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Abstract

Networked control systems could possibly constitute the next logical step in the evolution

of control, leading to the convergence of control with communication and computing. A

central challenge is that traditional digital control methods cannot be directly applied to

such systems. However, if appropriate system abstractions can be engineered, then such

methods and theory can still be utilized. Our thesis is that a well designed middleware

framework can indeed manufacture such an abstraction of virtual collocation, and thereby,

propel the further proliferation of networked control systems.

In this thesis, we present such a middleware framework for networked control systems.

Central to this framework is Etherware, a message oriented component middleware for such

systems. We begin with a detailed description of the design and architecture of Ether-

ware, and illustrate Etherware based development of networked control systems through a

fairly complex traffic control testbed application. Building on the middleware, we address

safety and security issues in networked control through a detailed scenario in this testbed,

implementing safety preserving security overrides. We then address the issue of providing

guarantees of overall system behavior in networked control systems. In particular, based

on established properties of sub-systems, we prove system-wide guarantees for safety and

liveness in the traffic control testbed.
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Chapter 1

INTRODUCTION

Control systems have been designed and built since the earliest times. For instance, feedback

control was used in float regulator mechanisms in Greece as early as 300 BC [1]. More

recently, the use of automatic feedback control in industrial processes began with James

Watt’s fly-ball governor, which was developed in 1769 for controlling the speed of a steam

engine [1]. However, all these systems were mechanically operated, and developed mostly

by intuitive invention [2]. Although mathematical models were developed for some systems

such as the governor [3], a general theory for control systems was developed only in the

twentieth century.

Modern control systems are characterized by a more systematic design process. Indeed,

based on the underlying technological and theoretical frameworks, control systems developed

since the early twentieth century can be roughly classified into three generations.

The first generation of modern control systems were analog systems. These systems were

mostly built using electronic feedback amplifiers as the underlying technology. Even today,

many control systems are still built using similar principles. For instance, PID controllers are

widely used as standard control components since they can be easily integrated into control

systems through well-defined interfaces. Also, frequency-domain techniques pioneered by

Bode, Nyquist, and Black, have served as the theoretical basis for designing such systems

[4] [5].

The emergence of digital computers after World War II has led to a second generation

of control systems based on digital control. Computers are the primary control compo-

nents in such systems, and the underlying technology is the control software executing in
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these computers. The speed and accuracy of computers allow many system variables to be

monitored and controlled simultaneously, and the flexibility and expressiveness of software

languages support the implementation of fairly complex control algorithms. The design of

these systems is governed by well understood techniques such as Kalman filters [6] and real-

time scheduling theory [7]. Today, such systems are used in the vast majority of control

applications ranging from airplane navigation to industrial process control.

We are now witnessing the emergence of a third generation of control systems, which

are operated using computer networks. These networked control systems are character-

ized by distributed control loops operating over multiple computers in a network. They

involve complex control software that needs to operate in a coordinated fashion over many

interconnected computers. For instance, a typical mid-range automobile has about 45 micro-

controllers connected by Controller Area Networks (CAN) [8]. Also, since the underlying

infrastructure is usually quite expensive, these systems usually need to share the commu-

nication and computation resources among many different applications. As a result, these

systems are much more complicated than previous generations of control systems.

Although networked control applications are increasing, such systems are still mostly

custom-designed, and unlike earlier generations of control systems, there is still no compre-

hensive technological or theoretical framework for developing these systems. In particular,

the control software, which is the major source of complexity in these systems, is still largely

custom-made. For instance, over 60% of the software for the Boeing 777 airplane had to be

developed from scratch [9].

In this thesis, we present a middleware framework for software development in networked

control systems. We contend that such a framework is the key to the systematic design of

such systems, and could consequently lead to the proliferation of networked control. To

this end, our framework provides a comprehensive set of software primitives for application

design, as well as a software infrastructure for application development in such systems.

In particular, we promote the development of standardized and reusable networked control
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software, which will significantly reduce design cycle times and development costs in such

systems. Finally, the application design standardization enabled through our framework,

sets the stage for the development of a theory for networked control systems as well.

Our main contributions in this thesis are:

• A message-oriented component middleware for networked control systems called Ether-

ware (Chs. 3 and 4).

• The design and implementation of a traffic control emulation testbed to illustrate

Etherware based application development (Ch. 5).

• The Control System Incident Response (CSIR) framework for implementing safety and

security sub-systems, and the principle of safety preserving security overrides in control

systems (Ch. 6).

• A proof of overall system-wide safety and liveness for the traffic control testbed based

on various sub-system level guarantees, which can possibly serve as a prototype for

other such systems (Ch. 7).

1.1 Tools, standardization, architecture, and

compatibility

We now discuss some of the main engineering concepts that we will draw upon for our

middleware framework for networked control systems. In the process, we also trace the

origins of these concepts, and illustrate their impact on the course of the history of modern

technology.

The importance of good tools can be hardly overstated in the history of human technol-

ogy. For instance, the invention of the steam engine is usually credited with starting the

industrial revolution in England. However, when the first engines were built, there was a
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basic engineering problem. The large cylinders of engines could not be bored with sufficient

precision, and a lot of power was lost to steam leaking around the pistons. This problem was

eventually solved by the invention of a precision horizontal-boring machine by John Wilkin-

son in 1775. It was this breakthrough that made steam engines viable, and emphasized the

importance of developing good tools in the subsequent revolution.

Meanwhile, the notion of standardization in manufacturing triggered the industrial rev-

olution in North America. In 1798, the US government contracted Eli Whitney to produce

10,000 muskets in two years. The actual muskets were delivered in 1808, about eight years

later than scheduled. However, Whitney delivered far more than just the muskets. He de-

veloped, and successfully applied, the “uniformity-system” to manufacture interchangeable

parts for locks of the muskets [10]. In a remarkable demonstration to President Jefferson

in 1801, he assembled complete locks for muskets from random parts. Today, Whitney’s

system is considered to be the basis of standardization in manufacturing technology. In

fact, standardization is a basic premise in most industries, where products are composed of

interchangeable components developed according to well-defined interfaces.

A well-designed architecture has been the central reason for the proliferation of comput-

ers today. For instance, the work of Alonzo Church and Alan Turing in the early twentieth

century, laid the theoretical foundations of sequential computing. They independently devel-

oped formal systems to define and model the notion of computable functions [11]. However,

it was John von Neumann’s subsequent ideas about organizing these concepts into an archi-

tecture that is the basis of today’s sequential computers. In particular, the stored program

concept [12] was a significant breakthrough. It has since led to the development of simple

and uniform mechanisms to write, test, and maintain complex programs today.

The von Neumann architecture had a widespread influence on the first generation of

digital computer engineers in the 1950s. However, even in the mid 1960s, commercial com-

puters produced by IBM, Burroughs, UNIVAC, and others were still custom built machines.

Individual computers had to be designed, built, and installed according to specific customer
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requirements. The IBM 360, first shipped in June 1966, changed all that. The IBM 360 was

the first commercially successful general purpose computer. In fact, the name 360 (degrees)

was intended to market its “all round” general purpose capabilities.

The 360/370 series introduced the notion of compatibility in computers [13]. All computer

hardware was built to a common set of abstractions such as instruction sets, memory models,

etc. Consequently, the same software could run on all the different machines in this series.

This standardization tremendously reduced software development costs. More importantly,

it solved problems due to changing customer requirements by supporting seamless upgrades

of hardware and software. This architecture immediately propelled IBM to the top of the

computer market, where it stayed for over two decades after the first 360 was produced.

These examples amply illustrate the importance of the associated engineering concepts.

Standardization allows components to be independently and efficiently produced, and then

assembled into customized applications. Good tools make crucial processes viable, improve

the quality of systems, and increase productivity in manufacture. Well designed architec-

tures and compatibility standards promote specialization of sub-systems, as well as their

subsequent integration into working systems.

1.2 Abstractions for networked control

In this section, we examine similar considerations for the the design of networked control

systems, and introduce some of the main abstractions underlying our middleware framework.

Let us consider the classic representation of a control system as shown in Figure 1.1(a).

A simple implementation of this system would be a modular software program implementing

the control laws and plant interfaces. However, established practice in software engineering

advocates the use of component architectures for such systems [14] [15] [16] . This consists

of decomposing the software into components as shown in Figure 1.1(b), where a component

is an autonomous software module with well-defined functionality. For instance, Sensor,
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Figure 1.1: Component based software for Digital Control

Actuator, Controller, Filter, and Supervisor are all possible components for such a system.

A component based software architecture has several benefits. It allows individual com-

ponents to be developed separately and integrated later, which is very important for the

development of large systems. Since components are well-defined, they can also be replaced

without affecting the rest of the system. For instance, a zero-order hold filter in Figure

1.1(b) can be dynamically replaced by a Kalman filter without having to change the remain-

ing software or restart an operational system. Further, such architecture promotes software

reuse, since a well designed component such as a control algorithm, tested for one system,

can be easily transplanted into another similar system.

Traditional digital control theory addresses the design of systems with tightly coupled

plants and controllers as shown in Figure 1.1. Such controllers expect periodic feedback

about plant state from sensors, and output periodic controls through actuators. This makes

the system predictable, and simplifies the design of control laws. However, to obtain such pe-
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Figure 1.2: A Networked Control System

riodicity, the control software must be tightly integrated, and hard real-time deadlines must

be strictly enforced. Hence, systems engineers have relied on effective scheduling algorithms

based on conservative worst-case execution deadlines [7], and dedicated communication chan-

nels such as CAN [17] and FDDI [18] that provide hard real-time guarantees.

In networked control systems, on the other hand, software components execute on multi-

ple computers connected over a general network. As illustrated in Figure 1.2, control loops

may be distributed, and related software components may need to communicate over the

network. In particular, it is difficult to guarantee periodic communication with hard real-

time deadlines over best effort networks such as wireless and IP based networks. Hence, it is

imperative to provide appropriate software abstractions, such as virtual collocation and local

temporal autonomy, which allow digital control theory to be applicable in such systems [19].

Virtual collocation is the abstraction that all software components execute on a sin-

gle computer. This hides details about network locations, topologies, and communication

protocols, and the control software does not have to distinguish between local and remote

components. Such an abstraction has several additional benefits. Since no assumptions

are made about network locations, the same components can be reused in different systems
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and over different networks. In fact, components can even be dynamically migrated for

optimizing processor and network usage. Consequently, virtual collocation is not only a

simplifying abstraction for control engineers, but also a very useful construct for improving

system integration, management, and reuse.

Local temporal autonomy is a method for enhancing robustness and reliability. It consists

of ensuring that a component can execute for a small amount of time even after another

connected component has failed. For instance, using a state estimator can help a controller

tolerate delayed or lost updates from a sensor. In addition, upon a software failure, if the

sensor is restarted quickly enough, then the controller can continue executing without being

aware of this. These and other similar mechanisms [19] allow network delays, transients,

and failures to be tolerated, and help enhance the abstraction of virtual collocation.

1.3 Middleware frameworks

Middleware frameworks incorporate the engineering concepts presented in Section 1.1 quite

well. They combine well-designed architectures with useful toolkits, and promote the devel-

opment of applications with standardized and customizable interfaces. They also support

the abstraction of virtual collocation in general purpose systems. Consequently, middleware

has emerged as a preeminent framework for developing complex and distributed applications.

Major software companies such as IBM [20], Microsoft [16], and SUN [21] increasingly pro-

mote their middleware based technologies as platforms for software engineering, and many

successful applications have been developed using CORBA based architectures [22]. Today,

middleware based technologies are considered the basic ingredient in the development of

complex and distributed software systems.

Despite the considerable success of commercial middleware technologies, however, there is

still a basic problem in their use for networked control. Traditional middleware technologies

such as CORBA have been developed for transaction based applications in the banking
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and business sectors. They are based on Remote Procedure Call (RPC) semantics, which

are ideal for ensuring logical correctness of programs. However, this causes components to

block on remote function calls, which is undesirable for control applications. For instance,

a critical component such as a real-time controller cannot block on updates from remote

sensors, and would require a separate thread to block on each such sensor. This leads to

complex multi-threaded component design, which is relatively hard to develop, manage, and

verify. Further, component interfaces described in such systems cannot capture assumptions

such as interaction protocols and failure semantics. This leads to numerous problems in

systems integration, and may even cause unpredictable failures during system operation. A

middleware for control applications must address these and related issues.

These considerations have motivated our design of a middleware framework specifically

for networked controls systems, which we present in this thesis.

1.4 Organization of thesis

A middleware framework incorporates a set of architectural trade-offs for its domain of ap-

plication, and in particular, the middleware itself is designed to address the infrastructural

requirements of its applications. However, these trade-offs and requirements can be deter-

mined only after a detailed study of some of the applications in the domain. Consequently,

we begin by studying an exploratory implementation of a prototype traffic control testbed in

Chapter 2, and based on this, we develop the requirements for our middleware framework.

Central to a middleware framework is the underlying middleware itself. It incorporates

the actual architectural trade-offs in the framework, and defines the set of design primitives

for its applications. Its capabilities determine the capabilities of the framework itself. Hence,

in Chapter 3, we present a detailed description of the design and architecture of Etherware,

our middleware for networked control systems, and a discuss how the software infrastructure

requirements for networked control systems are addressed therein. We complement this by
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describing the actual Etherware mechanisms for system operation and management in Chap-

ter 4, and present a comparison of Etherware to other potential middleware for networked

control systems. In particular, the descriptions in these two chapters constitute static and

dynamic pictures of Etherware respectively.

A middleware framework is usually based on an application design philosophy. It pro-

motes specific application designs and design patterns through appropriate abstractions and

services. However, it is hard to make this explicit only through middleware description and

cursory examples. Hence, we present the Etherware based design and implementation of

our traffic control testbed in Chapter 5. In particular, we illustrate the design of distributed

control loops, through a detailed analysis and experimental study of a representative control

loop in the testbed.

Control systems interact with the real-world, and hence, safety and security issues are

of vital concern in these systems. While sub-system level safety features are usually incor-

porated in control application design, there still are exceptional situations that may need to

addressed at a system-wide level. For instance, a security breach that compromises safety

usually requires the system to be operated in a safe-mode so that the corresponding threats

can be mitigated. Also, the security overrides employed in such situations should not com-

promise low level safety features that provide important safety guarantees in the system. In

Chapter 6, we present a systematic approach to addressing these issues in networked control

systems using our middleware framework.

