
Model Checking Multithreaded Programs with
Asynchronous Atomic Methods

Koushik Sen and Mahesh Viswanathan
Department of Computer Science,

University of Illinois at Urbana-Champaign.
{ksen,vmahesh}@uiuc.edu

Abstract. In order to make multithreaded programming manageable, program-
mers often follow a design principle where they break the problem into tasks
which are then solved asynchronously and concurrently on differentthreads. This
paper investigates the problem of model checking programs that follow this id-
iom. We present a programming language SPL that encapsulates this design pat-
tern. SPL extends simplified form of sequential Java to which we add the ca-
pability of making asynchronous method invocations in addition to the standard
synchronous method calls and the ability to execute asynchronous methods in
threads atomically and concurrently. Our main result shows that the control state
reachability problem for finite SPL programs is decidable. Therefore, such mul-
tithreaded programs can be model checked using the counter-exampleguided
abstraction-refinement framework.

1 Introduction
Multithreaded programming is often used in software as it leads to reduced latency,
improved response times of interactive applications, and more optimal use of process-
ing power. Multithreaded programming also allows an application to progress even if
one thread is blocked for an I/O operation. However, writingcorrect programs that use
multiple threads is notoriously difficult, especially in the presence of a shared muta-
ble memory. Since threads can interleave, there can be unintended interference through
concurrent access of shared data and result in software errors due to data race and atom-
icity violations.

Therefore, programmers writing multithreaded code, oftenadhere to a design idiom
where the computational problem is broken up intotaskswhich are then assumed to
be finished asynchronously, concurrently, and atomically.Specifically, threads during
their execution may send tasks or events or asynchronous messages to other threads. If
a thread is busy completing a task, the messages sent to it getadded to a pool of tasks
associated with the thread. When the thread has completed thecurrent task, it takes out
a task from its pending pool and starts processing it concurrently with other threads.
If the pool is empty the thread waits for a new task or event or message. Even though
these asynchronous tasks are executed concurrently on different threads, an underlying
assumption is that these tasks will be executed atomically.This is often ensured through
various synchronization primitives, such as locks, mutexes, semaphores, etc.

For example, in the Swing/AWT subsystem of Java, a non-GUI thread is not
allowed to make any direct changes to the user interface represented by a Swing
object. Instead such a thread submits the request to theEventQueue by calling
SwingUtilities.invokeLater(runnable). The thread associated with the
Swing event queue handles these requests one by one atomically. This ensures that the
user interface operations are performed in a non-interfering way and the user interface
has a consistent state and look. Another context where this design paradigm is widely

prevalent is multithreaded web servers. When a page request is sent to an web server,
the web server posts the request to a request queue. If there is a free thread in the finite
thread pool of the web server, the free thread removes a request from the request queue
and starts processing the request. The use of threads ensures that multiple requests to
the web-server can be served concurrently. Moreover, synchronization primitives are
used to ensure that the threads do not interfere with each other. Finally, multithreaded
transaction servers for databases also view transactions as asynchronous requests that
are served by the different threads of the server concurrently. Since requests in this
context are transactions, the server ensures that the service of a transaction satisfies the
ACID (atomicity, consistency, isolation, durability) property.

The prevalence of this design idiom has also been observed byAllen Holub [16] in
his book “Taming Java Threads”. In this book, Holub points out that programmers clas-
sify method invocations or messages into two categories: synchronous messages and
asynchronous messages. The handler for synchronous messages doesn’t return until the
processing of the message is complete. On the other hand, asynchronous messages are
processed possibly by a different thread in the background some time after the message
is received. However, the handler for asynchronous messages returns immediately, long
before the message is processed.

In this paper, we investigate the verification of programs written adhering to this
design principle. We introduce a simple programming language, called SPL, that en-
capsulates this design goal. It is a simplified form of sequential Java to which we add
the capability of making asynchronous method invocations in addition to the standard
synchronous method calls and the ability to dynamically create threads. We define its
semantics in terms of concurrently executing threads. We then observe that the require-
ment that asynchronous methods execute atomically, allowsus to reason about the pro-
gram using a new semantics wherein the threads service theseasynchronous method
invocations serially.

The analysis of SPL programs with respect to the serialized semantics can then
proceed by following the popular methodology of software model checking [27, 2, 14],
where the program is first automatically abstracted using boolean predicates into one
that has finitely many global states, and the abstracted program is then model checked.
The results of the model checking are then used to either demonstrate a bug/correctness
of the program, or used to refine the abstraction.

The success of the software model checking framework depends upon the model
checking problem for SPL programs with finitely many global states being decidable.
We first observe that the serial semantics ensures that the local stack of at most one
thread is non-empty at any time during the execution; the semantics of such programs
can thus be defined using only one stack. We introducemulti-set pushdown systems
(MPDS) to model such finite SPL programs. MPDSs have finitely many control states,
one unbounded stack to execute recursive, synchronous methods, and one unbounded
bag to store the asynchronous method invocations. The main restriction that is imposed
on such systems is that messages from the bag be serviced onlywhen the stack is empty,
a consequence of our atomicity requirements. Our main result is that the problem of
control state reachability of MPDSs is decidable, thus demonstrating that SPL programs
can be analyzed in the counter-example guided abstraction-refinement framework.

