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ABSTRACT
Microprocessor design complexity is growing rapidly. As a result,
current development costs for top of the line processors are stagger-
ing, and are doubling every 4 years. As we design ever larger and
more complex processors, it is becoming increasingly difficult to es-
timate how much time it will take to design and verify them. To com-
pound this problem, processor design cost estimation still does not
have a quantitative approach. Although designing a processor is very
resource consuming, there is little work measuring, understanding,
and estimating the effort required.

To address this problem, this paper introduces µComplexity,
a methodology to measure and estimate processor design effort.
µComplexity consists of three main parts, namely a procedure to ac-
count for the contributions of the different components in the design,
accurate statistical regression of experimental measures using a non-
linear mixed-effects model, and a productivity adjustment to account
for the productivities of different teams. We use µComplexity to eval-
uate a series of design effort estimators on several processor designs.
Our analysis shows that the number of lines of HDL code, the sum
of the fan-ins of the logic cones in the design, and a linear combi-
nation of the two metrics are good design effort estimators. On the
other hand, power, area, frequency, number of flip-flops, and num-
ber of standard cells are poor estimators of design effort. We also
show that productivity adjustments are necessary to produce accurate
estimations.

1 Introduction
While the ability to fabricate ever larger and denser circuits is
still increasing as predicted by Moore’s Law, the semiconduc-
tor industry is facing several serious challenges. One of them
is the cost of new processor development. Current develop-
ment costs for top of the line processors are staggering, and are
doubling every 4 years [14]. Another challenge is the growing
difficulty to correctly design and verify the circuits — which
has been called the Design and Verification Gaps [5]. As a
result, according to the ITRS 2002 update [5], “the increas-
ing level of risk that design cost and design quality present to
the continuation of the semiconductor industry” is of serious
concern.

The main cause of these two problems is the growing com-
plexity of designs. Designing a top of the line commodity
processor requires large teams of engineers working for sev-
eral years designing, implementing, and verifying the circuits.
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Ironically for such a resource-intensive endeavor, there is little
systematic work (at least in the public domain) on measuring,
understanding, and estimating the effort required by each step
in this process. If effort estimates were available early in the
design process, they would help identify the critical paths in
the whole design process, thus allowing resources to be more
effectively allocated and procured.

In this paper, we take a first step toward developing a
methodology for measuring and estimating processor design
effort. Our focus is the effort in person-months required to
implement and verify the RTL description of the design. We
propose a novel methodology called µComplexity, which con-
sists of three parts: a procedure to account for the contributions
of the different components of the design, accurate statistical
regression of experimental measures using a nonlinear mixed-
effects model, and a productivity adjustment to account for the
productivities of different design teams.

This paper also applies the µComplexity methodology to
several freely-available processor designs, and evaluates the
accuracy of a series of design effort estimators. These esti-
mators are based on design synthesis and software metrics.
Our results show that the number of lines of Hardware Design
Language (HDL) code, the sum of the fan-ins of logic struc-
tures, and a linear combination of these two metrics are simple,
good estimators of design effort. On the other hand, dynamic
or static power, logic or storage area, frequency, number of
flip-flops and, somewhat surprisingly, the number of standard
cells, are inaccurate estimators of design effort. The evaluation
quantifies the accuracy of each of the estimators.

The rest of the paper is organized as follows. Section 2 de-
scribes the µComplexity methodology; Section 3 describes the
statistical techniques that allow us to calibrate and evaluate the
µComplexity regression model; Section 4 describes the setup
for our evaluation; Section 5 evaluates each of the designs;
Section 6 covers related work; and Section 7 presents conclu-
sions and future work.

2 µComplexity: Estimating Design Effort
µComplexity is a methodology to measure and estimate the
design effort in person-months required for a processor.
µComplexity comprises three components. The first one is an
accounting procedure whereby the design is partitioned into
disjoint modules that can be measured individually. A quan-
tification for the entire processor is obtained by aggregating



all the module measurements. The second component is the
application of statistical regression to these design measures
to obtain an unscaled estimate of the design effort. The final
component is the multiplication of this unscaled effort by a
productivity factor to obtain the estimation of the design effort
for a given design team.

In the following subsections, we first review a typical design
flow and define the design effort that we are trying to estimate.
Next, we discuss the three-component µComplexity method-
ology in detail. Finally, we examine some concerns about the
methodology.

2.1 Design Effort Defined

The processor development timeline can be broken down into
several overlapping stages as shown in Figure 1. Note that the
duration of the different stages is not drawn to scale. The fig-
ure also shows an approximation of the size of the engineering
team working on the project during each stage.
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Figure 1: Processor development timeline with the size of the
engineering team. Note that the timeline is not drawn to scale.

In the High-Level Design stage, architects perform func-
tional simulation and power estimation of multiple candidate
designs. Based on that, they select one microarchitecture and
produce a complete functional and interface description of
each of its components. Examples of such components are
the branch predictor, load-store queue, or floating-point unit.
These components are then assigned to engineering teams for
implementation.

In the RTL Implementation stage, engineering teams imple-
ment their assigned components in an HDL such as VHDL
or Verilog. They continue refining the description until they
reach an RTL-level implementation, which can be automat-
ically translated to a gate-level netlist. Functional bugs are
fixed as the verification teams discover them. Synthesis is per-
formed to ensure that the timing, area, and power goals are
being met.

