
SAMPLING-BASED MOTION PLANNING WITH DIFFERENTIAL
CONSTRAINTS

BY

PENG CHENG

B.S., Tsinghua University, 1996
M.E., Tsinghua University, 1999
M.S., Iowa State University, 2001

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2005

Urbana, Illinois

This page will be replaced by the Certificate of Committee Approval form.

ii

SAMPLING-BASED MOTION PLANNING WITH DIFFERENTIAL

CONSTRAINTS

Peng Cheng, Ph.D.
Department of Computer Science

University of Illinois at Urbana-Champaign
Steven M. LaValle, Advisor

Since differential constraints which restrict admissible velocities and accelerations

of robotic systems are ignored in path planning, solutions for kinodynamic and non-

holonomic planning problems from classical methods could be either inexecutable

or inefficient. Motion planning with differential constraints (MPD), which directly

considers differential constraints, provides a promising direction to calculate reliable

and efficient solutions. A large amount of recent efforts have been devoted to various

sampling-based MPD algorithms, which iteratively build search graphs using sam-

pled states and controls. This thesis addresses several issues in analysis and design

of these algorithms. Firstly, resolution completeness of path planning is extended to

MPD and the first quantitative conditions are provided. The analysis is based on the

relationship between the reachability graph, which is an intrinsic graph representation

of a given problem, and the search graph, which is built by the algorithm. Because of

sampling and other complications, there exist mismatches between these two graphs.

If a solution exists in the reachability graph, resolution complete algorithms must con-

struct a solution path encoding the solution or its approximation in the search graph

in finite time. Secondly, planners are improved with symmetry-based gap reduction

algorithms to solve their gap problem, which dramatically increases time to return a

high quality solution trajectory whose final state is in a small neighborhood of a goal

state. The improved planners quickly obtain high quality solutions by minimizing

gaps in solution path candidates, which is greatly accelerated using symmetries of

robotic systems to avoid numerical integration. Finally, a heuristic is designed to

solve metric sensitivity of RRT-based planners, which means that RRT-based meth-

iii

ods have difficulties in escaping local minima when the given metric provides a poor

approximation of the cost-to-go. Instead of designing a metric, the heuristic is ob-

tained by collecting collision information online and assigning a real value to each

node in the search graph. A node with a higher value means that the number of

trajectories from the node that have been detected in collision is larger. Local min-

ima are more likely to be avoided when nodes with smaller values are given higher

probability to be extended.

iv

Acknowledgments

I would first like to thank my advisor, Steven M. LaValle, for the advice, encour-

agement, and help for many aspects of research and life. It was he who guided me

into the fascinating world of robotics, kept me focused on the research, revived my

interests in mathematics, helped me to improve my writing and presentation, and

much more than I can list with the limited space.

I would like also to thank Emilio Frazzoli for his kind help and advice. He is

another advisor in my mind. I really enjoyed many insightful and fruitful discussions

with him. Thanks also go to Francesco Bullo, Jeff Erickson, Jean-Paul Laumond,

Judy Vance, Kevin Lynch, Seth Hutchinson, Vijay Kumar, and Yan-Bin Jia, who

gave me many help and suggestions to my research and this thesis writing.

I would also like to thank the help from members of Motion Strategy Laboratory

at Iowa State University and University of Illinois, such as Anna Yershova, Benjamin

Tovar, Boris Simov, George Zaimes, Hamid Reza Chitsaz, Jason O’Kane, Libo Yang,

and Steve Lindemann. I would like to thank Sachin Chitta, Zuojun Shen for pleasant

collaborations.

A gratitude beyond my expression is sent to my parents and sisters in China.

Without their continuous and strong spiritual and financial support, it would have

been impossible for me to accomplish all of my study and research.

Finally, I would like to thank my wife, Yanghui Gong, for all her understanding

and love during my research and studies. I will always be grateful for her unlimited

patience during this long and busy time.

v

This research was supported by NSF CAREER 0133869 (Frazzoli), NSF CAREER

9875304 (LaValle), NSF 0208891 (Frazzoli and LaValle), and NSF 0118146 (Bullo and

LaValle). Any opinions, findings, and conclusions in this thesis are those of the author

and do not necessarily reflect the views of the National Science Foundation.

vi

Contents

List of Tables. xi

List of Figures. xiii

List of Symbols. .xvii

1 Introduction. 1

1.1 Motion Planning as an Important Part of Robotics 1

1.2 The Emergence of Sampling-Based Motion Planning with Differential

Constraints . 7

1.3 Contributions of this Thesis . 17

2 Problem Formulation . 20

2.1 Action Models of Robotic Systems 21

2.1.1 Configuration space and configuration constraints 21

2.1.2 Kinematics and first-order constraints 26

2.1.3 Dynamics and second-order constraints 31

2.2 Geometry Models of the Robot and Work Environment 37

2.3 General Motion Planning Problems 39

2.3.1 State space and its obstacles 40

2.3.2 The input space and control space 41

2.3.3 Motion equation to encode kinematics and dynamics 43

vii

2.3.4 Solutions . 47

2.4 Path Planning Problems . 48

2.5 Nonholonomic Planning Problems . 49

2.6 The Reachability Graph: an Intrinsic Graph Representation of MPD

Problems . 51

2.7 An Example of the MPD Problem . 54

3 A Sampling-Based Planning Framework . 57

3.1 A Template for Sampling-Based Planning 57

3.2 Descriptions of Sampling-Based Algorithms in the Template 68

3.2.1 The single-directional algorithms 68

3.2.2 A bi-directional algorithm . 73

3.2.3 A PRM-based search algorithm 75

3.3 Characterization of State Space Sampling and Control Space Sampling 77

3.3.1 State space sampling . 78

3.3.2 Control space sampling . 80

4 Resolution Completeness Analysis . 83

4.1 Related Results . 89

4.2 Completeness via the Reachability Graph and Search Graph 91

4.2.1 Sources and characterization of mismatches 92

4.2.2 Definition through the relationship between G and G 95

4.3 Sufficient Conditions . 97

4.3.1 Assumptions for the theorems 97

4.3.2 Main results . 102

4.4 Proof of Main Results . 103

4.4.1 Conditions for finite running time 104

4.4.2 Variation of trajectories due to mismatches 104

viii

4.4.3 Proof of Theorem 9 . 110

4.4.4 Proof of Theorem 10 . 114

4.5 Applications to Particular Algorithms 116

4.5.1 Strengthening resolution completeness conditions for an exist-

ing planner . 116

4.5.2 Making a probabilistically complete planner become resolution

complete . 118

5 Gap Problems and Planning with Gap Reduction 120

5.1 Gap Problems in Sampling-Based Algorithms 123

5.2 Motion Planning with Gap Reduction 123

5.2.1 Gap reduction by perturbation 124

5.2.2 A class of systems with symmetries on principle fiber bundles 125

5.2.3 Coasting trajectories of the class of systems 128

5.2.4 Efficient gap reduction with symmetry 129

5.2.5 Selection of a subspace for optimization 132

5.2.6 Incorporating gap reduction algorithms with planners 133

5.3 Simulation Studies . 135

5.3.1 Systems used in simulations 135

5.3.2 Sensitivity of planner performance to the gap tolerance 138

5.3.3 Comparisons of gap reduction with or without symmetry . . . 140

5.3.4 Effects of subspace selection for optimization 142

5.3.5 Performance improvement of single- and bi-directional planners 144

5.3.6 A PRM-based MPD algorithm with gap reduction 145

6 Reducing Metric Sensitivity for RRT-Based Planners 146

6.1 Metric Issues in RRT-Based Planners 148

6.2 Adaptive Reduction of Metric Sensitivity 150

ix

6.3 Simulation Results . 154

6.3.1 System models . 155

6.3.2 Simulation results . 162

7 Conclusion . 165

7.1 Summary . 165

7.2 Future Directions . 166

A Appendix . 169

A.1 An Asymptotic Finite Input Space Sampling in a Simple Sampling

Control Set with a Slope Bound . 170

A.2 Nonexistence of Asymptotic Finite Sampling in a Sampling Control

Set without a Slope Bound . 173

A.3 Existence of Asymptotic Finite Sampling 176

A.3.1 An asymptotic finite state space sampling 176

A.3.2 An asymptotic finite control space sampling 177

A.4 Resolution Completeness Conditions for Planners using Nonconnecting

Local Planners and Numerical Calculations 180

References . 182

Vita . 189

x

List of Tables

5.1 The running time (in seconds) of planners with different gap tolerance,

in which “Max.”, “Min.”, and “Avg.” denote the maximal, minimal,

and average time, and “Suc.” denotes the number of returned solutions

over 20 runs . 140

5.2 The running time (in seconds) and number of integration for planners

improved by gap reduction with or without symmetry, in which “Ob.”

denotes whether obstacles are considered, “Tra.” denotes the prob-

lem with the trailer system, “Sy.” denotes whether symmetry is used,

“Time” is the overall running time, “Num.” is the overall number of

integration, “Su.” is the number of returned solutions over 20 runs . . 142

5.3 The effects of subspace selection, in which “Sel.” denotes whether the

subspace selection is used, “Time” is the overall running time in sec-

onds, “Num.” is the overall number of calls to the NAG optimization

function, “Suc.” is the number of returned solutions over 20 runs . . 143

5.4 The results of using the improved bi-directional planners to solve prob-

lems, in which “Time” denotes the overall running time, and “Suc.”

denotes the number of returned solution over 20 runs 143

5.5 Simulation results for the PRM-based planner, in which “V.N.” means

the number of vertices, “C.T.” is the construction time, “Q.T.” and

“Suc.” are respectively the overall query time and number of returned

solutions for 40 queries, and “E.N.” is the number of edges in the roadmap145

xi

6.1 Comparison of the original and improved RRT-based planners, in which

“It” means how many iterations the planners have run, “Suc. Rate”

means the number of successes out of 50 trial, “Num. Node” means

the average number of nodes in the search graph, “Num. Col.” means

the average number (in thousands) of collision checking , “T” means

the average time to find the solution 163

xii

List of Figures

1.1 Examples of robotic systems . 1

1.2 The function of the planning software of a robot 2

1.3 A recharging task for the robot . 3

1.4 The action model (i.e. motion equation in this thesis) for a car-like

robotic system . 4

1.5 A sketch of a hierarchical planning for the task in Fig. 1.3 7

1.6 The motion planning problem of the first subtask 8

1.7 An example of the Piano Movers’ Problem 9

1.8 Using path planning to design automated assembly process 11

1.9 Application of path planning in rational drug design 11

1.10 An example of the inexecutable path for a car 12

1.11 An example of the inefficient trajectory for a car 12

1.12 Differential constraints on a car system 13

1.13 Steering a car through a 300m. × 300m. virtual town at 72 kph 14

1.14 Firing three thrusters to move a spacecraft from one corner of a 3D

grid to another corner . 15

1.15 An example of the search graph and solution path 17

2.1 A single rigid body which moves freely in an R
3 work environment . . 22

2.2 The holonomic constraints in a robot that moves in a support plane . 25

2.3 A simple car with fixed back wheels and a steerable front wheel . . . 26

xiii

2.4 A system with a first-order nonholonomic constraint due to the non-

slipping back wheels . 29

2.5 The geometry model of a robot . 38

2.6 An example of the control ũ as a function from a time interval to the

input space . 42

2.7 The distance from trajectory τ2 to τ1 does not equal that from τ1 to τ2. 45

2.8 A reachability graph . 53

2.9 A lane change problem . 54

2.10 The sketch of the car with dynamics 55

3.1 An example of the search graph, solution path, and generation of a

new edge . 60

3.2 The trajectories generated from two types of connecting local planners 63

3.3 Updating the search graph without state space discretization 66

3.4 Updating the search graph with state space discretization 67

3.5 The node selection for RRT-based planners 69

3.6 The local planner for RRT-based planners, in which the local planner

samples ũk from a finite set of m sampled controls 70

3.7 A new edge enew(nnear, nnew) is added when the trajectory of ũk from

x(nnear) is violation-free . 71

3.8 Finding a goal state node and solution path for the RRT-based single-

directional method . 71

3.9 Backward-in-time trajectory generation and graph updating for the

subgraph that contains a goal state node 75

4.1 Intuition of resolution completeness of path planning algorithms . . . 84

4.2 The generation and effects of a state mismatch 87

4.3 The effect of control mismatches . 88

xiv

4.4 The main idea of resolution completeness for sampling-based MPD . 88

4.5 The relationship between the size of state mismatches and dispersion

bound of state space sampling with explicit discretization 93

4.6 The trajectory τ̂ξ with one control mismatch and state mismatch . . . 111

4.7 Construction of one segment of the trajectory of the solution path . . 115

5.1 Comparison of gap reduction using perturbation and steering 122

5.2 Group actions commute with state transitions 126

5.3 Perturbation of ũi with symmetry to avoid reintegration of ũ in calcu-

lating x′f . 130

5.4 Perturbation by inserting coasting trajectories 131

5.5 The intuition of subspace selection with Eq. (5.25) for optimization . 133

5.6 The sketch of the trailer system . 136

5.7 A problem with the car with dynamics for bi-directional planners . . 139

5.8 A problem with the trailer system for single-directional planners . . . 141

5.9 A problem with the trailer system for bi-directional planners 143

5.10 A problem with the car model for the PRM-based planner 144

6.1 The fast exploration of RRT for a path planning problem 147

6.2 The issue in selecting the node in RRT-based planners 149

6.3 The issue in sampling the control in RRT-based planners 151

6.4 The intuition to avoid obstacle with CVP 153

6.5 Estimation of CVP with CVT . 154

6.6 Display of CVT that is collected in a planning process 155

6.7 Top view of the car model . 156

6.8 Front view of the car model . 156

6.9 The sketch of the forces from thrusters on the spacecraft 161

6.10 Comparison of explorations of the original RRT and improved RRT . 162

xv

6.11 A solution of firing thrusters to move a spacecraft out of a cage . . . 164

A.1 Asymptotic finite sampling in the simple sampling control set, i.e., a

restricted function space . 171

A.2 The construction of ũi
s for some ũi

j in UB 175

xvi

List of Symbols

P a motion planning problem with differential constraints

f the motion equation of P

f̃ the discrete motion equation

U the input space of P

U the control space of P

Ū the set of continuous controls which generate all controls in U

Ũ the smallest expanded control set which include all controls

that could be designed by a local planner

Ũs the sampled control set

u an input in U

ũ a control in U

G〈N , E〉 the reachability graph

G〈N,E〉 the search graph

τ a trajectory in G

τξ an η-neighboring trajectory in G

τ̂ξ the appearance of τξ in G

D the range of duration of controls in Ū

w the clearance of a trajectory

εp the approximation tolerance

εs the tolerance of a solution

εl the tolerance for the approximate local planner

xvii

εi an upper bound on the numerical integration errors

εn an upper bound on the arithmetic precision errors

εd the dispersion of the state space sampling

εu, εt the dispersions of the control space sampling for nonconnecting

local planners

εx maximal size of neighborhood where local Lipschitz condition of

a local planner holds

εv the supremum of duration of controls in Ũ

Df an upper bound on the norm of the value of the motion equation

Dp an upper bound on the absolute value of the first order derivative

of coordinates of the control function

dinf the infimum of ‖x− f̃(x, ũ)‖ for all x ∈ X and ũ ∈ Ũ

Lc Lipschitz constant for the motion equation f

Ld Lipschitz constant for the discrete motion equation f̃

Lu Lipschitz constant for the local planner

‖ · ‖∞ an infinity norm defined on U

xviii

Chapter 1

Introduction

In this chapter, the motion planning problems are first shown in the big picture of

robotics, and then the emergence of sampling-based motion planning with differential

constraints as a promising method for the motion planning problem is described.

Finally, the contributions and organization of the thesis will be presented.

1.1 Motion Planning as an Important Part of Robotics

One of the ultimate objectives of robotics is to design a robotic system which could re-

place people to autonomously complete laborious, dangerous, and tedious tasks, such

as welding, assembly, spray painting, exploring unknown environments, housekeeping,

The Mars Rover Roomba

Figure 1.1: Examples of robotic systems

1

Sensor

Effector

Wheels

Robot,
get yourself
recharged!

I am here.
I have an effector.
I have wheels.

How can I get
 recharged?

Planning Software

Figure 1.2: The function of the planning software of a robot

recharging, and rescue. Two of the most successful applications of robotic systems are

the Mars Rover1 and Roomba2 shown in Fig. 1.1. The Mars Rover landed on and is

still exploring the surface of the Mars and the Roomba robot is a commercial product

that can automatically clean the floor and recharge itself. These robotic systems have

the abilities of sensing, planning and action. Sensing processes raw data from sensors

to obtain information about the environment and robot, and action affects the state

of the environment and robot by applying inputs on the action devices. Planning is

achieved by a planning software whose function is to convert sensing information into

inputs for the robots. Through the interactions of sensing, planning, and action, the

robot could complete assigned tasks. The function of the planning software can be

seen in Fig. 1.2, in which the robot is given a task “get yourself recharged” when it is

cleaning the floor of the living room as shown in Fig. 1.3, the input to the planning

software is the sensing output which tells information of the robot, the output of the

software is the inputs that will move the effector and wheels to complete the task.

1http://marsrovers.jpl.nasa.gov/home/
2http://www.irobot.com/home.cfm

2

Robot

The living room

The dining room

The stair to the
basement

Robot
The basement

Up

Figure 1.3: A recharging task for the robot

To complete a given task, the planning software needs a characterization of a work

environment and a robotic system. The work environment is normally a 3D space

in which the robot stays for the task. A work environment could include boundaries

and objects inside, which are described with geometric primitives, such as straight

lines, curves, or planes. In Fig. 1.3, the robot needs to move from the living room

to the recharging place at the basement and recharge itself, and therefore the work

environment includes the living room, dining room, stairs, basement, and furniture

inside. The characterization of the robotic system includes its geometry, sensing

model, and action model. The geometry model is described by geometric primitives

and a rigid transformation, which together determine the space occupancy of the

system at any configuration. The action model shows the relationship between the

inputs and the evolution of the state of the system. A state of the system includes its

configuration and velocity. If interactions between the robot and work environment

are allowed to change the states of the robot and environment, such as collision

between them, the action model should also include the relationship between the

inputs and the evolution of the state of the environment. In this thesis, however, it is

3

θ

),(yx

ψ
2F

1F

),(equation,Motion

),(Input,

),(State,

on accelerati, velocity;,

),,,(ion,Configurat

21

uzfz

UFFu

Xqqz

qq

Cyxq

=
∈=

∈=

∈= ψθ

Figure 1.4: The action model (i.e. motion equation in this thesis) for a car-like
robotic system

assumed that such interactions do not exist. Under this assumption, the action model

is also called motion equation of the system. The sensing model shows the relationship

between the sensing information and the state of the system and environment.

Assuming that the robot in Fig. 1.2 can only move its wheels, it moves like a

car and its action model is shown in Fig. 1.4. Configuration q is represented by

configuration variables x, y, θ, and ψ, which are respectively the position, orienta-

tion, and steering angle. The set C includes all possible configurations, called the

configuration space. A state z includes configuration variables and their first-order

time derivatives, i.e, velocity. State space X includes all possible states. Two inputs

F1 and F2 respectively determine acceleration of forward velocity and velocity of the

steering angle. Input space U includes all possible inputs for the system. Motion

equation f is represented as a set of Ordinary Differential Equations (ODEs). If the

robot is equipped with a Global Positioning System (GPS), then the sensing model

will be an identity map assuming that GPS disturbances do not exist, i.e., sensing

information from the GPS provides exactly the state of the robot. However, if there

exist GPS disturbances, sensing information will not equal the state.

The general tasks for the planning software of robots are normally quite formidable.

The first reason is that geometry of the work environment and robot could be compli-

cated and consist of thousands of geometric primitives. The second reason is that the

4

action model could be under severe constraints so that there is no simple way to apply

inputs on the system to achieve desired motions. The action model could be under

equality and inequality constraints on configuration variables and their time deriva-

tives. The equality constraints on the configuration variables are called holonomic

constraints, which normally exist in a robotic system with multiple connected bod-

ies. The inequality constraints on the configuration variables are derived from system

design, such as the joint limits. Constraints on the time derivatives of configuration

variables are called differential constraints, which exist for virtually all robotics sys-

tems. For example, since a car cannot go sideways, which is a differential constraint

on the action model, it has to go zigzag to parallel park. The third reason is that

uncertainties could exist in sensing and action models. With sensing uncertainty, it

is difficult for the robot to directly know its state from sensing information. While

with action uncertainty, the robot might not go where it will go under no action

uncertainty.

To decompose the complexity of the tasks, the planning software is normally

implemented in a hierarchical way3. Uncertainties in the sensing model are normally

handled at the higher level, in which the given task is first decomposed into a sequence

of logically related subtasks. “Logically related” means that these subtasks are not

independent. For example, one subtask must start after the completion of another

subtask, or one subtask must start during the execution of another task when some

condition is satisfied. Each subtask is called a motion planning problem which consists

of a representation of the robotic system, work environment, initial state, and goal

state. At the middle level, an algorithm solves the motion planning problem. If

the problem is successfully solved, an open-loop input function will be returned. An

input function, which will be called a control, is a piecewise-continuous vector-valued

3There could exist other hierarchical ways. However, only one of them is used in this thesis to

roughly show where the motion planning problem is located in the design of planning software.

5

function from a time interval to an input space. “Open-loop” means that there will

be no uncertainty in the action model when applying the control on the system.

Applying the control, the characterized system will move from the initial state to the

goal state while satisfying all constraints. The resulting state history is called the

trajectory of the control. At the lower level, actual controls are developed to allow

the system to track the trajectory under uncertainties.

The overall planning process for the task in Fig. 1.3 is shown in Fig. 1.5, in which

each big hollow arrow represents an algorithm, and results of each algorithm are

shown under respective arrows. The task is firstly divided into the following subtasks

at higher level, which are executed one after another.

1. move from the current location to the door to the basement;

2. move from the top of the stair to the bottom;

3. move from the bottom of the stair to the recharging place;

4. move the effector to reach the power plug;

5. move the effector to put the power plug to the power outlet.

The motion planning problem of the first subtask is shown in Fig. 1.6, in which the

work environment only includes walls, furniture, plants, and electronics of the living

and dining rooms, the robot in Fig. 1.2 is considered as a car-like robot since the

effector will not move in the subtask. The initial state is in the living room, the goal

state is in front of the door to the basement, and the dashed line represents a solution

trajectory. It can be seen that the subtask is easier than the original task because

it has a smaller work environment, a simpler motion equation, and no uncertainties.

Secondly, each of these subtasks is solved by motion planning to obtain an open-loop

control for the effector and wheels, which will make the robot complete the subtask

when no disturbance exists. In the final stage, the actual control is calculated with

6

Get recharged

High Level Planning

1. Move to
the door of

the basement

2. Move to
the bottom of

the stair

3. Move to
the recharging

location

Motion Planning

Lower Level Planning

U

t t t t t

t t t t t

4. Reach the
power plug

5. Move the
plug to the
power plug

U

U U U U
U

UUU

Figure 1.5: A sketch of a hierarchical planning for the task in Fig. 1.3

the low level planning and the open-loop control to allow the robot to complete the

task even when the action uncertainty exists. The low level planning is normally

achieved by feed-back control laws.

1.2 The Emergence of Sampling-Based Motion Plan-

ning with Differential Constraints

With hierarchical planning, no uncertainties are involved in the motion planning prob-

lem4 since they are respectively handled by the high and low level planning. However,

the motion planning problems might still include a complicated work environment and

action model under severe constraints. Classical two-stage motion planning methods

further decompose complexity of motion planning problems and solve them in two

steps [1–5]. In the first stage, the motion planning problem is reduced into a path

planning problem or Piano Movers’ Problem [6] by considering only geometries of the

4In some variation of motion planning problems, uncertainties are considered. However, in this

thesis, only the basic motion planning problem is considered, in which uncertainties do not exist.

7

Robot

The living room

The dining room

The door to the
basement

Robot

Figure 1.6: The motion planning problem of the first subtask

work environment and robot, whose solution is a collision-free path from the initial

configuration to the goal configuration. In the second stage, differential constraints

on the action model are considered to time-parameterize the path from the first step

into a trajectory.

Path planning problems appeared around 1970 during the study for experimental

mobile robots and manipulators [7]. An example of the path planning problem is

shown in Fig. 1.7. The piano is considered as a mobile robot that can move freely

in any direction on the ground, the work environment includes the room and objects

inside that are simplified as rectangular boxes, and the curve is a solution following

which the piano could move from the initial configuration to the goal configuration

8

Figure 1.7: An example of the Piano Movers’ Problem

without colliding the rectangular boxes. By the introduction of the concept of con-

figuration space [8], the robotic system is reduced into a point, the work environment

is mapped into a set that the point cannot enter, and the path planning problem is

transformed into a pure geometry problem. The solution to the problem is a con-

tinuous path in the configuration space from the initial configuration to the goal

configuration that does not intersect the set corresponding to the work environment.

The Piano Movers’ Problem was shown to be PSPACE-hard [9], in which geometries

of the robot and the work environment are characterized by a finite collection of plane

primitives. For general Piano Movers’ Problem in which geometric primitives in the

configuration space are polynomials, two complete algorithms were provided based

on cylindrical algebraic decomposition [10] and roadmap [11], whose upper bounds

on running time are respectively doubly- and singly- exponential in the dimension of

the configuration space. Since complete algorithms for path planning problems take a

large amount of time, sampling-based techniques [12–17] have been extensively used

to provide a practical solution by sacrificing completeness, in which a set of sampling

points are used to represent the configuration space and construct solutions. Refer

9

to [18; 19] for a complete review of methods for the Piano Movers’ Problem.

Classical planning methods have been successfully applied in many areas. In Fig.

1.8, the methods have been used to automatically design the process to assemble the

front panel of a car in a collaboration between Fraunhofer-Chalmers Research Centre

for Industrial Mathematics and Volvo automobile company. In Fig. 1.95, the small

molecule in the center is the drug molecule (also called ligand) and the big molecule

is the human protein. The ligand will generate the desired effects when it is docked

on a specific location on the human protein. Path planning algorithms have been

used in rational drug design to verify whether a drug ligand could be docked into the

specific location of the protein.

Even though classical two-stage methods have obtain tremendous success, these

two-stage methods might suffer the following problems:

1. The path from the first stage might not be transformable into an executable

trajectory. An example is shown in Fig. 1.10, in which the straight line is a

collision-free path returned from path planning and the car cannot follow the

path to complete the parallel parking.

2. The cost associated with the final trajectory could be expensive. The cost could

be the time duration or consumed energy. An example is shown in Fig. 1.11, in

which the path with smoother turning curves takes the car less time to follow.

However, path planning algorithms are more likely to return the path with

sharper turning curves.

The direct reason for these problems is that two-stage methods ignore differential

constraints of the action model in the first stage. For Fig. 1.10, the car cannot

follow the straight path because it cannot go sideways, which could be formulated as

5The picture is from http://www.cs.rice.edu/CS/Robotics/bioinformatics/drug.html.

10

The initial configuration The goal configuration

Figure 1.8: Using path planning to design automated assembly process

Figure 1.9: Application of path planning in rational drug design

equality constraints in Fig. 1.12:

vs = ẋ sin θ − ẏ cos θ = 0, (1.1)

in which “·” above variables x and y is a shorthand notation for the time derivative

operator d
dt

. For Fig. 1.11, the smoother trajectory takes less time because the car

does not need to move slowly at sharp corners, which could be formulated as inequality

constraints in Fig. 1.12:

‖v̇f‖ = ‖[ẍ, ÿ]T‖ < 10. (1.2)

Differential constraints considered in robotics are usually first-order, or second-

order because most robot systems are second-order mechanical systems. First-order

11

Figure 1.10: An example of the inexecutable path for a car

min.8 min.3

Figure 1.11: An example of the inefficient trajectory for a car

constraints include non-integrable equality constraints, called first-order nonholo-

nomic constraints, and inequality constraints over the first-order time derivatives

of configuration variables. The equality in Eq. (1.1) and inequality

|vf | = |ẋ cos θ + ẏ sin θ| < 50 (1.3)

in Fig. 1.12 are examples of first-order nonholonomic and inequality constraints,

respectively. Second-order constraints include non-integrable equality constraints,

called second-order nonholonomic constraints [20], and inequality constraints over

second-order time derivatives of configuration variables. The second-order nonholo-

nomic constraints normally come from underactuated systems for which the number of

inputs is less than the dimension of the space of admissible velocities. The inequality

12

θ

),(yx

0cossin =−= θθ yxvs
sv

ψ

fv
10||;50|| << ff vv

θθ sincos yxv f +=

Figure 1.12: Differential constraints on a car system

in Eq. (1.2) is an example of second-order inequality constraints.

Differential constraints exist in the action model of almost every practical motion

planning problems. They originate from the following three sources:

1. Physical laws: According to the Newton’s second law, force is the product

of mass and acceleration. Therefore, there exist bounds on accelerations for

practical robotic systems since magnitude of forces on these systems is always

bounded. The differential constraint in Eq. (1.2) comes from this source since

the forces to provide the turning acceleration of the car are the static frictions

between the wheels and ground and the static friction only has finite magnitude

in reality.

2. Robotic design: Many robotic systems are designed to have differential con-

straints such that the building cost could be cheaper and the system could be

easier to control. The first-order constraint in Eq. (1.1) is of this type since the

wheels of the car systems are designed to move backward or forward, but not

sideways. Second-order nonholonomic constraints are induced in many under-

actuated systems for the same reason.

3. Task requirements: In the application of many robotic systems, there exists

differential constraints. For example, if the task of a car-like robot is to transport

products on the highway, then it is natural to require that the speed of the

system be under the speed limit.

13

Figure 1.13: Steering a car through a 300m. × 300m. virtual town at 72 kph

To overcome the problems of two-stage methods, many recent planning meth-

ods solve the motion planning problem by directly considering differential constraints

in the planning process. These methods are called motion planning with differen-

tial constraints. Since differential constraints are considered in the planning process,

their solutions are more reliable and efficient. Specifically, if only first-order nonholo-

nomic constraints are considered, it is generally called nonholonomic planning [21]

in robotics literature. If second-order constraints are considered, it is called kinody-

namic planning in [22]. Although in [22] only fully actuated holonomic systems are

considered, kinodynamic planning can also take into account underactuated systems.

With these new techniques, problems in Fig. 1.13, in which the car is modeled as a

nine-dimensional nonlinear dynamical system that accounts for tire loading, skidding,

basic suspension effects, and its input is the steering angle, and in Fig. 1.146, in which

the spacecraft is equipped with three thrusters and modeled as a 12-dimensional dy-

namics system, can be solved. Both models are described in details in Section 6.3.1.

Since differential constraints are considered in the action model of the kinody-

namic planning and nonholonomic planning problems, these problems are believed

to be more difficult than ordinary path planning problems. No lower bounds on the

6Geometry of the spacecraft and work environment was provided by Andrew Olsen.

14

Figure 1.14: Firing three thrusters to move a spacecraft from one corner of a 3D
grid to another corner

complexity of the problems have been derived. Also, very few algorithms have been

designed to compute exact solutions for general problems that consider the differ-

ential constraints. There are only algorithms that compute the exact solutions for

some specific low-dimensional problems. Finding an exact time-optimal trajectory

with bounds on acceleration and velocity for a point mass moving in an environment

with 3D polyhedral obstacles has been proved to be NP -hard [23]. Exact solutions to

kinodynamic motion planning problems only exist from point masses with �∞ bounds

on velocity and acceleration in one-dimension [24] and two-dimensions [25].

Steering problems, which are obtained by ignoring the work environments in non-

holonomic planning problems, have been actively studied in the last two decades.

Analytical solutions have been designed for many robotic systems, which include the

Dubins’ car [26], Reeds-Sheep Car [27], differential drive [28], differentially flat sys-

tems [29], kinematically controllable system [30], nilpotent systems [31], and chained-

15

form systems [32]. Specifically, optimal solutions even exist for steering problems for

the Dubins’ car [26], Reeds-Sheep Car [27], and differential drive [28]. However, for

general steering problems, numerical methods are used, in which controls are normally

approximated by parameterized curves. Nonlinear optimization techniques are then

used to optimize these parameters to find suboptimal solutions. However, because

the performance of these numerical techniques depends very much on initial guesses

of the solutions and has slow convergence on nonlinear problems, this method is only

practical for limited cases [33; 34].

