-two 4-byte values 
of each vector register byte by byte. “n-byte” denotes that the 
first n most significant bytes of all 4-byte values in a vector 
register are the same. As seen in Figure 8, the average per-
centage of (non-divergent) scalar, 3-, 2-, and 1-byte categories 
are 36%, 17%, 4%, and 7%, respectively. 

We synthesize the compressor and decompressor logic 
with a commercial 40nm standard cell library. The results 
shown in Table 3 include the additional 1024-bit pipeline reg-
isters for compressor and decoder each. Since we have one 

Table 1: Simulator configuration. 

# of SMs 15 Registers per SM 128KB 
SM Frequency 1.4GHz Register File Bank 16 
NoC Frequency 0.7GHz OC per SM 16 
Warp Size 32 Schedulers per SM 2 
SIMT EXE Width 16 L1$ per SM 16KB 
Threads per SM 1536 Memory Channels 6 
CTAs per SM 8 L2$ Size 768KB 

Table 2: Benchmarks. 

Rodinia Parboil 
Benchmark Abbr. Benchmark Abbr. 

b+tree BT cutcup CC 

backprop BP lbm LBM 

heartwall HW mri-grid MG 

hotspot HS mri-q MQ 

leukocyte LC sad SAD 

pathfinder PF sgemm MM 

srad_1 SR1 spmv MV 

srad_2 SR2 stencil ST 

  tpacf ACF 

is also configured to estimate the power consumption of G-Scalar GPU.

We use 17 benchmarks from Parboil [53] and Rodinia [54] benchmark suites

that represent diverse GPU applications in Table 2.2. Although one of our

key contributions is scalar execution of divergent instructions, we exclude

exceptionally divergent benchmarks (e.g., myocyte), while including a fair

number of non-divergent benchmarks (e.g., mri-q, sgemm, spmv). Lastly, we

exclude unusually memory-intensive benchmarks (e.g., bfs), as the perfor-

mance and power consumption are dominated by the memory subsystem,

whereas scalar execution architecture aims to improve power efficiency of

compute-intensive applications.

We synthesize the compressor and decompressor logic with a commercial

40nm standard cell library. The results shown in Table 2.3 include the ad-

ditional 1024-bit pipeline registers for compressor and decoder each. Since

we have one decompressor for each operand collector and one compressor for

each SIMT execution pipeline, we need 16 decompressor and 4 compressor

per SM. These compressor and decompressor increase the chip power and
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Table 2.3: Estimation of encoder/decoder area, delay and power
consumption including that of the pipeline registers at 1.4 GHz. The
encoder includes the broadcasting logic depicted in Figure 2.9.

decompressor for each operand collector and one compressor 
for each SIMT execution pipeline, we need 16 decompressor 
and 4 compressor per SM. These compressor and decompres-
sor increase the chip power and space by 0.32W (1.6%) and 
0.16mm2 (0.7%) respectively, compared to the baseline SM. 
Considering the small cost of chip power and space, we do 
not place-and-route the compressor and decompressor imple-
mentations, as the conclusion of this study will not notably 
changes. Lastly, as our compression technique is simpler than 
BDI, our compressor logic associated wires consume only 
19% and 30% of prior work [4]. 

In order to estimate the access energy of register file, we 
use a memory compiler, which determines the size of an array 
constituting a 64×1024-bit bank for given capacity (= 8KB), 
number of ports (= 1), and I/O width (= 1024 bits). This gives 
us a bank comprised of 8×128-bit arrays with 128-bit I/O 
width, agreeing to the size used for prior work [26]. For 32-
bit base value registers, 4-bit encoding bit registers, and D and 
FS bits, we synthesize a 64×38-bit array. The energy con-
sumption of accessing a 38-bit register in this array is 5.2% of 
that of accessing an entire 1024-bit vector register in a bank. 

This register file architecture needs practically no modifica-
tion to the baseline register file architecture except for only 
extra write-enable signals. The memory array for base value 
registers, encoding bit registers, and D and FS bits increases 
the size of register file by ~3%. 

Lastly, the encoding bits should be known before reading 
the register file to determine which arrays should be activated. 
This increases the pipeline latency by one cycle, but the 
throughput of register file is not affected as we pipeline such 
an operation. In total, we increase the GPU pipeline latency 
by 3 cycles (i.e., 1 cycle each for (1) compressing a register 
value; (2) decoding a register value; and (3) accessing a base 
value register, encoding bit register and flag bits). 

5.2 Instructions Eligible for Scalar Execution 
Figure 9 shows the percentage of instructions eligible for sca-
lar execution. “ALU scalar” is the baseline architecture, 
which only supports scalar execution of non-divergent arith-
metic/logic instructions. “all scalar” covers special-function 
and memory (load/store) instructions eligible for scalar exe-
cution atop “ALU scalar.” “half-scalar” includes instructions 
eligible for half-warp scalar execution atop “all scalar.” Fi-
nally, “divergent scalar” includes divergent instructions eligi-
ble for scalar instructions atop “half-scalar.” “ALU scalar” 
covers only 22% of total dynamic instructions on average. 
Atop “ALU scalar,” we can cover 7%, 2%, and 9% more in-
structions when we cover scalar execution of special-func-
tion, memory, half-warp, and divergent instructions, respec-
tively. Compared with “ALU scalar,” G-Scalar can almost 
double the number of instructions eligible for scalar execu-
tion, increasing the number of scalar instructions to 40%. 

Figure 9: Percentage of instructions eligible for scalar execution. 
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Figure 8: RF access distribution for operand values. “scalar” means all the operands are identical and “n-byte” means the first n MSBs of 
the operand values are the same. “divergent” means the operands are accessed by a divergent instruction. 
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Table 3: Estimation of encoder/decoder area, delay and power 
consumption including that of the pipeline registers at 1.4GHz. 
The encoder includes the broadcasting logic depicted in Figure 7. 

 Decompressor Compressor 

Area (μm2) 7332 11624 
Delay (ns) 0.35 0.67 

Power (mW) 15.86 16.22 

space by 0.32 W (1.6%) and 0.16 mm2 (0.7%) respectively, compared to the

baseline SM. Considering the small cost of chip power and space, we do not

place-and-route the compressor and decompressor implementations, as the

conclusion of this study will not notably changes. Lastly, as our compres-

sion technique is simpler than BDI, our compressor logic associated wires

consume only 19% and 30% of prior work [40].

In order to estimate the access energy of register file, we use a memory

compiler, which determines the size of an array constituting a 64 × 1024-bit

bank for given capacity (= 8 KB), number of ports (= 1), and I/O width (=

1024 bits). This gives us a bank comprised of 8 × 128-bit arrays with 128-

bit I/O width, agreeing to the size used for prior work [56]. For 32-bit base

value registers, 4-bit encoding bit registers, and D and FS bits, we synthesize

a 64 × 38-bit array. The energy consumption of accessing a 38-bit register in

this array is 5.2% of that of accessing an entire 1024-bit vector register in a

bank. This register file architecture needs practically no modification to the

baseline register file architecture except for only extra write-enable signals.

The memory array for base value registers, encoding bit registers, and D and

FS bits increases the size of register file by ∼3%.

Lastly, the encoding bits should be known before reading the register file

to determine which arrays should be activated. This increases the pipeline

latency by one cycle, but the throughput of register file is not affected as we

pipeline such an operation. In total, we increase the GPU pipeline latency

by three cycles (i.e., one cycle each for (1) compressing a register value; (2)

decoding a register value; and (3) accessing a base value register, encoding

bit register and flag bits).
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decompressor for each operand collector and one compressor 
for each SIMT execution pipeline, we need 16 decompressor 
and 4 compressor per SM. These compressor and decompres-
sor increase the chip power and space by 0.32W (1.6%) and 
0.16mm2 (0.7%) respectively, compared to the baseline SM. 
Considering the small cost of chip power and space, we do 
not place-and-route the compressor and decompressor imple-
mentations, as the conclusion of this study will not notably 
changes. Lastly, as our compression technique is simpler than 
BDI, our compressor logic associated wires consume only 
19% and 30% of prior work [4]. 

In order to estimate the access energy of register file, we 
use a memory compiler, which determines the size of an array 
constituting a 64×1024-bit bank for given capacity (= 8KB), 
number of ports (= 1), and I/O width (= 1024 bits). This gives 
us a bank comprised of 8×128-bit arrays with 128-bit I/O 
width, agreeing to the size used for prior work [26]. For 32-
bit base value registers, 4-bit encoding bit registers, and D and 
FS bits, we synthesize a 64×38-bit array. The energy con-
sumption of accessing a 38-bit register in this array is 5.2% of 
that of accessing an entire 1024-bit vector register in a bank. 

This register file architecture needs practically no modifica-
tion to the baseline register file architecture except for only 
extra write-enable signals. The memory array for base value 
registers, encoding bit registers, and D and FS bits increases 
the size of register file by ~3%. 

Lastly, the encoding bits should be known before reading 
the register file to determine which arrays should be activated. 
This increases the pipeline latency by one cycle, but the 
throughput of register file is not affected as we pipeline such 
an operation. In total, we increase the GPU pipeline latency 
by 3 cycles (i.e., 1 cycle each for (1) compressing a register 
value; (2) decoding a register value; and (3) accessing a base 
value register, encoding bit register and flag bits). 

5.2 Instructions Eligible for Scalar Execution 
Figure 9 shows the percentage of instructions eligible for sca-
lar execution. “ALU scalar” is the baseline architecture, 
which only supports scalar execution of non-divergent arith-
metic/logic instructions. “all scalar” covers special-function 
and memory (load/store) instructions eligible for scalar exe-
cution atop “ALU scalar.” “half-scalar” includes instructions 
eligible for half-warp scalar execution atop “all scalar.” Fi-
nally, “divergent scalar” includes divergent instructions eligi-
ble for scalar instructions atop “half-scalar.” “ALU scalar” 
covers only 22% of total dynamic instructions on average. 
Atop “ALU scalar,” we can cover 7%, 2%, and 9% more in-
structions when we cover scalar execution of special-func-
tion, memory, half-warp, and divergent instructions, respec-
tively. Compared with “ALU scalar,” G-Scalar can almost 
double the number of instructions eligible for scalar execu-
tion, increasing the number of scalar instructions to 40%. 

Figure 9: Percentage of instructions eligible for scalar execution. 
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Figure 8: RF access distribution for operand values. “scalar” means all the operands are identical and “n-byte” means the first n MSBs of 
the operand values are the same. “divergent” means the operands are accessed by a divergent instruction. 

0

20

40

60

80

100

BT BP HW HS LC PF SR1 SR2 CC LBM MG MQ SAD MM MV ST ACF AVG

R
F 

Ac
ce

ss
 %

divergent 0-byte 1-byte 2-byte 3-byte scalar

Table 3: Estimation of encoder/decoder area, delay and power 
consumption including that of the pipeline registers at 1.4GHz. 
The encoder includes the broadcasting logic depicted in Figure 7. 

 Decompressor Compressor 

Area (μm2) 7332 11624 
Delay (ns) 0.35 0.67 

Power (mW) 15.86 16.22 

Figure 2.11: RF access distribution for operand values. Here “scalar”
means all the operands are identical and “n-byte” means the first n MSBs
of the operand values are the same, and “divergent” means the operands
are accessed by a divergent instruction.

2.4.2 Register File Compression

Figure 2.11 plots value similarity of vector registers in these benchmarks. We

collect values of vector registers by executing the benchmarks. We compare

all thirty-two 4-byte values of each vector register byte by byte. “n-byte”

denotes that the first n most significant bytes of all 4-byte values in a vector

register are the same. As seen in Figure 2.11, the average percentage of (non-

divergent) scalar, 3-, 2-, and 1-byte categories are 36%, 17%, 4%, and 7%,

respectively.

We also show the dynamic power consumption of register file in Figure 2.12.

More specifically, we compare the dynamic power consumption of our regis-

ter value compression technique with that of scalar-only register file [5] and

recent register value compression techniques [40]. The scalar register file

consumes 37% less dynamic power than the baseline register file, whereas

our register file consumes 54% less dynamic power on average. That is, our

register file consumes about 17% less dynamic power than the scalar reg-

ister file (46% vs. 63%). In some benchmarks such as MG and MV, where

there are relatively fewer scalar values and many 3-byte and 2-byte accesses,

our register value compression technique can reduce the dynamic power con-

sumption of register file by more than 40% compared with the scalar register

file technique. Our register compression scheme also reduces more dynamic

power consumption than the prior register value compression technique [40]

at a lower penalty of chip power and space. The chips space required by our

compression technique is only 52% of the chip space demanded by the prior

compression scheme [40] according to our logic synthesis of both compression

techniques. Lastly, as our compression technique uses a separate small array
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Figure 2.12: Normalized RF dynamic power consumption. Here “scalar
only” is a scalar RF technique proposed in [5] and “W-C” is the
warped-compression technique [40].

to store base values, it often activates one fewer array of register file than the

prior compression technique for the same compression ratio, and the average

compression ratio of our compression technique is 2.2, whereas that of BDI

is 2.1 when the same input datasets for the benchmarks are used. Further-

more, the simplicity of our compression technique in fact facilitates G-Scalar

execution at practically no further cost.

In our experiment, we use 32-bit unsigned integers for all address com-

putations. However, recent GPUs began to support larger DRAM capacity.

Consequently, GPUs need to use 64-bit integers for address computations if

they support the DRAM capacity larger than 4 GB. In this case, we can

obtain more power reduction with our register value compression technique.

As mentioned earlier, it is very likely that only few LSBs are different for

addresses in a warp. If the addresses are 64-bit, we can have more bytes

with the same value and thus more power reduction. For data types that are

smaller than 4 bytes (short integer and character types), our scheme can at

least avoid the unnecessary access to the sign/zero extended bytes.

Lastly, as the current trend deploys a larger register file for GPUs and

uses 8- and 10-transistor memory cells to tolerate every-increasing process

variations [57], the energy consumption of register file is to further increase.

This can justify adoption of a register value compression technique due to

power and thermal constraints that do not scale well, which in turn can

support G-Scalar practically at no cost.
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decompressor for each operand collector and one compressor 
for each SIMT execution pipeline, we need 16 decompressor 
and 4 compressor per SM. These compressor and decompres-
sor increase the chip power and space by 0.32W (1.6%) and 
0.16mm2 (0.7%) respectively, compared to the baseline SM. 
Considering the small cost of chip power and space, we do 
not place-and-route the compressor and decompressor imple-
mentations, as the conclusion of this study will not notably 
changes. Lastly, as our compression technique is simpler than 
BDI, our compressor logic associated wires consume only 
19% and 30% of prior work [4]. 

In order to estimate the access energy of register file, we 
use a memory compiler, which determines the size of an array 
constituting a 64×1024-bit bank for given capacity (= 8KB), 
number of ports (= 1), and I/O width (= 1024 bits). This gives 
us a bank comprised of 8×128-bit arrays with 128-bit I/O 
width, agreeing to the size used for prior work [26]. For 32-
bit base value registers, 4-bit encoding bit registers, and D and 
FS bits, we synthesize a 64×38-bit array. The energy con-
sumption of accessing a 38-bit register in this array is 5.2% of 
that of accessing an entire 1024-bit vector register in a bank. 

