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ABSTRACT

Differential privacy is a de facto standard for statistical computations over databases that

contain private data. The strength of differential privacy lies in a rigorous mathematical

definition which guarantees individual privacy and yet allows for accurate statistical results.

Thanks to its mathematical definition, differential privacy is also a natural target for formal

analysis. A broad line of work uses logical methods for proving privacy. However, these

methods are not complete, and only partially automated. A recent and complementary line

of work uses statistical methods for finding privacy violations. However, the methods only

provide statistical guarantees (but no proofs).

We propose the first decision procedure for checking differential privacy of a non-trivial

class of probabilistic computations. Our procedure takes as input a program P parametrized

by a privacy budget ε and either proves differential privacy for all possible values of ε, or

generates a counterexample. In addition, our procedure applies both to ε-differential privacy

and (ε, δ)-differential privacy. Technically, the decision procedure is based on a novel and

judicious encoding of the semantics class of programs in our class into a decidable fragment

of the first-order theory of the reals with exponentiation. We implement our procedure and

use it for (dis)proving privacy bounds for many well known examples, including randomized

response, histogram, report noisy max and sparse vector.
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CHAPTER 1: INTRODUCTION

Differential privacy [1] is a gold standard for privacy of statistical computations. Differ-

ential privacy ensures that running the algorithm on any two “adjacent” databases yields

two “approximately” equal distributions, where two databases are adjacent if they differ

in a single element, and two distributions are approximately equivalent if their distance is

small w.r.t. some specific metric. Thus, differential privacy delivers a very strong form of

individual privacy. Yet, and somewhat surprisingly, it is possible to develop differentially

private algorithms for many tasks. Moreover, the algorithms are useful, in the sense that

their results have reasonable accuracy. However, designing differentially private algorithms

is difficult and the privacy analysis can be error-prone, as witnessed by the example of sparse

vector. This difficulty has motivated the development of formal approaches for analyzing

differentially private algorithms; see [2] for a survey and the related work section of this

report.

Even though significant advances have been made in identifying proof principles to es-

tablish differential privacy [3, 4, 5, 6, 7, 8, 9, 10] and techniques have been proposed to

find differential privacy violations [11, 12], basic questions — Is checking differential privacy

decidable? What are the limits of automated checking of differential privacy? What is the

asymptotic complexity of checking? — have (shockingly) remained unanswered. The sole

metric for evaluating proposed checking techniques has been experimental evaluation on ex-

amples rather than a precise mathematical characterization of its limits. However, if past

experience in automated formal verification of other application areas is any guide, then

answering these foundational questions is essential for principled algorithmic development

that is not only critical for theoretical advances but also for building practical tools that

scale to large examples.

This report is a first attempt at addressing this serious lacuna in the current state of

understanding in formal verification of differential privacy. Our first result establishes that

checking differential privacy is indeed, computationally, a very difficult problem. We show

that the problem of checking differential privacy is undecidable. Our proof of this result

shows that the problem remains undecidable even if one considers programs with a single

Boolean input, and a single Boolean output.

The main thrust of this report is, therefore, to identify a rich class of programs, that

encompasses many known examples, for which checking differential privacy is decidable for

all possible instances of the privacy parameter ε (throughout the report, we assume that

the error parameter δ is defined as a function of ε). Our undecidability proof highlights the
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challenges in this enterprise — since it applies to really simple programs, can we even hope

to find a practically relevant decidable fragment? We focus our attention on programs whose

input and output spaces are finite. Note that such programs need not be finite state, as they

could use auxiliary, variables, ranging over infinite domains, to carry out the computation.

We introduce a class of programs, called DiPWhile, which are probabilistic while programs,

for which the problem of checking differential privacy is decidable. We succeed in carefully

balancing the twin (orthogonal) demands of decidability and expressivity, by judiciously

delineating the use of real-valued and integer-valued variables. Our decidability proof for

programs in DiPWhile has the following salient features. The first step is an observation that

the semantics of DiPWhile-programs can be defined using parametrized, finite-state Markov

chains 1. The fact that the semantics can be defined using only finitely-many states is a

surprising observation because our programs have integer and real-valued variables. Our key

insight here is that a precise semantics for DiPWhile-programs can be given without tracking

the explicit values of the real and integer-valued variables. Second, we observe that the

transition probabilities of the Markov chain semantics are pseudo-rational functions of the

privacy budget. These two observation together, allow us to reduce the problem of checking

differential privacy of DiPWhile-programs to the decidable fragment of the first order theory

of reals with exponentials, identified by McCallum and Weispfenning [13].

Our decision procedure has two complementary uses. The first use of the procedure is

a stand alone tool for checking ε- or (ε, δ(ε))-differential privacy of mechanisms specified

by DiPWhile-programs, for all values of ε. We have implemented our decision procedure

in a tool that we call DiPC (Differential Privacy Checker). Given DiPWhile-program, our

tool constructs a sentence in McCallum-Weispfenning fragment of the theory of reals with

exponentials. It then calls MathematicaR© to check if the constructed sentence is true over

the reals. Since our decision procedure is the first that can both prove differential privacy

and detect its violation, we tried the tool on examples that known to be differentially private

and those that are known to be not differentially private, including variants of Sparse Vector,

Report Noisy Max, and Histograms. DiPC successfully checked differential privacy for the

former class of examples and produced counterexamples for the later class. Our counter-

examples are exact (rather than probabilistic) and are more compact than those delivered

by prior tools.

A complementary use of the decision procedure is for validating counter examples for al-

gorithms with infinite input or output sets. Our approach can be used to check ε-differential

privacy of any mechanism for a given pair of adjacent input values and a given output value,

1A parametrized Markov chain is a Markov chain whose transition probabilities are a function of the
privacy budget.
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for all values of ε > 0, or for a given value of ε > 0. It can also be used to find violations of

programs with unbounded outputs. For such programs, it is possible to discretize the output

domain into a finite domain, and to use the decision procedure to find privacy violations

for the discretized algorithm (by post-processing, privacy violations for the discretized algo-

rithms are also privacy violations for the original algorithm). Such usages complement the

technique presented in [11] that proposes a method for generating counter examples. The

approach of [11] is statistical in nature, and the examples generated by it are highly prob-

able to be counter examples (with statistical guarantees), but may not be definite counter

examples. Our approach can be used to check if the counter examples, generated by their

tool, are real counter examples, for a given value of ε.

1.1 CONTRIBUTIONS

We summarize our key contributions.

• We prove the undecidability of the problem of checking differential privacy of very

simple programs, including those that have a single Boolean input and output.

• We identify an expressive class of programs and give the first sound and complete

method to verify differential privacy for a class of programs. That is, we present the

first single, fully automatic method that can prove both prove differential privacy and

detect its violation by generating counterexamples ; hitherto all previous approaches

can either only prove differential privacy or only prove its violation, but not do both.

• We implement the decision procedure and evaluate our approach on private and non-

private examples of the literature.

1.2 TOOL AND EXPERIMENTS

The tool and experiments are available at the anonymous url [14].

1.3 RELATED WORK

The main thread of work has focused on formal systems for proving that an algorithm

is differentially private. Such systems are helpful because they rule out the possibility of

mistakes in privacy analyses. Reed and Pierce [3] propose the first programming language

technique for proving differential privacy, in the form of a linear type system. Gaboardi et
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al [4] later enrich their approach with linear dependent types, in order to support recursion

and a broader set of differentially private constructions. Azevedo de Amorim et al [9] propose

another extension to accommodate (ε, δ)-differential privacy. However, it is not possible to

verify some of the most advanced examples, such as sparse vector or vertex cover, using

these type systems. Moreover, type-checking and type-inference for linear (dependent) types

is challenging. Barthe et al [5, 6, 7] develop several program logics for reasoning about

differential privacy. These logics construct approximate probabilistic couplings between

two program executions on adjacent inputs. These couplings are parametrized by a binary

relation on program outputs; when specialized to the equality relations, these approximate

probabilistic couplings coincide with the notion of approximate equality used in differential

privacy. These logics have been used successfully to analyze many classic examples from

the literature, including the sparse vector technique. However, these logics are limited: they

cannot disprove privacy; extensions may be required for specific examples; building proofs is

challenging. The last issue has been addressed by Zhang and Kifer [8] and by Albarghouthi

and Hsu [10]. These works propose automated methods for proving automatically differential

privacy. Zhang and Kifer introduce randomness alignments as an alternative to couplings,

and build a dependent type system that tracks randomness alignments. Automation is

then achieved by type inference. Albarghouthi and Hsu propose coupling strategies, which

rely on a fine-grained notion of variable approximate coupling which draws inspiration both

from approximate couplings and randomness alignment. They synthesize coupling strategies

by considering an extension of Horn clauses with probabilistic coupling constraints, and

developing algorithms to solve such constraints. However, these methods are limited to

vanilla ε-differential privacy and do not accommodate bounds that are obtained by advanced

composition (since δ 6= 0). Recently, Liu, Wang, and Zhang [15] develop a probabilistic model

checking approach for verifying differential properties. Their approach is based on modelling

differential private programs as Markov chains. Their encoding is more direct than ours (i.e.

it does not attempt to build a finite-state Markov chain) and they do not provide a decision

procedure. Chistikov and Murawski and Purser [16] propose an elegant method based on

skewed Kantorovich distance for checking differential privacy of Markov chains. However,

their approach is rather theoretical and not implemented.

A dual problem is to automatically find violations of differential privacy. This would help

privacy practitioners discover potential problems in their algorithms as early as possible.

Two recent and concurrent works by Ding et al [11] and Bischel et al [12] develop automated

methods for finding privacy violations. Ding et al propose an approach which combines

purely statistical methods based on hypothesis testing and symbolic execution. Bischel et al

develop an approach based on a combination of optimization methods and language-specific
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techniques for computing differentiable approximations of privacy estimations. Both meth-

ods are fully automated. However, their guarantees are statistical (no proofs). Moreover,

both methods can only be used for concrete numerical values of the privacy budget ε. As

previously explained, our work is complementary to these approaches, in the sense that our

decision procedure can be used to verify their proposed counter-examples (for algorithms

that fall in the class of programs handled by the procedure).

To our best knowledge, no prior work is able to both prove differential privacy and detect

its violations for a non-trivial class of programs.

Our work is also loosely connected to prior attempts to relate differential privacy and

information flow. In particular, Barthe and Köpf [17] study information-theoretic bounds

for differentially private channels and provide a decision procedure for rational bounds.

Their decision procedure is based on a reduction to the theory of real closed fields (without

exponential). However, there approach considers channels and is not directly applicable to

a language-based setting.
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CHAPTER 2: PRIMER ON DIFFERENTIAL PRIVACY

Differential privacy [1] is a rigorous definition and framework for private statistical data

mining. In this model, a trusted curator with access to the database returns answers to

queries made by possibly dishonest data analysts that do not have access to the database.

The curator’s task is to return probabilistically noised answers, so that data analysts cannot

distinguish between two databases which are adjacent, i.e. only differ in the value of a single

individual. There are two common definitions: two databases are adjacent if they are exactly

the same except for the presence or absence of one record, or exactly the same except for

the difference in one record. We abstract away from any particular definition of adjacency.

Henceforth, we denote the set of real numbers, rational numbers, natural numbers and

integers by R,Q,N, and Z respectively. The Euler constant shall be denoted by e. We

assume given a set U of inputs, and a set V of outputs. A randomized function P from U to

V is a function that takes an input in U and returns a distribution over V . For a measurable

set S ⊆ V , the probability that the output of P on u is in the set S shall be denoted by

Prob(P (u) ∈ S). In the case the output set is discrete, we use Prob(P (u) = v) as shorthand

for Prob(P (u) = {v}).
We are now ready to define differential privacy. We assume that U is equipped with a

binary symmetric relation Φ ⊆ U × U , which we shall call the adjacency relation. We say

that u1, u2 ∈ U are adjacent if (u1, u2) ∈ Φ.

Definition 2.1. Let ε ≥ 0 and 0 ≤ δ ≤ 1. Let Φ ⊆ U × U be an adjacency relation. Let

P be a randomized function with inputs from U and outputs in V . We say that P is (ε, δ)-

differentially private with respect to Φ if for all measurable subsets S ⊆ V and u, u′ ∈ U
such that (u, u′) ∈ Φ,

Prob(P (u) ∈ S) ≤ eε Prob(P (u′) ∈ S) + δ

As usual, we say that P is ε-differentially private iff it is (ε, 0)-differentially private. If the

output domain is discrete, it is equivalent to require that for all v ∈ V and u, u′ ∈ U such

that (u, u′) ∈ Φ,

Prob(P (u) = v) ≤ eε Prob(P (u′) = v)

Differential privacy is preserved by post-processing. Formally, if P is an (ε, δ)-differentially

private computation from U to V , and h : V → W is a deterministic function, then h ◦ P is

an (ε, δ)-differentially private computation from U to W . In the remainder, we shall exploit

post-processing to connect differential privacy of randomized computations with infinite
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output spaces to differential privacy of their discretizations.

Laplace Mechanism

The Laplace mechanism [1] achieves differential privacy for numerical computations by

adding random noise to outputs. Given ε > 0 and mean µ, let Lap(ε, µ) be the continuous

distribution whose probability density function (p.d.f.) is given by

fε,µ(x) =
ε

2
e−ε|x−µ|.

Lap(ε, µ) is said to be the Laplacian distribution with mean µ and scale parameter 1
ε
. Consider

a real-valued function q : U → R. Assume that q is k-sensitive w.r.t. an adjacency relation

Φ on U , i.e. for every pair of adjacent values u1 and u2, |q(u1) − q(u2)| ≤ k. Then the

computation that maps u to Lap( ε
k
, q(u)) is ε-differentially private.

It is sometimes convenient to consider the discrete version of the Laplace distribution.

Given ε > 0 and mean µ, let DLap(ε, µ) be the discrete distribution on Z, the set of integers,

whose probability mass function (p.m.f.) is given by

fε,µ(i) =
1− e−ε

1 + e−ε
e−ε|i−µ|.