2

The rest of the paper is organized as follows. Next, we discuss closely related work
and place our results in context. Section 2 introduces notation, definitions and classical
results used in proving our results. The simple parallel language (SPL) for multithreaded
programming is presented along with its semantics in Section 3. We investigate the
verification problem in Section 4 and conclude (Section 5) with some open problems
and future directions to be pursued.
Related Work. Model-checking algorithms and tools [27, 2, 14] for single-threaded
programs with procedures based on predicate abstraction have been developed. These
model checkers use the fact that the reachable configurations of pushdown systems
are regular [1, 12]. Ramalingam [26] showed that verification of concurrent boolean
programs is undecidable. As a consequence, approximate analysis techniques that over-
approximate [4] and under-approximate [24, 3] the reachable states have been consid-
ered, as have semi-decision procedures [23]. Other techniques [7, 15, 8] try verify each
thread compositionally, by automatically abstracting theenvironment. Finally, the KISS
checker [25] for concurrent programs simulates the executions of a concurrent program
by the executions of a sequential program, where the variousthreads of the concurrent
program are scheduled by the single stack of the sequential program. Though sound,
the KISS checker is not complete.

There has also been considerable effort in characterizing concurrent systems with
finitely many global states for which the reachability analysis is unknown to be decid-
able. Starting from the work of Caucal [6] and Moller [20], where purely sequential
and purely parallel processes were considered, hierarchies of systems have been de-
fined. Mayr [19] gave many decidability and undecidability results based on a unified
framework. Among the models that allow both recursion and dynamic thread creation,
most disallow any form of synchronization between the threads [10, 28, 18, 21]. More
recently, the model ofconstrained dynamic pushdown networks(CDPN) [5] was intro-
duced which allowed for thread creation and limited forms ofsynchronization. CDPNs
have a more sophisticated means to synchronize, but they limit synchronization only be-
tween a parent thread and its descendants. Our model of MPDS,allows dynamic thread
creation and limits context switches to happen only when asynchronous methods have
finished execution. Thus, MPDSs and CDPNs are incomparable and apply to different
multi-threaded programs.

2 Preliminaries

Multisets and Strings.Given a finite setΣ, the collection of all finite multisets with
elements inΣ will be denoted byMω[Σ]. We saya ∈ M if a is an element of multi-set
M . For multi-setsM andM ′, M∪M ′ is the multi-set union ofM andM ′, andM \M ′

the multi-set difference betweenM andM ′. We use∅ to denote the empty multi-set.
Recall thatΣ∗ is the collection of all finite strings over the alphabetΣ, with ε being
the empty string. Given two finite stringsw andw′, we will denote their concatenation
by ww′. For a stringw, M(w) will denote the multi-set formed from the symbols ofw.
For example, ifw = aaba, thenM(w) = {a, a, a, b}. Finally, for L ⊆ Σ∗, M(L) =
{M(w) | w ∈ L}

Well-quasi-orderings.Recall that aquasi-ordering≤ over a setX, is a binary relation
that is reflexive and transitive. Given a quasi-ordering≤, anupward closed setU ⊆ X

3

is a set such that ifx ∈ U andx ≤ y theny ∈ U . For a setS ⊆ X, the smallest upward
closed set containingS will be denoted byCL(S), i.e.,CL(S) = {x | ∃y ∈ S. y ≤ x}.
For a setS, the minimal elements inS is MIN(S) = {x | ∀y ∈ X. y 6≤ x}.

A quasi-ordering≤ overX is said to be awell-quasi-ordering(wqo) if for any infi-
nite sequencex1, x2, x3, . . . of elements inX, there exist indicesi, j such thati < j and
xi ≤ xj . We now recall some well-known observations about well-quasi-orderings [17,
11].
Proposition 1. For a wqo≤ and any setS ⊆ X, MIN(S) is finite.

Proposition 2. For a wqo≤, any infinite increasing sequenceU0 ⊆ U1 ⊆ U2 ⊆ · · ·
of upward closed sets eventually stabilizes, i.e., there isa k ∈ N such that for alli ≥ k

Ui = Uk.

Pushdown systems.A pushdown system(PDS) isP = (Q,Γ, δ, q0, γ0), whereQ is
a finite set of states,Γ is a finite set of stack alphabets,q0 ∈ Q is the initial state,
γ0 ∈ Γ is the initial stack configuration, andδ ⊆ (Q× Γ)× (Q× Γ ∗) is the transition
relation. The execution of a PDS can be described in terms of atransition system over
configurations, which are(q, w) ∈ Q × Γ ∗. We say(q1, w1γ) −→ (q2, w1w2) if there
is a transition((q1, γ), (q2, w2)) ∈ δ. We say a configuration(q, w) is reachable iff
(q0, γ0) −→∗ (q, w), where−→∗ is the reflexive, transitive closure of−→, and that a
control stateq is reachable iff(q, w) is reachable for somew ∈ Γ ∗. It is well-known
that the problem of control state reachability is decidable(see [12, 1]); this is the content
of the next theorem.
Theorem 1. Given a PDSP, checking if a control stateq is reachable is decidable in
O(n3) time, wheren is the size of the PDSP.