This register file architecture needs practically no modifica-
tion to the baseline register file architecture except for only 
extra write-enable signals. The memory array for base value 
registers, encoding bit registers, and D and FS bits increases 
the size of register file by ~3%. 

Lastly, the encoding bits should be known before reading 
the register file to determine which arrays should be activated. 
This increases the pipeline latency by one cycle, but the 
throughput of register file is not affected as we pipeline such 
an operation. In total, we increase the GPU pipeline latency 
by 3 cycles (i.e., 1 cycle each for (1) compressing a register 
value; (2) decoding a register value; and (3) accessing a base 
value register, encoding bit register and flag bits). 

5.2 Instructions Eligible for Scalar Execution 
Figure 9 shows the percentage of instructions eligible for sca-
lar execution. “ALU scalar” is the baseline architecture, 
which only supports scalar execution of non-divergent arith-
metic/logic instructions. “all scalar” covers special-function 
and memory (load/store) instructions eligible for scalar exe-
cution atop “ALU scalar.” “half-scalar” includes instructions 
eligible for half-warp scalar execution atop “all scalar.” Fi-
nally, “divergent scalar” includes divergent instructions eligi-
ble for scalar instructions atop “half-scalar.” “ALU scalar” 
covers only 22% of total dynamic instructions on average. 
Atop “ALU scalar,” we can cover 7%, 2%, and 9% more in-
structions when we cover scalar execution of special-func-
tion, memory, half-warp, and divergent instructions, respec-
tively. Compared with “ALU scalar,” G-Scalar can almost 
double the number of instructions eligible for scalar execu-
tion, increasing the number of scalar instructions to 40%. 

Figure 9: Percentage of instructions eligible for scalar execution. 
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the operand values are the same. “divergent” means the operands are accessed by a divergent instruction. 
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Table 3: Estimation of encoder/decoder area, delay and power 
consumption including that of the pipeline registers at 1.4GHz. 
The encoder includes the broadcasting logic depicted in Figure 7. 

 Decompressor Compressor 

Area (μm2) 7332 11624 
Delay (ns) 0.35 0.67 

Power (mW) 15.86 16.22 

Figure 2.13: Percentage of instructions eligible for scalar execution.

2.4.3 Instructions Eligible for Scalar Execution

Figure 2.13 shows the percentage of instructions eligible for scalar execution.

In Figure 2.13, “ALU scalar” is the baseline architecture, which only supports

scalar execution of non-divergent arithmetic/logic instructions. The follow-

ing category, “all scalar”, covers special-function and memory (load/store)

instructions eligible for scalar execution atop “ALU scalar”. The next cate-

gory, “half-scalar”, includes instructions eligible for half-warp scalar execu-

tion atop “all scalar”. Finally, “divergent scalar” includes divergent instruc-

tions eligible for scalar instructions atop “half-scalar”. “ALU scalar” covers

only 22% of total dynamic instructions on average. Atop “ALU scalar”,

we can cover 7%, 2%, and 9% more instructions when we cover scalar ex-

ecution of special-function, memory, half-warp, and divergent instructions,

respectively. Compared with “ALU scalar”, G-Scalar can almost double the

number of instructions eligible for scalar execution, increasing the number of

scalar instructions to 40%.

Although special-function instructions contribute to only 3% of total dy-

namic instructions eligible for scalar execution, they consume 3∼24× more

energy than other floating-point instructions [3], and SFUs contribute up to

60% of the power consumption of GPUs in some benchmarks [58]. Therefore,

supporting scalar execution for special-function instructions can considerably

reduce GPU power consumption.

For a memory instruction eligible for scalar execution, all the threads in

a warp attempt to access a value at the same address. That is, memory in-

structions eligible for scalar execution cannot improve the performance of the

memory system, as the memory pipeline already has logic to coalesce memory

requests from multiple threads in a warp. Nonetheless, scalar execution of

memory instructions can still reduce power consumption of computing target
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Although special-function instructions contribute to only 
3% of total dynamic instructions eligible for scalar execution, 
they consume 3~24× more energy than other floating-point 
instructions [2], and SFUs contribute up to 60% of the power 
consumption of GPUs in some benchmarks [27]. Therefore, 
supporting scalar execution for special-function instructions 
can considerably reduce GPU power consumption. 

For a memory instruction eligible for scalar execution, all 
the threads in a warp attempt to access a value at the same 
address. That is, memory instructions eligible for scalar exe-
cution cannot improve the performance of the memory sys-
tem, as the memory pipeline already has logic to coalesce 
memory requests from multiple threads in a warp. Nonethe-
less, scalar execution of memory instructions can still reduce 
power consumption of computing target memory addresses. 

The instructions eligible for half-warp scalar execution 
contribute to 12% of total executed instructions for BP. Alt-
hough half-warp scalar execution is optional, it shows that the 
number of scalar instructions also depends on the granularity 
of checking vector registers storing scalar values. That is, if 
we increase the warp size to 64 and keep the 16-thread check-
ing granularity, the average number of “half-scalar” (“quarter-
scalar” in this case) will increase to 5% as shown in Figure 
10. Note that 64-thread warps are supported by AMD GPUs, 
which execute 64-thread wavefront instructions using 16-lane 
SIMD pipelines in the Graphics Cores Next (GCN) architec-
ture [21]. For some benchmarks, the number of instructions 
eligible for “half-scalar” execution increases significantly. 

One reason is that two scalar instructions with different oper-
and values (from 32-thread warps) may be organized into one 
instruction from a 64-thread warp. Therefore, such instruc-
tions from those 64-thread warps are no longer scalar instruc-
tions but become “half-scalar” instructions. If the warp size 
further increases in the future, the half-scalar execution can 
be attractive to maintain the benefit of scalar execution. 

The number of divergent scalar instructions depends on 
the total number of divergent instructions. Intuitively, bench-
marks with many divergent instructions have more instruc-
tions eligible for divergent scalar execution. For example, HS, 
LBM and SAD have 17%, 30% and 19% divergent scalar in-
structions, respectively. Especially for LBM, supporting diver-
gent scalar instructions can double the number of instructions 
eligible for scalar execution, compared with the previous sca-
lar execution architectures. 

5.3 Power Efficiency Improvement 
Figure 11 shows the power efficiency in terms of normalized 
IPC/W. In “ALU scalar,” a scalar register file is also used to 
reduce power consumption of register file. When all of our 
proposed techniques are combined, we can improve the power 
efficiency by 24% on average. Compared with “ALU scalar,” 
G-Scalar further improves the power efficiency by 15%. 
Amongst all the benchmarks, BP shows very high (79%) 
power efficiency improvement. BP is very compute-intensive, 
and the total power consumption of the GPU is over 100W 
from GPUWattch [2]. Over 50% of the GPU power is con-
sumed by execution units and register files. Especially, SFUs 
alone consume more than 25% of the total power although 
only 14% of total dynamic instructions are SFU instructions. 
With a very high percentage of special-function scalar instruc-
tions in BP (~60%), we can significantly reduce the power 
consumption (43%). The SFU power consumption is reduced 
to less than 10% of the baseline architecture. One of the rea-
sons is that each thread of BP needs to compute 2.0 to the nth 
in floating-point for n iterations. G-Scalar can execute such 
instructions as scalar instructions. However, some bench-
marks show significant improvement in the number of scalar 
instructions but their efficiency improvement is not propor-
tional. For example, more than 40% of total dynamic instruc-
tions are eligible for scalar execution in LBM, but the power 
efficiency improvement is less than 20%. The primary reason 

Figure 11: Normalized GPU power efficiency and performance. “ALU Scalar” and “G-Scalar w/o divergent” enable scalar execution on 
ALU pipeline and all three types of pipelines, respectively. “G-Scalar” extends scalar execution to half-scalar and divergent-scalar instruc-
tions. “G-Scalar (IPC)” shows the performance impact of adding 3 cycles of latency in normalized IPC. 
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Figure 2.14: Percentage of instructions eligible for “half-scalar” execution
for different warp sizes. For warp size of 64, we keep the same 16-thread
checking granularity so it should actually be “quarter-scalar” instruction.

memory addresses.

The instructions eligible for half-warp scalar execution contribute to 12%

of total executed instructions for BP. Although half-warp scalar execution is

optional, it shows that the number of scalar instructions also depends on the

granularity of checking vector registers storing scalar values. That is, if we

increase the warp size to 64 and keep the 16-thread checking granularity, the

average number of “half-scalar” (“quarter-scalar” in this case) will increase

to 5% as shown in Figure 2.14. Note that 64-thread warps are supported

by AMD GPUs, which execute 64-thread wavefront instructions using 16-

lane SIMD pipelines in the Graphics Cores Next (GCN) architecture [21].

For some benchmarks, the number of instructions eligible for “half-scalar”

execution increases significantly. One reason is that two scalar instructions

with different operand values (from 32-thread warps) may be organized into

one instruction from a 64-thread warp. Therefore, such instructions from

those 64-thread warps are no longer scalar instructions but become “half-

scalar” instructions. If the warp size further increases in the future, the half-

scalar execution can be attractive to maintain the benefit of scalar execution.

The number of divergent scalar instructions depends on the total num-

ber of divergent instructions. Intuitively, benchmarks with many divergent

instructions have more instructions eligible for divergent scalar execution.

For example, HS, LBM and SAD have 17%, 30% and 19% divergent scalar

instructions, respectively. Especially for LBM, supporting divergent scalar in-

structions can double the number of instructions eligible for scalar execution,

compared with the previous scalar execution architectures.
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2.4.4 Power Efficiency Improvement

Figure 2.15 shows the dynamic power efficiency, which is define as

IPC

Dynamic Power

In “ALU scalar”, a scalar register file is also used to reduce dynamic power

consumption of register file. When all of our proposed techniques are com-

bined, we can improve the dynamic power efficiency by 24% on average.

Compared with “ALU scalar”, G-Scalar further improves the dynamic power

efficiency by 15%. Among all the benchmarks, BP shows very high (79%) dy-

namic power efficiency improvement. BP is highly compute-intensive, and the

total dynamic power of the GPU is over 100 W from GPUWattch [3]. Over

50% of the GPU dynamic power is consumed by execution units and register

files. Especially, SFUs alone consume more than 25% of the total dynamic

power although only 14% of total dynamic instructions are SFU instruc-

tions. With a very high percentage of special-function scalar instructions

in BP (∼60%), we can significantly reduce the dynamic power consumption

(43%). The SFU dynamic power consumption is reduced to less than 10% of

the baseline architecture. One of the reasons is that each thread of BP needs

to compute 2.0 to the nth in floating-point for n iterations. G-Scalar can

execute such instructions as scalar instructions. However, some benchmarks

show significant improvement in the number of scalar instructions but their

efficiency improvement is not proportional. For example, more than 40% of

total dynamic instructions are eligible for scalar execution in LBM, but the

power efficiency improvement is less than 20%. The primary reason is that

those benchmarks are rather memory intensive. A significant fraction of their

dynamic power is consumed by memory subsystems, such as L2 cache, NoC

and memory controller. We further show the overall GPU power efficiency in

Figure 2.16 and normalized power consumption in Figure 2.17. GPUWattch

models a fixed static power of 41.9 W [3] for GTX 480. With static power

taken into consideration, the average power efficiency improvement dropped

from 24% (dynamic power only) to 12%. Note that the target SM clock

frequency (1.4 GHz) of the GTX 480 is very aggressive for the 40 nm TSMC

process technology. As a comparison, the much more recent GTX 980 only

runs at ∼1.2 GHz, implemented using 28 nm TSMC process technology;
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while GTX 1080 only runs at ∼1.7 GHz, implemented using 16 nm FinFet

TSMC process technology [59]. Such an aggressive frequency target could be

the main reason of such high ratio of static power of GTX 480.

2.4.5 Performance Impact

As we described in Sections 2.2 and 2.4.1, we increase the latency of pipelines

by three cycles to account for cycles for reading encoding bits, decompressing
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and compressing a vector register. Figure 2.15 also shows the performance

impact of G-Scalar after increasing the latency of baseline pipelines by three

cycles. On average, the performance degradation is only 1.7%. The addi-

tional latency primarily increases the chance of pipeline stall due to data

dependency. Although there is no data bypassing in GPUs, a large number

of active warps can still effectively hide this latency [60]. Among all the

evaluated benchmarks, LC shows the most significant performance degrada-

tion because it has an insufficient number of warps to effectively hide latency

while utilizing many long latency instructions (e.g., integer DIV). These two

factors together make LC more sensitive to the three-cycle latency increase,

but still shows more than 20% IPC/Watt improvement.

2.5 Conclusion

As GPUs began to support more general-purpose applications, the fraction

of divergent instructions in contemporary GPU applications has significantly

increased. In this work, we demonstrate that (1) many divergent instructions

are also eligible for scalar execution if we consider only operand values in ac-

tive lanes in a divergent path and (2) special-function instructions, many

of which are also eligible for scalar execution, consume a large fraction of

execution power. However, prior scalar execution architectures cannot sup-

port scalar execution of these instructions. Tackling such limitations of prior

scalar execution architectures, we propose G-Scalar, generalized scalar execu-

tion architecture along with a low-cost register value compression technique.
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G-Scalar can support scalar execution of not only conventional non-divergent

arithmetic/logic but also divergent and special-function instructions. Fur-

thermore, if GPUs adopt our low-cost register value compression technique,

G-Scalar is practically free, as it is architected to (1) share most of hardware

resources with our register value compression technique and (2) reuse existing

hardware resources of SIMT execution pipelines for scalar execution instead

of implementing dedicated scalar execution pipelines. Our evaluation shows

that G-Scalar, which consumes only 1% more chip space than the baseline

GPU, can double the number of instructions eligible for scalar execution.

This in turn improves power efficiency of GPUs by 24% and 15% compared

with the baseline and previous scalar execution architectures, respectively.

Lastly, our register value compression technique alone can reduce the power

consumption of register file by 54%.
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CHAPTER 3

EXPLOITING DATA SIMILARITY WITH
APPROXIMATION ON GPU

3.1 Background

In Chapter 2, we showed that the G-Scalar scalar execution architecture can

reduce redundant computations and thus energy consumption of SMID exe-

cution lanes, by executing only one thread and replicating its output value for

all other deactivated threads at the end of execution. As GPU applications

often comprise a significant fraction of code allowing approximation [12, 13],

the scope of scalar execution can be expanded to instructions operating on

vector registers storing similar input values [13]. This proposal simply ig-

nores the last d bits of the operand values by masking the last d bits, and

checks if the instruction with the masked values is eligible for scalar execu-

tion. However, it was noted that the primary benefit of such a technique still

came from scalar execution [36].

Although the aforementioned approximate execution architecture was in-

deed demonstrated to be effective, we observe the following limitations. First,

it requires a value similarity check for every instruction in a region of code

that can be approximated, or an approximable region of code. This limits the

complexity of the logic checking similarity of input values, resulting in lim-

ited opportunity for capturing approximable instructions more aggressively.

