Model Checking Multithreaded Programs with

Asynchronous Atomic Methods

Koushik Sen and Mahesh Viswanathan
Department of Computer Science,
University of lllinois at Urbana-Champaign.

{ksen, vmahesh}@i uc. edu
Abstract. In order to make multithreaded programming manageable, program-
mers often follow a design principle where they break the problem into tasks
which are then solved asynchronously and concurrently on diffénegads. This
paper investigates the problem of model checking programs that follisvidth
iom. We present a programming language $hat encapsulates this design pat-
tern. L extends simplified form of sequential Java to which we add the ca-
pability of making asynchronous method invocations in addition to the stdndar
synchronous method calls and the ability to execute asynchronous rméthod
threads atomically and concurrently. Our main result shows that theotstdte
reachability problem for finite & programs is decidable. Therefore, such mul-
tithreaded programs can be model checked using the counter-exgoigkd
abstraction-refinement framework.

1 Introduction

Multithreaded programming is often used in software asat#eto reduced latency,
improved response times of interactive applications, ancermptimal use of process-
ing power. Multithreaded programming also allows an agian to progress even if
one thread is blocked for an 1/O operation. However, writtogrect programs that use
multiple threads is notoriously difficult, especially inetipresence of a shared muta-
ble memory. Since threads can interleave, there can beamaied interference through
concurrent access of shared data and result in softwanes elue to data race and atom-
icity violations.

Therefore, programmers writing multithreaded code, oftdimere to a design idiom
where the computational problem is broken up itdekswhich are then assumed to
be finished asynchronously, concurrently, and atomic&ipecifically, threads during
their execution may send tasks or events or asynchronousagesto other threads. If
a thread is busy completing a task, the messages sent toatidet! to a pool of tasks
associated with the thread. When the thread has completeditirent task, it takes out
a task from its pending pool and starts processing it coratigr with other threads.
If the pool is empty the thread waits for a new task or event essage. Even though
these asynchronous tasks are executed concurrently enediiffthreads, an underlying
assumption is that these tasks will be executed atomiddiig.is often ensured through
various synchronization primitives, such as locks, mutesemaphores, etc.

For example, in the Swing/AWT subsystem of Java, a non-GUathris not
allowed to make any direct changes to the user interfaceesepted by a Swing
object. Instead such a thread submits the request tdEtent Queue by calling
SwingUtilities.invokelLater(runnable). The thread associated with the
Swing event queue handles these requests one by one atgniitéd ensures that the
user interface operations are performed in a non-inteifesiay and the user interface
has a consistent state and look. Another context where #siigd paradigm is widely

prevalent is multithreaded web servers. When a page recuesht to an web server,
the web server posts the request to a request queue. If thatfiede thread in the finite
thread pool of the web server, the free thread removes asefjoe the request queue
and starts processing the request. The use of threads srtkatenultiple requests to
the web-server can be served concurrently. Moreover, sgnctation primitives are
used to ensure that the threads do not interfere with eaan. dtimally, multithreaded
transaction servers for databases also view transact®asyachronous requests that
are served by the different threads of the server concuyre®ince requests in this
context are transactions, the server ensures that thesearfva transaction satisfies the
ACID (atomicity, consistency, isolation, durability) grerty.

The prevalence of this design idiom has also been observédldry Holub [16] in
his book “Taming Java Threads”. In this book, Holub pointsthat programmers clas-
sify method invocations or messages into two categoriextspnous messages and
asynchronous messages. The handler for synchronous rassksgsn't return until the
processing of the message is complete. On the other hantbrasyous messages are
processed possibly by a different thread in the backgroantedime after the message
is received. However, the handler for asynchronous messagens immediately, long
before the message is processed.

In this paper, we investigate the verification of programgtem adhering to this
design principle. We introduce a simple programming lagguaalled ®L, that en-
capsulates this design goal. It is a simplified form of setjgkdava to which we add
the capability of making asynchronous method invocationaddition to the standard
synchronous method calls and the ability to dynamicallatreéhreads. We define its
semantics in terms of concurrently executing threads. \&e tibserve that the require-
ment that asynchronous methods execute atomically, allevis reason about the pro-
gram using a new semantics wherein the threads service dsgsehronous method
invocations serially.

The analysis of 8L programs with respect to the serialized semantics can then
proceed by following the popular methodology of softwaredeliachecking [27, 2, 14],
where the program is first automatically abstracted usiraeéam predicates into one
that has finitely many global states, and the abstractedq@mog then model checked.
The results of the model checking are then used to either dstnade a bug/correctness
of the program, or used to refine the abstraction.

The success of the software model checking framework depepdn the model
checking problem for BL programs with finitely many global states being decidable.
We first observe that the serial semantics ensures that tiaé dtack of at most one
thread is non-empty at any time during the execution; theas¢ios of such programs
can thus be defined using only one stack. We introducdi-set pushdown systems
(MPDS) to model such finite & programs. MPDSs have finitely many control states,
one unbounded stack to execute recursive, synchronoudstand one unbounded
bag to store the asynchronous method invocations. The masiination that is imposed
on such systems is that messages from the bag be servicedtmmthe stack is empty,

a consequence of our atomicity requirements. Our maintresthat the problem of
control state reachability of MPDSs is decidable, thus destrating that 8L programs
can be analyzed in the counter-example guided abstraaforement framework.

