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Abstract

Data mining is an emerging research area, whose goal is to discover potentially useful infor-

mation embedded in databases. Due to the wide availability of huge amounts of data and

the imminent need for turning such data into useful knowledge, data mining has attracted

a great deal of attention in recent years.

Frequent pattern mining has been a focused topic in data mining research. The goal of

frequent pattern mining is to discover the patterns whose numbers of occurrence are above

a predefined threshold in the datasets. Depending on the different definition of pattern,

frequent pattern mining stands for various mining problems, such as frequent itemset mining,

sequential pattern mining and so on. Frequent pattern mining has numerous applications,

such as the analysis of customer purchase patterns, web access patterns, natural disasters

or alarm sequences, disease treatments and DNA sequences.

Many algorithms have been presented for mining frequent patterns since the introduc-

tion of the problem. Most of them are sequential algorithms and their execution time is

constrained by the computing power, I/O speed and/or memory space of the uni-processor

system where their implementations execute. The irregular nature of the datasets and the re-

quirement to reach global decision make it challenging to efficiently mining frequent patterns

in parallel.

In this dissertation, we propose a framework for parallel mining frequent patterns. Our

parallelizing framework targets a distributed memory system. It was applied to the paral-

lelization of frequent itemset mining, sequential pattern mining and closed-sequential pattern

mining. Our parallel algorithms are based on the most efficient serial algorithms.
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We devised a partitioning strategy to distribute the work to avoid the unnecessary inter-

processor communication. Our task partition is based on the divide-and-conquer property

of frequent pattern mining problem so that the processors can work asynchronously and

independently during mining.

We discuss the load balancing problem inherent in the divide-and-conquer property and

then present a sampling technique, called selective sampling, to address the load balance

problem. Selective sampling strategy allows us to predict the relative time required to mine

the projections and in this way enable us to identify large tasks, decompose them, and evenly

distributed them across processors to achieve load balancing.

We implemented parallel algorithms for mining frequent itemsets, sequential patterns and

closed-sequential patterns following our framework. A comprehensive performance study

has been conducted in our experiments on both synthetic and real-world datasets. The

experimental results have shown that our parallel algorithms have achieved good speedups

on various datasets and the speedups are scalable up to 64 processors on our 64-processor

system.

iv



To Gang, and my parents.

v



Acknowlegements

First and foremost, my deepest gratefulness goes to my advisor, Professor David Padua. I

would like to sincerely thank him for providing me with invaluable consistent guidance and

support throughout my whole graduate study. I benefited tremendously from his help and

insights in many aspects of my life as a graduate student. He has provided me with a perfect

balance between guidance and freedom, which allows me to pursue my own ideas along the

right direction. I will always be grateful for his consistent encouragement.

I greatly appreciate Professor Jiawei Han for his support and collaboration during my

PhD study. Thank you for all the interesting discussions on my research work. I would like

to thank the honorable members of my thesis committee, Dr. Jay Hoeflinger, Professor Marc

Snir and Professor Laxmikant Kale, for their precious discussions on the ideas in my work.

I am also indebted to them for reading my dissertation and providing valuable feedbacks.

I would like to extend my thanks to Professor Maria Garzaran for her assistance during

my thesis research and for her warm help during my thesis preparation and job search.

My gratitude also goes to all current and previous members of Polaris group, especially

Jianxin Xiong, Peng Wu, Jiajing Zhu, Zehra Sura, Xiaoming Li, David Wong and Ganesh

Bikshadi. I also thank former members of I-ACOMA group, Michael Huang, Jose Renau,

Yan Solihin and Milos Prvulovic for answering my questions and giving me advice.

I am grateful to Sheila Clark for her great administrative support during my graduate

study.

Finally, I am deeply thankful to my parents for their endless encouragement and love.

Last but not least, I thank my dear husband, Gang, for bringing so much fun to my life

vi



and sharing every moment of my success and frustration. You are my true companion in

both work and life. Your love and support have been and will always be my most precious

possession.

vii



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Dissertation Organizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Frequent itemset mining . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Sequential-pattern mining . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Closed-sequential pattern mining . . . . . . . . . . . . . . . . . . . . 10

2.2 Serial algorithms for frequent pattern mining problems . . . . . . . . . . . . 12
2.2.1 Serial algorithms for frequent itemset mining . . . . . . . . . . . . . . 12
2.2.2 Serial algorithms for sequential-pattern mining . . . . . . . . . . . . . 18
2.2.3 Serial algorithms for closed-sequential-pattern mining . . . . . . . . 24

Chapter 3 Parallelization Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1 Analysis of the serial algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Generalization of the serial algorithms . . . . . . . . . . . . . . . . . . . . . 30
3.3 Framework for parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Challenges to the parallel framework . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 4 Addressing The Load Balancing Problem . . . . . . . . . . . . . . . . . . 37
4.1 Static estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Random Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Selective Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 How selective sampling works . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 Accuracy and overhead of selective sampling . . . . . . . . . . . . . . 43
4.3.3 Why selective sampling works . . . . . . . . . . . . . . . . . . . . . . 48

viii



Chapter 5 Other Issues in Parallelization . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1 Task partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 How to partition the large tasks . . . . . . . . . . . . . . . . . . . . . 53
5.1.2 Necessity of multi-level task partitioning . . . . . . . . . . . . . . . . 55
5.1.3 Multi-level task partitioning . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Parallel sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Chapter 6 Parallel Frequent Pattern Mining Algorithms . . . . . . . . . . . . . . . . 61
6.1 Parallel frequent itemset mining algorithm . . . . . . . . . . . . . . . . . . . 61
6.2 Parallel sequential-pattern mining algorithm . . . . . . . . . . . . . . . . . . 64
6.3 Parallel closed-sequential-pattern mining algorithm . . . . . . . . . . . . . . 65

Chapter 7 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2 Execution time and speedups . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.2.1 Par-FP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2.2 Par-Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2.3 Par-CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.3 Effectiveness of selective sampling . . . . . . . . . . . . . . . . . . . . . . . . 76
7.3.1 One-level task partitioning . . . . . . . . . . . . . . . . . . . . . . . . 76
7.3.2 Multi-level task partitioning . . . . . . . . . . . . . . . . . . . . . . . 77

7.4 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.4.1 Numbers of items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.4.2 Width of transactions . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.4.3 Numbers of transactions . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.4.4 Support threshold values . . . . . . . . . . . . . . . . . . . . . . . . . 85

Chapter 8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.1 Parallel frequent itemset mining algorithms . . . . . . . . . . . . . . . . . . . 88
8.2 Parallel sequential-pattern mining algorithms . . . . . . . . . . . . . . . . . . 89

Chapter 9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

ix



List of Figures

2.1 Simple example for frequent itemset mining . . . . . . . . . . . . . . . . . . 8
2.2 An example of sequence database . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 An example of subset-lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Example for FP-tree construction . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Example for tree projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 An example of subsequence-lattice . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Example for PrefixSpan algorithm . . . . . . . . . . . . . . . . . . . . . . . . 21
2.8 An example database for BIDE . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Preliminary speedup for dataset pumsb . . . . . . . . . . . . . . . . . . . . . 33
3.2 Example of load imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Mining time distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 FP-tree depth and mining time for dataset connect . . . . . . . . . . . . . . 38
4.2 FP-tree depth and mining time for dataset T40I10D100K . . . . . . . . . . . 39
4.3 Random sampling for frequent itemset mining . . . . . . . . . . . . . . . . . 40
4.4 Random sampling for sequential pattern mining . . . . . . . . . . . . . . . . 41
4.5 Random sampling for closed-sequential pattern mining . . . . . . . . . . . . 41
4.6 Accuracy of selective sampling for frequent itemset mining . . . . . . . . . . 44
4.7 Accuracy of selective sampling for sequential pattern mining . . . . . . . . . 45
4.8 Accuracy of selective sampling for closed-sequential pattern mining . . . . . 45
4.9 Accuracy of selective sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.10 Accuracy v.s. Overhead with various t values . . . . . . . . . . . . . . . . . 49
4.11 Parallel mining time v.s. Overhead with various t values . . . . . . . . . . . 50
4.12 Overhead of selective sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.13 Search space of different items for frequent-itemset mining . . . . . . . . . . 52

5.1 Projection mining time distribution of single items . . . . . . . . . . . . . . . 56
5.2 Search space of different items for frequent-itemset mining . . . . . . . . . . 58

7.1 Dataset characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2 Frequency histogram of items in the datasets for frequent-itemset mining . . 70
7.3 Par-FP speedups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.4 Parallel performance analysis for Par-FP on 64 processors . . . . . . . . . . . 73
7.5 Par-Span speedups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

x



7.6 Parallel performance analysis for Par-Span on 64 processors . . . . . . . . . 75
7.7 Par-CSP speedups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.8 Effectiveness of selective-sampling on Par-FP with 64 processors . . . . . . . 76
7.9 Effectiveness of selective-sampling on Par-Span with 64 processors . . . . . . 77
7.10 Effect of selective sampling on Par-CSP with various numbers of processors . 78
7.11 Effectiveness of multi-level task partitioning . . . . . . . . . . . . . . . . . . 79
7.12 Dataset parameters for tests of various items . . . . . . . . . . . . . . . . . . 80
7.13 Performance of datasets with various number of items . . . . . . . . . . . . . 81
7.14 Parallel performance analysis with datasets of various numbers of items . . . 81
7.15 Dataset parameters for tests of various width of transactions . . . . . . . . . 82
7.16 Performance of datasets with various width of transactions . . . . . . . . . . 82
7.17 Parallel performance analysis with datasets of various width of transactions . 83
7.18 Dataset parameters for tests of various numbers of transactions . . . . . . . 83
7.19 Performance of datasets with various number of transactions . . . . . . . . . 84
7.20 Parallel performance analysis with datasets of various numbers of transactions 84
7.21 Dataset parameters for tests of various support threshold values . . . . . . . 86
7.22 Performance of datasets with various values of minimum support threshold . 86
7.23 Parallel performance analysis with datasets of various support threshold values 87

xi



Chapter 1

Introduction

1.1 Motivation

Data mining is a process to extract interesting and potentially useful patterns from a col-

lection of data [16]. Due to the wide availability of datasets and the need for turning such

data into useful information, data mining has attracted a great deal of attention in recent

years.

One of the canonical tasks in data mining is to discover association rules. Association

rule mining is the foundation of many essential data mining tasks, such as correlation [8],

sequential patterns [5], cluster analysis [7] and associative classification [21].

A typical application of association rule mining is the analysis of sales data [45]. An

association rule identifies the set of items that are most often purchased with another set of

items. For example, an association rule may state that “90% of customers who bought milk

and bread also bought eggs.” This type of information may be used to decide catalog design,

store layout, product placement, target marketing and other marketing strategy problems.

The task of mining association rules can be decomposed into two steps [4]. The first

step is to count the number of occurrences of all the patterns that appear frequently in the

dataset. The second step is to find the implication association rules among the frequent

patterns discovered in the first step. For example, if there are 100 customers who bought

A and B and there are 90 customers who bought A, B and C together, we can obtain the

association rule, “90% of the costomers who buy A and B also buy C at the same time”.

Due to the exponential search space of the first step, most research efforts focus only on the
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first step, referred as frequent pattern mining. The second step is relatively straightforward

and not as computationally intensive as the first step.

Frequent pattern mining actually refers to a series of different data mining problems.

Depending on the different definition of pattern, frequent pattern mining stands for various

mining problems, such as frequent itemset mining, sequential pattern mining, closed pattern

mining, maximal pattern mining and so on. The example discussed above is a typical frequent

itemset mining problem where pattern refers to a set of items.

Frequent pattern mining problems have broad applications such as the analysis of cus-

tomer purchase patterns, web access patterns, natural disasters or alarm sequences, disease

treatments and DNA sequences. In addition, frequent pattern mining also plays an essen-

tial role in many other data mining tasks, such as correlations [8], cluster analysis [7] and

classification [21].

Many algorithms have been introduced for frequent itemset mining, sequential pattern

mining, and other frequent pattern mining problems[3, 22, 18, 17, 23, 6, 31, 12, 39, 40,

43]. Most of them are sequential algorithms and their execution time is constrained by the

computing power, I/O speed and/or memory space of the uni-processor system where their

implementations execute. Sometimes the target machine lacks the power to process large

datasets from the real world in a reasonable time.

Distributed memory systems, such as clusters, have become widely available and afford-

able. Distributed memory systems have high flexibility, scalability, low cost performance

ratio and easy connectivity. Consequently, it is important to investigate parallel data min-

ing algorithms to take advantage of the computation and I/O power of distributed memory

systems, as well as their aggregate memory spaces. This is the objective of this thesis.
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1.2 Challenges

Data mining requires progressive information collection and manipulation. The information

gathering process usually calls for numerous iterations of data comparison and analysis and

requires a lot of computational resources. This makes the information gathering process an

ideal candidate for parallel processing. However, to achieve efficient parallel data mining is

not straightforward.

First, the amount of data communication between computing nodes required to obtain a

global count for each (frequent) pattern can be prohibitively large to the point of eliminating

the benefits gained from parallelization.

Second, it is challenging to evenly distribute the mining work to the processors in order

to attain load balancing. Due to the irregular characteristics of databases, distributing and

balancing the mining tasks between the processors without jeopardizing the global solution

is a difficult problem..

In general, there are several problems that must be addressed in the development of

parallel algorithms for data mining problems.

