
C-Cubing: Efficient Computation of Closed Cubes by
Aggregation-Based Checking

Dong Xin Zheng Shao Jiawei Han Hongyan Liu
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

October 26, 2005

Abstract
It is well recognized that data cubing often produces huge outputs. Two popular

efforts devoted to this problem are (1) iceberg cube, where only significant cells are kept,
and (2) closed cube, where a group of cells which preserve roll-up/drill-down semantics
are losslessly compressed to one cell. While numerous studies have been reported on
the iceberg cube computation, there is only limited work on efficient computation of
closed cubes.

Previous work on closedness pruning and checking have developed two different
approaches, output-based vs. raw-data-bases. While these method either need to
check output data or row data, it contribute a lot to the entire computation time.

In this paper, we propose an aggregation-based approach, named C-Cubing, to com-
pute closed iceberg cube more efficiently. Using this method, neither the existing output
nor the raw data is needed to be checked for closedness. Integrating this method with
two successful iceberg cubing algorithms, MM-Cubing and Star-Cubing, we propose and
implement three algorithms, C-Cubing(MM), C-Cubing(Star) and C-Cubing(StarArray).
A through performance study is conducted and shows that this method runs almost
one order of magnitude faster then those previous approaches. Finally, how the perfor-
mance of these algorithms varies with the properties of data set is further demonstrated
and analyzed.

1 Introduction

Data cube computation [5] is one of the most essential but expensive operations in data
warehousing and OLAP. It is widely recognized that data cubing often produces huge out-
puts. A lot of efforts have been devoted to this problem. In general, interesting proposals
can be classified into the following categories: (1) computation of iceberg cubes with simple
or complex measures [3, 8, 14, 20]; (2) computation and indexing of lossless condensed cubes
[9, 10, 16, 18]; (3) computation of compressed data cubes by approximation, such as quasi-
cube, wavelet cube, and stream cube [2, 4, 13, 17]; and (4) computation of partial cubes with
selective materialization [1, 6, 11, 15].

1

A B C D

a1 b1 c1 d1
a1 b1 c1 d3
a1 b2 c2 d2

Table 1: Example of Closed Iceberg Cube

We are interested in a thorough study of efficient computation of closed iceberg cubes.
Before formally defining the problem, we first introduce the following definitions.

Definition 1 (Group-By Cell) In an n-dimension data cube, a cell c = (a1, a2, . . . , an : m)
(where m is a measure) is called a k-dimensional group-by cell (i.e., a cell in a k-dimensional
cuboid), if and only if there are exactly k (k ≤ n) values among {a1, a2, . . . , an} which are
not ∗. We further denote M(c) = m and V (c) = (a1, a2, . . . , an).

Definition 2 (Iceberg Cell) Given a threshold constraint on the measure, a cell is called
iceberg cell if it satisfies the constraint. A popular iceberg constraint on measure count is
M(c) ≥ min sup, where min sup is a user-given threshold.

Definition 3 (Closed Cell) Given two cells c = (a1, a2, . . . , an,m) and c′ = (a′
1, a

′
2, . . . , a

′
n,m

′),
we denote V (c) ≤ V (c′) if for each ai (i = 1, . . . , n) which is not ∗, a′

i = ai (the equality
holds iff V (c) = V (c′)). A cell c is said to be covered by another cell c′ if ∀c′′ such that
V (c) ≤ V (c′′) < V (c′), M(c′′) = M(c′) . A cell is called a closed cell if it is not covered by
any other cells.

Given the above definitions, the problem of closed iceberg computation is to compute all
closed cells which satisfy the iceberg constraints. An example of the closed iceberg cube is
given in Example 1. The closed cube has been shown as a lossless and effective compression
of the original data cube in [9, 10].

Example 1 (Closed Iceberg Cube) Table 1 shows a table(with four attributes) in relational
database, assume the measure is count, the iceberg constraint is count ≥ 2. Then cell1 =
(a1, b1, c1, ∗ : 2), and cell2 = (a1, ∗, ∗, ∗ : 3) are closed iceberg cells; but cell3 = (a1, ∗, c1, ∗ : 2)
and cell4 = (a1, b2, c2, d2 : 1) are not, because the former is covered by cell1, whereas the
latter does not satisfy the iceberg constraint.

In this paper, we first assume that the measure m is count, and the iceberg condition is
(count ≥ min sup). Lemma 1 shows that count is the fundamental measure comparing with
others. We will discuss the extension to other measures in Section 6.

Lemma 1 If a cell is not closed on measure count, it cannot be closed with respect to any
other measures.

2

Rationale. If a cell c1 is not closed, there must be another cell c2 which covers c1. Since
both c1 and c2 are aggregated by the same group of tuples, they will get the same value for
any other measures. One can easily verify that if the measure m is strictly monotonic or
anti-monotonic, then closedness on measure count is equivalent to measure m.

While the iceberg cubing methods have been extensively studied, there are limited efforts
on closed iceberg cubing algorithms. Previous studies on closed cubing or closed frequent
pattern mining have developed two major approaches, output-based checking vs. raw-data-
based checking. The former, represented by most closed pattern mining algorithms [19, 21],
indexes the already found closed patterns by a tree or hash-table, to check the closedness of
the later outputs. This method is not desirable in cubing problem, since normally the output
of cubing can be very large, and maintaining the index structure would become the major
bottleneck of the algorithm. The latter, represented by Quotient Cube approach [9, 10],
needs to scan the raw data partition repeatedly to collect the closed information whenever
there is an output, which also adds considerable overheads.

In this paper, we propose a new closed pruning and checking method, C-Cubing, which
checks neither the output space nor the raw data. With a very small overhead, the closedness
information of a cell can be aggregated as a measure, and the closedness checking can be
simply done by testing this special measure. We call our approach as aggregation-based check-
ing. The new method C-Cubing is implemented in two successful iceberg cubing algorithms:
MM-Cubing and Star-Cubing. After running a comprehensive performance evaluation, we
found although C-Cubing is superior over the previous approach, the alternatives compete
each other on different kinds of data sets. We further study how the performance of these
algorithms varies with respect to the properties of the data set and provide suggestions to
choose the best-fit one in applications.

The remaining of the paper is organized as follows. In Section 2, we give an overview of
the previous related works. In Section 3, we introduce the aggregation-based closed checking
approach, and integrate it into MM-Cubing. Section 4 proposes an extended version of
Star-Cubing and exploits more closed pruning techniques. Our performance study on both
synthetic and real data sets is shown in Section 5. A discussion on potential extensions is in
Section 6. We conclude our study in Section 7.

2 Algorithms Overview

In this section, we analyze the popular iceberg cubing and closed cubing related algorithms.

2.1 Iceberg Cubing Algorithms

2.1.1 BUC

BUC [3] employs a bottom-up computation by expanding dimensions. Cuboids with fewer
dimensions are parents of those with more dimensions. BUC starts by reading the first

3

dimension and partitioning it based on its distinct values. For each partition, it recur-
sively computes the remaining dimensions. The bottom-up computation order facilitates
the Apriori-based pruning: The computation along a partition terminates if its count is less
than min sup.

Apriori pruning reduces lots of unnecessary computation and is effective when the dataset
is sparse. However, BUC does not share the computations, but sharing is very useful in
computing dense datasets. We will review a closed cube method [9, 10] based on BUC later
in this section.

