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SUMMARY

The computational bottleneck of topology optimization is the solution of a large number of linear
systems arising in the finite element analysis. We propose fast iterative solvers for large three-
dimensional topology optimization problems to address this problem. Since the linear systems in the
sequence of optimization steps change slowly from one step to the next, we can significantly reduce
the number of iterations and the runtime of the linear solver by recycling selected search spaces from
previous linear systems. In addition, we introduce a MINRES (Minimum Residual method) version
with recycling (and a short term recurrence) to make recycling more efficient for symmetric problems.
Furthermore, we discuss preconditioning to ensure fast convergence. We show that a proper rescaling
of the linear systems reduces the huge condition numbers that typically occur in topology optimization
to roughly those arising for a problem with constant density. We demonstrate the effectiveness of our
solvers by solving a topology optimization problem with more than a million unknowns on a fast PC.

key words: topology optimization, three-dimensional analysis, iterative methods, Krylov methods,
Krylov subspace recycling, preconditioning, large-scale computation

1. INTRODUCTION

The goal of topology optimization is to find a material distribution in terms of design
variables such that a given objective function, e.g., compliance, is minimized subject to
certain constraints. We give a brief introduction to topology optimization in the next section.
To make topology optimization a truly effective tool in the design of large structures and
complex materials, we must be able to use large three-dimensional models. Most work on
topology optimization for continuum structures has emphasized developing new formulations
and applications, designing suitable elements, studying existence and uniqueness issues, and
solving (modest size) problems. However, the computational aspect of large-scale topology
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optimization, specifically the high cost of solving many large linear systems, has not received
much attention. This is the focus of this paper.

The finite element analysis step in topology optimization requires the solution of a long
sequence of linear systems of the type

K(ρ(i))u(i) = f , (1)

where K is the stiffness matrix as a function of the density distribution ρ at the ith
optimization step, f is the load vector, and u is the displacement vector. Currently, direct
solvers are most commonly used, because of the very large condition numbers arising
in topology optimization. Unfortunately, direct solvers cannot effectively handle large 3D
problems, since their large storage and computational requirements make them prohibitively
expensive. Iterative solvers have low storage requirements and the computational cost per
iteration is small. Therefore, as long as convergence is reasonably fast, we can solve very large
problems.

Iterative solvers offer a number of additional advantages compared with direct solvers. First,
we do not need to solve very accurately in the early phase of the topology optimization process.
Second, iterative solvers are easy to parallelize, which is important for very large problems.
For instance, parallelization of topology optimization was studied in [1, 2]. Third, iterative
solvers can use solutions from previous systems as starting guesses, which leads to smaller
initial residuals. Last, for a sequence of linear systems that change slowly, we can reduce the
total number of iterations by recycling subspaces of earlier search spaces [3, 4].

In topology optimization, the change in the design variables becomes small after the first few
optimization steps. Therefore, the change in the system matrix K(ρ) from one optimization
step to the next is also small, and the Krylov subspace recycling methods introduced in [3] are
likely to be effective. We give more background on recycling in Section 3.

In most structural problems, the matrices are symmetric but not necessarily positive definite.
For example, in vibration problems symmetric indefinite matrices arise [5]. For such matrices,
MINRES (Minimum Residual method) [6] is the method of choice. Therefore, we focus on
MINRES in the present paper. We extend the idea of subspace recycling to MINRES and
make it more efficient by exploiting symmetry and short term recurrences. We discuss the
recycling MINRES in detail in Section 4.

To achieve fast convergence we do need to use preconditioning. As the material distribution
in a structure is being optimized, some elements become nearly void (we set a small positive
lower bound on the densities to avoid singularity). This makes the linear system very ill-
conditioned. First, we show that the ill-conditioning is largely a problem of poor scaling. We
reduce the condition number by 6 orders of magnitude by rescaling the system matrices with
two diagonal matrices. Since diagonal scaling does not introduce numerical errors, this also
mitigates the serious potential accuracy problems of ill-conditioning. Next, we combine the
rescaling with other preconditioners to make the condition numbers of the linear systems even
smaller. We discuss preconditioning in Section 5.

In Section 6, we give some implementation details of our methods. In Section 7, we analyze
our methods for a model problem, and we present the numerical results to demonstrate the
significant improvements our solvers achieve. In the last section, we provide the conclusions.
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2. TOPOLOGY OPTIMIZATION

Topology optimization is a powerful structural optimization method that combines a numerical
solution method, usually the finite element method (FEM), with an optimization algorithm to
find the optimal material distribution inside a given domain [7, 8, 9, 10, 11, 12]. In designing
the topology of a structure we determine which points of space should be material and which
points should be void (i.e. no material). However, it is well known that an optimum result of
topology optimization consists in a structure with intermediate (or composite) material. So,
continuous values between 0 and 1 replace the discrete 0/1 numbers to represent the relative
densities of the elements, while some form of penalization is used to steer the solution back
to discrete 0/1 values [13]. The objective function is the compliance and there is a volume
constraint. This is the basic setup of a topology optimization problem. We specify the problem
mathematically as follows.

min
ρ,u

c(ρ,u) = uT K(ρ)u (2)

s.t.: K(ρ)u = f

0 < ρ0 ≤ ρe ≤ 1 e = 1, 2, · · · , ne∫
Ω

ρdΩ ≤ V,

where c is the compliance, K(ρ) is the stiffness matrix as a function of the density distribution
ρ, u and f are the displacement vector and load vector, ρ0 is a chosen, small, positive lower
bound for the density to avoid singularity of the stiffness matrix, and V is the total volume in
use. The Solid Isotropic Material with Penalization (SIMP) method [13, 14] uses one design
variable to represent the density in each element, while the recent method of Continuous
Approximation of Material Distribution (CAMD) [15, 16] uses multiple variables per element.
Since the focus of this paper is the linear solver in the finite element analysis (FEA), we use
the SIMP method as a simple setup.