1. Minimizing synchronization and communication. An ideal parallel data min-

ing algorithm allows all nodes to operate asynchronously, without having to stall fre-

quently for global barriers or communication. To minimize data communication be-

tween nodes, it is better for frequent pattern mining problems to be implemented in

parallel by assigning a different task to each node instead of naively partitioning the

data across the distributed system.

2. Good data decomposition. One of the benefits of parallel frequent pattern mining

is that each node can potentially work on a reduced-size subset of the total database

so that the space needed for each processor can be reduced, which is very important

since some of most efficient sequential algorithms require a large memory space.
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3. Effective load balancing. To maximize the performance of parallel algorithms, each

node needs to have approximately the same amount of work to do so that the work

load tends to be even across the processors. Load balancing is one of the most difficult

problems in parallel frequent data mining.

4. Minimizing I/O. Parallel data mining algorithms tends to reduce I/O overhead if

I/O could also be parallelized. However, to achieve the maximum performance on

parallelized I/O operations, it important to arrange I/O operations carefully to avoid

the competition for I/O bandwidth over a shared system bus.

Since the above aspects are not isolated from each other, it is extremely difficult to achieve

all of these goals on parallel frequent pattern mining. Although a few research results have

been reported on parallelizing frequent pattern mining problems, much requires to be done

in this area.

1.3 Contributions

In this dissertation, we propose a framework for parallel mining frequent patterns. Our

parallelizing framework targets a distributed memory system. It was applied to the paral-

lelization of frequent itemset mining, sequential pattern mining and closed-sequential pattern

mining. Our parallel algorithms are based on the most efficient serial algorithms.

We devised a partitioning strategy to distribute the work to avoid the unnecessary inter-

processor communication. Our task partition is based on the divide-and-conquer property

of frequent pattern mining problem so that the processors can work asynchronously and

independently during mining.

The task partition following the divide-and-conquer property may result in imbalanced

workload because the mining time of the large subtasks may be too large relative to the

overall task mining time. The imbalanced workload greatly restricts the scalability of par-

allelism.
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After discussing how the proposed strategy makes use of the divide-and-conquer strategy

for parallelization, we discuss the load balancing problem inherent in the divide-and-conquer

property and then present a sampling technique, called selective sampling, to address the load

balance problem. Selective sampling strategy allows us to predict the relative time required

to mine the projections and in this way enable us to identify large tasks, decompose them,

and evenly distributed them across processors to achieve load balancing.

We implemented parallel algorithms for the frequent itemset mining problem, sequential

pattern mining problem and closed-sequential-pattern mining problem following the frame-

work proposed. Our implementation used MPI [24] and was evaluated on a Linux cluster

with 64 processors. The performance study used both synthetic and real world datasets.

The experimental results show that our parallel algorithms have good speedups on various

datasets and the speedups are scalable up to 64 processors on our 64-processor system.

To summarize, the main contributions of this thesis are:

• We propose a framework for parallel mining frequent patterns based on the divide-

and-conquer property of the frequent pattern mining problem.

• We describe the load balancing problem arising from the divide-and-conquer strategy

of our parallel algorithms and present a sampling technique that addresses this problem

and greatly enhances the scalability of the parallel algorithms.

• We implemented parallel algorithms for mining frequent itemsets, sequential pat-

terns and closed-sequential patterns following our framework. We achieve fairly good

speedups with various databases.

1.4 Dissertation Organizations

The rest of the dissertation is organized as follows. Chapter 2 describes data mining including

the definition of the problems to be considered in this thesis and serial algorithms to solve
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them. We introduce our framework for parallelization in Chapter 3. In Chapter 4, we attack

the load balance problem and discuss the sampling technique to achieve load balance in our

framework. We will discuss other issues that must be considered to achieve performance

scalability on a large number of processors in Chapter 5. Chapter 6 gives the description

of the parallel frequent pattern mining algorithms in detail by applying the techniques we

proposed. The experimental and performance results are presented in Chapter 7. We review

related work in Chapter 8. Finally, Chapter 9 concludes this dissertation.
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Chapter 2

Background

This chapter presents the formal definitions of three specific frequent pattern mining prob-

lems and introduces some popular serial algorithms for these problems.

2.1 Problem definition

Depending on the definitions of pattern, the term ”‘frequent pattern mining”’ stands for

one of a set of specific problems such as frequent itemset mining, sequential-pattern mining,

closed-sequential pattern mining and so on. Their formal definitions are given in this section.

2.1.1 Frequent itemset mining

The frequent pattern mining problem was first introduced by R. Agrawal, et al. in [4] as

mining association rules between sets of items. Thus we first define frequent itemset mining

problem as follows.

Let I = {a1, a2, ..., am} be a set of items. An itemset X ⊆ I is a subset of items. An

itemset with l items is called an l-itemset.

A transaction T = (tid,X) is a tuple where tid is a transaction identifier and X is an

itemset. A transaction T = (tid,X) is said to contain itemset Y if Y ⊆ X.

A transaction database DBT is a set of transactions. The support of an itemset X in

transaction database DBT , denoted as sup(X,DBT ), is the number of transactions in DBT

containing X, i.e.,

sup(X,DBT ) = |{(tid, Y )|((tid, Y ) ∈ DBT ) ∧ (X ⊆ Y ))}|
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Bread, cookies, coffeeT4

Milk, eggsT3

Milk, juiceT2

Milk, bread, cookies, juiceT1

ItemsTransaction

Bread, cookies, coffeeT4

Milk, eggsT3

Milk, juiceT2

Milk, bread, cookies, juiceT1

ItemsTransaction

Figure 2.1: Simple example for frequent itemset mining

If there is only one transaction database used in the discussion, we will often ignore the

second parameter of the sup operator and represent it as sup(X).

Given a user-specified support threshold min sup, X is called a frequent itemset,

if sup(X) ≥ min sup.

Definition 1 The problem of mining frequent itemsets is to find all the frequent itemsets

(or complete set) in a transaction database DBT with respect to a given support threshold

min sup.

Here is a simple example. Figure 2.1 is a database containing 4 transactions. The

set of items in the database is {milk, bread, cookies, juice, eggs, coffee}. Given a support

threshold as 2, frequent itemset mining problem is to find the following list of itemsets:

{milk}:3, {bread}:2, {cookies}:2, {juice}:2, {milk, juice}:2 and {bread, cookies}:2, where

the number after the column is the support of each itemset. For example, {milk} is a

1-itemset with the support of 3 while {milk, juice} is a 2-itemset with the support of 2.

Association rules can be derived from frequent patterns. An association rule is an im-

plication of the form X =⇒ Y , where X and Y are itemsets1 and X ∩ Y = ∅. The rule

X =⇒ Y has support s in a dataset DBT if sup(X ∪Y ) = s. The rule X =⇒ Y holds in the

transaction DBT with confidence c where c = sup(X∪Y )
sup(X)

.

For example, in the example of Figure 2.1, the confidence of the association rule: milk =⇒

milk, juice is 2
3

and the confidence of the association rule: juice =⇒ milk, juice is 1. This

1To simplify the description, we assume the pattern here refers to a set of items. The pattern can also
be other type of objects, such as a sequence of itemsets.
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implies that 66% of the customer who bought milk also bought juice, while all the costomer

(100%) who bought juice also bought milk.

Given a dataset DBT , a support threshold min sup and a confidence threshold min conf,

the problem of association rule mining is to find the set of all association rules that have

support and confidence no less than some user-specified thresholds.

Association rule mining can be divided into two steps. First, frequent patterns with

respect to support threshold min sup are mined. Second, association rules are generated

with respect to confidence threshold min conf. Since the first step, mining frequent patterns,

cost significantly more time than the second step, most previous studies (e.g., [4]) and this

thesis focus on the frequent pattern mining step.

2.1.2 Sequential-pattern mining

Sequential-pattern mining can be treated as an extension of frequent-itemset mining in

the temporal domain. The problem of sequential-pattern mining arises naturally in many

applications and was first introduced in [5]. The goal of sequential-pattern mining is to

discover a sequence of attributes across time shared among a large number of objects in a

given database.

For example, consider a database of web access, where an object is a web user and an

attribute is a web page. The patterns to be discovered are the order in which the most

frequently accessed sequences of pages at that site. This kind of information can be used to

restructure the website. Similarly, marketing and sales data collected over a period of time

provide sequences that can be analyzed and used for projections and forecasting. Moreover,

many important knowledge discovery tasks in genomics require the analysis of DNA and

protein sequences to discover frequently occurring motifs that correspond to evolutionary

conserved functional units.

The problem of mining sequential patterns can be formally stated as follows:

Let I = {a1, a2, ..., an} be a set of items. An itemset is a subset of items. A sequence is

9



an ordered list of itemsets. A sequence s is denoted by 〈s1s2...sl〉, where sj is an itemset, i.e.,

sj ⊆ I for 1 ≤ j ≤ l. sj is also called an event of the sequence, and denoted as (x1x2...xm),

where xk is an item, i.e., xk ∈ I for 1 ≤ k ≤ m. For brevity, the brackets are omitted if an

event has only one item. That is, event (x) is written as x.

An item can occur at most once in an event of a sequence because an event is a set, but

can occur multiple times in different events of a sequence. The number of items in a sequence

is called the length of the sequence. A sequence with length l is called an l-sequence.

A sequence α = 〈a1, a2...an〉 is called a subsequence of another sequence

β = 〈b1, b2...bm〉, denoted as α ⊑ β or α ⊑ β, if there exist integers 1 ≤ j1 ≤ j2 ≤ ... ≤ jn ≤ m

such that a1 ⊆ bj1 , a2 ⊆ bj2 ,...,an ⊆ bjn
.

A sequence database DBS is a set of tuples 〈sid, s〉, where sid is a sequence id and s is

a sequence. A tuple 〈sid, s〉 is said to contain a sequence α, if α is a subsequence of s, i.e.,

α ⊑ s.

The support of a sequence α in a sequence database DBS, denoted as sup(α), is the

number of tuples in the database containing α, i.e., sup(α) = |{〈sid, s〉|(〈sid, s〉 ∈ S)∧ (α ⊑

s))}|

Given a user-specified value min sup as the support threshold, a sequence α is called a

sequential pattern in a sequence database DBS if α is contained by at least min sup sequences

in the database, i.e., sup(α) ≥ min sup.

Definition 2 Given a sequence database and a min sup threshold, the problem of sequential

pattern mining is to find the set of all sequential patterns in the database.

2.1.3 Closed-sequential pattern mining

Since a long sequence contains a combinatorial number of subsequences, sequential pattern

mining will generate an explosive number of frequent subsequences for long patterns.

For instance, assume the database contains only one long sequence 〈(a1)(a2)...(a100)〉. If

10



the minimum support threshold is 1, it will generate 2100−1 sequential patterns. However, all

of these sequential patterns have the same support value as the longest one 〈(a1)(a2)...(a100)〉.

To list all of these sequential patterns is prohibitively expensive in both time and space.

An interesting solution, called closed-sequential patterns mining, has been proposed to

overcome this difficulty [28, 40]. A closed-sequential pattern is a sequential pattern that has

no super-sequence with the same occurrence frequency.

The set of closed-sequential pattern is defined as follows.

Assume FS is the set of all sequential patterns and CS is the set of closed-sequential

patterns. Then CS ={α|α ∈ FS and ∄β ∈ FS such that α ⊑ β and sup(α) = sup(β)}. The

problem of closed-sequential pattern mining is to find CS with support value no less than

the user-specified minimum support threshold.

Figure 2.2 gives an example of sequence database. The database has 3 sequences and

5 distinct items. If the minimum support threshold is set as 2, the CS set includes 4

subsequences: 〈(ae)c〉:2, 〈(ae)d〉:2, 〈da〉:3, 〈dab〉:2, while the corresponding FS set has 16

subsequences: 〈a〉:3, 〈d〉:3, 〈b〉:2, 〈c〉:2, 〈e〉:2, 〈(ae)〉:2, 〈ac〉:2, 〈ad〉:2, 〈ec〉:2, 〈ed〉:2, 〈ab〉:2,

〈db〉:2, 〈dab〉:2, 〈(ae)d〉:2, 〈(ae)c〉:2, 〈da〉:3. CS contains exactly the same information as FS,

but includes much fewer number of subsequences.

<d(abe)(bcd)>30

<dab>20

<(ae)cda>10

SequenceSequence_id

<d(abe)(bcd)>30

<dab>20

<(ae)cda>10

SequenceSequence_id

Figure 2.2: An example of sequence database

Mining closed-sequential pattern has been proved to be as powerful a solution to the

mining of sequential patterns as the mining the complete set of sequential patterns [14, 28,

40]. Using the set of closed-sequential-patterns, a reduced set of association rules can be

generated directly. Since there can be thousands of association rules that hold in a database,
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reducing the number of rules produced without information loss is an important improvement

for the understandability of the result.

2.2 Serial algorithms for frequent pattern mining

problems

In this section, we describe some popular serial algorithms for the frequent pattern mining

problems, including frequent itemset mining, sequential pattern mining and closed-sequential

pattern mining, all of which were defined in the previous section.

2.2.1 Serial algorithms for frequent itemset mining

Given d items in the dataset, there are 2d possible candidate itemsets. A naive approach is to

match each transaction in the dataset against every candidate itemset, count the number of

occurrence for each itemset and then identify those appearing frequently enough. However,

since the search space is exponential to the number of items occurring in the dataset and

the dataset could be massive, containing millions of transactions, such a brute-force method

is too computationally expensive and may not complete within a reasonable period of time.