Second, as it needs to expand the output value from one executed thread of

every approximated instruction for all other skipped threads, it can only use

a very simple technique to approximate the output value, i.e., simply repli-

cating the output value of the executed thread for all the skipped threads.

Lastly, it does not improve performance as it does not reduce the number of

fetched, decoded, scheduled and executed instructions.

To further improve energy efficiency on GPU, we exploit the similar values

produced and consumed by threads in warps. We propose Lock and Load
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(LnL) architecture, which triggers approximate computing for an approx-

imable region of code when load instructions return similar values for the

code region that consums the values as inputs to start subsequent (depen-

dent) computations. LnL checks the value similarity only for load instruc-

tions preceding approximable code regions, executes only a subset of threads

in each warp, and approximates the output values of skipped threads only

at the end of the code region executing store instructions. Therefore, the

cost of checking the value similarity and approximating the output values

of the skipped threads can be amortized by all the instructions in the code

region. Specifically, we propose a low-cost hardware mechanisms to cap-

ture more approximable warps by approximating value similarity than the

prior approximated execution architecture for GPUs. Furthermore, we pro-

pose to leverage an existing hardware mechanism in modern GPUs to more

precisely approximate the output values of skipped threads than the prior

approximated execution architecture for GPUs. This allows LnL to deploy

more sophisticated and aggressive techniques to check the value similarity

and approximate the output values, further improving energy efficiency.

Second, we enhance LnL to fuse repeated executions of an approximable

instruction by multiple warps into a single execution by a warp, exploiting

SIMD execution lanes unused by skipped threads of approximated instruc-

tions. In contrast to prior approximate execution architecture which simply

disables the unused SIMD execution lanes, LnL can improve performance as

it reduces the occurrence of repeatedly fetching, decoding and scheduling the

same instruction for multiple warps.

We show that LnL can deliver 23% higher performance and 62% higher

energy efficiency with negligible loss in accuracy of the final computed values.

Furthermore, LnL costs less than 1% and 1% more space and power, as it

uses novel arithmetic techniques and existing hardware resources for check-

ing value similarity and interpolating the computed values. Note that prior

GPU architecture enhanced to support approximated execution only reduces

energy consumption, whereas LnL not only reduces energy consumption but

also improves performance, potentially offering higher energy efficiency than

the prior GPU architecture.
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3.1.1 Value Similarity in Structured-Grid Applications

GPUs use SIMT execution model to improve energy efficiency. Threads in a

warp execute the same instruction on their respective operands in a lock-step

manner. If the operand values across the threads are similar, the computed

values of the threads can also be similar. It has been reported that operand

values for threads in a warp are often very similar when applications take in-

put values with spatial correlation [5, 12, 13, 8, 40, 36]. This is especially true

in an important class of applications, such as “structured-grid” applications.

Generally, structured-grid applications compute grid cell values on a reg-

ular n-dimensional grid. The structured grid often comes from discretizing

physical space with finite difference or volume methods [61]. Each output

point of structured-grid applications is computed as a function of the value

associated with the point and/or the values of neighboring points. As threads

are mapped to each input value in a regular fashion, neighboring threads in

a warp often use the values of neighboring points (e.g., temperature values of

two adjacent grid points in HotSpot [54]). The spatial correlation and regular

mapping of input values together result in that neighboring threads in a warp

are very likely to have similar input values [13]. The examples of structured

grid applications comprise physics simulation, which solves partial or ordi-

nary differential equations with an iterative solver on dense multidimensional

arrays or medical imaging.

3.1.2 Approximated Execution Architecture

The value similarity discussed in Section 3.1.1 gives us a chance to apply

approximation techniques to GPUs. If two threads have similar values for

their respective operands, we can leverage the output value of one thread

to approximate that of the other thread. A näıve way to exploit such value

similarity first checks the similarity of operand values across all threads for

every instruction, through the addition of a comparison stage in the exe-

cution pipeline. If the input operand similarity satisfies a certain metric,

a thread with representative operand values is executed and the remaining

threads are not executed by clock-gating SIMT execution lanes associated

with the skipped threads [13]. At the end of the execution stage, the output

value of the executed thread is replicated for all the skipped threads and the
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replicated values are written back to the register file. As every instruction

needs to be checked for similarity of input values (almost every cycle), the

comparison stage can support only a simple method. For example, prior

work checks whether or not operand values only differ in the d Least Sig-

nificant Bits (LSBs) and are equal in the remaining (32-d) Most Significant

Bits (MSBs) [13]. Such a simple method cannot capture similarity of values

that are arithmetically close but micorachitecturally different as the LSBs

are different. For instance, 12710 (= 011111112) and 12810 (= 100000002)

are arithmetically close but microarchitecturally different as all the bits are

different, and thus, is not categorized as having value similarity. Such a case

is frequent for floating-point (FP) values, each of which is encoded with the

exponent and mantissa fields. Furthermore, when the computed value of a

single thread is replicated for all skipped threads, choosing approximable in-

structions should be very conservative to reduce the error. Lastly, such an

approach does not improve performance as the approximated instruction in

a warp still takes one issue slot. That is, it does not reduce the number of

fetched, decoded, scheduled and executed instructions.

3.2 Load-Triggered Approximation

To better exploit the approximation opportunities discussed in Section 3.1.1,

we propose Lock and Load (LnL), a load-triggered approximation technique,

which is overviewed in Figure 3.1. LnL does not check the similarity of

operand values for every instruction. Instead, LnL checks input values re-

turned by load instructions and then decide whether or not to approximate

a region of code. For a warp with loaded value similarity, LnL approximates

the execution of instructions by executing a subset of threads (referred tLnLo

as anchor threads) and skip execution of the remaining non-anchor threads.

When storing the final computed values of the approximated warp at the

end of the approximated region of code, LnL interpolates the final computed

values of anchor threads for those of non-anchor threads. As such, LnL can

support more aggressive techniques to check the similarity of values and ex-

pand the computed values of executed anchor threads for those of skipped

non-anchor threads, compared to a näıve replication approach described in

Section 3.1.2. In this section, we will first overview LnL. Subsequently, we
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Figure 3.1: Overview of LnL, a load-triggered warp approximation
technique. (a) LnL identifies load-triggered approximable regions. (b) For
global load operations, loaded values are checked for similarity. (c) Load
operations that return similar values trigger approximate execution. (d) For
store operations, results of approximated warps are expanded by
interpolation.

will present architectural changes to support LnL in Section 3.3.

3.2.1 Load-Triggered Approximable Regions

Typically, a GPU kernel can be broken down into four code regions. An

example is given in Figure 3.1(a), which shows a stripped-down version of

the HotSpot kernel, one of representative structured-grid applications [54].

The first code region, colored green in Figure 3.1(a), calculates index values

of memory locations based on thread block and thread IDs. The second code

region, colored orange in Figure 3.1(a), loads input values from the global

memory using the calculated index values. The global memory here is refer-

ring to the memory address spaces that are visible to all threads, including

texture and constant memory spaces. The third code region, colored blue

in Figure 3.1(a), performs computations using the loaded values from the

memory. The fourth code region, colored red in Figure 3.1(a), stores the

computed values back to the memory.

The code of the third region can be considered as a mathematical function

f with a set of input values I and a set of output values. When f has the

following “similar-in, similar-out” property: if I1 ≈ I2, then f(I1) ≈ f(I2), we
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Figure 3.2: Relative errors of loaded values versus those of stored values in
an approximable region of Bilateral Filter code.

consider that the third region is approximable and denote it an approximable

code region. Figure 3.2 shows the relationship of the input value difference (or

error) and the output value error of an approximable region of Bilateral

Filter code. If the relative differences across values returned by a load

instruction at the start of the approximable code region is small, then the

relative differences across values stored by a store instruction is similarly

small. Notably, the store error is typically smaller than the load error. We

observe similar correlation behavior in structured-grid applications. As the

approximable code region has the property mentioned above, we can just

check the input values of the approximable code region (i.e., I from load

instructions before the approximable code region) for each warp to decide

whether or not we apply approximation to it.

3.2.2 Load-Triggered Value Checking

By only checking values returned by load instructions, instead of all in-

put operands of every instruction, we drastically reduce the total number

of checked instructions. Furthermore, the input values are usually copied

to the memory space visible to users, such as global and constant memory

spaces. Therefore, the value checking scheme does not need to be simple,

such as bit wise comparison [13] which is often unable to capture similarity

41



warp

thread group

…

≈≈≈ ≈≈≈

anchor thread

all similar?

load value checking result

Figure 3.3: How the threads in a warp are grouped for load value checking.
In this example, the size of each thread group is 4.

of values when the values are arithmetically similar but microarchitecturally

very different as discussed in Section 3.1.2. Instead, we can afford a more

sophisticated scheme calculating the relative difference to decide whether to

approximate the warp or not.

Shown in Figure 3.3, for each approximable instruction, we first logically

divide a warp into multiple thread groups. Each thread group has n consec-

utive threads (i.e., 32/n groups per warp) and the first active thread is the

anchor thread. For each load, we check the loaded values within the thread

group using certain criteria. For instance, in each thread group, we can cal-

culate the difference (or error) of the loaded value of each thread as depicted

in Figure 3.1(b), relative to that of the anchor thread, the first active thread

in each n-thread group (solid arrows in Figure 3.1(c)). Supposing the loaded

value of the anchor thread is A and that of the compared thread is B, we

define the relative error Er as:

Er =
∣∣∣A−B

A

∣∣∣
Then we check whether or not Er is smaller than a given threshold.

If all threads in a thread group meet such criteria, we consider that the

loaded values in the thread group are similar. This checking result is only

from a single load operation, which may be only one of the inputs of an

approximate code region. If the approximate code region has more than one

input (as is the case in Figure 3.1(a), the kernel has two inputs: temp on cuda
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Figure 3.4: Percentage of arithmetically similar but microarchitecturally
different loaded values in Bilateral Filter.

and power on cuda), all the inputs should be checked. That is, the warp is

eligible for approximation only when every input has similar values. For

example, temp on cuda has similar values, so does power on cuda.

Figure 3.4 shows the percentage of load instructions that are arithmeti-

cally close but microarchitecturally different across all 32 values of the warp,

and the bits (from MSB) at which they start to differ. We find that nearly

50% of load instructions are arithmetically similar (Er < 0.1) but microar-

chitecturally different, and they typically start to differ from the 8th – 12th

bits from the MSB. This behavior is frequent for FP values. That is, prior

work would not consider that each of these load instructions returns similar

32 values as it recognizes that only the first 7th – 11th bits from the MSB are

the same. A low-cost implementation of logic calculating Er for FP values is

described in Section 3.3.2.

While we need to check similarity of every input, all the inputs are not

loaded simultaneously. Instead, the inputs are loaded by multiple load in-

structions from memory. The loaded values may also be used in different

approximable regions. Therefore, we need a mechanism to keep such infor-

mation and history of the loaded values, which will be described in detail

in Section 3.3.1. Based on the result of checking value similarity of a given

input, each load instruction can be associated with a single bit to indicate
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whether the values loaded by a load instruction are similar or not. When

a GPU encounters an approximable code region, which is directed by the

programmer and marked by the compiler, it checks the history of the asso-

ciated loaded values. If the history shows that all loaded values are similar,

approximation is triggered for the current code region.

3.2.3 Approximated Execution

If a warp enters an approximate region of code and it is eligible for approxi-

mated execution, only the anchor threads of the warp are executed, but the

rest of the non-anchor threads are not executed by clock-gating the SIMT

execution lanes corresponding to these threads similar to prior work [13, 3].

For example, stores to shared memory must interpolate the value and

write the value of all active lanes to memory, and related address calcu-

lation must always be executed, because the shared data may be used by

the anchor thread later. Some instructions associated with critical control

flow may need to be executed precisely. We use a compiler approach similar

to prior work [13] to mark such instructions explicitly. Furthermore, to im-

prove execution efficiency and thus performance, we propose LnL warp fusion

that fuses repeated executions of an approximable instruction from multiple

warps into an execution by a single warp, exploiting SIMT execution lanes

unused by skipped threads of these instructions. The details are described

in Section 3.4.

3.2.4 Approximating Output Values

At the end of an approximable code region (e.g., a store instruction), if the

warp is approximated, we must approximate the values that are supposed to

be computed by skipped threads in the warp. Since the results of threads

at the end of an approximate code region are to be written into the desti-

nation registers and then the global memory using store instruction, we can

approximate the results of skipped threads just before executing these store

instructions. Note that some destination registers inside of approximated

code regions can be used outside of the approximated code regions. A com-

piler can detect such cases and insert dummy interpolate instructions at the
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Figure 3.5: Accuracy comparison of two approximation techniques:
replication versus simple linear interpolation of computed values from
anchor threads.

end of the approximate code regions. Our analysis shows that such cases do

not exist in the evaluated benchmarks.

The easiest way to approximate the output values of skipped threads is

replicating the output value of the anchor thread in each thread group. How-

ever, we observe that such a simple approximation technique often leads

to large approximation errors. Figure 3.5 compares the output values of

HotSpot (temperature of a die) after we apply two approximation techniques:

(1) a simple replication of the computed value of an anchor thread and (2)

a linear interpolation of two anchor threads for the output values of skipped

threads. We see that the replication technique can lead to large errors, espe-

cially when the output values rapidly change compared to neighboring values,

whereas the linear interpolation technique renders negligible errors. This in

turn allows LnL to use a more aggressive criterion when deciding whether

or not an approximable code region should be approximated. We will dis-

cuss a low-cost way of supporting such a linear interpolation technique that

leverages some existing features of modern GPUs in Section 3.3.3.
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3.3 Architectural Support

In this section, we describe the necessary architecture changes for LnL de-

scribed in Section 3.2. More specifically, we first describe the necessary In-

struction Set Architecture (ISA) extension to annotate an approximable code

region and a simple hardware structure to track whether approximate execu-

tion of the approximable code region can be triggered. Second, we elaborate

a low-cost logic that can efficiently calculate the (approximated) Er among

FP values returned by each load instruction. Finally, we detail how we can

estimate the results for the skipped threads, using the results computed by

anchor threads practically with no extra hardware cost.

3.3.1 Annotating Load-Triggered Regions

To facilitate load-triggered approximation overviewed in Section 3.1, we de-

scribe the ISA modification, hardware support and support for source code

annotation of approximable code regions in this section.

Load instruction modification. In CUDA, we append the key word

approx to indicate whether or not given loads should be checked for approx-

imation. During compilation, this will be mapped to a LnL load instruction,

which includes two additional fields: a 1-bit flag to indicate whether or not

the returned values should be checked (check bit), and a few bits to repre-

sent the number of approximable regions that will use values from the load

instruction (approx block num bits). These bits are set by the compiler,

which analyzes the lifetime of the registers holding the loaded values [62].

With the proposed modification, a load instruction will look like:

LD.check.approx block num $dst, [$src+offset]

If the check bit is 0, the load instruction will be executed as a normal

load and approx block num bits are ignored. Otherwise, the loaded values

are checked and approx block num indicates how many approximable code

regions will use the loaded values.