In the RTL Verification stage, engineers create test cases
to verify the functionality of individual components and of
the whole chip. They perform cycle-accurate simulations and
compare the results with the expected values. At this point,
the verification team is only concerned with the functional cor-
rectness of the design — whether it produces correct answers
in a logic-level simulation. Circuit-level verification, in which
electrical and timing parameters are verified, comes later. RTL
verification is complete when the number of outstanding bugs

reaches zero and stays there for a pre-agreed amount of time.
In the Place and Route stage, the synthesized netlist is phys-

ically placed within the chip-defined core area based on tim-
ing constraints. During the placement phase, gates are resized
and some additional logical optimization may be performed.
After the initial placement, the routing phase will occur and,
if needed, minor placement changes will be made. Once the
design is successfully placed and routed, clock tree synthesis
happens, whereby the clocks in the design have their buffer
trees placed and routed.

Finally, in the Timing Closure stage, engineers perform tim-
ing analysis of the gate-level implementation to determine the
maximum clock speed of the design and to identify critical
paths. A redesign may be required which could involve RTL or
placement–and–route changes. A refine–test–refine loop ex-
ists between the Place-and-Route and Timing Closure stages.

As shown in Figure 1, the focus of this paper is the period
that includes both the RTL Implementation and the RTL Ver-
ification stages. We define Design Effort as the number of
person-months spent implementing the description of the pro-
cessor in a hardware design language such as VHDL or Ver-
ilog, refining it to an RTL description, and verifying the latter
for functional correctness. We exclude any additional time re-
quired to revise the design later, during the Timing Closure
process. While the period considered excludes some design
time, we believe that it includes the bulk of it.

2.2 Accounting Procedure

To estimate the overall design effort, estimates of the effort
for each component are obtained, and then added into a com-
pounded index. However, components may be instantiated
several times through the design. Some components may also
be parameterized, and different-sized instances could be gen-
erated. Parameters could be the width of the input or output
buses, queue depth, or pipeline depth. To address these cases,
we use the following two rules.

Account for a single instance of each component. When
a design reuses a component (e.g., an ALU), we only count
the design effort of one instance of it. The rationale is that,
in accordance with the principles of modular design, the effort
required to design and verify the component is a one-time cost.
Once the component is designed and verified, it can be re-used
elsewhere with negligible effort.

Minimize the value of component parameters. To esti-
mate the design effort of a parameterized component, we set
each parameter to the minimal value that does not result in a
degenerate case. We refer to this minimization of parameters
as scaling. The rationale is that, while different parameter val-
ues can drastically change the size of the component instance
(in terms of chip area or number of gates), it is not much harder
to write parameterized code than it is to write code for the
smallest nontrivial instance.

More formally, consider a VHDL description where the
parameterized component is implemented with GENERATE
loops. We select for each parameter the smallest value that
does not cause any loops or conditional statements in the
RTL description to be optimized away by traditional program



analysis techniques such as constant propagation and dead
code elimination. The process for Verilog is more difficult
to formalize because Verilog did not have an equivalent of
the GENERATE construct until Verilog-2001 was introduced.
However, the determination of what constitutes the minimal
non-degenerate parameterization is conceptually the same.

2.3 Design Effort Estimator

There are multiple metrics that may be related to design effort.
Examples include the number of logic gates or the number of
HDL lines in the design description. Consequently, for each
component in the design (subject to the constraints of Sec-
tion 2.2), we measure these metrics. Then, we select a single
metric or a set of metrics (e.g., the number of gates and the
number of HDL lines) and use statistical regression [15] to find
how well they correlate with the person-months design effort
reported by the processor designers. For each set of metrics
m1, m2, . . . mn, we find the best values for the coefficients
w1, w2, . . . wn in Equation 1. The result is a Design Effort
Estimator (eff):

eff =
1
ρ
×

n∑
k=1

(wk ×mk) (1)

The regression model used is described in Section 3. In the
equation, ρ is the productivity factor for the design team. It
allows the same set of coefficients wk to be used in different
projects. The rationale for ρ is discussed next.

2.4 Productivity Adjustment

In software development projects, it is well known that dif-
ferent development teams have different productivities. For
example, it has been shown that the productivity difference
between teams can be up to an order of magnitude [9]. We
believe that a similar effect occurs between hardware design
teams. The productivity differences may be due to multiple
factors, including the average experience of the designers in
the team and the tools used. In our analysis, ρ captures this
effect.

2.5 Issues

Ideally, we would like to use design effort estimators as soon
as possible in the processor design timeline. The earlier the
estimations can be made, the more useful they are likely to be.
Early estimation presents two challenges: how to adjust the
coefficients wi shown in Equation 1 and how to ensure that the
values of the early metrics remain relevant (and valid) at later
stages of the design. We address the first challenge in Sec-
tion 3.1.1. We address the second one by using metrics whose
value changes little from initial stages of the design until com-
pletion of the RTL implementation and verification. Specifi-
cally, the metrics analyzed in this paper can be measured once
a module has been designed and before it starts to be verified.
This corresponds to the point shown with an arrow in Figure 1,
which is often 1 to 2 years before completing the RTL verifica-
tion. The values of the metrics remain largely unchanged until

the end of RTL verification. The exception is if the verification
finds substantial bugs that require a major re-design.

One potential objection to our accounting procedure is that
counting each component only once regardless of its number
of instances may not be appropriate. For example, at a very
low level, we could consider that the entire processor is made
out of logic gates, and that there are only a dozen or so types
of gates. The analysis would clearly be inaccurate. However,
at the high level of the functional components that we are dis-
cussing, the count-only-one heuristic is appropriate. Anyway,
any given component is likely to have fewer than ten instances.
At this level, scaling the effort estimate linearly with the num-
ber of instances does not seem appropriate.