DLap(ε, µ) is said to be the discrete Laplacian distribution with mean µ and scale parameter
1
ε
. The discrete Laplace mechanism achieves the same privacy guarantees as the continuous

Laplace mechanism.

Exponential mechanism

The Exponential mechanism [18] is used for making non-numerical computations private.

The mechanism takes as input a value u from some input domain and a scoring function

F : U ×V → R and outputs a discrete distribution over V . Formally, given ε > 0 and u ∈ U ,

the discrete distribution Exp(ε, F, t) on V is given by the probability mass function:

hε,F,t(v) =
eεF (t,v)∑
v∈V e

εF (t,v)
.

Suppose that the scoring function is k-sensitive w.r.t. some adjacency relation Φ on U ,

i.e., for all for each pair of adjacent values u1 and u2 and v ∈ V , |F (u1, r) − F (u2, r)| ≤ k.

Then the exponential mechanism is (2kε, 0)-differentially private w.r.t. Φ.
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CHAPTER 3: MOTIVATING EXAMPLES

Before presenting the mathematical details of our results, let us informally present our

method by showing how it would work on some illustrative examples. Consider the Sparse

Vector Technique (SVT) [19, 20]. The Sparse Vector Technique was designed to answer

multiple ∆-sensitive numerical queries in a differentially private fashion. The relevant infor-

mation we want from queries is, which amongst them are above a threshold T . If we apply

a differentially private mechanism to answer each one of them separately then the privacy

budget explodes (answering k such queries in an ε-differentially private manner would only

be kε-differentially private). The SVT as given in Algorithm 3.1 is designed to identify the

first c queries that are above the threshold T in an ε-differentially private fashion.

Input: q[1 : N ]
Output: out[1 : N ]

rT ← Lap( ε
2∆
, T )

count← 0
for i← 1 to N do

r← Lap( ε
4c∆

, q[i])
b← r ≥ rT
if b then

out[i]← >
count← count+ 1
if count ≥ c then

exit
end

else
out[i]← ⊥

end

end

Algorithm 3.1: SVT algorithm (SVT1)

In the program, the integer N represents the total number of queries and the array q of

length N represents the answers to queries. The array out represents the output array, ⊥
represents False and > represents True. We assume that initially the constant ⊥ is stored at

each position in out. In the SVT technique, the true answers account for most of the privacy

cost and we can only answer c of them until we run out of the privacy budget [19, 8]. On

the other hand, there is no restriction to the false answers that can be given.

The input set U in this context is the set of N length vectors q, where the kth element
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q[k] represents the answer to the kth query on the original database. The adjacency relation

Φ on inputs is defined as follows: q1 and q2 are adjacent if and only if |q1[i] − q2[i]| ≤ 1 for

each 1 ≤ i ≤ N .

Let us consider an instance of the SVT algorithm when T = 0, N = 2, ∆ = 1 and

c = 1. Let us assume that all array elements in q come from the domain {0, 1}. In this

case, we have four possible inputs [0, 0], [0, 1], [1, 1], and [1, 0], and three possible outputs

[⊥,⊥], [>,⊥], and [⊥,>]. Our approach is to compute, for each input x and output y, the

probability of returning y when the input is x. Note that this probability depends on the

parameter ε, and so what we are looking for is a symbolic representation of this function.

For example, the probability of outputting [⊥,>] on input [0, 1] is

r1 =
24e

3ε
4 − 1 + 8e

ε
4 + 21e

ε
2

48e
3ε
4

.

Similarly, when the input is [1, 1] and the output is [⊥,>], the probability is given by

r2 =
−22 + 32e

ε
4 − 3ε

48e
ε
2

.

Our goal is to compute expressions like r1 and r2 automatically from the program, input,

and output. Having computed such expressions, checking ε-differential privacy requires one

to determine if

for all ε > 0. (r1 ≤ eεr2) and for all ε > 0. (r2 ≤ eεr1).

Notice that the above conditions can be encoded as a first order sentence with exponen-

tials, and checking if ε-differential privacy holds, reduces to determining if such a first order

sentence is true for reals, with the standard interpretation of multiplication, addition, and

exponentiation. Whether there is a decision procedure that can determine the truth of first

order sentences involving exponentials over the reals, is a long standing open problem. How-

ever, certain decidable fragments of such an extended first order theory have been identified.

Our main result shows that for many examples, checking differential privacy can be reduced

to a decidable fragment identified by McCallum and Weispfenning [13].

Notice that if one can compute expressions for the probability producing certain outputs

on a given input, we could use the above ideas to also check (ε, δ)-differential privacy, instead

of just ε-differential privacy. The only change would be to account for δ in our constraints,

and to consider all possible subsets of outputs, instead of just individual output values. Thus,

the methods proposed here go beyond the scope of most automated approaches, which are
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restricted to vanilla ε-differential privacy.

3.1 FINITE DISCRETIZATION OF INFINITE OUTPUT SPACES

As outlined in the introduction, our decision procedure checks differential privacy of pro-

grams whose output space is finite. In many examples, the program outputs are reals or

unbounded integers (and combinations thereof). Nevertheless, we argue that our decision

procedure can still be used in the verification of differential privacy. Our approach in such

cases is to discretize the output space into finitely many intervals.

We illustrate this for the special case when a program P outputs the value of one real

random variable, say r. Now, suppose that we modify P to output a finite discretized version

of r as follows. Let seq = a0 < a1 < . . . an be a sequence of rationals and let

Discseq(x) =



a0 x ≤ a0

a1 a0 < x ≤ a1

...

an−1 an−2 < x ≤ an−1

an otherwise

.

Consider the program PDisc,seq that instead of outputting r, outputs Discseq(r). It is easy

to see that if P is differentially private then so must be PDisc,seq. Therefore, if PDisc,seq is

not differentially private then we can conclude that PDisc,seq is not differentially private.

Our decision procedure is both sound and complete for a class of programs we identify.

Therefore, we can use our method to find counterexamples; counterexamples for us is a pair

of adjacent inputs and a value of ε that violates the differential privacy inequation. Thus,

if our decision procedure finds a counterexample for PDisc,seq, then it also has proved that P

is not differentially private. Our method can, therefore, be used as an under-approximation

technique for checking differential privacy of P . In fact, it is complete under-approximation

method in the sense that P is differentially private iff for each possible seq, PDisc,seq is

differentially private.

Let us illustrate the discretization approach to detecting privacy violations through an

example. One variant of SVT algorithm is one in which the algorithm outputs noisy queries

that are above the noisy threshold (and not just which queries are above the threshold). This

algorithm outputs real values and is known to violate differential privacy [20]. As discussed

above, while we cannot model this algorithm directly in our framework, we can model its
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Input: q[1 : N ]
Output: out[1 : N ]

rT ← Lap( ε
2∆
, T )

count← 0
for i← 1 to N do

r← Lap( ε
4c∆

, q[i])
b← r ≥ rT
if b then

out[i]← Discseq(r)
count← count+ 1
if count ≥ c then

exit
end

else
out[i]← ⊥

end

end

Algorithm 3.2: Discretized SVT algorithm that outputs noisy queries above noisy
threshold (SVT3)

discretized version. The discretized version is given in Algorithm 3.2.

Consider the instance of this discretized algorithm with N = 5, c = 1,∆ = 1, T = 0 and

let seq consist of a single rational number 0. Consider input i1 = [0, 0, 0, 0, 0] and output

o = [⊥,⊥,⊥,⊥, 0]. The probability of producing o on input i1 is p1 = 1
1344

. On the other

hand, the probability that o is produced on input i2 = [1, 1, 1, 1, 0] is p2 = e−
5ε
4

1344
. Now

ε-differential privacy would require that

diff = p1 − eεp2 =
1

1344
− e−

ε
4

1344

be ≤ 0. However, this is not true, for example, when ε = 27. This counterexample was

found automatically by our tool DiPC.

We conclude this chapter by pointing out that the discretization technique also allows

us to complement existing statistical techniques for finding counterexamples to differential

privacy. Such statistical techniques [11] assume a fixed ε and typically produce a candidate

counterexample which is pair of adjacent inputs in1, in2 and an output set S (usually an

interval Iout = (a, b)). These techniques do not provide a method for checking whether this

is a real counterexample or just a statistical anomaly. Our methods can then serve to check

that this candidate counterexample is really a counterexample by taking seq = a < b.
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CHAPTER 4: CHECKING DIFFERENTIAL PRIVACY

We consider the problem of verifying the differential privacy of randomized algorithms.

Typically, such algorithms are modeled as a program Pε parametrized by a value ε. Having a

paramterized program Pε captures the fact that program’s behavior depends on the privacy

budget ε, with the intention of guaranteeing that Pε is (f(ε), g(ε))-differentially private,

where f and g are some functions of ε. The parameter ε is assumed to belong to some

(potentially unbounded) interval I ⊆ R>0 with rational endpoints; usually, we take ε to just

belong to the interval (0,∞). The program Pε will be assumed to terminate with probability

1 for every value of ε (in the appropriate interval).

We will assume that our programs take inputs from a set U and produce outputs over a

set V . In this report, we will assume that both U and V are finite sets that can be effectively

enumerated. Despite our restriction to finite input and output sets, as we will see in the next

section (Section 4.1), the computational problem checking differential privacy is challenging.

At the same time, the decidable subclasses we identify (Sections 4.2 and 5), are rich enough

to model most known differential privacy mechanisms even though they have finite input and

output sets. Extending our decidability results to subclasses of programs that have infinite

input and output sets, is a non-trivial open problem at this time.

The computational problems we consider in this report are as follows. Since our programs

take inputs from a finite set U , we assume that the adjacency relation Φ ⊆ U ×U is given to

us as an explicit list of pairs. In general, when discussing (ε, δ)-differential privacy of some

mechanism, the additive parameter δ needs to be a function of ε. To define the computational

problem of checking differential privacy, the function δ : R>0 → [0, 1] must be given as input.

We, therefore, assume that this function δ has some finite representation; if δ is the constant

δ0 then we represent δ simply by the number δ0. There are two computational problems we

consider in this report.

Fixed Parameter Differential Privacy Given a problem Pε over inputs U and outputs

V , adjacency relation Φ ⊆ U × U , and rational numbers ε0, δ0, t ∈ Q>0, determine if

Pε0 is (tε0, δ0)-differentially private with respect to Φ.

Differential Privacy Given a program Pε over inputs U and outputs V , interval I ⊆ R>0,

δ : R>0 → [0, 1], an adjacency relation Φ ⊆ U × U , and a rational number t ∈ Q,

determine if Pε is (tε, δ(ε))-differentially private with respect to Φ for every ε ∈ I.

Observe that the Fixed Parameter Differential Privacy problem can be trivially reduced to

the Differential Privacy problem. Thus, an algorithm for checking Differential Privacy can
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be used to solve Fixed Parameter Differential Privacy. Unfortunately, the Fixed Parameter

Differential Privacy problem is extremely challenging — we will show that it is undecidable,

and therefore, so is the Differential Privacy problem. We will conclude this chapter by

identifying semantic conditions under which the Differential Privacy problem (and therefore

the Fixed Parameter Differential Privacy problem) is decidable.

4.1 UNDECIDABILITY OF DIFFERENTIAL PRIVACY

The main result in this section is that the Fixed Parameter Differential Privacy problem

is undecidable. Consider simple while programs that have variables storing Booleans and

integers. Program statements are either assignments, random assignments that sample from

discrete Laplacians, conditional statements, and loops. Let us denote this class of programs

by Simple; in the interests of space, we skip the formal definition of such programs, relying

instead on the reader’s informal understanding. Inputs to such programs (i.e. set U) are

valuations to input program variables. We have the following undecidability result.

Theorem 4.1. The Fixed Parameter Differential Privacy problem and the Differential Pri-

vacy problem for programs Pε in Simple is undecidable.

Proof. We shall prove this by reducing the non-halting problem for deterministic 2-counter

Minsky machines (which is known to be undecidable) to the Fixed Parameter Differential

Privacy problem.

Recall that a 2-counter Minsky Machine is tupleM = (Q, qs, qf ,∆
1
inc,∆

2
inc,∆

1
jzdec,∆

2
jzdec)

where

• Q is a finite set of control states.

• qs ∈ Q is the initial state.

• qf ∈ Q is the final state.

• ∆i
inc ⊆ Q×Q is the increment of counter i for i = 1, 2.

• ∆i
jzdec ⊆ Q×Q×Q is the conditional jump of counter i for i = 1, 2.

M is said to be deterministic if from each state q, there is at most one transition out of

q. The semantics ofM is defined in terms of a transition system (Conf, (qs, 0, 0),→) where

Conf = Q × N × N is the set of configurations, (qs, 0, 0) is the initial configuration and →
is defined as follows:

13



(q, i, j)→ (q′, i+ 1, j) if (q, q′) ∈ ∆1
inc,

(q, i, j)→ (q′, i, j + 1) if (q, q′) ∈ ∆2
inc,

(q, i, j)→ (q′, i, j) if i = 0 and (q, q′, q′′) ∈ ∆1
jzdec,

(q, i, j)→ (q′′, i− 1, j) if i 6= 0 and (q, q′, q′′) ∈ ∆1
jzdec,

(q, i, j)→ (q′, i, j) if j = 0 and (q, q′, q′′) ∈ ∆2
jzdec, and

(q, i, j)→ (q′′, i, j − 1) if j 6= 0 and (q, q′, q′′) ∈ ∆2
jzdec.

We show that given a 2-counter Minsky Machine M, there is a program PMε ∈ Simple

such that for each ε > 0,

(a) PMε has only one Boolean input bin and one Boolean output bout.

(b) PMε terminates with probability 1.

(c) PMε is (ε, 0)-differentially private w.r.t adjacency relation Φ = {(true, false), (false, true)}
if and only if M does not halt.