In Chapter 7, we address the issue of how one may envisage providing system-wide

guarantees of safety and liveness for networked control systems. Specifically, we use sub-

system level guarantees from the previous chapters, to prove system-wide safety and liveness

guarantees in the testbed. For safety, we show that cars can be driven without collisions,

and for liveness, we show that the system can be operated without gridlocks. During this

development, we also introduce real-time scheduling policies for the renewal task model,

which we then use to develop the control model for cars in the testbed.
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Our thesis presents a middleware framework for networked control systems, but our

vision is broader. We envision general purpose control, where control loops can be set up

dynamically, and entire control systems can be assembled from toolkits of components, using

well designed frameworks, and based on well understood system theory. This extends the

notion of general purpose computing and communication, and anticipates the convergence

of control with communication and computing. We elaborate on this vision and conclude in

Chapter 8.
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Chapter 2

TOWARDS NETWORKED
CONTROL PROLIFERATION

In the past few decades, we have witnessed the development of several crucial technological

enablers for networked control systems. Remarkable advances in VLSI technology, chip fabri-

cation, and hardware architecture design have resulted in the availability of microprocessors

with increasingly higher capabilities. This has significantly changed the nature of digital

control, and enabled the use of higher performance control software for increasingly complex

applications. For instance, ZiLOG’s eZ80Acclaim [23] micro-controller used in industrial

control applications has 256KB flash memory and 512KB fast SRAM. It is also supported

by a real time kernel with a TCP/IP stack for Internet connectivity.

Wireless networking technology has also matured to the point where it can provide

connectivity to embedded micro-controllers in control systems [24]. This in turn enables the

deployment of increasingly complex control algorithms in such embedded computer networks.

In addition, such software can even be updated dynamically using wireless connectivity.

Further, the integration of sensing with computation and communication capabilities has

enabled diverse new applications based on sensor networks. For instance, MICA2 [25] motes,

a recent generation of experimental sensor nodes, can store programs of up to 128 Kbytes,

and communicate at 38.4 kbps on a wireless link.

The above trends motivate significant extensions to traditional digital control. In partic-

ular, they enable distributed control loops, where control software executes in a coordinated

fashion over networks of embedded computers in control systems. In addition, the pow-

erful computation and communication capabilities in such computer networks can support

standardized software architectures that can trade-off some performance for much better
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Figure 2.1: Traffic Control Testbed

software management and reuse. Consequently, such networked control systems are being

increasingly deployed in applications ranging from automobiles to air traffic control.

The central challenge in the proliferation of networked control systems is the development

and management of control software, and as we have argued in Section 1.3, a middleware

framework is an important ingredient in addressing this challenge. In this chapter, we study

this issue in further detail, using a prototype networked control testbed that involves traf-

fic emulation through software controlled cars. In particular, we examine an exploratory

software implementation of this system, and use this to develop the requirements for a mid-

dleware framework for networked control. We conclude with a presentation of the research

context for this thesis.
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2.1 Networked control testbed

The networked control testbed, which we use as a prototype for networked control systems,

is shown in Figure 2.1. It consists of a set of remote controlled cars driven on a track. A car

has no on-board computational capabilities, and is controlled by analog signals transmitted

over a dedicated radio frequency channel. These signals control the speed and steering angle

of the car. The corresponding radio transmitter is connected to the serial port of a dedicated

laptop through a micro-controller, which converts discrete commands from the laptop into

analog controls to operate the car. Hence, a car can be controlled by varying its speed and

steering angle in discrete steps. Also, commands can be sent at a rate of up to 50 Hz, i.e.,

one command every 20ms.

Each car has a chassis top with uniquely coded color patches that are used to identify its

position and orientation. The cars are monitored using a pair of ceiling mounted cameras.

The video feed from each camera is processed by an image processing algorithm executing

on a dedicated desktop computer. This feedback is available at the rate of 10Hz, i.e., one

update every 100ms. Also, all computers in the testbed are connected by wired Ethernet. In

addition, the laptops are also connected by an ad hoc wireless network with IEEE 802.11 [26]

PCMCIA cards.

2.2 Exploratory implementation

A preliminary implementation of traffic control was undertaken in the testbed to understand

the various challenges involved in developing a middleware framework for such networked

control. The application architecture of this implementation is illustrated in Figure 2.2. As

shown in the figure, each car is controlled by a low-level model predictive Controller [27]. The

desired operation of the car is specified to the Controller as a trajectory, which is a sequence

of desired positions for the car at future time instants. The Controller then generates discrete

controls to drive the car along the specified trajectory. Such controls are generated every
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Figure 2.2: Software architecture of the preliminary testbed implementation

100 ms and sent to the Actuator module. The Actuator in turn sends the control to the

car via the corresponding micro-controller and radio transmitter. Vision feedback from

the image processing algorithms at the VisionSensors is collected at a VisionServer. The

VisionServer then performs data fusion and provides suitably merged feedback information

to the Controllers. This completes the low-level control loop in the system.

As noted above, the Controllers need to be given trajectories to operate the respective

cars. In the testbed, such trajectories are generated by a central Supervisor, which also

ensures global properties such as the avoidance of car collisions for safety, and the elimination

of traffic gridlocks for liveness. For instance, in a traffic control scenario, the Supervisor

generates trajectories to control the car along a pre-specified network of roads, with planning

and scheduling algorithms that are based on the analysis described in [28]. Briefly, blocks

of the road network are modeled as bins in a corresponding graph. The planning problem

is then re-formulated as finding shortest paths in such a graph, and the scheduling problem

is modeled as assigning cars to bins while avoiding collisions and gridlocks. Finally, the

Supervisor also receives feedback from the VisionServer forming a higher-level control loop.

Due to hardware constraints, the Actuator component for each car, and the VisionSensor

component for each camera, must be executed on respective computers. All other compo-

nents can execute on any computer in the testbed. However, in practice, the Controllers are
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executed on the same laptop as the respective Actuators, and the Supervisor is executed on

a separate dedicated laptop.

Traffic scenarios with up to eight cars operating simultaneously on the track have been

tested using this implementation. The cars closely followed pre-specified trajectories in

reasonably well behaved traffic scenarios. Another demonstrated scenario is pursuit-evasion

in a leader-follower configuration, where a set of software controlled cars follow a manually

controlled car. An automatic collision avoidance system has also been demonstrated.

2.3 Middleware framework requirements

The exploratory implementation described in Section 2.2 has helped determine some of the

common functionalities in most networked control applications. Ideally, such functionalities

should be reusable, and hence, part of the middleware framework. We now consider these

requirements in detail.

2.3.1 Operational requirements

These are the basic functionalities required for correct operation in networked control.

• Distributed operation: Connecting diverse components executing on different com-

puters in a network usually leads to numerous problems related to such distributed

operation. These include locating components in the network, connecting related com-

ponents, and supporting the exchange of messages between connected components. For

instance, in the traffic control testbed, the Supervisor and the various Controllers exe-

cute on different computers. Initializing these components, connecting the Controllers

to the Supervisor, developing protocols for their interaction, and synchronizing their

operation to resolve conflicts represent some of the problems arising due to distributed

operation in the testbed.
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• Location independence: This is an important abstraction that provides an ele-

gant solution to some of the problems related to distributed operation. It involves

an addressing scheme for components that is independent of their actual location in

the network. This allows components to communicate without distinguishing between

local and remote components. It also allows integrating components uniformly in dif-

ferent network configurations. For example, in the traffic testbed, the ability to easily

switch between wired and wireless networks, which use different addressing schemes,

requires these details to be abstracted away from the components. Similarly, such an

abstraction supports the use of other networking technologies such as Bluetooth [29],

without having to update component code.

• Service description: Connecting related components in a network involves determin-

ing if appropriate components are executing in the system. Further, of the available

components, the most suitable component has to be selected. For instance, consider

a car controller that knows the geographic location of its car to be (10,25) in a given

coordinate system. If it needs feedback, say from a vision sensor, then the controller

should be able to connect directly to a sensor covering that location based on this

information alone. In particular, the controller should not have to know about sen-

sor locations in a network. This requires mechanisms to specify and discover services

provided by components.

• Interface compatibility: Integrating independently developed software components

almost always involves interface incompatibilities. For instance, the set of functions

defined in the interface of a sensor module may not be compatible with the functions

required by a controller component. Hence, integrating the two components would re-

quire reprogramming one or both of these components. This is eliminated if standard

interfaces have been specified and supported for compatibility between such compo-

nents.
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• Semantics: A significant problem occurs due to incongruent assumptions in the im-

plementation of components. The interaction between different software components

is usually based on an implicit finite state machine. The exchanged messages are

assumed to be in specific formats. However, current interface description languages

such as the CORBA IDL [30] do not provide a mechanism to specify these assump-

tions properly. For example, suppose the Controller in Figure 2.2 is implemented so

that it checks for an update at the VisionServer before computing controls. This as-

sumes that the VisionServer responds immediately, returning an update if available,

and none otherwise. However, if the VisionServer is implemented so that it checks

with the VisionSensors for updates before responding, the additional delay may lead

to failure as the Controller is also waiting for an update. Hence, the Controller and

the VisionServer may have consistent interfaces, but the interaction semantics may

still be incompatible. Consequently, there must be additional provision for specifying

interaction semantics in the interface descriptions.

• Distributed time: Since components may execute on different computers, they may

not share common clocks. Hence, there must be a mechanism to translate time be-

tween different clocks. For example, time-stamps on remote sensor updates must be

translated to the local time for correct operation of controllers.

2.3.2 Non-functional requirements

The following features significantly improve system behavior and performance. However,

they are not necessarily required for the correct operation of the system.

• Robustness: Robustness is a fundamental requirement for the viability of networked

control. Component failures must be contained, and their effect on the overall system

should be minimized. For instance, the failure of a faulty sensor module should not

cause a connected controller to fail as well. This requires dependencies between com-
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ponents to be completely eliminated, or at least replaced by use-only relationships as

much as possible.

• Delay-reliability trade-off: Reliable delivery of data over a network introduces

additional delay due to retransmission of lost or re-ordered packets. However, some

components may not require reliable delivery, and should therefore be able to trade-

off reliability for lower average delay. For example, time-stamped sensor updates are

more useful when delays are smaller, even though a few of them may be lost over the

network.

• Security: Security is a key requirement in control systems as they interact with the

real world. However, standard security mechanisms used in information management

systems may not be directly applicable to control systems. Usually, additional con-

straints apply due to the direct interaction of such systems with the real world. For

instance, when there is a security breach in the system, a standard approach is to

suspend normal operation with a security override to address the intrusion. However,

in control systems, low-level fail-safes that guarantee system safety must not be sus-

pended as well. In fact, the implementation of such safety preserving security overrides

is a key security principle for control systems.

• Other requirements: The protocols and algorithms implemented in the middleware

framework must have good performance and scalability.

2.3.3 Management requirements

The following features considerably enhance system manageability.

• Startup: Programmable interfaces to startup procedures help ensure that all parts of

the system are initialized up correctly. In particular, such an interface must allow the

specification of dependencies between components at startup. For instance, to ensure
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proper initialization of the plant, a controller component may have to be started up

before a related actuator component.

• System evolution: This requires the ability to update or migrate components at

run-time. Component migration is required to optimize the configuration of software

components to reduce or balance communication and computational loads. For exam-

ple, a Controller in the testbed may be migrated to another computer, where it is both

closer to the corresponding Actuator and the destination is less loaded computation-

ally, thus reducing loop delay. This can and ought to be done dynamically, i.e., while

the system is running, in order to self optimize the organization of what component is

executing where. In particular, control engineers and system designers should not have

to worry about such details. Run time updates also allow operations such as changing

controllers, to address evolving plant goals, without having to restart the rest of the

system.

2.4 Research context

The basis of a middleware framework is a sound architecture that governs the organization

of software components and subsystems for the development of applications with desirable

properties. Also, the application designs supported by an architecture are a direct conse-

quence of the abstractions and programming models supported by the underlying software

infrastructure. Accordingly, well designed middleware has emerged as the most widely used

software infrastructure for distributed applications. As noted in Section 1.2, popular ap-

proaches for control are based on variants of CORBA [22] such as Real-Time CORBA [31],

Minimum CORBA [32], and Fault tolerant CORBA [30].

This section presents a brief study of relevant software infrastructures that are being used

in comparable systems. It also emphasizes the limitations of the associated frameworks vis-

á-vis the requirements of networked control as these have motivated the main contributions
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of this thesis.

2.4.1 Domainware

A well designed software infrastructure effectively captures domain-specific trade-offs and

provides an appropriate set of abstractions for application design. However, distinct domains

typically have different operating conditions and constraints, and hence the appropriate

trade-offs are usually different as well. For instance, the execution of correct transactions

is necessary for business applications, but robustness and lower delays are more important

in the control domain. This key insight guides the following considerations about software

infrastructures.

Real-Time CORBA (RT-CORBA) is representative of the class of middleware that have

emerged as a control specific modification of pre-existing infrastructure developed for a differ-

ent domain. In particular, RT-CORBA is a specialization of CORBA, which was originally

developed for business applications requiring reliable communication. Hence, an implicit

assumption in the specification of RT-CORBA is that communication overheads are tol-

erable by control applications. Consequently, most of the specification deals with models

for scheduling threads and providing real-time guarantees on a single node. For instance,

the notion of a distributable thread relies heavily on fast and reliable communication to

avoid deadlocks. In wireless networks, however, communication delays are unpredictable

and packet losses are high. Hence, a controller cannot depend on remote sensors through

distributable threads. Also, the problem of sensor update losses can be addressed in the

application itself by using good state estimation techniques. On the other hand, lower de-

lays are much more important for state estimation and robust control as feedback must be

available to controllers as soon as possible. Consequently, the ability to trade-off delay for

reliability is a key feature that needs to be added to RT-CORBA. Reference [33] considers

some of the other issues that need to be addressed in RT-CORBA. However, the main draw-

back with middleware such as RT-CORBA is that they inherit trade-offs made for unrelated
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domains.