In Figure 3.6(b) 1 , 2 , and 3 denote our new load instructions. In this

sample code block, we have three global loads (for A[], B[], and D[]), with

all three associated load instructions annotated to check for similarity of
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Entry V Checking
Result

Remaining 
Approx. 
Region

H0 1 1 01

H1 1 1 10

H2 1 1 01

j
k
l

(c) Load Checking History Table (LCHT)

Mov $approx_th 0.1
…
Load.1.01 A[addr_A]
Load.1.10 B[addr_B]
START_APPROX.110 $end_pc1
//computation
foo1(a,b);
end_pc1:
…
Load.1.01 D[addr_D]
START_APPROX.011 $end_pc2
//computation
foo2(b,d);
end_pc2:
…

(a) Source Code (b) Psuedo Instructions

j
k

l

m

n

approx_th = 0.1
…
approx float a = A[tid]
approx float b = B[tid]
start_approx.()
//computation
foo1(a,b);
end_approx.()
…
approx fload d = D[tid]
start_approx.()
//computation
foo2(b,d);
end_approx.()
…

Entry V Checking
Result

Remaining 
Approx. 
Region

H0 0 1 00

H1 1 1 01

H2 1 1 01

(d) LCHT after access by m

Figure 3.6: This example shows the ISA and hardware support for
annotating a load-triggered approximate code region. (a) In the source
code, approx th is the load checking threshold value. Key word approx,
function call start approx() and end approx() are used to mark which
load should be checked and where approximation should start/end. foo1()
and foo2() represent the computation, not real function calls. (b) shows
our new ISA to support annotation. (c) and (d) show the operations on the
load checking history table (LCHT).

loaded values. Note that we allocate 2 bits for approx block num as most

load values are only used by a few approximable regions, which will be shown

in Section 3.5.3. If there are more than four approximable regions using the

loaded values, the compiler can ignore some of the approximable regions

based on some criteria such as potential of energy reduction, and treat such

regions as unapproximable regions.

Hardware to track checked load instructions. If loaded value checking

is enabled, the information of the value checking result and the number of

approximable regions that use this load will be stored in a Load Checking

History Table (LCHT) as shown in Figure 3.6(c). Each entry of the table

has one valid bit V, one bit for checking result and two bits for the number of
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remaining dependent approximable regions. For example, in our figure, load

instruction 1 has one dependent approximate region, and load instruction 2

has two dependent approximate regions. Furthermore, every load has been

detected to return similar values and thus the checking result bit is set to 1.

The checking result bit is set by the logic checking the similarity of loaded

values detailed in Section 3.3.2. The information in the LCHT will be used

to decide whether or not the block should be approximated.

Annotation for approximable code regions. We introduce annotation

instructions to mark the starting and ending points of an approximable code

region. In CUDA, the function calls start approx() and end approx()

mark the start and end point of approximable regions, respectively. This

CUDA instruction is translated to the following annotation instruction dur-

ing compilation:

START APPROX.loads to check $end pc

The two fields in the instruction, loads to check and $end pc, indicate

which load-checking results should be used and where the current approx-

imable region ends. The loads to check bits correspond to entries in the

LCHT. For example, in Figure 3.6, our LCHT has three entries. There-

fore, our START APPROX instructions ( 4 and 5 ) both have three bits for

loads to check, each corresponding to entries H0, H1, and H2, respec-

tively. If all the associated loads indicate that the warp can be approxi-

mated, the warp will start approximated execution from the next instruction.

Meanwhile, it stores the value of $end pc in a special register of the warp.

The warp will stop approximated execution when its program counter (PC)

reaches $end pc.

When a START APPROX instruction accesses an entry in the LCHT, the num-

ber of remaining approximable code region that will use the loaded value will

decrement by one. If the number becomes 0, the entry will be deleted from

the LCHT. This is illustrated in Figure 3.6(d), which depicts the LCHT after

an access by approximate region 4 . This approximate region depends on

load instruction 1 and 2 , and will check LCHT entries H0 and H1 (thus

having the loads to check bits as 110). Upon checking, the bits represent-

ing the number of remaining approximable code region will be decremented

by one. Entry H0 will decrement to 0, and will be invalidated from the
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LCHT. We assume that the LCHT entry management can be determined

statically during compilation of the kernel. Both H1 and H2 now have one

remaining dependent approximate region ( 5 ).

In our example, the first START APPROX identifies that all dependent loads

has checking result bits of 1, therefore, this code region can be approxi-

mated. This load-triggered approximate region will then approximately ex-

ecute foo1() until it reaches end pc1, the end pc value of the approximate

region.

Annotation for load checking threshold. In the source code, we need

to first set the threshold of the relative differences among values returned

by a load instruction, which will be stored in a special register $approx th.

The threshold value is not stored in FP format in the register. Instead, it is

converted into a fixed-point format so we can do the comparison easily when

checking the loaded values. The algorithm we use to convert the FP value

is consistent with the scheme we use to check the loaded value described

in Section 3.3.2. However, we assume the size of the thread groups must be

specified when launching the kernels and cannot be changed during execution.

Backward compatibility of ISA extension. Extending the ISA for LnL

is relatively straightforward for GPUs. In NVIDIA GPUs, the binary of

CUDA kernels can contain multiple versions of the PTX (pseudo ISA of

CUDA) code. Using the right version of the PTX code (with or without

approximation enabled), the CUDA driver is capable of compiling PTX code

to the SASS (native ISA) code at runtime if necessary [63]. Therefore, if we

add new native/PTX instructions for a GPU, the compiler can store multiple

versions of PTX code in the binary (with and without the new PTX instruc-

tions) and is able to generate new machine code using the appropriate version

of PTX code. In this way, we can easily keep the backward compatibility

and take advantage of the new instructions.

3.3.2 Checking Loaded Value Similarity

To check similarity of values returned by a load instruction, we implement

the checking logic in each load/store unit. When the 32×32-bit values are

returned from memory, LnL uses an anchor-thread mask (derived from the

active-thread mask) to choose the loaded values of the anchor threads (Fig-
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ure 3.1(c)). In each thread group, LnL then compare the 32-bit value of an

anchor thread of a given load instruction with that of a non-anchor thread

of the load instruction by a comparison unit to determine whether the two

values are similar or not. As this comparison needs to be done for each of all

non-anchor threads in each thread group and across thread groups, LnL needs

31 comparison units to handle the largest thread group (one anchor thread

compared with 31 other threads) in a load/store unit. Nonetheless, LnL still

implements 32 comparison units to have one comparison unit per thread.

This implementation allows a one-to-one mapping between the thread and

comparison unit, which simplifies the interconnection and selection/routing

logic.

To calculate the relative difference between two FP values (i.e., Er), LnL

needs FP subtraction and division units, which are too expensive even if LnL

only checks values of load instructions in an approximable region. Thus, we

propose a low-cost comparison unit that can approximate Er. Figure 3.7

depicts the detail of a low-cost LnL comparison unit. To limit approximation

errors, LnL limits loaded value similarity to values which have the same sign

bit and only differ in the exponent field by 1. If the sign bits of two FP

values differ or the exponent field differs by at least 2, which is checked by

the logic illustrated in the left side of Figure 3.7, LnL immediately terminates

the comparison, as Er is larger than 100% or 50%, respectively.

If two compared FP values have the same sign bit and the difference of

exponent values differ by at most 1, we can easily convert the FP values

to fixed-point (FxP) ones to simplify the logic for a comparison unit. For

FP-to-FxP conversion, LnL first puts the implicit “1” bit back into the man-

tissa and use the mantissa as the fractional part. For de-normalization, LnL

only needs to shift the mantissa value with smaller exponent by 1 bit. As

LnL only needs to right-shift the mantissa values by 1 bit at most, the logic

for this step is very simple. Then the sifted mantissa value becomes a FxP

value to approximate Er. LnL simply drops the sign exponent bits of the

FP values, as it ends up comparing two values with the same sign. Finally,

LnL calculates Er of two FxP values with integer subtraction and division.

As precise integer division is expensive, LnL also approximates it by approx-

imating the reciprocal of a given divisor with three-interval piecewise linear

approximation. Then LnL can replace division with multiplication.

The detailed steps of approximating the reciprocal of a given value are as
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Figure 3.7: Low-cost comparison logic to approximate Er.

follows. In our FP-to-FxP conversion scheme, at least one of two FxP values

starts with 1 for its MSB as both are treated as unsigned numbers, and LnL

takes such a value as a divisor. Because the impact of divisor bits on the

precision of a reciprocal value exponentially decreases from the MSB to LSB,

LnL only checks the first eight bits of the divisor, i.e., one integer bit (= 1)

and seven fractional bits. The seven fractional bits determine one of three

interval of 128 possible values: 1 , 2 , and 3 in Figure 3.8. Depending on

the fractional bits (note that the value of the the divisor has very limited

range), the reciprocal of a divisor can be approximated by:

1 :
1

DIV
= 8’hFF - {DIV[6:0],1’b0}, DIV[6:0] ≤ 7’b0010000

2 :
1

DIV
= 8’hF6 - {1’b0, DIV[6:0]}, DIV[6:0] ≤ 7’b1100000

3 :
1

DIV
= 8’hDF - {2’b0, DIV[6:1]}, DIV[6:0] > 7’b1100000

That is, a division is replaced by subtracting a divisor from a constant where

each constant is determined to minimize errors in approximating the recip-

rocal for a given interval. Figure 3.8 shows that the error for any one of

the 128 possible divisor values is less than 3.4%. Note that LnL needs only
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Figure 3.8: Algorithm and accuracy of the approximate reciprocal unit.

small 8-bit subtraction and multiplication units as its takes only 8 bits of a

mantissa value.

Each comparison unit generates one bit after comparing two values. If all

the comparison units generate 1’s, LnL determines that the load instruction

for this warp returned similar values. We use an all-one detector for all thread

groups to check if the warp is approximable or not. We assume the threshold

value is stored in a special register when launching the kernel, so we do not

need to explicitly specify the threshold value in the load instruction.

The comparison units should be placed between the write-back port of

load/store unit and the register file, and they can be easily pipelined to avoid

affecting the throughput or clock frequency. We show the synthesis result in

Section 3.5.2. In Fermi, a single-precision FP subtraction and division takes

16 cycles and 1038 cycles, respectively [64], whereas the comparison unit only

takes three cycles to get the relative error as shown in Section 4.5.

3.3.3 Approximating Output Values

When the approximated execution is completed, the warp needs to store

the output values in memory. The easiest method to approximate the out-

put values is to replicate the output values of the anchor threads. How-

ever, we showed that such a simple method can lead to large errors (Sec-

tion 3.2.4). Therefore, we propose to linearly interpolate the output values

for the skipped threads between two anchor threads based on their thread

ID. We desire relatively precise interpolation, as numerical imprecision intro-

duced by interpolation will directly affect the output values. Fortunately, we
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can utilize the existing hardware on GPUs to avoid expensive FP arithmetic

units for this purpose.

Almost all modern GPUs comprise dedicated hardware providing texture

filtering capability for graphics application [65]. For 1-D textures, the fil-

tering is basically a 1-D linear interpolation on the FP pixel values. For

example, when we want to access a pixel whose coordinate x does not di-

rectly correspond to a pixel in the texture, the texture filtering hardware

performs the following operation [63]:

tex[x] = (i+1-x)*T[i]+(x-i)T[i+1]

where T[i] and T[i+1] are the pixels enclosing the sample point x, i.e.,

integer i satisfies: i<x<i+1. To approximate the output values, LnL can

simply treat a store of a warp as accessing a 1-D texture, with the value

of an anchor thread as a pixel value T[n] and the thread ID of the threads

as the 1-D coordinates x. Note that the thread IDs need to be mapped

to the coordinate to perform the interpolation using texture filtering unit.

However, this mapping only depends on the thread group size and therefore,

can be done at kernel launch time. Since the texture unit is already connect

to the SMs, we expect minimal hardware modification to accommodate the

interpolation.

3.4 Load-Triggered Warp Fusion

3.4.1 Warp Fusion Overview

When a warp is approximated, SIMT lanes corresponding to non-anchor

threads are unused. However, the GPU front-end still treats approximated

warps as normal warps. That is, an instruction of an approximated warp

has at most only half of the threads active, but it still takes one issue slot.

Since there are at most half of the threads active in an approximated warp,

we have enough execution units to execute two or more approximated warps

at the same time. Therefore, we propose to enhance LnL to fuse repeated

executions of an approximable instruction by multiple warps into a single

execution by a single fused warp to improve the front-end efficiency and
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Figure 3.9: An example for fusing two warps. Arrows with dashed lines
represent inactive non-anchor threads.

performance.

In an SM, if two consecutive active warps, in terms of warp IDs, are both

eligible for approximation, we can fuse these two warps (referred to as source

warps), into one warp (referred to as fused warp). Two, four, or eight warps

can be fused in a fixed way with simple hardware support, but we only con-

sider fusing two consecutive warps for simplicity. In Figure 3.9, we show

an example of warp fusion. LnL first checks if both source warps are ap-

proximable or not at each synchronization point. If both source warps are

approximable, LnL fuses them as a single fused warp for the whole approx-

imable region. This is possible because LnL determines whether or not a

warp is approximable before starting the execution of the approximated re-

gion. Finally, LnL splits the fused warp back into two source warps when

leaving the approximable region.

To start warp fusion, we need to know if both source warps are approxi-

mate or not at the approximable region entry point. Therefore, we use our

START APPROX instruction as the barrier synchronization point. If both source

warps are approximable, they will be marked as a fused warp. For a fused

warp, the front-end fetches, decodes, and issues instructions for the source

warps only once. When an instruction from such a fused warp is executed, it

operates on the operands from all active lanes of the two source warps and

executes them as if they are from a single warp. Hence, all the per-warp
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hardware structures such as register file (RF) and SIMT stack (a hardware

stack for managing divergent control flow) are kept unchanged. In this way,

we effectively fuse two source warps into one fused warp.

During the execution of the fused warps, if there is control divergence, the

push/pop operation on both SIMT stacks will be based on all threads from

both source warps. For instance, if one source warp can re-converge while

the other source warp cannot, the re-converged source warp cannot pop the

corresponding entry from its SIMT stack, until the other source warp also

re-converges. We have to do this because a fuse warp must keep both source

warps synchronized during the entire fused execution phase. When two non-

divergent warps are fused at the beginning but one warp diverges later, the

fused warp is considered as divergent and the non-divergent half will also go

thorough the other path.

When the approximable region ends, the fused warp will be split into

individual source warps again and continue execution normally. To split a

fused warp, we only need to reset the bits that mark the source warps as

fused, then continue fetching, decoding and executing the instructions of

source warps normally. We can simply do this because we maintained all

the architectural states of both source warps when executing them as a fused

warp, such as Program Counters (PCs), SIMT stacks and the scoreboards.

3.4.2 Hardware Support

To support warp fusion, some hardware structures in the baseline architecture

need to be adapted as shown in Figure 3.10, including fetch, instruction buffer

(I-Buffer) and operand collector. All adaptations are simple and introduce

negligible costs.