In our discussion of parameter scaling in section 2.2, we ar-
gued that writing code for a parameterized component is no
more difficult than writing code for the smallest nontrivial in-
stance of it. In practice, however, the parameter values cho-
sen for a given instance may affect the number of test vectors
required for verification and, therefore, the verification time.
For example, model checking and automatic theorem-proving
tools may require more time to run with larger parameter val-
ues, since the size of the state space may be larger. However,
this issue could be addressed, at least conceptually, by allocat-
ing more computational resources to the verification budget —
not more engineer-hours.

The parameter scaling rule has another undesirable conse-
quence. Specifically, varying the value of certain parameters
may have implications on the difficulty of timing closure and,
therefore, on the number of RTL redesign iterations. An ex-
ample is the degree of associativity of a time-critical structure:
higher associativity may make it hard to perform timing clo-
sure and may induce several redesigns. This issue suggests
the need for future design effort estimators that are aware of
back-end physical design and timing concerns.

Finally, our analysis has implicitly assumed that each com-
ponent in the design is implemented from scratch. In practice,
components are sometimes reused from older designs, often
with little modifications. Integrating a reused component in-
curs some design effort, even if it requires no modification at
all. The software engineering literature has discussed effort
estimation for reused components [6]. We regard the study of
reuse in hardware as a subject for future work.

3 Regression Model
As indicated in Section 2.3, given a set of metrics m1, m2,
. . . mn, the goal of the regression procedure is to find the w1,
w2, . . . wn values for Equation 1 that provide the best fit for the
person-months design effort reported by the designers. Each
component in the design for which we know the design effort
(e.g., fetch unit or load-store queue), is a data point consisting
of the reported design effort and the measured metrics. The
more data points we have, the more precise the determination
of wk will be.

The data points for this paper come from several small
projects implemented by unrelated design teams at different
times. Consequently, in addition to the usual statistical varia-
tion across data points, there is variation across teams. In sta-



tistical terms, this forces us to introduce a per-project random
effect (represented by the productivity ρ). Therefore, we use a
nonlinear mixed-effects model [19], which is able to deal with
both fixed and random effects better than more conventional
linear methods [8, 15].

In the following, we describe the mixed-effects model that
we use and then consider what would happen if we attempted
to fit a simpler model without productivity adjustments.

3.1 A Nonlinear Mixed-Effects Model

When we use Equation 1 with data from multiple projects, we
have one data point for each component j designed in project
i. The estimated design effort effij is given by Equation 2.
Note that for each component j from project i, we have a set
of n metrics mijk. There is a productivity factor ρi specific
to each project. However, the coefficients wk are assumed in-
variant across all data points. In reality, of course, the fit is not
perfect and the actual (reported by designers) design efforts
Effij are different from the estimated ones effij (Equation 3).
The difference is accommodated by the εij error term, which
we assume is multiplicative.

effij =
1
ρi
×

n∑
k=1

(wk ×mijk) (2)

Effij = effij × εij (3)

To fit the mixed-effects model and determine the wk, we
need to treat ρ and ε as independent random variables. As
such, we must provide a probability distribution for each.
From software engineering, we know that productivity is de-
termined by the product of a collection of variables (e.g., team
cohesiveness, tool quality or process maturity) [6]. Since the
sum of a large number of random variables is distributed nor-
mally, the product of a number of random variables is dis-
tributed lognormally — a distribution where the logarithm of
the variable is normally distributed [7]. Similarly, software en-
gineering studies tell us that the multiplicative error ε is also
lognormally distributed [20]. Consequently, we use a lognor-
mal distribution for both ρ and ε.

The lognormal distribution is described by two parameters:
µ and σ. They represent, respectively, the mean and standard
deviation of the log of the variable. For the ρ and ε distribu-
tions, we choose to set µ = 0, and then let the fitting procedure
determine the standard deviations σρ and σε. The result of set-
ting µ = 0 in both cases is that the median of the distributions
is 1. Intuitively, this means that half of the projects will have
ρ > 1 and half will have ρ < 1. Similarly, half of the estima-
tions will have ε > 1 and half will have ε < 1. Figure 2 shows
a lognormal distribution with µ = 0, showing the difference
between mean, median, and mode.

Our choice also means that the resulting estimated effort
eff that we obtain is the median design effort. To determine
the estimated mean design effort eff rather than the estimated
median design effort, we would apply Equation 4.

eff = eff× e(σ2
ε+σ2

ρ)/2 (4)
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Figure 2: Example of a lognormal distribution with µ = 0.

In Section 5, we use σε as a measure of goodness of fit.
Consequently, it is important to understand what different val-
ues of σε tell us about the quality of the estimate. Specif-
ically, we say that σε determines a confidence interval for
the estimated effort. The x% confidence interval for effij
is defined to be the range of efforts (elij , ehij) such that
P (elij < Effij < ehij) = x/100. For example, the 90%
confidence interval gives us two values a and b such that there
is a 90% chance that the actual effort is between a and b. Fig-
ure 3 plots the 68% and 90% confidence intervals for a range
of σε. To compute the confidence interval for a given σε and
effij , find the value yh corresponding to the top of the interval
and the yl corresponding to the bottom of the interval. The
confidence interval is then (yl × effij , yh × effij). For exam-
ple, if σε = 0.45 then yh ≈ 2.1 and yl ≈ 0.5. Therefore, the
90% confidence interval for Effij is (0.5× effij , 2.1× effij).
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Figure 3: 68% and 90% confidence intervals corresponding
to 0 ≤ σε ≤ 0.7. The figure demonstates finding the mul-
tiplicative factors yh and yl for the 90% confidence interval
corresponding to σε = 0.45.