Forcing functions capture the main constraints of a domain, and hence, constitute major

determinants for domain-specific tradeoffs. We define a forcing function as a characteristic

of an application domain that must be addressed by any application level solution. For

instance, control applications operating on wireless networks are constrained by lossy links

and unpredictable delays, due to which, real-time guarantees are impossible to support in

middleware. Hence, the application itself is forced to address this issue by incorporating

complex control laws and good state estimators that adapt to network conditions. Since

applications are forced to directly address these constraints, this is a necessary cost to be

paid.

Domainware is middleware that exploits application functionality already imposed by the

forcing functions of the domain. In wireless networks, delay and bandwidth characteristics

of communication channels have high variability, and applications are forced to use good

state estimation to cope with this. In fact, they are also forced to have default safe states

to cope with the loss of a large sequence of updates due to bad channel conditions. For

example, airplanes flying in autopilot mode are controlled with a Global Positioning System

(GPS) and a local Inertial Navigation System (INS). The INS is used for controlling the

airplane during normal operation. But, as the reference point of the INS drifts with time,

the GPS is used to correct it periodically. However, if communication with the GPS system

is lost, then the default mode is to fly using just the INS. The key point is that airplanes,

and in general most controllers over wireless networks, are designed to handle bad channel

conditions. Domainware exploits this by relaxing its own requirements and having a much

simpler architecture. As individual components are fail-safe, more important non-functional

requirements such as fault tolerance and system evolution are addressed in a much simpler

fashion.

Etherware, the middleware presented in this thesis, has been developed as Domainware

for networked control. In particular, the forcing functions of wireless networks have been
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exploited to implement the system with soft real time mechanisms. Also, the ability of com-

ponents to accept occasional delays have been exploited to support Etherware mechanisms

for restart, upgrade, and migration as described in Chapter 4.

2.4.2 Service continuity

Control applications are subjected to numerous changes during prolonged operation. These

include involuntary changes such as faults, and voluntary changes such as software up-

grades. Since middleware based control applications are composed of interacting compo-

nents, changes affecting one component must be isolated from other components that de-

pend on it. For instance, restarting or updating the Controller in Figure 2.1 should not also

require restarting the Actuator, as this might affect the operation of the car. Since compo-

nents typically interact by providing services to each other, this requires service continuity

to be maintained even in the presence of changes in a component.

Fault-tolerant CORBA [30] is a variant of CORBA that addresses service continuity

during component failures. This is provided mainly by object replication and support for

restarts. However, the mechanisms require at least one replicated server object to be opera-

tional for a procedure call from a client to be successful. If no server replica is available, then

an exception is raised in the client due to Remote Procedure Calls (RPCs) based semantics.

However, during failures due to logical errors in software, all replicas of a component will

need to be restarted. Hence, such a failure will affect clients as well. Further, CORBA

variants do not support service continuity during component upgrades, and do not support

migration at all.

Etherware supports service continuity by providing efficient restart, upgrade, and migra-

tion mechanisms. As demonstrated by the experiments in Chapter 4, the involved delays

are well within the bounds required by the testbed. Further, such communication channels

are preserved across component restarts and upgrades. This allows other components to

continue operating despite such changes. In particular, communication channels need not
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be reestablished after component restarts or upgrades.

2.4.3 Operational semantics

Interface description languages (IDLs) provided with CORBA, Jini, and other popular mid-

dleware mainly address the specification of functional interfaces, which are the declarations

of function calls implemented by components. However, component behavior cannot be spec-

ified using these IDLs. Consequently, operational specifics such as communication protocols

and failure modes of component implementations cannot be made explicit. For example,

suppose an actuator component accepts control updates through the function update() in

its interface. This may be implemented so that it accepts control updates most of the time,

but raises an exception when update() is called at the same time as it is actually sending

controls to its actuator device. However, a controller communicating with the actuator may

assume such an exception to indicate failure and reset itself, thus leading to persistent faulty

behavior. As most documentation is imprecise, such implicit assumptions make reusing

components and integrating systems extremely difficult.

Many formal methods for system specification have been adapted for real-time systems

[34]. For example, Statecharts [35] [36], a graphical language for specifying real-time systems,

extends finite state machine descriptions by introducing composition operators such as AND

and OR. In addition, some of these methods have also been used to extend the CORBA IDL

to support the specification of operational semantics. For instance, TRIO/CORBA [37] [38]

is based on TRIO [39], a first order temporal logic, while Cooperative Objects (CO) [40] [41]

is an object oriented dialect of Petri Nets. Also, SpecTRM [42] [43] is a fairly comprehensive

framework for safety critical systems specification. However, a major drawback with most of

these tools is that they are not very well integrated with commercial middleware frameworks

for control systems.

The middleware framework proposed in this thesis supports an IDL for the specification

of operational semantics of components. In particular, aspects of a component’s behavior
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that are relevant to other components can be specified. This includes the specification of

interaction protocols and types of message exchanged between components. Such support

should help eliminate a lot of the problems arising due to implicit assumptions about com-

ponent behavior.

2.4.4 Other related work

As noted above, popular middleware based approaches for networked control build on vari-

ants of CORBA. For instance, Open Control Platform [44] is based on Real Time CORBA,

and has been used to control unmanned aerial vehicles. OCP builds on top of a CORBA

implementation by adding a Controls API, which provides the abstraction of components

communicating by sending and receiving events through ports. This is similar to the Ether-

ware programming model, but it also inherits the drawbacks of RT-CORBA noted in Section

2.4.1. CoSMIC [45] is another middleware for distributed real-time and embedded applica-

tions. It extends the Model Driven Architecture of OMG, and is based on an implementation

of Real Time CORBA as well.

Other interesting approaches include the Giotto [46] system for embedded control appli-

cations, real-time framework [47] for robotics and automation, and OSACA [48] for automa-

tion. A fairly comprehensive overview of research and technology of software architectures

for control systems is provided in [49].

Finally, several of the architectural constructs in Etherware have been influenced by J-

Sim [50] [51], a component based, compositional simulation environment. In particular, the

loosely coupled component programming model, and the autonomous component architec-

ture in J-Sim have a similar conceptual basis to the corresponding aspects of Etherware.
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Chapter 3

ETHERWARE

In this chapter, we present Etherware, the underlying infrastructure for our middleware

framework for networked control systems. We present the main considerations influencing

the design of Etherware, and describe the Etherware programming model and architecture.

In particular, the programming model highlights the abstractions and design primitives sup-

ported by Etherware, and the architecture illustrates how middleware design considerations

have been incorporated in its implementation. We conclude with a discussion of how the

requirements of Section 2.3 are addressed in Etherware.

3.1 Architectural considerations

The design of Etherware has been considerably motivated by experiences with the ex-

ploratory testbed implementation described in Section 2.2. These and other considerations

that have influenced the Etherware architecture are presented in this section.

3.1.1 Application design

The implementation of control loops over a network is a complex problem. This is further

complicated in wireless networks due to high losses and unpredictable delays. However, these

limitations cannot be addressed entirely by infrastructure based mechanisms, since such

mechanisms would necessarily have to make trade-offs that affect application performance

as well. For instance, reliable delivery of packets can be provided only with increased delays,

which would then affect the performance of control loops in the system. Hence, applications
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Figure 3.1: Enhanced design of the lower-level control loop in testbed

would either have to tolerate packet losses or increased delays.

Application design constraints are largely determined by the forcing functions of their

domain, as described in Section 2.4.1. For networked control systems, a key forcing function

is the lossy and delay-prone wireless channels used for communication. In the testbed,

these constraints have led to various design enhancements to the software architecture of

the testbed in Figure 2.2. For instance, enhancements to the lower-level control loop are

shown in Figure 3.1. As shown in the figure, a Kalman Filter [6] is used in the Controller to

reduce the impact of losses in sensory feedback. Similarly, a Control Buffer in the Actuator

stores future commands to tolerate delayed or lost updates from the Controller. Chapter 5

considers these and other modifications to the testbed in detail.

The main idea behind the modifications to the testbed design is the reduction of network

based dependencies between components by increasing their Local temporal autonomy. For

example, the Kalman Filter allows the Controller to tolerate losses in sensory feedback,

and the Control Buffer stores alternate controls for the Actuator to provision for delayed
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or lost Controller updates. This approach to application design has greatly influenced the

architecture of Etherware. Since such local temporal autonomy allows critical components to

endure some delays, Etherware has been developed assuming only soft real time control. In

particular, this has shifted our focus from enforcing hard real-time guarantees, to supporting

non-functional requirements such as fault-tolerance and software manageability.

3.1.2 Stability considerations

Robustness can be enhanced by, and even require, the ability to efficiently restart failed

application components. For instance, suppose the Controller in Figure 3.1 fails due to a

computation error. Restarting this component should not require reestablishing communica-

tion channels with the VisionServer, reinitializing the Actuator, or re-establishing Controller

state, as these delays could themselves cause system instabilities, and thus result in car col-

lisions.

The need for evolution of software in the system requires the ability to update components

at run-time, i.e., while the system is executing. System optimization requires the ability to

migrate components, also at run-time. Further, upgrade and migration must be done in

an application aware fashion, so that the corresponding instabilities are minimized. For

example, updating or migrating a Controller, without informing it that loop delays will

consequently be reduced, can actually lead to instability or poor performance. All these

requirements have motivated a simple and uniform design to externalize component state.

This involves a mechanism to represent and capture the current state of a component so

that it can be reinitialized with this state if it needs to be restarted at the same node, or

even migrated to a different location and restarted there. This allows Etherware to capture

component state, and use this to restart, update, or migrate components while maintaining

system stability.

Etherware enforces component state externalization as a basic architectural precept.

Each component is instantiated with an initial state, and is required to support a state
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check-pointing mechanism. On a check-point request, it has to return a state object that

can be used to reinitialize it upon restart, update, or migration. This is in contrast to a

mechanism where such a requirement is optional, or even a special feature supported by

additional middleware enhancements.

Components typically maintain several communication channels with other components.

For smooth operation, restarting or upgrading of components should not require such chan-

nels to be re-established, and in particular, channels should be maintained across such

changes. For example, if the Supervisor in Figure 2.2 is restarted, updated, or migrated, the

connected Controllers should not have to reestablish communication channels with the new

Supervisor. Consequently, maintenance of communication channels across such changes is

also supported in Etherware, and in particular, identifiers for communication channels can

be saved as part of check-pointed state. This allows restarted or upgraded components to

continue using previously established channels. More importantly, it provides continuity of

communication to other connected components during such changes.

3.1.3 Message-oriented communication

Control systems have fairly strict safety requirements. Components have to respond to

changes as soon as possible. For example, upon detecting a safety violation, a Controller

may not be able to wait for an acknowledgment from a Supervisor before it decides to take

some safe action. Over a wireless channel in particular, delays can be fairly large due to

deep fading and queued packets.

Conventional middleware for transaction based systems such as CORBA [30] are based

on a synchronous mode of communication where components interact by making remote

procedure calls. In this approach, the caller is blocked until it receives a reply from the

callee. However, this may lead to complex multi-threaded component design in push-based

communication channels commonly used in control applications. For instance, consider a

controller operating multiple actuators over a wireless network. Since the network can have
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unpredictable delays, the controller should not be blocked while sending controls to any of

the actuators. This would require a multi-threaded controller design with one thread to send

controls to each actuator so that the main control loop does not block on the remote calls.

The above problem is addressed by providing an asynchronous mode of operation, wherein

the caller is not blocked on a procedure call. For example, CORBA supports this by one-

way functions. However, since this is the prevalent mode of operation in control systems,

most communication would occur in the asynchronous mode. Hence, the additional over-

head of supporting sparingly used synchronous communication as the default mode can be

eliminated. Consequently, Etherware has been developed as a message-oriented middleware.

Messaging based communication requires a specification of message formats. Also, sup-

port for interface and semantic compatibility during changes, and component reuse, requires

this specification to be flexible, extensible, and backward compatible. Flexibility is the

ability to easily incorporate changes in the interface and semantics of a component, and ex-

tensibility implies ease of adding specifications for new functionality while still honoring the

original specifications used by older components. Based on these requirements, Etherware

uses XML [52] as the language for messages. All communication in Etherware is through

messages, which are well-formed XML documents with appropriately defined formats. For

platform independence, and due to availability of support for XML, Etherware has been

implemented using the Java programming language [53]. While these choices incur some ad-

ditional processing overhead, advances in computer hardware and the use of open standards

more than compensate.

3.1.4 Architecture

The need to support system evolution has motivated a basic design choice in Etherware.

All components on a given node are managed in a single process, and a component can

have its own additional threads of control if necessary. This allows a fine grained control on

the execution life cycle of components. It also provides communication savings by reducing
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expensive memory copy operations required to transfer data between different processes on

the same node.

The services provided by middleware should also be restartable and upgradeable. This

allows basic versions of services to be deployed initially for resource savings, which can then

be dynamically updated based on changing application requirements. To accomplish this,

invariant aspects of Etherware that cannot be changed dynamically have to be minimized.

The above considerations have motivated a micro-kernel [54] based design for Etherware.

This concept proposes the use of a simple, efficient, and robust kernel that constitutes the

system invariant that will not require changes during operation. For Etherware, this includes

primitives for managing component life-cycles and delivery of messages between them. All

other functionality is implemented just as other application components, and hence they can

be restarted or upgraded without having to restart the system.

Pursuant to the above philosophy of flexibility, a bare minimum functional interface has

been imposed for interactions between components and Etherware as well. This minimizes

the dependence of component design on the Etherware architecture, due to which the latter

can be modified with minimum corresponding changes required in the former. For uniformity,

application components also interact with middleware services through messages.

3.2 Etherware programming model

An Etherware based application is composed of a set of components. The components

collaborate by exchanging messages with each other. However, each component interacts

directly with Etherware, and all messages are delivered by Etherware to respective compo-

nents. However, for simplicity, the role of Etherware is abstracted out in the rest of this

section, and components are shown to interact directly with each other.