The search space of all itemsets can be represented by a subset-lattice, with the empty

itemset at the top and the set containing all items at the bottom. For instance, if the dataset

has 5 items: A,B,C,D and E. The search space for mining the frequent itemset makes up

the subset lattice as Figure 2.3 shown.

Notice that the support value of an itemset is greater than or equal to the support values

of its supersets. This means that the support values of the itemsets are monotonically

decreasing when moving from the top of the lattice to the bottom. Therefore, if an itemset

is infrequent, all of its supersets must be infrequent and can be pruned from the search space.

There are basically two types of algorithms to mine frequent itemsets, breadth-first search
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AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCD
E

Figure 2.3: An example of subset-lattice

13



algorithms and depth-first search algorithms. The breadth-first algorithms scan the database

testing all candidate itemsets level by level for frequency from the top of the lattice, while

the depth-first algorithms search the lattice from a singleton itemset i and larger candidate

sets are generated by adding one item at a time.

Breadth-first search algorithm

The best-known breadth-first algorithm is called Apriori algorithm [4]. The Apriori algo-

rithm works in the following way:

1. A first scan of the dataset finds all of the frequent-1 itemsets.

2. The k-th (k > 1) scan uses the seed set of length-(k−1) frequent itemsets found in the

previous pass to generate new potential length-k itemsets, called candidate itemsets.

A candidate frequent itemset is generate only if all of its subsets are frequent.

3. The k-th scan of the dataset finds the support value of every length k candidate

itemsets. The candidates which pass the minimum support threshold are identified as

frequent itemsets and become the seed set for the next pass.

4. The computation terminates when there is no frequent itemset found or there is no

candidate itemset that can be generated in any pass.

Apriori algorithm was the first non-trivial algorithm developed for mining frequent item-

sets. Later many variants [27, 35, 26, 25, 9] were proposed to optimize certain steps within

the algorithm. However, the Apriori-like algorithms may bear the following costs, indepen-

dent of their implementation techniques:

• The number of candidates to be generated may be huge, especially when the length of

the frequent itemset is long. For example, to generate one frequent itemset

{a1, a2, ..., a100}, the number of candidates that has to be generated will be 2100 − 1 ≈

1030.
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• Each scan of the dataset examines the entire dataset against the whole set of candi-

dates, which is quite costly when the dataset is large and the number of candidates is

numerous.

So the large number of candidates and the multi-scans of the datasets usually limit the

performance of the breadth-first search algorithms.

Depth-first search algorithm

The depth-first search algorithms usually perform better than the breadth-first algorithms,

especially when there exist long patterns or using low minimum support thresholds. Among

the depth-first algorithms, FP-growth algorithm [18] is one of the fastest and best-known.

The FP-growth algorithm uses a tree structure, called FP-tree, to store the information

about frequent itemsets. Every path from the root to a leaf node of the FP-tree represents a

transaction in the database2. The items are organized in the tree in descending order of their

frequencies. The items with higher frequency are located closer to the root. The FP-tree

has a header table which contains all frequent items in the database (and their occurrence

counts), represented as Header(T). An entry in the header table is the starting point of a

list that links all the nodes in the FP-tree referring to an item.

Here is a simple example of the FP-tree representation. Let the transaction database

DBT be as shown in Figure 2.4.(a) and the minimum support threshold be 3. The first scan

of DBT derives a list of frequent single items with their frequency, 〈(f : 4), (c : 4), (a : 3), (b :

3), (m : 3), (p : 3)〉. These items are ordered in frequency descending order. This ordering is

important since the items will appear in the branches of the FP-tree following this order.

The second DB scan constructs the FP-tree for DBT . For each transaction, its frequent

items are first sorted in descending order of frequency (Figure 2.4.(b)) and then inserted as

a branch into the tree. Unless the tree is empty, the insertion is conducted by coalescing

2Some transactions are corresponding to a path from the root to a non-leaf node. See the example in
Figure 2.4 for details.
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TID Items bought
100 {f, a, c, d, g, i, m, p }
200 {a, b, c, f, l, m, o }
300 {b, f, h, j, o }
400 {b, c, k, s, p }
500 {a, f, c, e, l, p, m, n }

(a)

Ordered Frequent Items
{f, c, a, m, p }
{f, c, a, b, m }
{f, b }
{c, b, p }
{f, c, a, m, p }

(b)

root

Initial

root

f:1

c:1

a:1

m:1

p:1

TID=100

inserted

root

f:2

c:2

a:2

m:1

p:1

b:1

m:1

TID=200

inserted

root

f:3

c:2

a:2

m:1

p:1

b:1

m:1

b:1

TID=300

inserted

root

f:3

c:2

a:2

m:1

p:1

b:1

m:1

b:1

c:1

b:1

p:1

TID=400

inserted

root

f:4

c:3

a:3

m:2

p:2

b:1

m:1

b:1

c:1

b:1

p:1

TID=500

inserted

Item  frequency 
f 4
c 4
a 3
b 3
m 3
p 3

root

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1
(d)

Header Table

(c)

Figure 2.4: Example for FP-tree construction
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the shared (existing) prefix path and updating the counters of the nodes on the path (Fig-

ure 2.4.(c)). In addition, whenever there is a new node created, the node is added to the

appropriate linked list of its item maintained by the header table. The complete FP-tree for

the example database is as shown in Figure 2.4.(d).

After the FP-tree is built, it is mined in a divide-and-conquer way.

Suppose {X1, X2, ..., Xn} is a set of itemsets and i is an item. We define an operator ⊕

as:

i ⊕ {X1, X2, ..., Xn} ≡ {{i} ∪ X1, {i} ∪ X2, ..., {i} ∪ Xn}.

The mining of the FP-tree T following the FP-growth algorithm can be formalized as

function F() below where T is the FP-tree for the whole database and P(i,T) represents the

projected database of i (i appears in the header table of T, that is, i ∈ Header(T )).

function F(T)

begin

if (T is a chain) return set of all combinations of elements in T;

else return
⋃

i∈Header(T )((i ⊕ F (P (i, T ))) ∪ {i});

end

The projected database P (i, T ) consists of the transactions in the database containing i,

with i and the items less frequent than i deleted. Given an item i in the header table, by

following the linked list for i, all nodes representing i in the tree are visited. Then tracing

the branches from i’s nodes back to the root will form i’s projected database. The items

appearing in the projected database are sorted by frequency again and then the transactions

in the projected database are built in an FP-tree structure with the infrequent items removed.

The same support threshold is used when building the FP-tree for the projected database.

Figure 2.5 illustrates the projected database and the FP-tree for the projection of item

m in the example in Figure 2.4. Item b does not appear in the FP-tree for m’s projection

because it is not frequent (b’s support value with the projection is less than 3) in m’s projected
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root

f:3

c:3

a:3

fca: 2

fcab: 1

Projected database of  m FP-tree for m’s 
projected database

Figure 2.5: Example for tree projection

database.

After the FP-tree is built, FP-growth algorithm recursively mines the FP-tree until it

becomes a chain, it returns the set of all the combinations of the elements of the chain.

Notice that a FP-tree with a single item is a chain too.

In general, the worst-case time complexity of FP-growth algorithm is O(2N), where

N is the number of items in the dataset, since it potentially needs to check all possible

combinations of N items. In the process of recursive mining, the callee must store all the

FP-tree structures of the callers in memory as well as build the FP-tree of the current level.

Because the number of nodes in an FP-tree is exponential to the depth of the FP-tree in the

worst case, the space complexity of FP-growth is at least exponential to the depth of the

FP-tree.

2.2.2 Serial algorithms for sequential-pattern mining

Sequential-pattern mining problem is more complicated than frequent itemset mining prob-

lem since the items in a sequential-pattern are ordered and a single item may appear multiple

times (in different events) in a single sequential-pattern.

On the other hand, similar to frequent itemset mining, the search space of sequential-
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pattern mining can be represented by a subsequence-lattice, with the empty sequence at the

top and the length of the sequences increase by one each level from top down. The depth of

the subsequence-lattice is decided by the maximum length of all sequences in the dataset.

For instance, if the dataset has 3 items, which are a, b, and c. The search space for

mining the sequential patterns makes up the subsequence lattice shown in Figure 2.6. When

moving from the top of the lattice to the bottom, the lengths of the sequences increase by

one at each level. The sequences at level L are subsequences of the sequences at level L + 1

of the lattice. The items within an event appear in a fixed order. We use alphabetical order

in Figure 2.6.

<>

<(a)> <(b)> <(c)>

<(a)(a)> <(a)(c)> <(ab)><(a)(b)> <(ac)> <(b)(a)> <(b)(b)> <(b)(c)> <(bc)> <(c)(a)> <(c)(b)> <(c)(c)>

<(a)(a)(a)> <(a)(a)(b)> <(a)(a)(c)> <(a)(b)(a)> …...

…...…... …...

…...

Figure 2.6: An example of subsequence-lattice

The support values of the sequences are still monotonically decreasing when moving top

down within the lattice. Thus if a sequence is infrequent, all of its super sequences must be

infrequent and can be pruned from the search space. Therefore, depending on the strategy

to traverse the search space, the solutions for sequential-pattern mining are also classified

into two categories: breadth-first and depth-first.

An algorithm called GSP [36] is the representative of breadth-first search algorithm to
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mine sequential patterns. The basic structure of the GSP algorithm is very similar to

the Apriori algorithm, except that GSP deals with sequences rather than itemsets. The

differences between Apriori and GSP are in the details of candidate generation and counting

the numbers of occurrence.

GSP adopts a multiple-pass, candidate generation-and-test approach. The first scan finds

all the single item frequent sequences. Each subsequent pass starts with the set of sequential-

patterns found in the previous pass and generates new potential candidate sequences based

on the principle that any super-pattern of an infrequent pattern cannot be frequent. The

algorithm terminates when no new sequential pattern is found in a pass, or when no candidate

sequence can be generated.

PrefixSpan algorithm [31] is a depth-first search algorithm for sequential-pattern mining,

with a philosophy similar to that of the FP-growth algorithm for frequent itemset mining.

PrefixSpan has proven to be one of the most efficient algorithms for sequential pattern

mining.

PrefixSpan recursively projects a sequence database into a set of projected databases

and grows sequential patterns in each projected database by exploring only locally frequent

fragments.

An item i’s projected database of DB is a set of subsequences, which is made up of the

sequences in DB containing i with all items and itemsets (events) before the 1st occurrence

of i deleted. The infrequent items are also deleted during the projection. If there are other

items left in the event containing the 1st occurrence of an item i, then i is replaced with “

”, otherwise the event is deleted.

Here is an example. Suppose we want to mine sequential patterns in a sequence database

DBS, shown in Figure 2.7.(a). If an event contains only one item, the bracket () is omitted.

The support threshold is set to 2. First, the algorithm scans DBS once to find the frequent

items and their supports: {〈a〉:4,〈b〉:4,〈c〉:4,〈d〉:3,〈e〉:3,〈f〉:3}. Then the projected databases

for the six frequent items are shown in Figure 2.7(b).
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<eg(af)cbc>40

<(ef)(ab)(df)cb>30

<(ad)c(bc)(ae)>20

<a(abc)(ac)d(cf)>10

SequenceSequence_id

<eg(af)cbc>40

<(ef)(ab)(df)cb>30

<(ad)c(bc)(ae)>20

<a(abc)(ac)d(cf)>10

SequenceSequence_id

<(ab)(df)cb>, <cbc><f>

<(_f)(ab)(df)cb>, <(af)cbc><e>

<(cf)>, <c(bc)(ae)>, <(_f)cb><d>

<(ac)d(cf)>, <(bc)(ae)>, <b>, <bc><c>

<(_c)(ac)d(cf)>, <(_c)(ae)>, <(df)cb>, <c><b>

<(abc)(ac)d(cf)>, <(_d)c(bc)(ae)>, <(_b)(df)cb>, <(_f)cbc><a>

Projected (postfix) databasePrefix

<(ab)(df)cb>, <cbc><f>

<(_f)(ab)(df)cb>, <(af)cbc><e>

<(cf)>, <c(bc)(ae)>, <(_f)cb><d>

<(ac)d(cf)>, <(bc)(ae)>, <b>, <bc><c>

<(_c)(ac)d(cf)>, <(_c)(ae)>, <(df)cb>, <c><b>

<(abc)(ac)d(cf)>, <(_d)c(bc)(ae)>, <(_b)(df)cb>, <(_f)cbc><a>

Projected (postfix) databasePrefix

(a)

(b)

Figure 2.7: Example for PrefixSpan algorithm
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There are two ways to grow a sequential pattern: intra-event expansion and inter-event

expansion. The former refers to expanding the pattern by adding a new item to the last

event of the pattern, while the latter means adding a separate event containing a single new

item at the tail of the pattern. In order to distinguish the two types of expansion of an item

i, we denote i for inter-event expansion and i for intra-event expansion.

Suppose (E) is an event. We define an operator ⊲⊳:

• (E) ⊲⊳ i represents appending i as an event (i) following (E). i.e. (E) ⊲⊳ i = (E)i

• (E) ⊲⊳ i represents adding i into event (E). i.e. (E) ⊲⊳ i = (Ei)

Suppose S (S = S ′(E)) is a sequence where (E) is last event in S and S ′ is the prefix of

(E). Then, S ⊲⊳ i = S ′(E)(i) and S ⊲⊳ i = S ′(Ei)

For example, 〈(ac)b(abd)〉 ⊲⊳ f = 〈(ac)b(abd)f〉 and 〈(ac)b(abd)〉 ⊲⊳ f = 〈(ac)b(abdf)〉.