We perform model fitting computation using the NLMIXED
procedure from SAS [19], although we could also use the
nlme package from R [22]. Appendix A shows a listing of
the programs that generate estimates for wk, ρi, and σε.

3.1.1 How to Use the Model

µComplexity is a methodology for measurement and early es-
timation of design effort. It attempts to discover what metrics
in a design are correlated with the amount of implementation
effort required and, to some extent, use them as early estima-
tors of how much effort is required in a design. While we are
only beginning to explore some of these issues, here are some
guidelines on how to use the methodology in its estimation



role.
In applying µComplexity, the basic principle is to use the

best possible estimates for wk and ρ at any time. Ideally, this
means maintaining a continuously updated database of com-
ponent measurements and of reported design efforts, and pe-
riodically re-fitting the model to obtain more up-to-date esti-
mates for ρ and, to a lesser extent, wk.

Initial estimates of wk can come from data from recent
projects. While we assume that the wk change slowly with
time, they obviously do change as new EDA tools or design
procedures are introduced. We therefore recommend period-
ically re-calibrating the model with recent data — including
data on some recently-completed components in the current
design. Using a large number of data points lends precision
to the estimate, while using recent data lends accuracy. Obvi-
ously, there is a tradeoff here, although we do not have enough
data to make specific recommendations.

An initial estimate of ρ may also be obtained using data
from a very recent project or by extrapolating the trend of
how ρ changed across projects in the past. Given the potential
volatility of ρ, an alternative approach is to assume ρ = 1 and
use the model to make relative effort estimations only. In this
case, we can say that a component with an estimated design
effort of x is likely to take half as many person-months as one
with estimated design effort 2x. These relative estimates may
be useful when allocating engineers to verification teams; they
may also allow an early determination of which components
are likely to delay project completion.

In either case, as some components in the current project
are completely verified, we can re-calibrate the model and ob-
tain successively better estimates of the current ρ. Such ρ can
be used to estimate the design effort for the remaining compo-
nents of the design.

3.2 A Model Without Productivity Adjustments

Eliminating productivity adjustments by setting ρi = 1 for all
i simplifies the statistical model. Instead of using the nonlinear
mixed-effects model described in Section 3.1 to fit the weights,
we can use a simpler multiple regression technique. Unfortu-
nately, as we show in Section 5, the model without productiv-
ity factors fits the data poorly. We present it only for compar-
ison with the recommended nonlinear mixed-effects model of
Section 3.1.

A model without productivity adjustments may be accept-
able for industrial practitioners with a very large single project,
perhaps representing thousands of person-months of effort. In
this case, they can set ρ = 1, since there is only one project
and therefore no need to account for productivity differences
across projects.

4 Evaluation Setup
4.1 Designs Evaluated

To evaluate µComplexity, we use three processors and two
Register Alias Table (RAT) designs. The processors are the
in-order Leon3 [13] core and the out-of-order PUMA [10] and
IVM [23] cores. The characteristics of these processors are

shown in Table 1.

Characteristic Leon3 PUMA IVM

ISA Sparc V8 PPC subset Alpha subset
Execution In-order Out-of-order Out-of-order
Pipeline stages 7 9 7
FE, IS width 1, 1 2, 2 8, 4
DI, RE width 1, 1 4, 2 4, 8
Branch predictor None Gshare Tournament
Caches Blocking Non-block Not modeled
Multiproc. support Yes No No
HDL Language VHDL-89 Verilog-95 Verilog-95

Table 1: Characteristics of the processor designs used in our
evaluation. In the table, FE, IS, DI, RE stand for Fetch, Issue,
Dispatch, and Retire, respectively.

Leon3 [13] is a single issue, in-order Sparc V8 processor
designed in VHDL by Gaisler Research. The VHDL code
has been released under GPL. Leon3 was originally designed
under contract for the European Space Agency, and has been
used in many research and commercial applications. It has a 7-
stage pipeline with hardware multiply, divide, and MAC units.
It has separately configurable instruction and data caches, and
implements the Sparc reference MMU.

PUMA [10] is a two issue, out-of-order processor that ex-
ecutes a subset of the PowerPC integer instruction set. It was
designed at the University of Michigan as a high-performance
processor to be fabricated in a radiation-hardened CGaAs pro-
cess. PUMA is designed in the Verilog HDL.

The Illinois Verilog Model (IVM) [23] implements a subset
of the Alpha 21264 microarchitecture. The cache hierarchy is
not modeled. IVM was designed in Verilog at the University
of Illinois for fault-tolerance research. IVM was written in
a mixture of behavioral and synthesizable formats, and some
modifications were made for our analysis.

In addition to these three processors, we also use two RAT
designs written in Verilog-2001. Both designs can rename up
to 4 instructions per cycle. One of them is a standard design,
while the other is enhanced to support sliding register win-
dows [16]. Both designs can run at frequencies over 600MHz
in a 180nm technology.

4.2 Reported Design Effort

For the designs analyzed, we interviewed the designers and
obtained the rough number of person-months required to de-
sign the different components of the project. The data is shown
in Table 2. Leon3 was designed by J. Gaisler from Gaisler Re-
search. PUMA was designed by J. Sivagnaname and eight
other students from the University of Michigan. IVM was de-
signed by N. Wang and three other students from the Univer-
sity of Illinois in about one year. The RAT was designed by J.
Renau from the University of California Santa Cruz.

4.3 Metrics

We identify a set of metrics that we feel may be related to
design effort. For each component of each design, we gather
these metrics shown in Table 3. Also shown in the table is the
tool used to obtain the measurement.



