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ABSTRACT

Electronic medical records (EMRs) are the digital equivalent of paper records at a clini-

cian’s office. They contain patient information such as treatment and medical history, and

have been shown to have a wide variety of benefits.

However, EMRs typically contain a multitude of diverse data, including images, doctor

notes, medical test results, and genomic data. This heterogeneity generates high dimension-

ality and data sparsity, which are two of the most prevalent culprits that exacerbate already

difficult computational problems. Additionally, domain-specific characteristics, such as the

existence of synonyms in the medical vocabulary, introduce ambiguity. This can further

reduce the data mining potential of EMRs.

This thesis is a systematic study that addresses these issues associated with EMRs. In

particular, I utilized heterogeneous data sources that are typically incompatible, and then

developed frameworks in which these data sources complement one another. As a result,

these methods have the potential for direct clinical translation, paving the way for improving

healthcare from a data-driven perspective.

To improve a variety of downstream healthcare applications, such as patient subcatego-

rization, survival analysis, and visualization, I used external networks of domain knowledge

consisting of drug-symptom relationships, protein-protein interactions, and genetic informa-

tion to enhance patient records. I found that this enhancement process increased the data

mining capabilities as well as the interpretability of the EMRs.

To improve EMR retrieval systems, I developed a query expansion method that frames

symptoms and treatments as two different languages. I found that a topic modeling method

that follows this dual-language framework yielded the highest performance. Lastly, I showed

that due to pathological similarities, jointly studying Alzheimer’s disease and Parkinson’s

disease resulted in higher computational power by effectively increasing the size of the train-

ing datasets. This allowed for the accurate prediction of the onset of dementia in both

diseases.

Each of these results can lay the groundwork for applications that have the potential to be

implemented directly in clinical practice, improving the safety and quality of patient care.
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CHAPTER 1: INTRODUCTION

Electronic medical records (EMRs) are the digital equivalent of paper records at a clin-

ician’s office, containing patient information such as treatment and medical history. Since

their adoption into healthcare practices across the United States, EMRs have been estimated

to save more than $81 billion annually [1]. This could be attributed to, for example, the fact

that they can improve patient safety by alerting doctors to potentially harmful interactions

that may result from prescribing multiple drugs [2]. Furthermore, by using EMR databases,

doctors can apply stronger statistical methods to accomplish previously unfeasible tasks,

such as large-scale relationship mining and clinical prediction of survival.

One of the most important aspects of EMRs is that they are typically heterogeneous,

consisting of images, doctor notes, medical test results, genomic data, and more. Although

each data type is uniquely informative (e.g., medical images can provide information that

genomic data cannot), it is oftentimes difficult to analyze these different data sources within

the same framework, which reduces the efficacy of many computational models. Inconsisten-

cies among recordkeeping practices in different hospitals also introduce data sparsity, which

further exacerbates this problem.

While the heterogeneity of EMRs presents drawbacks, the distinctive data types pave

the way for tremendous power in knowledge discovery. For my thesis, I examined data

from not only standard western medicine, but also traditional Chinese medicine in order

to tackle domain-specific problems. I found that EMRs in both fields suffer from similar

complications, including heterogeneous data types, inherent sparsity and incompleteness of

medical records, and synonyms in the medical vocabulary, allowing for the development of

general methods.

The goal of this thesis is to introduce models that explore the different data types in

EMRs to improve their accessibility, universality, and analytical power. These models can

be used in a wide variety of applications and have the potential to be directly implemented

in clinical settings.

First, I designed PaReCat, a framework that was the first to use an external herb-symptom

dictionary to identify subcategories of patients within specific diseases [3]. I used network

embeddings to mine latent connections among similar concepts in the dictionary to enhance

the information in the medical records. PaReCat can potentially help refine our understand-

ing of diseases, as well as facilitate precision medicine and medical research.

Next, I discuss HEMnet, which enhances survival analysis by building upon PaReCat’s

concept of mining external knowledge [4]. This was the first method to integrate molecular
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interactions and medical records into a single network. By improving survival analysis,

HEMnet can help doctors understand the features that differentiate patients who live for a

long time from those who die more quickly.

I further built upon these works with VisAGE, which can create higher quality patient

visualizations [5]. VisAGE was the first method to explore the effects of adding chemical-

protein interactions and genetic information embeddings to enrich EMRs. The resulting

visualizations can lead to more interpretable patient clusters and a better overall under-

standing of EMR data.

These works were based on many previous EMR analyses, such as disease subcatego-

rization [6] and patient visualization [7]. Additionally, I drew inspiration from works that

experimented with heterogeneous data sources [8, 9, 10, 11]. However, this work was the

first to combine these two aspects by directly using heterogeneous data sources to enhance

the analysis of EMR data.

Embedding vectors, which are a key component of my works, have also been explored

in other papers. Choi et al. computed embeddings directly from EMRs [12], but their

method relies on sequential information and does not mine external networks. Deep Patient

also learns embedding vectors from EMRs [13]. However, it learns representations of pa-

tients rather than individual medical entities and does not use external networks. Word2vec

provided the basis for much of the current research on learning efficient embeddings [14].

However, word2vec can only be applied to the text in patient records and cannot incorporate

medical domain knowledge. This thesis was the first work to enrich EMR data by learning

embedding vectors from external medical networks.

I also discuss a query expansion method that improves patient record retrieval [15]. This

method utilizes a topic model, and was the first to frame symptoms and treatments as

distinct languages that can be translated between one another. With this method, we can

retrieve more relevant patients when given a new patient, which can be used in search engines

for doctors.

Lastly, I discuss using heterogeneous data sources to study Alzheimer’s disease and Parkin-

son’s disease in the same feature space. Our work was the first to combine patients from

the two diseases into a single dataset. We found that a classifier trained on the combined

dataset better identified patients at risk for dementia. This study can save time for future

data collections by allowing for a joint analysis of both diseases.

I conclude the thesis with a discussion of how each of these works fits into the future of

computational healthcare and EMR analysis, as well as possible directions for additional

research.
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CHAPTER 2: PATIENT RECORD SUBCATEGORIZATION FOR
PRECISION TRADITIONAL CHINESE MEDICINE

Any single disease will manifest itself differently in different patients. This phenomenon

is the result of complex interactions between a patient’s environment and numerous phys-

iological and pathological factors, including genetic variation [16]. Consequently, patient

diagnosis and treatment in real-world settings are extremely difficult due to population vari-

ation, creating demand for precision medicine. Western medicine tends to use many one size

fits all over-the-counter drugs for common diseases, though increasingly available genomic

data has conceived new opportunities for precision medicine.

In contrast, traditional Chinese medicine (TCM), a style of medicine that incorporates

herbs and other natural products, has been leveraging personalized treatment as the core

principle of clinical practice for thousands of years. Although the exact number of people

who seek TCM treatment in the United States is unknown, the World Health Organization

(WHO) estimated that 1 in 5 adults regularly consumes herbal products [17]. TCM is

often used as a complementary and alternative medicine (CAM) and is especially effective

for certain diseases such as stomach ailments. Indeed, several healthcare institutions have

begun to integrate CAM therapies into their treatment programs, including the University

of California, Los Angeles1 and the University of California, San Francisco2 [18].

TCM doctors prescribe mixtures of herbs tailored to each patient based on a thorough

assessment of symptoms and physical condition; this is true even for common diseases. As

a result, two patients with similar symptoms may receive completely different treatments

due to the personalized nature of TCM. This manner by which TCM observes an indi-

vidual’s symptom patterns is reminiscent of precision medicine techniques. Thus, it could

complement modern precision medicine, which currently relies mostly on molecular profiles

[19].

Like in western medical settings, TCM doctors document symptoms that they observe

from their patients. However, diseases consist of two components in TCM. The first roughly

translates to disease entity, which is simply a set of symptoms. The second, unique to TCM,

is the syndrome, which has no direct parallel in western medicine as the translation would

suggest. Syndromes are best described as disharmonies at the core of the body. In western

medicine, doctors often must resort to prescribing treatments based on symptoms alone in

the event of failed differential diagnoses. On the other hand, TCM practitioners always

assess and treat patients based on combinations of the two aforementioned components.

1ccim.med.ucla.edu
2osher.ucsf.edu
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Figure 2.1: A comparison between TCM and modern western medicine. TCM prescribes
treatments for the underlying syndromes, while western medicine prescribes treatments
based on the symptoms.

The personalized, holistic treatment of a patient in TCM is especially useful for patients

with multiple, seemingly unrelated symptoms. For example, a particular patient might have

facial acne, throat irritation, mouth sores, dry mouth, and abdominal pain (Figure 2.1). In

western medicine, this patient may be separately referred to a dermatologist and a gastroen-

terologist, each of whom might prescribe superficial medications to alleviate the symptoms.

On the other hand, TCM doctors prescribe treatments for the patient’s symptoms (disease

entities) by determining their underlying causes (syndromes).

Unfortunately, this added dimension introduces an extra layer of complexity to TCM.

Because two patients with the same disease might have different underlying patterns, TCM

doctors will prescribe different herbs. This complication generates a necessity for subcatego-

rizing patient records, which separates patients into groups based on their blanket diseases,

and then further categorizes them into smaller clusters. For example, doctors will subcatego-

rize the patient in Figure 2.1 into the excess stomach heat or excess heart heat subsyndromes.

In addition, subcategorizations can help inexperienced doctors learn pattern analysis by

explaining specific medical cases. Most importantly, patient record subcategorization can

help doctors view all possible diagnoses for their patients, reducing the chance of misdiag-

nosis. Misdiagnoses across all fields not only present ongoing risks to the health and safety

of patients, but also cost the United States roughly $750 billion annually [20]. Furthermore,

doctors can cross-reference their records with existing databases to obtain comparisons help-

ful in determining trends in prescriptions and treatment.
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We conducted a study of this problem and aimed to accurately compute the similarity

between patient records in TCM, a key step toward accurate subcategorization. Computa-

tionally, the problem of subcategorization can be solved by applying a clustering algorithm to

group similar records together and then induce subcategories. Indeed, such a clustering ap-

proach was also the basis of our study. However, a straightforward application of a clustering

algorithm for subcategorization in which we directly match two patient records was unlikely

to be effective because it does not address the issue of variations in both symptoms and

herbs (i.e., comorbid symptoms and functionally similar herbs). For example, yellow tongue

coating and greasy tongue coating are comorbid symptoms, and often appear together for

patients with the excess heat syndrome. The crow-dipper and the Chinese goldthread are

functionally similar herbs, and are commonly prescribed to treat vomiting and abdominal

pain.

Moreover, TCM patients typically have ten to fifteen symptoms and are prescribed a

similar number of herbs, further complicating subcategorization. We concluded that we

must be able to match patient records inexactly by tolerating variations in both symptoms

and herbs, yet allowing related symptoms or herbs to somehow match with each other. This

was the main technical challenge that we addressed in this work.

Our approach, which we called PaReCat (Patient Record Subcategorization), uses a

dictionary-based embedding. Our hypothesis was that the prior knowledge of herb-symptom

associations in a TCM dictionary could be used to discover latent relationships induced by

comorbid symptoms and functionally similar herbs, thereby improving the quality of sub-

categorization. We performed extensive experiments on large-scale real-world datasets. As

expected, this led to more accurate matchings of patient records than baseline approaches,

and thus better subcategorization results. We also showed that PaReCat can be used im-

mediately in multiple TCM clinical applications, such as retrieving similar patients as well

as discovering meaningful cases of similar symptoms treated by different herbs and different

symptoms treated by similar herbs.

2.1 PROBLEM DEFINITION

PaReCat takes two entities as input. The first is a set of n TCM patient records, R =

{r1, . . . , rn}, where ri ∈ R is a patient record and consists of Hi = {h1, . . . , hp} and Si =

{s1, . . . , sl}. Here, Hi is the set of herbs and Si is the set of symptoms for patient i. The

second input is a set of known herb-symptom associations available in the TCM dictionary,

which are functions of herbs outputting sets of symptoms, f : H → S. An herb might

have zero, one, or multiple symptom associations. PaReCat outputs a set of patient record

5



Table 2.1: An illustration of the conundrum of identifying discriminative attributes in a
patient record.

Herbs prescribed only to
asthma patient

Herbs prescribed only to
diarrhea patient

Herbs prescribed to both
patients

Chinese liquorice P. flos extract A. propinquus
Cinnamon Japanese raisin tree Poor man’s ginseng
Ginseng Sarsaparilla White atractylodes rhizome

Tuckahoe Lesser galangal Barrenwort
Xanthium Chinese parsnip root

Yam extract
Bamboo extract

categories C = {c1, . . . , cm}, where each category cj ∈ C contains a subset of R.

We distinguished two kinds of categorizations. The first aims to group patients by con-

sidering both symptom and herbs. This allows us to create subcategories useful for cross-

referencing patient treatments and discovering prescription trends. The second involves

using only symptoms. This type of categorization emulates situations in which doctors are

presented with a new patient and would like to view similar ones. We did not consider

categorizations using only herbs because doctors do not prescribe treatments without first

identifying symptoms.

Desirable categories will contain patients that are closely related by their symptoms, pre-

scribed herbs, or both. These categories can be obtained by grouping similar patient records

together. However, simply clustering TCM patients by their symptoms and prescriptions is

ineffective. One cause for this difficulty is that TCM patients may display comorbid symp-

toms or be prescribed functionally similar herbs, but have very different ailments. These

situations occur because many symptoms, such as coughing or bleeding, are not specific to

any one disease.

In a similar vein, when prescribing treatments to patients, TCM doctors will assign batches

of herbs, some of which are intended to treat the underlying syndromes instigating the

observed symptoms. As a result, two patients who suffer from different diseases may be

prescribed very similar herbs if they have similar syndromes. For example, in our dataset,

a patient suffering from diarrhea was prescribed eleven herbs, seven of which were also

prescribed to an asthma patient (Table 2.1).

Conversely, TCM patients might have identical diagnoses, yet very different herb pre-

scriptions. This happens because the patients belong to different subcategorizations. For

instance, between two herbs h1 and h2 that treat the same disease, a doctor might opt to

prescribe h1 over h2 to a patient with chronic gastritis because the patient displays the ex-

6



Table 2.2: Two patients, both diagnosed with asthma, but prescribed completely different
herbs. We show fifteen of them here.

Asthma patient A Asthma patient B

Chinese ephedra White mulberry leaves
Tibetan apricot White mulberry bark

Gyspum fibrosum Mulberries
Chinese liquorice Chinese taxillus twig

Powdered water buffalo horn A. japonica
R. glutinosa Horned holly leaves

Chinese tree peony Leopard lily
Chinese figwort root A. propinquus
Weeping forsythia Chinese parsnip root

Japanese honeysuckle White atractylodes rhizome
Rhubarb root Roasted coltsfoot
F. thunbergii Barrenwort

A. asphodeloides Coixseed
Baikal skullcap Green mandarine peel
Chinese gourd Mandarine peel

cess heat syndrome, which h1 specifically treats, but h2 does not. In a particular case in our

dataset, a patient suffering from asthma was prescribed 66 different herbs, none of which

overlapped with another asthma patient’s prescription of 57 herbs (Table 2.2).

These circumstances occur only in TCM and do not arise in western medical cases, in which

doctors prescribe only a handful of drugs that each treats specific symptoms or diseases.

Systematic discovery of the same symptoms treated by variations of herbs and variations of

symptoms treated by the same herbs is essential in transforming empirical TCM data into

useful medical knowledge. This was the main goal of our study. PaReCat aims to capture

these complications by leveraging a dictionary containing prior TCM knowledge.

2.2 METHODS

In this section, we first give an overview of the model, then discuss each component in

detail.

2.2.1 PaReCat Overview

We started by obtaining a set of known herb-symptom associations in the dictionary [21],

which contained rules that map herbs to the symptoms they treat. For example, the crow-
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dipper had multiple entries, treating symptoms from vertigo to breathing difficulties. There

were 1,995 herbs, 1,635 symptoms, and 27,824 treatment rules in the dictionary.

From these associations, we constructed a bipartite network, G, in which one part of the

network consisted of symptoms and the other part consisted of herbs. Symptoms that were

associated with similar herbs were close to each other in the network, and vice versa.

We then applied a network embedding approach to learn a low-dimensional vector repre-

sentation for each herb and symptom. These low-dimensional vectors optimally preserved

the original associations between symptoms and herbs. We then computed the similarity

between each pair of features by using the cosine similarity between their corresponding

low-dimensional vectors. By using these similarity scores, which enabled inexact matchings

of symptoms and herbs, we determined the similarity between any two patients, even if they

shared no herbs or symptoms.

Finally, we applied agglomerative clustering on the patient record and learned the cluster

for each patient. The main novelty of our method lied in utilizing external knowledge, the

herb-symptom dictionary, to cluster TCM patient records.

2.2.2 Building the Bipartite Network

First, from the set of known herb-symptom associations, A : H → S, we constructed a

bipartite network, G = (H,S,E), in which the two disjoint sets, H and S, were the sets of

herbs and symptoms, respectively. In our dictionary, |H| = 1, 995 and |S| = 1, 635.