Here 〈(ac)b(abd)f〉 and 〈(ac)b(abdf)〉 are two different patterns obtained by inter-event ex-

pansion and intra-event expansion respectively.

We denote P (i,DBS, Q) as i’s projected dataset of a dataset DBS where Q is the prefix

pattern accumulated. Since no prefix pattern has been accumulated at the beginning, Q

is NULL when DBS is the whole dataset (not a projected dataset derived from the whole

dataset).

When the accumulated prefix pattern Q is not NULL, we need to conduct both the intra-

event expansion and inter-event expansion of Q when doing projections. Suppose DBP is

a dataset, j is an item and Qj is the prefix pattern accumulated before making projections

for j on DBP . Let X be the last event of Qj. For item j, we need to make projections for j

and j to explore both intra-event expansion and inter-event expansion of Qj.

j’s projected dataset of DBP , denoted as P (j,DBP , Qj), is a set of subsequences, which

consists of the subsequences of DBP , where the prefix before the 1st occurrence of j in each

sequence is deleted.

j’s projection P ( j,DBP , Qj), is a set of subsequences, which consists of:
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• the subsequences of DBP where the 1st occurrence of j in each sequence is deleted.

• the subsequences of DBP where the prefix before the 1st occurrence of X ⊲⊳ j in each

sequence is deleted.

For example, in Figure 2.7, a’s projected dataset of the whole dataset is:

DBa = P (a,DBS, NULL) = {〈(abc)(ac)d(cf)〉, 〈( d)c(bc)(ae)〉, 〈( b)(df)cb〉, 〈( f)cbc〉}.

Item b’s projections within DBa are: P (b,DBa, (a))= {〈( c)(ac)d(cf)〉, 〈( c)(ae)〉, 〈〉, 〈c〉}

and P ( b,DBa, (a))= {〈( c)(ac)d(cf)〉, 〈(df)cb〉}.

Suppose S is a sequence and i is an item. We define an operator ⋄: i ⋄ S represents the

concatenation of i to S with i as prefix3. Suppose (H) is the first event of S. We define i ⋄S

as follows:

• merge i into (H) as (iH), if (H) starts with “ ”.

• add i as a new event before (H), if (H) does not starts with “ ”.

Let {X1, X2, ..., Xn} be a set of sequences, we have i ⋄ {X1, X2, ..., Xn} ≡ {i ⋄ X1, i ⋄

X2, ..., i ⋄ Xn}.

In PrefixSpan, the sequential patterns are mined by the concatenation of item i with the

new patterns generated from mining i’s projected datasets. The mining of a dataset DBS

can be formalized as function F() below 4 :

function F(DBS, Q)

begin

if (DBS is a set of empty sets) return NULL;

else return
⋃

i∈freq(DBS)((i ⋄ F (P (i,DBS, Q), Q ⊲⊳ i)) ∪ {i});

end

3i can be both i and i. Here we use i for illustration. Replace i with i for the case of i.
4freq(DBS) represents the frequent items in DBS . Q is the prefix pattern accumulated. If and only if

DBS is the whole dataset, Q is NULL.
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In the implementation, the projected database can be represented in two forms: physical-

projection and pseudo-projection [31]. The physical projection physically copies the suffixes

of the sequences of the projection. The pseudo-projection uses pointers to record where the

suffixes start in the sequences. We use pseudo-projection in our implementation.

The worst-case time complexity of PrefixSpan is O((2N)L), where N is the number of

items in the dataset and L is the maximum length of all transactions. The constant 2 is

introduced since each item can be added into a transaction through either intra-event or

inter-event expansion. If using physical projection, the space complexity of PrefixSpan is

O((2N)L), while if pseudo-projection is used, the space complexity can be reduced to the

order of the size of the dataset.

2.2.3 Serial algorithms for closed-sequential-pattern mining

The set of closed-sequential-patterns is a subset of the set of all the sequential patterns, and

the problem of mining the close-sequential-patterns is more complicated than mining all the

sequential patterns.

There are two approaches for mining closed-sequential-patterns:

1. Find a candidate set of closed-sequential-pattern and for each newly discovered pattern,

check the previous found ones to see whether this new one is closed w.r.t. the discovered

patterns. The serial algorithm using this approach is CloSpan [40].

2. Greedily find the final set of closed-sequential-pattern. The algorithm for this approach

is BIDE [37].

CloSpan follows a candidate maintenance-and-test paradigm over the set of already mined

closed sequential pattern candidates. It uses this set to prune the search space and check if

a newly found sequential-pattern is likely to be closed.

Since a large number of closed-sequential-patterns (or just candidates) would occupy a

lot of memory storage and create a large space for searching new patterns, using CloSpan for
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mining long sequences or mining with very low support thresholds tends to be prohibitively

expensive. Performance studies [37] have shown that BIDE is more efficient than CloSpan.

BIDE algorithm is actually an extension of the PrefixSpan algorithm. For each sequential

pattern discovered, it check whether it is closed with a closure checking scheme against the

dataset. It does not need to maintain the candidate pattern set as CloSpan does.

The description of BIDE algorithm is as following:

First, a scan of DBS derives a list of the frequent 1-sequences. Then a second scan

constructs the projected databases for the frequent 1-sequences. A projected database (or

called projection) of a sequence i within DBS, denoted as P (i,DBS), is a set of subsequences,

which is made up of the sequences in DBS containing i with the prefix before the 1st

occurrence of i deleted.

The mining of DBS with BIDE can be defined as function F() below. freq(DBS) rep-

resents the frequent items in DBS. Function Check(S) returns the sequences in S which

can pass the BI-Directional Extension closure checking (closed patterns). ⋄ is the operator

defined in Subsection2.2.2. The result of frequent closed sequential patterns is in set C.

function F(DBS, Q)

begin

if (DBS is a set of empty sets) return NULL;

else {

S =
⋃

i∈freq(DBS)((i ⋄ F (P (i,DBS, Q), Q ⊲⊳ i)) ∪ {i});

C = C ∪ Check(S);

return(S)

}

end

BIDE algorithm mines only sequences with single-item events. That is, BIDE only

considers inter-event expansion when expanding patterns.
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Here is a simple example for illustration. Figure 2.8 is a sequence dataset for BIDE. A,

B and C are single-item event5. With the support threshold as 2, the projected database

for sequence AB is {C,CB,C,BCA}.

C A B C30

A B B C A40

A B C B20

C A A B C10

SequenceSequence_id

C A B C30

A B B C A40

A B C B20

C A A B C10

SequenceSequence_id

Figure 2.8: An example database for BIDE

After the projected databases are built, BIDE searches each projected database and

enumerates the sequential patterns in the same way as PrefixSpan[29].

Upon getting a sequential pattern, BIDE applies a closure checking scheme, called BI-

Directional Extension, to check whether the frequent sequential pattern is closed (See [37] for

details). From the definition of the closed sequential pattern, we know that if an n-sequence,

S = e1e2...en, is non-closed, there must exist at least one event, e′, which can be used to

extend sequence S to get a new sequence, S ′, which has the same support. The sequence S

can be extended in three ways:

1. S ′ = e1e2...ene′ and sup(S ′) = sup(S);

2. ∃i(1 ≤ i < n), S ′ = e1e2...eie
′ei+1...en and sup(S ′) = sup(S);

3. S ′ = e′e1e2...en and sup(S ′) = sup(S);

The BI-Directional Extension checking scheme is to check whether any of the above

three cases exists. If there is no such e′ exists, then S must be a closed sequential pattern;

otherwise S must be non-closed.

5We omit the () for simplicity, because every event only has one item for BIDE algorithm.
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For example, consider the frequent subsequence AC : 4 in the database in Figure 2.8.

Notice that item B appears in each of the sequence which contains AC and all appears as

ABC. So AC : 4 is not closed. In contrast, study the subsequence ABC : 4, we cannot find

any extension item for it, thus ABC : 4 is a frequent closed sequential pattern.

Similar to PrefixSpan, both the worst-case time and space complexities are O(NL) where

N is the number of items in the dataset and L is the maximum length of all transactions.

Since only inter-event expansion is allowed in BIDE, there is no constant 2 in the expression.

In addition, if pseudo-projection is used as in our implementation, the space complexity can

be reduced to the order of the size of the dataset.
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Chapter 3

Parallelization Framework

Several efficient frequent pattern mining algorithms have been presented in the previous

chapter. In this chapter, a generalized framework is introduced to provide parallel solu-

tions for those frequent pattern mining problems. The parallelization framework targets

distributed memory system.

3.1 Analysis of the serial algorithms

We build our parallelization framework on top of the efficient serial algorithms. As described

in Section 2.2, if we ignore the difference in the format of the patterns to be discovered, the

serial solutions for various frequent pattern mining problems belong to two categories:

One category mines the patterns level-wise, candidate generation-and-test approach. Ex-

ample of this approach are the Apriori algorithm for frequent itemset mining and the GSP

algorithm for sequential-pattern mining. They mine the patterns by conducting multiple

database scans. Each scan identifies the frequent patterns with a certain length from the set

of candidate patterns and then generates the candidates for the next pass from the frequent

patterns discovered in the current pass.

The other category, such as the FP-growth, PrefixSpan and BIDE algorithms, solves the

problem in a divide-and-conquer manner. In frequent itemset mining, the mining of the

FP-tree for the whole database is divided into the mining of a series projected FP-trees

corresponding to the frequent items in the database. Similarly, in sequential-pattern mining

and closed-sequential pattern mining, the whole database mining is divided into the mining
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of projections of the frequent subsequences.

We considered these two categories of algorithms in terms of parallelizability and per-

formance and decided to choose the algorithms from the second category for parallelization.

There are two reasons for this decision:

1. According to our experiments, the performance of the first category is almost always

worse than the second. The performance difference can be more than an order of

magnitude in some cases. Many other studies [11, 30, 31] have also shown that usually

the algorithms in the first category are not as efficient as those in the second category.

The algorithms in the first category suffer from the cost due to the huge number

of candidates patterns and the numerous scans of the dataset, especially when the

minimum support threshold is low or the length of the patterns is long.

2. From the point of view for parallelization, the algorithms in the second category is

more convenient to be parallelized than those in the first category. The candidate

generation-and-test approach requires a global view of the frequent patterns discov-

ered at each pass to generate the candidates for the next pass. This may introduce

barriers and communication among the processors for parallelized algorithms. On

the other hand, as we will see, the divide-and-conquer property of the algorithms in

the second category can make the task partition more convenient without introducing

much communication.

Hence, we use FP-growth, PrefixSpan and BIDE algorithm as the base sequential al-

gorithms for the parallelization of mining frequent itemset, sequential-pattern and closed-

sequential-pattern respectively.

29



3.2 Generalization of the serial algorithms

Although FP-growth, PrefixSpan and BIDE are aiming at different problems, they all solve

the problems in a divide-and-conquer manner. Basically, the process of these algorithms can

be generalized into three steps:

• Step 1: Identify the frequent items.

• Step 2: Project the whole database into sub-databases in related to each of the frequent

items.

• Step 3: Mine the projected databases respectively.

In the third step, the projected databases are independent from each other. In FP-

growth, because the frequent items are ordered in descending order of their frequency, the

projected database of an item, i, only contains the items that are more frequent than i. For

example, in Figure 2.4, the conditional database of p may only contains f, c, a, b or m, while

the conditional database of m may contains f, c, a or b, but not p. In Prefix-Span and BIDE,

because the items in the sequence are in the order of their appearance in the sequence, only

the suffix of the first occurrence of an item i will be considered in i’s projected database.

Consequently, the mining of the projected databases are independent jobs so that they

can be distributed to different processors to be processed asynchronously.

3.3 Framework for parallelization

Corresponding to the three steps of the base sequential algorithms, we propose the following

framework for parallel mining frequent patterns. Our target platform is a distributed memory

system so the dataset is distributed across the processors and each process has 1/N of the

dataset locally where N is the number of nodes in the system.
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1. Count the occurrence of items (or 1-sequences) in parallel and perform a reduction to

get the global counts. Select items, whose number of occurrences is no less than the

support threshold.

2. Partition the frequent items (or 1-sequences) identified in step 1 and assign each subset

to a different processor. Each processor builds the projection of the databases for the

assigned items (or 1-sequences).

3. Each processor mines its projected database asynchronously in a pattern-growth man-

ner without inter-processor communication.

In the first step, each processor counts the occurrence of items (or 1-sequences) in its

local portion of the dataset in parallel and performs a reduction to get the global counts.

Then the items (or 1-sequences) with numbers of occurrence above the threshold will be

identified by each processor.

In the second step, we partition the frequent items (or 1-sequences) and assign them to

the processors statically. Each processor then builds the projection for the assigned items.

Since the projection is based on the whole dataset instead of just the local portion of the

dataset, in our implementation, each processor broadcasts its local datasets to all the other

processors. We found that it is more efficient to carry out the broadcast using a virtual

ring structure where processor I only receives the package from Processor ((I − 1) mod N)

and only sends the package to Processor ((I + 1) mod N). Thus, assume there are total

N processors, the all-to-all broadcast is carried out in (N − 1) send-receive steps. The

communication with our implementation collectively consume only no more than 1% of the

mining time. An alternative implementation might be that each processor scans the local

portion of the dataset and selectively sends the records required by each remote processor

respectively.

Because the projected databases are independent, there is no inter-processor communi-

cation involved in step 3. Each processor just mines its own projected database using the

31



original sequential algorithms (FP-growth, PrefixSpan or BIDE).