Fetch. In the baseline architecture, the fetch stage uses a table for the PCs

and warp IDs of the active warps. In each cycle, the fetch scheduler selects

an eligible warp to fetch instructions. Enabling warp fusion requires two

additional fields in each entry of the PC table. Along with the warp ID and

the PC, we need a fused bit, f, to indicate if the warp is currently fused

or not, and a pointer, p, to point to the table entry corresponding to the

other source warp of the fused warp pair. Since the PC table only needs to

have entries for active warps, it only needs 48 entries for Fermi [38] and one
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Figure 3.10: Hardware modified for warp fusion. Colored fields are modified
fields. The symbols f, p, rdy0/1 and idx0/1 denote the fused bit, pointer
to the fused warp, ready bit and index bits, respectively.

pointer only requires six bits.

For all the fused warps, the fetch stage can fetch only one of the source

warps to eliminate the need for fetching instructions for fused warps repeat-

edly. For simplicity we assume it always fetches for the source warp with an

even warp ID. However, the PCs of both source warps are updated normally

to make sure both warps can continue the execution immediately after the

fused warps are split.

I-Buffer. I-Buffer is used to buffer decoded instructions of each active warp.

In the baseline architecture, each warp has two entries in the I-Buffer. Each

entry holds the decoded instruction, valid/ready bits and warp ID. The ready

bit is set by the scoreboard logic when all dependencies of the instruction

are resolved, and the ready bits must be set before the instruction can be

issued. In the warp fusion architecture, a fused bit f and a second ready bit

are added to each entry of I-Buffer. The two ready bits, rdy0 and rdy1, are

for the two source warps of the fused warp. If a warp is not a fused warp,

only the first ready bit is checked.

If a warp is a fused one, the warp can be issued only when both ready

bits are set. The fused warps will be executing the same instructions so the

decoded instructions of the fused warps will be the same. Therefore, we only

need to store one copy of the decoded instructions in I-Buffer. However, as we

mentioned above, we still need to calculate the index of the physical registers

for both source warps. Because we only fuse consecutive source warps, the

warp IDs of the two source warp are n and n + 1. Considering the way the

56



physical ID is calculated:

physical ID = warp ID× # of regs per warp + logical ID

we only need to get the physical ID, idx0, for the registers of one source

warp (the one with smaller warp ID) using the logic already in baseline

architecture. Then the physical ID of the other source warp, idx1, can be

obtained by adding the value of # of regs per warp to idx0.

Operand Collector (OC). The operand collector also requires small modi-

fication to efficiently support warp fusion. Like I-Buffer, we only need to add

a fused bit f, a second ready bit and another index bit field in the operand col-

lectors. For fused warp, it only needs one modified OC to buffer its operands,

instead one OC for each source warp. To achieve this goal without doubling

the size of the data field, we need to pack the operand data before writing

them to OC. A simple way to pack the data is grouping threads into pairs

by thread index: (0, 1), (2, 3), ..., (30, 31). Note that the threads

in a thread pair are always in the same thread group, so at most one of them

will be active. Using 16 of 2-to-1 multiplexers, we can efficiently pack the

data to half the size of the data field of OC and each source warp uses half

of the data field of the OC. Since one bit is needed for each thread pair to

indicate which one thread is chosen, we need to add 32 more bits for each

1024-bit data field. Similar to I-Buffer, when the warp is not fused, only the

first ready bit is used. However, both ready bits for a fused warp must be

set before the warp can be issued.

3.5 Evaluation

3.5.1 Methodology

We use GPGPU-Sim 3.2.2 [55] with GPUWattch [3] to evaluate the effective-

ness of LnL. Both GPGPU-Sim and GPUWattch are configured to model the

Fermi architecture of NVIDIA GTX 480 [38]. The key configuration parame-

ters are listed in Table 3.1. We use benchmarks from the Rodinia benchmark

suite [54] and CUDA SDK 4 [66]. As we explained in Section 3.2, the pro-

posed approximation scheme is for applications that use a structured grid
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Table 3.1: GPGPU-Sim configuration.

# of SMs 15 SM Frequency 1.4 GHz

Warps per SM 48 Schedulers per SM 2

Warp Size 32 Reg File per SM 128 KB

CTAs per SM 8 $L1 per SM 16 KB

Mem Channels 6 $L2 Size 768 KB

Table 3.2: List of benchmarks. Phy. and Img. denote physics simulation
and image processing, respectively.

Benchmark Domain and Grid Size Abbr.

HotSpot Phy., 512× 512 HS

Bilateral Filter Img., 1024× 1024 BF

Convolution Separable Img., 1024× 1024 CS

Convolution Texture Img., 1024× 1024 CT

Sobel Filter Img., 1024× 1024 SF

and have the “similar in, similar out” property, including physics simulation

and image processing. The benchmarks we evaluated are listed in Table 3.2.

In our evaluation, we use thread group size n of 4, 8 and 16 for all bench-

marks. On the other hand, the threshold values for the benchmarks are

selected individually such that the average output errors of the benchmarks

are within 10%. For BF, CS, CT and HS we check the relative errors, and for

SF we check the absolute errors.

3.5.2 Area and Power Overheads

The load checking logic shown in Figure 3.7 is described with Verilog HDL

and then synthesized using a low-power TSMC 40 nm library. For each

SM, we only need one set of checking logic units since each SM has only

one load/store unit. One set of checking logic consists of 32 checking units

assuming warp size is 32. The delay, area and power of a comparison unit

is 1.2 ns, 586 μm2 and 0.3 mW, respectively. Since there are 15 SMs in

the modeled GPU, a total of 480 comparison units are added. This leads

to the total area of 0.3 mm2 and the total power of 144 mW. Although the

baseline GPU is implemented with a 45 nm technology, the checking logic
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Figure 3.11: Percentage of dynamic instructions covered by approximable
regions. AVG denotes the average.

can still fit into three pipeline stages even after the scaling. Thus, we apply

three extra cycles to each load/store unit performing the value checking for

load operations. We also modeled the memory structures of the original and

modified PC tables in the fetch stage, I-Buffers and operand collectors using

CACTI 6.5 [67]. In summary, both the total area and power costs are less

than 1% compared to the baseline GPU.

3.5.3 Load Statistics and Approximable Region Coverage

Figure 3.11 shows the percentage of the dynamic instructions covered by the

approximable regions among the total number of dynamic instructions. This

is the upper bound of the actual number of approximated instructions. From

Figure 3.11 we can see that the approximable regions of the benchmarks can

cover a significant fraction of the dynamic instructions and provide good

opportunities to apply approximation. The maximal number of loads to

check for one approximable region is only three, and one loaded value is used

by only one approximable region among all the benchmarks. Note that we

do not need to check all the loaded values. Instead, we only need to check

the loads that are strongly correlated to the output based on the algorithm

or profiling.

However, having a wide coverage of the approximable region is only the

necessary condition to gain high energy efficiency. In Figure 3.12, we show

the number of actually approximated instructions. From Figure 3.12 we can

see that the percentage of approximated instructions is up to 79%, 71%,

64%, 68% and 59% for BF, CS, CT, HS and SF, respectively. The number of

approximated instructions also shows a clear trend with respect to threshold
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Figure 3.12: Percentage of approximated instructions. Thread group size n
= 4, 8, 16 for all benchmarks. Horizontal axis is the threshold values. Note
that SF uses absolute difference, not relative error Er, for threshold values.

values and the thread group size. When the threshold value increases, the

number of approximated instructions increases; when the thread group size

decreases, the number of approximated instructions increases. Such a trend

is very intuitive. When the threshold value gets larger, more instructions

will be eligible for approximation; and when thread group decreases, there

are fewer threads to compare in the thread group and it is more likely that the

differences among the threads are less than the given threshold. Note that

though HS does follow the trend, the number of approximated instructions

quickly saturates when the threshold value increases. Because the loaded

values of HS are either extremely similar or extremely different. A small

threshold value can capture most of the cases having similar values.

3.5.4 Output Error

Figure 3.13 shows the error of the output. We use the Root-Mean-Square Er-

ror (RMSE) relative to the geometric mean of the output to characterize the

error introduced by applying approximation using LnL. The highest output

error is only 8% for all the benchmarks and configurations. For CT and SF,

the error increases almost linearly with the threshold values, while the output

error of other benchmarks increases much slower and seems to be bounded.

However, it does not mean we can arbitrarily increase the threshold value for

the benchmarks with sub-linear error growth. When the threshold value gets

larger than a critical value, the error will quickly increase and the quality

becomes unacceptable. Such behavior is similar to the jump in output error

of HS with a thread group size of n = 16.

From the benchmark results we can conclude that small thread group size
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Figure 3.13: Output error: RMSE
Mean Value

.

is almost always beneficial for reducing output error. The reason is that

when the thread group size is small, fewer threads will be disabled when a

warp instruction is approximated. With more accuracy output points, the

estimation or interpolation of the results gets easier and introduces fewer

errors. However, since we have more anchor threads when using a small

thread group, the energy efficiency can be negatively affected as we can see

in Section 3.5.5.

3.5.5 Energy Efficiency Improvement

Figure 3.14 shows the energy efficiency of LnL using IPC/W normalized to

baseline. The energy efficiency of LnL is up to 2.2× of the baseline. On

average, LnL improves the energy efficiency and performance by 62% and

23%, respectively, when using the best configurations. For CS, CT and HS,

the best configuration for energy efficiency uses the largest threshold value

and the largest thread group size, while for BF and SF, the best configuration

uses the largest threshold value and the smallest thread group size. Note that,

the performance of BF, CT and SF actually exceeds the throughput limit of

the front-end thanks to warp fusion. However, the performance improvement

is very small considering the high percentage of approximated instructions.

The major reason is that, due to the memory access granularity of GPUs,

the disabled threads cannot reduce the memory bandwidth requirement. An

approximated instruction is similar to a divergent or irregular memory access

in terms of the utilization. Because the memory bandwidth bottleneck still

exists, the performance improvement is limited to 23%.

Different from the clear trend of the number of approximated instructions

and output error, a small thread group size is not always the best configura-

tion for energy efficiency. As we mentioned in Section 3.5.3, though smaller
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Figure 3.14: Energy efficiency normalized to baseline.

thread group size can potentially increase the number of instructions eligible

for approximation, there is less benefit from applying approximation on each

instruction. When the thread group size is small, there will be more thread

groups in a warp, meaning more anchor threads and fewer disabled threads.

Therefore, whether or not a small thread group size is good depends on which

of the two factors is dominate. For instance, the number of approximated in-

structions of HS quickly saturates when the threshold value gets larger. With

the number of approximated instructions being similar, the energy efficiency

is proportional to the size of the thread group: the larger the thread group

is, the higher the energy efficiency is. The crossing lines in Figure 3.12 are

the consequence of both the number of approximated instructions and energy

efficiency improvement per approximated instruction.

3.6 Conclusion

Prior approximated execution architecture [13] requires GPUs to check the

value similarity for every instruction. Furthermore, it does not improve per-

formance like LnL because it does not reduce the total number of fetched,

decoded, scheduled and executed instructions. In this work, we first proposed

Lock and Load (LnL) where approximate computing is triggered by similar-

ity of values returned by load instructions in a warp and then performed for

an approximable code region followed by the load instructions. This not only

reduces the overhead of checking the eligibility of approximation for every

instruction but also allows us to deploy more sophisticated techniques for

checking the eligibility of approximation and only approximating the output

values for all the skipped threads at the end. Second, we enhance LnL to fuse

consecutive approximable warps when both are executing approximable code
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and improve the performance because it reduces the number of fetched, de-

coded, scheduled and executed instructions. Our experiment shows that LnL

can improve energy efficiency and performance by 62% and 23%, respectively

with only 1% power/space cost.
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CHAPTER 4

AXMEMO: GENERAL-PURPOSE
APPROXIMATE MEMOIZATION

4.1 Background

So far we have only focused on reducing redundant computation on GPUs.

In this chapter, we switch our focus to CPUs, since CPU is still the one of the

most widely used types of processor. In terms of exploiting data similarity

and computation redundancy, the biggest difference between GPU and CPU

is the architecture and execution model. (Note that while most modern

CPUs support SIMD instructions, we focus on the none-SIMD instructions.

Since the SIMD pipelines in CPU can easily utilized the techniques proposed

in previous Chapters with minor or no modification.)

The difference in the architecture makes the distribution of energy spent

on instructions drastically different. In comparison to GPUs, modern CPUs

spend rather a large fraction of their time and energy on fetching, decoding

and scheduling operations rather than executing them. Even for a double-

precision fused multiply-add instruction, the energy spent on actual compu-

tation (execution unit) can be as low as 3% of the total energy of the in-

struction [4]. Another key difference between GPU and CPU is about their

execution model. The difference is similar to the difference between “spatial”

and “temporal” locality. In GPU, multiple data and computation instances

exist in the SIMD pipeline at the same time in the different SIMD lanes, thus

we exploit this “spatial” locality to find redundant computation. However,

we do not have such nice “spatial” locality among the computation instances

on CPU. Instead, the computation is done one after one, hence “temporal”

locality. To exploit computation redundancy, we have to somehow record

previous computation inputs and results on CPU for later reuse.

One of the effective techniques can be memoization that replaces operations

with lookup operations to a previously recorded results table. This technique
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exploits the computation redundancy in the code. During the execution of

an application, computation blocks may take the exact same inputs and

generate the same outputs as previous instances of the computation. Such

redundancy is caused by either repetitive input patterns or the nature of

the algorithm, which is prevalent in the cyber-physical domain due to the

processing of natural inputs. Exact memoization has been explored at a fine-

grained instructions level [31, 32], a more coarse-grained function level [27, 35]

and even a task level [29]. Except for the last work, the rest of these inspiring

techniques do not exploit approximation. The technique in [29] is a pure

software technique and does not explore the benefits of hardware support for

hashing or reuse of the spare cache space for memoization. This work fills

the void in providing the hardware support for approximate memoization of

relatively large blocks of code. To replace large code blocks with memoization

(lookups) in various applications, we need to handle a variety of input types

and counts. The varied and potentially large number of inputs raise several

challenges for the memoization process.

First, the proposed memoization hash needs to generate unique lookup in-

dices without imposing significant delay or energy. The hashing mechanism

should also support varying number of inputs. Second, the memoization pro-

cess needs to maintain a high hit rate for the lookup operations. As more

inputs are added, the probability of having an exact match decreases. To

address these challenges, we first develop a novel use of Cyclic Redundancy

Checking (CRC) to hash the varying number of inputs. To improve memo-

ization hit rate, AxMemo employs a two-level lookup table, which utilizes the

spare storage in the second level caches. These solutions enable AxMemo to

efficiently memoize relatively large code regions with variable input sizes and

types using the same hardware mechanisms. Experimentation with ten dif-

ferent benchmarks from various domains show that AxMemo provides 2.64×
average speedup and 2.58× average energy reduction. These benefits come

at the cost of 0.2% of average quality loss and 2.1% area overhead. These

results show that AxMemo is an effective approximate computing solution.

65



a = f(x, y) a = f(x, y)

a = lookup(ID, x, y)

update(ID, a, (x, y))

LUT hitLUT miss

Figure 4.1: Control flow transformation of AxMemo. ID is the lookup table
(LUT) ID.