Considering the work environments, most of current algorithms use sampling-

based techniques [13; 22; 35–42], in which a search graph is incrementally built to

construct solutions with sampled controls and states. The search graph is a directed

graph, whose nodes are associated with states and whose edges are associated with

sampled controls and their trajectories. The control of a path in the search graph

is constructed by sequentially concatenating the sampled controls of the edges in

the path. The concatenation of two controls is to append one control to the end

of the other one by offsetting the time interval of one control by the duration of

the other control. Initially, the search graph could include one, two, or more than

two nodes. These initial nodes are associated with the initial state, the goal state,

or other states. In each iteration, a node ncur in the search graph is firstly chosen

by a node selection algorithm. Node selection could use systematic search, such as

breadth first search [22; 43], Dijkstra’s algorithm [35; 37], or non-systematic search,

such as randomized search [13; 37; 38; 44–46]. Then a local planner uses a sampled

control ũnew to extend the state of ncur to a new state while considering differential

constraints. Local planners could sample a piecewise constant acceleration [22; 43],

a piecewise-constant control [13; 47], and non-constant controls [37; 38; 45; 48–50]

which could drive systems between two states either in the state space [45], or in a

subspace [37; 38; 48; 49]. The search graph is updated with a given updating policy. If

16

initx
goalx

goaln

initn

gε<

xn

)(xnx

)(newnx

curn

)(curnx

1e

newe 2e

)(~
1eu

)(~
2eu

)(~
neweu

Figure 1.15: An example of the search graph and solution path

a solution checking policy finds a solution path, which encodes a solution, the control

of the path is returned; otherwise, the algorithm goes to the next iteration until a

given termination condition is satisfied. An example of the search graph and solution

path is in Fig. 1.15, in which the search graph built from a bi-directional method is

in the lower picture, the upper picture shows the states and trajectories associated

with nodes and edges in the search graph, the thick lines in the search graph show the

solution path, the thick curves in the upper picture are trajectories of the solution

path.

1.3 Contributions of this Thesis

While motion planning with differential constraints provides a promising direction, it

also generates many interesting and challenging problems, such as motion represen-

tation and characterization, lower bounds and exact algorithms for general motion

planning problems, sampling-based algorithm design and analysis, and its application.

The contributions of this thesis are mainly about analysis and design of sampling-

based motion planning with differential constraints.

17

The first and main contribution is resolution completeness of sampling-based MPD

algorithms. For the Piano Movers’ Problem, sampling-based methods incrementally

build search graphs by sampling configuration space. Latombe provided resolution

completeness concept for these planners [18], that is, if there exists a solution, a res-

olution complete algorithm must find one provided that resolution of configuration

space discretization is high enough. However, for general motion planning problems,

sampled-based methods will normally sample time, the input space, and state space

simultaneously. In this thesis, the resolution completeness concept is extended to all

three spaces, and the first quantitative resolution complete conditions are provided

for a broad class of sampling-based planners and systems. The key to resolution com-

pleteness analysis is to understand the relationship between the reachability graph,

which is an intrinsic graph representation that encodes all reachable states of the

given planning problem, and a search graph, which encodes states reached by a plan-

ning algorithm. Due to sampling in time, the input space, and state space, and other

complications in the algorithms, mismatches are induced in the search graph. If a

trajectory of a solution exists in the reachability graph, a resolution complete planner

must construct a solution path that encodes the solution or it approximation in the

search graph in finite time with appropriate sampling techniques and parameters.

The other two contributions are about efficient algorithm design. A symmetry-

based gap reduction algorithm is designed and combined with sampling-based algo-

rithms to solve the gap problems of these algorithms, which usually appear in their

solution paths due to state space sampling, control space sampling, and algorithm

design. These gaps could severely degrade the precision of the returned solutions,

that is, the final states of the trajectories of the solutions might not be in the given

neighborhoods of goal states. Higher precision is normally achieved using smaller gap

tolerance, but this dramatically increases the computational cost. In practice, this

could mean that a solution will not be found in a reasonable amount of time. In this

18

thesis, the performance of sampling-based algorithms is substantially improved by re-

ducing big gaps in solution path candidates using a gap reduction technique. The gap

reduction process is greatly accelerated by exploiting group symmetries of the sys-

tem to avoid costly numerical integrations. Secondly, a heuristic is designed for node

selection to solve the metric sensitivity problem of RRT(Rapidly-exploring Random

Tree)-based planners, which means that, under differential constraints, RRT-based

planners have difficulties in escaping local minima when the given metric provides a

poor approximation of the true cost-to-go. Instead of designing a good metric, col-

lision information is collected online and a value in [0, 1] is assigned to each node in

the search graph. The higher value a node is associated, the more is the number of

trajectories, which are extended from the state of the node and have been detected

in collision. Extending states associated with smaller values with higher probability

would be more likely to avoid the local minima.

Chapter 2 formally defines general motion planning problems and its relation-

ship with other specific motion planning problems, such as nonholonomic planning

problem. In Chapter 3, a template for general sampling-based planning algorithms

is given and several existing planning algorithms will be described in this template.

Resolution completeness analysis for general sampling-based algorithms is developed

in Chapter 4. The gap problems will be presented and solved in Chapter 5. In Chap-

ter 6, the metric sensitivity problem of RRT-based algorithms will be explained and

solved.

19

Chapter 2

Problem Formulation

A motion planning problem consists of a robotic system, work environment, initial

state, and goal state. The objective is to move the system from the initial state

to the goal state safely. In this thesis, all robotic systems are assumed to be me-

chanical systems that consist of multiple rigid bodies. The work environment is in a

3-dimensional Euclidean space and contains static obstacles and boundaries.

To solve the problem with a computer algorithm, the problem needs to be de-

scribed in the computer. The problem description includes the models of the robotic

system and work environment, with which an algorithm could be used to find a solu-

tion control that will move the system from the initial state to the goal state. In this

chapter, the action models of the robotic systems and geometry models of the robot

and work environments are first given, and then general motion planning problems

are described with these models. Other types of motion planning problems, such as

path planning problems and nonholonomic planning problems, are also presented as

different levels of simplification of general motion planning problems.

As shown in Chapter 1, a complete characterization of a robotic system includes

its geometry, sensing model, and action model. However, with the hierarchical decom-

position, the action model of the robot and geometry model of the work environment

and the robot will be sufficient to describe a motion planning problem.

20

2.1 Action Models of Robotic Systems

For motion planning problems in this thesis, the action model characterizes how

the state of the system evolves with respect to the inputs. The model could be

under constraints on the configuration variables and their time derivatives. To clearly

describe these constraints and understand where these constraints come from, the

action model is described in the order of the configuration space, kinematics, and

dynamics. This order also represents different levels of simplification of the action

model in the path planning problem, nonholonomic planning problem, and general

motion planning problem. In the path planning problem, the action model only

consider configuration space of the robot. The action model of nonholonomic planning

problems includes up to kinematics. In general motion planning problems, all three

parts are included in the action model.

2.1.1 Configuration space and configuration constraints

A placement of a robotic system could be characterized by a configuration. The set

of all possible configurations is called configuration space, denoted as C. For most of

robotic systems, their configuration spaces can be characterized by a mathematical

object, manifold, if a neighborhood of any configuration is homeomorphic to a Eu-

clidean space. If the Euclidean space is of dimension nc, then the dimension of the

configuration space is also nc and the system is said to have nc degrees of freedom

(DOF). A configuration is an abstract mathematical object. To use it in the compu-

tation, the configuration should be parameterized as a vector1 in a Euclidean space.

Each element of the vector is called a configuration variable.

One way of parameterization directly comes from the definition of the manifold,

that is, each point in an nc-dimensional configuration space can be locally represented

1All vectors in this thesis are assumed to be column vectors.

21

1
x

1
y

1
z

1
o

0o 0x

0y
0z

Figure 2.1: A single rigid body which moves freely in an R
3 work environment

as a configuration vector, denoted as q, in R
nc . Since the number of configuration

variables obtained from this method is minimum, such parameterization is called a

minimum configuration parameterization.

For example, the configuration space of a single rigid body that could move freely

in the R
3 work environment can be characterized by a 6-dimensional manifold. To

parameterize the configuration space, we can choose an inertial frame O0 − x0y0z0

fixed in the work environment, and a frame O1 − x1y1z1 fixed on the robot as shown

in Fig. 2.1. A configuration could be locally represented by a configuration vector

q = [x, y, z, α, β, γ]T ∈ R
6, (2.1)

in which x, y and z are the position of the origin of the frame O1 − x1y1z1, and α, β

and γ are Euler angles that representing the orientation of frame O1 − x1y1z1 with

respect to frame O0 − x0y0z0. Euler angles normally consist of three angles, which

express the orientation by sequentially rotating these three angles around different

axis of a frame. For the same orientation, choosing different rotation axes could

obtain different Euler angles. To be specific and concise, α, β, and γ are assumed to

be yaw, pitch, and roll Euler angles which are respectively rotations around z, y and

x axes.

Another parameterization is to consider an nc-dimensional configuration space as

22

a submanifold2, which is defined by a set of equality constraints in R
ne with ne > nc.

A configuration is characterized by an ne-dimensional configuration vector

q = [q1, q2, · · · , qne]
T , (2.2)

which satisfies

gi
e(q) = 0 (2.3)

for i = 1, 2, · · · , ne − nc. These equalities gi
e are called holonomic constraints, which

normally correspond to the interactions between bodies in a mutli-body system, such

as the linkage between bodies, or between the system and the environment, such

as a robot moving on a support plane. Any nc independent variables from the ne

configuration variables could generate a minimum configuration parameterization.

For a general robotic system that consists of k rigid bodies and moves in an R
3

work environment, its configuration space as a submanifold in R
6k could be con-

structed as follows.

1. Construct the configuration vector Choose an inertial frame fixed in the

work environment and a frame fixed on each body of the robot. The config-

uration of each rigid body is characterized by a configuration vector in R
6.

Therefore, a configuration vector is an element in R
6k.

2. Construct the holonomic constraints For each interaction between the

bodies of the robot or between the robot and the environment, write it as

holonomic constraints on 6k configuration variables.

If there are nh independent equalities constructed from holonomic constraints in

the system, then the dimension of the configuration space is 6k − nh. This parame-

terization is called the natural configuration parameterization, which is very useful in

modeling geometry of the robotic system.

2It is not true that every configuration space could be represented as a submanifold. For details,

please refer to Chapter 4.4 in [19].

23

In Fig. 2.2, a robot is shown as a rectangular box that moves in a support plane.

Frame O0 − x0y0z0 is an inertial frame fixed on the support plane, and O1 − x1y1z1 is

a frame fixed on the robot. The configuration vector

q = [x, y, z, α, β, γ]T ∈ R
6 (2.4)

includes the position and orientation of the frame fixed on the robot with respect

to the inertial frame. The constraints of moving on the support plane could be

formulated in the following equations:

z = 0, (2.5)

β = 0, (2.6)

and

γ = 0, (2.7)

in which the first equality restricts the position of the robot on the support plane,

and the other two equalities ensure that the the robot will only rotate around the

norm of the support plane. Therefore, the dimension of the configuration space of the

robot is 3, and the independent configuration variables x, y and θ make a minimum

configuration parameterization.

By adding fixed back wheels and a steerable front wheel to the robot in Fig. 2.2,

a simple car system is obtained as shown in Fig. 2.3, in which O0 − x0y0z0 is an

inertial frame fixed on the support plane, O1 −x1y1z1 is a frame fixed on the car, and

O2−x2y2z2 is a frame fixed on the front wheel. The system has two rigid bodies. From

Fig. 2.2, each body has 3 holonomic constraints which are related to the supporting

plane. The constraints between the front wheel and the car body are formulated as

the following holonomic constraints:

x2 = x1 + lh cos θ1, (2.8)

24

1x1y

1z

1o

1o

0o
0x

0y

0z

0o

The front view

The top view

Figure 2.2: The holonomic constraints in a robot that moves in a support plane

and

y2 = y1 + lh sin θ1, (2.9)

in which lh is the length of O1O2, (x1, y1) and (x2, y2) are respectively the positions

of O1 and O2 in frame O0 − x0y0z0, and θ1 and θ2 are respectively the yaw angle

of the car body and the front wheel. With 8 holonomic constraints, the configura-

tion space of the car system is of dimension 4. Independent configuration variables

could be (x1, y1, θ1, θ2), or (x2, y2, θ1, θ2), each of which could be used as a minimum

configuration parameterization.

Assuming that a configuration is parameterized as a configuration vector q, an

inequality configuration constraint in the configuration space is in the following form:

gi(q) > 0. (2.10)

Inequality constraints usually come from the design of the system, such as joint limits,

and self collision avoidance. For the car system in Fig. 2.3, the mechanical design

normally requires that the absolute value of the yaw angle of the front wheel is less

than a given angle, which is formulated as the following inequality configuration

25

1z

1o

0o 0x

0y

0z

0o

2z

2o

2o
2x

2y
The front view

The top view

1x1y

1o

Figure 2.3: A simple car with fixed back wheels and a steerable front wheel

constraint

−|θ2| + cθ > 0, (2.11)

in which cθ is the positive constant upper bound on the steering angle.

2.1.2 Kinematics and first-order constraints

Kinematics describes the admissible velocities of the robot, which are the possible

moving directions at a configuration. A configuration and a velocity at the config-

uration compose a state, which completely determines the situation of a mechanical

robotic system. The set of all possible states is called the state space, denoted as X.

The state space can be considered as a vector bundle, called the state bundle or phase

space, that is a mathematical object in differential geometry. The base space of the

state bundle is the configuration space of dimension nc. The fiber space, also called

26

velocity space, of dimension nv at a configuration includes all the admissible velocities

at the configuration. Since the velocities satisfy the properties of vectors according

to physical laws, the fiber space is an nv-dimensional vector space. The dimension n

of the state bundle is

n = nc + nv. (2.12)

If nv equals nc, the state bundle is also called the tangent bundle of the configuration

space C, denoted as TC, and a fiber space at a configuration c is called a tangent space,

denoted as TcC. Similarly to configuration, a state needs to be parameterized into

a state vector in the Euclidean space to be used in the computation. The elements

of the state vector are called state variables, which include configuration variables

and velocity variables. Since the derivation of the configuration variables has been

discussed in Section 2.1.1, that of the velocity variables will be discussed here. If

the number of velocity variables equals the dimension of the fiber space, it is called

minimum velocity parameterization.

With a minimum configuration parameterization of nc-dimensional configuration

space described in Section 2.1.1, a configuration c could be locally represented as an

nc-dimensional configuration vector

q = [q1, q2, · · · , qnc]
T ∈ R

nc . (2.13)

One natural way of parameterization for the velocity is to use the following set of

constant unit vector fields { ∂

∂q1
,
∂

∂q2
, · · · , ∂

∂qnc

}
, (2.14)

whose values at configuration c represent that the corresponding configuration vari-

ables are increased at the rate of 1 unit per second. Any velocity vc at the configu-

ration c could always be decomposed into a linear combination of the values of these

vector fields at configuration c, i.e.,

vc = q̇1
∂

∂q1
(c) + q̇2

∂

∂q2
(c) + · · · + q̇n

∂

∂qn
(c), (2.15)

27

in which q̇1, q̇2, · · · , and q̇n are the first-order time derivatives of the configuration

variables that represent the signed magnitude of the velocity along the direction of

∂
∂q1

(c), ∂
∂q2

(c), · · · , and ∂
∂qn

(c). Therefore, the velocity vc can be represented by a

velocity vector

q̇ = [q̇1, q̇2, · · · , q̇nc]
T ∈ R

nc , (2.16)

which is called a natural velocity parameterization.

A first-order nonholonomic constraint could be formulated as the following equal-

ity of configuration variables and their first-order time derivatives:

he(q, q̇) = 0, (2.17)

if he cannot be transformed into

ge(q) = 0, (2.18)

i.e., a holonomic constraint.

If the back wheels cannot slip on the ground, the system in Fig. 2.4 has a first-

order nonholonomic constraint. In Fig. 2.3, a configuration of the car could be

parameterized by configuration variables x1, y1, θ1 and θ2. The value of the slipping

velocity of the back wheels can be formulated as the following equation of the first-

order time derivatives of the configuration variables

vy = ẋ1 sin θ1 − ẏ1 cos θ1. (2.19)

Therefore, the nonslipping constraint of the back wheels encodes the following first-

order nonholonomic constraint

ẋ1 sin θ1 − ẏ1 cos θ1 = 0. (2.20)

If there are no first-order nonholonomic constraints in a robotic system, a natural

velocity parameterization is also a minimum velocity parameterization. As shown in

Fig. 2.1, since the system can move freely in R
3, a configuration could be locally

28

1x1y

1o

0o
0x

0y 0=
yv

2o
2x

2y

Figure 2.4: A system with a first-order nonholonomic constraint due to the nonslip-
ping back wheels

represented as a configuration vector

q = [x, y, z, α, β, γ]T ∈ R
6 (2.21)

using an inertial frame fixed in the work environment and a frame fixed on the robot.

With the same frames, the robot could translate along or rotate around each axis to

independently change each configuration variables. Therefore, the space of admissible

velocities at the configuration is 6-dimensional vector space. Using the following

constant vector fields { ∂

∂x
,
∂

∂y
,
∂

∂z
,
∂

∂α
,
∂

∂β
,
∂

∂γ

}
, (2.22)

a velocity could be represented as a velocity vector

[ẋ, ẏ, ż, α̇, β̇, γ̇]T ∈ R
6, (2.23)

whose elements are the first-order time derivative of configuration variables.

When first-order nonholonomic constraints exist, one way of parameterization is

to implicitly represent a velocity at a configuration by the first-order time derivatives

29

of nc configuration variables and these nonholonomic constraints. Another way that

leads to a minimum velocity parameterization is to find a set of nv vector fields

{x1,x2, · · · ,xnv}, (2.24)

in which the natural velocity parameterization of velocity xi(c) satisfies the non-

holonomic constraints in Eq. (2.17) at the configuration c for i = 1, 2, · · · , nv.

Theoretically, since the state bundle with nv-dimensional fiber space is also a mani-

fold, a set of nv linearly independent vector fields always exists. Therefore, a velocity

vc at a configuration c has the following linear decomposition

vc = v1x1(c) + v2x2(c) + · · · + vnvxk(c), (2.25)

and can be represented as a velocity vector

v = [v1, v2, · · · , vnv]
T ∈ R

nv . (2.26)

Such parameterization is called a general velocity parameterization.

For the system in Fig.2.4, the following three vector fields satisfy the nonholonomic

constraint in Eq. (2.20).

x1(x1, y1, θ1, θ2) =
∂

∂θ2

, (2.27)

x2(x1, y1, θ1, θ2) =
∂

∂θ1

, (2.28)

and

x3(x1, y1, θ1, θ2) = cos θ1
∂

∂x1

+ sin θ1
∂

∂y1

, (2.29)

in which x1 and x2 respectively represent pure rotation to change the yaw angles

of the car body and the steering wheel with the unit speed, and x3 represents the

pure translation along x1 axis of O1 − x1y1z1 with the unit speed. It can be easily

verified that these vector fields satisfy the nonholonomic constraints in Eq. (2.20).

Since the velocity space is 3-dimensional and the values of these vector fields are

30

linear independent at any configuration, any velocity vc at configuration c could be

represented as the following linear composition

vc = v1x1(c) + v2x2(c) + v3x3(c), (2.30)

in which v1, v2, and v3 are velocity variables.

A first-order inequality constraint could be formulated as the following inequality

of configuration vector q and velocity vector v

hi(q, v) > 0. (2.31)

For example, if the velocity of the car along x1 axis of O1 − x1y1z1 in Fig. 2.4 is

required to be larger than 0 and less than 5, then it can be formulated as the following

first-order inequality constraints:

v3 > 0, (2.32)

and

5 − v3 > 0. (2.33)

2.1.3 Dynamics and second-order constraints

Dynamics of a system shows the relationship between first-order time derivatives of

the velocity variables and the inputs applied on the system, which could be derived

with the Newton-Euler mechanics, Lagrangian mechanics, or Hamiltonian mechanics.

In this thesis, the dynamics for general systems will be provided without the details

of the derivation. Please refer to [51] for details. Assume that the state bundle of a

general system has nc-dimensional configuration space C and nv-dimensional velocity

space, and a configuration c is represented as a configuration vector

q = [q1, q2, · · · , qnc]
T ∈ R

nc (2.34)

by a minimum configuration parameterization. The description of its dynamics also

needs the following objects:

31

• Kinetic energy as a Riemannian metric M defined on configuration space C.

At any configuration c in the configuration space C, M is an inner product,

denoted as Mc, which is defined on the tangent space TcC

Mc : TcC × TcC → R
+ ∪ {0}. (2.35)

If a system has velocity vc at configuration c, then the kinetic energy of the

system will be Mc(vc, vc).

Assume that the velocity vc in the tangent space is represented under the natural

velocity parameterization as a vector

q̇ = [q̇1, q̇2, · · · , q̇nc]
T ∈ R

nc . (2.36)

Since Mc is a parameterized inner product, it could be represented as an nc×nc

matrix, denoted as [mij(q)]nc×nc , during the computation. The kinetic energy

will be calculated as

Mc(vc, vc) = [q̇1, q̇2, · · · , q̇nc][mij(q)]nc×nc [q̇1, q̇2, · · · , q̇nc]
T

=
nc∑
i=1

nc∑
j=1

mij(q)q̇iq̇j.
(2.37)

The inverse matrix of [mij]nc×nc is represented as [mij]nc×nc .

For the car in Fig. 2.4, assume that the mass and inertial of the car body

are respectively M and I1, the steering wheel has inertial I2, the mass of the

steering wheel is ignored, and a velocity vc at configuration c in the natural

parameterization is a vector

q̇ = [ẋ1, ẏ1, θ̇1, θ̇2]
T ∈ R

4, (2.38)

and Mc is of the following form:

Mc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m
2

0 0 0

0 m
2

0 0

0 0 I1+I2
2

I2
2

0 0 I2
2

I2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (2.39)

32

The kinetic energy will be calculated as

Mc(vc, vc) = [ẋ1, ẏ1, θ̇1, θ̇2]

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m
2

0 0 0

0 m
2

0 0

0 0 I1+I2
2

I2
2

0 0 I2
2

I2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẏ1

θ̇1

θ̇2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= m
2
ẋ2

1 + m
2
ẏ2

1 + I1+I2
2
θ̇2
1 + I2

2
θ̇2
2 + I2θ̇1θ̇2.

(2.40)

• Potential energy as a function V from the configuration space to R.

By choosing a reference plane for which the potential energy is zero, the po-

tential energy of a system with mass M at configuration c could be calculated

as

V (q) = Mgh(q), (2.41)

in which g is the gravitational acceleration of the earth, and h(q) is a function

of configuration whose value is the signed distance of the mass center of the

system above the reference plane.

• A set of mutually orthonormal vector fields

{x1,x2, · · · ,xnv}, (2.42)

in which

Mc(xi(c),xj(c)) = 0 (2.43)

for i �= j and i, j = 1, 2, · · · , nv and any c in C. Using the set, the general

velocity parameterization of a velocity vc at configuration c is a vector

v = [v1, v2, · · · , vnv]
T ∈ R

nv . (2.44)

Note that such mutually orthonormal vector fields could be derived from any

set of nv linearly independent vector fields using Gram-Schmidt orthonormal-

33

ization. Also note that dynamics could be described with any set of nv linearly

independent vector fields, but the formulation could be complicated.

• General forces as one-forms.

The inputs for an actual robotic system are normally forces. A force could

generate both translational forces and rotational torques, which together are

called a general force of the force.

Since general forces satisfy the properties of vectors and the multiplication of a

general force and velocity could generate a scalar that is the power by physical

laws, the general force at a configuration could be considered as a covector

that maps a velocity vector into a scalar. Therefore, general forces could be

represented as one-forms. Choosing the following set of nc constant one-forms

{dq1, dq2, · · · , dqnc}, (2.45)

in which d
dqi

will generate a unit power when applying along the corresponding

constant vector field ∂
∂qi

for i = 1, 2, · · · , nc, a general force F at configuration

c can be decomposed into the following linear combination

F(c) = q1(c)
d

dq1
(c) + q2(c)

d

dq2
(c) + · · · + qnc(c)

d

dqnc

(c), (2.46)

and represented in the following vector form

F(q) = [q1(q), q2(q), · · · , qnc(q)]T ∈ R
nc . (2.47)

Assume that the system has m forces, the general force of each unit forces are

represented as

F1,F2, · · · ,Fm, (2.48)

and the value of forces are represented as an input vector

u = [u1, u2, · · · , um]T ∈ R
m. (2.49)

34

If the number of forces is less than the dimension of the configuration space,

the system is called an underactuated system.

The general dynamics equation for the above system is as follows

v̇l +
nv∑
i=1

nv∑
j=1

Γ̃l
ijvivj =

m∑
a=1

Y l
aua − V l, l = 1, 2, · · · , nv, (2.50)

in which

Γ̃l
ij =

M(∇xi
xj,xk)

M(xk,xk)
, (2.51)

∇xi
xj =

nv∑
l=1

Γl
ijxl (2.52)

is the covariant derivative of xj with respect to xi,

Γl
ij =

1

2

nv∑
p=1

mql(
∂mip

∂qj
+
∂mjp

∂qi
− ∂mij

∂qp
), (2.53)

Y l
a =

M(Ya,xl)

M(xl,xl)
, (2.54)

Ya = ([mij]nc×ncFa)
T [

∂

∂q1
,
∂

∂q2
, · · · , ∂

∂qnc

]T (2.55)

is the vector field obtained from the general force Fa,

V l =
M(∇V,xl)

M(xl,xl)
, (2.56)

and

∇V =
∂V

∂q1

∂

∂q1
+
∂V

∂q2

∂

∂q2
+ · · · + ∂V

∂qnc

∂

∂qnc

(2.57)

is the vector field obtained by applying the gradient operator ∇ on V .

A second-order nonholonomic constraint is in the form the following equality

ke(q, v, v̇) = 0, (2.58)

in which

v̇ = [v̇1, v̇1, · · · , v̇nv]
T ∈ R

nv , (2.59)

35

if ke cannot be transformed into

he(q, v) = 0 (2.60)

and

ge(q) = 0. (2.61)

For example, if the right side of Eq. (2.50) is 0 for some l = 1, 2, · · · , or nv, then

it could induce a second-order nonholonomic constraint in the following form

v̇l +
nv∑
i=1

nv∑
j=1

Γ̃l
ijvivj = 0, (2.62)

which often appears in a manipulator robot with passive joints.

A second-order inequality constraint is in the form of the following equality

ki(q, v, v̇) > 0, (2.63)

which normally comes from safety considerations for the system. For example, if

the forces generate a very large acceleration, then the force might not be enough

to hold different parts of the robotic system together such that the system will be

disassembled. By substituting v̇ with terms of u, q, and v according to Eq. (2.50),

these inequality constraints could be transformed into the following equalities:

ki(q, v, u) > 0. (2.64)

Note that if v̇ in a second-order inequality constraint of Eq. (2.63) is only functions

of q and v, such as in the case of the second-order nonholonomic constraints, then

the inequality constraint is actually a first-order inequality constraint by substituting

the accelerations with the terms of q and v.

36

2.2 Geometry Models of the Robot and Work En-

vironment

The geometry model of a system serves the purpose of determining the space oc-

cupancy of the system, with which the algorithm could know whether the system

at a given configuration collides with itself or objects in the work environment. A

geometry model of the system includes a closed set

Gr ⊂ W (2.65)

and rigid transformation

TG : C × 2W → 2W , (2.66)

in which

W = R
3. (2.67)

The set Gr is associated with a fixed configuration, at which any point on the robot is

in Gr, the transformation TG will translate and rotate Gr according to a given config-

uration into a new set Gr
′ such that any point on the robot at the given configuration

is in Gr
′.

Normally, the set Gr is described with a set of geometric primitives, such as lines,

curves, planes, and surfaces. For example, with a set of plane primitives, a convex set

could be constructed as the intersection of the half-spaces, each of which corresponds

to a surface primitive, and a nonconvex set could be constructed as the union of

multiple convex sets formed with surface primitives. In some cases, if the set Gr

is very simple, it could be characterized by simple inequalities. For example, if the

robot has a shape of a ball of radius 1 in R
3, then Gr could be characterized as

x2 + y2 + z2 ≤ 1, (2.68)

with its associated position at (0, 0, 0). For a system that consists of l rigid bodies,

37

)(01 oo)(01 xx

)(01 yy 1o

1x

1y

rG

'
rG

GT

Figure 2.5: The geometry model of a robot

the transformation TG could be defined by l matrices in SE(3), each of which will

transform the shape of a rigid body according to the current configuration.

An example of the geometry of a robotic system is given in Fig. 2.5, in which

Gr at configuration (0, 0, 0) is presented by the intersection of 5 half-planes each of

which is represented by a straight line, and the transformation TG for configuration

(x, y, θ) is represented by a matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos θ − sin θ 0 x

sin θ cos θ 0 y

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (2.69)

which transforms Gr to Gr
′.

The work environment is represented by only a closed set

Gw ⊂ R
3 (2.70)

since the environment is assumed to be static in the thesis. The similar techniques

to represent Gr for geometry of the robot could be also used.

38

2.3 General Motion Planning Problems

These problems are also called kinodynamic planning problems. For a given general

motion planning problem, denoted as P , its work environment is represented by a

geometry model Gw. Assume that a system has an nc-dimensional configuration

space, lc configuration constraints, ln first-order nonholonomic constraints, lv first-

order inequality constraints, la second-order inequality constraints, m forces with

m ≤ nc, (2.71)

and geometry model Gr and TG. The dimension nv of the velocity space is

nv = nc − ln, (2.72)

and the dimension n of the state bundle is

n = nv + nc. (2.73)

Assume that a minimum configuration and general velocity parameterizations are

used, a state is locally parameterized as a state vector (called state for short later)

x = [qT , vT] ∈ R
n, (2.74)

in which

q ∈ R
nc (2.75)

is the configuration vector, called configuration for short later, and

v ∈ R
nv (2.76)

is the velocity vector, called velocity for short later, by using a set of vector fields

{x1,x2, · · · ,xnv}. (2.77)

The general motion planning problem, P , is represented as a tuple,

(X,Xobs, U, Ū , f, xinit, Xg), (2.78)

39

in which X and Xobs are the state space and its obstacles, U is the input space, Ū is

the control space generator set, f is the motion equation encoding both kinematics

and dynamics, xinit is the initial state, and Xg is the goal state set. These symbols

will be further explained in details in the following sections.

2.3.1 State space and its obstacles

The state space, X, is the state bundle of the robotic system. In this thesis, X is

required to be a bounded and open differentiable manifold of dimension n. The con-

figuration space is nc-dimensional and the velocity space is nv-dimensional. Assume

‖ · ‖ is a given norm defined on X.

The closed set

Xobs ⊂ X (2.79)

encodes the collision avoidance constraints from the work environment, configuration

inequality constraints, and first-order inequality constraints, and is defined as follows:

Xobs = Xcol ∪Xc ∪Xv, (2.80)

in which the set

Xcol = {x ∈ X | TG(q,Gr) ∩Gw �= ∅} (2.81)

includes all states that cause the collision between the robot and work environment,

the set

Xc =
lc⋃

l=1

{x ∈ X | gl
i(q) �> 0} (2.82)

includes all states that violate the configuration inequality constraints from the sys-

tem, and the set

Xv =
lv⋃

l=1

{x ∈ X | hl
i(q, v) �> 0} (2.83)

includes all states that violate the first-order inequality constraints from the system.

The set Xcol from the environment is often called the global constraints, and Xc and

40

Xv from the system are called the local constraints. For convenience, an open set

Xfree is defined as

Xfree = X \Xobs, (2.84)

which is called the violation-free set.

2.3.2 The input space and control space

The input space U includes all possible input vectors, called input for short later, and

is defined as a rectangular subset of R
m:

U = [umin
1 , umax

1] × [umin
2 , umax

2] × · · · × [umin
m , umax

m], (2.85)

in which umin
i and umax

i are the lower and upper bounds on the value of the i-th input

force, and each input u in U also satisfies la second-order inequality constraints

kl
i(x, u) = kl

i(q, v, u) > 0 (2.86)

for l = 1, 2, · · · , and la. It is assumed that U is equipped with a norm ‖ · ‖.

The control space, U , of P contains all possible controls for P . It is important

to keep in mind that an input represents a value in R
m and a control3, denoted as

ũ, represents a piecewise-continuous vector-valued function from [0, t] to U for some

real positive t. An example of a control

ũ : [0, tf] → U (2.87)

is shown in Fig. 2.6, in which the value of the control ũ at any time t1 in [0, tf] is in

the input space U . For any ũ1 and ũ2 in U , their distance is defined as

ρ(ũ1, ũ2) = sup
s∈[0,min{t̄(ũ1),t̄(ũ2)}]

‖ũ1(s) − ũ2(s)‖. (2.88)

3In [52], the term control is also used to represent an input function.

41

u~

U

t

1t

u

0 ft

Figure 2.6: An example of the control ũ as a function from a time interval to the
input space

To define the sample space from which the controls are sampled for sampling-

based planning algorithms, U is defined in this thesis as a semigroup4 generated from a

nonempty control space generator set, Ū , which is a set of continuous controls and will

be used to construct the sample space for sampling-based planning algorithms. The

controls in the set could be arbitrary functions or just a special class of functions, such

as constant functions or sinusoidal functions. The number of controls in the set could

be either countable or uncountable. The set could be either continuous or discrete.