The basic scheme of topology optimization is described in Figure 1. First, we set up
the geometry and the loading, and initialize the density distribution ρ. Then, we start the
optimization loop. We need a linear solver to solve the equilibrium equations Ku = f in
the finite element analysis. In the sensitivity analysis, we compute the derivatives of the
objective function ∂c/∂ρe. After this, we can apply an optional low-pass filter to remedy
the checkerboard problem [17]. The next step is the kernel of the optimization. There are
various optimization algorithms that can be used for topology optimization. For instance,
Optimality Criteria (OC) is a simple approach based on a set of intuitive criteria [18], while
the Method of Moving Asymptotes (MMA) is a mathematical programming algorithm which is
more robust and well established in theory [19]. Since this paper deals mainly with the FEA in
topology optimization, the choice of the optimization method is less relevant for our discussion.
Therefore, we choose the OC method for its simplicity. However, our Krylov subspace recycling
method and preconditioning techniques are general and can be used with other optimization
methods.
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Figure 1. The general flow of computations for topology design.

3. KRYLOV SUBSPACE RECYCLING

Consider the linear system Ku = f and an initial guess u0. A Krylov subspace method, such
as the Generalized Minimum Residual method (GMRES) [20], builds the Krylov subspace,
span{r0,Kr0,K

2r0, · · · ,Km−1r0}, where r0 = f −Ku0, and computes the optimal solution
over that subspace. We use the Arnoldi recurrence [21] to obtain an orthonormal basis of the
Krylov subspace:

v1 = r0/‖r0‖2, (3)
hi,i+1vi+1 = Kvi − hi,ivi − hi−1,ivi−1 − · · · − h1,iv1,

which in matrix form is written as

KVm = Vm+1Hm, (4)

where the columns of Vm are v1, · · · ,vm; the columns of Vm+1 are v1, · · · ,vm+1; and Hm is
an (m + 1) × m upper Hessenberg matrix with coefficients {hij}.
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For a symmetric matrix, we have K = SΛST , where S is an orthogonal matrix, and Λ is a
diagonal matrix whose coefficients are the eigenvalues of K. The convergence rate of GMRES
for a symmetric problem is bounded by [22, p. 206]

‖rm‖2

‖r0‖2
≤ min

pm∈Π
(0)
m

max
λ∈λ(K)

|pm(λ)|, (5)

where Π(0)
m is the set of polynomials pm of degree m such that pm(0) = 1, and λ(K) is the set

of eigenvalues of K. So, the bound depends on the spectrum of the matrix. Therefore, if we
remove an appropriate subset of the eigenvalues, M ,

min
pm∈Π

(0)
m

max
λ∈λ(K)/M

|pm(λ)|

can be significantly smaller than (5), and then the rate of convergence will be greatly improved.
This is the motivation for recycling approximate invariant subspaces; other subspaces of the
Krylov space may also be effective as a recycle space [4, 3]. Given the normalization condition,
pm(0) = 1, it is often effective to remove the eigenvalues close to the origin. This filtering of
eigenvalues is achieved by including the corresponding (approximate) invariant subspace in
the Krylov subspace over which we minimize. We typically recycle harmonic Ritz vectors with
respect to the Krylov subspace to approximate an invariant subspace [3].

When solving the next linear system, K(ρ(i+1))u(i+1) = f , we include the recycle space as
follows. We choose a basis for the recycle space to be the columns of a matrix U , such that
C = KU and CT C = I. In addition, we adapt the Arnoldi process to make each new Krylov
vector v orthogonal to range(C). This leads to the following recurrence:

(I − CCT )KVm = Vm+1Hm ⇔
KVm = CCT KVm + Vm+1Hm, (6)

where Hm is still an (m + 1) × m upper Hessenberg matrix. Next, we compute the vector
εm = Uzm + Vmym, such that um = u0 + εm minimizes ‖rm‖2. This gives

‖rm‖2 =
∥∥∥∥r0 − K[U Vm]

(
zm

ym

)∥∥∥∥
2

=
∥∥∥∥[C Vm+1]

((
CT r0

βe1

)
−

[
I Bm

0 Hm

] (
zm

ym

))∥∥∥∥
2

=
∥∥∥∥
(

CT r0

βe1

)
−

[
I Bm

0 Hm

] (
zm

ym

)∥∥∥∥
2

, (7)

where β = ‖(I − CCT )r0‖2 and Bm = CT KVm. This least square problem can be solved
using the QR decomposition of Hm. This approach derives from the GCRO method [23] and
is also used in the GCRODR method and GCROT with recycling [3, 4, 24].

An important issue for GMRES is that it relies (for general matrices) on a complete
orthogonalization of the Krylov subspace. Therefore, as the Krylov subspace expands,
the memory needed for the orthogonal basis vectors and the computational time for
orthogonalization increase. As a result, normally restarting is required for GMRES, and we
call the solution steps between two restarts a cycle. To mitigate the reduced convergence rate
due to the loss of orthogonality caused by restarting, we use the recycle space immediately in
the next cycle for the same system.

5



4. RECYCLING MINRES

In topology optimization of structures, the system matrices are always symmetric. In most
cases they are also positive definite. However, for some applications, e.g., topology design with
dynamic vibrations, they can be indefinite [5]. So, in general, the MINRES method [6] is the
most suitable iterative solver for topology optimization problems.

Both MINRES and GMRES minimize the two-norm of the residual over the Krylov subspace.
The difference is that MINRES utilizes the symmetry of the matrix, and the resulting
Lanczos three-term recurrence leads to significant reductions in memory requirements and
computational cost.