A sequence of configurations s0, s1, . . . sk is said to be a computation ofM if s0 = (qs, 0, 0)

and si → si+1 for i = 0, 1, . . . k − 1. A computation s0, s1, . . . sk is said to be a halting

computation of M if sk = (qf , i, j) for some i, j ∈ N.
Given a 2-counter MachineM, PMε is constructed as follows. First we observe that without

loss of generality we can assume that the set of states Q of M can are integers 1, 2, . . . ,m

where m is the number of states in Q. Thus, a configuration of M can be encoded as

three integers state, cntr1, cntr2. The transition relations ∆1
inc,∆

2
inc,∆

1
jzdec and ∆2

jzdec can be

encoded using 3 additional counters, n state, n cntr1, n cntr2, which model the next state and

the the next counter values. For example, the transition (q, q′, q′′) ∈ ∆1
jzdec can be encoded

using conditional statements as follows:

if (cntr1 = 0) and (state = q)

then n state = q′;

end

if (cntr1 > 0) and (state = q)

then n state = q′′; n cntr1 = n cntr1 − 1;

end

Let s1, s2, . . . , sn be the statements encoding the transition relation. Consider the program

PMε given in Figure 4.1. The program PMε initially samples k from a discrete Laplacian. If

the sampled value is < 0 then it outputs false. Otherwise, it simulates M upto k. At the
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Input: bin

Output: bout

bout ← false
k ← DLap(ε, 0)
if k > 0 then

state← qs
cntr1 ← 0
cntr2 ← 0
for steps← 1 to k do

s1

...
sn
state← n state
cntr1 ← n cntr1

cntr2 ← n cntr2

end
if (state = qf) and (bin = true) then

bout ← true
end

end

Algorithm 4.1: Program PMε simulating 2-counter machine M

end of the simulation, if the halting state is reached and the input is true then it outputs

true. Otherwise, it outputs false.

Clearly, PMε satisfies properties (a) and (b) above. That the program PMε has property

(c) above follows from the following observations:

1. If M does not halt then PMε outputs false with probability 1.

2. IfM halts then PMε outputs true with non-zero probability on input true and outputs

true with zero probability on input false.

This shows that Fixed Parameter Differential Privacy is undecidable. Undecidability of

Fixed Parameter Differential Privacy is obtained by taking ε0 to be any constant rational

number, say 1
2
. q.e.d

This theorem shows that Differential Privacy is undecidable. Undecidability of Fixed

Parameter Differential Privacy is obtained by taking ε0 to be any constant rational, say 1
2
.
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4.2 A TRACTABLE SEMANTIC CLASS OF PROGRAMS

Since the problem of checking differential privacy is undecidable (Theorem 4.1) it is nec-

essary to restrict the class of programs to get a decision procedure. The program PMε

constructed in the proof of Theorem 4.1 is an extremely simple program. This demonstrates

how challenging the task of identifying a tractable, yet useful, subset of programs is. In

this section, we identify a simple semantic restriction under which the Fixed Parameter

Differential Privacy and Differential Privacy problems are decidable. In Chapter 5, we will

use the results of this section to prove that the problem of checking differential privacy is

decidable for programs written in our DiPWhile language. Our goal in identifying a semantic

restriction is to reduce the problem of checking differential privacy to checking the truth of

a first order formula involving exponentials about the reals. Decidability of the theory of

reals with exponentials is a long standing open problem, related to Schanuel’s conjecture.

Some fragments of this theory are known to be decidable. In particular, McCallum and

Weispfenning [13] have identified a decidable fragment of the first order theory of reals with

exponentials, that we will exploit. Therefore, before defining our semantic restriction, we

introduce this decidable first order theory.

We will consider first order formulas over a restricted signature and vocabulary. We will

denote this collection of formulas as the language Lexp. Formulas in Lexp are built using

variables {ε} ∪ {xi | i ∈ N}, constant symbols 0, 1, unary relation symbol e(·) applied only

to the variable ε, binary function symbols +,−,×, and binary relation symbols =, <. The

terms in the language are integral polynomials with rational coefficients over the variables

{ε} ∪ {xi | i ∈ N} ∪ {eε}. Atomic formulas in the language are of the form t = 0 or t < 0

or 0 < t, where t is a term. Quantifier free formulas are Boolean combinations of atomic

formulas. Sentences in Lexp are formulas of the form

QεQ1x1 · · ·Qnxnψ(ε, x1, . . . xn)

where ψ is a quantifier free formula, and Q, Qis are quantifiers. In other words, sentences

are formulas in prenex form, where all variables are quantified, and the outermost quantifier

is for the special variable ε.

We will be interested in an extension of the first order theory of reals. That is, the theory

Thexp is the collection of all sentences in Lexp that hold in the structure 〈R, 0, 1, e(·),+,−,×,=
, <〉, where the interpretation for 0, 1,+,−,× is the standard one on reals, and e is Euler’s

constant. The crucial property about this theory is that it is decidable.

Theorem 4.2 (McCallum-Weispfenning [13]). Thexp is decidable.
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Our tractable semantic restriction on programs relies on certain special functions of type

I → R, namely those that are definable in Thexp. A function f : I → R is said to be definable

in Thexp, if there is a formula ϕf (ε, x) in Lexp with two free variables (ε and x) such that

f(a) = b iff 〈R, 0, 1, e(·),+,−,×,=, <〉 |= ϕf (ε, x)[ε 7→ a, x 7→ b]

A sufficient condition to ensure the decidability of checking differential privacy is to con-

sider programs with the property that for each input, the probability distribution on the

outputs is definable in Thexp. This identifies the semantic restriction we will consider in this

section.

Definition 4.3. A parametrized program Pε with inputs U and outputs V is said to identify a

definable distribution on V if for each in ∈ U and out ∈ V the function ε 7→ Prob(Pε(in) = out)

is definable in Thexp.

A parametrized program Pε with inputs U and outputs V is said to effectively identify a

definable distribution on V if there is an algorithm A such that for each in ∈ U and out ∈ V ,

A outputs a formula ϕin,out(ε, x) in Lexp that defines the function ε 7→ Prob(Pε(in) = out).

The main result of this section is that checking differential privacy for programs that

effectively identify a definable distribution is decidable.

Theorem 4.4. The Fixed Parameter Differential Privacy and Differential Privacy problems

are decidable for programs Pε that effectively identify a definable distribution and definable

functions δ (in the case of the Differential Privacy problem).

Proof Sketch. We sketch the decidability proof for the Differential Privacy problem; the

proof also contains all the necessary ideas to establish the decidability of Fixed Parameter

Differential Privacy problem. Let Pε be a program that effectively identifies a definable

distribution with adjacency relation Φ. Let us assume that the formula ϕin,out(ε, xin,out) of

Lexp defines the function ε 7→ Prob(Pε(in) = out). Let ϕδ(ε, xδ) be the formula defining the

function δ. Let t = p
q

where p, q are natural numbers. We show the proof when I is (0,∞).

It is easy to modify the proof for any interval I with rational end-points.

Consider the sentence

ψ = ∀ε.∀z.[∀xin,out]in∈U ,out∈V .∀xδ.
((ε > 0) ∧ (epε = zq) ∧ (z > 0)

∧ϕδ(ε, xδ)
∧

in∈U ,out∈V ϕin,out(ε, xin,out))

→ (
∧

(in1,in2)∈Φ,O⊆V
∑

out∈O xin1,out <

z
∑

out∈O xin2,out + xδ)
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It is easy to see Pε is differentially private for all ε iff ψ is true over the reals. In the syntax of

Lexp, we cannot take qth roots of e; therefore, we introduce the variable z, which enables us to

write the constraints using only eaε, where a ∈ N. Notice that ψ belongs to Lexp if we convert

it to prenex form. Decidability therefore follows from the decidability of Thexp. q.e.d

If Pε is not differentially private, then the sentence ψ does not hold. The decision procedure

for Thexp will in this case return an ε that witnesses the non-privacy of Pε. This could be

used to construct counterexamples.

Definition 4.5. A counterexample for Pε, with respect to an adjacency relation Φ, a function

δ : R>0 → [0, 1] and a value t ∈ Q, is a quadruple (u, u′, S, ε0) such that (u, u′) ∈ Φ, S ⊆ V
and ε0 > 0 and

Prob(Pε0(u) ∈ S) > etε0 Prob(P (u′) ∈ S) + δ(ε0)

When δ is the constant function 0, then S is {v} for some v ∈ V .
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CHAPTER 5: DIPWHILE LANGUAGE

We now introduce the language DiPWhile for which differential privacy can be checked

effectively (Chapter 6). Informally, DiPWhile is a syntactically restricted class of proba-

bilistic while programs, having variables that take values from either Booleans, a finite set

DOM (to model variables taking finite values), integers, or reals. Probabilistic steps in the

language correspond to sampling using either the Laplace, discrete Laplace, or exponential

mechanisms. We also allow probabilistic steps where values in DOM are sampled from a user

defined distribution. The key restrictions we impose are as follows. First, we assume that

real and integer variables are never assigned inside the scope of a while loop. This ensures

that any real (or integer) variable is given a value only a bounded number of times. Second,

loop and branch conditionals never depend on comparing values stored in real variables with

values stored in integer variables. These restrictions are crucially exploited in our decid-

ability proof. The informal reasons behind them can be best understood in the context of

defining the semantics for DiPWhile programs and so are postponed to Section 6.2.

The formal syntax of DiPWhile, that makes precise the restrictions outlined above, is

shown in Figure 5.1. We have four types for variables: Bool = {true, false}; finite domain

DOM that we assume (without loss of generality) to be {−Nmax, . . . 0, 1, . . . Nmax}, a finite

subset of integers 1; reals R; and integers Z. The set of Boolean/DOM/integer/real program

variables are respectively denoted by B/X/Z/R. The set of Boolean/DOM/integer/real

expressions is given by the non-terminal B/E/Z/R in Figure 5.1. We now explain the rules

for such expressions. Boolean expressions (B) can be built using Boolean variables and

constants, standard Boolean operations, and by applying functions from FBool. FBool is

assumed to be a collection of computable functions returning a Bool. DOM expressions (E)

are similarly built from DOM variables, values in DOM, and applying functions from set of

computable functions FDOM. Next, integer expressions (Z) are built using multiplication

and addition with integer constants and DOM expressions, and additions with other integer

expressions. Finally, real expressions (R) are built using multiplication and addition with

rational constants and DOM expressions, and additions with other real-valued expressions.

A program in our language is a triple consisting of a set of (private) input variables, a set of

(public) output variables, and a finite sequence of labeled statements (non-terminal P in Fig-

ure 5.1). The private input variables and public output variables take values from the domain

DOM. Thus, the set of possibles inputs/outputs (U/V), is identified with the set of valuations

for input/output variables; a valuation over a set of variables X ′ = {x1, x2, . . . , xm} ⊆ X is a

1Our decidability results also hold if DOM is taken to be a finite subset of the rationals.
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Expressions (b ∈ B, x ∈ X , z ∈ Z, r ∈ R, d ∈ DOM, i ∈ Z, q ∈ Q, g ∈ FBool, f ∈ FDOM):

B ::= true | false | b | not(B) |B and B |B or B | g(Ẽ)

E ::= d | x | f(Ẽ)
Z ::= z | iZ | EZ | Z + Z | Z + i | Z + E
R ::= r | qR | ER |R +R |R + q |R + E

Basic Program Statements (a ∈ Q>0, ∼∈ {<,>,=,≤,≥}, F is a scoring function and
choose is a user-defined distribution):

s ::= x← E | z← Z | r← R | b← B | b← Z1 ∼ Z2|
b← Z ∼ E | b← R1 ∼ R2 | b← R ∼ E|
r← Lap(aε, E) | z← DLap(aε, E)|
x← Exp(aε, F (x̃), E) | x← choose(aε, Ẽ)|
ifB thenP elseP end |WhileB doP end | exit

Program Statements (` ∈ Labels)

P ::= ` : s | ` : s ; P

Figure 5.1: BNF grammar for DiPWhile. DOM is a finite discrete domain. FBool, (FDOM

resp) are set of functions that output Boolean values (DOM respectively). B,X ,Z,R are
the sets of Boolean variables, DOM variables, integer random variables and real random
variables. Labels is a set of program labels. For a syntactic class S, S̃ denotes a sequence of
elements from S.

function from X ′ to DOM. Note that if we represent the set X ′ as a sequence x1, x2, . . . , xm

then we can represent a valuation val over x as a sequence val(x1), val(x2), . . . , val(xm) of

elements from DOM.

We assume every statement in our program is uniquely labeled from a set of called Labels.

Statements (non-terminal s) can either be assignments, conditionals, while loops, or exit.

Statements other than assignments are self-explanatory. The syntax of assignments is de-

signed to follow a strict discipline. Real and integer variables can either be assigned the value

of real/integer expression or samples drawn using the Laplace or discrete Laplace mechanism.

DOM variables are either assigned values of DOM expressions or values drawn either using

an exponential mechanism (Exp(aε, F (x̃), E)) or a user defined distribution (choose(aε, Ẽ)).

For the exponential mechanism, we require that the scoring function F be computable and

return a rational value. Both these restrictions are unlikely to be severe in practice, but are

needed to ensure decidability. In the case of the user defined distribution, we demand that
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the probability with which a value in DOM is chosen (as function of the privacy budget ε),

be definable in Thexp. Again this is needed to ensure decidability. Finally, we consider as-

signments to Boolean variables. The interesting cases are those where the Boolean variable

stores the result of the comparison of two expressions. As mentioned at the beginning of

this section, we do not allow that comparison between real and integer expressions; this is

reflected in the syntax. In addition to the above syntactic restrictions, DiPWhile programs

will adhere to the following principles.

Bounded Assignments We do not allow assignments to real and integer variables within

the scope of a while loop. This ensures that assignments to such variables happen only

a bounded number of times during an execution. Therefore, without loss of generality,

we will assume that real and integer variables are assigned at most once.

Define Before Use We will assume that in any execution, if a variable appears on the right

side of an assignment statement, then it should have been assigned a value before.