For general robotic systems, the generator set is uncountable and continuous, and

consists of arbitrary functions. For convenience, let the control duration range, D, be

defined as5

D = [inf
ũ∈Ū

t̄(ũ), sup
ũ∈Ū

t̄(ũ)] ⊂ [0,∞), (2.89)

in which

t̄ : U → (0,∞) (2.90)

gives the time duration of any ũ in U . The semigroup operation ◦ for any ũ1 and ũ2

4A semigroup is a set equipped with an operation whose elements satisfy closure and associativity

properties, but need not have inverses.
5Even though the infimum could be 0, the duration of any control in Ū is required to be bigger

than 0.

42

in U is defined as

(ũ1 ◦ ũ2)(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ũ1(t) t ∈ [0, t̄(ũ1))

ũ2(t− t1) t ∈ [t̄(ũ1), t̄(ũ1) + t̄(ũ2)].

(2.91)

The k-order expanded control set is defined as

Ûk = {ũ1 ◦ ũ2 ◦ · · · ◦ ũk | ũi ∈ Ū for i = 1, 2, · · · , k}. (2.92)

The k-order generated control set is defined as

Ūk =
k⋃

i=1

Û i. (2.93)

The control space is now defined as

U = Ū∞. (2.94)

It is clear that

Ūk−1 ⊂ Ūk. (2.95)

2.3.3 Motion equation to encode kinematics and dynamics

To facilitate computation of motion of the robotic system in the computer, the

kinematics and dynamics of the system is normally represented as a set of input-

parameterized Ordinary Differential Equations (ODEs), called motion equation and

denoted as f

ẋ = f(x, u), (2.96)

in which x is the state, ẋ is the first-order time derivative of x, and u in the input of

the system. In this thesis, the motion equation is independent of time, i.e., the system

is time-invariant. Time-invariant systems are also known as autonomous systems.

A general form of a trajectory is

τ : [0, t] → X, (2.97)

43

i.e., a function from a time interval to the state space, which could be either continuous

or discontinuous in time. Given a control

ũ : [0, t̄(ũ)] → U (2.98)

and a starting state xi, a trajectory of the control ũ from state xi could be also defined

as a state transition map

τũ : X × [0, t̄(ũ)] → X, (2.99)

which is obtained by the following integration

τũ(xi, t) = xi +

∫ t

0

f(x(τ), ũ(τ)) dτ. (2.100)

It is easy to see that

τũ(xi, 0) = xi. (2.101)

Given state xi and control ũ, the trajectory of control ũ from xi in the general form

is

τũ(xi, ·) : [0, t̄(ũ)] → X. (2.102)

For a trajectory τũ(xi, ·) of control ũ from starting state xi, if for any t in [0, t̄(ũ)]

τũ(xi, t) ∈ Xfree (2.103)

and

kl
i(τũ(xi, t), ũ(t)) > 0 (2.104)

for l = 1, 2, · · · , la, the trajectory is called violation-free. Let the w-tube of a trajectory

τ : [0, tf] → X, (2.105)

be defined as

Tw
τ = {x | ‖x− τ(t)‖ ≤ w, ∀t ∈ [0, tf]}, (2.106)

in which ‖ · ‖ is a norm on the state space. A violation-free trajectory τ is called to

have a clearance w if for any ũ and state xi

τũ(xi, t) ∈ Tw
τ , t ∈ [0, t̄(ũ)] (2.107)

44

1

2

1l

2l

112),(ldr 221),(ldr

Figure 2.7: The distance from trajectory τ2 to τ1 does not equal that from τ1 to τ2.

implies that the trajectory of ũ from xi is violation-free, i.e., if the image of a trajectory

of a control from a state is in w-tube of trajectory τ with clearance w, then the

trajectory is violation-free. If there are no second-order inequality constraints, then

the conditions for trajectories to be violation-free or have clearance w will be just

respectively requiring the image or w-tube of the trajectory in Xfree.

Given two trajectories

τ2 : [0, t2] → X (2.108)

and

τ1 : [0, t1] → X (2.109)

which are respectively trajectories of ũ1 and ũ2 from x1 and x2, the distance dτ (τ2, τ1)

from trajectory τ2 to τ1 is defined as

dτ (τ2, τ1) = sup
s2∈[0,t2]

inf
s1∈[0,t1]

‖τ1(s1) − τ2(s2)‖. (2.110)

If dτ (τ2, τ1) is l1, then the image of trajectory τ1 will be in the l1-tube of trajectory

τ2. The distance from trajectory τ2 to τ1 could be different from that from trajectory

τ1 to τ2 as shown in Fig. 2.7. Control ũ2 (or trajectory τ2) is an η-neighboring control

(or trajectory)6 of ũ1 (or τ1) if the image of τ2 is in η-tube of τ1. The concatenation

6Note that the definition requires only that τ2 stays within a “tube” that surrounds τ1, without

45

operator ◦ for two trajectories is defined as

(τ1 ◦ τ2)(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ1(t) t ∈ [0, t1)

τ2(t− t1) t ∈ [t1, t1 + t2].

(2.111)

Assume that τũ1(x1, ·) is the trajectory of control ũ1 from state x1, τũ2(x2, ·) is the

trajectory of control ũ2 from state x2, and τũ(x1, ·) is the trajectory of control ũ from

state x1 in which

ũ = ũ1 ◦ ũ2. (2.112)

Only when

x2 = τũ1(x1, t̄(ũ1)), (2.113)

i.e., the trajectory τũ2 of control ũ2 is from the final state of trajectory τũ1(x1, ·), is

the following equation derived

τũ(x1, t) = τ(t), (2.114)

in which

τ = τũ1(x1, ·) ◦ τũ2(x2, ·), (2.115)

and

t ∈ [0, t̄(ũ1) + t̄(ũ2)]. (2.116)

From the description in Sections 2.1.2 and 2.1.3, the general motion equation of

a robotic system is defined as

ẋ =

⎡
⎢⎣ q̇

v̇

⎤
⎥⎦ =

⎡
⎢⎣ fq(q, v)

fv(q, v, u)

⎤
⎥⎦ , (2.117)

in which

fq(q, v) =
nv∑

k=1

vkxk(q), (2.118)

any concern for the times at which the trajectories reach various states. This is allowed because this

analysis is primarily concerned with the feasibility of trajectories, as opposed to optimality.

46

and

fv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
nv∑
i=1

nv∑
j=1

Γ̃1
ijvivj +

m∑
a=1

Y 1
a ua − V 1

−
nv∑
i=1

nv∑
j=1

Γ̃2
ijvivj +

m∑
a=1

Y 2
a ua − V 2

· · ·

−
nv∑
i=1

nv∑
j=1

Γ̃nv
ij vivj +

m∑
a=1

Y nv
a ua − V nv

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.119)

in which terms are defined in Eq. (2.50). These equations show the derivation of

motion equations from kinematics and dynamics of robotic systems.

2.3.4 Solutions

The initial state and goal state set are respectively

xinit ∈ Xfree (2.120)

and

Xg ⊂ Xfree. (2.121)

A control ũ is an exact solution to P if its trajectory τũ(xinit, ·) from the initial state

xinit is violation-free and

τũ(xinit, t̄(ũ)) ∈ Xgoal, (2.122)

i.e., the final state of the trajectory is in the goal state set.

If Eq. (2.122) is replaced by

‖τũ(t̄(ũ)) − xg‖ < εs (2.123)

for some xg in Xg and a real positive constant εs, the control ũ is called a solution

with solution tolerance εs. Furthermore, if the trajectory of ũ from xinit has clearance

w, then the solution is called to have clearance w. Given an approximation tolerance

0 < εp < 1 (2.124)

47

and a solution ũ with clearance w, a control ũ′ is called the εp-approximation of the

solution ũ if its trajectory from the initial state is violation-free,

τũ′(xinit, t) ∈ T εpw
τũ

(2.125)

for

t ∈ [0, t̄(ũ′)], (2.126)

i.e., any state in trajectory τũ′(xinit, ·) is in the (εpw)-tube of trajectory τũ(xinit, ·),

and

‖τũ(xinit, t̄(ũ)) − τũ′(xinit, t̄(ũ
′))‖ < εpw, (2.127)

i.e., the final state of trajectory τũ′(xinit, ·) is in the (εpw)-neighborhood of the final

state of trajectory τũ(xinit, ·).

2.4 Path Planning Problems

Even though path planning problems are not the main topic in this thesis, their de-

scription is still provided here to give a complete view about various planning prob-

lems. Since differential constraints are not considered in the path planning problem,

the action model of the system includes the configuration space and its constraints.

A general motion planning problem, P , is simplified as a tuple,

(C, Cobs, qinit, Qg), (2.128)

in which C and Cobs are the nc-dimensional configuration space and its obstacles, and

qinit and Qg are the initial configuration and goal configuration set.

The closed set

Cobs ⊂ C (2.129)

encodes the collision avoidance constraints from the work environment and configu-

ration inequality constraints on the system. It is defined as

Cobs = Ccol ∪ Cc. (2.130)

48

The set

Ccol = {q ∈ C | TG(q,Gr) ∩Gw �= ∅} (2.131)

includes all configurations that cause the collision between the robot and work envi-

ronment. The set

Cc =
lc⋃

l=1

{q ∈ C | gl
i(q) �> 0} (2.132)

includes all configurations that violate the configuration inequality constraints from

the system. Similarly, an open collision-free set, denoted as Cfree, is defined as

Cfree = C \ Cobs. (2.133)

The initial configuration and goal configuration set are respectively

qinit ∈ Cfree (2.134)

and

Cgoal ⊂ Cfree. (2.135)

A path, denoted as p, in the configuration space is defined as

p : [0, 1] → C. (2.136)

A collision-free and continuous path p is a solution if the path starts from the initial

configuration and stops in the goal configuration set.

2.5 Nonholonomic Planning Problems

Since first-order nonholonomic constraints of system are considered, the action model

of the nonholonomic planning problem includes the configuration space, kinematics,

and their associated constraints. A general motion planning problem, P , is simplified

as a tuple,

(C, Cobs, U, Ū , f, qinit, Qg), (2.137)

49

in which C and Cobs are the configuration space and its obstacles, U and Ū are the

input space and control space generator set, qinit is the initial configuration, and Qg

is the goal configuration set.

The set Cobs and Cfree are defined similarly as those for the path planning problem.

The motion equation f of the system only encodes the kinematics, i.e.,

q̇ = f(q, u)

= fq(q, u)

=
nv∑
l=1

ulxl(q)

(2.138)

in which ul is the signed magnitude of the vector field xl, that is, the velocity of the

system is directly controlled by its inputs.

The input space U includes all possible inputs and is defined as a rectangular

subset of R
nv :

U = [umin
1 , umax

1] × [umin
2 , umax

2] × · · · × [umin
nv
, umax

nv
], (2.139)

in which nv ≤ nc, and umin
i and umax

i are the lower and upper bounds on the signed

magnitude of the i-th vector field, and each input u satisfies lv first-order inequality

constraints

hl
i(q, u) = hl

i(q, v) > 0 (2.140)

for l = 1, 2, · · · , and lv. The input space U is also equipped with a norm ‖ · ‖.

The control space U is similar to that for the general motion planning problem,

except that a control for the nonholonomic system is a function from a time interval

to the nv-dimensional input space. A trajectory of control ũ from configuration qi is

obtained by integrating the motion equation with ũ from configuration qi. Since the

motion equation encodes only the kinematics, the trajectory of nonholonomic system

is a function from a time interval to the configuration space.

The initial configuration and goal configuration set are respectively

qinit ∈ Cfree (2.141)

50

and

Qgoal ⊂ Cfree. (2.142)

A control ũ is an exact solution if the value of control ũ at any moment t satisfies

input constraints, i.e.,

hl
i(q, ũ(t)) > 0 (2.143)

for l = 1, 2, · · · , lv and any t in [0, t̄(ũ)], the trajectory of ũ from qinit is collision-free,

i.e.,

τũ(qinit, t) ∈ Cfree (2.144)

for any t in [0, t̄(ũ)], and the trajectory stops in the goal configuration set, i.e.,

τũ(qinit, t̄(ũ)) ∈ Qgoal. (2.145)

From the above problem description, it can be seen that the nonholonomic plan-

ning problem have the same representation as the general motion planning problem

except that the state is replaced by the configuration and motion equation encodes

kinematics instead of dynamics. From the perspective of the sampling-based algo-

rithm, there is no difference between the description of the general motion planning

problem and that of the nonholonomic planning problem. Both problems together

will be called MPD problems, which have the following representation

P = (X,Xobs, U, Ū , f, xinit, Xg), (2.146)

but keep in mind that if it is a nonholonomic planning problem, the state is actually

the configuration, and the motion equation encodes only the kinematics.

2.6 The Reachability Graph: an Intrinsic Graph

Representation of MPD Problems

In the above sections, a representation of the problem is provided for the MPD algo-

rithms. In this section, the problem is represented by the reachability graph, which

51

will be used in the resolution completeness analysis in Chapter 4.

The reachability graph is a directed graph which encodes all possible violation-free

trajectories from the initial state for a given problem P . It simply exists once P is

defined and is not constructed by an algorithm. The reachability graph will serve

as an important frame of reference for comparing the search graph generated by an

algorithm. Every node in the reachability graph represents a reachable state from

state xinit, for which there is a violation-free trajectory of a control from the initial

state to the reachable state. The set of states of all nodes in the reachability graph

is called the reachable set from state xinit, denoted as R∞(xinit), which includes all

reachable states from state xinit. Each directed edge corresponds to a violation-free

trajectory of a control in the control space generator set. The trajectory starts from

the state of the source node and stops at the state of the target node for that edge.

Using the reachability graph instead of the reachable set to characterize the problem,

a complete representation of the given MPD problem is provided, which include both

the trajectories and reachable states. An example is shown in Figure 2.8, in which

each dot represents a reachable state for a given problem and curves between dots

represent trajectories associated with edges in the graph. Note that many reachable

states and trajectories between reachable states are omitted.

To formally define the reachability graph, the set of reachable states at stage k

from xinit, denoted as Rk(xinit), is introduced by induction. First,

R0(xinit) = {xinit}. (2.147)

At stage k,

Rk(xinit) = {x | x = f̃(x′, ũ), x′ ∈ Rk−1(xinit), ũ ∈ Ūvf (x
′)}, (2.148)

in which

Ūvf (x) ⊆ Ū (2.149)

52

Figure 2.8: A reachability graph

denotes the set of controls that generate violation-free trajectories from x, and f̃ is

the discrete motion equation defined for all x0 ∈ X and ũ ∈ U as

x′ = f̃(x0, ũ) = x0 +

∫ t̄(ũ)

0

f(x(s), ũ(s))ds (2.150)

The reachable set from state xinit is

R∞(xinit) =
∞⋃

k=0

Rk(xinit). (2.151)

Similarly, a backward reachable set from state x, denoted as R−
∞(x), is defined.

For each state x′ in R−
∞(x), there exists a violation-free trajectory of a control from

state x′ to state x. This concept will be used later to describe the sampling set for

the state space sampling in Section 3.3.1.

Usually, the number of states in R∞(xinit) is infinite because Ū is infinite. Intu-

itively, when Ū is finite as in some problems [53], it seems that R∞(xinit) should be

finite. However, it is shown in [53; 54] that R∞(xinit) could be infinite for a class of

discrete-time chained-form systems, even with a finite control space generator set. In

the following part, Ū is always assumed to be uncountable for conciseness. However,

the analysis will also be applicable for problems with finite Ū .

53

xv

Figure 2.9: A lane change problem

The reachability graph, G〈N , E〉, is defined as a directed graph. Every node n in

N corresponds to a unique reachable state x(n) in R∞(xinit), and every directed edge

e(ns, ne) in E from node ns to node ne corresponds to a control ũ(e) in Ūvf (x(ns))

with

x(ne) = f̃(x(ns), ũ(e)). (2.152)

Note that the reachability graph is defined as a general graph, which is a set of

nodes and a binary relation between nodes. Even though most graphs in computer

science have a finite set of nodes, it is possible to define the reachability graph with

an uncountable set of nodes.

2.7 An Example of the MPD Problem

The problem is shown in Fig. 2.9, in which a car with dynamics is required to do a

lane change maneuver on a two lane road with 60mph constant forward speed in a

305m stretch of road, the shaded areas are obstacles to keep the car in the road and

complete the lane change.

The state of the car in Fig. 2.10 is

[vy, ω, x, y, θ]
T , (2.153)

54

θ

),(yx

xv

uyv

w

Figure 2.10: The sketch of the car with dynamics

in which

x ∈ [0, 800], (2.154)

y ∈ [−800,−450], (2.155)

and

θ ∈ [−π, π] (2.156)

represent the position and orientation,

ω ∈ [−5, 5] (2.157)

is the angular velocity,

vy ∈ [−50, 50] (2.158)

is the translational velocity perpendicular to the forward direction. The input to

the system is the steering angle, denoted as u. The input space is [−0.6, 0.6]. The

control space generator set includes all continuous functions from a time interval to

the input space with control duration range be [0, 2]. This generator set is continuous

55

and uncountable. The motion equation is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̇y = −vxω + (fyf + fyr)/M

ω̇ = (fyfa− fyrb)/I

ẋ = vx cos(θ) − vy sin(θ)

ẏ = vx sin(θ) + vy cos(θ)

θ̇ = ω,

(2.159)

in which a and b are respectively the distance from the front and rear axles to the car

mass center,

fyf = −Cf ((vy + aω)/vx − u) (2.160)

and

fyr = −Cr(vy − bω)/vx (2.161)

are forces acting on front and rear tires along the direction perpendicular to the

forward direction, Cf and Cr are constant coefficients of fyf and fyr, vx is the constant

forward velocity, and M and I are the mass and inertia.

The initial configuration and goal configuration are respectively shown as small

rectangle boxes in left and right side of Fig. 2.9. The car starts and stops with vy

and ω be zero. The task is to design a control, which will drive the car from the

initial state to the goal state without colliding obstacles, i.e., the car completes the

lane change.

56

Chapter 3

A Sampling-Based Planning

Framework

Sampling-based planning with differential constraints have been extensively applied

to solve MPD problems, whose action models include differential constraints. This

section presents an algorithm template that unifies numerous sampling-based plan-

ning under differential constraints. After the algorithm description in this chapter, it

would be natural to discuss resolution completeness of these algorithms in Chapter

4, and algorithm designs in Chapters 5 and 6.

In the first section, a template for the algorithms will be given. In the second

section, several sampling-based algorithms are described in the template. Sampling

in the state space and control space will be specifically described and characterized

in the last section.

3.1 A Template for Sampling-Based Planning

Given a problem P , a search graph is iteratively built by sampling-based algorithms

using sampled controls and states to construct solutions. The search graph is repre-

57

sented in the computer as a directed graph, G〈N,E〉. A node

n ∈ N (3.1)

is associated with a state x(n) in X. The reached set, denoted as XG, is defined as

XG =
⋃
n∈N

{x(n)}, (3.2)

which include all states reached by the algorithm. A directed edge

e(ni, ne) ∈ E (3.3)

from node ni to node ne is associated with a control ũ(e) and its trajectory τũ(e)(x(ni), ·)

from state x(ni). Note that in some planners, such as bi-directional planners, the tra-

jectory of control ũ(e) could also be calculated by integrating backward-in-time from

state x(ne). To be concise, the trajectory of an edge will always be from state x(ni) of

the source node except that it is specifically mentioned to be calculated from x(ne).

Assume that a path pG in the search graph consists of a sequence of edges

{e1(n1, n2), e2(n2, n3), · · · , ek(nk, nk+1)}, (3.4)

the control of the path is defined as

ũ = ũ(e1) ◦ ũ(e2) ◦ · · · ◦ ũ(ek), (3.5)

and the trajectory of the path, denoted as τ̂ , is defined as

τ̂ = τũ(e1)(x(n1), ·) ◦ τũ(e2)(x(n2), ·) ◦ · · · ◦ τũ(ek)(x(nk), ·), (3.6)

in which τũ(ei)(x(ni), ·) is the trajectory associated with edge ei. The trajectory τ̂ of

the path could be different from the trajectory τũ(xinit, ·) of the control of the path

from the initial state. The trajectory τ̂ is associated with the search graph and could

be a discontinuous function from a time interval to the state space (an example is

shown as thick curves in the upper picture in Fig. 3.1.). Trajectory τũ is associated

58

with the reachability graph and normally is a continuous function from a time interval

to the state space since it is obtained by integration. The difference between τ̂ and

τũ is one of the reasons that affect resolution completeness of sampling-based MPD

algorithms. It will be described in details in Chapter 4. From Eq. (2.113), it can be

seen that

τ̂(t) = τũ(xinit, t) (3.7)

for

t ∈ [0, t̄(ũ)] (3.8)

when

x(n1) = xinit, (3.9)

and

τũi
(x(ni), t̄(ũi)) = x(ni+1), (3.10)

in which

ũi = ũ(ei) (3.11)

and i = 1, 2, · · · , k − 1.

A path is called a solution path if the control of the path is a solution. An example

of the search graph and solution path is shown in Fig. 3.1, in which the middle picture

contains an intermediate search graph that will be adjusted into the search graph

in the lower picture, the upper picture shows the states and trajectories associated

with nodes and edges in the search graph, the thick lines in the search graph show

the solution path, and the thick curves in the upper picture are the discontinuous

trajectory of the solution path.

Given an initialization procedure, node selection, local planner, updating policy,

solution checking policy, and termination condition, the template of sampling-based

planning algorithms is briefly described here, and then further explanation follows

with specific examples.

59

initx
goalx

goaln

initn

gε<

xn

)(xnx

curn

)(curnx

1e
newe 2e

)(~ 1eu

)(~ 2eu

goaln

initn xn
curn

1e
newe 2e

newn

newu~

newx

Figure 3.1: An example of the search graph, solution path, and generation of a new
edge

1. Initialize Search Graph: Use the given initialization procedure to build a

search graph with one, two, or multiple nodes and no edges. One of these nodes

is called the initial state node, denoted as ninit, which is associated with the

initial state xinit or a state in its neighborhood. In Fig. 3.1, the search graph

is initialized with two nodes ninit and ngoal, which are respectively associated

with states xinit and xgoal.

2. Select Node: Use the given node selection to choose a node ncur in N . In Fig.

3.1, node ncur is selected.

60

3. Generate Trajectory Segment: Use the local planner to sample a control

ũnew from U and generate its trajectory from x(ncur) to state xnew. In the upper

picture of Fig. 3.1, a local planner samples the control ũnew and generates its

trajectory from x(ncur) to state xnew.

4. Update Search Graph: Use the updating policy to update G from two as-

pects: 1) check whether a new node nnew and new edge enew should be inserted

into the search graph. If yes, insert the node and edge. The new edge is asso-

ciated with the sampled control ũnew; 2) adjust the search graph with the new

node and edge, which includes checking whether two subgraphs could be con-

nected or whether the new node should be identified as a goal state node. The

goal state node is associated with a goal state or a state in its neighborhood.

In Fig. 3.1, a new edge enew from node ncur to nnew is inserted in the middle

picture. The state of node nnew is xnew. In the lower picture, since the distance

between states of nodes nx and nnew is less than some given tolerance εg, the

two subgraphs are connected by unifying two nodes as one node nx.

5. Check for Solution: The solution checking policy determines whether a solu-

tion path exists. If a solution path is found, the control of the path is returned

as the solution. In Fig. 3.1, a solution path in the lower picture consists of the

following edges

{e1, enew, e2}, (3.12)

and the returned control is

ũ = ũ(e1) ◦ ũ(enew) ◦ ũ(e2). (3.13)

6. Check Termination Condition: Iterate until the given termination condition

is satisfied.

61

Initialize search graph Given a problem, the initialization procedure generates

a set of nodes with no edges for the search graph. Each node is associated with a

state. In a single-tree approach, such as the planner in [35], only the initial state node

ninit associated with xinit exists in N . In a bi-directional approach, such as the bi-

directional RRT-based planner in [55], a goal state node ngoal associated with a goal

state xgoal is also included in N . For planners in [22], a state in the εr neighborhood

of xinit is associated with ninit. One could even place thousands of initial nodes in

N , as in the case of initializing a probabilistic roadmap (PRM) [14; 56] with uniform

random samples from Xfree, and the methods using such initialization are called

PRM-based methods.

Select node The node selection selects a node from the search graph by giving

nodes different priorities and selecting the node with the highest priority, which is

similar in some ways to the search queue prioritization in classical AI search. If

Dijkstra’s algorithm is used, as in [35], then its node selection selects a node that has

untried controls and the shortest distance to xinit. Other possibilities are depth-first,

breadth-first [22; 43], or A∗ [57]. In the case of an RRT-based planner [13], a random

state xrand is generated in X, and then the node whose state is the nearest (with

respect to a distance function on X) to state xrand over all nodes in G is returned.

Numerous other possibilities exist based on other algorithms (e.g., [22; 36–38; 44]).

Generate trajectory segment Step 3 is implemented by a local planner, which

may be considered as a separate component that samples a control ũnew from U that

evolves the system from x(ncur) to some state xnew.

In some planners [38; 45; 50; 58–60], state xnew is given to their local planners as

a parameter by a state space sampling method. These local planners are referred as

connecting local planners. Some of these local planners use steering methods which

do not consider constraints from the work environment, and in other local planners

62

)(curnx)(curnx

newf xx =
newx

fx

lε≤

newu~

newu~

Figure 3.2: The trajectories generated from two types of connecting local planners

(e.g., [58; 59]) constraints from the work environment are considered. The trajectories

generated by these local planners may either: 1) succeed in exactly reaching xnew,

2) succeed in reaching a given neighborhood of xnew, or 3) fail to reach sufficiently

close to xnew, in which case another node must be selected in Step 2. For the second

condition, a real positive constant εl is usually specified. The final state xf of the

generated trajectory must satisfy

‖xnew − xf‖ ≤ εl (3.14)

to report success in reaching xnew. If a connecting local planner is permitted to

succeed under condition 2, then it is called an approximate connecting local planner

with tolerance εl; otherwise, it is called exact if it only succeeds under condition

1. Examples of successfully generated trajectories of two types of connecting local

planners are shown in Fig. 3.2, in which the local planners try to sample a control

whose trajectory is from x(ncur) to a given state xnew, and the pictures from the left

to the right show the trajectories generated by an exact connecting local planner and

approximate connecting local planner.

Other local planners are called non-connecting local planners, which usually do

not have a given target state xnew. They just sample a control ũnew from U and obtain

xnew by integrating the motion equation with ũ from x(ncur).

63

Let

Ũs ⊆ U (3.15)

to denote the sampled control set, which includes all controls sampled by the local

planner to construct G. A local planner normally only samples a specific class of

controls, such as a piecewise constant acceleration [22; 43], a piecewise-constant con-

trol [13; 47], and non-constant controls [37; 38; 45; 48–50]. The sampling control set,

denoted as Ũ , is the smallest generated control set that includes all possible controls

that could be sampled by the local planner. For a local planner, a fixed and positive

integer r is assumed in this thesis such that

Ū r−1 �⊆ Ũs ⊆ Ū r = Ũ , (3.16)

in which Ū r−1 and Ū r are respectively (r − 1)- and r-order generated control set

(defined in Section 2.3). For connecting local planners, r is no less than 1. For

example, the steering method for differential drive vehicles [28] needs at most five

continuous controls to complete a steering; therefore, its r is 5. For non-connecting

local planners, r is usually 1.

Since Ũ is normally uncountable, an algorithm will not terminate in finite time

if its local planner samples an infinite number of controls. Either a deterministic

sampling [35; 36; 61] or a sampling with discretization would be used to obtain a

finite sampled control set. These sampling is called finite control space sampling.

In deterministic sampling, the finite sampled control set could be given before the

algorithm starts. An example of sampling with implicit discretization is given in

Section 3.3.2, in which a distance between controls in the sampled control set is

maintained to achieve discretization in the control space.

If a control ũ satisfies

ũ = ũ1 ◦ ũ2 ◦ · · · ◦ ũk, (3.17)

in which ũi is in Ũ , then ũ is a k-stage control. If the control is a solution to problem

64

P , then the solution is called a k-stage solution.

Update search graph The updating policies will first check whether the new

trajectory from x(ncur) is violation-free. If no, the new state will be discarded and

the algorithm goes to the next step; otherwise, updating policies variate depending

on whether state space discretization is used. If the states in set XG are considered

as sampled states, then the generation of states in set XG is a state space sampling

process. When a state space sampling only generates a finite XG, it is called a finite

state space sampling. State space discretization is one way to achieve a finite state

space sampling1.

When state space discretization is not used, there are the following possibilities.

If state xnew is not in the set XG, an edge associated with ũnew is always added to G

from node ncur to a new node associated with xnew. Otherwise, the edge is added from

node ncur to an existing node nx because xnew equals x(nx). Examples of updating

the search graph without state space discretization are shown in Fig. 3.3, in which

nx is an existing node in the search graph.

Without state space discretization, every xnew will be added to XG if it is not

in XG. After the algorithm runs for an infinite number of iterations, an infinite set

XG could be generated since state xnew is normally not in the current XG. For the

nonconnecting local planners, state xnew is obtained by integrating a sampled control,

which generally will not make xnew be in XG. With connecting local planners, if state

xnew is given by a random state space sampling in the state space X, xnew will be

also added into XG since the probability of generating state xnew in XG is zero.

There are explicit and implicit ways of discretizing the state space. In the first

way, the state space is explicitly partitioned into a finite set of discretization sets, in

each of which at most one state in XG is allowed such that only a finite number of

1There also exist other ways to achieve a finite reached set XG, such as using a finite sampled

control set and a finite search depth.

65

)(curnx

newx xnx =)(

newu~

)(curnx

newx

newu~

curn

xn

curn

newn

newenewe

Figure 3.3: Updating the search graph without state space discretization

nodes could exist in G. If xnew is in a discretization set that does not contain the state

of any node in G, then an edge from node ncur to node nnew associated with state

xnew is always added as shown in the bottom right picture in Fig. 3.4, in which the

dashed lines discretize the state space. Otherwise, some planners, e.g., [35], discard

xnew and no edge is added as shown in the bottom left picture in Fig. 3.4, while

other planners, e.g., [62], discard xnew, but a new edge is inserted as shown in the

bottom middle picture from ncur to node nx whose state is in the discretization set .

Implicit state space discretization is achieved by requiring that the distance between

states in XG is no less than a given positive real constant. Based on whether state

xnew is in the given neighborhood of a state in XG, there are also three cases similar

to those shown in Fig. 3.4. The explicit discretization is efficient but needs a large

amount of memory space. The implicit discretization is slow but does not need extra

memory space. In the method [35], the space is explicitly partitioned into a tiling of

rectangular cells. In [62], the space is implicitly discretized.

66

)(curnx

newx

newu~

)(curnx

newx

newu~

curn

xn

curn

newn

newenewe

)(xnx

)(curnx

newx

newu~

curn

)(xnx

Figure 3.4: Updating the search graph with state space discretization

After a new node and edge are inserted, some policies will check whether two

search subgraphs could be connected. In the bi-directional or PRM-based methods,

the search graph consists of two or multiple subgraphs. If the distance between states

of two nodes in two subgraphs is less than a given tolerance, then these two subgraphs

are connected by unifying the two nodes. Some policies will check whether a goal state

node could be added. If the state of the new node is in the given neighborhood of a

goal state, then the new node is marked as a goal state node.

Check for solution A solution path is normally from the initial state node to a goal

state node. Therefore, the solution checking policy will start a solution checking when

two subgraphs are connected or a new goal state is marked. When two subgraphs are

connected, a path from the initial state node in one subgraph could be connected to

another path to a goal state node in the other subgraph as shown in Fig. 3.1. When

the final node of a path is marked as a goal state node, the path could be a solution

path if it also starts from the initial state node.

67

Check termination condition The termination condition tells whether the algo-

rithm should stop. Some algorithms, such as [13], will stop after a given number of

iterations. Some algorithm, such as [35; 36], will stop when all nodes in the search

graph have been explored.

3.2 Descriptions of Sampling-Based Algorithms in

the Template

In this section, three types of planners, which are the single-directional, bi-directional,

and PRM-based planners, are described as specific examples of sampling-based plan-

ning with differential constraints. The single-directional search methods are from

[13; 35]. The bi-directional one is from [13]. The PRM-based one is an extension

from [13]. With the template in the above section, the algorithm description only

needs the following components, which include the initialization procedure, node se-

lection, local planner, solution checking policy, and termination condition.

3.2.1 The single-directional algorithms

The single-directional algorithm in [13] Given a problem, a distance function

ρ : X ×X → R
+ ∪ {0}, (3.18)

a finite sampled control set with m controls

Ũs = {ũ1, ũ2, · · · , ũm}, (3.19)

and a gap tolerance εg, RRT is a tree-like search graph, denoted as T , which could

be incrementally built to quickly explore the search space and construct solutions.