We can use the matrices U and C defining the recycle space, obtained from solving previous
linear systems, in the same way as in GCRODR. This leads to the same recurrence as in (6).
However, the symmetry of K implies the symmetry of Hm, the leading m × m submatrix of
Hm. Since Hm is also an upper Hessenberg matrix, this gives a tridiagonal Hm, which we
will denote as T m from now on. So, including the recycle space into the Krylov subspace
does not affect the Lanczos recurrence of MINRES. Moreover, because of the three-term
recurrence, we do not need to restart. So, in exact arithmetic, there is no need to use the
recycle space generated during the solution of a linear system for solving that same system∗.
As a consequence, we can derive a more efficient method for recycling for symmetric matrices.
Although the Lanczos recurrence requires only the latest two basis vectors from the Krylov
subspace (Lanczos vectors) for orthogonalization and no restarting is necessary, we need
to retain the Lanczos vectors to be able to select a recycle space. To limit the memory
requirements, we update the selected recycle space periodically. In this case, a cycle refers
to the solution process between two updates of the recycle space.

We use s to denote the maximum length of a cycle (and hence the maximum number of
Lanczos vectors kept), and k to denote the number of linearly independent vectors selected
for recycling. We use RMINRES(s, k) to indicate the recycling MINRES method with the
parameters s and k. The matrix Vj contains the Lanczos vectcors generated in the jth cycle,
Vj = [v(j−1)s+1, · · · ,vjs], and the matrix V j = [v(j−1)s, · · · ,vjs+1] denotes Vj extended with
with one previous and one subsequence Lanczos vector. Then, for the jth cycle, the modified
Lanczos process gives

(I − CCT )KVj = V jT j ,
† (8)

where T j is the tridiagonal matrix T j with an additional row corresponding to v(j−1)s at the
top. The bottom row corresponds to vjs+1. To be specific, T j has the nonzero pattern shown
in Figure 2.

Let Uj give the basis of a subspace that is selected at the end of the jth cycle for the current
linear system and used only in the solution of the next system. We compute this matrix from
the whole search space available in memory at the end of the jth cycle. This includes the matrix
U that is recycled from the previous system and used in the current system, the matrix Uj−1

∗In floating point arithmetic, including the recycle space obtained from the current Krylov subspace may help
remedy the loss of orthogonality that generally occurs due to rounding errors.
†Note that (I−CCT )Kx = (I−CCT )K(I−CCT )x for x ∈ range(C)⊥, so that (I−CCT )K is symmetric
over range(C)⊥.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
∗ ∗
∗ ∗ . . .

∗ . . . ∗
. . . ∗ ∗

∗ ∗
∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 2. Nonzero pattern of T j .

that was selected after the previous cycle for the current system, and the matrix Vj containing
the Lanczos vectors generated in the latest cycle for the current system. The modified Lanczos
recurrence that includes the orthogonalization against C gives

K[U Uj−1 Vj ] = [C Cj−1 V j ]

⎡
⎣ I 0 Bj

0 I 0
0 0 T j

⎤
⎦ , (9)

where Bj = CT KVj , which has been computed in the course of past iterations.
Now, we have several options for selecting a new matrix Uj for recycling. The first option is

to compute the harmonic Ritz vectors of K with respect to range ([U Uj−1 Vj ]). The second
option is similar to option 1, but we drop the U components from Uj if the linear solver has
not converged. This is possible since U will be included again for the update of the recycle
space after the next cycle for the same linear system. The third option is to obtain U1 from
range ([U V1]) after the first cycle and Uj from range ([Uj−1 Vj ]) after the jth cycle. In the
last approach, the reappearance of U can be avoided as well. Since the formulation and the
performance of these options are similar, we only discuss the third option in this paper.

Let

Wj = [Uj−1 Vj ], W̃j = [C Cj−1 V j ], H̃j =

⎡
⎣ 0 Bj

I 0
0 T j

⎤
⎦ . (10)

Then, (9) gives

KWj = W̃jH̃j . (11)

Now, we compute the harmonic Ritz values and vectors of K with respect to the subspace
range (Wj). These harmonic Ritz pairs (θ,w) are defined by the condition

Kw − θw ⊥ range(KWj), (12)

where w ∈ range (Wj). If we write w = Wjp, computing harmonic Ritz pairs is equivalent to
solving the generalized eigenvalue problem

H̃
T

j W̃ T
j W̃jH̃jp = θH̃

T

j W̃ T
j Wjp. (13)
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After solving (13), we choose the k harmonic Ritz vectors with the (absolute) smallest harmonic
Ritz values for recycling, and set Ũj = WjPj , where the columns of Pj are the chosen harmonic
Ritz vectors. Now we have C̃j = KŨj = W̃jH̃jPj . To obtain Cj with orthonormal columns,
we compute the QR decomposition of W̃j (note that by construction almost all columns are
already orthogonal),

W̃j = ŴjGj , (14)

and of GjH̃jPj ,

GjH̃jPj = QjRj . (15)

Next, we set

Uj = WjP̂j , Cj = ŴjQj = W̃jQ̂j , (16)

where P̂j = PjR
−1
j , and Q̂j = G−1

j Qj . Then Cj is orthogonal and KUj = Cj . The two
QR decompositions (14–15) are cheap to compute, because Gj has very few nonzeros whose
positions are known in advance, and GjH̃jPj is a product of matrices of small dimensions.

Finally, to solve the generalized eigenvalue problem (13), we need the matrices
H̃

T

j W̃ T
j W̃jH̃j and H̃

T

j W̃ T
j Wj . We can simplify W̃ T

j W̃j and W̃ T
j Wj as follows.