The DiPWhile language is surprisingly expressive — many known randomized algorithms

for differential privacy can be encoded. We give examples of such encodings in DiPWhile.

We omit labels of program statements unless they are needed.

Example 5.1. Figure 5.1 shows how SV T can be encoded in our language with T = 0,∆ =

1, N = 2, c = 1. In the example we are modeling ⊥ by 0 and > by 1. Please observe that

although we do not have For loops in our program, we can nevertheless encode bounded For

Loops by unrolling the For loop.

Example 5.2. Given ε > 0 and offset, let Lap+(ε, offset) be the continuous distribution

whose probability density function (p.d.f.) is given by

fε,µ(x) =

ε e−ε(x−offset) if x ≥ offset

0 otherwise

Observe that the one-sided Laplacian distribution Lap+(ε, 0) is the standard exponential

distribution. Our language is expressive enough to encode one-sided Laplacians as follows.

Consider the sequence of statements:

X ← Lap(ε, 0);

b← X ≤ 0;

if b thenY ← X elseY ← (−1)X end;

Z ← Y + offset
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Input: q1, q2

Output: out1, out2

T ← 0;
out1 ← 0;
out2 ← 0;
rT ← Lap( ε

2
, T );

r1 = Lap( ε
4
, q1);

b← r1 ≥ rT ;
if b then

out1 ← 1
else

r2 = Lap( ε
4
, q2);

b← r2 ≥ rT ;
if b then

out2 ← 1
end

end
exit

Algorithm 5.1: SVT for 1-sensitive queries with N = 2,c = 1 and T = 0

The effect of the sequence of statements is that Z has the one-sided Laplacian distribution

Lap+(ε, offset).

Other examples that can be encoded in our language (and for which the decision proce-

dure applies) include randomized response, the multiplicate weights and iterative database

construction [21, 22], the private smart sum algorithm [23], and private vertex cover [24].
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CHAPTER 6: DECIDABILITY OF DIPWHILE PROGRAMS

We will now prove the main result of this report — the decidability of the Fixed Parameter

Differential Privacy and Differential Privacy problems for DiPWhile programs. Our proof

rests on two observations. First, the semantics of DiPWhile programs can be defined as finite

state discrete time Markov chains (DTMC). This observation is surprising because DiPWhile

programs have real and integer values variables, and so a näıve definition of semantics will

have infinitely many states. The key insight in establishing this observation is that a precise

semantics of DiPWhile programs can be defined without explicitly tracking the values of real

and integer-valued variables. Second, all the transition probabilities arising in our semantics

are definable in Thexp. These two observations allow us to use Theorem 4.4 to establish

decidability of checking differential privacy of DiPWhile programs.

The above proof outline motivates the organization of this section. We begin by intro-

ducing parametrized DTMCs that are used to define the semantics of DiPWhile programs

(Section 6.1). Next (Section 6.2), we define the semantics of DiPWhile programs using finite

state parametrized DTMCs.

6.1 PARAMETRIZED DTMCS

Discrete time Markov chains (DTMC) are transition systems where transitions between

states are the result of a coin toss, as opposed to a nondeterministic choice. DiPWhile

programs depend on the privacy budget ε, and the distributions used to sample random

values may depend on ε. Therefore, our semantics for programs will yield a DTMC whose

transition probabilities depend on ε. This leads us to the notion of a parametrized DTMC

that we define below.

Definition 6.1. A parametrized DTMC is a tuple Dε = (Z,∆), where Z is a (countable)

set of states, and ∆ : Z × Z → (R>0 → [0, 1]) is the probabilistic transition function. For

any pair of states z, z′, ∆ returns a function from R>0 to [0, 1], such that for every ε > 0,∑
z′∈Z ∆(z, z′)(ε) = 1. We will call ∆(z, z′) as the probability of transitioning from z to z′.

A definable parametrized DTMC is a parametrized DTMC Dε = (Z,∆) such that for

every pair of states z, z′ ∈ Z, the function ∆(z, z′) is definable in Thexp.

In this report we will primarily be interested in parametrized DTMCs that have finitely

many states and which are definable. A parametrized DTMC associates with each (finite)

sequence of states ρ = z0, z1, . . . zm, a function Prob(ρ) : R>0 → [0, 1] that given an ε > 0,
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returns the probability of the sequence ρ when the parameter’s value is fixed to ε, i.e.,

Prob(ρ)(ε) =
m−1∏
i=0

∆(zi, zi+1)(ε).

For a state z0 and a set of states Z ′ ⊆ Z, once again we have a function that given a value

ε for the parameter, returns the probability of reaching Z ′ from z0. This can be formally

defined as

Prob(z0, Z
′)(ε) =

∑
ρ∈z0(Z\Z′)∗Z′

Prob(ρ)(ε).

In other words, Prob(z0, Z
′)(ε) is the sum of the probability of all sequences starting in z0,

ending in Z ′, such no state except the last is in Z ′. We end the section with an important

observation about finite, definable, parametrized DTMCs.

Theorem 6.2. For any finite state, definable, parametrized DTMC Dε, any state z0 and set

of states Z ′, the function Prob(z0, Z
′) is definable in Thexp. Moreover, there is an algorithm

that computes the formula defining Prob(z0, Z
′).

Proof. Let us first recall how reachability probabilities are computed in (non-parametrized)

finite state DTMCs. Recall that a (non-parametrized) DTMC is a pair (Q, δ) where Q is a

finite set of states, and δ : Q × Q → [0, 1] is such that for every q ∈ Q,
∑

q′∈Q δ(q, q
′) = 1.

So in a DTMC the transition probabilities are fixed, and are not functions of a parameter.

The probability of reaching a set of states Q′ ⊆ Q from a state q0 is computed by solving

a more general problem, namely, the problem of computing the probability of reaching Q′

from each state q ∈ Q. Let the variable xq denote the probability of reaching Q′ from state

q. One simple observation is that if q ∈ Q′ then xq = 1. Second, if Q0 denotes the set of all

states from which Q′ is not reachable in the underlying graph (i.e., one where we ignore the

probabilities and just have edges for all transitions that are non-zero), then xq = 0 if q ∈ Q0.

Now the set Q0 can be computed by performing a simple graph search on the underlying

graph. For states q 6∈ (Q′ ∪ Q0), we could write xq as xq =
∑

q′∈Q δ(q, q
′)xq′ . This gives us

the following system of linear equations.

xq = 1 if q ∈ Q′

xq = 0 if q ∈ Q0

xq =
∑

q′∈Q δ(q, q
′)xq′ otherwise

The above system of linear equations can be shown to have a unique solution, with the

solution giving the probability of reaching Q′ from each state q.
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Now let us consider a parametrized DTMC D = (Z,∆). Let ϕzz′ be a Lexp formula that

defines the function ∆(z, z′). Recall that in the algorithm outlined in the previous paragraph,

one crucial step is to compute the set of states that have probability 0 of reaching the

target set. This requires knowing the underlying graph of the DTMC, i.e., knowing which

transitions have probability 0 and which ones have probability > 0. In a parametrized

DTMC this is challenging because the probability of transitions depends on the value of ε,

and our goal is to compute the reachability probability as a function of ε. We will overcome

this challenge by “guessing” the underlying graph.

Let C ⊆ Z × Z. We will construct a formula ϕC that will capture the constraints that

reachablity probabilities need to satisfy under the assumption that the probability of edges

in C is 0, and those outside C is > 0. Based on the assumption that C is exactly the set

of 0 probability edges, we can compute the set ZC
0 of states that cannot reach Z ′. The

formula ϕC will have variables that will have the following intuitive interpretations — pzz′

the probability of transitioning from z to z′; xz the probability of reaching Z ′ from state z.

ϕC =
∧

(z,z′)∈C(pzz′ = 0) ∧
∧

(z,z′) 6∈C(pzz′ > 0) ∧
∧
z∈Z′(xz = 1)

∧
∧
z∈ZC0

(xz = 0) ∧
∧
z 6∈(Z′∪ZC0 )(xz =

∑
z′ pzz′xz′).

Notice that ϕC is a formula in Lexp. ϕC can be used to construct the formula we want. To

construct the formula ϕz0Z′ that characterizes the probability of reaching Z ′ from z0, we

need to account for two things. First, we need to ensure that pzz′ is indeed the probability

of transitioning from z to z′. Second, we need to account for the fact that we don’t know

the exact set of edges with probability 0. Based on these observations, we can define ϕz0,Z′

as follows.

ϕz0Z′ = [∃xz]z 6=z0 [∃pzz′ ]z,z′∈Z
∧

z,z′∈Z

ϕzz′(ε, pzz′) ∧

( ∨
C⊆Z×Z

ϕC

)
In the above definition of ϕz0Z′ all variables except xz0 (and ε) are existentially quantified.

Notice, that ϕz0Z′ is in Lexp provided we pull all the quantifiers to get it in prenex form.

Given that ZC
0 can be effectively constructed for any set C, the above formula can also be

computed for any parametrized DTMC D. q.e.d

6.2 SEMANTICS

We now sketch the challenges in defining the semantics of DiPWhile programs, and our key

insights in overcoming them. Let us fix a program Pε. A näıve definition of the semantics,

[[Pε]], of Pε would have as states the label of the statement of Pε to be executed next, along
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with a valuation that assigns to each program variable the values currently stored in them.

The problem is, since Pε has real and integer valued variables, such a semantics will have

uncountably many states. Defining the probability of executions becomes mathematically

involved and it is unclear how to design decision procedures for it.

Our key insight in defining [[Pε]] as a finite state, parametrized DTMC, is that we do not

need to track the values of real and integer valued variables. Our state is going to be a

tuple of the form (`, fBool, fDOM, fint, freal, C) where ` is the label of the statement of Pε to be

executed next. The functions fBool and fDOM assign values to the Bool and DOM variables,

respectively; this is just like in the näıve semantics. Let us now look at freal. Intuitively,

freal is supposed to be the “valuation” for the real variables. But instead of mapping each

variable to a value in R, we will instead map it to a finite set. To understand this mapping,

let us recall that in DiPWhile a real variable is assigned only once in a program. Further,

such an assignment either assigns the value of a linear expression over program variables,

or samples using a Laplace mechanism. Therefore, freal will map a variable to either the

linear expression it is assigned, or the expressions defining the parameters of the Laplace

mechanism used in sampling. Notice that the range of freal is now a finite set. Similarly, fint

maps each integer variable to either the linear expression it is assigned or the parameters of

the discrete Laplace mechanism. The last state component C is the set of Boolean conditions

on real and integer variables that hold along the path thus far; this will become clearer when

we describe the transitions. Since the Boolean conditions must be Boolean expressions in

the program or their negation, C is also a finite set. These observations show that we will

have finitely many states.

We now sketch how the state is updated in [[Pε]]. Updates to DOM variables will be as

expected — it will be a probabilistic transition if the assignment samples using an exponential

mechanism or a user defined distribution, and it will be a deterministic step updating fDOM

otherwise. Assignments to real variables are always deterministic steps that change the

function freal. Thus, even if the step samples using the Laplace mechanism, in the semantics

it will be modeled as a deterministic step where freal is updated by storing the parameters

of the distribution. Similarly all integer assignments are deterministic steps as well. Steps

where a Boolean variable is assigned a Boolean expressions will be modeled as expected — we

update the valuation fBool to reflect the assignment. The interesting case is, b← R1 ∼ R2,

when a boolean variable gets assigned the result of the comparison of two real expressions;

the case of comparing two integer expressions is similar. In this case, we will transition

to a state where R1 ∼ R2 is added to C with probability equal to the probability that

(R1 ∼ R2) holds conditioned on the fact that C holds; if the probability of C holding is 0

then the DTMC will transition to a special reject state. With the remaining probability we
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will transition to the state where ¬(R1 ∼ R2) is added to C. Thus, Boolean assignments

will be modeled by probabilistic transitions. Finally, branches and while loop conditions are

modeled as deterministic steps, with choice of the next statement being determined by the

value of the Boolean variable (of the condition) in fBool. These informal ideas are fleshed

out in the Section 6.2.1 to give a precise mathematical definition.

It is worth noting how key syntactic restrictions in DiPWhile programs play a role in

defining its semantics. The first restriction is that integer and real variables are not assigned

in the scope of a while loop. This is critical to ensure that the DTMC [[Pε]] is finite state. Since

we track distribution parameters and linear expressions for such variables, this restriction

ensures that we only remember a bounded number of these. Second, DiPWhile disallows

comparison between real and integer expressions in its syntax. Recall that such comparison

steps result in a probabilistic transition, where we compute the probability of the comparison

holding conditioned on the properties in C holding. It is unclear how to compute these

probabilities for comparisons between integer and real random variables. Hence they are

disallowed.

6.2.1 Formal Semantics of DiPWhile programs

Let us recall some key restrictions in DiPWhile programs. The first restriction is that real

and integer-valued variables are never assigned within the scope of a while statement. Hence,

they are assigned only a bounded number of times, and therefore, without loss of generality,

we can assume that they are assigned a value exactly once. Second, real valued expressions

are never compared against integer valued expressions.

Let us fix some basic notation. Partial functions from A to B will be denoted as A ↪→ B.

The value of f : A ↪→ B on a ∈ A, will be denoted as f(a). Two partial functions f and g

will be equal (denoted f ' g) if for every element a, either f and g are both undefined, or

f(a) = f(b). If f : A ↪→ B, a ∈ A and b ∈ B, then f [a 7→ b] denotes the partial function

that agrees with f on all elements of A except a; on a, f [a 7→ b](a) = b.