For each mapping h → s (h ∈ H, s ∈ S) in A, we added a node for h and a node for s

if they were not already in G, and created an edge between them. Thus, |E| = |A|. In our

dictionary, |E| = 27, 824.

2.2.3 Network Embedding

Next, we performed network embedding, which took as input the bipartite network, G.

We used a recently developed network embedding approach, diffusion component analysis

(DCA), to learn low-dimensional vector representations of the herbs and symptoms in the

network [22]. DCA has been shown to achieve state-of-the-art results in learning network

structure for gene function prediction [23].

DCA takes a network as input and outputs a low-dimensional representation for each

node in the network. It ensures that two nodes will have very similar low-dimensional

representations if they are topologically close in the network. Thus, related symptoms and

related herbs tend to have similar low-dimensional vector representations, enabling inexact

8



matchings. Between each pair of vectors, we computed the cosine similarity score to find

the association between the corresponding symptoms or herbs. Each symptom and herb

had a similarity score with every other symptom and herb. For example, Streptococcus

dysgalactiae, a bacteria strain that causes indigestion, and yinianjin, a powder consisting

of several herbs, had a similarity score of 0.85272. Indeed, a capsule with yinianjin as the

primary ingredient has been developed to treat children afflicted with S. dysgalactiae [24].

We computed a total of (|H| + |S|)2 similarity scores. The similarity score between a

feature and itself is always equal to 1. With these scores, we output a similarity matrix, M ,

of shape (|H|+ |S|)× (|H|+ |S|). The diagonal consisted of only 1’s, ensuring that an exact

matching was always treated as the most reliable match. Non-zero values off the diagonal

were in the range of [−1, 1]. These values captured the extent to which different symptoms

and herbs match with each other. Furthermore, we set a similarity score threshold s, and

only considered entity pairs with a similarity score larger than s. Scores in M below s were

changed to 0.

For any particular run of PaReCat, the set of features were symptoms or both symptoms

and herbs. As a standard step in text mining, we found that filtering out high-frequency

words and low-frequency words led to better results. Thus, we also introduced parameters

to remove herbs that appeared in fewer than βherbs patient visits (βherbs ∈ Z) and more than

αherbs of all patient visits (0.0 ≤ αherbs ≤ 1.0). Our model similarly removed symptoms for

αsymptoms and βsymptoms. If the features were only symptoms, then the values of αherbs and

βherbs were inconsequential.

After filtering, M became an m × m similarity matrix, where m ≤ |H| + |S| was the

number of symptoms and herbs post-processing. Note that the inexact matchings allowed

by matrix M surpass symptom-symptom and herb-herb matchings to also allow symptom-

herb matchings.

2.2.4 Enhancing the Patient Profile Matrix

We defined the patient profile matrix, P , to be an n×m matrix, where n was the number

of patients in the medical record and m was the number of symptoms and herbs, as in the

similarity matrix, M . Each row of P was a binary vector corresponding to a patient, where a

1 denoted that the patient was prescribed the herb or possessed the symptom corresponding

to the column, 0 otherwise.

After learning the similarity matrix, M , from the dictionary, we used it to enhance P . The

purpose of this enhancement was to make some zero elements (absent symptoms or herbs)

in the patient profile matrix non-zero if they had enough support from known associated
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symptoms and herbs. M provided support for any given element. Formally, we performed

the following matrix multiplication:

P ′ = P ×M (2.1)

where P ′ was the enhanced n×m patient profile matrix. After multiplication, the dimensions

were preserved such that each patient was still regarded as a sample, and each herb or

symptom a feature.

Intuitively, after the matrix multiplication, symptoms and herbs that had high similarity

to many other symptoms and herbs in the original patient vector tended to have higher

values. In effect, this augmented the original patient vector to potentially include additional

related symptoms and herbs.

2.2.5 Agglomerative Clustering

Lastly, we clustered on the enhanced patient vectors, which accommodated inexact match-

ings and enabled more accurate patient record matching. We could have used any similarity

function to compute the similarity between two patient records. In our experiments, we chose

cosine similarity as the affinity measure in the clustering, which was utilized in the similar

task of western medical record linkage [25]. Similarly, our enhanced vector representations

could also support any clustering algorithm. In our experiments, we chose agglomerative

clustering with average linkage, which has been shown to be useful for clustering herbs in

TCM data [26]. The advantage of such a hierarchical clustering algorithm was that we could

obtain a detailed subcategorization at different levels.

2.3 RELATED WORK

Our method was the first to combine patient record analysis and herb-symptom asso-

ciations for subcategorizing traditional Chinese medicine records. However, data-driven

approaches on TCM data have attracted more attention in recent years. In one particular

study, the authors employed Chi-Squared Automatic Interaction Detection (CHAID) deci-

sion trees to identify and differentiate syndromes associated with coronary heart disease,

performing classifications on the syndromes with k-core network analysis [27]. One study

combined network construction and cluster analysis to study relationships and associations

among TCM patient records [6]. However, it performed analysis with only symptoms and did

not leverage herb-symptom associations to solve the issues associated with comorbid symp-
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toms and functionally similar herbs in TCM. He et al. also used agglomerative clustering on

TCM data, but categorized herbs based on their efficacies in order to analyze their chemical

components [26]. Roque et al. used cosine similarity between patient records to analyze

disease co-occurrence [25]. However, they did not consider treatment information, which

is crucial to patient record subcategorization. Furthermore, methods designed for western

medical records are difficult to apply to TCM records because firstly, some symptoms (e.g.,

vacuity and depletion) are unique to TCM [28]. Secondly, TCM generally has more symp-

toms and herbs per patient. Our experimental results confirmed that the methods proposed

to cluster western medical records indeed perform poorly on TCM datasets.

2.4 DATASET DESCRIPTION

We conducted experiments on two datasets to quantitatively and qualitatively evaluate

the effectiveness of PaReCat. After obtaining clusters of patient records, we evaluated with

disease labels in the patient records as the ground truth: records that had the same label

were expected to be in the same cluster.

We used a TCM textbook containing 2,276 patient medical records. These patient medical

records were organized into a three-level hierarchy based on their identifying categories.

There were three categories at the topmost level, which we refer to as level 1: women and

children, internal medicine, and surgical acupuncture. The middle level, which we call level

2, was more specific, and included categories such as exogenous seasonal diseases. The

bottommost level, or level 3, included specific ailments such as the common cold.

We used these disease categories as cluster labels for their corresponding patient records.

There were three level 1 labels, 51 level 2 labels, and 274 level 3 labels. Because we could

interpret these labels as the ground truth, this dataset was ideal for quantitative evaluation.

In addition to the medical textbook, we further evaluated our model on a much larger

medical record containing 9,529 anonymous patients, obtained from a major hospital in

China. These patients all had some variety of stomach disease. This dataset did not have

detailed labels for quantitative evaluation. We used it to understand whether our approach

could offer interesting insights into stomach disease subcategories. The doctor who treated

these patients manually assessed the subcategorization results.
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Figure 2.2: The disease label hierarchy in our TCM dataset.

2.5 EXPERIMENTAL DESIGN

2.5.1 Setting the Parameters

Tuning values of αsymptoms, βsymptoms, αherbs, and βherbs, which were the thresholds control-

ling the filtering of frequent and rare symptoms and herbs, we achieved the best results for

clustering without embedding on symptom features with αsymptoms = 0.05 and βsymptoms = 1.

For clustering without embedding on symptom and herb features, we obtained the best

results with αsymptoms = 0.2, βsymptoms = 5, αherbs = 0.1, and βherbs = 2. To strengthen

our baseline, we fixed these optimal parameters for their corresponding counterparts with

embedding (i.e., clustering with embedding on symptom features also used αsymptoms = 0.05

and βsymptoms = 1). Tuning s for clustering with embedding, we achieved the best results for

symptom features with s = 0.96 and for combined symptom and herb features with s = 0.98.

2.5.2 Evaluation Metrics

We scored the quality of the clusters with the adjusted Rand index [29]. It has been widely

used in evaluating clustering results [30], defined as
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where nij, ai, and bj are values from the contingency table generated from the overlap

between two groupings X = {X1, . . . , Xr} and Y = {Y1, . . . , Ys}. Each entry nij denotes
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Table 2.3: Best performances for each feature type, measured by the adjusted Rand index.

Symptoms Symptoms and Herbs

k -means 0.0174 0.0770
Spectral 0.0653 0.0843

Agglomerative 0.1613 0.2717
PaReCat 0.1672 0.2754

the number of objects in common between Xi and Yj : nij = |Xi ∩ Yj|. ai denotes the sum

of the entries for the group Xi, and bj denotes the sum of the entries for the group Yj. A

higher score indicates a better clustering with respect to the ground truth. The adjusted

Rand index is in the range of (−∞, 1].

2.5.3 Quantitative Evaluation

In addition to agglomerative clustering, we employed k -means, a common clustering tech-

nique, and spectral clustering, which has been used to cluster western medical records for

the task of predicting healthcare costs for individuals [31].

The adjusted Rand indices for k -means, spectral clustering, and agglomerative clustering

are shown in Table 2.3. For clustering without embedding (first three rows), we note that

agglomerative clustering performed the best, as expected.

The bottom two rows of the table show the results comparing agglomerative clustering

without and with embedding (baseline and PaReCat, respectively). We observed improve-

ment by embedding known herb-symptom associations for both types of features. Embedded

feature vectors of symptoms and herbs achieved an adjusted Rand index of 0.2754, which

was higher than that of feature vectors without embedding, 0.2717. Similarly, embedded

feature vectors of symptoms alone achieved an adjusted Rand index of 0.1672, an improve-

ment over that of feature vectors without embedding, 0.1613. The clustering results were

very sensitive to s. For features of both symptoms and herbs, decreasing s to 0.9 lowered

the adjusted Rand index of the resulting clusters to 0.22142.

Though the improvement was small, we showed that PaReCat can indeed improve cluster-

ing performance by adding external information. Furthermore, we can gain new knowledge

from clusters that mismatch the ground truth.
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2.5.4 Qualitative Evaluation

To investigate whether PaReCat could effectively cluster patients into informative sub-

categories, we applied PaReCat to the larger set of stomach disease medical records. Here,

we randomly selected three clusters and had the TCM doctor who treated the patients ver-

ify PaReCat’s effectiveness. The expert found two of them to be especially coherent and

informative (Tables 2.4 and 2.5, where each row denotes a patient record).

In the first cluster (Table 2.4), all of the patients were diagnosed with chronic gastritis. In

addition to this similarity, the records stated that these patients showed syndromes of either

qi deficiency or yin deficiency. The related symptoms here were weakness and pale tongue

for qi deficiency, dry mouth and dry stool for yin deficiency, and deep, thready pulse for both

deficiencies. The corresponding herbs for these patients specifically target qi deficiency or

yin deficiency. For example, poor man’s ginseng, A. propinquus honey, tuckahoe, and fried

white atractylodes strengthen the spleen. R. glutinosa, female ginseng, and Chinese peony

are blood enrichers. These benefits supplement and fortify the qi and yin. The symptoms

and herbs of interest are bolded in the table. This example illustrates how TCM treats its

patients by identifying the underlying syndromes.

We show another meaningful cluster in Table 2.5. The records stated that all of the

patients had symptoms associated with the excess heat syndrome, such as coughing, chest

tightness, dry mouth, and dry stool. Consequently, the patients were prescribed herbs specif-

ically for these symptom-syndrome combinations. We can see that there were not many over-

laps in symptoms and herbs among the patients, which may be the reason that traditional

clustering methods failed to group the patients together. In spite of this difficulty, PaReCat

successfully clustered the patients by using embedding-based similarity measurements.

2.6 APPLICATIONS OF PARECAT

As mentioned in the previous section, PaReCat can be used to achieve high quality,

informative subcategorizations of patients. Here, we show how we can use them in three

different applications to directly support doctors.

2.6.1 Similar Patient Retrieval

PaReCat can be used to retrieve similar patients. We show the results of a sample retrieval

here. We extracted the five most similar pairs of patients as computed by PaReCat, of which

we highlight two.
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Table 2.4: In this subcategorization example, each row is a patient with qi or yin deficiency
syndromes.

Diseases Symptoms Herbs

chronic
gastritis

weakness; pale
tongue; crenated

tongue; yellow tongue
coating; deep,
thready pulse

A. propinquus; bugbane; Chinese goldthread;
coixseed; crow-dipper; female ginseng; fried

white atractylodes; ginger; gingered magnolia
bark; mandarine peel; Mongolian dandelion; P.

arecae; poor man’s ginseng; tuckahoe

chronic
gastritis

weakness; weight
loss; hiccups; dry

mouth; recurrent oral
ulcers; joint pain; lack
of sleep; pale tongue;

tongue lacerations;
yellow tongue coating;
deep, thready pulse

A. asphodeloides; A. propinquus honey; Baikal
skullcap; calamus; Chinese figwort; Chinese

liquorice; crow-dipper; female ginseng; A. lancea;
fried barley; fried Chinese peony; fried jujube;
fried white atractylodes; gypsum fibrosum;

Mongolian dandelion; pine silk tree; poor man’s
ginseng; sweet wormwood; tuckahoe

chronic
gastritis;

gastroptosis

abdominal pain; acid
reflux; halitosis; dry
mouth; poor sleep;

hair loss;
dysmenorrhea; pale
tongue; crenated

tongue

A. propinquus; Baikal skullcap; bitter orange;
black sesame; Chinese knotweed; Chinese liquorice
honey; Chinese thuja leaves; Chinese tree peony;
curcuma; female ginseng; fried jujube; fried
white atractylodes; R. glutinosa ; red sage;

tuckahoe

hiatal hernia;
chronic

gastritis;
reflux

esophagitis

abdominal distension;
acid reflux; belching;

dry mouth;
weakness; dry
stool; poor sleep

A. propinquus; Baikal skullcap; bitter orange;
Chinese goldthread; Chinese liquorice honey;

crow-dipper; cuttlebone; F. thunbergii ; female
ginseng; fried Chinese peony; gingered

magnolia bark; immature bitter orange;
Japanese Inula ; perilla stem; poor man’s

ginseng; red thorowax; redstem wormwood;
T. ruticarpum ; turmeric rhizome
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Table 2.5: In this subcategorization example, all patients had symptoms associated with the
excess heat syndrome.

Diseases Symptoms Herbs

chronic
gastritis;

URTI

acid reflux; heartburn; dry
mouth; halitosis; belching;

excess phlegm; poor appetite;
chest tightness; coughing;
dry stool; cracked tongue

red sage; crow-dipper; monkeygrass;
umbrella polypore; magnolia bark; A.

propinquus honey; Oriental water-plantain;
perilla leaf; Chinese liquorice honey; yam

extract; Chinese cornel dogwood; American
silvertop; R. glutinosa; gypsum fibrosum;

Lophatherum; Chinese gourd; bishop’s weed;
cinnamon; tuckahoe

chronic
gastritis

acid reflux; coughing; white
sputum; dry stool; vomiting;

hypouresis

A. chinensis; nacre; cuttlebone; tuckahoe;
Chinese goldthread; peach seeds; Chinese
liquorice; Baikal skullcap; crow-dipper;
Chinese peony; gingered magnolia bark;

Chinese rhubarb; citron fruit; bitter orange;
perilla stem

chronic
gastritis

abdominal pain; belching;
heartburn; acid reflux;

constipation; coughing;
dark, crenated tongue

crow-dipper; Chinese liquorice honey; bitter
orange; Chinese goldthread; gingered
magnolia bark; red thorowax; bamboo

extract; Mongolian dandelion; fried Chinese
peony; O. diffusa; turmeric rhizome;

cuttlebone; Baikal skullcap

chronic
gastritis

abdominal pain; fullness;
chest tightness; lumbago;

coughing; dry mouth; dry
stool; dark, swollen tongue;

greasy tongue coating;
thready pulse

perilla leaf; fried white atractylodes;
bugbane; Chinese bellflower; red thorowax;
Baikal skullcap; tuckahoe; immature bitter

orange; Chinese goldthread; ginger; Japanese
Inula; Java grass; mandarine peel;

crow-dipper; curcuma; gingered magnolia
bark; cinnamon; chicken gizzard; American

silvertop; bitter orange; bishop’s weed
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Table 2.6: Example of a pair of similar patients with cold and heat syndromes.

Diseases Symptoms Herbs

chronic
gastritis

body chills; dry mouth;
heat excess; cold hands and

feet; yellow complexion;
watery stool; bitter taste;
glossodynia; halitosis; dark
red, swollen tongue; yellow

tongue coating

poor man’s ginseng; fried white atractylodes;
Chinese cinnamon; Chinese liquorice;

Chinese goldthread; T. ruticarpum; Amur
cork tree; female ginseng; cinnamon; Chinese
plantain; Chinese tree peony; R. glutinosa;

shrubby sophora; gypsum fibrosum; common
rush; fried A. lancea

chronic
gastritis

stomach pain; cold hands
and feet; body chills; dry
mouth; halitosis; dizziness;
watery stool; bitter taste;
sore gums; dark red, swollen

tongue; yellow tongue base
coating

A. propinquus; fried white atractylodes;
kudzu; Chinese goldthread; Chinese liquorice
honey; fried gardenia; red thorowax; Chinese

tree peony; bamboo extract; R. glutinosa;
Mongolian dandelion; fried Chinese peony;

gypsum fibrosum; Baikal skullcap; A.
asphodeloides; T. ruticarpum; female

ginseng; Chinese rhubarb

According to the doctor, the first pair of patients (Table 2.6) shared the underlying syn-

drome of cold deficiency, represented by symptoms such as body chills and cold hands and

feet. In addition, they also showed symptoms for the heat syndrome, such as dry mouth,

bitter taste, halitosis, and yellow tongue coating. These two patients’ conditions are typical

examples of cold and heat syndromes. Consequently, doctors prescribed both cold and heat

treatment herbs.