2.1.2 StarCubing

Star-Cubing [20] uses a hyper-tree structure, called star-tree, to facilitate cube computation.
Each level in the tree represents a dimension in the base cuboid. The algorithm takes
advantages of shared computation and Apriori pruning. In the global computation order, it
uses simultaneous aggregation. However, it has a sub-layer underneath based on the bottom-
up model by exploring the notion of shared dimension, which enables it to partition parent
group-by’s and use the Apriori-based pruning on child group-by’s.

Star-Cubing performs well on dense, skewed and not-so-sparse data. However, in very
sparse data sets, e.g., the cardinalities of dimensions are large, the star tree gets wider. It
requires more time in construction and traversal. In this paper, we first extend the original
algorithm for the efficient computation in sparse data, then discuss the closed Star-Cubing
method.

2.1.3 MM-Cubing

Different from BUC and Star-Cubing, where the computation order follows the order of di-
mensions, MM-Cubing [14] factorizes the lattice space into one dense subspace and several
sparse subspaces, according to the frequency of values. Heuristics are designed to make the
dense subspace reasonably small such that the MultiWay [22] array computation can be ef-
fectively applied on. The remaining sparse subspaces are recursively partitioned into dense
and sparse parts.

MM-Cubing partitions the data dynamically, which makes it highly adaptive to dense,
sparse, or skewed data sets. However, the dynamic partition also shatters the internal
relationship between dimensions, as a result, the closed pruning and checking become more
difficult.

2.2 Algorithms related to closed cubing

2.2.1 Quotient Cube

In Quotient Cube [9, 10], all the cube cells with identical aggregation value are grouped into
the same class, preserving the roll-up/drill-down semantics. Each class is represented by
an upper bound cell and several lower bound cells. According to our definition, the upper
bound cell has the same meaning as the closed cell. Quotient Cube finds all upper bound

4

cells using a depth-first search algorithm (we refer as QC-DFS) derived from BUC [3]. To
ensure that each output cell is an upper bound, it scans all the dimensions which are not
within the group-by conditions, in the current data set partition. If a dimension is found
where all tuples share the same value, the algorithm decides either to extend the current
cell by fixing the value on the dimension, or to stop further computing the current partition
since it is previously computed.

The major overhead that QC-DFS applies on BUC is the scanning. Although the scanning
can be terminated earlier when the first discrepancy is found, the amount of the work is still
considerably large. The algorithm will have to scan the whole partition if there does exist a
common shared value on a dimension.

2.2.2 Closed frequent Pattern Mining

Closed frequent pattern mining does not fall into the category of closed iceberg cubing, but
they have some common properties with respect to closed checking and pruning. Despite of
the difference of vertical approach ([21]) or horizontal approach ([19]), they usually explore
two kinds of strategies for efficiently mining of closed itemsets. First, internal closed pruning
methods are developed to reduce the potential number of closed checking in output; Second,
an external checking architecture such as a tree or hash-table is built on already found
outputs, new output will have to check closedness with it to avoid redundant outputs.

The external checking method is not suitable for cubing. This is because the size of a
data cube, even for the closed one, could be possibly much larger than the original data set.
It is undesirable to maintain all the closed outputs in memory.

In summary, we believe that the current closed cubing algorithms are unsatisfactory.
It is necessary to exploit more efficient methods. In the following sections, we propose an
aggregation-based closed checking method, called C-Cubing, and integrate it with MM-Cubing
and Star-Cubing. We choose these two algorithms because (1) they are successful iceberg cub-
ing methods according to the literature [14, 20], and (2) they represent two different com-
putational approaches (the former is subspace-based, whereas the latter dimension-based),
which, as we will see, have different influences on closed extensions.

3 Closed MM-Cubing

MM-Cubing is one of the most adaptive iceberg cubing algorithm. Based on the recent report
[14], it outperforms previous algorithms in most cases. Thus, we first develop C-Cubing(MM)
by adapting MM-Cubing to closed cube computation.

In this section, we first analyze the challenges to check closedness in MM-Cubing, then
introduce a closedness measure to solve the problem and finally discuss the implementation
of C-Cubing(MM) and its efficiency.

5

3.1 Shared Computation vs. Closed Checking

In order to prune the non-closed cells, we need to check the actual tuple values on the ∗
dimensions of that cell. Since all ∗ dimensions eventually come out from the dense space
(recursive call on sparse spaces does not produce ∗ dimensions), we only need to check that
inside the dense subspace. Unlike QC-DFS [10] where the original tuples can be traced and
scanned to check closedness, there are no such tuple lists available for each cell in MM-
Cubing. Because MM-Cubing use MultiWay [22] aggregation inside the dense space, keeping
the tuple ID list for each cell not only introduces computational overhead, but also has
storage challenges. Thus, the problem turns out to be how to check closedness in MultiWay.

The major advantage of MultiWay in cube computation is that MultiWay adopts a simul-
taneous aggregation approach to share computation among different cuboids. Since we do
not keep tuple ID list as in BUC, it is impossible to check the closedness in the last moment
just before outputting the cell. Based on the computation order of MultiWay, naturally we
get this idea: Is it possible to compute the closedness information along with the support
aggregation? Given the multi-dimensional aggregation order, this question is equivalent to:
Instead of computing the closedness with a list of tuple IDs, is it possible to compute it in-
crementally by keeping a summary at each cell? The answer to this question is yes, and the
summary turns out to be a closedness measure.

3.2 Closedness Measure

A closedness measure is a value which indicates whether the cell is closed. Before getting
into the details of the algorithm, let us first have a look at what kind of measures can be
computed incrementally.

Definition 4 (Distributive Measure) A measure is called distributive, if the measure of the
whole data set can be computed solely based on the measures of the parts of that data set.

Definition 5 (Algebraic Measure) A measure is called algebraic, if the measure can be com-
puted based on a bound number of measures of the parts of that data set.

Example 2 It is easy to see that min, count, and sum are distributive measures, e.g.,
count(A ∪ B) = count(A) + count(B), in which A,B denote different parts of the data set;
while avg is an algebraic measure since avg(A ∪ B) = (sum(A) + sum(B))/(count(A) +
count(B)).

Is closedness a distributive or an algebraic measure? First, it is not distributive. This can
be shown with a simple example: In order to compute the closedness of (∗, ∗, 1), we check
the closedness of (∗, 1, 1) and (∗, 2, 1). Suppose both (∗, 1, 1) and (∗, 2, 1) are not closed. It
may imply several cases. One case is that we have two tuples (1, 1, 1) and (2, 2, 1). In this
case, (∗, ∗, 1) is closed. Another case is that we have two tuples(1, 1, 1) and (1, 2, 1), in which
case (∗, ∗, 1) is not closed. Thus, it is impossible to derive the closedness of a cell based on
the closedness of the subcells. Second, closedness is an algebraic measure because it can be

6

computed based on a distributed measure Representative Tuple ID and an algebraic measure
Closed Mask.

Definition 6 (Representative Tuple ID) The Representative Tuple ID of a cell is the small-
est ID of the tuples that aggregate to this cell. In the case the cell is empty (does not contain
any tuple), the Representative Tuple ID is set to a special value NULL.