Reported Design Effort (Person-Months)

Leon3: IVM:
Pipeline: 24 Fetch: 10
Cache: 6 Decode: 2
MMU: 6 Rename: 4
Mem Control: 6 Issue: 4

Execute: 3
PUMA: Memory: 10

Fetch: 3 Retire: 5
Decode: 4
ROB: 4 RAT:
Execute: 12 Standard: 0.3
Memory: 1 Sliding: 0.5

Table 2: Reported design effort.

Metric Description Tool

FanInLC Total number of inputs of all logic cones Synplify Pro
LoC Number of lines in the HDL code –
Stmts Number of statements in the HDL code –
Nets Number of nets Design Comp
Cells Number of standard cells Design Comp
AreaL Logic area in µm2 Design Comp
AreaS Storage area in µm2 Design Comp
PowerD Dynamic power in mW Design Comp
PowerS Static power in µW Design Comp
Freq Frequency for 90nm Stratix-II EP2S90 FPGA Synplify Pro
FFs Number of flip-flops Synplify Pro

Table 3: Metrics gathered for each component.

The concept of FanInLC is as follows. Given a primary out-
put (i.e., a signal that reaches a pipeline latch), we identify the
set of logic gates that produces it starting from the preceding
pipeline latch (i.e., its logic cone), and count all the primary
inputs to the cone (i.e., signals directly coming from the pre-
ceding latch). We then repeat the process for all the primary
outputs in the design, accumulating the counts. It is expected
that components with higher FanInLC tend to require a higher
design effort.

The other entries in Table 3 are conceptually straightfor-
ward. They include the number of lines or statements in the
HDL code, the number of nets, cell gates, or flip-flops in the
component, the area devoted to logic or storage, the static
or dynamic power dissipated, and the maximum frequency at
which the component can cycle using a 90nm Altera Stratix-II
EP2S90 FPGA device [1].

To obtain all these metrics, we synthesize the designs. Syn-
thesis is the process of converting an HDL functional de-
scription into a gate-level netlist in the case of a standard-
cell ASIC, or into a logic-block mapping in the case of an
FPGA. For ASIC synthesis, we use Synopsys Design Com-
piler 2004.12 [2] to synthesize to a 180nm standard cell li-
brary; for FPGA synthesis, we use Synplify Pro 8.1 from Syn-
plicity [3] and targeted an Altera Stratix II device.

From the output of Synplify Pro, we obtain three of the met-
rics in Table 3, namely the frequency, number of flip-flops, and
an estimate of the FanInLC. The latter is estimated as follows.
Synplify Pro reports the number of Look-Up Tables (LUTs)
that use a given number of inputs. We approximate FanInLC
by summing all the inputs used in all the LUTs. This may
be slightly inaccurate because when the number of inputs to a
cone exceeds the eight inputs available on a single LUT, Syn-
plify Pro cascades LUTs to form the cone. In practice, Syn-
plify Pro rarely had to cascade LUTs in our designs.

From the output of Design Compiler, we obtain most of the
other metrics in Table 3, including power and area estimates.

5 Evaluation
Our evaluation examines how accurately each of the software
and synthesis metrics of Table 3 correlate with design effort.
We also examine a few combinations of such metrics. In our
analysis, we compare against some of the design effort estima-
tors currently being used. Specifically, Sematech [14] and the
SIA Roadmap [5] which use the number of cells and the num-
ber of bits or transistors, respectively, to estimate effort. Syn-
thesis tools report most of the metrics listed in Table 3, which
are often used to make effort estimations. Finally, in software
development, some of the most popular software complex-
ity accounting methods, such as COCOMO [6] and Function
Points [4] use the number of lines of code as a proxy for effort.

As indicated in Section 3.1, to assess the accuracy of an
estimator, we report the standard deviation of its error (σε).
Lower values of σε are better, and zero is the minimum pos-
sible value. Given a σε, we can compute the interval for, say,
90% confidence for the true value. For the lognormal distri-
bution used, the mapping between σε and the 90% confidence
interval is shown in Figure 4. We will use this chart to compare
the accuracy of different estimators.
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Figure 4: Mapping between the standard deviation of the er-
ror (σε) and the 90% confidence interval for the lognormal
error distribution used. This plot is organized as Figure 3.

We do not report an accuracy measure similar to the
multiple-R2 measure often used in linear models. The rea-
son is that it is not recommended for the nonlinear mixed-
effects model that we use. In practice, the statistics community
often uses two popular goodness-of-fit measures to compare
different non-linear mixed models, namely Akaike’s Informa-
tion Criterion (AIC) and the Bayesian Information Criterion
(BIC) [15]. These are rigorous methods, but they are less intu-
itive than the σε approach that we use here. Consequently, we
only give the AIC and BIC metrics in a few cases.

In the following, we first measure the accuracy of the differ-
ent design effort estimators using our model. Then, we repeat
the process without the productivity adjustment or without the
µComplexity accounting procedure.