31



Output ComponentInput Component

Lower Component

Higher Component

Data out
Component

Data in

Control in Feedback

Control out Feedback

Control Law

Figure 3.2: Application model in Etherware

3.2.1 Application model

The possible interaction of a typical component in a networked control application is shown

in Figure 3.2. Each such component encapsulates a control law, which represents the appli-

cation logic associated with its functionality. As shown in Figure 3.3, this may include a set

of equations for a controller, inputs from a sensor device, or output to an actuator device.

A generic component in a networked control application can interact with other compo-

nents by participating in the following:

• Control hierarchy: A control hierarchy in Figure 3.2 is shown as a vertical stack

of components, where a “higher” level component sends controls to a “lower” level

component and obtains feedback from it. For example, the Controller in Figure 2.2

takes goals from the higher-level Supervisor and sends commands to the lower-level

Actuator.

• Data flow: A data flow is shown as a horizontal chain of components in Figure

3.2, where an input component sends data to an output component. For example,

the VisionServer of Figure 2.2 takes inputs from VisionSensors and provides sensor

updates to the Controllers.
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Figure 3.3: Typical application components in Networked Control Systems

3.2.2 Messages

Based on the considerations of Section 3.1.3, Etherware has been designed as a message

oriented middleware. Hence, in Etherware based applications, components communicate by

exchanging messages that are well formed XML documents [52]. XML documents can be

directly manipulated as large strings. However, Etherware also provides a hierarchy of Java

classes to manipulate these documents. The classes provide various primitives to manipulate

the underlying XML document across a Java based interface. Further, each class encodes

the XML format of a specific message type in Etherware. This hierarchy can also be easily

extended to define additional message types with user-defined XML formats.

Two basic problems attending message delivery in distributed systems are discovery and

identification of destination components. The identification problem is solved in Etherware

by associating a globally unique id called a Binding to each component. The discovery

problem is addressed by associating service descriptions called ServiceProfiles to addressable

components. A component can register multiple ServiceProfiles, and multiple components

can register the same ServiceProfile. In the latter case, a given ServiceProfile is identified

with one of the corresponding components, and hence ServiceProfiles do not uniquely identify

components.

A ServiceProfile describes a specific service that a component provides. For example, a

VisionSensor could register a Profile specifying that it operates a gray-scale camera covering
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the geographic region between coordinates (0,0) and (100,50), and tracks car positions based

on this. Suppose a car Controller knows the location of its car to be within coordinates

(25,37) and (45,52). It could use only this information to connect to a relevant vision

sensor using an appropriate service query. Etherware would then match this query with the

description of the VisionSensor, and forward the connection message to it. Note that the

car controller need not specify the type of camera in its query, as this is irrelevant to the

service it needs.

All messages in Etherware have the following three constituents as XML tags:

• Profile: This is used to determine the recipient of the message. A Profile can be one

of the following:

– ServiceProfile: Addressing messages using ServiceProfiles allows components

to communicate without having to identify recipients. For example, for a one-

time request response operation, a client need not discover a server’s Binding

before communicating with it. However, successive messages may be delivered

to different components that have registered matching ServiceProfiles as these do

not uniquely identify components.

– Binding: This causes messages to be directly routed to the component with the

given Binding. This is the preferred method for sending multiple messages as it

ensures that all the messages are sent to the same component. In addition, this

also reduces the overhead of matching ServiceProfiles for each message.

– Tap: This is a special kind of Binding associated with an end-point of a Mes-

sageStream. For instance, when a component has opened several MessageStreams

to another component, each such stream is identified by its associated Tap. Mes-

sageStreams are described in detail in Section 3.2.4.

• Content: This represents the contents of the message. All application specific infor-

mation is contained in this tag. This can have application defined formats and is not
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Figure 3.4: Programming model for a component in Etherware

processed by Etherware.

• Time-stamp: Each message has a time-stamp specifying when the message was gen-

erated. As a message moves from one node to another, the time-stamp is automatically

translated to the local time of corresponding node. However, any time-stamps in the

content tag will not be translated, and so any such time-stamp should be relative to

the time-stamp of the message for proper interpretation.

3.2.3 Components

The design of a generic component in Etherware is shown in Figure 3.4. This design is

based on several design patterns [55], where “a design pattern is a solution to a problem in

a context” [55]. In software development, several problems may have a common recurring

theme. Design patterns represent solutions to such problems that exploit the recurring

theme. However, the solutions need to elaborated based on the context of the given problem.

Accordingly, the design patterns shown in Figure 3.4 have the following rationale:

• Memento: Support for restarts and upgrades requires the ability to capture compo-

nent state. This is addressed using the Memento pattern, based on which component
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state can be externalized as a Memento object, check-pointed, and then used for re-

initialization.

• Strategy: System evolution requires the ability to replace components dynamically.

In particular, this requires the functional (syntactic) interface of the old and new

components to be compatible, so that a replacement does not require changing the rest

of the system. This is an application of the Strategy pattern, whereby all components

communicate with Etherware using the same functional interface. During component

replacement, the Strategy pattern is used in conjunction with the Memento pattern

for check-pointing component state.

• Facade: Application components interact with Etherware services by exchanging mes-

sages. However, if components have to directly interact with the corresponding sub-

systems, then the Etherware architecture needs to be exposed to component code.

This introduces unnecessary dependencies and makes components and Etherware hard

to evolve, as changing the Etherware architecture will require software of all the com-

ponents to be updated as well. This dependence is eliminated by using the Facade

pattern to provide a uniform functional interface and abstract away the architectural

details of Etherware.

Based on the above design, components are required to interact with Etherware across

a fixed functional interface. This specifies the set of functions that a component may call in

Etherware and the set of call-backs that it must implement. However, the actual semantics

of component interaction is determined by the messages that are exchanged during these

function calls. Hence, the operational interface of a component is determined by the types

of messages that it can generate or process, and not the actual functions used for sending

or receiving them.

Components in Etherware based applications must belong to one of the following types:

36



• Passive components: These do not have active threads of control. They are only

activated by call-backs triggered by incoming messages. Also, they can send messages

only by returning them during a call-back from Etherware.

Passive components are required to implement the following interface:

public interface Component {

/** This initializes the Component. */

public List<Message> initialize(Memento memento, Binding binding);

/** This processes an incoming Message. */

public List<Message> process(Message message, Binding binding);

/** This terminates the Component and captures its state. */

public Memento terminate();

}

This interface requires passive components to implement the following call-backs:

– initialize(): This is called when the component is first created. The component

is initialized with a Memento, which is a special kind of Message that contains

component state. This can either be a pre-specified initial state for a newly

created component, or a compatible check-pointed state returned in a terminate()

method by a previous component. The Binding of this component is also passed

as a parameter during initialization.

– process(): This is called when a component has an incoming message to process.

The Binding of the sender of this message is also passed as a parameter. The

implemented function can return a list of generated Messages.
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– terminate(): This is used to terminate a component and capture its state so that

it can be restarted, upgraded, or migrated. Accordingly, this method must return

a Memento that can then be used to a re-initialize a compatible component.

• Active components: These have one or more independent threads of control. They

can generate messages during call-backs as well as based on activities in their own

threads of control. For instance, the VisionSensor of Figure 2.2 can be implemented

as an active component with a separate thread that waits for camera updates and

generates update messages when new sensor data is available.

Active components are required to implement the following interface:

public interface ActiveComponent extends Component {

/** Activate the independent threads of control. */

public List<Message> activate(Messenger messenger, Scheduler scheduler);

}

This interface requires active components to implement the call-backs listed above for

passive components as well. In addition, they must implement the activate() call-back

in which independent threads of control can be activated using the Scheduler interface.

In addition, the Messenger interface can be used to send messages generated by the

independent threads of control in the component.

3.2.4 MessageStreams

Messages addressed with ServiceProfiles and component Bindings are delivered reliably and

in order by Etherware. However, as noted in Section 2.4.1, control applications need the

ability to trade-off reliable delivery for low delays. This is supported by the notion of

MessageStreams in Etherware. A MessageStream identifies a stream of messages from a

source component to a sink component and supports various quality of service requirements

38



Sensor Controller

MessageStream

Figure 3.5: MessageStream between two components

for messages delivered through it. For instance, a feedback MessageStream from a Sensor to

a Controller shown in Figure 3.5 can have unreliable and in-order delivery.

The source and sink components of a MessageStream are associated with corresponding

Taps, which are special Bindings that identify access points into the MessageStream. In

particular, the source component must address its messages to its source Tap for delivery

over the MessageStream, and messages received by the sink component have its sink Tap as

the sender of these messages.

A MessageStream is a first-class entity in Etherware. This means that messages can

also be directly addressed to a MessageStream. However, such messages are processed by

the Etherware entity associated with the source Tap and are not forwarded to the source

component. In addition, a MessageStream can also be associated with a ServiceProfile, which

is set as the profile for all messages delivered over the MessageStream. More specifically, the

source component sets the profile of its messages to its source Tap, which is then reset to

the given ServiceProfile when the messages are delivered over the MessageStream to the sink

component. In particular, messages addressed to the ServiceProfile of the MessageStream

are processed by the source Tap entity, and are not forwarded to the associated components.

3.2.5 MulticastStreams

MessageStreams are extremely useful for streams of messages from specified source com-

ponents to sink components. However, a key limitation is that only one sender and one

receiver can be associated with a MessageStream. Hence, Etherware supports Multicast-
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Streams to address situations where more than two components are associated with a stream

of messages. A MulticastStream is a group communication primitive that allows a group of

components to interact by exchanging related messages. For instance, a MulticastStream

between three components is shown in Figure 3.6. In this example, there is one sender, a

VisionSensor, sending feedback updates to multiple receivers, a Supervisor and a Controller.

However, a MulticastStream can have multiple senders and receivers, and in particular, a

component can both send and receive messages over a MulticastStream.

Similar to the MessageStreams described in Section 3.2.4, all components associated

with a MulticastStream have corresponding Taps as well. However, these Taps can be used

both to send and receive messages into the MulticastStream. More specifically, a sender

addresses its messages to its corresponding Tap, and these messages are delivered to all

other components associated with the MulticastStream. In particular, the sender does not

get a copy of the message that it sent.

MulticastStreams are first class entities in Etherware, and hence a MulticastStream is

associated with a ServiceProfile as well. Consequently, components join a MulticastStream

by sending appropriate join messages addressed to the associated ServiceProfile. However,

as noted before, senders must address multicast messages to the corresponding Taps. In

particular, messages addressed to the ServiceProfile of the MulticastStream are processed in

Etherware itself, and are not multicast to other components. Finally, the profiles of delivered

messages are reset to the ServiceProfile of the MulticastStream as is done in MessageStreams.
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3.2.6 Filters

Evolving operating conditions usually require appropriate changes in the application software

as well, and the ability to upgrade component software in Etherware supports such changes.

But in many cases, it may not be necessary to completely replace existing components, and

adding an additional component that filters some of the exchanged messages is sufficient.

For instance, updates from the VisionSensor could get noisy due to bad lighting conditions.

This can be addressed by dynamically adding a Kalman Filter to the MessageStream from

the VisionSensor to the Controller as shown in Figure 3.7. This approach is preferable to

updating the Controller itself as the Kalman Filter is a simple component with well-defined

functionality, while the Controller is much more complicated component and hence more

difficult to change. More importantly, this change only affects the communication between

the VisionSensor and Controller, and in particular, is transparent to both these components.

Filters are components that intercept messages sent or received by other components,

and any component can register to be a Filter of another first class Etherware entity such

as a component or a MessageStream. Also, to add itself as a Filter, a component just sends

an appropriate add-filter message to Etherware. If successful, then an appropriate Tap is

returned to the component, which is then used to receive and forward intercepted messages.

In particular, a component Filter intercepts all messages sent and received by a component,

while a MessageStream Filter only intercepts messages sent over the MessageStream. Finally,

MulticastStreams do not support Filters as the set of receivers is not known due to broadcast

semantics, and messages received by individual components can be intercepted by component
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filters if necessary.

3.3 Etherware architecture

The architecture of Etherware is based on the micro-kernel concept as noted in Section 3.1.

In particular, all the application components on a given node are managed in a single OS

process whose configuration is shown in Figure 3.8. According to the micro-kernel concept,

the process is managed by a simple Kernel, and all other functionality is implemented as

application level components. This section describes the main Etherware entities and services

in detail.

3.3.1 Kernel

As illustrated in Figure 3.8, at the heart of each Etherware process is its Kernel, which

represents the minimum invariant entity in Etherware. This implies that all other aspects of

Etherware can be changed dynamically with minimal impact to the system. It also allows

Etherware to be highly customizable and reconfigurable, as only the required services can

be used initially, and additional services can be added later as necessary.

The Kernel is simple, robust, and efficient, as it implements only two basic functionalities:

1. Component management: The Kernel manages all the components in the associ-
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ated Etherware process. It can also accept messages to dynamically add new compo-

nents as necessary.

2. Message delivery: The Kernel delivers messages to local components in the associ-

ated Etherware process. In particular, it only delivers messages addressed to Bindings

of the components that are managed by it. All other messages are forwarded to special

components called ProfileRegistry and NetworkMessenger, which are standard Ether-

ware services described later in the section.

3.3.2 Scheduler

The Kernel has a separate Scheduler as shown in Figure 3.8. In Etherware, the Scheduler

is responsible for scheduling messages delivered to local components. In addition, it also

creates and manages threads in active components. Hence, the Scheduler determines the

priorities and order of all activities in Etherware.

The Scheduler also provides a very useful notification service that simplifies a lot of

application design. Many components in a control system need to sleep and wake up after a

given delay. For instance, the car Controller of Figure 2.1 needs to be woken up every 100ms

to generate a new set of controls. One solution is to have a separate thread for the Controller

with a sleep function that is called periodically to sleep for the required duration. However,

a simpler solution is to send periodic messages to the Controller to activate it as necessary.

This also simplifies the Controller design as it eliminates the need to have a separate thread.

The Scheduler generates two kinds of notification messages:

• Alarms: These are one-time wake up messages generated after a given waiting in-

terval. They are useful to components that need to wait for a given amount of time

before performing an operation. For example, a Controller, which needs to wait for an

Actuator to be initialized, can register to receive an Alarm after the required delay.
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• Ticks: These are periodic messages generated in a tick stream, and can be used

by passive components for periodic activations. In particular, this has been used to

implement all soft real-time control in the testbed. For instance, the car Controller

in Figure 2.2 operates at 10 Hz and has been implemented as a passive component.