Lemma 2 Representative Tuple ID is a distributive measure.

Rationale. In fact, Representative Tuple ID is the minimum in the set of all related Tuple
IDs. We already know that min is a distributive measure. Thus, Representative Tuple ID
is a distributive measure.

Definition 7 (Closed Mask) The Closed Mask of a cell contains D bits, where D is the
number of dimensions in the original database. The bit is 1 if and only if all the tuples
belonging to that cell have the same value in the corresponding dimension.

Lemma 3 Closed Mask is an algebraic measure.

Proof. We show how to use the Closed Masks and the Representative Tuple IDs of subsets
to compute the Closed Mask for the whole set.

We denote the subsets by Si, i ∈ {1, 2, . . . , k}, and the whole set by S, clearly, S =⋃k
i=1 Si. Let C(Si, d) be the Closed Mask of set Si on dimension d, T (Si) be the Represen-

tative Tuple ID of set Si, and V (t, d) be the value of Tuple t on dimension d.
By the definition of Representative Tuple ID, we have T (S) = mink

i=1T (Si). From the
definition of Closed Mask, the bit is 1 if and only if all the tuples belonging to that cell have
the same value in the corresponding dimension, in which case the following two conditions
hold: (1) all the Closed Masks of the subsets should have 1 on that bit, and (2) all the
Representative Tuples of the subsets have the same value on that dimension. This leads to
the following equation:

C(S, d) =
k∏

i=1

C(Si, d) × Eq(|{V (T (Si), d), 1 ≤ i ≤ k}|, 1)

where |{V (T (Si), d), 1 ≤ i ≤ k}| means the number of distinct values in the set {V (T (Si), d), 1 ≤
i ≤ k}, and Eq(x, y) is 1 if x is equal to y, otherwise it evaluates to 0.

This equation defines how to compute the Closed Mask incrementally based on Closed
Masks and Representative Tuple IDs of the subsets. Thus, Closed Mask is an algebraic
measure.

Please note in all these equations, multiplication can be replaced by a bit-and operation,
which is more efficient. We may also notice that Representative Tuple ID can be the ID of
any tuple related to the cell. We use the minimum intentionally to ease problem formulation
and discussion.

Now we are able to define the closedness measure.

7

Definition 8 (All Mask) The All Mask of a cell contains D bits, where D is the number
of dimensions. The bit is 1 if and only if that cell has a value of ∗ in the corresponding
dimension.

Definition 9 (Closedness Measure) Given a cell, whose closed mask is C and all mask is
A, the closedness measure is defined as C&A, where & is bitwise-and operations.

Example 3 The All Mask of a cell (∗, ∗, 2, ∗, 1) is (1, 1, 0, 1, 0). Please note All Mask is a
property of the cell and can be computed directly. If the closed mask of this cell is (1, 0, 1, 0, 0),
then its closedness measure value is (1, 0, 0, 0, 0).

Since the all mask can be directly computed from the cell and the closed mask is an
algebraic measure, we conclude that the closedness is also a algebraic measure.

Lemma 4 Closedness is an algebraic measure.

A cell is non-closed if and only if in at least one dimension of its closedness measure, the bit
is 1. Otherwise, the cell is closed. The intuitive explanation is that the cell is non-closed if
and only if (1) all tuples of the cell have the same value in a dimension, and (2) the value of
the cell in that dimension is ∗.

Since closedness of a cell is an algebraic measure, we can compute it incrementally in the
simultaneous aggregation steps of the dense subspace. Before the output step, we need to
check the closedness of the cell. We will output the cell only if it is closed.

3.3 Implementation of C-Cubing(MM)

In this section, we will discuss how to implement the closedness measure in MM-Cubing. The
new algorithm is called C-Cubing(MM).

As we explained earlier, MM-Cubing partitions the whole data into several subspaces
according to the value frequency. The dense subspace will be computed directly by MultiWay
array aggregation, while the sparse subspaces are recursively partitioned to get the next level
subspaces until the size of the sparse subspace is less than min sup. Since the subspaces are
not mutually exclusive, they may contain values which are not within current computation
interest. To avoid duplicate outputs, MM-Cubing will temporarily change these values to
a special identifier, and switch back after the current subspace is finished. Although this
method is efficient in the sense of space and computational requirement, it brings problems to
closed checking. When closedness measure checks the values by retrieving the representative
tuple, it may find the special identifier, instead of the original value. This is undesirable for
closed checking. To solve this problem, C-Cubing(MM) uses a table of Value Mask, which
keeps the information of whether a value is set to the special identifier. The original tuples
are kept unchanged, and the closedness measure can be computed.

The integration of closedness measure into MM-Cubing is as follows. Whenever there is
an aggregation of count, we aggregate closedness measure as well. When a cell is ready to
output, the closedness measure is checked. Since we do not do any less computation (though

8

sometimes we do not output the cell, which means less I/O operations), we can expect that
C-Cubing(MM) always has overheads over MM-Cubing.

However, we can also expect that C-Cubing(MM) will not degrade too much from MM-
Cubing. For space efficiency, the additional data structures used are Value Mask, Closed
Mask and Representative Tuple ID. The size of Value Mask is

∑D
i=1 Ci bits, which is quite

small compared to other data structures (where D is the number of dimensions and Ci is
the cardinality for ith dimension). The sizes of the Close Mask and the Representative Tuple
ID are both proportional to the size of the aggregation table, which is generally limited
to 4MB. For time efficiency, the Value Mask introduces a checking on every access to the
tuple data. The cost is proportional to the number of data accesses. The Closed Mask
and Representative Tuple ID are both aggregated in the same way as the support. Thus,
the additional cost is proportional to the existing cost of aggregation. In a word, these
modifications do not introduce large space or time overheads.

The technique we use in C-Cubing(MM) is called Closed Checking, which means that we
check the closedness of a cell just before the output step. Correspondingly, when a new
partition (or child tree in Star-Cubing) is to be computed, if we can identify in advance that
all the cells which will be generated by this partition are not closed, then the whole partition
can be simply bypassed. We call this task as Closed Pruning. Obviously, closed pruning is
more promising. We will discuss how to achieve closed pruning with Star-Cubing in the next
section.

4 Closed StarCubing

We select Star-Cubing for closed cubing study because we believe tree-like data structure is
useful for closed pattern mining, since data are no longer individual tuples, but are organized
by trees, and their relationships can be partially implied by the tree structure. In this section,
we discuss closed iceberg cubing algorithm derived from Star-Cubing.

As seen in Section 2, Star-Cubing is inefficient in sparse data set due to the high cost
in the tree operations. To lift this restriction, we extend the original Star-Cubing algorithm
in two ways: First, we use a new data structure called StarArray to represent a cuboid
tree; second, we exploit a new computational order to generate child trees. Closed pruning
and checking methods are further applied on both the original Star-Cubing and extended
StarArray algorithms.

Before we discuss the detail of the algorithm, it is necessary to first clarify the related
terminology. In this paper, we use father and son when we refer to node, parent and child
when we talk about tree. A tree is called base tree if it contains all tuples with full dimensions.