The second pair of patients were both diagnosed with upper respiratory tract infection

(URTI) in addition to chronic gastritis (Table 2.7). Recall that our method did not utilize

the disease diagnosis information in clustering. However, we still managed to find these

patients, despite the fact that they shared no symptoms. Among the herbs shared by the

two patients, four of them (powdered water buffalo horn [32], Japanese apricot [33], mint [34],

and woad root [35]) are specific treatments for URTI. Our methods successfully identified

these four herbs, clustering the two patients together.

2.6.2 Similar Symptoms with Different Herbs

Another application is identifying patients that have similar symptoms but are treated

with different herbs. Conversely, identifying patients with different symptoms but treated

with similar herbs is also an interesting task. These cases are unique to TCM, since western

medicine tends to treat the same symptoms with the same drugs. Our method was able to
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Table 2.7: Example of a pair of similar patients with no common symptoms.

Diseases Symptoms Herbs

chronic
gastritis;

URTI

cracked tongue; pale tongue;
bloating; stomach pain;

weakness; epigastric chills;
white tongue coating;

belching; reddish tongue;
epigastric pain; bowel

discomfort; abdomen chills

ginger; Chinese liquorice honey; mint;
crow-dipper; Chinese tree peony; Chinese

cinnamon; powdered water buffalo horn;
fried white atractylodes; shrubby sophora;

fried coixseed; weeping forsythia; bitter
orange; tuckahoe; Japanese apricot;

Chinese goldthread; American silvertop;
hyacinth orchid; woad root; Chinese
parsnip root; lesser reedmace; Baikal

skullcap; fried Chinese peony; Japanese
honeysuckle; poor man’s ginseng; costus;

female ginseng

insomnia;
chronic

gastritis;
URTI

dry mouth; thready pulse;
thirst; dry throat; dry lips;

greasy tongue coating;
swollen, crenated tongue

Chinese liquorice honey; crow-dipper; mint;
weeping forsythia; bitter orange; tuckahoe;
Japanese apricot; Chinese goldthread;

Baikal skullcap; fried Chinese peony; female
ginseng; costus; ginger; Chinese tree peony;
powdered water buffalo horn; shrubby
sophora; American silvertop; woad root;

Chinese parsnip root

Table 2.8: Two patients clustered together. They had similar symptoms, but were prescribed
herbs that treat different diseases.

Diseases Symptoms Herbs

superficial
gastritis

dry mouth; dry stool;
heartburn; halitosis;

insomnia; abdomen chills;
belching; bloating; yellow

tongue coating; acid
reflux; bitter taste

Chinese goldthread; Chinese liquorice honey;
sandalwood; ginger; crow-dipper; cuttlebone;

immature bitter orange; female ginseng;
ginger; Chinese gourd; red sage; Java grass;
bitter orange; Baikal skullcap; M. toosendan

gallbladder
polyps

dry mouth; thready pulse;
insomnia; bloating; acid

reflux; yellow tongue
coating; frequent urination;

cracked tongue

O. diffusa ; immature bitter orange; Chinese
gourd; cuttlebone; bitter orange; Baikal
skullcap; monkeygrass; Chinese figwort;

ginger; fried Chinese peony; female ginseng;
mandarine peel; crow-dipper; gingered

magnolia bark; Chinese cinnamon; Chinese
rhubarb; vinegared chicken gizzard
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identify these two categories of patients.

The first case (similar symptoms, different herbs) is especially important, and plays a

large role in TCM misdiagnoses. An inexperienced doctor may see a patient with symptoms

similar to one he or she had previously treated. Traditional methods might confound patients

with similar symptoms. However, PaReCat can view previous medical records, taking into

account both symptoms and herbs, and help new doctors improve decision-making when

facing similar circumstances.

For example, a pair of patients in our medical record both displayed dry mouth, bloating,

insomnia, acid reflux, and a yellow tongue coating (Table 2.8). However, one patient was

treated with Oldenlandia diffusa and vinegared chicken gizzard. This patient suffered from

gallbladder polyps, which the herbs specifically treat (O. diffusa [36], vinegared chicken

gizzard [37]). On the other hand, the other patient was not treated with these herbs, and

was instead diagnosed with superficial gastritis.

2.6.3 Different Symptoms with Similar Herbs

In addition to patients with similar symptoms but different herbs, it is interesting to

study patients that have different symptoms but are treated with similar herbs. Table 2.9

shows two patients that had very different symptoms. However, they were prescribed similar

herbs. M. toosendan is a particular herb of note, which specifically treats liver issues [38].

Indeed, both patients were diagnosed with liver ailments (hepatic steatosis and cirrhosis).

This relationship is not uncommon to TCM; doctors often prescribe a multitude of herbs as

a supplement to a main herb (in this case, M. toosendan). PaReCat successfully filtered out

ambiguous herbs to discover these relationships.

2.7 CONCLUSIONS AND FUTURE WORK

Mining subcategorizations from TCM medical records is an important task for precision

medicine. In this work, we proposed a novel patient record subcategorization model called

PaReCat. PaReCat was able to obtain patient subcategorizations that characterize the

underlying syndromes behind the observed symptoms and herbs. It uses a novel dictionary-

based embedding approach to solve challenges associated with comorbid symptoms and

functionally similar herbs. We performed experiments on two real-world datasets and ob-

served substantial improvement in patient subcategorizations created by PaReCat. We also

verified the subcategorizations to be meaningful for understanding variations of stomach

diseases.
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Table 2.9: Two patients clustered together with different symptoms, but treated with similar
herbs. Shared herbs are bolded.

Diseases Symptoms Herbs

hepatic
steatosis;

gallbladder
inflammation

weakness; laryngitis; white
tongue coating; dark, purple

tongue; dark, red tongue;
deep, thready pulse

ginger; curcuma; vinegared C.
yanhusuo; cuttlebone; red thorowax;

bitter orange; E. ulmoides; monkeygrass;
R. glutinosa; Baikal skullcap; Chinese
peony root; M. toosendan ; lotus leaf;

vinegared Java grass; female ginseng;
gardenia

cirrhosis

weakness; pale tongue;
dizziness; back pain; abdomen
chills; chest tightness; weight
loss; belching; blurred vision;

chest pain

Chinese liquorice honey; magnolia bark;
perilla leaf; cuttlebone; bitter orange;

Baikal skullcap; Chinese goldthread; fried
Chinese peony; ginger; vinegared Java

grass; fried A. lancea; female ginseng;
mandarine peel; crow-dipper; pachouli;

vinegared C. yanhusuo; T. ruticarpum;
false starwort; perilla stem; M. toosendan

PaReCat’s generality allows it to be applied to any TCM dataset to discover interesting

subcategories that are immediately useful to not only research, but also clinical applications.

PaReCat is completely unsupervised, which has the advantage of requiring no manual work.

However, to improve the accuracy of subcategorization, we can explore semi-supervised

subcategorizations in which we allow a doctor to provide feedback on the clustering results,

which can then be used as labels for additional clustering.

To further improve our method, we can employ natural language analysis. One issue

in the data that could be solved by natural language analysis was that textual differences

separated essentially identical herbs and symptoms. For example, a doctor might prescribe

a crushed variant of an herb to a patient, creating a new herb in the record, though the

main ingredient remains the same.
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CHAPTER 3: INTEGRATION OF ELECTRONIC MEDICAL RECORDS
WITH MOLECULAR INTERACTION NETWORKS AND DOMAIN

KNOWLEDGE FOR SURVIVAL ANALYSIS

As discussed in the introduction, with more accessible EMR databases, doctors can apply

stronger statistical methods to accomplish previously unfeasible tasks, such as relationship

mining and clinical prediction of survival (CPS). Relationship mining allows doctors to

discover useful associations among entities in medical records, including novel drug usages

and adverse drug events [39]. On the other hand, CPS allows doctors to predict a new

patient’s probability of survival, which can help hospitals optimize resource allocation and

treatment planning. In particular, accurate survival estimates for terminally ill patients can

prevent inappropriate therapies and avoid unnecessary toxicity [40].

Analyses such as the two aforementioned applications utilize patient features extracted

from EMRs. These features include test results, clinical notes, symptoms, diagnoses, and

medical history. However, there are two main challenges that frequently appear with these

features:

1. Missing data. Many methods assume the availability of all features. However, this

assumption typically does not hold for many EMR databases. One reason is that

doctors do not perform all existing medical tests on each patient. Other reasons

include incomplete medical records or inconsistent text data in the form of clinical

notes. Mean imputation, the most common method of filling missing values, has been

shown to introduce noise rather than reduce it [41].

2. Semantic mismatching. Patients with similar but distinct features may be judged to

be dissimilar. In the traditional vector space model, in which each unique word in the

vocabulary occupies a dimension, patient records require exact matches of features in

order to be considered similar (Table 3.1). This problem of semantic mismatching has

been addressed with methods such as word2vec, which trains similar representations

for similar words [14]. However, word2vec has had limited success in the context of

medical records [12]. Comorbid symptoms and functionally similar herbs, described in

the previous chapter, contribute to semantic mismatching.

Because of these challenges, existing models have been unable to effectively group similar

EMRs together. Fortunately, genetic and protein interactome databases have been rapidly

growing due to advances in high-throughput experiments [42] and improved biocuration

via text mining [43]. These interactomes typically take the form of molecular interaction

networks. We can analyze the topologies of these networks and extract meaningful patterns.
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Table 3.1: An example of the semantic mismatching problem in the traditional vector space
model. The two patients in this table have similar cancer diagnoses (adenocarcinoma and
adenosquamous carcinoma) and synonymous symptoms (halitosis and bad breath). Despite
this, standard models do not judge the two patients to be similar.

Adenocarcinoma
Adenosquamous

carcinoma
Halitosis Bad breath

patient1 X × × X
patient2 × X X ×

In this work, I expanded on PaReCat’s enhancement of patient records by further exploring

the idea of guilt by association: associated or interacting entities in a network are more likely

to be functionally related [44]. However, instead of utilizing just an herb-symptom dictionary,

I included a molecular interaction network. Using this network, my study revealed implicit

relationships among nodes with common neighbors. I also integrated medical records as well

as existing domain knowledge into this network to help solve the primary EMR challenges

of missing data and semantic mismatching.

I named this framework the HEterogeneous Medical record network (HEMnet), which

consists of information derived from EMRs, molecular interaction networks, and domain

knowledge. HEMnet was the first method to integrate medical records and molecular inter-

actions into a single network.

I showed that efficient node representations trained from HEMnet can be used to en-

hance EMRs. Furthermore, I showed that the enhanced EMRs can better group similar

patients whose records may otherwise be misinterpreted due to missing data and semantic

mismatching.

Though I performed experiments in the context of EMR enhancement, HEMnet is a

general model that can be applied to many different tasks.

3.1 HEMNET OVERVIEW

3.1.1 Definition of HEMnet

HEMnet is a network that consists of nodes and edges associated with different types of

information. Formally, we defined HEMnet as a graph G = (V,E,R), where V is the set of

typed nodes (i.e., each node belongs to a specified type), E is the set of typed edges, and R

is the set of edge types. An edge e ∈ E in HEMnet is an ordered triplet e = {u, v, r}, where

u, v ∈ V are typed nodes and r ∈ R is the corresponding edge type.
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In our study, we utilized four distinct categories of edges to create HEMnet. The first

three categories were drawn from external databases, while the last category drew directly

from the EMR database.

1. Protein-protein interaction network. This network was based on HumanNet, an

external network of protein-encoding genes [45]. For a functional linkage between two

proteins p1 and p2, we created a node for p1, a node for p2, and an undirected edge

{p1, p2} in HEMnet. This was the molecular interaction network.

2. Herb targets. This database contained herbs and the proteins they target, curated

from expert knowledge and medical literature. We created a node h, a node p, and an

undirected edge {h, p} if an herb h targeted a protein p. This was domain knowledge.

3. Herb-symptom dictionary. This database is a TCM textbook consisting of herbs

and the symptoms they treat, also curated from expert knowledge and medical litera-

ture. We created a node h, a node s, and an undirected edge {h, s} if an herb h treated

a symptom s in the dictionary. This was domain knowledge.

4. Electronic medical records. We directly added co-occurrence edges from each med-

ical record. For example, if a patient was diagnosed with cancer type c and prescribed

a drug d, then we created a node c, a node d, and an undirected edge {c, d}. We

repeated this for all elements in each patient’s medical record.

Because of the sparsity of patient records, the external information was critical in dis-

covering relationships among EMR entities that may have otherwise been hidden. Overall,

|V | = 11, 911, |E| = 379, 715, and |R| = 23 for HEMnet in our experiments. It is important

to note that only 449 of the nodes were EMR features, and that the remaining nodes were

proteins.

Another feature of note is that the HEMnet is unweighted, which stems from the assump-

tion that all its relationships are equally reliable. We made this assumption because our

original databases were derived from high-quality experiments. However, this would weight

future edges of lower confidence, such as those obtained from text mining, the same as our

current edges. We discuss this limitation in the conclusions.

3.1.2 Network Embedding

Like with PaReCat, we utilized network embedding to reduce the dimensionality of the

nodes down to vectors. However, instead of diffusion component analysis (DCA), we used
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Figure 3.1: The pipeline for HEMnet, our proposed heterogeneous information network con-
sisting of electronic medical records, molecular interaction networks, and domain knowledge.
We trained network embedding vectors on HEMnet, obtaining low-dimensional vector rep-
resentations for each node. With these vectors, we enhanced the original medical records
and then clustered the patients into two groups.

a recently proposed embedding method, ProSNet [46], to infer relationships among its con-

stituent nodes.

ProSNet was originally developed to discover functionally similar proteins from large bi-

ological networks across multiple species. It takes a heterogeneous network as input, on

which it performs a novel dimensionality reduction algorithm to optimize a low-dimensional

vector representation for each node. The vectors of two nodes are co-localized in the low-

dimensional space if the nodes are close to each other in the heterogeneous network.

A key contribution is that ProSNet obtains low-dimensional vectors through a fast online

learning algorithm instead of the batch learning algorithm used in previous works [23]. In

each iteration, ProSNet samples a path from the heterogeneous network and optimizes the

vectors based on this path instead of all pairs of nodes. Therefore, it can easily scale to

large networks containing millions of edges and nodes, making it suitable for training on

HEMnet. In our experiments, we chose our vectors to be of the recommended number of

500 dimensions.
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3.1.3 Enhancing the Patient Profile Matrix

After generating low-dimensional vector representations of nodes in HEMnet, we tackled

the problems of missing data and semantic mismatching in the patient records.

As in the previous chapter, we defined the raw patient profile matrix, P , to be an n×m
matrix, where n was the number of patients and m was the number of features. In our

experiments, n = 133 and m = 449. Unlike in PaReCat, where we used only binary values,

each row here consisted of a patient profile with binary, categorical, discrete, or continuous

values, depending on the corresponding feature. For example, drugs were continuous fea-

tures because they were recorded as dosages, while metastasis sites were categorical features

that included multiple locations in the body. For our particular dataset, we binarized the

categorical features.

We generated the enhanced patient profile matrix, P ′, by multiplying P with another

matrix, M , computed from pairwise embedding vector cosine similarity scores (Equation

2.1), and then normalized.

With this operation, we simultaneously solved the problems of missing data and semantic

mismatching for each patient by filling in missing features that were highly similar to existing

features. For example, a patient that had halitosis in his or her records would receive a non-

zero value for bad breath, as these two symptoms were likely to have similar neighbors, and

thus similar embedding vectors. The overview of this pipeline can be seen in Figure 3.1.

This operation is robust to extreme values. This is because min-max normalization does

not allow features with naturally high values to dominate the enhancement process. For

example, even if we were to multiply all values of a medical test by some arbitrary constant,

then we would retain the normalized values of the feature, and P ′ would not change.

Additionally, this enhancement leads to interpretable results. For example, previously

non-zero values of binary features such as symptoms might have a fractional value in the

enhanced matrix, since min-max normalization guarantees the values to be between 0 and 1.

These resulting values can be interpreted as the probability that the patient suffers from that

symptom. However, non-binary values, such as medical tests, are not as interpretable in the

enhanced matrix, which is a limitation of our approach. In the future, it would important

to obtain more interpretable representations of patients for all features after enhancement.

3.2 RELATED WORK

Though our work was the first to utilize molecular interaction networks in conjunction

with electronic medical records, it drew inspiration from many tasks and networks.
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A previous work integrated genetics by linking EMR data to biobanked blood samples [47].

