
c© 2019 Haizi Yu

AUTOMATIC CONCEPT LEARNING VIA INFORMATION LATTICES

BY

HAIZI YU

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Doctoral Committee:

Assistant Professor Lav R. Varshney, Chair
Assistant Professor Ranjitha Kumar
Associate Professor Paris Smaragdis
Professor Igor Mineyev
Dr. Lester Mackey, Microsoft Research New England

Abstract

Concept learning is about distilling interpretable rules and concepts from data, a prelude

to more advanced knowledge discovery and problem solving in creative domains such as art

and science. While concept learning is pervasive in humans, current artificial intelligent (AI)

systems are mostly good at either applying human-distilled rules (rule-based AI) or capturing

patterns in a task-driven fashion (pattern recognition), but not at learning concepts in a

human-interpretable way similar to human-induced rules and theory.

This thesis introduces a new learning problem—Automatic Concept Learning (ACL)—

targeting self-explanation and self-exploration as the two principal pursuits; correspondingly,

it proposes a new learning model—Information Lattice Learning (ILL)—combining compu-

tational abstraction and probabilistic rule learning as the two principal components. Woven

around the core idea of abstraction, the entire ACL framework is presented as a generaliza-

tion of Shannon’s information lattice that further brings learning into the picture. The core

idea of abstraction is cast as a hierarchical, interpretable, data-free, and task-free clustering

problem, seeded from universal priors such as simple algebra and symmetries.

The main body of the thesis comprises three self-contained yet close-knit parts: theory,

algorithms, and applications. The theory part presents the mathematical exposition of ACL,

formalizing the key notions of abstraction, concept, probabilistic rule, and further the entire

concept learning problem. The goal is to lay down a solid path towards algorithmic means

that are computationally feasible, reliable, and human-interpretable. The algorithms part

presents the computational development of ACL, that is, ILL. It puts together computa-

tional abstraction and statistical learning in the same algorithmic picture, creating a bridge

that connects deductive (rule-based) and inductive (data-driven) approaches in AI. Aiming

for human interpretability and model transparency in particular, ILL in many ways mim-

ics human learning. This includes mechanism-driven abstraction generation, as well as a

“teacher-student” loop that can distill customizable traces of rules for data summarization

and data explanation. The applications part recapitulates the theory and algorithms through

concrete examples. Music is used for demonstration and automatic music concept learning

is thoroughly studied. This part details the implementation of MUS-ROVER, an automatic

music theorist that distills music composition rules from sheet music. To better support

music ACL and music AI in general, the twin system MUS-NET is built as a crowdsourcing

platform for making and serving digital sheet music data sets.

ii

To my parents, for their love and support.

iii

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisor Lav R.

Varshney for the continuous support of my doctoral study and research, for his patience,

motivation, and immense knowledge. He passed me the faith and courage to be brave—to

be a brave, adventurous researcher exploring new problems/solutions in interdisciplinary

boundaries between computer science and many other fields including mathematics, music,

biology, etc. As a result, this thesis collects a mixture of computational, mathematical, and

artistic ideas, and spans from theory to algorithms and to real applications, which would

not be possible without his great support and guidance. Moreover, he has been a tireless

advocate on my behalf, and always encouraged me not to be shy of showing my work to

people from other institutions, national labs, industry, and connecting to people from all

disciplines. The contributions that Lav has made to this thesis as well as to my general

education and research character are very much appreciated.

I am grateful for the encouragement and suggestions provided by Ranjitha Kumar, Paris

Smaragdis, Igor Mineyev, and Lester Mackey, the other members of my doctoral committee.

Research, at least from what I believe, is an interactive endeavor, especially considering

the fact that the work done in this thesis comes from a diverse range of expertise. I would

like to particularly thank all my research collaborators for their great contributions on my

research publications: Guy Garnett, former faculty member from the university’s National

Center for Supercomputing Applications (NCSA); Ranjitha Kumar, assistant professor from

the department’s data-driven design group; Heinrich Taube, professor from the School of

Music; Igor Mineyev, professor from the Department of Mathematics; Tianxi Li, assistant

professor now from the Department of Statistics at the University of Virginia.

An important part of this work involves building MUS-ROVER and MUS-NET, the two

music web applications that demonstrate the utilities of the theory and algorithms. These

come from the great hands of two teams of undergraduate students that I have enjoyed

working with. I would like to thank the whole MUS-ROVER team: Sarah Schieferstein,

Fanbo Xiang, Dingcheng Yue, Benoit Ortalo-Magne, Daniela Zieba, Chen Pan, and the

whole MUS-NET team: Seungjun Cho, Yirou Li, Carolyn Nye.

• Financial support provided in part by the IBM-Illinois Center for Cognitive Comput-

ing Systems Research (C3SR), a research collaboration as part of the IBM AI Horizons

Network; and in part by grant number 2018-182794 from the Chan Zuckerberg Initia-

tive DAF, an advised fund of Silicon Valley Community Foundation.

iv

Table of Contents

Chapter 1 Introduction . 1
1.1 Automatic Concept Learning in a Nutshell 3
1.2 Information Lattice Learning in a Nutshell 7
1.3 Outline and Contributions . 10

Chapter 2 Background . 11
2.1 Math Preliminaries . 11
2.2 Claude Shannon’s Information Lattice . 13
2.3 Betty Shannon’s Stochastic Music and Thereafter 14

Chapter 3 Theoretical Exposition (Part I) . 17

Chapter 4 Abstraction-Based Rules and Concepts 18
4.1 Abstraction: Literature Overview . 18
4.2 Abstraction, Concept and Probabilistic Rule 20

Chapter 5 Computational Abstraction . 22
5.1 Everyday Abstraction . 22
5.2 Abstraction as Partition . 24
5.3 Abstraction Hierarchy as Partition Lattice 25
5.4 Rule Hierarchy as Generalized Information Lattice 28

Chapter 6 Abstraction Generating Mechanisms . 31
6.1 Feature-Induced Abstraction . 31
6.2 Symmetry-Induced Abstraction . 33

Chapter 7 Codetta: Summary and Discussions . 41

Chapter 8 Algorithmic Development (Part II) . 42

Chapter 9 Information Lattice Learning Phase I: Abstraction Generation 43
9.1 Feature Generation . 43
9.2 Symmetry Generation: Top-Down Approach 45
9.3 Symmetry Generation: Bottom-up Approach 60
9.4 Restriction to Finite Subspaces . 70

Chapter 10 Information Lattice Learning Phase II: Probabilistic Rule Learning . . . 75
10.1 The Vanilla “Teacher
 Student” Loop . 75
10.2 The Adaptive Teacher: Rule Context-Matching 80
10.3 The Elastic Student: Rule Breaking . 84

v

Chapter 11 Codetta: Summary and Discussions . 96

Chapter 12 Applicational Recapitulation (Part III) 97

Chapter 13 MUS-ROVER: An Automatic Music Theorist and Pedagogue 99
13.1 Music Raw Representation . 99
13.2 MUS-ROVER I . 100
13.3 MUS-ROVER II . 109
13.4 MUS-ROVER RB . 121
13.5 MUS-ROVER Rules versus Music Theory 123

Chapter 14 MUS-NET: A Crowdsourced Home of Digital Sheet Music 132
14.1 Music AI and Music Big Data . 132
14.2 Overview of Music Data Formats . 135
14.3 Platform Principles . 136
14.4 Platform Implementation . 138
14.5 Music Transcription Contest . 144
14.6 AI Applications in Action . 147

Chapter 15 Coda . 150

References . 151

vi

Chapter 1: Introduction

Is it possible to learn the laws of music theory directly from raw sheet music, in the same

human-interpretable form as a music theory textbook? How little prior knowledge needs to

be encoded in order to do so? This thesis considers these and similar questions in music and

beyond, with an aim for developing a general framework for automatic concept learning.

forwardbackward

conceptual base
(innate biology)

prior
(handcrafted)

concepts

high-level
representation

knowledge task

taskinterpretable
patterns

biological system:

artificial system:

Figure 1.1: Conceptual development in biological systems (top, green) and artificial systems
(bottom, blue). Concept learning generally refers to the phase that happens before but leads
to more efficient and robust problem-solving or task-performing.

In nature, the ability to distill rules and concepts from raw observations is pervasive in

humans [1] and also in many other precocial species [2]. Further, it is evident that more

advanced concepts can be developed once a “conceptual base” is established [1, 3, 4]. There

are two directions one can pursue along this line of conceptual development (Figure 1.1: top):

moving forward, more advanced concepts can yield further domain knowledge (e.g. laws of

nature) as well as principled approaches to perform specific tasks [5]; moving backward, it

still remains mysterious (or at least debatable) how a conceptual base is established in the

first place, and is generally attributed to innate biology by nativists [3, 6–10].

Almost in parallel, we see similar situations in artificial intelligence (AI) which considers

finding high-level representations (in terms of features, beliefs, rules, artificial neurons, etc.)

of sensory data [11]. It is also evident that higher-level representations can be learned once

a “prior” is established [12,13]. Note that a prior can take many different forms in artificial

intelligence and machine learning, e.g. atomic logic in automatic reasoning, distributions in

Bayesian inference, visual descriptors in computer vision, or architectures in neural networks.

There are also two directions one can pursue (Figure 1.1: bottom): moving forward, more

advanced machine learning models can be devised from handcrafted priors to perform specific

tasks automatically; moving backward, it is still considered a “black art” how a prior can

be effectively designed in the first place, which is generally attributed to domain expertise

or designers’ intuitions [14].

While the forward direction is widely studied both psychologically (in biological systems)

1

and algorithmically (in artificial systems), this thesis on automatic concept learning looks

backward. We consider the general question of conceptualizing a data domain: a task-free

preparation phase before any specific problem-solving [15]. To do this, we consider priors

that encode very little domain knowledge (i.e. close to an innate conceptual base) but lead

to abundant, structured, and human-interpretable domain concepts. In particular, we want

to ask the question: how far back can we push a prior along the axis in Figure 1.2, so that

it is decoupled from existing domain knowledge as much as possible while still being able

to recover and even to complete what we know? The ultimate goal of automatic concept

learning is to learn domain concepts/knowledge from universal priors—priors that encode

no domain knowledge.

prior
less domain expertise

universal domain-specific knowledge

counterpart to innate biology expert system

Figure 1.2: The pushback of a prior: from hardcoded domain knowledge to universal priors.

Although automatic concept learning in this thesis shares many commonalities with rep-

resentation learning in deep learning [11], knowledge discovery in databases [16], as well

as pattern recognition in machine learning [17] especially considering its role in summa-

rizing data, it is distinct in at least two aspects. The first distinction is reminiscent of

the difference between pattern recognition and pattern theory [18] as Ulf Grenander put

it [19]: “it (pattern theory) differs from pattern recognition in that the latter emphasizes

the construction of recognition algorithms whereas in pattern theory the representation of

subject-matter knowledge is the centre of attention.” The second distinction is even more

crucial: interpretability plays a central role in automatic concept learning and is the main

theme throughout this entire thesis. Here, we require not only the learned results but also

the entire leaning process to be interpretable. More precisely, the learning process and the

learned results must be both machine-readable and human-interpretable.

As a result, we position automatic concept learning discussed in this thesis as a first step

towards a principled machinery that learns and thinks cognitively like people—that “starts

like a baby and learns like a child” [5, 20]. The main originality of this thesis is twofold:

1) to formalize a new learning problem, called Automatic Concept Learning (ACL); 2) to

propose a new learning model, called Information Lattice Learning (ILL).

2

1.1 AUTOMATIC CONCEPT LEARNING IN A NUTSHELL

We first present an overview of automatic concept learning (ACL) without delving too

much into its technical details which will be elaborated in later chapters. In this overview,

we first give an informal description of ACL in terms of its input and output as well as its

goals and motivations, then summarize the uniqueness of ACL compared to other classic

problems and models in AI and machine learning. We conclude by describing the need to

formalize ACL as a new learning problem that further needs a new learning model to solve.

1.1.1 What is ACL (Input and Output)?

Informally speaking, automatic concept learning is an algorithmic process of learning expe-

riential rules (empirical laws) from sensory data (observations), or more broadly the process

of distilling theory from phenomenology. As such, an ACL problem takes as input a data set,

and outputs rules to summarize and to explain concepts that underlie the input data. It is

important to recognize that the input-output direction here is opposite to that of a rule-based

AI, exactly the same distinction between a music theorist and a composer (Figure 1.3).

data rules

data

ACL

Rule-based AIrules

music music theory

music

Music Theorist

Composermusic theory

Figure 1.3: The input-output distinction between a concept learner and a rule-based AI (top),
which is analogous to the distinction between a music theorist and a composer (bottom).

Let me name a few ACL examples. From a data set of right triangles in a 2D plane, we

expect an output that rediscovers the Pythagorean theorem. From a data set of Copernicus’

astronomical measurements, we expect an output that rediscovers heliocentric laws of the

solar system [21]. From a data set of single cell RNA sequences from the retina, we expect an

output that reveals the laws of pattern formation in neurodevelopment [22]. Lastly, taking

a music data set of Bach’s chorales (the main ACL application in this thesis), we expect

an output that explains what makes Bach’s chorales Bach’s chorales and if possible, that

further teaches us to write chorales in the style of Bach.

3

While the input is the same as in many data-driven learning problems, an ACL output

differs from many classical learning settings such as traditional supervised and unsupervised

learning [17]. In particular, an output consisting of predictions of class labels does not serve

the purpose for concept learning; an output consisting of data samples that “counterfeit” the

input data does not serve the purpose for concept learning either. More concretely, thinking

about a music data set consisting of Bach’s Chorales as an example, a concept learner does

not output labels to predict whether a new piece is written by Bach or others, nor does it

output music that sounds like Bach’s chorales, but instead it outputs ways of making music,

also known as music metacreation—the creation of a creator to create.

1.1.2 Why Automatic Concept Learning (New Goals/Motivations)?

The motivations, and thus also the goals, for automatic concept learning are twofold: to

explore and to explain what we see (raw data or its raw distributions). Therefore, we make

self-exploration and self-explanation the two hallmarks of automatic concept learning.

On the one hand, being self-exploratory enables a machine to assist people in research

(e.g. to help the medical imaging diagnosticians by carrying out some of the time consuming

discoveries while leaving the final decision to human judgment) and to inspire people to

be more creative (e.g. to suggest new musical findings and possibilities to composers while

still leaving the final composition to human judgment). These further target augmented

intelligence and augmented creativity, for more efficient knowledge discovery and more per-

sonalized knowledge application.

On the other hand, being self-explanatory allows people to better understand the hidden

laws in nature (e.g. to see what makes a cancer cell, cancer), to better understand other

artificial models (e.g. to interpret a black-box algorithm), and even to better understand

our own mental models (e.g. to shed some light on what the baby boy Mozart was thinking

when coming up with his first minuet at the age of four). Such better understanding is

important for AI safety, for more human-like generalization (within a domain), and for more

human-like transfer learning (across domains).

It is worth noting that the above two goals/motivations are really two sides of the same

coin: self-exploration means that we do not want a machine to blindly follow what people say;

whereas self-explanation means that we do not want people to blindly follow what a machine

says but instead we want people to know why (e.g. why AlphaGo made that crucial move

that eventually led to victory). To embody the above high-level ideas of self-exploration and

self-explanation, we next informally discuss the desired properties of an ACL output and the

desired properties of an ACL model, whose formal presentations will be in later chapters.

4

1.1.3 Overview: Desired ACL Output

We expect an ACL output to comprise rules (Figure 1.3), each of which (hopefully from

a different perspective) summarizes and explains some insight of the input data or data

distribution. Instead of directly giving a formal definition of the rules, we first list a few

desired properties of an ACL output, which eventually leads to its final mathematical form.

• Typical. The output must summarize the data well and reveal insights: it must

capture typical regularities in the data rather than random patterns. This is later

achieved by optimizing information-theoretic functionals for typicality and regularity.

• Structured. The output must be structured rather than being just a plain rule set.

In particular, we express rule structure from both a static and a dynamic perspective:

– Hierarchical (static). The output must be organized to show internal relations

among its compositional rules, as concepts can be relatively more specific/general

and rules can be relatively stronger/weaker. This is later achieved by superim-

posing a lattice structure on the rule family to encode a rule hierarchy.

– Sequential (dynamic). The output must reflect a complete learning procedure

rather than a set of unordered rules, since concept learning, by definition, is a

process rather than an end result. Thus, rules are ordered in a sequence, by each

time learning a new, independent rule that is not implied by previously learned

rules. This is later achieved by eliciting a rule trace from a self-learning loop. Note

that multiple traces are possible for the same input data (i.e. multiple valid ways

to summarize and to explain the same data), leaving room for personalization.

• Interpretable. The output must be both machine readable and human-interpretable1.

We express this from both an individual (shallow) and a collective (deep) perspective:

– Individually interpretable (shallow). The output must consist of rules that

are individually interpretable rather than just a bunch of numerals. This is later

achieved by explicitly representing every single rule as a statistical pattern on

a mechanism-driven abstraction/clustering (rather than a data-driven clustering

like k-means), and the presence of a clear mechanism assures explainability [25].

– Collectively interpretable (deep). The output must consist of rules that

are collectively interpretable, so that not only the rules but also the entire rule

hierarchy is comprehensible. This is later achieved by a white-box algorithm that

explicitly constructs the rule hierarchy.
1Interpretability here is asserted axiomatically, rather than with explicit human experiments [23,24].

5

1.1.4 Overview: Desired ACL Model

In parallel with the two goals for automatic concept learning (i.e. to explore and to ex-

plain), we list the following two desired properties of an ACL model.

• Self-exploratory. We start with some prior (i.e. a conceptual base) as a set of build-

ing blocks which can systematically span a concept universe for an automatic concept

learner to self-explore. A desired prior consists of very little domain knowledge, ideally

being a universal prior. This is in contrast with expert systems (e.g. a rule-based AI)

which, from the perspective of concept learning, are considered “cheating” if one hard

encodes all the known rules in a program [26]. Instead, we gradually strip domain

knowledge away from a prior by a two-step attempt, where we first consider feature-

induced concepts and then a more general setup—symmetry-induced concepts—to

push the prior further back toward a universal one that emulates innate biology (Fig-

ure 1.2). When experimenting with specific domains, we further want the prior to

span a concept universe that is expressive enough to cover much of the existing do-

main concepts, ideally a “closure” that completes what we knew and suggests what

we might have overlooked. Lastly, we also want an efficient exploration algorithm that

can traverse the spanned concept universe in an intelligent way.

• Self-explanatory. Beyond the two-level interpretability (shallow versus deep) of an

ACL output mentioned in Section 1.1.3, we want the entire ACL model to be self-

explanatory, i.e. to be a transparent white-box model. This is later achieved by a

“teacher
 student” learning loop that mimics a typical human learning scenario where

a teacher gradually guides a student to a designated goal through iterative exercises and

refinements. This learning architecture is similar to a generative adversarial network

[27], and indeed the teacher is a discriminative model and the student is a generative

model. However, what makes a key difference here is that both the discriminator

(teacher) and the generator (student) are transparent to each other (e.g. allowing

parameter sharing if in a generative adversarial network), and also transparent to us.

In other words, the entire learning process is transparent to both insiders and outsiders.

This further allows the model to work in both a human-out-of-the-loop mode and a

human-in-the-loop mode, where the latter can further yield personalized education

when replacing the automatic student with a human student.

Combining the above two properties leads to our information lattice learning, first briefly

introduced in the following subsection.

6

Information Lattice
Learning

statistical
learning

computational
abstraction

Figure 1.4: Information Lattice Learning (ILL), bringing together rule-based AI and machine
learning AI, incorporates computational abstraction and statistical learning as its two core
components. (Bottom figure by courtesy of N. Desai/Science [28].)

1.2 INFORMATION LATTICE LEARNING IN A NUTSHELL

To achieve the new goals brought about by automatic concept learning (Section 1.1.2), we

need a new learning model, one that can ideally bring together rule-based AI and machine

learning AI to achieve self-exploration and self-explanation at the same time. This, according

to many developmental cognitive scientists, indeed mimics how a human develops—that

starts like a baby and learns like a child [5,20]. This further gives birth to our new learning

model—Information Lattice Learning (ILL)—consisting of computational abstraction and

statistical learning as its two core components (Figure 1.4).

1.2.1 Computational Abstraction

The cornerstone to define rules and concepts in automatic concept learning is abstraction,

which is itself defined by a partition of—essentially a clustering problem for, or an equivalence

relation on—a data space. The intuition here is that by partitioning (clustering or an

equivalence relation), we obtain a coarse-grained view of the data space, where we identify

every partition cell (cluster or equivalence class) as a whole and abstract away within-cluster

variations. The key idea is to forget (low-level details) and to focus one’s attention (on high-

level concepts). As a result, the partition representation echoes the nature of abstraction,

7

which treats some distinct instances as if they were the same [29], or to be precise, equivalent,

e.g. calling dogs and cats indistinguishably mammals.

Given an abstraction of a set represented by a partition (of that set), every cell in the

partition—a cluster or an equivalence class—defines a concept, and the pair consisting of the

abstraction and a probability distribution over the abstracted concepts defines a rule. Since

a rule is defined as some probabilistic pattern of an abstraction, it is more precisely called a

probabilistic rule, which specifies the form of an ACL output. Note that for any probabilistic

rule defined as above, we can readily unravel its contained information by saying “we have

discovered something probabilistically interesting if we abstract data in this way,” which

attains the individual (shallow) interpretability of a desired ACL output (Section 1.1.3).

Beyond its intuitive sense, abstraction by partition naturally extends to abstraction hier-

archy by partition lattice, from which the hierarchies of rules and concepts are immediate

and also rigorously defined. By following this path, we will see in later chapters that the

resulting rule hierarchy generalizes Shannon’s information lattice [30], which attains the

collective (deep) interpretability of a desired ACL output (Section 1.1.3).

Moving forward from the above mathematical formalism to practical ways of computing

abstraction-based rules and hierarchy, we develop computational abstractions via abstraction

generating functions. An abstraction generating function is a formal way of mapping some

generating source to its generated abstractions (in terms of a partition lattice). This thesis

presents two types of generating sources, yielding feature-induced and symmetry-induced

abstractions, respectively. A feature-induced abstraction is a partition whose cells are preim-

ages of every individual feature value; treating features as quotient maps, we can further

study the topological structure of abstraction spaces. A symmetry-induced abstraction is a

partition whose cells are orbits that are invariant under the symmetry; representing sym-

metries by groups, we can further study the algebraic structure of abstraction spaces, as

well as a primal-dual perspective of subgroup lattices and partition lattices. Both types of

generating sources can be systematically assembled from basic building blocks (i.e. priors):

feature functions are composed by basis descriptors; groups are generated by generators.

Crucially, our mathematical formalism and computational construction of abstraction, rule

and concept, as well as their corresponding hierarchies, give rise to an implementation of a

fully automated cycle of discovery, solving a long-standing challenge in building discovery

systems for “concept formation” [31]. The cycle of discovery in our case, called a self-

learning loop, further brings statistical learning into information lattices, which will be

briefly introduced in the next subsection.

8

1.2.2 Statistical Learning in Shannon’s Information Lattice

Information lattice learning (ILL) occurs when computational abstraction meets statisti-

cal learning. ILL is not just about learning raw statistics from data, but also learning the

right set of abstractions and their high-level statistics. We enable automatic concept learn-

ing by bringing statistical learning into information lattices. This is realized by a pair of

bilateral subprocesses, namely rule abstraction and rule realization, also known as reduction

and elaboration in some topic domains [32]. More specifically, the former is a statistical

inference problem, projecting low-level data distributions onto high-level abstraction spaces;

the latter is an inverse inference problem, or an inverse projection problem, resulting in a

higher level of generalization: besides generating unseen data that satisfies the data distri-

bution (generalization in the traditional sense), we generalize the data distribution itself as

long as the rules—statistical patterns of the abstractions—are satisfied. This higher-level

generalization further translates to the following advancement:

memorizing data→ memorizing data distribution→ memorizing rules. (1.1)

Both subprocesses are formalized as a sequence of optimization problems whose formula-

tions evolve in a systematic way. This systematic formalism eventually makes it possible to

build a fully automated self-learning loop—the core learning algorithm—where no human

intervention is needed during the entire course of concept learning. As stated earlier as one

desired property of an ACL model (Section 1.1.4), the self-learning loop adopts a “teacher

 student” architecture with the main idea being learning by comparison. In particular,

the teacher, as a discriminative model, performs rule abstraction; whereas the student, as

a generative model, performs rule realization. As such, the two subprocesses are executed

by the teacher and the student in an alternating and iterative fashion. This “teacher

student” learning captures a typical human pedagogical scenario where a teacher guides a

student to designated goal through iterative exercises and feedback [33].

Note that the loop operates on our generalization of Shannon’s information lattice, which

itself encodes a hierarchy of abstractions and rules and is algorithmically constructed from

group-theoretic foundations. In particular, we can further show that learning this hierarchy

of invariant concepts essentially involves iterative optimization of Bayesian surprise and

entropy, which further couples group theory and information theory during learning.

ILL gives a first step towards a principled and a cognitive ACL that can further lead to

subsequent knowledge discovery. Later in the Applications Part of this thesis, we will detail

the implementation of practical automatic concept learners, also called automatic theorists,

for specific topic domains.

9

1.3 OUTLINE AND CONTRIBUTIONS

The main contributions of the thesis are separated into three self-contained yet close-knit

parts, cohesively organized into a complete sonata form (Figure 1.5).

Introduction Exposition Development Recapitulation Coda

Chapter 1-2
Part I:
Chapter 3-7 Chapter 15Chapter 8-11

Part II:
Chapter 12-14
Part III:

Figure 1.5: Thesis outline in a sonata form.

Part I presents the mathematical exposition of ACL, formalizing the key notions of ab-

straction, concept, probabilistic rule, and further the entire ACL problem (Chapter 4). The

whole theory is grounded on a mathematical construct of abstraction, which is then system-

atically derived towards abstraction hierarchy (Chapter 5) and its generating mechanism

(Chapter 6). Note that the goal in mathematizing the notion of abstraction is not for its

own sake, but to go from this theoretical base towards computational developments that

further bring about feasible, reliable, and human-interpretable algorithmic models.

Part II presents the algorithmic development of ACL, proposing the new learning model

ILL. ILL includes two phases, with the first phase—abstraction generation (Chapter 9)—

being the deductive preparation phase and the second phase—probabilistic rule learning

(Chapter 10)—being the subsequent inductive learning phase. The two phases are the con-

stituent pillars of ILL, which couples abstraction with statistics to fill in the gap between a

rule-based AI and a machine learning AI. The resulting ILL model achieves a deeper-level in-

terpretability, wherein not only the learned results (i.e. rules and concepts) are interpretable,

but also the entire leaning process (i.e. the model itself) is comprehensible to people.

Part III recapitulates Parts I and II through real-world applications. We start with music

as the first application domain and thoroughly discuss automatic music concept learning.

This part presents a detailed implementation of the three versions of MUS-ROVER, an au-

tomatic music theorist that distills, from sheet music, music composition rules (Chapter 13).

MUS-ROVER is further wrapped into a web application and serves as an automatic music

pedagogue that delivers the rules as personalized music composition lessons. To better sup-

port music ACL and music AI in general, the twin system MUS-NET is built as an online

crowdsourcing platform for making and serving digital sheet music data sets (Chapter 14).

10

Chapter 2: Background

The theory of Automatic Concept Learning and Information Lattice Learning is directly

built from abstract mathematics. The resulting machinery, all constructive and operational,

provides theoretical support for both the feasibility and the efficiency of the algorithms

proposed thereafter. It is also the foundation on which both the generality of ACL and

the interpretability of ILL are grounded. Despite its independent development, part of the

theory is later shown as a generalization of Claude Shannon’s information lattice, from which

we borrow the name for part of our learning model. As a result, this background chapter

first presents a minimal core of math preliminaries (for review and notation purposes only)

as well as Shannon’s information lattice in its original context.

The main application discussed in this thesis is in the domain of music, but from the

computational perspective of music composition and music intelligence yielded thereafter.

As a result, this chapter further presents historical background on computer music, starting

from Betty Shannon (Claude’s wife) and her music composition via stochastic processes.

2.1 MATH PRELIMINARIES

Our intent in this section is twofold: to set up the theoretical playground for our own

theoretical and algorithmic work; and to lay down the technical terms and notations that

we use in this thesis. There is no contribution of our own in this section. We will be brief,

referring readers to standard textbooks [34–37] for details.

2.1.1 Partition and Equivalence Relation

A partition P of a set X is a collection of mutually disjoint, non-empty subsets of X whose

union is X. Elements in P are called cells (or less formally, clusters); the size of P is |P|,
i.e. the number of cells in P . An equivalence relation on a set X, denoted ∼, is a binary

relation satisfying reflexivity, symmetry, and transitivity. An equivalence relation ∼ on X

induces a partition of X: P = X/∼ := {[x] | x ∈ X}, where the quotient X/∼ is the set of

equivalence classes [x] := {x′ ∈ X | x ∼ x′}. Conversely, a partition P of X also induces an

equivalence relation ∼ on X: x ∼ x′ if and only if x, x′ are in the same cell in P .

11

2.1.2 Lattice (Partial Order)

A partial order is a binary relation that satisfies reflexivity, antisymmetry, and transitivity.

A lattice is a partially ordered set (or a poset) in which every pair of elements has a unique

supremum (i.e. least upper bound) called the join and a unique infimum (i.e. greatest lower

bound) called the meet. For any pair of elements p, q in a lattice, we denote their join and

meet by p∨ q and p∧ q, respectively. A sublattice is a nonempty subset of a lattice, which is

closed under join and meet. A join-semilattice (resp. meet-semilattice) is a poset in which

every pair of elements has a join (resp. meet). So, a lattice is both a join-semilattice and a

meet-semilattice. A lattice is bounded if it has a greatest element and a least element.

2.1.3 Group Theory

Group and subgroup. A group is a pair (G, ∗) where G is a set and ∗ : G × G → G

is a binary operation satisfying the group axioms : associativity, the existence of identity

(denoted e), and the existence of inverse. We also directly say that G is a group, whenever

the group operation is understood. Given a group (G, ∗), a subset H ⊆ G is a subgroup,

denoted H ≤ G, if (H, ∗) is a group. The singleton {e} is a subgroup of any group, called

the trivial group.

Subgroup lattice. Let G be a group. We useH∗G to denote the collection of all subgroups

of G. The binary relation “a subgroup of” on H∗G, denoted ≤, is a partial order. (H∗G,≤)

is a lattice, called the lattice of all subgroups of G, or the (complete) subgroup lattice for G

in short. For any pair of subgroups A,B ∈ H∗G, the join A ∨ B = 〈A ∪ B〉 is the smallest

subgroup containing A and B; the meet A ∧ B = A ∩ B is the largest subgroup contained

in A and B.

Generating set of a group. Given a group G and a subset S ⊆ G, the subgroup (of

G) generated by S, denoted 〈S〉, is the smallest subgroup of G containing S; equivalently,

〈S〉 is the set of all finite products of elements in S ∪ S−1 where S−1 := {s−1 | s ∈ S}. The

subgroup generated by a singleton S = {s} is called a cyclic group; for brevity, we also call

it the subgroup generated by s (an element), denoted 〈s〉.
Group action. Let G be a group and X be a set, then a group action of G on X (or

G-action on X) is a function · : G×X → X that satisfies identity (e · x = x,∀x ∈ X) and

compatibility (g · (h · x) = (g ∗ h) · x,∀g, h ∈ G,∀x ∈ X). In this thesis, we adopt by default

the multiplicative notation for group operations and actions, in which · or ∗ or both may be

omitted. For any G-action on X, the orbit of x under G is the set Gx := {g ·x | g ∈ G}, and

the quotient of X by G-action is the set consisting of all orbits X/G := {Gx | x ∈ X}. For

12

any G-action on X, the (pointwise) stabilizer of x ∈ X is the set Gx := {g ∈ G | g ·x = x} ≤
G; the setwise stabilizer of Y ⊆ X is the setGY := {g ∈ G | g·Y := {g·x | x ∈ Y } = Y } ≤ G.

Group conjugacy. Let G be a group. We say that two elements a, b ∈ G are conjugate

to each other, if there exists a g ∈ G such that b = gag−1, and two subsets A,B ⊆ G

are conjugate to each other, if there exists a g ∈ G such that B = gAg−1. In either case,

conjugacy is an equivalence relation on G (resp. 2G, i.e. the power set of G), where the

equivalence class of a ∈ G (resp. A ⊆ G) is called the conjugacy class of a (resp. A).

In particular, we can restrict the above equivalence relation on 2G to the collection of all

subgroups H∗G which is a subset of 2G.

Group homomorphism. Let (G, ∗) and (H, ·) be two groups. A function φ : G → H

is called a homomorphsim if φ(a ∗ b) = φ(a) · φ(b) for all a, b ∈ G. An isomorphism is a

bijective homomorphism. We say two groups G and H are homomorphic if there exists a

homomorphism φ : G→ H, and say they are isomorphic, denoted G ∼= H, if there exists an

isomorphism φ : G→ H.

Group decomposition. Let S be a subset of a group G; then NG(S) := {g ∈ G |
gSg−1 = S} is called the normalizer of S in G, which is a subgroup of G. We say a subset

T ⊆ G normalizes another subset S ⊆ G if T ⊆ NG(S). We say a subgroup N of a group G

is a normal subgroup of G, denoted N E G, if G normalizes N , i.e. G = NG(N). Let G be a

group, N E G, H ≤ G, N∩H = {e}, andG = NH; thenNH is the inner semi-direct product

of N and H, and N oH is the outer semi-direct product of N and H. The outer semi-direct

product NoH is the group of all ordered pairs (n, h) ∈ N×H with group operation defined

by (n, h)(n′, h′) = (nhn′h−1, hh′). The inner and outer semi-direct products are isomorphic,

i.e. NH ∼= N o H. The semi-direct product equation G = NH gives a decomposition of

G into “nearly non-overlapping” (i.e. with trivial intersection) subgroups; moreover, for any

g ∈ G, these exist a unique n ∈ N and h ∈ H such that g = nh.

2.2 CLAUDE SHANNON’S INFORMATION LATTICE

In his 1953 work, Claude E. Shannon attempted to unravel the nature of information [30]

(beyond just quantifying its amount which is mutual information [38]). In the specific con-

text of communication problems, he first coined the term information element to denote

the nature of information which is invariant under “(language) translations” or different

encoding-decoding schemes. He further introduced a partial order between a pair of infor-

mation elements, eventually yielding a lattice of information elements, or information lattice

in short. We present an overview of Shannon’s original work and a follow-up work [39] which

formalizes Shannon’s idea in a more principled way.

13

Information element. An information element is an equivalence class of random vari-

ables (of a common sample space) with respect to the “being-informationally-equivalent”

relation, where two random variables are informationally equivalent if they induce the

same σ-algebra (of the sample space). Under this definition, the notion of an information

element—essentially a probability space—is more abstract than that of a random variable:

an information element can be realized by different random variables. The relationship

between different but informationally-equivalent random variables and their corresponding

information element is analogous to the relationship between different translations (say, En-

glish, French, or a code) of a message and the actual content of the message. Since different

but faithful translations are viewed as different ways of describing the same information,

the information itself is then regarded as the equivalence class of all translations or ways of

describing the same information. Therefore, the notion of information element reveals the

nature of information.

Information lattice. An information lattice is a lattice of information elements, where

the partial order is defined by x ≤ y ⇐⇒ H(x|y) = 0 where H denotes the Shannon

entropy. The join of two information elements x∨y = x+y is called the total information of

x and y; the meet of two information elements x∧ y = xy is called the common information

of x and y. By definition, under a fixed probability measure, every information element can

be uniquely determined by its induced σ-algebra. Also, it is known that every σ-algebra of a

countable sample space can be uniquely determined by its generating (via union operation)

sample-space-partition. Thus, an information lattice has a one-to-one correspondence to a

partition lattice. Further, given a partition of a sample space, one can construct a unique

permutation subgroup whose group action on the sample space produces orbits that coincide

with the given partition [39]. Therefore, under this specific construction, any partition lattice

has a one-to-one correspondence to the constructed subgroup lattice [39]. The above thought

process can be succinctly summarized in the following chain:

information lattice → partition lattice → subgroup lattice (→ interpretation). (2.1)

which further achieves group-theoretic interpretations of various information-theoretic re-

sults, bringing together information theory and group theory [40,41].

2.3 BETTY SHANNON’S STOCHASTIC MUSIC AND THEREAFTER

With the passing of Mary Elizabeth Moore “Betty” Shannon on May 1, 2017, there has

been renewed interest in her Bell Labs work at the intersection of music and mathematics

14

(mutual loves she shared with her husband, Claude [42]), which fits into the main theme of

this thesis at the intersection of computer science, mathematics, and music. In this section,

we first discuss some context around her work described in the technical memorandum

“Composing Music by a Stochastic Process” (1949), together with the intellectual arc of

computational creativity for music composition that has carried forward to the present.

Betty Shannon studied mathematics at the New Jersey College for Women (now Douglass

College at Rutgers University) on a full scholarship and graduated Phi Beta Kappa. The

next day, she started work at Bell Laboratories in Manhattan as a computer in the math-

ematics department; she was later promoted to technical assistant [42, 43]. For a 200-year

period in the history of science and technology, human workers called “computers” were

employed to perform calculations by hand, whether in computing the 1758 return of Hal-

ley’s comet, mathematical tables during the Great Depression, or ballistics tables during

WWII. Sometime during the war, Warren Weaver started calling computers “girls” and one

member of his Applied Mathematics Panel defined the unit “kilogirl,” presumably a term

for a thousand hours of computing labor [44]. In this era and beyond, e.g. at NASA, it was

a significant and unusual achievement for a woman to get her name on a research report;

human computers were even largely excluded from editorial meetings where reports were

developed [45]. As such, it was exceptional for Bell Telephone Laboratories Technical Mem-

orandum MM-49-150-29, “Composing Music by a Stochastic Process,” 15 November 1949

to list both John R. Pierce and Mary E. Shannon [46].

Though Pierce and Shannon were unaware at the time, their stochastic music composi-

tion algorithms followed in the tradition of W. Mozart, J. Haydn, M. Stadler, and K. P.

E. Bach [47], but improved upon it considerably. In the memorandum, the authors intro-

duced stochastic models to describe the generating process of chord progression in four-part

harmonies, while carefully controlling the model behavior to resemble what a human com-

poser would do in part writing. The rules for both chord construction (1-gram) and chord

progression (2-gram) were largely borrowed from known music theory as well as personal

specifications such as keeping common tones between adjacent chords. The set of rules

defined the legal actions in the composition process as well as their chances to be selected.

Therefore, the resulting chord progression was a realization of the stochastic process specified

by the rule set.

Under modern taxonomy, the Pierce-Shannon composition model can be thought of as a

probabilistic expert system for symbolic music (not audio waveforms). Both the rules and

chances involved in this stochastic model are pre-specified rather than learned from data (a

Markov random process rather than reinforcement learning), and thus the algorithm runs

mechanically as a sampling automaton once it starts; the algorithm is pre-fixed whereas

15

its outputs are random realizations. Known weaknesses exist for this composition model,

e.g. the composed music lacks a long-range plan due to being Markov and the quality of

the results directly depends on the given rules whose design itself is an art. Indeed, as

Pierce later described [47], “While the short-range structure of these compositions was very

primitive, an effort was made to give them a plausible and reasonably memorable, longer-

range structure.... the compositions were primitive rondos.”

In our eyes, the model was a significant achievement in computational creativity, espe-

cially for the 1940s when the algorithm was implemented by “throwing three specially made

dice and by using a table of random numbers,” [47] and before J. McCarthy, M. L. Minsky,

N. Rochester, and C. E. Shannon asserted creativity as a central goal in the formalization of

artificial intelligence [48]. Further progress in Markov chain music was made by L. A. Hiller,

Jr. and L. M. Isaacson of the University of Illinois at Urbana-Champaign, who formulated

the rules of four-part, first-species counterpoint so that an electronic computer could choose

notes at random and reject them if rules were violated. This music was curated and pub-

lished as the llliac Suite, for String Quartet (1957) [49]. Even today, the Pierce-Shannon

composition model is used as the core of many modern techniques in music composition

and style replication. Perhaps the only change is that modern electronic computers enable

extension of the model to higher-order n-grams that allow a long-range composition plan.

In reflecting on their work, John Pierce suggested [47] “the information-theoretic com-

poser... will make up his composition of larger units [recognizable chords, scales, themes, or

ornaments] which are already familiar in some degree to listeners through the training they

have received in listening to other compositions. ... Perhaps the composer will surprise the

listener a bit from time to time, but he won’t try to do this continually.” But where do these

concepts, rules, and notions of surprise come from?

Recent research in computer music, including our own [50–53] (which comprises the main

body of the music application in this thesis), is concerned with automatically learning a hier-

archy of human-interpretable composition rules—the laws of music theory directly from raw

sheet music—and best methods to coherently break rules to personalize composition style.

As briefly described earlier, our approach to interpretable concept learning uses an iterative

alternating optimization of information-theoretic functionals such as Bayesian surprise and

mutual information, interpreted as cycling between a generative component (student) and a

discriminative component (teacher). The algorithm not only reproduces much of standard

music theory in textbooks, but also yields some novel music theory that our music-theorist

colleagues find intriguing (Chapter 13). Now, machines may not only execute composition

rules automatically, but learn and break rules automatically too. They may even partner

with human composers in creative conversations.

16

Chapter 3: Theoretical Exposition (Part I)

Introduction Exposition Development Recapitulation Coda

Chapter 1-2
Part I:
Chapter 3-7 Chapter 15Chapter 8-11

Part II:
Chapter 12-14
Part III:

Figure 3.1: Theoretical exposition outline.

This is the beginning chapter of Part I. This part presents the mathematical exposition

of ACL, formalizing the key notions of abstraction, concept, probabilistic rule, and further

the entire ACL problem (Chapter 4). The whole theory is grounded on a mathematical

construct of abstraction, which is then systematically derived towards abstraction hierarchy

(Chapter 5) and its generating mechanism (Chapter 6). Note that the goal in mathema-

tizing the notion of abstraction is not for its own sake, but to go from this theoretical

base towards computational developments that further bring about feasible, reliable, and

human-interpretable algorithmic models.

17

Chapter 4: Abstraction-Based Rules and Concepts

In this thesis, abstraction plays a key role in defining concepts and rules, the cornerstones

that further formalize Automatic Concept Learning (ACL). The former (i.e. the term “con-

cept”) explains the name ACL, and the latter (i.e. the term “rule”) specifies the form of an

ACL output. This chapter presents an overall picture of the three key terms—abstraction,

concept, rule—and their historical occurrences and usages in various related literatures.

4.1 ABSTRACTION: LITERATURE OVERVIEW

Abstraction describes the process of generalizing high-level concepts from specific data

samples by “forgetting the details” [54–56]. This conceptual process is pervasive in human

reasoning [3,9,10], and its computational counterpart is now also commonly seen in AI and

machine learning, with algorithmic models developed to automate abstraction in various

concept learning tasks [50,57–59].

Existing formalizations of abstraction form at least two camps. One uses mathematical

logic and reasoning where abstraction is explicitly constructed from abstraction operators

and formal languages [15,57,60]; the other uses deep learning where abstraction is hinted at

by the layered architectures of neural networks [58,61]. Their key characteristics—commonly

known as rule-based (deductive) and data-driven (inductive)—are quite complimentary. The

former enjoys model interpretability, but requires explicit handcrafting of complicated logic

with massive domain expertise; the latter shifts the burden of model crafting to data, but

makes the model less transparent. Perhaps the most famous representatives from the two

camps are IBM’s automatic chess player Deep Blue (1997) and DeepMind’s automatic go

player AlphaGo (2017), both of which defeated best human players in board games.

This thesis takes a new viewpoint, aiming for a middle ground between the two camps.

We formalize abstraction as a mechanism-driven clustering that further admits statistical

learning. By clustering, we forget within-cluster variations and discern only between-cluster

distinctions [62, 63], revealing the nature of abstraction [29]. In particular, we studied first

feature-induced clusterings, and further symmetry-induced clusterings that are more theo-

retically grounded and require less prior knowledge. While clustering is common in (unsu-

pervised) machine learning [64], our symmetry-induced clustering is in stark contrast with

common data clustering settings, as follows.

1. Data-free. Our symmetry-induced clustering considers partitioning an input space

rather than data samples. It is treated more as conceptual clustering than data cluster-

18

ing like k-means [65, 66]: clusters are formed in a mechanism-driven, not data-driven,

fashion; and the mechanisms considered here are symmetries. The process is causal,

and the results are interpretable. Notably, a single clustering mechanism transfers to

multiple domains, and a single clustering result transfers to various data sets.

2. Feature-free. Our symmetry-induced clustering involves no feature engineering, so

no domain expertise. This particularly means three things. First, no feature design

for inputs: we directly deal with mathematical spaces, e.g. vector spaces or manifolds.

Second, no feature/assignment function for cluster designation: this differs from al-

gorithms that hand-design abstraction operators [15], arithmetic descriptors (e.g. our

initial feature-induced clustering) [50,51], or decision-tree-like feature thresholding [63].

Third, no meta-feature tuning such as pre-specifying the number of clusters.

3. Similarity-free. Our symmetry-induced clustering does not depend on a predefined

notion of similarity. This differs from most clustering algorithms where much effort

has been expended in defining “closeness” [67, 68]. Instead, pairwise similarity is re-

placed by an equivalence relation induced from symmetry. Note that the definitions of

certain symmetries may require additional structure of the input space, e.g. topology

or metric, but this is not used as a direct measurement for inverse similarity. There-

fore, points that are far apart (in terms of metric distance) in a metric space can be

grouped together (in terms of equivalence) under certain symmetries, resulting in a

“discontinuous” cluster comprising disconnected regions in the input space. This is

not likely to happen for algorithms such as k-means.

It is noteworthy that being feature-free and similarity-free makes a clustering model uni-

versal [67], becoming more of a science than an art [69]. Besides the above three distin-

guishing features, our symmetry-induced clustering exhibits one more distinction regarding

hierarchical clustering for multi-level abstractions:

4. Global hierarchy. Like many hierarchical clusterings [70, 71], our clustering model

outputs a family of multi-level partitions and a hierarchy showing their interrelations.

However, here we have a global hierarchy formalized as a partition (semi)lattice, which

is generated from another hierarchy of symmetries represented by a subgroup lattice.

This is in contrast with greedy hierarchical clusterings such as agglomerative/divisive

clustering [72,73] or topological clustering via persistent homology [74]. These greedy

algorithms lose many possibilities for clusterings since the hierarchy is constructed by

local merges/splits made in a one-directional procedure, e.g. growing a dendrogram

19

A

B

C

D

EA

B

A B

greener grass

concept A B C D E

flying vertebrates

concept

“The grass is always greener
on the other side of the fence.”