W̃ T
j W̃j =

⎡
⎣ I CT Cj−1 0

CT
j−1C I CT

j−1V j

0 V
T

j Cj−1 I

⎤
⎦ , (17)

W̃ T
j Wj =

⎡
⎣ CT Uj−1 0

CT
j−1Uj−1 CT

j−1Vj

V
T

j Uj−1 I

⎤
⎦ , (18)

where I is an extended identity matrix with an additional row of zeros at the top and at the
bottom. We can simplify the computation of most blocks in these two matrices further.

CT Cj−1 = CT W̃j−1Q̂j−1 = [I CT Cj−2 0]Q̂j−1, (19)

V
T

j Cj−1 = V
T

j W̃j−1Q̂j−1 =

⎡
⎢⎢⎢⎣

0 · · · 0 1 0
0 · · · 0 0 1
...

. . . . . .
...

...
0 · · · · · · 0 0

⎤
⎥⎥⎥⎦ Q̂j−1, (20)

CT Uj−1 = CT Wj−1P̂j−1 = [CT Uj−2 0]P̂j−1, (21)

CT
j−1Uj−1 = Q̂T

j−1(W̃
T
j−1Wj−1)P̂j−1, (22)

CT
j−1Vj = Q̂T

j−1

⎡
⎣ CT

CT
j−2

V j−1

⎤
⎦ Vj = Q̂T

j−1

⎡
⎢⎢⎢⎣

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
1 0 · · · 0

⎤
⎥⎥⎥⎦ . (23)

From the above derivation, we can obtain V
T

j Cj−1 and CT
j−1Vj simply from Q̂j−1 (known

from the previous cycle), and we can compute CT Cj−1, CT Uj−1 and CT
j−1Uj−1 recursively
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with 2k3, 2k3 and 2k(k + s)(3k + s) flops, respectively. Therefore, the computation of these
submatrices is very cheap. Only V

T

j Uj−1 must be computed explicitly by matrix-matrix
product, which takes about 2ksn flops. In summary, the cost of each update of the recycle
space is about (12k2 + 6ks + 6k + 4)n flops, ignoring the terms that do not have a factor n.
Compared with the cost of MINRES, which is mainly determined by the matrix-vector product
and the forward and backward solve for the preconditioner for each iteration, the overhead of
the subspace selection is modest (see the timing results in Section 7).

5. PRECONDITIONING FOR TOPOLOGY OPTIMIZATION

The convergence rate of Krylov methods for a symmetric matrix depends only on the spectrum
of the matrix. In fact, the ratio between the absolute largest and smallest eigenvalue governs
a worst-case upper bound on the convergence rate. In large-scale finite element simulations in
physics and engineering, the linear systems tend to be ill-conditioned. In topology optimization,
this problem is exacerbated by the wide range of magnitudes of the element densities.

Ill-conditioning creates two problems for numerical simulation. First, ill-conditioning may
seriously affect the accuracy of the computed solution. Second, the convergence of iterative
methods is poor for ill-conditioned problems. The second problem is generally addressed
by proper preconditioning. In principle, preconditioning does not alleviate the potential
accuracy problem, because a preconditioner that is effective for an ill-conditioned matrix
has to be fairly ill-conditioned itself. This leads to two multiplications by ill-conditioned
matrices in each iteration (or three for two-sided preconditioning), which may lead in
turn to serious accumulation of numerical errors. However, in certain cases the accuracy
problem can be relieved by properly scaling the problem. We show that this is the case for
topology optimization. This leads to a preprocessing step and a preconditioning step (or two
preconditioners depending on one’s view).

In the next section, we discuss the preprocessing and preconditioner that we used for our
numerical experiments. We illustrate the idea of rescaling from a mechanical point of view for
a 1D problem in Section 5.2. Borrvall and Petersson [1] suggested, without further discussion,
that the condition number of the matrix can be as large as the ratio of maximum to minimum
density. We show that this ratio provides only a lower bound on the condition number and that
the actual condition number typically is even larger. The actual conditioning is a combination
of this ratio and the conditioning of a corresponding problem with constant density.

5.1. Preconditioning

The following analysis shows how ill-conditioned the stiffness matrices can be.
The two-norm condition number of a matrix K can be defined as

κ(K) =
max‖u‖=1 ‖Ku‖
min‖u‖=1 ‖Ku‖ . (24)

Since
min

‖u‖=1
‖Ku‖ ≤ ‖Kel‖ = ‖kl‖ ≤ max

‖u‖=1
‖Ku‖, for any l = 1, . . . , n, (25)

where kl is the lth column of K and el is the Cartesian basis vector with the lth coefficient
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Figure 3. Nl: the set of elements associated with the lth d.o.f. indicated by the circle in the middle.

equal to 1, we have

κ(K) ≥ ‖kl1‖
‖kl2‖

, for any l1, l2 = 1, . . . , n. (26)

In topology optimization, a column of the stiffness matrix is given by

kl =
∑
e∈Nl

ρp
eL

T
e K0Leel, (27)

where K0 is the unit element stiffness matrix, Le is the local-to-global transformation matrix,
and Nl is the set of elements that are associated with the lth d.o.f.. These usually form a
2× 2× 2 block in the 3D mesh (see Figure 3). If the blocks associated with d.o.f. l1 and l2 are
solid and void respectively, namely ρe = 1 for e ∈ Nl1 and ρe = ρ0 for e ∈ Nl2 , we have

kl1 =
∑
e∈Nl

LT
e K0Leel1 , (28)

kl2 = ρp
0

∑
e∈Nl

LT
e K0Leel2 . (29)

Then, assuming that the elements are uniform and isotropic, we have

κ(K) ≥ ‖kl1‖
‖kl2‖

=
1
ρp
0

. (30)

For ρ0 = 10−3 and p = 3, which are commonly used in topology optimization, the condition
number of the stiffness matrix will be greater than 109 when solid and void areas begin to
appear in the design domain.