3 Programming Language

We describe a simple parallel language SPL, which captures the essential concepts of
multithreaded programs with asynchronous atomic methods.The SPL language is a
simplified form of the sequential Java language. Similar to Java, the SPL language sup-
ports objects. In addition to definition of classes, we allowthe definition of a special
type calledthread. Instances of aclassis called an object and instances of athread is
called a thread object. A thread of control is associated with every thread object. The
objects in SPL behave similarly as in Java. A method invocation of an objectis syn-
chronousand its execution is carried out using a stack. However, for thread objects we
introduce a new semantics for method invocation. Specifically, we assume that an invo-
cation of a method of a thread object isasynchronousandatomic. If a thread of control
invokes a method of a thread object, then the method call returns immediately and the
call is added as a message to a global message bag. If the thread of control associated
with the callee object is not busy processing a message, thenit takes out a message
(i.e., a call to one of its methods) targeted to it from the global bag and starts executing
it atomically and concurrently with other threads. Note that in an execution of a SPL

program, several threads can execute concurrently. The atomicity condition requires
that for every possible interleaved execution of a SPL program, there exists an equiva-
lent execution with the same overall behavior where the methods of the thread objects
are executed serially, that is, the execution of a thread object method is not interleaved
with actions of other threads. This particular restrictionensures that the execution of a
method of a thread object is not interfered by other threads through shared objects.

4

P ::= defn∗ (newT).md(c∗)
defn ::= classC {field∗ meth1∗} | thread T {field∗ meth2∗}
field ::= type fd

meth1::= (type| void) md(arg∗){local∗ stmt∗}
meth2::= void md(arg∗){local∗ stmt∗}

stmt ::= l : S;
S ::= x = e | x.fd = y | x.md(y∗) | if x goto l′ | return x

e ::= new type| null | this | c | x | x.fd | x.md(y∗) | f(x∗)
arg ::= typex

local ::= typey

type ::= C | T | primitive types such as int, float, boolean, etc.
l ::= label

x, y ::= variable name
C ::= class name
T ::= thread name
fd ::= a field name

md ::= a method name
f ::= pre-defined functions such as + , -, *, /, etc.
c ::= constants such as 1, 2, true, etc.

Fig. 1. SPL Syntax
3.1 Syntax of SPL

The formal syntax of SPL is given in Figure 1. A program in SPL consists of a sequence
of definitions ofclassesandthreads followed by an asynchronous method invocation of
a newly created thread object. Aclassor athread definition consists of a declaration of
a sequence of fields followed by the definition of a sequence ofmethods. A method of a
classcan return a value. A method of athread cannot return a value. A method consists
of a sequence of local variable definitions followed by a sequence of statements. A
statement is always labeled. Observe that the execution of astatement can access at
most one shared memory location. This allows us to treat the execution of a statement as
an atomic operation. Branching and looping constructs are imitated using the statement
if x gotol, wherel is the label of a statement in the method that contains theif statement.
We assume that a program in SPL is properly typed.

3.2 Semantics of SPL

In the semantics of SPL, we assume that actions of multiple threads can interleave in any
way; however, we impose the restriction that the execution of an asynchronous method
must beatomic. We call this semantics the concurrent semantics of SPL.

The concurrent semantics of SPL is given by augmenting more rules to the standard
semantics of Java. Instantaneous snapshot of the executionof a SPL program is called
aconfiguration. Formally, a configurationC is a 3-tuple(q, S,M), where

– q is the global state containing the value of every object and thread object currently
in use in the program and the program counter of each thread associated with every
thread object.

– S is a map from a thread object to an execution stack. The stack for each thread
is used in the usual way to execute an asynchronous method sequentially. Note
that the invocation of an object method is always synchronous and the method is
executed by the caller thread by creating a new stack frame inits stack.

5

– M is a multi-set or bag of messages. Whenever, a thread invokes amethod of
a thread object, the target thread object, the method name, and the values of the
arguments passed to the method are encoded into a message andplaced in the bag.
We useM ∪ e to represent the multi-set obtained by adding the elemente to the
multi-setM .

LetC be set of all configurations. We define a transition relationC s
t C ′ (see Figure 2)

for the concurrent semantics. Such a relation represents the transition from the config-
urationC to C ′ due to the execution of the statements by the threadt. Henceforth, if
t is a thread object, then we will also uset to denote the thread of control associated
with the threadt. The transition relations are described abstractly using anumber of
functions described, informally, below:

[JAVA SEMANTICS]

∃t ∈ THREADS(q).(s = GETNEXTSTATEMENT(q, t)
∧ s 6= ⊥ ∧ ¬(s = x.md(y∗) ∧ [[x]]S(t) ∈ THREADS(q)))
∧ (q′, S′) = EXECUTENEXTSTATEMENT(q, S(t), t)

(q, S, M) s
t (q′, S′, M)

[CONSUME MESSAGE]

∃t ∈ THREADS(q).(GETNEXTSTATEMENT(q, t) = ⊥
∧ (q′, S′) = SETNEXTSTATEMENT(q, S(t), t, t.md(v∗)))

(q, S, M ∪ {t.md(v∗)}) ⊥

t (q′, S′, M)

[SEND MESSAGE]

∃t ∈ THREADS(q).(s = GETNEXTSTATEMENT(q, t)
∧ (s = x.md(y∗) ∧ [[x]]S(t) ∈ THREADS(q)))

(q, S, M) s
t (SKIPNEXTSTATEMENT(q, t), S, M ∪ {[[x]]S(t).md([[y]]∗S(t))})

Fig. 2.Concurrent Semantics

– THREADS(q) returns the set of thread objects that are created in the execution.
– GETNEXTSTATEMENT(q, t) returns the next statement to be executed by the thread

t. The function uses the value of the program counter found inq for the threadt
to determine the next statement. If the threadt is not executing any asynchronous
method, then the function returns⊥.

– EXECUTENEXTSTATEMENT(q, S(t), t) executes the next statement of the threadt

following the standard sequential Java semantics and returns a pair containing the
updated global stateq′ and the updated mapS′ in which the stackS′(t) has possibly
been modified. The program counter of the threadt is also updated appropriately
in the global stateq′.