However, they used patient-matched DNA samples and patient genetic data rather than prior

domain knowledge. Deep Patient is a previous work that also learns embedding vectors from

EMRs [13]. However, it learns representations of patients rather than individual medical

entities and does not use molecular information networks. Med2Vec is an algorithm that

also learns efficient representations of medical concepts, but its joint optimization process

relies on sequences of multiple visits [12], which is less applicable to inpatients. Word2vec,

the inspiration for Med2Vec, provided the basis for much of the current research on learning

efficient word embeddings [14]. However, word2vec can only be applied to patient records

directly and cannot incorporate molecular interaction networks or domain knowledge.

Many related works have implemented data mining techniques on heterogeneous net-

works, such as bibliographic networks [8, 9], gene-phenotype networks [10], and social media

networks [11]. However, none of these studies focused on EMR tasks. A previous study per-

formed similarity searches within heterogeneous information networks [48]. It also exploited

the idea of paths within a heterogeneous network, but instead used them for similarity com-

putations rather than for vector optimization. Caballero and Akella also performed data

imputation on EMR data [49]. However, they used an expectation-maximization method to

fill out missing values rather than domain knowledge.

3.3 DATASET DESCRIPTION

The data we used was curated from a hospital that also provides traditional Chinese

medicine (TCM) services. We chose this dataset for our experiments because semantic

mismatches, caused by comorbid symptoms and functionally similar herbs, are even more

prevalent in the TCM field, as discussed in the previous chapter. Thus, if our method could

yield strong results on this dataset, it would also work well for EMR datasets in most other

domains. All patients in the data were diagnosed with some type of non-small-cell lung

carcinoma (NSCLC), including adenocarcinoma, squamous-cell carcinoma, adenosquamous

carcinoma, and papillary adenocarcinoma. In addition to TCM herb prescriptions, patients

received standard western medical treatments.

In our experiments, we only considered the first visit that each patient made to the

hospital. Overall, we selected 133 patients with high degrees of missing data. Patients in

the dataset had six feature types: medical history, medical test results, prescribed herbs,

prescribed drugs, symptoms, and syndromes. Here, the term syndrome again denotes an

underlying pattern that is specific to TCM [50]. In total, there were 449 unique features in

the dataset. On average, each record was missing 407 of the 449 possible features, which
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provided a unique challenge of both missing data and semantic mismatching.

In addition, the database contained each patient’s survival information as the number of

months before the final event. A patient’s final event was either hospital discharge or death.

The data was right-censored (i.e., if there was no recorded death event, then death occurred

at some unknown time after hospital discharge).

3.4 EXPERIMENTAL DESIGN

Typical cancer dataset studies might cluster patients based on a particular characteristic

or set of characteristics (e.g., gene expression profiles) [51]. Thus, we identified features that

discriminate patients who develop metastases or die from those who remain metastasis-free

[52]. To this end, we clustered patients into two groups. Framing this as an unsupervised

binary classification task in which a patient’s medical record determined if he or she was

likely to survive, a good clustering was thus one that had a cluster with a significantly better

survival rate than the other.

In summary, our method generated HEMnet, trained network embedding vectors, and

then created the enhanced patient profile matrix, P ′. We compared the performance of our

enhanced matrix with two baselines. The first baseline, which we refer to as the raw baseline,

directly used the raw profile matrix, P . The second baseline, which we refer to as the mean

imputation baseline, replaced each missing feature in the raw profile matrix with the average

of the available values to generate a dense profile matrix, denoted by Pmean. We compared

the performances of these three profile matrices in identical clustering tasks. In the following

sections, we discuss cancer subtypes, the clustering process, and our evaluation methods.

3.4.1 Cancer Subtypes

Different cancer types are affected by different factors. For example, age has been shown

to be negatively correlated with survival rates for patients with glioblastoma multiforme [53].

On the other hand, younger breast cancer patients statistically have worse prognoses than

older patients [54]. Therefore, we separated the patients in our database into two groups:

one of squamous-cell lung carcinoma (SCC) patients and the other of non-squamous-cell

non-small-cell lung carcinoma (non-SQ NSCLC) patients. There were 43 SCC patients and

90 non-SQ NSCLC patients in our dataset. We performed experiments and analysis on these

two cancer subtypes independently, but built HEMnet with all available records.
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3.4.2 Clustering

We generated two clusters from each method’s patient profile matrix. Note that the

survival information was excluded from the clustering process. We did not necessarily use

all features during clustering, but rather combinations of feature categories. For example, we

clustered on profile matrices containing only drug features, profile matrices containing drug

and medical history features, profile matrices containing all available features, etc. Using

symptom and medical history features (a total of 57 features) yielded the best performance.

In addition, we performed dimensionality reduction with principal component analysis

(PCA) to dampen the impact of highly correlated features. From the reduced profile matrix,

we computed a dissimilarity matrix using pairwise cosine distance, which is commonly used

to calculate the dissimilarity between two documents [55]. We ran k-means for two clusters

on the resulting dissimilarity matrix.

3.4.3 Survival Analysis (Quantitative Evaluation)

In order to analyze the difference between the survival rates of two given clusters, we first

computed the survival curves using the Kaplan-Meier estimator, one of the most frequently

used methods in survival analysis [56]. After estimating the survival functions of both groups,

we determined whether they were significantly different by comparing the two curves with

the log-rank test [57]. The log-rank test computes a χ2 statistic and a corresponding p-

value to indicate if two survival functions are significantly different. We performed survival

analysis with the R package survival1. Recall that a clustering is of high quality if one

cluster possesses a significantly higher survival rate than the other.

When reporting the means of survival functions, we used a restricted mean. Since final

events were not always deaths in the dataset, the corresponding survival curve estimates did

not necessarily go to zero, which resulted in undefined means. Thus, we set the upper limit

to be some constant u, so that the restricted mean signified the number of months out of

the first u months that each group was expected to experience [58].

3.4.4 Feature Analysis (Qualitative Evaluation)

Throughout our discussion, we denote the cluster with longer survival clong and the cluster

with shorter survival cshort. After obtaining clong, we wished to identify the features that

were responsible for its higher survival rate. Although we only used a subset of features

1https://CRAN.R-project.org/package=survival
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Table 3.2: SCC patient survival time statistics with HEMnet.

Cluster Size Restricted Mean Restricted Mean Standard Error Median

clong 28 20.7 2.01 22.7
cshort 15 11.0 1.60 11.0

during the clustering phase, we analyzed all features that appeared in the EMRs. This is

because all features were used in HEMnet to train embedding vectors, so they may have

indirectly impacted the clustering.

We identified interesting features by computing an unpaired t-test for each feature, where

one set of samples came from clong and the other set came from cshort. The features with

significant p-values (< 0.01) were candidates for further exploration.

3.5 RESULTS AND DISCUSSION

We discuss the results of the survival and feature analyses below. First, we discuss the

SCC patients, then the non-SQ NSCLC patients.

3.5.1 HEMnet substantially improved stratification on SCC patients

After clustering squamous-cell carcinoma patients into two groups using the HEMnet-

enhanced profile matrix, P ′, clong had 28 patients and cshort had 15 patients (Figure 3.2a).

By the log-rank test, clong’s survival function was significantly better than cshort’s with a χ2

statistic of 10.79 (p-value = 0.001020). We show the cluster summary statistics in Table 3.2,

with u = 33.3.

In contrast, when clustering on the raw profile matrix, P , clong had 25 patients and cshort

had 18 patients (Figure 3.2c). Their survival functions were not significantly different at the

1% significance level with a χ2 statistic of 6.214 (p-value = 0.01267).

When clustering on the mean-imputed profile matrix, Pmean, clong had 25 patients and

cshort had 18 patients (Figure 3.2e). Here, the survival functions were not significantly

different with a χ2 statistic of 2.489 (p-value = 0.1147).

After computing an unpaired t-test for each feature, we received a p-value denoting how

different the feature’s values were in clong from its values in cshort (Table 3.3). In the table,

we place an asterisk after features that were identified by our method but not by the raw

baseline. The mean imputation baseline only identified five features, all of which were

identified by the raw baseline. In both the raw baseline and the mean imputation baseline,
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Table 3.3: Significant SCC patient features with HEMnet (p-value < 0.01). Features not
found to be significant by the raw baseline have asterisks. Feature means (µ) and standard
deviations (σ) are shown.

Feature Name p-value clong µ clong σ cshort µ cshort σ Feature Type

Karnofsky performance status 4.427× 10−7 77.86 6.739 62.67 9.978 Medical Test
Loss of appetite 2.691× 10−6 0.2857 0.6999 1.600 0.8794 Symptom

Shortness of breath 2.440× 10−4 0.6786 0.8886 1.733 0.7717 Symptom
Fatigue 2.687× 10−4 0.4286 0.8207 1.467 0.8844 Symptom

S. tuberosa 1.407× 10−3 0.03571 0.1856 1.800 2.857 Herb
P. suffruticosa 2.730× 10−3 0 0 1.067 1.879 Herb

Umbrella polypore* 3.847× 10−3 0.1429 0.7423 1.267 1.806 Herb
Sulphurweed* 4.562× 10−3 0.1071 0.4087 1.667 2.891 Herb

Sputum* 5.015× 10−3 0.8214 0.7585 1.533 0.8844 Symptom
A. tataricus* 5.678× 10−3 0.1071 0.3093 3.667 6.925 Herb

Cough* 9.388× 10−3 1.321 0.8474 1.933 0.5735 Symptom

umbrella polypore, sulphurweed, sputum, and A. tataricus had p-values of 0.01513, 0.01507,

0.02150, and 0.01352, respectively. Cough had a p-value of 0.1056 in the raw baseline and a

p-value of 0.3069 in the mean imputation baseline.

Our method missed one feature deemed significant by the raw baseline: TNM staging

system, which describes the stage of the cancer’s progression [59]. Since there were many

missing values in our dataset, the raw baseline failed to leverage a variety of features, relying

on this single feature. However, our method did not have this limitation, and also achieved

a more significant separation between the two clusters. Additionally, it missed no features

identified by the mean imputation baseline.

Of all significant features, only Karnofsky performance status had a higher mean in clong

than in cshort. This was expected, as a higher KPS score indicates a relatively healthier

cancer patient [60]. All other significant features had lower means in clong than in cshort.

This was reasonable for symptom features, as patients with longer survival rates generally

have less severe symptoms. On the other hand, it might initially appear as if the herbs’

higher values in cshort indicate their ineffectiveness. However, this can be explained by the

fact that patients with more life-threatening conditions require higher dosages of treatments.

The raw baseline did not find sputum and cough to be symptoms that were statistically

significantly different between clong and cshort, while our method did. However, they are very

common symptoms in lung cancer patients, and tend to be more severe in patients with

lower survival rates. Furthermore, the other three features that our method discovered were

all herbs. We can interpret these features’ higher values in cshort as potential herb-symptom

relationships. In the herb-symptom dictionary, sulphurweed was listed as a treatment for

both cough and sputum, while umbrella polypore treated only urinary tract-related symp-
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Table 3.4: Non-SQ NSCLC patient survival time statistics with HEMnet.

Cluster Size Restricted Mean Restricted Mean Standard Error Median

clong 52 23.9 2.67 18.6
cshort 38 14.1 2.18 12.7

toms and A. tataricus simply did not appear. Despite these relationships not appearing

in the domain knowledge, HEMnet was able to capture them in our method. In fact, a

study showed that a naturally occurring compound derived from umbrella polypore mycelia

induces apoptosis in human lung cancer cells [61]. Furthermore, a recent study showed that

a polysaccharide isolated from A. tataricus inhibits the growth of cancer cells [62].

Our method was able to capture meaningful herb-symptom relationships while the base-

lines were not. Thus, we have shown that HEMnet can integrate external herb information

in the form of herb-protein targets and protein-protein interaction information.

3.5.2 HEMnet also substantially improved stratification on non-SQ NSCLC patients

After clustering non-SQ NSCLC patients into two sets using P ′, clong had 52 patients

and cshort had 38 patients (Figure 3.2b). By the log-rank test, clong’s survival function was

statistically significantly better than cshort’s with a χ2 statistic of 8.449 (p-value = 0.003652).

We show the cluster summary statistics in Table 3.4, with u = 50.8.

In contrast, when we clustered on P , clong had 42 patients and cshort had 48 patients (Figure

3.2d). Again, the survival functions were not significantly different at the 1% significance

level with a χ2 statistic of 5.144 (p-value = 0.02333).

When we clustered on Pmean, clong had 52 patients and cshort had 38 patients (Figure 3.2f).

The survival functions were not significantly different with a χ2 statistic of 6.115 (p-value

= 0.01341).

Again, we computed an unpaired t-test for each feature, receiving a corresponding p-value

to indicate significance (Table 3.5). Consistent with earlier results, Karnofsky performance

status was the only feature to have a higher mean in clong than in cshort.

In the raw baseline, pamidronate disodium injection, atelectasis, white peony, shortness of

breath, Chinese cinnamon, and A. asphodeloides had p-values of 0.04887, 0.01208, 0.05991,

0.021107, 0.06895, and 0.03629, respectively. Our method obtained p-values below 0.01 for

each of these features. The mean imputation baseline did identify pamidronate disodium

injection as a significant feature (p-value = 0.008043), but did not identify any herb features.

Because our method found several treatments to be significant, it allowed us to ex-
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(a) SCC with HEMnet (p-value = 0.001020)
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(b) Non-SQ NSCLC with HEMnet (p-value = 0.003652)
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(c) Baseline SCC (p-value = 0.01267)
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(d) Baseline Non-SQ NSCLC (p-value = 0.02333)
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(e) SCC with Mean Imputation (p-value = 0.1147)
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(f) Non-SQ NSCLC with Mean Imputation (p-value = 0.01341)

Figure 3.2: A comparison of survival functions for two patient clusters in SCC patients
(subfigures (a), (c), and (e)) and non-SQ NSCLC patients (subfigures (b), (d), and (f)).
Subfigures (a) and (b) used the HEMnet-enhanced profile matrices, subfigures (c) and (d)
used the baseline profile matrices, and subfigures (e) and (f) used the baseline profile matrices
with mean imputation.
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Table 3.5: Significant non-SQ NSCLC patient features with HEMnet (p-value < 0.01).
Features not found to be significant by the raw baseline have asterisks. Feature means (µ)
and standard deviations (σ) are shown.

Feature Name p-value clong µ clong σ cshort µ cshort σ Feature Type

Karnofsky performance status 5.570× 10−8 76.35 8.993 63.42 11.98 Medical Test
Pamidronate disodium injection* 2.196× 10−7 0.2115 0.8166 15.34 19.74 Drug

Bone metastasis 1.294× 10−6 0.03846 0.1923 0.4211 0.4937 Medical Test
Atelectasis* 1.250× 10−3 0.01923 0.1373 0.2105 0.4077 Symptom

TNM staging system 1.307× 10−3 7.346 2.472 8.632 0.6250 Medical Test
Distant metastasis 2.307× 10−3 0.3846 0.4865 0.6842 0.4648 Medical Test
White peony* 8.760× 10−3 1.115 2.584 2.789 3.894 Herb

Shortness of breath* 8.999× 10−3 0.6346 0.8555 1.105 0.9676 Symptom
Chinese cinnamon* 9.302× 10−3 0.03846 0.2747 0.4211 1.091 Herb
A. asphodeloides* 9.952× 10−3 0.05769 0.4120 1.158 3.273 Herb

tract meaningful relationships. Pamidronate disodium injections are well-known treat-

ments for patients with bone metastases [63], which was also a significant feature (p-value

= 1.294×10−6). Atelectasis and shortness of breath are common symptoms among lung can-

cer patients. White peony roots have been shown to inhibit tumor growth in non-small-cell

lung cancer patients [64]. Lastly, a study has shown A. asphodeloides to have anti-tumor

effects [65]. As with the SCC patients, our method captured meaningful herb-symptom

relationships while the baselines could not. We attribute this to the external information

integrated into HEMnet.

3.5.3 KPS Feature Significance

Because Karnofsky performance status had the lowest p-value for both cancer types with

our method, we further explored its significance. Performance status scores are assigned to

cancer patients in attempts to quantify their overall health and well-being. It was therefore

reasonable that KPS was a discriminative feature for patients of both cancer subtypes.

Specifically, the Karnofsky score runs from 100 to 0, where 100 is relatively perfect health

and 0 is death [60]. In this dataset, Karnofsky performance scores were assigned in standard

intervals of 10.

To test whether KPS could accurately classify patients by itself, we placed patients into

clong if they had a Karnofsky score greater than 60 and the rest into cshort (Figure 3.3).

Although using only KPS significantly separated non-SQ NSCLC patients (p-value = 5.571×
10−4), the survival curves were not significantly different in SCC patients (p-value = 0.3655).

Thus, we concluded that KPS alone could not accurately predict a patient’s survival rate,

and that the HEMnet-enhanced profile matrices leveraged a variety of features to achieve
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(a) SCC (p-value = 0.3655)
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(b) Non-SQ NSCLC (p-value = 5.571× 10−4)

Figure 3.3: A comparison of survival functions when separating patients only by their Karnof-
sky performance score.

better clustering results.