Note that this analysis provides only a lower bound on the condition number, and that
structures from homogeneous material can also have large condition numbers. However, the
analysis suggests that, to a significant degree, the ill-conditioning comes from the poor scaling
of the material densities over the design domain. We can understand this intuitively as follows.

10



A change in an algebraic degree of freedom, say the Cartesian basis vector ej , associated with
a nodal basis function in a region with very small density corresponds to a displacement that
requires a very small amount of energy (eT

j K(ρ)ej small). However, that same change in an
algebraic degree of freedom, ei, associated with a nodal basis function in a region with large
density corresponds to a displacement of the same magnitude that requires a large amount of
energy (eT

i K(ρ)ei large). Since for symmetric K

κ(K(ρ)) ≥ eT
i K(ρ)ei

eT
j K(ρ)ej

,

this shows that the system is inherently ill-conditioned. Therefore, we expect that we can
reduce the ill-conditioning due to the large variation in density by scaling the linear system
such that changes of equal magnitude in algebraic degrees of freedom yield equal changes in
energy (eT

i K(ρ)ei = eT
j K(ρ)ej for all i and j). Since this is the case for a problem with

homogeneous density, we expect that this scaling reduces the condition number of the stiffness
matrix to roughly that for a similar problem with homogeneous density. Indeed, in general
we obtain a condition number that is slightly better than that for a problem with constant
density. Alternatively, in light of (30) we may want to scale the linear system such that all
columns have the same norm. In the next section, we discuss the effects of rescaling for a
simple 1D problem with heterogeneous density.

We propose to rescale the stifness matrices K by multiplying with a diagonal matrix on
both sides (for symmetry),

K̃ = D−1/2KD−1/2, (31)

where the entries of the diagonal matrix D are either the diagonal coefficients of K or the
absolute column sums of K, i.e. di = ‖ki‖1. In Figure 4 we compare the condition numbers of
stiffness matrices that arise in topology optimization for a model problem on a 18×6×3 mesh
with the condition numbers of the rescaled stiffness matrices. The model problem is the same
as that used in the numerical results section. The condition numbers of the stiffness matrices
quickly rise to about 1011 after only a few optimization steps. However, the condition numbers
of the rescaled matrices remain at about the same level as those at the beginning (at about
105).

To obtain rapid convergence for iterative methods, it is important to further reduce the
condition number after rescaling by more general preconditioning techniques. In our numerical
experiments, we use an incomplete Cholesky decomposition with zero fill-in of the rescaled
stiffness matrix as a preconditioner [25],

K̃ = D−1/2KD−1/2 ≈ LLT . (32)

Finally, we note that diagonal scaling does not decrease the relative accuracy of the matrix
coefficients, and hence such scaling leads to a real improvement in the worst case numerical
error in the computed solution. The second type of preconditioning, using the incomplete
Cholesky decomposition, improves the rate of convergence, but will typically not affect the
accuracy of the computed solutions. Since the Cholesky decomposition may fail for a very ill-
conditioned matrix, we explicitly rescale the stiffness matrix before we compute the incomplete
Cholesky decomposition.

11



0 10 20 30 40
10

5

10
6

10
7

10
8

10
9

10
10

10
11

nsys

co
n

d
it

io
n

 n
u

m
b

er

unrescaled
rescaled

Figure 4. Condition numbers of stiffness matrices and rescaled stiffness matrices for the model problem
in Figure 7 on a 18 × 6 × 3 mesh.

5.2. Rescaling for a 1D elasticity problem

We use an idealized 1D elasticity problem with piece-wise constant modulus of elasticity to
explain the idea of rescaling. Consider the following problem.

i i + 1

Ei−1 Ei Ei+1

Figure 5. Piecewise constant modulus of elasticity Ei.

Find u(x) with boundary conditions u(0) = 0 and u(1) = 1, such that

a(u, v) ≡
∫ 1

0

E(x)uxvxdx = 0, with E(x) ≥ E0 > 0, (33)

for all v with v(0) = v(1) = 0. Furthermore, following the typical case of topology optimization,
we assume that E is piecewise constant and varies over a large range of values.

For simplicity, we discretize the problem using piecewise linear nodal basis functions and a
mesh with equal length elements. This yields the following linear system.⎡

⎢⎢⎢⎣
E1 + E2 −E2

−E2 E2 + E3 −E3

. . . . . . . . .
−En−2 En−2 + En−1

⎤
⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

u1

u2

...
un−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
0
...
1

⎞
⎟⎟⎟⎠ . (34)

12



We can write this system of equations as follows (note (Eux)x = 0 ⇔ Eux = constant).

Ei(ui − ui−1) − Ei+1(ui+1 − ui) = 0, for i = 1, . . . , n − 1,

where we have used u0 = 0 and un = 1. Introducing the difference matrix

D1 =

⎡
⎢⎢⎢⎣

1
−1 1

. . . . . .
−1 1

⎤
⎥⎥⎥⎦

and the diagonal matrix Ω = diag(E1, E2, . . . , En−1), we can write (34) as(
DT

1 ΩD1 + Enen−1eT
n−1

)
u = Enen−1. (35)

For a problem with constant modulus of elasticity, E, this equation gives

E
(
DT

1 D1 + en−1eT
n−1

)
u = Een−1, (36)

where DT
1 D1 + en−1eT

n−1 is the well-known tridiagonal matrix with coefficients [−1 2 − 1].
Next, we want to demonstrate two issues. Comparing (35) with (36), it is clear that extreme

ill-conditioning in (35) must arise from the scaling introduced by Ω. First, we demonstrate
that this leads to a condition number (bound) that is roughly the product of the condition
number of the constant elasticity problem and the condition number of Ω. Second, we show
how a proper (re)scaling brings the condition number down to that for the constant elasticity
case, if the solution is properly defined. We note that for general choices of Ω there may be
no diagonal scaling that reduces the condition number. For example, in 1D if we have two
non-adjacent ‘holes’ the displacement for material in between the holes is not properly defined
(as the modulus of elasticity goes to zero), since there is no connection to any point with a
fixed displacement. In higher dimensions this is rarely a problem, as the topology optimization
algorithm leads to energetically favorable solutions that do not have such anomalies.