– SETNEXTSTATEMENT(q, S(t), t, t.md(v∗)), wherev denotes a value, creates a
stack frame in the stackS(t) to prepare for the invocation of the methodmd and

6

sets the program counter oft in q to the first statement of the methodmdof t. The
updated global stateq′ and the mapS′ is returned by the function.

– SKIPNEXTSTATEMENT(q, t) updates the program counter inq of the threadt, such
that the threadt skips the execution of the next statement.

– [[x]]S(t) returns the value of the local variablex, which is obtained from the topmost
stack frame of the stackS(t).
The initial configuration of a SPL programdefn∗ (new T).md(c∗), given byC0 =

(q0, S0,M0), whereq0 contains the thread object, sayt, created by thenew T expres-
sion,S0 mapst to an empty stack, andM0 contains the only messaget.md(c∗). The
program counter oft in q0 is undefined. Thus the CONSUME MESSAGEis the only rule
applicable to the initial configuration.
Atomicity Requirement. The concurrent semantics of SPL allows arbitrary interleav-
ing of multiple threads. However, we want to impose the restriction on possible inter-
leavings so that the execution of each asynchronous method is atomic. We next describe
this atomicity requirement.

We abstractly represent a finite execution of the formC0
s1

t1
C1

s2

t2

C2 · · ·Cn−1
sn

tn
Cn of a SPL program following the concurrent semantics

by the sequenceτ = s1

t1

s2

t2
· · · sn

tn
Cn. We use MSET(τ) to represent

the multi-set{(t1, s1), (t2, s2), . . . , (tn, sn)}. We restrict the set of executions that
can be exhibited by a SPL program following the concurrent semantics by im-
posing the atomicity requirement on asynchronous method executions as follows.
If a finite execution τ = s1

t1

s2

t2
· · · sn

tn
(q, S,M) be such that∀t ∈

THREADS(q).(GETNEXTSTATEMENT(q, t) = ⊥), then τ is said to be avalid exe-
cution of the program following the concurrent semantics iff the following holds. There

exists a finite executionτ ′ =
s′

1

t′
1

s′

2

t′
2

· · ·
s′

n

t′
n

(q′, S′,M ′) of the program following
the concurrent semantics such that
1. (q, S,M) = (q′, S′,M ′),
2. MSET(τ) = MSET(τ ′),
3. if for any two elements(t, s) and(t, s′) in the MSET(τ), s

t appears before s′

t

in the sequenceτ , then s
t also appears before s′

t in the sequenceτ ′, and
4. in the sequenceτ ′, all transitions after a ⊥

t and before any ⊥
t′′ are of the form

s
t′ such thatt = t′ ands 6= ⊥.

The above requirement ensures that the execution of an asynchronous method by a
thread is atomic. In general, it has been shown that such atomicity requirements for
multithreaded programs can be guaranteed statically by using a type system for atom-
icity [13] or dynamically through rollback [29]. We assume that the language SPL is
augmented with an atomicity type system or implemented in a way such that an execu-
tion of a program in the language following the concurrent semantics is always valid.
Serialized Semantics.To effectively reason about the behavior of a SPL, we introduce
the serialized semantics of SPL and show that for the reasoning purpose we can only
consider the serialized semantics of SPL.

Similar to the concurrent semantics, in the serialized semantics, we assume that
there is global stateq, a global message bag or a multi-set of messagesM , and a mapS
from thread objects to stacks. Then the following happens ina loop. If there is a message
(i.e., an asynchronous method call along with values for itsarguments) for a thread in

7

the bag, then the thread removes the message from the bag and executes the method in
the message. No other thread is allowed to interleave their executions till the execution
of the method terminates. During the execution of the method, the executing thread can
call asynchronous methods of any thread object. Those callsalong with the values for
their arguments are placed in the bag as messages. Note that anon-deterministic choice
is associated with the picking of a message from the bag.

We define a transition relationC −→s
t C ′ for the serialized semantics. The rules

for transition in the serialized semantics is same as that inthe concurrent semantics
except for the rule [CONSUME MESSAGE] (see Figure 3). In the serialized semantics,
the rule is applicable if none of the threads is executing an asynchronous method and
there is a message in the bag. In the concurrent semantics, the rule is applicable if
there exists a thread, which is not executing an asynchronous method, and there is a
message for the thread in the bag. Note that the atomicity requirement trivially holds in
the case of serialized semantics. We represent a finite execution of the formC0 −→s1

t1

C1 −→s2

t2
C2 · · ·Cn−1 −→sn

tn
Cn following the serialized semantics by the sequence

−→s1

t1
−→s2

t2
· · · −→sn

tn
Cn.

[CONSUME MESSAGE]

∀t ∈ THREADS(q).(GETNEXTSTATEMENT(q, t) = ⊥)
∧ (q′, S′) = SETNEXTSTATEMENT(q, S(t′), t′, t′.md(v∗))

(q, S, M ∪ {t′.md(v∗)}) −→⊥

t′ (q′, S′, M)

Fig. 3.Serialized Semantics
Given that a program in SPL always exhibits valid executions following the con-

current semantics, the next result shows that any executionof the program following
the concurrent semantics isequivalentto an execution of the program following the
serialized semantics.

Proposition 3. For any program execution s1

t1

s2

t2
· · · sn

tn
(q, S,M) where

∀t ∈ THREADS(q).GETNEXTSTATEMENT(q, t) = ⊥, there is a serialized execution

−→
s′

1

t′
1

−→
s′

2

t′
2

· · · −→
s′

n

t′
n

(q′, S′,M ′) such that(q, S,M) = (q′, S′,M ′).