The rest of the paper is organized as follows. Next, we dsclasely related work
and place our results in context. Section 2 introduces iootadefinitions and classical
results used in proving our results. The simple parallgjlage ($L) for multithreaded
programming is presented along with its semantics in Se@ioWe investigate the
verification problem in Section 4 and conclude (Section Shwbme open problems
and future directions to be pursued.

Related Work. Model-checking algorithms and tools [27, 2, 14] for singieeaded
programs with procedures based on predicate abstractienbde®en developed. These
model checkers use the fact that the reachable configusatibpushdown systems
are regular [1, 12]. Ramalingam [26] showed that verifigatid concurrent boolean
programs is undecidable. As a consequence, approximdiesetachniques that over-
approximate [4] and under-approximate [24, 3] the reaehatdtes have been consid-
ered, as have semi-decision procedures [23]. Other tegbsiy, 15, 8] try verify each
thread compositionally, by automatically abstractinggheironment. Finally, the KISS
checker [25] for concurrent programs simulates the exenstdf a concurrent program
by the executions of a sequential program, where the vatfoeads of the concurrent
program are scheduled by the single stack of the sequemtigtgm. Though sound,
the KISS checker is not complete.

There has also been considerable effort in characterizngurrent systems with
finitely many global states for which the reachability as#yis unknown to be decid-
able. Starting from the work of Caucal [6] and Moller [20], evk purely sequential
and purely parallel processes were considered, hierardfisystems have been de-
fined. Mayr [19] gave many decidability and undecidabiliégults based on a unified
framework. Among the models that allow both recursion andbdyic thread creation,
most disallow any form of synchronization between the ttsgd0, 28, 18, 21]. More
recently, the model ofonstrained dynamic pushdown netwof€OPN) [5] was intro-
duced which allowed for thread creation and limited formsyfchronization. CDPNs
have a more sophisticated means to synchronize, but thasiinchronization only be-
tween a parent thread and its descendants. Our model of MilD®s dynamic thread
creation and limits context switches to happen only whemelsyonous methods have
finished execution. Thus, MPDSs and CDPNs are incomparabl@ply to different
multi-threaded programs.

2 Preliminaries

Multisets and Strings.Given a finite set”, the collection of all finite multisets with
elements in~ will be denoted byl/,,[X]. We saya € M if a is an element of multi-set
M. For multi-setsM andM’, M UM’ is the multi-set union ol andM’, andM \ M’
the multi-set difference betweel and M’. We usef) to denote the empty multi-set.
Recall thatX* is the collection of all finite strings over the alphatiet with ¢ being
the empty string. Given two finite strings andw’, we will denote their concatenation
by ww’. For a stringw, M(w) will denote the multi-set formed from the symbolswef
For example, ifw = aaba, thenM(w) = {a,a,a,b}. Finally, for L C X*, M(L) =
{M(w) | w € L}

Well-quasi-orderings.Recall that aquasi-ordering< over a setX, is a binary relation
that is reflexive and transitive. Given a quasi-orderdhganupward closed sdtf C X

isasetsuchthatif € U andx < ytheny € U. For asetS C X, the smallest upward
closed set containing will be denoted bycL(S), i.e.,cL(S) ={z |y € S.y < z}.
For a setS, the minimal elements i§ isMIN(S) = {z |Vy € X.y £ «}.

A quasi-ordering< over X is said to be avell-quasi-orderingwqo) if for any infi-
nite sequencey, x2, x3, . . . of elements inX, there exist indices j such that < j and
z; < x;. We now recall some well-known observations about wellsiygaderings [17,
11].

Proposition 1. For awgo< and any se5 C X, MIN(S) is finite.

Proposition 2. For a wqo <, any infinite increasing sequenég C U; C Us; C ---
of upward closed sets eventually stabilizes, i.e., thesekis N such that for all > &
U; = Uy.

Pushdown systemsA pushdown systerfPDS) isP = (Q, I, 9, qo,70), whereQ is
a finite set of stated]” is a finite set of stack alphabeig € Q is the initial state,
v € I is the initial stack configuration, ardC (Q x I') x (Q x I'*) is the transition
relation. The execution of a PDS can be described in termgrafhaition system over
configurations, which argy, w) € Q x I'*. We say(q1, w1y) — (g2, wiws) if there
is a transition((q1,v), (g2, w=2)) € ¢. We say a configuratiofy, w) is reachable iff
(go,v0) —* (¢, w), where—* is the reflexive, transitive closure ef—, and that a
control state; is reachable iff(¢g, w) is reachable for some < I'*. It is well-known
that the problem of control state reachability is decidébée [12, 1]); this is the content
of the next theorem.

Theorem 1. Given a PDSP, checking if a control state is reachable is decidable in
O(n?) time, wheren is the size of the PDSB.