“Most birds flying, but rare for fish,
amphibians, reptiles, mammals.”

abstraction

probabilistic
rule

Figure 4.1: Examples of casting real-world rule statements into probabilistic rules.

or a filtration. In particular, greedy hierarchical clustering is oft-criticized since it is

hard to recover from bad clusterings in early stages of construction [74]. Lastly, our

global hierarchy is represented by a directed acyclic graph rather than tree-like charts

(essentially a linear structure) such as dendrograms or barcodes.

4.2 ABSTRACTION, CONCEPT AND PROBABILISTIC RULE

We define an abstraction of a set by a partition of the set. Given an abstraction of a set, we

define a concept by a cell in the partition, and define a (probabilistic) rule by a pair consisting

of the abstraction and a probability distribution over the abstracted concepts. Equivalently,

an abstraction of a set can be also viewed from the perspective of an equivalence relation

on that set (with the partition being precisely the quotient of the set by the equivalence

relation), and accordingly a concept can be also viewed as an equivalence class.

Table 4.1 summarizes the definitions and notations of the three terms. Figure 4.1 gives

two examples casting two rule statements (in English sentences) into our abstraction-based

probabilistic rules: one shows a deterministic probability distribution over two abstracted

concepts {the grass on this side of the fence, the grass on that side of the fence}; the other

shows a non-deterministic probability distribution over five abstracted concepts {mammals,

20

Definition Notation

abstraction partition (equivalence relation) A
concept partition cell (equivalence class) C ∈ A
rule partition & probability distribution (A, pA)

Table 4.1: Definitions/notations of abstraction, concept, and probabilistic rule.

reptiles, birds, fish, amphibians}.
Built on top of abstraction-based concepts and rules, Automatic Concept Learning (ACL)

takes as input a data set or a data distribution, and outputs probabilistic rules to summarize

and explain the input. Probabilistic rules are further made hierarchal, mechanism-driven,

and sequentially disentangled, so as to reveal structured, interpretable, and independent

insights of the data.

So far, one might not be immediately clear about the intuitions behind these mathe-

matical definitions, especially the motivations and computational benefits of formalizing an

abstraction as a partition. The following chapter will take a steady pace toward our formal

derivation of computational abstraction, starting from informal discussions on the nature

of abstraction to deeper discussions on abstraction hierarchies, and further towards their

algorithmic constructions.

21

Chapter 5: Computational Abstraction

With the big picture of abstraction and abstraction-based rules and concepts in mind,

we begin in this chapter to detail the complete theoretical foundation for computational

abstraction, its hierarchies, and its generating mechanisms. It is important to keep in mind

that the main purpose of all the machinery developed from here on is threefold (beyond

mathematical beauty): to make things precise; to make things interpretable; and to lay

down the path towards feasible and efficient algorithms.

5.1 EVERYDAY ABSTRACTION

We first informally discuss abstraction by drawing examples from different disciplines

and summarizing their commonalities. Although expressed in everyday terms from specific

domains, the intuitions from this section suggest all the key properties of abstraction that

the sequel aims to capture formally. In particular, the subsequent sections of this Part I

formalize the ideas from this section in a precise and general manner that, importantly,

leads to principled algorithmic approaches for automatic concept learning in Part II.

Whether you are aware of it or not, abstraction is everywhere in our daily behaviors. It is

in the nature of abstraction that it treats some set of instances that it subsumes as if they

were qualitatively identical, although in fact they are not [29]. Examples of people making

abstractions can be as simple as observing ourselves through social categories such as race or

gender [75]; or as complicated as a systematic taxonomy of a subject domain. In Figure 5.1,

we present examples of two systematically derived abstractions: one is from a taxonomy of

animals; the other is from a classification of music chords. There are many commonalities

in these examples as well as in many other real-life examples of abstraction. We summarize

the key properties shared in these abstraction examples, which will be formalized later.

Nature of abstraction: clustering or classification? One shared property among

many examples of abstraction is the idea of clustering and then forgetting within-cluster

variations. For instance, we cluster people into {men, women}, forgetting the difference

between John and David, Mary and Rachel; we cluster animals with a backbone into {fish,

amphibians, reptiles, birds, mammals}, forgetting the difference between penguins and ea-

gles, bats and dogs; we cluster music triads into {major, minor, augmented, diminished, . . .},
forgetting the difference between C-E-G and F-A-C, C-E[-G and A-C-E. This idea of cluster-

ing is pervasive in various definitions of abstraction, but more often termed as classification

(or categorization, taxonomy). Although clustering and classification (likewise clusters and

22

Animal Kingdom

Vertebrates Invertebrates

Mammals

Echinoderms
Protozoa

Fish Annelids
Amphibians Mollusks
Reptiles Arthropods
Birds Arachnids

Penguins
Eagles
…

Bats
Dogs
Bears

Humans
…

Music Chords

Trichords Tetrachords

Triads
Major
Minor
Augmented

…
Diminished

…

Seventh
Major-Major
Minor-Minor
Dominant

Fully-Diminished
Half-Diminished

…
Sixth

Italian
French
German

…
…

…

Figure 5.1: Hierarchical abstractions and concepts of Animal Kingdom (left) and music
chords (right). Both hierarchies are essentially linear, e.g. kindom → phylum → class →
· · · → species, which however, is not necessarily the case in general.

classes) are more or less synonyms in everyday life, there is a clear difference between the two

in machine learning. The former generally falls under the realm of unsupervised learning,

whereas the latter falls under supervised learning. The difference is merely whether or not

there is a label for each cluster. Note that labels are important in supervised learning, since

a perfect binary classifier with a 100% accuracy is clearly different from a bad one with a 0%

accuracy. However, in light of clustering, the two classifiers are identical: the “bad” one, for

instance, simply calls all men as women and all women as men, but still accurately captures

the concept of gender. Consequently in this thesis, we treat the nature of abstraction as

clustering rather than classification, further formalized as a partition or equivalence relation.

So, men and women are two equivalence classes of people: all men are equivalent, so are all

women. An extended discussion on clustering and classification can be found in Section 5.4,

relating to information elements and random variables.

Hierarchy. Another shared property among many examples of abstraction is the presence

of a hierarchy, where “later” abstractions can be made recursively from “earlier” ones. For

instance, we cluster animals into {fish, birds, mammals, annelids, mollusks, . . .}, and further

cluster these abstracted terms into {vertebrates, invertebrates}; we cluster music chords into

{major, minor, dominant, German, . . .}, and further cluster these abstracted terms into

{triads, seventh chords, sixth chords, . . .}, and even further into {trichords, tetrachords,

. . .}. Hierarchy, being either explicit or implicit, brings the notion of level of an abstraction.

23

For instance, biological taxonomy gives an explicit description of abstraction levels: kindom

→ phylum → class → order → family → genus → species; whereas the abstraction levels

of music chords are relatively implicit but still present. In general, an abstraction hierarchy

can be more complicated than simply linear due to various clustering possibilities. In this

thesis, a general hierarchy is formalized by a mathematical lattice.

Mechanism. A third shared property among many examples of abstraction is the exis-

tence of a mechanism—a driving force that causes the resulting abstraction. For instance,

the presence or absence of a backbone is the underlying mechanism that results in the

abstraction of animals into vertebrates and invertebrates; the intervalic quality is the un-

derlying mechanism that results in the abstraction of music chords. Having a mechanism is

important for at least three reasons. First, it makes the abstraction process logical, so that

every abstraction is made for a reason. This is a distinguishing feature in human intelligence,

which is further key to the development of concepts and knowledge. Second, different mech-

anisms yield different abstractions, which further yield different attributes of an object. For

instance, a bat can be abstracted as a mammal since, among many other reasons, it nurses

its pups with milk; a bat can also be abstracted as a flying animal based on its capability

of flying. In comparison, under the same two mechanisms, a penguin is abstracted as a bird

but flightless. Third, perhaps most importantly, having a mechanism allows generalization,

i.e. we can transfer a mechanism from one domain to another. For instance, generalizing

the same mechanism under which we abstract people into men and women to other species,

we get roosters and hens, bulls and cows, etc. As a result, we emphasize the generating

mechanisms for abstractions. In this thesis, we focus on two types of mechanisms: features

and symmetries.

Towards laws of nature. Lastly, abstraction is a very important stage towards laws—

or less seriously, rules or patterns—of nature [76]. An abstraction itself is not a rule, but

an abstraction paired with a property describing that abstraction can be treated as a rule.

For instance, the abstraction {fish, amphibians, reptiles, birds, mammals} of animals is not

a rule, but a statement like “Most of the birds fly, whereas only a few fish, amphibians,

reptiles, or mammals fly” is a rule which indicates what is special about this abstraction. In

this thesis, we consider rules made out of abstractions and their statistical properties, which

directly gives rise to our definition of probabilistic rules.

5.2 ABSTRACTION AS PARTITION

We formalize an abstraction process on a raw data space as solving a clustering problem.

In this process, we group elements of the data space (also called data points) into clusters,

24

so as to deliberately forget or to abstract away within-cluster variations. The outcome is

an abstraction space whose elements are the clusters denoting concepts. Every abstraction

space presents one coarse-grained view of the data space, and different abstraction spaces

are possible to present different ways of abstracting the same data space.

Formally, an abstraction of a set is a partition of the set, which is a mathematical repre-

sentation of the outcome of a clustering process. Throughout this thesis, we reserve X to

exclusively denote a set which we make abstractions of. The set X can be as intangible as

a mathematical space, e.g. Rn, Zn, a manifold in general; or as concrete as a collection of

items, e.g. {rat, ox, tiger, rabbit, dragon, snake, horse, sheep, monkey, rooster, dog, pig}.

Keywords and notations: partition of a set (P), partition cell (P ∈ P); equivalence relation

on a set (∼), quotient (X/∼).

Remark 5.1. An abstraction is a partition, and vice versa. The two terms refer to the same

thing, with the only nuance being that one is used less formally, whereas the other is used in

the mathematical language. When used as a single noun, these two terms are interchangeable

in this thesis.

Remark 5.2. A partition is not an equivalence relation. The two terms do not refer to the

same thing (one is a set, the other is a binary relation), but convey equivalent ideas since

they induce each other bijectively. In this thesis, we use an equivalence relation to explain a

partition: elements of a set X are put in the same cell because they are equivalent. Based

on this reason, abstracting the set X is about treating equivalent elements as the same, i.e.

collapsing equivalent elements in X into a single entity (namely, an equivalence class or a

cell) where collapsing is formalized by taking the quotient.

5.3 ABSTRACTION HIERARCHY AS PARTITION LATTICE

A set X can have multiple partitions, provided that |X| > 1. The number of all possible

partitions of a set X is called the Bell number B|X|. Bell numbers grow extremely fast with

the size of the set. starting from B0 = B1 = 1, the first few Bell numbers are:

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, . . . (5.1)

We use P∗X to denote the family of all partitions of a set X, so |P∗X | = B|X|. We can

compare partitions of a set in at least two ways. One simple way is to compare by size:

given two partitions P ,Q of a set, we say that P is no larger than (resp. no smaller than)

25

Q if |P| ≤ |Q| (resp. |P| ≥ |Q|). Another way of comparison considers the structure of

partitions via a partial order on P∗X . The partial order further yields a partition lattice, a

hierarchical representation of a family of partitions.

Keywords and notations: partial order, poset; lattice, join (∨), meet (∧), sublattice, join-

semilattice, meet-semilattice, bounded lattice.

Definition 5.1. Let P and Q be two abstractions of a set X. We say that P is at a higher

level than Q, denoted P � Q, if as partitions, P is coarser than Q. For ease of description,

we expand the vocabulary for this definition, so the following are all equivalent:

1. P � Q, or equivalently Q � P (Figure 5.2).

2. As abstractions, P is at a higher level than Q (or P is an abstraction of Q).

3. As partitions, P is coarser than Q (or P is a coarsening of Q).

4. As abstractions, Q is at a lower level than P (or Q is a realization of P).

5. As partitions, Q is finer than P (or Q is a refinement of P).

6. Any x, x′ ∈ X in the same cell in Q are also in the same cell in P.

7. Any x, x′ ∈ X in different cells in P are also in different cells in Q.

P Q�
finer partition

higher-level abstraction

36pt

Figure 5.2: The partial order � compares the levels of abstractions.

It is known that the binary relation “coarser than” on the family P∗X of all partitions of

a set X is a partial order, so is the binary relation “at a higher level than” on abstractions.

Given two partitions P ,Q of a set, we can have P � Q, Q � P , or they are incomparable.

Further, (P∗X ,�) is a bounded lattice, in which the greatest element is the finest partition

{{x} | x ∈ X} and the least element is the coarsest partition {X}. For any pair of partitions

P ,Q ∈ P∗X , their join P ∨ Q is the coarsest common refinement of P and Q; their meet

P ∧Q is the finest common coarsening of P and Q (Figure 5.3).

26

P Q P ^ QP _ Q

36pt

Figure 5.3: Two abstractions P ,Q and their join P ∨Q and meet P ∧Q.

Definition 5.2. An abstraction universe for a set X is a sublattice of P∗X , or a partition

(sub)lattice in short. In particular, we call the partition lattice P∗X itself the complete ab-

straction universe for X. An abstraction join-semiuniverse (resp. meet-semiuniverse) for a

set X is a join-semilattice (resp. meet-semilattice) of P∗X . An abstraction family for a set

X, an even weaker notion, is simply a subset of P∗X .

If the complete abstraction universe (P∗X ,�) is finite, we can visualize its hierarchy as a

directed acyclic graph where vertices denote partitions and edges denote the partial order.

The graph is constructed as follows: plot all distinct partitions of X starting at the bottom

with the finest partition {{x} | x ∈ X}, ending at the top with the coarsest partition {X}
and, roughly speaking, with coarser partitions positioned higher than finer ones. Draw edges

downwards between partitions using the rule that there will be an edge downward from P
to Q if P � Q and there does not exist a third partition R such that P � R � Q. Thus,

if P � Q, there is a path (possibly many paths) downward from P to Q passing through a

chain of intermediate partitions (and a path upward from Q to P if Q � P). For any pair

of partitions P ,Q ∈ P∗X , the join P ∨Q can be read from the graph as follows: trace paths

downwards from P and Q respectively until a common partition R is reached (note that

the finest partition {{x} | x ∈ X} at the bottom is always the end of all downward paths in

the graph, so it is guaranteed that R always exists). To ensure that R = P ∨Q, make sure

there is no R′ � R (indicated by an upward path from R to R′) with upward paths towards

both P and Q (otherwise replace R with R′ and repeat the process). Symmetrically, one

can read the meet P ∧Q from the graph.

There are limitations to this graph, especially if the set X is infinite. Even for a finite set

X of relatively small size, the complete abstraction universe P∗X can be quite complicated to

visualize (recall that we have to draw |P∗X | = B|X| vertices where B|X| grows extremely fast

with |X|, let alone the edges). However, not all arbitrary partitions are of interest to us. In

Chapter 6, we will study feature-induced abstractions and symmetry-induced abstractions

as well as their corresponding abstraction universes.

27

5.4 RULE HIERARCHY AS GENERALIZED INFORMATION LATTICE

Recall that a probabilistic rule in an ACL output is defined by a pair consisting of an

abstraction and a probability distribution over the abstracted concepts (Section 4.2). Thus,

coupling an abstraction hierarchy with a probability measure yields a hierarchical rule space

or a rule hierarchy in short (Figure 5.4), which turns out to be a generalization of Shannon’s

information lattice (cf. Section 2.2).Rule Hierarchy

abstraction hierarchy rule hierarchy
+ probability

Recall: an abstraction a rule
+ probability

()

Figure 5.4: From abstraction hierarchy to rule hierarchy: generalizing information lattice.

In particular, we cast Shannon’s information lattice into our abstraction framework, re-

vealing the key difference to be a probability measure:

information lattice = partition lattice + probability measure. (5.2)

Rewrite our earlier definition of a probabilistic rule:

probabilistic rule = partition + probability distribution. (5.3)

It is easy to see that (5.2) is a hierarchical generalization of (5.3). This further shows that

transferring Shannon’s information lattice originally defined for communication problems

to our concept learning problem becomes a hierarchical rule space. Our abstraction-based

rule hierarchy reproduces Shannon’s information lattice in more general context, since no

information-theoretic functional is needed in the definition. Under this big picture, we

discuss in more details about connections between these two parallel worlds.

28

Partition lattice Information lattice

element partition (P); information element (x);
clustering (X,P); probability space (X,Σ, P);
equiv. class of classifications equiv. class of random variables

partial order P � Q x ≤ y ⇐⇒ H(x|y) = 0
join P ∨Q x+ y
meet P ∧Q xy
metric undefined ρ(x, y) = H(x|y) +H(y|x)

Table 5.1: Partition lattice and information lattice: the main difference comes from the fact
that a partition lattice is not coupled with a measure; whereas an information lattice is
coupled with a probability measure, so both the partial order and the metric can be defined
in terms of entropies.

Nature of abstraction (clustering or classification?) Generalizing Shannon’s in-

sight on the nature of information essentially reveals the difference between clustering and

classification in machine learning. We can similarly define an equivalence relation on the

set of all classifications where two classifications are equivalent if they yield the same set

of classes and only differ by class labels. For instance, given a set of animals, classifying

them into {fish, amphibians, reptiles, birds, mammals} is equivalent to classifying them into

{poisson, amphibiens, reptiles, des oiseaux, mammifères}, where the different class labels

are only English and French translations of the same set of animal classes. So, clustering

to classification is analogous to information element to random variable; and it is clustering

rather than classification that captures the nature of abstraction. This once again explains

why abstraction is formalized as a clustering problem in this thesis.

Partition lattice and information lattice. By definition, every information element

can be uniquely determined by its induced σ-algebra. Also, it is known that every σ-algebra

of a countable sample space can be uniquely determined by its generating (via union opera-

tion) sample-space-partition. As a result, an information lattice has a one-to-one correspon-

dence to a partition lattice up to different probability measures. We summarize major con-

nections between a partition lattice and an information lattice in Table 5.1. The differences

are rooted in the separation of abstraction (clustering) from statistics, so roughly speaking,

a partition lattice—which is measure-free—can be thought as an information lattice without

probability measure, i.e. Equation (5.2). Therefore, abstraction is a more general concept

than information, which is not specific to communication problems, and in particular, is not

defined via any stochastic processes or information-theoretic functionals such as entropy.

Interpretable rule learning. The separation between partition and probability, or the

separation between abstraction and statistics, is important since it opens the opportunity

29

for interpretable statistical learning for probabilistic rules, where interpretability is achieved

by explicitly constructing a partition lattice from some generating source (e.g. features or

subgroups as we will soon see in the Chapter 6), and learning is achieved by subsequent

statistical inference on this lattice (Chapter 10). This process can be elegantly presented in

the following chain aiming for learning:

feature/subgroup lattice → partition lattice → information lattice (→ learning). (5.4)

At a first glance, regarding subgroup lattices, Chain (5.4) aiming for interpretable learning

is merely a reverse process of Chain (2.1) aiming for re-interpretation. However, the sub-

group lattices in both chains are in stark contrast: the subgroups considered in Chain (5.4)

are based on certain symmetries—the underlying mechanism of abstraction—whereas the

subgroups considered in Chain (2.1) are merely (isomorphic) re-statements of the given par-

titions. In other words, among possibly many subgroups that generate the same partition,

we only pick the one that explains to us the types of symmetries under consideration. The

preservation of interpretable symmetries through Chain (5.4) makes the subsequent learning

transparent. Hence, when abstraction does meet statistics, it will yield interpretable machine

learning and knowledge discovery, which is beyond simply a re-interpretation of known re-

sults. As such, abstraction generation and statistical learning are the two constituent pillars

of our Information Lattice Learning.

30

Chapter 6: Abstraction Generating Mechanisms

To achieve both the individual (shallow) and the collective (deep) interpretability of a

desired ACL output (Section 1.1.3), in this chapter, we discuss abstraction generating mech-

anisms and their hierarchical interconnections. In particular, we study two types of mecha-

nisms, namely features and symmetries, yielding feature-induced abstractions and symmetry-

induced abstractions, respectively. Note that this chapter only presents the theory for ab-

straction generating mechanisms, whereas the corresponding abstraction generating algo-

rithms will be introduced later in Part II.

6.1 FEATURE-INDUCED ABSTRACTION

Conceptually, perhaps the most straightforward generating source of an abstraction is a

feature function, where the partition cells are formed by taking the preimages of all possible

feature values. For instance, with the feature being color and with the possible feature values

being from {red, yellow, blue}, the induced abstraction of a data space simply comprises

three concepts (or clusters), namely red data points, yellow data points, and blue data points.

It is clear then that the interpretability of a feature-induced abstraction is directly tied to

the interpretability of the feature function. When the feature function is conceptually simple

or is composed from simple pieces in an interpretable way, we know the abstraction.

Computationally, this is the most efficient way (or at least one of the most efficient ways)

of generating an abstraction, since the feature function can be independently applied to every

data point in the data space to directly give the partition cell that data point belongs to.

In particular, the feature value itself is an explicit name or label of that partition cell; thus

obviously, the number of all possible feature values is the number of concepts subsumed in

the induced abstraction, i.e. the size of the partition.

It is worth noting that, with the above two properties at hand, we are almost in an

ideal position here, and this is why we start with features as our first type of abstraction

generating mechanisms. Nevertheless, keep in mind that, starting from features is absolutely

not necessary for generating abstractions and we are asking for more than needed here.

Therefore, there is room for less restrictive mechanisms later (Section 6.2).

31

6.1.1 From Feature to Abstraction

Mathematically, given a feature function φ : X → V where φ is surjective and V denotes

the set of all possible feature values, we induce an abstraction Pφ (of X) by taking the set

of preimages:

Pφ := {φ−1({v}) | v ∈ φ(X)} = X/∼φ (6.1)

where corresponding equivalence relation ∼φ is defined as follows: for any x, x′ ∈ X, x ∼φ x′
if and only if φ(x) = φ(x′), i.e. they are mapped to the same feature value.

Remark 6.1. A feature function on a set X provides more information than a partition

of the set X; in particular, it is common to have two distinct feature functions φ 6= φ′ but

Pφ = Pφ′. As a result, constructing an abstraction from a feature function can be thought

of as obtaining a clustering from a classification where the feature function is treated as the

class function. Because of the redundancy and the non-necessity of the feature values (i.e.

class labels), we will introduce a more general framework to construct abstractions, namely

symmetry-induced abstraction in Section 6.2.

6.1.2 From a Feature Pool to an Abstraction Family

Given a pool of feature functions on a common domain X, say Φ, we can generate a family

of abstractions of X by

PΦ
X := {Pφ | φ ∈ Φ} ⊆ P∗X . (6.2)

Instead of considering arbitrary feature functions, we focus on the feature pool that is

spanned by a finite set of basis features that are individually “simple” (e.g. basic arith-

metic operators like sort and mod) and thus easy for people to interpret. Let B denote a

finite set of such basis features, we systematically construct the depth-k feature pool spanned

by B as follows:

Φ[k] := {bk′ ◦ · · · ◦ b1 | bk′ , . . . , b1 ∈ B, 0 ≤ k′ ≤ k}. (6.3)

We follow the convention that bk′ ◦ · ◦ b1 = id (the identity function) for k′ = 0. So, id ∈ Φ[k]

for all possible B and for all k ≥ 0, and it is worth noting that Pid = {{x} | x ∈ X}, i.e. the

finest partition of the set X.

In light of self-exploration (the first desired model property in Section 1.1.4), we want to

32

pre-select a set of basis features that encode as little domain knowledge as possible, but the

spanned Φ[k] is expressive enough to capture much of what we know. The key idea here is

the ability to break a rich pool of domain-specific features into a set of domain-agnostic basis

features as building blocks. This idea is analogous to creating various meaningful figures

from seven basic (meaningless) shapes in a tangram or composing various meaningful English

articles out of 26 (meaningless) English letters and a finite set of (meaningless) punctuation

marks. The design of such a set of basis features will be exemplified in Part III.

6.2 SYMMETRY-INDUCED ABSTRACTION

As already mentioned in Section 6.1, generating abstractions from feature functions is

asking for more than needed, which is essentially obtaining clustering from classification.

Further, regarding a hierarchical family of feature-induced abstractions, the design of ba-

sis features require a bit of domain intuition, and the generated family is at high risk of

containing many duplicates that are not easy to detect before their actual generations.

These motivate us to study a more general type of mechanisms, namely symmetries, and ac-

cordingly, a more general framework for abstraction generation, namely symmetry-induced

abstractions. As the name suggests, a symmetry-induced abstraction is a partition induced

by some symmetry, where the partition cells are invariant with respect to the symmetry.

6.2.1 From Symmetry to Abstraction

To capture various symmetries, we consider groups and group actions.

Keywords and notations: group ((G, ∗) or G), subgroup (≤), trivial subgroup ({e}), sub-

group generated by a set (〈S〉), cyclic subgroup (〈s〉); group action, G-action on a set X

(· : G×X → X), orbit of x ∈ X (Gx), set of all orbits (X/G).

Consider the symmetric group (SX , ◦) defined over a set X, whose group elements are all

the bijections from X to X and whose group operation is (function) composition. The iden-

tity element of SX is the identity function, denoted id. A bijection from X to X is also called

a transformation of X. Therefore, the symmetric group SX comprises all transformations

of X, and is also called the transformation group of X, denoted F(X). We use these two

terms and notations interchangeably in this thesis, with a preference for F(X) in general,

while reserving SX mostly for a finite X.

Given a set X and a subgroup H ≤ F(X), we define an H-action on X by h · x := h(x)

for any h ∈ H, x ∈ X; the orbit of x ∈ X under H is the set Hx := {h(x) | h ∈ H}.

33

Orbits in X under H define an equivalence relation: x ∼ x′ if and only if x, x′ are in the

same orbit, and each orbit is an equivalence class. Thus, the quotient X/H = X/∼ is a

partition of X. It is known that every cell (or orbit) in the abstraction (or quotient) X/H

is a minimal non-empty invariant subset of X under transformations in H. We say this

abstraction respects the so-called H-symmetry or H-invariance.

We succinctly record the above process of constructing an abstraction X/H (of X) from

a given subgroup H ≤ F(X) in the following abstraction generating chain:

a subgroup of F(X)
group action−−−−−−−→ orbits

equiv. rel.−−−−−→ a partition
is−→ an abstraction of X, (6.4)

which can be further encapsulated by the abstraction generating function defined as follows.

Definition 6.1. The abstraction generating function is the mapping π : H∗F(X) → P∗X where

H∗F(X) is the collection of all subgroups of F(X), P∗X is the family of all partitions of X, and

for any H ∈ H∗F(X), π(H) := X/H := {Hx | x ∈ X}, where Hx := {h(x) | h ∈ H}.

Theorem 6.1. The abstraction generating function π : H∗F(X) → P∗X is not necessarily

injective.

Proof. Let X = {1, 2, 3, 4} and h = (1234), g = (1324) ∈ S4 = F(X) be two transformations

(also known as permutations, in the cycle notation) of X; consider the cyclic groups:

H = 〈h〉 := {hn | n ∈ Z} = {id, h, h2, h3} = {id, (1234), (13)(24), (1432)}; (6.5)

G = 〈g〉 := {gn | n ∈ Z} = {id, g, g2, g3} = {id, (1324), (12)(34), (1423)}. (6.6)

It is clear that H 6= G but π(H) = π(G) = {{1, 2, 3, 4}}, the coarsest partition of X.

Theorem 6.2. The abstraction generating function π : H∗F(X) → P∗X is surjective.

Proof. For any a, b ∈ X, let fa,b : X → X be the bijective function of the form

fa,b(x) =





a x = b,

b x = a,

x otherwise.

(6.7)

Pick any partition P ∈ P∗X . For any cell P ∈ P , define

SP := {fa,b | a, b ∈ P, a 6= b} , and let H :=

〈⋃

P∈P

SP

〉
. (6.8)

34

We claim π(H) = P . To see this, for any distinct x, x′ ∈ X that are in the same cell in P ,

fx,x′ ∈ SP for some P ∈ P , so fx,x′ ∈ H. This implies that x and x′ are in the same orbit in

π(H), since x′ = fx,x′(x). Therefore, π(H) � P . Conversely, for any distinct x, x′ ∈ X that

are in the same orbit in π(H), there exists an h ∈ H such that x′ = h(x). By definition,

h = hk ◦ · · · ◦h1 for some finite integer k > 0 where hk, . . . , h1 ∈ ∪P∈PSP . Suppose P ′ ∈ P is

the cell that x is in, i.e. x ∈ P ′, then h1(x) ∈ P ′, since h1(x) ∈ P ′ if h1 ∈ SP ′ and h1(x) = x

otherwise. Likewise, we have h2 ◦h1(x), h3 ◦h2 ◦h1(x), . . . , hk ◦ · · · ◦h1(x) ∈ P ′. This implies

that x′ = h(x) = hk ◦ · · · ◦ h1(x) ∈ P ′, i.e. x and x′ are in the same cell in P . Therefore,

P � π(H). Combining both directions yields π(H) = P , so π is surjective.

6.2.2 Duality: from Subgroup Lattice to Abstraction (Semi)Universe

Given a subgroup of F(X), we can generate an abstraction of X via the abstraction

generating function π. So, given a collection of subgroups of F(X), we can generate a family

of abstractions of X. Further, given a collection of subgroups of F(X) with a hierarchy, we

can generate a family of abstractions of X with an induced hierarchy. This leads us to a

subgroup lattice generating a partition (semi)lattice, where the latter is dual to the former

via the abstraction generating function π.

Keywords and notations: the (complete) subgroup lattice for a group (H∗G, ≤), join (A ∨
B = 〈A ∪B〉), meet (A ∧B = A ∩B).

We consider the subgroup lattice for F(X), denoted (H∗F(X),≤). Similar to the complete

abstraction universe (P∗X ,�), we can draw a directed acyclic graph to visualize (H∗F(X),≤) if

it is finite, where vertices denote subgroups and edges denote the partial order. The graph is

similarly constructed by plotting all distinct subgroups of F(X) starting at the bottom with

{id}, ending at the top with F(X) and, roughly speaking, with larger subgroups positioned

higher than smaller ones. Draw an upward edge from A to B if A ≤ B and there are no

subgroups properly between A and B. For any pair of subgroups A,B ∈ H∗F(X), the join

A∨B can be read from the graph by tracing paths upwards from A and B respectively until

a common subgroup containing both is reached, and making sure there are no smaller such

subgroups; the meet A ∧ B can be read from the graph in a symmetric manner. For any

subgroup C ∈ H∗F(X), the subgroup sublattice (H∗C ,≤) for C is part of the subgroup lattice

(H∗F(X),≤) for F(X), which can be read from the graph for (H∗F(X),≤) by extracting the part

below C and above {id}.

Theorem 6.3 (Duality). Let (H∗F(X),≤) be the subgroup lattice for F(X), and π be the

abstraction generating function. Then (π(H∗F(X)),�) is an abstraction meet-semiuniverse

35

for X. More specifically, for any A,B ∈ H∗F(X), the following hold:

1. partial-order reversal: if A ≤ B, then π(A) � π(B);

2. strong duality: π(A ∨B) = π(A) ∧ π(B) (Figure 6.1a);

3. weak duality: π(A ∧B) � π(A) ∨ π(B) (Figure 6.1b).

30pt; 20pt

⇡(A) ^ ⇡(B)

⇡(B)⇡(A)

⇡(A _ B)

A B

A _ B

(a) From join to meet.

⇡(A) _ ⇡(B)

⇡(A ^ B)

⇡(B)⇡(A)A B

A ^ B

(b) From meet to join.

Figure 6.1: Duality of join and meet between the subgroup lattice (left in each subfigure) and
the partition lattice (right in each subfigure). In (a), the gray vertex denoting π(A)∧ π(B),
i.e. the actual meet in the partition lattice, is equal to π(A ∨ B); in (b), the gray vertex
denoting π(A) ∨ π(B), i.e. the actual join in the partition lattice, can be any vertex below
π(A), π(B) and above π(A ∧B) or even equal to these three end points.

Proof. (Partial-order reversal) Pick any A,B ∈ H∗G and A ≤ B. For any x, x′ ∈ X that are

in the same cell in partition π(A) = X/A = {Ax | x ∈ X}, x′ ∈ Ax = {a(x) | a ∈ A}. Since

A ≤ B, then Ax ⊆ Bx, which further implies that x′ ∈ Bx. So, x and x′ are in the same

cell in partition π(B). Therefore, π(A) � π(B).

(Strong duality) Pick any A,B ∈ H∗G. By the definition of join, A,B ≤ A ∨ B, so from

what we have shown at the beginning, π(A), π(B) � π(A ∨ B), i.e. π(A ∨ B) is a common

coarsening of π(A) and π(B). Since π(A) ∧ π(B) is the finest common coarsening of π(A)

and π(B), then π(A ∨ B) � π(A) ∧ π(B). Conversely, for any x, x′ ∈ X that are in the

same cell in partition π(A ∨ B) = π(〈A ∪ B〉) = X/〈A ∪ B〉 = {〈A ∪ B〉x | x ∈ X}, x and

x′ must be in the same orbit under 〈A ∪ B〉-action on X, i.e. x′ ∈ 〈A ∪ B〉x which means

x′ = fk ◦ · · · ◦ f1(x) for some finite integer k where f1, . . . , fk ∈ A ∪ B (note: the fact that

A,B are both subgroups ensures that A ∪ B is closed under inverses). This implies that x

and f1(x) are either in the same cell in partition π(A) or in the same cell in partition π(B)

depending on whether f1 ∈ A or f1 ∈ B, but in either event, x and f1(x) must be in the

same cell in any common coarsening of π(A) and π(B). Note that π(A)∧π(B) is a common

coarsening of π(A) and π(B) (regardless of the fact that it is the finest), so x and f1(x) are

in the same cell in partition π(A) ∧ π(B). Likewise, f1(x) and f2 ◦ f1(x), f3 ◦ f2 ◦ f1(x) and

36

f2 ◦ f1(x), . . ., fk−1 ◦ · · · ◦ f1(x) and x′ are all in the same cell in partition π(A) ∧ π(B).

Therefore, x and x′ are in the same cell in partition π(A)∧π(B). So, π(A∨B) � π(A)∧π(B).

Combining both directions yields π(A ∨B) = π(A) ∧ π(B).

(Weak duality) Pick any A,B ∈ H∗G. By the definition of meet, A,B ≥ A∧B, so from what

have shown at the beginning, π(A), π(B) � π(A∧B), i.e. π(A∧B) is a common refinement

of π(A) and π(B). Since π(A)∨ π(B) is the coarsest common refinement of π(A) and π(B),

then π(A∧B) � π(A)∨π(B). We cannot obtain equality in general. For example, let X = Z
and A = {r : Z→ Z | r(x) = kx, k ∈ {−1, 1}}, B = {t : Z→ Z | t(x) = x+ k, k ∈ Z}. It is

clear that A,B ≤ F(X) and A∧B = A∩B = {id}, so π(A∧B) = X/{id} = {{x} | x ∈ Z},
i.e. the finest partition of Z. However, π(A) = {{x,−x} | x ∈ Z} and π(B) = {Z}, i.e. the

coarsest partition of Z, so π(A) ∨ π(B) = π(A) = {{x,−x} | x ∈ Z}. In this example, we

see that π(A ∧B) � π(A) ∨ π(B) but π(A ∧B) 6= π(A) ∨ π(B).

Remark 6.2 (Practical implication). The strong duality in Theorem 6.3 suggests a quick

way of computing abstractions. If one has already computed abstractions π(A) and π(B),

then instead of computing π(A ∨ B) from A ∨ B, one can compute the meet π(A) ∧ π(B),

which is generally a less expensive operation than computing A∨B and identifying all orbits

in π(A ∨B).

Theorem 6.3 further allows us to build an abstraction semiuniverse with a partial hierarchy

directly inherited from the hierarchy of the subgroup lattice. Nevertheless, there are cases

where π(A) � π(B) with incomparable A and B since the abstraction generating function

π is not injective (Theorem 6.1). If desired, one needs additional steps to complete the

hierarchy or even to complete the abstraction semiuniverse into an abstraction universe.

6.2.3 More on Duality: from Conjugation to Group Action

Partitions of a set X generated from two conjugate subgroups of F(X) can be related

by a group action. We present this relation as another duality between subgroups and

abstractions, which can also simplify the computation of abstractions.

Keywords and notations: conjugate, conjugacy class.

Theorem 6.4. Let G be a group, X be a set, and · : G×X → X be a G-action on X. Then

1. for any g ∈ G, Y ∈ 2X , g · Y := {g · y | y ∈ Y } ∈ 2X , and the corresponding function

· : G× 2X → 2X defined by g · Y is a G-action on 2X ;

37

2. for any g ∈ G,P ∈ P∗X , g ·P := {g ·P | P ∈ P} ∈ P∗X , and the corresponding function

· : G×P∗X → P∗X defined by g · P is a G-action on P∗X .

Proof. Pick any g ∈ G and Y ∈ 2X . For any x ∈ g · Y , we have x = g · y for some y ∈ Y .

Since Y ∈ 2X , i.e. Y ⊆ X, then y ∈ X. This implies that x = g ·y ∈ X. Therefore, g ·Y ⊆ X,

i.e. g · Y ∈ 2X . To see the corresponding function · : G× 2X → 2X is a G-action on 2X , we

first check that the identity element e ∈ G satisfies e ·Y = {e ·y | y ∈ Y } = {y | y ∈ Y } = Y ;

then check that for any g, h ∈ G, g · (h · Y) = {g · z | z ∈ {h · y | y ∈ Y }} = {g · (h · y) | y ∈
Y } = {(gh) · y | y ∈ Y } = (gh) · Y .

Pick any g ∈ G and P ∈ P∗X . For any distinct elements Q,Q′ ∈ g · P , we have Q = g · P
and Q′ = g · P ′ for some distinct P, P ′ ∈ P , respectively. Since P, P ′ are two distinct cells

in partition P , P ∩ P ′ = ∅. We claim that Q ∩ Q′ = ∅. Assume otherwise, then there

exists a q ∈ Q ∩ Q′ and q = g · p = g · p′ for some p ∈ P, p′ ∈ P ′. This implies that

p = (g−1g) · p = g−1 · (g · p) = g−1 · (g · p′) = (g−1g) · p′ = p′ ∈ P ∩ P ′, which contradicts the

fact that P ∩ P ′ = ∅. For any x ∈ X, g−1 · x ∈ X, then there exists a cell P ∈ P such that

g−1 ·x ∈ P . This implies that x = (gg−1)x = g · (g−1 ·x) ∈ g ·P which is an element in g · P .

Therefore, the union of all elements in g · P covers X, or more precisely, equals X, since

every element in g ·P is a subset of X. Hence, g ·P is indeed a partition of X, i.e. g ·P ∈ P∗X .

To see the corresponding function · : G × P∗X → P∗X is a G-action on P∗X , we first check

that the identity element e ∈ G satisfies e · P = {e · P | P ∈ P} = {P | P ∈ P} = P ; then

check that for any g, h ∈ G, g · (h · P) = {g ·Q | Q ∈ {h · P | P ∈ P}} = {g · (h · P) | P ∈
P} = {(gh) · P | P ∈ P} = (gh) · P .

Theorem 6.5 (Duality). Let X be a set, F(X) be the transformation group of X, and π be

the abstraction generating function. Then for any H ≤ F(X) and g ∈ F(X),

π(g ◦H ◦ g−1) = g · π(H). (6.9)

where · refers to the group action defined in Statement 2 in Theorem 6.4.

Proof. For any Y ∈ π(g ◦ H ◦ g−1), Y is an orbit in X under g ◦ H ◦ g−1, then Y =

(g ◦H ◦ g−1)x = {(g ◦h◦ g−1) ·x | h ∈ H} = {g ◦h◦ g−1(x) | h ∈ H} = {(g ◦h)(g−1(x)) | h ∈
H} = {(gh)·g−1(x) | h ∈ H} = {g·(h·g−1(x)) | h ∈ H} = {g·y | y ∈ Hg−1(x)} = g·Hg−1(x)

for some x ∈ X. Note that in the above derivation, g−1(x) ∈ X since g ∈ F(X). So, Hg−1(x)

is the orbit of g−1(x) under H, i.e. Hg−1(x) ∈ π(H). This implies that Y ∈ g · π(H).

Therefore, π(g ◦H ◦ g−1) ⊆ g · π(H).

Conversely, for any Y ∈ g · π(H), Y = g · P for some P ∈ π(H). Note that P is an orbit

in X under H, i.e. P = Hx = {h · x | h ∈ H} for some x ∈ X, then Y = g · P = {g · y | y ∈

38

P} = {g · (h · x) | h ∈ H} = {(gh) · x | h ∈ H} = {g ◦ h(x) | h ∈ H} = {g ◦ h ◦ g−1 ◦ g(x) |
h ∈ H} = {(g ◦ h ◦ g−1)(g(x)) | h ∈ H} = {(g ◦ h ◦ g−1) · g(x) | h ∈ H} = (g ◦H ◦ g−1)g(x)

for some x ∈ X. Note that in the above derivation, g(x) ∈ X since g ∈ F(X). Therefore,

(g ◦H ◦ g−1)g(x) is the orbit of g(x) under g ◦H ◦ g−1, i.e. (g ◦H ◦ g−1)g(x) ∈ π(g ◦H ◦ g−1).

This implies that Y ∈ π(g ◦H ◦ g−1). So, g · π(H) ⊆ π(g ◦H ◦ g−1).

Remark 6.3 (Practical implication). Theorem 6.5 relates conjugation in the subgroup lattice

H∗F(X) to group action on the partition lattice P∗X . In other words, the group action on the

partition lattice is dual to the conjugation in the subgroup lattice. This duality suggests a

quick way of computing abstractions. If one has already computed abstraction π(H), then

instead of computing π(g ◦ H ◦ g−1) from g ◦ H ◦ g−1, one can compute g · π(H), which is

generally a less expensive operation than computing g ◦H ◦ g−1 and identifying all orbits in

π(g ◦H ◦ g−1).

6.2.4 Partial Subgroup Lattice

Theoretically, through the abstraction generating function π and necessary hierarchy com-

pletions, we can construct the complete abstraction universe P∗X from the complete subgroup

lattice H∗F(X). This is because the subgroup lattice is a larger space that “embeds” the par-

tition lattice (more precisely, Theorem 6.1 and 6.2). However, as we mentioned earlier, it is

not practical to even store P∗X for small X, and not all arbitrary partitions of X are equally

useful. Instead of considering all subgroups of F(X), we draw our attention to certain parts

of the complete subgroup lattice H∗F(X). In the first half of Part II, we will introduce two

general algorithmic principles in extracting partial subgroup lattices and provide the corre-

sponding algorithms; yet as a quick preview here, we take a glimpse through the main ideas

of the two principles, namely the top-down approach and the bottom-up approach.

The Top-Down Approach. We consider the subgroup sublattice (H∗G,≤) for some

subgroup G ≤ F(X). If X is finite, this is the part below G and above {id} in the directed

acyclic graph for the complete subgroup lattice (H∗F(X),≤). As the name suggests, the top-

down approach first specifies a “top” in H∗F(X) (i.e. a subgroup G ≤ F(X)), and then extract

everything below the “top” (i.e. the subgroup lattice H∗G). The computer algebra system

GAP [77] provides efficient algorithmic methods to construct the subgroup lattice for a

given group, and even maintains several data libraries for special groups and their subgroup

lattices. In general, enumerating all subgroups of a group can be computationally intense,

and therefore, is applied primarily to small groups. When computationally prohibited, a

general trick is to enumerate subgroups up to conjugacy (which is also supported by the

39

GAP system). Computing abstractions within the conjugacy class of any subgroup is then

easy by the duality in Theorem 6.5, once the abstraction generated by a representative is

computed. More details on picking a special subgroup (as the “top”) of F(X) are discussed

in Section 9.2, Part II.

The Bottom-Up Approach. We first pick some finite subset S ⊆ F(X), and then

generate a partial subgroup lattice for 〈S〉 by computing 〈S ′〉 for every S ′ ⊆ S, starting

from smaller subgroups. As the name suggests, the bottom-up approach first constructs the

trivial subgroup 〈∅〉 = {id}, i.e. the bottom vertex in the direct acyclic graph for H∗F(X) if

X is finite, and then cyclic subgroups 〈s〉 for every s ∈ S. We continue to construct larger

subgroups from smaller ones by taking the join, which corresponds to gradually moving

upwards in the graph for H∗F(X) when X is finite. In general, this approach will produce

at most 2|S| subgroups for a given subset S ⊆ F(X), and will not produce the complete

subgroup sublattice H∗〈S〉 unless S = 〈S〉. Computing abstractions using this bottom-up

approach is easy by the strong duality in Theorem 6.3, once the abstractions generated by

all cyclic subgroups are computed. More details on this abstraction generating process and

picking a generating set (as the “bottom”) are discussed in Section 9.3, Part II.

40

Chapter 7: Codetta: Summary and Discussions

Part I formalizes the definitions of many terms in Automatic Concept Learning (ACL)

as well as several important notions of a desired model and model output mentioned in

Section 1.1. The introduced formalism coincides well with the intuition behind it. However,

what is more important is that among many other possible formalization choices, the pro-

posed concept learning formalism establishes the playground upon which a fully automatic

concept learning is possible. We will elaborate this fully automated learning cycle as the

second half in Part II, with the first half being algorithmic generation of computational ab-

stractions. The two halves are the two constituent pillars of Information Lattice Learning

(ILL), our new learning model for ACL.

The current theoretical foundation for ACL focuses on conceptualizing a static data space,

whose formalism is woven around the core idea of hierarchical abstractions of individual data

points. One big next move is to extend the current formalism towards the goal of conceptu-

alizing a dynamic process, considering hierarchical abstractions of data sequences. This is

similar to moving from Convolutional Neural Networks (CNNs) for static data to Recurrent

Neural Networks (RNNs) for time-series data in deep learning. Enabling abstraction through

time will bring about a new modeling perspective in which a sequential process unfolds hi-

erarchically from global plans to local plans rather than linearly (or sometimes bi-linearly)

from the past to the present (or sometimes also from the future to the present). Take mu-

sic as an example: under this new viewpoint, the composition of a piece is modeled more

naturally as a hierarchical decision process from its global form, to sections, to phrases,

and eventually to local melodic and harmonic realizations to flesh out those more global

abstractions. This is in contrast with our current approach used later in MUS-ROVER

(Chapter 13), our automatic concept learner in music, which simply employs n-gram models

to describe transitions of the abstractions, but lacks abstractions of the transitions.