3.5.4 Parameter Tuning

In our framework, we needed to tune the number of dimensions of each embedding vector,

which was recommended to be 500 in the original ProSNet paper. Tuning this parameter,

we saw that the optimal results were also achieved around 500 dimensions (Figure 3.4). Fur-

thermore, 400 and 600 dimensions produced statistically significant results for both cancer

subtypes.

3.6 CONCLUSIONS AND FUTURE WORK

In this chapter, we integrated EMRs with molecular interaction networks and domain

knowledge using a heterogeneous medical record network, HEMnet, to solve two challenges

in analyzing EMRs, i.e., missing data and semantic mismatching. By extracting knowledge

from HEMnet, we allowed for the training of accurate embedding vectors. We showed how

we can use these vectors to enhance EMR databases, and then evaluated their performance

based on survival prediction. Our method was able to perform better than the baseline

profile matrix with and without mean imputation by successfully splitting patients of both

cancer subtypes (squamous-cell lung carcinoma and non-squamous-cell non-small-cell lung

carcinoma). We showed this via quantitative evaluation by performing survival analysis on

the resulting cluster pairs of each cancer subtype. Lastly, we verified the effects of HEMnet
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Figure 3.4: Results of tuning the number of dimensions of the embedding vectors to observe
parameter sensitivity.

with qualitative analysis, studying the features and their differences between healthy and

unhealthy clusters.

One limitation that we noted is the fact that the HEMnet is unweighted. If we were to

add low-confidence edges (e.g., text mining relationships), then we must incorporate edge

weights. One possible method is to sample paths in ProSNet with a probability proportional

to the edge weight. This would allow us to rely more on high-confidence neighbors when

computing embedding vectors.

Another concern is that the knowledge graph might introduce noise to a complete patient

record. A possible solution is to regularize the influence of the knowledge graph by weighting

similarity scores with the sparsity of the patient record. Thus, the knowledge graph has less

influence on more complete records.

It is also unclear how to intuitively interpret the enhanced patient record. Even though

we may view the non-zero values filled in for some fields as predicted values for those fields,

there is no guarantee that the values are in the valid range, such as in the case of medical

tests. However, our proposed strategy can be implemented in other ways to improve inter-

pretability. For example, we could utilize a probabilistic approach to fill in missing features.

We can normalize each row in the similarity matrix such that each feature can be interpreted

as a probability distribution over all the other features. We can then use an algorithm like

expectation-maximization to maximize the probability of certain missing values taking on

existing values from similar features. This would be a very interesting future direction to

explore.

For future work, we can also implement tasks for clinical prediction of survival (CPS).
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Given the framework proposed in this work, we can attempt to predict a new patient’s

probability of survival by first grouping him or her into the most similar cluster, and then

extrapolating the survival rate from the neighboring patient records (similar to the k -nearest

neighbors algorithm). Furthermore, HEMnet allows for even more sophisticated methods of

feature discovery, including novel drug-drug interactions. This feature discovery would follow

along the lines of our qualitative evaluation.
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CHAPTER 4: INTEGRATING EXTERNAL KNOWLEDGE INTO
ELECTRONIC MEDICAL RECORD VISUALIZATION

Despite advances in computational methods, such as those discussed in the previous chap-

ters, EMR systems can still greatly benefit from human interpretation, which allows for

exploratory analysis and more control over decision-making [66]. However, human inter-

action with EMR systems has been hindered. In a previous study, 37% of participants

reported that interacting with their EMR databases was too time consuming [67]. Another

study showed that when using EMRs, nurses face challenges that can threaten quality and

safety of care [68]. Both of these shortcomings can be addressed with information visual-

ization, which can aid doctors in processing and understanding complex, high-dimensional

EMR data.

In particular, EMR visualization in a two-dimensional space is useful for observing and

interpreting patient clusters. Coherent clusters may elucidate a patient’s most significant

characteristics by visualizing his or her proximity to successfully diagnosed patients [69].

For example, thoracic aortic dissections are commonly misdiagnosed as acute myocardial

infarctions (MIs). Misdiagnosis in these cases is extremely harmful, as patients with aor-

tic dissections treated for MIs have mortality rates similar to that of untreated patients.

Despite this risk, patients with aortic dissections have a misdiagnosis rate of 39% [70]. For-

tunately, the most telltale signs of aortic dissection (age, onset of pain, and syncope) are

readily available in EMRs [71, 72]. An effective visualization would utilize these features to

place an undiagnosed aortic dissection patient near similar patients, reducing the chance of

misdiagnosis.

Unfortunately, designing an effective visualization system is a complicated task, as EMRs

are high-dimensional sources of data that consist of thousands of features. Furthermore, the

prevalence of missing data and semantic mismatching in EMRs, as discussed in the previous

chapter, make it even more challenging to correctly group together similar patients, leading

to poor or even misleading visualizations.

To address these challenges, I developed Visualization Assisted by Knowledge Graph

Enrichment (VisAGE), a method that enhances patient records with a knowledge graph built

from external databases, building upon PaReCat and HEMnet. These databases included

protein-protein interactions, genomic data, and drug-chemical associations. I continued with

the idea that performing network embedding on the knowledge graph allows for the inference

of associations among different types of data, which can alleviate data sparsity in EMRs. A

major novelty of VisAGE was that it was the first to use all of these data sources in EMR

visualization. In the rest of this chapter, I describe the dataset, the details of VisAGE, and
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the evaluation process.

4.1 DATASET DESCRIPTION

While VisAGE is a general method that can be applied to any set of EMRs, we chose the

Parkinson’s Progression Markers Initiative (PPMI) dataset [73] for the evaluation process.

The PPMI dataset contained a mix of Parkinson’s disease (PD) patients as well as control

patients suffering from other diseases. We chose this dataset for two reasons: (1) it contained

many feature types, and (2) Parkinson’s disease is a complicated disorder the causes of

which have been attributed to complex combinations of genetic and environmental factors

[74]. We only considered the 1,579 patients with baseline visits. This dataset included 6,013

biospecimen, genetic, drug, symptom, diagnosis, medical test, and demographic features,

which fit our statement that EMRs are high-dimensional. Feature types included binary,

numerical, and categorical features. We binarized the categorical features. On average, each

patient only had 261 of the 6,013 available features, which supported our previous assertion

that EMRs are typically sparse.

4.2 PATIENT PROFILE MATRIX

From the PPMI dataset, we generated an n×m patient profile matrix, denoted by P as in

the previous chapters, where n was the number of patients and m was the number of features.

Here, n = 1, 579 and m = 6, 013. Existing visualization methods use P directly as input.

However, as previously stated, P is typically sparse, and thus suboptimal for visualization.

The main idea of VisAGE is to enhance the profile matrix before visualization by leveraging

associations inferred from a knowledge graph. The enhanced profile matrix, denoted by P ′,

then replaces P as input to any visualization method. We later show that P ′ gives better

visualizations in several applications on our dataset.

4.3 VISAGE OVERVIEW

Our proposed framework for VisAGE consists of three steps (Figure 4.1). The first con-

structs a knowledge graph with external data sources and EMRs. The second performs

embedding on the constructed graph to learn a similarity matrix, denoted by M . Lastly, the

third step multiplies the patient profile matrix, P , by the similarity matrix, M , to obtain

the enhanced patient profile matrix, P ′.
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Figure 4.1: The VisAGE pipeline. It first creates a knowledge graph from multiple data
sources. It then performs network embedding on this knowledge graph, enhances the patient
profile matrix, and then visualizes each patient in a two-dimensional space.

4.3.1 Knowledge Graph Construction

The knowledge graph is a heterogeneous network containing edges from four data sources.

It builds upon the previous chapter’s HEMnet, adding genomic information. However,

we used a different protein-protein interaction (PPI) database, added genomic data, and

changed the herb-protein network to a drug-protein network, since the PPMI dataset con-

tained only western drugs.

1. Protein-protein interaction network. We used the inBioMap database [75] of

protein-protein interaction (PPI) edges. For a functional linkage between two proteins

p1 and p2, we created a node for p1, a node for p2, and an undirected edge {p1, p2} in

the network. There were 17,327 proteins and 606,194 edges in this network.

2. Single-nucleotide polymorphism enrichment. We integrated genomic data in
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the form of single-nucleotide polymorphisms (SNPs), which are single variations in the

human genome. We identified SNPs that were highly enriched in PD patients in the

dataset by using a one-sided Fisher’s exact test [76]. Overall, we found 3,900 SNPs

with p-values < 0.05. We then selected the nonsynonymous SNPs and determined if

specific symptoms were enriched in SNPs with another one-sided Fisher’s exact test.

For each PD-enriched SNP g, we created a node for g and an edge {g, s} if s was

significantly enriched in g with a p-value < 0.01. There were 34,324 SNP-symptom

edges.

3. Chemical-protein interaction network. We used STITCH, a database of known

and predicted interactions between chemicals and proteins [77]. STITCH included

computationally predicted associations in addition to those aggregated from other

databases. For each drug d in the EMR data, if d’s active ingredient interacted with

a protein p in the STITCH database, then we created a node for d, a node for p, and

an undirected edge {d, p}. There were 7,218 drug-protein edges in this network.

4. Electronic medical records. We directly added co-occurrence edges from each

medical record. For example, if a patient was diagnosed with symptom s and prescribed

a drug d, then we created a node s, a node d, and an undirected edge {s, d}. We

repeated this for all elements in each patient’s medical record.

The resulting network contained 23,886 nodes and 17,108,116 edges. The purpose of

the knowledge graph was to again utilize the idea of guilt by association: although many

related medical concepts may not have directly co-occurred in any medical records, they

may have indirectly shared neighbors in the knowledge graph through the protein-protein,

SNP-symptom, and drug-protein edges.

4.3.2 Similarity Matrix Learning

We again used ProSNet to infer relationships among entities in the knowledge graph [46].

After generating the embedding vectors, we enhanced the patient profile matrix. Again, we

constructed an m×m similarity matrix, denoted by M , where m was the number of features

and each entry was the cosine similarity between the corresponding features’ low-dimensional

vectors.

Afterwards, we multiplied the raw profile matrix, P , with M to retrieve the enhanced

patient profile matrix, denoted by P ′ (Equation 2.1).
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4.4 RELATED WORK

A previous study visualized high-dimensional data with a technique called LargeVis. How-

ever, it built a k-NN network directly from the data, and then reduced the network to two

dimensions without using external information [7]. Another study built upon LargeVis to vi-

sualize single cells, but still also directly computed embeddings from a k-NN network without

utilizing external data [78]. Marlin et al. visualized a pattern discovery model’s clustering

parameters in the context of EMR analysis [79]. However, they focused on longitudinal data

and predicting mortality outcomes rather than patient clustering. Gotz et al. performed

interactive visualization of EMR data, but worked with time series data to analyze patterns

over time [80]. The Dynamic Icons (DICON) system clusters EMRs that are similar to a

given patient, visualizing the clusters. However, it does not utilize molecular interaction

networks or genomic data to compute similarities between EMRs [81]. Lastly, Perer et al.

developed Care Pathway Explorer to visualize EMR data to investigate correlations with

patient outcomes [82]. However, their system uses sequential pattern mining, which relies

on historical EMR data to extract patterns.

4.5 RESULTS AND DISCUSSION

We wished to determine whether the enhanced profile matrix, P ′, would lead to better

visualization results than the original patient profile matrix, P . Thus, we compared them

in practical downstream visualization applications. Specifically, following previous studies

[7, 78], we used t-distributed stochastic neighbor embedding (t-SNE) [83], an algorithm that

can efficiently model high-dimensional objects as two-dimensional points, which made it

especially well-suited for visualizing our dataset. We generated our visualizations by running

t-SNE with default settings on P for the baseline and P ′ for VisAGE. For both methods,

this created a new n × 2 matrix, so that each patient was reduced to two dimensions. We

plotted this matrix as a set of points. We now discuss our results when visualizing the raw

and enhanced patient profile matrices in various applications.

4.5.1 Two-dimensional visualization with UPDRS

Using the two-dimensional representations of patient records, we labeled each record ac-

cording to its unified Parkinson’s disease rating scale (UPDRS) scores. The UPDRS consists

of six sections, each containing survey questions that evaluate a patient’s physical and men-

tal condition [84]. The questions deal with topics ranging from anxiety to sleeping problems,
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with scores scaled from 0 to 4. A higher score indicates more severe impairment or disability.

As in previous work, we labeled each patient with the sum of his or her UPDRS scores [85].

The main difference is that moderately impaired patients (orange circles) on the right side

of the plots were less structured in the baseline visualization (Figure 4.2a), but were clustered

more distinctly in the VisAGE visualization (Figure 4.2b). The most severe Parkinson’s

disease patients are marked by red squares, and were also clustered more tightly in the

VisAGE visualization than in the baseline. We attribute the baseline’s worse performance

to the data sparsity of the EMRs.

4.5.2 Qualitative evaluation: drug and symptom enrichment

We qualitatively evaluated the visualization results by computing drug and symptom en-

richments for each cluster. We used symptoms and drugs because they are strongly connected

to patient statuses and diagnoses. Thus, if a cluster was highly enriched in a symptom or

drug, then doctors could interpret the patients more coherently. Recall that in the previous

chapter, we used HEMnet to obtain two clusters within each cancer type to perform survival

analysis. Here, we analyzed an arbitrary number of clusters to view PD patients that require

special treatment.

We first clustered the two-dimensional patient representations with DBSCAN [86], which

is robust to outliers and does not need to specify the number of clusters. Because the PPMI

dataset contained control patients to simulate noise, DBSCAN’s robustness to outliers was

especially desirable. Additionally, not having to specify the number of clusters a priori was

useful for our application, as we did not know the exact number of PD clusters that require

special treatment.

For the DBSCAN parameters, we set ε = 1 and minPts = 10. In the baseline method,

patients were placed into 10 clusters. With VisAGE, patients were placed into 18 clusters.

For each cluster c and each symptom or drug b, we computed Fisher’s exact test to determine

if c was significantly enriched in b. We only used symptoms and drugs with binary values to

avoid medical tests for which all patients had non-zero values (e.g., the Epworth sleepiness

scale [87]).

4.5.3 VisAGE discovered more interpretable patient clusters

We show the two-dimensional plot of patients in Figures 4.3 and 4.4, with each color-shape

combination corresponding to a unique cluster generated by DBSCAN. We also show the

two most enriched symptoms for each cluster in the legends. With the baseline, many of the
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Figure 4.2: The two-dimensional representations of patient records, plotted with color labels
determined by each record’s UPDRS scores. VisAGE’s visualization identified more clusters
for moderately impaired patients, and more tightly grouped severely impaired patients.
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Figure 4.3: The baseline’s two-dimensional representation of patient records, with color-
shape combinations determined by the DBSCAN clustering. We show each cluster’s two
most enriched symptoms to indicate a PD cluster requiring special treatment.

points in the upper right quadrant of the plot were determined to be noise (black circles).

As a result, no patients could be deemed to be similar to these noise points. On the other

hand, VisAGE was able to properly classify many of these patients into distinct clusters.

We saw that both methods mostly grouped together the patients with the highest UPDRS

scores (Figure 4.2). The corresponding DBSCAN clusters that overlapped with these high-

UPDRS patients were most enriched in parkinsonism and Parkinson’s disease, as expected.

Both methods identified a cluster of patients enriched in parkinsonism and hypertension

(orange circles in the baseline and dark green triangles pointing up in VisAGE). Indeed,

hypertension is commonly known to be prevalent in PD patients [88]. However, VisAGE

identified four additional clusters that were significantly enriched in PD/parkinsonism and

another informative symptom. On the other hand, the baseline method mixed these clusters

into larger ones, losing information in the process. We interpreted these additional clusters

as PD clusters that required special treatment.
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Figure 4.4: VisAGE’s two-dimensional representations of patient records, with color-shape
combinations determined by the DBSCAN clustering. We show each cluster’s two most
enriched symptoms to indicate a PD cluster requiring special treatment.
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We now discuss these four clusters.

1. Parkinsonism and head injury. The cluster of dark orange circles contained 16

patients, and was enriched in parkinsonism and head injury with p-values of 3.110 ×
10−4 and 0.01013, respectively. This is consistent with previous work, as head trauma is

one of the most common candidates for PD causes [89]. This cluster was highly enriched

in entacapone, levodopa, and carbidopa with p-values of 1.085× 10−25, 9.030× 10−10,

and 7.099 × 10−5, respectively. While levodopa/carbidopa (LC) is the most common

drug prescribed to PD patients, entacapone is often prescribed as a supplementary drug

to improve the efficacy of LC [90]. As expected, these patients are also labeled as Severe

in Figure 4.2, which explains the need for this supplement. Furthermore, entacapone

has been proposed as a possible treatment for traumatic brain injury [91]. In the

baseline, this group of patients was lost in the cluster most enriched in parkinsonism

and hypertension.