For periodic activation, the Controller registers with the notification service to receive

periodic tick messages at 100ms intervals.

3.3.3 Shells

All components in Etherware are encapsulated by corresponding Shells as shown in Figure

3.8. A Shell presents a facade to the component, and performs the call-backs for component

initialization, activation, termination, and message delivery. It also maintains component

specific information such as associations with other components and participation in Mes-

sageStreams and MulticastStreams. Further, Shells implement all the functionalities asso-

ciated with the Taps described in Section 3.2. Finally, most of the activities involved in

component restart, upgrade, and migration are also performed by Shells.

As mentioned in Section 3.3.1, all other functionality in Etherware is implemented in

service components. In particular, each Etherware process has a corresponding component

for each of these services. The rest of the section describes the basic services used during

the normal operation of Etherware.

3.3.4 Delivery addresses

As described in Section 3.2, components can address messages using various kinds of Pro-

files such as ServiceProfiles, Bindings, and Taps. However, these are only descriptive iden-

tifications of the corresponding components. For actual message delivery, a component is

internally identified in Etherware by its delivery address. More specifically, the descriptive

Profiles used by components are internally mapped to appropriate delivery addressed before
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they are actually delivered to the receivers.

The delivery address of a component consists of two parts:

• Local part: This is the globally unique Binding assigned to the component when it

is created by the Kernel. As noted in Section 3.3.1, this is also the part used by the

Kernel to deliver messages to local components that it manages.

• Network part: This is the network specific part of the delivery address. In particular,

this is the network address to which messages from remote components must be sent

over the network.

3.3.5 NetworkMessenger

The NetworkMessenger service is responsible for sending and receiving messages over the

network. Consequently, it encapsulates all network specific information such as network

addresses and protocols, and abstracts this away from the rest of Etherware. In particular,

it specifies the network part of the delivery address of a component, which is basically the

network address at which its local NetworkMessenger component receives messages using

the network specific protocols.

Since all network specific information is encapsulated in the NetworkMessenger, this

component needs to be used only if the system operates over a network. In addition, this

abstraction also makes it quite simple to port Etherware to a different network technology

as it only involves implementing a NetworkMessenger for the target network. Finally, the

NetworkMessenger is an active component as it needs separate threads to receive messages

from remote nodes.

3.3.6 ProfileRegistry

ProfileRegistry is the service that bridges the gap between the Etherware programming

model and internal conventions. In particular, it maps ServiceProfiles and Bindings of
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components to their delivery addresses. So, when a new component is created by the Kernel,

its Binding is also registered with the ProfileRegistry. Further, when messages are addressed

with ServiceProfiles, they are forwarded by the Kernel to the ProfileRegistry by default.

The ProfileRegistry then performs a lookup to map these Profiles to appropriate delivery

addresses of matching components if any.

In the current implementation, each Etherware process has exactly one of the following

kinds of ProfileRegistry components:

• Global ProfileRegistry: There is at least one such component in the network, and

it maintains Profiles of components in all nodes of the network.

• Local ProfileRegistry: This registers and looks up Profiles of only the local com-

ponents in the process. Hence, messages addressed to ServiceProfiles of non-local

components are forwarded to a Global ProfileRegistry for further lookup. In addition,

a Local ProfileRegistry also updates the Global ProfileRegistry with all registered local

Profiles.

3.3.7 Network Time Service

In control systems, the time at which an observation or actuation occurred is as important

as the action itself [56] [19]. Hence, multiple clocks in a distributed system pose a serious

problem, as the same event is recorded with different time-stamps in different computers.

For instance, the time-stamp of an observation at a remote sensor is not very useful at a

controller if they use different clocks.

This problem of distributed time can be addressed in two ways. The first approach

is to synchronize all clocks in the system using a standard time synchronization protocol

such as NTP [57]. However, this approach has the drawback that all computers in the

system need to be in the same administrative domain. This can be particularly problematic

if interacting components are in different administrative domains whose clocks cannot be
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synchronized. The second approach is to translate time-stamps of messages as they move

from one computer to another. Since this approach does not have the drawbacks of the time

synchronization approach in multi-domain systems, it has been used in Etherware.

The NetworkTimeService (NTS) is the Etherware service that translates time-stamps of

messages as they are transmitted from one node to another. In particular, a time-stamp

tremote generated on a remote node is translated to a local time-stamp tlocal using the relation:

tremote = α tlocal + β (3.1)

In the above equation, the coefficient α represents the skew between clocks, and β

represents the offset. These coefficients are computed using the Control Time Protocol

(CTP) [56] [58] as follows. The local NTS component periodically sends a ping message,

which is responded to by the corresponding remote component as shown in Figure 3.9. As-

suming symmetric delays, the remote ping time tp is aligned with the midpoint between

the send time ts, and receive time tr on the local node. The coefficients α and β are then

computed using a windowed least-squares approach [59], where a best-fit line representing

the skew and offset between the nodes is computed. If the delays are indeed symmetric, the

algorithm gives exact estimates. However, if the delays are asymmetric or noisy, the error is

still less than half the round-trip delay time [56].

Based on the above mechanisms, each NTS component builds a table of skews and offsets
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for every other Etherware process on the network. In particular, these entries are tabulated

according to the Bindings of the corresponding remote NTS components. Hence, given

a time-stamp with the Binding of the associated remote NTS component, the local NTS

component can translate it to the local clock using this table.

The mechanism by which actual message time-stamps are translated in Etherware is

also quite interesting. The NTS component is initially added as a Filter to the local Net-

workMessenger, and all messages that are sent to and received from remote components are

intercepted. The local NTS component then filters outgoing messages to add its Binding to

their time-stamps. Similarly, incoming messages are also filtered by the local NTS compo-

nent, which translates the time-stamp based on the associated Binding and the table it has

built up.

The main advantages of the time translation mechanism in Etherware are that the NTS

component itself does not need to understand network addresses, and the NetworkMessenger

does not need to know about time translation. Also, the natural use of component message

filtering in Etherware may be noted.

3.4 Etherware based formalization

Most networked control application designs can be efficiently implemented using the various

primitives of the Etherware programming model described in Section 3.2. However, these

design descriptions are usually not formal specifications that can be used to prove proper-

ties such as safety and liveness in the system. In particular, the inter-component message

interactions may have inconsistencies that cannot be easily detected. Hence, it is imperative

to formally specify and verify component designs and interactions to ensure correct system

operation.

Formal languages such as process algebras, Petri nets, and rewriting logic are widely used

for system design, specification, and verification. However, such specifications usually have
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to be implemented in an appropriate programming language to be tested in an operational

system. This approach has several disadvantages: the implementation may not faithful

to the formal specification, the implementation itself cannot be formally verified, and the

additional steps increase design cycle times. In this section, we describe the explicit support

in the Etherware based framework to bridge this gap between formal specifications and rapid

prototyping.

3.4.1 Formal application design

The interface of a component is the aspect of its behavior that affects other components that

interact with it. For Etherware based components, this is the internal model of component

behavior, and the set of messages that it sends and receives. Such interfaces are usually

specified and analyzed using formal languages with corresponding primitives. In the follow-

ing, we present a methodology for specifying Etherware based component interfaces using

Maude [60], a high performance reflective language and system which supports equational

and rewriting logic.

The complete interface of a given component is usually not required to interact with it.

Typically, other components only need specific subsets of this interface for their interaction.

For instance, while implementing the Controller component of the testbed in Figure 2.1, it
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is sufficient to know the type of control messages that the Actuator consumes. Details about

interactions between the Actuator and other components are not relevant. Consequently,

the interface specification must clearly delineate the subset of the Actuator interface that is

relevant to the Controller.

The following concepts capture the above notion of a component interface:

• Protocols: The interaction between components is captured in formally defined pro-

tocols. For example, the communication protocol used between the Controller and

Actuator components of the testbed is shown in Figure 3.10. This specifies that both

components begin in the Start state. The Controller then moves to the Send state

and begins to send ControlMessage updates. Similarly, the Actuator goes to the

Receive state, and can receive ControlMessages only after it is in this state. The

overbar indicates the reception of a message. Note that this protocol specifies only the

aspect of Actuator behavior that is relevant to the Controller, and vice versa.

• Roles: The protocol described in Figure 3.10 involves two components interacting in

a prescribed manner. These constitute the roles in this protocol. Note that any two

components can participate in this protocol as long as they honor their corresponding

roles. In general, we can specify multi-party protocols with corresponding roles for

each of the participants.
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• Interface: A component participates in one or more protocols by assuming a specific

role in each protocol. The component interface is then a combination of these roles. For

example, Figure 3.11 specifies the actual interface of the Actuator component in the

testbed. We see that the Actuator role in the protocol of Figure 3.10 is implemented

by substituting the Receive state with two states, namely Receive and Operate. The

interface also shows other messages received or sent by the Actuator, while interacting

with Etherware services and the actuator device.

This approach to application design has several advantages. First, the interactions be-

tween components can be formally specified as protocols in Maude. Second, the formal

specification helps in analyzing and minimizing dependencies between components. Third,

the formal specification can be used to verify and prove properties about component interac-

tions using the rich tool support in Maude [60]. Fourth, component behavior can be specified

and verified as a correct composition of relevant protocols. Finally, the above component

specifications can be composed into a formal specification of the entire system, which can

then be used to study system level properties such as safety and liveness.

3.4.2 Etherware support

Maude specifications can be executed using the fairly powerful Maude execution environ-

ment. In particular, the environment supports a “loop mode” that allows other programs to

exchange data with executing Maude specifications. This functionality has been exploited

to support rapid prototyping of Maude component designs using Etherware. As shown in

Figure 3.12, an Etherware based Maude proxy service manages a Maude execution environ-

ment in an Etherware component, and exchanges messages between the Maude prototype

and the rest of Etherware. Interestingly, multiple instances of such components can also be

executed at the same time.
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3.5 Etherware capabilities

This section describes how the requirements listed in Section 2.3 are addressed by the design

principles and architecture of Etherware presented in this chapter.

3.5.1 Operational capabilities

The operational capabilities of Etherware are based on its programming model and services:

• Distributed operation: As described in Section 3.2, Etherware based components

communicate by exchanging messages using the same primitives regardless of whether

they execute on the same computer or on different computers. In particular, the

problems of identifying and locating components are addressed by the ProfileRegistry

and NetworkMessenger services described in Section 3.3.

• Location independence: This is achieved in Etherware by assigning each compo-

nent a globally unique Binding, an addressing scheme that is independent of network

conventions and topologies. As explained in Section 3.3.4, each Binding is mapped

into a delivery address, which includes network specific details such as IP addresses.

In particular, even though the network part of a component’s delivery address changes
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when it is migrated from one computer to another, this is still transparent to other

components as these details are abstracted away in the programming model.

• Service description: This is supported by addressable components being able to

register ServiceProfiles. A component that wishes to access a given service can just

address messages using an appropriate ServiceProfile. The Profile is then matched

with registered Profiles by the ProfileRegistry. If a match is found, then the message

is directly forwarded to the appropriate component. If not, an appropriate exception

message is returned.

• Interface compatibility: This is primarily achieved by the use of XML documents

for communication between components, as described in Section 3.1. This helps solve

many integration problems that arise due to incompatible interfaces. Besides, compo-

nents use a simple and uniform functional interface for all interaction, as described in

Section 3.2.3.

• Semantics: Application semantics are usually specified and analyzed using formal

languages. As described in Section 3.4, the framework supports a protocol based

specification of application design, and Etherware itself supports rapid prototyping by

allowing executable design specifications in Maude to be deployed in an operational

system.

• Distributed time: This issue is addressed by the automatic translation of message

time-stamps provided by the NetworkTimeService described in Section 3.3.7.

3.5.2 Non-functional capabilities

The following non-functional capabilities of Etherware are primarily due to its component

model and architecture:
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• Robustness: This is facilitated primarily by the check-pointing of component state

based on the Memento pattern. The effect of component failures are contained by

efficient check-point and restart mechanisms in Etherware as demonstrated in Section

4.3.1.

• Delay-reliability trade-off: MessageStreams support trading off reliability for lower

delays. They also provide a simple mechanism to incorporate support for other quality

of service requirements as necessary.

• Security: Security overrides can be easily implemented by adding Filters to compo-

nents and MessageStreams. Also, the order of Filters in a MessageStream essentially

determines their priority. In particular, later Filters have higher priority as they in-

tercept messages already filtered by earlier Filters. For instance, a security override

Filter will be safety preserving if it has a lower priority than the safety Filter. These

and other issues are considered in detail in Chapter 6.

• Other requirements: The current algorithms for various services scale well for the

requirements in the testbed. In particular, they have been tested by operating up

to eight cars at a time, which represents the scenario with the maximum load in the

system. However, better algorithms can be easily incorporated if necessary.

3.5.3 Management capabilities

Provisions for configuration management and check-pointing in Etherware support the fol-

lowing management capabilities:

• Startup: Start-up configurations and dependencies are specified to Etherware using

a simple configuration file for each computer. Etherware ensures that components are

initialized in the correct order. In the current version, this consists of specifying the

absolute order in which components need to be initialized on a given node. However,
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support for more complicated dependencies can be easily supported using a richer

dependency evaluation system.

• System evolution: System evolution through component update and migration is

supported by component state check-pointing. The application state is maintained

across both operations using Mementos, and in particular, MessageStreams are main-

tained across component updates. As noted in Section 3.2, MessageStreams and Filters

also provide an elegant mechanism for system evolution without having to change any

existing connections between components.
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Chapter 4

ETHERWARE MECHANISMS

In Chapter 3, the programming model and architecture of Etherware were described. How-

ever, this description only constitutes a static picture of the system. So, to further elaborate

this picture, and illustrate the operation of Etherware, the dynamics and mechanisms of

Etherware are presented in this chapter. In particular, the normal operation of Etherware is

outlined, the mechanisms for component management are presented, and the performance

of Etherware is compared to other middleware.