3 Programming Language

We describe a simple parallel languageLSwhich captures the essential concepts of
multithreaded programs with asynchronous atomic meth®ls. S°L language is a
simplified form of the sequential Java language. Similaat@,Jthe 8L language sup-
ports objects. In addition to definition of classes, we altbe definition of a special
type calledthread. Instances of alassis called an object and instances adheead is
called a thread object. A thread of control is associateti every thread object. The
objects in $L behave similarly as in Java. A method invocation of an objgslyn-
chronousand its execution is carried out using a stack. However hia@ad objects we
introduce a new semantics for method invocation. Spedificae assume that an invo-
cation of a method of a thread objectisynchronousindatomic If a thread of control
invokes a method of a thread object, then the method calingitnmediately and the
call is added as a message to a global message bag. If thd tifreantrol associated
with the callee object is not busy processing a message,ithakes out a message
(i.e., a call to one of its methods) targeted to it from thebgldoag and starts executing
it atomically and concurrently with other threads. Notet insan execution of a &L
program, several threads can execute concurrently. Thmeictg condition requires
that for every possible interleaved execution ofr $rogram, there exists an equiva-
lent execution with the same overall behavior where the oustlof the thread objects
are executed serially, that is, the execution of a threadabipethod is not interleaved
with actions of other threads. This particular restrict@sures that the execution of a
method of a thread object is not interfered by other threlasigh shared objects.

4

P ::=defri" (newT).md(c")
defn::= classC {field* methl} | thread T" {field* methZ}
field ::= type fd
methl::= (type| void) md(arg*){local* stmt'}
meth2::= void md(arg™){local* stmt'}
stmt::=1[: S;
Su=z=ce|zfd=y|xz.mdy*) |if x gotol | return x
e ::= newtype| null | this | ¢ |z | z.fd | z.md(y*) | f(z™)
arg ::= typex
local ::= typey
type::= C' | T' | primitive types such as int, float, boolean, etc.

| ::= label
x,y ::= variable name
C ::= class name
T ::= thread name
fd ::= afield name

md ::= a method name
f ::= pre-defined functions such as +, -, *, /, etc.
¢ ::= constants such as 1, 2, true, etc.

Fig. 1. SPL Syntax

371 Syntaxof L

The formal syntax of 8L is given in Figure 1. A program inf&. consists of a sequence
of definitions ofclassesandthreadsfollowed by an asynchronous method invocation of
a newly created thread object.chassor athread definition consists of a declaration of
a sequence of fields followed by the definition of a sequencesthods. A method of a
classcan return a value. A method otlaread cannot return a value. A method consists
of a sequence of local variable definitions followed by a sege of statements. A
statement is always labeled. Observe that the executionstdtament can access at
most one shared memory location. This allows us to treattbeigion of a statement as
an atomic operation. Branching and looping constructsmaitaied using the statement
if z gotol, wherel is the label of a statement in the method that containg #tatement.
We assume that a program imiSis properly typed.

3.2 Semantics of 8L

In the semantics of &, we assume that actions of multiple threads can interleeaey
way; however, we impose the restriction that the executf@anasynchronous method
must beatomic We call this semantics the concurrent semanticsraf S

The concurrent semantics oPSis given by augmenting more rules to the standard
semantics of Java. Instantaneous snapshot of the exeaiditeo8PL program is called
aconfiguration Formally, a configuratiod’ is a 3-tuple(q, S, M), where

— ¢ is the global state containing the value of every object anekd object currently
in use in the program and the program counter of each threadiated with every
thread object.

— S is a map from a thread object to an execution stack. The stackaich thread
is used in the usual way to execute an asynchronous methogrsély. Note
that the invocation of an object method is always synchrerand the method is
executed by the caller thread by creating a new stack fraritg stack.

— M is a multi-set or bag of messages. Whenever, a thread invokestlzod of
a thread object, the target thread object, the method namdethe values of the
arguments passed to the method are encoded into a messggaaadlin the bag.
We useM U e to represent the multi-set obtained by adding the elera¢atthe
multi-setM .

LetC be set of all configurations. We define a transition relafion-; C’ (see Figure 2)
for the concurrent semantics. Such a relation represeatisahsition from the config-
urationC' to C’ due to the execution of the statemerity the thread. Henceforth, if

t is a thread object, then we will also uséo denote the thread of control associated
with the threadt. The transition relations are described abstractly usingraber of
functions described, informally, below:

[JavA SEMANTICS]

3t € THREADS(q).(s = GETNEXTSTATEMENT(q, t)
A s# LA=(s=zmdy*) A [z]sq) € THREADS(q)))
A (q',S") = EXECUTENEXTSTATEMENT(q, S(t), t)

(q,S, M) ~{ (¢',S', M)

[CONSUMEMESSAGH

3t € THREADS(q).(GETNEXTSTATEMENT(g,t) = L
A (¢, 8') = SETNEXTSTATEMENT(q, S(¢), t, t.md(v*)))

(¢, 8, M U{t.mdw")}) ~i (¢, 8", M)

[SEND MESSAGH

3t € THREADS(q).(s = GETNEXTSTATEMENT(q, t)
A (s =z.mdy") A[x]s) € THREADS(q)))

(g, 8, M) ~{ (SKIPNEXTSTATEMENT(q, t), S, M U {[z]s(x)-md([y]5(:))})

Fig. 2. Concurrent Semantics

— THREADS(q) returns the set of thread objects that are created in theiéaac

— GETNEXTSTATEMENT(q, t) returns the next statement to be executed by the thread
t. The function uses the value of the program counter foungfuor the thread
to determine the next statement. If the threasl not executing any asynchronous
method, then the function returrs

— EXECUTENEXTSTATEMENT(q, S(t), t) executes the next statement of the thread
following the standard sequential Java semantics andnetupair containing the
updated global staig and the updated ma§y in which the stack’(¢) has possibly
been modified. The program counter of the threalalso updated appropriately
in the global state’.

