
JetStream: Achieving Predictable Gossip Dissemination by

Leveraging Social Networks Principles

Jay A. Patel, Indranil Gupta and Noshir Contractor∗

Abstract

Gossip protocols provide probabilistic reliability and scalability, but their inherent randomness

may lead to high variation in (received) message overheads at different nodes. This paper presents

techniques that leverages simple social networks principles to enable nodes to select gossip targets

intelligently. These simple heuristics achieve a more uniform message overhead at each node, while at

the same time reducing the latency of gossip spread (by up to 25%) and also lowering the system-wide

gossip network traffic. We experimentally compare our system, called JetStream, against canonical

gossip as well as gossip on the Chord overlay. Intuitively, JetStream seeks to make gossip spread more

deterministic and predictable, while still inheriting its scale and reliability. JetStream also provides an

added benefit by reducing overall network bandwidth utilization if there is a low amount of sustained

gossip injection.

1 Introduction

The advent of Web feeds such as RSS and ATOM, as well as streaming Web content, has made large-group

multicast an important problem. Several systems have been designed for large-scale multicast including

FeedTree [18], BitTorrent [6], Bullet [13], etc. However, we believe that the technique of gossiping offers

the right combinations of probabilistic scalability and reliability to solve these new problems.
∗Dept. of Computer Science and Speech Communication, University of Illinois at Urbana-Champaign, 201 N. Goodwin

Ave., Urbana, IL 61801. Corresponding author’s e-mail is jaypatel@uiuc.edu

1



One of the primary obstacles to the use of gossip in these new settings is its inherent randomness.

The random selection of gossip targets at different nodes leads to high variation in incoming message

overhead – some nodes may receive 30 copies of the same gossip message while others receive a small

number (which is more desirable). In a sense, what we need is an intelligent strategy for gossip target

selection so that this random overhead is reduced to being more predictable. At the same time, we would

like the scalability and reliability of the random gossip protocol to be inherited (and improved).

This paper presents JetStream, a gossip protocol that uses social networks principles to achieve in-

telligent gossip target selection. We wish to clarify to the reader that this paper does not leverage social

network links (e.g., from social network systems like Orkut etc.) to improve epidemics. Instead, JetStream

borrows purely algorithmic ideas from the area of social networks research in order to design a new pro-

tocol. Surprisingly, the combination of simple social networks rules with gossip leads to more uniform

message overhead, reduced latency of gossip spread, and a lower system-wide gossip network traffic.

The two social network rules used in JetStream are called reciprocity and structural holes. Both these

rules are (unconsciously) used by human beings while developing their social links - reciprocity means

that an individual does (or does not) establish a link with someone who points a link at her. Structural holes

means that the individual attempts to establish links to others who do not already link to each other - this

rule maximizes the “expertise” within reach of the individual. For instance, a researcher in the Computer

Science department who knows someone in Economics is more likely to prefer a Physicist as a new friend

than another Economist.

After describing the core social networks rules in more detail, we describe the structure of the Jet-

Stream system. We then experimentally compare its performance to that of canonical random gossip, as

well as to gossip spread over the Chord overlay. Our experiments show that JetStream lowers message

overhead at nodes by half, reduces gossip latency by up to 25%, and lowers the overall gossip traffic by

half.

We wish to point out that this paper does not present algorithms for topologically-aware gossip, adap-

tive gossip, or semantic gossip. Although social networks rules can be added on to the mechanisms just

mentioned, these are beyond the scope of the current paper.

The rest of the paper is organized as follows: we discuss the basics properties of gossip protocols
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in section 2. Next, in section 3, we introduce mathematical heuristics for the theories of reciprocity and

structure holes. Section 4 discusses our algorithm and implementation. We provide simulation results for

our system in section 5. And, finally, section 6 concludes.

Related Work Besides the bulk of work on scalable and reliable multicast (e.g., SRM [9]), several

publish-subscribe systems have been developed recently for RSS feeds (e.g., FeedTree [18]), and other

content, e.g., Bullet [13]. Several “flat” (canonical) gossiping protocols have been proposed in literature,

including Bimodal Multicast [3], work by Kermarrec et al [12], work by Kouznetsov et al [14], to name

a few. Variants of these gossip protocols that are topologically-aware (e.g., [11]) or semantically-aware

(e.g., [17]) have also been proposed. Gossip has been used to design several distributed protocols such as

membership mechanisms, e.g., [20] and [8].