The above result allows us to treat any valid execution of a program in SPL follow-
ing the concurrent semantics in terms of an equivalent execution following the serialized
semantics. Reasoning about a serialized execution is easier because in such an execu-
tion we have to consider a sequence of method invocations by different threads, where
the execution of each method can be reasoned sequentially. In fact, in the next section
we show that reachability of finite programs in SPL is decidable. It is worth mention-
ing that the reachability of a program in SPL following the concurrent semantics is not
decidable if we do not impose the atomicity restriction.

4 Verifying SPL Programs
In this section we consider the problem of verifying SPL programs. Recall that for
SPL programs restricted to valid concurrent executions, we observed (in Section 3.2)
that reasoning about serialized executions is sufficient when answering questions about
global state reachability. Further, during a serialized execution of a SPL program, at

8

any point only one thread executes an asynchronous method upto completion without
interleaving with any other thread. This implies that the stack of at most one thread is
non-empty at any point in a serialized execution. As a result, we can define the (serial-
ized) semantics using only one stack which is re-used by every active thread.

The verification of serialized SPL programs can proceed by following the familiar
methodology of abstracting SPL programs, model checking, checking the validity of
a counter-example, and then refining the abstraction if the counter-example if found
to be invalid. Using standard predicate abstraction techniques, an SPL program over
arbitrary data types can be abstracted into an SPL program all of whose variables are
boolean. The steps of checking counter-examples and refining, again can be performed
using well-known algorithms. In this section, we thereforefocus our attention on model
checking finite SPL programs. We first define the formal model ofmulti-set pushdown
systems(MPDS) that have finitely many global states, one stack to execute recursive,
synchronous method calls, and one message bag to store pending asynchronous method
calls. Such MPDSs define the (serialized) semantics of finiteSPL programs. We then
show that the control state reachability problem for MPDSs is decidable.

4.1 Multi-set Pushdown Systems
We present the formal definition and semantics of multi-set pushdown systems.

Definition 1. A multi-set pushdown system (MPDS) is a tupleA = (Q,Γ,∆, q0, γ0),
whereQ is a finite set of global states,Γ is a finite set of stack and multi-set symbols,
∆ ⊆ (Q×Γ)× (Q×Γ ∗×Γ) is the transition relation,q0 ∈ Q is the initial state, and
γ0 ∈ Γ is the initial method call.
We let q to range overQ, γ to range overΓ , w to range overΓ ∗, M to range
over Mω[Γ]. The semantics of an MPDSA is defined in terms of a transition
system as follows. A configurationC of A is a tuple (q, w,M) ∈ Q × Γ ∗ ×
Mω[Γ]. The initial configuration ofA is (q0, ε, {γ0}). The transition relation−→
on configurations is−→1 ∪ −→2, where−→1 and −→2 are defined as follows:
(q, wγ,M) −→1 (q′, ww′,M ∪ {γ′}) if and only if ((q, γ), (q′, w′, γ′)) ∈ ∆; and
(q, ε,M ∪ {γ}) −→2 (q, γ,M). Observe that−→1 corresponds to the transition rules
[JAVA SEMANTICS] and [SEND MESSAGE] and−→2 corresponds to the transition rule
[CONSUME MESSAGE] in Figure 3. Also note that there is no transition from(q, ε, ∅)
for anyq ∈ Q; therefore,A halts when it reaches a configuration of the form(q, ε, ∅).
Finally, −→∗,−→∗

1 denote the reflexive, transitive closure of−→ and−→1, respec-
tively.
Definition 2. A configuration(q, w,M) is said to bereachableiff (q0, ε, {γ0}) −→∗

(q, w,M). A control stateq is said to be reachable if for somew ∈ Γ ∗ and M ∈
Mω[Γ], (q, w,M) is reachable.

4.2 Control State Reachability in MPDSs
We are interested in verifying if a certain global state (or set of global states) of a finite
SPL program is reachable. This is the same as checking if a certain control state (or set
of control states) is reachable in the MPDS associated with the SPL program. Let us fix
an MPDSA = (Q,Γ,∆, q0, γ0). Recall that a control stateq is reachable if for somew
andM , (q0, ε, {γ0}) −→∗ (q, w,M). That means for someq1, q2, . . . qn, γ1, γ2 . . . γn

andM1,M2, . . . Mn, we have

9

(q0, ε, {γ0}) −→2 (q0, γ0, ∅) −→
∗

1 (q1, ε, M1 ∪ {γ1}) −→2 (q1, γ1, M1) −→
∗

1 (q2, ε, M2 ∪ {γ2})
−→2 (q2, γ2, M2) · · · −→

∗

1 (qn, ε, Mn ∪ {γn}) −→2 (qn, γn, Mn) −→∗

1 (q, w, M)

Thus, the problem of checking whether a control stateq is reachable, con-
veniently breaks up into two parts: for someq′, w, γ,M and M ′, check whether
(q0, ε, {γ0}) −→∗ (q′, ε,M ′ ∪ {γ}) and whether(q′, γ,M ′) −→∗

1 (q, w,M). Fur-
ther observe that(q′, γ, ∅) −→∗

1 (q, w,M) for somew andM iff (q′, γ,M ′) −→∗
1

(q, w,M ′ ∪M) for everyM ′. Hence, we can further simplify our tasks as follows. For
someq′ andγ, check whether(q0, ε, {γ0}) −→

∗ (q′, ε,M ′ ∪ {γ}) for M ′ and whether
(q′, γ, ∅) −→∗

1 (q, w,M) for someM andw. We will call the firstcoverabilityprob-
lem and the secondcontrol state reachability without context switchesproblem. We will
treat these problems one by one and show each to be decidable.