1. Initialization procedure It initializes the tree T with only one node ninit

whose state is xinit.

68

)(initnx

randomx

)(nearnx

Nnnxxnxx randomnearrandom ∈≤)),(,())(,(ρρ

initn

nearn

ENG ,

Figure 3.5: The node selection for RRT-based planners

2. Node selection As shown in Fig. 3.5, it chooses a node nnear in T , whose

state x(nnear) is the closest to a randomly generated state xrandom with respect

to the given distance function over states of all nodes in the search graph.

3. Local planner A nonconnecting local planner is used. As shown in Fig. 3.6,

it will choose a control

ũnew = ũk (3.20)

from the given sampled control set Ũs to generate a trajectory from x(nnear) to

state

xnew = xk, (3.21)

which is the closest to xrand over final states of trajectories of all controls in Ũs

from x(nnear).

4. Updating policy If the trajectory of ũnew from x(nnear) is violation-free, the

policy always adds a new node nnew for the new state xnew and a new edge

enew(nnear, nnew); otherwise, do nothing. An example of a new edge is shown in

Fig. 3.7. Note that the algorithm will not check whether state xnew is in set

69

)(initnx

randomx

)(nearnx

1
~u2

~u

mu~
ku~

1x2x

mx
newk xx =

mixxxx irandomkrandom ,...,1),,(),(=≤ ρρ

Figure 3.6: The local planner for RRT-based planners, in which the local planner
samples ũk from a finite set of m sampled controls

XG or not.

Furthermore, if the state of the new node is in the εg neighborhood of a goal

state xgoal in Xgoal, then nnew is marked as a goal state node as shown in Fig.

3.8, in which the state x(nnew) of new node nnew is in the εg neighborhood of a

goal state, and nnew is marked as a goal state node ngoal.

5. Solution checking policy When a goal state node is marked, a solution path

exists and the control of the path is returned as a solution. An example of a

solution path is shown in Fig. 3.8, in which the thick lines in the lower picture is

the solution path, and the thick curves in the upper picture show the trajectory

of the solution path.

6. Termination Condition The RRT-based planner in [13] will stop if a given

number of iterations is reached or a solution path is found.

70

)(initnx

)(nearnx
ku~

newnew xnx =)(

initn

nearn

ENG ,

newn

newe

Figure 3.7: A new edge enew(nnear, nnew) is added when the trajectory of ũk from
x(nnear) is violation-free

)(initnx

goalx
gε<

initn newn

)(newnx

curn newe

newu~

)(curnx

initn goaln
curn newe

Figure 3.8: Finding a goal state node and solution path for the RRT-based single-
directional method

71

The single-directional algorithm in [35] Even though the method in [35] was

designed for nonholonomic path planning problems, it is also suitable for general

motion planning problems by extending its search space from the configuration space

to the state space. The search graph for this method is also a tree structure with

the root node associated with the initial state. The algorithm overall works like

the Dijkstra’s algorithm. Its local planner also chooses sample controls from a finite

sampled control set Ũs. Each sampled control is a constant control of a fixed duration

δt.

To describe this algorithm exactly in the template, the nodes in the search graph

are categorized as explored, partially explored, or unexplored. If none of the controls

in the sampled control set have been applied on a node to generate trajectories from

the state of the node, then the node is called unexplored. If all controls in the set

Ũs have been applied on a node, then the node is called explored. Otherwise, if only

part of controls in the finite set have been applied on a node, then the node is called

partially explored. Each node is also associated with a real value, which denotes the

cost-to-come from the initial state to the state of the node.

Before the construction of the search graph, the algorithm discretizes the state

space into smaller parallelepipeds of equal size. Specifically, for an n-dimensional

state space, each dimension is divided into 2R intervals of equal size such that there

are 2nR parallelepipeds. A parallelepiped is called occupied if the state of a node in

the search graph is inside, or empty if otherwise.

1. Initialization procedure It initializes the tree with only one node ninit whose

state is xinit. The node is marked as unexplored.

2. Node selection It checks each node in the search graph. If there exists a

partially explored node, the node is selected. Otherwise, the unexplored node

with the least cost is chosen. The selected node is denoted as ncur.

72

3. Local Planner It chooses a control ũnew in the set Ũs, which has not been

applied on node ncur. A new trajectory of ũnew from state x(ncur) is generated.

The final state of the new trajectory is xnew.

4. Updating policy It first marks node ncur to show the control ũnew has been

applied. If ũnew is the first control applied, the node is marked as partially

explored. If all controls have been applied, the selected node is marked as ex-

plored. Secondly, it checks whether the new trajectory is violation-free. If no,

the algorithm goes to the next step; otherwise, it will check whether the paral-

lelepiped where state xnew lives is occupied. If yes, xnew is discarded; otherwise,

a new node nnew marked as unexplored and a new edge enew(ncur, nnew)is added.

The updating behavior is shown in the left and right pictures of Fig. 3.4. If the

state of the new node is in a parallelepiped which contains a goal state, then

the new node is marked as a goal state node.

5. Solution checking policy When a goal state node is marked, a solution path

and its control is returned.

6. Termination condition The algorithm will terminate either when all nodes

up to a given search depth K in the search graph have been marked as explored

or a solution path is found.

3.2.2 A bi-directional algorithm

The bi-directional search methods normally initialize the search graphs as two dis-

jointed subgraphs, which start respectively with the initial node and a goal state

node. A solution path is found when states of two nodes in two subgraphs are close

enough. Here, the bi-directional RRT-based planner in [13] is used as a specific ex-

ample. Given a problem, a finite sampled control set Ũs, a distance function, and a

tolerance εg, the components of the algorithm are given as follows.

73

1. Initialization procedure It initializes the search graph with two trees T1 and

T2, which respectively have node ninit associated with state xinit and node ngoal

associated with a goal state xgoal.

2. Node selection To balance the exploration of two trees, it takes turns to

chooses a node nnear in T1 and T2, whose state x(nnear) is the closest to a state

xs with respect to the given distance function over states of all nodes in the

respective tree. The state xs could be a random state, or a new state generated

from the other tree.

3. Local planner It will choose a control ũnew from the set Ũs to generate a

trajectory from x(nnear), whose final state xnew is the closest to state xs of all

final states of trajectories of controls in the finite set from x(nnear). Note that

if node nnear is in the subgraph that is initialized with the goal state node, the

trajectory is calculated by integrating backward-in-time from state x(nnear).

An example is shown in Fig. 3.9, in which the thick curve in the upper picture

represents the generated trajectory, and the thick line in the lower picture is

the new edge from the search graph updating process.

4. Updating policy The policy will check whether the trajectory of ũnew from

x(nnear) is violation-free. If no, state xnew is discarded and the algorithm goes

to the next step; otherwise, a new node nnew associated with the new state

xnew and a new edge enew will be added. If node nnear is selected from T2 that

contains the goal state node, the new edge enew is from node nnew to node nnear

as shown in Fig. 3.9; otherwise, the new edge enew is from node nnear to node

nnew.

Since the search graph consists of two disjointed subgraphs, the policy will check

whether the distance between the states of two new nodes from two trees is less

than the given tolerance εg. If yes as shown in Fig. 3.1, then two subgraphs are

74

initx
goalx

goalninitn

)(newnx

nearn
newe

)(~
neweu

newn

)(nearnx

Figure 3.9: Backward-in-time trajectory generation and graph updating for the
subgraph that contains a goal state node

connected by unifying nodes nnew and nx as one node nx.

5. Solution checking policy If two subgraphs are connected, the path from the

initial state node in T1 and the path to the goal state node in T2 generate a

solution path; otherwise, go to the next step.

6. Termination Condition The algorithm will stop if a given number of itera-

tions is reached or a solution path is found.

3.2.3 A PRM-based search algorithm

PRM-based planning algorithms [14] was originally developed for path planning prob-

lems. The algorithm consists of the construction phase and query phase. In the

construction phase, a roadmap, which is an undirected graph, is built incrementally

with sample points in the configuration space to capture the connectivity of the

collision-free configuration space. In each iteration, a sampled point tries to connect

the neighboring points in the existing roadmap. In the query phase, the initial con-

75

figuration and goal configuration try to connect to nodes in the roadmap. If both

initial configuration and goal configuration are connected to the roadmap and there

is a path from the initial configuration to the goal configuration, then a solution

is returned. With the constructed roadmap, the search in the query phase tends

to have lower search depth and therefore faster query time. These algorithms have

successfully solved many challenging path planning problems. It is desirable to ex-

tend the method for MPD problems. As shown in Section 3.2.2 that a search graph

could be built with two disjointed subgraphs in the bi-directional algorithm, it is

natural to construct a search graph with multiple disjointed subgraphs, which will

obtain a PRM-based planning method with differential constraints. In the following,

a PRM-based planning method with differential constraints is described by extend-

ing RRT-based planners. Both the construction and query phases use the following

components with minor differences.

1. Initialization procedure In the construction phase, k1 new disjointed sub-

graphs are added to the search graph. Each new subgraph is initialized with

only one node associated with a sample state, which is not in the given neigh-

borhood of the state of any node in the current search graph. In the query

phase, two new disjointed subgraphs are initialized. One only has a node asso-

ciated with the initial state, and the other one only has a node associated with

the goal state.

2. Node selection In the construction phase, to balance the exploration of differ-

ent subgraphs, it takes turns to choose a node nnear in each subgraphs, whose

state x(nnear) is the closest to a state xs with respect to the given distance func-

tion over states of all nodes from the same subgraph. The state xs could be a

random state, or a new state generated from the other subgraphs. In the query

phase, it takes turns to choose a node nnear from subgraphs with the initial and

goal state nodes.

76

3. Local planner It will choose a control ũnew from a finite set of sampled controls

to generate a new trajectory from x(nnear), whose final state xnew is the closest

to xs of all final states of trajectories of controls in the finite set from x(nnear).

4. Updating policy In both phases, the policy will first check whether the new

trajectory of ũnew from x(nnear) is violation-free. If no, state xnew is discarded

and the algorithm goes to the next step; otherwise, a new node nnew associated

with the new state xnew and a new edge enew will be added. The distance

between the state of the new node to states of nodes in other subgraphs is

further checked. If the distance is less than tolerance εg, then the two subgraphs

are connected by unifying the two nodes.

In the query phase, if the state of the new node is in the εg neighborhood of a

goal state, the new node is marked as a goal state node.

5. Solution checking policy The solution checking only happens in the query

phase. When two subgraphs are connected at a unified node or a new goal state

node is marked, whether there is a solution path through the unified node or

with the new goal state node as the final node will be checked. If there is a

solution path, then its control is returned.

6. Termination Condition The construction phase will stop after a given num-

ber of iterations. The query phase will stop either when a solution path is found

or a given number of iterations are reached.

3.3 Characterization of State Space Sampling and

Control Space Sampling

To facilitate the resolution completeness analysis in Chapter 4, the sampling in the

state and control space is described and characterized here. The objective is to provide

77

an invariant characterization which is independent of specific sampling-based MPD

algorithms and their different runs, i.e, these characterizations will be invariant when

the sampling is used in different algorithms and their different runs.

The characterization needs the concept of dispersion [63]. For a set B with a norm

‖ · ‖, a set A consists of sampled points from set B. The dispersion of set A with

respect to set B is defined as

sup
b∈B

inf
a∈A

‖a− b‖. (3.22)

Intuitively, it is the furthest away any state in set B could be from its nearest sampled

point in set A.

3.3.1 State space sampling

The states of in the reached set XG of a search graph could be considered as a

sampled point in a sampling state set, denoted as X̃G, which is the smallest state set

that includes all possible XG. The process of generating new state in XG could be

considered as a state space sampling from set X̃G.

For a search graph which is initialized with nodes

{n+
1 , n

+
2 , · · · , n+

a , n
−
1 , n

−
2 , · · · , n−

b , n
±
1 , n

±
2 , · · · , n±

c }, (3.23)

in which n+
i means a subgraph will be built with forward-in-time integration from

state x(n+
i), n−

j means that a subgraph will be built with backward-in-time integration

from state x(n−
j), and n±

k means that a subgraph will be built with both forward-

and backward-in-time integration from state x(n±
k) described in Section 3.2.2, the

sampling state set is defined as

X̃G =
a⋃

i=1

R∞(x(n+
i))

b⋃
j=1

R−
∞(x(n−

j))
c⋃

k=1

R∞(x(n±
k))

c⋃
k=1

R−
∞(x(n±

k)), (3.24)

i.e., the union of reachable sets from states {x(n+
i)} and {x(n±

k)} and the backward

reachable set from states {x(n−
j)} and {x(n±

k)}. For a single-directional MPD algo-

78

rithm with the initial state node associated with state xinit, its sampling state set is

R∞(xinit).

Since the reached set XG and the sampling state set X̃G would change using

the same sampling method in different algorithms or even different runs of the same

algorithm, the state space sampling in X̃G should be characterized using the dispersion

bound of the state space sampling in X̃G, which is an upper bound on the dispersion

of all resulting reached sets with respect to corresponding sampling state sets. In this

way, the characterization will be independent of specific algorithm and their different

runs. Since the sampling state set X̃G is normally unknown, it is impossible to

evaluate the dispersion of XG with respect to R∞(xinit) and the associated dispersion

bound. However, when state space discretization is used, the state space sampling

in X̃G is actually characterized by the dispersion bound of a state space sampling

with discretization in X, which is an upper bound on the dispersion of the maximal

sampled set, denoted as Xs, with respect to X over all possible Xs. Each element

of a maximal sampled set Xs is obtained through the sampling in X and no more

state in X could be added into Xs while still satisfying the discretization rule. Even

though the dispersion bound of the state space sampling in X̃G is different from that

of the state space sampling with discretization in X, the second dispersion bound

will provide sufficient information for the analysis in Chapter 4. To be concrete, two

examples of such characterization are given as follows.

If an explicit state space discretization is used in Step 4 to prune states, there

is at most one state in XG in each discretization set. A state space sampling with

discretization inX is obtained by sampling one state from each discretization set. The

maximal sampled set Xs is constructed by sampling one state from each discretization

set. Even though with the same state space discretization XG would change from

different algorithms or even from different runs of the same algorithm, such as the

randomized algorithm, it is always a subset of some maximal sampled set Xs. An

79

invariant characterization will be the dispersion bound on the dispersion of all possible

Xs with respect to the state space.

If a connecting local planner is used in Step 3, then a state space sampling with

discretization in X is usually used to achieve the sampling in X̃G. With an implicit

discretization, a new sample state xnew will be added to XG if it is successfully con-

nected to a state in the current XG and is not in a given neighborhood of a state in

XG. A maximal sampled set Xs is a set of states whose given neighborhoods cover the

state space and whose distance between each other is no less than the given distance.

The set Xs is finite since the state space is bounded. Any XG is always a subset

of some maximal sampled set Xs. The sampling is characterized by the dispersion

bound on the dispersion of the finite set Xs with respect to the state space.

3.3.2 Control space sampling

In Step 3, a local planner is used to sample a control from the sampling control set

Ũ . An invariant characterization for control space sampling will be limited to finite

control space sampling and based on whether a connecting local planner is used.

When an exact connecting local planner is used, under the assumptions that mo-

tion equations have a unique solution and the local planner returns a unique solution

given two states, the sampling in the control space is transformed into that in the state

space. Given a chosen node ncur, for every sampled state xnew, if the local planner

successfully connects it from state x(ncur), then a control is sampled. Discretization

in the control space is also achieved by that in the state space. Thus, the control

space sampling with discretization could be characterized by the dispersion bound of

the state space sampling with discretization in X. Similar characterization could be

extended for an approximate connecting local planner with tolerance εl. The approx-

imate connecting local planner is modeled as an exact local planner plus a sampling

process. For each sampled state xnew, a state xs in the εl neighborhood of the state

80

xnew is sampled first. If state x(ncur) could be connected to xs by the associated

exact local planner, then a control is sampled. The control space sampling with an

approximate connecting local planner is characterized by the dispersion bound εd and

tolerance εl.

When a non-connecting local planner is used, the sampling control set Ũ equals

the control space generator set Ū and a control is sampled from Ū in two steps.

The first sampling in the duration interval D \ {0}, called time sampling, obtains a

duration t, which corresponds to a set of controls,

Ūt = {ũ ∈ Ū | t̄(ũ) = t}. (3.25)

The second sampling in Ūt, called input space sampling, obtains a control ũs. A finite

sampled control set

Ũ = {ũ1, ũ2, · · · , ũl} ⊆ Ū , (3.26)

is characterized by two positive parameters εt and εu, which respectively for the first

and second sampling. The first parameter εt, called a dispersion bound of the time

sampling, is an upper bound on the dispersion of

Ts = {t | t = t̄(ũk), k = 1, 2, · · · , l} (3.27)

with respect to D over all possible Ũ obtained by the control space sampling. The

second parameter εu, called a dispersion bound of the input space sampling, is a

uniform upper bound on the dispersion of

Ũt = {ũ ∈ Ũ | t̄(ũ) = t} (3.28)

with respect to Ūt for all t in Ts over all possible Ũ obtained by the control space

sampling. Note that that the dispersion of the second sampling is defined with respect

81

to infinity norm2, ‖ · ‖∞ on U , which is defined as

‖ũ‖∞ = sup
s∈[0,t̄(ũ)]

‖ũ(s)‖. (3.29)

The distance between two controls ũ and ũ′ is defined as

‖ũ− ũ′‖ = sup
s∈[0,min(t̄(ũ),t̄(ũ′))]

‖ũ(s) − ũ′(s)‖. (3.30)

To construct a sampled control set with dispersion bounds εt and εu, an implicit

discretization could be combined with a random sampling. For every newly sampled

control ũ, if its duration t is not in the εt neighborhood of duration of any other

control in Ũs and its distance to any control in Ũt ∩ Ũs is larger than εu, it is added

to Ũs. The construction will be done when no new control could added. An example

of deterministic finite control space sampling is shown in Appendix A.3.2.

2The analysis could be adapted to norms of the form ‖ · ‖p = (
∫ t

0
‖ · ‖pds)

1
p for p ≥ 1 with minor

modification. However, the infinity norm is used for conciseness.

82

Chapter 4

Resolution Completeness Analysis

Completeness provides performance guarantee for algorithms. In finite time, a com-

plete algorithm will either find an existing solution or report that no solution exists

for a given problem. To provide completeness, an algorithm needs a finite and exact

representation of the search space of a problem, which captures all information of

the problem and could be exhaustively explored in finite time; otherwise, the algo-

rithm might not be complete. When an exact and finite representation of the search

space is unavailable or expensive to calculate, sampling techniques could be used to

generate a set of sampling points to approximate this space and construct solutions.

Sampling techniques have been used in many areas, such as numerical integration,

motion planning, and computer graphics. To numerically integrate a real-valued func-

tion over a complicated closed set when analytical integration is not available, a set

of sample points could be used to approximate the closed set and the function. In

computer graphics, when there are too many geometric primitives for a model, vol-

umetric visualization [64] could be used to represent the model by a set of points,

or billboard clouds [65] could be used to model the geometry by a set of planes. In

motion planning, the configuration space of the Piano Movers’ Problem is only a

continuous search space and the exact representations, such as cylindrical algebraic

decomposition [10] and roadmap [11], of the free configuration space Cfree are very

83

initq

goalq

Figure 4.1: Intuition of resolution completeness of path planning algorithms

expensive. Sampling-based path planning algorithms solve this problem by iteratively

building a search graph by sampling the continuous configuration space.

Sampling-based algorithms quickly find practical solutions at the cost of losing

completeness since the problem representation is not exact. Only weaker complete-

ness, such as probabilistic completeness or resolution completeness, could be achieved.

Probabilistic completeness means that the probability for an algorithm to find an

existing solution will approach one when the algorithm runs for ever. Resolution

completeness means that an existing solution or its approximation will be found in

finite time if resolution of sampling points is high enough. In the case of sampling-

based path planning algorithms, a resolution complete algorithm will find an existing

solution provided that resolution of sampled points in the configuration space is high

enough [18]. The main idea of resolution completeness for path planning algorithms

could be seen from Fig. 4.1, in which the dashed curve is a solution, the black dots are

sampled configurations, line segments between two dots are edges of the search graph,

and the thick lines represent another solution that is constructed by the sampling-

based path planning algorithm. If resolution of the sampled points is high enough,

then there always exists a sequence of sample points around the dashed path such

that connecting these sample points will generate a solution.

84

For a given MPD problem P , there are normally three continuous search spaces:

time, the input space (the control space could be considered as Cartesian product

of time and the input space), and the state space. A sampling-based planner for

these problems will normally sample all three of the continuous spaces simultane-

ously. Therefore, it is essential to extend the resolution completeness concept to all

three spaces. A sampling-based MPD planner is resolution complete if there exists a

solution for a given problem, the algorithm will find it or its approximation in finite

time when the sampling process and parameters for the three continuous spaces are

appropriately chosen.

The key to resolution completeness of sampling-based MPD is to understand that

the search graph described in Section 3.1, which is constructed by a sampling-based

planning algorithm, could be only an approximation of a subgraph of a reachability

graph described in Section 2.6, which is an intrinsic graph representation of a given

MPD problem. The reachability graph is fixed once an MPD problem is given, as

opposed to being computed by an algorithm. If there is a solution for the problem,

there must exist a solution path in the reachability graph, whose trajectory from the

initial state will be violation-free and stop at a goal state. A planning algorithm builds

a search graph which ideally should incrementally reveal the reachability graph, and

eventually converge to it. However, because of mismatches caused by sampling in

the control space and state space, approximate local planners, numerical calculation,

and other factors in the algorithm, the search graph might be only an approximation

of a subgraph of the reachability graph (will be explained in details in Section 4.2.2)

and completeness of sampling-based MPD algorithms will be affected. A resolution

complete algorithm must find an existing solution or its approximation in finite time

despite of these mismatches.

Mismatches could exist in the state space or control space, called state mismatches

and control mismatches, respectively. State mismatches happen when 1) the trajec-

85

tory of an edge of the search graph does not exactly connect the states of two nodes

of the edge; 2) the initial state node is not associated with the initial state; 3) a goal

state node is not associated with a goal state; or 4) the states of initial nodes in the

search graph are not reachable from the initial state. Control mismatches happen

when the sampled control set Ũs is just a subset of the sampling control set Ũ .

State mismatches destroy completeness by returning a wrong solution, preventing

solutions from being detected, or failing to get sufficiently close to a goal state. Effects

of a state mismatch are shown in Fig. 4.2, in which Xobs is the obstacle in the

state space described in Section 2.3, Pictures (2) and (3) include the search graphs,

thick lines in Picture (3) represent a returned solution path, Picture (1) includes

the trajectories of the edges, thick curves in Picture (1) represent the trajectory of

the solution path defined in Section 3.1, and Picture (4) shows the trajectory of the

control of the returned solution path from the initial state. A state mismatch exists

in the search graph in Picture (3) since the trajectory of edge enew does not connect

x(ncur) and x(nx) as shown in Picture (1). The mismatch is induced by unifying nodes

nnew and nx in Picture (2) as node nx in the process of updating the search graph.

Even though the trajectory τ̂ of the solution path is violation-free as shown in Picture

(1) of Fig. 4.2, the state mismatch in edge enew causes that the returned control is

not a correct solution since its trajectory from the initial state is not violation-free

and its final state is not sufficiently close to the goal state xgoal as shown in Picture

(4) of Fig. 4.2.

Control mismatches directly come from the usage of sampling in the control space.

The sampled control set Ũs, whose elements are used to construct the search graph,

is always a subset of the sampling control set Ũ , whose controls are used to con-

struct the reachability graph. The direct result of control mismatches is that some

solutions to the problem will not exist in the search graph. Only η-neighboring con-

trols and trajectories (which are described in Section 2.3) of the solution and its

86

initx
goalx

goaln

initn

gε<

xn

)(xnx

)(newnx

curn

1e

newe 2e

)(~
1eu

)(~
2eu

)(~
neweu

goaln

initn xn
curn

1e

newe 2e

newn

initx
goax

x

)(~)(~)(~
21 eueueu new

)(~
1eu

)(~
2eu)(~

neweu

obsX

obsX

)1()2(

)3()4(

Figure 4.2: The generation and effects of a state mismatch

trajectory might be found for some positive η as shown in Fig. 4.3, in which the

left picture shows the trajectories of controls that are shown in the right picture, the

solid curves respectively represent a solution control and its trajectory, and dashed

lines respectively represent the control that is constructed from sampled controls and

its constructed trajectory. The constructed trajectory is only in the neighborhood

of the solution trajectory. With inappropriate control sampling, these neighboring

controls and trajectories might not be violation-free or have undesired clearance and

tolerance.

The main idea of resolution completeness for sampling-based MPD could be ex-

plained through Figure 4.4, in which τ is a trajectory of a 5-stage solution with

clearance w in the reachability graph, control mismatches cause only an approximate

solution could be constructed as a solution path, and state mismatches further cause

trajectory τ̂ξ of the solution path in the search graph that encodes the approximate

solution to be discontinuous. Generally, to achieve resolution completeness, a plan-

ning algorithm must appropriately sample the continuous spaces and control these

mismatches such that if trajectory τ of a K-stage solution with clearance w exists in

the reachability graph, then a solution path that encodes the solution or its approx-

87

goalx

initx

U

t

A sampled control

A solution control

A constructed trajectory

A solution trajectory

An obstacle

Figure 4.3: The effect of control mismatches

initx
goalxw

τ
ξτ̂

ξτ

obsX

obsX

Figure 4.4: The main idea of resolution completeness for sampling-based MPD

88

imation will be constructed in finite time in the search graph. A precise definition

for resolution completeness will be given in Section 4.2.2 after several terms are in-

troduced in the later sections. In this thesis, the construction of the solution path is

conservatively achieved by ensuring the distance dτ (τ̂ξ, τ) from τ̂ξ, i.e., the trajectory

of the solution path, to τ , i.e., the trajectory of the solution, is less than w. The quan-

titative sufficient conditions are provided by first characterizing the mismatches and

then deriving their relationship with the distance dτ (τ̂ξ, τ) using Lipschitz conditions.

In Section 4.2, a formal definition of resolution completeness through the reachability

graph and the search graph is given. Sufficient conditions and their derivations are

given in Sections 4.3 and 4.4. Finally, resolution completeness conditions are applied

on two existing algorithms in Section 4.5.

4.1 Related Results

Our results are related to many techniques and concepts from a large amount of

existing research [22; 35; 50; 66–68]. In [66], convergence of value functions com-

puted by dynamic programming for discrete-time systems with infinite control set

and continuous state space was analyzed. It is shown that the value function could

be approximated with arbitrarily precision at a finite set of sampled points when

resolution of the sampled set goes to infinity. Its analysis is based on Lipschitz con-

ditions, which is similar to the analysis in this thesis. But the analysis here uses

these conditions to obtain completeness conditions in the context of motion planning

problems with continuous time systems.

In [35], an asymptotic form of completeness was presented: when the search depth

is “big enough”, resolution of discretization is “high enough”, and the sampling rate

for the control is “high enough”, the planner will find an existing solution in finite

time. In contrast, our resolution completeness analysis is quantitative in that specific

89

conditions are given in terms of resolution size and Lipschitz constants.

In [22; 47; 69], tracking lemmas show that by appropriately discretizing time and

control space a solution for a given problem will always be closely approximated

by a piecewise-constant acceleration control for a fully-actuated system. One nice

thing about tracking lemma is that the discretization resolution is independent of

the number of stages in a solution. It could provides better complexity results than

the analysis in this thesis. Similar techniques are also used in [43]. However, these

methods could only be applied on problems with fully-actuated systems. For an

n-dimensional fully-actuated system, there are n independent inputs such that the

theorem in [22] could be proved by n simultaneous independent tracking games in

one-dimensional spaces. In [42], the planner for robots with L2 dynamics bounds

was improved to give the first known polynomial approximation algorithm for the

curvature-constrained shortest-path problem in three or more dimensions. However,

the mismatch between the initial state and the state of the initial state node is not

well controlled such that applying the returned control might not drive the system

to the intended goal state. Also, the correcting lemma requires a lower bound on the

duration of the trajectories, such that solution trajectories with duration less than

the lower bound might not be corrected with the discretized control set.

In [53; 54], the structure of reachable states for a discrete-time system with dis-

crete control set, called quantized control systems, is studied. Conditions for the

reachable set to be either dense or a lattice structure were studied for linear systems

and nonholonomic chained-form systems with different discrete control set. Recently,

[68] shows that with enough controls to achieve a reachable set with the lattice struc-

ture, any trajectories could be tracked with a given tolerance. However, the results

are limited to driftless nilpotent systems.

A planner using a connecting local planner, e.g. [37], is generally not complete

because many connecting local planners, e.g. steering methods, do not consider ob-

90

stacles and a small variation in the initial and goal states for the local planner might

greatly change the trajectory connecting them. Examples of such local planners in-

clude many optimal control based local planners for nonholonomic systems [26; 28]. In

[50; 67], topology properties of steering methods were introduced to reduce complete-

ness of nonholonomic planning to that of path planning. A complete planner using

the sinusoidal steering method as the local planner was also designed for chained form

systems. In [70], an inverse kinematics-based planner for underactuated systems is

proved to be complete using topology properties. In this thesis, a Lipschitz condition

as a sufficient condition for topology property on the local planner is presented and

used to provide precise resolution completeness conditions for general sampling-based

MPD planners using connecting local planners.

In [36; 71], resolution completeness conditions for RRT-based planners were devel-

oped based on Lipschitz conditions of the motion equation and analysis of the reach-

ability graph and the search graph. It provided quantitative completeness conditions

for RRT-based MPD algorithms, i.e., with a given control sampling rate, and a max-

imum search depth, setting discretization resolution in a special range will guarantee

resolution completeness. This thesis incorporates some of these ideas, and generalizes

the work substantially to consider all possible sources that lead to incompleteness,

applied to virtually any sampling-based planning algorithm.

4.2 Completeness via the Reachability Graph and

Search Graph

Resolution completeness analysis is based on characterizing and controlling mis-

matches due to imperfections in the search process. In this section, various mis-

matches are explained and characterized, and a formal definition of resolution com-

pleteness of sampling-based MPD is explained through the relationship between these

91

two graphs.

4.2.1 Sources and characterization of mismatches

The sources and characterization of mismatches will be given with respect to the

algorithm description in Chapter 3. The objective of the characterization is to provide

an upper bound on these mismatches. Note that these sources are not listed in the

order of appearance in the algorithm to avoid redundancy in the description.

• State mismatches from state space discretization in Step 4

When state space discretization is used, a state mismatch could be induced if the

target node of a new edge is an existing node in the search graph when state xnew

shares the same discretization set with the state of the existing node as shown in

the middle picture of Fig. 3.4. The size of the state mismatch is measured by the

distance between state xnew and state xnx . The size of the state mismatch due to

the state space discretization is bounded by 2εd when a state space sampling with

discretization is used and has dispersion bound εd. As shown in Fig. 4.5, the left

picture shows a state mismatch due to an explicit state space discretization, the dots

in the right picture are in a maximal sampled set, and the circle represents the largest

empty ball in the maximal sampled set. The radius of the circle is the dispersion of

the maximal sampled set with respect to the state space. The dispersion bound is an

upper bound on dispersions of all possible maximal sampled set. It can be seen that

the size of the state mismatch will be bounded by twice of the dispersion bound.

• State mismatches from search graph adjustment in Step 4

A state mismatch is induced either when the state of a new node in one subgraph

is in the εg neighborhood of the state of another node in another subgraph and two

subgraphs are connected by unifying two nodes, or when the state of the new node

92

)(curnx

newx

newu~

)(xnx

Figure 4.5: The relationship between the size of state mismatches and dispersion
bound of state space sampling with explicit discretization

is in the εg neighborhood of a goal state. The size of these state mismatches is also

bounded by 2εg.

• State mismatches from search graph initialization in Step 1

State mismatches will be induced if the states associated with the initial state node

and goal state node are not the initial state and goal state, but just in their nr

neighborhoods. Similarly, the size of these mismatches is bounded by 2nr. Also, if

the nodes in the initialized search graph are not associated with reachable states,

state mismatches are also induced.

• Control space sampling in Step 3

In each iteration, a control is sampled from the sampling control set Ũ . These control

mismatches could be parameterized based on whether a connecting local planner is

used.

If an exact connecting local planner is used, the control space sampling is unified

with the state space sampling under the assumptions that motion equations have a

unique solution and the local planner returns a unique solution given two states. For

each selected node ncur, the sampling control set Ũ normally includes an uncountably

infinite number of controls, each of which connects state x(ncur) to a state. However,

93

the sampled control set Ũs could be at most countably infinite such that Ũs is only

a subset of Ũ and control mismatches are induced. Since the control space sampling

and state space sampling are unified, the control space sampling could use the charac-

terization for the state space sampling. If a state space sampling with discretization

is used and has dispersion bound εd, the size of the control space mismatch will also

be bounded by 2εd.