4.1 StarArray

Star-Cubing algorithm uses the star tree to completely represent the whole data set. However,
it is quite clear that only upper-level nodes in the tree gain from the shared aggregation.
To avoid high maintenance cost in the lower level part, we introduce a hybrid structure,

9

StarArray. A StarArray is constituted by a couple 〈A, T 〉, where A is an array storing tuple
IDs, and T is a partial tree whose leaf nodes pointing to a continuous subpool of A. Different
from Star-Cubing where the nodes are constructed until the end of the dimension is reached,
in StarArray, when we find a node whose aggregation value is less than min sup, all the
subbranches below this node are truncated. Instead, the corresponding tuple IDs are copied
into A, and the leave node will have two pointers pointing to the start and end positions in
A.

Example 4 (Star Array) Given a data set (as in Fig. 1) and min sup(M = 3) for iceberg
cubing, the base StarArray and a child StarArray CDE/a1 created from node a1 are shown
as Fig. 1, each leaf node points to a sub pool of the array. The tuple IDs in the array are
partially ordered according to the remaining dimensions which were not shown in the tree.
For example, the c1 node in the base tree points to t1, t2, which are first ordered by dimension
D, then ordered by dimension E. Similarly, for the d1 node in CDE/a1 tree, t4 is placed
before t1 because of the ordering in dimension E.

a1

b1

c1 c2

b2

t1 t2 t3 t4 t5 t6

t4 t1 t2 t5 t3

t1 a1 b1 c1 d1 e2

t2 a1 b1 c1 d2 e2 1

t3 a1 b1 c2 d2 e1 1

t4 a1 b2 c1 d1 e1 1

t5 a1 b2 c2 d1 e1 1

t6 a2 b2 c3 d1 e1 1

 1

......

tid A B C D E Count

Root

a2

d1 d2

c2

CDE/a1

c1

.......

Figure 1: StarArray: The base tree and a child tree

4.2 MultiWay Traversal

Given the new StarArray data structure, we discuss how to efficiently create child trees from
a parent tree. One of the major benefit of Star-Cubing is using Multiway Aggregation, that
is, the parent tree only need to be traversed once to create all child trees. However, there
is a hidden overhead on traversing child trees multiple times in the process of its creation.

10

We propose a new method called Multiway Traversal, where the parent tree is traversed
multiple times(with one time for each child tree), but each child tree will be only traversed
once during the process of creation. We first explain how the multiway traversal works, then
show that in sparse data, the multiway traversal method is more efficient than multiway
aggregation.

In multiway traversal, child trees are created and aggregated one by one. Take the child
tree CDE/a1 in Fig. 1 as an example, this child tree is created by collapsing dimension B
under node a1 in the parent tree. In order to traverse CDE/a1 only once during its creation,
we need to know the final aggregate value of each node of CDE/a1 when they are first
created. The way to achieve it is to simultaneously traverse all branches starting from the
collapsed dimension in the parent tree. In Fig. 1, they are branches starting from nodes b1

and b2. These two depth-first traversals are synchronized so that they reach the nodes with
the same value at the same time. For example, when b1 traversal reaches c1 node, b2 traversal
gets a pool of tuple ID. Since all the tuple ID are ordered, b2 traversal is able to find the
subpool of c1 quickly by a simple sequential scan. The c1 node of CDE/a1 is constructed
and the aggregate value can be filled. If the aggregate value is no less than min sup, the
depth-first traversals will continue to look for d1. Again, the partial ordering property of
the tuple IDs will facilitate to get the aggregate value of d1 in b2 traversal. After creating d1

node in CDE/a1 child tree, the algorithm notices that the aggregate value is less than the
min sup, and node d1 in CDE/a1 is a leaf node, the corresponding tuple IDs are copied to
the tuple ID array of CDE/a1 child tree. These tuple IDs are sorted based on the partial
ordering on the dimension E. Because all these tuple ID pools are already partially ordered
in the parent tree, we use a multiway merge sort to reorder these pools. To get the partial
ordering on deeper dimensions, the merge sort is invoked recursively in a depth-first way.
For our particular situation, the cost of merge sort on each dimension is linear to the number
of tuples. Due to the size limitation, we do not discuss the detail of sorting in this paper.

We now compare the computational cost of multiway aggregation and multiway traversal.
Intuitively, in sparse data set, the size of child trees are relatively large since there are not
many shared values. The hidden cost to traversal the child tree multiple times would be
relatively high. We show that this is true by a detail comparison of the computational costs
of multiway aggregation and mutliway traversal.

For simplicity, we assume min sup is 1, so that every node in the parent tree (except
the nodes at the last two levels, which can be output directly) will create a child tree, and
the difference between tree and array can be ignored (since when min sup is 1, StarArray is
identical to a star tree). Consider a parent tree with depth k, root is at level 0, and leaves
are at level k. Assume that the number of nodes at level i are Ni, i = (0, 1, . . . , k), clearly,
N0 = 1. From the parent tree, we will construct N0 child trees with depth k−1 by collapsing
the first dimension; N1 child trees with depth k− 2 by collapsing the second dimension, and
so on. We use the tree size to estimate the traversal cost. Let Sp

i be the average size of
subtrees whose roots are at level i in the parent tree (i.e., Sp

0 is the full parent tree size, Sp
1

is the average size of subtrees rooted at the first level nodes). For each node at level i of the
parent tree, a child tree with average size Sc

i+1 will be created (i.e., Sc
1 is the size of the child

11

tree created by the root of the parent tree). Note the changes on footprint implies that one
dimension was collapsed.

In Star-Cubing, the multiple aggregation method traverses the parent tree once, the cost
is Sp

0 . For each i ∈ {0, 1, . . . , k − 2}, there will be Ni child trees. During the construction,
each child tree will be traversed k times, where k is the number of the nodes on the collapsed
dimension. On average, k = Ni+1

Ni
. Since the child tree is expanding, and the traversal cost

starts from Sp
i+1, and ends with Sc

i+1, we estimate the average cost as Si+1 =
Sp

i+1+Sc
i+1

2
. The

computational cost of multiway aggregation C(MA) is:

Sp
0 +

k−2∑
i=0

Ni × Si+1 ×
Ni+1

Ni

= Sp
0 +

k−1∑
i=1

Ni × Si

In StarArray, the multiple traversal method traverses the child tree once. For each child
tree, the cost is Sc

i , i ∈ {1, 2, . . . , k − 1}, the traversal cost on the parent tree is Sp
i−1.

Since there are Ni−1 number of child trees with size Sc
i , the computational cost of multiway

traversal C(MT) is:
k−1∑
i=1

(Ni−1 × (Sc
i + Sp

i−1))

The difference of these two, i.e., C(MT) − C(MA):

k−1∑
i=1

(Ni−1 × (Sc
i + Sp

i−1) − Ni × Si) − Sp
0

=
k−1∑
i=1

(Ni × Sp
i + Ni−1 × Sc

i − Ni × Si) − Nk−1 × Sp
k−1

≤
k−1∑
i=1

(2 × Ni × Sp
i − Ni × Si) − Nk−1 × Sp

k−1

Where the first equality is true because N0 = 1, the second inequality is true because
each child tree with size Sc

i is aggregated by Ni

Ni−1
number of subparent trees with size Sp

i ,

thus Sc
i is at most the sum of them (i.e., Sc

i ≤ Ni

Ni−1
× Sp

i).