Reachability without context switches.We will first consider the problem of checking
if for somew,M , (q′, γ, ∅) −→∗

1 (q, w,M). Observe that since the messages in the bag
do not play a role in the transition−→1, we can ignore the asynchronous method calls
that are generated during a transition in order to decide this problem. Thus, this problem
can be reduced to checking reachability in pushdown systems. More formally, consider
the pushdown systemP = (Q′, Γ ′, δ′, q′0, γ

′
0) whereQ′ = Q the states of the MPDS

A, Γ ′ = Γ , q′0 = q′, γ′
0 = γ, andδ′ is defined as follows:((q1, γ1), (q2, w2)) ∈ δ iff

((q1, γ1), (q2, w2, γ2)) ∈ ∆ (transition relation ofA) for someγ2. The MPDSA and
the PDSP are related as follows.

Proposition 4. A configuration (q1, w1) is reachable in P iff (q′, γ, ∅) −→∗
1

(q1, w1,M) for someM .

The proof is straightforward and skipped in the interests ofspace. Hence based on
Proposition 4 and Theorem 1, we can conclude that the controlstate reachability prob-
lem, without context switches is decidable in polynomial time for MPDSs.

Coverability. We now study the problem of coverability. Recall that, givena stateq′

and a stack symbolγ, we need to decide if for someM ′ ∈ Mω[Γ], (q0, ε, {γ0}) −→∗

(q′, ε,M ′ ∪ {γ}). We will introduce a new model ofregular multi-set systems(RMS),
which are slight generalization ofmulti-set automata, and show that the coverability
problem can be reduced to a reachability problem on RMS. We will then show that the
reachability problem for RMSs is decidable.

Definition 3. A regular multi-set system(RMS) is a tupleR = (Q,Γ, δ, q0, γ0), where
Q is the set of the states ofR, Γ is the multi-set alphabet,q0 ∈ Q is the initial state, and
δ ⊆ ((Q × Γ) × (Q × L)) is the transition relation withL ⊆ Γ ∗ being a regular lan-
guage. A configuration is the pair(q,M), whereq ∈ Q andM ∈ Mω[Γ] and the initial
configuration is(q0, {γ0}). The semantics of a RMS is given by the transition relation
↪→ over configurations. We say(q,M∪{γ}) ↪→ (q′,M ′) iff there is((q, γ), (q′, L)) ∈ δ

andw ∈ L such thatM ′ = (M ∪ M(w)).

Regular multi-set systems are a generalization of multi-set automata, where instead
of a transition adding the same multi-set to a bag every time,an RMS transition chooses
a multi-set from among a collection described by a regular language and adds to the bag.

10

We will consider reachability problems for RMSs. A pair(q, γ) is said to be reach-
able iff there is someM such that(q0, {γ0}) ↪→∗ (q,M ∪ {γ}). We will show that the
coverability problem of MPDS can be reduced to such a reachability problem. But for
that we need to make an important observation about MPDSs.
Proposition 5. For MPDS A, and any statesq1, q2 and stack symbolγ1 define
M(q1, q2, γ1) = {M | (q1, γ1, ∅) −→∗

1 (q2, ε,M)}. There is a regular language
L(q1, q2, γ1) such thatM(L(q1, q2, γ1)) = M(q1, q2, γ1)

Proof. Consider the following pushdown automatonP = (Q′, Σ, Γ ′, δ, q′0, γ
′
0, F)

whereQ′ = Q the states ofA, input alphabetΣ = Γ , stack alphabetΓ ′ = Γ , ini-
tial stateq′0 = q1, initial stack configurationγ′

0 = γ1, F = {q2}, and the transition
relationδ ⊆ Q × Γ × Σ × Q × Γ ∗ is defined as follows:((p1, γ

′
1), γ

′
2, (p2, w)) ∈ δ

iff ((p1, γ
′
1), (p2, w, γ′

2)) ∈ ∆. In other words,P has a transition on inputγ′
2 exactly

if the corresponding transition in MPDSA asynchronously callsγ′
2. Let L(P) be the

language accepted byP simultaneously by empty stack and final state. It is easy to see
thatM(L(P)) = M(q1, q2, γ1).

We now recall an important observation due to Parikh [22].
Theorem 2 (Parikh). For an context-free languageL1 there is a regular languageL2

such thatM(L1) = M(L2). Moreover, given a PDA recognizingL1 we can effectively
construct an automaton forL2.

Hence, there is a regular languageL(q1, q2, γ1) such thatM(L(q1, q2, γ1)) =
M(L(P)) = M(q1, q2, γ1) ut

Lemma 1. Given an MPDSA, there is an RMSR with the same states and multi-set
alphabet such that(q0, ε, {γ0}) −→

∗ (q, ε,M ∪{γ}) for anyM in the MPDS iff(q, γ)
is reachable inR.

Proof. Given MPDS A = (Q,Γ,∆, q0, γ0), define R = (Q,Γ, δ, q0, γ0) with
((q1, γ1), (q2, L)) ∈ δ iff L = L(q1, q2, γ1) whereL(q1, q2, γ1) is the regular language
from Proposition 5. Now we observe that(q, ε,M∪{γ}) is reachable inA exactly when
(q0, {γ0}) ↪→∗ (q,M ∪{γ}). This observation follows by induction from the definition
of R. Thus the lemma follows. ut

From Lemma 1 we observe that the coverability problem of MPDSis decidable
provided checking if(q, γ) is reached in an RMS is decidable. We, therefore, focus on
the reachability problem of RMSs. We will show that this problem is decidable by using
properties about well-quasi-orderings (wqo).