If an approximate connecting local planner with tolerance εl is used, state mis-

matches are also induced besides control space mismatches when the final state of the

trajectory of the sampled control from the state of the selected node is not the given

state xnew as shown in the right picture of Fig. 3.2. The extra state mismatch will

be characterized by εl.

If a non-connecting local planner is used, then the controls in the sampled control

set are obtained by sampling in time and the input space described in Section 3.3.2.

Therefore, these control mismatches are characterized by dispersion bound εt of time

sampling and dispersion bound εu of the input space sampling.

• Numerical calculations in Step 3 and 4

To calculate the trajectory of a control from a starting state, integration of the control

over the motion equation is extensively used in the MPD algorithms. Analytical

integration is only available for few ODEs. When analytical integration is not possible,

errors from numerical integration will cause state mismatches. The upper bound on

these state mismatches is εi. If real numbers are approximated with floating point

numbers in the computer, then state mismatches will also be induced. The floating

point approximation is an important factor affecting completeness [72]. When floating

point numbers are used, it is too complicated to explicitly manipulate floating point

calculation error; therefore, it is assumed that these errors happen only when the

state is stored into the search graph and a real positive number εn is the bound on

the floating point calculation errors.

94

The state mismatches from state space discretization, search graph adjustment,

and search graph initialization are called discontinuities. To simplify the derivation,

the dispersion bound εd equals εr and εg such that the size of discontinuities will be

bounded by 2εd. The state mismatches from numerical calculations and the approxi-

mate connecting local planners are called state errors.

4.2.2 Definition through the relationship between G and G

Because the sampling control set Ũ is usually uncountable and the sampled control set

Ũs is countable, control mismatches exist, which implies that many possible controls

are never attempted, or some nodes in the reachability graph G are not in the search

graph G. Therefore, G converges to a subgraph of G; in other words, G will match

exactly some of nodes, edges and the associated states, trajectories of edges of G

if control mismatches, discontinuities (except those induced when the state of the

initialized nodes are not reachable states), or both exist. For the general setting, G

will only converge to an approximation of a subgraph of G when discontinuities due

to search graph initialization, or state errors exist.

A sampling-based MPD algorithm is resolution complete if for an MPD problem

P and an approximation tolerance

0 < εp < 1, (4.1)

there exists some setting for parameters εd, εl, εi, εn, εu, and εt such that if a K-stage

solution with clearance w and tolerance εs exists, a K-stage (εpw)-approximation of

the solution with clearance

(1 − εp)w (4.2)

and tolerance

εs + wεp (4.3)

95

will be found in finite time. Usually, the precise range of parameter values for which

completeness is guaranteed is not given (see the definition of resolution completeness

in [18]). The theorems of Sections 4.3 provide these values for control space sampling

and state space sampling, which is one of the main challenges that is addressed in

the analysis.

Resolution completeness could be also defined in terms of the relationship between

the reachability graph G and the search graph G. In Fig. 4.4, τ is the trajectory of

a K-stage solution ũ with clearance w and tolerance εs

ũ = ũ1 ◦ ũ2 ◦ · · · ◦ ũK , (4.4)

in which ũi is in the sampling control set Ũ for i = 1, 2, · · · , K. Control mis-

matches due to control space sampling might imply that only a trajectory τξ of an

η-neighboring solution from the initial state for some real positive η could be con-

structed with sampled controls. State mismatches might further cause τξ to appear

as a discontinuous trajectory τ̂ξ of a solution path that encodes the η-neighboring so-

lution in G. Thus, resolution completeness of a sampling-based MPD planner means

that for any

0 < εp < 1, (4.5)

if the trajectory τ of a K-stage solution with tolerance εs and clearance w exists in

the reachability graph G, then in finite time an (εpw)-neighboring K-stage trajectory

τξ with clearance

(1 − εp)w (4.6)

and tolerance

εs + wεp (4.7)

will be constructed as τ̂ξ of a solution path in the search graph G.

96

4.3 Sufficient Conditions

The main results are provided in two theorems in this section, which provide sufficient

conditions on control space sampling and state space sampling to ensure resolution

completeness for sampling-based planners either with or without using connecting

local planners. It is assumed that only control mismatches and discontinuities ex-

ist. Conditions for other mismatches, such as state errors, are analyzed with similar

techniques in Appendix A.4.

4.3.1 Assumptions for the theorems

Our results depend on combinations of some of the following assumptions. Assump-

tions 1, 2, and 3 are on the problem, and the others are on the algorithm.

Assumption 1 (Bounded slope controls) Every coordinate of a control in the

control space generator set Ū is piecewise first-order differentiable, and the magnitude

of its first derivative is bounded by a real nonnegative constant Dp.

When a non-connecting local planner is used, the sampling control set is Ū . However,

for general Ū without a slope bound, it is impossible (shown in Lemma 19 in Appendix

A.2) to sample a finite control set with arbitrarily small dispersion bounds εu and εt

(as described in Section 4.2.1). Therefore, Assumption 1 is critical to ensure that a

finite control space sampling in Ū exists to achieve any given dispersion bounds εu

and εt (this is shown in Lemma 22 in Appendix A). This assumption is reasonable in

practice; controls normally have slope constraints because the input cannot change

arbitrarily fast.

Assumption 2 (All controls in Ū must cause nonzero state transitions)

dinf = inf
x∈X,ũ∈Ū

‖x− f̃(x, ũ)‖ > 0. (4.8)

97

This assumption enables that each stage of a solution could add an edge to the search

graph when state space discretization is used. For some systems, this may require

removing controls that do not cause a motion in a state space. For example, in

a driftless system, a constant control that produces zero velocity is assumed to be

removed.

If this assumption is not satisfied and state space discretization is used, the final

state of the trajectory of a sampled control from the state of a selected node might

share the same discretization set as the state of the selected node. The sampled control

will not be associated with a new edge in the search graph because one discretization

set could have at most one state in XG.

Assumption 3 (Lipschitz condition on the motion equation) The motion

equation, f , in Eq. (2.146) satisfies the following Lipschitz condition with Lipschtz

constant Lc:

‖f(x, u) − f(x′, u′)‖ ≤ Lc(‖x− x′‖ + ‖u− u′‖) (4.9)

for any x, x′ in X and u, u′ in U .

This assumption is the basis for bounding the distance between trajectories due to

mismatches in Section 4.4.2. The motion equation of a large amount of robotic

systems satisfies this condition. For detailed description of Lipschitz conditions, please

refer to [52; 73].

For a simple example of a point robot that moves along a line, its motion equation

is ⎧⎪⎨
⎪⎩

ṗ = v

v̇ = u
(4.10)

in which p is the position of the robot, v is its velocity, and u is the input. The state

is

x = [p, v]T , (4.11)

98

and the state space is

X = {[p, v]T | p ∈ [0, 100], v ∈ [−5, 5]} (4.12)

The input space is

U = {u | u ∈ [−2, 2]}. (4.13)

Written in vector form, motion equation becomes

ẋ =
d

dt

⎡
⎢⎣ p

v

⎤
⎥⎦ =

⎡
⎢⎣ 0 1

0 0

⎤
⎥⎦

⎡
⎢⎣ p

v

⎤
⎥⎦ +

⎡
⎢⎣ 0

1

⎤
⎥⎦u. (4.14)

Using the infinity norm, the Lipschitz condition is

||f(x, u) − f(x′, u′)||∞ ≤ ||x− x′||∞ + ||u− u′||∞, (4.15)

for all x, x′ ∈ X and u, u′ ∈ U and Lipschitz constant, Lc, is 1.

An example of motion equation which does not satisfy the Lipschitz condition in

Eq. 4.9 is as follows: ⎧⎪⎨
⎪⎩

ẋ1 = x2

ẋ2 = 1
x1

+ u
, (4.16)

which is defined on state space

X = {[x1, x2]
T |x1 ∈ [−10, 10] \ {0}, x2 ∈ [−10, 10]} (4.17)

and input space

U = {u|u ∈ [−1, 1]}. (4.18)

It can be verified that for any given real positive Lc, the Lipschitz condition with

Lipschtz constant Lc in Eq. (4.9) is not satisfied when x1 is in the (1√
Lc

)-neighborhood

of 0. However, if an open neighborhood of 0 of x1 is removed from the state space of

this system, a Lipschitz constant will exist.

Assumption 4 (Systematic search behavior) A sampling-based MPD algorithm

is systematic if at least one new node-edge pair, which corresponds to a state-control

99

pair, will be explored in each iteration, every node-edge pair in the search graph will be

explored only once, and the algorithm will stop when all node-edge pairs in the search

graph are explored.

This assumption helps to ensure finite running time and represents a constraint

on the way that the node selection and local planning parts of the algorithm behave

together. One step toward achieving this assumption is to require the local planner

not to use controls that have been tried previously on the same state. If none are

available, then another node must be selected for expansion.

Only when systematic search is used, can these algorithms be resolution complete.

Using randomized search, only a probabilistic completeness will be achieved [13].

However, randomness could be used to design the heuristic to guide the systematic

search in a resolution complete planner [36].

Assumption 5 (Asymptotic finite sampling) Both the state space sampling and

control space sampling are finite sampling, i.e., only a finite reached set XG and a

finite sampled control set Ũs will be generated. The dispersion bounds εd, εt, and εu

of sampling in these two spaces could be less than any give real positive ε.

It is a very important requirement on the planners to achieve resolution complete-

ness in the sense that the finite sampling ensures the finite running time and the

asymptoticness ensures that any solution can be approximated arbitrarily close by

prescribing small enough dispersion. These sampling could be achieved by sampling

with discretization as shown in Appendix A.3.2.

Assumption 6 (Complete behavior in updating the search graph) For any

node ncur that is chosen for expansion, whenever a sampled control ũ generates a

violation-free trajectory from state x(ncur) to xnew, then an edge e with control ũ will

always to be added to the search graph.

100

This assumption is automatically satisfied if state space discretization is not used.

However, when state space discretization is used, one way to achieve the complete

behavior is given as follows. If an explicit discretization is used, the target node of

e will be: 1) a new node nnew with state xnew if xnew is in a discretization set that

contains no state of XG; 2) some node n �= ncur in G if xnew is in a discretization set

that contains x(n). If an implicit discretization is used, the target node will be: 1)

a new node nnew if xnew is not in the given neighborhood of any states in XG; 2) a

node n �= ncur in G if xnew is in the given neighborhood of x(n).

With this assumption, a solution will not be lost because one stage of the solution

is not associated with an edge in the search graph due to state pruning. To ensure

this assumption is true, Assumption 2 is necessary such that when resolution of state

space discretization is high enough, new state xnew will move out of the current

discretization set and a new edge will be added.

Assumption 7 (Completeness and uniqueness conditions for exact con-

necting local planners) Given two states: 1) if the planning algorithm relies on a

connecting local planner, then the local planner must be complete 1; in other words, in

finite time the local planner will find a solution if one exists in the simplified problem,

or report that no solution exists, and 2) if multiple solutions exist, then the same

solution will be returned every time.

The first condition helps to achieve the overall completeness of sampling-based planner

using the connecting local planner, and the second condition ensures that the control

space sampling could be unified with the state space sampling.

1Because the problem that local planner solves is simpler by relaxing some constraints in P, such

as ignoring geometry of the work environment, a complete local planner above usually does not solve

P.

101

Assumption 8 (Lipschitz condition on connecting local planners) There ex-

ists some real positive εx and Lu such that for all xs, xe in X with

‖xs − xe‖ < εx, (4.19)

then

sup
t∈[0,t̄(ũ′)]

‖τũ′(xs, t) − xs‖ ≤ Lu‖xs − xe‖, (4.20)

in which ũ′ is a sampled control such that

xe = f̃(xs, ũ
′), (4.21)

and τũ′(xs, ·) is the trajectory of ũ′ from state xs.

Assumption 8 provides a sufficient condition for topological property [50] of the local

planner, and will be specially used to bound the distance between trajectories due to

control mismatches for planners using connecting local planners.

4.3.2 Main results

The sufficient resolution completeness conditions are provided for planners with or

without using connecting local planners, respectively.

Theorem 9 (Conditions for planners that use non-connecting local plan-

ners and exact calculation) Suppose that an MPD problem P satisfies Assumptions

1, 2 and 3 and a sampling-based MPD planner satisfies Assumptions 4, 5 and 6. For

any

0 < εp < 1, (4.22)

if there is a K-stage solution with clearance w and solution tolerance εs, using state

space sampling with discretization and dispersion bound εd, and control space sampling

with dispersion bound εu, εt, a planner will find an εp-approximation of the solution

102

with clearance (1 − εp)w and tolerance εs + εpw in finite time under the following

conditions:

εu(Ld − 1) + εtDf + 4εd <
Ld − 1

LK+1
d − 1

w, (4.23)

εu(Ld − 1) + εtDf <
Ld − 1

LK
d − 1

εpw, (4.24)

in which

Df = sup
x∈X,u∈U

‖f(x, u)‖, (4.25)

and

Ld = eLcεv , (4.26)

and

εv = sup
ũ∈Ū

t̄(ũ). (4.27)

Theorem 10 (Conditions for planners using exact connecting local plan-

ners and exact calculation) Suppose that an MPD problem P is given and a

sampling-based MPD planner satisfies Assumptions 4, 5, 7, and 8. For any

0 < εp < 1, (4.28)

if there is a solution with clearance w and solution tolerance εs, then using control

space sampling and state space sampling with discretization and dispersion bound εd,

a planner will find an εp-approximation of the solution with clearance (1 − εp)w and

tolerance εs + εpw in finite time under the following condition:

εd < min

{
εpw

1 + 2Lu

,
εx
2

}
. (4.29)

4.4 Proof of Main Results

In this section, Theorems 9 and 10 are proved. The proof has two parts. The

first part shows existence of a solution path that encodes an existing solution or

103

its approximation. The second part shows the algorithm will terminate in finite time.

The key to the first part is to associate the algorithm parameters with the distance

from the trajectory of the solution path to the trajectory of the solution, which is

obtained using Lipschitz conditions on systems and local planners. Before proving

the theorems, the following lemmas are presented and will be used in the proof.

4.4.1 Conditions for finite running time

The following lemma shows sufficient conditions for a planner to terminate in finite

time.

Lemma 11 For a given problem P and dispersion bounds εd, εu, and εt, if a sampling-

based planner satisfies Assumptions 4 and 5, then it will terminate in finite time.

Proof: By Assumption 5, for any given dispersion bounds, the state space sam-

pling and control space sampling will ensure that only a finite number of nodes exist

in G and Ũs is finite. Furthermore, Assumption 4 ensures that algorithm will termi-

nate in finite time after every control in Ũs is tried for the state of every node in G.

�

4.4.2 Variation of trajectories due to mismatches

As illustrated in Fig. 4.4, mismatches should be controlled such that an η-neighboring

trajectory τξ could be constructed as τ̂ξ of a solution path in the search graph if a

solution trajectory τ exists. For a trajectory τ of a solution with clearance w, if τ̂ξ is

in w-tube of τ , τξ could be associated with a constructed solution path. Therefore,

the return of a neighboring solution depends on whether the distance dτ (τ̂ξ, τ) from

τ̂ξ to τ is less than clearance w.

To derive the relationship between dτ (τ̂ξ, τ) and mismatches in the state space and

control space, the following theorem [73] is used to derive the relationship between

104

the distance and mismatches. The theorem characterizes the amount of variation in

a trajectory with respect to changes in the initial state and parameters of ODEs.

Theorem 12 [73] Let f(t, x) be piecewise-continuous in t and Lipschitz in x on

[t0, t1] ×W (4.30)

with a Lipschitz constant L, where W ⊂ Rn is an open connected set. Let y(t) and

z(t) be solutions of ⎧⎪⎨
⎪⎩

ẏ = f(t, y)

y(t0) = y0,
(4.31)

and ⎧⎪⎨
⎪⎩

ż = f(t, z) + g(t, z)

z(t0) = z0

(4.32)

such that y(t) and z(t) are in W for all t in [t0, t1]. Suppose that

‖g(t, x)‖ ≤ µ, (4.33)

in which

(t, x) ∈ [t0, t1] ×W, (4.34)

and µ is a real positive constant. This implies that for all t in [t0, t1]

‖y(t) − z(t)‖ ≤ γeL(t−t0) +
µ

L
(eL(t−t0) − 1), (4.35)

in which γ is a real positive constant that satisfies

‖y0 − z0‖ ≤ γ. (4.36)

The effect of a state mismatch over the trajectory of a sampled control

With Theorem 12, the effect is described through the following lemma, which shows

that the discrete motion equation, f̃ , satisfies Lipschitz conditions on the state space,

X.

105

Lemma 13 For a given P, if its motion equation, f , satisfies Lipschitz condition

in Assumption 3, then for any y0 and z0 in X and ũ in sampling control set Ũ the

discrete motion equation, f̃ , (defined in Eq. (2.150)) satisfies

‖f̃(y0, ũ) − f̃(z0, ũ)‖ ≤ Ld‖y0 − z0‖, (4.37)

in which Ld is defined in Eq. (4.26).

Proof: Given a control ũ in Ũ , the motion equation in Eq. (2.96) is changed into

the following form

ẋ = f(x, ũ(t)) = fũ(t, x), t ∈ [0, t̄(ũ)] (4.38)

Because ũ is piecewise-continuous in t, and f is Lipschitz in x and u with a constant

Lc, fũ(t, x) is piecewise continuous in t and Lipschitz in x on

[0, t̄(ũ)] ×X (4.39)

with a constant Lc. Let y(t) and z(t) respectively be solutions of Eq. (4.38) with

starting states be y0 and z0. The functions y(t) and x(t) are also respectively the

trajectories of ũ from starting state y0 and z0. According to Theorem 12, for any

t ∈ [0, t̄(ũ)]

‖y(t) − z(t)‖ ≤ ‖y0 − z0‖eLct, (4.40)

by choosing γ in Eq. (4.35) to be ‖y0 − z0‖.

From the definition of the discrete motion equation in Eq. (2.150), it can be seen

that

‖f̃(y0, ũ) − f̃(z0, ũ)‖ = ‖y(t̄(ũ)) − z(t̄(ũ))‖

≤ ‖y0 − z0‖eLc t̄(ũ)

≤ ‖y0 − z0‖eLcεv

= Ld‖y0 − z0‖,

(4.41)

in which Ld is defined in Eq. (4.26). �

106

From Eq. (4.40) and the definition of the distance dτ (y, z) between trajectory y

and z in Eq. (2.110), the following inequality is derived

dτ (y, z) ≤
t̄(ũ)
sup
t=0

‖y(t) − z(t)‖ ≤ Ld‖y0 − z0‖. (4.42)

Therefore, the following corollary shows the relationship between the distance between

two trajectories and a state mismatch at the starting state.

Corollary 14 For a control ũ in Ũ and a discrete motion equation, f̃ , satisfying

Lipschitz condition in X with constant Ld (defined in Eq. (4.26)), if the starting

state y0 is changed to z0 by a state mismatch, then

dτ (y, z) ≤ Ld‖y0 − z0‖ (4.43)

and

dτ (z, y) ≤ Ld‖z0 − y0‖, (4.44)

in which y(·) and z(·) are trajectories of ũ from states y0 and z0, respectively.

The effect of a control mismatch over the trajectory of a sampled con-

trol For control mismatches, their effects will be considered differently according

to whether a connecting local planner is used. If an exact connecting local planner

is used, under Assumption 7, the sampling in the control space is done via that in

the state space as described in Section 4.2.1. Furthermore, Assumption 8 shows that

for a state pair with their distance less than εx, any state along the trajectory that

connects the state pair will be in the Luεx neighborhood of the starting state, which

provides a bound on the distance between trajectories. For a non-connecting local

planner, the effect of the control mismatch is shown in the following lemma.

Lemma 15 Assuming that a given problem P satisfies Assumption 3, if

ũ : [0, t1] → U (4.45)

107

and

ũ′ : [0, t2] → U (4.46)

are any two controls in Ũ , then for any x0 in X the discrete motion equation f̃

satisfies:

‖f̃(x0, ũ) − f̃(x0, ũ
′)‖ ≤ (Ld − 1)du + |t1 − t2|Df , (4.47)

in which Ld is defined in Eq. (4.26), Df is defined in Eq. (4.25),

du = ρ(ũ, ũ′), (4.48)

and ρ(·, ·) is defined in Eq. (2.88).

Proof: Without losing generality, t1 is assumed to be no larger than t2.

For a fixed starting state x0 inX, two ODEs are obtained according to two controls

ũ and ũ′ as follows: ⎧⎪⎨
⎪⎩

ẋ = f(x, ũ(t)) = fũ(t, x), t ∈ [0, t1]

x(0) = x0;
(4.49)

⎧⎪⎨
⎪⎩

ẏ = f(y, ũ′(t)) = fũ′(t, y) = fũ(t, y) + gũ,ũ′(t, y), t ∈ [0, t2]

y(0) = x0.
(4.50)

Because f is Lipschitz in x and u with a constant Lc, for any

(t, x) ∈ [0, t1] ×X, (4.51)

‖gũ,ũ′(t, x)‖ = ‖f(x, ũ(t)) − f(x, ũ′(t))‖ ≤ Lcdu. (4.52)

Also, because ũ and ũ′ are piecewise-continuous in t, fũ(t, x) is piecewise-continuous

in t and Lipschitz in x on [0, t̄(ũ)]×X with a constant Lc. Therefore, for any t ∈ [0, t1]

‖y(t) − x(t)‖ ≤ du(e
Lct − 1). (4.53)

In the time interval [t1, t2], the value of ũ′ is assumed to make ‖ẏ‖ reach its

supremum value Df (because X is bounded and U are compact and f satisfies the

108

Lipschitz condition with X and U , Df is finite) such that

‖y(t2) − y(t1)‖ ≤ Df |t2 − t1|. (4.54)

By the triangle inequality, the following inequality is obtained.

‖f̃(x0, ũ) − f̃(x0, ũ
′)‖ = ‖x(t1) − y(t2)‖

≤ ‖x(t1) − y(t1)‖ + ‖y(t2) − y(t1)‖

≤ du(e
Lct1 − 1) +Df |t2 − t1|

≤ du(Ld − 1) +Df |t2 − t1|,

(4.55)

in which Ld is defined in Eq. (4.26). �

From the proof in Lemma 15, the right side of Eq. (4.47) provides an upper

bound on the distance between two trajectories, which is formulated in the following

corollary.

Corollary 16 Assuming that a given problem P satisfies Assumption 3, if

u : [0, t1] → U (4.56)

and

u′ : [0, t2] → U (4.57)

are two controls in Ũ , then for any x0 in X,

dτ (x, y) ≤ (Ld − 1)du + |t1 − t2|Df (4.58)

and

dτ (y, x) ≤ (Ld − 1)du + |t1 − t2|Df , (4.59)

in which x(·) and y(·) are trajectories of ũ and ũ′ from state x0, respectively.

Effects of a state mismatch over the trajectory of a k-stage control Now it

is known how the mismatches affect the trajectory of a sampled control. The effects

of a state mismatch over the trajectory of a k-stage control are manifested through

the variation of the starting state and are shown in the following lemma.

109

Lemma 17 For a k-stage control ũ and a discrete motion equation, f̃ , that satisfies

Lipschitz condition in X with constant Ld (defined in Eq. (4.26)), if the starting state

is changed from x0 to x′0 with

‖x0 − x′0‖ ≤ ds (4.60)

for some real positive ds, then the distance from the trajectory τ ′ of ũ from x′0 to the

trajectory τ of ũ from x0 will be no larger than Lk
dds.

Proof: The result is obtained by induction on k using Corollary 14. �

4.4.3 Proof of Theorem 9

Assume that a K-stage solution ũs with clearance w and tolerance εs is

ũs = ũ1 ◦ ũ2 ◦ · · · ◦ ũK , (4.61)

in which ũi is in the sampling control set Ũ . Its trajectory from the initial state is τ .

The proof will show that for any

0 < εp < 1, (4.62)

a solution path with K edges

{e1(ninit, n2), e2(n2, n3), · · · , eK(nK , ngoal)} (4.63)

will be constructed in the search graph in finite time and its K-stage control

ũ′s = ũ′1 ◦ ũ′2 ◦ · · · ◦ ũ′K (4.64)

with

ũ′i = ũ(ei) (4.65)

is an (εpw)-neighboring solution with clearance (1 − εp)w and tolerance εs + εpw.

The proof consists of two parts. The first part shows that the solution path will

exist in the search graph. And the second part shows that the solution path will be

constructed in finite time.

110

initx

τ ξτ̂

iu~

'~
iu

)(inx

)(1+inx

ijuu jj ≠≠ ,~~ '

1+ix

Figure 4.6: The trajectory τ̂ξ with one control mismatch and state mismatch

Existence of the solution path The trajectory of the solution path is

τ̂ξ(·) = τũ′
1
(x(ninit), ·) ◦ τũ′

2
(x(n2), ·) ◦ · · · ◦ τũ′

K
(x(nK), ·). (4.66)

To ensure that the solution path exists, τ̂ξ (shown in Fig. 4.4) should be violation-

free, every ũ′i should be associated with an edge in the search graph, and the control

of the solution path should satisfy the given tolerance and clearance.

Firstly, to make τ̂ξ violation-free, one sufficient condition is to require that trajec-

tory τ̂ξ be in the w-tube of τ , i.e.,

dτ (τ̂ξ, τ) < w, (4.67)

according to the definition of clearance in Section 2.3.3.

Assume that only one control ũi does not equal ũ′i and the discontinuity only exists

between the final state of the trajectory of ũ′i from state x(ni) and state x(ni+1) for

some i as shown in Fig. 4.6. By the given dispersion bounds for the control space

sampling, there exists a sampled control ũ′i in Ũs such that

|t̄(ũi) − t̄(ũ′i)| < εt (4.68)

and

ρ(ũi, ũ
′
i) < εu, (4.69)

111

and the discontinuity is bounded by 2εd. Since control ũ′j equals ũj for j �= i, the

control

ũ+i = ũ′i+1 ◦ · · · ◦ ũ′K = ũi+1 ◦ · · · ◦ ũK (4.70)

ũ−i = ũ′1 ◦ · · · ◦ ũ′i−1 = ũ1 ◦ · · · ◦ ũi−1 (4.71)

are (K − i)-stage and (i− 1)-stage controls, respectively.

The bound on the distance from τ̂ξ to τ will be the maximum of the respective

bounds of the distance from trajectories τũ−i
(xinit, ·), τũ′

i
(x(ni), ·), and τũ+i

(x(ni+1), ·)

to trajectory τ since

τ̂ξ(·) = τũ−i
(xinit, ·) ◦ τũ′

i
(x(ni), ·) ◦ τũ+i

(x(ni+1), ·). (4.72)

Since there are no mismatches before stage i, the bound on the distance from

τũ−i
(xinit, ·) to τ is zero. Under Assumption 3, Lemma 15 will give

‖f̃(x(ni), ũi) − f̃(x(ni), ũ
′
i)‖ ≤ (Ld − 1)du + |t̄(ũi) − t̄(ũ′i)|Df

< (Ld − 1)du + εtDf ,
(4.73)

and Corollary 16 bounds the distance between the trajectories of ũi and ũ′i from state

x(ni) as

dτ (τũ′
i
(x(ni), ·), τũi

(x(ni), ·)) ≤ (Ld − 1)du + εtDf . (4.74)

By triangle inequality, the distance between the final state xi+1 of the trajectory

of ũi from state x(ni) and state x(ni+1) is bounded as follows

|xi+1 − x(ni+1)| ≤ (Ld − 1)du + εtDf + 2εd. (4.75)

Furthermore, Lemma 17 gives the bound on the distance between the trajectories of

ũK−i from state xi+1 and x(ni+1) as

dτ (τũK−i
(x(ni+1), ·), τũK−i

(xi+1, ·)) ≤ (εu(Ld − 1) + εtDf + 2εd)L
K−i
d . (4.76)

Therefore, the distance from τ̂ξ to τ is bounded as

dτ (τ̂ξ, τ) ≤ (εu(Ld − 1) + εtDf + 2εd)L
K−i
d . (4.77)

112

In the worst case, each control ũi might not equal ũ′i and discontinuities could

exist between the initial state and the state of the initial state node, the goal state

and the state of the goal state node, and each edge of the solution path. Thus, by

the triangle inequality, the distance from τ̂ξ to τ is bounded as

dτ (τ̂ξ, τ) ≤ (εu(Ld − 1) + εtDf + 4εd)
LK+1

d − 1

Ld − 1
(4.78)

Choosing εd, εu, and εt to make the right side of Eq. (4.78) be less than clearance w

will ensure that τ̂ξ is violation-free.

Secondly, with Assumptions 2 and 6, each ũ′i is associated with an edge in the

search graph since τ̂ξ is violation-free such that the path could exist in G.

Lastly, to ensure that the control of the path has the required tolerance and

clearance, the distance from trajectory τξ of ũ′s from state xinit to τ must be bounded

by εpw. Because only control mismatches will affect dτ (τξ, τ), according to Lemmas

13, 15, 17, and the triangle inequality, the distance is bounded as

dτ (τξ, τ) ≤ (εu(Ld − 1) + εtDf)
LK

d − 1

Ld − 1
. (4.79)

Choosing εd, εu, and εt to make the right side of Eq. (4.79) be less than εpw will

ensure that the returned control satisfies the requirement.

Finite running time Under Assumptions 4 and 5, Lemma 11 shows that the

algorithm will terminate in finite time with the dispersion bounds satisfying the above

requirements since there are only a finite reached set XG and sampled control set Ũs.

From the above description, given an approximation tolerance εp, if there is a K-

stage solution with clearance w and tolerance εs, an εp-approximation of the solution

will be constructed in the search graph in finite time, which completes the proof. �

113

4.4.4 Proof of Theorem 10

Assume that a solution

ũ : [0, tf] → U (4.80)

with clearance w and tolerance εs exists. The proof is to show that for any

0 < εp < 1, (4.81)

a solution path could be constructed such that the control ũ′ of the path is an εp-

approximation of ũ and has clearance (1 − εp)w and tolerance εs + εpw.

Existence of the solution path With Assumptions 7 and 5, control space sam-

pling is unified with state space sampling and characterized by the dispersion bound

εd. The sampling could generate a finite set

S ⊂ X (4.82)

with its dispersion no larger than εd. Therefore, for any t in [0, tf], τ(t) will be in the

εd neighborhood of some state in A such that there is a finite state set

A = {a1 = xinit, a2, · · · , al} ⊂ S (4.83)

such that the image of τ is covered by the union of the εd neighborhood of each point

in A. The elements in set A is indexed such that the nearest two neighbors of ai are

ai−1 and ai+1. Thus, τ̂ξ could be constructed by connecting adjacent states in A as

shown in Fig. 4.7. The dashed circles respectively represent the εd neighborhoods of

points in set A. The trajectory of the solution from state xinit is τ . Points {bj} are

along trajectory τ and respectively in the εd neighborhood of aj in the order of j = 1,

2, · · · , and l. Specially, b1 is chosen to be xinit and bl is chosen to be τ(tf). Therefore,

trajectory τ is the concatenation of trajectories from bj to bj+1 for j = 1, 2, · · · , and

l − 1. The trajectory τ̂ξ is constructed by approximating each trajectory from bj to

bj+1 by trajectory from aj to aj+1.

114

ia

1+ia

1−ia

2+ia

ib

1+ib
2+ib

1−ib τ
ξξ ττ =ˆ

Figure 4.7: Construction of one segment of the trajectory of the solution path

In Fig. 4.7, an upper bound on the distance between ai and ai+1 is

‖ai − ai+1‖ ≤ 2εd, (4.84)

since they are nearest neighbors and the neighborhoods of points in A cover the image

of τ . By Assumption 8, choosing

2εd < εx (4.85)

will make any point on the trajectory connecting ai and ai+1 be in the 2Luεd neigh-

borhood of ai and in the 2Luεd + εd neighborhood of bi. Therefore, the distance from

τ̂ξ to τ is bounded as

dτ (τ̂ξ, τ) < (2Lu + 1)εd. (4.86)

Because only control mismatches exist when the exact local planner is used, the

distance from τξ to τ equals that from τ̂ξ to τ , i.e.

dτ (τξ, τ) = dτ (τ̂ξ, τ). (4.87)

Choosing εd satisfying

(2Lu + 1)εd < εpw (4.88)

will ensure the solution path exists and the control of the path has has clearance

(1 − εp)w.

115

With the state space sampling with dispersion bound εd, al in A will be in the εd

neighborhood of τ(tf) such that τξ has tolerance εs + εd. Choosing εd satisfying Eq.

(4.88) will also achieve the desired tolerance.

Finite running time With Assumptions 5 and 4, Lemma 11 shows that the algo-

rithm will terminate in finite time with the given dispersion.

By combining the results from the above two steps, it can be observed that if

there is a solution, a neighboring solution will be constructed as a solution path in

finite time under the assumptions and conditions in the theorem. �

4.5 Applications to Particular Algorithms

This section applies resolution completeness conditions to improve the analysis of two

planning algorithms in Section 3.2.1. The first planner [35] provided a qualitative form

of resolution completeness. The second planner [13] is only probabilistically complete

in its original form. It is hoped that these two examples illustrate how to apply our

general analysis techniques to many other sampling-based planning algorithms.