2. REM sleep disorders and Parkinson’s disease. The cluster of light orange, down-

pointing triangles contained 292 patients, and was enriched in rapid eye movement

(REM) sleep behavior disorder, which is most often associated with PD (p-values

of 1.477 × 10−5 and 7.246 × 10−3, respectively) [92]. In addition to the standard

levodopa prescription (p-value = 9.787×10−23), the cluster was also highly enriched in

clonazepam (p-value = 0.004377). Clonazepam administered with levodopa at bedtime

has been shown to reduce REM sleep disorder symptoms [93]. In the baseline, the

corresponding cluster contained nearly twice as many patients (458), and was not

highly enriched in Parkinson’s disease.

3. Parkinsonism and bradykinesia. In VisAGE’s visualization, the cluster of light

green, left-pointing triangles contained 159 patients, and was enriched in parkinsonism

and bradykinesia with p-values of 1.526× 10−8 and 3.974× 10−8, respectively. As ex-

pected, bradykinesia is a key symptom of parkinsonism [94]. Additionally, this cluster

was highly enriched in ropinirole with a p-value of 1.246× 10−7. Ropinirole stimulates

mesolimbic D3 receptors, which alleviates bradykinesia [95]. In the baseline, this group

of patients was mixed with patients exhibiting parkinsonism and hypertension.

4. Parkinsonism and back injury. The cluster of light brown circles contained 17 pa-

tients, and was enriched in parkinsonism and back injury with p-values of 1.320×10−5

and 1.092×10−4, respectively. A previous study showed that spinal cord injuries are as-

sociated with increased risk of PD [96]. In addition to the standard levodopa/carbidopa

prescription, this cluster was significantly enriched in amantadine (p-value = 6.09 ×
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10−5). Amantadine is not only an antiparkinsonian agent, but has also been shown

to act as a non-competitive N -Methyl-d-aspartate (NMDA) receptor antagonist [97].

NMDA receptor antagonists have been shown to treat acute spinal cord injuries [98].

Like in the cluster that was enriched in parkinsonism and head injury, this cluster

contained many patients with severe UPDRS scores. In the baseline, these patients

were again mixed with the cluster enriched in parkinsonism and hypertension.

4.5.4 Quantitative evaluation: false discovery rate

For each method, we compared the number of clusters highly enriched in drugs and symp-

toms. To this end, we excluded drugs and symptoms from both patient profile matrices.

Additionally, we excluded these features from VisAGE’s knowledge graph in order to limit

data leakage. We then recomputed the enrichments for drugs and symptoms, taking the

drug or symptom with the lowest p-value to represent each cluster. With these p-values,

we counted the number of clusters that were significantly enriched in at least one drug or

symptom.

To create a fair comparison, we used the Benjamini-Hochberg procedure [99] to control

the false discovery rate at different levels of α (Figure 4.5). We saw that VisAGE identified

more enriched clusters than the baseline at every level of α, which was consistent with

our earlier observation that the baseline method was incapable of distinguishing among

patients with less severe symptoms. Thus, we concluded that VisAGE also performed better

quantitatively.

4.6 CONCLUSIONS AND FUTURE WORK

In this chapter, we presented VisAGE, a method of improving EMR visualization by

enhancing EMRs with external knowledge sources. Evaluations on a PD patient dataset

showed that VisAGE can generate visualizations such that similar patients are clustered

together more tightly than in a baseline that does not alter the original database. We

also evaluated our visualization with enrichments of drugs and symptoms, and showed that

VisAGE can produce a higher quantity of fine-grained partitions of PD patients.

One limitation of this work is that the evaluation was done on only one dataset, which was

mainly due to the necessity of expensive patient annotations. In the future, it is important

to further evaluate the proposed enhancement method on more datasets as they become

available. We can also build software that can implement our visualization in real application

environments. Since VisAGE is a general method, the software would serve as a framework
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Figure 4.5: A plot comparing the baseline and VisAGE. VisAGE dominated the baseline in
the number of clusters enriched with at least one drug or symptom at each level of α.

for an interactive component that can enhance any EMR database. For example, in a clinical

setting, previously treated patients can serve as guidelines for doctors treating new patients.

Doctors can identify these similar, previously treated patients in the two-dimensional space

using the visualization tool and optimize treatment for the current patient.

It would also be informative to examine the clusters in our visualization that did not have

obvious interpretations based on prior medical knowledge. This could allow us to observe

previously unknown, but meaningful patterns. For example, one cluster that our method

identified was most enriched in uterine prolapse and pneumonitis. While the connection

between these two symptoms is unclear, the statistical significance of the enrichments would

make it interesting to further examine this cluster, as it might help discover new medical

knowledge.
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CHAPTER 5: FRAMING ELECTRONIC MEDICAL RECORDS AS
POLYLINGUAL DOCUMENTS IN QUERY EXPANSION

As EMR databases are further introduced into daily usage, retrieval systems are increasing

in importance to aid doctors in processing and understanding the large amounts of data.

In particular, one important application is to efficiently parse medical records and identify

those that are most relevant to a new patient. Standard information retrieval systems (e.g.,

web search engines) receive string queries as input, compute numeric scores that determine

how well each database document matches the query, and output a ranked list of documents.

Ideally, a doctor can query a system with a new patient’s symptoms and receive a set of

relevant patient records. These records can serve as an informative baseline to prescribe

suitable treatments for the new patient.

However, due to synonyms that occur in the medical vocabulary, the original search query

may not be complete, and thus may not retrieve optimal results. These synonyms contribute

to the semantic mismatching problem discussed in Chapter 3. There are three categories of

synonyms of interest to medical record retrieval:

1. Semantic synonyms are medical terms that have identical meanings. For instance,

halitosis and fetor oris are semantic synonyms because they are different terms that

refer to the same symptom. Because doctors will typically record only one of these,

queries that contain “halitosis” will not properly match records that contain “fetor

oris”, and vice versa. Semantic synonyms can be mined with natural language pro-

cessing techniques and straightforward statistical measures [100].

2. Treatment synonyms are drug-symptom pairs in which the drug treats the symptom.

For example, ibuprofen and fever are treatment synonyms. Treatment synonyms can

be obtained by mining medical publications [101].

3. Functional synonyms are terms that are not identical, but co-occur more frequently

than random. Arthritis and hypertension are functional synonyms due to their co-

morbid relationship (a decade-long study showed that nearly half of elderly arthritis

patients also suffered from hypertension) [102]. Thus, if a hypothetical query consists

of only the term “arthritis” to describe an elderly arthritis patient with hypertension,

the retrieved patient records may not contain treatments optimally suited for the query

patient. Functional synonyms can be inferred from treatment synonyms.

If a query consists entirely of symptoms, then the relevant semantic and functional syn-

onyms are also symptoms. We show that augmenting an original patient query with all three
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synonym types can capture relevant but mismatched documents, thus improving retrieval

performance.

In prior work, Zeng et al. performed query expansion in a similar medical record retrieval

setting using synonyms and topic models [103]. Their synonym-based query expansion uti-

lized the Unified Medical Language System (UMLS), which is a compendium of biomedical

vocabularies, to map query terms to their semantic synonyms. We refer to this method as

dictionary-based query expansion to avoid confusion. On the other hand, their topic-model-

based query expansion trained on patient records to jointly find all three synonym types.

However, using this standard topic model, symptoms and treatments were grouped together

with no distinction in the medical records, which may have decreased performance.

Rather than indiscriminately mine these three types of synonyms, we separately modeled

the symptom and treatment synonyms. Our approach was based on traditional monolingual

topic models, but instead viewed the symptoms and treatments of a medical record as

generated by distinct languages. Thus, output topics were aligned across the two languages

and contained synonyms of all three types. This is because symptoms in the same topic were

likely to be semantic or functional synonyms, while symptoms and treatments in aligned

topics were likely to be treatment synonyms. We then augmented the original query with

synonyms of the query symptoms during retrieval. Our proposed method was the first to

model symptoms and treatments as separate languages in electronic medical records. We

also compared with two embedding methods that jointly mine all three synonyms.

We evaluated our approach on the same traditional Chinese medicine (TCM) medical

record collection as in Chapter 2. We chose this dataset because comorbid symptoms and

functionally similar herbs are prevalent in the TCM field. Thus, if our method could improve

retrieval performance on this dataset, it would also work well for EMR datasets in other

domains. We showed that our method performed better than baseline methods as well as

state-of-the-art embedding methods in query expansion experiments.

5.1 RETRIEVAL PROBLEM FORMULATION

Given a database of patient records R = {r1, . . . , rn}, the ith patient record ri consists of

a set of diseases Di, a set of symptoms Si, and a set of treatments Ti. From this database,

we wish to retrieve the set of patient records most relevant to some new patient, pnew, who

is not in the database. To achieve this, we first reformulate pnew’s symptoms as a query.

Thus, given pnew’s set of symptoms Snew = {s1, . . . , sj},

Qnew = Snew = {s1, . . . , sj} (5.1)
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By performing query expansion on Qnew, we add query terms to better match relevant

records and thus improve the retrieval performance:

Q′new = {s1, . . . , sj, q1, . . . , ql} (5.2)

Here, {q1, . . . , ql} is the set of expansion terms that are added to the original query. Although

the original query Qnew only contains symptoms, the expansion terms can contain both

symptoms and treatments. Expansion terms can be obtained with a variety of methods,

which we discuss in the next section.

We hypothesized that the expanded query, Q′new, would retrieve more relevant documents

because in practice, Qnew is usually not comprehensive. In our medical setting, this is

analogous to situations in which the list of symptoms that a doctor identifies in a new

patient is incomplete, which may be due to a combination of two major factors.

1. The doctor uses one of many possible synonyms, including semantic, treatment, and

functional synonyms, to describe a patient’s condition.

2. The database is incomplete, so a query symptom may simply not appear in existing

medical records, resulting in poor query matches.

We expected the first factor to have a larger impact on query quality, particularly due to

unique variations of symptoms that are prevalent in TCM.

5.2 METHODS

With each technique that we used in our experiments, we conducted query expansion to

improve retrieval performance. We augmented queries with synonym terms selected by each

method, and then performed the retrieval on the existing database of medical records.

Overall, we used five different methods of query expansion. First, we addressed two base-

lines used in previous work [103]: dictionary-based query expansion and topic-model-based

query expansion. In our dataset, the dictionary-based method incorporated an external

treatment-symptom knowledge graph (Chapter 2.2.1) to add manually curated treatment

synonyms. The topic-model-based method trained topics on the patient record database

to add expansion terms that co-occur in the same topics as the given query. Although

the previous study used a third method, predicate-based query expansion, we did not uti-

lize this method due to a lack of high-quality TCM ontology databases. Furthermore, the

predicate-based method did not outperform the topic-model-based method in prior work.
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Next, we explored two network embedding techniques: Med2Vec and diffusion component

analysis (DCA). Med2Vec is an embedding algorithm that learns efficient representations

of medical records and concepts by using EMR datasets. We explored DCA in Chapter 2.

The key difference between these two methods is that DCA depends on external medical

knowledge.

Lastly, we discuss our method, which mines semantic, treatment, and functional synonyms

by considering symptoms and treatments to be separate languages in a topic model.

5.2.1 Dictionary-Based Query Expansion

Dictionary-based query expansion utilizes a ground-truth, treatment-symptom TCM dic-

tionary. We constructed a knowledge graph, in which an undirected edge {t, s} indicated

that a treatment t treated a symptom s in the dictionary. There were 1,995 treatments,

1,635 symptoms, and 27,824 treatment relations in the dictionary, which translated to a

total of 3,630 nodes and 27,824 edges in the resulting knowledge graph. There were no

treatment-treatment or symptom-symptom edges. To perform query expansion on a query

Qnew, we added all treatments from the knowledge graph that were directly connected to at

least one symptom in Qnew.

5.2.2 Topic-Model-Based Query Expansion

In prior work, topic-model-based query expansion performed the best in a similar medical

record retrieval task in terms of recall and F-measure [103]. Specifically, the authors used

latent Dirichlet allocation (LDA) [104] to derive topics from their database of EMRs. With

LDA, each document is characterized by a mixture of topics. In turn, each topic consists of

mixtures of words. In our study, we also used LDA to train topics from the dataset.

After training k topics, from topic i’s per-word distribution, φi, we referred to the set of

100 words with the highest probabilities as Hi. For a query Qnew, we then performed the

following multiplication:

φ′i = |Qnew ∩Hi| · φi (5.3)

With this operation, we scaled each word’s probability in φi by the number of query terms

that were in the top 100 words of φi. Finally, we summed each word’s probabilities across

the scaled distributions,
∑k

i=1 φ
′
i, and received a new weight for each word. We empirically

chose to identify five topics from our dataset. The top five words with the highest weights

were designated expansion terms.
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5.2.3 Med2Vec-Based Query Expansion

Med2Vec is a state-of-the-art embedding method designed specifically for EMRs [12]. It

discovers efficient representations of medical codes (symptoms and treatments, in the case

of our dataset). Med2Vec’s optimization function is similar to that of word embedding

methods that use the skip-gram model, such as word2vec [105]. The authors stated three

major reasons for word2vec’s failure to accommodate medical data:

1. Healthcare datasets have unique structures in which the visits are temporally ordered,

but the medical codes within a visit form an unordered set.

2. Learned representations should be interpretable.

3. The algorithm should be scalable to handle real-world datasets of millions of patients.

In particular, the first reason was of greatest relevance to our experiment setting. Med2Vec

maximizes the likelihood of observing a medical code (symptom or treatment) given the

codes in the same visit. In other words, a medical code’s vector representation predicts its

neighboring medical codes. By obtaining vector representations of all medical codes as well

as computing their pairwise similarities, Med2Vec can jointly discover semantic, treatment,

and functional relationships.

We ran Med2Vec on our training corpus and obtained a low-dimensional vector represen-

tation for each symptom and treatment in the dataset. Given a query Qnew = {s1, . . . , sj},
we computed the cosine similarity between each query term si’s Med2Vec representation and

every non-query term’s Med2Vec representation. Thus, for each candidate expansion term,

we summed j similarity scores, one for each query term. We took the five terms with the

highest score sums as expansion terms.

5.2.4 DCA-Based Query Expansion

Like Med2Vec, DCA can jointly mine all three synonym types. We used the network

constructed in dictionary-based query expansion as the input to DCA. After learning vector

representations for each node in the network, we computed cosine similarity scores as in

Med2Vec-based query expansion, again taking the top five terms with the highest score

sums as expansion terms.
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Figure 5.1: The plate notation of our proposed model, framing electronic medical records
as bilingual documents. A variable’s superscript S indicates symptoms and T indicates
treatments. α and β are the parameters of the Dirichlet priors on the per-document topic
distributions and the per-topic word distributions, respectively. θd is the topic distribution
for document d. φS

k and φT
k are each language’s corresponding word distributions for topic

k. z is the latent topic assignment for each observed word w.

5.2.5 BiLDA-Based Query Expansion

In our data, symptoms and treatments were labeled and separated in each patient record.

We hypothesized that a topic model that explicitly captures this structure would improve

performance over standard, monolingual topic models.

Polylingual topic modeling (PLTM) finds latent cross-lingual topics in a multilingual cor-

pus [106]. These text collections can either be direct translations or theme-aligned [107].

Direct translations occur in sentences of two documents that are translations of one another.

An example of a direct translation is Romeo and Juliet in English and Chinese. On the other

hand, theme alignment occurs in documents that are not necessarily direct translations, but

discuss the same topics in similar sections. An example of theme alignment is the Wikipedia

pages on Romeo and Juliet in English and Chinese.

Our method considers EMRs to consist of two separate “languages”: symptoms and treat-

ments. Thus, patient records are theme-aligned in the sense that a patient’s symptoms and

treatments are generated by the same set of diseases. Furthermore, the symptoms and

treatments are varied according to the same syndromes, which are the underlying factors in

TCM that we have previously discussed. Standard monolingual topic models are unable to

represent these separate “languages”, since symptoms and treatments are grouped together.

This removes the ability to differentiate, and therefore translate, between the two.

The output of PLTM is a set of cross-lingual topics, including per-document topic dis-

tributions and per-topic word distributions in each of the languages. This model assumes

that each topic consists of a discrete distribution of words for each language. Thus, there
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are two language-specific topics ΦS and ΦT , each of which is drawn from its own symmetric

Dirichlet distribution with parameters βS and βT , respectively.

Next, we discuss the generative process. Each EMR is represented as a mixture over topics,

and is generated by first sampling from an asymmetric Dirichlet prior with concentration

parameter α and base measure m:

θ ∼ Dir(θ, αm) (5.4)

Then, a latent topic assignment is drawn for each word in the corresponding language

(i.e., symptoms and treatments).

zS ∼ P (zS | θ) =
∏
r

θzSr (5.5)

zT ∼ P (zT | θ) =
∏
r

θzTr (5.6)

The individual symptoms and treatments are then drawn using language-specific topic

parameters.

wS ∼ P (wS | zS,ΦS) =
∏
r

φS
wS

r |zSr (5.7)

wT ∼ P (wT | zT ,ΦT ) =
∏
r

φT
wT

r |zTr (5.8)

With two languages, PLTM reduces to Bilingual Latent Dirichlet Allocation (BiLDA)

(Figure 5.1). We obtained k joint topics that align k symptom topics and k treatment

topics. As with monolingual LDA, we experimented with different values of k, finding k = 5

to yield the best results. To train topics with BiLDA, we used the MAchine Learning

for LanguagE Toolkit (MALLET) [108], which performs inference with Gibbs sampling.