Below, we need the following well-known result for symmetric positive definite matrices
A,B ∈ R

n×n and α, β ∈ R
+ [26, pp. 338-9]. Let A and B be such that for all u 
= 0

α ≤ uT Au

uT Bu
≤ β. (37)

Then

κ(B−1/2AB−1/2) ≤ β

α
, (38)

where κ denotes the condition number.
Using (37–38), we can bound the condition number of the matrix in (35) as follows.

κ(DT
1 ΩD1 + Enen−1eT

n−1) =
max‖u‖=1 uT (DT

1 ΩD1 + Enen−1eT
n−1)u

min‖u‖=1 uT (DT
1 ΩD1 + Enen−1eT

n−1)u
. (39)

Let y = D1u and hence u = D−1
1 y. Then

uT DT
1 ΩD1u + EnuT en−1eT

n−1u = (D1u)T Ω(D1u) + Enu2
n−1

=
yT Ωy + En(y1 + . . . + yn−1)2

(D−1
1 y)T (D−1

1 y)
. (40)
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Let Emin = mini(Ei), Emax = maxi(Ei), and let λmin be the smallest eigenvalue of the matrix
D1DT

1 and λmax its largest eigenvalue. Furthermore, note that D1DT
1 and DT

1 D1 have the
same eigenvalues. Since y appears quadratically in both the numerator and the denominator,
we can assume y to be normalized. Then, (40) gives

Eminλmin ≤ yT Ωy + En(y1 + . . . + yn−1)2

(D−1
1 y)T (D−1

1 y)
≤ nEmaxλmax, (41)

which finally gives

κ(DT
1 ΩD1 + Enen−1eT

n−1) ≤ n
Emax

Emin

λmax

λmin
= nκ(Ω)κ(DT

1 D1). (42)

Next, we show that scaling a problem (without non-adjacent ‘holes’) reduces the condition
number of the linear system to roughly that of a problem with constant elasticity. Let

S = diag(E1 + E2, E2 + E3, . . . , En−1 + En). (43)

We have
uT (DT

1 ΩD1 + Enen−1e
T
n−1)u

uT Su
=

E1u
2
1 + E2(u1 − u2)2 + . . . + En−1(un−2 − un−1)2 + Enu2

n−1

E1u2
1 + E2(u2

1 + u2
2) + . . . + En−1(u2

n−2 + u2
n−1) + Enu2

n−1

=

(E1 + E2)u2
1 + . . . + (En−1 + En)u2

n−1 − 2(E2u1u2 + . . . + En−1un−2un−1)
(E1 + E2)u2

1 + . . . + (En−1 + En)u2
n−1

=

1 − 2(E2u1u2 + . . . + En−1un−2un−1)
(E1 + E2)u2

1 + . . . + (En−1 + En)u2
n−1

=

1 − 2(E2u1u2 + . . . + En−1un−2un−1)
E1u2

1 + E2(u2
1 + u2

2) + . . . + En−1(u2
n−2 + u2

n−1) + Enu2
n−1

. (44)

It is easy to see that the maximum of (44) is bounded by 2. The condition number therefore
depends mainly on the minimum of (44). We consider three examples.

The first example considers the case of constant modulus of elasticity. The second example
demonstrates that the case of a bar with variable modulus (solid bar with a ‘hole’) leads to
about the same condition number after scaling as the case of a bar with constant modulus
(homogeneous). The third example shows that for the hypothetical case of a 1D bar with two
non-adjacent ‘holes’ scaling cannot remove the actual singularity.

Example 1: Constant Modulus
For a constant modulus of elasticity, (44) leads to

uT (EDT
1 D1 + Een−1e

T
n−1)u

uT Su

= 1 − 2u1u2 + . . . + 2un−2un−1

u2
1 + (u2

1 + u2
2) + . . . + (u2

n−2 + u2
n−1) + u2

n−1

. (45)

The minimum for (45) is obtained for ui = sin(πih) which gives ui−1ui ≈ u2
i and minimizes the

influence of the terms Eu2
1 and Eu2

n−1. This leads to a condition number for the preconditioned
system of O(h−2).
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Example 2: Variable Modulus
Now consider a problem with a ‘hole’ at the end of the bar; Ei = 1 for i = 1, . . . , n− 5, where
n � 5, and Ei = ε (small) for the remaining elements. The minimum for (44) is obtained for a
vector u such that |ui| = O(1) for i = 1, . . . n − 5 and |ui| = O(ε) for the remaining elements.
After substituting for the Ei in (44) and dropping the ui terms that are O(ε), we need to
minimize the following expression

1 − 2u1u2 + . . . + 2un−6un−5

u2
1 + (u2

1 + u2
2) + . . . + (u2

n−6 + u2
n−5) + εu2

n−5

. (46)

Comparing (46) to (45), we see that this minimization problem is essentially the same as the
one for the constant modulus (with a few terms of small magnitude dropped). Therefore, the
resulting condition number will be about the same.