4.5.1 Strengthening resolution completeness conditions for

an existing planner

The algorithm in [35] has been presented in Section 3.2.1. The planner has a quali-

tative form of resolution completeness, i.e., the planner will find an existing solution

in a finite number of iterations when setting δt small enough, search depth cutoff K

large enough, and R large enough. However, no quantitative requirements on these

parameters are provided. Theorem 9 is applied to obtain the requirement on R for a

given δt, finite control set Ũs, and K.

116

Assumption verification Assume that the problem satisfies Assumption 2 and 3

and the control space generator set Ū only consists of a finite number of constant

controls with a fixed duration δt. The infinity norm ‖ · ‖∞ on X is used. The planner

satisfies Assumption 4 since it is a systematic search. Assumption 5 can be verified

using the techniques in Appendix A.3.2. However, the planner needs to be changed

to satisfy Assumption 6. When state xnew is in an occupied parallelepiped which

contains the state of node nx in the search graph, instead of discarding xnew and

adding no edge as shown in the left picture of Fig. 3.4, a new edge from node ncur to

node nx is inserted as shown in the middle picture of Fig. 3.4.

Parameter setting Because Ū is finite and Ũs equals Ū , control mismatches do

not exist, which implies that εu and εt are 0. By Theorem 9, choosing the dispersion

bound of state space sampling with discretization

εd =
w(Ld − 1)

4(LK
d − 1)

, (4.89)

in which

Ld = eLcδt (4.90)

ensures that the algorithm will find a solution if one exists with tolerance εs and

clearance w.

Using ‖ · ‖∞ norm, dispersion bound of state space sampling with discretization

is no less than twice of the maximal parallelepiped width. Furthermore, the maximal

parallelepiped width should be less than dinf (defined in Eq. (4.8)) to ensure that

Assumption 6 could be satisfied. Assume that the maximal distance along each

dimension of the configuration is li; R should satisfy

R > �log2 max
i∈{1,...,n}

li
c
�, (4.91)

in which

c = min
{εd

2
, dinf

}
, (4.92)

117

in which �a� denotes the ceiling that is the smallest integer no less than a.

4.5.2 Making a probabilistically complete planner become

resolution complete

The algorithm in [13] is probabilistic completeness, i.e., the probability of finding an

existing solution approaches one as the number of iterations approaches infinity.

Assumption verification Assume that the problem satisfies Assumption 2 and

3 and the control space generator set Ū of P only consists of a finite number of

constant controls with a fixed duration δt. The planner does not satisfy Assumption

4 because a node-edge pair could be repeatedly explored, one new node-edge might

not be explored in each iteration, and the search is not exhaustive. Assumption 5

is violated since an infinite number of nodes could be generated by the state space

sampling.

Four modifications to RRT-based planners are made [36] to satisfy these assump-

tions. The first three ensure that Assumption 4 is satisfied. The third one ensures

that Assumption 5 is satisfied.

1. To avoid exploring the one node-edge pair more than once, exploration infor-

mation is kept for every node in G. Specifically, assume that control ũ extends

state x(ncur) of node ncur in G to state xnew. If either xnew is associated with

a new node or the trajectory to it violates constraints, then ũ is marked as

explored for node ncur and will not be applied any more.

2. To explore one new node-edge pair in each iteration, if all the controls of a

selected node ncur is selected are marked as explored, then another node with

unexplored controls in the search graph will be chosen and an unexplored control

will be applied.

118

3. To ensure an exhaustive search, the algorithm will stop when either a solution

is returned or a failure is reported if there is no nodes with unexplored controls.

4. To make the state space sampling be a finite sampling, an implicit discretization

is used. Assume that xnew is the final state of a new generated violation-

free trajectory of a sampled control ũ from state x(ncur) of node ncur. Before

associating state xnew with a new node nnew to G, the distance of xnew to the

states of nodes in G with respect to the given norm ‖ · ‖ is calculated. For a

given real positive constant α, if xnew is in the α neighborhood of state x(nx)

of node nx �= ncur in G, then xnew is discarded, but an edge that connects node

ncur and nx is added; otherwise, state xnew is associated with a new node nnew

and the edge that connects ncur and nnew is added.

Parameter setting Because Ū is a finite set, εu and εt are 0. From Theorem 9,

the dispersion bound should satisfy the following inequality

εd <
w(Ld − 1)

2(LK
d − 1)

. (4.93)

Because the dispersion bound of the state space sampling with discretization is no

less than the twice of α, and α should be less than dinf to enforce Assumption 6, the

algorithm is guaranteed to find a desired solution in finite time, if one exists with

tolerance εs, by setting

α < min
{εd

2
, dinf

}
. (4.94)

119

Chapter 5

Gap Problems and Planning with

Gap Reduction

Even though sampling-based planning algorithms have solved many challenging prob-

lems [36–38], one common problem with these algorithms is that their solution paths

could have discontinuities (also called gaps in this chapter) as described in Section

4.2.1. An example of the gap in bi-directional search is shown in Fig. 4.2. In bi-

directional methods, the search graph initially consists of two disjointed subgraphs,

which initially have the initial and goal state nodes, respectively. One expands

forward-in-time, and the other one expands backward-in-time. If the distance be-

tween one new node nnew in one subgraph and another node nx in the other subgraph

(the distance between nodes is defined as that between two associated states) is less

than a given gap tolerance, two subgraphs are connected by unifying these two nodes

as one node. In the case shown in Fig. 4.2, the unified node is nx. The solution

path is from the initial state node to the goal state node and its gap is at edge enew.

Similarly, the search graph of PRM-based planners is initialized with multiple dis-

jointed subgraphs. If states of two nodes from two subgraphs are close enough, two

subgraphs are connected with a unified node. If a solution path exists and passes

multiple subgraphs, it could have a gap for each unified node along the path.

120

Gaps greatly degrade the quality of the solutions, especially for bi-directional or

PRM-based search. As shown in Picture (4) Fig. 4.2, when a small gap changes the

staring state from x(nx) to x(nnew), the final state change greatly from xgoal to xf

after integration over the same control ũ(e2). Therefore, planners are expected to use

small gap tolerances. However, under a finite control space sampling, systems will

not be small-time locally controllable (STLC). In some cases, the sets of reachable

states from the initial state have the structure of a lattice, which prevents the exact

matching of the solution trajectory endpoint with the goal state. No solution path

could be found if the smallest distance between the reachable states and the goal state

is larger than the given gap tolerance. In cases in which the set of reachable states

is everywhere dense [74], or even continuous [75], it is possible in principle to add a

sequence of sampled controls to move the final state arbitrarily close to the goal state,

but this is done at the expense of the efficiency of the trajectory and longer running

time since there will be less solution paths and the search depth, i.e., the number of

edges, of solution paths tends to increase.

Note that a planner could quickly return solution paths with a big gap tolerance

because the solution paths have low search depth. If a separate algorithm could

efficiently reduce the gaps, then planners can quickly find a solution by first finding

solution path candidates with big gaps and then reducing their gaps. One way to

reduce gaps is to use analytical solutions for steering problems, that is, to design a

trajectory to connect two end states of the gap while ignoring obstacles. However,

there are only few analytical solutions [26–28; 30; 32; 76]. Furthermore, the cost of

the resulting trajectories might be dramatically increased at the gaps. For example,

for the kinematically controllable system [30], the system needs to stop completely

when switching between decoupling vector fields during the steering process.

Alternatively, a symmetry-based perturbation method is developed [59; 77] to re-

duce the gaps by perturbing the solution candidate. The comparison of gap reduction

121

Intermidiate trajectories during the perturbation process

The trajectory after perturbation

Gap reduction by steering

The original trajectory with the gap

xinit

xf

xgoal

Figure 5.1: Comparison of gap reduction using perturbation and steering

by perturbation and steering is shown in Fig. 5.1. The gap reduction problem is cast

as an optimization of the distance between two gap endpoints, which is efficiently

evaluated by using symmetries of systems to avoid computationally expensive numer-

ical integrations. One advantage of our method is that many local constraints on

states and inputs could be naturally enforced in the trajectory after symmetry-based

perturbations. Besides our work, a similar method is presented in [78] by tailoring the

reactive path deformation method [79]. However, their methods did not use special

geometric structures of the robotic systems such that their cost function evaluation

could be very expensive and it is difficult to enforce the local constraints on states in

the perturbed trajectories. In this chapter, the gap reduction algorithms is presented

using symmetries, and combined with different types of sampling-based planners,

which include the single and bi- directional RRT-based planner[36] and a PRM-based

planner [14]. By comparing simulation results from different systems and problems,

the new planners improved by gap reduction algorithms well outperform the original

ones.

122

5.1 Gap Problems in Sampling-Based Algorithms

The generation of gaps has been described in Section 4.2.1. Gaps could seriously

degrade the quality of a solution, especially for bi-directional search and PRM-based

search. Therefore, it is expected to use small εg in sampling-based algorithms. How-

ever, when the gap tolerance εg decreases, the time to find a solution normally in-

creases dramatically. For example, a single directional planner uses breadth-first

search as node selection. If the state of a new node goes into the εg neighborhood of

xgoal, a solution is returned. As εg decreases, the number of reachable states from xinit

in the εg neighborhood of xgoal will decrease and the search depth of these reachable

states will be higher, which means a longer running time to return a solution. In

the worst case, if the reachable states with a set of sampled controls form a lattice

structure and the smallest distance between xgoal and all reachable states is larger

than εg, then the sampling-based algorithm cannot return a solution even though a

solution does exist form the given problem P .

5.2 Motion Planning with Gap Reduction

Our approach for the gap problems is to efficiently eliminate big gaps in solution path

candidates by perturbation. Noticing that the sampled controls in the path candidates

are only a small subset of the original control space U , these sampled controls are

perturbed in U to eliminate the gaps. With the gap reduction algorithms, paths with

states of their final nodes outside the εg neighborhood of the goal state could also be

transformed into solution paths. Therefore, a solution could be returned faster since

the number of solution paths is increased and these paths have lower search depth.

In the following section, the gap reduction algorithms are first described and then

incorporated in sampling-based algorithms.

123

5.2.1 Gap reduction by perturbation

To be concise, a solution path candidate is considered, which only has one gap between

the state of its final node and the goal state. Other types of gaps could be eliminated

with minor modifications.

Assume that control of the path candidate is ũ, the objective of the gap reduction

algorithm is to perturb ũ into ũ′ such that the distance between the goal state and

the final state xf of the solution trajectory of ũ′ is less than a given tolerance and

the new perturbed trajectory satisfies all constraints from the MPD problem. In this

thesis, the gap reduction problem is cast as an optimization problem to minimize the

distance between the final state and goal state by perturbing the parameters, which

fully determine the final state.

For a control ũ, a given MPD problem, and a distance function, the outline of

general gap reduction algorithms is given as follows.

1. Parameterize Final State Calculation: Determine a set of parameters,

which determine the final state of the solution trajectory of the control under

perturbation.

2. Select a Subspace for Optimization: Select a subset of parameters for the

optimization. When the number of parameters for the final state is more than

the number of parameters necessary to eliminate the gap, a subset of parameters

could be chosen to avoid the expensive evaluation of high-dimensional gradient

vectors in the optimization.

3. Optimize in the Subspace: Perturb the selected parameters to minimize the

distance between the final state and the goal state without considering obstacles.

4. Check Constraints: Check whether the trajectory after the perturbation sat-

isfies all constraints from the MPD problem. If not, discard the current pertur-

bation.

124

5. Check Gap Tolerance: Check whether the gap distance is less than a given

tolerance. If yes, report the solution; otherwise, go to Step 2 until a given

number iterations is satisfied.

Because computation of the final state is extensively used in both evaluation

and finite-difference gradient calculation of the gap distance in the optimization, its

computation cost directly affects the effectiveness of the gap reduction algorithms.

In pure numerical gap reduction algorithms, the final state is calculated by in-

tegrating the perturbed control from the initial state. Since analytical integration

is only available for few ODEs, expensive numerical integration is normally used to

calculate the new final stats. The computation time for final states in each iteration

grows linearly with the number of integration steps along a trajectory. Furthermore,

with the above characterization, it is difficult to enforce the constraints on the states

during the optimization process.

Therefore, instead of using the pure numerical gap reduction, we describe in the

following sections about employing symmetries of the robotic systems to efficiently

evaluate the final state such that the computation time for the final state is reduced

to a constant-time (with respect to integration accuracy) operation. It will also be

shown that many constraints on states and inputs are naturally maintained.

5.2.2 A class of systems with symmetries on principle fiber

bundles

Symmetry is a fundamental geometric property of many robotic systems. Identifica-

tion, properties and theorems of symmetry for general systems are out of the scope

of this thesis. Refer to [51] for details. Only a general description of symmetry of

robotic systems will be given, and then the scope of the method is limited to a class

of systems with symmetries on principle fiber bundles [80], and finally use the car

system in Eq. (2.159) to show as an example of a system in this class.

125

x0

Ψg(x0)

Ψg

Ψg

Ψg(τũ(x0, t̄(ũ)))

τũ(Ψg(x0), t̄(ũ))

τũ(x0, t̄(ũ))

Figure 5.2: Group actions commute with state transitions

Consider a Lie group G, with identity element e, acting on the state of the system

through the (left) action

Ψ : G ×X → X; (5.1)

the following shorthand will be often used

Ψg(x) := Ψ(g, x). (5.2)

The group G is called a symmetry group for the system in Eq. (2.96) if the system’s

dynamics are invariant with respect to the action of G. Invariance is equivalent to the

following statement. Given any trajectory τũ(xi, ·) of control ũ from state xi which is

a solution to Eq. (2.96), the trajectory Ψg ◦ τũ(xi, ·) is also a solution to Eq. (2.96)

for all g ∈ G. It can be verified that invariance implies that group actions commute

with state transitions. As shown in Fig. 5.2, if

xf = Φũ(xinit, t̄(ũ)), (5.3)

then

Ψg(xf) = Φũ(Ψg(xinit), t̄(ũ)), (5.4)

i.e.,

Ψg ◦ Φũ(·, t̄(ũ)) = Φũ(·, t̄(ũ)) ◦ Ψg. (5.5)

126

In this thesis, a class of systems with symmetries on principle fiber bundles [80]

are considered. State space X can be partitioned, at least locally, into the Cartesian

product of two manifolds X = G ×Z, in which Z is the base space and G is the fiber

space. For simplicity of exposition, it is assumed that Z = R
nz , nz < n. Accordingly,

the generic point x ∈ X is written as the pair (g, z) ∈ G ×Z. It is also required that

the dynamics of these systems could be expressed in the following form:

⎧⎪⎨
⎪⎩

ġ = gξ(z)

ż = fz(z, u)
, (5.6)

in which ξ(z) is a representation of base variables as an element of g, the Lie algebra of

G. Such systems include many vehicles and moving robots, such as cars, submarines,

and helicopters.

The car system with dynamics in Eq. (2.159) belongs to this class of systems and

has symmetry group SE(2). An element g in SE(2) is a 3×3 matrix in the following

form

g =

⎡
⎢⎢⎢⎢⎣

cos θ − sin θ x

sin θ cos θ y

0 0 1

⎤
⎥⎥⎥⎥⎦ , (5.7)

which denotes either a θ-angle rotation and [x, y]T -translation, or position [x, y]T and

orientation θ of a rigid body in the plane. State space X is locally partitioned into

the Cartesian product of SE(2)×R
2, in which SE(2) is the fiber space and R

2 is the

base space. State

x = [x, y, θ, vy, ω]T (5.8)

is written into form (g, z), in which g ∈ SE(2) represents (x, y, θ), and z ∈ R
2

represents (vy, ω). A group action h ∈ SE(2) on state (g, z) is defined as

Ψh(g, z) = (hg, z). (5.9)

It can be verified that the motion equation in Eq. (2.159) can be written in the

127

form of Eq. (5.6) with

ξ(z) =

⎡
⎢⎢⎢⎢⎣

0 −ω vx

ω 0 vy

0 0 0

⎤
⎥⎥⎥⎥⎦ ∈ se(2), (5.10)

in which se(2) is the Lie algebra of SE(2).

5.2.3 Coasting trajectories of the class of systems

For the systems in Eq. (5.6), a state x = (g, z) is called a coasting state if there exists

an input u, called a coasting input, such that

fz(z, u) = 0. (5.11)

A trajectory τũ(xi, ·) of control ũ from a coasting state x = (g, z) is called a coasting

trajectory if ũ satisfies ⎧⎪⎨
⎪⎩

ũ(t) = u

fz(z, u) = 0
, (5.12)

for any t in [0, t̄(ũ)]. One advantage of coasting trajectories is that the base variables

and input are kept constant along the trajectory. If the local constraints on the

base variables and input are satisfied at the starting point, then they will also be

satisfied along the trajectory if these constraints are independent of the fiber variables.

Another advantage is that the fiber variables along the trajectory have the following

explicit formulation:

g(t) = g(0) exp(ξ(z)t). (5.13)

The coasting trajectory from coasting state x = (g, z) with coasting input u and the

constant control ũ are ⎧⎪⎨
⎪⎩

τũ(x, t) = (g exp(ξ(z)t), z)

ũ(t) = u
, (5.14)

128

for any t in [0, t̄(ũ)]. The final state of the coasting trajectory differs from its starting

state by a group action

τũ(x, t̄(ũ)) = Ψh(x), (5.15)

in which

h = g exp(ξ(z)t)g−1. (5.16)

For the car system in Eq. (2.159), the coasting state

x = [x, y, θ, vy, ω]T (5.17)

and coasting input u satisfy

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 = aCr(vy − bω) + av2
xMω + bCr(vy − bω)

u = Cr(vy−bω)+v2
xMω

Cf vx
+ vy+aω

vx
∈ U.

(5.18)

Furthermore, since the constraints on u, vy and ω are independent of fiber variables

x, y and θ, the constraints are also satisfied along the coasting trajectory. There is

an analytical solution for the final state of the coasting trajectory for the car since

exp(ξ(z)t) ∈ SE(2) can be calculated analytically.

5.2.4 Efficient gap reduction with symmetry

For the class of systems considered in the thesis, symmetry provides a decoupling

between the base and fiber variables, i.e., the modification of the fiber variables of

the starting state of a trajectory will not change the base variables of the trajectory.

The decoupling provides us a way to eliminate the gap in the state space through two

steps, which reduces the complexity of the gap reduction problem. In the first step,

the gap in the base space is eliminated while ignoring the change of fiber variables. In

the second step, the gap in the fiber space is eliminated. By the decoupling property,

the base variables of the final state will be invariant in the second step, and therefore

129

xi Ψg

Ψg

ũ

ũ

ũ′i

xf

x′f = Ψg(xf)

x′i = Ψg(xi)

ũ′
xinit

ũi

Figure 5.3: Perturbation of ũi with symmetry to avoid reintegration of ũ in calcu-
lating x′f

the gap in the state space is eliminated at the end of the second step. Since the gap

reduction in the base space is system specific, two examples are given along with two

systems in Section 5.3.1. In the following, the gap reduction in the fiber space will

be provided as a general technique for different systems with symmetries.

Efficient final state evaluation with symmetry The idea of the efficient final

state evaluation is shown in Fig. 5.3, in which ũi is perturbed into ũ′i, xi differs

from x′i by a group action Ψg, and the new final state x′f is obtained by apply Ψg on

the old final state xf without reintegrating ũ from x′i. In this thesis, such perturba-

tion is achieved by inserting coasting trajectories described in Section 5.2.3 into the

trajectory after coasting states.

Assume that the solution trajectory of ũ in Fig. 5.4 has three coasting states

x1, x2, x3 associated coasting inputs u1, u2, and u3, respectively. These three states

divide ũ into four controls ũ1, ũ2, ũ3, and ũ4, which satisfies

ũ = ũ1 ◦ ũ2 ◦ ũ3 ◦ ũ4 (5.19)

130

xinit
xf

ũ1

xinit

δt1

(x1, u1)

(x2, u2)
(x3, u3)

ũ4

ũ3

ũ2

δt2 δt3

x′f
ũ1

ũ2

ũ3

ũ4

Figure 5.4: Perturbation by inserting coasting trajectories

and whose durations are t1, t2, t3, and t4, respectively. Let us define

τ
t̄(ũ)
ũ = τũ(·, t̄(ũ)) : X → X. (5.20)

Since the motion equation is time-invariant, the following is obtained

xf = τ t4
ũ4

◦ τ t3
ũ3

◦ τ t2
ũ2

◦ τ t1
ũ1

(xinit). (5.21)

Coasting trajectories of constant controls are inserted from these coasting states.

These constant controls, denoted as ũ′1, ũ
′
2, and ũ′3, have value u1, u2, and u3 and

durations δt1, δt2, and δt3, respectively. The new final state is

x′f = τ t4
ũ4

◦ τ δt3
ũ′
3
◦ τ t3

ũ3
◦ τ δt2

ũ′
2
◦ τ t2

ũ2
◦ τ δt1

ũ′
1
◦ τ t1

ũ1
(xinit)

= τ t4
ũ4

◦ Ψh3 ◦ τ t3
ũ3

◦ Ψh2 ◦ τ t2
ũ2

◦ Ψh1 ◦ τ t1
ũ1

(xinit)

= Ψh3 ◦ Ψh2 ◦ Ψh1 ◦ τ t4
ũ4

◦ τ t3
ũ3

◦ τ t2
ũ2

◦ τ t1
ũ1

(xinit)

= Ψh3 ◦ Ψh2 ◦ Ψh1(xf),

(5.22)

in which

hi = gi exp(ξ(ziδti))g
−1
i , (5.23)

and

xi = (gi, zi), i = 1, 2, 3. (5.24)

In Eq. (5.22), the second equality comes from Eq. (5.15), that is, the final state of the

coasting trajectory differs from its starting state by a group action. The third equality

131

comes from Eq. (5.5), that is, that group actions commute with state transitions.

Note that 1) the calculation of the new final state only needs to evaluate the group

actions of coasting trajectories without reintegrating the original controls. The group

actions needs at most the numerical integration of the coasting trajectories, and could

even be evaluated analytically for some cases, such as when the symmetry group is

SE(3). 2) The new final state is fully parameterized by nonnegative durations of

coasting trajectories.

Calculating the durations of the coasting trajectories to achieve the desired group

action is called trajectory planning via inverse kinematics in [30], which generally has

numerical solutions except for few cases [81].

5.2.5 Selection of a subspace for optimization

Generally, if a gap exists in a space of dimension ng, perturbing ng parameters of

the final state could eliminate the gap. If the number of parameters for the final

state is larger than ng, it is important to determine which ng parameters could better

eliminate the gap.

Observing that most gradient-based optimization techniques employ the steepest

descent method as their starting step, it is expected that a nonlinear program with

better convergence rate at the starting point for the steepest descent method might

have a good chance to converge faster using other optimization techniques. Therefore,

the convergence rate 1
α

of the steepest descent method for the nonlinear program at

the starting point is calculated [82] as follows:

α2 = 1 − (
∑

i ς
2
i λ

2
i)

2

(
∑

i ς
2
i λ

3
i)(

∑
i ς

2
i λi)

, (5.25)

in which {λi} are eigenvalues of Jacobian matrix J of the final state with respect to

perturbation parameters and {ςi} are coefficients of linear decomposition of xf −xgoal

with respect to eigenvectors of J . Multiple subsets of parameters are chosen and their

132

initx
fx

goalx
1v

2v

3v

Figure 5.5: The intuition of subspace selection with Eq. (5.25) for optimization

convergence rates are evaluated. The subset with the highest convergence rate will

be used for optimization.

The intuition of Eq. (5.25) is shown in Fig. 5.5. Assume that the final state has

three parameters and the gap is in a 2-dimensional space. Vectors v1, v2, and v3 are

the partial derivatives of the final state with respect to three parameters, respectively.

Apparently, perturbation using parameters of v2 and v3 would less likely to move the

final state to the goal state than using parameters of v1 and v3, that is, the convergence

rate of v2 and v3 will be less than that of v1 and v3.

5.2.6 Incorporating gap reduction algorithms with planners

To show the effect of gap reduction algorithms, they are combined with three types of

sampling-based planning algorithms, which are respectively single and bi- directional

RRT-based planning algorithms [36], and PRM-based planning algorithms [14].

The basic single- and bi-directional RRT-based algorithms have been described in

Sections 3.2.1 and 3.2.2. From the algorithm description for RRT-based planners, it

can be seen that the gaps are only induced in checking whether the distance between

two states is less than the gap tolerance. Given two state x1 and x2, and assume that

state x1 is associated with node nf in the tree containing the initial state node, the

modification to check whether there is a solution path through these two states is as

follows:

1. Find Solution Path Candidate: Check whether the distance between two

133

states is less than a given big gap tolerance. If not, report no solution path

passes through these two states; otherwise, we have a path candidate.

2. Eliminate Base Space Gap: Retrieve the control ũ of the path from the

initial state node to node nf . Check whether the gap in the base space between

state x2 and the final state x1 of the solution trajectory of ũ can be eliminated.

If not, report no solution path passes through these two states; otherwise, con-

struct ũ′, the final state of its solution trajectory has no gap with x2 in the base

space.

3. Eliminate Fiber Space Gap: Use the perturbation method described in

Section 5.2.1 to eliminate the gap between state x2 and the final state of the

solution trajectory of ũ′. If the gap distance is less than the given small gap

tolerance, report that a solution path exists; otherwise, report no solution path

passes through these two states.

PRM-based search algorithms have been successfully applied to solve many chal-

lenging motion planning problems without differential constraints. PRM-based plan-

ners have two phases. The first construction phase is to build a search graph to

capture the connectivity of the collision-free configuration space. In the second query

phase, the planners try to connect the initial and goal states to the search graph and

find a path from the initial state to the goal state. An important part of the algo-

rithm is to connect a state to its neighboring states. Without differential constraints,

the connection of two states could be done by simply using straight lines. However,

for MPD problems, each of connection corresponds to a challenging TBVP problem.

Since analytical solutions are only available for few cases, sampling-based single-query

algorithms, such as RRT-based planners, could be used to generate connection trajec-

tories for two given states. However, the gaps in these connecting trajectories could

greatly degrade the quality of the returned solution and using small gap tolerance dra-

134

matically increases the running time. Therefore, the above sampling-based planning

algorithms with gap reduction can be used as the connection method for PRM-based

planning method, which could be used for systems for which no steering algorithm

exists.

5.3 Simulation Studies

To check the performance improvement of sampling-based planners with gap reduc-

tion algorithms, gap reduction algorithms were incorporated with single directional,

bi-directional, and PRM-based sampling-based algorithms. These improved algo-

rithms tried to solve different problems with systems. All the simulations were done

on a 2GHz Pentium 4 PC running Linux Fedora Core 3.

5.3.1 Systems used in simulations

Two systems are considered in our simulation. One system is the trailer system,

which is a nonholonomic system [32]. The other system is the car with dynamics in

Eq. (2.159). The base error of the car system is eliminated analytically as follows.

The car system has the following linear base dynamics.

ż = Az +Bu, (5.26)

in which

A =

⎡
⎢⎢⎢⎢⎣

−Cf+Cr

vxM

Crb−Cf a

vxM
− vx

Crb−Cf a

vxI

b2Cr+a2Cf

vxI

⎤
⎥⎥⎥⎥⎦ , (5.27)

and

B =

⎡
⎢⎢⎢⎢⎣

−Cf

M

Cf a

I

⎤
⎥⎥⎥⎥⎦ . (5.28)

135

),(yx

1u

1θ

β
2θ

Figure 5.6: The sketch of the trailer system

Applying two constant controls with value c1 and c2 over two time intervals of the

same duration δt from base variable z1, the final base variable z2 is obtained as follows:

z2 = Afz1 +Bfud, (5.29)

where

Af = A2
d, (5.30)

Bf = [AdBd, Bd] , (5.31)

Ad = exp(Aδt), (5.32)

Bd =

∫ δt

0

exp(A(δt− t))Bdt, (5.33)

and

ud = [c1, c2]
T . (5.34)

Therefore, given two set of base variables z1 and z2, the value of two constant controls

to eliminate the base space gap can be calculated.

In some cases, the calculated input is not in the input space. We could keep

doubling δt and repeat the above calculation until an admissible input is available.

The trailer system shown in Fig. 5.6 consists of a car pulling a trailer. Its state is

[x, y, θ1, β, θ2]
T , (5.35)

in which

x ∈ [0, 400], (5.36)

136

y ∈ [0, 400], (5.37)

and

θ1 ∈ [−π, π] (5.38)

are x-, y-coordinates and orientation of the car,

β ∈ [−0.6, 0.6] (5.39)

is the steering angle of the car, and

θ2 ∈ [−π, π] (5.40)

is the orientation of the trailer. The orientation θ1 and θ2 must satisfy

|θ1 − θ2| <
π

2
. (5.41)

The inputs to the system are u1 and u2, in which

u1 ∈ [0, 2.0] (5.42)

is the forward velocity, and

u2 ∈ [−0.24, 0.24] (5.43)

is velocity of the steering angle. Note, u1 is intentionally set to be nonnegative so that

the system is not STLC, and the gap cannot be reduced by trivially moving along

the direction of Lie bracket. The motion equation of the trailer system are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = u1 cos(θ1)

ẏ = u1 sin(θ1)

θ̇1 = u1 tan(β)
L1

β̇ = u2

θ̇2 = u1 sin(θ1−θ2)
L2

, (5.44)

in which

L1 = 2.0 (5.45)

137

is the length of the car,

L2 = 10.0 (5.46)

is the length of the hitch. By introducing the transformation

θd = θ1 − θ2, (5.47)

the last equation in (5.44) is changed to

θ̇d = u1 tan(β)/L1 − u1 sin(θd)/L2. (5.48)

Then, the fiber variables are (x, y, θ1), and the base variables are (β, θd). The coasting

input and state satisfy that

u2 = 0 (5.49)

and

tan(β)/L1 − sin(θd)/L2 = 0. (5.50)

Given two set of base variables (β, θd) and (β′, θ′d) as the end points of the gap, it

is assumed that

θ′d > θd (5.51)

without losing generality. The base space gap of the trailer system can be eliminated

in three steps: 1) Set u2 be the maximal value and u1 be zero to increase β to its

maximal value while keeping θd constant. 2) Set u2 be zero and u1 be maximal to

increase θd to θ′d while keeping β constant. 3) Set u2 be the minimal value and u1 be

zero to decease β to β′ while keeping θd constant.

5.3.2 Sensitivity of planner performance to the gap tolerance

To check the relationship between the performance of sampling-based planners with-

out gap reduction and the gap tolerance, the bi-directional RRT-based planner [36]

was used to solve a problem with the car with dynamics with gap tolerances at

138

Figure 5.7: A problem with the car with dynamics for bi-directional planners

100, 10, 1, and 0.1, respectively. The problem is shown in Fig. 5.7, in which the ini-

tial and goal configurations are at the bottom-left and top-right corners, respectively,

and the initial and goal velocities are zero. The distance between two gap endpoints

in the simulations of this thesis is calculated using the following weighted Euclidean

metric
n∑

i=1

(xi − x′i)
2wi (5.52)

in which n is the dimension of the state space, {xi} and {x′i} are the state variables,

and wi is the weight for each dimension. The weights for different systems could

be changed. For the 5-dimensional car, the weights are 1,1,1,1, and 100, which are

respectively for vy, ω, x, y, and θ in Eq. (2.159). The weight for θ is specially chosen

to be 100 since a small variation in orientation could greatly change the final state of

a trajectory.

For each tolerance, twenty trials were used to solve the problem. Each trial either

returns a solution or report failure after 400000 iterations. The running time and the

number of returned solutions are shown in Table 5.1. From the results, it can be seen

139

εg Max. Min. Avg. Suc.

100 158.7 2.6 29.7105 20

10 7113.7 2.6 1992.7 20

1 60736.2 2075.8 30576.3 11

0.1 61785.7 60168.1 60736.2 0

Table 5.1: The running time (in seconds) of planners with different gap tolerance, in
which “Max.”, “Min.”, and “Avg.” denote the maximal, minimal, and average time,
and “Suc.” denotes the number of returned solutions over 20 runs

that the performance of the sampling-based planners degrades dramatically with the

gap tolerance decreasing.

5.3.3 Comparisons of gap reduction with or without symme-

try

To compare the gap reduction algorithms with and without using symmetries, the

pure numerical gap reduction algorithm was also implemented, in which the final

states are evaluated by numerically integrating the perturbed controls. Both gap

reduction algorithms were incorporated with single-directional RRT-based planners

and test on problems in Figures 2.9 and 5.8. The initial and goal configurations for

the problem in Fig. 5.8 are respectively above and below the black bar. For each

problem, twenty trials were run. The overall running time and number of numerical

integrations were reported. The gap tolerance is chosen to be 0.1 or 1e − 6. Each

numerical integration is over a fixed time interval 0.01. The weights of the gap

distance for the trailer system are 1, 1, 10, 1, and 10, which are respectively for x, y,

θ1, β, and θ2 in Eq. (5.44).