We conducted query expansion the same way we performed LDA-based query expansion,

selecting the five terms with the highest weights.

5.3 EVALUATION

We evaluated and compared the five different query expansion methods as well as the

baseline with no query expansion by performing retrieval on our dataset. We first describe

our dataset, then discuss the evaluation process in the following two sections.
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5.3.1 Data Description

We used the gastroenterology dataset from Chapter 2. The same doctor treated all pa-

tients in the record, which had the advantage of consistent treatment, but the simultaneous

disadvantage of potentially systematic errors or incompleteness. All patients had some va-

riety of stomach illness. Each record contained a detailed list of symptoms, treatments, and

diseases. Each patient had an average of 9.08 symptoms and 1.63 diseases. The disease

information was used as ground truth labels in the evaluation stage, and was therefore not

included when finding query expansion terms. We elected to use only the first visit for each

patient to prevent cases in which a patient’s query returned other visits of the same patient.

This left us with 3,750 patient visits.

5.3.2 Cross-Validation

We split our dataset into 10 random training and test sets as per k -fold cross-validation.

Thus, the training records were functionally a database of EMRs. Each held-out test patient

was then regarded as a new, unseen patient. For each of the test patients, we retrieved

relevant patient documents from the training set.

Each test set contained 375 patient records. We excluded all details from the test set

except for symptoms. Using a given test patient’s symptom set as a query, we performed

each query expansion method in three ways: adding symptoms, adding treatments, and

adding both. We refer to these methods as symptom expansion, treatment expansion,

and mixed expansion, respectively. The only exception to this was the dictionary-based

query expansion, which was only capable of treatment expansion.

5.3.3 Retrieval Tests

For each query in the held-out test set, we performed medical record retrieval. To score a

document in the training corpus given a query patient, we used Okapi BM25 as our ranking

function, which is one of the most effective retrieval methods [109]. We defined the Okapi

BM25 score of a document D given a query patient Q = {q1, . . . , qn} as

Score(D,Q) =
n∑

i=1

IDF(qi) ·
f(qi, D) · (k1 + 1)

f(qi, D) + k1 ·
(

1− b+ b · |D|
avgdl

) (5.9)

In our experiments, f(qi, D) was always 1 if qi appeared in D, since no patient record

contained duplicate symptoms or treatments. |D| was the length of document D, and avgdl
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was the average document length in the training corpus. For the symptom expansions and

the baseline with no query expansion, D contained only symptoms. For treatment and

mixed expansions, D contained all symptoms and treatments of the patient. In the absence

of parameter optimization, we chose the default values of k1 = 2 and b = 0.75. Additionally,

the inverse document frequency was defined as

IDF(qi) = log
N − n(qi) + 0.5

n(qi) + 0.5
(5.10)

where N was the total number of documents in the training corpus, and n(qi) was the number

of training documents containing the term qi. With this ranking function, we returned a

ranked list of retrieved documents given a query Q.

5.3.4 Relevance Measure

To evaluate the performance of each retrieval task, we assigned an objective measure of

relevance to a retrieved patient given a query patient. Conveniently, the list of diseases the

doctor assigned to each patient was recorded in our dataset. We used these disease lists as

ground truth labels for the corresponding patients. Thus, we defined the gain of a document

D given a query patient Q to be the following:

Gain(D,Q) =
|Ddisease ∩Qdisease|
|Ddisease||Qdisease|

(5.11)

Here, Ddisease and Qdisease refer to the set of diseases belonging to D and Q, respectively. In

the traditional vector space model, this gain is the cosine similarity between the document

and query vectors, which is a useful metric for determining similarity between two documents

[55]. Thus, we used normalized discounted cumulative gain (NDCG), a standard method of

evaluating search engines [110], to compute the quality of our ranked list. The DCG at a

particular rank k, for query Q, which returns a ranked list of D1, . . . , DN is defined as

DCG@k =
k∑

i=1

Gain(Di, Q)

log2(i+ 1)
(5.12)

where Gain(Di, Q) was defined in Equation 5.11. NDCG@k is defined as DCG@k divided

by the DCG of the ideal ranked list for query Q, thus making it a metric comparable across

queries and suitable for our 10-fold framework. We show results for k ∈ {5, 10, 15, 20}. We

excluded precision, recall, and the F-measure due to their inability to incorporate rankings.
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Table 5.1: Retrieval results for various query expansion methods. Bolded values indicate
the highest NDCG@k. BiLDA mixed expansion performed best for all choices of k.

Expansion Method NDCG@5 NDCG@10 NDCG@15 NDCG@20

No query expansion 0.1673 0.1675 0.1674 0.1677

Dictionary 0.1633 0.1647 0.1652 0.1659

LDA (symptoms) 0.1686 0.1682 0.1681 0.1690
LDA (treatments) 0.1689 0.1669 0.1667 0.1677

LDA (mixed) 0.1690 0.1671 0.1668 0.1679

Med2Vec (symptoms) 0.1636 0.1637 0.1648 0.1652
Med2Vec (treatments) 0.1682 0.1673 0.1684 0.1677

Med2Vec (mixed) 0.1678 0.1671 0.1685 0.1675

DCA (symptoms) 0.1518 0.1534 0.1556 0.1560
DCA (treatments) 0.1689 0.1702 0.1712 0.1719

DCA (mixed) 0.1510 0.1537 0.1557 0.1565

BiLDA (symptoms) 0.1709 0.1706 0.1713 0.1716
BiLDA (treatments) 0.1684 0.1681 0.1681 0.1679

BiLDA (mixed) 0.1752 0.1739 0.1747 0.1736

5.4 RESULTS AND DISCUSSION

The results of the evaluation are shown in Table 5.1. In order to analyze the significance

of the NDCG values, we performed the paired t-test on the ranking metrics between pairs

of expansion methods.

BiLDA-based mixed query expansion achieved the best retrieval performance among all

expansions. For NDCG@5, 10, 15, and 20, it performed better than the baseline with no

query expansion with p-values of 2.842 ×10−3, 4.784 ×10−3, 6.852 ×10−7, and 1.929 ×10−6,

respectively. Furthermore, BiLDA mixed expansion performed better than all of the runner-

up methods at the 5% significance level.

Mixed expansion was only the best-performing expansion type for BiLDA. This is due to

the fact that all other methods do not separately mine symptom and treatment synonyms.

On the other hand, BiLDA-based query expansion considers symptoms and treatments to

be from separate topics, and therefore it successfully added in mixed query terms.

Dictionary-based expansion’s poor performance can be explained by the fact that it added

too many treatment synonyms, which diluted the original query’s symptoms. On average,

dictionary-based expansion nearly doubled each query in size.

We show an example of a mixed query expansion from BiLDA. In the patient query in

Table 5.2, the five expansion terms included three symptoms and two herbs. “Fluttering
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Table 5.2: Example of an expanded query created by the BiLDA method. Different query
terms are separated by semicolons.

Disease Label Original Query Expansion Terms

chronic gastritis

yellow, greasy tongue coating;
epigastric chills; heartburn;

bloating; belching; stomachache;
acid reflux; dry mouth

fluttering pulse;
dark, red tongue;

fullness; bitter orange;
crow-dipper

pulse” was an expansion term for this patient, and is indeed an indicative symptom of

the patient’s disease, chronic gastritis [111]. Dark, red tongue is a functional synonym

of yellow, greasy tongue coating, both of which commonly appear in patients with chronic

gastritis [112]. Fullness is a semantic synonym of bloating. Bitter oranges are known to treat

abdominal bloating [113], and are furthermore known to treat chronic gastritis [114]. Lastly,

crow-dippers are also known to treat bloating in chronic gastritis patients [115]. Indeed,

crow-dipper was actually prescribed to this particular patient.

5.5 RELATED WORK

Zeng et al. performed a study of synonym-, topic-model-, and predicate-based query

expansions. They used monolingual LDA as their choice of topic model and determined it

to be the best-performing method [103]. Our work built upon their study in the context of

traditional Chinese medicine, while also comparing additional methods, showing BiLDA to

be even more effective. A major difference between their work and ours is that while both

systems aimed to return the most similar patients to a query, each of their experimental

queries was a single primary disease (e.g., “PTSD”), while our queries consisted of the

complete set of symptoms per patient. Furthermore, we refined the choice of evaluation

from traditional measures of precision, recall, and F1 to the more comparable metric of

NDCG@k. Choi et al. developed a method of learning efficient representations of medical

codes, Med2Vec, which we used as one of this study’s expansion methods [12]. Jain et

al. also performed medical record retrieval with query expansion on a patient’s symptoms

[116]. However, they used a knowledge base by integrating domain ontologies and automatic

semantic relationship learning, similar to Zeng et al.’s predicate-based query expansion. Due

to the lack of TCM ontologies, this method was unfeasible.
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5.6 CONCLUSIONS AND FUTURE WORK

In this work, we studied how query expansion can improve medical record retrieval. Prior

work showed topic-model-based query expansion to perform the best [103]. We presented

an improved topic model that frames symptoms and treatments as distinct languages.

We performed query expansion on EMR retrieval experiments with a treatment-symptom

dictionary, latent Dirichlet allocation (LDA), Med2Vec, diffusion component analysis (DCA),

and a polylingual topic model. LDA and dictionary synonyms were studied in prior work

and thus served as baselines in this work. Our experimental results showed that our method

performed the best by normalized discounted cumulative gain, with significant p-values com-

puted from paired t-tests.

Future work includes experimenting with other methods of query expansion. For instance,

pointwise mutual information (PMI) has shown promising treatment-symptom pairings. An-

other potential method is the Weighted Exclusivity Test (WExT), which computes triples

of medical concepts as an extension to PMI [117].

Lastly, a fundamental change to our problem would be to reframe the retrieval task as a

treatment recommendation system. Like before, the system would take a test patient’s set

of symptoms as the input query. However, instead of retrieving patient records relevant to

the query, the system would recommend a set of drugs to treat the query symptoms. We can

evaluate the new system by counting the number of recommended treatments that match

the actual prescribed treatments for the test patient. With this framework, we can skip

the step in which the doctor analyzes the set of returned patients in the retrieval task and

instead directly recommend treatment. In fact, the embedding and knowledge graph-based

methods, in addition to PMI and WExT outputs, can already generate explicit treatment

synonyms that would enable this new framework.
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CHAPTER 6: COMBINING ALZHEIMER’S AND PARKINSON’S
DISEASES DATA TO IDENTIFY PATIENTS AT RISK FOR DEMENTIA

In this chapter, I discuss using heterogeneous data sources to identify patients at risk for

dementia. Dementia is an umbrella term that describes a wide range of cognition-related

symptoms, ranging from declining memory to impaired language skills. Alzheimer’s disease

(AD) is a chronic, irreversible neurodegenerative disease [118]. It is a type of dementia,

characterized by progressive impairment in memory, judgment, language, and orientation.

The primary pathological features of AD are neuronal loss in addition to the accumulation

of extracellular plaques containing amyloid β (Aβ) and neurofibrillary tangles (NFT) con-

taining tau in the brain [119]. AD affects an estimated 5.7 million people in the United

States [120].

Parkinson’s disease (PD), which I discussed in Chapter 4, is also an irreversible, progressive

neurological disease that is associated with dementia in most patients long-term [121]. PD

initially manifests as a disorder of the motor system, and a typical pathological characteristic

is the abnormal accumulation of α-synuclein in the brain, leading to Lewy body deposits

[122]. PD patients can eventually develop a type of dementia known as Parkinson’s disease

dementia (PDD). PD affects one million people in the United States [123].

AD, PD, and other sources of dementia cost roughly $277 billion a year for treatment [124].

Predicting the onset of dementia in patients could potentially mitigate these treatment costs

by allowing doctors to employ preventative measures at an early stage [125]. However,

prediction models rely on detailed longitudinal patient data, which is expensive and time-

consuming to obtain. These datasets can cost tens of millions of dollars over many years

for just a few hundred patients. Furthermore, the data collection studies oftentimes lack

standardization and statistical power.

In this work, we took the perspective that although AD and PD are clinically distinct

entities, the two diseases are closely related in their pathologies (Figure 6.1). For example,

Aβ accumulation, an important hallmark of AD pathology, has also been reported to be

present in some PD patients [126]. Similarly, typical PD characteristics have also been

reported in AD patients, such as Lewy body deposition [127].

AD and PD may also share genetic factors. The APOE and MAPT genes have been linked

to the presence of Aβ aggregates and greater tau protein expression, which increase the risk

of AD [128]. Variants of these two genes have also been verified to increase the risk of the

development of dementia in PD [129].

Additionally, many imaging-based measures have been associated with cognitive perfor-

mance in both diseases. For example, a baseline AD pattern of brain atrophy, quantified
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Figure 6.1: Evidence of pathological overlaps, including biospecimen, genetic, and imaging
features, can help unify AD and PD patients into a single feature space.

using the Spatial Pattern of Atrophy for Recognition of AD (SPARE-AD) score, predicted

long-term global cognitive decline in non-demented PD patients [130].

Despite the discovery of such correlations, research projects that study AD and PD remain

distinct, resulting in separate sources of data. This potentially raises the cost of generating

datasets that could otherwise be combined. This motivated an aggregated, data-driven

study to explore the correlation between the two diseases, which could lead to a clearer

understanding of their pathologies.

In this work, we explored biospecimen, genetic, and imaging features that are common

to both AD and PD to place patients from both diseases into a common feature space. We

showed that we can increase the size of our dataset by supplementing PD data with AD

data. We tested this data aggregation in a classification task, in which we predicted the

probability of patients developing dementia (either AD or PDD) after their baseline visits.

By identifying patients at high risk, we can facilitate the more efficient targeting of available

preventive measures than currently possible.

6.1 METHODS

The following sections describe our datasets, classification objective, feature selection pro-

cess, and the classifier used to accomplish the dementia prediction task.
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6.1.1 Dataset Description

Alzheimer’s Disease

The AD data used in the preparation of this work was obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database1.

We selected ADNI-2 participants who did not have dementia at their baseline visit. Along

with the availability of features, this reduced the dataset to 348 ADNI patients. The baseline

and follow-up diagnoses of each patient were provided in the dataset.

Parkinson’s Disease

For PD, we again used the PPMI dataset. We utilized Montreal Cognitive Assessment

(MoCA) scores [131] to assign dementia labels. They range between 0 and 30, where lower

scores indicate higher cognitive impairment. We used the MoCA score to label a patient

with respect to his or her cognitive impairment level, as in prior work [132, 133]. A MoCA

score > 26 meant the patient was normal with respect to dementia. MoCA scores in the

range of [21, 26] implied that the patient had mild cognitive impairment (MCI), and a MoCA

score < 21 meant the patient suffered from dementia-level cognitive impairment. Due to the

availability of MoCA scores and other features, we were left with 150 PPMI patients.

6.1.2 Objective Overview

In this study, we aimed to predict a given patient’s cognitive status in a follow-up visit

using only baseline features. The follow-up visit could occur anywhere between two to five

years after a patient’s baseline visit. We used the last follow-up visit available for any given

patient.

For both the baseline and follow-up visits, we labeled patients with three classes: normal

cognition (normal CI), mild cognitive impairment (MCI), and dementia. Our methodology

for labeling patients in each dataset is outlined in Table 6.1. We further summarize the

patient statistics according to disease progression in Table 6.2. Note that since we were only

concerned with progression, we did not consider cases in which patients improve (e.g., from

MCI to normal cognition). Furthermore, we excluded patients who had dementia at their

baseline visits. Our goal was to accurately identify patients who had a follow-up label of

dementia.

1adni.loni.usc.edu
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Table 6.1: The assignment of classification labels to patients in each dataset. ADNI patients
were labeled based on their cognitive status diagnoses, while PPMI patients were labeled
based on their MoCA scores.

Classification Label ADNI Criterion PPMI Criterion

Normal CI Control patients MoCA > 26
MCI MCI patients MoCA ∈ [21, 26]

Dementia AD patients MoCA < 21

Table 6.2: Label statistics for the disease progression of patients in the ADNI and PPMI
datasets, split into the possible classes of normal CI, MCI, and dementia.

Dataset Baseline Label Follow-Up Label Number of Patients

ADNI

Normal CI Normal CI 140
Normal CI MCI 16
Normal CI Dementia 3

MCI MCI 128
MCI Dementia 61

PPMI

Normal CI Normal CI 85
Normal CI MCI 30
Normal CI Dementia 4

MCI MCI 26
MCI Dementia 5

We acknowledged that there were only nine patients in PPMI that developed dementia

by the time of a follow-up visit. This resulted in test sets having very few PDD patients,

depending on the number of folds. However, we attempted to address this issue by computing

significance tests when comparing different classifiers. Additionally, due to the small number

of PDD patients, we hypothesized that augmenting the smaller PPMI dataset with the

ADNI dataset could vastly improve PDD prediction. On the other hand, we hypothesized

that ADNI dataset was unlikely to greatly benefit from the smaller PPMI dataset for AD

prediction. Thus, we were most interested in seeing whether a combined dataset built from

ADNI and PPMI could improve the prediction of PDD patients.