4.1 Etherware initialization

The constituents of Etherware have various inter-dependencies, which are highlighted during

the initialization process. Specifically, the following sequence of activities occurs during the

initialization of Etherware:

1. Kernel startup: When an Etherware process is started on a computer, the Kernel

and Scheduler are initially started. The Kernel then instantiates and initializes all

local components based on appropriate configuration specifications as described in the

following steps.

2. ProfileRegistry startup: The first service initialized by the Kernel is the ProfileReg-

istry. The Kernel instantiates either a local or a global ProfileRegistry component as

specified in the service configuration. Also, there must be at least one global Profil-

eRegistry in the network as noted in Section 3.3.6.
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The ProfileRegistry maintains a mapping from ServiceProfiles and Bindings of com-

ponents to corresponding delivery addresses as described in Section 3.3.6. However,

since the NetworkMessenger has not yet been initialized, only the local part of delivery

addresses is known at this point. Consequently, only local ServiceProfiles and Bindings

can be resolved to corresponding components, and hence, only local message delivery

is possible.

3. NetworkMessenger startup: This is the second service initialized by the Kernel. As

noted in Section 3.3.5, the NetworkMessenger is responsible for sending and receiving

messages on the network, and hence, it must have a network address, such as an

IP address, to receive messages. As part of its initialization, the NetworkMessenger

registers itself with the ProfileRegistry and specifies the local network address at which

it can receive messages over the network.

On receiving a registration message from the NetworkMessenger, the ProfileRegistry

then performs the following actions:

• It completes the partial delivery addresses in its repository with this network

address.

• It sends a message to the NetworkMessenger to be broadcast on the local network.

This is received by other NetworkMessengers and delivered to corresponding Pro-

fileRegistry components. In particular,

– A Global ProfileRegistry broadcasts an announcement message to the local

ProfileRegistries.

– A Local ProfileRegistry broadcasts a discovery message to the global Profil-

eRegistry. This is responded by an announcement from a global ProfileReg-

istry, if one has been initialized.

• When a Local ProfileRegistry receives an announcement, it notes the address of
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the global ProfileRegistry, and sends back an update with all the Profiles that it

has registered.

Since the Global ProfileRegistry has information about all components in the net-

work, and the NetworkMessenger can send and receive messages over the network, all

messages can be properly delivered at this point.

4. Other services: The remaining services are initialized by the Kernel according to the

service configuration. In particular, the NetworkTimeService discovers Bindings of all

its peers on the network by a specialized query to the ProfileRegistry. Of course, such

a query can be used by an application component to discover a set of peers as well.

5. Application components: Finally, the Kernel initializes application components

according to an application configuration file, which specifies the following for each

component:

• The Java class file corresponding to the component.

• The XML document for the initialization state (Memento).

• The total order for initializing components.

4.2 Message delivery

Components can address messages using Profiles such as ServiceProfiles, Bindings, and Taps.

However, as noted in Section 3.3.4, these must be mapped to delivery addresses of the

corresponding recipients for the messages to be delivered in Etherware. Hence, the two issues

that need to be addressed for message delivery are mapping Profiles to delivery addresses

and delivering messages based on these addresses. These issues are now considered in detail.
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4.2.1 Message headers

Messages have headers that contain all the information related to message delivery. This

includes:

• Sender: Delivery address of the sender of the message.

• Receiver: Delivery address of the receiver of the message.

• Filters: Delivery addresses of Filters that need to process the message, as well as

those that have already done so.

A lot of this information is already available in the component Shell of the sender. In

particular, the Binding of the component, which is the local part of the sender’s delivery

address, is provided to the Shell during component initialization. Also, if the message is

part of a MessageStream, or even a response to a previous message, then the receiver’s

delivery address is cached in the Shell. Further, when Filters register with components

or MessageStreams, their delivery addresses are also available as part of the header of the

registration message. Consequently, all this information is automatically filled in the message

header by the sender’s Shell.

The remaining information in the message header, basically the receiver’s delivery address

and the network part of the sender’s delivery address, has to be resolved before message

delivery can be done. However, since this information is distributed among the various parts

of Etherware, they are discovered by the following defaulting mechanisms:

• ProfileRegistry: This is the default recipient of all messages whose receiver’s delivery

address is not known.

• NetworkMessenger: This is the default recipient of all messages whose next re-

ceiver’s delivery addresses have non-local network parts.

The following important points must also be noted:
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• Messages are only delivered if the final receiver’s address can be determined by the Pro-

fileRegistry. In particular, if this cannot be determined, then an appropriate exception

message is sent back to the message sender.

• Messages are delivered to actual message receiver only after they have been through

all the Filters in the message header. Hence, the next receiver of a message is not

necessarily its final receiver.

4.2.2 Delivery mechanism

The following steps constitute the actual message delivery mechanism in Etherware:

1. A component sends a message addressed with a Profile such as a ServiceProfile, Bind-

ing, or Tap.

2. The sender’s Shell fills the message header with the local part of the sender’s delivery

address, as well as the delivery addresses of all the Filters for the message. It also fills

in the receiver’s delivery address if it is known.

3. The sender’s Shell sends the message to the Kernel for delivery.

4. The Kernel encounters one of the following three cases while delivering a message:

• If the receiver’s address is known, and the next receiver is a component managed

by the Kernel, then the message is delivered to this component’s Shell.

• If the receiver’s address is known, but the network part of the next receiver’s

address is not local, then the message is dispatched to the NetworkMessenger for

transmission over the network.

• If the receiver’s address is not known, then the message is sent to the ProfileReg-

istry for look-up.
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5. The NetworkMessenger transmits a remote message over the network. This is then

received by the corresponding NetworkMessenger on the remote node, which in turn

forwards the message to its Kernel for delivery. Of course, since the NetworkTimeSer-

vice (NTS) is added as a filter to each of the NetworkMessengers, the time-stamp of

the message is translated correctly as described in Section 3.3.7.

6. The ProfileRegistry looks up the receiver’s addresses based on the receiver’s Profile in

the message. If a Profile matching the message receiver’s Profile has been registered,

then the corresponding delivery address is filled into the message header, and the

message is forwarded to the Kernel for delivery.

However, if no matching Profile has been registered, then one of the following occurs:

• A local ProfileRegistry forwards the message to the global ProfileRegistry for

further look-up. However, if a global ProfileRegistry has not yet been initialized,

then an exception message is sent back to the sender.

• A global ProfileRegistry sends back an exception message to the sender.

7. The message is received by the next receiver’s Shell, which then removes the header

and forwards it to the component. In particular, if the component is only a Filter

and not the final receiver of the message, then the message header is stored and later

appended when the message has been filtered.

4.3 System evolution

Etherware has fairly efficient mechanisms to support system robustness and evolution. In

particular, the mechanisms for component restarts, upgrades, and migration have been ana-

lyzed through detailed experiments in the testbed. We now describe these mechanisms and

their validating experiments in this section.
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Figure 4.1: Experimental setup
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Figure 4.2: Error in car trajectory due to controller restarts

The modified architecture of the testbed for the experiments is shown in Figure 4.1(a).

The components in this implementation have the same functionality as their in counterparts

in the exploratory implementation of Figure 2.2. The only addition was an Observer compo-

nent used to track the car positions as shown in Figure 4.1(a). As explained in Section 2.2,

the Controller and Actuator were executed on the same computer, while all other compo-

nents were executed on different computers. Also, in all experiments, the goal was to make

the car traverse an oval trajectory as shown in Figure 4.1(b).

4.3.1 Component restart

The goal of this experiment was to analyze Etherware mechanisms for robustness. In particu-

lar, the ability to restart a faulty component was studied. To accomplish this, the Controller

component was forced to be restarted several times as the car was being driven along the

trajectory shown in Figure 4.1(b). Faults were injected at random by performing an illegal

operation (divide by zero) in the Controller. Such a fault caused the Controller to raise an
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exception and be restarted by Etherware.

The deviation of the actual car trajectory from the desired trajectory, as a function of

time, is shown in Figure 4.2. Restarts are indicated by pointers, and the accompanying

numbers indicate, in milliseconds, the time for each restart. These are times-tamps at

the Observer and include communication and synchronization times between the restarted

Controller and the Observer.

For the first 60 seconds, the car operated without restarts and tracked the trajectory

with an error of less than 50mm. The first restart occurred at about 70 seconds into the

experiment, and was followed by two other restarts in the next 20 seconds. The last three

faults were also handled by the restart mechanisms in Etherware. The plot in Figure 4.2

indicates that the error in the car position during these restarts was well within the system

error bounds during normal operation.

Two Etherware mechanisms contributed to the quick recoveries. First, the Shell inter-

cepted exceptions thrown due to Controller faults, and maintained the MessageStreams to

the other components across the restarts. Second, before termination, the Controller state

was check-pointed according to the Memento pattern, and this check-pointed state was then

used for proper re-initialization.

To illustrate the effectiveness of these two mechanisms, the Etherware process managing

the Controller was restarted at about 100 seconds after the start of the experiment. As shown

in Figure 4.2, the subsequent restart of the Etherware process with the Controller took about

three seconds. During this time, the actual car trajectory accumulated a large error of about

0.8 meters with respect to the desired trajectory. This clearly illustrates the necessity for

efficient restarts. Furthermore, even though the Controller restarted after three seconds,

additional error was accumulated before recovery. This was so because the Controller had

to reconnect to the other components, rebuild the state of the car, and bring it back on

track. This demonstrates the improvement that has been achieved by the check-pointing

mechanism in Etherware.
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Figure 4.3: Error in car trajectory due to controller upgrade

4.3.2 Component upgrade

This experiment was used to study the mechanisms in Etherware for upgrading components

dynamically. To test this, the car was initially controlled by a coarse Controller that operated

myopically. Etherware was then commanded, at about 90 seconds after the start, to upgrade

the coarse Controller to a better model predictive Controller. The plot of Figure 4.3 clearly

shows the improvement in the car operation after update. As shown in the figure, the

involved transients are well within the system error bounds.

This functionality is due to three key Etherware mechanisms. First, the Strategy pattern

allows one Controller to be replaced by another without any changes to the rest of the system.

Second, the Shell is able to upgrade the Controller without affecting the MessageStreams to

other components. Finally, the Memento pattern allows the coarse Controller to check-point

its state before termination. This is then used to initialize the new Controller. The first

mechanism allows for simple upgrades, while the other two mechanisms minimize the impact

of the upgrade on other components as well as the operation of the car.
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Figure 4.4: Error in car trajectory due to controller migration

4.3.3 Component migration

Etherware support for component migration was analyzed in this experiment. As before,

the error in the car trajectory is shown in Figure 4.4. The large spike at the beginning of the

graph was the transient error due to the car trying to catch up with its trajectory initially.

This is achieved at about 10 seconds into the experiment, after which the car follows the

trajectory within an error of 50mm. As shown in the Figure, the Controller was migrated

from one computer to another at about 45 seconds into the experiment. Clearly the error

introduced due to migration is well within the operational error of the car.

Two Etherware mechanisms enable migration. First, the Memento pattern allows the

current state of the Controller to be captured upon its termination. Second, the primitives

in the Kernel on the remote computer allow a new controller to be started there with the

check-pointed state of the old Controller.

These experiments demonstrate the effectiveness of Etherware mechanisms that support

robustness and software evolution in networked control systems.
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4.4 Etherware performance

A comparison [58] of Etherware with other middleware for real-time and networked control

systems is presented in this section. In particular, the performance of Etherware is compared

with two widely available implementations of CORBA: ROFES 0.3b [61] and JacORB 2.0

[62]. ROFES supports the Minimum CORBA [32] and part of the Real-Time CORBA

1.1 [63] specifications, while JacORB supports the CORBA 3.0 specification.

For the comparison experiments, the Control Time Protocol (CTP) described in Section

3.3.7 was implemented in all three middleware, and a reference implementation in Java using

sockets was used as the baseline. The configuration was basically a client pinging a remote

server at a frequency of 10 Hz. The time line for this was as shown in Figure 3.9. The

client periodically sent pings to the server, which responded with a time-stamp tp. Each

ping packet and its response had about 1500 bytes of “payload” data to simulate actual

packets in the system. At run time, only time stamps were collected and recorded in log

files, while the CTP estimation algorithm was run off-line on the accumulated log files.

Hence, the delays in the experiments were mainly due to overhead of the middleware and

their communication protocols.

Three scenarios were considered for connecting the client and server: a wired network, an

ad hoc wireless network (single hop), and a wireless network in base-station mode (two hops)

- a fairly standard configuration for IEEE 802.11 wireless networks. The wired network was

a 10 Mbps Ethernet, the IEEE 802.11 wireless networks used Cisco Aironet 350 series cards,

and the base station was an ORiNOCO AP-1000 access point. All code was executed on

Pentium III machines with Red Hat Linux 9.0 as the operating system. The wired networks

were isolated LANs, but each wireless network scenario had cross traffic from the other

scenario, neighboring labs, and the campus network.

The distribution of round trip times for pings in the three cases are shown in Figures

4.5, 4.6, and 4.7, and the corresponding statistics are tabulated in Tables 4.1, 4.2, and 4.3
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Figure 4.5: Distribution of round trip times for Ethernet
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Figure 4.6: Distribution of round trip times for one-hop wireless network
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Figure 4.7: Distribution of round trip times for two-hop wireless network (base-station mode)
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Min Mean Std Dev Median
Java 0 0.2258 1.1026 0
JacORB 1 2.6532 2.1488 2
ROFES 0 5.3765 4332 3
Etherware 14 17.4990 1.3575 18

Table 4.1: Round trip time statistics for wired link

Min Mean Std Dev Median
Java 1 13.1169 12.9551 8
JacORB 16 29.6037 9.3428 28
ROFES 16 38.7757 11.9378 38
Etherware 17 28.9885 11.0453 25

Table 4.2: Round trip time statistics for wireless link (one hop)

respectively. Since the delays are fairly small in the Ethernet case, Figure 4.5 and Table

4.1 essentially illustrate the overhead in the implementations of the various middleware. In

particular, the relatively high mean delay for Etherware is mainly due to the overhead of the

XML implementation in Java. Consequently, the remaining comparisons clearly favor the

CORBA implementations. Interestingly, however, in the one-hop wireless link case shown in

Figure 4.6 and Table 4.2, we see that the three implementations have comparable minimum

delays, while Etherware has the lowest mean delay. This is further accentuated in the base-

station case of Table 4.3.