Some work has been done on combining social networks principles with peer to peer systems, however

none of the work in this area has explicitly drawn mathematical ideas from social networks. Two of these

works are as follows. Bernstein et al [1] present a policy for selecting peers that lead to better utilization of

global resources. Marti et al [15] present a DHT (distributed hash table) that utilizes the friend-of-friend

social principle to improve trust among peers.

Contractor et al [7] discuss social in a workplace, and our paper borrows some of the mathematical for-

mulation from that paper. Monge and Contractor’s book [16] and Wasserman et al [21] are two resources

we used for social network principles and theories.

2 Gossip Networks

In this section, we describe a type of a gossip protocol, and characterize it through simulated experiments.

For the rest of the paper, we assume that our network model is composed of a set of n nodes (labeled v0

through vn−1). Each node vi may communicate with (i.e., send a message to) any other node v j. The cost

incurred to send a message between any two nodes is constant (i.e., the same).
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2.1 Flat Gossip

A simple gossip protocol may be used to propagate messages (for example, updates in a publish-subscribe

system) within a network. The simplest gossip protocol (known here on as flat gossip) can be implemented

as follows: starting with the message originator, each node chooses c random forwarding targets (from

the network membership list) during each time interval, to transmit an outstanding message m. A message

is considered outstanding (on a per node basis) for d time intervals after being (initially) received. A

relatively inexpensive optimization (i.e., trading network transactions for local memory) requires a node

vi to unconsider a node v j as a a candidate for forwarding target if it is known to have already receive the

message m previously (for example, if the node v j has already forwarded the message m to node vi).

Previous research [10] has shown that a gossip protocol with c ∗ d = O(logn) allows a message to be

propagated to all nodes with high probability. To be precise, if each node communicates with logn + k

nodes on average, then the probability that everyone gets the message converges to e−e−k .

2.2 Overlay Networks

Network protocols generally have a non-zero cost for establishing an initial connection between two nodes

vi and v j. Hence, it is more efficient for a node to pick the same set of target candidates for different

gossip messages. Doing so amortizes the connection establishment cost over many messages. If each

node maintains a target set of size l = O(logn), we can guarantee (with high probability) that a message

will reach all nodes quickly. Stated differently, with a static network membership, a node vi and any of

its target v j remain connected for the duration of the network. The aggregate of all these connected nodes

form a persistent overlay network.

Properties of Random Overlay Networks: As described before, a random overlay network forms the

basis of a flat gossip protocol. Choosing l nodes at random from the membership list of n nodes leads to

a peculiar property: as shown in Figure 1(a), the distribution of node indegree (i.e., the number of nodes

that have a given node as a member of its target set) follows a binomial distribution. Such a wide variance

in the distribution of node indegree leads to uneven workloads during gossip propagation.
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(b) There is a tight linear correlation between
the number of messages received by a node
and its indegree. The overlay had a constant
outdegree l = 16. The data points are plotted
±random(0.25) for clarity.

Figure 1: Random overlay networks (here, n = 1000) inherently lead to uneven distribution of indegree (with fixed
cardinality of the target set, i.e., l is constant). This effect primarily explains the uneven workload distribution of gossip
networks.

We perform a simulated experiment to describe the uneven workload property of gossip protocols. We

use a network of size n = 1000 for the following experiments. In the experiment, we use a constant value

of c = 1, as utilizing a value of c > 1 is akin to reducing the duration of the time interval by 1/c. Please

refer to Section 5 for further details regarding our simulation methodology.

Figure 1(b) displays a tight linear correlation between a node’s indegree and and the total number of

messages received (recall that the number of messages sent by each node is a constant d). Improving upon

the fairness of indegree distribution may allow a gossip protocol to impose fairer workload requirements

per node.

In this section, we demonstrated that while gossip protocols are simple and efficient, they do impose an

uneven workload on the individual nodes. To improve the workload distribution and dissemination speed,

we discuss social network theories in the next section. Further, we discuss how social network theories

may help improve the performance of gossip protocols by forming better overlays (i.e., allowing nodes to

choose better forwarding targets).
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3 Social Networks

There are a multitude of social network theories that formulate the logic behind human relationships.

In this section, we focus on two theories that may (intuitively) lead to improvement of gossip network

overlays by specifying a strict methodology for target selection.