41

Chapter 8: Algorithmic Development (Part II)

Introduction Exposition Development Recapitulation Coda

Chapter 1-2
Part I:
Chapter 3-7 Chapter 15Chapter 8-11

Part II:
Chapter 12-14
Part III:

Figure 8.1: Algorithmic development outline.

This is the beginning chapter of Part II. This part presents the algorithmic development of

ACL, proposing the new learning model ILL. ILL includes two phases, with the first phase—

abstraction generation (Chapter 9)—being the deductive preparation phase and the second

phase—probabilistic rule learning (Chapter 10)—being the subsequent inductive learning

phase. The two phases are the constituent pillars of ILL, which couples abstraction with

statistics to fill in the gap between a rule-based AI and a machine learning AI. The resulting

ILL model achieves a deeper-level interpretability, wherein not only the learned results (i.e.

rules and concepts) are interpretable, but also the entire leaning process (i.e. the model

itself) is comprehensible to people.

42

Chapter 9: Information Lattice Learning Phase I: Abstraction Generation

We present algorithmic guidelines for constructing abstractions, the first phase of our

two-phase Information Lattice Learning (ILL). The output of any abstraction generation

algorithm in this chapter is an abstraction (semi)universe including both the abstractions

and the hierarchy. The produced abstraction hierarchy will be further used in the subsequent

probabilistic rule learning (Chapter 10), the second phase of ILL that completes the entire

automatic concept learning.

In this chapter, Section 9.1 discusses feature generation algorithms used for feature-

induced abstractions. Sections 9.2 and 9.3 discuss symmetry generation algorithms used

for symmetry-induced abstractions, with the former adopting a top-down approach and the

latter adopting a bottom-up approach.

9.1 FEATURE GENERATION

We consider the input data space to be the n-dimensional Euclidean space: X = Rn, so

every data point x ∈ X is an n-dimensional vector, a standard setting in machine learning.

To systematically generate a large and expressive pool of candidate features, we start with

two types of basis features on X, namely (selection) windows and (basis) descriptors, and

then use them to span a feature pool via function composition.

A selection window wI : Rn → R|I| is a function that selects certain dimension(s) of an

n-dimensional vector, where the index set I used for selection is an nonempty subset of the

whole index set {1, . . . , n}. For instance, w{1,4}(x) = (x1, x4) for any x = (x1, . . . , xn) ∈ Rn.

We use W to denote the set of all possible selection windows for Rn, that is,

W := {wI | I ⊆ {1, . . . , n}, I 6= ∅}. (9.1)

A basis descriptor is an atomic arithmetic operation. In this thesis, we restrict out at-

tention to a combinatorial setting, considering primitive arithmetic operations for integers.

For instance, sort, order (a fine-tuned argsort), diff, and/or modm for various m ∈ Z.

We use B to denote a set of pre-selected basis descriptors, from which we further define the

depth-k descriptor pool by

D[k] := {bk′ ◦ · · · ◦ b1 | bk′ , . . . , b1 ∈ B, 0 ≤ k′ ≤ k}, (9.2)

where by convention the composition bk′ ◦ · · ·◦b1 = id if k′ = 0. So, every descriptor d ∈ D[k]

43

window
layer

descriptor
layers

ordersortdiffmod12id

wI , I ✓ {1, 2, 3, 4}

w{1}

�1

w{1,4}

�2 �3

w{1,2,3,4}

�3 = order � w{1,2,3,4}

�2 = mod12 � diff � sort � w{1,4}

�1 = mod12 � w{1}

Figure 9.1: An example of feature generation from windows and descriptors.

is a composition of at most k basis descriptors.

Combining windows and descriptors sequentially, we define the depth-(k+ 1) feature pool

by the following form:

Φ[k+1] := D[k] ◦W := {d ◦ w | d ∈ D[k], w ∈ W}. (9.3)

Figure 9.1, from an equivalent view of (9.3), illustrates one example of feature generation

from windows and descriptors, where the input data space X = R4, the basis descriptors

B = {mod12, diff, sort, order}, and the depth k = 4.

The fact that every candidate feature function φ ∈ Φ[k+1] is systematically constructed

as a composition of finitely many (here at most k) basis descriptors and a selection window

ensures its interpretability. We can step by step read out the meaning of a feature function

backwards from its composition formula: for every data point x ∈ X, φ(x) = d◦w(x) literally

tells us where to look (specified by w ∈ W) and what to look for (specified by d ∈ D[k]).

Now to systematically generate abstractions from features, all we need to pre-specify is

a set of basis descriptors B and a depth k (W is automatically determined by the dimen-

sionality of the input data space). Given B and k, we construct a family of feature-induced

abstractions accordingly to the following definition:

PΦ[k+1]

X := {Pφ | φ ∈ Φ[k+1]}. (9.4)

44

Note that PΦ[k+1]

X is not an abstraction (semi)universe yet. To complete the hierarchy of

any abstraction family regardless of its generating mechanisms (i.e. no matter it is induced

from features or symmetries or both or something else), there is a generic algorithm [78]

that can be used to determine the coarser than relation (i.e. the partial order) between

every pair of partitions in the family. However, to increase the efficiency, there are various

heuristics we can leverage, including the generic ones and the ones specific to feature-induced

abstractions as well as the ones specific to the pre-selected basis descriptors in feature-

induced abstractions. We briefly mention two major types of heuristics below for completing

a feature-induced abstraction hierarchy.

H1. Same-window heuristic. For any φ, φ′ ∈ Φ[k+1] where φ = d ◦ wI , φ′ = d′ ◦ wI :
if there exists some d′′ ∈ D[k] such that d = d′′ ◦ d′, then Pφ � Pφ′ .

H2. Same-descriptor heuristic. For any φ, φ′ ∈ Φ[k+1] where φ = d ◦ wI , φ′ = d ◦ wI′ :
if I ⊆ I ′ and d comprises all coordinate-wise operations, then Pφ � Pφ′ .

The validity of the above two heuristics is an easy check, and one derived heuristic from

combining the two is immediate when neither the windows nor the descriptors are the same

but both satisfy all the conditions in H1 and H2. Of course, whenever possible, we can

always use a generic heuristic regarding the transitivity property of a partial order, i.e.

Pφ � Pφ′ and Pφ′ � Pφ′′ =⇒ Pφ � Pφ′′ . In Part III, via a specific case study in music,

we will present a detailed implementation of the above algorithmic principles for feature-

induced abstractions, including the design choices of basis descriptors and the applications

of various heuristics for hierarchy completion.

9.2 SYMMETRY GENERATION: TOP-DOWN APPROACH

Regarding symmetry-induced abstractions, we consider a subgroup lattice with each sub-

group in the lattice acting on the same data space X. Conceptually, the complete subgroup

lattice H∗F(X) for the whole transformation group F(X) comprises all possible symmetries.

However, by Theorem 6.2, |H∗F(X)| ≥ |P∗X | = B|X|, i.e. no less than the |X|-th Bell number.

This suggests that even for small X, the complete subgroup lattice can be too large for any

realistic computational methods. This section presents the top-down approach to sample a

finite subgroup sublattice from the complete lattice H∗F(X), so that algorithmic operations

on this finite sample, including the sampling process itself, is computationally feasible.

We start with the transformation group of X = Rn, and the plan is to consider special

subgroups of F(Rn) and special subspaces of Rn. In order to systematically enumerate

45

⇠= GLn(X)

⇠= On(X)

20pt;black;808080

X = Rn

X = Zn

X = Zn
[a,b]

X = Zn
[�b,b]

(a) Subgroups under consideration. (b) Spaces under consideration.

L(Rn)

T(Rn)

ISO(Rn)

AFF(Rn)

{id}

⇠= Rn o On(R)

⇠= Rn o GLn(R)

⇠= RnOn(R) ⇠=

GLn(R) ⇠=

F(Rn)

R(Rn)

Figure 9.2: Special subgroups and spaces as well as their hierarchies. (a) presents a backbone
of the complete subgroup lattice H∗F(Rn), including important subgroups and their break-
downs. One can check the above directed acyclic graph indeed represents a sublattice: it is
closed under both join and meet. (b) presents important subspaces of Rn, where restrictions
are gradually added to eventually lead to practical abstraction-construction algorithms.

subgroups of a chosen special subgroup, we derive a principle that allows us to hierarchically

break the enumeration problem into smaller and smaller enumeration subproblems. This

hierarchical breakdown can guide us in restricting both the type of subgroups and the type

of subspaces, so that the resulting abstraction (semi)universe fits our desiderata, and more

importantly can be computed in practice. Figure 9.2 presents an outline consisting of special

subgroups and subspaces considered in this section as well as their hierarchies.

The central theorem (Theorem 9.5) in this section is a complete identification of every

subgroup of the affine transformation group, denoted AFF(Rn), from which the identification

of smaller affine subgroups can systematically parametrized. We will take a few steps to get

there, starting from characterizing the affine transformation group itself.

Keywords and notations: group homomorphism, isomorphism (∼=); normalizer of a set in

a group (NG(S) := {g ∈ G | gSg−1 = S}), normal subgroup (E); group decomposition,

inner semi-direct product, outer semi-direct product (o).

9.2.1 The Affine Transformation Group AFF(Rn)

An affine transformation of Rn is a function fA,u : Rn → Rn of the form

fA,u(x) = Ax+ u for any x ∈ Rn, (9.5)

46

where A ∈ GLn(R) is an n × n real invertible matrix and u ∈ Rn is an n-dimensional real

vector. We use AFF(Rn) to denote the set of all affine transformations of Rn. There are two

special cases:

1. A translation of Rn is a function tu : Rn → Rn of the form x 7→ x + u where u ∈ Rn;

we use T(Rn) to denote the set of all translations of Rn.

2. A linear transformation of Rn is a function rA : Rn → Rn of the form x 7→ Ax where

A ∈ GLn(R); we use L(Rn) to denote the set of all linear transformations of Rn.

It is easy to check that T(Rn), L(Rn) ≤ AFF(Rn) ≤ F(Rn); further, (T(R), ◦) and (L(Rn), ◦)
are isomorphic to (Rn,+) and (GLn(R), ·), respectively. It is known that

AFF(Rn) = T(Rn) ◦ L(Rn) ∼= T(Rn)o L(Rn) ∼= Rn o GLn(R). (9.6)

So every affine transformation can be uniquely identified with a pair (u,A) ∈ RnoGLn(R). In

particular, the identity transformation is identified with (0, I), the translation group T(Rn)

is identified with {(u, I) | u ∈ Rn}, and the linear transformation group L(Rn) is identified

with {(0, A) | A ∈ GLn(R)}. Under this identification, compositions and inverses of affine

transformations become

(u,A)(u′, A′) = (u+ Au′, AA′) and (u,A)−1 = (−A−1u,A−1). (9.7)

The above identification further allows us to introduce two functions ` : AFF(Rn)→ GLn(R)

and τ : AFF(Rn)→ Rn to extract the linear and translation part of an affine transformation,

respectively, where

`(fA,u) = A, τ(fA,u) = u for any fA,u ∈ AFF(Rn). (9.8)

Now we can start our journey towards a complete identification of every subgroup H of

AFF(Rn). We introduce the first foundational quantity T := T(Rn) ∩ H, which is the set

of pure translations in H, called the translation subgroup of H. It is easy to check that

T E H since translations are normal in affine transformations. Therefore, the quotient

group H/T = {T ◦ h | h ∈ H} is well-defined. The elements in H/T are called cosets. The

following theorems reveal more structures of H/T , the second foundational quantity.

Lemma 9.1. ` : AFF(Rn)→ GLn(R) is a homomorphism.

Proof. For any fA,u, fA′,u′ ∈ AFF(Rn), we have `(fA,u ◦ fA′,u′) = `(fAA′,Au′+u) = AA′ =

`(fA,u)`(fA′,u′), which implies that ` is a homomorphism.

47

Theorem 9.1. Let H ≤ AFF(Rn), T = T(Rn) ∩H. Then h, h′ ∈ H are in the same coset

in H/T if and only if they have the same linear part, i.e. `(h) = `(h′).

Proof. It is straightforward to check that

T ◦ h = T ◦ h′ ⇐⇒ h′ ◦ h−1 ∈ T ⇐⇒ `(h′ ◦ h−1) = I ⇐⇒ `(h′) = `(h). (9.9)

The last if-and-only-if condition holds because `(h′ ◦ h−1) = `(h′)`(h)−1 by Lemma 9.1.

Theorem 9.2. Let H ≤ AFF(Rn), T = T(Rn) ∩ H. If h, h′ ∈ H are in the same coset in

H/T , then τ(h′)− τ(h) ∈ τ(T) := {u | tu ∈ T}.

Proof. Let h, h′ ∈ H be any two affine transformations in the same coset in H/T , then this

means T ◦ h = T ◦ h′, or equivalently h′ ◦ h−1 ∈ T . By (9.7), we have

τ(h′ ◦ h−1) = τ(h′) + `(h′)τ(h−1) = τ(h′) + `(h′)(−`(h)−1τ(h)) = τ(h′)− τ(h), (9.10)

where the last equality holds by Theorem 9.1. Therefore, τ(h′)− τ(h) ∈ τ(T).

Remark 9.1. Theorems 9.1 and 9.2 present two characterizations of elements in the same

coset in H/T . The former, through the linear part, is an if-and-only-if characterization; while

the latter, through the translation part, is a necessary but not sufficient characterization.

Theorem 9.3. Let H ≤ AFF(Rn), T = T(Rn) ∩H. Then H/T ∼= `(H).

Proof. It is clear that `(H) ≤ GLn(R), since H ≤ AFF(Rn) and ` is a homomorphism

(Lemma 9.1) which preserves subgroups. Let ¯̀ : H/T → `(H) be the function of the form
¯̀(T ◦ h) = `(h), we claim that ¯̀ is an isomorphism. To see this, for any T ◦ h, T ◦ h′ ∈ H/T ,

¯̀((T ◦ h)(T ◦ h′)) = ¯̀(T ◦ (h ◦ h′)) = `(h ◦ h′) = `(h)`(h′) = ¯̀(T ◦ h)¯̀(T ◦ h′), (9.11)

which implies ¯̀is a homomorphism. Further, for any T ◦h, T ◦h′ ∈ H/T , if ¯̀(T ◦h) = ¯̀(T ◦h′),
then `(h) = `(h′). By Theorem 9.1, this implies that T ◦ h = T ◦ h′, so ¯̀ is injective. Lastly,

for any A ∈ `(H), there exists an h ∈ H such that `(h) = A. For this particular h,

T ◦ h ∈ H/T , and ¯̀(T ◦ h) = `(h) = A. This implies that ¯̀ is surjective. Therefore, ¯̀ is a

bijective homomorphism, i.e. an isomorphism.

Remark 9.2. Theorem 9.3 can be proved directly from the first isomorphism theorem, by

recognizing `|H is a homomorphism whose kernel and image are T and `(H), respectively.

However, the above proof explicitly gives the isomorphism ¯̀ which is useful in the sequel.

48

Theorem 9.4 (Compatibility). Let H ≤ AFF(Rn), T = T(Rn)∩H. For any A ∈ `(H) and

v ∈ τ(T), we have Av ∈ τ(T). Further, if we define a function · : `(H) × τ(T) → τ(T) of

the form (A, v) 7→ Av, then · is a group action of `(H) on τ(T).

Proof. For any A ∈ `(H) and v ∈ τ(T), there exists an fA,u ∈ H and an fI,v ∈ T . Since

T E H, then fA,u◦fI,v ◦f−1
A,u ∈ T . By (9.7) we have that fA,u◦fI,v ◦f−1

A,u = fI,Av, so fI,Av ∈ T ,

i.e. Av = τ(fI,Av) ∈ τ(T). To see · : `(H)× τ(T)→ τ(T) defines a group action of `(H) on

τ(T) is then easy, since it is a matrix-vector multiplication. A quick check shows that for

any v ∈ τ(T), I · v = v; for any v ∈ τ(T) and A,B ∈ `(H), A · (B · v) = (AB) · v.

So far, we have seen that for any subgroup H ≤ AFF(Rn), its subset of pure translations

T := T(Rn) ∩ H is a normal subgroup of H; T is also a normal subgroup of T(Rn), since

T(Rn) is a commutative group. As a result, both quotient groups H/T and T(Rn)/T are

well-defined. We next introduce a function, called a vector system, which connects the two

quotient groups. It turns out that vector systems comprise the last piece of information that

leads to a complete identification of every subgroup of AFF(Rn). Note that H/T ∼= `(H)

(Theorem 9.3) and T(Rn)/T ∼= Rn/τ(T); thus for conceptual ease (think in terms of matrices

and vectors), we introduce vector systems connecting `(H) and Rn/τ(T) instead.

Definition 9.1 (Vector system). For any L ≤ GLn(R) and V ≤ Rn, an (L, V)-vector system

is a function ξ : L→ Rn/V , which in addition satisfies the following two conditions:

1. compatibility condition: for any A ∈ L, AV = {Av | v ∈ V } = V ;

2. cocycle condition: for any A,A′ ∈ L, ξ(AA′) = ξ(A) + Aξ(A′).

Note: elements in Rn/V are cosets of the form V + u for u ∈ Rn. It is easy to check: for

any two cosets in Rn/V , the sum

(V + u) + (V + u′) = {v + u+ v′ + u′ | v, v′ ∈ V } = V + (u+ u′); (9.12)

for any A ∈ L and any coset in Rn/V , the product

A(V + u) = {A(v + u) | v ∈ V } = V + Au. (9.13)

So, the sum and product in the cocycle condition are defined in the above sense.

We use ΞL,V to denote the family of all (L, V)-vector systems. One can check that ΞL,V 6= ∅
if and only if L, V are compatible (consider the trivial vector system ξ0

L,V given by ξ0
L,V (A) =

V for all A ∈ L). We use Ξ∗ := {ΞL,V | L ≤ GLn(R), V ≤ Rn compatible} to denote the

universe of all vector systems.

49

Remark 9.3. The universe of all vector systems Ξ∗ can be parameterized by the set of

compatible pairs (L, V) ∈ H∗GLn(R)×H∗Rn. The reason is straightforward: L and V respectively

define the domain and codomain of a function, and two functions are different if either their

domains or their codomains are different.

Lemma 9.2. Let L ≤ GLn(R), V ≤ Rn, and ξ ∈ ΞL,V , then

1. for the identity matrix I ∈ L, ξ(I) = V ;

2. for any A ∈ L, ξ(A−1) = −A−1ξ(A).

Proof. For any A ∈ L, ξ(A) = ξ(IA) = ξ(I) + Iξ(A) = ξ(I) + ξ(A). Note that ξ(A), ξ(I) ∈
Rn/V , so ξ(A) = V + a and ξ(I) = V + b for some a, b ∈ Rn. Thus,

ξ(A) = ξ(I) + ξ(A) =⇒ V + a = V + (b+ a). (9.14)

This further implies that b ∈ V and ξ(I) = V + b = V .

For any A ∈ L, V = ξ(A−1A) = ξ(A−1) + A−1ξ(A). Note that ξ(A), ξ(A−1) ∈ Rn/V , so

ξ(A) = V + a and ξ(A−1) = V + c for some a, c ∈ Rn. Thus,

V = ξ(A−1) + A−1ξ(A) =⇒ V = V + (c+ A−1a). (9.15)

This further implies that c+A−1a ∈ V , or equivalently, c ∈ V + (−A−1a). Therefore, c and

−A−1a are in the same coset and ξ(A−1) = V + c = V + (−A−1a) = −A−1ξ(A).

Theorem 9.5 (Affine subgroup identification). Let

Σ := {(L, V, ξ) | L ≤ GLn(R), V ≤ Rn, ξ ∈ ΞL,V }, (9.16)

then there is a bijection between H∗AFF(Rn) and Σ.

Proof. Let Ψ : H∗AFF(Rn) → Σ be the function defined by

Ψ(H) := (`(H), τ(T), ξH) for any H ∈ H∗AFF(Rn), (9.17)

where T := T(Rn) ∩ H, and ξH : `(H) → Rn/τ(T) is given by ξH(A) = τ(¯̀−1(A)) with
¯̀ : H/T → `(H) being the isomorphism defined in the proof of Theorem 9.3. We first show

Ψ is well-defined, and then show it is bijective; in particular, we will show that the inverse

function has an exact formula as follows:

Ψ−1((L, V, ξ)) = {fA,u ∈ AFF(Rn) | A ∈ L, u ∈ ξ(A)} for any (L, V, ξ) ∈ Σ. (9.18)

50

The entire proof is divided into four parts.

1. Check that ξH is well-defined. More specifically, we want to show that

ξH(A) ∈ Rn/τ(T) for any H ∈ H∗AFF(Rn) and A ∈ `(H). (9.19)

For any A ∈ `(H), ¯̀−1(A) is the coset T ◦h in H/T such that `(h) = A. Pick any h ∈ ¯̀−1(A)

which is possible since as a coset ¯̀−1(A) 6= ∅. For any h′ ∈ ¯̀−1(A), by Theorem 9.2,

τ(h′) − τ(h) ∈ τ(T), i.e. τ(h′) ∈ τ(T) + τ(h), so τ(¯̀−1(A)) ⊆ τ(T) + τ(h). Conversely, for

any w ∈ τ(T) + τ(h), there exists a v ∈ τ(T) such that w = v + τ(h). Note that the pure

translation tv ∈ T ≤ H and h ∈ ¯̀−1(A) ⊆ H, so their composition tv ◦ h ∈ H. Further, it is

an easy check that `(tv ◦ h) = A and τ(tv ◦ h) = v + τ(h) = w. This implies that we have

found h′ := tv ◦ h ∈ ¯̀−1(A) and τ(h′) = w, thus, w ∈ τ(¯̀−1(A)). This finally yields that

τ(T) + τ(h) ⊆ τ(¯̀−1(A)). Combining the two directions, we have τ(¯̀−1(A)) = τ(T) + τ(h);

so, ξH(A) = τ(¯̀−1(A)) ∈ Rn/τ(T). This implies ξH is well-defined.

2. Check that Ψ is well-defined. More specifically, we want to show that

Ψ(H) ∈ Σ for any H ∈ H∗AFF(Rn). (9.20)

For any H ∈ H∗AFF(Rn), it is clear that `(H) ≤ GLn(R), τ(T) ≤ Rn, and they are compatible

(Theorem 9.4); therefore, it suffices to show that ξH ∈ Ξ`(H),τ(T). Note that, for any A,A′ ∈
`(H), the product of two cosets ¯̀−1(A)¯̀−1(A′) = (T ◦ fA,u)(T ◦ fA′,u′) = T ◦ (fA,u ◦ fA′,u′) =

T ◦ fAA′,u+Au′ , for some fA,u, fA′,u′ ∈ H. Therefore,

ξH(AA′) = τ(¯̀−1(AA′)) = τ(¯̀−1(A)¯̀−1(A′)) = τ(T ◦ fAA′,u+Au′) = τ(T) + u+ Au′. (9.21)

On the other hand,

ξH(A) + AξH(A′) = (τ(T) + u) + A(τ(T) + u′) = τ(T) + u+ Au′. (9.22)

Therefore, ξH(AA′) = ξH(A) + AξH(A′) and ξH ∈ Ξ`(H),τ(T). This implies that for any

H ∈ H∗AFF(Rn), Ψ(H) ∈ Σ, so Ψ is well-defined.

3. Check that Ψ is injective. Pick any H,H ′ ∈ H∗AFF(Rn) and suppose Ψ(H) = Ψ(H ′),

i.e. (`(H), τ(T), ξH) = (`(H ′), τ(T ′), ξH′), where T := T(Rn) ∩ H and T ′ := T(Rn) ∩ H ′.
For any fA,u ∈ H, A = `(fA,u) ∈ `(H) = `(H ′); thus, there exists some fA,u′ ∈ H ′. Let
¯̀ : H/T → `(H) and ¯̀′ : H ′/T ′ → `(H ′) be the isomorphisms similarly defined as in

51

Theorem 9.3. As proved earlier, we have

ξH(A) = τ(¯̀−1(A)) = τ(T) + τ(fA,u) = τ(T) + u, (9.23)

ξH′(A) = τ(¯̀′−1(A)) = τ(T ′) + τ(fA,u′) = τ(T) + u′. (9.24)

Therefore, τ(T) + u = τ(T) + u′. This implies that τ(fA,u) = u ∈ τ(T) + u′ = τ(¯̀′−1(A)).

So, fA,u ∈ ¯̀′−1(A) ⊆ H ′, and H ⊆ H ′. By a completely symmetrical process, H ′ ⊆ H.

Therefore, H = H ′, which implies that Ψ is injective.

4. Check that Ψ is surjective. Pick any (L, V, ξ) ∈ Σ and let

H := {fA,u ∈ AFF(Rn) | A ∈ L, u ∈ ξ(A)}. (9.25)

We first show that H ≤ AFF(Rn) by a subgroup test. It is clear H ⊆ AFF(Rn). The identity

matrix I ∈ L and 0 ∈ V = ξ(I), so the identity transformation id = fI,0 ∈ H. For any

fA,u, fA′,u′ ∈ H, we have A,A′ ∈ L and u ∈ ξ(A), u′ ∈ ξ(A′), which respectively implies that

AA′ ∈ L and u + Au′ ∈ ξ(A) + Aξ(A′) = ξ(AA′). So, fA,u ◦ fA′,u′ = fAA′,u+Au′ ∈ H. For

any fA,u ∈ H, we have A ∈ L and u ∈ ξ(A), which respectively implies that A−1 ∈ L and

−A−1u ∈ −A−1ξ(A) = ξ(A−1). So, f−1
A,u = fA−1,−A−1u ∈ H. Therefore, H ≤ AFF(Rn). Now

we show that Ψ(H) = (`(H), τ(T), ξH) = (L, V, ξ). First, for any A ∈ `(H), there exists

an fA,u ∈ H, so A ∈ L which implies that `(H) ⊆ L. Conversely, for any A ∈ L, ξ(A) is

a coset in Rn/V , so ξ(A) 6= ∅. Pick any u ∈ ξ(A), then fA,u ∈ H, so A = `(fA,u) ∈ `(H)

which implies L ⊆ `(H). Combining both directions yields `(H) = L. Second, note that

T = T(Rn) ∩ H = {fI,u ∈ AFF(Rn) | u ∈ ξ(I) = V }, so τ(T) = {u | u ∈ V } = V . Third,

note that ξH : `(H) → Rn/τ(T) and ξ : L → Rn/V . We have shown that `(H) = L and

τ(T) = V , so ξH and ξ have the same domain and codomain. Further, for any A ∈ L,

ξH(A) = τ(¯̀−1(A)) = τ({fA,u ∈ AFF(Rn) | u ∈ ξ(A)}) = {u | u ∈ ξ(A)} = ξ(A). So, ξH = ξ.

Now we have Ψ(H) = (L, V, ξ). Therefore, Ψ is surjective. In particular,

Ψ−1((L, V, ξ)) = {fA,u ∈ AFF(Rn) | A ∈ L, u ∈ ξ(A)} for any (L, V, ξ) ∈ Σ. (9.26)

Remark 9.4. The bijection Ψ from H∗AFF(Rn) to Σ allows us to use the latter to parameterize

the former. Further, through the inverse function Ψ−1, we can enumerate affine subgroups by

enumerating triplets (L, V, ξ) ∈ Σ, or more specifically, by enumerating matrix subgroups of

GLn(R), vector subgroups of Rn, and then vector systems for every compatible pair of a matrix

subgroup and a vector subgroup. Note that enumeration for each element in the triplet is still

52

not practical if no restriction is imposed. Nevertheless, we have broken the original subgroup

enumeration problem into three smaller enumeration problems. More importantly, we are

now more directed in imposing restrictions on both subgroups and spaces, under which the

three smaller enumerations become practical. We will discuss these restrictions (e.g. being

isometric, finite, discrete, compact) in more details in the sequel.

9.2.2 The Isometry Group ISO(Rn)

One way to restrict Σ := {(L, V, ξ) | L ≤ GLn(R), V ≤ Rn, ξ ∈ ΞL,V } is to consider a

special subgroup of GLn(R). Instead of all subgroups of GLn(R), we consider only subgroups

consisting of orthogonal matrices. This restriction gives rise to the subgroup lattice H∗ISO(Rn)

where ISO(Rn) denotes the group of isometries of Rn. In this subsection, we first give an

overview of ISO(Rn), and then cast H∗ISO(Rn) in the big picture of H∗AFF(Rn) and Σ.

An isometry of Rn, with respect to the Euclidean distance d, is a transformation h : Rn →
Rn which preserves distances: d(h(x), h(x′)) = d(x, x′), for all x, x′ ∈ Rn. We use ISO(Rn)

to denote the set of all isometries of Rn, which is a subgroup of the transformation group

F(Rn). So, we call ISO(Rn) the isometry group of Rn.

A (generalized) rotation of Rn is a linear transformation rA : Rn → Rn given by x 7→ Ax,

for some orthogonal matrix A ∈ On(R) := {A ∈ Rn×n | A> = A−1} ≤ GLn(R). We use R(Rn)

to denote the set of all rotations of Rn, which is a subgroup of the linear transformation

group L(Rn). So, we call R(Rn) the rotation group of Rn.

There are two key characterizations of ISO(Rn). The first one regards its components:

ISO(Rn) = 〈T(Rn) ∪ R(Rn)〉 where T(Rn) ∩ R(Rn) = {id}. (9.27)

This characterization says that ISO(Rn) comprises exclusively translations, rotations, and

their finite compositions. Note that we can rewrite the above characterization as T(Rn) ∨
R(Rn) = ISO(Rn) and T(Rn) ∧ R(Rn) = {id}. This determines the positions of the four

subgroups {id}, T(Rn), R(Rn), and ISO(Rn) in the subgroup lattice (H∗F(Rn),≤), which forms

a diamond shape in the direct acyclic graph in Figure 9.2a. The second characterization of

ISO(Rn) regards a unique representation for every isometry of Rn, which is done by a group

decomposition of ISO(Rn) as semi-direct products:

ISO(Rn) = T(Rn) ◦ R(Rn) ∼= Rn o On(R). (9.28)

This characterization says that every isometry of Rn can be uniquely represented as an affine

53

transformation fA,u ∈ AFF(Rn) where A ∈ On(R) and u ∈ Rn. This further implies that

ISO(Rn) is a special subgroup of AFF(Rn).

Let Ψ : H∗AFF(Rn) → Σ be the bijection defined in the proof of Theorem 9.5, and let

Σ′ := {(L, V, ξ) | L ≤ On(R), V ≤ Rn, ξ ∈ ΞL,V } ⊆ Σ. (9.29)

One can check: Ψ−1(Σ′) = H∗ISO(Rn). This means Ψ|H∗
ISO(Rn)

: H∗ISO(Rn) → Σ′ is well-defined

and bijective. Therefore, the subgroups of ISO(Rn) can be enumerated by the triplets in Σ′

in a similar manner as in the remark following Theorem 9.5. The only difference is that we

now enumerate subgroups of On(R) instead of the entire GLn(R).

Note that restricting to subgroups of On(R) does not really make the enumeration problem

practical. However, there are many ways of imposing additional restrictions on ISO(Rn) to

eventually achieve practical enumerations. We want to point out that there is no universal

way of constraining the infinite enumeration problem into a practical one: the design of

restrictions is most effective if it is consistent with the underlying topic domain. So, for in-

stance, one can start with his/her intuition to try out some restrictions whose effectivenesses

can be verified via a subsequent learning process (Chapter 10). In the next subsection, we

give two examples to illustrate some of the existing design choices that have been made in

two different domains.

9.2.3 Special subgroups of ISO(Rn) used in Chemistry and Music

From two examples, we show how additional restrictions can be imposed to yield a finite

collection of subgroups of ISO(Rn), capturing different parts of the infinite subgroup lattice

H∗ISO(Rn). The two examples are from two different topic domains: one is from chemistry (or

more precisely, crystallography), the other is from music. The ways of adding restrictions in

these two examples are quite different: one introduces conjugacy relations to obtain a finite

collection of subgroup types; the other restricts the space to be discrete or even finite.

The First Example: Crystallographic Space Groups

In crystallography, symmetry is used to characterize crystals, to identify repeating parts

of molecules, and to simplify both data collection and subsequent calculations. Further,

the symmetry of physical properties of a crystal such as thermal conductivity and optical

activity has a strong connection with the symmetry of the crystal. So, a thorough knowledge

of symmetry is crucial to a crystallographer. A complete set of symmetry classes is captured

54

by a collection of 230 unique 3-dimensional space groups. However, space groups represent

a special type of subgroups of ISO(Rn) which can be defined in general for any dimension.

We give a short review of known results from crystallography, and then identify space

groups in the parametrization set Σ that we derived earlier. A crystallographic space group

or space group Γ is a discrete (with respect to the subset topology) and cocompact (i.e. the

abstraction space π(Γ) := Rn/Γ is compact with respect to the quotient topology) subgroup

of ISO(Rn). So, if the underlying topic domain indeed considers only compact abstractions,

space groups are good candidates. A major reason is that for a given dimension, there exist

only finitely many space groups (up to isomorphism or affine conjugacy) by Bieberbach’s

second and third theorems [79,80].

Bieberbach’s first theorem [79,80] gives an equivalent characterization of space groups: a

subgroup Γ of ISO(Rn) is a space group if T := T(Rn) ∩ Γ is isomorphic to Zn and τ(T)

spans Rn. In particular, for a space group Γ in standard form, we have `(Γ) ≤ On(Z),

τ(T) = Zn [81]. Therefore, we can use

Σ′′cryst := {(L, V, ξ) | L ≤ On(Z), V = Zn, ξ ∈ ΞL,V } ⊆ Σ′ ⊆ Σ (9.30)

to parameterize the set of all space groups in standard form. We will soon (in the following

example) see that |On(Z)| = n!2n which is finite. For every L ≤ On(Z), the enumeration of

vector systems ξ ∈ ΞL,Zn is also made feasible in [82] by identifying orbits in H1(L,Rn/Zn)

under the group action of NGLn(Z)(L) on H1(L,Rn/Zn), where H1(L,Rn/Zn) is the first

cohomology group of L with values in Rn/Zn and NGLn(Z)(L) is the integral normalizer of L.

We refer interested readers to the original Zassenhaus algorithm [82] and the GAP package

CrystCat [83] for more details on the algorithmic implementation of space groups.

The Second Example: Isometries of Zn in Music

Another example of obtaining a finite collection of subgroups of ISO(Rn) comes from com-

putational music theory. This is an extension to our earlier work on building an automatic

music theorist [50–53]. In this example, we impose restrictions on the space, focusing on

discrete subsets of Rn that represent music pitches from equal temperament. Restrictions

on the space further result in restrictions on the subgroups under consideration, namely

only those subgroups that stabilize the restricted subsets of Rn. We start our discussion

on isometries of Zn, while further restrictions for a finite discrete subspace such as Zn[a,b] or

Zn[−b,b] (Figure 9.2b) will be presented in Section 9.4. We first introduce a few definitions

regarding the space Zn in parallel with their counterparts regarding Rn, and then establish

55

their equivalences under restricted setwise stabilizers.

Definition 9.2. An isometry of Zn, with respect to the Euclidean distance d (or more

precisely d|Zn) is a function h′ : Zn → Zn which preserves distances: d(h′(x), h′(x′)) =

d(x, x′), for all x, x′ ∈ Zn. We use ISO(Zn) to denote the set of all isometries of Zn.

Definition 9.3. A translation of Zn is a function t′u : Zn → Zn of the form x 7→ x + u,

where u ∈ Zn. We use T(Zn) to denote the set of all translations of Zn.

Definition 9.4. A (generalized) rotation of Zn is a function r′A : Zn → Zn of the form

x 7→ Ax, where A ∈ On(Z) := {A ∈ Zn×n | A> = A−1}. We use R(Zn) to denote the set of

all rotations of Zn.

It is easy to check that (T(Zn), ◦) is isomorphic to (Zn,+), and (R(Zn), ◦) is isomorphic to

(On(Z), ·); further, T(Zn),R(Zn) ≤ F(Zn), and T(Zn),R(Zn) ⊆ ISO(Zn), so translations and

rotations of Zn are transformations and are also isometries. However, we do not know yet

whether (ISO(Zn), ◦) is a group or whether ISO(Zn) ⊆ F(Zn). It turns out that the results

are indeed positive, i.e. ISO(Zn) ≤ F(Zn), but we need more steps to see this.

Definition 9.5. Let G ≤ F(X), Y ⊆ X, and GY := {g ∈ G | g(Y) = Y } be the setwise

stabilizer of Y under G. The restricted setwise stabilizer of Y under G is the set

GY |Y := {g|Y | g ∈ GY }, (9.31)

where g|Y : Y → Y is the (surjective) restriction of the function g to Y .

Theorem 9.6. For any Y ⊆ X, F(Y) = F(X)Y |Y .

Proof. Pick any f ′ ∈ F(Y), and let f : X → X be the function given by

f(x) =




f ′(x), x ∈ Y ;

x, x ∈ X\Y.
(9.32)

Then it is clear that f(Y) = f ′(Y) = Y and f(X\Y) = X\Y . For any x, x′ ∈ X and

f(x) = f(x′): if f(x) ∈ X\Y then x = x′; otherwise x, x′ ∈ Y and f ′(x) = f ′(x′) which

yields x = x′ since f ′ is injective. This implies that f is injective. f is also surjective, since

f(X) = f(Y ∪ (X\Y)) = f(Y) ∪ f(X\Y) = Y ∪ (X\Y) = X. So f ∈ F(X). Further,

the fact that f(Y) = f ′(Y) = Y implies that f ∈ F(X)Y and f ′ = f |Y ∈ F(X)Y |Y .

Therefore, F(Y) ⊆ F(X)Y |Y . Conversely, pick any f |Y ∈ F(X)Y |Y . f |Y is injective since

f ∈ F(X)Y ⊆ F(X) is injective; f |Y is surjective since f |Y (Y) = f(Y) = Y . So f |Y ∈ F(Y).

This implies that F(X)Y |Y ⊆ F(Y).

56

Corollary 9.1. F(Zn) = F(Rn)Zn|Zn.

Theorem 9.7. T(Zn) = T(Rn)Zn|Zn, and R(Zn) = R(Rn)Zn|Zn.

Proof. Pick any t′u ∈ T(Zn), then by definition, u ∈ Zn, and t′u(x) = x + u, for any x ∈ Zn.

Let t : Rn → Rn be the function given by t(x) = x + u. Since u ∈ Zn, then u ∈ Rn,

so t ∈ T(Rn). Further, note that t(Zn) = Zn; therefore, t ∈ T(Rn)Zn . It follows that

t′u = t|Zn ∈ T(Rn)Zn|Zn , so T(Zn) ⊆ T(Rn)Zn|Zn .

Pick any t′ ∈ T(Rn)Zn|Zn , then by definition, there exists a tu ∈ T(Rn) where u ∈ Rn such

that tu(Zn) = Zn and t′ = tu|Zn , i.e. t′(x) = x+u, for any x ∈ Zn. The condition tu(Zn) = Zn

implies in particular tu(0) = u ∈ Zn. It follows that t′ ∈ T(Zn), so T(Rn)Zn|Zn ⊆ T(Zn).

Pick any r′A ∈ R(Zn), then by definition, A ∈ On(Z), and r′A(x) = Ax, for any x ∈ Zn.

Let r : Rn → Rn be the function given by r(x) = Ax. Since A ∈ On(Z), then A ∈ On(R),

so r ∈ R(Rn). Further, note that r(Zn) = Zn; therefore, r ∈ R(Rn)Zn . It follows that

r′A = r|Zn ∈ R(Rn)Zn |Zn , so R(Zn) ⊆ R(Rn)Zn|Zn .

Pick any r′ ∈ R(Rn)Zn|Zn , then by definition, there exists a rA ∈ R(Rn) where A ∈ On(R)

such that rA(Zn) = Zn and r′ = rA|Zn , i.e. r′(x) = Ax, for any x ∈ Zn. The condition

rA(Zn) = Zn implies in particular Aei ∈ Zn for all i, i.e. the columns of A are from Zn. So

A ∈ On(Z). It follows that r′ ∈ R(Zn), so R(Rn)Zn|Zn ⊆ R(Zn).

Theorem 9.8. ISO(Zn) = ISO(Rn)Zn|Zn.

Proof. Pick any h′ ∈ ISO(Rn)Zn|Zn , then by definition, there exists an h ∈ ISO(Rn) such that

h(Zn) = Zn and h′ = h|Zn . For any x, y ∈ Zn,

d(h′(x), h′(y)) = d(h|Zn(x), h|Zn(y)) = d(h(x), h(y)) = d(x, y). (9.33)

This implies that h′ ∈ ISO(Zn). So, ISO(Rn)Zn|Zn ⊆ ISO(Zn).

Conversely, pick any h′ ∈ ISO(Zn) and let h′0 = h′ − h′(0). Note that h′0 ∈ ISO(Zn) and

h′0(0) = 0. This implies that ‖h′0(x)‖2 = d(h′0(x), h′0(0)) = d(x,0) = ‖x‖2, for any x ∈ Zn.

Further, for any x, y ∈ Zn, expanding the distance-preserving equation ‖h′0(x) − h′0(y)‖2
2 =

‖x− y‖2
2 and cancelling equal terms (i.e. ‖h′0(x)‖2

2 = ‖x‖2
2 and ‖h′0(y)‖2

2 = ‖y‖2
2) yields

〈h′0(x), h′0(y)〉 = 〈x, y〉 for all x, y ∈ Zn. (9.34)

Now let h : Rn → Rn be the function given by h(x) = Ax+u, whereA = [h′0(e1), · · · , h′0(en)] ∈
Zn×n and u = h′(0) ∈ Zn. Moreover, 〈h′0(ei), h

′
0(ej)〉 = 〈ei, ej〉 = δij. So, A is orthogonal,

i.e. A ∈ On(Z) ⊆ On(R). This implies h ∈ ISO(Rn). We claim h(Zn) = Zn and h′ = h|Zn .

57

To see h(Zn) = Zn, first pick any x ∈ h(Zn), then there exists y ∈ Zn such that x =

h(y) = Ay + u. Since A ∈ Zn×n and u ∈ Zn, x ∈ Zn which implies h(Zn) ⊆ Zn. Conversely,

pick any x ∈ Zn. Let y = A>(x − u), then y ∈ Zn and h(y) = Ay + u = x. So x ∈ h(Zn)

which implies Zn ⊆ h(Zn).

To see h′ = h|Zn , pick any x ∈ Zn, then 〈h′0(ei), h
′
0(x)〉 = 〈ei, x〉 = 〈Aei, Ax〉 =

〈h′0(ei), Ax〉, for all i = 1, . . . , n. So, 〈h′0(ei), h
′
0(x)− Ax〉 = 0, for all i = 1, . . . , n, i.e.

A>(h′0(x)− Ax) = 0. (9.35)

Multiplying both sides by A yields h′0(x) = Ax, for all x ∈ Zn. Hence,

h(x) = Ax+ u = h′0(x) + h′(0) = h′(x) for all x ∈ Zn. (9.36)

That is, h′ = h|Zn . It follows that h′ ∈ ISO(Rn)Zn|Zn . So, ISO(Zn) ⊆ ISO(Rn)Zn|Zn .

Remark 9.5. Through restricted setwise stabilizers, Corollary 9.1 as well as Theorems 9.7

and 9.8 collectively verify that transformations, translations, rotations, and isometries of

Zn are precisely those transformations, translations, rotations, and isometries of Rn that

stabilize Zn, respectively. In particular, it is now clear that (ISO(Zn), ◦) is indeed a group,

and moreover T(Zn),R(Zn) ≤ ISO(Zn) ≤ F(Zn).

The parallels between translations, rotations, isometries of Zn and their counterparts of

Rn yield the two characterizations of ISO(Zn) which are parallel to the those of ISO(Rn):

ISO(Zn) = 〈T(Zn) ∪ R(Zn)〉 where T(Zn) ∩ R(Zn) = {id}; (9.37)

ISO(Zn) = T(Zn) ◦ R(Zn) ∼= Zn o On(Z). (9.38)

This further yields the parametrization of H∗ISO(Zn) by

Σ′′isozn := {(L, V, ξ) | L ≤ On(Z), V ≤ Zn, ξ ∈ Ξ′′L,V } ⊆ Σ′ ⊆ Σ, (9.39)

where Ξ′′L,V := {ξ ∈ ΞL,V | ξ(L) ⊆ Zn/V } ⊆ ΞL,V . Note that ISO(Zn) still have infinitely

many subgroups, since the choices for V and ξ are still unlimited. Next we will show how

to enumerate a finite subset from H∗ISO(Zn) when considering the music domain.

The space of music pitches from equal temperament can be denoted by Z. Every adjacent

pitch is separated by a half-step (or semi-tone) denoted by the integer 1, which is also the

distance between every adjacent keys (regardless of black or white) in a piano keyboard.

While the absolute integer assigned to each music pitch is not essential, in the standard

58

MIDI convention, C4 is 60, C]4 is 61, and so forth. Therefore, the space Zn represents the

space of chords consisting of n pitches. For instance, Z3 denotes the space of trichords, Z4

denotes the space of tetrachords, and so forth. Known music transformations of fixed-size

chords [84,85] can be summarized as a subset of the following parametrization set

Σ′′music := {(L, V, ξ) | L ≤ On(Z), V ∈ HM
Zn , ξ = ξ0

L,V ∈ Ξ′′L,V } ⊆ Σ′′isozn, (9.40)

where HM
Zn := {〈1〉, (12Z)n, 〈1〉∨ (12Z)n} is a finite collection of music translation subgroups

including music transpositions, octave shifts, and their combinations; ξ0
L,V is the trivial

vector system given by ξ0
L,V (A) = V for any A ∈ L requiring the inclusion of all rotations to

include music permutations and inversions. Together with the fact that On(Z) is finite, the

enumeration of each element in the triplet (L, V, ξ) is finite, yielding a finite Σ′′music.

It is important to recognize that the significance of the parametrization set Σ′′music is not

limited to recover known music-theoretic concepts but to complete existing knowledge by

forming a music “closure” Σ′′music. Such a “closure” can be further fine-tuned to be either

more efficient (e.g. by removing uninteresting rotation subgroups) or more expressive (e.g.

by adding more translation subgroups).

9.2.4 Section Summary

In this section, we first moved down from the full transformation group of Rn—the top

vertex in the subgroup lattice (H∗F(Rn),≤)—to the affine group of Rn. Focusing on AFF(Rn),

we derived a complete identification of its subgroups by constructing a parametrization set

Σ and a bijection Ψ : H∗AFF(Rn) → Σ. So, every subgroup of AFF(Rn) bijectively corresponds

to a unique triplet in Σ. Towards the goal of a finite collection of affine subgroups, we

further moved down in the subgroup lattice (H∗F(Rn),≤) from the affine group of Rn to the

isometry group of Rn. Focusing on ISO(Rn), we identified the parametrization of H∗ISO(Rn)

by a subset Σ′ ⊆ Σ. From there, we made a dichotomy in our top-down path, and presented

two examples to obtain two collections of subgroups used in two different topic domains.