Module Effort DEE1 Stmts LoC FanInLC Nets Freq AreaL PowerD PowerS AreaS Cells FFs
Name (Person× (MHz) (µm2) (mW ) (µW ) (µm2)

Months)

Leon3-Pipeline 24 12.8 2070 2814 10502 4299 56 50199 80 409 68411 3586 1062
Leon3-Cache 6 7.3 1172 1092 6325 1980 94 37456 57 332 12556 3 210
Leon3-MMU 6 4.4 721 1943 3149 1130 84 60136 23 287 112765 246 699
Leon3-MemCtrl 6 5.4 938 1421 2692 853 138 7394 5 2 11938 704 275
PUMA-Fetch 3 2.2 586 1490 5192 1292 68 147096 226 3513 555168 1809 1786
PUMA-Decode 4 6.2 1998 3416 4724 5662 65 78076 11 526 47604 5189 464
PUMA-ROB 4 2.2 503 913 6965 9840 41 82527 733 816 1022 9709 922
PUMA-Execute 12 12.6 3762 9613 18260 10681 49 92473 44 1370 119746 10867 1725
PUMA-Memory 1 3.3 976 2251 5034 1089 60 43418 80 602 115841 4337 1549
IVM-Fetch 10 8 1432 4972 15726 4914 71 212663 8 2 135074 1859 1661
IVM-Decode 2 1.7 391 963 1044 504 104 2022 2 6 73 2 0
IVM-Rename 4 2.7 566 2519 3307 1134 159 70146 1 1 26740 121 510
IVM-Issue 4 3.6 624 2704 8063 4603 60 90388 2 1 68667 3414 2729
IVM-Execute 3 5.4 961 4083 11045 4476 91 619561 5 5 154655 940 0
IVM-Memory 10 11.6 2240 5308 19021 23247 54 267753 73 2 625952 12050 2510
IVM-Retire 5 5 1021 2278 6635 3357 71 36100 2 1 50375 1923 924
RAT-Standard 0.6 0.7 64 250 3889 2905 137 34254 4 275 17603 2596 288
RAT-Sliding 1 1 78 334 5586 4936 119 52210 10 459 60713 4507 612

σε – 0.46 0.50 0.55 0.55 0.67 0.94 1.23 1.34 1.44 2.07 2.09 2.14
σε (ρi = 1) – 0.53 0.60 0.69 0.82 1.08 1.12 1.35 1.82 3.21 2.07 2.55 2.18

Table 4: Accuracy of various design effort estimators.

5.1 Accuracy of Design Effort Estimators

Table 4 shows the accuracy of various design effort estima-
tors. First, Column 2 lists the reported design effort in person-
months for each component of each design — this data repeats
the data shown in Table 2. Then, each of remaining columns
shows data for one design effort estimator. Most of the esti-
mators are simply the individual software or synthesis metrics
listed in Table 3. The only exception is the DEE1 estimator,
which is the linear combination of two metrics — we will ana-
lyze DEE1 in Section 5.1.1. For a given estimator, the column
shows its value for each component of each design and, in the
penultimate row, its σε. We do not report the productivities
(ρLeon3, ρPUMA, ρIVM, and ρRAT) in the table – they can be cal-
culated using the programs in Appendix A. Finally, we ignore
the last row until Section 5.2.

From the table, we see that there are a group of estima-
tors that have a relative high accuracy (i.e., low σε). They in-
clude Stmts, LoC, FanInLC, and Nets. For example, Stmts and
FanInLC have σε equal to 0.50 and 0.55, respectively, which,
according to Figure 4, correspond to a 90% confidence inter-
val of (0.44,2.28) and (0.40,2.47), respectively. Really, within
the margin of error of our study, any one of Stmts, LoC, or
FanInLC has the same accuracy.

The other estimators, namely Freq, PowerD, AreaL,
PowerS , AreaS , Cells, and FFs, have lower accuracy. For
example, AreaL has σε equal to 1.23, which corresponds to a
90% confidence interval of (0.13,7.56). None of these metrics
is a reasonable estimator.

Freq has a 90% confidence interval as large as (0.21,4.69).
While increasing processor frequency requires additional de-
sign effort, other metrics like Nets or FanInLC have higher
correlation with design effort. The reason is that, to increase
frequency, it is necessary to add extra pipeline stages or more
complex logic. This increased effort is better measured by
Nets and FanInLC.

Perhaps unsurprisingly, AreaS and FFs are not well corre-

lated with design effort. Their 90% confidence intervals are
(0.03,30.11) and (0.03,33.78), respectively. The reason is that
storage structures such as RAM banks are relatively simple to
design. Similarly, AreaL and Cells are not well correlated be-
cause simple to implement structures can occupy a lot of area
and have large numbers of logic cells. Moreover, neither dy-
namic nor static power is well correlated with design effort as
their confidence intervals are (0.11,9.06) and (0.09,10.68) re-
spectively. Larger designs will probably require more power,
but are not necessarily more complicated to design.

Overall, our data shows that any one of Stmts, LoC or
FanInLC is a good single-metric estimator of design effort. In-
terestingly, this shows some similarity between hardware and
software design efforts. On the other hand, it appears that the
hardware estimators used elsewhere such as Cells and transis-
tors used by the SIA Roadmap and Sematech are not so effec-
tive. Most of the other synthesis tools metrics such as area,
power and frequency are not well correlated with design effort
either.

5.1.1 Design Effort Estimator 1 (DEE1)

We have also analyzed the accuracy of estimators generated
with the linear combination of groups of two metrics from Ta-
ble 3. As usual, we use Equation 1 from Section 2.3. We
find that two-metric combinations that include Stmts, LoC,
FanInLC, and Nets tend to have slightly more accuracy than
those with a single metric. The ones that are the most accurate
are Stmts plus Nets, and Stmts plus FanInLC. They have the
same accuracy, but we prefer the Stmts plus FanInLC estima-
tor because, individually, the metrics are more accurate. We
call the resulting estimator Design Effort Estimator 1 (DEE1).

As shown in Table 4, DEE1 has the lowest σε, namely 0.46.
This corresponds to a 90% confidence interval of (0.47,2.13).
The slightly higher accuracy of DEE1 comes from the fact that
its two component metrics measure slightly different underly-
ing factors in the design. The corresponding accuracy values
using AIC and BIC are 34.8 and 38.4, respectively. As a com-



parison, the AIC and BIC values of Stmts are 37.0 and 39.7,
respectively. For AIC and BIC, lower values mean a better fit.