In the rest of this section let us fix a DiPWhile program Pε. L will denote the set of labels

appearing in Pε. A valuation val for DOM variables is a function that assigns a value in

DOM to variables in X ; we will denote set of all such valuations by VDOM. Given a valuation

val ∈ VDOM and a real expression e, val(e) denotes the real expression that results from

substituting all the DOM variables appearing in e by their value in val. Similarly, for an

integer expression, val(e) is the partial evaluation of e with respect to val. Finally, for a

comparison e1 ∼ e2 between two expressions e1 and e2, again we will define val(e1 ∼ e2)

to be val(e1) ∼ val(e2). Let us denote the set of integer expressions, real expressions, and
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Boolean comparisons, appearing on the right hand side of assignments in Pε by PZ , PR, and

PB, respectively. Three sets of expressions will be used in defining the semantics, and they

are as follows.
zExp = {val(e) | val ∈ VDOM, e ∈ PZ}
rExp = {val(e) | val ∈ VDOM, e ∈ PR}
bExp = {val(e) | val ∈ VDOM, e ∈ PB}

Thus, zExp, rExp, and bExp are partially evaluated expression appearing on the right hand

side of assignments in Pε. Notice that the sets L, zExp, rExp, and bExp are all finite. Finally,

let Const be the set of rational constants appearing as coefficient of ε of Laplace and discrete

Laplace assignments in Pε; again Const is finite.

In order to define the semantics of Pε, we will use an auxiliary function next that given

a label, identifies the label of the statement to be executed next. Observe that for most

program statements, the next statement to be executed is unique. However, for if and While

statements, the next statement depends on the value of a Boolean expression. We will define

next(`) to be a set of pairs of the form (`′, c) with the understanding that `′ is the next label

if c holds. Thus, for a label `, next(`) will either be {(`′, true)} or {(`1, c), (`2,¬c)}. We do

not give a precise definition of next(·), but we will use it when defining the semantics.

The semantics of Pε will given as a finite state, parametrized DTMC [[Pε]]. To define the

parametrized DTMC [[Pε]], we need to define the states and the transitions.

States States of [[Pε]] will be of the form

(`, fBool, fDOM, fint, freal, C).

Informally, ` ∈ L is the label of the statement to be executed, fBool, fDOM, fint, and freal are

partial functions assigning “values” to program variables (of appropriate type), and C is a

collection of inequalities among program variables that hold on the current computational

path. Both fBool and fDOM are valuations for the appropriate set of variables, and so we

have fBool : B ↪→ {true, false} and fDOM : X ↪→ DOM. For real and integer variables,

instead of tracking exact values, we will track the expressions used in assignments and

parameters of (discrete) Laplace mechanisms used in random assignments. Therefore, we

have fint : Z ↪→ zExp ∪ (Const × DOM) and freal : R ↪→ rExp ∪ (Const × DOM). Finally,

C ⊆ bExp ∪ {¬e | e ∈ bExp}. It follows immediately that the set of states of [[Pε]] is finite.

Well Formed States The functions f∗ (for ∗ ∈ {Bool,DOM, int, real}) assign values to

program variables that have been assigned during the computation thus far. Since we assume
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variables in DiPWhile program are defined before they are used, if a variable z′ appears in

fint(z) ∈ zExp, then fint(z′) must be defined. A similar condition holds for real variables.

The comparisons in C are also relationships that must hold on the current path, and so all

variables participating in it must be defined. If a state satisfies these consistency properties

between fint, freal, and C, we will say it is well formed. All reachable states in [[Pε]] will be

well formed. So when we define transitions we will assume that the states are well formed.

Initial States Let `in be the label of the first statement Pε. Let C in = ∅, and let f in
Bool,

f in
int, and f in

real be partial functions with an empty domain. An initial state of [[Pε]] will be of

the form (`in, f
in
Bool, f

in
DOM, f

in
int, f

in
real, C

in), where f in
DOM is defined only on the input variables;

the values given to these variables by f in
DOM will be the “initial input value”.

We will now define the semantics of transitions in [[Pε]]. For this, let us fix a state z =

(`, fBool, fDOM, fint, freal, C). Transitions out of z will be defined based on describe the effect

of executing the statement labeled `, and so its definition will depend on this statement. We

handle each case below.

DOM assignments Let next(`) = {(`′, true)} and let x be the variable being assigned in `.

There are two cases to consider. First, consider the case where x is assigned a value for a

DOM expression e. In this case, [[Pε]] will transition to

(`′, fBool, fDOM[x 7→ fDOM(e)], fint, freal, C)

with probability 1. The second case is when x is assigned a random value according to

Exp(aε, F (x̃), e) or choose(aε, ẽ). For d ∈ DOM, let prob(d) be the probability of d (as a

function of ε) based on the distribution; note, that these probabilities will depend on the

value of fDOM(e) and fDOM(ẽ). Then, [[Pε]] will transition to

(`′, fBool, fDOM[x 7→ d], fint, freal, C)

with probability prob(d).

Integer assignments Let next(`) = {(`′, true)} and let z be the variable being assigned

in `. Again there are two cases to consider. First, consider the case where z is assigned a

value for an integer expression e. In this case, [[Pε]] will transition to

(`′, fBool, fDOM, fint[z 7→ fDOM(e)], freal, C)
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with probability 1. Next, if z is assigned a random value according to DLap(aε, e), then [[Pε]]

transitions to

(`′, fBool, fDOM, fint[z 7→ (a, fDOM(e))], freal, C)

with probability 1. Notice that we have a deterministic transition even if the assignment

samples from a discrete Laplace. The effect of choosing randomly a value will get accounted

for during Boolean assignments.

Real assignments Let next(`) = {(`′, true)} and let r be the variable being assigned in `.

First, if z is assigned a value for a real expression e, [[Pε]] will transition to

(`′, fBool, fDOM, fint, freal[r 7→ fDOM(e)], C)

with probability 1. If z is assigned a random value according to Lap(aε, e), then [[Pε]] transi-

tions to

(`′, fBool, fDOM, fint, freal[r 7→ (a, fDOM(e))], C)

with probability 1. Again sampling according to Laplace is modeled deterministically.

Boolean assignments Again let next(`) = {(`′, true)} and let b be the variable being

assigned in `. When b is assigned the value of Boolean expression e, [[Pε]] transitions to

(`′, fBool[b 7→ fBool(e)], fDOM, fint, freal, C)

with probability 1. The interesting case is when b is assigned the result of comparing

expressions e1 ∼ e2. Let p1 denote the probability of fDOM(e1) ∼ fDOM(e2) holding given all

conditions in C hold; notice that this probability depends on the functions fint and freal that

store the parameters to various random sampling steps. Now [[Pε]] will transition to

(`′, fBool[b 7→ true], fDOM, fint, freal, C ∪ {fDOM(e1) ∼ fDOM(e2)})

with probability p1, and it will transition to

(`′, fBool[b 7→ false], fDOM, fint, freal, C ∪ {¬(fDOM(e1) ∼ fDOM(e2))})

with probability 1 − p1. The effect of the probabilistic sampling steps for integer and real

variables gets accounted for when the result of a comparison is assigned to a Boolean variable.
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if statement In this case, next(`) = {(`1, c), (`2,¬c)}. If fBool(c) = true then we transition

to

(`1, fBool, fDOM, fint, freal, C)

with probability 1. On the other hand, if fBool(c) = false then transition to

(`2, fBool, fDOM, fint, freal, C)

with probability 1.

While statement Again let next(`) = {(`1, c), (`2,¬c)}. This case is identical to the case

of if statement, and so is skipped.

exit statement In this case we stay in state z with probability 1.

6.2.2 DiPWhile Programs are finite, definable, parametrized DTMCs

Probabilistic transitions in our semantics arise due to two reasons. First are assignments to

DOM variables that sample according to either the exponential or a user defined distribution.

Our restrictions on exponential mechanism (that scoring functions take rational values) and

on user defined distributions, ensure that the resulting probabilities in these transitions can

be defined in Thexp. The second is due to comparisons between expressions. We can prove

that in this case also, the resulting probabilities are definable in Thexp.

Theorem 6.3. For any DiPWhile program Pε, [[Pε]] is a finite, definable, parametrized DTMC

that is computable.

Proof. From our definition of the semantics (Section 6.2.1), it follows that [[Pε]] is a finite

parameterized DTMC. We now show that it is definable also. In order to show this, we have

to show that the transition probabilities of [[Pε]] are definable. Observe that, by definition,

the transition probabilities of choose(aε, Ẽ) construct are definable. The other probabilistic

transitions arise as a result of comparison between random variables of the same sort or

from using the exponential mechanism. These transition probabilities turn out to be from a

special class of definable functions. We define this form next.

Definition 6.4. Let p(ε) =
∑m

i=1 aiε
nieεqi where each ai is a rational number, ni is a natural

number and qi is a non-negative rational number. We shall call all such expressions pseudo-

polynomials in ε. Given a real number b > 0 and a pseudo-polynomial p(ε), p(b) is the real

number obtained by substituting b for ε. The ratio of two pseudo-polynomials in ε, p1(ε)
p2(ε)

,
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shall be called a pseudo-rational function in ε if p2(b) 6= 0 for all real b > 0. Given a real

number b > 0 and a pseudo-rational function rt(ε) = p1(ε)
p2(ε)

, rt(b) is defined to be p1(b)
p2(b)

.

Observe that a pseudo-rational function rt defines a function frt from the set of strictly

positive reals to the set of reals. We will henceforth confuse frt with rt. Pseudo-rational

functions are easily seen to be closed under addition and multiplication.

Proposition 6.5. Each pseudo-rational function rt is definable in the theory Thexp.

Proof. Let rt(ε) =
∑m
i=1 aiε

nieεqi∑m′
i=1 a

′
iε
n′
ieεq
′
i
. Let N be the least common multiple of all denominators of

qi, q
′
i. Let pi = qiN and p′i = q′iN. It is easy to see that rt is definable by the formula

∀z.((x
m′∑
i=1

a′iε
n′izp

′
i =

m∑
i=1

aiε
nizpi) ∧ (zN = eε) ∧ (z > 0)).

Note that in the above formula, z is the Nth root of ε. q.e.d

Now, it follows from our restriction on our scoring functions, namely that they take values

in rationals, that the transition probabilities in exponential mechanism are pseudo-rational

functions that can be computed.

Let us now consider the case of comparison between random variables. Let state =

(`, fBool, fDOM, fint, freal, C) of [[Pε]] be a state of [[Pε]]. Recall that when we compare random

variables in state, we add a new linear comparison e to C. Further, in order to compute

transition probabilities, we compute the conditional probability that the set of linear com-

parison C ∪ e is true given that C is true. For this, it suffices to show that we can compute

the probability that the set of linear comparisons C is true and the probability C ∪ e is true.

We make the following observations:

• Since every random variable must be defined before it is used, we can simplify C and

C ∪ e to only refer to program variables that were used in random assignments.

• All our random assignments sample from independent random variables. Since we

never compare integer and real random variables, it suffices to compute the probability

that a system of linear comparisons over integers with integer coefficients hold and the

probability that a system of linear comparisons over reals with rational coefficients

hold. We will now show that these probabilities can be computed and are pseudo-

rational functions.

We remark that we only need to consider systems of inequalities. If a comparison in

C is u1 6= u2 then we can consider the systems C1 = (C \ {u1 6= u2}) ∪ {u1 < u2} and
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C2 = (C \ {u1 6= u2}) ∪ {u2 < u1}, compute probabilities of C1 and C2 separately and add

them up to compute the probability that C holds. Thus, without loss of generality we can

assume that C consists of only linear inequalities.

Probability of system of linear inequalities over integers. Let Z = (Z1, . . . , Zn) be

a discrete random variable taking values in Zn. Consider a finite system of linear inequalities

C with integer coefficients and with n unknowns Z1, . . . , Zn. A solution of C is a tuple

b = (b1, . . . , bn) ∈ Zn such that all inequalities in C are satisfied when each Zj ∈ C is

replaced by bj. Let sol(C) ⊆ Zn denote the set of all solutions of C. The probability that Z

satisfies C is said to be the probability of the event E = {Z = b | b is a solution of C}. We

denote this probability by Prob(Z |= C). We have the following:

Lemma 6.6. Let C be a finite system of linear inequalities with integer coefficients and

with n unknowns Z1, . . . , Zn. Let Z1 = DLap(a1ε, µ1), . . ., Zn = DLap(anε, µn) be mutually

independent discrete Laplacians such that for each 1 ≤ j ≤ n, aj is a strictly positive

rational number and µj is an integer. Let Z = (Z1, . . . , Zn). There is a pseudo-rational

function rtZ,C in ε such that Prob(Z |= C) = rtZ,C . The function rtZ,C can be computed

from C, (a1, µ1), . . . , (an, µn).

Proof. For, each 1 ≤ j ≤ n, consider Yj = DLap(ajε, 0). It is easy to see that Zj has the same

distribution as Yj+µj. Now consider the system of inequalities C ′ in which each Zj is replaced

by Yj + µj. Let Y = (Y1, . . . , Yn). It is easy to see that Prob(Z |= C) = Prob(Y |= C ′). This

observation implies that it suffices to prove the Lemma in the special case that each µj = 0.

Thus, for the rest of the proof we assume that the µj = 0.

Now, consider a set pos ⊆ {1, . . . , n}. Let Cpos be the system of inequalities C ∪ {Zj ≥
0 | j ∈ pos} ∪ {Zj < 0 | j 6∈ pos}. It is easy to see that the set of solutions of C is the

disjoint union ∪{pos⊆1,...,n}Cpos. Thus, it suffices to the prove that for each pos ⊆ {1, . . . , n},
Prob(Z |= Cpos) is a pseudo-rational function that can be computed.

Consider the system of inequalities C ′pos obtained from Cpos by replacing each Zj by Yj

for j ∈ pos and by −Yj for j 6∈ pos. Let Y = (Y1, . . . , Yn). From the fact that Laplacians

are symmetric distributions, it follows each Yj has the same distribution as Zj. Thus,

Prob(Z |= Cpos) = Prob(Y |= C ′pos). Observe that the set of solutions of C ′pos are a subset of

Nn. Without loss of generality, we can also assume that the terms in each inequality of C ′pos

are rearranged so that the constant terms in C ′pos and the coefficients of the variables Yj are

natural numbers, ie, non-negative integers.