6.1.3 Feature Selection

To jointly study AD and PD, we considered biospecimen, genetic, and imaging features

known to influence dementia prediction in both diseases [134]. Additionally, we used the sex

of each patient, which has been shown to be related to dementia development in both AD

64



Se
x

CS
F 

T-
Ta

u

CS
F 

P-
Ta

u1
81

CS
F 

Ab
et

a4
2

AP
OE

 G
en

ot
yp

e

Im
ag

e 
Fe

at
ur

e 
1

Im
ag

e 
Fe

at
ur

e 
2

Sex

CSF T-Tau

CSF P-Tau181

CSF Abeta42

APOE Genotype

Image Feature 1

Image Feature 2

0.2

0.4

0.6

0.8

1.0

Figure 6.2: Heatmap of the absolute values of correlation coefficients between each pair of
features. We found that t-tau and p-tau181 were highly correlated with a Pearson correlation
coefficient of 0.733. Therefore, we excluded p-tau181 based on its lower performance in
dementia prediction.

[135] and PD [136]. Our other selected features were also backed by significant literature

evidence, and were available in both the ADNI and PPMI datasets. We describe these

features in the following sections.

Biospecimen Features

For biospecimen features, we selected cerebrospinal fluid (CSF) concentrations of Aβ42,

total tau protein (t-tau), and tau protein phosphorylated at threonine 181 (p-tau181). Aβ42

levels have been shown to play an essential role in all forms of AD pathogenesis [137]. Ele-

vated t-tau and p-tau181 concentrations have been shown to be associated with neurodegen-

erative changes in early AD [138, 139]. Each of these biomarkers also has strong prognostic

and diagnostic potential in early-stage PD [140].

Not surprisingly, we found that p-tau181 was highly correlated with t-tau in our dataset,

with a Pearson correlation coefficient of 0.733 and a p-value of 5.59 × 10−85 (Figure 6.2).

Thus, as a standard machine learning step, we excluded one of these features. We found

that excluding p-tau181 yielded better performance than when excluding t-tau (see Section

6.2.4).

We considered using CSF α-synuclein levels as a biospecimen feature [141], but this data

was unavailable for ADNI-2/GO participants. In total, we used two numerical biospecimen

features.
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Table 6.3: Mapping the APOE genotype to a numerical variable. The number of copies of
the ε4 allele dictated the feature value.

APOE Genotype Feature Value

ε2/ε2, ε2/ε3, and ε3/ε3 0
ε2/ε4 and ε3/ε4 1

ε4/ε4 2

Genetic Feature

We selected a single genetic feature: each patient’s APOE genotype. We paid special

attention to the ε4 allele (APOE4), which is the largest known genetic risk factor for AD in

a variety of ethnic groups [142, 143]. Specifically, risk for AD was shown to increase with the

number of APOE ε4 alleles. Additionally, APOE4 has been associated with cognitive decline

in Parkinson’s disease [144]. We incorporated the APOE genotype by using the number of

copies of the ε4 allele as a numerical variable. The full mapping from APOE genotype to

numerical variable is shown in Table 6.3.

Imaging Features

To obtain imaging features, we used the FreeSurferV5.1 software, which analyzes structural

magnetic resonance imaging (MRI) scans [145]. We processed PPMI MRIs at baseline and

screening visits to generate the imaging features. FreeSurfer-generated imaging features were

already included in the ADNI dataset.

After obtaining the processed image features, we used principal component analysis (PCA)

[146] to reduce the image feature space to two dimensions. We empirically chose to use the

two most principal components as numerical features in our classification model because

adding a third image feature decreased classification performance.

Alternate dimensionality reduction methods, such as independent component analysis

(ICA), did not perform as well as PCA on our dataset.

6.1.4 Experimental Design

Input and Output

To summarize the previous sections, we selected sex, CSF Aβ42 levels, CSF t-tau levels,

the APOE genotype, and the two imaging features as input to train a classifier. To prevent
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data leakage, we excluded the baseline cognitive label from the classification input. We

performed min-max normalization within each dataset prior to training.

The output was a patient’s cognitive disease label (normal CI, MCI, or dementia) in a

follow-up visit after the baseline. Again, we were most interested in predicting whether a

patient would develop dementia.

We designed experiments by training and testing separately on each dataset. Additionally,

we combined the datasets into a single training set by adding the dataset not being tested.

For example, if testing on held-out PPMI patients, we trained on all other PPMI patients

as well as all ADNI patients.

Cross-Validation

We performed repeated, stratified k-fold cross-validation, splitting the folds on AD and

PD patients independently, for k ∈ {3, 5}. Results were insensitive to the choice of k, with

no significant difference between k = 3 and k = 5 (p-value > 0.05). We recombined the

folds for training to avoid imbalances between the two diseases. Thus, each fold contained

equal proportions of AD and PD patients as well as equal proportions of normal cognition,

MCI, and dementia patients. We report the AUC values along with the 95% confidence

intervals for dementia prediction from the 3-fold cross-validation to maximize the number

of PD patients with dementia in the test set.

Classifier

We used logistic regression with the L-BFGS solver [147], which outperformed random

forest classifier, support vector machines, and multi-layer perceptrons at both 3- and 5-fold

cross-validation.

6.2 RESULTS AND DISCUSSION

6.2.1 ADNI and PPMI patients had overlapping feature values

From strong evidence in prior work, we saw the role that each of these features play in

the onset of dementia in both AD and PD patients. To further support this, we observed

overlapping features values between ADNI and PPMI patients (Figure 6.3).
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Figure 6.3: Feature value comparisons between ADNI and PPMI patients with dementia,
prior to min-max normalization. Image Features 1 and 2 refer to the two most principal
components of the FreeSurfer-generated image features.

6.2.2 Visualization yielded clusters of dementia patients

We plotted the two datasets in the same visualization using our selected features. As

in Chapter 4, we used t-SNE to reduce our six features to two dimensions. We saw that

patients with dementia, regardless of dataset, clustered together in similar areas (Figure

6.4). Furthermore, the resulting embedding vectors were correlated with cognitive status

with Pearson correlation coefficients of 0.217 and 0.257 and p-values of 1.05 × 10−6 and

5.98 × 10−9, respectively. Thus, our features can be useful in identifying patients with

dementia.

6.2.3 The combined dataset improved classification performance

Table 6.4 summarizes the performance of our classifier. To determine whether changes in

AUC were statistically significant, we computed paired t-tests.

When training and testing on ADNI, we achieved an AUC value for dementia prediction

of 0.855 (95% CI [0.848, 0.861]). When training on the combined dataset, we observed a

statistically significant improvement with an AUC value of 0.862 (95% CI [0.856, 0.868], p-

value = 7.21× 10−4). As expected, the absolute increase in AUC was low, likely due to the

small number of PDD patients.

However, we saw a major improvement when using the combined dataset for predicting

dementia in PD patients. When training and testing only on PPMI, we achieved an AUC
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Figure 6.4: Two-dimensional visualization of the ADNI and PPMI patients using our six
selected features. ADNI patients are indicated by circles, and PPMI patients are indicated
by triangles. The color of each point denotes the cognitive level of the corresponding patient,
where red means that patients developed dementia by the time of their follow-up visits. We
saw that patients with dementia (points in red) tended to cluster together, regardless of
dataset.

value for dementia prediction of 0.797 (95% CI [0.783, 0.811]). When training on the com-

bined dataset, we achieved an AUC value of 0.883 (95% CI [0.873, 0.892]), a statistically

significant improvement with a p-value of 5.05× 10−21.

Furthermore, we compared with the setting of training on the ADNI dataset and testing

on PPMI, a baseline replicated from a previous study [134]. This setting achieved an AUC

of 0.840. Training on the combined dataset performed better with a p-value of 4.24× 10−15.

Overall, using the combined dataset to train the classifier improved the prediction of

dementia. The main limitation of our model was the small amount of PDD patients in our

dataset. We attempted to address this by utilizing 3-fold cross-validation to maximize the

number of PDD patients in each test set. Additionally, we showed that AD and PD data can

be combined to alleviate this issue. Note that the augmentation of the PPMI dataset with

the ADNI dataset was not intended to be a long-term solution to the lack of data. Rather,

we hope this study reveals that AD and PD patients share similarities that can facilitate the

prediction of the onset of dementia.
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Table 6.4: Classification performance for each of our experimental settings for 3-fold cross-
validation. When testing on either ADNI or PPMI, we saw improvements when training on
the combined dataset versus when training on the original dataset.

Training Set Test Set Dementia AUC

ADNI ADNI 0.855
Combined ADNI 0.862

PPMI PPMI 0.797
ADNI PPMI 0.840

Combined PPMI 0.883

6.2.4 Choosing between CSF total tau and p-tau181

Recall that CSF t-tau and p-tau181 concentrations were highly correlated in our dataset.

We performed leave-one-out experiments to select one feature between the two, holding the

rest of the features constant.

We found that including t-tau versus including p-tau181 did not yield a statistically sig-

nificant difference in AD prediction AUC. However, when using both features, the AUC

dropped from 0.862 to 0.861 (95% CI [0.855, 0.868]), a statistically significant decrease with

a p-value of 4.77× 10−3.

On the other hand, we found that including p-tau181 yielded a PDD prediction AUC of

0.853 (95% CI [0.841, 0.864]), a decrease from 0.883 when using t-tau. This was statistically

significant with a p-value of 1.89×10−13. The AUC dropped to 0.877 (95% CI [0.867, 0.888])

when using both features, a decrease with a p-value of 9.84 × 10−3. Due to the improved

performance of dementia prediction when using t-tau over p-tau181, we chose to keep only

t-tau while excluding p-tau181 from the classifier.

6.2.5 Each of our selected features contributed to the classifier

We illustrated the importance of each feature used in our classifier trained on the combined

dataset by computing their standardized model weights. We found that most features had

high importance weights (Figure 6.5). However, the APOE genotype had a surprisingly low

relative feature importance (mean of 22.1), requiring further analysis.

When leaving the APOE genotype out of the classifier, the prediction AUC for AD dropped

from 0.862 to 0.861 (95% CI [0.854, 0.867]) with a p-value of 0.0232. The prediction AUC

for PDD dropped from 0.883 to 0.877 (95% CI [0.867, 0.887]) with a p-value of 3.23× 10−9.

As a result, we concluded that the APOE genotype can play an important role in dementia

prediction.
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Figure 6.5: The relative importance for each feature when training on the combined dataset.
Most features had a high importance in the logistic regression classifier. However, the APOE
genotype required further analysis (mean relative feature importance of 22.1).

Although including the APOE genotype increased prediction performance, this did not

necessarily mean that there was a strong association between the ε4 allele and the onset of

dementia in either disease. Indeed, there are still ongoing debates on this topic, particularly

in Parkinson’s disease [148, 149, 150, 151].

To firmly establish a causal relationship, we would require further experimental analysis to

elucidate how apolipoprotein E directly affects brain function over time. In the meantime,

we have shown that identifying a patient’s APOE genotype can help doctors predict the

development of dementia in both AD and PD.

6.3 RELATED WORK

Our study was motivated by many other works that attempted to study AD and PD from

various points of view. Calderone et al. analyzed AD and PD from a network perspective to

quantify functional and topological similarities between the two pathologies [152]. They used

a network community discovery algorithm, InfoMap, to perform this task. However, they

did not predict disease progression. Berlyand et al. performed a study deriving biomarker

signatures from AD to identify PD patients with dementia [134]. However, they did not

combine the AD and PD datasets. Several other studies used similar features as ours to
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predict progression of AD and PD patients individually [141, 153, 144], but never together

in the same dataset.

6.4 CONCLUSIONS AND FUTURE WORK

In this work, we attempted to identify AD and PD patients who had high risk of developing

dementia after their baseline visits. We framed this as a classification task in which we

predicted the patient’s cognitive status in a follow-up visit after the baseline. This task is

of high clinical importance, potentially allowing doctors to employ preventative measures at

an early stage in treatment.

Our method involved identifying features that have been shown in literature evidence to

drive both AD and PD pathologies. With these features, we built a combined dataset from

the ADNI and PPMI datasets to use as training input of a classifier. We showed that our

method yielded statistically significant improvements when predicting the dementia status

of patients from both datasets.

The main limitations of our work were associated with the PD dataset. Specifically, our

data lacked a high number of PDD patients. However, our solution attempted to address

this by supplementing the PD data with AD data. Additionally, when testing on the PD

data, we utilized paired t-tests to show that our improvements were statistically significant.

We hope that this work can open future opportunities for collaboration between the AD

and PD research communities. For future work, we can replicate these results on more

datasets to corroborate our claims, especially since one of our major limitations is the lack

of PD patients with dementia. Furthermore, we can include more features that are common

to AD and PD patients, such as SNPs and other genetic data.
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CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, I studied the problem of data source heterogeneity in the analysis of EMRs.

Using network embedding methods to integrate external data sources and enhance EMRs,

I improved a variety of downstream applications. PaReCat uses an external herb-symptom

dictionary to mine higher quality patient subcategorizations. This can lead to a better

understanding of diseases, and can also facilitate precision medicine. HEMnet includes

molecular interaction networks and domain knowledge to better perform survival analysis.

Improved survival analysis can help doctors understand the features that may result in higher

survival rates. VisAGE adds genomic data to provide more interpretable visualizations.

These high-quality visualizations can help doctors identify interpretable patient clusters.

Additionally, I performed query expansion by framing symptoms and treatments as sep-

arate languages. This resulted in retrieving EMRs more relevant to an input query, which

can help build EMR search engines. Lastly, I utilized heterogeneous data sources to combine

Alzheimer’s and Parkinson’s diseases datasets. This allowed me to accurately predict the risk

of a given patient developing dementia. This project also affirmed that these two diseases

can be studied jointly, which can lead to cost-saving measures during data collection.

The results of these works highlight the potential of incorporating different data sources

in the computational healthcare domain. However, there is still much to be done before

clinical translation can be fully achieved.

For example, as EMR databases become more standardized, the problems associated with

semantic synonyms will diminish. However, treatment and functional synonyms will still

result in semantic mismatching because they are medical relationships that do not disappear

with more consistent recordkeeping. This highlights the need for creating higher quality

knowledge graphs.

Although an increase in data availability as well as computational power could solve a

handful of issues, great strides can still be taken with the resources currently available.

7.1 TEXT MINING IN CLINICAL NOTES

The research in this thesis dealt primarily with the different types of data that are typically

available in EMRs. However, one ubiquitous EMR data type that I omitted was clinical

notes. These pieces of unstructured text data are crucial to differentiating patients, and offer

additional insight into a patient’s condition. Due to their unstructured nature, I excluded

their direct usage in the analyses performed in this thesis.
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There have been many attempts at text mining directly from medical records [154, 155,

156, 157], but many public datasets lack the capacity for a large-scale undertaking. Further

work needs to be done such that clinical notes become more readily available in conjunction

with the plethora of heterogeneous data types already online. This would enable us to enlarge

our heterogeneous network and find more paths between related entities. These relationships

would initially have to be mined from the internal EMR data, but could eventually generalize

to online databases.

7.2 EXPANDING KNOWLEDGE NETWORKS WITH INFORMATION FROM
MULTIPLE DISEASES

As discussed in Chapter 6, many diseases are actually related, and the developments and

pathologies of ailments from even different body parts could be interconnected. In my studies

that utilized knowledge networks, I was able to link similar medical entities using network

embeddings. However, I only dealt with a single disease at a time due to external database

constraints.

On the other hand, in order to study Alzheimer’s and Parkinson’s diseases jointly, we

hand-selected common features using literature evidence. In the future, it is possible that a

knowledge network can enable the automatic mining of this information, and many types of

diseases and relationships can be studied from a single network. Heavy collaboration between

doctors and computer scientists would most certainly be required. If successful, this type

of knowledge network could pave the way for further joint analyses of complex diseases,

allowing for a deeper understanding of how genetic and environmental factors combine to

affect the human body.

However, it is not necessarily advantageous to always use as large a knowledge graph as

possible (global knowledge graph). A network tailored for a disease might be better suited

in some cases. One possible method of building a tailored knowledge graph is to select

interactions obtained from experiments on patients suffering from the disease of interest.

Another possibility is to perform text mining on publications that concern the disease and

adding the mined relationships to the global network. In the future, it would be important

to use both a global knowledge graph and a tailored one. In such a case, an important

question to address is how to regulate the relative weights. One solution is to empirically

set the weights using a training data set by optimizing a meaningful metric.
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7.3 UTILIZING GENE EXPRESSION DATA

Finally, we can expand on our usage of genomic data with gene expression profiles. In our

work, the genomic data was limited to SNPs, which are mid-level descriptions of mutations.

Gene expression profiles have the potential to be the next crucial step in the role of genomics

in computational healthcare. We have seen the promising results of using gene expression

profiling in drug response prediction [158, 159, 160, 161], mining association rules [162, 163],

and more. I hypothesize that by using gene expression data, we can access the low-level

details, which can increase the quality of the connections between patients and medical

entities.
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