3.4 Challenges to the parallel framework

The framework presented in the previous section is a straightforward parallelization of the

base sequential algorithms. The parallelization makes use of the divide-and-conquer property

and partitions the task into independent subtasks so that the inter-processor communication

is minimized.

However, minimizing the communication is not enough to obtain good parallel perfor-

mance, another issue has to be addressed, which is load balancing.

We implemented a parallel frequent itemset mining algorithm and a parallel sequential-

pattern mining algorithm with the framework proposed in Section 3.3. In the implementa-

tions, we use round-robin strategy to schedule the frequent items (or 1-sequences) ordered

by frequency to the processors. We tested the performance of these two algorithms on a

distributed memory system with up to 64 processors. The performance obtained was not

satisfactory. For almost all the datasets we tested, the speedups go flat when the number of

processors is above 16.

As an illustration, Figure 3.1 shows the speedup we obtained for one dataset pumsb to

mine frequent itemset. The description of the datasets are in Figure 7.1(a). The shapes of

the speedup curves are similar for the other datasets we tested.

Our study shows that it is the imbalanced load that mainly limits the scalability of the

parallelization. The inherent task partition of the divide-and-conquer method may result in

extremely imbalanced workload among the processors. In fact, the cost of processing the

projected databases may vary greatly. From our experiments, the mining time of the largest

task may be tens, or even hundreds, of times longer than the average mining time of all the

other tasks.

Figure 3.2 shows the mining time distribution of the projected databases
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Figure 3.1: Preliminary speedup for dataset pumsb

for two databases. Figure 3.2(a) is the transactional dataset pumsb (dataset characteristics

in Figure 7.1(a)) for frequent itemset mining. Figure 3.2(b) is for the sequence dataset

C10N0.1T8S8I8 (dataset characteristics in Figure 7.1(b)) for sequential pattern mining. As

it is shown in the graphs, the largest subtasks take around 14-20% of the overall mining

time. Figure 3.3 shows the average and maximum mining time of the projected databases

for all the datasets we tested1.

Since the granularity of the subtasks is not fine enough, we need to break the large

subtasks into smaller ones. Simply partitioning all the subtasks into smaller ones will pro-

duce too many subtasks and introduce much overhead for the mining process. According

to our experiments, for some datasets, the overhead introduced by such unnecessary task

partitioning consumed all performance benefit from task partitioning and even resulted in

10-20% slow down. Therefore, we have to identify those projections which need to be further

partitioned into smaller ones.

1The detailed characteristics of the datasets is in Figure 7.1 and the setting-ups of our experiments will
be discussed in Chapter 7
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Figure 3.2: Example of load imbalance
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Figure 3.3: Mining time distributions
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An alternative solution to static task partitioning is to use dynamic work stealing strat-

egy. When a processor finishes its assignment, it will ask for sharing some work from the

busy processors. Theoretically work stealing can dynamically balance the workload among

processors. However, for parallel frequent-pattern mining, the additional communication

costs and the sequential computation introduced by work stealing may consume the benefit

from the balanced workload, since in order to allow an idle processor to join the busy ones, a

busy processor must build a projection for the requesting processor and send the projection

to it. In addition, it is usually more difficult to implement a work stealing strategy than a

static method. Based on these considerations, we focused on using static task partitioning

strategy to address the load balancing problem.
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Chapter 4

Addressing The Load Balancing

Problem

In order to achieve scalability for the parallelization framework we proposed, load balancing

is an important issue that must be considered. As discussed in Section 3.4, it is of crucial

importance to estimate relative mining times of projections. Such estimation needs to be

conducted before the actual mining.

4.1 Static estimation

We first attempted to build a model to estimate the mining time of the projections from

the static properties of the dataset. We studied the characteristics of the dataset, such as

the number of items, the number of the transactions and the width of the transactions, to

build the estimation model. It was not possible to find an accurate estimation formula that

worked for all the datasets in our benchmarks.

We also examined the properties of the projections, such as the depth and the density of

the FP-tree, in order to find correlations between these characteristics and the mining time.

However, no correlation was found.

Figure 4.1 and Figure 4.2 shows the relation between projected FP-tree depth and the

mining time of the projections with the dataset connect and T40I10D100K respectively

(dataset characteristics in Figure 7.1(a)). The mining time curves use the left vertical scale

while the FP-tree depth lines use the right vertical scale. As the graphs depict, the two

curves of tree depth and the mining time do not match at all. It is extremely difficult, if not
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Figure 4.1: FP-tree depth and mining time for dataset connect

impossible, to predict correctly which projections are large1 from the FP-tree depth.

4.2 Random Sampling

An alternative to using static formulas is to use run-time sampling to estimate the mining

time dynamically. By mining a small sample of the original dataset and timing the mining

time of the projected databases of the sample we may be able to give an estimation of which

projected dataset takes longer to be mined. The support threshold keeps the same % value

when mining the sample.

Accuracy and overhead are two important characteristics which we use to evaluate the

sampling techniques.

Random sampling is a fairly straightforward heuristic. Random sampling is performed

by randomly collecting a fraction of transactions or sequences in the dataset as a sample

1We call those items, whose projected databases need a long time to be mined, large items. Those, with
short-mining-time projected databases, are called small items.
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Figure 4.2: FP-tree depth and mining time for dataset T40I10D100K

and mining it with the support threshold using the same percentage value2.

We did experiments with random sampling for frequent itemset mining, sequential-

pattern mining and closed-sequential-pattern mining. We compared the mining time of

each item’s projected database in the sample with the corresponding mining time in the

original dataset. Unfortunately, we found that the mining time curves of random sampling

do not match well with the curves of the whole datasets. Consequently, random sampling is

not able to provide us a good estimation of the mining time.

Figure 4.3 shows one of our experimental results on random sampling with the dataset

pumsb (dataset characteristics in Figure 7.1(a)) for frequent itemset mining. The curves

show the times for mining the projected database of each frequent item both for the whole

dataset and for a 1% random sample of the dataset. The curve for the whole dataset uses

the left vertical scale while the one for the sample uses the right vertical scale. Clearly,

2Note that although the relative value of support threshold keeps the same percentage, the absolute value
of support threshold is reduced by the same fraction as the sample. If the absolute value of the support
threshold is less than 1 when mining the random sample, we use 1 instead.
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Figure 4.3: Random sampling for frequent itemset mining

there is no correlation between the mining time of a random sample and the time for the

whole dataset. Therefore, through random sampling we are not able to determine which

projections are the most time-consuming. In our experiments, only when we increased the

sample size to about 30% did we obtain a relatively accurate estimation. But then the

overhead of sampling exceeds more than 50% of the original mining time.

Things are similar with sequential pattern mining and closed-sequential pattern mining.

Figure 4.4 is the experimental results of random sampling with the dataset C10N0.1T8S8I8

(dataset characteristics in Figure 7.1(b))for sequential pattern mining. And Figure 4.5 is

the results of random sampling for closed-sequential-pattern mining with dataset C200S25N9

(dataset characteristics in Figure 7.1(c)). Clearly, there is no correlation between curves of

the random sampling and the curves of the whole datasets.

The main reason why random sampling cannot provide an accurate estimation of the

mining time is that the shape of the FP-tree of a random sample may be different from the
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Figure 4.4: Random sampling for sequential pattern mining
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Figure 4.5: Random sampling for closed-sequential pattern mining
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shape of the FP-tree of the whole dataset. The frequency order of the items may be changed

when sampling since the dataset can be skewed and the items may not be evenly distributed

in the dataset. Consequently, the relative projection mining times of the items may be quite

different from that of the whole dataset.

4.3 Selective Sampling

Since a random sample is not able to give an accurate estimation of the projection mining

time distribution of the whole dataset, we need to change the sampling strategy so that the

sample can maintain the feature of the whole dataset while the mining time of the sample

should be significantly reduced.

4.3.1 How selective sampling works

We devised a sampling technique, called selective sampling, which has proved to be quite

accurate in identifying time-consuming projections.

Instead of randomly selecting a fraction of transactions or sequences from the dataset, se-

lective sampling maintains the information of every transaction or sequences in the dataset.

However, selective sampling only keeps the “important” items or subsequences of each trans-

action in the sample and remove the rest. Whether an item or a subsequence is ”‘important”’

depends on its frequency and the location in the projections. The support threshold keeps

the same % value when mining the selective sample.

Next we discuss in detail how selective sampling works in detail.

For frequent itemset mining, selective sampling discards a fraction t of the most frequent

items from each transaction as well as those items whose frequencies are less than the support

threshold.

For example, let〈(f : 4), (c : 4), (a : 3), (b : 3), (m : 3), (p : 3), (s : 1)〉 be the items in a

dataset sorted in descending order of frequency. Let t be 33% and the support threshold be
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3. Then f and c are the top 33% most frequent items. When applying selective sampling,

for each transaction in the dataset, we discard c, f and the infrequent item s and preserve

a, b, m and p if they appear, for each transaction.

For sequential pattern mining and closed-sequential pattern mining, selective sampling

discards l items from the tail of each sequence, as well as the infrequent items of each sequence

in the dataset. The number l is computed by multiplying a given fraction t by the average

length of the sequences in the dataset.

For example, let (〈a〉 : 4), (〈b〉 : 4), (〈c〉 : 4), (〈d〉 : 3), (〈e〉 : 3), (〈f〉 : 3), (〈g〉 : 1) be

the items in the database. Let the support threshold be 4 and the average length of the

sequences in the dataset be 4. Support t equals to 75% so that l is 3 (4 ∗ .75). Then a, b

and c are frequent items because their support values are no less than the threshold. Given

a sequence as 〈a(abc)(ac)d(cf)db〉, the selective sample of this sequence is 〈a(abc)a〉. The

suffix 〈( c)d(cf)db〉 is discarded because it contains the last l frequent items of the sequence

(d and f do not count because they are infrequent items.).

Selective sampling for sequential-pattern mining works in a similar way as for frequent-

itemset mining. The items at the tail of each sequence are similar to the items closed to the

root (most frequent items) of FP-tree in frequent itemset mining, because the projections

in the sequential pattern mining and closed-sequential pattern mining are suffixes of the

sequences in the datasets while in the frequent-itemset mining, the projections are prefix

paths to the root.

4.3.2 Accuracy and overhead of selective sampling

We examine the effectiveness of selective sampling by comparing the mining time of the

projected databases for the selective sample with the mining time for the whole dataset. The

experimental results show that selective sampling can effectively identify the large items in

the dataset.

For instance, in the case of frequent itemset mining, Figure 4.6 shows our experimental
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Figure 4.6: Accuracy of selective sampling for frequent itemset mining

results of selective sampling for the same dataset as Figure 4.3 with t set to 20%. The

two curves match quite well. The mining time of item 1 to 10 are missing in the selective

sample curve because these items are the top 20% most frequent items and are discarded

during selective sampling. However, since the actual mining time of these top 20% items is

ignorable, this does not affect balancing the load of each processor and it also proves the

feasibility of our selective sampling strategy.

Figure 4.7 gives the results of selective sampling for sequential pattern mining with the

dataset C10N0.1T8S8I8. The average sequence length of C10N0.1T8S8I8 is 64 and we set

t as 75% so that l is 48. We can see that the two curves nicely match to each other. That

is to say, those large items in the mining of selective sample are also the large items in the

mining of the whole dataset.

Similar results can be obtained for closed-sequential-pattern mining with selective sam-

pling. Figure 4.8 is the results of selective sampling for closed-sequential pattern mining

with the dataset C200S25N9.
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Figure 4.7: Accuracy of selective sampling for sequential pattern mining
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Figure 4.8: Accuracy of selective sampling for closed-sequential pattern mining
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Figure 4.9 shows the matching graphs for all the benchmark datasets (dataset charac-

teristics in Figure 7.1(a)) we used in frequent itemset mining. All of them are similar to

Figure 4.6.

As you may expect, there is a trade-off between the accuracy and the overhead of selective

sampling. The more information we discard from the original dataset, the less accuracy the

sampling will obtain and the less overhead will be introduced by sampling.

Selective sampling discards the top t% most frequent items of the datasets in frequent

itemset mining. We quantify the accuracy and overhead of selective sampling with different

values of t. We computed the overhead of selective sampling as the mining time of selective

sample versus the mining time of the whole dataset. We apply the following method to

quantify the accuracy of selective sampling:

Suppose the total mining time of the whole dataset is Tall, the mining time of selective

sample is Tsample and the number of processors is N . If we could evenly partition the work

across N processors, then the mining time of each processor is Tall

N
. So if the mining time

of a projection is larger than Tall

N
, it must be partitioned to achieve the optimal speedup.

Suppose P is the set of projections whose mining time is larger than Tall

N
. Each projection i

in P has a weight Wi and Wi = Ti

Tall/N
where Ti is the actual mining time of projection i.

On the other hand, all the projections whose sampling mining time are larger than
Tsample

2N

will be partitioned when mining the whole dataset. We use
Tsample

2N
instead of

Tsample

N
as the

boundary to improve the accuracy of selective sampling. Suppose Q is the set of projections

whose projection mining times are larger than
Tsample

2N
.

Then, the accuracy of selective sampling is defined as:
P

Wj(j∈P∩Q)P
Wi(i∈P )

Figure 4.10 shows the accuracy and overhead of selective sampling for all the benchmark

datasets we used with the values of t varying from 5% to 50%. As we can see from the graphs,

for most of our benchmarks, we can obtain the balance between accuracy and overhead when

when t’s value is between 15% and 25%. We use 20% as the empirical value of t for frequent

itemset mining. For sequential pattern mining and closed-sequential-pattern mining, the
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Figure 4.9: Accuracy of selective sampling
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empirical value of t is 75%.