In the case where the data set is sparse, the value Sp
i is much less than Sc

i (since there are
not many shared values during the aggregation), thus 2 × Sp

i
 Si. we conclude in sparse
data set, the multiway traversal is more efficient. Note this does not imply that in dense
data, the conclusion is true. In fact, later in the performance study, we will see that in dense
data set, multiway aggregation is better.

4.3 Closed Pruning by Closedness Measure

In Section 3, we have seen the closedness measure can be efficiently integrated into the
previous algorithms to get a closed version. Using the similar technique, we can aggregate

12

closedness measure in Star-Cubing. In this section, we first discuss how closedness measures
are computed, we then exploit more efficient methods by closed pruning.

Star-Cubing uses a tree structure where each node keeps the count measure, which corre-
sponds to the set of aggregated tuples. We add the closedness measure in each node. Initially,
every node in the base tree holds a closedness measure, which includes a couple Closed Mask
and Representative Tuple ID. Given a dimension order, each level of the tree corresponds to
one specific dimension. Assume the node under investigation is on level i (e.g., belong to
dimension i), then the Closed Masks from 1 to i bits are set as “1”, leaving the others as
“0”. For example, in Fig. 1, node c1 in the base tree has Closed Mask (1, 1, 1, 0, 0), which
means all the tuples aggregated to the node c1 (i.e., tuples t1 and t2) share the same value
on the first three dimensions. The representative tuple ID of c1 is chosen as t1. Note the
Closed Masks in nodes are partial in the way that they only keep the closed information
of the former dimensions, we adopt this approach for three reasons. First, the Star-Cubing
algorithm only outputs the cells at the last two levels, where the Closed Masks are either
complete (i.e., at the leaves) or easy to extend to a complete one (i.e., the last second level).
Internal nodes will never output a cell. Thus it is safe to allow a partial closed information.
Second, the closed information on the former dimensions can be got without additional work
(just following the tree structure), while the closed information on the later dimensions need
a tree traversal, which clearly has considerable overhead. Finally and most importantly,
partial closed information is already enough for closed pruning.

We show how the closedness measure is aggregated on trees. Similar to the All Mask in
Section 3.2, a Tree Mask is assigned on each tree. The tree mask contains D bits, where D is
the number of dimensions. The tree mask of the base tree has “0” on every bits. Whenever
there is a child tree created, it first inherits the tree mask of the parent tree, then switches
the bit on the collapsed dimension, from “0” to “1”. For example, in Fig. 1, the CDE/a1

child tree has tree mask (0, 1, 0, 0, 0), since the dimension B was collapsed. Assume node N
is aggregated by nodes Ni, i ∈ {1, 2, . . . , k}, we use the same notations as in lemma 3, that
is, C(Ni, d) is the closed mask on dimension d of node Ni, T (Ni) is the representative tuple
ID of node Ni, V (t, d) is the value of tuple t on dimension d, and Eq(x, y) = 1, if x = y;
otherwise, it is 0. We further define TM(d) is the value of tree mask on dimension d. We
have:

C(N, d) =

⎧⎪⎨
⎪⎩

∏k
i=1 C(Ni, d) if TM(d) = 0∏k
i=1 C(Ni, d) × Eq(|{V (T (Ni, d), 1 ≤ i ≤ k}|, 1)

otherwise

The above equation means: If TM(d) = 0, then dimension d is not a (previously) col-
lapsed dimension. We should reserve the partial closed mask to be consistent with tree
structure. If TM(d) = 1, and further if the Closed Masks of all nodes agree on dimension d
where they all have value “1”, we check the number of distinct values on dimension d. If it
is larger than 1, the corresponding bit is set to “0”; otherwise, the bit will be set as “1”. As
an example, the Closed Masks of node c1 and d2 of child tree CDE/a1 are (1, 0, 0, 0, 0) and
(1, 1, 1, 0, 0), respectively.

Based on the Closed Mask and Tree Mask, we have developed two lemmas to facilitate

13

the closed pruning.

Lemma 5 (Closed Pruning by Closed Mask) In closed cube computation, assume the Closed
Mask of a node is C, the Tree Mask is TM , if C&TM �= 0 (where & is a bitwise-and
operation), then all the cells which are output by the branches under this node or by the child
trees created from the branches under this node are non-closed. Particularly, if the node is
at the last level of the tree, the output is pruned.

Rationale. If C&TM �= 0, then there is at least one previously collapsed dimension (say
d), on which all the tuples aggregated to the current node share the same value vd. Since
this dimension has been collapsed, all the cells that will be output by the branch under the
current node or by child trees created from this branch (including current node) have value
∗ on the dimension d. However, for each such cell, there is at least a cell (i.e., the cell whose
value on the dimension d is vd) covers it. That is, all the cells are not closed. Hence, it is
safe to prune the unnecessary computation on the whole partition. Particularly, if the node
is at the last level of the tree, then the output cell is not closed.

Before we discuss the second pruning rule, we first introduce a special subtree structure,
Single Path. A Single Path is a branch of a tree where each node in the path has only one
son.

Example 5 (Single Path) In Fig. 2, a1b1 is a single path. c1 does not belong to the single
path, since c1 has two sons d1, d2.

.......

Root:6

a2:2a1:4

b1:4

c1:4

d1:2 d2:2

Figure 2: Closed Pruning by Single Path

Lemma 6 In closed cube computation, if a node belongs to a single path, then all the cells
which are output by the child tree created from this node are non-closed. Particularly, if the
node is at the last second level, then the output is pruned.

Rationale. New child tree created from a node F is obtained by collapsing its son nodes. If a
node belongs to a single path, then this node has only one son S. Assume the corresponding
dimension is ds, the tree mask of the new child tree on bit ds will be set as “1”. On the
other hand, all the nodes in the new child will share the same value on dimension ds, that
is, the ds bit of their closed mask will be set as “1”, according to Lemma 5, all the nodes in
the child tree will be pruned.

14

Since we do closed pruning on all output levels, the closed checking is complete. The
possible efficiency comes from the closed pruning of internal nodes. We have applied the
above closed pruning method to both the original and the extended Star-Cubing. The two
new algorithms are named as C-Cubing(Star) and C-Cubing(StarArray), respectively.

5 Performance Analysis

To check the efficiency and scalability of the proposed algorithm, a comprehensive perfor-
mance study is conducted by testing our implementations of Closed Iceberg Cubing. We
compare the new methods with QC-DFS, which, to our knowledge, is the best available
method on closed cubing. C-Cubing(MM), C-Cubing(Star), and C-Cubing(StarArray) were
coded using C++, the QC-DFS was provided by the author of [10]. The experiments were
carried out on an Intel Pentium-4 3.2GHz system with 1G of RAM running windows XP.
The times recorded include both the computation time and the I/O time. Similar to other
performance studies in cube computation [22, 3, 8, 20, 14], all the tests used the data set
that could fit in main memory.

We have conducted experiments on both synthetic and real datasets. In the synthetic
experiment part, D denotes the number of dimensions, C the cardinality of each dimension,
T the number of tuples in the base cuboid, M the minimum support level, and S the skew
or zipf of the data. When S equals 0.0, the data is uniform; as S increases, the data is
more skewed. S is applied to all the dimensions in a particular data set.