To see the correlation between DEE1 and the reported de-
sign effort better, Figure 5 shows a scatter plot of DEE1 es-
timations versus reported design effort. The Figure has one
data point per component and design. From the figure, we see
that most of the DEE1 estimations are very close to the re-
ported design effort. The exception is the data point for the
Leon3 pipeline, where the DEE1 estimation is 12.8 months,
and the reported effort is 24 months. In practice, most of the
estimators in Table 4 underestimate the effort for the Leon3
pipeline. The reason is that this pipeline is more sophisticated
than the other components and designs. Indeed, while IVM
and PUMA only execute a subset of Alpha and PowerPC, re-
spectively, Leon3 is a full SPARC V8 compliant processor. In
addition, Leon3 is highly configurable, for example the user
can select different processor and cache parameters.
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Figure 5: Scatter plot of DEE1 estimations versus reported
design effort.

Generating estimators with the linear combination of groups
of more than two metrics from Table 3 decreases the AIC and
BIC values. Therefore, the small correlation improvement is
not recommended unless more data samples are considered.

5.2 Accuracy without the Productivity Adjustment

The last row of Table 4 shows the σε values that would be
obtained if no productivity factor was used – in other words,
if ρi was 1 for the Leon3, PUMA, IVM, and RAT teams. This
approach was mentioned in Section 3.2.

From the values of σε, we can see that practically all the
estimators lose a significant amount of accuracy. For exam-
ple, the σε for Stmts and FanInLC becomes 0.60 and 0.82,
respectively, which correspond to 90% confidence intervals of
(0.37,2.68) and (0.26,3.85), respectively. Similarly, DEE1 ex-
pands its 90% confidence interval to (0.41,2.39).

The loss of accuracy for LoC and Stmts is due to several fac-
tors. Specifically, while Leon3 uses VHDL, the other designs
use Verilog. Moreover, while RAT uses the more compact
Verilog-2001, PUMA and IVM use the more verbose Verilog-
95. Additionally, different coding styles add much noise to any
correlation without productivity adjustment. To compound the
problem, it is known from software projects that productivity
across teams can vary up to 10 times [9].

The FanInLC and Nets estimators lose accuracy because

each processor was designed under a different set of con-
straints and a different set of tools. For example, since Leon3
was designed for an area-constrained environment (FPGAs), a
substantial effort was needed to reduce area and interconnec-
tions. On the other hand, PUMA’s target was a high frequency
CGaAs process. All these effects again add noise to any cor-
relation.

Overall, we conclude that, to have good estimation accu-
racy, productivity adjustments are required.

5.3 Accuracy without the Accounting Procedure

One aspect of the µComplexity methodology is the special
procedure followed to account for multiple instantiations of
a given component and parameterized components. This pro-
cedure is described in Section 2.2. In this section, we compute
the σε values that would be obtained without such a procedure
— namely, no special provisions for these components.

Figure 6 shows the σε for our estimators when the measure-
ments are gathered with or without our accounting procedure.
Note that the σε with the accounting procedure are equal to
those listed in Table 4.
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Figure 6: Accuracy of the design effort estimators without or
with the µComplexity accounting procedure of Section 2.2.

Figure 6 shows that, without our accounting procedure, the
accuracy of the estimators is often very low. Specifically,
the two estimators generated with a single synthesis metric
that had acceptable accuracy before (FanInLC and Nets), now
have poor accuracy. FanInLC and Nets have a σε equal to
1.18 and 1.07, respectively, which correspond to a 90% con-
fidence interval of (0.14,6.97) and (0.17,5.81), respectively.
The other estimators generated with a single synthesis met-
ric (Freq, PowerD, AreaL, PowerS , AreaS , Cells, and FFs)
have such high σε to start with that any variation is uninterest-
ing. For example, the 90% confidence interval for Freq with-
out our accounting procedure is (0.23,4.32).

The accuracy of the estimators without synthesis metrics
(Stmts and LoC) does not change because the absence of
the accounting procedure does not affect them. Moreover,
the accuracy of the DEE1 estimator changes little because
one of its metrics is Stmts, and the regression automatically
compensates for the inaccuracy coming from the other metric
(FanInLC).

While not shown in Figure 6, it can be shown that the
main contributor to the difference between the environments



with and without the accounting procedure is the IVM de-
sign. The IVM design models a 4-issue Alpha superscalar
core. The IVM design that we measure has many cases of
multiple instantiations of the same component, and of param-
eterized components. The narrower PUMA superscalar and
the 4-way RAT designs are simpler designs; they have fewer
cases of such components. Finally, the streamlined, single-
issue Leon3 processor has practically no such types of compo-
nents.

Overall, from our measurements, we conclude that the de-
sign effort estimators based on synthesis metrics that we con-
sider should use our accounting procedure. Otherwise, the ac-
curacy is low.

6 Related Work
The work most related to ours is done by Numetrics, a com-
pany specializing in enterprise software and services product
development [21]. They propose a “complexity unit” to mea-
sure the level of project difficulty and to quantify the devel-
opment team’s output. Patent 6,823,294 describes a method
to estimate design effort. If we apply the method to our data,
the result is considerably less accuracy than DEE1. After dis-
cussions with Numetrics, they informed us that the patent rep-
resented preliminary work, and that their current models are
more advanced. Unfortunately, little detail is available on their
current models because it is considered a technological advan-
tage for their company.

The authors are unaware of any other work on the topic of
estimating the number of engineering person-hours that will be
needed for a processor design. Some related research has pro-
posed productivity optimization by focusing on “design pro-
cess optimization”. For example, METRICS [11] is a system
that seeks changes to the EDA tools and focuses primarily on
back-end or place-and-route performance, not on design ef-
fort.