Example 3: Hypothetical Case
Finally, consider a hypothetical problem of a 1D bar with two non-adjacent ‘holes’. Let n = 5,
and let E1 = E3 = E5 = 1 and E2 = E4 = ε. Now taking u1 = u4 = 0 and u2 = u3 = 1 in
(44) gives

minu �=0
uT (DT

1 ΩD1 + Enen−1e
T
n−1)u

uT Su
≤

1 − 2E3u2u3

E2u2
2 + E3(u2

2 + u2
3) + E4u2

3

=

1 − 2
ε + 2 + ε

=
ε

1 + ε
. (47)

So, (47) can be made arbitrarily small, and therefore the condition number κ(DT
1 ΩD1 +

Enen−1e
T
n−1) can be made arbitrarily large.

6. SOME IMPLEMENTATION ISSUES

We have developed our C/C++ code in an object-oriented fashion, since we intend to make
the RMINRES solver available as public domain software. This makes it easy to integrate
the software in other packages, and also facilitates maintenance and extension, while retaining
high efficiency. We store sparse matrices in compressed sparse row format (CSR). The (column)
vectors in U , C, Vj , and so on, are stored as one-dimensional arrays linked by a one-dimensional
array of pointers. The memory required by the system matrix and the incomplete Cholesky
factor is linear in the number of unknowns, n, since the number of nonzero coefficients per row
is never greater than 81. The RMINRES method requires only matrix-vector multiplications,
dot products, vector updates, forward and backward solves with the incomplete Cholesky
factors, and the incomplete Cholesky decomposition itself. All of these operations have linear
computational cost.

The small matrices, e.g., the matrices in (15), are all stored as dense matrices in column-
wise ordering (F77 format), so that dense matrix routines from LAPACK and BLAS can
be used. For the generalized eigenvalue problem (13) we use the LAPACK routine DSYGV.
For convenience we use the CLAPACK library, which provides an interface for C programs
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Table I. Three discretizations used for the example in Figure 6.

#unknowns solution optimization iterative
problem mesh size (in simulation) time steps solver

small 36 × 12 × 6 9, 360 0.1h 142 RMINRES(100,10)
medium 84 × 28 × 14 107, 184 2.4h 139 RMINRES(100,10)

large 180 × 60 × 30 1, 010, 160 45.7h 130 RMINRES(200,10)

to LAPACK. However, since CLAPACK routines call the corresponding LAPACK routines,
we still need to adhere to F77 storage formats. The computational cost of the work with
these small matrices is negligible. Finally, we note that the computational cost is significantly
reduced by taking the simplifications in (17)–(23) into account.

7. NUMERICAL RESULTS

We demonstrate the performance of the MINRES iterative solver with the recycling and
preconditioning techniques discussed in Sections 4 and 5 on a large 3D design problem. We
also provide some analysis for the selection of the linear solver parameters.

X

Y
Z

Figure 6. Design problem: finding optimal material distribution in a hexahedron with the left end
fixed and a distributed load applied on the right bottom edge. (X : Y : Z = 3 : 1 : 1).

Figure 6 shows our model problem. The volume fraction is 50%, and the radius of the
filter is 10% of Y . We use continuation on the density penalization, ranging from 1 to 3 with
increments of 0.5. As stated before, we use the OC method as the optimization algorithm. The
convergence criterion is that the maximum change in the design variables is less than 0.01.
We test three discretizations of increasing mesh resolution. Exploiting the symmetry of the
problem, we model and simulate only half of the domain. For each test case, Table I lists the
mesh size (for half of the domain), the number of unknowns, the overall solution time, the
number of optimization steps, and the parameters used for the iterative solver. Figure 7 shows
the final topologies.

First, we analyze the convergence properties of RMINRES for several parameter choices on
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Figure 7. Final topologies of the model problem. Left: half domain; right: full domain. Top row: small
mesh; middle row: medium size mesh; bottom row: large mesh.
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Figure 8. Reduction in the number of iterations using a relaxed tolerance for the linear solver (MINRES
without recycling).

the medium size (84×28×14) mesh. The number of optimization steps to compute the optimal
design is 139, requiring the solution of 139 linear systems.

As mentioned in the first section, we can vary the tolerance for the iterative solver, since less
accurate finite element solutions are sufficient at the beginning of the topology optimization
process. So, we can also apply a continuation approach to the tolerance of the linear solver,
which reduces the number of iterations in the early phase of the optimization process, as shown
in Figure 8. The jumps in the iteration counts correspond to the steps where the tolerance
of the linear solver is decreased or the penalization parameter p is increased. We update the
solver tolerance and the penalization parameter every time the maximum change of the design
variables drops below 0.1. Finally, we note that allowing a higher tolerance for the linear solver
in the beginning of the optimization process did not affect the number of optimization steps
required.

Next, we consider the parameters that govern the recycling for the MINRES solver, namely
k, the dimension of the subspace that is recycled from one linear system to the next, and s,
the maximum dimension of the Krylov subspace kept to periodically update the approximate
invariant subspace that will be recycled. We carry out two sets of experiments to analyze the
effects of varying these two parameters.