In the real experiment part, we use the weather dataset SEP83L.DAT in [7], which has
1,002,752 tuples with selected 8 dimensions. The attributes (cardinalities) are as follows:
year month day hour (238), latitude (5260), longitude (6187), station number (6515), present
weather(100), change code (110), solar altitude (1535) and relative lunar illuminance (155).

5.1 Computing Full Closed Cube

The first set of experiments compare four algorithms, i.e., C-Cubing(MM), C-Cubing(StarArray),
C-Cubing(Star) and QC-DFS, for full closed cube computation (i.e., min sup = 1). The per-
formance of the four algorithms are compared with respect to tuple size (Fig. 3), dimension
(Fig. 4), cardinality (Fig. 5), skewness (Fig. 6), and the weather data set (Fig. 7), where
C-Cubing(MM)is denoted as CC(MM), etc.

In the first experiment, we randomly generated data sets with 10 dimensions, varying the
number of tuples from 200K to 1000K. In the second experiment, we varied the dimensions
of the data from 6 to 10. The third experiment tests the performance while the cardinalities
of each dimension are increased from 10 to 1000. We further tune the data skew from 0 to
3 in experiment 4. The tuple size for latter four datasets was 1000K. Finally, we test on
weather data by selecting the first 5 to 8 dimensions.

The experimental results are shown in Figures 3–7. There are three main points that
can be taken from these results. First, all the three new algorithms that use aggregation-
based closed checking are consistently more efficient than QC-DFS, on both synthetic and

15

 500

 100

 10
 1000 800 600 400 200

R
un

ni
ng

 T
im

e
(S

)

Tuples (K)

CC(MM)
CC(Star)

CC(StarArray)
QC-DFS

Figure 3: Closed
Cube Computation
w.r.t. Tuples, where
D = 10, C = 100, S =
0, M = 1

 500

 100

 50

 10

 10 9 8 7 6

R
un

ni
ng

 T
im

e
(S

)

Dimension

CC(MM)
CC(Star)

CC(StarArray)
QC-DFS

Figure 4: Closed
Cube Computa-
tion w.r.t. Di-
mension, where
T = 1000K, S =
2, C = 100, M = 1

 1000

 500

 100

 50

 10000 1000 100 10

R
un

ni
ng

 T
im

e
(S

)

Cardinality

CC(MM)
CC(Star)

CC(StarArray)
QC-DFS

Figure 5: Closed
Cube Computa-
tion w.r.t. Car-
dinality, where
T = 1000K, D =
8, S = 1, M = 1

 500

 100

 50

 10

 3 2 1 0

R
un

ni
ng

 T
im

e
(S

)

Skew

CC(MM)
CC(Star)

CC(StarArray)
QC-DFS

Figure 6: Closed
Cube Computation
w.r.t. Skew, where
T = 1000K, C =
100, D = 8, M = 1

 1000

 500

 100

 50

 10

 8 7 6 5

R
un

ni
ng

 T
im

e
(S

)

Dimension

CC(MM)
CC(Star)

CC(StarArray)
QC-DFS

Figure 7: Closed
Cube Computation
w.r.t. Dimension,
Weather Data Set,
M = 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 16 8 4 2

R
un

ni
ng

 T
im

e
(S

)

Minsup

CC(MM)
CC(Star)

CC(StarArray)

Figure 8: Closed
Iceberg Cube Com-
putation w.r.t.
Minsup, where
T = 1000K, C =
100, S = 0, D = 8

 0

 10

 20

 30

 40

 50

 3 2 1 0

R
un

ni
ng

 T
im

e
(S

)

Skew

CC(MM)
CC(Star)

CC(StarArray)

Figure 9: Closed Ice-
berg Cube Computa-
tion w.r.t. Skew, where
T = 1000k, D =
8, C = 100, M = 10

 0

 50

 100

 150

 200

 10000 1000 100 10

R
un

ni
ng

 T
im

e
(S

)

Cardinality

CC(MM)
CC(Star)

CC(StarArray)

Figure 10: Closed
Iceberg Cube Com-
putation w.r.t. Cardi-
nality, where T =
1000K, D = 8, S =
1, M = 10

 0

 10

 20

 30

 40

 50

 60

 16 8 4 2

R
un

ni
ng

 T
im

e
(S

)

Minsup

CC(MM)
CC(Star)

CC(StarArray)

Figure 11: Closed
Iceberg Cube Com-
putation w.r.t. Min-
sup, Weather Data
Set, D = 8

 2

 4

 6

 8

 10

 12

 3 2 1 0

R
un

ni
ng

 T
im

e
(S

)

Data Dependence

CC(MM)
CC(Star)

Figure 12: Cube
Computation w.r.t.
Data Dependence,
where T = 400K,D =
8, C = 20, S =
0, M = 16

 5

 10

 15

 20

 25

 3 2 1 0

C
ub

e
S

iz
e

(M
B

)

Data Dependence

Closed Iceberg Cube
Iceberg Cube

Figure 13: Cube
Size w.r.t. Data De-
pendence, where T =
400k, D = 8, C =
20, S = 0, M = 16

 1

 10

 100

 1000

 64 16 4 1

C
ub

e
S

iz
e

(M
B

)

Minsup

Closed Iceberg Cube
Iceberg Cube

Figure 14: Cube Size
w.r.t. Minsup, where
T = 400k, D = 8, C =
20, S = 0, R = 2

16

 256

 64

 16

 4

 1
 3 2 1 0

M
in

su
p

Data Dependence

CC(MM)
CC(Star)

Figure 15: Best Al-
gorithm, Varying Min-
sup and Dependence,
where T = 400k, D =
8, C = 20, S = 0

 1

 10

 100

 32 16 8 4 2 1

R
un

ni
ng

 T
im

e
(S

)

Minsup

CC(MM)
MM

Figure 16: Over-
head of Closed Check-
ing (MMClose) w.r.t.
Minsup, Weather Data
Set, where D = 8

 5

 10

 15

 20

 25

 30

 32 16 8 4 2 1

R
un

ni
ng

 T
im

e
(S

)

Minsup

CC(StarArray)
StarArray

Figure 17: Bene-
fits of Closed Prun-
ing (StarArray) w.r.t.
Minsup, Weather Data
Set, Where D = 8

 0

 5

 10

 15

 20

 25

 30

 256 64 16 4 1

R
un

ni
ng

 T
im

e
(S

)

Minsup

Entropy
Card
Org

Figure 18: Cube
Computation (StarAr-
ray) w.r.t. Dimension
Order, where T =
400K,D = 8, C =
10, 1000, S = 0, 1, 2, 3

real datasets. C-Cubing(Star) and C-Cubing(StarArray) achieve better performance comparing
with C-Cubing(MM) because the Star family algorithms exploit more closed pruning.

Second, when the cardinality is relatively low, C-Cubing(Star) performs better than
C-Cubing(StarArray). However, when the cardinality increases, C-Cubing(StarArray) becomes
better. This is consistent with our analysis in Section 4. In low cardinality, multiway ag-
gregation in C-Cubing(Star) is promising, while in high cardinality, multiway traversal of
C-Cubing(StarArray) is better. QC-DFS performs much worse in high cardinality because the
counting sort costs more computation.