— SETNEXTSTATEMENT(q, S(t),t,t.md(v*)), wherev denotes a value, creates a
stack frame in the stacK(¢) to prepare for the invocation of the methodi and

sets the program counter ofn ¢ to the first statement of the methowt of ¢. The

updated global stai¢ and the magb” is returned by the function.

— SKIPNEXTSTATEMENT(q, t) updates the program countergof the thread, such
that the thread skips the execution of the next statement.

— [#]s@) returns the value of the local variabtewhich is obtained from the topmost
stack frame of the stacK(¢).

The initial configuration of a 8L programdefri® (new T').md(c*), given byCy =
(g0, So, Mp), whereg, contains the thread object, sgycreated by th@ew T' expres-
sion, Sp mapst to an empty stack, andl/, contains the only messagend(c*). The
program counter of in ¢q is undefined. Thus the@dsuME MESSAGEIs the only rule
applicable to the initial configuration.

Atomicity Requirement. The concurrent semantics oPSallows arbitrary interleav-
ing of multiple threads. However, we want to impose the re&stn on possible inter-
leavings so that the execution of each asynchronous medtatdric. We next describe
this atomicity requirement.

We abstractly represent a finite execution of the foftp ~;' Cp ~2
Cy---Cyr_1 ~i» C, of a SPL program following the concurrent semantics
by the sequencer =-~-i'~i> ... ~i" (,. We use M&T(r) to represent
the multi-set{(¢1, s1), (t2,82), ..., (tn, sn)}. We restrict the set of executions that
can be exhibited by a & program following the concurrent semantics by im-
posing the atomicity requirement on asynchronous methatgions as follows.
If a finite executionT =~>{l~i2 ... ~/" (q,S,M) be such thatvt ¢
THREADS(q).(GETNEXTSTATEMENT(g,t) = 1), thenr is said to be avalid exe-
cution of the program following the concurrent semantitthié following holds. There

exists a finite execution’ =~7t~72 - ~7r (¢/,S’, M’) of the program following

i
the concurrent semantics such that
1. (g,8,M)=(q,5" M),
2. MSET(7) = MSET(7’),
3. if for any two elementst, s) and (¢, s') in the MSET(7), ~$ appears before-$’
in the sequence, then~~§ also appears before»i' in the sequence’, and
4. in the sequence, all transitions after a~;- and before any~3, are of the form
~>7, such that = ¢/ ands # L.
The above requirement ensures that the execution of an lagymaus method by a
thread is atomic. In general, it has been shown that suchicitgmequirements for
multithreaded programs can be guaranteed statically mgusitype system for atom-
icity [13] or dynamically through rollback [29]. We assuntet the language & is
augmented with an atomicity type system or implemented im@such that an execu-
tion of a program in the language following the concurremaetics is always valid.
Serialized Semantics.To effectively reason about the behavior of @LSwe introduce
the serialized semantics o8 and show that for the reasoning purpose we can only
consider the serialized semantics #fiLS
Similar to the concurrent semantics, in the serialized sgic we assume that
there is global state, a global message bag or a multi-set of messagdieand a mas
from thread objects to stacks. Then the following happeadaop. If there is a message
(i.e., an asynchronous method call along with values faaiigmiments) for a thread in

the bag, then the thread removes the message from the bagemdes the method in
the message. No other thread is allowed to interleave theautions till the execution
of the method terminates. During the execution of the mettiwexecuting thread can
call asynchronous methods of any thread object. Those aaltgy with the values for
their arguments are placed in the bag as messages. Notenthiatdeterministic choice
is associated with the picking of a message from the bag.

We define a transition relatiof —; C”’ for the serialized semantics. The rules
for transition in the serialized semantics is same as th#tténconcurrent semantics
except for the rule [ONSUME MESSAGH (see Figure 3). In the serialized semantics,
the rule is applicable if none of the threads is executingsgmehronous method and
there is a message in the bag. In the concurrent semantesulh is applicable if
there exists a thread, which is not executing an asynchsonmthod, and there is a
message for the thread in the bag. Note that the atomicityir@gent trivially holds in
the case of serialized semantics. We represent a finite gseaf the formCy —3!

C, —i2 Cy---Cpy —i C), following the serialized semantics by the sequence

—u 6 On
[CONSUMEMESSAGH

YVt € THREADS(q).(GETNEXTSTATEMENT(gq,t) = 1)
A (¢, S") = SETNEXTSTATEMENT(q, S(t'), ', t'.md(v*))

(¢, 8, M U {t'. md(v*)}) — (¢, 5", M)

Fig. 3. Serialized Semantics
Given that a program in 8. always exhibits valid executions following the con-
current semantics, the next result shows that any execafitime program following
the concurrent semantics égjuivalentto an execution of the program following the
serialized semantics.