Recently, some research has focused on reducing the num-
ber of RTL redesigns during the timing closure process. To
streamline timing closure, new methods have been developed
to predict logic criticality [17] and wire congestion [18] early
in the RTL design phase. With these predictors, logic design-
ers can focus their attention on the critical logic during the ini-
tial implementation, reducing the number of redesign cycles.

Fornaciary et al. [12] propose a methodology to predict the
final size of a VHDL project on the basis of a high-level de-
scription. With this, they seek some indication of development
effort by estimating the number of lines of code from starting
specifications. While their method was shown to be accurate
in predicting lines of code, it did not address the design effort,
such as the number of engineering person-months required for
the project.

7 Conclusions & Future Work
As processors get ever more complicated, it is becoming very
important to have simple, and yet accurate, early estimators
of design effort. One of the most important developments in
the field of computer architecture has been the introduction of

quantitative approaches, in which different aspects of a pro-
cessor system are measured, to further understand design im-
plications. Most quantitative studies have focused in the mea-
surement of speedup. To address this problem, this paper has
made two main contributions.

First, this paper has introduced the novel µComplexity
methodology to measure and estimate processor design effort.
µComplexity consists of three main parts, namely a procedure
to account for the contributions of the different components,
accurate statistical regression using a nonlinear mixed-effects
model, and a productivity adjustment to account for the pro-
ductivities of different teams.

The second contribution has been applying µComplexity to
four designs and evaluating a series of estimators based on
synthesis and software metrics. The evaluation uncovered a
few simple, good design effort estimators, namely the number
of lines of HDL code (or HDL statements) and the sum of the
fan-ins of all the logic cones. A slightly more accurate esti-
mator is DEE1, which is the linear combination of HDL state-
ments and fan-ins of all the logic cones. We recommend this
estimator, but using estimators that combine a larger number
of metrics may make sense for a practitioner that has access to
more data.

The evaluation also revealed several inaccurate estimators
of design effort. These include dynamic or static power, logic
or storage area, frequency, number of flip-flops and, some-
what surprisingly, the number of standard cells. The number
of cells and transistors are two popular design effort estima-
tors used by Sematech and the SIA roadmap. Finally, the eval-
uation showed that both the productivity adjustment and the
µComplexity accounting procedure are necessary to produce
accurate estimators.

We hope that this paper helps open up the largely-
unexplored area of computer architecture that deals with met-
rics for design effort. There is much work to be done. A
methodology for estimating design effort from early measure-
ments would be very useful. It may help identify the critical
paths in the development process, thus allowing resources to
be more effectively allocated and procured. This paper has
studied estimators based on measurements of early RTL code.
As our next step, we are now focusing on estimators that can
be obtained even earlier. Such early estimators would allow
design considerations to be made early, when the costs are low,
to better reach the goals and requirements of the project. Such
estimators must necessarily be derived from a higher-level de-
scription of the design. This paper has provided intuition that
might be used to generate such estimators.

This paper has focused only on some aspects of the design
process, namely the engineering hours for RTL implementa-
tion and verification. In practice, there are many aspects of the
development of a processor that we did not address. We are
extending our approach to cover a larger fraction of the activi-
ties required to develop a processor. We are collaborating with
industry design teams to address those areas.
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A SAS and R Code
This appendix provides the SAS [19] and R [22] code to fit the
nonlinear mixed-effects model explained in Section 3.1. Like
most statistical analysis software, SAS and R expect the er-
ror to be additive and normally distributed. They also require
the random effects to be normally distributed. Recall that our
model in Equations 2 and 3 has a multiplicative lognormal er-
ror and also a lognormal distribution for the random effect ρ.
Simply taking the logarithm of both sides of the equation gives
us the requisite additive normal error and normal random ef-
fect as follows. Note the change of variables from −ln(ρi)
to log ρi and ln(Effij) to log actualij . N(µ, σ2) represents a
normally distributed random variable.

ln(Effij) = −ln(ρi) + ln

n∑
k=1

(wk ×mijk) + N(0, σ2
ε )

log actualij = log ρi + ln

n∑
k=1

(wk ×mijk) + N(0, σ2
ε )

After the transformation, entering the model into SAS or R
is straightforward. The input data set contains columns labeled
“team”, “log actual”, “FanInLC”, and “Stmts”. The “team”
field contains the name of the team that designed the com-
ponent. The “log actual” column contains the logarithm of
the designer’s reported effort for the component. “Stmts” and
“FanInLC” are the column labels for the metrics we want to
use in the estimator. R lets you choose the fitting method, we
choose “ML” for consistency between SAS and R. ML maxi-
mizes the log-likelihood.

*** SAS Code
PROC NLMIXED;

log_est = log_rho + log(w1*Stmts + w2*FanInLC);
MODEL log_actual ˜ NORMAL(log_est, sigma_epsilonˆ2);
RANDOM log_rho ˜ NORMAL(0, sigma_rhoˆ2)

SUBJECT=team OUT=prods;
RUN;

# R Code
nlme(model=log_actual ˜

(log_rho) + log(w1*Stmts + w2*FanInLC)
,random = log_rho ˜ 1 | team
,fixed = list(w1 ˜ 1, w2 ˜ 1)
,start = c(0.0001, 0.00001)
,data=(traw)
,method="ML")

The SAS code stores the estimated productivity factors in
a new data set called “prods”. You may need to remove the
string “OUT=prods” to see the rest of the output from the anal-

ysis (including the estimated weights and error) on the con-
sole.
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