One is a finite collection of space groups (in standard form and up to affine conjugacy) used

in crystallography, which is parameterized by Σ′′cryst ⊆ Σ′; the other is a finite completion

of existing music concepts, which is parameterized by Σ′′music ⊆ Σ′′isozn ⊆ Σ′. A complete

roadmap that we have gone through is summarized in Figure 9.3.

We finally reiterate that the selection of top-down paths is one’s design choice. Whenever

necessary, one should make his/her own decision on creating a new branch or even trying

out several branches along major downward paths. The top-down path with two branches

59

Crystallographic
Space Groups

Music “Closure”

H⇤
ISO(Zn)

H⇤
ISO(Rn)

H⇤
AFF(Rn)

H⇤
F(Rn)

⌃

⌃0

⌃00
cryst ⌃00

isozn

⌃00
music

Figure 9.3: Roadmap of the top-down paths in terms of collection of subgroups (left) and
the corresponding parametrization paths (right) under the parametrization map Ψ.

introduced in this section serve for illustration purposes.

9.3 SYMMETRY GENERATION: BOTTOM-UP APPROACH

As the counterpart of Section 9.2, this section presents the bottom-up approach to sample

a finite subgroup sublattice from the complete lattice H∗F(X). More specifically, we extract a

partial subgroup latticeH〈S〉 from a generating set S. This is done by an induction procedure

which first extracts cyclic subgroups {〈s〉 | s ∈ S} as base cases, and then inductively extracts

other subgroups via the join of the extracted ones. The resulting collection of subgroupsH〈S〉
is generally not the complete subgroup lattice H∗〈S〉 since some of its subgroups are missing.

The dual of this induction procedure gives a mirrored induction algorithm that computes

the corresponding abstraction semiuniverse in an efficient way. The missing subgroups can

be made up by adding more generators, but this hinders the efficiency. At the end of this

section, we will discuss the trade-off between expressiveness and efficiency when designing a

generating set in practice.

9.3.1 From Generating Set to Subgroup (Semi)Lattice

Let S ⊆ F(X) be a finite subset consisting of transformations of a set X. We construct a

collection H〈S〉 consisting of subgroups of 〈S〉 where every subgroup is generated by a subset

of S. To succinctly record this process and concatenate it with the abstraction generating

chain, we introduce the following one-step subgroup generating chain:

a subset of F(X)
group generation−−−−−−−−−→ a subgroup of F(X), (9.41)

60

which can be further encapsulated by the subgroup generating function defined as follows.

Definition 9.6. The subgroup generating function is the mapping π′ : 2F(X) → H∗F(X) where

2F(X) is the power set of F(X), H∗F(X) is the collection of all subgroups of F(X), and for

any S ∈ 2F(X), π′(S) := 〈S〉 := {sk ◦ · · · ◦ s1 | si ∈ S ∪ S−1, i = 1, . . . , k, k ∈ Z≥0} where

S−1 := {s−1 | s ∈ S}. By convention, sk ◦ · · · ◦ s1 = id for k = 0, and π′(∅) = 〈∅〉 = {id}.

Remark 9.6. The subgroup generating function in Definition 9.6 is nothing but generating

a subgroup from its given generating set. However, we can now write the procedure at the be-

ginning of this subsection succinctly as H〈S〉 = π′(2S) for any finite subset S ⊆ F(X); further,

the subgroup generating chain and the abstraction generating chain can now be concatenated,

which is denoted by the composition Π := π ◦ π′.

Like the abstraction generating function π, the subgroup generating function π′ is not

necessarily injective, since a generating set of a group is generally not unique; π′ is surjective,

since every subgroup per se is also its own generating set. The following theorem captures

the structure of π′(2S) for a finite subset S ⊆ F(X).

Theorem 9.9. Let S ⊆ F(X) be a finite subset, and π′ be the subgroup generating function.

Then (π′(2S),≤) is a join-semilattice, but not necessarily a meet-semilattice. In particular,

π′(A ∪B) = π′(A) ∨ π′(B) for any A,B ⊆ S. (9.42)

Proof. For any A,B ⊆ S, we have

π′(A ∪B) = 〈A ∪B〉 = 〈〈A〉 ∪ 〈B〉〉 = 〈π′(A) ∪ π′(B)〉 = π′(A) ∨ π′(B). (9.43)

Then for any π′(A), π′(B) ∈ π′(2S) where A,B ⊆ S, the join π′(A) ∨ π′(B) = π′(A ∪ B) ∈
π′(2S), since A ∪B ⊆ S. So, (π′(2S),≤) is a join-semilattice.

We give an example in which (π′(2S),≤) is not a meet-semilattice. Let X = Rn and S =

{te1 , te2 , t(3/2)·1} be a set consisting of three translations where e1 = (1, 0), e2 = (0, 1),1 =

(1, 1). Further, let A = {te1 , te2} and B = {t(3/2)·1}. The meet π′(A)∧ π′(B) = 〈A〉 ∩ 〈B〉 =

〈t3·1〉 6∈ π′(2S).

Remark 9.7. Although the collection of subgroups generated by the subgroup generating

function π′ is not a lattice in general, it is sufficient that it is a join-semilattice. This

is because the family of abstractions generated by the abstraction generating function π is

a meet-semiuniverse (recall the strong and week dualities in Theorem 6.3). As a result,

the closedness of π′(2S) under join is carried over through the strong duality to preserve

61

the closedness of π(π′(2S)) under meet. This preservation of closednesses under join and

meet has a significant practical implication: it directly yields an induction algorithm that

implements Π(2S) := π ◦ π′(2S) from a finite subset S.

9.3.2 An Induction Algorithm

We describe an algorithmic implementation of Π(2S) := π ◦π′(2S), where S ⊆ F(X) as the

input is a finite subset, and Π(2S) as the output is the resulting abstraction semiuniverse.

Here we assume X is a finite space for computational feasibility. A naive implementation

will first compute the subgroup join-semilattice π′(2S) as an intermediate step, and then

compute the abstraction meet-semiuniverse π(π′(2S)) as the second step. However, as men-

tioned in the remark following Theorem 6.3, computing every abstraction of X by identifying

orbits from a subgroup action can be expensive, and even computationally prohibitive. In

this subsection, we first analyze the naive two-step implementation, and then introduce an

induction algorithm that efficiently computes Π(2S) without the intermediate step, avoiding

expensive computations for all abstractions from orbits identifications.

A Naive Two-Step Implementation. For a given input S ⊆ F(X) where both S and

X are finite, we first compute π′(2S) which is straightforward, since we can simply index

(possibly with duplication) every subgroup in π′(2S) by its generating set S ′ ⊆ S. Now

consider the second step: for every S ′ ⊆ S and its corresponding π′(S ′) = 〈S ′〉, we compute

π(π′(S ′)) = X/〈S ′〉 by identifying the set of orbits {〈S ′〉x | x ∈ X}. More specifically, for

every pair x, x′ ∈ X, we need to check whether or not they are in the same orbit. The

number of checks needed is O(|X|2) which can be computationally prohibitive if |X| is large.

Nevertheless, what really makes this naive thought fail is that most checks cannot finish in

finite time. Take S ′ = {s1, s2} for example, without additional properties to leverage, there

are infinitely many ways of causing x, x′ to be in the same orbit, e.g. x′ = s1(x), x′ = s−1
1 (x),

x′ = s2(x), x′ = s1 ◦ s2 ◦ s2 ◦ s−1
1 (x) and so forth.

An Induction Algorithm. Instead, we give an algorithm based on induction on |S ′| for

all nonempty subsets S ′ ⊆ S.

Base case: compute Π(S ′) for |S ′| = 1 (Algorithm 9.1) as orbits under a cyclic subgroup:

Π(S ′) = {〈S ′〉x | x ∈ X}. (9.44)

Induction step: compute Π(S ′) for |S ′| > 1 (Algorithm 9.2) as the meet of two partitions:

Π(S ′) = Π(S ′′) ∧ Π(S ′\S ′′) for any S ′′ ⊂ S ′. (9.45)

62

In the base case, every base partition is generated through orbits identification (or more

precisely, orbits tracing), which however does not require any endless checks since there is

only one generator. As a result, the computational complexity of Algorithm 9.1 is linear

rather than quadratic in the size of the set X. The correctness of the induction step is

backed by Theorem 9.9 and the strong duality in Theorem 6.3, or more explicitly,

Π(S ′) = π ◦ π′(S ′′ ∪ (S ′\S ′′)) (9.46)

= π(π′(S ′′) ∨ π′(S ′\S ′′)) (9.47)

= π ◦ π′(S ′′) ∧ π ◦ π′(S ′\S ′′) (9.48)

= Π(S ′′) ∧ Π(S ′\S ′′). (9.49)

It is the meet operation that successfully bypasses the endless checks in the naive implemen-

tation.

63

Input: a generator s and a set X

Output: the base partition Π({s})
Function BasePartn(s):

initialize label id: l = 0;

for each point x ∈ X do

if x is not labelled then
initialize a new orbit:

O = {x};
transform:

y = s(x);

while y ∈ X and y 6= x

and y is not labelled do
enlarge the orbit:

O = O ∪ {y};
transform:

y = s(y);

end

if y /∈ X or y = x then
create a new label:

l = l + 1;

end

if y is labelled then
use y’s label:

l = y’s label;

end

label every point in the

orbit O by l;

end

end

return the partition according

to the labels;

Algorithm 9.1: Computing base par-

titions by identifying orbits: O(|X|).

Input: two partitions P and Q of a

set X

Output: the meet P ∧Q, i.e. finest

common coarsening of P
and Q

Function Meet(P, Q):
for each cell Q ∈ Q do

initialize a new cell:

Pmerge = ∅;
for each cell P ∈ P do

if P ∩Q 6= ∅ then
merge:

Pmerge = Pmerge ∪ P ;

remove:

P = P\{P};
end

end

insert:

P = P ∪ {Pmerge};
end

return P ;

Algorithm 9.2: Computing partitions

generated from more than one generators

inductively by taking the meet of two par-

titions computed earlier: O(|P||Q|). Nor-

mally, all base partitions should be al-

ready computed and cached before run-

ning the induction steps.

64

9.3.3 Finding a Generating Set of ISO(Zn)

We give an example of finding a finite generating set. The key idea is based on recursive

group decompositions. In light of storing abstractions of a set X in digital computers, we

consider the discrete space X = Zn(⊆ Rn). Further, we restrict our attention to generators

that are isometries of Zn, since ISO(Zn) is finitely generated. We show this by explicitly

finding a finite generating set of ISO(Zn).

Recall that (in Section 9.2.3, the second example) we gave one characterization of ISO(Zn):

ISO(Zn) = 〈T(Zn) ∪ R(Zn)〉 where T(Zn) ∩ R(Zn) = {id}. (9.50)

We start from (9.50), and further seek a generating set of T(Zn) and a generating set of R(Zn).

Finding generators of T(Zn) is easy: T(Zn) = 〈t′e1∪· · ·∪t′en〉. However, finding generators of

R(Zn) requires more structural inspections. The strategy is to first study the matrix group

On(Z) which is isomorphic to R(Zn), and then transfer results to R(Zn). Interestingly, On(Z)

has a decomposition similar to what ISO(Zn) has in (9.50). By definition, On(Z) consists

of all orthogonal matrices with integer entries. For any A ∈ On(Z), the orthogonality and

integer-entry constraints restrict every column vector of A to be a unique standard basis

vector or its negation. This will lead to the decomposition of R(Zn).

Notations. 1 = (1, . . . , 1) ∈ Rn is the all-ones vector; e1, . . . , en are the standard basis

vectors of Rn where ei ∈ {0, 1}n has a 1 in the ith coordinate and 0s elsewhere; ν1, . . . ,νn are

the so-called unit negation vectors of Rn where νi ∈ {−1, 1}n has a −1 in the ith coordinate

and 1s elsewhere.

Definition 9.7 (Permutation). A permutation matrix is a matrix obtained by permuting

the rows of an identity matrix; we denote the set of all n × n permutation matrices by Pn.

A permutation of an index set is a bijection σ : {1, . . . , n} → {1, . . . , n}; the set of all

permutations of the size-n index set is known as the symmetric group Sn. A permutation of

(integer-valued) vectors is a rotation r′P : Zn → Zn for some P ∈ Pn; we denote the set of

all permutations of n-dimensional vectors by RP(Zn) ⊆ R(Zn).

Definition 9.8 (Negation). A (partial) negation matrix is a diagonal matrix whose diagonal

entries are drawn from {−1, 1}; we denote the set of all n × n negation matrices by Nn. A

(partial) negation of (integer-valued) vectors is a rotation r′N : Zn → Zn for some N ∈ Nn;

we denote the set of all negations of n-dimensional vectors by RN(Zn) ⊆ R(Zn).

Remark 9.8. Under Definitions 9.7 and 9.8, one can verify that a permutation (of vectors)

maps x to Px by permuting x’s coordinates according to P ∈ Pn; likewise, a negation (of

vectors) maps x to Nx by negating x’s coordinates according to N ∈ Nn.

65

Theorem 9.10. We have the following characterizations of permutations and negations:

(RP(Zn), ◦) ∼= (Pn, ·) ∼= (Sn, ◦) and (RN(Zn), ◦) ∼= (Nn, ·). (9.51)

In particular, these imply that |RP(Zn)| = |Pn| = |Sn| = n! and |RN(Zn)| = |Nn| = 2n.

Proof. It is an exercise to check that all entities in the theorem are indeed groups.

Let φP : RP(Zn)→ Pn be the function given by φP(r′P) = P , for any r′P ∈ RP(Zn). For any

r′P , r
′
Q ∈ RP(Zn), if φP(r′P) = φP(r′Q), i.e. P = Q, then r′P = r′Q, so φP is injective. For any

P ∈ Pn, r′P ∈ RP(Zn) and φP(r′P) = P , so φP is surjective. Further, for any r′P , r
′
Q ∈ RP(Zn),

φP(r′P ◦ r′Q) = φP(r′P ·Q) = P · Q = φP(r′P) · φP(r′Q), so φP is a homomorphism. Now we see

that φP is an isomorphism. So, (RP(Zn), ◦) ∼= (Pn, ·).
Let φS : Sn → Pn be the function given by σ 7→ P σ, where P σ is an n × n permutation

matrix obtained by permuting the rows of the identity matrix according to σ, i.e.

P σ
ij =





1 i = σ(j)

0 i 6= σ(j)
for any i, j ∈ {1, . . . , n}. (9.52)

For any σ, µ ∈ Sn, if φS(σ) = φS(µ), i.e. P σ = P µ, then σ(j) = µ(j) for all j ∈ {1, . . . , n},
i.e. σ = µ, so φS is injective. For any P ∈ Pn, let σ : {1, . . . , n} → {1, . . . , n} be the function

given by σ(j) ∈ {i|Pij = 1}, which is well-defined since {i|Pij = 1} is a singleton for all

j ∈ {1, . . . , n} given that P ∈ Pn is a permutation matrix. It is clear that σ ∈ Sn, and

φS(σ) = P . So, φS is surjective. Further, for any σ, µ ∈ Sn, φS(σ ◦ µ) = P σ◦µ = P σ · P µ =

φS(σ) · φS(µ) where the second equality holds because for all i, j ∈ {1, . . . , n},

(P σ · P µ)ij =
n∑

k=1

P σ
ik · P µ

kj = P σ
iµ(j) · 1 =





1 i = σ ◦ µ(j)

0 i 6= σ ◦ µ(j)
= P σ◦µ

ij , (9.53)

so φS is a homomorphism. Now we see that φS is an isomorphism. So, (Sn, ◦) ∼= (Pn, ·).
Let φN : RN(Zn) → Nn be the function given by φN(r′N) = N , for any r′N ∈ RN(Zn).

For any r′N , r
′
M ∈ RN(Zn), if φN(r′N) = φN(r′M), i.e. N = M , then r′N = r′M , so φN is

injective. For any N ∈ Nn, r′N ∈ RN(Zn) and φN(r′N) = N , so φN is surjective. Further,

for any r′N , r
′
M ∈ RN(Zn), φN(r′N ◦ r′M) = φN(r′N ·M) = N ·M = φN(r′N) · φN(r′M), so φN is a

homomorphism. Now we see that φN is an isomorphism. So, (RN(Zn), ◦) ∼= (Nn, ·).

Theorem 9.11. We have the following characterization of On(Z):

On(Z) = 〈Nn ∪ Pn〉 where Nn ∩ Pn = {I}. (9.54)

66

Proof. We first show that Nn,Pn ≤ On(Z). (On(Z), ·) is a group since matrix multiplication

· is associative, I ∈ On(Z) is the identity element, and for any A ∈ On(Z), A> ∈ On(Z) is

its inverse. Pick any N ∈ Nn, then N ∈ Zn×n and N>N = NN = I, so N ∈ On(Z), which

implies that Nn ⊆ On(Z). Pick any P ∈ Pn, then P = [eσ(1), · · · , eσ(n)] ∈ Zn×n for some

σ ∈ Sn and (P>P)ij = e>σ(i)eσ(j) = δij, i.e. P>P = I, so P ∈ On(Z), which implies that

Pn ⊆ On(Z). Now we perform subgroup tests to show that Nn,Pn ≤ On(Z). First, we check

that 1) I ∈ Nn, 2) for any N,N ′ ∈ Nn, NN ′ ∈ Nn, 3) for any N ∈ Nn, N−1 = N ∈ Nn;

therefore, Nn ≤ On(Z). Second, we check that 1) I ∈ Pn, 2) for any P, P ′ ∈ Pn, PP ′ ∈ Pn,

3) for any P ∈ Pn, P−1 = P> ∈ Pn; therefore, Pn ≤ On(Z).

Now we show that Nn ∩Pn = {I}. Pick any N ∈ Nn\{I} and any P ∈ Pn. It is clear that

N 6= P since N has at least one −1 entries while P has no −1 entries. This implies that

(Nn\{I}) ∩ Pn = ∅. Further, I ∈ Nn ∩ Pn. Therefore, Nn ∩ Pn = {I}.
Lastly we show that On(Z) = 〈Nn ∪ Pn〉. It is clear that 〈Nn ∪ Pn〉 ⊆ On(Z), since

Nn,Pn ≤ On(Z). Conversely, pick any A = [a1, · · · ,an] ∈ On(Z) where ai denotes the

ith column of A. By definition, A>A = I, so 〈ai,ai〉 = ‖ai‖2
2 = 1 for i ∈ {1, . . . , n},

and 〈ai,aj〉 = 0 for i, j ∈ {1, . . . , n} and i 6= j. On the one hand, given A ∈ Zn×n, the

unit-norm property ‖ai‖2
2 = 1 implies that ai is a standard basis vector or its negation,

i.e. ai = ±ek for some k ∈ {1, . . . , n}. On the other hand, for i 6= j, the orthogonality

property 〈ai,aj〉 = 0 implies that for some k 6= k′, ai = ±ek and aj = ±ek′ . Thus, there

exist some vector α = (α1, . . . , αn) ∈ {1,−1}n and some permutation σ ∈ Sn such that

A = [α1eσ(1), · · · , αneσ(n)] = diag(α)[eσ(1), · · · , eσ(n)] = NP , where N = diag(α) ∈ Nn

and P = [eσ(1), · · · , eσ(n)] ∈ Pn. This implies A ∈ 〈Nn ∪ Pn〉. So, On(Z) ⊆ 〈Nn ∪ Pn〉.

Corollary 9.2. We have the following characterization of R(Zn):

R(Zn) = 〈RN(Zn) ∪ RP(Zn) where RN(Zn) ∩ RP(Zn) = {id}. (9.55)

Remark 9.9. The decomposition of the rotation group R(Zn) in (9.55) has a similar form

compared to the decomposition of the isometry group ISO(Zn) in (9.50). One can show that

R(Zn) has a second characterization that is similar to the second characterization of ISO(Zn),

where R(Zn) can also be decomposed as semi-direct products:

R(Zn) = RN(Zn) ◦ RP(Zn) ∼= Nn o Pn. (9.56)

However, this characterization is not used in this thesis, so we omit its proof.

By Corollary 9.2, finding generators of R(Zn) breaks down into finding those of RN(Zn) and

67

RP(Zn), respectively. First, from unit negation vectors, we can find generators for negations:

RN(Zn) = 〈{r′diag(ν1), . . . , r
′
diag(νn)}〉. (9.57)

Second, from the fact that the symmetric group is generated by 2-cycles of the form (i, i+1):

Sn = 〈{(1, 2), . . . , (n− 1, n)}〉 [86], we can find generators for permutations:

RP(Zn) = 〈{r′P (1,2) , . . . , r
′
P (n−1,n)}〉, (9.58)

where P (i,i+1) ∈ Pn is obtained by swapping the ith and (i+ 1)th rows of I. Finally,

ISO(Zn) = 〈T(Zn) ∪ R(Zn)〉
= 〈T(Zn) ∪ RN(Zn) ∪ RP(Zn)〉
= 〈T0 ∪ RN0 ∪ RP0〉 , (9.59)

where T0 := {t′ei}ni=1, RN0 := {r′diag(νi)
}ni=1, and RP0 := {r′

P (i,i+1)}n−1
i=1 . Here, we performed

recursive group decompositions to yield the generating set T0 ∪ RN0 ∪ RP0 with finite size

n+ n+ (n− 1) = 3n− 1. This verifies that ISO(Zn) is indeed finitely generated.

9.3.4 Trade-off: Minimality or Diversity (Efficiency or Expressiveness)

A generating set of a group is not unique. There are two extremes when considering the

size of a generating set. One considers the largest generating set of a group which is the

group itself; the other considers a minimal generating set which is not unique either.

Definition 9.9. Let G be a group, S ⊆ G, and 〈S〉 be the subgroup of G generated by S.

We say that S is a minimal generating set (of 〈S〉) if for any s ∈ S, 〈S\{s}〉 6= 〈S〉.

Theorem 9.12. Let G be a group and S ⊆ G, then S is a minimal generating set if and

only if for any s ∈ S, s /∈ 〈S\{s}〉.

Proof. Suppose for any s ∈ S, s /∈ 〈S\{s}〉. However, s ∈ 〈S〉; so, 〈S\{s}〉 6= 〈S〉. By

definition, S is a minimal generating set. On the other hand, suppose there exists an s ∈ S
such that s ∈ 〈S\{s}〉, i.e. s = sk ◦· · ·◦s1 for some k where sk, . . . , s1 ∈ (S\{s})∪(S\{s})−1.

Pick any s′ ∈ 〈S〉, s′ = s′k′ ◦ · · · ◦ s′1 for some k′ where s′k′ , . . . , s
′
1 ∈ S ∪ S−1. For any

i ∈ {1, . . . , k′}, if s′i = s, replace it with sk ◦ · · · ◦ s1; if s′i = s−1, replace it with s−1
1 ◦ · · · ◦ s−1

k ;

otherwise s′i ∈ (S\{s}) ∪ (S\{s})−1, do nothing. This results in an expression of s′ as

the composition of finitely many elements in (S\{s}) ∪ (S\{s})−1, i.e. s′ ∈ 〈S\{s}〉. So,

68

〈S〉 ⊆ 〈S\{s}〉. It is trivial to see that 〈S\{s}〉 ⊆ 〈S〉 since S\{s} ⊆ S. Therefore,

〈S\{s}〉 = 〈S〉. By definition, S is not a minimal generating set.

Considering ISO(Zn) = 〈T0 ∪ RN0 ∪ RP0〉, it is easy to check that T0, RN0, and RP0 are

minimal individually; whereas their union is not. Nevertheless, it is not hard to show that

S? := {t′e1 , r′diag(ν1)} ∪ RP0 is a minimal generating set of ISO(Zn) with size n+ 1.

There is a trade-off between minimality and diversity, which further leads to the trade-off

between efficiency and expressiveness. Again we use ISO(Zn) as an example. From one

extreme, a minimal generating set is most efficient in the following sense: S ⊆ ISO(Zn) is

a minimal generating set (of 〈S〉) if and only if π′|2S is injective, i.e. for any S ′, S ′′ ⊆ S, if

S ′ 6= S ′′, then π′(S ′) = 〈S ′〉 6= 〈S ′′〉 = π′(S ′′) (an easy check). Therefore, whenever S is

not minimal, there are duplicates in the generated subgroups, and thus duplicates in the

subsequent abstraction generations. Every occurrence of a duplicate is a waste of computing

power since it does not produce a new abstraction in the end. Intuitively, if a generating set

is further away from being minimal, then more duplicates tend to occur and the abstraction

generating process is less efficient. To the other extreme, the largest generating set is most

expressive in the following sense: if S = ISO(Zn), then π′(2S) = H∗ISO(Zn), i.e. the collection

of all subgroups of ISO(Zn); and in general, for any S ⊂ S+ ⊆ ISO(Zn), the monotonicity

property π′(2S) ⊂ π′(2S+) holds (an easy check). However, the largest generating set is also

the least efficient not only because it has the largest number of duplicates, but in this case,

it is infinite. Thus, to respect the trade-off between efficiency and expressiveness, we need

to find a balance between the two extremes.

Our plan is to start from a minimal generating set S? of ISO(Zn) and then gradually

enlarge it by adding the so-called derived generators. In other words, we aim for a filtration:

S? ⊆ S?+1 ⊆ S?+2 ⊆ S?+3 ⊆ · · · such that the corresponding collections of subgroups satisfy

π′(2S
?

) ⊆ π′(2S
?
+1) ⊆ π′(2S

?
+2) ⊆ π′(2S

?
+3) ⊆ · · · and

∞⋃

m=1

π′(2S
?
+m) = H∗ISO(Zn). (9.60)

Definition 9.10. Let S? be a minimal generating set of ISO(Zn), and define

S?+m := {sαkk ◦ · · · ◦ sα1
1 | k ∈ Z≥0, sk, . . . , s1 ∈ S?, αk, . . . , α1 ∈ Z,

∑k
i=1 |αi| ≤ m}. (9.61)

A derived generator of length m is an s ∈ S?+m\S?+(m−1).

Remark 9.10. In Definition 9.10, S?+m is the “ball” with center id and radius m in the

Cayley graph of S? ∪ (S?)−1. It is an easy check that S? ∪ (S?)−1 = S?+1 ⊆ S?+2 ⊆ S?+3 ⊆ · · · .

69

Note that ∪∞m=1S
?
+m = 〈S?〉 = ISO(Zn), since the growing “ball” will eventually cover

the whole Cayley graph. Therefore, ∪∞m=1π
′(2S

?
+m) = H∗ISO(Zn). This suggests we gradually

add derived generators of increasing length to S?, and approximate H∗ISO(Zn) by π′(2S
?
+m) for

some large m. Without any prior preference, one must go through this full procedure to

grow the ball S?+m from radius m = 1. Although computationally intense, it is incremental.

More importantly, this is a one-time procedure, but the resulting abstraction (semi)universe

is universal : computed abstractions can be used in different topic domains.

However, just like biological perception systems which have innate preference for certain

stimuli, having prior preference for certain derived generators can make the abstraction

(semi)universe grow more efficiently. As an illustrative example and a design choice, we

start from the minimal generating set S? := {t′e1 , r′diag(ν1)} ∪ RP0, and prioritize three types

of derived generators. First, we add back the basis generators {t′ei}ni=2 and {r′diag(νi)
}ni=2,

so we get back the generating set T0 ∪ RN0 ∪ RP0 from (9.59). This restores the complete

sets of translations, negations, and permutations—the three independent pillars generating

ISO(Zn). The other two types of derived generators, called circulators and synchronizers,

are inspired by biologically innate preference for periodicity and synchronization [84,87,88].

Definition 9.11. Let S = {s1, . . . , sk} be a minimal generating set. A circulator of S with

period α is: sα for some s ∈ S and α ∈ Z>0. (Consider group action on X and any x ∈ X:

the orbit 〈sα〉x consists of periodic points from 〈s〉x.) If 〈S〉 is Abelian, the synchronizer of

S is: sk ◦ · · · ◦ s1.

We denote the set of all circulators of T0 with a fixed period α by Tα0 := {t′αei}ni=1.

Inspecting circulators of RN0 and RP0 does not yield new generators, since for any s ∈
RN0 ∪ RP0, s2 = id. The synchronizers of T0 and RN0 are t′1 and r′−I (〈RP0〉 is not Abelian).

Adding these circulators and synchronizers to T0 ∪ RN0 ∪ RP0 yields the generating set:

S?+ := T0 ∪ T2
0 ∪ · · · ∪ Tτ0 ∪ {t′1} ∪ RN0 ∪ {r′−I} ∪ RP0, (9.62)

where τ denotes an upper bound on period exploration. Note that |S?+| = τn + 1 + n +

1 + (n − 1) = (τ + 2)n + 1. In light of real applications, we can use this generating set to

generate an abstraction semiuniverse for automatic music concept learning.

9.4 RESTRICTION TO FINITE SUBSPACES

Computers have to work with finite spaces for finite execution time. If the underlying

space X is finite, then there is no issue. However, if X is infinite (but still discrete) like Zn,

70

we have to consider a finite subspace of X in practice. In this case, we must be careful about

both what an abstraction of a subspace means and what potential problems might occur.

Definition 9.12. Let X be a set and P be an abstraction of X. For any Y ⊆ X, the

restriction of P to Y is an abstraction of Y given by P|Y := {P ∩ Y | P ∈ P}\{∅}.

Remark 9.11. Unless otherwise stated, the term “an abstraction of a subspace” means an

abstraction of the ambient space restricted to that subspace. Under this definition, we need

extra caution when computing an abstraction of a subspace.

Let X be a set, and H ≤ F(X) be a subgroup of the transformation group of X. For any

Y ⊆ X, according to Definition 9.12, the correct way of generating the abstraction of the

subspace Y from H is:

π(H)|Y = (X/H)|Y = {Hx ∩ Y | x ∈ X}\{∅}. (9.63)

A risky way of computing the abstraction of the subspace Y is by thinking only in Y while

forgetting the ambient space X. The risk here is to get a partition of Y , denoted RH
Y ,

which is strictly finer than π(H)|Y = RH
X |Y . In other words, there are possibly cells in RH

Y

that should be merged but are not if they are connected via points outside the subspace

Y . For instance, consider X = Z2, Y = {(0, 0), (1, 0), (0, 1), (1, 1)} ⊆ X, and the subgroup

H = 〈{t′1, r′−I}〉 ≤ ISO(Z2) ≤ F(Z2). Let RH
Y be the abstraction of Y obtained by running

the induction algorithm on Y (instead of X) in the bottom-up approach. One can check:

RH
Y = { {(0, 0), (1, 1)}, {(0, 1)}, {(1, 0)} }; (9.64)

π(H)|Y = { {(0, 0), (1, 1)}, {(0, 1), (1, 0)} }. (9.65)

The two points (1, 0) and (0, 1) should be in one cell since (1, 0)
r′−I7−−→ (−1, 0)

t′17−→ (0, 1), but

are not in RH
Y since the via-point (−1, 0) 6∈ Y . In general, the risk is present if we compute

an abstraction of a subspace Y from other abstractions of Y or from orbit tracing.

However, for computational reasons, we want to forget the ambient space X! In particular,

the risky way is the only practical way if X is infinite and Y is finite, since it is not realistic

to identify all orbits in an infinite space. This suggests that we take the risk to generate RH
Y

as the first step, and rectify the result in a second step to merge cells that are missed in the

first step. As a result, we introduce a technique called “expand-and-restrict”.

71

9.4.1 Expand-and-Restrict

“Expand-and-restrict” is an empirical technique which first expands the subspace and then

restricts it back, i.e. to compute RH
Y+
|Y for some finite subspace Y+ such that Y ⊂ Y+ ⊂ X.

The expansion Y+ takes more via-points into consideration, so it helps merge cells that are

missed in RH
Y . In practice, we carry out this technique gradually in a sequential manner,

which is similar to what we did in enlarging a minimal generating set (cf. Section 9.3.4).

Given an infinite space X and a finite subspace Y ⊂ X, we first construct a filtration

Y = Y+0 ⊂ Y+1 ⊂ Y+2 ⊂ · · · ⊂ X where Y+k is finite ∀k ∈ Z≥0 and
∞⋃

k=0

Y+k = X. (9.66)

We then start a search process for a good expansion Y+k. More specifically, we iteratively

compute RH
Y+k
|Y for expansion factors k = 0, 1, 2, . . . until the results reach a consensus

among consecutive iterations. To determine a consensus, theoretically, we need to find the

smallest k such that RH
Y+k
|Y = RH

Y+k′
|Y for all k′ > k, which requires an endless search. In

practice, we stop the search whenever RH
Y+k
|Y = RH

Y+(k+1)
|Y = · · · = RH

Y+(k+∆k)
|Y for some

positive integer ∆k. We call this an early stop, whose resulting abstraction RH
Y+k
|Y is an

empirical approximation of the true abstraction π(H)|Y . Note that without early stopping,

we will have the correct result π(H)|Y = RH
X |Y in the limit of this infinite search process.

Therefore, even in cases where the space X is finite, if X is much larger than the subspace

Y , this empirical search can be more efficient than computing π(H)|Y directly, since earlier

search iterations will be extremely cheap and if an early stop happens early there is a win.

9.4.2 An Implementation Example

We give an example to illustrate some implementation details on generating abstractions

of a finite subspace. In this example, we consider finite subspaces of X = Zn to be the

centered hypercubes of the form Y = Zn[−b,b] where Z[−b,b] := Z ∩ [−b, b] and b > 0 is finite.

To construct an abstraction semiuniverse for such a finite hypercube, we adopt the bottom-

up approach and pick the generating set to be S?+ defined in (9.62). Taking S?+ and Zn[−b,b]
as inputs, we run the induction algorithm, where both Algorithm 9.1 (for base cases) and

Algorithm 9.2 (for the induction step) are run on the finite subspace Zn[−b,b] instead of the

infinite space Zn. This is the first step which gives abstractions R〈S〉Zn
[−b,b]

for S ⊆ S?+.

As mentioned earlier, for every S ⊆ S?+, the correct abstraction should be R〈S〉Zn |Zn[−b,b]
which is generally not equal to R〈S〉Zn

[−b,b]
. So, we run the “expand-and-restrict” technique as

the second step. We first construct a filtration: let Y+k = Zn[−b−k,b+k] be a finite expansion of

72

Y = Zn[−b,b], then it is clear that Y = Y+0 ⊂ Y+1 ⊂ Y+2 ⊂ · · · ⊂ X and ∪∞k=0Y+k = X = Zn.

We then start the empirical search process and set ∆k = 1 (the most greedy search). This

means we will stop the search whenever R〈S〉Y+k
|Y = R〈S〉Y+(k+1)

|Y , and return the abstraction

R〈S〉Y+k
|Y = R〈S〉Zn

[−b−k,b+k]
|Zn

[−b,b]
as the final result to approximate R〈S〉Zn |Zn[−b,b] = Π(S)|Zn

[−b,b]
.

There are three additional implementation tricks that are special to this example. The

first trick applies to cases where the subspace Zn[−b,b] is large, i.e. a large b. In this case,

every search iteration in the “expand-and-restrict” technique is expensive and gets more

expensive as the search goes. However, for the generating set S?+ specifically, it is typical

to have b � τ so as to reveal strong periodic patterns. Thus, we run the entire two-step

abstraction generating process for Zn[−τ ,τ] instead of Zn[−b,b], pretending Zn[−τ ,τ] is the subspace

that we want to abstract. This yields a much faster abstraction process since Zn[−τ ,τ] is much

smaller than Zn[−b,b]. The result is an abstraction R〈S〉Zn
[−τ−k,τ+k]

|Zn
[−τ,τ]

for some expansion factor

k. We reuse this same k and compute R〈S〉Zn
[−b−k,b+k]

|Zn
[−b,b]

as the final result, which is the only

expensive computation. Note that this trick adds an additional empirical approximation,

assuming that the same expansion factor k works for both small and large subspaces. While

we have not yet found a theoretical guarantee for this assumption, this trick works well in

practice, and provides huge computational savings.

Note: for some generating subsets S ⊆ S?+, we can prove (so no approximations) that

the expansion factor k = 0 (no need to expand) or 1. Although this provides theoretical

guarantees in certain cases, the tricks used in the current proofs are case-by-case depending

on the chosen generators. Thus, before we find a universal way of proving things, we prefer

empirical strategies—like the above search process—which work universally in any event.

The second trick considers the subspace to be any general hypercube in Zn, which is

not necessarily square or centered. The trick here is simply to find a minimum centered

square hypercube containing the subspace. If the ambient space X happens to be “spatially

stationary”—the absolute location of each element in the space is not important but only

their relative position matters (e.g. the space of music pitches)—then we find a minimum

square hypercube containing the subspace and center it via a translation. Centering is very

important and specific to the chosen generating set S?+. This is because S?+ contains only

pure translations and pure rotations; and centering square hypercubes makes pure rotations

safe: no rotation maps a point in Zn[−b,b] outside (one can check that for any r′A ∈ R(Zn),

r′A(Zn[−b,b]) = Zn[−b,b]). In practice, centering dramatically decreases the number of miss-

merged cells, and makes it safe to choose small ∆k for early stopping. This explains why we

only consider subspaces of the form Zn[−b,b] in the first place, and boldly choose ∆k = 1.

The third trick considers a quick-and-dirty pruning of duplicates in generating a family of

73

partitions, leaving room for larger-period explorations. Without this trick, to generate the

partition family Π(2S
?
+), we need |2S?+ | = 2(τ+2)n+1 = O(2τ) computations, which hinders

exploration on period τ . However, S?+ is not minimal, so |Π(2S
?
+)| < |2S?+|, suggesting many

computations are not needed since they yield the same abstraction. We focus on circulators,

where we exclude computations on those S ∈ 2S
?
+ containing multiple periods. This reduces

the number of computations to (23n+1 − 22n+1)τ + 22n+1 = O(τ).

A real run on the subspace Z4
[−12,12] and τ = 4 computes 31232 partitions, during which

all search processes in “expand-and-restrict” end in at most three iterations. This means in

this experiment we only need to expand the subspace by k = 0 or 1 for all abstractions in

the family.

Lastly, we briefly mention the task of completing a global hierarchy on an abstraction

family PY . A brute-force algorithm makes O(|PY |2) comparisons, determining the relation

(� or incomparable) for every unordered pair of partitions P ,Q ∈ PY . Locally, we run

a subroutine GetRelation(P,Q) implemented via the contingency table [78] whenever we

want to query a pair of partitions. Globally, we use two properties to reduce the number of

calls to GetRelation(P,Q): 1) transitivity: for any P ,P ′,P ′′ ∈ PY , P � P ′ and P ′ � P ′′
implies P � P ′′; 2) dualities in Theorem 6.3. The final output of our abstraction process

is a directed acyclic graph of the abstraction (semi)universe Π(2S
?
+). Similar to the first

trick above, in practice it suffices to complete the hierarchy for smaller subspaces like Zn[−τ ,τ],

assuming the same hierarchy holds for the actual subspace under consideration.

74

Chapter 10: Information Lattice Learning Phase II: Probabilistic Rule Learning

We present algorithmic guidelines for probabilistic rule learning, the second phase of our

two-phase Information Lattice Learning (ILL). The essence of this Phase II learning is to

couple abstraction hierarchy (from Phase I) with data statistics, and the resulting output

of the rule learning algorithm is a rule trace, i.e. an ordered sequence of probabilistic rules

recording a complete rule-learning path. Any learned rule trace is also a final ACL output

which reveals structured, independent, and human-interpretable insights of the input data.

In this chapter, Section 10.1 first introduces the vanilla version of a self-learning loop,

which is an automated learning cycle between two learning agents: a “teacher” that extracts

rules and a “student” that applies rules. For each of the two learning agents respectively, Sec-

tion 10.2 further presents a more advanced teacher, which intelligently matches abstraction

contexts to adaptively produce both context-free and context-dependent rules; Section 10.3

further presents a more advanced student, which intelligently scrutinizes any given rules to

elastically apply only a self-selected subset of them while breaking the others.

10.1 THE VANILLA “TEACHER
 STUDENT” LOOP

Informally speaking, probabilistic rule learning is accomplished in a procedural way, by

each time learning a new and independent rule which from an unadopted perspective, reveals

a yet-not-discovered insight of the data. By a new and independent rule, we mean a rule that

is not implied by all previously learned rule, i.e. a rule that is “perpendicular” to all previous

rules. This is reminiscent to our own learning experience, say in a semester-long class, where

in every class through a semester, we always expect to learn something new, something we

haven’t seen before, and something that is “perpendicular” to our prior knowledge.

Formally, probabilistic rule learning is achieved by a so-called self-learning loop. The

loop adopts a teacher
 student architecture whose main idea is learning by comparison.

This setting finds its prototype from a typical human pedagogical scenario where a teacher

guides a student to a designated goal through iterative exercises and feedback (Figure 10.1:

left). As a computational counterpart (Figure 10.1: right), in our self-learning loop, the

teacher is a discriminative model and the student is a generative model. The two learning

agents cooperate with each other iteratively, with the teacher extracting rules for the student

and the student applying rules to generate data for more feedback (i.e. the rules) from the

teacher.

We first present an overview of our self-learning loop (Figure 10.1: right), showing the

75

exercise

feedback

Published as a conference paper at ICLR 2017

The k-th Loop student teacher

rule ruleset

music
input

�k {�i}k
i=1

p̂ p
hk�1i
stu p

hki
stu

�

The teacher solves:

maximize D
⇣
p
hk�1i
�,stu || p̂�

⌘

subject to � 2 �\�hk�1i

(discrete optimization)

The student solves:

maximize Sq

⇣
p
hki
stu

⌘

subject to p
hki
stu 2 �1

· · ·
p
hki
stu 2 �k

(linear least-squares)

Figure 1: MUS-ROVER’s self-learning loop (the kth iteration). The teacher (discriminator) takes
as inputs the student’s latest style p

hk�1i
stu and the input style p̂, and identifies a feature � through

which the two styles manifest the largest gap D(·||·). The identified feature is then made into a rule
(a constraint set �k), and augments the ruleset {�i}k

i=1. The student (generator) takes as input the
augmented ruleset to update its writing style into p

hki
stu, and favors creativity, i.e. more possibilities,

by maximizing the Tsallis entropy Sq subject to the rule constraints. In short, the teacher extracts
rules while the student applies rules; both perform their tasks by solving optimization problems.

We compare the paths taken by this improved automatic theorist to paths taken by human theorists
(say Fux), studying similarities as well as pros and cons of each. So advantages from both can be
jointly taken to maximize the utility in music education and research. In this paper in particular,
we highlight the concept hierarchy that one would not get from our prior work, as well as enhanced
syllabus personalization that one would not typically get from traditional pedagogy.

2 MUS-ROVER OVERVIEW

As the first algorithmic pathfinder in music, MUS-ROVER I introduced a “teacher ⌦ student” model
to extract compositional rules for writing 4-part chorales (Yu et al., 2016a;b). The model is im-
plemented by a self-learning loop between a generative component (student) and a discriminative
component (teacher), where both entities cooperate to iterate through the rule-learning process (Fig-
ure 1). The student starts as a tabula rasa that picks pitches uniformly at random to form sonorities
(a generic term for chord) and sonority progressions. The teacher compares the student’s writing
style (represented by a probabilistic model) with the input style (represented by empirical statistics),
identifying one feature per iteration that best reveals the gap between the two styles, and making it
a rule for the student to update its probabilistic model. As a result, the student becomes less and
less random by obeying more and more rules, and thus, approaches the input style. Collecting from
its rule-learning traces, MUS-ROVER I successfully recovered many known rules, such as “Parallel
perfect octaves/fifths are rare” and “Tritons are often resolved either inwardly or outwardly”.

What is Inherited from MUS-ROVER I MUS-ROVER II targets the same goal of learning in-
terpretable music concepts. It inherits the self-learning loop, as well as the following design choices.

(Dataset and Data Representation) We use the same dataset that comprises 370 C scores of Bach’s
4-part chorales. We include only pitches and their durations in a piece’s raw representation, notated
as a MIDI matrix whose elements are MIDI numbers for pitches. The matrix preserves the two-
dimensional chorale texture, with rows corresponding to melodies, and columns to harmonies.

(Rule Representation) We use the same representation for high-level concepts in terms of rules,
unrelated to rules in propositional logic. A (compositional) rule is represented by a feature and its
distribution: r = (�, p�), which describes likelihoods of feature values. It can also be transformed
to a linear equality constraint (A�pstu = p�) in the student’s optimization problem (�’s in Figure 1).

(Student’s Probabilistic Model) We still use n-gram models to represent the student’s style/belief,
with words being sonority features, and keep the student’s optimization problem as it was. To
reiterate the distinctions to many music n-grams, we never run n-grams in the raw feature space, but
only collectively in the high-level feature spaces to prevent overfitting. So, rules are expressed as
probabilistic laws that describe either (vertical) sonority features or their (horizontal) progressions.

2

p

input
data

rule ruleset
(A(k), pA(k))

A(k)

n
(A(i), pA(i))

ok

i=1

p
hki
stu

Figure 10.1: The teacher
 student architecture in a typical human pedagogical scenario
(left) and in our self-learning loop, a computational counterpart (right).

big picture. At the beginning of the kth loop (or iteration), the teacher takes two inputs,

namely the input data distribution p and the student’s estimation of it p
〈k−1〉
stu by the end

of the previous loop. These two data distributions are treated as the target probabilistic

model and the student’s latest probabilistic model, respectively. The teacher tries to identify

one abstraction A(k) under which the two probabilistic models exhibit the largest difference.

This particular abstraction A(k) will be made into a rule (A(k), pA(k)) and inserted into a

ruleset. Then the student takes as input the augmented ruleset {(A(i), pA(i))}ki=1 to update

its probabilistic model into p
〈k〉
stu which marks the end of the kth loop. This iterative process

looks very similar to a generative adversarial network [27], however, rather than using neural

networks, the implementations of both the teacher and the student are largely different in

order to maintain a transparency of the entire loop, and thus, a transparency of the entire

learning process. We will next elaborate our vanilla implementations of the teacher and the

student, respectively.

10.1.1 The Teacher: a Discriminative Model

Informally speaking, the teacher, as a discriminative model, aims to find the abstraction

which reveals the largest statistical difference between the student’s probabilistic model and

the target probabilistic model (i.e. the data statistics). This word description is formalized

into the following optimization problem, with the optimization variable being an abstraction

A ∈ PX drawn from an abstraction hierarchy generated in ILL Phase I.