Proposition 3. For any program execution~;!~> ... ~i" (q,S, M) where
V¢t € THREADS(q).GETNEXTSTATEMENT(q,t) = L, there is a serialized execution

—f'l —%2 —>f" (¢’,S’, M') such that(q, S, M) = (¢, S", M").

The above result allows us to treat any valid execution obgmam in $L follow-
ing the concurrent semantics in terms of an equivalent giaciollowing the serialized
semantics. Reasoning about a serialized execution isrd@stause in such an execu-
tion we have to consider a sequence of method invocationsfieyet threads, where
the execution of each method can be reasoned sequentiedfctl in the next section
we show that reachability of finite programs imiSis decidable. It is worth mention-
ing that the reachability of a program irrGfollowing the concurrent semantics is not
decidable if we do not impose the atomicity restriction.

4 Verifying SPL Programs

In this section we consider the problem of verifyingLSprograms. Recall that for
SPL programs restricted to valid concurrent executions, wesdesl (in Section 3.2)
that reasoning about serialized executions is sufficiemndnswering questions about
global state reachability. Further, during a serializedogetion of a L program, at

any point only one thread executes an asynchronous methtaagmpletion without
interleaving with any other thread. This implies that thecktof at most one thread is
non-empty at any point in a serialized execution. As a residtcan define the (serial-
ized) semantics using only one stack which is re-used byeative thread.

The verification of serialized & programs can proceed by following the familiar
methodology of abstractingFs programs, model checking, checking the validity of
a counter-example, and then refining the abstraction if thenter-example if found
to be invalid. Using standard predicate abstraction tephes, an SL program over
arbitrary data types can be abstracted into an @ogram all of whose variables are
boolean. The steps of checking counter-examples and rgfiagain can be performed
using well-known algorithms. In this section, we therefforeus our attention on model
checking finite $L programs. We first define the formal modelrofilti-set pushdown
systemgMPDS) that have finitely many global states, one stack t@@eerecursive,
synchronous method calls, and one message bag to storagesginchronous method
calls. Such MPDSs define the (serialized) semantics of fiBrtie programs. We then
show that the control state reachability problem for MPDSdecidable.

4.1 Multi-set Pushdown Systems
We present the formal definition and semantics of multi-sshpown systems.

Definition 1. A multi-set pushdown system (MPDS) is a tudle= (Q, I, A, g0, 7%0),
where(is a finite set of global stateg; is a finite set of stack and multi-set symbols,
AC(QxT)x(QxI*xT)isthe transition relationgy € @ is the initial state, and
o € I'is the initial method call.

We let ¢ to range over@, v to range overl’, w to range over[™, M to range
over M, [I']. The semantics of an MPDS! is defined in terms of a transition
system as follows. A configuratiof of A is a tuple (q,w,M) € @Q x I'* x
M,,[I']. The initial configuration ofA is (qo,€,{Y}). The transition relation—
on configurations is—; U —», where —; and —, are defined as follows:
(g, wy, M) —1 (¢’ ,ww’, M U {+'}) if and only if ((¢,7), (¢, w',7")) € A; and
(g, ¢, M U {~v}) —2 (q,7, M). Observe that—, corresponds to the transition rules
[Java SEMANTICS] and [SEND MESSAGH and—» corresponds to the transition rule
[CoNnsUME MESSAGH in Figure 3. Also note that there is no transition frgme, 0)
for anyq € Q; therefore,A halts when it reaches a configuration of the fame, 0).
Finally, —*, —7 denote the reflexive, transitive closure -ef> and —, respec-
tively.

Defi¥1ition 2. A configuration(g, w, M) is said to bereachabléff (go, €, {y0}) —~*
(g, w, M). A control stateg is said to be reachable if for some € I'* and M €
M, (I, (¢, w, M) is reachable.

4.2 Control State Reachability in MPDSs

We are interested in verifying if a certain global state @raf global states) of a finite
SPL program is reachable. This is the same as checking if a nextaitrol state (or set
of control states) is reachable in the MPDS associated Wét8tL program. Let us fix
an MPDSA = (Q, I, A, q0, 7o) Recall that a control statgis reachable if for some
andM, (qo, €, {v0}) —* (¢, w, M). That means for som@, gz, - .. ¢n, ¥1,72 - - - Vn
andM,, M, ... M,, we have

(g0, €, {70}) —2 (q0,70,0) —1 (q1,€, M1 U{m1}) —2 (q1,71, M1) —7 (g2, €, M2 U {72})
-2 (qQa’Y?’MQ) e *)){ (q’ﬂ?EaM’ﬂ U {’Yn}) —2 (qn,'Yn,Mn) *)T (q,'U.),M)

Thus, the problem of checking whether a control statés reachable, con-
veniently breaks up into two parts: for somé& w,~v, M and M’, check whether
(quev {FYO}) —" (q/7€7M, U {’Y}) and Whether(q/777M/) _)T (Qava)‘ Fur-
ther observe thatq’,~,0) —7% (¢, w, M) for somew and M iff (¢',~, M') —3
(¢, w, M' U M) for everyM’. Hence, we can further simplify our tasks as follows. For
someqg’ and~, check whethefqo, ¢, {70}) —"* (¢, ¢, M" U {}) for M’ and whether
(q',v,0) —7% (¢, w, M) for someM andw. We will call the firstcoverability prob-
lem and the seconzbntrol state reachability without context switchesblem. We will
treat these problems one by one and show each to be decidable.