The impact of these statistics on the estimation algorithms of CTP is also interesting.

In particular, the long term behavior of the estimate error err = tp − test can be studied by

considering its exponentially weighted moving average e of err, which is computed iteratively

as follows:

Min Mean Std Dev Median
Java 2 26.5024 23.9759 18
JacORB 14 45.8100 25.2337 36
ROFES 14 50.1266 23.7878 44
Etherware 18 39.8066 17.7430 35

Table 4.3: Round trip time statistics for Base station mode (two hop)
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Figure 4.8: Comparison of mean error for the three scenarios

et =
√

λe2
t−1 + (1 − λ)err2

t

Since the error err = tp−test could be positive or negative, the squared error err2
t at time

t is used in the above equation. Also, et is the average up to time t. In addition, it must be

noted that the CTP implementation assumed symmetric delays, which implies d1 = d2 = d

in Figure 3.9.

The plots with λ = 0.9995 are shown in Figure 4.8. The first plot shows the performance

of the estimator in the wired network case. In the steady state, the errors are similar and

quite small (less than 3 ms). The primary cause for error in this plot is jitter. However, the
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error is bounded by round-trip time. Thus, we see that the small jitter in Etherware allows

it to have a tight error bound despite a larger average round-trip time. The initial transient

seen in the Etherware plot is due to startup contentions. The second and third plots show

performance comparisons for the one-hop and two hop wireless cases, respectively. We see

that performance degrades in all cases, but the degradation of Etherware is lesser than that

of the CORBA implementations.

The principal reason for the relatively better performance of Etherware in these exper-

iments is the additional option of using UDP based communication to trade-off reliability

for lower delays. In particular, this option is not available in the other middleware as the

CORBA specification specifically mandates the use of TCP due to RPC based communi-

cation semantics. As discussed in Section 3.1, and demonstrated in these experiments, the

ability to trade-off reliability for lower delays is very important for networked control appli-

cations. It must be noted, however, that option does not significantly affect single processor

systems and wired networks as seen in Figure 4.5 and Table 4.1, and more importantly, as

established by the success of Real-Time CORBA for various control applications [22].

The main point is that networked control applications need the ability to trade-off reli-

ability for lower delay in communication over networks, and the Etherware support for this

trade-off is crucial for such applications.
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Chapter 5

ETHERWARE BASED
APPLICATION DESIGN

Etherware is a message oriented component middleware for networked control systems. The

primitives in the Etherware programming model have been designed specifically for con-

trol applications, and its architectural trade-offs have been engineered for such systems.

Consequently, systems such as the traffic control testbed described in Section 2.1 can be

architected and implemented using Etherware in a straightforward fashion. To emphasize

this, and illustrate application development using the associated middleware framework, an

Etherware based design and re-implementation of the traffic control testbed is presented in

this chapter.

Etherware has been designed as domainware for networked control. Several forcing func-

tions of this domain have been exploited in its design as described in Section 3.1. However,

application design is still constrained by these forcing functions, and in particular, Ether-

ware based applications must have properties such as fault tolerance and local temporal

autonomy for effective operation. In practice, these constraints can usually be addressed by

using appropriate design patterns for control applications. In this chapter, we describe two

such design patterns - state estimation and receding horizon control - that have been used

in the Etherware based implementation of the traffic control testbed [64]. We also present

a detailed analysis of the real-time performance of their implementation, and validate this

with an experimental case study in the testbed [65].
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Figure 5.1: Software architecture of the Etherware based testbed implementation

5.1 Testbed redesign

The first implementation of the traffic control testbed, described in Section 2.2, was based

on operating system level primitives such as processes, threads, and sockets [54]. This

endeavor served as a testing ground for trying out various programming models, and choosing

primitives that were most suitable for such systems. In particular, the various components

and sub-systems had to be designed from scratch, and their interactions had to be carefully

engineered for the desired performance. Hence, this served as the basis for the development

of both Etherware itself, as well as an Etherware based implementation of the testbed.

The software architecture of the redesigned testbed is shown in Figure 5.1. Since the

various entities in the exploratory implementation of Figure 2.2 had well-defined function-

alities and interfaces, they were directly implemented as Etherware components. Although

the image processing algorithm and the actuation interface were still implemented in C++

for library support, they were also encapsulated in Etherware based components for system

integration. In addition, all the components were implemented passively, and the notification

service described in Section 3.3.2 was used for periodic activation.

The data streams from the VisionSensors to the VisionServer were implemented as Mes-

sageStreams as shown in Figure 5.1. In particular, this allowed the ability to trade-off reli-
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ability for low-delay. Similarly, the control streams from the Supervisor to the Controllers

were also implemented as MessageStreams. Further, the interactions between the Controller

and the Actuator were implemented as two different MessageStreams: a control stream from

the Controller to the Actuator, and a feedback stream conversely. Finally, the feedback

stream from the VisionSensor to the Supervisor and the Controllers was implemented as a

MulticastStream.

The above description illustrates how the design of the testbed was directly implemented

using the primitives of the Etherware programming model presented in Section 3.2. In

addition, this design can also be evolved quite naturally using MessageFilters and component

Profiles as demonstrated in Chapter 6.

5.2 Robustness in control systems

The ability to tolerate faults is the basis for safe and reliable operation of control systems,

and robustness is the basic system property that ensures this. In general, system faults

are application specific, and the corresponding design considerations for robustness have to

be suitably tailored. However, many of these faults are common to most applications, and

the corresponding solutions can be reused effectively. In this chapter, we address two such

common kinds of faults: communication faults and software failures, and begin with a brief

overview of related work in this section.

Communication faults primarily manifest as delays and losses of messages between soft-

ware components. Consequently, the problem of tolerating delays and errors, particularly

in sensory feedback, has been addressed quite extensively. For instance, Kalman Filters [6]

are widely used as state estimators to overcome noisy feedback. In addition, the effect of

delays on the operation and stability of a controller has been studied [66], and the use of

a state estimator to stabilize controllers in the presence of random delays has also been

analyzed [67].
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Software failures, on the other hand, can have a variety of symptoms and effects - from er-

roneous software computations to component failures. Simplex [68] is a popular architecture

that uses analytical redundancy to provide robustness against such failures in controllers.

In Simplex, two controllers are employed: a simple robust controller, and a complex and

possibly defective controller. The complex controller usually has better performance and

operates the system most of the time. However, a supervisor constantly monitors the state

of the system and can quickly switch to the simple controller if the system approaches in-

stability. This is a simple and uniform approach to address software failures in the complex

controller. However, Simplex may not always be applicable as some control systems may

not have such a back-up controller. Also, Simplex does not address communication faults,

and the problem of replica determinism in real-time systems is quite challenging [69].

Traditional fault-tolerance mechanisms in distributed control systems have relied primar-

ily on redundancy and replication of components [70] [71]. While replication is an effective

technique against hardware failures and transient errors, it is usually quite resource inten-

sive, and in particular, does not address software errors that would cause all replicas to fail

on identical inputs [72]. Proactive recovery [73] is another technique used to pro-actively

prevent errors such as failures due to resource exhaustion. However, it is difficult to predict

such errors related to transients or software bugs. Consequently, restart based recovery may

perhaps be the only viable solution in such instances. Indeed, popular techniques such as

software rejuvenation [74] and recovery-oriented computing [75] [76] are based on restarts of

individual components for system recovery.

The importance of low-cost fault-tolerance techniques without the use of redundant con-

trollers has been considered before [77] [78]. However, fault tolerance in distributed control

systems needs to be addressed at a system-wide level instead of just at the level of an in-

dividual controller [79] . In the following, we adopt this approach to fault-tolerance, where

we guarantee correct system operation, even in the presence of communication delays and

restarts of individual components.
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Figure 5.2: A simple control loop

5.3 Design patterns for robustness

Control systems are characterized by components operating in control loops. In networked

control systems, such loops may involve communication over network links as well. For

instance, a simple control loop is shown in Figure 5.2, where feedback from the sensor to

the controller and controls from the controller to the actuator are transmitted over network

channels.

Networked control loops involve many failures that need to be tolerated for effective op-

eration. For instance, communication channels in best effort networks, and particularly in

wireless networks, are prone to delays and packet losses. Also, the failure of a remote compo-

nent, such as the controller in the above example, could potentially disrupt the operation of

the entire system. Even in the presence of efficient fault tolerance and restart mechanisms,

the involved transients could still lead to system instabilities.

Local temporal autonomy is a key property that can be used to address most of the above

problems. It is the ability of components to tolerate disruptions in other components for a

certain amount of time, and with graceful degradation. This not only shields components

from the faults listed above, but also provides precious additional time to recover from such

faults as well. In this section, we present two design patterns that use this property to

address faults in each of the communication links in Figure 5.2.
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Figure 5.3: State estimation design pattern

5.3.1 State estimation

Sensory feedback from the sensor to the controller is the basis of feedback control. In digital

control design, such feedback is expected to be periodic with hard real-time guarantees.

However, such guarantees cannot be provided over best effort and wireless network channels.

Hence, to apply digital control theory in the design of networked control systems, this

problem has to be addressed effectively.

State estimation [59] is a widely used technique in control systems to overcome noise

in sensory feedback. For this, a state estimator maintains a model of the plant, which it

then uses to predict plant behavior based on received feedback and applied controls. Due

to modeling errors, the error in state estimates grow with time. However, regular feedback

improves these estimates and keeps the error bounded. In particular, the state estimator can

take in feedback with delays and jitter, and still provide reasonably accurate and periodic

state estimates.

The essence of the state estimation design pattern is to use a state estimator at the

controller to tolerate faults in sensory feedback as shown in Figure 5.3. Since the state

estimator can provide reasonably accurate estimates without feedback for a limited duration,
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Figure 5.4: Receding horizon control design pattern

this pattern increases the local temporal autonomy of the controller. In addition, the state

estimator also provides periodic estimates to the controller enabling the application of digital

control theory in networked control systems.

5.3.2 Receding horizon control

Traditional digital controllers operate periodically, computing one set of controls for every

period. These controls are then sent to the actuator, which effects them in the plant. This

simple design works well in practice when the controller and the actuator execute on the same

computer. However, when they communicate over a network link, then the above design is

vulnerable to the attendant faults of networked operation. In particular, when periodic

controls do not arrive from the controller due to software or communication failures, then

the actuator has no controls to effect. In such cases, actuators may have default fail-safe

controls that maintain system safety. While this approach may work with occasional failures,

it is certainly quite sub-optimal in most networked control systems.

Under the receding horizon control design pattern, the controller computes a sequence

of future controls during every period. These controls are then stored in a control buffer
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Figure 5.5: Design enhancements in the lower level control loop of the testbed

at the actuator as shown in Figure 5.4(b). Hence, if a subsequent control update from the

controller is delayed or lost, then the actuator can use the pre-computed controls from the

control buffer. Consequently, this improves the local temporal autonomy of the actuator,

and promotes graceful degradation in the presence of controller failures.

Two important points regarding receding horizon control must be noted. First, the

controller needs a model to estimate future plant behavior so that it can compute a sequence

of controls. One interesting option is to use the state estimator itself as a state predictor

since the estimator already has a model of the plant. Alternatively, control laws such as

model predictive control [27], which automatically compute sequences of future controls,

may also be employed. Second, since the actual controls effected by the actuator are not

known in advance, this information must be fed back to the controller and its state estimator

as shown in Figure 5.4(b).
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5.3.3 Testbed design enhancements

The state estimation and receding horizon control design patterns have been applied in both

the control loops of the testbed shown in Figure 5.1. In particular, the design enhancements

to the lower level control loop are shown in Figure 5.5. The enhanced Controller uses a

state estimator to filter the sensory feedback from the VisionServer. Also, the Controller

computes and sends a sequence of future controls to the Actuator, which then stores them in

a control buffer according to the receding horizon control design pattern. The Controller in

the testbed uses model predictive control [27] as noted in Section 2.2. Hence, it automatically

computes a sequence of future controls that are then sent to the Actuator. In particular,

the state estimator and the Controller use the same plant model.

In the rest of the chapter, we analyze and experimentally validate the above design

enhancements in the lower level control loop of the testbed.

5.4 Analysis of testbed enhancements

The design enhancements to the lower level control loop in the testbed, shown in Figure 5.5,

improve system robustness by increasing the local temporal autonomy of components. In

effect, the deadlines for sensory feedback and control updates are extended, and the overall

system has graceful degradation in the presence of communication and software failures. We

now analyze these deadline extensions, and in particular, characterize the worst-case and

average-case degradation in system performance during failures.

The following factors determine the extension of deadlines for the controller in the en-

hanced control loop:

1. System tolerance and operational error bounds for the plant.

2. Growth of error in plant state predictions.
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3. Computational resources available at the controller to compute sequences of future

controls during each period.

4. Size of the control buffer at the actuator to store the future controls.

5. Communication bandwidth between the controller and the actuator to send a sequence

of future controls during each period.

The last three factors depend on system deployment constraints and can be engineered

as necessary. However, the growth of prediction error is determined by the plant model, and

the future control horizon is essentially the interval up to which this error is within system

tolerance. Consequently, in the rest of the chapter, we focus primarily on the second factor,

and analyze how deadlines have been extended in the testbed due to this. Finally, since both

state estimation and receding horizon control use the same plant model in the testbed, we

note that the following analysis applies to deadline extensions for sensory feedback as well.

5.4.1 Car Model

In the traffic control testbed, we model a car by considering its position and orientation on

the track. More specifically, the state of a car xt at time t is given by xt = [xt yt θt]
T , where
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xt and yt are the coordinates of the center of the car, and θt is its orientation. Further, the

car has a speed st and steering αt at time t.