Third, all the algorithms get performance improvements as the skew increases. C-Cubing(MM)
benefits from the nonuniform distribution where the dense and sparse spaces are easier to be
identified. The two Star-Cubing-based algorithms, C-Cubing(Star) and C-Cubing(StarArray),
are faster because the tree structure shares more computation in the dense parts of the data,
and closed pruning is more effective in sparse parts.

5.2 Closed Iceberg Cubing

The second set of the experiments compare the performances of closed iceberg cubing (Fig.
8–11). We are not able to compare with QC-DFS in this section since QC-DFS did not
implement iceberg cubing in their system. Moreover, the previous works [20, 14] already
reported that, in iceberg cubing, MM-Cubing and Star-Cubing outperform BUC, from which
QC-DFS is derived. The curves in the last subsection also clearly demonstrated our methods
are more efficient while taking full closed cubing into consideration.

The performance is compared with respect to min sup, data skew and cardinality in
synthetic data. The data set used in Fig. 8 had 1M tuples with 8 dimensions and 0 skew.
The min sup is increased from 2 to 16. The parameter of data sets in Fig. 9 is the same
as Fig. 8, except the skew is varied from 0 to 3. The cardinalities are increased from 10 to
10000 in Fig. 10.

We can see that C-Cubing(MM) performs better when min sup increases. This is because
the iceberg pruning gets more effective. The factor of closed pruning is decreasing since some

17

of the closed cells are ruled out by iceberg condition. Fig. 11 uses the same weather data
with 8 dimensions. It is observed that the switching point between C-Cubing(MM) and the
Star family algorithms in this experiment is higher than those in the synthetic datasets.

Comparing with the results in the last subsection, we have seen a totally different behavior
of the algorithms. Generally speaking, Star family algorithms work well while min sup is
low. They are outperformed by C-Cubing(MM) as the min sup increases. We are interested
in where are the switching points and how the properties of the data set affect the switching
points. We conducted another group of experiments for this purpose.

5.3 Closed Pruning vs. Iceberg Pruning

In this subsection, we first generalize the observations in the last two sections, which leads to
an important data set property: data dependence. We then show how the data dependence
will affect the performance of the algorithms.

Closed cells imply the dependence of the values on different dimensions. For example,
if cell cell1 = (a1, b1, c1) is closed and it covers cell cell2 = (a1, b1, ∗), then there exists a
dependence rule: (a1, b1) → c1. Most data sets in our experiments are very sparse, that is,
the feature space size (by multiplying all the cardinalities) is much larger than the number
of tuples. Sparse data sets contain lots of trivial closed cells whose support is 1. Trivial
closed cells play an important role when min sup is 1, however, when min sup increases,
these trivial closed cells are already pruned by iceberg conditions. Generally, the closed
pruning is more effective when the dependence in the data is higher, since more closed cells
will “survive” from the iceberg pruning.

To verify this hypothesis, we incorporate data dependence into our synthetic data gener-
ation. The data dependence is modeled as rules. An example of rule is as discussed above:
(a1, b1) → c1, which means that if a1 appears on dimension A, and b1 appears on dimension
B, then the value on dimension C will be fixed to c1. This kind of rules exists widely in real
database. For example, in weather data, when a certain weather condition (a1) appears at
the same time of the day (b1), there is always a unique value for solar altitude (c1).

Each rule corresponds to a pruning power, which means how many cells will be pruned
by this rule. Assume the original cube size is S, the portion which contains a1 and b1 has
an estimated size S

Card(A)×Card(B)
. Further dividing the portion by the value on dimension

C results in Card(C) + 1 classes, which have the form of (a1, b1, ∗, . . .), (a1, b1, c1, . . .), . . . ,
(a1, b1, cCard(C), . . .). After applying the rule (a1, b1) → c1, only cells (a1, b1, c1, . . .) left.

Thus the pruning power of this rule is estimated by Card(C)
Card(A)×Card(B)×(Card(C)+1)

. The pruning
power of a set of rules is evaluated by accumulating their individual pruning power. And the
data dependence R is measured as R = −∑n

i=1 log(1 − pruning power(rulei)). The larger
the value of R is, the more dependent is the dataset.

To compare the closed pruning and iceberg pruning, we run a set of experiments by vary-
ing data dependence R and min sup. Fig. 12 shows the performances of C-Cubing(MM) and
C-Cubing(Star) with respect to the value of R. The data has 400K tuples with 8 dimensions,
each having cardinality 20, and min sup is 8. Fig. 13 is the corresponding sizes of iceberg

18

cubes and closed iceberg cubes. The larger the difference of iceberg cubes and closed iceberg
cubes, the more significant the closed pruning. To compare the closed pruning and iceberg
pruning with respect to min sup, we fixed R = 2, varying min sup from 1 to 64, the size of
the cubes are shown in Fig. 14. In this case, we see that the iceberg pruning becomes the
dominating factor when min sup is high.

Fig. 15 shows a more comprehensive study on the algorithm performance w.r.t. R and
min sup, while the other parameters of the data are kept the same as above. The value
of R is varied from 1 to 3, while the value of min sup is increased from 1 to 512. For a
given parameter set, the ID of the best algorithm is plotted. Since the test data sets have
relatively low cardinality, C-Cubing(Star) performs better than C-Cubing(StarArray). We can
expect that if the cardinality is large, C-Cubing(StarArray) will be better.

It is clear that the performance of C-Cubing(MM) and the Star family are correlated to
the extent that closed pruning can be achieved with respect to the iceberg pruning . The
Star family algorithms are promising when the closed pruning is comparatively large, and
C-Cubing(MM) is better when the iceberg pruning dominates.

5.4 Overhead of Closed Checking

In this section, we examine the overhead of our closed checking method. There are additional
costs to aggregate the closedness measure, but we will show that it is not a major expense
in the context of computing the closed iceberg cube. Furthermore, the closed pruning in
C-Cubing(Star) and C-Cubing(StarArray) actually reduces the overall computational cost.

We compare C-Cubing(MM) and C-Cubing(StarArray) with MM-Cubing and the non-closed
version of StarArray, respectively. The output was disabled, so the difference on I/O is elim-
inated. We tested all the algorithms on the weather data. Fig. 16 shows the comparison on
C-Cubing(MM) and MM-Cubing. To our surprise, C-Cubing(MM) performs better than MM-
Cubing in low min sup. This is because a simple optimization is exploited in C-Cubing(MM):
When a subspace whose size is equal to the min sup is found, C-Cubing(MM) will directly
output the closed cell, while MM-Cubing will enumerate all the combinations (though they
are not output). When the min sup is high, MM-Cubing performs better, but the overhead
of C-Cubing(MM) is within 10% of the total time.

Fig. 17 shows the performance of C-Cubing(StarArray), the closed version runs faster than
the non-closed version, especially when min sup is low, since at that time the closed pruning
is more effective.

5.5 Dimension Ordering

Since C-Cubing(MM) does not follow a specific dimension order, it is not sensitive to dimen-
sion ordering. However, for C-Cubing(Star) and C-Cubing(StarArray), they obey the dimen-
sion order throughout the computation, it is worth to exploit a heuristic for efficient iceberg
pruning.