Reachability without context switches.We will first consider the problem of checking

if for somew, M, (¢, ~,) —% (¢, w, M). Observe that since the messages in the bag
do not play a role in the transition—, we can ignore the asynchronous method calls
that are generated during a transition in order to decidepttublem. Thus, this problem
can be reduced to checking reachability in pushdown systetmie formally, consider
the pushdown syste® = (Q', I, ¢, ¢}, ,) whereQ' = Q the states of the MPDS
AT =T,q, =4, =, andd’ is defined as follows{(q1,71), (g2, w2)) € ¢ iff
((q1,71), (g2, w2,72)) € A (transition relation of4) for some~,. The MPDSA and

the PDSP are related as follows.

Proposition 4. A configuration (¢q;,w;) is reachable inP iff (¢/,v,0) —*
(q1, w1, M) for someM.

The proof is straightforward and skipped in the interestsmdce. Hence based on
Proposition 4 and Theorem 1, we can conclude that the costtxt# reachability prob-
lem, without context switches is decidable in polynomialdifor MPDSs.

Coverability. We now study the problem of coverability. Recall that, gieestatey’
and a stack symbol, we need to decide if for som®’ € M, [I'], (¢0,€,{0}) —*
(¢',e, M' U {~}). We will introduce a new model akgular multi-set system{&MS),
which are slight generalization afiulti-set automataand show that the coverability
problem can be reduced to a reachability problem on RMS. Wehein show that the
reachability problem for RMSs is decidable.

Definition 3. Aregular multi-set systefRMS) is a tupleR = (Q, I, 4, g0, v0), Where

Q is the set of the states &, I" is the multi-set alphabet, € @ is the initial state, and

0 C ((Q x I') x (Q x L)) is the transition relation with, C I'* being a regular lan-
guage. A configuration is the pag, M), whereq € Q andM € M, [I'] and the initial
configuration is(qo, {70 }). The semantics of a RMS is given by the transition relation
— over configurations. We sdy, MU{~}) — (¢, M") iffthereis((¢,v), (¢’, L)) € 6
andw € L such thatM’ = (M UM(w)).

Regular multi-set systems are a generalization of muttagmata, where instead
of a transition adding the same multi-set to a bag every tm&MS transition chooses
a multi-set from among a collection described by a regulaglage and adds to the bag.

10

We will consider reachability problems for RMSs. A pé&jt) is said to be reach-
able iff there is somé/ such thatqo, {70}) —* (¢, M U {~}). We will show that the
coverability problem of MPDS can be reduced to such a realitygtroblem. But for
that we need to make an important observation about MPDSs.

Proposition 5. For MPDS A, and any statesy;, ¢, and stack symbot; define
M(q1,92,71) = {M | (q1,7,0) —7F (q2,6, M)}. There is a regular language
L(q1,q2,71) such thatM(L(q1, g2, 71)) = M(q1,q2,71)

Proof. Consider the following pushdown automatéh = (Q', X, I",6, 45,7, F)
where@Q’ = @ the states of4, input alphabet” = I, stack alphabef” = I, ini-

tial stateq), = ¢, initial stack configuration), = v1, F = {¢2}, and the transition
relationd C Q x I' x X' x Q x I'* is defined as follows{(p1,7}), V4, (p2, w)) € §

iff ((p1,74), (p2,w,~4)) € A. In other words,P has a transition on input, exactly

if the corresponding transition in MPD3 asynchronously calls}. Let L(P) be the
language accepted 19y simultaneously by empty stack and final state. It is easydo se
thatM(L(P)) = /\/l(ql, 42, ’)/1).

We now recall an important observation due to Parikh [22].

Theorem 2 (Parikh). For an context-free languagg; there is a regular languagé.
such thatM(L,) = M(L-). Moreover, given a PDA recognizing, we can effectively
construct an automaton faks.

Hence, there is a regular languagéq:, g2,~v1) such thatM(L(q1,g2,71)) =
M(L(P)) = M(q1, 42, 71) U
Lemma 1. Given an MPDSA, there is an RM3R with the same states and multi-set
alphabet such thafgo, ¢, {70}) —* (g, ¢, M U{~}) for any M in the MPDS iff(¢, v)
is reachable inR.

Proof. Given MPDS A = (Q,I,A4,q0,7), defineR = (Q,I4,qo,7) With
((g1,7M), (g2, L)) € 0 iff L = L(q1,q2,71) WhereL(q1,g2,71) is the regular language
from Proposition 5. Now we observe that ¢, M U{~}) is reachable itd exactly when
(g0, {70}) —* (¢, M U{~}). This observation follows by induction from the definition
of R. Thus the lemma follows. O

From Lemma 1 we observe that the coverability problem of MR®8ecidable
provided checking ifg,) is reached in an RMS is decidable. We, therefore, focus on
the reachability problem of RMSs. We will show that this desh is decidable by using
properties about well-quasi-orderings (wqo).