76

maximize
A∈PX

DKL

(
p
〈k−1〉
A,stu ‖ pA

)
(10.1)

subject to A /∈ P〈k−1〉 (10.2)

H(pA) ≤ δk (10.3)

The objective function (10.1) is the Kullback-Leibler (KL) divergence (relative entropy)

between the student’s latest probabilistic model and the target probabilistic model but

after projecting both onto an abstraction space. It is important to notice that what are

compared here are not the two probabilistic models p
〈k−1〉
stu and p, but their projections onto

an abstraction space p
〈k−1〉
A,stu and pA. The KL divergence quantifies the statistical difference,

which is picked among other possibilities (e.g. `1 norm) due to its nice interpretation as the

information gain from the student to the target. In other words, the KL divergence shows

the unidirectional gap for the student to catch up on, since it is the student who tries to

mimic the target, but not the other way around. Given any probability distribution qX of

the input data space X, its projection onto an abstraction A of X can be easily inferenced

by aggregating probabilities within each concept (i.e. partition cell):

qA(C) =
∑

x∈C

qX(x) for any A ∈ PX and any C ∈ A. (10.4)

The constraint (10.2) restricts attention to only new and independent rules. More specifi-

cally, the feasible set of candidate abstractions explicitly excludes all previously learned rule

abstractions, where in this vanilla version P〈k−1〉 := {A(1), . . . ,A(k−1)} denotes the set of

all k − 1 rule abstractions extracted from the previous iterations. Later in Section 10.2,

for a more advanced teacher, the exclusion set P〈k−1〉 will expand to abstractions from not

only all previously learned rules but also rules that can be implied from all previous rules;

further this implication will include both conceptual implications (from rule hierarchy) and

informational implication (from statistics), both of which will be detailed in Section 10.2.

The constraint (10.3) imposes a regularity condition for the expected rule to be extracted.

More specifically, we expect a “good” rule to reveal hidden probability concentrations in

the original data distribution, where the concentration is measured by setting the Shannon

entropy H below a certain threshold δk, essentially driving a probabilistic rule towards a

deterministic rule if possible. It is worth noting that this regularity (or concentration)

constraint caps the so-called entropic difficulty of a probabilistic rule, depicting how difficult

it is for a human to memorize the rule. Intuitively, the larger the entropy is, the more

77

difficult the rule is for people to memorize; or to say it another way, rules that are more

deterministic are easier for people to memorize [89]. The threshold δk is a hyper-parameter

for the kth self-learning loop which is to be pre-selected before solving the optimization

problem, and δk can vary from iteration to iteration to provide one way of personalizing the

resulting rule trace. Later in Section 10.2, we will further discuss strategies for setting this

hyper-parameter, together with many others, to control the rule learning pace.

Lastly, let A? denote the solution to the optimization problem (10.1), then the abstraction

extracted in the kth iteration A(k) = A?. In some variants of teacher’s optimization problem,

the regularity constraint (10.3) is integrated into the objective function (10.1) to form a

scoring function that measures differentiability and regularity as well as their trade-off at

the same time. Yet, it is clear that these variants share the same idea here in designing the

teacher.

10.1.2 The Student: a Generative Model

Opposite to what the teacher does which extracts probabilistic rules, the student applies

probabilistic rules, which is also known as the rule realization problem. A rule realization

problem takes as inputs multiple probabilistic rules (A(1), pA(1)), (A(2), pA(2)), . . ., and looks

for a data distribution p such that its projections ontoA(1),A(2), . . . agree with pA(1) , pA(2) ,

Therefore, rule realization is essentially the converse of projecting a data distribution onto

abstraction spaces. Unlike the projection problem p→ pA where pA is uniquely determined,

the solution to a rule realization problem pA(1) , pA(2) , . . . → p is not necessarily unique.

Intuitively, if the number of rules is small, the solution set tends to be large (for instance,

if there is only one rule, the probability mass within each concept is totally undecided as

long as the sum matches the probability of the concept), and with more and more rules

added into the rule set, the solution set gets smaller and smaller (more constrained by the

increasing number of rules), but still comprises multiple solutions most of the time. Then,

whenever there are two distinct data distributions p and p′ such that pA(i) = p′A(i) for all i,

which one do we prefer?

Informally speaking, the student, as a generative model, aims to find the most creative

probabilistic model, one that satisfies all the rules while at the same time enables novelty.

In other words, among all solutions to a rule realization problem, we prefer the one that is

most novel. Following a general definition, we judge creativity by quality and novelty [90].

In our case for the student, we judge quality by how well the student obeys the rules (so

the exact solutions to a rule realization problem all have the highest quality); we judge

novelty by how random the student is (a novel solution encourages all possibilities with

78

equal probability). This word description is formalized into the following maximum entropy

optimization problem [91], with the optimization variable being the student’s probabilistic

model (∆n denotes an n-dimensional probability simplex), i.e. the data distribution of the

raw input space from the student’s perspective.

maximize
p
〈k〉
stu∈∆|X|

Sq

(
p
〈k〉
stu

)
:= (1− ‖p〈k〉stu‖qq)/(q − 1) (10.5)

subject to A(i)p
〈k〉
stu = pA(i) , i = 1, . . . , k (10.6)

The objective function (10.5) is the qth order Tsallis entropy of the student’s probabilistic

model. Tsallis entropy is a generalization of the Shannon entropy (q → 1) and Gini impurity

(q = 2), which measures the randomness of student’s probabilistic model, a surrogate of the

student’s novelty. By maximizing the Tsallis entropy, we want the student to be as random

(novel) as possible as long as the rules are satisfied which are encoded in the constraints.

The constraint (10.6) encodes the rule requirements, comprising exactly k probabilistic

rules that have been extracted by the teacher up until the current kth iteration. Each rule

requirement is coded as a linear equality constraint, where the matrix A(i) is the partition

matrix of the abstraction A(i). One can verify that every linear equality constraint literally

says that the projection of the student’s probabilistic model p
〈k〉
stu onto the abstraction A(i)

must agree with its probability distribution pA(i) (over the concepts).

We mention two special cases: one for q = 2 (Gini impurity); the other for q → 1

(the Shannon entropy). The former has computational simplicity, and so will be the main

version implemented; the latter has better conceptual interpretation, which reveals a closer

connection to Shannon’s information lattice.

When q = 2 in the Tsallis entropy, the objective becomes minimizing the `2-norm of the

student’s probabilistic model; hence, the entire optimization problem becomes a standard

linear least-squares problem.

When q → 1 in the Tsallis entropy, the objective function Sq(p
〈k〉
stu) → H(p

〈k〉
stu), and the

entire optimization problem can be equivalently rewritten as an inference problem in Shan-

non’s information lattice. To see this more explicitly, and for notational ease, we first let

x = p
〈k〉
stu and yi = pA(i) denote the probability distribution of the raw input space and the

probability distribution of the ith abstraction space, respectively. We slightly overload the

notations and let x and yi be the information elements that represent the probability space

(X,Σ(I), x) and (X,Σ(A(i)), yi), respectively. In this notation, the sample space X is the

raw input space and, for a partition matrix P , Σ(P) denotes the σ-algebra generated by the

79

partition represented by P (so Σ(I) denotes the σ-algebra generated by the finest partition).

Under this setting, the equality constraint A(i)x = yi becomes H(yi|x) = 0, i.e. yi is an

abstraction of x as information elements or yi ≤ x by Shannon’s notation [30]. Therefore,

the student’s optimization problem for rule realization can be rewritten as follows:

maximize H(x) (10.7)

subject to H(yi|x) = 0, i = 1, . . . , k (10.8)

In words, this means that we want to find an information lattice for the student (used as its

mental model) such that it agrees on all k abstractions from the information lattice for the

data set and meanwhile achieves the largest randomness in the input space. As a result, a

good student memorizes high-level principles—rules in terms of high-level abstractions and

their statistical patterns—in data generation rather than the data or the data distribution

itself. Indeed the student is encouraged to be as creative as possible as long as the high-level

principles are satisfied.

10.2 THE ADAPTIVE TEACHER: RULE CONTEXT-MATCHING

Built on top of the vanilla teacher (Section 10.1.1), this section presents an adaptive

teacher. This more advanced teacher upgrades the vanilla version by further strengthening

the following two contextual structures of probabilistic rules, namely informational context

and temporal context. The more advanced teacher is adaptive in adjusting the learning pace

accordingly to the informational context, and is also adaptive in matching the temporal

context for time-series data.

10.2.1 Informational Context

We exploit, at a deeper level, the hierarchy of information lattices (i.e. abstraction uni-

verses equipped with probability measures). In particular, we leverage conceptual hierarchy

that is pre-determined by abstraction hierarchy, and further infer informational hierarchy

that is post-implied from an information-theoretic perspective. More specifically, the former

is directly inherited from the partition-lattice structure in ILL Phase I, and the latter is

inferred from data statistics. Accordingly, a probabilistic rule can be implied from other

probabilistic rule(s) in the following two ways.

a) We say a probabilistic rule (A, pA) is conceptually implied from another probabilistic

rule (A′, pA′), if the two abstractions satisfy A � A′. In this case, given pA′ , the

80

probabilistic pattern pA of any of its higher-level abstractions (i.e. coarser partitions)

is completely determined a priori without learning.

b) We say a probabilistic rule (A, pA) is informationally implied from another set of

probabilistic rules {A(i), pA(i)}ki=1 if the probabilistic model q that realizes the rule

set also coincides with pA, i.e. qA = pA, or most often in a loose sense qA ≈ pA

represented by DKL(qA ‖ pA) ≤ γ for some threshold γ. In this case, given the rule

set {A(i), pA(i)}ki=1, the probabilistic pattern on A is already close to the target even

without learning.

One might question the necessity of conceptual hierarchy since it can be implied in the

informational hierarchy. The answer is yes in principle, but no in practice. The main differ-

ence is that conceptual hierarchy is pre-computed over the entire abstraction universe before

the loop, which is global, precise, and trace independent. On the contrary, informational

hierarchy is trace specific and loose, due to tolerance γ and the precision of the optimization

solver. As a result, informational hierarchy alone tends to lose the big picture and require

more post-hoc interpretations, and is unstable in practice.

The abstraction of an implied probabilistic rule, whether conceptual or informational,

can be excluded from the feasible set of candidate abstractions when solving the teacher’s

optimization problem. This is because explicitly learning these implied rules does not provide

new insights into the data. So, the set P〈k−1〉 of learned rule abstractions can be further

expanded to include abstractions from implied rules. This upgrades a vanilla teacher’s

optimization problem into the following one for a more advanced teacher.

maximize
A∈PX

DKL

(
p
〈k−1〉
A,stu ‖ pA

)
(10.9)

subject to A /∈ C〈k−1〉 :=
{
A
∣∣ PA � PA′ ,A′ ∈ P〈k−1〉} (conceptual-hierarchy filter)

A /∈ I〈k−1〉 :=
{
A
∣∣ DKL(p

〈k−1〉
A,stu ‖ pA) < γk

}
(informational-hierarchy filter)

H(pA) ≤ δk (regularity condition)

Beyond their benefits in revealing inter-relational insights among distributed abstractions

and representations, the hierarchical filters (both conceptual and informational) added in

an more advanced teacher’s optimization problem are computational beneficial in pruning

hierarchically implied rules, so that solving this optimization problem is made more efficient.

The two hyper-parameters γk and δk in a more advanced teacher’s optimization prob-

lem (10.9) are used collectively to control the rule-learning pace, and thus, to personalize a

81

Under review as a conference paper at ICLR 2017

depth
le

ng
th

2-gram

3-gram

4-gram

5-gram

1 2 3 4 5 6 7 8 9
…

…

(features)

the 7th feature under 4-gram: informational hierarchy filter
learned

1

00 0

0

0

0

0

0

0

1

1

0

0

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

0

0

0

0

conceptual hierarchy filter

regularity conditiondepth

le
ng

th
2-gram

3-gram

4-gram

5-gram

1 2 3 4 5 6 7 8 9
…

…

(features)

the 7th feature under 4-gram: informational hierarchy filter
learned

1

00 0

0

0

0

0

0

0

1

1

0

0

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

0

0

0

0

conceptual hierarchy filter

regularity condition

Figure 2: MUS-ROVER II’s two-dimensional memory (left): the length axis enumerates n-gram
orders; the depth axis enumerates features; and every cell is a feature distribution. Memory mask
(right): 0 marks the removal of the corresponding cell from feature selection, which is caused by a
hierarchical filter or the regularity condition or (contradictory) duplication.

one sees in Bach’s chorales, the more confident. Regularity is quantified by Shannon entropy of
the rule’s feature distribution: a rule is easier to memorize if it is less entropic (Pape et al., 2015).
Efficacy is inversely quantified by the gap between the student’s probabilistic model and the rule’s
feature distribution: a rule is more effective if it reveals a larger gap. There are tradeoffs among
these criteria. For instance, a lower-level feature is usually more effective since it normally reflects
larger variations in the gap, but is also unlikely to be regular, thus harder to memorize and generalize.
Also a feature under a higher-order n-gram may be both regular and effective, but the number of
examples that match the long-term conditionals is likely to be small, reducing confidence.

Adaptive Selection: Follow the (Bayesian) Surprise The teacher’s optimization problem (3)
explicitly expresses the efficacy factor in the objective, and the regularity condition as the first con-
straint. To further incorporate confidence, we cast the rule’s feature distribution p̂� in a Bayesian
framework rather than a purely empirical framework as in our previous work. We assume the stu-
dent’s belief with respect to a feature � follows a Dirichlet distribution whose expectation is the
student’s probabilistic model. In the kth iteration of the self-learning loop, we set the student’s prior
belief as the Dirichlet distribution parameterized by the student’s latest probabilistic model:

prior�,stu ⇠ Dir
⇣
c · p

hk�1i
�,stu

⌘
,

where c > 0 denotes the strength of the prior. From Bach’s chorales, the teacher inspects the em-
pirical counts q� associated with the feature � and the relevant n-gram, and computes the student’s
posterior belief if � were selected as the rule:

posterior�,stu ⇠ Dir
⇣
q� + c · p

hk�1i
�,stu

⌘
.

The concentration parameters of the Dirichlet posterior show the balance between empirical counts
and the prior. If the total number of empirical counts is small (less confident), the posterior will
be smoothed more by the prior, de-emphasizing the empirical distribution from q�. If we compute

p̂� /
⇣
q� + c · p

hk�1i
�,stu

⌘
in the objective of (3), then

gap
⇣
p
hk�1i
�,stu

�� p̂�

⌘
= D

�
E
⇥
prior�,stu

⇤ �� E
⇥
posterior�,stu

⇤�
. (4)

The right side of (4) is closely related to Bayesian surprise (Varshney, 2013), which takes the form
of KL divergence from the prior to posterior. If we remove the expectations and switch the roles
between the prior and posterior, we get the exact formula for Bayesian surprise. Both functionals
capture the idea of comparing the gap between the prior and posterior. Therefore, the efficacy of
concept learning is analogous to seeking (informational) surprise in the learning process.

The subtlety in (4) where we exchange the prior and posterior, makes a distinction from Bayesian
surprise due to the asymmetry of KL divergence. As a brief explanation, adopting (4) as the objective
tends to produce rules about what Bach hated to do, while the other way produces what Bach liked
to do. So we treat it as a design choice and adopt (4), given that rules are often taught as prohibitions
(e.g. “parallel fifths/octaves are bad”, “never double the tendency tones”). There are more in-depth
and information-theoretic discussions on this point (Huszár, 2015; Palomar & Verdú, 2008).

6

(abstractions)

4-gram

3-gram

2-gram

1-gram

the 7th abstraction under 3-gram:

depth

le
ng

th
2-gram

3-gram

4-gram

5-gram

1 2 3 4 5 6 7 8 9
…

…

(features)

the 7th feature under 4-gram: informational hierarchy filter
learned

1

00 0

0

0

0

0

0

0

1

1

0

0

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

0

0

0

0

conceptual hierarchy filter

regularity condition

Figure 10.2: Two-dimensional memory (left): the length axis enumerates n-gram orders;
the depth axis enumerates abstractions; and every cell stores the probabilistic pattern of an
(un)conditional rule. Memory mask (right): 0 marks the removal of the corresponding cell
from the feasible set of candidate abstractions, which is caused by a hierarchical filter or the
regularity condition or (contradictory) duplication.

rule trace. We pre-select the threshold γk before the kth loop to express a user’s satisfaction

level : a smaller γk signifies a meticulous user who is harder to satisfy; the threshold δk upper

bounds the entropic difficulty of the rules, and can be adaptively adjusted throughout the

loops: roughly speaking, it starts from a small value (easy rules first), and auto-increases

whenever the feasible set is empty. In summary, the high-level strategy here is to gradually

increase the difficulty (measured by δk) when mastering the current level (where the extent

of mastering is measured by γk).

10.2.2 Temporal Context

For time-series data where every data sample is organized as a sequence of data points

instead of an individual data point, we can simply execute the self-learning loop on a language

model, say n-grams, to extract both unconditional probabilistic rules and conditional ones.

This requires a more advanced teacher that is able to adaptively extract rules in a multi-

abstraction multi-n-gram language model. More specifically, we consider a continuous range

of n-grams—also called variable memory (or temporal context with variable lengths)—and

adaptively pick the optimal order n based on a balance made among several criteria that will

be introduced soon. It is important to notice that every n-gram is built on top of multiple

high-level abstraction spaces that are generally much smaller than the original raw input

space. Therefore, this opens the opportunity for long-term memories without exhausting

machine memory, while at the same time, effectively avoids overfitting.

Two-Dimensional Memory. Considering a continuous range of n-grams, say n ∈ N =

{1, 2, 3, . . . }, the abstraction universe adds another dimension, forming a two-dimensional

82

memory (N ×PX)—length versus depth—for the language model (Figure 10.2: left). The

length axis enumerates n-gram orders, with a longer memory corresponding to a larger n; the

depth axis enumerates abstractions, with a deeper memory corresponding to a higher-level

abstraction. Every cell in the memory is indexed by two coordinates (n,A), referring to the

abstraction A under the specific n-gram, and stores the corresponding probability distribu-

tion. As a result, the teacher’s rule extraction task involves picking the most appropriate

abstraction under the most applicable n-gram, which extends the space of the teacher’s op-

timization problem (10.9) from PX to N ×PX . Accordingly, the constraints jointly forge a

mask on top of the 2D memory (Figure 10.2: right).

Criteria and Balance. We propose three criteria to extract rules from the 2D memory:

confidence, regularity, and efficacy. Confidence is quantified by empirical counts: the more

relevant examples one sees in a data set, the more confident. Regularity is quantified by the

Shannon entropy of the rule’s probability distribution: a rule is easier to memorize if it has

a lower entropy [89]. Efficacy is inversely quantified by the statistical difference between

the student’s probabilistic model and the target probabilistic model: a rule is more effective

if it exposes a larger difference. There are trade-offs among these criteria. For instance, a

lower-level abstraction is usually more effective since it records more low-level details and

normally reflects a larger statistical difference, but it is also unlikely to be regular, thus,

is harder to memorize and to generalize. Also an abstraction under a higher-order n-gram

may be both regular and effective, but the number of examples that match the long-term

conditionals is likely to be small, reducing confidence.

Adaptive Selection: Follow the (Bayesian) Surprise. The teacher’s optimization

problem (10.9) explicitly expresses the efficacy factor in the objective, and the regularity

condition as the last constraint. To further incorporate confidence, we cast a rule’s prob-

ability distribution pA in a Bayesian framework rather than a purely empirical framework.

We first assume the student’s belief with respect to an abstraction A follows a Dirichlet dis-

tribution whose expectation is the student’s probabilistic model. In the kth iteration of the

self-learning loop, we set the student’s prior belief as the Dirichlet distribution parameterized

by the student’s latest probabilistic model:

priorA,stu ∼ Dir
(
c · p〈k−1〉

A,stu

)
, (10.10)

where c > 0 denotes the strength of the prior. From the target distribution p (or its empirical

estimation), the teacher inspects pA associated with the abstraction A and the relevant n-

83

gram, and further computes the student’s posterior belief if A were selected for the rule:

posteriorA,stu ∼ Dir
(
pA + c · p〈k−1〉

A,stu

)
. (10.11)

The concentration parameters of the Dirichlet posterior show the balance between the target

distribution and the prior. If the confidence level for pA is low, the posterior will be smoothed

more by the prior, de-emphasizing the target distribution pA. If we compute a rectified target

distribution p̂A ∝
(
pA + c · p〈k−1〉

A,stu

)
in the objective of the optimization problem (10.9), then

DKL

(
p
〈k−1〉
A,stu

∥∥ p̂A
)

= DKL

(
E
[
priorA,stu

] ∥∥ E
[
posteriorA,stu

])
. (10.12)

The right side of (10.12) is closely related to Bayesian surprise [92], which takes the form of

the KL divergence from the prior to posterior. If we remove the expectations and switch the

roles between the prior and posterior, we get the exact formula for Bayesian surprise. Both

functionals capture the idea of comparing the statistical difference between the prior and

posterior. Therefore, the efficacy of concept learning is analogous to seeking (informational)

surprise in the learning process.

However, the subtlety in (10.12) where we exchange the prior and posterior, makes a

distinction from Bayesian surprise due to the asymmetry of KL divergence. Adopting (10.12)

as the objective function tends to produce rules about what the original data maker avoided

doing, while the other way around produces what the original data maker liked to do. So,

we treat it as a domain-dependent design choice. For instance, we have indeed used (10.12)

in our current implementations of automatic music theorists (more details in Part III), given

that music composition rules are often taught as prohibitions (e.g. “parallel fifths/octaves

are bad”, “never double the tendency tones”). There are more in-depth and information-

theoretic discussions on this point [93–95].

10.3 THE ELASTIC STUDENT: RULE BREAKING

Built on top of the vanilla student (Section 10.1.2), this section presents an elastic stu-

dent. This more advanced student upgrades the vanilla version by being able to proactively

choose a reasonable subset of given rules to realize. In general, abstraction and realization

are bilateral processes that are key in deriving intelligence and creativity. In this thesis, the

two processes are approached through probabilistic rules : high-level principles that reveal

invariances within similar yet diverse examples. Under a probabilistic setting for discrete

input spaces, we focus on the rule realization problem which generates input sample distri-

84

butions that follow the given rules. More ambitiously, we go beyond a mechanical realization

that takes whatever is given, but instead ask for proactively selecting reasonable rules to

realize and thus intentionally breaking the unselected rules.

This goal is demanding in practice, since the initial rule set may not always be consis-

tent and thus intelligent compromises are needed. We formulate both rule realization and

selection as two strongly connected components within a single and symmetric bi-convex

problem, and derive an efficient algorithm that works at large scale.

10.3.1 Problem Formulation for the Elastic Student

Probabilistic Rule System. The interrelation between abstraction and realization

(X, pX) ↔ (A, pA) can be formalized by a linear equation: Ap = b, where A ∈ {0, 1}m×n
represents a partition (Aij = 1 if and only if xj is assigned to the ith cell in the partition),

and p = pX , b = pA are probability distributions of the raw input space and the high-level

abstraction space, respectively. In the sequel, we re-notate a rule by the pair (A, b), so real-

izing this rule becomes solving the linear equation Ap = b. More interestingly, given a set

of rules: (A(1), b(1)), . . . , (A(K), b(K)), the realization of all of them involves finding a p such

that A(r)p = b(r), for all r = 1, . . . , K. In this case, we form a probabilistic rule system by

stacking all rules into one single linear system:

A =




A(1)

...

A(K)


 ∈ {0, 1}

m×n, b =




b(1)

...

b(K)


 ∈ [0, 1]m. (10.13)

We call A
(r)
i,: p = b

(r)
i a rule component (i.e. a concept and its designated probability mass,

essentially an information element defined by Shannon), and mr = dim(b(r)) the size (the

number of components or the number of concepts) of a rule.

A Unified Framework. We detail a unified framework for simultaneous rule realization

and selection. Recall rules themselves can be inconsistent, e.g. rules learned from different

contexts can conflict. So given an inconsistent rule system, we can only achieve Ap ≈ b. To

best realize the possibly inconsistent rule system, we solve for p ∈ ∆n by minimizing the

error ‖Ap− b‖2
2 =

∑
r ‖A(r)p− b(r)‖2

2, the sum of the Brier scores from every individual rule.

This objective does not differentiate rules (or their components) in the rule system, which

typically yields a solution that satisfies all rules approximately and achieves a small error on

average. This performance, though optimal in the averaged sense, is somewhat disappointing

since most often no rule is satisfied exactly (error-free). Contrarily, a human would typically

85

make a clear separation: follow some rules exactly and disregard others even at the cost of

a larger realization error. The decision made on rule selection usually manifests the style

of a person and is a higher level intelligence that we aim for. In this pursuit, we introduce

a fine-grained set of weights w ∈ ∆m to distinguish not only individual rules but also their

components. The weights are estimates of relative importance, and are further leveraged for

rule selection. This yields a weighted error, which is used to measure realization quality:

E(p, w;A, b) = (Ap− b)>diag(w)(Ap− b). (10.14)

We see that under the current setting, the first challenge concerns the curse of dimensionality

for p, while the second concerns the selectivity for w. We introduce two penalty terms,

one each for p and w, to tackle the two challenges, and propose the following bi-convex

optimization problem as the unified framework:

minimize E(p, w;A, b) + λpPp(p) + λwPw(w) (10.15)

subject to p ∈ ∆n, w ∈ ∆m.

Despite contrasting purposes, both penalty terms, Pp(p) and Pw(w), adopt the same high-

level strategy of exploiting group structures1 in p and w. Regarding the curse of dimension-

ality, we exploit the group structure of p by grouping pj and pj′ together if the jth and j′th

columns of A are identical, partitioning p’s coordinates into K ′ groups: g′1, . . . , g
′
K′ where

K ′ is the number of distinct columns of A. This grouping strategy uses the fact that in a

simplex-constrained linear system, we cannot determine the individual pjs within each group

but only their sum. We later show the resulting group structure of p is essential in dimen-

sionality reduction (when K ′ � n) and has a deeper interpretation regarding abstraction

levels. Regarding the rule-level selectivity, we exploit the group structure of w by grouping

weights together if they are associated with the same rule, partitioning w’s coordinates into

K groups: g1, . . . , gK where K is the number of given rules. Based on the group structures

of p and w, we introduce their corresponding group penalties as follows:

Pp(p) = ‖pg′1‖
2
1 + · · ·+ ‖pg′

K′
‖2

1, (10.16)

P ′w(w) =
√
m1‖wg1‖1

2 + · · ·+√mK‖wgK‖1
2. (10.17)

One can see the symmetry here: group penalty (10.16) on p is a squared, unweighted L2,1-

1When talking about the elastic student and rule breaking in this thesis, the term group has nothing to
do with group theory, but group sparsity instead.

86

norm, which is designed to secure a unique solution that favors more randomness in p for

the sake of diversity in data generation; group penalty (10.17) on w is a weighted L1,2-norm

(group lasso), which enables rule selection. However, there is a pitfall of the group lasso

penalty when deployed in Problem (10.15): the problem has multiple global optima that

are indefinite about the number of rules to pick (e.g. selecting one rule and ten consistent

rules are both optimal). To give more control over the number of selections, we finalize the

penalty on w as the group elastic net that blends between a group lasso penalty and a ridge

penalty:

Pw(w) = αP ′w(w) + (1− α)‖w‖2
2, 0 ≤ α ≤ 1, (10.18)

where α balances between rule elimination (less rules) and selection (more rules).

Model Interpretation. Problem (10.15) is a bi-convex problem: fixing p it is convex in

w; fixing w it is convex in p. The symmetry between the two optimization variables further

gives us the reciprocal interpretations of the rule realization and selection problem: given p,

the realization, we can analyze its style by computing w; given w, the style, we can realize it

by computing p and further sample from it to obtain data that matches the style. The roles

of the hyperparameters λp and (λw, α) are quite different. In setting λp sufficiently small,

we secure a unique solution for the rule realization part. However, for the rule selection

part, what is more interesting is that adjusting λw and α allows us to guide the overall data

generation towards different directions, e.g. conservative (less strictly obeyed rules) versus

liberal (more loosely obeyed rules).

Model Properties. We state two properties of the bi-convex problem (10.15) as the

following theorems whose proofs are omitted for brevity. Both theorems involve the notion

of group selective weight. We say w ∈ ∆m is group selective if for every rule in the rule set,

w either drops it or selects it entirely, i.e. either wgr = 0 or wgr > 0 element-wisely, for any

r = 1, . . . , K. For a group selective w, we further define suppg(w) to be the selected rules,

i.e. suppg(w) = {r | wgr > 0 element-wisely} ⊂ {1, . . . , K}.

Lemma 10.1. Fix any p ∈ Rn, the bi-convex problem (10.15) is reduced to a convex problem

with respect to w:

minimize
K∑

r=1

e>grwgr + λw(α
K∑

r=1

√
mr‖wgr‖2 + (1− α)‖w‖2

2) (10.19)

subject to 0 � w � 1, 1>w = 1.

Let w? be a solution to problem (10.19), then w? is group selective if λw > α−1‖e‖∞.

87

Proof. (Proof by contradiction.) Assume w? is not group selective when λm > α−1‖e‖∞, i.e.

there exists r ∈ {1, . . . , K} such that

‖w?gr‖2 6= 0, but (w?gr)i = 0, for some i. (10.20)

Let L(w) be problem (10.19)’s objective function whose partial derivative ∂L/∂(wgk)j for

any group k such that ‖w?gk‖2 6= 0 is

∂L

∂(wgk)j
(w?) = (egk)j + λw

(
α
√
mr

(w?gk)j

‖w?gk‖2

+ 2(1− α)(w?gk)j

)
. (10.21)

For r, i in particular, we have

∂L

∂(wgr)i
(w?) = (egr)i. (10.22)

Within group r, let j? = arg maxj(w
?
gr)j. Since

∑mr
j=1(w?gr)

2
j = ‖w?gr‖2

2 > 0, we must have

(w?gr)j? ≥
1√
mr

‖w?gr‖2. (10.23)

Take the direction vector δt ∈ Rm such that

(δtgk)j =





t if k = r, j = i

−t if k = r, j = j?

0 otherwise ,

(10.24)

where t > 0 is sufficiently small such that w? + δt ∈ ∆m. However,

〈
∂L

∂w?
, δt
〉

= t · (egr)i − t(egr)j? − tλw
(
α
√
mr

(w?gr)j?

‖w?gr‖2

+ 2(1− α)(w?gr)j?

)

≤ t · (egr)i − tλwα
√
mr

(w?gr)j?

‖w?gr‖2

(10.25)

≤ t ((egr)i − λwα) (10.26)

< 0 (10.27)

where inequality (10.25) holds since (egr)j? ≥ 0, α ≤ 1, (w?gk)j? ≥ 0; inequality (10.26)

holds because of the lower bound (10.23); inequality (10.27) holds because of the condition

λw > α−1‖e‖∞. The negative inner product in the above implies that δt is a descent direction,

88

which gives L(w? + δt) < L(w?). This contradicts the fact that w? is a minimizer, therefore,

nullifies the assumption that w? is not group selective and completes the proof.

Theorem 10.1. Fix any λp > 0, α ∈ [0, 1]. Let (p?(λw), w?(λw)) be a solution path to the

bi-convex problem (10.15).

(1) w?(λw) is group selective, if λw > 1/α.

(2) ‖w?gr(λw)‖2 →
√
mr/m as λw →∞, for r = 1, . . . , K.

Proof. For part (1), recall that A(r)p, b(r) ∈ ∆mr are both probability distributions regarding

the rth rule. Hence, every element of egr = (A(r)p − b(r))2 is bounded in [−1, 1], for any

r = 1, . . . , K. That is, ei ∈ [−1, 1] for all i, or equivalently ‖e‖∞ ≤ 1. Notice that w?(λw) is

the solution to problem (10.19) for p?(λw). Then by Lemma 10.1, w?(λw) is group selective

since λw > 1/α ≥ ‖e‖∞/α.

For part (2), when λw →∞, the first two terms in the objective vanish, problem (10.15)

is

minimize α
K∑

r=1

√
mr‖wgr‖2 + (1− α)‖w‖2

2 (10.28)

subject to 0 � w � 1, 1>w = 1.

Note that the solution w? to problem (10.28) must have uniform mass within each group:

(w?gr)i = ‖w?gr‖1/mr, for all i = 1, . . . ,mr, and for all r = 1, . . . , K. (10.29)

As a consequence, the group lasso penalty is always constant:

K∑

r=1

√
mr‖w?gr‖2 =

K∑

r=1

√
mr

‖w?gr‖1√
mr

= ‖w?‖1 = 1. (10.30)

Under the uniformity condition (10.29), the ridge penalty

‖w‖2
2 =

∑

r

‖wgr‖2
2 =

∑

r

‖wgr‖2
1

mr

≥ (
∑

r ‖wgr‖1)2

∑
rmr

=
1

m
, (10.31)

by the Cauchy-Schwarz inequality. The equality holds when

‖w?gr‖1√
mr

= γ
√
mr, for some constant γ. (10.32)

89

That is ‖w?gr‖1 = γmr. Then
∑

r ‖w?gr‖1 = 1 gives γ = 1/m, which further yields

‖w?gr‖2 =
‖w?gr‖1√
mr

= γ
√
mr =

√
mr

m
. (10.33)

This completes the proof and further shows that w? is actually the uniform distribution on

∆m, since applying condition (10.29) to ‖w?gr‖1 = γmr = mr/m gives w?i = 1/m for all i.

Theorem 10.2. For λp = 0 and any λw > 0, α ∈ [0, 1], let (p?, w?) be a solution to problem

(10.15). We define C ⊂ 2{1,...,K} such that any C ∈ C is a consistent (error-free) subset of

the given rule set. If suppg(w
?) ∈ C, then

∑
r∈suppg(w?) mr = max

{∑
r∈Cmr | C ∈ C

}
.

Proof of Theorem 2. x When λp = 0, problem (10.15) becomes

minimize E(p, w;A, b) + λw(α
K∑

r=1

√
mr‖wgr‖2 + (1− α)‖w‖2

2) (10.34)

subject to 0 � p � 1, 1>p = 1,

0 � w � 1, 1>w = 1.

Under the error-free condition, (p?, w?) is also the solution to the following problem

minimize λwα
K∑

r=1

√
mr‖wgr‖2 + λw(1− α)‖w‖2

2 (10.35)

subject to suppg(w) ∈ C
E(p, w;A, b) = 0

0 � p � 1, 1>p = 1.

0 � w � 1, 1>w = 1.

which can be further rewritten as the following problem by the definition of C:

minimize λwα

K∑

r=1

√
mr‖wgr‖2 + λw(1− α)‖w‖2

2 (10.36)

subject to suppg(w) ∈ C
0 � w � 1, 1>w = 1.

90

The above problem is further equivalent to the following problem

minimizeC,w λwα
K∑

r=1

√
mr‖wgr‖2 + λw(1− α)‖w‖2

2 (10.37)

subject to suppg(w) = C, C ∈ C,
0 � w � 1, 1>w = 1.

Consider a class of problems {Q(C) | C ∈ C} such that each problem Q(C) is formulated:

minimizew λwα

K∑

r=1

√
mr‖wgr‖2 + λw(1− α)‖w‖2

2 (10.38)

subject to suppg(w) = C

0 � w � 1, 1>w = 1.

The solution w? to problem (10.37) is then the solution to problem (10.38) with the mini-

mum objective among all the problems from {Q(C) | C ∈ C}, and further the corresponding

p? is probability distribution that gives E(p?, w?;A, b) = 0.

Given any C ∈ C, let (p?,C , w?,C) be the solution to the corresponding problem (10.38).

This problem is a reduced problem (10.28) introduced in the proof of Theorem 10.1. The

only difference is that here we constrain the nonzero groups to be C. Same argument for

problem (10.28) gives

w?,Cgr =
1∑

r∈Cmr

1mr , for any r ∈ C. (10.39)

Thus, the optimal objective of Q(C) for a given C is

λwα + λw(1− α)
1∑

r∈Cmr

. (10.40)

Finally, as w? is the w?,C that achieves the minimum Q(C) objective among all C ∈ C,

∑

r∈suppg(w?)

mr = max

{∑

r∈C

mr | C ∈ C
}
. (10.41)

Remark 10.1. Theorem 10.1 implies a useful range of the λw-solution path: if λw is too

large, w? will converge to a known value that always selects all the rules; if λw is too small, w?

91

can lose the guarantee to be group selective. This further suggests the termination criteria

for real applications. Theorem 10.2 considers rule selection in the consistent case, where

the solution selects the largest number of rule components among all other consistent rule

selections. Despite the condition λp = 0, in practice, this theorem suggests one way of

using model for a small λp: if the primary interest is to select consistent rules, the model is

guaranteed to pick as many rule components as possible. Yet, a more interesting application

is to slightly compromise consistency to achieve better selection.

10.3.2 Alternating Solvers for the Elastic Student

It is natural to solve the bi-convex problem (10.15) by iteratively alternating the update

of one optimization variable while fixing the other, yielding two alternating solvers.

The p-Solver (Rule Realization). If we fix w, the optimization problem (10.15) be-

comes:

minimize E(p, w;A, b) + λpPp(p) (10.42)

subject to p ∈ ∆n.

Making a change of variable: qk = 1>pg′k = ‖pg′k‖1 for k = 1, . . . , K ′ and letting q =

(q1, . . . , qK′), problem (10.42) is transformed to its reduced form:

minimize E(p, w;A′, b) + λp‖q‖2
2 (10.43)

subject to q ∈ ∆K′ ,

where A′ is obtained from A by removing its column duplicates. Problem (10.43) is a convex

problem with a strictly convex objective, so it has a unique solution q?. However, the solution

to the original problem (10.42) may not be unique: any p? satisfying q?k = 1>p?g′k
is a solution

to (10.42). To favor a more random p, we can uniquely determine p? by uniformly distributing

the probability mass qk within the group g′k: p
?
g′k

= (qk/ dim(pg′k))1, k = 1, . . . , K ′. We solve

the problem efficiently through two proposed dimensionality reduction techniques, namely

group de-overlap and screening.

Dimensionality Reduction: Group De-Overlap. Problem (10.42) is of dimension n, while

its reduced form (10.43) is of dimension K ′(≤ n) from which we can attain dimensionality

reduction. In cases where K ′ � n, we have a huge speed-up for the p-solver; in other cases,

there is still no harm to always run the p-solve from the reduced problem (10.43). Recall that

we have achieved this type of dimensionality reduction by exploiting the group structure of

92

G1

G2 G3
G0

3G0
2

G0
1

G0
4

G0
5G0

6
G0

7

G = {G1, G2, G3} DeO(G) = {G0
1, G

0
2, G

0
3, G

0
4, G

0
5, G

0
6, G

0
7}

g(x) =

8
>>>>>>>>>><
>>>>>>>>>>:

(1, 0, 0), x 2 G0
1

(0, 1, 0), x 2 G0
2

(0, 0, 1), x 2 G0
3

(0, 1, 1), x 2 G0
4

(1, 0, 1), x 2 G0
5

(1, 1, 0), x 2 G0
6

(1, 1, 1), x 2 G0
7

De-Overlap

Figure 10.3: An example of group de-overlap.

p purely from a computational perspective. However, the resulting group structure has a

deeper interpretation regarding abstraction levels, which is closely related to the concept of

de-overlapping a family of groups, group de-overlap in short.

(Group De-Overlap.) Let G = {G1, . . . , Gm} be a family of groups (a group is a non-empty

set), and G = ∪mi=1Gi. We introduce a group assignment function g : G → {0, 1}m, such

that for any x ∈ G, g(x)i = 1{x ∈ Gi}, and further introduce an equivalence relation ∼ on

G: x ∼ x′ if g(x) = g(x′). We then define the de-overlap of G, another family of groups, by

the quotient space

DeO(G) = {G′1, . . . , G′m′} := G/ ∼ . (10.44)

The idea of group de-overlap is simple (Figure 10.3), and DeO(G) indeed comprises non-

overlapping groups, since it is a partition of G that equals the set of equivalence classes

under the equivalence relation ∼.

Given a set of rules (A(1), b(1)), . . . , (A(K), b(K)), we denote their corresponding high-level

abstraction spaces by A(1), . . . ,A(K), each of which is a partition of the raw input space X .

Let G = ∪Kk=1A(k), then DeO(G) is a new partition, thus a new high-level abstraction space, of

G = X , and is finest (may be tied) among all partitions A(1), . . . ,A(K). Therefore, DeO(G),

as a summary of the rule system, delimits a lower bound on the level of abstraction produced

by the given set of rules/abstractions. What coincides with DeO(G), is the group structure

of p (recall: pj and pj′ are grouped together if the jth and j′th columns of A are identical),

since for any xj ∈ X , the jth column of A is precisely the group assignment vector g(xj).

Therefore, the decomposed solve step from q? to p? reflects the following realization chain:

{
(A(1), pA(1)), . . . , (A(K), pA(K))

}
→ (DeO(G), q?)→ (X , pX), (10.45)

where the intermediate step not only computationally achieves dimensionality reduction,

but also conceptually summarizes the given set of abstractions and is further realized in the

93

raw input space.

Note that the σ-algebra of the probability space associated with (10.43) is precisely gen-

erated by DeO(G). When rules are inserted into a rule system sequentially (e.g. the growing

rule set from an automatic music theorist), the successive solve of (10.43) is conducted along

a σ-algebra path that forms a filtration: nested σ-algebras that lead to finer and finer delin-

eations of the raw input space. In a pedagogical setting, the filtration reflects the iterative

refinements of music composition from high-level principles that are taught step by step.

Dimensionality Reduction: Screening. We propose an additional technique for further di-

mensionality reduction when solving the reduced problem (10.43). The idea is to perform

screening, which quickly identifies the zero components in q? and removes them from the

optimization problem. Leveraging DPC screening for non-negative lasso [96], we introduce

a screening strategy for solving a general simplex-constrained linear least-squares problem

(one can check problem (10.43) is indeed of this form):

minimize ‖Xβ − y‖2
2, subject to β � 0, ‖β‖1 = 1. (10.46)

We start with the following non-negative lasso problem, closely related to problem (10.46):

minimize φλ(β) := ‖Xβ − y‖2
2 + λ‖β‖1, subject to β � 0, (10.47)

and denote its solution by β?(λ). One can show that if ‖β?(λ?)‖1 = 1, then β?(λ?) is

a solution to problem (10.46). Our screening strategy for problem (10.46) runs the DPC

screening algorithm on the non-negative lasso problem (10.47), which applies a repeated

screening rule (called EDPP) to solve a solution path specified by a λ-sequence: λmax =

λ0 > λ1 > · · · . The `1-norms along the solution path are non-decreasing: 0 = ‖β?(λ0)‖1 ≤
‖β?(λ1)‖1 ≤ · · · . We terminate the solution path at λt if ‖β?(λt)‖1 ≥ 1 and ‖β?(λt−1)‖1 < 1.

Our goal is to use β?(λt) to predict the zero components in β?(λ?), a solution to problem

(10.46). More specifically, we assume that the zero components in β?(λt) are also zero in

β?(λ?), hence we can remove those components from β (also the corresponding columns of

X) in problem (10.46) and reduce its dimensionality.

While in practice this assumption is true provided that we have a delicate solution path,

the monotonicity of β?(λ)’s support along the solution path does not hold in general [97].

Nevertheless, the assumption does hold when ‖β?(λt)‖1 → 1, since the solution path is

continuous and piecewise linear [98]. Therefore, we carefully design a solution path in the

hope of a β?(λt) whose `1-norm is close to 1 (e.g. let λi = γλi−1 with a large γ ∈ (0, 1),

while more sophisticated design is possible such as a bi-section search). To remedy the

94

(rare) situations where β?(λt) predicts some incorrect zero components in β?(λ?), one can

always leverage the KKT conditions of problem (10.46) as a final check to correct those

mis-predicted components [99]. Finally, note that the screening strategy may fail when the

`1-norms along the solution path converge to a value less than 1. In these cases we can never

find a desired λt with ‖β?(λt)‖1 ≥ 1. In theory, such failure can be avoided by a modified

lasso problem which in practice does not improve efficiency much (see the supplementary

material of [53]).

The w-Solver (Rule Selection). If we fix p, the optimization problem (10.15) becomes:

minimize E(p, w;A, b) + λwPw(w) (10.48)

subject to w ∈ ∆m.

We solve problem (10.48) via ADMM [100]:

w(k+1) = arg min
w

e>w + λwPw(w) + ρ
2
‖w − z(k) + u(k)‖2

2, (10.49)

z(k+1) = arg min
z

I∆m(z) + ρ
2
‖w(k+1) − z + u(k)‖2

2, (10.50)

u(k+1) = u(k) + w(k+1) − z(k+1). (10.51)

In the w-update (10.49), we introduce the error vector e = (Ap− b)2 (element-wise square),

and obtain a closed-form solution by a soft-thresholding procedure [101]: for r = 1, . . . , K,

w(k+1)
gr =

(
1− λwα

√
mr

(ρ+ 2λw(1− α)) · ‖ẽ(k)
gr ‖2

)

+

ẽ(k)
gr , where ẽ(k) =

ρ(z(k) − u(k))− e
ρ+ 2λw(1− α)

. (10.52)

In the z-update (10.50), we introduce the indicator function I∆m(z) = 0 if z ∈ ∆m and ∞
otherwise, and recognize it as a (Euclidean) projection onto the probability simplex:

z(k+1) = Π∆m(w(k+1) + u(k)), (10.53)

which can be solved efficiently by a non-iterative method [102]. Given that ADMM enjoys a

linear convergence rate in general [103] and the problem’s dimension m� n, one execution

of the w-solver is cheaper than that of the p-solver. Indeed, the result from the w-solver can

speed up the subsequent execution of the p-solver, since we can leverage the zero components

in w? to remove the corresponding rows in A, yielding additional savings in the group de-

overlap of the p-solver.

95

Chapter 11: Codetta: Summary and Discussions

Part II presents the algorithmic developments for abstraction construction and probabilis-

tic rule learning, the two constituent phases of our Information Lattice Learning. Phase I

can be treated as a key (deductive) preparation phase, and Phase II is the core (inductive)

data-driven part of automatic concept learning. The algorithms introduced in this part are

all domain-independent, but will be deployed in specific application domains in Part III to

show their capability of and efficacy in conceptualizing the corresponding domains under

consideration.

96

Chapter 12: Applicational Recapitulation (Part III)

Introduction Exposition Development Recapitulation Coda

Chapter 1-2
Part I:
Chapter 3-7 Chapter 15Chapter 8-11

Part II:
Chapter 12-14
Part III:

Figure 12.1: Applicational recapitulation outline.