For the rest of this section let us fix an RMSR = (Q,Γ, δ, q0, γ0). Let us define an
ordering≤ over the configurations of a RMS as follows:(q,M) ≤ (q,M ′) iff q = q′

andM ⊆ M ′. An immediate consequence of Dickson’s Lemma [9] is the factthat this
ordering is a wqo. For a set of configurationsS, definePRE(S) = {(q,M) |∃(q′,M ′) ∈
S.(q,M) ↪→ (q′,M ′)} to be the set of configurations that can reach some configuration
in S in one step. Finally, letPRE∗(S) =

⋃
i∈N

PREi(S) be the set of all configurations
that can reach some configuration inS in finitely many steps.

Recall that to check if(q, γ) is reachable, we need to see if some configuration in
V = CL({(q, {γ})}) is reachable from the initial configuration of the RMS. Hence, we
will computePRE∗(V) and check if(q0, {γ0}) ∈ PRE∗(V). Observe that in an RMS,
if (q1,M1) ↪→ (q2,M2) then for everyM , (q1,M1 ∪ M) ↪→ (q2,M2 ∪ M). Thus,
for an upward closed setU , PRE(U) is also upward closed. This suggests the following

11

algorithm. Compute progressively the setsUi, whereU0 = V andUi+1 = PRE(Ui)∪Ui.
The sequenceU0, U1, . . . is an increasing sequence of upward closed sets, and so by
Proposition 2 we know that this sequence stabilizes in finitely many iterations.

To prove decidability of the reachability problem, all we need to show is that we
can compute a representation ofUi+1, given a representation ofUi. We can represent
an upward closed setU by its minimal elementsMIN(U) which will be finite (by Propo-
sition 1). Thus, we need to describe how to computeMIN(Ui+1) from MIN(Ui).

Consider any upward closed setU and (q,M) ∈ MIN(U). For a transitiontq =
((q′, γ), (q, L)) ∈ δ (whose destination is stateq) andw ∈ L defineMIN(PREw

tq
(U))

to be (q′, (M \ M(w)) ∪ {γ}). In other words,MIN(PREw
tq

(U)) is the least con-
figuration that can make a transition usingtq by pushingM(w) elements into the
bag and reach a configuration inU . Let S = {MIN(PREw

tq
(U)) | for every(q,M) ∈

MIN(U) and transitiontq} Our first observation is thatS can be represented using reg-
ular languages.
Lemma 2. There is are regular languagesLq such thatS =

⋃
q∈Q{q} × M(Lq).

Proof. For (q,M) ∈ MIN(U) and transitiontq = ((q′, γ), (q, L)) ∈ δ, defineStq

(q,M) =

{M ′ | (q′,M ′) = MIN(PREw
tq

(U)) andw ∈ L}. We will show that there is a regular

languageL((q,M), tq) such thatStq

(q,M) = M(L((q,M), tq)). The lemma will then

hold, becauseS is the (finite) union of{q′} × S
tq

(q,M) for each(q,M) ∈ MIN(U) and
transitiontq.

We will construct an automatonA′ acceptingL((q,M), tq). This automaton for
L((q,M), tq) will guess an accepting computation of the automatonA for L. As it
follows a path inA, it will maintain the set of messages inM that have not yet been
produced by the accepting path. Once it reaches a final state of A, it will now only
accept strings which are permutations of the elements ofM that are left, followed by
γ. The formal construction follows.

Let A = (QA, Γ, qA
0 , δA, FA) be the finite automaton recognizingL. We will con-

struct an automatonA′ = (Q′, Γ, q′0, δ
′, {q′f}) recognizingL((q,M), tq) as follows.

– Q′ = {q′f} ∪ (QA × 2M) ∪ 2M , where2M is the collection of (multi-) subsets of
M .

– q′0 = qA
0

– The transitions are
((qA

1 , M ′), ε, (qA
2 , M ′)) ∈ δ′ provided(qA

1 , γ′, qA
2) ∈ δA andγ′ 6∈ M ′

((qA
1 , M ′ ∪ {γ′}), ε, (qA

2 , M ′)) ∈ δ′ provided(qA
1 , γ′, qA

2) ∈ δA

((qA
1 , M ′ ∪ {γ′}), γ′, M ′) ∈ δ′ providedqA

1 ∈ F A

(M ′ ∪ {γ′}, γ′, M ′) ∈ δ′

(∅, γ, q′f) ∈ δ′

It is easy to see thatwγ ∈ L(A′) iff there isw′ ∈ L such thatM(w) = (M \ M(w′)).
Thus,M(L(A′)) = S

tq

(q,M) ut
Finally, we show that given an automaton representation ofS, we can compute

MIN(PRE(U)). From the definition ofS it follows that CL(S) = PRE(U). Thus
MIN(PRE(U)) = MIN(S). Our next observation is that given an automaton representa-
tion of S, MIN(S) is computable.
Lemma 3. Given finite automataAq for eachLq such thatS =

⋃
q∈Q{q} × M(Lq),

MIN(S) is computable.