Therefore, C ′pos is a system of linear inequalities with natural number coefficients whose

solutions are non-negative natural numbers. For such system of inequalities, the set of
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solutions can be written as a disjoint union of simple linear sets [25]; a set S ⊆ Nn is said to be

linear if there are tuples b0, p1, . . . , pm ∈ Nn such that S = {b0+
∑m

i=1 kipi| for each i, ki ∈ N}
and simple each b ∈ S has a unique representation as a sum b0 +

∑m
i=1 kipi. b0 is said to be

the offset of S and p1, . . . , pm the periods of S. From the fact that the set of solutions of C ′pos

can be written as a disjoint union of simple linear sets, it follows that it suffices to show

that Prob(Y ∈ S |S is simple linear) is a pseudo-rational function in ε. In order to show this

we need a couple of additional notations.

For two n-tuples x = (x1, . . . , xn) and y = (y1, . . . , yn), x ·y will denote the sum
∑n

j=1 xjyj.

Secondly, we will denote the tuple (a1, . . . , an) by a.

Fix a simple semilinear set S. Let b0 be its offset and p1, . . . , pm its periods. From the fact

that each b ∈ S has a unique representation as a sum b0 +
∑m

i=1 kipi, it follows that

Prob(Y ∈ S) =
∑

k1∈N · · ·
∑

km∈N Prob(Y = b0 +
∑m

i=1 kipi)

=
∑

k1∈N · · ·
∑

km∈N e
−ε(b0·a+k1p1·a+···+kmpm·a)

= (e−εb0·a)(
∑

k1∈N e
−εk1p1·a) · · · (

∑
km∈N e

−εkmp1·a)

= (e−εb0·a)( 1
1−e−εp1·a ) · · · ( 1

1−e−εpm·a )

The latter is clearly a pseudo-rational function in ε. q.e.d

Probability of system of linear inequalities over reals. Let R = (R1, . . . , Rn) be a

continuous random variable taking values in Rn. Consider a finite system of linear inequalities

C with rational coefficients and with n unknowns R1, . . . , Rn. As in the case of discrete

random variables , we can define sol(C) ⊆ Rn, the set of solutions, and Prob(R |= C), the

probability that R satisfies C. We have the following result.

Lemma 6.7. Let C be a finite system of linear inequalities with rational coefficients and

with n unknowns R1, . . . , Rn. Let R1 = Lap(a1ε, µ1), . . ., Rn = Lap(anε, µn) be mutually

independent Laplacians such that for each 1 ≤ j ≤ n, aj is a strictly positive rational

number and µj is a rational number. Let R = (R1, . . . , Rn). There is a pseudo-rational

function rtR,C in ε such that Prob(R |= C) = rtR,C . The function rtR,C can be computed

from C, (a1, µ1), . . . , (an, µn).

Proof. As in the proof of Lemma 6.6, it suffices to consider the case when each µi = 0 and

to show that the probability measure of the set Sol = sol(C) ∩ {(b1, . . . , bn) | bi ∈ R>0} is a

computable pseudo-rational function.

Since R is continuous, we can also assume that each inequality is of the form ≤ . There

are computable finite sets S1, . . . , Sm such that (See [26])
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1. Sol = S1 ∪ . . . Sm,

2. Si 6= Sj for i 6= j, and

3. Each Si is a positive repetitive polyhedra. S ⊆ (R>0)n is said to be a positive repeti-

tive polyhedra if there are constants h−0 , h
+
0 and functions h−1 (x1), h+

1 (x1), h−2 (x1, x2),

h+
2 (x1, x2), . . . , h−n−1(x1, x2, . . . xn−1), h+

n−1(x1, x2, . . . xn−1) such that

• Si =
{(x1, . . . , xn) | h−0 ≤ x1 ≤ h+

0 , . . . ,

h−n−1(x1, . . . xn−1) ≤ xn ≤ h+
n−1(x1, . . . xn−1)}.

• h−0 is a rational number > 0.

• h+
0 is either ∞ or a rational number.

• For each 1 ≤ j ≤ n, h−j is a linear function in its arguments. h−j has rational

coefficients.

• For each 1 ≤ j ≤ n, h+
j is either ∞ or a linear function in its arguments. h+

j has

rational coefficients in the latter case.

Thanks to conditions (1) and (2) above, it suffices to show that for any positive repetitive

polyhedra S, the probability measure of the event {R = b | b ∈ S} is a pseudo-rational

function.

Fix S and let h−0 , h
+
0 , h

−
1 , h

+
1 , . . . , h

−
n−1, h

+
n−1 be as above, The measure of the event {R =

b | b ∈ S} can be computed using the nested integral

F =

∫ h+0

h−0

fa1(x1)

∫ h+1

h−1

fa2(x2) · · ·
∫ h+n−1

h−n−1

fan(xn) dxn · · · dx1

where fai = aiε
2
e−aiε is the pdf of Ri and the arguments of h+

i , h
−
i are omitted for readability.

For 1 ≤ j ≤ n, let Ij be the nested integral

Ij =

∫ h+j−1

h−j−1

faj(xj) · · ·
∫ h+n−1

h−n−1

fan(xn) dxn · · · dxj.

We claim by induction on k = n− j that Ij is a finite sum of terms of the form

aεmebε(xm1
1 eεb1x1) . . . (x

mj−1

j−1 eεbj−1xj−1)

where a, b, bi are rational numbers (including negative numbers) m is an integer, and mi are

natural numbers. We will assume that the sum is always presented in simplest form, namely,

that all cancellations have already taken place in the sum.

35



Clearly the claim is true when k = 0. Suppose that the claim is true for k = k0. Let

j0 = n− k0. Suppose

w = aεmebε(xm1
1 eεb1x1) . . . (x

mj0−1

j0−1 eεbj0−1xj0−1)

is a summand in Ij0 . Let k = k0 + 1 and j = n− k = n− k0 − 1 = j0 − 1.

Consider the indefinite integral

J =
∫
faj0−1

w dxj0−1

=
∫ aj0−1ε

2
e−aj0−1εw dxj0−1

=
aaj0−1

2
εm+1ebε(xm1

1 eεb1x1) . . . (x
mj0−2

j0−2 eεbj0−2xj0−2)∫
x
mj0−1

j0−1 eε(bj0−1−aj0−1)xj0−1dxj0−1

Let

J ′ =

∫
x
mj0−1

j0−1 eε(bj0−1−aj0−1)xj0−1dxj0−1.

Now, if bj0−1 − aj0−1 = 0 then

J ′ =
x
mj0−1+1

j0−1

mj0−1+1

.

If bj0−1 − aj0−1 6= 0 then by doing a change of variables t = (bj0−1 − aj0−1)εx, it is not too

hard to show that

J ′ =

mj0−1∑
k=0

ckε
tkxkeε(bj0−1−aj0−1)xj0−1

where ck is a rational number and tk an integer for each k.

Thus, the indefinite integeral J is a sum, each of whose terms is of the form

a′εm
′
eb
′ε(x

m′1
1 eεb

′
1x1) . . . (x

m′j0−1

j0−1 eεb
′
j0−1xj0−1).

If h−j0−2 and h+
j0−2 are linear functions, we get immediately that Ij =

∫ h+j0−2

h−j0−2

faj0−1
w dxj0−1 is

of the right form. The induction step follows in this case.

If h+
j0−2 = ∞, and each bj in a summand of J is strictly negative, then it is also easy to

see that the induction step follows. Apriori, it seems that there might be a problem when

bj ≥ 0 as in this case, Ij will evaluate to either∞ or −∞. This, however, will contradict the

fact that the nested integral F defines probability of an event (and hence is bounded above

by 1). Thus, if h+
j0−2 =∞ then bj must be strictly negative.

The claim immediately implies that the Sol = sol(C) ∩ {(b1, . . . , bn) | bi ∈ R>0} is a

pseudo-rational function. q.e.d
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q.e.d

We conclude with the main result of our report.

Theorem 6.8. The Fixed Parameter Differential Privacy and Differential Privacy problems

are decidable for DiPWhile programs Pε and definable functions δ.

Proof. Let in and out be arbitrary valuations to input and output variables, respectively.

Observe that the function ε 7→ Prob(Pε(in) = out) is nothing but Prob(z0, Z
′) in [[Pε]], where

z0 is the initial state corresponding to valuation in, and Z ′ is the set of all terminating states

that have valuation out for output variables. Decidability then follows from Theorems 6.3,

6.2, and 4.4. q.e.d
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CHAPTER 7: DIPC TOOL

We have implemented the decidability algorithm for programs in a tool, named DiPC.

In this chapter, we shall present the implementation details of the tool. The tool takes

as input an acyclic (i.e. no while loops) query program with finite domain variables and

real variables (i.e. no integer variables) and a list of adjacent input pairs and checks for

(kε, δ(ε))-Differential Privacy for a given k and all ε > 0. Additionally, the tool can also

check Differential Privacy for ε belonging to some set S ⊆ R>0 or a fixed ε value.

Given a program and an adjacency relation, DiPC outputs true if the program is differ-

entially private and outputs a counterexample if it is not. The tool works in two phases.

In the first phase, the tool parses the program, computes symbolic expressions that capture

the output distribution for every input, and identifies inequalities that must hold for differ-

ential privacy. The symbolic expressions for the probability computation, and the logical

constraints that must hold, are written in a Wolfram MathematicaR© script. In the second

phase, MathematicaR© is run to perform the symbolic computations and check the results.

In Section 7.1, we shall present various approaches taken during tool development to

optimize the runtime of the tool. Currently, the tool uses Approach 3 (Sec. 7.1.3) for ε-

Differential Privacy and allows the user to choose between Approach 4 (Sec. 7.1.4) and

Approach 5 (Sec. 7.1.5) for (ε, δ)-Differential Privacy.

7.1 STAGES IN TOOL DEVELOPMENT

The input query program for DiPC takes finite domain variables as input and outputs

(possibly multiple) finite domain variables as output. The program can further use real

variables as local variables. The real variables and finite domain variables can be assigned

values based on probabilistic distribution (laplace and exponential distributions).

As discussed above, the MathematicaR© script generated contains two major sets of oper-

ations: the first operation set, where the output probability distribution for each input is

computed and a second set of commands, where the probabilities of outputs are compared

for each input adjacency pair. While the algorithm for generating the second set of com-

mands remained the same over the course of the work, multiple alternative algorithms were

tried for the output probability generation, in attempts to improve the runtime of the tool.

To compute the probability distribution of the output, DiPC adopts a top-down approach

to start from the input and run down the program to generate the output. Due to the

existence of branching statements in the program, the output can be modelled as a tree,
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with new branches generated at every branching statement.

In our algorithm, we have branching in two ways: the if-else statements, where the com-

parisons may involve finite or infinite domain variables and the probabilistic assignment to

integer variables (TDLap). To deal with the latter form of branching, we consider each pos-

sible integer assignment and assign the corresponding probability to the output generated

by the branch. In this fashion, all variables, except the real variables are always assigned a

unique value in every branch. Hence, If-Else comparisons not involving real variables can be

deterministically decided using the variable values.

The only remaining obstacle is handling comparisons over real variables.

7.1.1 Approach 1: Total Order over Real Variables and Probability[] Command

Given the real variables in the program, we can generate the output distribution for each

total order over the real variables. Comparisons over real variables can be resolved based on

the total order being considered currently.

Thus, for a given total order, we can now compute the output distribution for the input.

MathematicaR© allows us to compute the probability of a total order given the probability

distributions for the real variables using the Probability[] command. We can now iterate

over all possible total orders and compute the overall output distribution for the input.

This approach worked well for small number of queries. But it was found that the

Probability[] command was quite slow and would take hours for probability computa-

tion with four real variables.

7.1.2 Approach 2: Partial Order over Real Variables and Probability[] Command

A straightforward improvement to the previous approach would be to only iterate over the

partial orders required, instead of fixing order over all the real variables. This optimization

would greatly reduce the number of Probability[] commands, since we would now have

only one Probability[] call for each partial order, while previously for each total order

corresponding to the partial order, we would have one call.

Partial order for the program was modelled as a DAG over the variables and every time

a comparison over real variables is performed in the program execution, if the variables are

unordered so far, we add both the possible orders between the variables and explore the

resulting two branches, and otherwise, we explore the corresponding branch.

The Probability[] command was used to compute the probability of the partial order

generated. It turned out that this method too, was pretty slow, with the Probability[]
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command taking hours for 3-4 variables.

7.1.3 Approach 3: Partial Order over Real Variables and Integrate[] Command

Owing to the slow runtime of the Probability[] command, we chose to use integration

to compute the probability of the real variable ordering.

Similar to the previous approach, we compute the partial order alongside the output

computation. Given the partial order, we then generate all possible total orders which

satisfy the partial order. If we can compute the probability of each such total order, the

probability of the partial order would be the sum of probabilities of the total orders.

Let one such total order generated be x1 < x2 < x3 < x4 < x5. To compute the probability

of this order, we first compute P (x5 > x) =
∫∞
x
f5(y)dy, where f5(.) is the probability density

function (p.d.f) for x5. Then, we can compute P (x5 > x4 > x) =
∫∞
x
P (x5 > y)f4(y)dy

(NOTE: The equality follows because the integrand is the probability that x4 is y and x5 is

more than y). Iterating in a similar fashion, we can further compute P (x5 > x4 > x3 > x)

· · ·P (x5 > x4 > x3 > x2 > x1 > x). Now, we have, P (x5 > x4 > x3 > x2 > x1) =

Ltx→−∞P (x5 > x4 > x3 > x2 > x1 > x).

Note that we also need to deal with the case where the real variables are not assigned

probabilistically, but are given a constant value. This can be handled by adjusting the

upper and lower limits of the neighbouring integrations. For example, P (x2 > 1 > x1) can

be computed as
(
Ltx→1P (x2 > x)

)
.
(
Ltx→−∞

∫ 1

x
f1(y)dy

)
For further optimization, before computing the set of total orders which satisfy the given

partial order, we can separate out the connected components in the partial order and compute

total orders for each component separately, to further reduce the depth of integration.

This is the algorithm implemented in the current version of the tool for ε-Differential

Privacy.