In this section, we assume that the network starts with a random overlay, with each node vi having a

target set of size l. The variable xi j is a boolean value representing the current relationship between nodes

vi and v j. A value of 1 indicates a that v j is a target of vi, meanwhile 0 signifies the opposite (i.e., v j is

not a target of vi). The relationships are not reciprocated by default. In other words, the value of xi j may

differ from x ji.

3.1 Reciprocity

Social exchange theory explains dyadic interactions on the basis of resources each actor has to offer. If

actor A perceives actor B as potentially having valuable resources, A will initiate a link with B. Reciprocity

theory [4] states that there is a higher tendency for mutual interactions between members a social network.

In other words, the reciprocity effect states that if actor A communicates with actor B, then B will also (or,

is more likely to) communicate with A.

The utility value (as prescribed by the reciprocity theory) of a node vi can be calculated with the

following utility function:

UtilityReciprocity(vi) =
n−1
∑
j=0

xi jx ji (1)

We believe that reciprocity will reduce the total number of messages being propagated by the gossip

protocol. In an overlay mutated by reciprocity, each node would ideally reciprocate the relationship with

its target, thus cutting down the total number of messages sent per node (recall that nodes do not consider

targets with whom they have previously exchanged a message with as candidates for forwarding agents).
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3.2 Structural Holes

Of the many social theories of self-interest, one that is intriguing and stands out is the structural holes the-

ory [5]. The structural holes theory recognizes that there are entrepreneurial actors who actively position

themselves in an advantageous positions within a social network.

A structural hole is the position in a network that provides a direct advantage to a network member.

An actor in a structural hole connects two disconnected actors. In a competitive world, an individual

that fills such a hole draws an advantage from their positioning, both by collecting a higher volume and

better quality of information from their contacts, as well as by exercising greater control over them. Stated

differently, if an actor A communicates in a reciprocal manner with actor B and with C, but actor B and C

do not communicate with each other, then actor A is filling a structural hole by bridging the communication

between actors B and C.

The utility value (as prescribed by the structural holes theory) of a node vi can be calculated with the

following utility function:

UtilityStructural.Holes(vi) =
n−1
∑
j=0

xi j
n−1
∑
k=0

xik(1− x jk) (2)

We believe that the structural holes theory would allow an overlay to evolve towards a structure that

will support faster dissemination of gossip messages.

4 The JetStream Approach

We design a simple utilitarian algorithm that selects a target set (for each node) that provides maximum

utility. They key idea is that each node decides to alter its target set strictly based on the evaluation of the

utility function at the local node – without considering the effect of the decision to the overall health of

the system (i.e., global utility). Our experiments find that this greedy behavior leads to convergence quite

close to the globally optimal utility.

7



Utility Function: Our intuition is that the combination of the two aforementioned theories (reciprocity

and structural holes) should lead to an improvement in performance of gossip networks. We can derive

a net utility function for a node vi based on the sum of the utility functions for reciprocity and structural

holes described in the previous section.

Utility(vi) =
n−1
∑
j=0

xi jx ji
n−1
∑
k=0

xikxki(1− x jk)(1− xk j) (3)

Notice that the aforementioned function calculates the utility value only at node vi. Each node calcu-

lates it utility value based on only the following function, which does not require the complete state of the

network.

The key intuition behind using a utility function to shape the overlay is to refrain from imposing hard

constraints or deterministic properties on target selection. For example, a deterministic rule for structural

holes theory can enforce that a node may select another node as a target i.f.f. the candidate node is not an

element of any of its current target’s target set. While this deterministic rule may allow a node to construct

its target set in an iterative manner – a newly joined node may not be able to quickly build its target set.

Using a utility function, a new node may simply pick its initial target set at random and slowly evolve its

target set based on the utility function. We describe the process a node takes to move towards the highest

utility next.

A node strives to attain maximum utility. The above utility function is calculated for each node vi. If

the maximum number of gossip targets at a node is limited to l, then the maximum utility value can only

be l·(l−1)
2 . A node that attains this maximum local utility value is defined to be an optimal node, whereas,

the rest of the nodes are known as unoptimal nodes.

Generic Algorithm Details: Recall that at any point of time, each node maintains a list of stable gossip

targets, and in addition, an extended membership list (consisting of nodes known to exist in the network).