This is the beginning of Part III. This part recapitulates Parts I and II through real-world

applications. We start with music as the first application domain and thoroughly discuss

automatic music concept learning. This part presents a detailed implementation of the three

versions of MUS-ROVER, an automatic music theorist that distills, from sheet music, music

composition rules (Chapter 13). MUS-ROVER is further wrapped into a web application

and serves as an automatic music pedagogue that delivers the rules as personalized music

composition lessons. To better support music ACL and music AI in general, the twin system

MUS-NET is built as an online crowdsourcing platform for making and serving digital sheet

music data sets (Chapter 14).

97

Figure 12.2: The twin projects: MUS-ROVER and MUS-NET.

98

Chapter 13: MUS-ROVER: An Automatic Music Theorist and Pedagogue

We present a music application of our ACL framework and ILL model to recapitulate the

proposed theory and algorithms in Parts I and II. In particular, we have built an automatic

music theorist and pedagogue to realize automatic music concept learning and teaching.

Named MUS-ROVER, it discoveries probabilistic rules of music theory from digital sheet

music (the input); it further delivers the discovered rules as personalized lessons and teaches

us music composition in the same style as the input music [50–52]. In this chapter, we will

detail the full development path of MUS-ROVER, starting from its vanilla version MUS-

ROVER I, to its successor MUS-ROVER II, as well as a special edition MUS-ROVER RB

for rule breaking. Lastly, from a data set of Bach’s chorales, we compare MUS-ROVER

captured rules with existing music theory to see how laws of music theory differ between a

machine’s perspective and a human’s perspective.

13.1 MUSIC RAW REPRESENTATION

Given a music piece with multiple clear voices or parts, we deal with its symbolic represen-

tation from the sheet music rather than a waveform representation from the audio signals.

In this thesis, we use J. S. Bach’s four-part (SATB) chorales as examples, and only pick the

core compositional ingredients—pitches and their durations—as the raw representation of a

piece, filtering other information such as meters, measures, dynamics. Hence, every choral

piece is treated as multiple simultaneously emitting sequences of (discrete) pitch symbols.

To numerically encode pitches, we use integral MIDI numbers rather than letter names.

Hence, we can perform arithmetic operations (e.g. addition/subtraction, sort/argsort, mod-

ulo) on these pitch integers. We further restrict our attention to a finite set of MIDI num-

bers Ω = {21, 22, . . . , 108}, establishing a bijection to the 88 piano keys: 21/108 to the

leftmost/rightmost key (A0/C8) and 60 to middle C (C4).

Following this MIDI notation for pitches, we define a sonority (a generic term for chord,

but not necessarily any musically-defined triads or seventh chords), by any collection of four

simultaneously sounding pitches, naturally represented by a four-dimensional vector of MIDI

numbers. As a result, the sonority space (or the chord space), i.e. the space of all possible

sonorities, is Ω4, which is a finite subset of Z4. Here, this sonority space is the data space

that we mentioned in the general ACL setting, i.e. X = Ω4; thus, a sonority distribution,

either an unconditional distribution or a conditional one, is the raw data distribution that

we want to derive concept from.

99

Figure 13.1: J. S. Bach, Aus meines Herzens Grunde in C major, mm. 1–3 (top), and its
MIDI matrix representation (bottom).

We represent a four-part chorale as a four-row matrix M ∈ Ω4×N , whose entries are MIDI

numbers. The rows represent the horizontal melodies in each voice: the 1st, 2nd, 3rd, and 4th

row of M correspond to soprano, alto, tenor, and bass, respectively. The columns represent

the vertical four-pitch sonorities, where each column has unit duration equaling the greatest

common divisor (gcd) of note durations in the piece. For instance, if the choral piece is

composed from quarter notes and dotted quarter notes only (the gcd of these two types of

notes is an eighth note), then a quarter note C4 will result in a sequence of repeated 60s

spanning 2 consecutive columns (3 columns for a dotted quarter note). The MIDI matrix

is all that is needed in the subsequence computation, which is referred as a piece’s raw

representation. Figure 13.1 gives an example of numerically transcribing a chorale excerpt

into its MIDI matrix representation. In this example, every column in the MIDI matrix

denotes the unit duration of an eighth note in the sheet music.

13.2 MUS-ROVER I

Throughout music history, theorists have identified rules that capture the decisions of

composers. Here we ask: “Can a machine behave like a music theorist?” We present MUS-

100

ROVER I, a self-learning system for automatically discovering rules from symbolic music.

MUS-ROVER I performs feature-induced concept learning via n-gram models to extract

probabilistic music composition rules—statistical patterns on feature-induced abstractions.

We evaluate MUS-ROVER I on Bach’s four-part (SATB) chorales, demonstrating that it

can recover known rules, as well as identify new, characteristic patterns for further study.

We discuss how the extracted rules can be used in both machine and human composition.

13.2.1 Overview

For centuries, music theorists have developed concepts and rules to describe the regu-

larity in music compositions; music pedagogues have documented commonly agreed upon

compositional rules into textbooks (e.g. Gradus ad Parnassum) to teach composition. With

recent advances in AI, computer scientists have hardcoded these rules into programs that

automatically generate different styles of music [49, 104, 105]. However, this thesis studies

the reverse process of rule-based music compositions, and poses the question: can a machine

independently extract from symbolic music data (e.g. digital sheet music), compositional

rules that are instructive to both machines and humans?

This section presents MUS-ROVER I, a self-learning system for discovering compositional

rules from raw music data (i.e. pitches and their durations). As described in the vanilla

“teacher
 student” loop (Section 10.1), the rule-learning process is implemented through

an iterative loop between a generative model (“student”) that emulates the input’s musical

style by satisfying a set of learned rules, and a discriminative model (“teacher”) that proposes

additional rules to guide the student closer to the target style. This loop produces a rule

book and a set of reading instructions customized for different types of users.

MUS-ROVER I is designed to extract rules from four-part music performed by single-line

instruments. Compositional rules (output) are represented as probability distributions of

feature-induced abstractions from raw music data. The rover leverages an evolving series

of n-gram models over these higher-level abstraction spaces to capture potential rules from

both horizontal and vertical dimensions of the music texture.

We train the rover on the C scores of Bach’s four-part (SATB) chorales, which have been

an attractive corpus for analyzing knowledge of voice leading, counterpoint, and tonality due

to their relative uniformity of rhythm [106, 107]. We show that MUS-ROVER I is able to

automatically recover compositional rules for these chorales that have been previously iden-

tified by music theorists. In addition, we present new, human-interpretable rules discovered

by MUS-ROVER that are characteristic of Bach’s chorales.

101

13.2.2 Literature Review

Throughout history, researchers have been building expert systems for both automatically

analyzing and automatically generating music. Many analyzers leverage predefined concepts

(e.g. chords, roman numerals, tonal functions) to annotate music parameters in a pedagogical

process [106], or statistically measure a genre’s accordance with standard music theory [107].

Similarly, automatic song writers such as EMI [104] and GenJem [105] rely on explicit, ad-hoc

coding of known rules to generate new compositions [108].

On the other hand, other systems generate music by learning statistical models such as

HMMs and neural networks that capture domain knowledge, in terms of patterns, from

data [109, 110]. Recent advances in deep learning take a step further, enabling knowledge

discovery via feature learning directly from raw data [11, 61, 111]. However, the learned,

high-level feature are implicit and non-symbolic with post-hoc interpretations, and often not

directly comprehensible or evaluable.

MUS-ROVER I both automatically extracts rules from raw data—without prior encod-

ing any domain knowledge—and ensures that the rules are interpretable by humans. Inter-

pretable machine learning has studied systems with similar goals in other domains [112,113].

13.2.3 Learning Model

Self-Learning Loop. MUS-ROVER I introduces a “teacher
 student” model to ex-

tract compositional rules for writing 4-part chorales [50, 51]. The model is implemented by

a self-learning loop between a generative component (student) and a discriminative com-

ponent (teacher), where both entities cooperate to iterate through the rule-learning process

(Figure 13.2). The student starts as a tabula rasa that picks pitches uniformly at random to

form sonorities (a generic term for chord) and sonority progressions. The teacher compares

the student’s writing style (represented by a probabilistic model) with the input style (rep-

resented by empirical statistics), identifying one feature per iteration that best reveals the

gap between the two styles, and making it a rule for the student to update its probabilistic

model. As a result, the student becomes less and less random by obeying more and more

rules, and thus, approaches the input style.

Evolving n-Grams on Feature-Induced Abstractions. MUS-ROVER I employs a

series of n-gram models (with words being vertical features) to extract horizontal rules that

govern the transitions of the sonority abstractions. It also implicitly learns something about

the rhythms, since the transition model probabilistically tells whether to stay or to alter.

All n-grams encapsulate copies of self-learning loops to accomplish rule extractions in their

102

The k-th Loop student teacher

rule ruleset

music
input

�k {�i}k
i=1

p̂ p
hk�1i
stu p

hki
stu

�

The teacher solves:

maximize D
⇣
p
hk�1i
�,stu || p̂�

⌘

subject to � 2 �\�hk�1i

(discrete optimization)

The student solves:

maximize Sq

⇣
p
hki
stu

⌘

subject to p
hki
stu 2 �1

· · ·
p
hki
stu 2 �k

(linear least-squares)

Figure 13.2: MUS-ROVER’s self-learning loop (the kth iteration). The teacher (discrimi-

nator) takes as inputs the student’s latest style p
〈k−1〉
stu and the input style p̂, and identifies

a feature φ through which the two styles manifest the largest gap D(·||·). The identified
feature is then made into a rule (a constraint set Γk), and augments the ruleset {Γi}ki=1.
The student (generator) takes as input the augmented ruleset to update its writing style

into p
〈k〉
stu, and favors creativity, i.e. more possibilities, by maximizing the Tsallis entropy Sq

subject to the rule constraints. In short, the teacher extracts rules while the student applies
rules; both perform their tasks by solving optimization problems.

contexts. Starting with unigram, MUS-ROVER I gradually evolves to higher order n-grams

by initializing an n-gram student from the latest (n-1)-gram student. While the unigram

model only captures vertical rules such as concepts of intervals and triads, the bigram model

searches for rules about sonority progressions such as contrapuntal motions and resolutions.

MUS-ROVER I only implements unigram and bigram models; however, higher order n-grams

with wider horizontal visions can be trained similarly. The rover’s n-gram models operate

on high-level feature-induced abstraction spaces, which is in stark contrast with many other

n-gram applications in which the words are the raw inputs. In other words, a higher-order n-

gram in the rover shows how vertical features (high-level abstractions) transition horizontally,

as opposed to how a specific chord is followed by other chords (low-level details). Therefore,

MUS-ROVER I does not suffer from low-level variations in the raw inputs, highlighting a

greater generalizability.

13.2.4 Experiments with Bach’s Chorales

MUS-ROVER I outputs two main products: 1) a rule book on Bach’s chorales, and 2)

personalized rule-learning traces for reading the book. The rule book records a lengthy list

of rules that summarizes the statistics of Bach’s chorales from all possible angles (features).

The rule-learning traces suggest empirical ways to read this list of conceptually entangling

rules—rules that are implied from others.

103

Unigram Rule (φ, pφ) Catalog

Index Window Descriptor Entropy(pφ)

1 (1,4) order 0.000
2 (1,3) order 0.006
11 (1,2,3,4) order 0.691
12 (1,) pitch12 2.934
16 (1,4) interv12 3.066
32 (2,3,4) interv12 5.348
52 (1,2,3,4) interv12 7.090
63 (1,2,3,4) pitch 10.091

Table 13.1: An excerpt of the unigram rule catalog. The complete catalog includes 63 rules
sorted by the Shannon entropies of their feature distributions. The windows use 1, 2, 3, 4 to
denote SATB. In the Descriptor column, order is a fine-tuned argsort operator that handles
ties in a definitive way; pitch12 is a coordinate-wise mod12 operator; interv12 is the module
version of a diff operator.

A Rule Book on Bach’s Chorales. MUS-ROVER I independently writes a rule book

summarizing the statistical structure of Bach’s chorales. Even though the book is authored

by a machine, it is designed to be readable by humans. Inspecting the rule book allows us

to compare the machine-generated rules to our knowledge, and gives us concrete cases from

Bach that exemplify the rules. Further, it opens the opportunity for humans to learn music

theory from a machine-generated reference.

Chapter-1: Unigram Rules. The opening chapter records all the unigram rules, whose

associated features are automatically generated from the feature pool. All the 63 unigram

rules are sorted by the Shannon entropies of the feature distributions, a surrogate for human

memorability [89]: rules that are more deterministic are easier for humans to memorize.

Table 13.1 shows an excerpt of the (sorted) catalog of the unigram rules. The complete

catalog delimits the universe of all rules that are reachable via the feature pool, which

demonstrates MUS-ROVER’s exploration capacity. The first eleven rules in the catalog

specify the pitch orderings between/among voices, all of which suggest that the pitch in a

higher voice should sound higher. These rules, though less interesting, are consistent with

our pedagogical restrictions on voice crossing. The 12th rule considers the soprano voice, and

its descriptor dpitch12 is semantically equivalent to pitch class (p.c.). It shows the partition of

two p.c. sets (Figure 13.3: top), which says that the soprano line is built on a diatonic scale.

The 16th rule considers the soprano and bass, and its descriptor dinterv12 is semantically

equivalent to interval class (i.c.). It recovers our notion of intervalic quality: consonance

and dissonance (Figure 13.3: bottom).

104

LaTeXiT font size: 20pt

P8 m2 M2 m3 P4 TT P5M3 m6 M6 m7 M7

The S-B interval favors consonance over dissonance.

(SB: i.c.)

P8 m2 M2 m3 P4 TT P5M3 m6 M6 m7 M7

Resolve TTs to M3,m3 and their inversions.

(SB: i.c.|TT)

C C] D D] E F F] G G] A A] B

The soprano line is written in a diatonic scale.

(S: p.c.)

P8 m2 M2 m3 P4 TT P5M3 m6 M6 m7 M7
(SB: i.c.|P8)

Parallel P8s are uncommon; PT/NTs may occur.

Figure 13.3: Unigram rule examples from Bach’s chorales.

LaTeXiT font size: 20pt

P8 m2 M2 m3 P4 TT P5M3 m6 M6 m7 M7

The S-B interval favors consonance over dissonance.

(SB: i.c.)

P8 m2 M2 m3 P4 TT P5M3 m6 M6 m7 M7

Resolve TTs to M3,m3 and their inversions.

(SB: i.c.|TT)

C C] D D] E F F] G G] A A] B

The soprano line is written in a diatonic scale.

(S: p.c.)

P8 m2 M2 m3 P4 TT P5M3 m6 M6 m7 M7
(SB: i.c.|P8)

Parallel P8s are uncommon; PT/NTs may occur.

Figure 13.4: Bigram rule examples from Bach’s chorales.

Chapter-2: Bigram Rules. The second chapter records the bigram rules that are

also summarized from all of the 63 features (Φ). Given a feature φ, the bigram rule is

represented by the feature transition distribution pφ(·|·). In contrast to a unigram rule where

the feature distribution pφ(·) is a single pmf, the feature distribution of a bigram rule is a set

of conditional pmfs pφ(·|·) : φ(Ω4) × (φ(Ω4) ∪ {∗}) 7→ [0, 1] where ∗ is a specially character

denoting the start symbol. In other words, we obtain a pmf by indexing a feature φ and the

feature value of the preceding sonority φ(xp) as the conditional. Take φ = dpitch12 ◦w{1,4} for

example: between soprano and bass, pφ (·|∗) gives the pmf of the opening i.c.; pφ (·|7) gives

the pmf of the i.c. after a P5. Due to the large amount of conditionals for each feature,

Chapter-2 is much longer than Chapter-1. Comparing the top bigram rule in Figure 13.4

with the bottom unigram rule in Figure 13.3 shows the re-distribution of the probability mass

for feature dpitch12◦w{1,4}, the i.c. between soprano and bass (SB: i.c.). The dramatic drop of

P8 recovers the rule that avoids parallel P8s, while the rises of m7,M7 and their inversions

suggest the usage of passing/neighbor tones (PT/NTs). The bottom rule in Figure 13.4

illustrates resolution—an important technique used in tonal harmony—which says tritones

(TTs) are most often resolved to m3,M3 and their inversions. Interestingly, as a new music

finding, the fifth peak (m7) in the pmf of this rule reveals an observation that doesn’t fall

105

LatexIt font: 20

k

gap
hki
�h6i

k

gap
hki
�h11i

k

gaphki

Unigram Rule-Learning Traces

α = 0.1 α = 0.5 α = 1.0

1 (1,4), order (1,4), order (1,2,3), pitch
2 (1,3), order (1,3), order (2,3,4), pitch
3 (2,4), order (2,4), order (1,2,3,4), pitch12
4 (1,2), order (1,2), order (1,3,4), pitch
5 (2,3), order (2,3,4), order (1,2,4), pitch
6 (3,4), order (1,3,4), pitch (1,2,3,4), interv
· · · · · · · · · · · ·
Eε ∞ 12 6
Mε 2.21 4.97 8.63

Table 13.2: Three unigram rule-learning traces (T 〈20〉) with α = 0.1, 0.5, 1.0. The top figure
shows the footprints that mark the diminishing gaps. The bottom table records the first six
rules, and shows the trade-off between efficiency and memorability (ε = 0.005). The trace
with α = 1.0 shows the most efficiency, but the least memorability.

into the category of resolution. This transition, TT → m7, is similar to the notion of escape

tone (ET), which suspends the tension instead of directly resolving it. For instance, (F4,B2)

→ (F4,G2), which will eventually resolve to (E4,C3). All of these rules are automatically

identified during the rule-learning process.

Customized Rule-Learning Traces. Despite its readability for every single rule, the

rule book is in general hard to read as a whole due to its length and lack of organization.

The challenges are twofold: the number of rules is massive; the e-book presents rules as two

unstructured lists (one for unigram, the other for bigram), whereas the rules themselves are

conceptually both hierarchical and entangling. MUS-ROVER’s self-learning loop solves both

challenges by offering customized rule-learning traces—ordered rule sequences—resulting

from its iterative extraction. So, MUS-ROVER I not only outputs a rule book, but more

crucially, suggests ways to read and analyze it, tailored to different types of students.

Analyzing Unigram Rules. We propose two criteria, efficiency and memorability, to

106

assess a rule-learning trace from the unigram model. The efficiency measures the speed

in approaching Bach’s style; the memorability measures the complexity in memorizing the

rules. A good trace is both efficient in imitation and easy to memorize.

To formalize these two notions, we first define a rule-learning trace T 〈k〉 as the ordered list

of the rule set R〈k〉: T 〈k〉 =
(
r(1), r(2), . . . , r(k)

)
, and quantify the gap against Bach by the

KL divergence in the raw feature space: gap〈k〉 = D
(
p̂φraw|Cbach ‖ p

〈k〉
φraw

)
. The efficiency of

T 〈k〉 with efficiency level ε is defined as the minimum number of iterations that is needed to

achieve a student that is ε-close to Bach if possible:

Eε
(
T 〈k〉

)
=





min
{
n
∣∣ gap〈n〉 < ε

}
, gap〈k〉 < ε;

∞, gap〈k〉 ≥ ε.
(13.1)

The memorability of T 〈k〉 is defined as the average entropy of the feature distributions from

the first few efficient rules:

Mε

(
T 〈k〉

)
=

1

N

N∑

k=1

H
(
p̂φ(k)|Cbach

)
, (13.2)

where N = min
{
k,Eε

(
T 〈k〉

)}
. We again use the average entropy to serve as a surrogate

for memorability. There is a trade-off between efficiency and memorability. At one extreme,

it is most efficient to just memorize pφraw , which takes only one step to achieve a zero gap,

but is too complicated to memorize or learn. At the other extreme, it is easiest to just

memorize pφ for ordering related features, which are (nearly) deterministic but less useful,

since memorizing the orderings takes you acoustically nowhere closer to Bach. There is an α

parameter in the scoring function of the teacher is specially designed to balance the trade-off:

a smaller α for more memorability and a larger α for more efficiency (Table 13.2).

To study the rule entangling problem, we generalize the notion of gap from the raw feature

to all high-level features:

gap
〈k〉
φ = D

(
p̂φ|Cbach ‖ p

〈k〉
φ

)
, ∀φ ∈ Φ. (13.3)

Plotting the footprints of the diminishing gaps for a given feature reveals the (possible)

implication of its associated rule from other rules. For instance, Figure 13.5 shows two sets

of footprints for φ(6) and φ(11). By starring the iteration when the rule of interest is actually

learned, we can see that r(6) cannot be implied from the previous rules, since learning this

rule dramatically closes the gap; on the contrary, r(11) can be implied from the starting seven

or eight rules, since the gap already drops to almost zero before learning this rule.

107

LatexIt font: 20

k

gaphki

k

gap
hki
�(11)

k

gap
hki
�(6)

(a) φ(6) = dpitch ◦ w{1,3,4}

LatexIt font: 20

k

gaphki

k

gap
hki
�(11)

k

gap
hki
�(6)

(b) φ(11) = dinterv ◦ w{1,2,3,4}

Figure 13.5: Rule entanglement: two sets of footprints that mark the diminishing gaps,
both of which are from the rule-learning trace with α = 0.5. The location of the star shows
whether the associated rule is entangled (right) or not (left).

Analyzing Bigram Rules. Given a rule-learning trace in the bigram setting, the analysis

on efficiency and memorability, as well as feature entanglement, remains the same. However,

every trace from the bigram model is generated as a continuation of the unigram learning: the

bigram student is initialized from the latest unigram student. This implies that the bigram

rule set is initialized from the unigram rule set (incremental learning), rather than from

an empty set. MUS-ROVER I uses the extracted bigram rules to overwrite their unigram

counterparts—rules with the same features—highlighting the differences between the two

language models. The comparison between a bigram rule and its unigram counterpart is

key in recovering rules that are otherwise unnoticeable from the bigram rule alone, such as

“Parallel P8s are avoided!” Therefore, MUS-ROVER I emphasizes the necessity of tracking

a series of evolving n-grams, rather than learning from the highest possible order only.

Table 13.3 exemplifies two rule-learning traces: one conditioned on the start symbol ∗; the

other conditioned on a specific C major triad (76, 72, 67, 60). The A-tag denotes an addition

of a new rule feature into the rule set; the U-tag denotes an update of an existing rule feature

from its unigram pmf to its bigram pmf (context overwrites fundamental).

Bigram Rule-Learning Traces (α = 0.5)

xp = ∗ xp = (76, 72, 67, 60)

1 (1,3), order / U (2,), pitch / A
2 (2,4), order / U (1,3,4), pitch / U
· · · · · · · · ·
9 (1,4), interv12 / A (1,2,4), pitch / U

Table 13.3: Two bigram rule-learning traces (excerpt).

108

13.3 MUS-ROVER II

As pointed out earlier, music theory studies the regularity of patterns in music to cap-

ture concepts underlying music styles and composers’ decisions. This section continues the

study of building automatic theorists (rovers) to learn and represent music concepts that

lead to human interpretable knowledge and further lead to materials for educating people.

MUS-ROVER I took a first step in algorithmic concept learning of tonal music, studying

high-level representations (concepts) of symbolic music (digital sheet music) and extracting

interpretable rules for music composition. This section further studies the representation

hierarchy through the learning process, and supports adaptive 2D memory selection in the

resulting language model. This leads to a deeper-level interpretability that expands from

individual rules to a dynamic system of rules, making the entire rule-learning process more

cognitive. The outcome is a new rover, MUS-ROVER II, trained on the same set of Bach’s

chorales, which outputs customizable syllabi for learning compositional rules. We show com-

parable results to our music pedagogy, while also presenting the differences and variations.

13.3.1 Overview

Forming hierarchical concepts from low-level observations is key to knowledge discovery.

In the field of artificial neural networks, deep architectures are employed for machine learn-

ing tasks, with the awareness that hierarchical representations are important [11]. Rapid

progress in deep learning has shown that mapping and representing topical domains through

increasingly abstract layers of feature representation is extremely effective. Unfortunately,

this layered representation is difficult to interpret or use for teaching people. Consequently,

deep learning models are widely used as algorithmic task performers (e.g. AlphaGo), but

few act as theorists or pedagogues. In contrast, our goal is to achieve a deeper-level inter-

pretability that explains not just what has been learned (the end results), but also what is

being learned at every single stage (the process).

On the other hand, music theory studies underlying patterns beneath the music surface.

It objectively reveals higher-level invariances that are hidden from the low-level variations.

In practice, the development of music theory is an empirical process. Through manual

inspection of large corpora of music works, theorists have summarized compositional rules

and guidelines (e.g. J. J. Fux, author of Gradus ad Parnassum, the most influential book on

Renaissance polyphony), and have devised multi-level analytical methods (e.g. H. Schenker,

inventor of Schenkerian analysis) to emphasize the hierarchical structure of music, both of

which have become the standard materials taught in today’s music theory classes. The

109

objective and empirical nature of music theory suggests the possibility of a more advanced

automatic theorist—statistical techniques that perform hierarchical concept learning—while

its pedagogical purpose requires interpretability throughout the entire learning process.

The book title Gradus ad Parnassum, means “the path towards Mount Parnassus,” the

home of poetry, music, and learning. This section presents MUS-ROVER II, an upgraded

extension of MUS-ROVER I, to independently retake the path towards Parnassus. The rover

acts more as a pathfinder than a generative model (e.g. LSTM), emphasizing the path more

than the destination. We compare the paths taken by this improved automatic theorist to

paths taken by human theorists (say Fux), studying similarities as well as pros and cons of

each. Therefore, advantages from both can be jointly taken to maximize the utility in music

education and research. In this section in particular, we highlight the concept hierarchy that

one would not get from MUS-ROVER I, as well as enhanced syllabus personalization that

one would not typically get from traditional pedagogy.

What is Inherited from MUS-ROVER I? MUS-ROVER II targets the same goal of

learning interpretable music concepts. It inherits the self-learning loop (Figure 13.2), as well

as the following design choices.

• (Data set and Data Representation.) We use the same data set that comprises 370

C scores of Bach’s four-part chorales. Only pitches and their durations are included

in a piece’s raw representation, notated as a MIDI matrix whose elements are MIDI

numbers for pitches. The matrix preserves the two-dimensional chorale texture, with

rows corresponding to melodies, and columns to harmonies.

• (Rule Representation.) We use the same representation for high-level concepts in terms

of probabilistic rules, which are unrelated to rules in propositional logic. In light of

a feature-induced abstraction, a probabilistic rule is represented more directly by a

feature and its probability distribution: r = (φ, pφ), which describes the likelihoods

of the feature values. Rule satisfaction can also be translated to a linear equality

constraint (Aφpstu = pφ) in the student’s optimization problem (Γ’s in Figure 13.2).

• (Student’s Probabilistic Model.) We still use n-gram models to represent the student’s

probabilistic model, with words being sonority features, and keep the student’s opti-

mization problem as it was. To reiterate the distinctions to many traditional music

n-grams, we never run n-grams in the raw input space, but only collectively in the

high-level feature spaces to prevent overfitting. So, rules are expressed as probabilistic

laws that describe either (vertical) sonority features or their (horizontal) progressions.

110

What is New in MUS-ROVER II? We study hierarchies on features, so rules are later

presented not just as a linear list, but as hierarchical families and sub-families (or partial

information lattices). In particular, we introduce conceptual hierarchy that is pre-determined

by feature maps, and infer informational hierarchy that is post-implied from an information-

theoretic perspective. We upgrade the self-learning loop to adaptively select memories in

a multi-feature multi-n-gram language model. This is realized by constructing hierarchical

filters to filter out conceptual duplicates and informational implications. By further following

the information scent spilled by Bayesian surprise [92], the rover can effectively localize the

desired features in the feature pool.

13.3.2 Literature Review

Adversarial or Collaborative? For both MUS-ROVER I and II, the self-learning

loop between the teacher (a discriminator) and student (a generator) shares great structural

similarity to generative adversarial nets [27] and their derivatives [114, 115]. However, the

working mode between the discriminator and generator is different. In current GAN-based

algorithms, the adversarial components are black-boxes to each other, since both are different

neural networks that are coupled only end to end. The learned intermediate representation

from one model, no matter how expressive or interpretable, is not directly shared with the

other. Contrarily, in MUS-ROVER, both models are transparent to each other (also to us):

the student directly leverages the rules from the teacher to update its probabilistic model. In

this sense, the learning pair in MUS-ROVER is more collaborative rather than adversarial.

Consequently, not only the learned concepts have interpretations individually, but the entire

learning trace is an interpretable, cognitive process.

Furthermore, MUS-ROVER and GAN contrast in the goal of learning and the resulting

evaluations. The rover is neither a classifier nor a density estimator, but rather a pure

representation learner that outputs high-level concepts and their hierarchies. Training this

type of learner in general is challenging due to the lack of a clear objective or target [11],

which drives people to consider some end task like classification and use performance on

the task to indirectly assess the learned representations. In MUS-ROVER, we introduce

information-theoretic criteria to guide the training of the automatic theorist, and in the con-

text of music concept learning, we directly evaluate machine generated rules and hierarchies

by comparison to those in existing music theory.

Interpretable Feature Learning. In the neural network community, much has been

done to first recover disentangled representations, and then post-hoc interpret the semantics

of the learned features. This line of work includes denoising autoencoders [116] and restricted

111

Boltzmann machines [117, 118], ladder network algorithms [119], as well as more recent

GAN models [120]. In particular, InfoGAN also introduces information-theoretic criteria

to augment the standard GAN cost function, and to some extent achieves interpretability

for both discrete and continuous latent factors [121]. However, beyond the end results, the

overall learning process of these neural networks are still far away from human-level concept

learning [122], so not directly instructional to people.

Automatic Musicians. Music theory and composition form a reciprocal pair, often re-

alized as the complementary cycle of reduction and elaboration [32] as walks up and down

the multi-level music hierarchy. Accordingly, various models have been introduced to auto-

mate this up/down walk, including music generation [104,105,109], analysis [106], or theory

evaluation [107]. In terms of methodologies, we have rule-based systems [123], language

models [109, 124], and information-theoretic approaches [125, 126]. However, all of these

models leverage domain knowledge (e.g. human-defined chord types, functions, rules) as

part of the model inputs. MUS-ROVER takes as input only the raw notations (pitches

and durations), and outputs concepts that are comparable to (but also different from) our

domain knowledge.

13.3.3 Learning Model: Hierarchical Rule Learning

MUS-ROVER II emphasizes hierarchy induction in learning music representations, and

divides the induction process into two stages. In Stage 1, we impose conceptual hierarchy

as pre-defined structures among candidate features before the self-learning loop. In Stage 2,

we infer informational hierarchy as post-implied structures through the rule learning loops.

Interpretable Features. Recall that a feature is a function that computes a distributed

representation of the building blocks that constitute data samples. For Bach’s four-part

chorales, we model every piece (a four-row matrix) as a sequence of sonorities (columns).

Thus, every sonority is the building block of its composing piece (like a word in a sentence).

Then a feature maps a sonority onto some feature space, summarizing an attribute. More

specifically, let Ω = {R, p1, . . . , pn} be an alphabet that comprises a rest symbol R, and n pitch

symbols pi. In addition, the alphabet symbols—analogous to image pixels—are manipulable

by arithmetic operations, such as plus/minus, modulo, and sort. More precisely, every pi is

an integer-valued MIDI number (60 for middle C, granularity 1 for semi-tone), and R is a

special character which behaves like a python nan variable. The four coordinates of every

sonority p ∈ Ω4 denote soprano, alto, tenor, and bass, respectively. We define a feature as

a surjective function φ : Ω4 → φ(Ω4), and the corresponding feature space by its image.

As a first and brutal categorization, we say a feature (space) is raw (or lowest-level) if

112

|φ(Ω4)| = |Ω4|, and high-level if |φ(Ω4)| < |Ω4|. For instance, Ω4 or any permutation of Ω4

is a raw feature space.

MUS-ROVER II adopts the systematic way of generating the universe of interpretable

features (Section 9.1). A sonority feature is constructed as the composition of a window and

a descriptor. A window is a function that selects parts of the input sonority: wI : Ω4 → Ω|I|,

where I is an index set. For instance, w{1,4}(p) = (p1, p4) selects soprano and bass. A

descriptor is constructed inductively from a set of basis descriptors B, consisting of atomic

arithmetic operations. We currently set B = {order, diff, sort, mod12}, where

diff(x) = (x2 − x1, x3 − x2, · · ·), ∀x ∈ Ω2 ∪ Ω3 ∪ Ω4; (13.4)

sort(x) = (x(1), x(2), · · ·), ∀x ∈ Ω2 ∪ Ω3 ∪ Ω4; (13.5)

mod12(x) = (mod(x1, 12),mod(x2, 12), · · ·), ∀x ∈ Ω ∪ Ω2 ∪ Ω3 ∪ Ω4; (13.6)

and order(x), a fine-tuned version of argsort, maps x ∈ Ω2∪Ω3∪Ω4 to a string that specifies

the ordering of its elements, e.g. order((60, 55, 52, 52)) = “4=3<2<1”. The numbers in an

order string denote the coordinates of the input vector x. Recall that we define a descriptor

of length k as the composition of k bases: d(k) = bk ◦ · · · ◦ b1, for all bi ∈ B, where d(0)

is the identity function. We collect the family of all possible windows: W = {wI | I ∈
2{1,2,3,4}\{∅}}, and the family of all descriptors of length less than or equal to k: D[k] =

{d(k′) | 0 ≤ k′ ≤ k}, and form the feature pool : Φ = Φ[k+1] := {d ◦ w | w ∈ W,d ∈ D[k]}.
Feature-Induced Partition. On the one hand, a feature function has all the mathematic

specifications to name the corresponding feature and feature values. On the other hand, we

only care about the abstraction, i.e. the partition, of the input domain (Ω4) induced by the

feature but not the (superficial) naming of the clusters. In other words, we only identity

the sonority clusters whose members are mapped to the same feature value, but not the

feature value itself. A feature pool Φ induces its corresponding partition family PΦ. For two

partitions P ,Q ∈ PΦ, we say P is finer than Q (or Q is coarser), written as P � Q, if for

all p, p′ ∈ Ω4, p, p′ are in the same cluster under P ⇒ p, p′ are in the same cluster under Q.

We say P is strictly finer, written as P � Q, if P � Q and Q � P .

Conceptual Hierarchy. Based on the binary relation “strictly finer” �, we construct

the conceptual hierarchy for the partition family PΦ, and represent it as a directed acyclic

graph (DAG) with nodes being partitions. For any pair of nodes v, v′, v → v′ if and only

if the partition referred by v is (strictly) finer than that referred by v′. The DAG grows

from a single source node, which represents the finest partition—every point in the domain

by itself is a cluster—and extends via the edges to coarser and coarser partitions. In terms

of features, we say a feature φ′ is at a higher level than another feature φ, if the induced

113

partitions satisfy Pφ � Pφ′ . In other words, a higher-level feature induces a coarser partition

that ignores lower-level details by merging clusters.

We emphasize the necessity of this multi-step process: features → partitions → hierarchy

(DAG), rather than a simple hierarchical clustering (tree). The latter tends to lose many

inter-connections due to the tree structure and its greedy manner, and more importantly,

the interpretability of the partitions.

Informational Hierarchy. We infer informational hierarchy from a many-to-one rela-

tion, called implication, along a rule trace. More formally, let {ri}ki=1 := {(φi, p̂φi)}ki=1 be the

extracted trace of rules (in terms of feature and feature distribution) by the kth iteration of

the self-learning loop. We say a feature φ is informationally implied from the trace {ri}ki=1

with tolerance γ > 0, if

gap
(
p
〈k〉
φ,stu

∥∥ p̂φ
)

:= D
(
p
〈k〉
φ,stu

∥∥ p̂φ
)
< γ, and gap

(
p
〈k′〉
φ,stu

∥∥ p̂φ
)
≥ γ, ∀k′ < k, (13.7)

where D(·‖·) is the KL divergence used to characterize the gap of the student’s style (prob-

abilistic model) against Bach’s style (input). One trivial case happens when φ is extracted

as the kth rule, i.e. φ = φk, then gap(p
〈k〉
φ′,stu

∥∥ p̂φ′) = 0 < γ, ∀φ′ ∈ {φ′ | Pφ � Pφ′}, meaning

that feature φ, once learned as a rule, informationally implies itself and all its descendants in

the conceptual hierarchy. However, what is more interesting is the informational implication

from other rules outside the conceptual hierarchy, which is hard for humans to “eyeball”.

Hierarchical Filters. We build hierarchical filters from both conceptual and informa-

tional hierarchies, for the purpose of pruning hierarchically entangled features and speeding

up feature selection. This upgrades MUS-ROVER II into a more efficient, robust, and cog-

nitive theorist. Recall the skeleton of the teacher’s optimization problem in Figure 13.2, we

flesh it out as follows (also cf. the general case (10.9)):

maximize
φ∈Φ

gap
(
p
〈k−1〉
φ,stu

∥∥ p̂φ
)

(13.8)

subject to H(p̂φ) ≤ δ (regularity condition)

φ /∈ C〈k−1〉 :=
{
φ
∣∣ Pφ � Pφ′ , φ′ ∈ Φ〈k−1〉} (conceptual-hierarchy filter)

φ /∈ I〈k−1〉 :=
{
φ
∣∣ gap

(
p
〈k−1〉
φ,stu

∥∥ p̂φ
)
< γ

}
(informational-hierarchy filter)

In the above optimization problem, Φ is the feature pool and φ ∈ Φ is the optimization

variable whose optimal value is used to form the kth rule: φk = φ?, rk = (φ?, p̂φ?). The first

constraint requires the Shannon entropy of the feature distribution to be no larger than a

given threshold [89]. The second constraint encodes the filter from conceptual hierarchy,

114

depth
le

ng
th

2-gram

3-gram

4-gram

5-gram

1 2 3 4 5 6 7 8 9
…

…

(features)

the 7th feature under 4-gram: informational hierarchy filter
learned

1

00 0

0

0

0

0

0

0

1

1

0

0

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

0

0

0

0

conceptual hierarchy filter

regularity conditiondepth

le
ng

th
2-gram

3-gram

4-gram

5-gram

1 2 3 4 5 6 7 8 9
…

…

(features)

the 7th feature under 4-gram: informational hierarchy filter
learned

1

00 0

0

0

0

0

0

0

1

1

0

0

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

0

0

0

0

conceptual hierarchy filter

regularity condition

Figure 13.6: MUS-ROVER II’s two-dimensional memory (left): the length axis enumerates
n-gram orders; the depth axis enumerates features; and every cell is a feature distribution.
Memory mask (right): 0 marks the removal of the corresponding cell from feature selec-
tion, which is caused by a hierarchical filter or the regularity condition or (contradictory)
duplication.

which prunes coarser partitions of the learned features Φ〈k−1〉 := {φ1, . . . , φk−1}. (Learning a

rule is effectively learning its sub-family, since the distributions of all its descendants can be

inferred exactly from the rule.) The third constraint encodes the filter from informational

hierarchy, which prunes informationally implied features. There are two hyper-parameters δ

and γ in the optimization problem (13.8). We often pre-select γ before the loop to express

a user’s satisfaction level : a smaller γ signifies a meticulous user who is harder to satisfy;

the threshold δ upper bounds the entropic difficulty of the rules, and is adaptively adjusted

through the loop: it starts from a small value (easy rules first), and auto-increases whenever

the feasible set of (13.8) is empty (gradually increases the difficulty when mastering the

current level).

13.3.4 Learning Model: Adaptive Memory Selection

MUS-ROVER II considers a continuous range of higher order n-grams (variable memory),

and adaptively picks the optimal n based on a balance among multiple criteria. The fact

that every n-gram is also on multiple high-level feature spaces allows long-term memories

without exhausting machine memory, while effectively avoiding overfitting.

Two-Dimensional Memory. For a range of multiple n-grams, say n ∈ N = {2, 3, . . . },
the feature pool is a two-dimensional memory (N×Φ)—length versus depth—for the language

model (Figure 13.6: left). The length axis enumerates n-gram orders, with a longer memory

corresponding to a larger n; the depth axis enumerates features, with a deeper memory

corresponding to a higher-level feature-induced abstraction. Every cell in the memory is

indexed by two coordinates (n, φ), referring to the feature φ under the n-gram, and stores

115

the corresponding feature distribution. As a consequence, the rule extraction task involves

picking the right feature under the right n-gram, which extends the space of the optimization

problem (13.8) from Φ to N ×Φ. Accordingly, the constraints of (13.8) jointly forge a mask

on top of the 2D memory (Figure 13.6: right).

13.3.5 Experiments with Bach’s Chorales

MUS-ROVER II’s main use case is to produce personalized syllabi that are roadmaps to

learning the input style (customized paths to Mount Parnassus). By substituting the student

module, users can join the learning cycle, in which they make hands-on compositions and get

iterative feedback from the teacher. Alternatively, for faster experimentation, users make

the student their learning puppet, which is personalized by its external parameters. Here,

we discuss the latter case in detail.

Pace Control and Syllabus Customization. We present a simple yet flexible pace

control panel to the users of MUS-ROVER II, enabling personalized set-up of their learning

puppet. The control panel exposes four knobs: the lower bound, upper bound, and stride

of the rule’s entropic difficulty (δmin, δmax, δstride), as well as the satisfactory gap (γ). These

four hyper-parameters together allow the user to personalize the pace and capacity of her

learning experience. The entropic difficulty δ caps the Shannon entropy of a rule’s feature

distribution in (13.8), a surrogate for the complexity (or memorability) of the rule [89]. It

is discretized into a progression staircase from δmin up to δmax, with incremental δstride.

The resulting syllabus starts with δ = δmin, the entry level difficulty; and ends whenever

δ ≥ δmax, the maximum difficulty that the user can handle. Anywhere in between, the

loop deactivates all rules whose difficulties are beyond current δ, and moves onto the next

difficulty level δ+ δstride if the student’s probabilistic model is γ-close to the input under all

currently active rule features.

To showcase syllabus customization, we introduce an ambitious user who demands a faster

pace and a patient user who prefers a slower one. In practice, one can collectively tune the

stride parameter δstride and the gap parameter γ, with a faster pace corresponding to a larger

δstride (let’s jump directly to the junior year from freshman) and a larger γ (having an A- is

good enough to move onto the next level, why bother having A+). Here we simply fix δstride,

and let γ control the pace. We illustrate two syllabi in Table 13.4, which compares the first

ten (1-gram) rules in a faster (γ = 0.5) syllabus and a slower one (γ = 0.1). Notice the

faster syllabus gives the fundamentals that a music student will typically learn in her first-

year music theory class, including rules on voice crossing, pitch class set (scale), intervals,

and so on (triads and seventh chords will appear later). It effectively skips the nitty-gritty

116

Rule Trace Faster Pace (γ = 0.5) Slower Pace (γ = 0.1)

1 order ◦ w{1,2,3,4} order ◦ w{1,2,3,4}
2 mod12 ◦ w{1} order ◦ diff ◦ sort ◦ w{1,2,4}†
3 mod12 ◦ diff ◦ w{2,3} order ◦ diff ◦ mod12 ◦ w{1,2,3}†
4 mod12 ◦ diff ◦ w{3,4} order ◦ diff ◦ diff ◦ w{1,2,3,4}†
5 diff ◦ sort ◦ w{2,3} order ◦ sort ◦ mod12 ◦ w{2,3,4}†
6 mod12 ◦ w{3} order ◦ sort ◦ mod12 ◦ w{1,3,4}†
7 mod12 ◦ diff ◦ w{1,2} order ◦ sort ◦ mod12 ◦ w{1,2,3,4}†
8 mod12 ◦ diff ◦ w{2,4} mod12 ◦ w{1}
9 diff ◦ w{1,2} mod12 ◦ diff ◦ w{2,3}
10 diff ◦ sort ◦ w{1,3} mod12 ◦ diff ◦ w{3,4}

Table 13.4: Customizing a syllabus († signifies rules that are skipped in the faster pace)

rules (marked by a dagger) that are learned in the slower setting. Most of these skipped rules

do not have direct counterparts in music theory (such as taking the diff operator twice)

and are not important, although occasionally the faster syllabus will skip some rules worth

mentioning (such as the second rule in the slower pace, which talks about spacing among

soprano, alto, and bass). Setting an appropriate pace for a user is important: a pace that

is too fast will miss the whole point of knowledge discovery (jump to the low-level details

too fast); a pace that is too slow will bury the important points among unimportant ones

(hence, lose the big picture). The control panel is there to help a user to find the proper

pace, and it can be adjusted anytime along the loop.

Fundamentals: Hierarchical 1-gram. Similar to our teaching of music theory, MUS-

ROVER II’s proposed syllabus divides into two stages: fundamentals and part writing.

The former is under the 1-gram setting, involving knowledge independent of the context;

the latter provides online tutoring under multi-n-grams. We begin our experiments with

fundamentals, and use them to illustrate the two types of feature hierarchies.

Let’s take a closer look at the two syllabi in Table 13.4. The specifications (left) and hier-

archies (right) of the four common rules are illustrated in Table 13.5. The rules’ translations

are below the corresponding bar charts, all of which are consistent with our music theory.

Extracted from the conceptual hierarchy, the right column lists the partition sub-family

sourced at each rule, which is pictorially simplified as a tree by hiding implied edges from its

corresponding DAG. Every coarser partition in a sub-family is indeed a higher-level repre-

sentation, but has not accumulated sufficient significance to make itself a rule. A partition

will never be learned if one of its finer ancestors has been made a rule. Observe that all of

the coarser partitions are not typically taught in theory classes.

117

mod12 � diff � w{3,4}mod12 � diff � w{2,3}

mod12 � w{1}

order � w{1,2,3,4}

Interpretable rule (Spacing): Al-
most always, the soprano pitch is
above the alto, alto above tenor, and
tenor above bass.

This partition sub-family includes 21
coarser partitions, which are local or-
derings that are already captured by the
global ordering.

mod12 � diff � w{3,4}mod12 � diff � w{2,3}

mod12 � w{1}

order � w{1,2,3,4}

Interpretable rule (Scale): The so-
prano voice is drawn from a diatonic
scale with high probability.

This partition sub-family does not con-
tain any other coarser partitions.

mod12 � diff � w{3,4}mod12 � diff � w{2,3}

mod12 � w{1}

order � w{1,2,3,4}

Interpretable rule (Interval): The
interval of the inner voices are mostly
consonant (3,4,5,7,8,9), but perfect
octave/unison (0) is rare due to the
tight spacing between alto and tenor.

This partition sub-family contains only
one coarser partition:

order ◦ sort ◦ mod12 ◦ w{2,3}.

mod12 � diff � w{3,4}mod12 � diff � w{2,3}

mod12 � w{1}

order � w{1,2,3,4}

Interpretable rule (Interval): The
interval of the lower voices are mostly
consonant, and emerges more perfect
octaves due to the wide spacing be-
tween tenor and bass. Also, perfect
fourth (5) is now considered as a dis-
sonance against the bass.