For the rest of this section let us fix an RMS= (Q, I, J, o, 70). Let us define an
ordering< over the configurations of a RMS as followg, M) < (¢, M’) iff ¢ = ¢’
andM C M’. An immediate consequence of Dickson’s Lemma [9] is thettaat this
ordering is a wqo. For a set of configuratiofisdefinePrRE(S) = {(¢, M)|3(¢', M') €
S.(qg, M) — (¢, M')} to be the set of configurations that can reach some configuarati
in S in one step. Finally, lebRE*(S) = |J,. PRE(S) be the set of all configurations
that can reach some configurationdnin finitely many steps.

Recall that to check ifq,) is reachable, we need to see if some configuration in
V =cL({(q,{~})}) is reachable from the initial configuration of the RMS. Henge
will computePRE" (V') and check if(go, {70}) € PRE*(V). Observe that in an RMS,
if (q1,M1) — (g2, Ms) then for everyM, (¢1, M1 U M) — (g2, M2 U M). Thus,
for an upward closed séf, PREU) is also upward closed. This suggests the following

11

algorithm. Compute progressively the sEtswherely = V andU,; = PREU;)UU;.
The sequencé&y, U, ... is an increasing sequence of upward closed sets, and so by
Proposition 2 we know that this sequence stabilizes in finiteany iterations.

To prove decidability of the reachability problem, all weedeto show is that we
can compute a representationldf, 1, given a representation éf;. We can represent
an upward closed sét by its minimal elementstiN (U) which will be finite (by Propo-
sition 1). Thus, we need to describe how to compuite (U; 1) from min (U;).

Consider any upward closed détand (¢, M) € MIN(U). For a transitiort, =
((¢,7), (¢, L)) € & (whose destination is statg andw € L definemin (PRE! (U/))
to be (¢', (M \ M(w)) U {7}). In other words,mMIN(PRE? (U)) is the least con-
figuration that can make a transition using by pushingM(w) elements into the
bag and reach a configuration in Let S = {MIN(PRE! (U)) | for every(q, M) €
MIN (U) and transitiort, } Our first observation is thaf can be represented using reg-
ular languages.

Lemma 2. There is are regular languages, such thatS = (J .o {q} x M(Ly).

Proof. For (g, M) € MIN(U) and transitiort, = ((¢’,7), (¢, L)) € 4, defineng M) =

{M"[(¢',M") = miN(PRE! (U)) andw € L}. We will show that there is a regular
languageL((q, M), t,) such thatSEZ’M) = M(L((q, M),tq)). The lemma will then

hold, becausé is the (finite) union of{¢’} x SZ;’M) for each(q, M) € mIN(U) and
transitiont,,.

We will construct an automatoAd’ acceptingL((¢, M), t,). This automaton for
L((q, M),t,) will guess an accepting computation of the automatofor L. As it
follows a path inA, it will maintain the set of messages M that have not yet been
produced by the accepting path. Once it reaches a final state ib will now only
accept strings which are permutations of the element& dhat are left, followed by
~. The formal construction follows.

Let A = (Q4, T, qi', 04, F4) be the finite automaton recognizirig We will con-
struct an automatod’ = (Q’, I', ¢(,, ', {q}}) recognizingL((g, M), t,) as follows.

- Q' = {¢j} U (Q* x2M)u 2", where2" is the collection of (multi-) subsets of

M.

/. A
— 4y = qp
— The transitions are
((gi*, M"), €, (5", M) € & provided(qi*, ', g3') € 6* andy’ ¢ M’

((gi*, M U{~'}) €, (g3', M) € & provided(qi*, ', g3') € 6%
(g, M'U{y'}),y,M') €& providedgi* € F*

(M U{y} Ay M) ed
(

0,7,q7) €
Itis easy to see thaty € L(A’) iff there isw’ € L such thaM(w) = (M \ M(w")).
Thus,M(L(A") =S¢\, 0

Finally, we showqth[at given an automaton representatiod,ofve can compute
MIN (PREU)). From the definition ofS it follows that cL(S) = PREU). Thus
MIN (PRE(U)) = MIN(S). Our next observation is that given an automaton representa
tion of S, MIN (.S) is computable.

Lemma 3. Given finite automatal, for each, such thatS = (J ., {q} x M(L,),
MIN (S) is computable.

12

Proof. We observe that i/’ is a minimal (with respect t@) multi-set inM(L,,), then
there is a stringv € L, such thatM(w) = M’ and the run of4, onw does not go
through any cycles. Since any automaton only has finitelyynsaich runs, the lemma
follows. O

5 Conclusions
We study the problem of verifying multithreaded programsdshon a commonly fol-

lowed design principle, namely, that of multi-tasking thgh asynchronous atomic
method calls. We introduced the model of multi-set pushdeysiems to model such
programs with finitely many global states and showed thate¢behability problem for
MPDSs is decidable. However, we did not explore the complddunds of the reach-
ability problem. It would also be useful to develop techmigdike symbolic model
checking that will scale to large systems.

Acknowledgment

We would like to thank Gul Agha, Chandrasekhar Boyapati,n@&ar Flanagan, and
Shaz Quadeer for providing valuable comments on this wdrls Work is supported in
part by the ONR Grant N0O0014-02-1-0715, the NSF Grants NSB @B5{09321, NSF
CCF 04-29639, and NSF CCF 04-48178.