7.1.4 Approach 4: (ε, δ)-Differential Privacy using Subsets of Outputs

The definition of Differential Privacy requires that the probability of every subset of out-

puts given two adjacent inputs must be similar. However, in the case of ε-Differential Pri-

vacy, it suffices to check the condition for individual outputs, which is what was done in the

previous approaches.

However, while adding the ability of (ε, δ)-Differential Privacy, we included the ability to

compare over subsets of outputs. The probability of a subset of outputs is simply computed

as sum of the individual output probabilities.
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It turned out that MathematicaR© takes a significantly longer time for (ε, δ)-Differential

Privacy checks with subsets of outputs.

7.1.5 Approach 5: (ε, δ)-Differential Privacy using Optimal Subset Construction

An alternate approach was to construct a subset which was more likely to exceed the error

bound. To achieve this, when the output probabilities of adjacent inputs are computed, we

compute the quantity
∑

oi∈Outputsmax(Pε(oi|inp1)−eε.Pε(oi|inp2), 0). To elaborate, for each

output, we look at the probability difference over the two inputs (which is a function over

epsilon) and take the maximum of this difference and zero (which is another function over

epsilon). This difference is added up over all outputs to give us another function over epsilon,

which gives the maximum possible error over any output subset as a function of epsilon.

We then check if this function exceeds δ for any value of epsilon. While this approach

is faster than the previous approach, the tool can currently only generate the input pair

violating the inequality, but can not produce the output subset. The previous approach,

though slower, can generate both the input pair and the output subset corresponding to the

privacy violation.

Currently, the tool supports both Approach 4 and Approach 5 as algorithms for (ε, δ)-

Differential Privacy.

7.2 DIPC USAGE

In this section, we shall briefly discuss the syntax and usage of DiPC. DiPC takes as input

two files. The first input file, named input.cpp, declares a function compare which defines

the adjacency relation between the possible inputs. compare is a boolean function, which

given a pair of inputs as arrays, returns true if the pair are adjacent and false if otherwise.

The second input file, given as a commandline input, contains the input program to be

used. Before diving into the syntax of the input program, a few important notes about the

tool implementation are given below:

• The tool uses a rudimentary compiler which requires that different tokens in the pro-

gram be separated by whitespace, i.e., "var=var1+var2;" needs to be written as

"var = var1 + var2;".

• Real variables in the program are treated as constant variables. Each real variable is

assumed to be assigned only once in each branch of the program.
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• The tool further assumes that the input program is acyclic (i.e. there are no while

loops in the program).

• It is assumed that every branch of the program terminates with a return statement,

and all the return statements in the program return the same number of variables and

the data types of variables in each position is preserved across all return statements.

We shall now discuss the format of the second input file. The first line must contain two

integers separated by a whitespace. These two integers are respectively, the lower and upper

bound of the integer variables for the program. The rest of the file would be the input

program written according to the syntax discussed in the following subsection.

7.2.1 DiPC Input Program Syntax

1. The first lines denote the input to the program. Each of the input variables are listed

in a separate line. The syntax is:

input <var_type> <var_name> <min_val> <max_val>;

or
input <var_type> <var_name>;

• <var_type> can be “int” or “bool”.

• <var_name> is the name of the variable, which can be any string with no newline

or space characters and the first character is an alphabet.

• <min_val> to <max_val> is the range we allow the inputs to take for this variable.

Eg: input int a 5 7;

2. The remaining program allows the following commands:

• <var_type> <var_name>; This is the variable declaration statement.

– <var_type>, the type of the variable, can be “int”, “bool” or “real”, denoting

integer, boolean and real variables respectively.

– <var_name>, the name of the variable, can be any string with no newline or

space characters and the first character is an alphabet.

Eg: int val;

• <var_name> = <constant>; This is the constant assignment statement. The

allowed values depend on the type of the variable:
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– int: Any value in the RANGE defined in the program.

– bool: true or false.

– real: Any real value.

Eg: val = -5;

• <var_name1> = <var_name2>; This is the variable assignment statement. The

types of both the variables must be the same.

Eg: val1 = val2;

• <real_var> = <int_var>; Using this statement, we can assign the value of the

integer variable to the real variable.

Eg: rl = val;

• <var_name> = <var_name1> <op> <var_name2>; This is the arithmetic opera-

tion command.

– The variable <var_name> must be an integer variable or a boolean variable.

– We allow +, -, *, /, %, <, <=, >=, > and == between integer variables,

and && and || between boolean variables.

Eg: val = val1 + val2;

• <bool_var1> = ! <bool_var2> This is the negation statement.

Eg: bl1 = ! bl2;

• <real_var> = Lap "<lin_in_eps" <int_var>; This is the Laplacian assign-

ment statement.

– <lin_in_eps> is a linear expression in eps and other variables defined in the

program, but every token must be space separated, i.e., “2*eps+3” needs to

be written as “2 * eps + 3”.

– <int_var> This is the variable holding the value of the mean of the Laplacian

distribution.

Eg: rl = Lap "val * eps + 3" val;

• return <var1> <var2> ... <vark>; This is the return statement. We can re-

turn an list of variables. But the length of the array and the type of each variable

must be constant across all return statements in the program. <vari> can be an

integer variable or a boolean variable.

Eg: return val1 val2 val3;
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• if <bool_var> then <program1> else <program2> fi; This is the if-else state-

ment.

– <bool_var> must be a boolean variable.

– <program1> and <program2> are lists of commands.

Eg: if b then val = val + a;

b = b + a;

return val;

else val = val + b;

a = a + b;

fi;

• if <bool_var> then <program1> fi; This is the if statement.

– <bool_var> must be a boolean variable.

– <program1> is a list of commands.

Eg: if b then val = val + a;

b = b + a;

return val;

fi;

• <int_var> = TDLap "<lin_in_eps>" <var1> <var2> <var3>; This is the trun-

cated discrete laplacian statement.

– <var1> is the variable storing value of the variance. <var2> is the variable

storing lower cutoff for the distribution. <var3> is the variable storing upper

cutoff for the distribution. <lin_in_eps> is a linear expression in eps, as in

the Laplacian statement.

Eg: val = TDLap "val * eps + 3" val1 val2 val3;

• Prob{<math_exp>} <statement> This is the probabilistic statement.

– <math_exp> is a MathematicaR© Expression for the probability with which

this statement must be executed. This probability may depend on ε

– <statement> is the statement to be executed, which may be one of the pre-

vious types of statements

The command <statement> is executed with probability <math_exp> and not

executed with probability 1-<math_exp>.

Eg: Prob{1/(Exp[eps]+1)} out1 = ! q1;
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3. NOTE: We don’t have assignments of the form var1 = var2 + 3. In the arithmetic

statement, both the operands must be variables. "var1 = var2 + 3" must be written

as "int three; three = 3; var1 = var2 + three;".

7.2.2 DiPC Commandline Parameters

We shall briefly discuss the different kinds of Differential Privacy checks the DiPC tool

can perform. By default, given an input program file, the tool performs ε-Differential Pri-

vacy check of the program, for all ε > 0. The following are the additional commandline

parameters, which can be used for performing other Differential Privacy checks.

• FRAC: Given a value FRAC = k, the tool would perform kε-Differential Privacy check.

• EPS: Given a value EPS = ε0, the tool would perform ε-Differential Privacy only for

ε = ε0.

• RANGE: Given RANGE = range, where range is a MathematicaR© expression of a variable

range for ε, the tool would perform ε-Differential Privacy over ε ∈ range.

• DELTA: Given DELTA = δ, where δ is a function of ε, the tool would perform (ε, δ)-

Differential Privacy check.

• APPROACH: This is an option for (ε, δ)-Differential Privacy check. APPROACH can be

assigned 0 or 1. If APPROACH = 0, then the tool uses algorithm in Approach 4 (Sec.

7.1.4) and otherwise, uses the algorithm in Approach 5 (Sec. 7.1.5).
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CHAPTER 8: EXPERIMENTS

We used various examples to measure the effectiveness of our tool. These include SVT [20,

27], Noisy Maximum [11], Noisy Histogram [11] and Randomized Response [19]. Pseudocodes

for all variants of these examples are discussed in Section 8.1. Though the pseudo-codes don’t

strictly adhere to the syntax of DiPWhile programs, they can easily be rewritten to fit the

syntax.

8.1 EXAMPLES

Sparse Vector Technique (SVT) We looked at six different variants of the Sparse Vector

Technique (SVT). Algorithms addressed as SVT1-6, are Algorithms 1-6 in [20], respectively.

SVT1 and SVT3 were previously introduced in this report as Algorithm 8.1 and 8.2 and

Algorithm 3.2, respectively. The adjacency relation Φ we used is given by ((t1, q1), (t2, q2)) ∈
Φ if and only t1 = t2 and |q1[i]− q2[i]| ≤ 1 for all i. While SVT1 and SVT2 are differentially

private, the other four variants are not. We will present counterexamples for all four of these

variants in Section 8.2.

The pseudocode for the six variants of SVT are given in Figures 8.1 and 8.2. In these

programs, the array Q represents the input queries. The array a represents the output array,

⊥ represents False and > represents True. Note that U can be identified with tuples (t, a)

where t is an integer and a is vector of integers; t, a are the values of T and Q respectively.

Noisy Maximum Noisy maximum algorithms are a differentially private way to compute

different statistical measures for a given set of queries. Algorithms addressed as NMax1-4

are Algorithms 5-8, respectively, in [11]. Algorithms NMax1 and NMax2 are mechanisms to

compute the index of the query with maximum value after adding a Laplacian (or exponen-

tial) noise. Inputs Q1 and Q2 are considered adjacent iff |Q1[i]−Q2[i]| ≤ 1 for all i. Under

this relation, Algorithms NMax1 and NMax2 are both ε-differentially private. Algorithms

NMax3 and NMax4 are variants to print the maximum value instead of the index. These

variants are shown to be not differentially private in Section 8.2.

Histogram Algorithms Histogram algorithms also target computing statistical measures

on queries in a differentially private manner. Algorithms referred to as Hist1-2 here are

Algorithms 9-10 in [11]. Algorithm Hist1 and Hist2 are variants of noisy maximum, where

we return the histogram, instead of the maximum. Under the above adjacency relation where
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(SVT1) First Instantiation of SVT

Input: q[1 : N ]
Output: out[1 : N ]
rT ← Lap( ε

2∆
, T )

count← 0
for i← 1 to N do

r← Lap( ε
4c∆

, q[i])
b← r ≥ rT
if b then

out[i]← >
count← count+ 1
if count ≥ c then

exit
end

else
out[i]← ⊥

end

end

(SVT2) Second Instantiation of SVT

Input: q[1 : N ]
Output: out[1 : N ]
rT ← Lap( ε

2c∆
, T )

count← 0
for i← 1 to N do

r← Lap( ε
4c∆

, q[i])
b← r ≥ rT
if b then

out[i]← >, rT ← Lap( ε
2c∆

, T )
count← count+ 1
if count ≥ c then

exit
end

else
out[i]← ⊥

end

end

Figure 8.1: Sparse Vector Technique Algorithms

Q1 andQ2 are adjacent if |Q1[i]−Q2[i]| ≤ 1 for all i, both these variants are not ε-differentially

private. However, if we consider an alternative definition for the adjacency relation, where

Q1 and Q2 are adjacent iff
∑

i

(
|Q1[i]−Q2[i]|

)
≤ 1, then Hist1 is ε-differentially private but

Hist2 still is not. All experiments listed in Section 8.2 for Algorithms NMax1 and NMax2

were run using the second adjacency relation.

Pseudocode for the Noisy Maximum and Histogram variants has been given in Figures 8.3

and 8.4. The variable Q is the set of input queries.

Randomized Response All the previous algorithms use the Laplace mechanism. Ran-

domized Response [19], on the other hand, uses discrete probabilities. In this algorithm,

given a set of Boolean input queries, we flip each input query with a probability of 1
eε+1

and output the resulting outcome. We also consider a non-private version where the input

query is flipped with probability 1−ε
2

. We will refer to these algorithms as Rand1 and Rand2

henceforth.

The pseudocode for the Randomized Response algorithm [19] can be found in Figure 8.5.