The basic idea in our approach is to have each node continuously but slowly attempt to change its gossip

target set, so as to keep increasing its local utility value. This is achieved by having each node vi execute

a set of actions at least once every update period time units, independent of other nodes. During any of its

update periods, the node vi (which, for convenience, we shall call the deciding node) tentatively changes
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at most one of its gossip targets, in the hope that its local utility Utility(vi) will increase.

During the start of the update period, a node calculates its current utility value based on all locally

available network information. The initial utility value is marked as the currently highest utility. Next, the

deciding node picks one of its targets as a potential eviction victim – this target is chosen at random, and

we call this the delink candidate. The node creates an empty replacement candidates list, and adds the

delink candidate to this list.

Next, the deciding node runs through each element v j in its membership list that is not a gossip target,

and calculates the utility derived by replacing the delink candidate in the gossip target set with the node

v j. Three cases can arise: (1) If the new utility is lower than that obtained by similar replacement with

anyone in the replace candidates list, v j is dropped from consideration and the replacement candidates list

is left unchanged. (2) If the utility is higher, the replacement candidates list is set to the singleton {v j} and

the value of the currently highest utility is updated. (3) if the utility is the same, then v j is added to the

replacement candidates list.

After the entire membership list has been looked at, a random node from the replacement candidates

list is chosen as a replacement for the delink candidate. If the replacement node is different from the delink

candidate, the target set is updated by substituting the replacement node for the delink candidate. If the

replacement node and delink candidate are one and the same, nothing happens.

In essence, the above mechanism implements a utilitarian overlay with respect to gossip target selec-

tion. However, maintaining and discovering the membership list has not yet been discussed. We do so in

Section 4.2, but before that, Section 4.1 describes some experimental results from a global implementa-

tion of JetStream, where we assume an external membership protocol that provides this list as a service

running on each node.

4.1 Global Implementation of the Utilitarian Overlay

To study the basic emergent properties of the described algorithm, we design a simple implementation by

assuming that each node can maintain arbitrary amounts of information (specifically, for the membership

list). This allows all nodes to know the currently consistent state of the network. In essence, our network
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model assumes the following:

• The network is non-dynamic, i.e., participating nodes do not leave, rejoin, or crash.

• Each node knows about the presence of all other nodes in the network, i.e., the membership list for

all nodes in the network is complete and consistent.

• Each node knows about the current target set of all other nodes. In other words, when a node updates

its target set, the update is propagated to all other nodes in the network instantaneously.

The simple implementation has the following important parameters: the update period is one, i.e.,

the replacement procedure is run during every time interval on each node. It should be noted that while

the implementation is simple, the computation complexity of a single node’s replacement procedure is

O(n · l2). Furthermore, each node is maintain a memory overhead of O(n · l), to keep track of all other

target sets.

(a) t = 0 (b) t = 10 (c) t = 90

Figure 2: Progression of a n = 16 (with l = 3) JetStream overlay. The node closer to the red circle on an edge represents
the target.

Results: Figure 2 charts the progression of the JetStream overlay with time. Starting with a random

overlay, the individual nodes select targets that yield higher utility, ultimately resulting in an graph with

exactly n·l
2 edges. Initially, the nodes improve their utility value rapidly, soon reaching a point of dimin-

ishing returns (see Fig 3(a)). However, the algorithm forces nodes to pick targets which yield better utility

until the network stabilizes, and no more changes to the overlay are required.
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to zero.

Figure 3: The overlay converges to a set of optimal targets over time. The network here is of size n = 100 and target
set size l = 5.

Reciprocity enforces a degree equality on the utilitarian overlay: each node has the same indegree value

(recall that our initial random network overlay has a fixed constant outdegree l, however, the indegree

follows a binomial distribution). Figure 3(b) shows the progression of the standard deviation of node

indegree distribution for the the overlay (recall that the average indegree is constant, equaling the outdegree

l). At the convergence point of the overlay network, the standard deviation becomes 0, indicating no

variation in distribution of node indegree. At this point the network no longer exhibits any tendency to

change. However, this characteristic is only exhibited when n · l is even. The network would not stabilize

if n · l is odd because there would always be one “dangling” (i.e., non-reciprocating) target pointer. An

easy way to solve this issue is to always use an even value for l.

4.2 Localized Implementation of the Utilitarian Overlay

The global algorithm takes O(n · l2) time to locate a better candidate for its target set during each time

interval. Furthermore, it requires O(n2) memory storage at each node. Clearly, this type of computational

and memory overhead is not suitable for large scale networks. Hence we implement a realistic version

of our algorithm that requires lower memory and computation overhead – while still maintaining the

properties of the global algorithm.
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In this model, we make much more stringent assumptions about the network. Specifically:

• Each node can communicate with all other nodes, using a reliable underlying messaging mechanism.