This partition sub-family contains only
one coarser partition:

order ◦ sort ◦ mod12 ◦ w{3,4}.

Table 13.5: Sample 1-gram rules and their hierarchies. The blue bubbles and the red bubbles
in the right column represent (conceptually) implying and implied rules, respectively.

MUS-ROVER II measures the student’s progress from many different angles in terms of

features. With respect to a feature, the gap between the student and Bach is iteratively

118

iter

gap

…

iter

gap

…

�7 = order � sort � mod12 � w{1,2,3,4}�2 = order � diff � sort � w{1,2,4}

iter

gap

…

iter

gap

…

�7 = order � sort � mod12 � w{1,2,3,4}�2 = order � diff � sort � w{1,2,4}

Figure 13.7: Gap trajectories for two features φ2 and φ7: the dashed black lines show two
different satisfactory gaps (γ = 0.5 and 0.1). The bottom charts show the informationally
implied hierarchies: the blue and the red bubbles are implying and implied rules, respectively.

recorded to form a trajectory when cycling the loop. Studying the vanishing point of the

trajectory reveals the (local) informational hierarchy around the corresponding feature. Tak-

ing the second and seventh rule in the slower syllabus for example, we plot their trajectories

in Figure 13.7. Both illustrate a decreasing trend1 for gaps in the corresponding feature

spaces. The left figure shows that the second rule is largely but not entirely implied by

the first, pointing out the hierarchical structure between the two: the first rule may be

considered as the dominant ancestor of the second, which is not conceptually apparent, but

informationally implied. Contrarily, the right figure shows that the seventh rule is not pre-

dominantly implied by the first, which instead is informationally connected to many other

rules. However, one could say that it is probably safe to skip both rules in light of a faster

pace, since they will eventually be learned fairly effectively (with small gaps) but indirectly.

Part Writing: Adaptive n-grams. Unlike fundamentals which studies sonority in-

dependently along the vertical direction of the chorale texture, rules on part writing (e.g.

melodic motion, chord progression) are horizontal, and context-dependent. This naturally

results in an online learning framework, in which rule extractions are coupled in the writ-

ing process, specific to the realization of a composition (context). Context dependence is

captured by the multi-n-gram language model, which further leads to the 2D memory pool

of features for rule extraction (Section 13.3.4). Consider an example of online learning and

1Fluctuations on the trajectory are largely incurred by the imperfect solver of the optimization problem.

119

Figure 13.8: The relative performance of the selected rule (pointed) among the pool of all
cells in the 2D memory. A desired rule has: higher confidence (measured by the number of
examples, brighter regions in the first row), more regularity (measured by Shannon entropy,
darker regions in the second row), and larger style gap (measured by KL divergence, brighter
regions in the bottom two rows).

adaptive memory selection, where we have the beginning of a chorale:

〈s〉, (60, 55, 52, 36), (60, 55, 52, 36), (62, 59, 55, 43), (62, 59, 55, 43), (62, 59, 55, 43), (13.9)

and want to learn the probabilistic model for the next sonority. Instead of starting from

scratch, MUS-ROVER II launches the self-learning loop with the ruleset initialized by

the fundamentals (incremental learning), and considers the 2D memory N × Φ, for N =

{2, 3, 4, 5}. The first extracted rule is featured by order ◦ sort ◦ mod12 ◦ w{3,4}. The rule is

chosen because its corresponding feature has a large confidence level (validated by the large

number of matched examples), a small entropy after being smoothed by Bayesian surprise,

and reveals a large gap against the Bach’s style. Figure 13.8 shows the relative performance

of this rule (in terms of confidence, regularity, and style gap) to other candidate cells in the

2D memory. Among the top 20 rules for this sonority, 12 are 5-gram, 5 are 4-gram, 3 are

2-gram, showing a long and adaptive dependence to preceding context.

Visualizing Bach’s Mind. With the hierarchical representations in MUS-ROVER II,

we are now able to visualize Bach’s music mind step by step via activating nodes in the

120

DAG of rule features (similar to neuron activations in a brain). The hierarchical structure,

as well as the additive activation process, is in stark contrast with the linear sequence of

rules extracted from MUS-ROVER I. Figure 13.9 presents a snapshot of the rule-learning

status after ten loops, while the student is writing a sonority in the middle of a piece.

The visualization makes it clear how earlier independent rules are now self-organized into

sub-families, as well as how rules from a new context overwrite those from an old context,

emphasizing that music is highly context-dependent.

unlearned
1-gram
3-gram
10-gram
6-gram
7-gram
4-gram

Figure 13.9: Visualization of Bach’s music mind for writing chorales. The underlying DAG
represents the conceptual hierarchy (note: edges always point downwards). Colors are used
to differentiate rule activations from different n-gram settings. We have enlarged N =
{1, 2, . . . , 10} to allow even longer-term dependencies.

13.4 MUS-ROVER RB

We implement our unified rule realization and selection framework introduced in Sec-

tion 10.3 on rule sets from MUS-ROVER II, yielding its variant MUS-ROVER RB for rule

breaking. In this section, we demonstrate one experiment, where we exported a set of 16

compositional rules which aims to guide a student in writing the next sonority that follows

well with the existing music content.

We show the λw-solution path associated with this rule set in Figure 13.10. Again, the

121

0

1.0

2.0
gr

ou
p

no
rm rule 3

rule 6
rule 9
rule 10
others

× 10−2

−8 −6 −4 −2 0 2
0

1.0

w
t.

er
r. × 10−4

log2 (λw)

A Appendix384

A.1 The KKT Condition of Simplex Constrained Linear Least-Squares385

A.2 An Equivalent Formulation of Simplex Constrained Linear Least-Squares386

A.3 The Convergence of Group Norms387

A.4 The Global Minimum of Problem (3) Under Consistency388

A.5 Miscellaneous389

Table 1: Compositional rule selections

log2(�w) selected rule set # of rules
of rule

components

[�12,�6] {10} 1 1540
[�5,�2] {3, 6, 10} 3 1699

[�1, 0] {3, 6, 9, 10} 4 2154
1 {3, 6, 8, 9, 10, 11, 13} 7 2166
2 {1, 3, 7, 9, 10, 11, 13} 7 2312
3 all 16 2417

11

Figure 13.10: The λw-solution path obtained from a real compositional rule set.

1 4 5 6 7 8 9 10 11 12 13 14 15 1632

1

0

error

rule rule

(a) selective (b) non-selective
1 4 5 6 7 8 9 10 11 12 13 14 15 1632

1

0

error

Figure 13.11: Comparison between a selective rule realization (log2(λw) = 1) and its non-
selective counterpart. The boldfaced x-tick labels designate the indices of the selected rules.

general trend shows the same pattern here: the model turns into a more liberal style (more

rules but less accurate) as λw increases. Along the solution path, we also observe that the

consistent range (i.e. the error-free zone) is wider than that in the artificial cases. This

is intuitive, since a real rule set should be largely consistent with minor contradictions,

otherwise it will confuse the student and lose its pedagogical purpose. A more interesting

phenomenon occurs when the model is about to leave the error-free zone. When log2(λw)

goes from 1 to 2, the combined size of the selected rules increases from 2166 to 2312 but the

realization error increases only a little. Will sacrificing this tiny error be a smarter decision to

make? The difference between the selected rules at these two moments shows that rule 1 and

7 were added into the selection at log2(λw) = 2 replacing rule 6 and 8. Rule 1 is about the bass

line, while rule 6 is about tenor voice. It is known in music theory that outer voices (soprano

and bass) are more characteristic and also more identifiable than inner voices (alto and tenor)

which typically stay more or less stationary as background voices. So it is understandable

that although larger variety in the bass increases the opportunity for inconsistency (in this

case not too much), it is a more important rule to keep. Rule 7 is about the interval between

soprano and tenor, while rule 8 describes a small feature between the upper two voices but

does not have a meaning yet in music theory. So unlike rule 7 that brings up the important

concept of voicing (i.e. classifying a sonority into open/closed/neutral position), rule 8 could

122

simply be a miscellaneous artifact. To conclude, in this particular example, we would argue

that the rule selection happens at log2(λw) = 2 is a better decision, in which case the model

makes a good compromise on exact consistency.

To compare a selective rule realization with its non-selective counterpart [52], we plot the

errors ‖A(r)p − b(r)‖2 for each rule r = 1, . . . , 16 as histograms in Figure 13.11. The non-

selective realization takes all rules into consideration with equal importance, which turns

out to be a degenerate case along our model’s solution path for log2(λw) → ∞. This

realization yields a “well-balanced” solution but no rules are satisfied exactly. In contrast,

a selective realization (e.g. log2(λw) = 1) gives near-zero errors on selected rules, producing

more human-like compositional decisions.

13.5 MUS-ROVER RULES VERSUS MUSIC THEORY

We compare probabilistic rules from MUS-ROVER to the basic Western music theory

typically taught in a music theory class for music major students. The goal is to use known

music theory as a benchmark to see how the produced probabilistic rules correspond to

human derived music knowledge: in particular, to see what are covered, what are new, and

what are different. However, the goal here is not to use known music theory as a ground

truth for the purpose of driving MUS-ROVER to reproduce as much as possible. This is

because we know in advance three out of the four major differences between laws of music

theory and probabilistic rules from MUS-ROVER.

First, in terms of (input) music format, laws of music theory are derived from a complete

set of music information whereas probabilistic rules from MUS-ROVER are derived from only

MIDI pitches and their durations. The latter is information lossy in at least two places: 1)

pitches represented by MIDI numbers are only distinguished up to enharmonic equivalents

of those spelled by letter names; 2) many music parameters are currently excluded from

MUS-ROVER’s input, e.g. meter, measure, beaming, dynamics.

Second, in terms of (output) rule format, laws of music theory and probabilistic rules from

MUS-ROVER are stated in two different ways, with the former being more descriptive and

absolute, whereas the latter being more numerical and probabilistic. So, this time regarding

rule format, the former is information lossy. For instance, a rule that forbids parallel fifths

(which should have been more precisely stated as “consecutive fifths”) may be recovered by

a probabilistic rule that assigns a 0.01 probability to the interval class 7 conditioned on a

preceding interval class 7. Therefore, while it is possible to “translate” (with information

loss) a probabilistic rule (precise) to a rule in known theory (verbal), it is not reasonable to

“translate” in the opposite direction and use known rules directly as the true labels like in

123

a supervised learning scenario (although many earlier rule-based AIs indeed encoded these

hard rules to generate somewhat “mechanical” music e.g. Illiac Suite [49]).

Third, in light of purposes, laws of music theory are more intended for pedagogical pur-

poses, thus, are not reflecting the style of a particular data set. For instance, while parallel

fifths are banned in homework and exams, they may be widely used in many pop songs; even

for our data set of Bach’s chorales (which are supposed to follow the known rules quite well),

we see Bach himself did a handful of parallel perfect intervals. On the contrary, probabilistic

rules from MUS-ROVER are specific to the input data set. We may certainly find some data

sets that follow the known rules quite well (e.g. Bach’s chorales), but find others that break

many known rules and even set their own rules.

Keeping these three differences in mind and by further isolating them from the comparison

results, we can reveal the remaining differences that are due to the rule-learning process

itself. We first compare MUS-ROVER’s feature-induced rules with a complete music theory

curriculum taught in the School of Music at the University of Illinois at Urbana-Champaign.

To come up with this benchmark, we compiled a comprehensive syllabus of laws of music

theory from the course materials used in MUS 502, a graduate theory review class that runs

through (in a faster pace) all content covered in a full series of theory classes MUS 101,

102, and 201. This music knowledge is organized as a list of 75 topics indexed by lecture

numbers and possibly subtopics within each lecture. On the other hand, probabilistic rules

from MUS-ROVER are indexed by abstraction and n-gram as the two coordinates in the 2D

memory mentioned earlier in Figure 10.2. The results are summarized in Table 13.6.

Lecture Music Theory Abstraction n-gram

1 music accents 7

2 pitch 1-4 1 3

2 pitch class 16-19 1 3

2 interval 31-36 1 3

2 interval class 97-102 1 3

3 stepwise melodic motion (counterpoint) 1-4 2 3

3 consonant harmonic intervals (counterpoint) 97-102 1 3

3 beginning scale degree (counterpoint) 16-19 2 3

3 ending scale degree (counterpoint) 16-19 2 3

3 beginning interval class (counterpoint) 97-102 2 3

3 ending interval class (counterpoint) 97-102 2 3

3 parallel perfect intervals (counterpoint) 97-102 2 3

Table 13.6 (cont.)

124

Lecture Music Theory Abstraction n-gram

3 directed perfect intervals (counterpoint) 7

3 law of recovery (counterpoint) 1-4 ≥3 3

3 contrapuntal cadence (counterpoint) 1-4, 97-102 2,3 3

3 melodic minor ascending line (counterpoint) 7

4 triads and seventh chords 26-30 1 3

4 triads and seventh chords: quality 140-144 1 3

4 triads and seventh chords: inversion 113-117 1 3

5 figured bass 113-117 1,2 3

5 roman numerals 129-133 1 3

6 melodic reduction (Schenkerian analysis) 7

7 passing tone (tones of figuration) 1-4, 134-144 3 3

7 neighbor tone (tones of figuration) 1-4, 134-144 3 3

7 changing tone (tones of figuration) 1-4, 134-144 4 3

7 appoggiatura (tones of figuration) 1-4, 134-144 3 3

7 escape tone (tones of figuration) 1-4, 134-144 3 3

7 suspension (tones of figuration) 1-4, 134-144 3 3

7 anticipation (tones of figuration) 1-4, 134-144 3 3

7 pedal point (tones of figuration) 1-4 ≥ 3 3

7 (un)accented (tones of figuration) 7

7 chromaticism (tones of figuration) 7

8 tonic (function) 7

8 dominant (function) 7

8 authentic cadence 1,4,129-133 2,3 3

8 half cadence 129-133 2,3 3

9 voice range (four-part texture) 1-4 1 3

9 voice spacing (four-part texture) 31-41 1 3

9 voice exchange (four-part texture) 20-25 2 3

9 voice crossing (four-part texture) 53-63 1 3

9 voice overlapping (four-part texture) 7

9 tendency tone (four-part texture) 16-19 1,2 3

9 doubling (four-part texture) 86-91 1 3

10 harmonic reduction (second-level analysis) 7

11 expansion chord 7

12 predominant (function) 7

Table 13.6 (cont.)

125

Lecture Music Theory Abstraction n-gram

13 phrase model 7

14 pedal or neighbor (six-four chord) 4,113-117 3 3

14 passing (six-four chord) 4,113-117 3 3

14 arpeggiated (six-four chord) 7

14 cadential (six-four chord) 113-117, 133 3,4 3

15 embedded phrase model 7

16 non-dominant seventh chord (function) 7

17 tonic substitute (submediant chord) 7

17 deceptive cadence (submediant chord) 129-133 2,3 3

18 functional substitute (mediant chord) 7

19 back-relating dominant 129-133 2,3 3

20 period (I) 7

21 period (II) 7

22 period (III) 7

23 applied chords (I) 129-133 2,3 3

24 applied chords (II) 129-133 2,3 3

25 applied chords (III) 129-133 2,3 3

26 modulation (I) 7

27 modulation (II) 7

28 binary form (I) 7

29 binary form (II) 7

30 modal mixture 7

31 Neapolitan 129-133 1 3

32 Italian sixth chord 140-144 1 3

32 French sixth chord 144 1 3

32 German sixth chord 7

32 Swiss sixth chord 7

33 ternary form 7

34 sonata form . 7

Table 13.6: Comparison of probabilistic rules from MUS-ROVER to laws of music theory
taught in MUS 502. Details on abstraction IDs are shown in Table 13.7. Red crosses (7)
denote topics not recoverable from our adopted music raw representations; blue crosses (18)
denote topics not recoverable from our n-gram transitions of abstractions.

Out of the 75 topics in Table 13.6, MUS-ROVER covers 45 of them with a raw coverage

126

rate of 60%. Note that among the 30 uncovered topics, there are 5 accents-related topics and

2 enharmonically re-spellable chords (German and Swiss sixth chords) which require music

inputs beyond MIDI pitches and durations (cf. the first aforementioned difference). This

means when considering the learnability of the model itself, we should ignore these 7 topics

that are more related to data pre-processing and formatting. This reduces the curriculum

to a sublist of 68 topics that are recoverable from our adopted music raw representation,

yielding a coverage rate of 66%, i.e. 45 out of 68. Among the 23 missed topics, 18 of them are

related to deeper-level temporal abstractions such as harmonic functions (7), key areas (2),

and forms (10). These temporal abstractions are, more precisely, abstractions of transitions,

which are implicitly captured but not explicitly recovered from our current multi-abstraction

multi-n-gram language model modeling only transitions of abstractions. Since MUS-ROVER

currently makes static abstractions only, then excluding these 18 topics requiring dynamic

abstractions yields a coverage rate of 90%. The missing 10%, i.e. the 5 missed topics, are

tricky ones that require ad-hoc encodings which are not explicitly learnable (but may be

implicitly captured to some extent) from our general ACL framework.

Accordingly, the composition of the total 30 = 7 + 18 + 5 uncovered topics suggest three

future directions to raise the learning capacity of the current MUS-ROVER. The immediate

next big move is to introduce temporal (or dynamic) abstractions—abstractions of transitions

rather than transitions of abstractions—into our ACL framework. Once implemented, this

will recover the 18 missing topics in music theory, but more importantly, it will benefit ACL

in general. Therefore, we consider temporal abstractions as the next significant improvement

for the general ACL framework regarding time-series data in general. Further allowing MUS-

ROVER to admit more variable music inputs can potentially address the 7 uncovered topics.

Doing this in an ad-hoc way (i.e. in a music-specific way) seems easy, but doing this in a

general way is desired (especially considering the goals of ACL) and needs more thoughts.

Similarly, seeking a more general framework that can cover the last 5 tricky topics is more

challenging and requires more thoughts. Nevertheless, recall that the goal here is not to

reproduce what we know: the purpose of ACL is not to replicate human intelligence, but to

augment it. So, we may certainly stop after enabling abstractions of transitions, yielding an

improved raw coverage rate of 84% (93% for topics from MIDI notes) which is good enough.

Abstraction Feature Abstraction Feature

1 w1 100 mod12 ◦ diff ◦ w2,3

2 w2 101 mod12 ◦ diff ◦ w2,4

3 w3 102 mod12 ◦ diff ◦ w3,4

Table 13.7 (cont.)

127

Abstraction Feature Abstraction Feature

4 w4 103 mod12 ◦ diff ◦ w1,2,3

5 w1,2 104 mod12 ◦ diff ◦ w1,2,4

6 w1,3 105 mod12 ◦ diff ◦ w1,3,4

7 w1,4 106 mod12 ◦ diff ◦ w2,3,4

8 w2,3 107 mod12 ◦ diff ◦ w1,2,3,4

9 w2,4 108 diff ◦ diff ◦ w1,2,3

10 w3,4 109 diff ◦ diff ◦ w1,2,4

11 w1,2,3 110 diff ◦ diff ◦ w1,3,4

12 w1,2,4 111 diff ◦ diff ◦ w2,3,4

13 w1,3,4 112 diff ◦ diff ◦ w1,2,3,4

14 w2,3,4 113 sort ◦ diff ◦ w1,2,3

15 w1,2,3,4 114 sort ◦ diff ◦ w1,2,4

16 mod12 ◦ w1 115 sort ◦ diff ◦ w1,3,4

17 mod12 ◦ w2 116 sort ◦ diff ◦ w2,3,4

18 mod12 ◦ w3 117 sort ◦ diff ◦ w1,2,3,4

19 mod12 ◦ w4 118 order ◦ diff ◦ w1,2,3

20 mod12 ◦ w1,2 119 order ◦ diff ◦ w1,2,4

21 mod12 ◦ w1,3 120 order ◦ diff ◦ w1,3,4

22 mod12 ◦ w1,4 121 order ◦ diff ◦ w2,3,4

23 mod12 ◦ w2,3 122 order ◦ diff ◦ w1,2,3,4

24 mod12 ◦ w2,4 123 mod12 ◦ sort ◦ w1,2

25 mod12 ◦ w3,4 124 mod12 ◦ sort ◦ w1,3

26 mod12 ◦ w1,2,3 125 mod12 ◦ sort ◦ w1,4

27 mod12 ◦ w1,2,4 126 mod12 ◦ sort ◦ w2,3

28 mod12 ◦ w1,3,4 127 mod12 ◦ sort ◦ w2,4

29 mod12 ◦ w2,3,4 128 mod12 ◦ sort ◦ w3,4

30 mod12 ◦ w1,2,3,4 129 mod12 ◦ sort ◦ w1,2,3

31 diff ◦ w1,2 130 mod12 ◦ sort ◦ w1,2,4

32 diff ◦ w1,3 131 mod12 ◦ sort ◦ w1,3,4

33 diff ◦ w1,4 132 mod12 ◦ sort ◦ w2,3,4

34 diff ◦ w2,3 133 mod12 ◦ sort ◦ w1,2,3,4

35 diff ◦ w2,4 134 diff ◦ sort ◦ w1,2

36 diff ◦ w3,4 135 diff ◦ sort ◦ w1,3

37 diff ◦ w1,2,3 136 diff ◦ sort ◦ w1,4

Table 13.7 (cont.)

128

Abstraction Feature Abstraction Feature

38 diff ◦ w1,2,4 137 diff ◦ sort ◦ w2,3

39 diff ◦ w1,3,4 138 diff ◦ sort ◦ w2,4

40 diff ◦ w2,3,4 139 diff ◦ sort ◦ w3,4

41 diff ◦ w1,2,3,4 140 diff ◦ sort ◦ w1,2,3

42 sort ◦ w1,2 141 diff ◦ sort ◦ w1,2,4

43 sort ◦ w1,3 142 diff ◦ sort ◦ w1,3,4

44 sort ◦ w1,4 143 diff ◦ sort ◦ w2,3,4

45 sort ◦ w2,3 144 diff ◦ sort ◦ w1,2,3,4

46 sort ◦ w2,4 145 order ◦ sort ◦ w1,2

47 sort ◦ w3,4 146 order ◦ sort ◦ w1,3

48 sort ◦ w1,2,3 147 order ◦ sort ◦ w1,4

49 sort ◦ w1,2,4 148 order ◦ sort ◦ w2,3

50 sort ◦ w1,3,4 149 order ◦ sort ◦ w2,4

51 sort ◦ w2,3,4 150 order ◦ sort ◦ w3,4

52 sort ◦ w1,2,3,4 151 order ◦ sort ◦ w1,2,3

53 order ◦ w1,2 152 order ◦ sort ◦ w1,2,4

54 order ◦ w1,3 153 order ◦ sort ◦ w1,3,4

55 order ◦ w1,4 154 order ◦ sort ◦ w2,3,4

56 order ◦ w2,3 155 order ◦ sort ◦ w1,2,3,4

57 order ◦ w2,4 156 order ◦ diff ◦ mod12 ◦ w1,2,3

58 order ◦ w3,4 157 order ◦ diff ◦ mod12 ◦ w1,2,4

59 order ◦ w1,2,3 158 order ◦ diff ◦ mod12 ◦ w1,3,4

60 order ◦ w1,2,4 159 order ◦ diff ◦ mod12 ◦ w2,3,4

61 order ◦ w1,3,4 160 order ◦ diff ◦ mod12 ◦ w1,2,3,4

62 order ◦ w2,3,4 161 order ◦ sort ◦ mod12 ◦ w1,2

63 order ◦ w1,2,3,4 162 order ◦ sort ◦ mod12 ◦ w1,3

64 diff ◦ mod12 ◦ w1,2 163 order ◦ sort ◦ mod12 ◦ w1,4

65 diff ◦ mod12 ◦ w1,3 164 order ◦ sort ◦ mod12 ◦ w2,3

66 diff ◦ mod12 ◦ w1,4 165 order ◦ sort ◦ mod12 ◦ w2,4

67 diff ◦ mod12 ◦ w2,3 166 order ◦ sort ◦ mod12 ◦ w3,4

68 diff ◦ mod12 ◦ w2,4 167 order ◦ sort ◦ mod12 ◦ w1,2,3

69 diff ◦ mod12 ◦ w3,4 168 order ◦ sort ◦ mod12 ◦ w1,2,4

70 diff ◦ mod12 ◦ w1,2,3 169 order ◦ sort ◦ mod12 ◦ w1,3,4

71 diff ◦ mod12 ◦ w1,2,4 170 order ◦ sort ◦ mod12 ◦ w2,3,4

Table 13.7 (cont.)

129

Abstraction Feature Abstraction Feature

72 diff ◦ mod12 ◦ w1,3,4 171 order ◦ sort ◦ mod12 ◦ w1,2,3,4

73 diff ◦ mod12 ◦ w2,3,4 172 order ◦ mod12 ◦ diff ◦ w1,2,3

74 diff ◦ mod12 ◦ w1,2,3,4 173 order ◦ mod12 ◦ diff ◦ w1,2,4

75 sort ◦ mod12 ◦ w1,2 174 order ◦ mod12 ◦ diff ◦ w1,3,4

76 sort ◦ mod12 ◦ w1,3 175 order ◦ mod12 ◦ diff ◦ w2,3,4

77 sort ◦ mod12 ◦ w1,4 176 order ◦ mod12 ◦ diff ◦ w1,2,3,4

78 sort ◦ mod12 ◦ w2,3 177 order ◦ diff ◦ diff ◦ w1,2,3,4

79 sort ◦ mod12 ◦ w2,4 178 order ◦ sort ◦ diff ◦ w1,2,3

80 sort ◦ mod12 ◦ w3,4 179 order ◦ sort ◦ diff ◦ w1,2,4

81 sort ◦ mod12 ◦ w1,2,3 180 order ◦ sort ◦ diff ◦ w1,3,4

82 sort ◦ mod12 ◦ w1,2,4 181 order ◦ sort ◦ diff ◦ w2,3,4

83 sort ◦ mod12 ◦ w1,3,4 182 order ◦ sort ◦ diff ◦ w1,2,3,4

84 sort ◦ mod12 ◦ w2,3,4 183 order ◦ mod12 ◦ sort ◦ w1,2

85 sort ◦ mod12 ◦ w1,2,3,4 184 order ◦ mod12 ◦ sort ◦ w1,3

86 order ◦ mod12 ◦ w1,2 185 order ◦ mod12 ◦ sort ◦ w1,4

87 order ◦ mod12 ◦ w1,3 186 order ◦ mod12 ◦ sort ◦ w2,3

88 order ◦ mod12 ◦ w1,4 187 order ◦ mod12 ◦ sort ◦ w2,4

89 order ◦ mod12 ◦ w2,3 188 order ◦ mod12 ◦ sort ◦ w3,4

90 order ◦ mod12 ◦ w2,4 189 order ◦ mod12 ◦ sort ◦ w1,2,3

91 order ◦ mod12 ◦ w3,4 190 order ◦ mod12 ◦ sort ◦ w1,2,4

92 order ◦ mod12 ◦ w1,2,3 191 order ◦ mod12 ◦ sort ◦ w1,3,4

93 order ◦ mod12 ◦ w1,2,4 192 order ◦ mod12 ◦ sort ◦ w2,3,4

94 order ◦ mod12 ◦ w1,3,4 193 order ◦ mod12 ◦ sort ◦ w1,2,3,4

95 order ◦ mod12 ◦ w2,3,4 194 order ◦ diff ◦ sort ◦ w1,2,3

96 order ◦ mod12 ◦ w1,2,3,4 195 order ◦ diff ◦ sort ◦ w1,2,4

97 mod12 ◦ diff ◦ w1,2 196 order ◦ diff ◦ sort ◦ w1,3,4

98 mod12 ◦ diff ◦ w1,3 197 order ◦ diff ◦ sort ◦ w2,3,4

99 mod12 ◦ diff ◦ w1,4 198 order ◦ diff ◦ sort ◦ w1,2,3,4

Table 13.7: Abstraction IDs and their inducing features.

From a different source of music theory, we compare MUS-ROVER’s symmetry-induced

rules with a complete set of known music operations—the “OPTIC” operations: octave

shifts (O), permutations (P), transpositions (T), inversions (I), and cardinality changes (C)—

summarized in the book “A Geometry of Music” by the music theorist Dmitri Tymoczko [84].

130

The results are summarized in Table 13.8, which shows that MUS-ROVER covers the major

four types of operations OPTI. More generally, the isometry subgroup Σ′′music ≤ ISO(Zn)

introduced in the second example in Section 9.2.3 is indeed a music “closure” of OPTI.

Operation Music Description Subgroup

Octave shift “Move any note into a new octave.” 〈{t12e1 , t12e2 , t12e3 , t12e4}〉 3

Permutation “Reorder the object, changing which
voice is assigned to which note.”

〈{rP (1,2) , rP (2,3) , rP (3,4)}〉 3

Transposition “Transpose the object, moving all of
its notes in the same direction by the
same amount.”

〈{t1}〉 3

Inversion “Invert the object by turning it ‘up-
side down’.”

〈{r−I}〉 3

Cardinality Change “Add a new voice duplicating one of
the notes in the object.”

7

Table 13.8: Comparison of symmetry-induced abstractions from MUS-ROVER to the OP-
TIC operations in music. The music descriptions of the operations are quoted from the book
“A Geometry of Music” [84].

131

Chapter 14: MUS-NET: A Crowdsourced Home of Digital Sheet Music

Advances in data-driven study of music are enabling artificial intelligent support for music

activities in new ways. These include music concept learning and music education—the main

applicational focus of this thesis—as well as new music composition possibilities in general.

However, unlike computer vision where there are large-scale repositories of labeled data,

there is no centralized music repository that is both easy for a general crowd to contribute

to and has sufficiently expressive data for AI algorithms to use.

This chapter introduces MUS-NET, the twin project of MUS-ROVER. It is an online

crowdsourcing platform designed for creating and maintaining digital sheet music. In par-

ticular, this platform enables distributed on-site contributions on making sheet music, and

supports direct data access for our automatic music theorists as well as other music AIs in

general. The modular design of the platform factors expertise between people and automa-

tion, and embeds a self-improving work-correct-validate mechanism. The result is a scalable,

reliable music data repository built with amateur, anonymous workers. We demonstrate plat-

form efficacy through results from a music transcription contest with diverse participants;

and demonstrate the utility of the repository through AI applications in feature-based music

search, optical music recognition (OMR), and automatic music concept learning.

& 44 œ# œn œ#
And ev ery

.œ jœ œ# œ
task you un der

.˙b œ
take, be

.œ Jœ œ# œ
comes a piece of

.˙# Œ
cake.- - - -

A Spoonful of Sugar

©

Score

And ev-ery task you un der take, be comes a piece of cake.-- -

A Spoonful of Sugar (from Mary Poppins)

Figure 14.1: An excerpt from “A Spoonful of Sugar”.

14.1 MUSIC AI AND MUSIC BIG DATA

Artificial intelligence (AI) has increasingly been applied in music to automate composition,

analysis, and other human-centric behaviors traditionally considered creative rather than

scientific [109,124,127]. Further, music has progressed beyond its pencil-and-paper roots with

new composition tools (e.g. notation software), instrumentation (cf. experimental music),

and virtual teachers that are shaping modern music pedagogy [52,128]. To go even further,

there is need for a centralized music data repository that is scalable, reliable, and directly

accessible by AI algorithms (Figure 14.2: beneficiaries).

132

BUT MORE

NOT ONLY MUSICIANS

CONTRIBUTORS

MUSIC 21

…

MUS-ROVER

HARMONIA

BENEFICIARIES

HOME ADMINSTUDIO GALLERY

…

Figure 14.2: MUS-NET, a web-based platform for digital sheet music that admits distributed
on-site contributions from the general crowd (contributors), and provides direct plugins to
AI applications (beneficiaries).

However, contributing to such a music data repository is too difficult for typical microtask

crowd workers, which is essentially a hard human-centric or human-aided OMR [129, 130].

Existing music data repositories typically ask contributors to upload complete music files,

whose creation requires both musical knowledge and technological skill. This is in stark

contrast to visual data sets like ImageNet [131], created by crowd workers that only needed

to parse and label images, since untrained people are able to perform tasks about parts

and attributes [132, 133]. We aim to develop a crowdsourcing platform for music data

transcription to which anyone can contribute (Figure 14.2: contributors), and use this to

build an authoritative data repository.

We introduce MUS-NET: a web-based platform that collects, digitizes, and standardizes

sheet music in the public domain, gathering distributed help from the crowd and directly sup-

porting AI applications. Besides typical music metainformation (e.g. opus number, genre),

the resulting repository maintains a digitized symbolic representation—MusicXML—of the

core compositional ingredients (e.g. pitches and their durations) that capture a composer’s

decision at the level of music notes. Importantly, music data in this hierarchical XML format

is directly manipulable by machine, eliminating pre-processing steps such as optical music

recognition (OMR) for scores or signal processing for sound recordings, to extract the basic

frequency and time information of a music note. So, AIs can focus on composition per se.

While popular among leading notation software [134], MusicXML is hard to generate, typ-

ically involving a steep learning curve for a casual user to become efficient in using any of the

133

notation software [135]. This results in far less music in this format compared to large music

data repositories in general. For manual transcription, the need for reliability and the reality

of few professional contributors are in conflict. For automatic transcription, extant commer-

cial converters are of low quality, yet music is sensitive to note-level fluctuations (major and

minor chords could be just one semi-tone away) as opposed to largely harmless pixel-level

noise in images. As a result, it is not currently realistic to develop a fully automated platform

that produces error-free MusicXML. MUS-NET takes a middle path between pure human

labor and full automation through careful human-computer interaction (HCI) design.

On the other hand, new opportunities exist in making MusicXML via crowdsourcing.

First, MusicXML’s symbolic representation allows factorizing expertise required in making

a complete XML file. Crowd workers with no music knowledge can focus on only the visual

recognition task regarding localizing notes on music staves (without knowing what these

notes are), while more music-related tasks are handled by computational means automati-

cally. This would not be possible if we ask workers to transcribe audio which then would

require good aural skills from only qualified workers. Second, compared to visual domain,

crowdsourcing in music provides additional modalities to facilitate the transcription as well

as the validation and correction of sheet music. For instance, with both the visual (score)

and the acoustic (sound) inputs (in contrast to with only one type of input), both laymen

and professionals can work more efficiently.

The semi-automatic MUS-NET pipeline comprises modules in a unified architecture (Fig-

ure 14.3) that instantiates five principles (not all novel): AI-friendliness, crowd-friendliness,

scalability, reliability, and modularity, and further maximizes automation. The music tran-

scription interface—the central HCI module in the pipeline—is repeatedly used in a so-

called transcription-correction-validation loop that incorporates upgradable sub-modules

(e.g. auto-checking, auto-completion) to assist both non-experts and professionals in per-

forming high-quality work through distributed collaboration. So, the resulting repository

can be self-improved and validated on site, while at the same providing direct and reliable

access to external AI applications.

In the sequel, Section 14.2 initializes an overview of prevailing music data formats and

discusses our choice of data representation. Sections 14.3 and 14.4 present the principles that

lead to our design choices for the semi-automatic pipeline, the implementation of the MUS-

NET platform, and the resulting repository. We demonstrate in Section 14.5 the efficacy of

the platform by presenting results from a music transcription contest held among people with

diverse backgrounds; and demonstrate in Section 14.6 the utility of the repository through

AI applications in feature-based music search, OMR, and MUS-ROVER. We summarize four

main contributions of MUS-NET as follows:

134

DATA

COLLECTOR
DISTRIBUTOR

SOURCE

GENERATOR

MUSIC

TRANSCRIPTION

INTERFACE ASSEMBLER

keyword JSON PDF XMLPDF PDFPDF

XMLXML XML

XMLXML XML

FORMATTER

XMLXML

STUDIO GALLERY

PIPELINE

DATABASELEGEND

JSON

PDF XML

META-INFO

SCORE

COMPLETE PIECE

PIECE FRAGMENT

“distributed, on-site contribution”

OMR

Figure 14.3: The MUS-NET architecture: a modularized pipeline that enables distributed,
on-site contribution from the general crowd. It presents the complete workflow of making a
reliable MusicXML piece from searching to final formatting. Every piece is a collaborative
work among contributors (yellow), amateurs or professionals, and automated units (blue).

1. A growing database to store large music data sets as digital sheet music in the Mu-

sicXML format, a hierarchical markup language that is directly machine-readable.

2. Incremental contribution, wherein workers can not only work on a task from scratch but

also work on other workers’ work and make improvements and validations. This leads

to the work-correct-validate cycle embedded in the platform to assure data quality.

3. Domain-specific decomposition of tasks into microtasks to enable distributed contri-

bution and intelligent task-assignment strategies. The idea is to ensure amateurs are

not stuck by hard parts and experts are liberated from easy and repetitive ones.

4. Factorization of expertise between people (who focus on fine-grained vision tasks) and

automation (which focuses on musical and digital regulations) to lower the bar for the

general crowd to contribute.

14.2 OVERVIEW OF MUSIC DATA FORMATS

Music data shares many commonalities with its counterpart in the visual domain: images.

Music has note pitches (frequency) and durations (time), whereas images have pixel values

(visual frequency) and locations (space); both can have multiple channels for instruments

and colors. For digital representation, all of this information is discretized: evenly-spaced

135

pitches (C, C], D, . . .), integer-valued pixels (0,1, . . . , 255), proportional note durations (
,

♩, �, . . .), and 2D image grids. However, unlike an image that is naturally represented by a

matrix/tensor, there is no commonly agreed upon music representation: many competitive

formats are optimized for different music purposes.

We categorize common music formats into three types based on the level of discretization.

Audio waveforms—continuous in both frequency and time—are perhaps the most expres-

sive way to encode acoustic subjects and encompass the largest body of music (or sound in

general [136]). MIDI format is another widely used music representation that is discrete in

frequency—integer-valued MIDI numbers encoding the pitch (e.g. 69 to A440)—but contin-

uous in time (attack/release time). Lastly, the vast majority of written music is recorded as

music scores typically on staff paper: sheet music. Also known as the symbolic representation

of a piece, sheet music is discrete in both frequency and time (e.g. a quarter note C4).

We prefer the symbolic representation in studying composition, not only because his-

torically the large body of written music is engraved in this way, but more importantly it

separates compositional ingredients from performance-related information. While the former

literally records a composer’s ideas, the latter incorporates a performer’s personal interpre-

tation of the work. This is a major difference that distinguishes symbolic representation

from soundtrack recordings such as audios and MIDI which inseparably fuse composition

and performance. Our goal is to build a home for sheet music rather than for recordings

(e.g. MusicNet [137]).

14.3 PLATFORM PRINCIPLES

To tackle the challenges involved in supporting AI for music, MUS-NET is built on five

underlying principles that manifest in its modular design. These principles are the distin-

guishing features of the resulting platform and repository, which supports the four main

contributions of MUS-NET. In particular, AI-friendliness and scalability, reliability, crowd-

friendliness, modularity support the first, second, third, fourth contribution, respectively.

AI-Friendliness (data). To learn composition, we adopt symbolic representation for

music. To support an intelligent algorithm to do so, we need a digital representation that

is directly accessible by AI [138]. We adopt MusicXML, an XML-based file format that

digitally, symbolically represents music notation. Supported by a wide range of music appli-

cations (e.g. Finale, MuseScore), this open format has become the standard for exchanging

digital sheet music [139]: “Just as MP3 files have become synonymous with sharing recorded

music, MusicXML files have become the standard for sharing interactive sheet music.” Mu-

sicXML is not only popular among musicians and composers, but also among AI scientists

136

and engineers that investigate music intelligence [140,141]. This is because MusicXML facili-

tates direct use in algorithms and programs, saving the effort of low-level data pre-processing

and feature extraction (e.g. signal processing for audio) that is irrelevant to composition.

Scalability (repository). In AI, data-driven models typically require large-scale training

data sets; the more complex/expressive the model, the more data required [14]. Although

there is a huge amount of sheet music, most is archived as either paper manuscripts or

their image scans. Among a sample of around 12,000 music scores collected from IMSLP—a

virtual library of public domain music scores—only 1/3 are attached with engraving files

from notation software, and only part of these are MusicXML or compatible. The conflict

between the demand for large AI training data sets and the limited availability of AI-friendly

data sets is not solvable by today’s disappointing OMR techniques [142, 143] that poorly

convert or even fail to convert scans to MusicXML automatically. This sets scalability as a

requirement for MUS-NET as a digital sheet music repository.

Reliability (repository). Music data is very sensitive to note-level fluctuations. A single

small alteration of a note can dramatically change the music mode: the contrasting major

and minor chord could be only one semi-tone away! Data reliability must be much higher

in “symbolic” domains such as music than in “probabilistic” domains like images where

pixel-level variation is tolerable [144]. High reliability should not solely rely on worker’s

best efforts; MUS-NET embeds a work-validate-correct cycle that can self-validate and self-

improve the quality of music data.

Crowd-Friendliness (platform). There are many MusicXML databases: the official

website [139] provides a selected listing of sites with sheet music in MusicXML or compatible

formats. However, these are largely static databases accepting finalized MusicXML, whose

targeted contributors are professional digital sheet music makers. The bar to contribute

is high and hinders the growth of these static repositories. Contrarily, MUS-NET enables

on-site collaboration and the attendant forms of intrinsic motivation coming from autonomy,

mastery, and connection, in targeting a much wider contributor group (both amateurs and

professionals). It is not just a data repository, but rather a dynamic web application with

a crowdsourcing platform to build the repository. This online platform allows the general

crowd to participate in music transcription tasks in a distributed way, leveraging the crowd

to collaboratively accomplish and validate the work [145,146]. Further, MUS-NET is an inte-

grated platform including searching, processing, conversion, and transcription. So everyone

can come to the site and stay on the site to contribute without needing to install external

or third-party tools/plugins. In short, MUS-NET pursues a lower cost of contribution with

higher efficiency.

Modularity (platform). Besides collaboration among crowd workers, we also consider

137

collaboration between human labor and automation, manifested in a modular workflow de-

sign that seriously considers human-computer interaction. Modularization factors expertise

between human and computer, yielding fully-automated expert modules separated from the

ones that require simple human effort such as visual recognition [132, 147]. Two major

benefits are achieved.

First, domain knowledge is decomposed and squeezed into automated expert systems,

removing dependence on music and digital expertise from the general crowd. Rules in

music notation and theory are encoded as computer programs into these expert modules

or sub-modules—functioning as either independent units or assistive widgets—to assure

professionalism from unskilled workers. This divide-and-conquer approach is natural in the

modular design, since more and more parts from human labor can be modularized into

automated components as new technologies emerge.

Second, modularization supports easy plugs and un-plugs. Every module is a self-contained

system that can be easily detached from the MUS-NET pipeline, deployed in other ap-

plications, and plugged back in. On the one hand, an automatic module can be up-

graded/extended within its own development, yielding the upgrade/extension of the pipeline

in an easy, component-wise way. For instance, as OMR advances, one can simply swap in

a new OMR tool to yield improved starting points for the transcription task. On the other

hand, the non-automatic transcription module can be unplugged and deployed into educa-

tional apps or video games. Once plugged back in the pipeline, the transcription tasks are

already imperceptibly achieved as byproducts of these third-party music apps. This gives

new possibilities to incentivize people to contribute, e.g. through games.

14.4 PLATFORM IMPLEMENTATION

The MUS-NET architecture comprises two databases: Studio and Gallery for incomplete

and well-done pieces, respectively, as well as five self-contained modules integrated into a

complete pipeline: the data collector, the distributor and assembler, the source generator,

the main music transcription interface, and the formatter (Figure 14.3). Many extant music

repositories have the last module that does a final check and formatting of user-provided

digital scores (i.e. the tail of the above pipeline), but requires contributors to directly up-

load well-done MusicXML files (or compatibles) as input. MUS-NET, instead, provides full

support in the entire process of generating a MusicXML piece, from searching a score to

finalizing its format.

138

VIRTUAL SEARCH ENGINE WEB CRAWLER

DATA COLLECTOR

keyword JSON PDFhttp://

Figure 14.4: Data collector.

14.4.1 Databases: Studio and Gallery

The design of two databases is a distinguishing feature of the MUS-NET pipeline: the

added Studio database echoes the platform’s main theme of on-site contribution. The term

“Studio” indicates the database’s role as a workshop recording all work-in-progress piece

fragments and their status. A piece fragment refers to one page of a PDF score, which is

a unit task assigned to MUS-NET contributors. Different pages of the same piece may be

assigned to different contributors, and one contributor can take tasks that do not necessar-

ily combine into a single piece. This distributed data structure supports distributed task

assignments, which is key to crowd contribution and will be detailed in the distributor mod-

ule. Contrarily, the term “Gallery” indicates the database’s role as a repository of well-done

pieces that may be used by beneficiaries including AI applications.

14.4.2 Data Collector (Automatic)

The MUS-NET pipeline starts with a data collector module that provides on-site search

and fetch for a piece’s metainformation and its original (scanned) PDF score. This is a fully

automated module that comprises a virtual search engine and a web crawler as two main

sub-modules (Figure 14.4).

The search engine takes user-specified keywords of a piece (e.g. work title, composer) as

input and returns a link that contains the desired information. Instead of requiring users to

temporarily leave the site and search through engines like Google or Bing, the MUS-NET

search engine does everything in the backend and keeps the user on site. Automating this

process eliminates the technological expertise of using “advanced search” capabilities. For

instance, the virtual search engine fires up the search request via Google site:search that

narrows down the search domain to a set of pre-specified, authoritative music sites (e.g.

IMSLP)—not the entire internet—to assure search quality.

The subsequent web crawler takes a piece’s link as input, and scrapes the webpage for

metainformation such as title, composer, and genre, as well as the complete score. The

139

PDF

PDF

PDF

PDF

PDF

PDF

PDF

PDF

XML

XML

XML

XML

XML

XML

XML

XML

Distribute AssembleTask Assignment

Figure 14.5: Distributed task assignment: a PDF score is decomposed into pages (piece
fragments) that are distributed as unit tasks to multiple contributors and assembled into
one upon completion. A unit task can be taken by different contributors (cross validation);
a contributor can take unit tasks from different pieces (partial contribution).

crawler returns a data package including a JSON and a PDF file for metainformation and

score respectively. This initial data package (with JSON and PDF) serves as the seed for

each piece, from which more advanced operations will be performed in the following parts

of the pipeline. Note that a user has the option to directly provide a specific link to the web

crawler, if she believes her search expertise surpasses the search engine.