12

Proof. We observe that ifM ′ is a minimal (with respect to⊆) multi-set inM(Lq), then
there is a stringw ∈ Lq such thatM(w) = M ′ and the run ofAq on w does not go
through any cycles. Since any automaton only has finitely many such runs, the lemma
follows. ut

5 Conclusions
We study the problem of verifying multithreaded programs based on a commonly fol-
lowed design principle, namely, that of multi-tasking through asynchronous atomic
method calls. We introduced the model of multi-set pushdownsystems to model such
programs with finitely many global states and showed that thereachability problem for
MPDSs is decidable. However, we did not explore the complexity bounds of the reach-
ability problem. It would also be useful to develop techniques like symbolic model
checking that will scale to large systems.

Acknowledgment

We would like to thank Gul Agha, Chandrasekhar Boyapati, Cormac Flanagan, and
Shaz Quadeer for providing valuable comments on this work. This work is supported in
part by the ONR Grant N00014-02-1-0715, the NSF Grants NSF CNS 05-09321, NSF
CCF 04-29639, and NSF CCF 04-48178.

References

1. J.-M. Autebert, J. Berstel, and L. Boasson. Context-free languages and pushdown automata.
pages 111–174, 1997.

2. T. Ball and S. Rajamani. The SLAM Toolkit. InProceedings of CAV’2001 (13th Conference
on Computer Aided Verification), volume 2102 ofLNCS, pages 260–264, 2001.

3. A. Bouajjani, J. Esparza, S. Schwoon, and J. Strejcek. Reachabilityanalysis of multithreaded
software with asynchronous communication. InProc. Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’05), volume 3821 ofLNCS, 2005.

4. A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the staticanalysis of concurrent
programs with procedures. InPrinciples of Programming Languages (POPL’03), 2003.

5. A. Bouajjani, M. Mueller-Olm, and T. Touili. Regular symbolic analysis ofdynamic net-
works of pushdown systems. InProc. 16th Intern. Conf. on Concurrency Theory (CON-
CUR’05), volume 3653 ofLNCS, 2005.

6. D. Caucal. On the regular structure of prefix rewriting.Theoretical Computer Science,
106:61–86, 1992.

7. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of software com-
ponents in C.IEEE Transactions on Software Engineering (TSE), 30(6):388–402, 2004.

8. J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning assumptions for compo-
sitional verification. InProc. of the 9th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), pages 331–346, 2003.

9. L. E. Dickson. Finiteness of the odd perfect and primitive abundantnumbers withr distinct
prime factors.American Journal of Mathematics, 35:413–422, 1913.

10. J. Esparza and A. Podelski. Efficient algorithms for pre? and post? on interprocedural parallel
flow graphs. InPrinciples of Programming Languages (POPL’00), pages 1–11, 2000.

11. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! Theoretical
Computer Science, 256(1):63–92, 2001.

12. A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model checking push-
down systems. InProc. 2nd Int. Workshop on Verification of Infinite State Systems (INFIN-
ITY’97), volume 9 ofElectronic Notes in Theor. Comp. Sci.Elsevier, 1997.

13. C. Flanagan and S. Qadeer. A type and effect system for atomicity.In Proc. of the ACM SIG-
PLAN conference on Programming language design and implementation (PLDI’03), 2003.

13

14. T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. In Proc. of the ACM
Symposium on Principles of Programming Languages, pages 58–70, 2002.

15. T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. Thread-modular abstraction refine-
ment. InProc. of the 15th International Conference on Computer-Aided Verification (CAV),
volume 2725 ofLNCS, pages 262–274. Springer, 2003.

16. A. Holub.Taming Java Threads. APress, 2000.
17. J. B. Kruskal. The theory of well-quasi-ordering: A frequently discovered concept.Journal

of Combinatorial Theory: Series A, 13(3):297–305, 1972.
18. D. Lugiez and P. Schnoebelen. The regular viewpoint on PA-processes.Theoretical Com-

puter Science, 274(1–2):89–115, 2002.
19. R. Mayr. Decidability and Complexity of Model Checking Problems for Infinite-State Sys-

tems. PhD thesis, Technical University Munich, 1998.
20. F. Moller. Infinite results. InProceedings of the Conference on Concurrency Theory, pages

195–216, 1996.
21. M. Müller-Olm. Precise interprocedural dependence analysis of parallel programs.Theoret-

ical Computer Science, 311(325–388), 2004.
22. R. Parikh. On context-free languages.Journal of the ACM, 13(4):570–581, 1966.
23. S. Qadeer, S. Rajamani, , and J. Rehof. Procedure summaries for model checking multi-

threaded software. InPrinciples of Programming Languages (POPL’04), 2004.
24. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In11th

International Conference on Tools and Algorithms for the Construction andAnalysis of Sys-
tems, volume 3440 ofLNCS, pages 93–107, 2005.

25. S. Qadeer and D. Wu. KISS: keep it simple and sequential. InACM SIGPLAN 2004 confer-
ence on Programming language design and implementation, pages 14–24, 2004.

26. G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable.ACM
Trans. Program. Lang. Syst., 22(2):416–430, 2000.

27. S. Graf and H. Saidi. Construction of abstract state graphs with PVS.In Conference on
Computer Aided Verification (CAV’97), volume 1254 ofLNCS, pages 72–83, 1997.

28. H. Seidl and B. Steffen. Constraint-based inter-procedural analysis of parallel programs. In
European Symposium on Programming (ESOP’00), volume 1782 ofLNCS, 2000.

29. A. Welc, S. Jagannathan, and A. L. Hosking. Transactional monitors for concurrent objects.
In Proceedings of the European Conference on Object-Oriented Programming, volume 3086
of LNCS, pages 519–542. Springer, 2004.

14