References

1. J.-M. Autebert, J. Berstel, and L. Boasson. Context-free lareguagd pushdown automata.
pages 111-174, 1997.

2. T.Ball and S. Rajamani. The SLAM Toolkit. Proceedings of CAV'2001 (13th Conference
on Computer Aided Verificationyolume 2102 of NCS pages 260-264, 2001.

3. A. Bouajjani, J. Esparza, S. Schwoon, and J. Strejcek. Reachalpititysis of multithreaded
software with asynchronous communication.Froc. Foundations of Software Technology
and Theoretical Computer Science (FSTTCS'06)ume 3821 of NCS 2005.

4. A.Bouajjani, J. Esparza, and T. Touili. A generic approach to the stiadilysis of concurrent
programs with procedures. Rrinciples of Programming Languages (POPL'02D03.

5. A. Bouajjani, M. Mueller-OIlm, and T. Touili. Regular symbolic analysisdghamic net-
works of pushdown systems. Proc. 16th Intern. Conf. on Concurrency Theory (CON-
CUR’05), volume 3653 o£ NCS 2005.

6. D. Caucal. On the regular structure of prefix rewritingiheoretical Computer Science
106:61-86, 1992.

7. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular vatifio of software com-
ponents in CIEEE Transactions on Software Engineering (TS¥)6):388-402, 2004.

8. J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Leaagumptions for compo-
sitional verification. InProc. of the 9th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACA&])es 331-346, 2003.

9. L. E. Dickson. Finiteness of the odd perfect and primitive abundambers with- distinct
prime factors. American Journal of Mathematic85:413—-422, 1913.

10. J. Esparzaand A. Podelski. Efficient algorithms for jared post on interprocedural parallel
flow graphs. InPrinciples of Programming Languages (POPL'0fages 1-11, 2000.

11. A. Finkel and P. Schnoebelen. Well-structured transition systeergweliere! Theoretical
Computer Scienc®56(1):63-92, 2001.

12. A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach talel@hecking push-
down systems. IfProc. 2nd Int. Workshop on Verification of Infinite State Systems (INFIN
ITY’97), volume 9 ofElectronic Notes in Theor. Comp. SEisevier, 1997.

13. C. Flanagan and S. Qadeer. A type and effect system for atonficRyoc. of the ACM SIG-
PLAN conference on Programming language design and implementatid»’(3), 2003.

13

14.
15.
16.
. J. B. Kruskal. The theory of well-quasi-ordering: A frequentlycdisred conceptournal
18.
19.
20.
21,

22.
23.

24.

25.
26.
27.
28.

29.

T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Aligiracin Proc. of the ACM
Symposium on Principles of Programming Languagegies 5870, 2002.

T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. Threatlilar abstraction refine-
ment. InProc. of the 15th International Conference on Computer-Aided VetificgCAV)
volume 2725 oLNCS pages 262-274. Springer, 2003.

A. Holub. Taming Java ThreadsAPress, 2000.

of Combinatorial Theory: Series,A3(3):297-305, 1972.

D. Lugiez and P. Schnoebelen. The regular viewpoint on PAegeas.Theoretical Com-
puter Sciencg274(1-2):89-115, 2002.

R. Mayr. Decidability and Complexity of Model Checking Problems for Infinite-Stase Sy
tems PhD thesis, Technical University Munich, 1998.

F. Moller. Infinite results. IfProceedings of the Conference on Concurrency Thegmages
195-216, 1996.

M. Miller-Olm. Precise interprocedural dependence analysis of paredigigms.Theoret-
ical Computer Scien¢811(325—-388), 2004.

R. Parikh. On context-free languagdsurnal of the ACM13(4):570-581, 1966.

S. Qadeer, S. Rajamani, , and J. Rehof. Procedure summariemdel checking multi-
threaded software. IRrinciples of Programming Languages (POPL'02p04.

S. Qadeer and J. Rehof. Context-bounded model checkinghofiment software. Ii1th
International Conference on Tools and Algorithms for the Constructionfaradysis of Sys-
tems volume 3440 o£.NCS pages 93-107, 2005.

S. Qadeer and D. Wu. KISS: keep it simple and sequentidlC SIGPLAN 2004 confer-
ence on Programming language design and implementapages 14—24, 2004.

G. Ramalingam. Context-sensitive synchronization-sensitive sisaagyundecidableACM
Trans. Program. Lang. Sys22(2):416—430, 2000.

S. Graf and H. Saidi. Construction of abstract state graphs with RV &onference on
Computer Aided Verification (CAV'9,AJolume 1254 oL NCS pages 72—-83, 1997.

H. Seidl and B. Steffen. Constraint-based inter-procedur&ysiaaf parallel programs. In
European Symposium on Programming (ESOPR’06)Jume 1782 o£ NCS 2000.

A. Welc, S. Jagannathan, and A. L. Hosking. Transactional mrsriito concurrent objects.
In Proceedings of the European Conference on Object-Oriented Pragiiagnvolume 3086
of LNCS pages 519-542. Springer, 2004.

14