4.1.1 AxMemo Overview

Before describing the memoization scheme of AxMemo, it is worth mention-

ing that AxMemo can be used only to memoize computation blocks equiv-

alent to code sections that: (1) always produce the same results or return

values given the same inputs, and (2) do not have any observable side effects,

such as writing to a file. Computation blocks not satisfying either of these

properties are ineligible for memoization.

Given a valid computation block, we transform the block into a branch

structure. As shown in Figure 4.1, we first look up the LUT with inputs

of the original computation block. If more than one computation block is

memoized, we need to have multiple LUTs. To distinguish multiple LUTs,

each LUT has a LUT ID. If there is a LUT hit, we copy the output of the

LUT to the registers, skip the original computation and continue execution.

Otherwise, we execute the original code and update the LUT, then continue

program execution.

The transformation itself is simple and straightforward. However, as we

discussed in Section 4.1, one of the challenges is how to perform the lookup

efficiently. The different numbers/sizes of inputs for different applications

make simply concatenating the inputs and using it as a lookup tag infeasible,

especially when the computation block has many inputs. For instance, one of

the target computation blocks in our benchmarks (Sobel) needs nine floating-

point numbers as input. Concatenating them means we need a tag of 36 bytes

for each LUT entry. It not only demands to significantly increase the LUT

capacity but also causes timing overhead since we need to have a comparator

wider than 200 bits for a tag comparison. The worse part is that applications
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with a few inputs waste such resources. Therefore, a small and fixed-size tag

is the key to efficient lookup and memoization.

On the other hand, to maintain high a hit rate for many inputs, we combine

memoization with approximation. Approximation exploits the fault-tolerant

characteristics of some applications. By relaxing the requirement of produc-

ing precise results and allowing an error bound in the output, applications in

the field of image processing and computer vision for example, can achieve

notable performance and/or energy efficiency benefits. Therefore, we allow

similar inputs to be a match to increase hit rate in AxMemo.

4.2 AxMemo Memoization Unit

Most of the memoization operations are performed by the memoization unit.

In AxMemo, the memoization units are private to each CPU core. Figure 4.2

shows the overview of the memoization unit: the memoization unit mainly

consists of a Hashing Unit, Hash Value Registers and a LUT. To efficiently

perform the lookup with a fixed-size tag, we hash the inputs of the original

computation block, dubbed the memoization inputs, and use the hash value

for the LUT tag. The hash values are first stored in Hash Value Registers.

When a lookup or update request is received, the hash value is read from

the Hash Value Registers using LUT ID (LUT ID) and thread ID (TID) as an

address to index an entry of a LUT. Combined with the LUT ID, the hash

value will be used to perform the lookup/update operations in the LUT. The

LUT in the memoization unit is considered as L1 LUT, and we can also have

an optional inclusive L2 LUT to improve the hit rate.

4.2.1 Hash Key Generation and Approximation

Hash key generation. We propose to use the cyclic redundancy check

(CRC) algorithm [68] for the hashing. CRC is a widely used error detection

algorithm. An n-bit CRC algorithm can take an input of arbitrary size and

generate an n-bit CRC value. The following properties of CRC that make it

suitable for the memoization scheme:

1. It does not need to have all the input data to start hashing. It takes a
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Figure 4.2: Overview of the memoization unit. Major components include
hashing unit, hash value registers and LUT. TID denotes thread ID.
Memoization inputs are the inputs of the computation block being
replaced, such as x, y in Figure 4.1.

stream of inputs and “accumulates” them into the output. This is an

important feature because it can help with hiding the latency of hash

value calculation.

2. Every bit of the inputs will affect the CRC output, not like the sampling-

based algorithm such as the one used in [29].

3. A hardware implementation of CRC is cheap.

4. The CRC can work in many sizes: 16-bit CRC, 32-bit CRC, 64-bit

CRC etc. We can use different CRC sizes for different designs.

As shown in Figure 4.3, a simple implementation of CRC is similar to

linear-feedback shift register (LFSR). Compared with LFSR, however, CRC

uses the XOR of the input bit and the feedback bit as the input to the first

register, instead of using the feedback bit directly. A serial CRC implemen-

tation processes 1 bit of input every clock cycle. An alternative n-bit parallel

implementation can process n bits per clock cycle, which reduce the latency

to 1/n of the serial version. The n-bit parallel implementation of m-bit CRC

needs a 2n×m-bit RAM. This small RAM stores constants that are required

for the n-bit parallel implementation. Note that any hashing scheme incurs
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collision, i.e., two sets of inputs with different values generate the same hash

value, but it is acceptable for approximable applications as long as it is not

frequent.

Approximation for memoization. Even without considering hash colli-

sion, using a CRC value as a LUT tag still requires all the memoization inputs

to be an exact match to have a LUT hit. As we discussed in Section 4.1, we

exploit the correlation between the similarity of the inputs and the similarity

of the outputs and apply approximation to the inputs in AxMemo. The ap-

proximation can potentially increase the LUT hit rate, thus the performance

of the application.

We use a simple approach to apply the approximation, truncating some

least significant bits (LSBs) of the memoization inputs before sending them

to the hashing unit. The level of approximation, i.e. the number of trun-

cated bits, is programmer controllable for each variable. Mathematically, the

truncation rounds the input down by a given relative precision (for floating-

point variables) or absolute precision (for integer variables). Though we only

evaluated truncation, a more sophisticated approach can be applied since the

approximation does not affect hashing unit.

In our experiment, we use the compiler tools to profile the applications

with a sample input set. Then we use the statistics to determine the number

of bits to be truncated for each memoization input. Alternatively, we can

use a dynamic approach. A certain percentage of the execution time can be
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(serial)

n-bit parallel m-bit CRC
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+
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Figure 4.3: Implementations of cyclic redundancy checking (CRC) unit.
The linear-feedback shift register (LFSR) unit and serial CRC unit are not
showing actual configurations.
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allocated for profiling at runtime periodically. During the profiling phase,

the memoization unit always returns miss to the processor even if there is a

hit so we can use the computation results and the LUT output to calculate

error and adjust the approximation level accordingly during the execution.

See Section 4.4 for more detail.

4.2.2 Hash Value Registers

The Hash Value Registers (HVRs) are used to store the hash values and they

are not just buffers for temporarily storing the CRC values that are ready.

When the processor sends the memoization inputs of different LUTs to the

memoization unit in an interleaved way, the HVRs store the intermediate

results of CRC and serve as the hardware context of the CRC calculation.

The HVRs are addressed by the LUT ID and the thread ID {LUT ID, TID}
as shown in Figure 4.4.

Note that thread ID is the hardware thread ID used to identify the threads

in processors support simultaneous multi-threading (SMT). The number of

needed CRC registers depends on the maximum number of allowed LUTs

and maximum number of SMT threads. Supposing an architecture with up

to eight LUTs in one thread and two SMT threads, the CRC registers should

contain at least 16 × 32-bit registers for 32-bit CRC. For out-of-order pro-

cessors, {LUT ID, TID} is equivalent to the architectural name of the Hash

Value Register. To support the instruction-level parallelism, more “physical”

Hash Value Registers are needed and they should also be “renamed”.

4.2.3 Lookup Table (LUT) Structure

The LUT has an organization similar to a normal set-associative cache, as

depicted in Figure 4.4. The LUT is composed of LUT entries organized in

sets, which are equivalent to sets of cache lines. Each LUT entry has one

LUT tag field and one LUT data field, or simply LUT tag and LUT data.

Compared to a cache line, the LUT tag field is equivalent to the address and

the LUT data field is equivalent to the data. The LUT data is 4-byte by

default, and we can configure it to 8-byte by combining two LUT entries.

The 8-byte LUT data is necessary to support 8-byte data types and can also
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Figure 4.4: LUT organization similar to a set-associative cache. Each set
can be configured to either one 4-way or one 8-way set. The CRC value is
combined with LUT ID and used for LUT tag.

be useful in the cases that the LUT logically has many outputs. In such cases,

we can pack as many outputs into the 8-byte LUT data field as possible to

reduce number of LUT accesses.

Note that we may implement L1 LUT and optional L2 LUT differently.

We use a dedicated SRAM array for L1 LUT while allocating part of the

last-level cache for L2 LUT. L1 LUT is limited to small sizes (≤16 KB) and

L2 LUT can use up to half of the last-level cache. Implementing a small

separate L1 LUT can avoid interference with valuable L1 cache space and

timing. On the other hand, using part of the last-level cache for L2 LUT can

avoid a large overhead to implement a large LUT in the baseline processor.

In AxMemo, one LUT set can be configured as either 8-way 4-byte LUT

tags with 4-byte LUT data, or 4-way 4-byte LUT tags with 8-byte LUT data.

In the latter case, the half of the LUT tags are not used. Since some lower

bits of the CRC value CRC are used to index a set, we do not need to store

the whole 32-bit CRC value in the LUT tag array. The upper bits of the

LUT tag array are used for a valid bit and LUT ID bits. Such configurations

ensure there is enough space for the valid bit and a 3-bit LUT ID. With LUT ID

included in the LUT tag, we can store multiple logical LUTs in one unified

LUT.

We chose the LUT entry size and associativity because such configuration
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allows one set of the LUT entries to just fit into a 64-byte last-level cache

line, when the LUT tag and LUT data are both considered as data for the

cache. This allows us to use the last-level cache as L2 LUT most efficiently.

For simplicity, we assign a fixed number of ways in the last-level cache to the

L2 LUT in our experiment.

4.2.4 LUT Lookup and Update Operation

When a CRC value CRC is ready, the memoization unit can start a LUT

lookup or update upon a request from the CPU. The CPU sends lookup or

update requests along with the LUT ID and its TID to the memoization unit.

LUT lookup operation. When receiving a lookup request, the memoiza-

tion unit first checks if there is any pending CRC calculation for this LUT.

Since our implementation only allows the lookup request to be sent after

the last memoization input is sent to the memoization unit, we only need

to check if there is data from this thread for the LUT waiting in the small

input queue of the memoization unit. If there is any pending calculation, the

memoization unit stalls the request until the calculation is completed. Then

the lookup is performed in the LUT to find a LUT entry whose LUT tag

matches with {LUT ID, CRC}. A condition code, which is used for branch

instructions, is also set based on lookup result, i.e. hit or miss. The con-

dition code is used later by the program to determine whether or not the

computation should be skipped.

Upon a LUT hit, the memoization unit returns the LUT data to the CPU

register specified by the lookup request and the computation is skipped.

Upon a LUT miss, the program executes the original computation and the

memoization unit immediately starts to allocate an LUT entry for the update

request and will update the LUT once the computation is done. When no

invalid entry is available, the L1 LUT entries are invalidated (without L2

LUT) or evicted to L2 LUT (with L2 LUT) using the least recently used

(LRU) policy. The same allocation policy is used for L2 LUT. Different from

data in normal cache, the LUT entry will not be eventually written back to

main memory. The L2 LUT entry will always be invalidated when the it

needs to be evicted.

LUT update operation. Once the original computation is done, the CPU
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will send an update request to the corresponding LUT entry. An update is

very similar to a lookup: it first accesses the CRC register to get CRC, then

it writes {LUT ID, CRC} and the input data to the corresponding LUT entry

and sets the valid bit. As mentioned earlier, the allocation of the LUT entry

happens in parallel with the original computation, most update can perform

the write immediately.

For multi-core processors, there is no coherence required for the LUTs,

because the same LUT tag should always have the same LUT data without

hash collision, which makes coherence unnecessary. If the same LUT tag has

different LUT data in different LUT arrays, it means a collision occurred. In

such a case, it is meaningless to force the LUTs to stay coherent since we

cannot tell which data value is more precise.

4.3 Instruction Set Architecture Design

To enable memoization, we need to extend the ARM-v8a ISA with the fol-

lowing five instructions. All of them can be encoded into 32-bit instructions:

1. ld crc dst, [addr], LUT ID, n: This instruction loads memory con-

tent at addr to register dst. It also sends the loaded data (with the

last n bits truncated) and the value of LUT ID to the memoization unit.

The AxMemo compiler replaces the normal load with this instruction

for the variables that are marked as input to the memoization region.

2. reg crc src, LUT ID, n: This instruction reads a register src, trun-

cates the last n bits and sends the truncated value to the LUT. The

destination LUT is identified by the value of LUT ID. In some bench-

marks, such as FFT, all the inputs to the memoization region are not

load instructions. As such, we include this instruction in AxMemo ISA

to support these scenarios.

3. lookup dst, LUT ID: This instruction performs the LUT lookup in

the memoization units. The target LUT is identified by the value of

LUT ID. It also sets the condition code for branch instructions based on

the lookup result. If the access to the memoization unit is a hit, lookup

writes the returned data to the destination register dst. We use lookup

together with a normal branch instruction to skip the calculation, when
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the access to the memoization unit—with LUT identified by LUT ID is

a hit.

4. update src, LUT ID: This instruction sends the value of register src to

memoization unit and insert it to the LUT. The LUT entry is allocated

after a lookup miss. It also sends LUT ID to the memoization unit as

the identifier for LUT.

5. invalidate LUT ID: This instruction invalidates all the entries of the

LUT, which is identified by LUT ID. This instruction is only used at

the end of the program execution, or when the program needs to reuse

the LUT associated with LUT ID for other logical LUT. invalidate

is called infrequently (≈1% of total number of dynamic instructions)

during the execution of the application and only consumed a few pro-

cessor cycles because we use dedicated hardware for invalidating all

LUT entries (Section 4.1).

For ld crc and reg crc, the programmer may enable approximation by spec-

ifying a non-zero value for n. The value of n determines how many LSBs

should be truncated. The programmer may disable approximation (truncat-

ing) by specifying a value of zero for n. All the instructions, which access

the memoization unit, sends the target LUT (specified by instructions with

LUT ID) to the memoization unit as identifiers of the memoization request.

To guarantee that all the input data are sent to the CRC unit in the same

program order, the lookup must only be issued after all the input data are

sent to the target CRC unit and stored in the LUT. To support this case,

we impose a dependency, which is equivalent to first reads a dummy register

and then write into the dummy register (i.e. it is both the source register

and the destination register), on the ld crc, reg crc, and lookup instruc-

tions. The imposed dependency by this consecutive write and read makes

these instructions to follow the exact same program order as defined in the

program.

4.4 Compiler Support for AxMemo

Compiler-guided code analysis. To facilitate the use of AxMemo for

generic programs, compilers and dynamic analysis tools are needed to iden-
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tify suitable computation blocks as candidates for memoization. This task

requires examining the program’s dataflow characteristics and input patterns

in a search for sections of code that are memoizable and yield promising

speedup. Two key factors determine the effectiveness of AxMemo for such

sections: (1) execution time spent on them must be substantial enough to

result in notable performance gains if memoized; (2) they must have few,

approximable inputs to yield a justifiable hit rate and error bound. Both

factors can be evaluated if we construct a dynamic data dependence graph

(DDDG) of the program detailed at the instruction level with all intermedi-

ate input data recorded. With this motivation, we devise a compilation and

analysis workflow shown in Figure 4.5 to identify and memoize candidate

computation blocks for AxMemo. 1 We use LLVM-Tracer [69] to generate

a dynamic LLVM intermediate representation (IR) trace of the program by

executing it on a sample input set. 2 We construct a DDDG from this trace

using ALADDIN [70] with some modifications.