Each boolean input query is flipped with a probability of 1−ε
2

and the resultant query set

is returned as output. We consider two versions. In the second version, we change the

parameter of the Bernoulli distribution and obtain a non-private algorithm.
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(SVT3) Third Instantiation of SVT

Input: q[1 : N ]
Output: out[1 : N ]
rT ← Lap( ε

2∆
, T )

count← 0
for i← 1 to N do

r← Lap( ε
2c∆

, q[i])
b← r ≥ rT
if b then

out[i]← Discseq(r)
count← count+ 1
if count ≥ c then

exit
end

else
out[i]← ⊥

end

end

(SVT4) Fourth Instantiation of SVT

Input: q[1 : N ]
Output: out[1 : N ]
rT ← Lap( ε

4∆
, T )

count← 0
for i← 1 to N do

r← Lap( 3ε
4∆
, q[i])

b← r ≥ rT
if b then

out[i]← >
count← count+ 1
if count ≥ c then

exit
end

else
out[i]← ⊥

end

end

(SVT5) Fifth Instantiation of SVT

Input: q[1 : N ]
Output: out[1 : N ]
rT ← Lap( ε

2∆
, T )

for i← 1 to N do
r← q[i]
b← r ≥ rT
if b then

out[i]← >
else

out[i]← ⊥
end

end

(SVT6) Sixth Instantiation of SVT

Input: q[1 : N ]
Output: out[1 : N ]
rT ← Lap( ε

2∆
, T )

for i← 1 to N do
r← Lap( ε

2∆
, q[i])

b← r ≥ rT
if b then

out[i]← >
else

out[i]← ⊥
end

end

Figure 8.2: Sparse Vector Technique Algorithms

Sparse Sparse is a variant of SVT that is discussed in [27]. Pseudocode for this algorithm,

referred to henceforth as Sparse, can be found as Figure 8.6. Our reason for considering

this example is to demonstrate our tool’s ability to handle (ε, δ)-differential privacy (see

Section 8.2).
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(NMax1) Correct Noisy Max with Laplacian
Noise

Input: q[1 : N ]
Output: out

NoisyVector ← []
for i← 1 to N do

NoisyVector[i] ← Lap( ε
2
, q[i])

end
out ← argmax(NoisyVector)

(NMax2) Correct Noisy Max with Exponential
Noise

Input: q[1 : N ]
Output: out

NoisyVector ← []
for i← 1 to N do

NoisyVector[i] ← Lap+( ε
2
, q[i])

end
out ← argmax(NoisyVector)

(NMax3) Incorrect Noisy Max with Laplacian
Noise

Input: q[1 : N ]
Output: out

NoisyVector ← []
for i← 1 to N do

NoisyVector[i] ← Lap( ε
2
, q[i])

end
out ← Discseq(max(NoisyVector))

(NMax4) Incorrect Noisy Max with Laplacian
Noise

Input: q[1 : N ]
Output: out

NoisyVector ← []
for i← 1 to N do

NoisyVector[i] ← Lap+( ε
2
, q[i])

end
out ← Discseq(max(NoisyVector))

Figure 8.3: Noisy Max Algorithms

(Hist1) Noisy Histogram

Input: q[1 : N ]
Output: out[1 : N ]

NoisyVector ← []
for i← 1 to N do

NoisyVector[i] ← Lap(ε, q[i])
end
out ← Discseq(NoisyVector)

(Hist2) Noisy Histogram, Wrong Scale

Input: q[1 : N ]
Output: out[1 : N ]

NoisyVector ← []
for i← 1 to N do

NoisyVector[i] ← Lap(1
ε
, q[i])

end
out ← Discseq(NoisyVector)

Figure 8.4: Noisy Histogram Algorithms

8.2 EXPERIMENTAL RESULTS

We ran all the experiments on an octa-core IntelR© Core i7-8550U @ 1.8gHz CPU with 8GB

memory. The tool is implemented in C++ and uses Wolfram MathematicaR©. As mentioned

in Chapter 7, the tool works in two phases — in the first phase, a MathematicaR© script is
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(Rand1) Randomized Response

Input: q[1 : N ]
Output: out[1 : N ]

out ← []
for i← 1 to N do

out[i] ←

{
q[i] probability = eε

1+eε

¬q[i] probability = 1
1+eε

end

(Rand2) Non-private Randomized Response

Input: q[1 : N ]
Output: out[1 : N ]

out ← []
for i← 1 to N do

out[i] ←

{
q[i] probability = 1+ε

2

¬q[i] probability = 1−ε
2

end

Figure 8.5: Randomized Response Algorithm

(Sparse) SVT for ( ε2 , δ)-Differential Privacy

Input: q[1 : N ]
Output: out[1 : N ]
σ ← ε

2
√

32c ln 1
δ

rT ← Lap(σ, T )
count← 0
for i← 1 to N do

r← Lap(σ
2
, q[i])

b← r ≥ rT
if b then

out[i]← >, rT ← Lap(σ, T )
count← count+ 1
if count ≥ c then

exit
end

else
out[i]← ⊥

end

end

Figure 8.6: SVT Algorithm for ( ε
2
, δ)-Differential Privacy

produced with commands for all the output probability computations and the subsequent

inequality checks and in the second phase, the generated script is run on MathematicaR©. In

all the following tables, we refer the times of the Script Generation Phase (i.e. Phase 1) as

T1 and that of the Script Validation Phase (i.e. Phase 2) as T2.

Unless stated otherwise, all the experiments were run with the parameters c = 1, ∆ = 1
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and discretization parameter seq = (−1 < 0 < 1) wherever applicable. The range of

input query values was Dom = {−1, 0, 1} in all the experiments. The running times in all

experiments were averaged over 3 runs of the tool.

As stated before, our tool can be used to both prove and disprove Differential Privacy.

We ran our tool on all the algorithms discussed in Section 8.1. Table 8.1 shows the runtime

of our tool for all the listed algorithms with 3 queries, with the result of the execution.

We chose to use 3 queries because counterexamples for most of the programs which were

not differentially private could be found with 3 queries: the only exception being SVT3.

Majority of the time is taken for running the MathematicaR© code. We also observed that

most of the time spent by MathematicaR© was in computing the output probability: the time

to perform the inequality checks for adjacent inputs was relatively smaller. Consequently,

programs which do not use real variables are much faster to run. Results in the table also

show that the time taken for disproving Differential Privacy is lower than the time for proving

Differential Privacy on average (SVT3 vs SVT4 or Hist1 vs Hist2). This is because the tool

terminates on finding a counterexample. On the other hand, to prove differential privacy

the tool has to check all inequalities.

Algorithm
Runtime
(T1/T2)

ε-Diff.
Private

SVT1 0s/825s 3

SVT2 0s/768s 3

SVT3 0s/3816s 3

SVT4 0s/269s 7

SVT5 0s/2s 7

SVT6 0s/661s 7

NMax1 0s/197s 3

NMax2 0s/59s 3

NMax3 0s/310s 7

NMax4 1s/58s 7

Hist1 0s/1450s 3

Hist2 0s/55s 7

Rand2 0s/0s 7

Table 8.1: Runtime for 3 Queries for each algorithm searching over adjacency pairs and all
ε > 0, with parameters being [c=1, ∆=1, Domain={-1,0,1}, seq=(-1<0<1)]

Additionally, our tool also has the capability to produce counterexamples for the algo-

rithms which are not Differentially Private. It is interesting to note that DiPC has the

ability to compute the smallest counterexamples for algorithms, since it can both prove and

disprove privacy definitively, unlike the statistical algorithms. Table 8.2 lists the smallest
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counterexample for each non differentially private algorithm. Given a program and an adja-

cency relation, the tool automatically finds an ε, the pair of adjacent inputs, and the output

value that demonstrate the violation of differential privacy. All four columns in the table

were output by the tool. Further, we observe that the counterexamples found were much

smaller, in number of queries, compared to those found in [11]. For example, algorithms

NMax3 and NMax4 counterexamples need just 3 and 1 queries respectively, compared to

the 5 queries required in [11]. Similarly, algorithm SVT5 has a counterexample with just 2

queries, as compared to the 10 queries.

Algo |Q| Output Input-1 Input-2 ε
Runtime
(T1/T2)

SVT3 5
[⊥ ⊥ ⊥ ⊥ 0],

seq=(0<1)
[-1 -1 -1 -1 -1] [0 0 0 0 0] 27 18s/5042s

SVT4 2 [⊥ >] [-1 0] [0 -1] 27/50 0s/81s
SVT5 2 [⊥ >] [-1 0] [-1 -1] 27 0s/2s
SVT6 3 [⊥ ⊥ >] [-1 -1 0] [0 0 -1] 67/92 0s/661s

NMax3 3
-1,

seq=(-1<0<1)
[-1 -1 -1] [0 0 0] 27 0s/310s

NMax4 1
0,

seq=(-1<0<1)
[-1] [0] 27 0s/2s

Hist2 1
[-1],

seq=(-1<0<1)
[-1] [0] 9/34 0s/3s

Rand2 1 [⊥] [⊥] [>] 9/34 0s/0s

Table 8.2: Smallest Counterexample found for each non-differentially private algorithm,
searching over all adj. pairs and ε > 0, with parameters being [c=1, ∆=1, Domain={-
1,0,1}]

The scalability of the tool in runtime is an important aspect to study. To study the

performance of the tool as the number of queries increases, we analyzed SVT1 for varying

number of queries. The running times along with the number of queries and the value for

c is shown in Table 8.3. The table shows that the tool can handle a reasonable number of

queries - given that most algorithms have a counterexample with three queries, our tool can

handle four queries in a couple of hours.

In all the experiments so far, the value of ε was not fixed. So DiPC had to either prove

privacy for all ε or find an ε where privacy is violated. Many automated tools are designed

only to disprove differential privacy for a fixed ε. Our tool also has the capability to check

differential privacy for a fixed value of epsilon. We tried the performance of the tool on

SVT1 for a fixed ε. The results are reported in Table 8.4. As can be seen by comparing the

numbers in Tables 8.3 and 8.4, fixing ε makes the problem easier to handle. On an average,
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|Q| c
Runtime
(T1/T2)

1 1 0s/16s
2 1 0s/113s
2 2 0s/155s
3 1 0s/825s
3 2 0s/1202s
4 1 0s/4727s
4 2 0s/6715s

Table 8.3: Runtimes of SVT1 over different query length and counts, searching over all
adjacency pairs and all ε > 0, with parameters being [∆=1, Domain={-1,0,1}]

the runtime seems to reduce by a factor of 2. This doesn’t seem to be a significant gain in

speed, given that we are giving up the power to search over a range of infinite values. Also,

as one would expect, changing the value of ε doesn’t seem to affect the runtime much.

|Q| c ε
Fixed ε

Runtime
(T1/T2)

General
Runtime
(T1/T2)

1 1 1.0 0s/7s 0s/16s
1 1 0.5 0s/8s 0s/16s
2 1 1.0 0s/43s 0s/113s
2 1 0.5 0s/46s 0s/113s
2 2 1.0 0s/95s 0s/155s
2 2 0.5 0s/113s 0s/155s
3 1 1.0 0s/307s 0s/825s
3 1 0.5 0s/265s 0s/825s
3 2 1.0 0s/541s 0s/1202s
3 2 0.5 0s/572s 0s/1202s
4 1 1.0 0s/1772s 0s/4727s
4 1 0.5 0s/1832s 0s/4727s
4 2 1.0 1s/2904s 0s/6715s
4 2 0.5 1s/3295s 0s/6715s

Table 8.4: Runtimes of SVT1 over different query length and counts, searching over all
adjacency pairs and fixed ε, with parameters being [∆=1, Domain={-1,0,1}]

Another common technique adopted by existing tools to speed up the runtimes is to check

for a fixed input adjacency pair. DiPC has the capability to perform this optimization too.

In Table 8.5, we have the results when a non differentially private algorithm, namely SVT3

was run with a single adjacency pair ([00...]∼[11...]), while varying number of queries. This

optimization makes a huge difference in the size of the generated MathematicaR© script. We
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notice that the running times is significantly lower in this case. As the number of queries

increase, while the general runtime seems to increase by a factor of 10, the single pair runtime

only doubles itself. Another interesting observation is that the time taken for 5 queries is

lower than the time for 4 queries. This is because with 5 queries, the tool successfully finds

a counterexample and terminates before checking the remaining inequalities.

#Queries
1 Pair

Runtime
(T1/T2)

General
Runtime
(T1/T2)

ε-Diff. Private

1 0s/15s 0s/25s 3

2 0s/40s 0s/192s 3

3 0s/100s 0s/1562s 3

4 0s/199s 1s/10515s 3

5 0s/141s 18s/5042s 7

Table 8.5: Runtimes of SVT3 over different query lengths, searching over a single
adjacency pair ([00...]∼[11...]) and all ε > 0, with parameters being [c=1, ∆=1,
Domain={−1, 0, 1}, seq=(0<1)]

Additionally, DiPC can also verify (ε, δ)-differential privacy, which is a limitation of most

of the existing tools. Algorithm Sparse (taken from [27]), presented in Figure 8.6 was used

to evaluate DiPC’s performance in this case. When c = 1, this algorithm is identical to

Algorithm SVT1, where parameters c and ∆ are replaced by parameter σ. This algorithm

is, therefore, ε-differentially private. Further, our tool proves that the algorithm is not ε
2
-

differentially private. The tool also shows that the algorithm is ( ε
2
, δ = e−1/32)-differentially

private for c = 1. Additionally, we get a counterexample for ( ε
2
, e−4)-differentially privacy.

When c = 2, Sparse differs from SVT1 since in this case we also need to choose rT again

after outputting a >. The resulting program is ( ε
2
, δ = e−1/64)-differentially private. This is

confirmed by DiPC. Further, DiPC also demonstrates that Sparse is not ( ε
2
, δ)-differentially

private for δ = e−4. To the best of our knowledge, our approach is the first method to

automatically check this.

A summary of various runs of the Sparse algorithm with different parameters have been

presented in Table 8.6. We notice in the table, that the runtime by Approach 4 (Sec. 7.1.4

is significantly higher for ( ε
2
, e−2)-Differential Privacy check. This is because the algorithm

requires to perform inequality checks for every possible subset of outputs. Further, the

runtime is much higher than what we would expect after accounting for the output subset

probability comparisons and we suspect this might be due to memory overflows within

MathematicaR©.

We also see that Approach 5 (Sec. 7.1.5), improves the runtime significantly. However,
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|Q| c δ Output Input-1 Input-2 ε
Approach
4 Runtime
(T1/T2)

Approach
5 Runtime
(T1/T2)

3 1 0 [⊥⊥>] [0 0 0] [0 0 1] 1.17× 10−16 0s/55s 0s/47s

3 1 e−1/32 ( ε
2
, δ)-Diff.
Private

0s/256s 0s/167s

3 1 e−4 [⊥⊥>] [0 0 1] [1 1 0] 99/5 0s/211s 0s/148s
3 2 0 [>⊥>] [0 0 0] [0 0 1] 7.54× 10−17 0s/93s 0s/72s

3 2 e−2 ( ε
2
, δ)-Diff.
Private

0s/44882s 0s/289s

3 2 e−4 [⊥⊥>] [0 0 1] [1 1 0] 43/5 0s/659s 0s/181s

Table 8.6: Runtimes and Counterexamples of Sparse for ( ε
2
, δ)-Differential Privacy using

Approach 4 and Approach 5 in Sec. 7.1 over different counts and delta values, searching
over all adjacency pairs and all ε > 0 and Domain={0,1}

this approach has the caveat that it can only generate the input pair of the counterexample

and not the output.

Interestingly, both the approaches are complementary to each other. We can use Approach

5 to generate a counterexample input pair and run Approach 4 with a single adjacency pair

to generate the counterexample output.
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