The messages are delivered within a uniform, constant time delay. We model a time delay tdelay of

1 time interval.

• A node does not know the consistent state of the network, it must actively probe the network to

gather updated information.

We introduce many restrictions in the realistic implementation: the biggest restriction begins with the

introduction of the candidate set, whose maximum size is set to s (where s > l). A node is only required

to maintain extended information (i.e., target sets) of the nodes in the candidate set (unlike the idealistic

implementation, which kept track of the target set for the entire membership list). An important note is

that the candidate set is a superset of a node’s target set. This is an obvious requirement because a node

can only calculate its utility value correctly if it has access to the target sets of each of its targets. However,

limiting the candidate set to s entries cuts down the memory overhead per node to merely O(s · l). For the

most compact implementation1, each node can be represented by a 6-byte IP address and port combination,

i.e., for a network with n = 5000 and l = 10, a candidate set of size s = 20 requires as little as 1200 bytes

of memory overhead to maintain this information.

To keep reciprocating nodes updated on target set changes, whenever a node updates its target set, it

sends the updated information to all affected note, i.e., the current target set as well as the delinked node.

This keeps the target nodes up-to-date with the latest changes that affect its utility value.

The update period is also varied on a per-node basis to stagger the execution of the replacement proce-

dure. This is required so that nodes do not continually update their target set with stale information (i.e.,

due to the delay incurred in receiving update messages). For example, with a staggered update period of

tstagger = 5 time periods, a node picks its next update time randomly between (trtt, tstagger]. The trtt is the

network round trip time (i.e., trtt = 2 · tdelay). Waiting for a minimum of trtt time periods before the next

update period is required, as it allows the node to acquire the latest updates to the network as a result of

its previous replacement procedure.
1We are referring to a simple matrix here. While it would simplify space requirements, it would increase computational

requirements. More complicated data structures can be used to improve speed.
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Finally, nodes in the candidate set need to be replaced on a regular basis. This allows the network

to reach optimal utility, be resilient to crash-stop failures, handle churn, etc. A node in the candidate set

is replaced if sends no message for tout consecutive time intervals (this requires that each node send an

update message to all its target set every tout time intervals). A random nodes is chosen from a node’s

membership list to replace the dropped node from the candidate set.

A node maintains a membership list consisting of all previously discovered nodes (gathered through

update messages). In our implementation, a node’s membership list grows with O(n), however, it can be

bounded for large-scale networks. Maintaining a consistent membership list is not required in JetStream,

it is only done so as to have quick replacements for timed out entries in the candidate set.

4.3 Analysis

We briefly analyze the network overhead required to maintain a JetStream overlay in a static network.

Furthermore, we provide a gossip inject threshold at which JetStream will outperform a random overlay

(in terms of fewer total number of messages transmitted). Please refer to Table 1 for a review of the

notations used to describe the network (and its characteristics).

Notation Meaning
n Number of active nodes in the network
noptimal Number of optimal nodes
nunoptimal Number of unoptimal nodes
l Size of the target set (uniform)
s Size of the candidate set
tstagger The maximum stagger time between update periods
trtt Network round trip time
tupdate The expected time between update periods
tout Refresh interval to keep a target entry from timing out
p The probability with which an unoptimal node changes its target set
B The background traffic overhead (number of packets)
wB The size of each target set information packet
I The gossip injection rate
wI The size of each gossip message

Table 1: Notations used to describe the network state. The terminology is defined in Section 4.

Theorem: For a sustained gossip injection rate of I ≥ Ithresh = 2B·wB
n·l·wI

, a maximum utility JetStream

overlay uses fewer messages than random gossiping (where B is the background traffic overhead of the
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JetStream overlay, wB is the average packet size of a target set information packet, and wI is the size of

each gossip message).