A DDDG G = (V,E) is a directed acyclic graph whose vertices represent

LLVM IR pseudo-instructions and edges represent data dependencies be-

tween vertices. For example, an edge v → w ∈ E indicates that the output

of instruction v is used as an input operand to instruction w. In addition,

each vertex of the DDDG is weighted by its estimated latency. Note that

LLVM IR allows an arbitrary number of registers hence the DDDG captures

true dependencies of the program. An AxMemo transformable candidate

subgraph S = (Vs, Es) is a subgraph of the DDDG G that can be memoized

with AxMemo without interfering original program flow. S has a set of input

vertices Vi ⊂ Vs and a set of output vertices Vo ⊂ Vs satisfying:

1. If v → w ∈ E where v ∈ V \Vs and w ∈ Vs, then w ∈ Vi

2. If v → w ∈ E where v ∈ Vs and w ∈ V \Vs, then v ∈ Vo

In other words, S reflects a program block at the instruction granularity

whose inputs are operands of vertices in Vi and outputs are results of vertices

in Vo. Figure 4.6 shows an example subgraph of the DDDG of the benchmark

Blackscholes.

Recall that the potential speedup of an AxMemo transformed block de-

pends on the execution time and input constraint factors detailed earlier.

Thus, to capture the desirability of a candidate subgraph S, we define its

compute-to-input ratio (CI Ratio) in Equation 4.1:
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void inversek2j(…)
{
…
x2y2 = x * x + y * y;
l3 = l1 * l1 + l2 * l2;
l4 = (l1 + l2 * cos(v));
l5 = l2 * sin(v);
…
}

Source Code

…
0,22,_Z10inversek2j
2,32,0.000004,1,y
1,32,0.000004,1,y, 
R,32,0.000000,1,2, 
0,22,_Z10inversek2j 
1,64,0x608108,1,l1, 
r,32,0.500000,1,4,
…

Dynamic IR Trace Data Dependence Graph

...
Candidate ID: #2
Inputs: 4x 32-bit
CI_Ratio: 21.25
Function: inversek2j
Lines: 77-94
Instruction Tree: …
...

AxMemo Candidates

...
ld_crc dst, x, lut_id, 8 
ld_crc dst, y, lut_id, 8
…
lookup dst, lut_id
b.cond dst target
…
.target

AxMemo Executable

Generate Dynamic 
IR Trace

Construct 
Dependence Graph

Graph Analysis & 
Filter

Generate Binary with 
Memoization

1 2

34

Figure 4.5: Compilation and analysis flow to identify optimal code sections
for AxMemo.

I Ratio =

∑
v∈Vs

v × weight

# of Inputs
(4.1)

The higher this ratio, the more execution cycles we can replace with a

lookup and/or the higher hit rate we can expect. In step 3 , our analysis

task simplifies to finding candidate subgraphs S in the DDDG G with a

high CI Ratio but not exceeding the number of inputs allowed by AxMemo.

Our algorithm consists of running a directed breadth first search rooted at

each vertex of the transpose of G. For each vertex v ∈ V , we find the

AxMemo transformable subgraph S with v as the sole output vertex (i.e.

Vo = {v}) having the highest CI Ratio and add it to our candidate list if

that ratio exceeds our predefined threshold. To aid this search, programmers

may specify specific functions for analysis rather than the entire program as

sections involving system calls or I/O operations are non-memoizable. After

the search process, we often identify more than 104 candidates depending
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double normalize (
     double in, 
     double min, 
     double max, 
     double min_n
     double max_n
)
{ 
   return (((in - min) / (max - min)) *
         (max_n - min_n)) + min_n;
}
  

in

FSUB 
(3)

FSUB 
(3)

FDIV 
(22)

FSUB 
(3)

FMUL 
(5)

FADD 
(3)

min max min

max_n
min_n

min_n

Figure 4.6: Example subgraph from the dynamic data dependence graph of
Blackscholes. Black vertices are input/output vertices. The number in
parenthesis indicates the weight (latency) of each vertex.

on the application and its input size. This is no surprise as our graph is

constructed from a dynamic trace, thus many subgraphs will have identical

structure if they belong to a loop body or repeated function call. Therefore,

in the last step of 3 we filter out candidate subgraphs if they are structurally

equivalent to or subsets of other candidates based on their static instruction

IDs from compiled assembly. Finally, we merge the remaining subgraphs

with high overlap to create larger subgraphs with multiple outputs and select

among them one or more final candidates with the highest total vertex weight

in all their recurrences.

Table 4.1 shows our analysis on applications from the AxBench and Ro-

dinia benchmark suites. The first two columns respectively denote the total

number of candidate subgraphs identified and the number of unique sub-

graphs after filtering in step 3 . The third column is the average CI Ratio

among all filtered candidate subgraphs. The last column, Memoization Cov-

erage, is measured by
∑

vs×weight/
∑

v×weight where vs ∈ Vs are vertices

belonging to candidate subgraphs and v ∈ V are all vertices of the DDDG. In

other words, coverage is the vertex weight ratio of candidate sections to the

entire graph. This fraction gives an estimate of the potential computation

time that can be eliminated by memoization.

These results predict that benchmarks such as Blackscholes and FFT,

both boasting a high CI Ratio and coverage, will achieve significant speedup

if hit rates are respectable after truncation. On the other hand, the obvious

outlier Jmeint’s main function, which calculates triangle intersection using

16 floating-point inputs, resulted in an undesirable CI Ratio and was not
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selected as a candidate, hence the low coverage for that benchmark. An im-

portant caveat of memoization coverage is that it does not always directly

translate to an upper bound on performance speedup. Our DDDG model

weighs each pseudo-instruction individually by its cycle time, yet modern

processors are able to execute multiple instructions concurrently with multi-

ple functional units.

Code Generation. With the final candidate computation blocks for mem-

oization selected, step 4 begins by selecting the number bits of the inputs to

be truncated such that we can achieve a high hit rate while keeping output

error within a given bound. To do so, we profile applications by observ-

ing error rates when truncating inputs by different numbers of bits. For

all benchmarks evaluated, we truncate bits while constraining output error

to less than 0.1% with the exception of JPEG, for which we use 1% instead

since the output is an image. After determining the number of truncated bits,

AxMemo instructions are inserted into selected code sections of the assembly

and recompiled.

4.5 Evaluation

Benchmarks. Table 4.2 summarizes the benchmarks from AxBench [71]

and Rodinia [54] that we evaluated. The benchmarks from AxBench cover

a wide range of applications suitable for approximation, including financial

Table 4.1: The dynamic data dependence graph (DDDG) analysis of
AxBench [71] and Rodinia [54] Benchmarks.

Benchmark
Total # of Dynamic 

Subgraphs
# of Unique Subgraphs 

for Memoization
Compute / # of 

Inputs Ratio

Ax
B

en
ch

R
od

in
ia

Memoization 
Coverage

Blackscholes
FFT
Inversek2j
Jmeint
JPEG
K-means
Sobel

61,114
5,376
840
516
260
387
32,288

8
3
4
4
6
4
2

48.41
43.85
38.13
9.87
15.49
9.01
23.81

75.24%
93.83%
67.91%
53.10%
19.3%
75.31%
35.3%

Hotspot
LavaMD
SRAD

15,429
24,614
110,003

43
16
2

16.35
13.77
21.58

45.4%
65.28%
45.20%
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Table 4.2: Evaluated benchmarks.

Benchmark Domain Description Acronym

Blackscholes Financial Analysis Calculates the price of European-style options BLK
FFT Signal Processing Radix-2 Cooley-Turkey FFT FFT
Inversek2j Robotics Calculates the coordinated of a two-joint arm I2J
Jmeint 3D-Gaming Detects the intersection of two triangles JM
JPEG Compression Compresses an image using JPEG standard JPEG
K-means Machine Learning K-mean clustering on an image KM
Sobel Image Processing Applies Sobel filter on an RGB image SBL

Hotspot Physics Simulation Simulates the temperature of an IC chip HS
LavaMD Molecular Dynamics Simulates interaction of particles with charge MD
SRAD Medical Imaging Image denoising SRAD

Ax
Be

nc
h

Ro
di
ni
a

analysis, signal processing, robotics, and machine learning.

To further evaluate the benefits of AxMemo across other domains, we in-

clude three other benchmarks—in the domain of physics simulation, molec-

ular dynamics, and medical imaging—from Rodinia [54]. The input datasets

used for evaluation are provided directly by the benchmark suites, as listed in

Table 4.3. The third column of Table 4.3 lists the total size of memoization

inputs in bytes for each benchmark. As defined in Section 4.2, memoization

inputs are all inputs to the memoized computation block. The large sizes of

the memoization inputs demonstrate the necessity for using CRC values as

LUT tags. The last column in Table 4.3 indicates the number of truncated

bits per input for each benchmark. This number is selected based on com-

piler analysis and profiling to achieve the highest hit rate while satisfying

output error constraints as described in Section 4.4. Our compiler analy-

sis and experiment both show that 32-bit CRC is generally large enough to

avoid collision. We use the complete AxMemo compilation workflow (see

Section 4.4) to generate memoization ready binaries for the evaluated bench-

marks.

Quality metric and monitoring. Since we apply bit truncation on in-

puts and the hash function may result in collision, applications may suffer a

degradation in output error. To assess output quality when the memoization

is enabled, we use output error (Equation 4.2) defined as follows [29]:

Er =

∑
i (X̂i −Xi)

2∑
i X

2
i

(4.2)

In the equation, X represents correct results from the unmodified source code
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Table 4.3: Input dataset of benchmarks and memoization configuration. All
datasets used are default and provided by the benchmark suite.
Memoization input size denotes the total input size in bytes for each
(logical) LUT. The number of tuples corresponds to the number of
memoized blocks of the benchmark. The actual LUT tag in hardware is
generated by hashing.

Benchmark Input Dataset
Memoization Input 

Size (bytes)
# of Truncated 

bits

BLK 200K options 24 0
FFT 4,096 floating-point data points 4 0
I2J 1.24 million pairs of angles 8 8
JM Coordinates of 145K pairs of triangles 36 6

JPEG 512x512 pixel images (16, 16) (2, 7)
KM 512x512 pixel images 12 16
SBL 512x512 pixel images 36 16

HS 512x512 maps of power and temperature 16 8
MD 16x100 particles with random initial position 12 0

SRAD 458x502 pixel medical images 24 18

Ax
Be

nc
h

Ro
di

ni
a

and X̂ represents results with AxMemo enabled. For the JPEG benchmark

where the output is an encoded image file, we apply Equation 4.2 on individ-

ual pixel values instead. The output of Jmeint is a Boolean value indicating

whether two 3-D triangles intersect. As such, we use misclassification rate

(percentage of incorrect classifications). To ensure the output quality, we also

implement quality monitoring scheme to prevent large output error. During

the execution, every 1 out of 100 LUT hits is ignored. The LUT performs

the lookup normally but returns a miss instead of hit. The LUT output will

be later used to compare against the data sent by processor for updating the

LUT. For each comparison, a simple relative error is calculated. For every

100 comparison, the statistics of the relative error is checked. If more than

10% of the relative errors are larger than 10%, the memoization is disabled.

4.5.1 Experimental Setup

Cycle-accurate simulator. All experiments in this section are assessed

with the gem5 simulator [72] to evaluate the benefits of AxMemo. We use

one of the gem5’s default configuration which accurately models a high-

performance in-order (HPI) ARM processor, as we target processors for low-

power applications. The HPI processor, released by ARM, includes detailed

configurations and timing parameters to model a modern in-order processor
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Table 4.4: Major microarchitectural parameters for the ARM
high-performance in-order (HPI) processor using ARM-v8a ISA.

Number of Cores, Frequency Two cores, 2 GHz
Issue Width Two, in-order
Number of Integer Units / Core Two ALUs, One Multiplier, One Divider
Number of Floating-Point Units / 
CoreNumber of Load/Store Units / Core
L1 Instruction Cache
L1 Data Cache
L2 Shared Cache
Memory Configuration

One
One
32 KB, 2-way set associative, 1-cycle hit latency
32 KB, 4-way set associative, 1-cycle hit latency
1 MB, 16-way set associative, 13-cycle hit latency
4 GB, 1600 MHz, DRR3, two channels

Table 4.5: Timing parameters for the AxMemo ISA extensions
(Section 4.3).

ld_crc dst, [addr], LUT_ID, n
AxMemo Instruction

reg_crc src, LUT_ID, n

lookup dst, LUT_ID

update src, LUT_ID
invalidate LUT_ID

One cycle for each byte of data. This instruction does not stall 
CPU unless the input queue of the memoization unit is full

Two cycles for L1 LUT and 13 cycles for L2 LUT. In case there 
is an already issued CRC operation to the same LUT, this 
instruction wait until the undergoing CRC operation finishes
Two cycles 
One cycle per each way-associativity

One cycle for each byte of data. This instruction does not stall 
CPU unless the input queue of the memoization unit is full

Latency

implementation using ARM-v8a ISA. Although we evaluate in-order processor,

AxMemo can also be implemented in out-of-order processors as we explained

in Sections 4.2 and 4.3. Table 4.4 summarizes key microarchitectural param-

eters of the configuration used for AxMemo. We modified the gem5 simulator

to include all proposed ISA extensions and additional hardware necessary for

AxMemo. One memoization unit is appended to each core of the processor.

Table 4.5 shows timing parameters for the proposed instructions. We ex-

tract these parameters from synthesis results shown in Table 4.6. We use

CLANG/LLVM 3.4 and GCC 4.8 to compile, analyze, and generate benchmark

binaries equipped with memoization. We also enable maximum compiler

optimization for all applications prior to transforming memoized sections.

Hardware synthesis. We implement all proposed microarchitectural units,

including the 32-bit CRC unit, Hash Value Registers (16×32-bit) and LUTs

of various sizes in Verilog. The 8-bit parallel 32-bit CRC unit uses an iter-

ative algorithm and processes 8 bits of the input each cycle. To match the

throughput of the CRC unit with the most common case of a 4-byte input, we

unrolled the 32-bit CRC unit four times and apply pipelining. We use the
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Synopsys Design Compiler (K-2015.06-SP3-1) with a FreePDK 45 nm

technology model. To remain consistent with the process technology used to

model other components, we properly scaled down synthesis results of the

proposed microarchitectural units to 32 nm. Since all synthesized hardware

components have a latency smaller than 0.5 ns, we do not need to reduce

the baseline core clock frequency in our simulations (Table 4.4). The area

overhead, energy consumption, and the timing parameters of the synthesized

units are shown in Table 4.6. With the largest L1 LUT (16 KB), the added

memoization units for all the cores consumes up to 0.17 mm2 (2.08%) area

per the HPI processor with an estimated area of 8.0 mm2, estimated using

McPAT version 1.3 [73] also with 32 nm technology (note that L2 LUT is

partitioned from L2 cache). The quality monitoring unit uses comparison

logic proposed in [37] (see Section 3.3.2), the area overhead is only 16.8 μm2

and power overhead is 7.5 μW with a latency of 1.0 ns.