The well-known strategy is to order the dimensions in cardinality descending order. We
propose another ordering strategy based on data distribution. Think about a data set whose

19

dimensions have the same cardinality but have different skews. In this case, obviously the
ordering should be determined by the skews. We use entropy, instead of cardinality, to order
the dimension. The entropy for a dimension A is defined as:

Entropy(A) = −
Card(A)∑

i=1

(
|ai|

|tuples|) × log(
|ai|

|tuples|)

where |ai| is the number of tuples whose value on dimension A is ai. Ignoring the constant
items, we will compare a measure E:

E(A) = −
Card(A)∑

i=1

|ai| × log(|ai|)

for all the dimensions.
The more uniform the value distribution on the dimension, the larger the entropy value,

thus we order the dimension in measure E descending order. Fig. 18 shows the performance
difference on a data set with 8 dimensions: four of them have cardinalities 10 with different
skews (0, 1, 2, 3), the other four have cardinalities 1000 with different skews (0, 1, 2, 3). We
vary min sup from 10 to 1000. Org is the original dimension order, Card is cardinality
descending order, and Entropy represents the order we discussed above. The results show
that ordering by entropy gets considerable improvement.

In summary, we have systematically tested three closed iceberg cubing algorithms: C-Cubing(MM),
C-Cubing(Star), and C-Cubing(StarArray), with the variations of cardinality, skew, min sup,
and data dependence. The Star family algorithms perform better when min sup is low.
C-Cubing(MM) is good when min sup is high. The switching point of min sup increases with
the dependence in the data: High dependence incurs more closed pruning, thus it benefits the
Star algorithms. Comparing C-Cubing(Star) and C-Cubing(StarArray), the former is better if
the cardinality is low; otherwise, C-Cubing(StarArray) is better.

6 Discussions

In this section, we will discuss a few issues related to closed cubing and point out some
research directions.

6.1 Closed Cube with Complex Measures

Throughout the paper, we have used count as the measure. For iceberg cubing, complex mea-
sures such as average can be easily incorporated into our algorithm, based on the technique
proposed in [8].

For closed cubing, the closed pruning and checking method on count can play the basic
role in the computation. Lemma 1 implies that closed cube on measure count is the baseline
of any other measures. For example, given any complex measure, we attach count as the
auxiliary measure, we then check closedness with respect to count instead of the given

20

measure. The result cube will not miss any closed cells (though may not be optimal). If
the measure is strictly monotonic or anti-monotonic, the closed pruning and checking by
measure count is complete.

6.2 Mining Closed Rules

Theoretically, the closed cube losslessly compresses the original cube. However, to build
an efficient index structure of the cube (i.e., QC-Tree [10]), additional information may be
required. Instead of generating lower bounds for each closed cell as in [10], we recommend
to compute the closed rules. A closed rule has the form of ac1, ac2, . . . , aci → at1, at2, . . . atj,
where ack (k ∈ {1, 2, . . . , i}) and atk (k ∈ {1, 2, . . . , j}) are non-∗ values, c1, c2, . . . , ci are
the condition dimensions, and t1, t2, . . . , tj are the target dimensions. A closed rule means
that if a cell having value ack on dimension ck (k ∈ {1, 2, . . . , i}), then on dimension tk
(k ∈ {1, 2, . . . , j}), it must have value atk.

The benefit of rule generations is that it yields a more compact result comparing with the
lower-bound approach, since there are many lower-bound and upper-bound pairs sharing
the same closed rule. For example, in the 8-dimension weather data, we run the experiment
with minsup 10. While there are 462k closed cells, we can get a number of 57k closed rules,
which is less than 15% of the cube size.

6.3 Handling Large Databases

All the data sets used in our experiments can fit in main memory. One may wonder what
may happen if the dataset cannot fit in memory. The issue of handling large database
with Star-Cubing was discussed in [20]. We can follow the same approach in C-Cubing(Star)
since the closedness checking does not introduce additional constraints. The idea is to first
scan and partition the data set into separate smaller data files based on the values in one
dimension, and then compute the partitions one by one. When it finishes computing the
first partition, the released memory will be used to compute the next partition, and so on.

7 Conclusions

For efficient computation of closed (iceberg) cubes, we have proposed an aggregation-based
closedness checking approach, C-Cubing. With this approach, we proposed and implemented
three algorithms: C-Cubing(MM), C-Cubing(Star) and C-Cubing(StarArray). All the three
algorithms outperform the previous approach. Among them, we have found C-Cubing(MM)
is good when iceberg pruning dominates the computation, whereas the Star family algorithms
perform better when closed pruning is significant.

References

[1] E. Baralis et al. Materialized View Selection in a Multidimensional Database. VLDB’97.

21

[2] D. Barbara et al. Quasi-cubes: Exploiting approximation in multidimensional database. SIG-
MOD Record, 26, 1997.

[3] K. Beyer and R. Ramakrishnan. Bottom-Up Computation of Sparse and Iceberg Cubes. SIG-
MOD’99.

[4] Y. Chen et al. Multi-Dimensional Regression Analysis of Time-Series Data Streams. VLDB’02.

[5] J. Gray et al. Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-
Tab, and Sub-Totals. Data Mining and Knowledge Discovery, 1, 1997.

[6] H. Gupta et al. Index Selection of OLAP. ICDE’97.

[7] C.J. Hahn et al. 1994: Edited Synoptic Cloud Reports from Ships and Land Stations Over the
Globe, 1982-1991. (http://cdiac.ornl.gov/ftp/ndp026b/)

[8] J. Han et al. Efficient Computation of Iceberg Cubes with Complex Measures. SIGMOD’01.

[9] L. Lakshmanan et al. Quotient Cubes: How to Summarize the Semantics of a Data Cube.
VLDB’02.

[10] L. Lakshmanan et al. QC-Trees: An Efficient Summary Structure for Semantic OLAP. SIG-
MOD’03.

[11] X. Li et al. High-Dimensional OLAP: A Minimal Cubing Approach. VLDB’04.

[12] R. Ng et al. Exploratory Mining and Pruning Optimizations of Constrained Associations Rules,
SIGMOD’98.

[13] J. Shanmugasundaram et al. Compressed Data Cubes for OLAP Aggregate Query Approxi-
mation on Continuous Dimension. KDD’99.

[14] Z. Shao et al. MM-Cubing: Computing Iceberg Cubes by Factorizing the Lattice Space. SS-
DBM’04

[15] A. Shukla et al. Materialized View Selection for Multidimensional Datasets. VLDB’99.

[16] Y. Sismanis et al. Dwarf: Shrinking the PetaCube. SIGMOD’02.

[17] J. Vitter et al. Data Cube approximation and Histograms via Wavelets. CIKM’98.

[18] W. Wang et al. Condensed Cube: An Effective Approach to Reducing Data Cube Size.
ICDE’02.

[19] J. Wang et al. Closet+: Searching for the Best Strategies for Mining Frequent Closed Itemsets.
KDD’03.

[20] D. Xin et al. Star-Cubing: Computing Iceberg Cubes by Top-Down and Bottom-Up Integra-
tion. VLDB’03.

[21] M. Zaki and C. Hsiao. Charm: An Effcient Algorithm for Closed Association Rule Mining.
SDM’02.

[22] Y. Zhao et al. An Array-Based Algorithm for Simultaneous Multidimensional Aggregates.
SIGMOD’97.

22