Proof: Recall that an optimal node is one that has achieved the highest local utility value, whereas, an

unoptimal node is still seeking to achieve the highest utility. An unoptimal node will generally change its

target set once every update period with probability p. As the update period is staggered using randomness,

it is expected to be tupdate =
trtt+(tstagger−1)

2 time periods. Recall that a node sends update packets to its

target set as well as the delinked node on each change in the target set. Given p as the probability of a

deciding node able to select a target with better utility, the traffic generated by all unoptimal nodes will

be approximately nunoptimal · p · (l +1) packets every tupdate time periods. To preserve the reciprocal link,

every optimal node sends a refresh packet to its target set. This results in noptimal · l packets every tout

time periods. As another consequence of the timeout mechanism, all nodes will remove old elements

(exclusive of its current target set) from their candidate sets after tout time periods. This results in an

additional 2n · (s− l) packets every tout time periods (recall that each timeout replacement generates two

network calls: one for the deciding node to inquire the new candidate set node regarding its target set,

and the other for the newly selected candidate set node to respond with its target set). Hence, the traffic

incurred due to the timeout mechanism will be around 2n·(s−l)+noptimal ·l
tout

packets each time interval. Hence,

the theoretical traffic due to the JetStream protocol should be:

B =
nunoptimal · p · (l +1)

tupdate
+

2n · (s− l)+noptimal · l)
tout

(4)

Due to built-in reciprocity, a gossip message over JetStream will be sent approximately n·l
2 . In contrast,

a random overlay will sent approximately nl̇l messages per gossip. Hence, JetStream can provide a benefit

over random overlay when I ≥ Ithresh:

I ·wI ·n · l ≥ I ·wI ·
n · l
2 +B ·wB

Ithresh =
2B ·wB
n · l ·wI
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5 Results

We present the results of our utilitarian network through synchronous simulation. The simulations were

run with n = 5,000 and l = 10. The simulations were run for either 3600 or 7200 time intervals.

5.1 Overlay Characteristics

Implementation Parameters: We briefly study the effect of the various parameters on the progression

of the overlay in a static-membership network. The primary parameter that influences the computational

and memory overhead is the size of the candidate set. We briefly summarize our findings:
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Figure 4: The evolution of JetStream overlay for a network of size n = 5,000 and constant target set of size l = 10.

• The localized implementation works almost as well as the global implementation: the network

stabilizes with an average utility close to the maximal utility.

• Using a very small value s is sufficient. For example with s = O(logn) = 2l, approximately 90%

of nodes reach optimality rapidly (see Figure 4(a)). Increasing s provides limited benefits, at the

expense of added computational overhead.

• The value of tstagger should be as low as possible. This allows unoptimal nodes to choose better

targets to attain optimality. Our implementation defaults tstagger to 5 time periods. Figure 4(b) shows

that an unoptimal node is able to find a better target every update period using only a candidate set

of size s = 2l. Specifically, the network stabilizes with p ≥ 0.5. A value of p = 0.5 signifies that

15



the deciding node is able to find at least one other target as a replacement candidate (same or higher

utility).

• The value of tout affects the background traffic. Using a value of tout of 120 time periods is sufficient

even for systems with high churn (i.e., it only takes the one node to detect a node failure and start

a “domino-effect” that will take system back to stability). Figure 4(c) shows that the JetStream

overlay stabilizes with an average node sending one packet roughly every 3 time periods.

5.2 On Joins and Leaves

While a realistic implementation with a static network preserves the emergent behavior present in the

global implementation, experiments involving a large number of sudden joins and crash-stop failures (i.e,

leaves) may help uncover other interesting properties. We perform two experiments: one with 50% of the

active nodes leaving the network, and another one with an additional 50% nodes joining at the halfway

point of the simulation.
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Figure 5: JetStream is resilient to a massive number of sudden joins and leaves (initial network size n = 5,000).

Figure 5(a) shows that the timeout mechanism coupled with the probabilistic design of the replacement

procedure results in quick reconvergence to near-optimal average utility value after the crash-stop failures.

The reason for the fast recovery is because of the timeout mechanism. As nodes are replaced from the

candidate set, a sudden surge in bandwidth utilization is sustained for a brief time period (see Figure 5(b)).

Newly joined nodes integrate just as well in the network, by providing a greater choice in target selection.
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5.3 JetStream with Flat Gossip

In the next experiment we simulate sending a simple message using flat gossip using three different target

selection policies: a random overlay, a Chord overlay, and the JetStream overlay. The Chord [19] overlay

is simply pointers to m finger pointers (in a m-bit keyspace) as described in original DHT paper. We define

our keyspace in 13-bit (since 213 ≥ 5000), hence each node has 13 total finger pointers. We select l of

these randomly as our forwarding targets, before spreading the gossip message. The JetStream overlay is

simply the random overlay evolved over 3600 time intervals.
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Figure 6: Compared to a random overlay, the JetStream overlay distributes the flat gossip workload in a more even
manner. Furthermore, the JetStream overlay reduces the total workload and improves the latency of gossip spread.