LUT hardware configurations. To better understand the benefits of

AxMemo, we perform our experiments using various LUT configurations, all

built from the same base design and a 32-bit CRC unit. We only vary the

size of the LUTs and the number of levels of LUTs for each configuration.

For the experiments using one-level LUTs with sizes (including both tag and

data) ranging between 4 KB, 8 KB, and 16 KB. In this case, we use small-sized

LUTs to limit the areal overhead of dedicated SRAM arrays necessary for

larger L1 LUTs (synthesis results listed in Table 4.6). The memoization unit

can have an optional L2 LUT. The L2 LUT is partitioned from last-level

cache (L2 cache in this case) and does not require dedicated SRAM. The size

of L2 LUTs is either 256 KB or 512 KB which are quarter and half the size

of L2 cache, respectively. When we evaluate a configuration with L2 LUT,

we fix the L1 LUT size to 8 KB. This design decision is to strike a balance

between the performance and cost of hardware resource.

Energy modeling. We use CACTI 6.5 [67] to estimate access energy and

latency of the LUTs and the 1 KB SRAM in the CRC unit. The total dy-

namic energy of the processor is estimated using McPAT version 1.3 [73].

We configure McPAT according to the gem5 configuration for HPI proces-

sor and use statistics from gem5 to calculate the number of accesses to each

component. Finally, we feed number of accesses to McPAT to calculate the

application’s energy consumption.
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Table 4.6: Area, energy and timing analysis for 32 nm technology node.
CRC32 denotes 32-bit CRC. CRC32 unit shown here is already unrolled
and pipelined. All LUTs are 8-way set-associative (4-byte LUT data).

Area (mm2) Energy (pJ) Latency (ns)
CRC32 Unit
Hash Register
LUT (4 KB)
LUT (8 KB)
LUT (16 KB)

0.0146 2.9143 0.4133
0.0018 0.2634 0.1121
0.0217 3.2556 0.1768
0.0364 4.4221 0.2175
0.0673 7.2340 0.2658

4.5.2 Experimental Results

We evaluate the benefits of AxMemo across a diverse set of benchmarks, in-

cluding financial analysis, robotics, molecular dynamics, and machine learn-

ing. In all evaluations, the baseline is a regular ARM HPI processor with

the same configuration but not equipped with memoization hardware. All

results from hereon are normalized to this baseline. For each evaluation, we

also perform a sensitivity study of the results for various AxMemo config-

urations: L1(4 KB), L1(8 KB), L1(16 KB), L1(8 KB)+L2(256 KB), L1(8 KB)+

L2(512 KB). Bit truncation is applied identically for memoization inputs re-

gardless of configuration. In addition to comparing against the baseline, we

implement a software LUT for memoization as another contender. The soft-

ware implementation of CRC uses an 8-bit parallel algorithm (Figure 4.3 in

Section 4.2). To calculate the CRC value of a 4-byte input, the software

implementation requires 4 × 3 = 12 instructions (1 AND, 1 LOAD and 1

XOR for each byte). We then use the CRC value to index entries of the LUT

array using CRC%2N , where 2N is the total number of entries in the LUT

array. To reduce the cost of the software implementation, we use a simple

array as the LUT. In contrast to the hardware implementation, the cost of

increasing the number of LUT entries in software is significantly lower. As

such, we simply increase the size of LUT arrays to the point where speedup

plateaus. Based on these trials, we fix the number of LUT entries for the

software implementation to 228, equivalent to 1GB for 4 B data types. Recall

that we use the remainder operation to obtain the array index, which means

only the last 28 bits of CRC value are used to index the array. This may

cause additional collision in the software LUT compared to AxMemo, which

compares the whole 32-bit CRC value.

Performance and energy benefits with AxMemo. Figure 4.7a shows
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Figure 4.7: (a) Speedup and (b) normalized energy using different
configurations of LUTs. L1 LUT is fixed at 8KB when there is an L2 LUT.
Software LUT is the software memoization implementation.

full application speedup with AxMemo for different LUT configurations nor-

malized to the non-memoized ARM HPI baseline, where the application ex-

ecutes normally on the CPU. Of all the benchmarks, Blackscholes enjoys

the highest speedup of 20.5× for the L1(8 KB)+ L2(512 KB) configuration.

The main reason for such a high speedup in Blackscholes is that almost

the entire computation kernel of the benchmark, consisting of no less than

40 instructions, is replaced with a single LUT access. Out of ten bench-

marks, only Jmeint exhibits virtually zero speedup for all tested AxMemo

configurations. This is due to the low lookup hit rate for Jmeint (less than

0.1%), an indicator of low computation reuse available for AxMemo to ex-

ploit. We study the source of these benefits in the following paragraphs. On

average, AxMemo delivers 1.40× and 2.82× speedup for the L1(4 KB) and

L1(8 KB)+L2(512 KB) configurations respectively. Some benchmarks, such as

Blackscholes, do not benefit from a large LUT. These benchmarks only

need small LUT to capture most of their computation reuse. This is similar

to the case when data cache becomes much larger than the working set of

an application. In contrast to AxMemo, the software implementation, on
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average, suffers a slowdown by 0.94×. The underwhelming results of the

software LUT implementation is largely due to the significant overhead of

CRC calculation in software. Out of ten benchmarks, only Blackscholes,

FFT, and Inversek2j enjoy speedup from the software implementation. For

these three benchmarks, the sheer amount of computation replaced by lookup

hits outweighs software overhead from performing memoization. Figure 4.7b

shows the energy of each benchmark normalized to the baseline with no mem-

oization. Similar to the trend of speedup results, the highest energy saving is

achieved for Blackscholes, FFT and Inversek2j, whose energy is reduced

to 0.09× , 0.08× and 0.20× of baseline, respectively. The L1(4 KB) and

L1(8 KB)+L2(512 KB) configurations respectively reduce energy consumption

to 0.73× and 0.37× of baseline on average for all the benchmarks. Once

again, the software LUT implementation increases energy consumption by

∼2%, which we still attribute to the large overhead of CRC calculation in

software.

Dynamic instruction count. Figure 4.8 shows the total dynamic instruc-

tion count of each evaluated benchmark normalized to the baseline without

memoization. We show the breakdown of the dynamic instruction count

between memoization instructions and normal instructions. We consider

ldr crc instructions not as a memoization instructions, but as a normal

instruction because they simply substitute the original load. On average,

AxMemo effectively reduces the number of dynamic instructions by 20.0%

and 50.1% for L1(4 KB) and L1(8 KB)+L2(512 KB), respectively. We observe

the largest reduction in the number of dynamic instructions for FFT, where an

overwhelming section of the application is replaced by memoization and hit

rate is higher than 90%. This coincides with earlier compiler analysis showing

a high memoization coverage for FFT in Section 4.4. The software memoiza-

tion implementation, on the other hand, increases dynamic instruction count

by ≈2.0×, causing most applications to see a slowdown and virtually zero

energy reduction using the software implementation (see Figure 4.7). The

total number of dynamic instructions is a proper indicator for the number

of benefits that AxMemo can deliver. However, different instructions have

different latencies, so dynamic instruction count alone does not determine

exact speedup or energy savings.

Lookup-Table (LUT) hit rate. Figure 4.9 shows the LUT hit rate of the
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Figure 4.9: The LUT hit rate of various LUT configurations, including
AxMemo and the software LUT implementation. AVG is the arithmetic
mean.

evaluated benchmarks across different AxMemo configurations. For AxMemo

configurations with multiple levels of LUT, namely L1(8 KB)+L2(256) and

L1(8 KB)+L2(512), we calculate the total lookup hit rate across both lev-

els. The last bar for each benchmark shows the software implementation

of our proposed memoization approach. On average, across all benchmarks,

L1(4 KB) (the smallest LUT size) and L1(8 KB)+L2(512 KB) (the largest LUT

size) provide a 37.1% and 76.1% total hit rate respectively. Increasing from

the smallest LUT size to the largest LUT size yields a 39.1% improvement

in the lookup hit rate on average. This result shows the effectiveness of

AxMemo’s multi-level LUT design in improving hit rate. Note that the L2

LUT is inclusive, therefore adding the L2 LUT is effective in increasing the

total hit rate but has minimal impact on the L1 LUT hit rate. The soft-

ware LUT implementation, delivers an average hit rate of 81.1% across all

benchmarks, slightly better than the 76.1% of the L1(8 KB)+L2(512 KB) con-

figuration. As previously noted, the small overhead of increasing memory
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used in software allowed us to increase the LUT array’s size to 1 GB, after

which further increases no longer improve speedup. Figure 4.9 indicates that

all the benchmarks except Jmeint exhibit significant computation reuse. The

reason for Jmeint’s failure is its lack of repetitive or similar input patterns

to the memoized computation block.

Output quality degradation. To assess the output quality degradation,

we use the quality metric defined in Equation 4.2. Figure 4.10 shows the

final output quality degradation of the evaluated applications across all the

AxMemo configurations. To provide more detailed information about the

quality, we also show the cumulative distribution function of the element-

wise relative error of the output in Figure 4.10. On average, the output error

Er across all configurations of AxMemo falls below 1%. The main reason for

this low output error with AxMemo is its virtually zero hashing collision rate.

Furthermore, since we use the compiler analysis to determine the number of

truncated bits in Section 4.4, the effects of truncation on the output quality

will be minimal. Finally, errors from the LUT outputs do not always affect

final values of the application. The last bar in Figure 4.10 shows output

quality degradation for the software implementation, which has a non-zero

collision rate (1% on average and up to 6.6%). As we previously detailed, the

reason is that the four most significant bits of the hash value are discarded

when indexing the LUT array.

Effectiveness of approximation. We use bit truncation as an approx-

imation technique. To show the effectiveness of approximation, we assess

the speedup and energy penalties of AxMemo when no truncation is per-

formed. Figure 4.11a and Figure 4.11b show these speedup and normalized

energy compared to AxMemo with truncation. On average, approximation

improves the speedup and energy reduction by 12.1% (max. 32.8%) and

17.4% (max. 130%), respectively. Three benchmarks: JPEG, Sobel, and

SRAD suffer from slowdowns and no longer enjoy energy savings without ap-

proximation. Without approximation, the average LUT hit rate drops from

76.1% to 47.2% across all benchmarks. Therefore, we conclude that input

truncation is an effective approximation technique for AxMemo.

Comparison with prior work. The closest work to AxMemo is software-

based approximate task-level memoization (ATM) [29]. To generate the hash

key, ATM first concatenates the application’s inputs into a single 1-D vec-
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Figure 4.10: Output quality. Software LUT has a higher error rate due to
its higher collision rate.

tor of N bytes. Then, they create a vector of N indices, each of which

points to one byte in the concatenated input vector. Finally, the indices

are shuffled and used as the key for lookup accesses. Nonetheless, comparing

AxMemo with ATM, we note that the only publicly available benchmark and

datasets used both by ATM and AxMemo is Blackscholes from PARSEC

benchmark suite [74]. As such, we have a head-to-head comparison with

ATM for Blackscholes using a similar evaluation setup. The speedup for

Blackscholes using their best implementation [29] is 2.5× less than the

speedup delivered by AxMemo (8.2× vs. 20.1×). For the other “shared”

benchmark K-means, though not exactly the same implementation, ATM

also performs worse than AxMemo (2.0× vs. 2.5×).
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Figure 4.11: Speedup and normalized energy of AxMemo, without
approximation and with approximation. In both cases, AxMemo uses 8 KB
L1 LUT and 512KB L2 LUT.

4.6 Conclusion

We propose AxMemo, an approximate memoization scheme. AxMemo fo-

cuses on replacing a long sequence of instructions with a few lookup table

accesses, therefore reducing the total number of instructions executed. To

enable memoization for large computation blocks with a different number of

inputs and data types, AxMemo uses CRC to generate hash values to per-

form lookups. Furthermore, we apply approximation by truncating inputs to

improve the LUT hit rate and observe output errors of only 0.2% on aver-

age. AxMemo is implemented with simple hardware with an area overhead

of 2.08% and requires minimal software changes backed by our proposed

compiler support. Our experiment results demonstrate that an AxMemo

provides speedups up to 2.82× and energy reduction up to 63%, yielding a

7.67× energy efficiency improvement compared to the baseline processor.
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CHAPTER 5

CONCLUSIONS

With the failure of Dennard scaling, novel approaches are needed to further

improve the efficiency and performance of processors. In this dissertation,

we proposed various techniques to reduce redundant computation on GPU

or CPU, including G-Scalar, Lock and Load and AxMemo architectures.

We first proposed G-Scalar on GPU, a generalized scalar execution archi-

tecture along with a low-cost register value compression technique. G-Scalar

can support scalar execution of not only conventional non-divergent arith-

metic/logic but also divergent and special-function instructions. Further-

more, when GPUs adopt our low-cost register value compression technique,

G-Scalar is practically free, as it is architected to share most of hardware

resources with our register value compression technique, and reuse existing

hardware resources of SIMT execution pipelines for scalar execution instead

of implementing dedicated scalar execution pipelines. Our evaluation shows

that G-Scalar, which consumes only 1% more chip space than the baseline

GPU, can double the number of instructions eligible for scalar execution.

This in turn improves power efficiency of GPUs by 24% and 15% compared

with the baseline and previous scalar execution architectures, respectively.

Lastly, our register value compression technique alone can reduce the power

consumption of the register file by 54%.

Then we extend G-Scalar to similar values and proposed Lock and Load

(LnL) where approximate computing is triggered by similarity of values re-

turned by load instructions in a warp and then performed for an approx-

imable code region followed by the load instructions. This not only reduces

the overhead of checking the eligibility of approximation for every instruction

but also allows us to deploy more sophisticated techniques for checking the

eligibility of approximation and only approximating the output values for all

the skipped threads at the end. Second, we enhance LnL to fuse consecu-

tive approximable warps when both are executing approximable code and
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improve the performance because it reduces the number of fetched, decoded,

scheduled and executed instructions. Our experiment shows that LnL can

improve energy efficiency and performance by 62% and 23%, respectively

with only 1% power/space cost.

Finally, we proposed AxMemo based on the same idea for LnL. AxMemo

focuses on replacing a long sequence of instructions with a few lookup ta-

ble accesses, therefore reducing the total number of instructions executed on

CPU. To enable memoization for large computation blocks with a different

number of inputs and data types, AxMemo uses CRC to generate hash values

to perform lookups. We further apply approximation by truncating inputs,

which improves the LUT hit rate. We observe output errors of only 0.2%

on average with the approximation applied to AxMemo. AxMemo is imple-

mented with simple hardware with an area overhead of 2.08% and requires

minimal software changes backed by our proposed compiler support. Our

experiment results demonstrate that an AxMemo provides speedups up to

2.82× and energy reduction up to 63%, yielding a 7.67× energy efficiency

improvement compared to the baseline processor.

All three techniques focus on reducing the number of needed computations,

by exploiting data similarity and computation redundancy. These techniques

are proven to be effective for a variety of appellations that show such char-

acteristics.
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