In the first set of experiments, we fix k = 10 and vary s. Figure 9 compares the number
of iterations and computation time for each linear system, for several choices of s. In the
first few optimization steps, the topology changes significantly, and the effect of recycling is
modest. After this, the recycling approach greatly reduces the number of iterations to solve
each linear system. We see that if we keep a larger Krylov subspace to update the approximate
invariant subspace, the recycling becomes more effective in reducing iteration counts. Since
the dimension of the recycle space itself does not change, this suggests that we obtain a
more accurate approximation to the invariant subspace this way. This reduction in iterations
significantly reduces the computation time for RMINRES, in spite of the computational
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Figure 9. Number of iterations (niters) and time (seconds) of RMINRES(s, k) with fixed k = 10 and
varying s

overhead from the orthogonalizations against the recycle space and from the updates of the
recycle space. Towards the end of the optimization process, recycling leads to a 40% reduction
in computation time and a 50% reduction in iterations. Notice that increasing s beyond 100 has
limited effect since RMINRES rarely takes more than 100 iterations for this problem. However,
for harder problems, e.g., for finer meshes, the solver may not converge so fast. In that case,
larger values for s can be helpful. Note that increasing s does not increase the computational
cost of RMINRES. The only limit on s is the memory size.

In the second set of experiments, we fix s = 100 and vary k. The parameter k affects both the
computational cost per iteration, specifically the number of orthogonalizations and the cost of
subspace selection, and the total number of iterations for the solver. There is a tradeoff between
these two factors, and in Figure 10 we compare the number of iterations and computational
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Figure 10. Number of iterations (niters) and time (seconds) of RMINRES(s, k) with varying k and
fixed s = 100

time for several values of k. Increasing k leads to a significant improvement in the convergence
rate; towards the end we obtain a factor 3 reduction in the number of iterations. Time-wise,
we obtain a 40% improvement. We also see that the computation time is not overly sensitive
to the choice of k.

Finally, we compare a state-of-the-art sparse direct solver with our iterative method,
including recycling and the continuation on the solver tolerance, the initial scaling, and the
preconditioner. We use the multifrontal, supernodal Cholesky factorization from the TAUCS
package [27]. We ran the comparison on a PC with an AMD Opteron TM252 2.6GHz 64-bit
processor, 8GB RAM of memory, and the SuSE Linux system. Table II lists the computation
times of both the direct solver and the iterative solver for a single linear system, for several
problem sizes. For the direct solver, the data include the time for the Cholesky decomposition,
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Table II. Run time comparison (seconds) of direct and iterative solvers. The direct solver is the
multifrontal, supernodal Cholesky factorization in TAUCS; the iterative solver is RMINRES with
rescaling and incomplete Cholesky preconditioner and the continuation on the solver tolerance. These
timings were obtained on a PC with an AMD Opteron TM252 2.6GHz 64-bit processor, 8GB RAM of

memory, and the SuSE Linux system.

problem size
#unknows direct solver time (s) iterative solver time (s)

in simulation decompose solve total min max average

small 9, 360 0.95 0.01 0.96 0.94 2.25 1.66
medium 107, 184 179.0 0.3 179.3 21.2 71.9 50.5

large 1, 010, 160 21241 4904 26154 254 1546 1170

and for the forward and backward substitution to solve one system. For the iterative solver, to
make a fair comparison the data include the maximum, minimum and average run time taken
over all linear systems. We note that the run time of the direct solver seems to scale worse
than quadratic, whereas the iterative solver scales slightly worse than linear. Since the matrix
changes at every optimization step, we cannot reuse the Cholesky factors of the direct solver
and a new factorization must be computed every optimization step.

8. CONCLUSIONS

In this paper, we investigate iterative solvers for the equilibrium equations in topology
optimization. We address the main problem, the extreme ill-conditioning, by two approaches.
First, we rescale the system to reduce the ill-conditioning due to the variation in the density.
Second, we use an incomplete Cholesky preconditioner for the resulting linear system. In
general, the rescaling improves the accuracy of the solution as well as the convergence rate.
The Cholesky preconditioner improves convergence rate, but in general has no effect on the
accuracy. Exploiting the slowly changing nature of the linear systems arising in topology
optimization, the RMINRES method, which recycles selected subspaces, leads to a further
significant reduction in iterations and run time.

We benchmark our methods for a design problem on a sequence of increasingly finer meshes.
The largest problem has more than a million unknowns, resulting in a smooth solution. With
the proposed methods, we can solve these problems on a single PC in a reasonably short time.

APPENDIX

LIST OF SYMBOLS

n the size of the linear system
m the current number of iterations of the iterative method
k the dimension of the subspace to be recycled
s the maximum number of Lanczos vectors kept for updating the recycle space
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j the index of the update cycle

a(u, v) bilinear form of the 1D idealized elasticity problem
c compliance
E,Ei modulus of elasticity
f load vector
K,K(i) global stiffness matrix
K0 element stiffness matrix
Kij (i, j) coefficient of K
kj the jth column of K
p penalization parameter
u,u(i) displacement vector
V total volume
ρ,ρ(i) density distribution (the design variables of topology optimization problems)
ρ0 positive lower bound on the density to avoid singularity
Ω diagonal matrix of material constants

C,Cj orthogonal basis of KU
Hm,Hm (m + 1) × m Hessenberg matrix generated in the Arnoldi iteration, and the

first m rows of Hm

r0, rm residual
T j , T j tridiagonal matrix generated by Lanczos iteration and its extended version

with an additional top row
U ,Uj basis for the recycle space
Vm first m vectors of the Krylov subspace, v1,v2, · · · ,vm

Vj ,V j the Krylov subspace generated in jth cycle, v(j−1)s+1, · · · ,vjs, and its
extended version, v(j−1)s, · · · ,vjs+1

κ(·) condition number of a matrix
(θ,w) an harmonic Ritz pair of K with Ritz value θ and Ritz vector w

ABBREVIATIONS

GMRES Generalized Minimum Residual method [20]
MINRES Minimum Residual method [6]
GCRODR Generalized Conjugate Residual method with inner Orthogonalization

and Deflated Restarting [3]
GCRO Generalized Conjugate Residual method with inner Orthogonalization

[23]
GCROT Generalized Conjugate Residual method with inner Orthogonalization

and optimal Truncation [24]
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