14.4.3 Distributor and Assembler (Automatic)

The distributor and assembler pair, together with the distributed data structure adopted

by the Studio database, collectively achieve distributed assignment of tasks to the crowd

(Figure 14.5). This distributed design allows smart strategies and models concerning a

task’s difficulty and/or a contributor’s reliability and can improve the overall efficiency of

the entire pipeline. The distributor does two things when communicating with Studio. First,

to construct a pool of tasks, the distributor decomposes a complete PDF score page-wise,

creates a unit task indexed by the piece and page number, and deposits the unit task into

Studio. Second, to make a task assignment, the distributor picks a unit task from Studio

per a contributor’s request, and assigns it to the contributor by tagging her user ID to the

task in Studio. As the counterpart, the assembler regularly checks the status of every piece

in Studio, assembles the piece into a single MusicXML file when all of its XML fragments

are ready, and signals that the complete piece is ready for final check.

140

14.4.4 Source Generator (Automatic)

The source generator is an important add-on module that provides a starting point from

which a contributor can simplify the transcription task by correction. The pipeline would

still work in the absence of generated sources, requiring a contributor to start all tasks

from scratch. This module incorporates OMR tools that convert an input PDF score to

MusicXML. There are off-the-shelf software packages such as PDFtoMusic Pro, SharpEye,

PhotoScore, SmartScore, capella-scan, and Audiveris, many of which report a high conver-

sion accuracy. However, after trying these products, we discovered that the high accuracies

were mostly achieved on PDFs that were exported from notation software (e.g. Finale, Mus-

eScore), which is a little silly: if one has to go through the two-step process of generating a

MusicXML file from a PDF exported from a notation software, why not just directly export

to MusicXML from the software? Moreover, many of the aforementioned OMR tools are

stand-alone software that are difficult to automate and integrate into an existing platform.

In light of the performance on scanned PDFs and the ability to integrate, Audiveris is the

only OMR tool currently integrated into the source generator. Audiveris is an open source

PDF-to-MusicXML converter. For simple scores, it works reasonably well; yet for other

cases, it performs poorly or even fails completely.

14.4.5 Music Transcription Interface (Semi-Automatic)

The music transcription interface is the central module in the pipeline that assists a con-

tributor in the main task of transcribing a (scanned) PDF score into its MusicXML format.

It is optimized for smooth human-and-computer collaboration requiring less, simpler, but

better work from human. The interface allows crowd workers to perform well through a

minimal number of clicks/drops and keyboard strokes.

Interface Layout. The main interface is divided into several areas (Figure 14.6). Basic

information of the transcription task, e.g. title, composer, and page number of a piece, is

displayed at the top of the page; the main tool palette, including music notation cells (right)

and control buttons (left), is placed at the bottom. In the middle, two sub-windows are laid

side by side: the original PDF to the left, and the editing window to the right. The design

of the layout is based on enhancing user experience, respecting principles like Fitts’s Law.

Lightweight Design. Excluding the PDF window (middle left), the rest of the interface

resembles the typical workbench of a music notation editor. However, there are two major

differences. First, MUS-NET’s notation editor is an integrated sub-module of the entire

pipeline. Under the main theme of on-site contribution, this is in stark contrast with many

141

BACK HOME GALLERY ALEX

Nocturnes (Op. 9)Page 7 Chopin, Frederic

Control Buttons Music Notation Cells

Editing WindowPDF Window

Metainformation

Figure 14.6: Music transcription interface: the main workbench for on-site task completion.
The transcription task involves replicating one page of sheet music from its original PDF
scan (middle left) into the editing window (middle right) through the provided tool palette
(bottom).

other online repositories that requires contributors to either post-install third-party plugins

or resort to a notation software offline and come back later to directly submit the generated

MusicXML files. Second, MUS-NET’s notation editor is designed to be lightweight, thus, a

subset of many off-the-shelf notation software in terms of functionality. This is both a virtue

and a limitation revealing the tradeoff between expressiveness and ease of use. Considering

the steep learning curves and the musician-centric user base of prevailing notation software,

we traded expressiveness for ease in our lightweight editor. In addition, targeting the goal of

supporting AI to learn the core compositional ingredients, we further simplified the bottom

tool palette by excluding notations such as dynamics, tempi, instrumentations.

Transcription-Correction-Validation. The same interface serves three different pur-

poses: transcription, correction, and validation that constitute the self-improving cycle for

every piece fragment in the Studio database. Accordingly, we categorize MUS-NET contrib-

utors into three groups: transcriber, corrector, and validator, and their interfaces only differ

slightly (Figure 14.7). The transcriber view and the corrector view are most similar, where

variation occurs only in the loading phase of the editing window (middle right). When a

transcriber loads the editing window, she will first be prompted with a loading board con-

taining both empty staff paper and many sources from which the transcriber can choose

her favorite starting point (Figure 14.7a). When a corrector loads the editing window, the

142

BLANK

SRC1

SRC2

SRC3

Lv1 Lv2 Lv3 TRANSCR1

TRANSCR2

TRANSCR3

TRANSCR1

TRANSCR2

TRANSCR3

CORRECT1

CORRECT2

(a) Transcriber (b) Corrector (c) Validator

Figure 14.7: Loading boards (of the editing window) in transcription, correction, and vali-
dation modes.

content of the loading board is replaced with existing works submitted by the transcribers

(Figure 14.7b). The corrector has the option to select the work that appears most reliable,

and start improving from there. A validator’s loading board is similar to a corrector’s, but

contains works submitted from both transcribers and correctors (Figure 14.7c). In addition,

since a validator’s main task is to grade the works but not to edit them, the music notation

cells (bottom right) are all disabled, leaving a different set of control buttons (bottom left)

for validation. A validator will make a decision in the end to claim if a piece fragment is

error-free, thus, ready to finalize.

14.4.6 Formatter (Automatic)

The formatter is the last module in the pipeline, converting input MusicXML to another

MusicXML that is both clean and standardized under our proposed criteria. There are many

“legal” ways of writing a MusicXML file to record the same compositional ingredients. For

instance, some MusicXMLs contain peripheral information on a score’s layout, while some

others use sloppy synonyms to encode music elements. To avert this many-to-one relationship

between MusicXML files and the actual piece, we propose criteria defining essential elements

and standards for formatting MusicXML, which are manifest in the two main sub-modules

of the formatter: MusicXML cleaner and standardizer. After the assembler collects and

puts together all the ready fragments into a complete piece in Studio, it sends the piece’s

MusicXML file to the cleaner. The cleaner inspects the input MusicXML, and removes all

non-essential elements including peripheral information as well as some performance-related

information. The standardizer then takes this cleaned version, and returns a unique way

of writing the essential elements. After cleaning and standardizing, the final MusicXML is

143

moved from Studio to Gallery, becoming directly accessible to external AI applications.

Note that the automatic formatter can be a stand-alone module that formats MusicXMLs

whenever needed. For instance, it can be used to format OMR outputs in the source genera-

tor. In another use case, the pipeline also provides shortcut entry that allows a professional

contributor to directly upload a MusicXML file of a complete piece, just like what many

other online data repositories do. The MusicXML file uploaded in this way is initially de-

posited to Studio and automatically marked as ready, then it is directly sent to the formatter

for finalization.

14.5 MUSIC TRANSCRIPTION CONTEST

To evaluate the MUS-NET platform, especially the main transcription interface (the only

semi-automatic module), we held an online contest with participants recruited from a general

crowd of people. The contest asked participants to take transcription tasks from the platform

and complete them on site. The participants competed with each other for more and better

transcriptions during a given time constraint.

14.5.1 Contest Setup

The online contest lasted for two continuous hours, but could be taken any time at one’s

convenience. Opening instructions informed the participant of the goal and procedure of the

contest, which could be read before and reviewed during the contest. The participant began

by clicking the start button located at the end of the instruction page, which took her to

the profile page and started the timer.

During the contest, every participant was expected to stay on site and accomplish as

many transcription tasks as possible. There are two webpages—profile page and music

transcription interface—that a participant could land on and switch between. The profile

page (Figure 14.8) is the main portal for taking new tasks. It also displays the identity

of the participant and her status in the contest. A participant’s status lists a pool of

pending tasks, a separate pool of submitted tasks, and another pool of skipped tasks. A

pending task is either a new or an incomplete transcription that is saved for later changes; a

submitted task is the final version for grading; a skipped task typically indicates challenges

due to a participant’s knowledge or the platform’s capacity, which is (strategically) skipped

to save time. While both submitted and skipped tasks do not allow further editing, one

can start/continue working on a pending task, which takes the participant to the music

transcription interface.

144

Alex

Pending Submitted Skipped

Add Task

Work-No Title Composer Genre Period Key Page-No

Op. 72 Fidel… Beeth… Opera… Roman… 8
RC. 38… Fanta… Coper… Fanta… Renais… 1

BACK HOME GALLERY ALEX

Figure 14.8: Contestant’s profile page: the main portal for getting new tasks and checking
status.

The transcription interface (Figure 14.6) is the main site for working on a task. It is

equipped with a small tutorial widget located on the navigation bar. The tutorial is a brief

introduction of the tools (and their shortcuts if any) on the interface but no music theory

or ways/strategies for task completion. It is not required and the participant may or may

not spend time on reading the tutorial or part of it; most of the provided functionality can

also be explored by simply playing around with the tools. The participant has full freedom

in managing her time to save, to submit, and to skip a task, as well as to go back to the

profile page for more tasks.

The contest ends when time is up. All participants are invited to complete a post-contest

survey to collect demographics as well as comments based on their experience. After the

contest, participants can log into MUS-NET again to review what they did in the contest,

but no changes can be made.

14.5.2 Evaluation Metric

A participant’s performance in the contest is evaluated by the speed and accuracy of her

transcription. The evaluation metric is made clear to the participant before the contest.

We designate a set of basic music elements including notes, accidentals, dots, ties, clefs, key

signatures, time signatures, and the like, each of which is worth one point. We also give

bonus points for correct music notations that require inference based on music context. For

instance, recognizing an incomplete measure (anacrusis) or figuring out the implicit time

signature in the middle of a piece is worth more than one point. An expert grader sums

145

Education number

In college 15
Bachelor 15
Master 11
PhD 2
Others 4
Prefer not to say 3

Profession number

Engineering 18
Arts 11
Business 8
Science 5
Humanities 4
Others 4

Table 14.1: Contestants’ eduction levels and professions.

51 2 3

of submission

#
 o

f p
ar

tic
ip

an
ts

<1 1-2 2-3 3-4 >4 (x100)

score

#
 o

f p
ar

tic
ip

an
ts27

13
8

2

12 10 10 108

Figure 14.9: Contestants’ overall performances measured by the quantity (left) and quality
(right) of their contributions.

points to obtain the participant’s final score, which is a number in the range of [0,∞).

14.5.3 Results

We report results from 50 contestants (excluding 27 out of 77 total participants due to

lack of survey) with diverse education and profession. The balanced distributions indicate

that this group of participants is a good representative of the general crowd (Table 14.1).

We analyze participant performance based on both the quantity and quality of their

contributions. The frequency distributions of the overall submission rate and performance

score are given in Figure 14.9. On average, participants submitted 1.7 tasks and achieved

scores of 262.3.

Results are encouraging for a couple of reasons. First, we see the platform is intuitive to

learn and easy to contribute to. Within the two-hour constraint, every participant had to

independently explore the platform and figure out her own way/strategy to compete. We

purposefully did not provide either training or thorough documentation, having an interface

that is intuitive and self-explanatory to participants. The provided tutorial only included a

list of tools and shortcuts, whose role was to provide information but not detailed instruc-

146

tion. Thus, a participant’s performance reflects a combination of her learning ability as well

as improved proficiency within the time limit. The fact that the majority of the participants

completed a decent amount of work shows that the learning curve for MUS-NET’s contrib-

utor is much less steep than that for many extant notation programs (which provide pages

of documentation and may require years of training to become proficient).

Second, we see no zero contribution. Everyone can make a contribution no matter big

or small. We had participants that submitted many incomplete tasks (e.g. one submitted

5 tasks and a high score of 855) and participants that submitted only a few but nearly

complete tasks (e.g. another submitted only 2 tasks but also a high score of 600). Since

contributors are eventually collaboratively achieving better and better tasks possibly based

on other’s work, accepting partial contribution allows more contributors to be involved. This

is in stark contrast to many extant digital sheet music repositories, where the submission

has to be complete, a 0/1 contribution in a non-collaborative process.

Further, given the importance of partial contribution, we demonstrated the efficiency of

incremental contribution. An incremental contribution refers to a task that is performed

from some existing work rather than from scratch. In the contest, existing work refers to

sources from the source generator, yet in general, the sources can also be other contributors’

work. Among all submissions with timestamps (timestamps were dropped if completion time

is less than 3 seconds), 20% are completed from provided sources with average score 179.3

and average completion time 12.5 min; the remaining 80% are completed from scratch with

average score 148.1 and average completion time 42.3 min. This shows that incremental

contribution is important in the self-improving cycle of work-correct-validate, since it not

only makes contribution easy, but also yields increased accuracy.

Lastly, we report that the average grading/validation time is 8.2 min per task, which is less

than transcription and correction time. This emphasizes the point of less work but increased

reliability that is manifest in the self-improving mechanism of work-correct-validate.

14.6 AI APPLICATIONS IN ACTION

To evaluate the utility of the MUS-NET repository, we introduce several existing and

ongoing projects that build AI applications directly supported by the Gallery database. The

applications per se are not the contributions of the thesis, but are used to exemplify use

cases of the MUS-NET repository.

147

MUS-NET GALLERY USER

fragment
localization

similarity
calculation

melodic
query

MELODY SHAPE

SEARCH ENGINE

Figure 14.10: Configuration of melody-based search engine.

14.6.1 Compositional-Feature-Based Music Search

Traditional music search engines are text-based, relying on music metainformation as

keyword inputs. Now with digital sheet music, we can perform content-based retrieval with

multimedia inputs [148]. The Gallery database enables plugging in advanced search engines

that rank based directly on features from music compositions. We use MelodyShape [149]

as an example for melody-based music search, and turn this algorithm into a search engine

(Figure 14.10). The input of the search engine is a query melody in MusicXML format.

The user can either upload the XML file directly, or use MUS-NET’s online interface to

drop notes in the staff with the corresponding MusicXML automatically generated in the

backend. Given the query melody, the search engine looks for melody fragments of equal

length (in terms of number of notes) from all parts of all pieces in the Gallery database. It

computes similarity scores of the query against all these fragments, and returns a ranking.

The ranking not only gives the top-n similar melodies in the database, but also their exact

locations.

14.6.2 OMR Training

It is clear from contest results that a good source can greatly increase both the speed and

accuracy of the general crowd’s contributions, which further grows the Gallery database.

However, this is also reciprocal: a large-scale, reliable MusicXML database can facilitate

training better OMR tools by providing ground truth and benchmarks for evaluation. There

are known data sets that are prepared specifically for training OMR algorithms [142, 143],

but they are largely one-directional rather than achieving a harmonious cycle of mutual

benefit as in the MUS-NET platform, where a better data set can help improve OMR, and

148

MUS-NET GALLERY USER

MUS-ROVER KERNEL

MUS-ROVER APP

target
corpus

computation

learning
interaction

Rule 1/3

Figure 14.11: Configuration of music education application.

better OMR can help improve the data set.

14.6.3 Automatic Music Rule Learning

As with content-based music search, we can also plug MUS-NET into other AI appli-

cations, such as for music education. Recall that in the twin project, MUS-ROVER acts

as an automatic music theorist and pedagogue, teaching people step-by-step how to write

similar musical works that imitate a target corpus (Chapter 13). There, we built an in-

telligent music educational bot that offers human-interpretable rules on musc composition,

which was further wrapped up as a web application that delivers live e-learning experiences

in individual/group studies. Unlike many existing e-learning platforms such as Harmonia

or Coursera, this app is completely data-driven and personalized, without requiring hard-

coded domain knowledge a priori. The MUS-ROVER web application directly plugs into

MUS-NET, communicates with the MUS-ROVER kernel in the backend, and delivers a

human-friendly learning interface in the frontend (Figure 14.11). To compile a syllabus for

learning , a user selects music pieces from the Gallery database to form the target corpus

that she wants to imitate. The app then delivers compositional rules on the fly, revealing the

common compositional strategies among the target pieces, customized based on the user’s

music background and instant progress.

149

Chapter 15: Coda

Variants of ACL and ILL formalized in this thesis are also found in some other work on

knowledge discovery in topic domains other than music, e.g. science. One example is Schmidt

and Lipson’s work on “Distilling Free-Form Natural Law from Experimental Data” [76].

Their learning model can emerge from our self-learning loop as a special case. Instead of

probabilistic rules, their rules take the form of mathematical equations that aim to capture

important conservations laws. In their specific learning scenario, the input is experimental

data from physical systems such as an air-track oscillator and a double pendulum. The out-

put is physical laws (in the form of mathematical equations) of geometric and momentum

conservations such as Hamiltonian, Lagrangian, and equation of motion. The teacher (i.e.

the discriminative component of the self-learning loop) differentiates partial-derivative-pairs

between numerical ones from the data and analytical ones from the student. On the other

hand, the student (i.e. the generative component of the self-learning loop) generates can-

didate functions from which analytical partial derivatives can be derived for the teacher to

compare. The two components corporate with each other to explore the existence of physical

laws from the experimental data.

Beyond applications on knowledge discovery, ACL and ILL are also helpful in some other

task-specific problems. For instance, localized theories for engineering systems can enhance

AI safety in physical engineering systems: if one knows the theory of a system, (s)he can

ensure something crazy won’t happen [150]. Classic example is autonomous vehicles, where

these complicated systems are hard to theorize about from basic mechanics or dynamics.

The same is true for manufacturing systems. Further, ACL is strongly connected to data

compression via the same idea of abstracting away invariants, a step that can effectively

make big data small. Accordingly, ACL can make supervised learning require much less

data by exploiting identified invariances, effectively capturing the small essences of big data.

150

References

[1] H. M. Wellman and S. A. Gelman, “Cognitive development: Foundational theories of
core domains,” Annu. Rev. Psychol., vol. 43, no. 1, pp. 337–375, 1992.

[2] T. R. Zentall, E. A. Wasserman, O. F. Lazareva, R. K. Thompson, and M. J. Rat-
termann, “Concept learning in animals,” Comp. Cogn. Behav. Rev., vol. 3, pp. 13–45,
2008.

[3] J. M. Mandler, “Perceptual and conceptual processes in infancy,” J. Cogn. Develop.,
vol. 1, no. 1, pp. 3–36, 2000.

[4] E. Versace, A. Martinho-Truswell, A. Kacelnik, and G. Vallortigara, “Priors in animal
and artificial intelligence: Where does learning begin?” Trends Cogn. Sci., 2018.

[5] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman, “Building machines
that learn and think like people,” Behav. Brain Sci., vol. 40, 2017.

[6] G. F. Marcus, The Birth of the Mind: How a Tiny Number of Genes Creates the
Complexities of Human Thought. Basic Civitas Books, 2004.

[7] S. Pinker, The Language Instinct: How the Mind Creates Language. Penguin UK,
2003.

[8] N. Chomsky, Aspects of the Theory of Syntax. MIT Press, 2014, vol. 11.

[9] R. L. Gómez and L. Lakusta, “A first step in form-based category abstraction by
12-month-old infants,” Developmental Sci., vol. 7, no. 5, pp. 567–580, 2004.

[10] I. Biederman, “Recognition-by-components: a theory of human image understanding,”
Psychol. Rev., vol. 94, no. 2, p. 115, 1987.

[11] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new
perspectives,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798–1828,
2013.

[12] T. Yu, T. Jan, S. Simoff, and J. Debenham, “Incorporating prior domain knowledge
into inductive machine learning,” University of Technology, Sydney, 2007.

[13] D. Ferranti, D. Krane, and D. Craft, “The value of prior knowledge in machine learning
of complex network systems,” Bioinformatics, vol. 33, no. 22, pp. 3610–3618, 2017.

[14] P. Domingos, “A few useful things to know about machine learning,” Commun. ACM,
vol. 55, no. 10, pp. 78–87, 2012.

[15] J.-D. Zucker, “A grounded theory of abstraction in artificial intelligence,” Phil. Trans.
R. Soc. B, vol. 358, no. 1435, pp. 1293–1309, 2003.

151

[16] O. Maimon and L. Rokach, “Introduction to knowledge discovery and data mining,”
in Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds.
Springer, 2009, pp. 1–15.

[17] C. M. Bishop, Pattern Recognition and Machine Learning. Springer-Verlag New York,
2006.

[18] U. Grenander and M. I. Miller, Pattern Theory: From Representation to Inference.
Oxford University Press, 2007.

[19] U. Grenander and M. I. Miller, “Representations of knowledge in complex systems,”
J. R. Stat. Soc. Ser. B. Methodol., vol. 56, no. 4, pp. 549–603, 1994.

[20] G. Marcus, “Innateness, AlphaZero, and artificial intelligence,” arXiv:1801.05667
[cs.AI], 2018.

[21] R. Iten, T. Metger, H. Wilming, L. Del Rio, and R. Renner, “Discovering physical
concepts with neural networks,” arXiv:1807.10300 [quant-ph], 2018.

[22] B. Clark, G. Stein-O’Brien, F. Shiau, G. Cannon, E. Davis, T. Sherman, F. Rajaii,
R. James-Esposito, R. Gronostajski, E. Fertig, L. Goff, and S. Blackshaw, “Compre-
hensive analysis of retinal development at single cell resolution identifies NFI factors
as essential for mitotic exit and specification of late-born cells,” bioRxiv, p. 378950,
2018.

[23] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable machine
learning,” arXiv:1702.08608 [stat.ML], 2017.

[24] I. Lage, E. Chen, J. He, M. Narayanan, B. Kim, S. Gershman, and F. Doshi-Velez, “An
evaluation of the human-interpretability of explanation,” arXiv:1902.00006 [cs.LG],
2019.

[25] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal, “Explaining
explanations: An overview of interpretability of machine learning,” in 2018 IEEE 5th
Int. Conf. on Data Sci. and Adv. Anal. (DSAA), 2018, pp. 80–89.

[26] A. Ram and E. K. Jones, Foundations of Foundations of Artificial Intelligence. De-
partment of Computer Science, Victoria University of Wellington, 1994.

[27] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural
Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2014, pp. 2672–2680.

[28] M. Hutson, “Basic instincts,” Science, vol. 360, no. 6391, pp. 845–847, 2018.

[29] K. R. Livingston, Rationality and the Psychology of Abstraction. Institute for Objec-
tivist Studies, 1998.

152

[30] C. Shannon, “The lattice theory of information,” Trans. IRE Prof. Group Inf. Theory,
vol. 1, no. 1, pp. 105–107, 1953.

[31] K. Haase, “Discovery systems: From AM to CYRANO,” MIT AI Lab Working Paper
293, 1987.

[32] S. G. Laitz, The Complete Musician: an Integrated Approach to Tonal Theory, Anal-
ysis, and Listening. Oxford University Press, 2016.

[33] J. J. Fux, Gradus Ad Parnasum. WW Norton & Company, 1965.

[34] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order. Cambridge
University Press, 2002.

[35] J. B. Fraleigh, A First Course in Abstract Algebra. Pearson Education India, 2003.

[36] D. S. Dummit and R. M. Foote, Abstract Algebra. Wiley Hoboken, 2004.

[37] F. Goodman, Algebra: Abstract and Concrete. SemiSimple Press, 2014.

[38] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical
Journal, vol. 27, no. 3, pp. 379–423, 1948.

[39] H. Li and E. K. Chong, “On a connection between information and group lattices,”
Entropy, vol. 13, no. 3, pp. 683–708, 2011.

[40] T. H. L. Chan and R. Yeung, “On a relation between information inequalities and
group theory,” IEEE Trans. Inf. Theory, vol. 48, no. 7, pp. 1992–1995, 2002.

[41] R. W. Yeung, Information Theory and Network Coding. Springer Science & Business
Media, 2008.

[42] J. Soni and R. Goodman, A Mind at Play: How Claude Shannon Invented the Infor-
mation Age. Simon and Schuster, 2017.

[43] “Mary Elizabeth Moore ‘Betty’ Shannon,” The Boston Globe, 2017.

[44] D. A. Grier, When Computers Were Human. Princeton University Press, 2013.

[45] M. L. Shetterly, Hidden Figures: The American Dream and the Untold Story of the
Black Women Mathematicians Who Helped Win the Space Race. William Morrow
and Company, 2016.

[46] J. R. Pierce and M. E. Shannon, “Composing music by a stochastic process,” Bell
Telephone Laboratories Technical Memorandum MM-49-150-29, 1949.

[47] J. R. Pierce, An Introduction to Information Theory: Symbols, Signals and Noise.
Dover Books, 1980.

153

[48] J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon, “A proposal for the
Dartmouth summer research project on artificial intelligence,” 1955.

[49] L. Hiller and L. M. Isaacson, Illiac Suite, for String Quartet. New Music Edition,
1957.

[50] H. Yu, L. R. Varshney, G. E. Garnett, and R. Kumar, “MUS-ROVER: A self-learning
system for musical compositional rules,” in Proc. 4th Int. Workshop Music. Metacre-
ation (MUME 2016), 2016.

[51] H. Yu, L. R. Varshney, G. E. Garnett, and R. Kumar, “Learning interpretable musical
compositional rules and traces,” in Proc. 2016 ICML Workshop Hum. Interpret. Mach.
Learn. (WHI 2016), 2016.

[52] H. Yu and L. R. Varshney, “Towards deep interpretability (MUS-ROVER II): Learning
hierarchical representations of tonal music,” in Proc. 5th Int. Conf. Learn. Represent.
(ICLR 2017), 2017.

[53] H. Yu, T. Li, and L. R. Varshney, “Probabilistic rule realization and selection,” in
Advances in Neural Information Processing Systems 30, I. Guyon, U. von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds. Curran
Associates, Inc., 2017, pp. 1562–1572.

[54] J. R. Weinberg, Abstraction, Relation, and Induction: Three Essays in the History of
Thought. University of Wisconsin Press, 1968.

[55] F. Giunchiglia and T. Walsh, “A theory of abstraction,” Artif. Intell., vol. 57, no. 2-3,
pp. 323–389, 1992.

[56] L. Saitta and J.-D. Zucker, “Semantic abstraction for concept representation and learn-
ing,” in Proc. Symp. Abstr., Reformul. and Approx., 1998, pp. 103–120.

[57] L. Saitta and J.-D. Zucker, Abstraction in Artificial Intelligence and Complex Systems.
Springer, 2013.

[58] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp.
436–444, 2015.

[59] N. Bredeche, Z. Shi, and J.-D. Zucker, “Perceptual learning and abstraction in machine
learning: an application to autonomous robotics,” IEEE Trans. Syst., Man, Cybern.
C, vol. 36, no. 2, pp. 172–181, 2006.

[60] A. Bundy, F. Giunchiglia, and T. Walsh, Building Abstractions. Department of Ar-
tificial Intelligence, University of Edinburgh, 1990.

[61] Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach. Learn., vol. 2,
no. 1, pp. 1–127, 2009.

154

[62] H. Bélai and A. Jaoua, “Abstraction of objects by conceptual clustering,” Inf. Sci.,
vol. 109, no. 1-4, pp. 79–94, 1998.

[63] M. Sheikhalishahi, M. Mejri, and N. Tawbi, “On the abstraction of a categorical clus-
tering algorithm,” in Proc. 12th Int. Conf. Mach. Learn. Data Min. (MLDM 2016),
2016, pp. 659–675.

[64] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. John Wiley & Sons,
2012.

[65] R. S. Michalski and R. E. Stepp, “Learning from observation: Conceptual clustering,”
Mach. Learn., vol. 1, pp. 331–363, 1983.

[66] D. H. Fisher, “Knowledge acquisition via incremental conceptual clustering,” Mach.
Learn., vol. 2, no. 2, pp. 139–172, 1987.

[67] R. K. Raman and L. R. Varshney, “Universal clustering,” in Information-Theoretic
Methods in Data Science, Y. Eldar and M. Rodrigues, Eds. Cambridge University
Press, 2019.

[68] W. M. Rand, “Objective criteria for the evaluation of clustering methods,” J. Am.
Stat. Assoc., vol. 66, no. 336, pp. 846–850, 1971.

[69] U. Von Luxburg, R. C. Williamson, and I. Guyon, “Clustering: Science or art?” in
Proc. 2012 ICML Workshop Unsuperv. Transf. Learn. (UTL 2012), 2012, pp. 65–79.

[70] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Prentice-Hall, Inc.,
1988.

[71] L. Rokach and O. Maimon, “Clustering methods,” in Data Mining and Knowledge
Discovery Handbook, L. Rokach and O. Maimon, Eds. Springer, 2005, pp. 321–352.

[72] R. M. Cormack, “A review of classification,” J. R. Stat. Soc. Ser. A. Gen., vol. 134,
no. 3, pp. 321–367, 1971.

[73] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley & Sons, 2009, vol. 344.

[74] S. Y. Oudot, Persistence Theory: From Quiver Representations to Data Analysis.
American Mathematical Society, 2015, vol. 209.

[75] C. N. Macrae and G. V. Bodenhausen, “Social cognition: Thinking categorically about
others,” Annu. Rev. Psychol., vol. 51, no. 1, pp. 93–120, 2000.

[76] M. Schmidt and H. Lipson, “Distilling free-form natural laws from experimental data,”
Science, vol. 324, no. 5923, pp. 81–85, 2009.

[77] The GAP Group, “GAP – Groups, Algorithms, and Programming, Version 4.9.1,”
https://www.gap-system.org, 2018.

155

https://www.gap-system.org

[78] L. Hubert and P. Arabie, “Comparing partitions,” J. Classif., vol. 2, no. 1, pp. 193–218,
1985.

[79] L. Bieberbach, “Über die bewegungsgruppen der euklidischen räume,” Math. Ann.,
vol. 70, no. 3, pp. 297–336, 1911.

[80] L. S. Charlap, Bieberbach Groups and Flat Manifolds. Springer Science & Business
Media, 2012.

[81] B. Eick and B. Souvignier, “Algorithms for crystallographic groups,” Int. J. Quantum
Chem., vol. 106, no. 1, pp. 316–343, 2006.

[82] H. Zassenhaus, “Über einen algorithmus zur bestimmung der raumgruppen,” Comm.
Math. Helv., vol. 21, no. 1, pp. 117–141, 1948.

[83] V. Felsch and F. Gähler, “CrystCat-a library of crystallographic groups,” A Refereed
Gap, vol. 4, 2000.

[84] D. Tymoczko, A Geometry of Music: Harmony and Counterpoint in the Extended
Common Practice. Oxford University Press, 2010.

[85] D. Lewin, Generalized Musical Intervals and Transformations. Oxford University
Press, 2010.

[86] K. Conrad, “Generating sets,” http://www.math.uconn.edu/∼kconrad/blurbs/
grouptheory/genset.pdf, 2016.

[87] R. VanRullen, B. Zoefel, and B. Ilhan, “On the cyclic nature of perception in vision
versus audition,” Phil. Trans. R. Soc. B, vol. 369, no. 1641, p. 20130214, 2014.

[88] R. Von Der Heydt, E. Peterhans, and M. R. Dürsteler, “Periodic-pattern-selective cells
in monkey visual cortex,” J. Neurosci., vol. 12, no. 4, pp. 1416–1434, 1992.

[89] A. D. Pape, K. J. Kurtz, and H. Sayama, “Complexity measures and concept learning,”
J. Math. Psychol., vol. 64, pp. 66–75, 2015.

[90] L. R. Varshney, “Mathematical limit theorems for computational creativity,” IBM
Journal of Research and Development, 2019.

[91] T. M. Cover and J. A. Thomas, Elements of Information Theory. John Wiley & Sons,
2012.

[92] L. R. Varshney, “To surprise and inform,” in Proc. 2013 IEEE Int. Symp. Inf. Theory,
2013, pp. 3145–3149.

[93] F. Huszár, “How to train your generative models and why does adversarial training
work so well,” http://www.inference.vc/how-to-train-your-generative-models-why-
generative-adversarial-networks-work-so-well-2/, 2015.

156

http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/genset.pdf
http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/genset.pdf
http://www.inference.vc/how-to-train-your-generative-models-why-
generative-adversarial-networks-work-so-well-2/

[94] D. P. Palomar and S. Verdú, “Lautum information,” IEEE Trans. Inf. Theory, vol. 54,
no. 3, pp. 964–975, 2008.

[95] R. K. Raman, H. Yu, and L. R. Varshney, “Illum information,” in Proc. 2017 Inf.
Theory Appl. Workshop, 2017, pp. 1–6.

[96] J. Wang and J. Ye, “Two-layer feature reduction for sparse-group lasso via decom-
position of convex sets,” in Proc. 28th Annu. Conf. Neural Inf. Process. Syst. (NIPS
2014), 2014, pp. 2132–2140.

[97] T. Hastie, J. Taylor, R. Tibshirani, and G. Walther, “Forward stagewise regression
and the monotone lasso,” Electron. J. Stat., vol. 1, pp. 1–29, 2007.

[98] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regression,” Ann.
Stat., vol. 32, no. 2, pp. 407–499, 2004.

[99] R. Tibshirani, J. Bien, J. Friedman, T. Hastie, N. Simon, J. Taylor, and R. J. Tibshi-
rani, “Strong rules for discarding predictors in lasso-type problems,” J. R. Stat. Soc.
Ser. B. Methodol., vol. 74, no. 2, pp. 245–266, 2012.

[100] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization
and statistical learning via the alternating direction method of multipliers,” Found.
Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, 2011.

[101] M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped
variables,” J. R. Stat. Soc. Ser. B. Methodol., vol. 68, no. 1, pp. 49–67, 2006.

[102] W. Wang and M. A. Carreira-Perpinán, “Projection onto the probability simplex: An
efficient algorithm with a simple proof, and an application,” arXiv:1309.1541 [cs.LG],
2013.

[103] M. Hong and Z.-Q. Luo, “On the linear convergence of the alternating direction method
of multipliers,” Math. Program., pp. 1–35, 2012.

[104] D. Cope and M. J. Mayer, Experiments in Musical Intelligence. AR Editions Madison,
1996, vol. 12.

[105] J. Biles, “GenJam: A genetic algorithm for generating jazz solos,” in Proc. Int. Com-
put. Music Conf. (ICMC), 1994, pp. 131–131.

[106] H. Taube, “Automatic tonal analysis: Toward the implementation of a music theory
workbench,” Comput. Music J., vol. 23, no. 4, pp. 18–32, 1999.

[107] M. Rohrmeier and I. Cross, “Statistical properties of tonal harmony in Bach’s
chorales,” in Proc. 10th Int. Conf. Music Percept. Cogn. (ICMPC), 2008, pp. 619–
627.

[108] E. X. Merz, “Implications of ad hoc artificial intelligence in music,” in Proc. 10th Artif.
Intell. and Interact. Digital Entertain. Conf. (AIIDE), 2014.

157

[109] I. Simon, D. Morris, and S. Basu, “MySong: Automatic accompaniment generation
for vocal melodies,” in Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI 2008),
2008, pp. 725–734.

[110] M. C. Mozer, “Neural network music composition by prediction: Exploring the benefits
of psychoacoustic constraints and multi-scale processing,” Conn. Sci., vol. 6, no. 2-3,
pp. 247–280, 1994.

[111] A. R. Rajanna, K. Aryafar, A. Shokoufandeh, and R. Ptucha, “Deep neural networks:
A case study for music genre classification,” in Proc. IEEE 14th Int. Conf. on Mach.
Learn. and Appl. (ICMLA), 2015, pp. 655–660.

[112] D. M. Malioutov and K. R. Varshney, “Exact rule learning via boolean compressed
sensing,” in Proc. 30th Int. Conf. Mach. Learn. (ICML 2013), 2013, pp. 765–773.

[113] S. Dash, D. M. Malioutov, and K. R. Varshney, “Learning interpretable classification
rules using sequential rowsampling,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP 2015), 2015, pp. 3337–3341.

[114] E. L. Denton, S. Chintala, A. Szlam, and R. Fergus, “Deep generative image models
using a Laplacian pyramid of adversarial networks,” in Proc. 29th Annu. Conf. Neural
Inf. Process. Syst. (NIPS 2015), 2015, pp. 1486–1494.

[115] A. Makhzani, J. Shlens, N. Jaitly, and I. Goodfellow, “Adversarial autoencoders,”
arXiv:1511.05644 [cs.LG], 2015.

[116] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing
robust features with denoising autoencoders,” in Proc. 25th Int. Conf. Mach. Learn.
(ICML 2008), 2008, pp. 1096–1103.

[117] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief
nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554, 2006.

[118] G. Desjardins, A. Courville, and Y. Bengio, “Disentangling factors of variation via
generative entangling,” arXiv:1210.5474 [stat.ML], 2012.

[119] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko, “Semi-supervised
learning with ladder networks,” in Proc. 29th Annu. Conf. Neural Inf. Process. Syst.
(NIPS 2015), 2015, pp. 3546–3554.

[120] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with
deep convolutional generative adversarial networks,” arXiv:1511.06434 [cs.LG], 2015.

[121] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, “InfoGAN:
Interpretable representation learning by information maximizing generative adversarial
nets,” arXiv:1606.03657 [cs.LG], 2016.

158

[122] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level concept learning
through probabilistic program induction,” Science, vol. 350, no. 6266, pp. 1332–1338,
2015.

[123] D. Cope, “An expert system for computer-assisted composition,” Comput. Music J.,
vol. 11, no. 4, pp. 30–46, 1987.

[124] Google Brain, “Magenta: Make music and art using machine learning,” https:
//magenta.tensorflow.org/, 2016.

[125] N. Jacoby, N. Tishby, and D. Tymoczko, “An information theoretic approach to chord
categorization and functional harmony,” J. New Music Res., vol. 44, no. 3, pp. 219–244,
2015.

[126] S. Dubnov and G. Assayag, “Universal prediction applied to stylistic music genera-
tion,” in Mathematics and Music, G. Assayag, H. G. Feichtinger, and J. F. Rodrigues,
Eds. Springer Verlag, 2002, pp. 147–159.

[127] Jukedeck, “Artificially intelligent music composition,” https://www.jukedeck.com/,
2012.

[128] Illiac Software, “Harmonia: Interactive app teaches music theory,” https://harmonia.
illiacsoftware.com/, 2015.

[129] L. Chen and C. Raphael, “Human-directed optical music recognition,” Electron. Imag-
ing, vol. 2016, no. 17, pp. 1–9, 2016.

[130] C. Saitis, A. Hankinson, and I. Fujinaga, “Correcting large-scale OMR data with
crowdsourcing,” in Proc. 1st Int. Workshop Digital Libraries for Musicology, 2014, pp.
1–3.

[131] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale
hierarchical image database,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognition
(CVPR’09), 2009, pp. 248–255.

[132] S. Branson, G. Van Horn, C. Wah, P. Perona, and S. Belongie, “The ignorant led by
the blind: A hybrid human–machine vision system for fine-grained categorization,”
Int. J. Comput. Vis., vol. 108, no. 1-2, pp. 3–29, 2014.

[133] L. R. Varshney, P. Jyothi, and M. Hasegawa-Johnson, “Language coverage for mis-
matched crowdsourcing,” in Proc. 2016 Inf. Theory Appl. Workshop, 2016.

[134] J. Knoder, “The best music notation software,” http://www.toptenreviews.com/
software/home/best-music-notation-software/, 2017.

[135] Music Learning Workshop, “Music notation software high end,” http://www.
musiclearningworkshop.com/music-notation-software-high-end/, 2015.

[136] H. Dudley, “The Vocoder,” Bell Lab. Rec., vol. 18, no. 4, pp. 122–126, 1939.

159

https://magenta.tensorflow.org/
https://magenta.tensorflow.org/
https://www.jukedeck.com/
https://harmonia.illiacsoftware.com/
https://harmonia.illiacsoftware.com/
http://www.toptenreviews.com/software/home/best-music-notation-software/
http://www.toptenreviews.com/software/home/best-music-notation-software/
http://www.musiclearningworkshop.com/music-notation-software-high-end/
http://www.musiclearningworkshop.com/music-notation-software-high-end/

[137] J. Thickstun, Z. Harchaoui, and S. Kakade, “Learning features of music from scratch,”
in Proc. 5th Int. Conf. Learn. Represent. (ICLR 2017), 2017.

[138] K. Chen, A. Kannan, Y. Yano, J. M. Hellerstein, and T. S. Parikh, “Shreddr: Pipelined
paper digitization for low-resource organizations,” in Proc. 2nd Annu. ACM Symp.
Comput. for Dev., 2012, p. 3.

[139] MakeMusic, “Musicxml for exchanging digital sheet music,” http://www.musicxml.
com/, 2011.

[140] M. Cuthbert, C. Ariza, B. Hogue, and J. W. Oberholtzer, “Music21: A toolkit for
computer-aided musicology,” http://web.mit.edu/music21/, 2008.

[141] C.-H. Wei, Machine Learning Techniques for Adaptive Multimedia Retrieval: Tech-
nologies Applications and Perspectives. IGI Global, 2010.

[142] P. Bellini, I. Bruno, and P. Nesi, “Assessing optical music recognition tools,” Comput.
Music J., vol. 31, no. 1, pp. 68–93, 2007.

[143] D. Byrd, “Omr systems table,” http://homes.soic.indiana.edu/donbyrd/
OMRSystemsTable.html, 2007.

[144] B. Rimoldi, “Beyond the separation principle: A broader approach to source-channel
coding,” in 4th Int. ITG Conf. Source and Channel Coding Conf. Rec., 2002, pp.
233–238.

[145] M. Helmstaedter, K. L. Briggman, and W. Denk, “High-accuracy neurite reconstruc-
tion for high-throughput neuroanatomy,” Nat. Neurosci., vol. 14, no. 8, pp. 1081–1088,
2011.

[146] N. Hahn, J. Chang, J. E. Kim, and A. Kittur, “The knowledge accelerator: Big picture
thinking in small pieces,” in Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI
2016), 2016, pp. 2258–2270.

[147] D. Parikh and C. L. Zitnick, “Human-debugging of machines,” in Second Workshop
Comput. Soc. Sci. Wisdom Crowds, 2011.

[148] D. Feng, W.-C. Siu, and H. J. Zhang, Multimedia Information Retrieval and Manage-
ment: Technological Fundamentals and Applications. Springer Science & Business
Media, 2013.

[149] J. Urbano, “MelodyShape: A library and tool for symbolic melodic similarity based
on shape similarity,” https://github.com/julian-urbano/MelodyShape, 2013.

[150] N. Kshetry and L. R. Varshney, “Safety in the face of unknown unknowns: Algorithm
fusion in data-driven engineering systems,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process. (ICASSP 2019), 2019.

160

http://www.musicxml.com/
http://www.musicxml.com/
http://web.mit.edu/music21/
http://homes.soic.indiana.edu/donbyrd/OMRSystemsTable.html
http://homes.soic.indiana.edu/donbyrd/OMRSystemsTable.html
https://github.com/julian-urbano/MelodyShape

	Chapter 1 Introduction
	Automatic Concept Learning in a Nutshell
	What is ACL (Input and Output)?
	Why Automatic Concept Learning (New Goals/Motivations)?
	Overview: Desired ACL Output
	Overview: Desired ACL Model

	Information Lattice Learning in a Nutshell
	Computational Abstraction
	Statistical Learning in Shannon's Information Lattice

	Outline and Contributions

	Chapter 2 Background
	Math Preliminaries
	Partition and Equivalence Relation
	Lattice (Partial Order)
	Group Theory

	Claude Shannon's Information Lattice
	Betty Shannon's Stochastic Music and Thereafter

	Chapter 3 Theoretical Exposition (Part i)
	Chapter 4 Abstraction-Based Rules and Concepts
	Abstraction: Literature Overview
	Abstraction, Concept and Probabilistic Rule

	Chapter 5 Computational Abstraction
	Everyday Abstraction
	Abstraction as Partition
	Abstraction Hierarchy as Partition Lattice
	Rule Hierarchy as Generalized Information Lattice

	Chapter 6 Abstraction Generating Mechanisms
	Feature-Induced Abstraction
	From Feature to Abstraction
	From a Feature Pool to an Abstraction Family

	Symmetry-Induced Abstraction
	From Symmetry to Abstraction
	Duality: from Subgroup Lattice to Abstraction (Semi)Universe
	More on Duality: from Conjugation to Group Action
	Partial Subgroup Lattice

	Chapter 7 Codetta: Summary and Discussions
	Chapter 8 Algorithmic Development (Part ii)
	Chapter 9 Information Lattice Learning Phase i: Abstraction Generation
	Feature Generation
	Symmetry Generation: Top-Down Approach
	The Affine Transformation Group AFF(Rn)
	The Isometry Group ISO(Rn)
	Special subgroups of ISO(Rn) used in Chemistry and Music
	Section Summary

	Symmetry Generation: Bottom-up Approach
	From Generating Set to Subgroup (Semi)Lattice
	An Induction Algorithm
	Finding a Generating Set of ISO(Zn)
	Trade-off: Minimality or Diversity (Efficiency or Expressiveness)

	Restriction to Finite Subspaces
	Expand-and-Restrict
	An Implementation Example

	Chapter 10 Information Lattice Learning Phase ii: Probabilistic Rule Learning
	The Vanilla ``Teacher Student'' Loop
	The Teacher: a Discriminative Model
	The Student: a Generative Model

	The Adaptive Teacher: Rule Context-Matching
	Informational Context
	Temporal Context

	The Elastic Student: Rule Breaking
	Problem Formulation for the Elastic Student
	Alternating Solvers for the Elastic Student

	Chapter 11 Codetta: Summary and Discussions
	Chapter 12 Applicational Recapitulation (Part iii)
	Chapter 13 MUS-ROVER: An Automatic Music Theorist and Pedagogue
	Music Raw Representation
	MUS-ROVER i
	Overview
	Literature Review
	Learning Model
	Experiments with Bach's Chorales

	MUS-ROVER ii
	Overview
	Literature Review
	Learning Model: Hierarchical Rule Learning
	Learning Model: Adaptive Memory Selection
	Experiments with Bach's Chorales

	MUS-ROVER RB
	MUS-ROVER Rules versus Music Theory

	Chapter 14 MUS-NET: A Crowdsourced Home of Digital Sheet Music
	Music AI and Music Big Data
	Overview of Music Data Formats
	Platform Principles
	Platform Implementation
	Databases: Studio and Gallery
	Data Collector (Automatic)
	Distributor and Assembler (Automatic)
	Source Generator (Automatic)
	Music Transcription Interface (Semi-Automatic)
	Formatter (Automatic)

	Music Transcription Contest
	Contest Setup
	Evaluation Metric
	Results

	AI Applications in Action
	Compositional-Feature-Based Music Search
	OMR Training
	Automatic Music Rule Learning

	Chapter 15 Coda
	References