Parameters for the final states of trajectories of controls from planners in [36] are

as follows. Since the local planners in [36] use constant controls with fixed duration

as sampled controls to generate new states. Therefore, each sampled control can be

140

The car

The trailer

Figure 5.8: A problem with the trailer system for single-directional planners

characterized by m + 1 parameters, in which m of them denotes the value of the

m-dimensional input and one is for the duration of the control. If a path candidate

consists of k edges, then the control of the path will consist of (m+ 1)k parameters.

The simulation results are shown in Table 5.2. It can be seen that the planners

using gap reduction with symmetry used less time and numerical integration. In the

last row in the table, no overall running time and number of integration are obtained

since the simulation is terminated when the planner using gap reduction without

symmetry failed to return a solution in four days in one trial. In the analysis of

the results, a large amount of trajectories returned from the gap reduction without

symmetry failed to be a solution since the local constraints on states along the trajec-

tories are violated, especially for the constraints in Eq. (5.41) for the trailer, which is

the main reason that the planner using the gap reduction with symmetry has much

better performance than that using the gap reduction without symmetry.

141

P Ob. Sy. εg Time Num. Su.

Car N Y 0.1 753.0 8.2e7 20

Car N N 0.1 23091.3 4.5e9 20

Car Y Y 1.0e-6 36845.1 8.3e7 20

Car Y N 1.0e-6 94199.8 1.1e10 20

Tra. N Y 0.1 225.5 9.4e6 20

Tra. N N 0.1 243508.0 4.7e10 20

Tra. Y Y 1.0e-6 303.5 1.0e7 20

Tra. Y N 1.0e-6 - - -

Table 5.2: The running time (in seconds) and number of integration for planners im-
proved by gap reduction with or without symmetry, in which “Ob.” denotes whether
obstacles are considered, “Tra.” denotes the problem with the trailer system, “Sy.”
denotes whether symmetry is used, “Time” is the overall running time, “Num.” is
the overall number of integration, “Su.” is the number of returned solutions over 20
runs

5.3.4 Effects of subspace selection for optimization

To see the effect, one gap reduction algorithm was implemented, for which the sub-

space is randomly generated. The planners using gap reduction with or without

subspace selection were used to solve the problems with the car and the trailer sys-

tem in Figures 2.9 and 5.8 for 20 runs. To concentrate the comparison of the effects of

subspace selection, obstacles in the problems are ignored. The overall running time,

the number of calls for the NAG optimization function, and the number of returned

solutions are reported in Table 5.3. From the table, it can be seen that the overall

time and number of calls in the planner using gap reduction with subspace selection

is apparently less than those in the planner using gap reduction without subspace

selection.

142

P Sel. εg Time Num. Suc.

Car Y 1.0e-6 2395.3 1351 20

Car N 1.0e-6 3678.0 5275 20

Tra. Y 1.0e-6 457.0 3272 20

Tra. N 1.0e-6 607.0 13304 20

Table 5.3: The effects of subspace selection, in which “Sel.” denotes whether the
subspace selection is used, “Time” is the overall running time in seconds, “Num.” is
the overall number of calls to the NAG optimization function, “Suc.” is the number
of returned solutions over 20 runs

Figure 5.9: A problem with the trailer system for bi-directional planners

P εg Time Suc.

Car 1.0e-6 4294.2 20

Trailer 1.0e-6 15888.2 20

Table 5.4: The results of using the improved bi-directional planners to solve prob-
lems, in which “Time” denotes the overall running time, and “Suc.” denotes the
number of returned solution over 20 runs

143

Figure 5.10: A problem with the car model for the PRM-based planner

5.3.5 Performance improvement of single- and bi-directional

planners

The gap reduction algorithm was combined with the single directional RRT-based

planner and test on problems in Figures 2.9 and 5.8. The gap tolerance is set to be

1.0e− 6. For each problem, the original planner and the improved planner using gap

reduction with symmetry tried twenty runs. The original planner did not return any

solution after 400000 iterations. The running time and number of returned solutions

are shown in Table 5.2.

The gap reduction algorithm was combined with the bi-directional RRT-based

planner and test on problems in Figures 5.7 and 5.9. The initial and goal configura-

tions for the problem in Fig. 5.9 are at the top and bottom half of the picture. The

gap tolerance is set to be 1.0e − 6. For each problem, the original planner and the

improved planner using gap reduction with symmetry tried twenty runs. The original

planner did not return any solution after 400000 iterations. The running time and

number of returned solutions are shown in Table 5.4.

144

V.N. C. T.(s) Q. T.(s) Suc. E.N.

50 2243.3 45333.5 5 32

100 7847.6 57520.4 7 154

150 17387.5 32817.7 13 363

200 26507.0 88226.3 18 586

250 40331.9 138218.0 31 795

Table 5.5: Simulation results for the PRM-based planner, in which “V.N.” means
the number of vertices, “C.T.” is the construction time, “Q.T.” and “Suc.” are
respectively the overall query time and number of returned solutions for 40 queries,
and “E.N.” is the number of edges in the roadmap

5.3.6 A PRM-based MPD algorithm with gap reduction

The gap reduction algorithm was combined with the basic PRM-based planner and

test on the problem in Fig. 5.10 with the car model in Eq. (2.159). The gap tolerance

is chosen to be 1.0e−6. The construction and query processes were alternatively run.

Every time, after inserting the roadmap 50 new vertices, 40 queries were tried for

randomly chosen initial and goal state pairs. To reduce the construction time, a

sampling point tries to connect to at most 20 neighbors and each connection runs for

2000 iterations in the construction phase. In the query phase, a sampling point tries

to connect to at most 40 neighbors and each connection runs for 20000 iterations to

fully utilize the constructed roadmap. The results are shown in Table 5.5, for which

it can be seen that the PRM-based method could be used to solve MPD problems

even an analytical steering method is not available.

145

Chapter 6

Reducing Metric Sensitivity for

RRT-Based Planners

RRT-based planners [61; 83] as sampling-based algorithms have been proposed re-

cently for MPD problems. An RRT achieves rapid exploration by iteratively sampling

a random state in the state space and extending the nearest state in the RRT to-

ward the random state with a set of sampled controls. Various RRT-based planners

have been designed recently for autonomous vehicles motion planning [84] and for

nonlinear underactuated vehicles [85].

In spite of the successes of RRTs, one of the key shortcomings is the sensitivity of

their performance with respect to a chosen metric. The metric helps to select a node

in the search graph in each iteration, whose state is closest to the randomly generate

state, i.e., it is a Voronoi bias heuristic. As shown in Fig. 6.1, the tree structures

in four pictures are the RRTs and the partition of the plane is the Voronoi graph of

the states in the reached set after generating the RRT for different number of iter-

ations for a path planning problem. The nodes on the frontier of the RRT tend to

have larger Voronoi regions such that they have higher probability to be chosen and

explore more space. It can be seen that RRT achieves fast exploration in problems

without differential constraints. However, for systems that involve differential con-

146

Figure 6.1: The fast exploration of RRT for a path planning problem

147

straints, the metric might provide misleading information that dramatically increases

the computation time. For some systems, it may be possible to design better metrics

(as in the hybrid optimal cost-to-go function in [84]), but in general there is a need to

develop sampling-based MPD algorithms that achieve reliable performance in spite

of a poor metric. It was this demand that leads to the emergence of the method

presented here.

6.1 Metric Issues in RRT-Based Planners

The ideal metric for two states is the optimal cost-to-go, which is the optimal cost

for the robot to move from one state to the other state. Calculating the optimal cost-

to-go is at least the same difficulty as solving the MPD problems. Both differential

constraints and global constraints have to be considered. The effect of differential

constraints on the metric can be seen from the following example. Suppose a car-like

robot is driving forward with high speed. The radius of the smallest circle in which

it can turn is 100 meters. The robot is driving along the x axis and past the origin

of y axis to the positive direction of the x axis. One state is at the 150 meters and

another is at −100 meters on the x axis. A Euclidean metric might cause the planner

to prefer the −100-meter state; however, it is the wrong decision given that the car

cannot drive backward and would have to turn around to go to the −100-meter state;

the state at 150 meters is closer in terms of the true cost. To understand the effect of

global constraints on the metric, imagine that a robot is in a labyrinth of nonconvex

obstacles. Two states might be close in terms of a Euclidean metric, but the correct

metric should use the shortest path within the labyrinth.

The performance of RRT-based planners degrades because they select the node

and sample controls solely depending on the given metric function. If differential

constraints exist, then it is difficult for RRT-based planners to avoid obstacles in the

148

Figure 6.2: The issue in selecting the node in RRT-based planners

planning process. In node selection, RRT chooses node nnear, whose state x(nnear)

is the closest state in XG to a randomly generated state xrandom. Under differential

constraints, many nodes might be chosen numerous times, even though trajectories

from their states will be in collision. However, it could be difficult to choose some

nodes, from which a solution path could be obtained. As shown in Fig. 6.2, the

curves represent the trajectories associated with edges of the search graph, the dots

denote the states in the reached set XG, and the straight line segments compose the

Voronoi graph of the states in the reached set XG using the given metric. The system

will always be in collision if it is in state x1 but could avoid the obstacle from state x2.

If the node selection solely depend on the given metric, then state x2 is hardly to be

chosen since state x1 has a much larger Voronoi region that has a higher probability

to contain the random state xrandom.

The generation of trajectory segments of the RRT also only relies on the given

149

metric ρ, which further decreases the chance of avoiding obstacles in the exploration.

Even though the state of a chosen node has the chance to avoid an obstacle, the

control sampling might generate a control that drives the system along a trajectory

in collision. The control that yields good exploration might be discarded because xnew

derived from this control has ”larger” distance to xrand than that of the other states

derived from the other controls. An example of this problem is shown in Fig. 6.3, in

which x1, x21, and x22 are final states of trajectories of three sampled controls from

state x2, the system in state x22 will always run into a collision, and the dot lines

compose the Voronoi graph of these three final states. Assume that RRT chooses

node n2 with state x2 when the random state xrandom is the Voronoi region V (x2)

of state x2. RRT will choose a sampled control, whose final states is the closest to

the random state xrandom. This control sampling strategy could also be interpreted

with the Voronoi region of x1, x21, and x22. A sampled control will be chosen if state

xrandom is in the Voronoi region of the state the control generates. To choose the

control to generate state x21 in Fig. 6.3, state xrandom has to be in the Voronoi region

V (x21) of state x21. Therefore, to avoid the obstacle, the random state xrandom has

to be in the intersection of V (x2) and V (x21), which could be an event with small

probability.

6.2 Adaptive Reduction of Metric Sensitivity

This method in this thesis is not to design a system-specific metric, but to collect

information during the exploration and expand T according to a simple metric ρ

and information collected. It can make RRT less metric-sensitive and therefore more

robust.

The following information is collected during the search:

Exploration information: For each RRT-node, whether a control has already

150

Figure 6.3: The issue in sampling the control in RRT-based planners

been applied on its state is recorded. If a control has been applied for the state of

a node, it will not be considered for the node again. If the controls for a node are

exhausted, this node will not be chosen for expansion any more.

Collision information: The constraint violation probability (CVP) of a node

n is the probability of generating a trajectory in violation from state x(n) with a

random control constructed with sampled controls. It can be calculated by applying

all possible constructed controls from state x(n) and dividing the number of collision

trajectories by the number of all controls. It provides global constraint information

such that giving nodes with smaller CVP more priority to expand is more likely to

evade obstacles. As shown in Fig. 6.4, because of differential constraints, the more

close to the obstacle, the higher the CVP of the node is (darker means higher CVP). If

the node with lower CVP is chosen for expansion, then the planner could have better

chance to avoid the shaded obstacle region. Calculating CVP is impractical for large

151

control sets and number of stages (one might as well use dynamic programming to

solve the problem in this case). Constraint violation tendency (CVT) is used and

collected such that it will approaches but never exceed CVP such that any states

with CVP less than 1 always have chance to expand.

The calculation of CVT is shown in Fig. 6.5, in which the empty leaf nodes denote

trajectories in violation, the solid leaf nodes denotes violation-free trajectories, and

the explored region include all reached states by the RRT. The CVT is the ratio of

the number of trajectories in violation in the explored region to the number of all

possible constructed trajectories, and therefore it is always an underestimation of the

CVP. Each new node, ns, in T is initialized with CVT at 0. Suppose that there are

m controls in the sampled control set Ũs. The CVT of ns is increased by 1
m

if one

control ũ in Ũs leads to a trajectory in violation. Furthermore, the CVT of its parent

node, np, is increased by 1
m2 because 1 controls of one of its m child nodes lead to a

collision. Similarly, for the kth parent state of ns, 1 collision control in node ns will

increase its CVT by 1
m(k+1) . This process will propagate until the root node of the

RRT is reached.

Figure 6.6 shows the value of the CVT that is collected in solving an MPD problem,

in which the points represent the states of nodes in the search graph and the shade

of a point represents the value of the constraint violation tendency (darker indicates

higher CVT). From the picture, it can be seen that these shaded points provide a

good approximation of obstacles in the work environment. The closer the state of a

node is to the obstacle, the higher the value of its CVT is.

The exploration information is stored as a vector at each node in the search tree.

Each element of the vector corresponds to a control in Ũs. Each element of the vector

is initially set to be unexpanded. If one control leads to a collision or it successfully

generates a new node in T , its corresponding element is set to be expanded.

The exploration information and CVT help the RRT to choose a better node

152

Figure 6.4: The intuition to avoid obstacle with CVP

nnear for exploration. In node selection, whether all controls of a node n have been

expanded will be checked first. If they are all expanded, node n is ignored; otherwise,

the probability of not choosing node n equals to the CVT of x. If none of the nodes

is selected, one node with unexpanded controls will be chosen.

The exploration information is also helpful for sampling the controls to generate

new trajectories. When node nnear is selected, whether a control ũ is expanded will

be checked. If it is expanded, it will not be considered; otherwise, it will be applied to

generate a new trajectory from state x(nnear) to final state x′new. If the new trajectory

is violation-free and state x′new has the lest distance to xrand over all final states from

sampled controls, x′new will be associated with a new node in T ; otherwise, constraint

information will be collected.

The improved RRT can be incorporated into any of the RRT-based planners

described in [55]. A bidirectional planner expands two trees from both xinit and

xgoal. Its performance is generally better in comparison to a single-tree planner. The

original RRT only checks if two xnew from both trees are closed enough for a solution.

153

+ 1
m

n

ns

np

+ 1
mk−1

+ 1
mk−2

ũ

ER = Explored Region

+ 1
m2

+ 1
mk

Figure 6.5: Estimation of CVP with CVT

Because the metric problem, it is possible that the original planner might continue

to explore the state space even there exists a solution. The exploration frontiers of

two search trees passing through each other was also mentioned in [86]. To overcome

the above problem, whether each new node in one tree is within a specified distance

to any node in the other tree is test. Although costly, it generally leads to reliable

performance because all alternatives are considered.

6.3 Simulation Results

Our implementation was built on top of the C++ Motion Strategy Library. Experi-

ments were conducted on a 1GHz PC running Red Hat Linux 6.2. In lane changing

154

Figure 6.6: Display of CVT that is collected in a planning process

experiments, comparisons between the original RRT and the improved RRT are done.

Several challenging trajectory design experiments that include vehicle dynamics prob-

lems and spacecraft problems were used to test the performance of the new method.

In all the simulations, a simple weighted Euclidean metric is used in each planners.

6.3.1 System models

A 9-dimensional car model The model adapted from [87] is used in the simula-

tion. Figures 6.7 and 6.8 show the parameters, in which WC subscript denotes an

inertial frame fixed in the work environment and LC subscript denotes a local frame

fixed on the car. The yaw angle of the car is ψ that corresponds to the rotation

around z of WC. The velocity of yaw angle of the car is r. The roll angle of the car

is φ that describes the rotation around x of LC. The velocity of the roll angle is q.

The sideways speed (arising from slipping) is ν that is with respect to the y in LC.

155

β

ψ

WC

LC

LC

W
C

r

s

ab

X

X

Y

γ

Y

Figure 6.7: Top view of the car model

φ

T

H

r

H

N

2

N
R L

Figure 6.8: Front view of the car model

156

The steering angle β is with respect to z of LC. The forward speed s of the car that

is with respect to x of LC. Constant Cαf and Cαr are the total cornering stiffness

of the front and rear wheels, respectively. The car mass is M . The yaw moment of

inertia of the car is Iy. The roll moment of inertia is Ir. The distance from the center

of the front and rear axles to the car mass center, respectively, with respect to LC is

a and b. The height of the joint connecting the chassis with the car frame is H. The

chassis and frame are flexibly attached to model a simple suspension system. The

distance between the left and right wheels is T . The distance from the joint to the

mass center of the car frame is H2. Constants K, c, and µ are described in [87].

A state of the system is represented by

[x, y, r, ψ, φ, q, ν, s, β]T . (6.1)

The system has two inputs,

u = [u1, u2]
T , (6.2)

in which u1 determines the changing rate of the forward speed s and u2 determines

the changing rate of the steering angle β.

The slipping angle of the front and rear wheels, denoted as αf and αr respectively,

with respect to z of LC are expressed as

αf =
ν + ar

s
− β (6.3)

and

αr =
ν − br

s
. (6.4)

Because of the rolling effect, the load on the wheels are different. Let Nfl , Nfr , Nrl ,

and Nrr be the load, respectively, on the front left, front right, rear left, and rear right

wheels, and Fyfl , Fyfr , Fyrl , Fyrr be the force along y in LC, respectively, on the front

left, front right, rear left, and rear right wheels. If the friction forces are not enough,

it is possible for the car to slip sideways. The y-direction forces on four wheels are:

Fyfl = −Cαfαf/2, if Nflµ > Cαf tan(|αf |)/2 (6.5)

157

Fyfr = −Cαfαf/2, if Nfrµ > Cαf tan(|αf |)/2 (6.6)

Fyrl = −Cαrαr/2, if Nrlµ > Cαr tan(|αr|)/2 (6.7)

Fyrr = −Cαrαr/2, if Nrrµ/2 > Cαr tan(|αr|)/2 , (6.8)

in which the calculated friction force is less than the maximum possible friction.

Otherwise,

Fyfl = −µNflSgn(αf)(1 − xfl/2), xfl = NflµCαf tan(|αf |)/2 (6.9)

Fyfr = −µNfrSgn(αf)(1 − xfr/2), xfr = NfrµCαf tan(|αf |)/2 (6.10)

Fyrl = −µNrlSgn(αr)(1 − xrl/2), xrl = NflµCαr tan(|αr|)/2 (6.11)

Fyrr = −µNrrSgn(αr)(1 − xrr/2), xrr = NfrµCαr tan(|αr|)/2. (6.12)

Let

Fyf = Fyfl + Fyfr , (6.13)

Fyr = Fyrl + Fyrr , (6.14)

h = (−(K −MgH2)φ− cq − (Fyf + Fyr)H2)/Ir, (6.15)

and

λ =
b

a+ b
. (6.16)

The difference between the left wheels and right wheels is

Ndif =
(−Kφ− Cq + (Fyf + Fyr)H)

T/2
, (6.17)

and current load on different wheels is changed to be

Nfl = 9.8Mλ/2 +Ndif λ/2 (6.18)

Nfr = 9.8Mλ/2 −Ndif λ/2 (6.19)

Nrl = 9.8M(1 − λ)/2 +Ndif (1 − λ)/2 (6.20)

Nrr = 9.8M(1 − λ)/2 −Ndif (1 − λ)/2. (6.21)

158

To keep the car from rolling over, load on every wheel should be greater than zero.

If one of the loads is less than zero, the car is in a dangerous condition. The motion

equations are: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = s cosψ − ν sinψ

ẏ = s sinψ + ν cosψ

ṙ = (Fyfa− Fyrb)/Iy

ψ̇ = r

φ̇ = q

q̇ = h

ν̇ = (Fyf + Fyr)/M − sr −H2h

ṡ = u1

β̇ = u2

. (6.22)

A 5-dimensional simplified car model If the rolling effect is ignored and the

forward speed is fixed, the simplified model can be derived from the 9-dimensional

car model. A state of the car is represented by

[x, y, r, ψ, ν]T . (6.23)

The system only has one input u1 which determines the steering angle.

The slipping angle of the front and rear wheels are respectively

αf =
ν + ar

s
− u1 (6.24)

and

αr =
ν − br

s
. (6.25)

Because the rolling effect is ignored, there is no difference between the load on the

right and left wheels. Let Nf and Nr are the load on the front and rear wheels. The

forces along the y of LC on front and rear wheels are

Fyf = −Cαfαf , if Nfµ/2 > Cαf tan(|αf |) (6.26)

159

and

Fyr = −Cαrαr, if Nrµ/2 > Cαr tan(|αr|) . (6.27)

Otherwise,

Fyf = µNfSgn(αf)(1 − xf/2), xf = Nfµ/2Cαf tan(|αf |) (6.28)

and

Fyr = µNrSgn(αr)(1 − xr/2), xr = Nfµ/2Cαr tan(|αr|). (6.29)

Let

h = (−(K −MgH2)φ− cq − (Fyf + Fyr)H2)/Ir. (6.30)

The following represent the motion equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = s cosψ − ν sinψ

ẏ = s sinψ + ν cosψ

ṙ = (Fyf a− Fyrb)/Iy

ψ̇ = r

ν̇ = (Fyf + Fyr)/M − sr

(6.31)

A 12-dimensional underactuated spacecraft model The spacecraft shown in

Fig. 6.9 can translate and rotate in 3D space by firing three thrusters. These thrusters

provide the driving forces and torques because the force direction does not pass

through the mass center. The state of the system is represented by (g, ξ), in which

g = (p,R) ∈ SE(3) (6.32)

represents position, p in R
3 and orientation, R in SO(3), and

ξ = (Ω̂, V) ∈ se(3) (6.33)

denote the translational and rotational velocity expressed in the body frame. The

skew matrix Ω̂ is defined as unique matrix for which

Ω̂v = Ω × v, ∀v ∈ R
3. (6.34)

160

Y

Z

L z
F y

F
z

F
z

F x

L x

Z

X

Mass Center

Y

L y
F x X

F
y

Front View

Top View

Left View

Figure 6.9: The sketch of the forces from thrusters on the spacecraft

The inputs are u1, u2, and u3, which are the signed magnitude of the forces Fx, Fy,

and Fz. The motion equations are:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ṙ = RΩ̂,

ṗ = RV,

Ω̇ = −J−1(Ω × (JΩ) − fΩ),

V̇ = V × Ω + fV /M,

(6.35)

in which J is the inertial matrix, M is the mass,

fV = [u0, u1, u2]
T (6.36)

denotes the signed magnitude of translational forces Fx, Fy, and Fz,

fΩ = [−u2Lz, u0Lx, u1Ly]
T (6.37)

161

Figure 6.10: Comparison of explorations of the original RRT and improved RRT

denotes the signed magnitude of rotational torques, and Lx, Ly, and Lz are vertical

distance from the mass center to the direction of forces generated by thrusters.

6.3.2 Simulation results

The lane change problem The improved planner was used to solve the problem

in Fig. 2.9, in which the 5-dimensional car in Eq. (6.31) drives at 96kph to complete

a lane changing maneuver in a 305m stretch of road. This problem is referred to in

the automotive industry as the Consumer Union Short Course. Explorations of the

original RRT and improved RRT after 2000 and 6000 iterations are compared in Fig.

6.10. Exploration of the original RRT is limited because some nodes are repeatedly

selected for expansion without making progress.

Table 6.1 gives some comparative statistics for solutions to the lane changing prob-

lem under the application of the bidirectional planner. Fifty trials were performed

in which six versions were run: the original and improved RRT-based planners re-

spectively with 2000, 4000, and 8000 iterations. Note that the success rate improves

dramatically. Furthermore, the average number of nodes generated by the improved

RRT is greatly increased, indicating greater exploration. Also, less collision detection

was performed by the improved RRT. Although computation times are comparable,

note that most of the original RRT trials result in failure.

162

RRT Planner Improved RRT Planner

Iter. 2000 4000 8000 2000 4000 8000

Suc. Rate 1/50 0/50 4/50 23/50 37/50 49/50

Num. Node 336 - 636.5 1359 2542 3283

Num. Col. 56.9 - 27.3 2.48 4.49 5.75

T(second) 10.61 - 52.15 11.9 28.8 44.7

Table 6.1: Comparison of the original and improved RRT-based planners, in which
“It” means how many iterations the planners have run, “Suc. Rate” means the
number of successes out of 50 trial, “Num. Node” means the average number of
nodes in the search graph, “Num. Col.” means the average number (in thousands)
of collision checking , “T” means the average time to find the solution

The virtual driving problem The single-directional RRT-based planner was used

to solve the virtual driving problem in Fig. 1.13. The model is the 9-dimensional as

shown in Eq. (6.22). If the pressure on one tire is less than 0, the car is in a dangerous

state. This makes it very difficult to control. Both the original and improved planners

tried on this problem for 50 trials, in each of which there are 60, 000 RRT iterations.

The improved RRT planner found the solution 38 times with an average of 989.65

seconds and 25712.1 nodes. The original RRT-based planner performed much worse,

finding only 10 solutions out of 50 trials (note that either success rate can be improved

by increasing the number of iterations).

Trajectory design for the spacecraft One simulation involves moving the un-

deractuated spacecraft out of a cage by firing thrusters (Fig. 6.11). For 50 trials and

40, 000 RRT iterations in each trial, the improved bi-directional RRT planner solves

the problem 41 times with an average of 737.32 seconds and 17, 129 nodes. The orig-

inal bidirectional RRT planner only solved the problem 3 times out of 50 trials, even

though 100, 000 RRT iterations were used in each trial.

In the final simulation, the improved bi-directional planner was used to solve the

163

Figure 6.11: A solution of firing thrusters to move a spacecraft out of a cage

extremely challenging problem in Fig. 1.14, in which the underactuated spacecraft

needs to move from one corner of the 3D-grid to another corner. The planner was

run on the problem for 50 trials. In each trial, the algorithm will keep running until

all node-edge pairs in the search graph are explored. The improved planner solved

the problem fifty times with an average of 8059.31 seconds. The original planner did

not find a solution after running for 48 hours.

164

Chapter 7

Conclusion

7.1 Summary

In this thesis, three problems related to sampling-based MPD algorithms have been

solved. Chapter 4 discusses resolution completeness of these algorithms. The con-

cept of resolution completeness is extended from sampling-based planners for path

planning problems to those for MPD problems. The resolution completeness analysis

is based on the relationship between the reachability graph and the search graph.

The reachability graph is an intrinsic graph representation of a given MPD prob-

lem, while the search graph is constructed by the planner to explore the reachability

graph. Because of sampling in the state space and control space, state mismatches

and control mismatches could be induced. A resolution complete planner will find

an existing solution or its approximation in finite time despite of these mismatches.

Furthermore, with Lipschitz conditions on the motion equations and local planners,

quantitative conditions on parameters of the planners are provided.

Chapter 5 solves the gap problem for MPD planners. Because of sampling, gaps

could exist in the solution path. Since these gaps greatly degrade the quality of

the returned solutions, small gap tolerance is normally desired, which dramatically

increases the running time. The problem is solved by combining the existing planners

165

with a gap reduction algorithm for a class of systems with symmetry. A solution

path with small gap tolerance could be quickly returned by efficiently reducing the

big gaps in solution path candidates. The gap reduction algorithm can be considered

an optimization of the distance between the two end points of the gap. Symmetry

structures of robotic systems are employed to accelerate the optimization process

by avoiding unnecessary numerical integrations. The gap reduction algorithm has

been combined with single- and bi-directional planners and a PRM-based planner.

Substantial performance improvements over the original planners have been observed.

Chapter 6 solves the metric sensitivity problem in RRT-based planners. RRT-

based planners achieve fast exploration of the search space for path planning problems

using simple Euclidean metrics. However, under differential constraints, the simple

metrics have difficulties to guide the system to avoid the local minima. One ways is

to calculate a good metric, which is normally as difficult as solving the MPD problem.

The method in this thesis collects collision information during the search process and

uses collected information to guide the search. These information is stored as a real

number in each node in the search graph. The higher the number of a node is, the

higher is the number of trajectories that are from the state of the node and have been

detected in collision. Giving nodes with lower number higher probability to extend

tends to have larger chance to avoid obstacles. The results of the simulations with

these improved planners verified the effectiveness of method.

7.2 Future Directions

Even though path planning problems have been well understood through recent re-

search, motion planning with differential constraints is still in a primitive stage. The

following lists many directions, open problems, and possible improvements over ex-

isting methods and applications.

166

1. In theoretical analysis, exact algorithms for general MPD problems are still un-

known. It seems that there does not exist a unified search space as a counterpart

of configuration space for the path planning problem.

2. Motion equations characterize the evolution of the robotic system in MPD prob-

lems. These equations could be derived using intrinsic geometric structures of

the systems when the configuration space has no singularities. It is desirable

to model the system with singularities, such as the system with closed chains.

Furthermore, the properties of motion equations are desirable, which will tell

the mobile ability and limit of the robotic system. For example, the nonslipping

model of the roller racer [88] is proved that it cannot be stopped only by the

steering angle control if it starts moving, which tells that it is impossible to

design a trajectory for the model to move from one configuration at rest to a

different configuration at rest.

3. For practical algorithms, understanding of complexity of sampling-based al-

gorithms is desired. The current resolution completeness analysis of sampling-

based algorithms is limited to the system with only one set of motion equations.

It is desirable to extend the resolution complete conditions for MPD problems

with hybrid systems, which are describe by multiple sets of motion equations.

Also less conservative resolution completeness conditions should be explored

using structures of specific systems.

4. MPD algorithms have a large amount of potential applications. Realistic ani-

mation in computer graphics has strong similarity with MPD problems. Since

the motion equation is derived from the physical laws, the trajectory of a con-

trol could be used to generate a realistic animation of the system and MPD

algorithms could be used to automatically generate animations. System verifi-

cation has attracted more and more attention in many areas, in which safety

167

has high priority. MPD algorithms could be used as a falsification tool to find

whether an unsafe state could be reached, and resolution completeness analysis

could provide some safety guarantee.

168

Appendix A

Appendix

In the appendix, existence and requirements of asymptotic finite sampling in the state

space and control space are provided. Resolution complete conditions for planners

using nonconnecting local planners and numerical calculations are also provided.

The asymptotic state space sampling could be easily achieved though sampling

with discretization. In planners using connecting local planners, the asymptotic con-

trol space sampling could be identified with a state space sampling with discretization.

However, when a nonconnecting local planner is used, the asymptotic control space

sampling is not trivial, which is one of the main question solved in this appendix.

As described in Section 3.3.2, the control space sampling in planners using non-

connecting local planners could be implemented through time sampling and input

space sampling. Therefore, an asymptotic finite control space sampling needs both

the asymptotic finite time sampling and the asymptotic finite input space sampling.

The asymptotic finite time sampling could be similarly constructed to the asymp-

totic finite state space sampling. In the first section, an asymptotic finite input space

sampling is constructed for a simple sampling control set, in which each control is

a continuous function from a fixed time interval to a one-dimensional input space

and has an upper bound on the magnitude of its first-order time derivative, i.e., the

controls have a slope bound.

169

In the second section, it is shown that the slope bound of the sampling control set

is necessary for the asymptotic finite input space sampling. Existence of asymptotic

finite sampling for general state space and control space is respectively shown by

construction in the third section.

A.1 An Asymptotic Finite Input Space Sampling

in a Simple Sampling Control Set with a Slope

Bound

To present the construction of the sampling clearly, a simple sampling control set

Ũ is assumed to be a restricted function space, denoted as FT . Each element of

FT is a continuous and piecewise first-order differentiable function from [0, T] to a

one-dimensional input space

[umin, umax] ⊂ (−∞,∞), (A.1)

and the magnitude of its first order time derivative is no larger than a positive real

number Dp. The objective of this section is to construct an asymptotic finite input

space sampling in FT such that for any given positive ε, the sampling will generate

a finite sampled control set Fs whose dispersion with respect to FT and the infinity

norm is less than ε. The construction in this section could be easily extended for

cases in which the input space is m-dimensional.

In the following, the sampling will be first described to generate a finite sampled

control set for a given dispersion bound, and then the dispersion of the sampled

control set will be shown to be less than the given dispersion bound.