There is also a trade-off between the overhead introduced by selective sampling and the

parallel performance improvement due to more balanced work load. We use the following

formula to give an estimation of the parallel mining time Tpar:

Tpar =
P

Tj(j∈P∩Q)

N
+ max{Ti}(i ∈ P − Q) +

P
Tk(k/∈P )

N

where N is the number of processors, P , Q and T use the same definitions as we discussed

for accuracy. The projections in P are large projections which need to be partitioned and

the projection in Q are the projections being actually partitioned according to sampling.

Here, we assume that the projections in P ∩ Q are evenly distributed to the N processors,

the projections not in P are also evenly distributed and there is no overhead introduced

due to the projection partitioning. We use the value of T varying from 5% to 50% to tune

the size of the sample and compute the value of Tpar using N = 64. Figure 4.11 gives the

comparison Tpar

Tall
with

Tsample

Tall
for all the datasets in in Figure 7.1(a) where Tall is the serial

mining time of all the projections. As we can see from the graphs, 20% is a reasonable value

for t to gain parallel performance and restrict the sampling overhead within a small range.

With t equals to 20%, the overhead of selective sampling in Figure 4.6 is only 0.71% of

the sequential mining time of the whole dataset and the overhead of Figure 4.7, with t set to

75%, is only 0.52% of the sequential mining time while it still provides accurate information

for the relative mining time estimation.

Figure 4.12 lists the percentage of mining time of selective sample versus the sequential

mining time of all the datasets in Figure 7.1, with t being 20% for frequent itemset mining,

75% for sequential pattern mining and closed-sequential-pattern mining.

4.3.3 Why selective sampling works

To understand why the selective sampling works, we first study the case for frequent itemset

mining.

Intuitively, selective sampling removes the most frequent items and the infrequent items
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Figure 4.10: Accuracy v.s. Overhead with various t values
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Figure 4.11: Parallel mining time v.s. Overhead with various t values
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Figure 4.12: Overhead of selective sampling

in each transaction. The infrequent items are irrelevant to our frequent itemset mining so

that we can safely remove them. Those most frequent items appear very frequently in the

datasets so that they more likely appear in most of the transactions in the dataset. Therefore,

removing them can greatly reduce the the mining time of the other items and the reduction

may be done by a similar factor statistically.

In FP-growth algorithm, mining an item i’s projection only mines frequent itemsets which

contains i and those items which are more frequent than i. Considering the search space of

frequent-itemset mining as Figure 4.13 shown, item A,B,C,D and E are in increasing order

of their frequencies. Removing the most frequent item E will reduce the search space of

the other items to half and therefore both the total mining time and each projection mining

time are half, while the relative mining times of A, B, C and D keep the same. So if a

few top frequent items are discarded, the projection mining times of the remained items will

be reduced exponentially while their mining time will keep a similar distribution as they

are with the whole dataset. Therefore, our selective sampling strategy can give an accurate

estimation of the relative projection mining time while still keep a small overhead.

The reason for sequential pattern mining and closed-sequential-pattern mining is similar

to that of frequent itemset mining. Referring to Figure 4.13, removing a certain item at the
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AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCD
E

Figure 4.13: Search space of different items for frequent-itemset mining

tails of the sequences will reduce the search space of the remaining items to half, while still

keep the relative mining times.
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Chapter 5

Other Issues in Parallelization

In this chapter, we discuss some other issues that need to be addressed in applying selective

sampling to the parallelization of frequent pattern mining.

5.1 Task partitioning

5.1.1 How to partition the large tasks

After the projections with long mining times are identified by selective sampling, they must

be partitioned into smaller ones. The task partition is done following a pattern-growth way.

In frequent itemset mining, suppose I = 〈i1, i2, ..., im〉 are the ordered set of frequent

items of the whole dataset listed in descending order of their frequency. (If there is a tie of

frequency, the item with a smaller item identifier appears first.) The projection of item ik

(0 ≤ k ≤ m) is partitioned into the projection of pair (ikip) where 0 ≤ p < k. In general, the

projected database of an item i is split into the sub-databases of pairs which consist of the

item i and another item which is more frequent than i (or appears before i in the ordered

list of frequent items).

For example, let {(c : 4), (f : 4), (a : 3), (b : 3), (m : 3), (p : 3)} be the frequent 1-items in

frequent itemset mining and sorted in descending order in terms of frequency. The numbers

after the column are the frequency of the corresponding items. If selective sampling estimates

that the projection corresponding to m must be partitioned, then the mining of item m is

partitioned into the mining of projections for (mb), (ma), (mf) and (mc).

53



In sequential pattern mining, we assume that items in an event appear in a fixed order1.

Suppose I = {i1, i2, ..., im} are the set of frequent items of the whole dataset listed in this

fixed order. We must consider both inter-event and intra-event expansion when partitioning

the projections. The projection of item 〈ik〉 (0 ≤ k ≤ m) is partitioned into the projection of

intra-event expansion 〈(ikip)〉 where k ≤ p ≤ m and the projections of inter-event expansion

〈ikiq〉 where 0 ≤ q ≤ m.

For example, let {a, c, d, f, g} be the frequent 1-sequences in sequential pattern mining.

We assume the items within an event appear in alphabetical order. If selective sampling

estimates that the projection corresponding to d must be partitioned, then the mining of

item d is partitioned into the mining of projections for 〈(df)〉, 〈(dg)〉, 〈da〉, 〈dc〉, 〈dd〉, 〈df〉

and 〈dg〉. The first two are the intra-event expansions of 〈d〉 and the rest are the inter-event

expansions of 〈d〉.

In closed sequential pattern mining, we only need to consider inter-event expansion since

the BIDE algorithm works for single-event sequence. Suppose I = {i1, i2, ..., im} are the

set of frequent items of the whole dataset. The projection of item 〈ik〉 (0 ≤ k ≤ m) is

partitioned into the projection of 〈ikip〉 where 0 ≤ p ≤ m.

For example, let 〈A,C,D, F,G〉 be the frequent 1-sequences in closed-sequential-pattern

mining. We assume the items within an event appear in alphabetical order. If selective

sampling estimates that the projection corresponding to D must be partitioned, then the

mining of item D is partitioned into the mining of projections for 〈DA〉, 〈DC〉, 〈DD〉, 〈DF 〉

and 〈DG〉, which are all inter-event expansions of 〈D〉.

Following the method described above, the projections identified with long mining time

are partitioned. Since our task partitioning follows the pattern-growth philosophy of the

base sequential algorithms, the derived projections are independent and can be distributed

to different processors to be mined in parallel.

1This order can be any total order among the items.
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5.1.2 Necessity of multi-level task partitioning

With the partitioning strategy described previously, a projection of a length-1 pattern is

partitioned into a series of projections of length-2 patterns. For most of the datasets, the

subtasks derived from our task partitioning strategy discussed in Subsection 5.1.1 are fine

enough to achieve good performance for the parallelization of frequent pattern mining (See

performance in Section 7.2.

However, for some special datasets, such as pumsb star and T30I0.2D1K2 for frequent

itemset mining, the above task decomposition is not enough to obtained a balanced workload

among processors.

Figure 5.1(a) and Figure 5.1(b) show the mining time distribution of the projections of

single items in datasets pumsb star and T30I0.2D1K respectively. As shown in the graph,

the mining time distributions of the projections are extremely imbalanced. As a consequence,

when applying the above partitioning strategy, some projections derived from the extremely

large projections are still very large and needs to be further partitioned.

Therefore, we must extend our task partitioning strategy so that the extremely large

projections of a length-1 pattern can be partitioned into the projections of not only length-2

patterns, but also length-l (l > 2) patterns. We call the extended task partitioning multi-

level task partitioning. The projections of length-l pattern are called level-l projections.

As we discussed in Chapter 4, over-partitioning (unnecessary partitioning) can introduce

overhead due to too small tasks, which can cause performance loss. This is a trade off on task

granularity. The task partitioning algorithm must decide how many levels of partitioning is

needed to produce small-enough subtasks but not introducing too much overhead.

5.1.3 Multi-level task partitioning

We focus on frequent itemset mining to design the multi-level task partitioning strategy.

2The detailed characteristics of the dataset is described in Figure 7.1(a))
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Figure 5.1: Projection mining time distribution of single items
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In selective sampling, we record the mining times of the level-1 projections as an estima-

tion of the relative mining time of them of the whole dataset. We could naively record the

mining times of the projections of all the levels in selective sampling to obtain the estima-

tion of the relative mining time of the projections of every level. However, since the number

of projections increases exponentially with the number of levels, the overhead of selective

sampling would become large. In our experiments, the overhead of selective sampling is

more than doubled when we records the sampling mining time of projections for more than

2 levels.

There is an important property which helps us to design the multi-level task partitioning

strategy. In frequent-itemset mining, the projection mining time of an itemset is no more

than the projection mining time of its subset. This is because the frequency of an itemset

is always no more than the frequency of its subset.

For example, the frequent itemsets containing AB must contain B, so the projection

mining time of AB is no more than the projection mining time of B. Similarly, the projection

mining time of AC is no more than the projection mining time of C, the projection mining

time of ABC is no more than the projection mining time of AC and so on.

We designed a multi-level task partitioning strategy as following:

Let Q be the items whose sampling projection mining times are greater than
TSample

N
,

where TSample is the total sampling mining time and N is the number of processors. The

level-1 projection of item i (i /∈ Q) is not partitioned. The itemsets corresponding to all the

subsets of Q will be partitioned. For the items in Q, let their level-1 projections be partitioned

into the projections of patterns in L. The patterns in L are generated as S ∪ {∀i}, where S

(S 6= ∅) is an element of 2|Q| and i is an item /∈ Q and is more frequent than any items in S.

For example, as in Figure 5.2 shown, suppose the sampling projection mining time of

item A, B and C are greater than
TSample

N
, the following itemsets are then partitioned: A,

B, C, AB, AC, BC, ABC and the derived pattens from the partitioning are in grey.

With the above partitioning strategy, the projection mining times of the derived patterns

57



null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCD
E

Figure 5.2: Search space of different items for frequent-itemset mining

58



are less than
Tsample

N
. This is because each of the derived patterns is a superset of an itemset

with projection mining time less than
Tsample

N
. According to the property discussed above, the

projection mining times of the derived patterns are all less than
Tsample

N
. Suppose sampling

can give an accurate estimation, these projection mining time on the whole dataset are less

than Tall

N
.

For example, in Figure 5.2, since the sampling projection mining time of D and E are

less than
Tsample

N
, the itemsets corresponding to the grey nodes are all supersets of either D

or E. So their projection mining time are less than
Tsample

N
.

Consequently, the large 1-level projections are partitioned into fine enough sub-

projections with our multi-level task partitioning strategy. As we will see in Chapter 7, this

algorithm can greatly improve the performance of the datasets which require multi-level task

partitioning.

5.2 Scheduling

After the projections with long mining time are partitioned, the projections/sub-projections

are to be assigned to the processors. Basically there are three types of tasks to be scheduled:

1. The sub-projections derived from partitioning.

2. The projections without partitioning.

3. The projections not appearing in sample.

We applied simple strategies to schedule these three types of tasks. For the first and third

categories, we use round-robin to schedule them. For the second category, since we have had

an estimation of their mining time distribution from sampling, we use a bin-packing strategy

to schedule these tasks according to the estimation. By applying the above scheme, we are

able to statically distribute the tasks to the processors.
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5.3 Parallel sampling

Although the average overhead of selective sampling is only 1% of the sequential mining

time on average for Par-FP, Par-Span and Par-CSP, such overhead will become more critical

when the number of processors grows large.

According to Amdahl’s Law, the best possible speedup with 1% serial component on 64

nodes is restricted to 39. Therefore, in order to get better speedups on a large number of

processors (≥ 128), we need to further reduce the overhead of sampling.

One promising solution is to parallelize the selective sampling. Since the process of

mining the selective sample is analog to the sequential mining of the whole dataset, we may

parallelize the mining of the sample in a similar way so that the overhead of sampling can

be reduced.
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Chapter 6

Parallel Frequent Pattern Mining

Algorithms

Selective sampling is a very useful and important technique for balancing the work load of

the parallelization framework proposed in Chapter 3. We designed three parallel algorithms,

targeting frequent itemset mining, sequential pattern mining and closed-sequential-pattern

mining respectively based on the proposed framework with the selective sampling technique.

We introduce the detail of these algorithms in the following sections.

6.1 Parallel frequent itemset mining algorithm

We designed a parallel frequent itemset mining algorithm, called Par-FP, based on FP-

growth algorithm. Algorithm 1 is the Par-FP algorithm which is presented in SPMD form.

Algorithm 1 Par-FP(I, DBI , min sup, FPI)

Input: I is the processor ID, DBI is a portion of the dataset assigned to processor I,
min sup is the minimum support threshold
Output: FPI is a portion of frequent itemsets

1: CI = number of items(DBI);
2: GLOBAL COUNTS=all to all sum(CI);F1=frequent 1-itemsets(GLOBAL COUNTS);
3: if (I == 0) then

4: S RESULT = selective sampling(F1, I,DBI ,min sup);
5: F2 = partition(F1, S RESULT ); // Partition the most time consuming subtasks and

assign the new set of subtasks to F2.
6: LTASK = schedule(F2, F1)
7: send the elements in LTASK to the corresponding processor;
8: else

9: receive the task assignments from Processor 0.
10: end if

11: build FP-tree for assigned elements;
12: apply FP-Growth algorithm to mine the local FP-tree and output to FPI ;
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We assume that the dataset is partitioned into N subsets (N is the total number of

processors) and the subset assigned to processor PI is denoted as DBI . In line 1, each

processor counts the single items for the part of the dataset assigned to it. Then an all-to-

all reduction is performed to compute the global counts and the global numbers are stored

in variable GLOBAL COUNTS on each processor. Those items whose global numbers of

occurrence are above the support threshold are identified and stored in variable F1.