The emergent behavior of JetStream reduces the total workload imposed by flat gossip. Analyzing

the spread of a single gossip message, the total number of messages received by each JetStream node is

far fewer, and far less varied (see Figure 6(a)) that either random overlay or Chord. Stated differently,

JetStream imposes a “fairer” workload to the network participants.

For the next experiment, we ran the aforementioned simulation 10 different times. We can see (in

Figure 6(b)) that the total number of messages transmitted by the flat gossip protocol is between 40% and

50% fewer with the JetStream overlay compared to Chord and random overlay. Furthermore, Figure 6(c)

shows that the time taken by a gossip message to reach the last node is approximately 25% faster with

JetStream on a consistent basis.2
2JetStream was able to deliver the message to all 5,000 nodes in all 10 simulation runs, Chord and random overlay failed to

deliver the message to one node during one run each.
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5.4 Continuous Gossip
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Figure 7: The JetStream overlay performs well with a continuous injection of gossip messages under both static and
dynamic networks.

In the next experiment, we evaluate the performance of a static JetStream network under continuous

gossip injections. In section 4.3, we showed that when I ≥ Ithresh, the bandwidth used by JetStream

is lower than the bandwidth used by a random overlay. Assuming wI = wB (i.e., the packet sizes are

ignored), we perform the next experimental comparison between the bandwidth utilized by a random

overlay and a JetStream overlay. We calculate the value of Ithresh = 0.076 (i.e., a new gossip every 13 time

periods) based on our previously mentioned network assumptions. Figure 7(a) shows that the random

overlay actually consumes less bandwidth JetStream at the calculated Ithresh. This is due to the fact that

the localized implementation of the overlay has not attained maximal utility. However using just only a

slightly more aggressive injection rate (i.e, a new gossip packet every 10 time intervals), the bandwidth

savings realized by JetStream is clearly noticed (not shown). This experiment shows that JetStream can

provide a substantial reduction in bandwidth utilization when the network expects an injection rate higher

than Ithresh.

Churn: To evaluate the effect of churn on JetStream, we used the Overnet traces [2] collected from a

deployed P2P network. We used part of the traces, which monitored the activity of 2400 hosts for 7 days,

at a granularity of every 20 minutes (we scaled 1 second = 1 time period for this simulation). While,
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the traces monitored 2400 hosts, the actual number of active hosts fluctuated at any give time between

approximately 450 and 500. Our experiments utilized only 2 hours of those traces. A node joined or left

the network during a random interval spanning the 20 minutes from which the data was collected. A new

node was introduced to the system using a bootstrap node that would provide the joining node with enough

nodes to complete its candidate set. The joining node would then participate in the network as any other

node. A departing node would mimic a crash-stop failure (i.e., no notification).

Next, we inject a continuous stream of gossip messages into a JetStream, maintaining I = 0.2. A

node was chosen at random to be the originator of each new gossip message. The targets for the gossip

were chosen based on the current target list of the JetStream overlay (i.e., the targets possibly changed

with time). Figure 7(b) shows the coverage of a gossip message is close to 100% of active nodes in the

system. In fact, some gossip messages were received by more nodes than present during gossip origin

time (because new nodes entered the system during the gossip spread time).

6 Conclusion

Gossip protocols provide probabilistic reliability and scalability, but in section 2, we show their inherent

randomness may lead to high variation in (received) message overheads at different nodes. Next, in

section 3 and section 4, we presented techniques that leveraged simple social networks principles that

enable nodes to select gossip targets intelligently. In section 5, we show that the simple heuristics achieved

a more uniform message overhead at each node, and also lower the system-wide gossip network traffic by

up to 50%. We experimentally compared our JetStream system against canonical gossip, as well as gossip

on the Chord overlay. Our results demonstrate that JetStream helps gossip spread in a more deterministic

and predictable manner, while still inheriting scale and reliability, and reduced latencies of up to 25%.

Lastly, we show that JetStream also utilizes less bandwidth than a random overlay if the continuous gossip

injection rate exceeds a low threshold (Ithresh = 0.076 for a network of size n = 5000).
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