Given a dispersion bound ε, the construction (sketched in Fig. A.1) of a finite

sampled control set for an asymptotic finite sampling in FT is as follows:

170

Figure A.1: Asymptotic finite sampling in the simple sampling control set, i.e., a
restricted function space

1. Choose

0 < lu < ε (A.2)

such that

Ku =
|umax − umin|

lu
(A.3)

is a positive integer. Then choose

lt =
lu
Dp

. (A.4)

Let

Kt = �T
lt
�. (A.5)

2. Construction of sampled controls on interval [klt, (k + 1)lt], in which k = 0, 1,

· · · , Kt − 1. In each intervals, these sampled controls are linear functions that

start from point set

Us = {umin, umin + lu, · · · , umin +Kulu} (A.6)

171

with slope Dp, 0, or −Dp whenever the function value remains [umin, umax]. For

example, if a control starts from point umin +Kulu, then the control could only

have slop 0 or −Dp. Otherwise, the value of the control could be out of the

input space. By the choice of lt, these functions also terminate in Us.

3. Construction of sampled controls on interval [Ktlt, T]. In the interval, the sam-

pled controls are also linear functions that start from point set Us with slope

be Dp, 0, or Dp whenever function value remains in [umin, umax], and stop when

time T is reached.

4. Construction of the sampled control set Fs. The set includes all controls that

are constructed by continuously combining partially defined controls in Step

2 and 3. For example, in Fig. A.1, the control h4
1 partially defined on [0, lt]

is connected to h3
2, h

4
2, and h5

2 partially defined on [lt, 2lt] (These four linear

functions are shown as thicker lines.) to obtain three functions on [0, 2lt].

Similarly, sampled controls defined on [0, T] could be constructed.

Lemma 18 The set Fs is finite and its dispersion with respect to FT and the infinity-

norm is less than ε.

Proof: Since there are Ku starting points and at most three slopes, the number

of linear functions defined on each lt interval or [Ktlt, T] is at most 3Ku. Each linear

function could be connected to at most 3 linear functions in the next interval. Since

there are only Kt + 1 intervals, the number of functions in Fs is less than 3KtKu.

To check the dispersion is less than ε, it is enough to show that for any function

h in FT , there always exist h′ in Fs such that

‖h− h′||∞ ≤ ε. (A.7)

Function h is firstly extended with constant value h(T) to interval [T, (Kt + 1)lt]

to obtain h′′. Let hi for i = 0, 1, · · · , Kt + 1 be the value of h′′ at time 0, lt, · · · ,

172

(Kt + 1)lt. Assume that a0 be the nearest point in Us to h0. If a0 has two choices, it

could be either one. Similarly, we could have ak+1 be the nearest point in Us to hk+1

for k = 0, 1, · · · , Kt. If ak+1 has two choices, it chooses the one which is closer to ak.

Because of derivative bound of h′,

|ak+1 − ak| ≤ lu (A.8)

by the choice of lt and lu. Let g is the function which composes of linear functions

connecting a0, a1, · · · , aKt . It can be verified that on any lt interval,

||g − h′′‖ ≤ lu (A.9)

since

|hi − ai| ≤
lu
2

(A.10)

for any i = 0, 1, · · · , Kt + 1 and

Dplt = lu. (A.11)

Choosing h′ to equal g on interval [0, T] completes the proof. �

A.2 Nonexistence of Asymptotic Finite Sampling

in a Sampling Control Set without a Slope

Bound

In this section, it is shown that there does not exist an asymptotic control space

sampling if there is no slope bound on the controls in the sampling control set Ū , i.e.,

Ū for planners using nonconnecting local planners, does not satisfy Assumption 1 in

Chapter 4. The nonexistence needs the following lemma, which could be used to show

that the dispersion of a finite sampled control set from any input space sampling can

not be arbitrarily small.

173

Lemma 19 Assume that a sampling control set Ū does not satisfy Assumption 1.

For any finite sampled control set

UB = {ũ1, ũ2, · · · , ũl} ⊂ Ū , (A.12)

there always exist a positive real number a and control ũs in Ū such that for any ũ′

in UB,

‖ũs − ũ′‖∞ ≥ a. (A.13)

Proof: The real number a and control ũs are constructed in two steps. In the

first step, a and ũs are constructed such that

‖ũs − ũj‖∞ > a (A.14)

for one ũj in UB. In the second step, ũs is constructed such that Eq. (A.14) is satisfied

for all controls in UB.

Construction of a and ũs with respect for one ũj in UB Each coordinate ũi
s

of

ũs = [ũ1
s, ũ

2
s, · · · , ũm

s]T (A.15)

is constructed with respect to some t in (0, t̄(ũj)) as shown in Fig. A.2. Since t is an

interior point such that there is a ∆t neighborhood of t for some positive real number

∆t. The function ũi
s will be the same as ũi

j except on interval [t− ∆t, t+ ∆t]. If

ũi
j(t) ≥ ūi (A.16)

with

ūi =
ui

min + ui
max

2
, (A.17)

then ũi
s is defined as straight segments connecting ũi

j(t − ∆t), ui
min, and ũi

j(t + ∆t)

on [t−∆t, t+ ∆t]; otherwise, ũi
s consists of straight segments connecting ũi

j(t−∆t),

ui
max, and ũi

j(t+ ∆t) as shown in Fig. A.2. Choosing

a = ‖[ū1, ū2, · · · , ūm]T‖, (A.18)

174

Figure A.2: The construction of ũi
s for some ũi

j in UB

it is easy to see that

‖ũs − ũj‖∞ ≥ a. (A.19)

Construction of ũs with respect for all controls in UB Assume that all controls

in UB share a common domain [0, tc], in which we can choose l different interior points

{p1, p2, · · · , pl}. (A.20)

Then, some positive real number ∆t is chosen such that the ∆t neighborhoods of

these l points are in [0, tc] and are disjointed.

On the neighborhood of the i-th point, ũs is constructed with respect to ũi as

shown in the previous. For intervals outside of these neighborhoods, ũs is any vector-

valued functions such that ũs is continuous, which can be achieved by connecting

adjacent boundary values at each neighborhood by straight segments.

It is easy to see that

‖ũs − ũj‖∞ > a (A.21)

175

for any ũj in UB. �

A.3 Existence of Asymptotic Finite Sampling

Asymptotic finite sampling is a very important assumption for resolution complete

planners. In this section, it is shown that such sampling does exist by construction.

These sampling could be used in planners to achieve resolution completeness. Note

that the constructed asymptotic sampling in this section is used to show its existence.

There could also exist other asymptotic finite sampling.

A.3.1 An asymptotic finite state space sampling

One such sampling is achieved by combing a state space sampling with an implicit

discretization as follows. Given any positive real number α, a new node will be added

to G when the state of the node is not in the α neighborhood of any existing states

in XG with respect to the given norm on X.

Lemma 20 The above state space sampling with discretization is an asymptotic finite

state space sampling, i.e., the sampling satisfies Assumption 5.

Proof: The proof will first show that for any given positive real number α, only

a finite number of nodes will be added to G. Secondly, a proper α is chosen to satisfy

any given dispersion bound ε.

The first part is proved by contradiction. Because the state space X is a bounded

set, it will be covered by a finite number of open sets

{O1, O2, · · · , Ol}, (A.22)

each of which is an open ball of radius α
2
. Choosing one state from each open ball

obtains a finite set. Now, assume that the above state space sampling with discretiza-

tion generates an infinite of nodes in the search graph G. There must exist two nodes

176

whose states are in a same set Oi. However, the distance between any two states in

open ball of radius α
2

is less than α, which is a contradiction.

The dispersion of the sampling is measured by the dispersion of the maximal sam-

pled set Xs with respect to state space X. A maximal sampled set Xs is constructed

by keeping inserting a new state that is not in the α neighborhood of any state in the

current Xs until no new state could be inserted, i.e., the neighborhoods of states in

Xs cover the state space X. Therefore, for any positive real number ε, choosing

α <
ε

2
(A.23)

will make the finite sampled state set have dispersion less than ε; otherwise, there

exists an empty ball of radius ε which cannot be covered by open balls of radius

α <
ε

2
(A.24)

with their centers outside the empty ball. �

A.3.2 An asymptotic finite control space sampling

The existence of asymptotic finite control space sampling will be presented respec-

tively for planners either with or without using the connecting local planners since the

sampling are characterized differently based on whether a connecting local planner is

used.

Asymptotic finite control space sampling for planners using connecting lo-

cal planners For planners using connecting local planners which satisfy Assump-

tion 7, control space sampling is unified with the state space sampling. The sampled

control set only consists of controls that connect two sampled states. An asymptotic

control space sampling is achieved by the asymptotic state space sampling in Section

A.3.1.

177

Lemma 21 The above unified control space and state space sampling with discretiza-

tion satisfies Assumption 5, i.e., it is an asymptotic finite control space sampling.

Proof: For any given positive real number ε, the state space sampling with dis-

cretization in Appendix A.3.1 could be used to obtain a finite sampled set with

dispersion bound ε. Furthermore, since sampled control set only consists of con-

trols between sampled states and there are only a finite number of state pairs in the

sampled state set, the sampled control set Ũs is finite. �

Asymptotic control space sampling in Ũ for nonconnecting local planners

Since the sampling control set Ũ normally equals the control space generator set Ū ,

an asymptotic finite control space sampling will be described in the following lemma

for the general Ū that satisfies Assumption 1.

Lemma 22 For any positive real numbers ε, if Ū contains all possible continuous

controls and satisfies Assumption 1, there is an asymptotic finite control space sam-

pling in Ū which generates a finite sampled control set with its dispersions εt and εu

no larger than ε.

Proof: This lemma is proved by construction. Choose real positive numbers εt

and εu no larger than the given ε. Time sampling in D\{0} of Ū is in one dimension.

It is easy to obtain a finite set

Ts = {t1, t2, · · · , tk} (A.25)

with its dispersion no larger than εt. The important part is how to sample

Ūt = {ũ ∈ Ū | t̄(ũ) = t}, (A.26)

for each t in Ts to obtain a finite set with its dispersion no larger than εu.

The construction starts with sampling in the set Ūi,t of i-th coordinate of controls

in Ū , which is a restricted function space of functions from [0, t] to [ui
min, u

i
max] for

178

some i = 1, 2, · · · , m under Assumption 1. In Appendix A.1, there is a sampling in

Ūi,t that generates a finite set with arbitrarily small dispersion with respect to the

infinity norm.

For a positive real number εu, there always exists a vector

ε = [ε1 ε2 · · · εm]T (A.27)

with positive εi for all i = 1, 2, · · · , m such that

‖ε‖ < εu. (A.28)

Each Ūi,t could be sampled with dispersion bound εi to obtain a finite set Ū s
i,t using

the method described in Appendix A.1. The sampled set Ū s
t from Ūt includes all

controls whose coordinates are chosen from each Ū s
i,t. It is clear that Ū s

t is finite since

each Ū s
i,t is finite, and for any ũ ∈ Ūt, there exists ũ′ ∈ Ū s

t such that

ρ(ũ, ũ′) ≤ ‖ε‖ < εu. (A.29)

Applying the same sampling for each Ūt will obtain a finite Ũs.

To check the dispersion bound, let us consider any

ũ = [ũ1 ũ2 · · · ũm] ∈ Ū , (A.30)

in which each ũi is a coordinate of ũ. By the construction of Ũs, there exists

ũ′ = [ũ′1 ũ
′
2 · · · ũ′m] (A.31)

in

Ū s
ti
⊂ Ũs (A.32)

for some ti in Ts such that

|t̄(ũ) − t̄(ũ′)| ≤ εt (A.33)

and

ρ(ũ, ũ′) ≤ ‖ε‖ < εu. (A.34)

�

179

A.4 Resolution Completeness Conditions for Plan-

ners using Nonconnecting Local Planners and

Numerical Calculations

In MPD algorithms, trajectories of controls from states are normally calculated by

integration. Since analytical integration is only available for few simple ODEs, nu-

merical integrations are mostly used. At the same time, each number in the computer

is represented by a finite number of bits, which leads to the existence of precision er-

rors. For example, the real number π cannot be exactly represented in the computer,

i.e., its stored value in the computer is different from its actual value. Both of them

would generate state errors in the search graph. When state errors exist due to nu-

merical calculations, the following resolution completeness conditions are provided

for planners using nonconnecting local planners.

Theorem 23 (Conditions for planners using nonconnecting local planners

and numerical calculations) Assume that a problem P satisfies Assumption 1, 2

and 3. an MPD planner satisfies Assumption 4, 5 and 6, and εi and εn are the upper

bounds on the numerical integration errors and precision errors. For any

0 < εp < 1, (A.35)

if there is a K-stage solution with clearance w and tolerance εs, using state space

sampling with discretization and dispersion bound εd and control space sampling with

dispersion bound εu and εt, a planner will find an εp-approximation of the solution

with clearance w(1 − εp) and tolerance εs + εpw in finite time under the following

conditions:

(εu(Ld − 1) + εtDf + εd + εi + εn)
LK+1

d − 1

Ld − 1
< w, (A.36)

180

(εu(Ld − 1) + εtDf)
LK

d − 1

Ld − 1
< εpw, (A.37)

εd > εn. (A.38)

Proof: Assumption 2 and 6 will ensure that each stage of an approximate solution

will be in the search graph.

Furthermore, with Assumption 3, Lemma 13, 15, 17, and triangular inequality, the

following inequality will ensure τ̂η of an approximate solution with tolerance εs + εpw

exists in the search graph.

dτ (τ̂η, τ) ≤ (εu(Ld − 1) + εtDf + εd + εi + εn)
LK+1

d − 1

Ld − 1
< w, (A.39)

and

dτ (τη, τ) ≤ (εu(Ld − 1) + εtDf)
LK

d − 1

Ld − 1
< εpw. (A.40)

Lastly, εd > εn is necessary to ensure the correct calculation. If εd is less than the

bound on the precision bound εn, then unpredictable results could obtained.

The algorithm will run in finite time as shown in the proof for Theorem 9. �

181

References

[1] J. Bobrow, S. Dubowsky, and J. Gibson. “Time-optimal control of robotic ma-
nipulators along specified paths.” Int. J. Robot. Res. 4 (1985).

[2] J. Hollerbach. “Dynamic scaling of manipulator trajectories.” Technical report,
MIT A.I. Lab Memo 700 (1983).

[3] J. Luh and C. Lin. “Optimum path planning for mechanical manipulators.” J.
Dyn. Sys. Meas. Contr. 102 142–151 (1981).

[4] J. Luh and M. Walker. “Minimum-time along the path for a mechanical arm.”
In Proc. IEEE Conf. Decision and Contr., pp. 755–759 (1977).

[5] K. Shin and N. McKay. “Minimum-time control of robot manipulators with
geometric path constraints.” IEEE Trans. Autom. Control 30 531–541 (1985).

[6] J. T. Schwartz and M. Sharir. “On the piano movers’ problem: III. Coordinating
the motion of several independent bodies.” Int. J. Robot. Res. 2 97–140 (1983).

[7] N. J. Nilsson. “A mobile automaton: An application of artificial intelligence
techniques.” Proc. Int. Joint Conf. on Artif. Intell. pp. 509–520 (1969).

[8] T. Lozano-Pérez. “Spatial planning: A configuration space approach.” IEEE
Trans. on Comput. C-32 108–120 (1983).

[9] J. Reif. “Complexity of the mover’s problem and generalizations.” In Proc. 20th
IEEE Symp. on Foundations of Computer Science (FOCS), pp. 421–427 (1979).

[10] J. T. Schwartz and M. Sharir. “On the piano movers’ problem: II. General
techniqies for computing topological properties of algebraic manifolds.” Com-
munications on Pure and Applied Mathematics 36 345–398 (1983).

[11] J. Canny. The Complexity of Robot Motion Planning (MIT Press, Cambridge,
MA, 1988).

[12] N. Amato, O. Bayazit, L. Dale, C. Jones, and D. Vallejo. “Choosing good
distance metrics and local planners for probabilistic roadmap methods.” IEEE
Trans. Robot. & Autom. 16 442–447 (Aug 2000).

[13] S. LaValle and J. K. Jr. “Randomized kinodynamic planning.” International
Journal of Robotics Research 20 378–400 (2001).

182

[14] L.Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.” IEEE
Trans. Robot. & Autom. 12 566–580 (June 1996).

[15] E. Mazer, J. Ahuactzin, and P. Bessière. “The Ariadne’s clew algorithm.” J.
Artificial Intell. Res. 9 295–316 (November 1998).

[16] T. Simeon, J.-P. Laumond., and C. Nissoux. “Visibility based probabilistic
roadmaps for motion planning.” Advanced Robotics Journal 14 (2000).

[17] J. Yakey, S. M. LaValle, and L. E. Kavraki. “Randomized path planning for
linkages with closed kinematic chains.” IEEE Transactions on Robotics and
Automation 17 951–958 (December 2001).

[18] J.-C. Latombe. Robot Motion Planning (Kluwer Academic Publishers, Boston,
MA, 1991).

[19] S. M. LaValle. Planning Algorithms ([Online], 2004). Available at
http://msl.cs.uiuc.edu/planning/.

[20] G. Oriolo and Y. Nakamura. “Control of mechanical systems with second-order
nonholonomic constraints.” In Proc. 30th IEEE Conference on Decision and
Control, pp. 2398–2403 (1991).

[21] J.-P. Laumond. “Feasible trajectories for mobile robots with kinematic and
environment constraints.” In ECAI (1986).

[22] B. Donald, P. Xavier, J. Canny, and J. Reif. “Kinodynamic planning.” Journal
of the ACM 40 1048–1066 (November 1993).

[23] J. Canny, B. Donald, J. Reif, and P. Xavier. “On the complexity of kinodynamic
planning.” In 29th Symposium on the Foundations of Compute Science (1988).

[24] C. ÓDúnlaing. “Motion planning with inertial constraints.” ALGO 2 431–475
(1987).

[25] J. Canny, A. Rege, and J. Reif. “An exact algorithm for kinodynamic planning
in the plane.” Discrete and Computational Geometry 6 461–484 (1991).

[26] L.Dubins. “On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents.” American
Journal of Mathematics 79 497–516 (1957).

[27] J. Reeds and L. Shepp. “Optimal paths for a car that goes both forwards and
backwards.” Pacific J. Math. 145 367–393 (1990).

[28] D. Balkcom and M. Mason. “Time optimal trajectories for bounded velocity
differential drive vehicles.” Int. J. Robot. Res. 21 199–217 (March 2002).

183

[29] M. Fliess, J. Levine, P. Martin, and P. Rouchon. “Flatness and defect of nonlinear
systems.” International Journal of Control 61 1327–1361 (1995).

[30] F. Bullo and K. Lynch. “Kinematic controllability for decoupled trajectory plan-
ning in underactuated mechanical systems.” IEEE Trans. on Robotics and Au-
tomation 17 402–412 (2001).

[31] G. Laffierriere and H. J. Sussman. “Motion planning for controllable systems
without drift.” In IEEE Int. Conf. Robot. & Autom. (1991).

[32] R. Murray and S. Sastry. “Nonholonomic motion planning: Steering using sinu-
soids.” Trans. Automatic Control 38 700–716 (1993).

[33] H. Geering, L. Guzzella, S. Hepner, and C. Onder. “Time-optimal motions of
robots in assembly tasks.” IEEE Trans. Automat. Contr. AC-31 512–518 (June
1986).

[34] E. Meier and A. Bryson. “An efficient algorithm for time optimal control of a
two-link manipulator.” In Proc. AIAA conf. Guidance Control. Monterey, CA
(1987).

[35] J. Barraquand and J.-C. Latombe. “Nonholonomic multibody mobile robots:
Controllability and motion planning in the presence of obstacles.” Algorithmica
10 121–155 (1993).

[36] P. Cheng and S. LaValle. “Resolution complete rapidly-exploring random trees.”
In IEEE Int. Conf. Robot. & Autom. (2001).

[37] P. Choudhury and K. Lynch. “Trajectory planning for second-order underactu-
ated mechanical systems in presence of obstacles.” In Workshop on Algorithmic
Foundations of Robotics (2002).

[38] E. Frazzoli, M. A. Dahleh, and E. Feron. “Real-time motion planning for agile
autonomous vehicles.” AIAA Journal of Guidance, Control, and Dynamics 25
116–129 (2002).

[39] R. Kindel, D. Hsu, J.-C. Latombe, and S. Rock. “Kinodynamic motion planning
amidst moving obstacles.” In IEEE Int. Conf. Robot. & Autom. (2000).

[40] K. Lynch and M. Mason. “Stable pushing: Mechanics, controllability, and plan-
ning.” Int. J. Robot. Res. 15 533–556 (1996).

[41] A. Marigo and A. Bicchi. “Steering driftless nonholonomic systems by control
quanta.” In IEEE Conf. Decision & Control (1998).

[42] J. Reif and H. Wang. “Non-uniform discretization approximations for kinody-
namic motion planning.” In Algorithms for Robotic Motion and Manipulation,
J.-P. Laumond and M. Overmars, editors, pp. 97–112 (A K Peters, Wellesley,
MA, 1997).

184

[43] G. Heinzinger, P. Jacobs, J. Canny, and B. Paden. “Time-optimal trajectories
for a robotic manipulator: A provably good approximation algorithm.” In IEEE
Int. Conf. Robot. & Autom., pp. 150–155. Cincinnati, OH (1990).

[44] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock. “Randomized kinodynamic
motion planning with moving obstacles.” In The Fourth International Workshop
on Algorithmic Foundations of Robotics (2000).

[45] T. Karatas and F. Bullo. “Randomized searches and nonlinear programming in
trajectory planning.” In IEEE Conference on Decision and Control (2001).

[46] E. Mazer, G. Talbi, J. Ahuactzin, and P. Bessière. “The Ariadne’s clew algo-
rithm.” In Proc. Int. Conf. of Society of Adaptive Behavior. Honolulu (1992).

[47] B. Donald and P. Xavier. “Provably good approximation algorithms for opti-
mal kinodynamic planning for cartesian robots and open chain manipulators.”
Algorithmica 14 480–530 (1995).

[48] K. Lynch, N. Shiroma, H. Arai, and K. Tanie. “Collision free trajectory planning
for a 3-dof robot with a passive joint.” Int. J. Robot. Res. 19 1171–1184 (2000).

[49] R. Murray and S. Sastry. “Steering nonholonomic systems using sinusoids.” In
IEEE Int. Conf. Robot. & Autom., pp. 2097–2101 (1990).

[50] S. Sekhavat and J.-P. Laumond. “Topological property for collision-free nonholo-
nomic motion planning: the case of sinusoidal inputs for chained form systems.”
IEEE Transactions on Robotics and Automation 14 671–680 (1998).

[51] F. Bullo and A. Lewis. Geometric Control of Mechanical Systems (Springer
Verlag, 2004).

[52] S. Sastry. Nonlinear systems, analysis, stability and control (Springer, New York,
NY, 1999).

[53] Y. Chitour and B. Piccoli. “Controllability for discrete systems with a finite
control set.” Math. Control Signals Syst. 14 173–193 (2001).

[54] A. Bicchi, A. Marigo, and B. Piccoli. “On the reachability of quantized control
systems.” IEEE Trans. on Automatic Control 47 546–563 (April 2002).

[55] S. LaValle and J. K. Jr. “Rapidly-exploring random trees: Progress and
prospects.” In 2000 Workshop on the Algorithmic Foundations of Robotics
(2000).

[56] P. Svestka and M. Overmars. “Coordinated motion planning for multiple car-like
robots using probabilistic roadmaps.” In IEEE Int. Conf. Robot. & Autom., pp.
1631–1636 (1995).

[57] J. Pearl. Heuristics (Addison-Wesley, Reading, MA, 1984).

185

[58] K. Bekris, B. Chen, A. Ladd, E. Plakue, and L. Kavraki. “Multiple query
probabilistic roadmap planning using single query primitives.” In IEEE/RSJ
Int. Conf. on Intelligent Robots & Systems (2003).

[59] P. Cheng, E. Frazzoli, and S. LaValle. “Improving the performance of sampling-
based planners by using a symmetry-exploiting gap reduction algorithm.” In
IEEE Int. Conf. Robot. & Autom. (2004).

[60] Z. Shiller and S. Dubowsky. “On computing time-optimal motions of robotic
manipulators in the presence of obstacles.” IEEE Trans. on Robotics and Au-
tomation 7 (Dec 1991).

[61] S. LaValle and J. Kuffner. “Randomized kinodynamic planning.” In IEEE Int.
Conf. Robot. & Autom. (1999).

[62] P. Cheng and S. LaValle. “Reducing metric sensitivity in randomized trajectory
design.” In IEEE/RSJ Int. Conf. on Intelligent Robots & Systems (2001).

[63] H. Niederreiter. Random Number Generation and Quasi-Monte-Carlo Methods
(Society for Industrial and Applied Mathematics, Philadelphia, USA, 1992).

[64] G. Russell and R. Miles. Volumetric visualization of 3D data (Taylor & Francis,
Bristol, PA, 1995).

[65] X. Décoret, F. Durand, F. Sillion, and J. Dorsey. “Billboard clouds for extreme
model simplification.” ACM Transactions on Graphics 22 689–696 (2003).

[66] D. Bertsekas. “Convergence in discretization procedures in dynamic program-
ming.” IEEE Trans. Autom. Control 20 415–419 (June 1975).

[67] J.-P. Laumond, S. Sekhavat, and F. Lamiraux. “Guidelines in nonholonomic
motion planning for mobile robots.” In Robot Motion Plannning and Control,
J.-P. Laumond, editor, pp. 1–53 (Springer-Verlag, Berlin, 1998).

[68] D. S. S. Pancanti, L. Pallottino and A. Bicchi. “Motion planning through symbols
and lattices.” In IEEE Int. Conf. Robot. & Autom. (2004).

[69] B. Donald and P. Xavier. “Provably good approximation algorithms for optimal
kinodynamic planning: Robots with decoupled dynamics bounds.” Algorithmica
14 443–479 (1995).

[70] P. Choudhury, B. Stephens, and K. Lynch. “Inverse kinematics-based motion
planning for underactuated systems.” In IEEE Int. Conf. Robot. & Autom.
(2004).

[71] P. Cheng. Reducing RRT Metric Sensitivity for Motion Planning with Differen-
tial Constraints. Master’s thesis, Iowa State University, Ames, IA (2001).

[72] K. Goldberg. “Completeness in robot motion planning.” In Proc. 1st Workshop
on Algorithmic Foundations of Robotics (A.K. Peters, Wellesley, MA, 1994).

186

[73] H. Khalil. Nonlinear systems (Nacmillan Pulishing, New York, NY, 2002).

[74] A. Marigo, B. Piccoli, and A. Bicchi. “Reachability analysis for a class of quan-
tized control systems.” In Proc. IEEE Conf. on Decision and Control (2000).

[75] E. Frazzoli. Robust Hybrid Control for Autonomous Vehicle Motion Planning.
Department of Aeronautics and Astronautics, Massachusetts Institute of Tech-
nology, Cambridge, MA (June 2001).

[76] P. Rouchon, M. Fliess, M. Levine, and P. Martin. “Flatness, motion planning,
and trailer systems.” In Proc. IEEE Conf. on Decsion and Control, pp. 2700–
2705 (1993).

[77] P. Cheng, E. Frazzoli, and S. LaValle. “Exploiting group symmetries to improve
precision in kinodynamic and nonholonomic planning.” In IEEE/RSJ Int. Conf.
on Intelligent Robots & Systems (2003).

[78] F. Lamiraux, E. Ferre, and E. Vallee. “Kinodynamic motion planning: Con-
necting exploration trees using trajectory optimization methods.” In IEEE Int.
Conf. Robot. & Autom., pp. 3987–3992 (2004).

[79] F. Lamiraux, D. Bonnafous, and O. Lefebvre. “Reactive path deformation for
nonholonomic mobile robots.” IEEE Trans. on Robot. 20 967–977 (December
2004).

[80] S. Kobayashi and K. Nomizu. Foundations of Differential Geometry. Vol. I,
volume 15 of Interscience Tracts in Pure and Applied Mathematics (Interscience
Publishers, New York, NY, 1963).

[81] S. Martinez, J. Cortes, and F. Bullo. “A catalog of inverse-kinematics planners
for underactuated systems on matrix lie groups.” In IROS, pp. 625–630 (2003).

[82] J. R. Shewchuk. “An introduction to the conjugate gradient method
without the agonizing pain.” Available from ”http://www-2.cs.cmu.edu/˜
jrs/jrspapers.html” (1994).

[83] S. LaValle. “Rapidly-exploring random trees: A new tool for path planning.”
(Oct. 1998). TR 98-11, Computer Science Dept., Iowa State University.

[84] E. Frazzoli, M. A. Dahleh, and E. Feron. “Robust hybrid control for autonomous
vehicles motion planning.” Technical Report LIDS-P-2468, Laboratory for In-
formation and Decision Systems, Massachusetts Institute of Technology (1999).

[85] G. J. Toussaint, T. Başar, and F. Bullo. “Motion planning for nonlinear under-
actuated vehicles using hinfinity techniques.” (September 2000). Coordinated
Science Lab, University of Illinois.

[86] H. Kaindl and G. Kainz. “Bidirectional heuristic search reconsidered.” JAIR
pp. 283–317 (December 1997).

187

[87] J. Bernard, J. Shannan, and M. Vanderploeg. “Vehicle rollover on smooth sur-
faces.” In SAE Technical Paper Series, number 891991. Dearborn, Michigan
(1989).

[88] P. Krishnaprasad and D. Tsakiris. “Oscillations, se(2)-snakes and motion control:
a study of the roller racer.” Technical report, University of Maryland (July 1998).

188

Vita

Peng Cheng

RESEARCH INTERESTS

Robotics, Motion Planning, Computational Geometry, Geometric Control, and

Computer Animation

EDUCATION

Ph. D., Computer Science, University of Illinois, Urbana, IL, 2005

M.S., Computer Science, Iowa State University, Ames, IA, 2001

M.E., Electrical Engineering, Tsinghua University, Beijing, China, 1999

B.E., Electrical Engineering, Tsinghua University, Beijing, China, 1996

ACADEMIC EXPERIENCES

Research Assistant, Computer Science Dept., University of Illinois (2001-2005)

Research Assistant, Computer Science Dept., Iowa State University (1999-2001)

Teaching Assistant, Motion Strategy, Computer Science Dept., Iowa State Uni-

versity (Spring 2001)

Teaching Assistant, Computational Geometry, Computer Science Dept. Iowa

State University (Fall 2000)

189

Research Assistant, Electrical Engineering Dept., Tsinghua University (1996-

1999)

Reviewer: Mechatronics, American Control Conference, IEEE Trans. on Robotics

and Automation, IEEE Int’l Conference on Robotics and Automation, WAFR, Robotics:

Science and Systems, IEEE Conference on Decision and Control, European Control

Conference

PUBLICATIONS

1. P. Cheng, Z. Shen, S. M. LaValle, “Using Randomization to Find and Optimize

Feasible Trajectories for Nonlinear Systems,” in Proc. Annual Allerton Conf. on

Communications, Control, and Computing, 2000.

2. P. Cheng and S. M. LaValle,“Reducing Metric Sensitivity in Randomized Tra-

jectory Design,” in Proc. IEEE/RSJ/GI Int’l Conf. on Intelligent Robots

and Systems, 2001.

3. P. Cheng, Z. Shen, S. M. LaValle, “RRT-Based Trajectory Design for Au-

tonomous Automobiles and Spacecraft,” in Archives of Control Sciences, Vol.

11(XLVII), No. 3-4, pages 167-194, 2001.

4. P. Cheng, “Reducing RRT metric sensitivity for motion planning with differ-

ential constraints,” Masters thesis, Peng Cheng, Iowa State University, 2001.

5. P. Cheng and S. M. LaValle, “Resolution Complete Rapidly-Exploring Random

Trees,” in Proc. IEEE Int’l Conf. on Robotics and Automation, 2002.

6. P. Cheng, E. Frazzoli, S. M. LaValle, “Exploiting Group Symmetries to Improve

Precision in Kinodynamic and Nonholonomic Planning,” in IEEE/RSJ Int’l Conf.

on Intelligent Robots and Systems, 2003.

190

7. P. Cheng, E. Frazzoli, S. M. LaValle, “Improving the Performance of Sampling-

Based Planners by Using a Symmetry-Exploiting Gap Reduction Algorithm,” in

Proc. IEEE Int’l Conf. on Robotics and Automation, 2004.

8. P. Cheng, S. M. LaValle, “Resolution completeness for sampling-based mo-

tion planning with differential constraints,” submitted to International Journal of

Robotics Research.

9. S. Chitta, P. Cheng, E. Frazzoli, V. Kumar, “RoboTrikke, A Novel Undulatory

Locomotion System,” in Proc. IEEE Int’l Conf. on Robotics and Automation,

2005.

10. S. Lindemann, P. Cheng, “Iteratively Locating Voronoi Vertices for Dispersion

Estimation,” in Proc. IEEE Int’l Conf. on Robotics and Automation, 2005.

11. J. O’Kane, B. Tovar, P. Cheng, S. M. LaValle, “Algorithms for Planning

under Uncertainty in Prediction and Sensing,” in Autonomous Mobile Robots:

Sensing, Control, Decision-Making, and Applications, S.S. Ge and F. L. Lewis

(Eds.), Series in Control Engineering, Marcel Dekker, Later 2005 or earlier 2006.

191