Next, one of the processor (we use Processor 0 in our illustration) performs selective

sampling (in line 4). The details of the function selective sampling is as follows:

Each processor scans the local portion of the dataset, discarding the top 20% most

frequent items in F1 and the non-frequent items in each transaction, and then sends the

portion of the seletive sample to Processor 0. Processor 0 receives the portions of the sample

and builds an FP-tree for the selective sample in its memory. The items in the transactions

of the selective sample are sorted in descending order of frequency and inserted into an FP-

tree structure, named T. T is constructed in the same way as FP-growth algorithm states.

Then Processor 0 mines T using serial FP-growth algorithm. However, instead of outputting

the frequent itemsets found, P returns the mining time of each frequent items in T. Assume

there are S frequent items in T. The mining time of item i for the sample is Li(i ∈ [1..S])

and stored in S RESULT .

Based on the result stored in S RESULT , Processor 0 partitions the most time con-

suming subtasks by calling function partition() in line 5. We implemented two strategy for

function partition() in Par-FP. One partitions the large tasks only one-level and the other

uses the multi-level partitioning heuristic discussed in Section 5.1 to decompose the large

tasks in multi-levels. We will compare performance of both of the strategies later to show

the effectiveness of multi-level task partitioning.

The workload are distributed to the processors by calling function schedule() in line 6.

We use the static task scheduling strategy discussed in Section 5.2 to distribute the tasks.

The results of task scheduling is stored in LTASK. Processor 0 then sends the assigned
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subtasks in LTASK to the corresponding processor (line 7). After having received its

assignment (line 9), every processor builds the local FP-tree with the transactions containing

the assigned elements (line 11). For example, if a processor is assigned with a and b, the

FP-tree constructed by this processor only contains the transactions containing a or b and

those items which are less frequent than a and b are removed when inserting into the FP-

tree. In this way, the FP-tree on each processor can be much smaller than the FP-tree for

the whole dataset. It makes our algorithm be capable of handling larger datasets than the

sequential FP-growth algorithm with the memory size limitation.

The FP-tree construction requires each processor to access the whole dataset. Since

the dataset is distributed across the nodes, each portion needs to be broadcast to all the

processors. In our implementation, we found that it is more efficient to carry out the

broadcast using a virtual ring structure where processor I only receives the package from

Processor ((I − 1) mod N) and only sends the package to Processor ((I + 1) mod N).

Thus, assume there are total N processors, the all-to-all broadcast is carried out in (N − 1)

non-blocking send-receive steps which collectively consume no more than 1% of the mining

time. We could let each processor selectively sends the records required by each remote

processor respectively. However, since the communication cost with our implementation is

insignificant, using the alternative method will not bring much improvement to the overall

performance.

At last, in line 12, each processor mines the FP-tree in its local memory independently

without any communication with the other processors. The frequent itemsets discovered

by each processor are output by the processors asynchronously to different files FPI . The

overall frequent itemsets of the dataset are just the concatenation of all these files.
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6.2 Parallel sequential-pattern mining algorithm

Our parallel sequential-pattern mining algorithm is called Par-Span (illustrated in Algo-

rithm 2).

Algorithm 2 Par-Span(I, DBI , min sup, SPI)

Input: I is the processor ID, DBI is a portion of the dataset assigned to processor I,
min sup is the minimum support threshold
Output: SPI is a portion of sequential-patterns

1: CI = number of 1-sequences(DBI);
2: GLOBAL COUNTS=all to all sum(CI);F1=frequent 1-sequences(GLOBAL COUNTS);
3: if (I == 0) then

4: S RESULT = selective sampling(F1, I,DBI ,min sup);
5: F2 = partition(F1, S RESULT ); // Partition the most time consuming subtasks and

assign the new set of subtasks to F2.
6: LTASK = schedule(F2, F1)
7: send the elements in LTASK to the corresponding processor;
8: else

9: receive the task assignments from Processor 0.
10: end if

11: build projection for assigned elements;
12: apply Prefix-Span algorithm to mine the projections for the assigned elements and output

to SPI ;

Par-Span is based on the sequential Prefix-Span algorithm. The whole flow of Par-span

algorithm is similar to that of Par-FP.

First, each processor counts the number of occurrence of each 1-sequences(line 1) and

then followed by a global reduction to obtain the global counts. The frequent ones are

identified (line 2). Then, one of the processor performs selective sampling to identify the

large subtasks (line 3). After that, the large subtasks are partitioned to smaller ones. We

only implemented one-level task partitioning for Par-Span algorithm.We applied strategy

discussed in Section 5.2 to schedule the subtasks(line 4). Then each processor builds the

projection for the assigned tasks and then mines the projections independently using the

conventional Prefix-Span algorithm.
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6.3 Parallel closed-sequential-pattern mining

algorithm

In this section, we describe Par-CSP, the parallel algorithm to mine closed sequential-

patterns. Algorithm 3 is the Par-CSP algorithm which is presented in SPMD form.

Algorithm 3 Par-CSP(I, DBI , min sup, CSPI)

Input: I is the processor ID, DBI is a portion of the dataset assigned to processor I,
min sup is the minimum support threshold
Output: CSPI is a portion of sequential-patterns

1: CI = number of 1-sequences(DBI);
2: GLOBAL COUNTS=all to all sum(CI);F1=frequent 1−sequences(GLOBAL COUNTS);
3: PSP = pseudo projection(F1, DBI);
4: GLOBAL PSP = all to all broadcast(PSP );
5: S RESULT = selective sampling(F1, I,DBI ,min sup);
6: F2 = partition(F1, S RESULT ); // Partition the most time consuming projections

and assign the new set of projections to F2.
7: if (I == 0) then

8: accept requests from slave nodes and reply to each request with a different identifier
from set F2 until all projections have been assigned;

9: else

10: send request for a projection identifier to the master node;
11: stop if all projections have been assigned;
12: apply BIDE algorithm to element of GLOBAL PSP assigned by the master processor;
13: accumulate the closed sequential-patterns into CSPI and go back to send request

operation;
14: end if

Each processor first counts the number of occurrence of each 1-sequences(line 1) and

then followed by a global reduction to obtain the global counts. The frequent 1-sequences

are identified (line 2). Each processor then builds pseudo projections for for all the frequent

1-sequences based on the local portion of datasets (line 3) and broadcast the projections

built to all the other processors(line 4). Note that we used a different strategy here from

the previous two algorithms. Each processor has the projections for all the 1-sequences.

Since the projections are pseudo projection, each processors basically has the whole dataset

and the pointers for each projections in memory. Then the processors perform selective
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sampling in parallel. Each processor mines the selective sample for a portion of the frequent

1-sequences and records the mining time(line 5). Then the large subtasks are partitioned.

A dynamic scheduling is applied in Par-CSP algorithm1. The indexes of subtasks are kept

in a task queue on the node 0 and assigned to the other nodes. The processors other than

node 0, are initially assigned one index each. After a processor completes the mining of a

subtask, it sends a request to node 0 for another. Node 0 replies with the index of the next

subtask in the queue and removes it from the queue. This process continues until the queue

of subtasks is empty.

The requests and replies to and from node 0 are short messages and, therefore, the

communication time is usually negligible relative to the mining time. The subtasks estimated

to take longer time in sampling are to be scheduled earlier. Those very small subtasks are

scheduled in chunks to avoid communication contention.

1The scheduling strategy discussed in Section 5.2 is used when the number of processors is less than 8.
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Chapter 7

Experimental Analysis

In this chapter, we evaluate the performance of our parallel frequent pattern mining algo-

rithms and performance optimization techniques by conducting a series of experiments on

various datasets.

7.1 Experiment Setup

Our experiments were performed on two Linux clusters. On the first cluster, A, each node

has a 1GHz Pentium III processor and 1GB main memory. On the second cluster, B, each

node has dual 1.3 GHz Intel Itanium2 processors and 4GB main memory. The network inter-

connections on both clusters are Gigabit Ethernet Myrinet 2000. We used MPICH-GM to

implement our parallel algorithms. MPICH-GM is a portable implementation of MPI that

runs over Myrinet. The operating system is Linux 7.2 and the compiler is GNU g++ 2.96.

On both cluster, global disks are used and the processors may do concurrent I/O operations.

A comprehensive performance study has been conducted in our experiments on 16

databases representing both synthetic and real world datasets. The main characteristics

of these datasets and the support threshold values used in our experiments are shown in

Figure 7.1. There are seven transactional datasets for frequent itemset mining, five sequence

datasets for sequential pattern mining and four sequence datasets in closed-sequential pattern

mining1.

Among the seven transactional datasets, four of them are realistic datasets downloaded

1The sequence datasets for closed-sequential pattern requires 1-item events, which is limited by the
sequential BIDE algorithm.
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from the FIMI repository[1] and the rests are synthetic datasets generated by the IBM

dataset generator [19]. Figure 7.2 gives the frequencies of the items in each dataset for

frequent-itemset mining.

Most of the sequence datasets are synthetic datasets. Only one, named Gazelle, is a

real dataset. Gazelle comes from click-stream data provided by Blue Martini company. We

consider different products as different items and the page views as events. We treat 10

consecutive Web click-stream as a sequence from one customer2.

7.2 Execution time and speedups

We first examine the parallel performance of the three algorithms by comparing the mining

time of the parallel algorithms against the corresponding serial algorithms. For frequent-

itemset mining, our serial implementation is based on the implementation provided by the

inventer of the FP-growth algorithm. And our serial implementations for sequential-pattern

mining and closed-sequential pattern mining are provided by the authors of PrefixSpan

algorithm and BIDE algorithm respectively. All these implementations are among the best

serial implementations.

7.2.1 Par-FP

We tested Par-FP on different numbers of processors, including 2, 4, 8, 16, 32 and 64, on

the two clusters. Figure 7.3 shows the speedups for each datasets. In the graphs, clusterA

refers to the cluster with Pentium III processors while clusterB is the cluster with Itanium2

processors. In the experiments of this section, we only applied one-level task partitioning

after sampling. The results for multi-level task partitioning will be shown in Section 7.3.

2Because the average length of one web click stream is only 3, without the merging, the sequential mining
time is so short(less than 120 seconds with the absolute support threshold as 1) that it is not able to clearly
show the efficiency of parallelism. Such merging is also reasonable and accords with the people’s web browse
manner because a person usually access the web with intervals during a period of time
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Figure 7.2: Frequency histogram of items in the datasets for frequent-itemset mining
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Since the speedups of Par-FP on the two clusters are similar, we use either of the cluster in

the following experiments according to the availability of the cluster.

As the charts indicate, Par-FP can achieve good speedups for most of the datasets on

both of the clusters. The speedups are scalable to 64 processors. Only the performance

of one of the dataset, pumsb star, is not satisfactory. As shown in the next section, the

speedup on pumsb star can be greatly improved by using multi-level partitioning.

The parallel performance analysis for Par-FP with 64 processors on cluster B is shown in

Figure 7.4. The first row lists the serial execution time of these datasets and the second row

is the parallel execution time of Par-FP on 64 processors with one-level-task partitioning.

The parallel execution time basically consists of four components:

• Identify the frequent-1 items followed by a reduction

• Selective sampling

• Build projections(FP-tree structure) for the assigned tasks/subtasks

• Mine the projection

Row 3-6 are the detailed execution times of the above four steps for each datasets. Row

7 lists the maximal mining time of all the tasks/subtasks and row 8 is the total number of

tasks/subtasks. The times in the tale are all in seconds.

There are several reasons which cause the performance gap between the optimal speedup

and the speedups.

First, as the table shown, the maximal subtask mining time may still be large after one-

level task partitioning. For datasets pumsb star and T30I0.2D1K, the maximal subtasks

take the majority portion of the parallel mining time and therefore this is the main reason for

the poor performance of these two datasets. For the other datasets, the maximal subtasks

on average take 18% of the parallel mining time which may introduce unbalanced work load

and harm the performance.
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Figure 7.3: Par-FP speedups
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Figure 7.4: Parallel performance analysis for Par-FP on 64 processors

Second, although the overhead of selective sampling is no more than 1% of the serial exe-

cution time, such overhead become non-neglectable when coming to 64 processors according

to Amdahl’s Law. For example, in datasets connect and T40I10D100K, the selective sam-

pling overhead takes more than 20% of the parallel execution time.

Furthermore, our simple static scheduling strategy discussed in Section5.2 may also lead

to unbalanced work load, especially when the derived subtasks are large and the total number

of subtasks is small, such as the case for dataset mushroom.

7.2.2 Par-Span

We then test Par-Span on the Pentium III cluster with 2, 4, 8, 16, 32 and 64-processor

configurations. Figure 7.5 shows the speedups obtained with the datasets in Figure 7.1(b)

and Figure 7.6 gives the parallel performance analysis on 64 processors.

From the graphs, we can see that Par-Span has achieved good speedups for most of

the cases with the dataset on up to 64 processors. However, from Figure 7.6, we noticed

that load balancing and sampling overhead are still the main reason to cause the gap be-

tween optimal speedup and Par-Span speedups. Similar to pumsb star and T30I0.2D1K

in frequent-itemset mining, the speedup of Par-Span on dataset C10N0.1T8S8I8 goes flat

after 8 processors. As we can see from Figure 7.6, the maximal subtasks is around 65% of
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Figure 7.5: Par-Span speedups

the parallel mining time for C10N0.1T8S8I8. In this case, multi-level task partitioning is

necessary to improve the performance on large number of processors.

7.2.3 Par-CSP

At last, we test the performance for Par-CSP on the Pentium III cluster. The speedup is

shown in Figure 7.7. The sequential execution time of the four datasets are respectively:

C100S100N5 (2322.1sec), C100S50N10 (208.9sec), C200S25N9 (8630.5sec) and Gazelle

(142.8sec). As shown in Figure 7.7, Par-CSP is scalable up to 64 processors for most of

the datasets. Among the four datasets, the performance of dataset Gazelle) drops obviously

when the number of processors are large. From our analysis, this is because of load balancing.

Selective sampling failed in identifying a large projection whose projection mining time is

7.3 seconds (5% of serial execution time).
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Figure 7.6: Parallel performance analysis for Par-Span on 64 processors
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Figure 7.7: Par-CSP speedups
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Figure 7.8: Effectiveness of selective-sampling on Par-FP with 64 processors

7.3 Effectiveness of selective sampling

7.3.1 One-level task partitioning

In order to evaluate the effectiveness of the selective sampling technique, we compared

the performance of Par-FP and Par-Span to the straight parallel implementations without

selective sampling on 64 processors. Figure 7.8 and Figure 7.9 show the difference of speedups

for frequent itemset mining and sequential pattern mining respectively.

As we can see from the graphs, selective sampling can improve the performance of the

parallel algorithms in all the cases we tested. For most of the cases, the speedups can be

improved by more than 50%.

For Par-CSP, we compared the performance with selective sampling enabled and disabled

for dataset C200S25N9 on 4, 8, 16, 32 and 64 processors respectively (see the results in Fig-

ure 7.10). It is noticed that when the number of processors is small, the sampling technique
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Figure 7.9: Effectiveness of selective-sampling on Par-Span with 64 processors

does not show much advantage. This is because when there are only a few processors, the

number of subtasks assigned to each processor is large enough so that it tends to balance

the load. However, when the number of processors becomes larger, the sampling technique

greatly improves performance. For 64 processors, the performance of Par-CSP is improved

by more than 50%.

7.3.2 Multi-level task partitioning

We then check the effectiveness of the selective multi-level task partitioning discussed in

Section 5.1. Figure 7.11 shows the comparison of speedups for Par-FP for all the datasets

in Figure 7.1(a). As the figure shown, multi-level task partitioning can greatly improve the

scalability for the dataset pumsb star and T30I0.2D1K. For the other datasets, since the

mining time variation between the subtasks is not as great as pumsb star and T30I0.2D1K,

the improvement on the speedups is not so significant.
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Figure 7.10: Effect of selective sampling on Par-CSP with various numbers of processors

7.4 Sensitivity analysis

A dataset has various parameters, such as number of items, number of transactions and

so on. It would be interesting to study whether the parallel algorithms can maintain good

performance when these parameters change. The datasets used in this section are all gen-

erated by the IBM dataset generator [19]. We studied the performance in regard to four

important parameters of a dataset: the number of items, the number of transactions, the

width of transactions and the support threshold. We use Par-FP to examine the perfor-

mance with different settings of those parameters. We applied multi-level task partitioning

when executing the following experiments.

7.4.1 Numbers of items

We generated four datasets with the number of items ranging from 1,000 to 1,000,000.

The key parameters of the datasets are listed in Figure 7.12. The speedups are shown in

Figure 7.13 and the performance analysis is in Figure 7.14. As we can see from the speedup
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Figure 7.12: Dataset parameters for tests of various items

graph, our algorithm shows good scalability with all the four datasets. The more items in

the datasets, the more subtasks to be mined, and therefore the work load tends to be more

even with our scheduling method. This may give the reason why the speedup of dataset I1

is worse than the other datasets.

7.4.2 Width of transactions

Four datasets are generated by setting the width of transactions from 10 to 90. Figure 7.15

lists the basic parameters of the datasets and Figure 7.16 shows the speedups on these

datasets. We analyze the parallel performance on 64 processors in Figure 7.17. Our algorithm

has achieved good speedups for all the five datasets up to 64 processors.

From our experiments, we noticed that the mining time of the dataset increases greatly

by increasing the width of transactions while keeping all the other dataset parameters un-

changed. The sequential mining time of the dataset varied from a few seconds with the

transaction width as 10 to more than fourteen hours with the transaction width as 90. This

further proves why the overhead of our selective sampling technique can be small. By remov-

ing the most frequent items, the width of each transaction are shorten so that the mining

time of the sample can be greatly reduced.

7.4.3 Numbers of transactions

We generated seven datasets with the number of transactions set from 10,000 to 10,000,000.

The dataset parameters are listed in Figure 7.18 and the performance results are shown in
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Figure 7.14: Parallel performance analysis with datasets of various numbers of items
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Figure 7.15: Dataset parameters for tests of various width of transactions
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Figure 7.16: Performance of datasets with various width of transactions
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Figure 7.17: Parallel performance analysis with datasets of various width of transactions
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Figure 7.18: Dataset parameters for tests of various numbers of transactions

Figure 7.19. We gives the parallel performance analysis in Figure 7.20.

Generally, from the speedup graph, we can see that the performance of our algorithm

is very scalable with the number of processors increasing. However, with the numbers of

transactions increasing, the FP-tree structure of the dataset is enlarged correspondingly.

For the dataset with 3000K transactions, the size of the FP-tree for the sequential algorithm

exceeds the memory available on the processor so that the sequential program fails. While

our Par-FP algorithm can still work on 2 and more processors. This is because in Par-FP

the FP-tree on each processor is for the assigned items of each processor and the size of the

tree is smaller than the whole FP-tree in the sequential algorithm, and the more processor,
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Figure 7.19: Performance of datasets with various number of transactions
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Figure 7.20: Parallel performance analysis with datasets of various numbers of transactions
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the smaller FP-tree each processor has. For dataset T3500, Par-FP runs successfully with

16 and more processors. For dataset T5000, Par-FP can run on 32 and more processors. For

dataset T10000, Par-FP fails on 64 processors due to memory limitation. However, if more

processors are available, we believe that Par-FP can mine T10000 successfully because when

increasing the number of processors, the memory requirement of each processor is decreasing.

This proves that our parallel algorithm is much more scalable than the sequential FP-growth

algorithm in terms of the size of the dataset.

In Figure 7.18, the speedups for dataset T10, T100, T1000 are obtained by comparing

the mining time of Par-FP with the mining time of the sequential FP-growth algorithm. For

dataset T3000, T3500 and T5000, because the sequential algorithm fails, we compute the

speedup with the performance of Par-FP on the least numbers of processors where Par-FP

can run successfully. For example, dataset T3000 can run on 2 and more processors. We

assume the speedup on 2 processors is 2 and use the mining time on 2 processors as the

base to be compared with. The speedup on n processor is then computed by comparing the

performance on n processor with the performance on 2 processors and then timed by 2.

7.4.4 Support threshold values

We studied the performance of Par-FP on different settings of minimum support threshold.

Total four datasets are tested and their settings are listed in Figure 7.21, where the support

threshold ranges from 0.0005% to 1%. The performance and the analysis are shown in

Figure 7.22 and Figure 7.23. From the speedup graph, a better speedup is obtained when

a smaller support threshold is applied. From Figure 7.23, we think the reason is probably

because with lower suppor threshold, the mining time is longer so that the maximal subtask

is relatively smaller. In addition, more subtasks are available to be scheduled with lower

suppor threshold which may improve balance of the workload.
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Figure 7.21: Dataset parameters for tests of various support threshold values
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Figure 7.22: Performance of datasets with various values of minimum support threshold
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Figure 7.23: Parallel performance analysis with datasets of various support threshold values
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Chapter 8

Related Work

8.1 Parallel frequent itemset mining algorithms

For frequent itemset mining, the published parallel frequent pattern mining algorithms are

mostly based on candidate generation-and-test approach [2, 15, 27, 44]. However, despite

the various heuristics used to improve the efficiency, they still suffer from the costly database

scans, which are needed in all candidate generation-and-test approaches. This greatly limit

the efficiency of these parallel algorithms.

To reduce the inter-processor communication during mining, Cheung et al. presented

a parallel frequent itemset mining algorithm FDM [10]. FDM based on the property that

a globally frequent itemset has to be within at least one locally frequent itemset. This

algorithm requires two passes for mining the frequent itemsets, one local and the other

global. After the local mining, each processor broadcasts its locally large itemsets to all

the other processors for global mining. Although the FDM algorithm avoids communication

during local mining, the number of local frequent sets that are sent between local and global

mining is large and greatly degrades the performance of this algorithm.

Schuster et al. raised algorithms to reduce the amount of communication of FDM in

[33]. However, although the number of bytes transmitted has been greatly reduced, the

performance has not been improved as shown in [38], because of the increased number of

messages sent among the processors.

As far as we know, there are three parallel frequent itemset mining algorithms based on

pattern-growth methods [41, 20, 32].
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The algorithm presented in [41] targets a shared-memory system. Although it is possible

to apply the algorithm to a distributed-memory system by replicating the shared read-only

FP-tree, it will not efficiently use the aggregate memory of the system and will suffer of the

same memory constraint of the sequential algorithm.

In [20] the FP-growth algorithm is parallelized for a distributed memory system and

reports the speedups only of 8 and fewer processors. Both [41] and [20] did not address the

load balancing problem.

In [32], the load balancing problem is handled using a granularity control mechanism.

The effectiveness of such mechanism depends on the optimal value of a parameter. However,

the paper does not show an effective way to obtain such value at run time.

In [38], the authors proposed a parallel itemset mining algorithm, named D-Sampling,

based on mining a random sample of the datasets. However, different from our work, the

sampling here is not used to estimate the relative mining time, but to trade off between ac-

curacy and efficiency. D-sampling algorithm mines all frequent itemsets within a predefined

error, based on the mining results of the random sampling. feq

8.2 Parallel sequential-pattern mining algorithms

Although there have been numerous studies on sequential-pattern mining, the study on

parallel sequential-pattern mining is still limited and is only confined to mining the complete

set of sequential patterns.

The method in [34] is based on a candidate generation-and-test approach. The scheme

involves exchanging the remote database partitions during each iteration, resulting in high

communication cost and synchronization overhead.

In [42], Zaki presents a parallel sequential-pattern mining algorithm, called pSPADE,

for discovering the set of all frequent subsequences. pSPADE adopts task parallelism to

decompose the search space. To achieve load balancing, pSPADE utilizes a strategy, called
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recursive dynamic load balancing, which is a protocol to allow an idle processor to join

the busy ones. Different from the Par-CSP algorithm proposed in this paper, pSPADE is

targeting a shared-memory system. In a shared memory system, all the processors can access

the same global memory space, which makes the proposed recursive dynamic load balancing

strategy easy to be implemented. However, applying such a strategy in a distributed memory

system, which is typical in a computer cluster environment, is too expensive to be practical.

Recently, Guralnik and Karypis [13] presented some parallel sequential-pattern mining

algorithms toward a distributed-memory system for mining the complete set of sequential-

patterns. These parallel algorithms are based on a tree-projection-based sequential algo-

rithm, which is intrinsically similar to the PrefixSpan algorithm [29]. To partition the task,

these algorithms use different strategies, such as bin-packing-based task distribution and

bipartite graph partitioning-based task distribution. To attack the load balancing problem,

the authors proposed a dynamic load-balancing strategy which allows an idle processor to

join the busy ones. This strategy involves much more inter-processor communication than

our selective sampling approach and the interruption of the busy processors may cause more

overhead during mining.

All these three parallel formulations still retain the computation efficiency of the under-

lying serial algorithm to mine the complete set of sequential-patterns. However, mining the

complete set of sequential-patterns is usually less efficient than mining the closed sequential-

patterns, especially in mining long patterns and with low support threshold, when parallel

processing is in greater demand.
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Chapter 9

Conclusion

Data mining is an important application for parallel processing. In this thesis, we focus on

frequent pattern mining, which is one of the fundamental tasks in data mining.

We propose a framework for parallel mining frequent patterns on a distributed memory

system. This framework can be applied in parallel mining frequent itemsets, sequential

patterns and closed-sequential patterns. The application domain of our framework may be

extended to other interesting data mining issues, such as the discovery of correlation or

mining subgraphs in a database.

We present a sampling technique, called selective sampling, to address the load balance

problem of the parallelization. Selective sampling allows us to predict the relative time

required to mine the projections and in this way enable us to identify large tasks, decompose

them and evenly distributed them to the processors to achieve load balancing.

Based on the parallel framework and the selective sampling technique, we designed three

algorithms Par-FP, Par-Span and Par CSP for parallel mining frequent itemsets, sequential

patterns and closed-sequential patterns respectively.

We implemented the three parallel algorithms on a distributed memory system. A com-

prehensive performance study has been conducted in our experiments on both synthetic

and real world datasets. The experimental results have shown that our parallel algorithms

have achieved good speedups on various datasets and the speedups are scalable up to 64

processors on our 64-processor system.
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