The evolution of car state xt in one time step is shown in Figure 5.6. The orientation of

the car after one time step is given by

θt+1 = θt + h ∗ αt + wθt

where h is the length of a time-step, and wθt is the update error due to noise. During this

interval, the car is moving at speed st. Further, we assume that h is small enough so that the

car moves at an average orientation of ϑt = θt + (αt/2) during the interval. Consequently,

the car has a displacement of h ∗ st at an orientation of ϑt. These relations are summarized

in the following equation.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xt+1

yt+1

θt+1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 hst cos ϑt

0 1 0 hst sin ϑt

0 0 1 hαt

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xt

yt

θt

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

wxt

wyt

wθt

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.1)

Equation (5.1) can be written more compactly using vectors as follows:

xt+1 = Mtxt + wt (5.2)

where xt is the state of the car, Mt is the car model, and wt is the update error, all at time

t. Also, the state has been extended to xt = [xt yt θt 1]T to account for state evolution.
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5.4.2 Worst-case error bound

During normal operation, the state estimator maintains x̂t, an estimate of the state xt,

which evolves according to the equations

x̂
(−)
t+1 = Mtx̂t (5.3)

x̂t+1 = f(x̂
(−)
t+1,yt+1) (5.4)

where yt+1 is the observation (sensor feedback) at time t + 1 and is used to correct the

estimate using the correction f in (5.4). This is a common approach to account for the error

term wt in (5.2) [80].

During state prediction, however, there are no observations, and x̂t evolves according to

x̂t+1 = Mtx̂t (5.5)

Since the error term wt in (5.2) cannot be accounted for in the prediction update of (5.5),

the prediction error x̃t = xt − x̂t grows with time. In particular, if x̃0 = 0, and the error

term can be bounded as wt ≤ wmax, then the prediction error grows as

x̃t+1 ≤ wmaxt (5.6)

due to the special structures of Mt (upper triangular form) and wt (last component is zero)

shown in (5.1). This is equivalent to specifying uncertainty in the prediction of the car

position by a bounding box whose area grows linearly with time. Consequently, if the

acceptable uncertainty is x̃max, then the prediction is acceptable for all time t with

x̃t+1 ≤ wmaxt ≤ x̃max (5.7)

Hence, the deterministic (worst case) upper bound on the prediction error grows linearly
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with time. Further, since prediction is equivalent to estimation without observations, the

same analysis applies for computing deadlines for the sensor as well. In particular, the

maximum value of t satisfying (5.7) is the hard real-time deadline for sensory feedback.

5.4.3 Mean error bound

The deterministic analysis of Section 5.4.2 can be used to compute hard-real time deadlines

using (5.7). In particular, this bound uses the maximum error w̃max, and hence the prediction

error bound grows linearly with time. However, if the error w̃t is “well behaved”, and we

can tolerate occasional failures, then we can obtain significantly higher deadline extensions.

In equation (5.2), the exact values of wt cannot usually be determined in practice, and

only the probability distributions are known. Hence, xt and wt are modeled as random

variables in the car model as well as in the updates of (5.3), (5.4), and (5.5). Further, we

may reasonably assume that the error terms wt are independent and identically distributed

(i.i.d) with mean zero. We can then use (5.2) and (5.5) to compute the mean squared error

as follows:

E[x̃T
t+1x̃t+1] = E[(x̃T

t MT
t + wT

t )(Mtx̃t + wt)]

= E[x̃T
t MT

t Mtx̃t] + E[wT
t wt] + E[x̃T

t MT
t ]E[wt] + E[wT

t ]E[Mtx̃t]

= E[x̃T
t MT

t Mtx̃t] + E[wT
t wt] (5.8)

The expectations factor out in the first step since x̃t is independent of wt, and the last

two terms disappear in the second step as wt has mean zero.

Equation (5.8) is a recursion in x̃t. Assuming x̃0 = 0, we can solve the above recursion

to get x̃t+1 in terms of the error terms wj as
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E[x̃T
t+1x̃t+1] = E[wT

t wt] +

t−1∑
j=1

E[w̃T
j (

t∏
i=j+1

MT
i )(

t−(j+1)∏
i=0

Mt−i)w̃j ] (5.9)

Due to the special structures of Mt (upper triangular form) and wt (last component is

zero) shown in (5.1), each term in the above summation reduces to E[wT
j wj]. Further, since

the wj were assumed to be i.i.d, we have E[wTw] = E[wT
j wj ] for all j. Consequently, (5.9)

simplifies to give

E[x̃T
t+1x̃t+1] = E[wTw] ∗ t (5.10)

We can now conclude that the mean prediction error ε grows as the square root of time

t, i.e.,

ε =
√

E[x̃T
t+1x̃t+1] = k

√
t (5.11)

for constant k. In practice, this gives much higher deadline extensions than (5.6) as we

demonstrate in Section 5.5.

The key result in this section is summarized in the theorem below.

Theorem 5.4.1 For the car model given by (5.2), the worst-care error grows linearly with

time. Further, if error terms wt are independent and identically distributed (i.i.d) with mean

zero, then the mean error grows as the square root of time.

Hence, to operate the system with the hard guarantee that a car will stay within the

system tolerance, the deadline is the largest t for which (5.7) is satisfied. However, if occa-

sional failures can be tolerated, then using (5.11) gives much larger deadline extensions in

practice.

5.5 Experimental validation

This section presents a case-study to validate the conclusions of Section 5.4.
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5.5.1 Case study: Motorcade

Through our experiments we intend to answer the following questions:

1. Does the empirical growth in state prediction error correspond to (5.11) in Section 5.4?

2. What is the deadline extension achieved?

3. Is our new design indeed tolerant to delayed restarts of sensors and controllers?

To answer these questions, we consider a motorcade scenario with two cars: a leader and

a follower. The cars move around in an elliptical trajectory with a major axis of length 2.8m

and a minor axis of length 2m. The cars themselves are about 225mm long, travel at an

average speed of 371mm/s, and take about 21.7 seconds for one iteration of the trajectory.

An elliptical trajectory was chosen since it exercises different steering angles at different

points.

The main goal is to maintain a separation of about 400mm between the centers of the

cars, i.e., about 175mm between their bumpers. Hence, the deviation of the leader car from

its trajectory is constrained to be less than half the separation between the cars in order to

avoid collision. To ensure this, we set the maximum allowable deviation for the leader car

to be 50mm.

Error in state prediction

In the first experiment, we seek to answer the first two questions posed in Section 5.5.1 by

measuring the growth of error in state prediction as a function of time. For this, the leading

car is driven along the elliptical trajectory, and a separate state estimator for the car is

executed in parallel. At a designated point, the feedback to the state estimator is turned

off, after which the estimator essentially operates as a state predictor. However, the actual

car is still operated by a controller with complete feedback. Hence, the distance between the

actual position of the car and the predictions of the state estimator is the growth of error
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in state prediction. Figure 5.7 plots the prediction error for six different points along the

elliptical trajectory of the motorcade.

As shown in Figure 5.7, the prediction error grows as the square root of time. In fact,

the figure also shows the solid curve y = k
√

x, where k = 1.0769 is the value for which

this function has the least mean squared error from the prediction error curves. This is in

accordance with the average case analysis of Section 5.4.3 and validates (5.11). Also, the

maximum difference between calibrated speeds is 127mm/s. Assuming this to be the worst

case error in (5.7) for the duration of two seconds, Figure 5.7 also shows the growth of the

worse case error bound with time.

To determine the deadline extensions, we observe when the various error curves hit the

tolerable error bound of 50mm in Figure 5.7. The original deadline for the sensor and the

controller was 100ms - the operating period of the lower level control loop. However, the

design enhancements presented in this chapter extend even the worst case deadline to 400ms.

If occasional failures can be tolerated, then the average error curves show that this deadline

can be further extended to 1300ms. In particular, these extended deadlines are more than

sufficient to tolerate most delays in the network.

Effect of delayed restarts

The second experiment addresses the third question raised in Section 5.5.1. In this exper-

iment, both cars in the motorcade have trajectories that make them go along an ellipse

with a separation of about 400mm between their centers. Faults are then injected into the

controller (cf. Figure 5.5) of the leader at random points in the trajectory. The subsequent

restart of the controller is also delayed for random intervals to observe the behavior of the

car based on future controls stored in the control buffer at the actuator. Note that restarting

the vision sensor would have a similar effect on the behavior of the car, since in either case

the controls are being computed by using the same plant model.

The distance between the leader and the follower is shown in Figure 5.8, and the cor-
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responding deviation of the leader from its trajectory is plotted in Figure 5.9. The initial

increase in the distance between the two cars is due to the cars catching up with their tra-

jectories during start-up. This transient is resolved in about 10s, and the cars stay quite

close to their trajectories for the rest of the experiment.

The effect of restarting the controller of the leading car is clearly reflected in both figures.

In particular, for restart delays of less than 1.3 seconds, the distance between the cars does

not vary by more than 50mm. This is consistent with the behavior observed in Figure

5.7. However, when the restarts are delayed for longer intervals, we see that the distance

reduces as the follower comes closer to the leader. In particular, for the two second restart

at about 100s into the experiment, the future controls in the control buffer of the actuator

are exhausted and the car stops. Consequently, we see that the cars collide as expected.

We conclude that the experimental results are in conformity with the conclusions of

Section 5.4, and more importantly, the design patterns presented in this chapter effectively

address the forcing functions of the networked control domain.
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Chapter 6

SAFETY AND SECURITY
CONSIDERATIONS

Control systems interact with the real world, and hence, safety is a central concern in their de-

sign and operation. Indeed, safety considerations influence many of the engineering decisions

and trade-offs in systems design. For instance, multimedia applications are typically exe-

cuted as soft real-time tasks, while mission critical systems generally require hard-real time

guarantees and over-provisioned or dedicated resources. Also, appropriate safety measures

can usually be incorporated at different levels in application design as well. For example, in

the traffic control testbed of Figure 5.1, a default fail-safe control such as a stop command

is an effective safety measure in the Actuator, while gridlock free scheduling of cars by the

Supervisor addresses system-wide safety concerns. In general, such safety features can and

ought to be incorporated into components and sub-systems as an integral part of control

system design.

While mechanisms such as collision avoidance can be employed during normal operation,

it may not be useful, or even practical, to enforce some safety measures all the time. For

instance, if there are not too many cars in the traffic control testbed, then the probability

of gridlocks occurring is quite small. In this case, low overhead gridlock detection can be

used during normal operation, so that higher overhead resolution algorithms are employed

only when a gridlock is detected. Such an approach is quite valuable as necessary safety

can be enforced with low operating overhead and much better scalability. In this chapter,

we present an Etherware based Control System Incident Response (CSIR) framework that

allows such mechanisms to be implemented as Strategies for Incident Response (SIRs) in

control systems.
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Many security problems can also be addressed in a similar fashion; low overhead detec-

tion mechanisms can be used during normal operation, and more expensive responses can

be triggered only when a security failure is detected. However, care must be taken while

enforcing security responses in control systems as the associated override mechanisms must

respect underlying plant dynamics. In particular, some of the underlying safety measures

may still need to be preserved during security overrides.

We capture the above insight by introducing the principle of safety preserving security

overrides in the following, and establish the importance of this principle through a detailed

case-study in the testbed. In the process, we also describe safety and security mechanisms

in the testbed, and illustrate the ease with which these can be integrated into our Etherware

based testbed implementation.

6.1 Control System Incident Response

Complex control systems usually have imprecise models of their plants. Consequently, during

normal operation, such systems may occasionally get into states that violate the operational

constraints of control algorithms in the system. For instance, in a distributed traffic control

system, a small segment of the road network may become congested or blocked due to an

accident. Such situations are usually exceptional in that they are expected to occur quite

infrequently, but additional strategies would be required to bring the system back to normal

operation. Such an exceptional situation is called an incident, and an associated response

strategy is called a Strategy for Incident Response (SIR).

Control System Incident Response (CSIR) is a framework that allows strategies address-

ing incidents in control systems to be correctly and systematically incorporated into the

system architecture. In particular, the CSIR framework operates in conjunction with the

regular control system, and enables the addition of SIRs with minimal impact to the rest

of the system. For example, using a CSIR framework, an SIR to appropriately manage
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congested traffic could be added to respond to accidents in traffic control systems.

6.1.1 Rationale

A central concern in the CSIR based approach is the following: if incidents in control systems

can indeed be modeled, then why should SIRs not be part of the normal algorithms in

control systems. For instance, in a traffic control system, why wouldn’t managing traffic

around accidents be an active function of a high-level supervisor? To address this concern,

we provide the following justifications for CSIR:

• System tractability: Plants are usually modeled at different levels of detail in different

layers of a control hierarchy. This allows tractable control algorithms to be developed

in the higher control layers, rather than using detailed models in these layers, which

would make their design unnecessarily complex, or even intractable. However, most

incidents are usually detected in lower level detailed models, but require higher level

response. Hence, an SIR would have to be used to recover from such incidents.

We illustrate the above argument using the traffic control testbed in Figure 5.1. The

high-level traffic Supervisor models the traffic network at the granularity of roads, while

the low-level Controllers monitor actual states of their associated cars. This allows

tractable control algorithms to be developed to manage city traffic as well as to control

individual cars. However, the Supervisor cannot completely avoid congestion due to

accidents since it does not directly track or control individual cars. Also, a congested

region cannot be controlled using “normal” traffic rules, as controlling all the cars

through a high-level Supervisor would result in a very centralized system. In particular,

such a design is not desirable due to poor scalability and very high communication

overheads. Hence, an SIR would be necessary to address such a situation.

• Performance trade-off: Although control algorithms based on detailed models may be

tractable in some cases, the amount of information to be processed, and the detail
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of controls to be specified, could still require the system to be operated in a fairly

sub-optimal regime. This is usually not desirable as the cost of such performance

degradation is usually much greater than that associated with a CSIR framework.

For instance, in the traffic control testbed, it is possible for the Supervisor to track and

control individual cars if they moved very slowly. However, such poor performance is

not acceptable during normal operation. On the other hand, this could be the only

recourse in the case of an accident. Hence, it would be sensible to employ an SIR

involving detailed supervisory control only during accidents.

• Modeling limitations: Physical models of the actual plant under control, are imprecise.

Consequently, there is always the potential for incidents due to modeling inaccuracies.

Hence, a CSIR framework would be necessary even if the above considerations are

inapplicable to a system. Since it is impossible to predict or avoid all accidents in

traffic control systems, SIRs are therefore necessary to respond to such incidents.

• Goal changes: Some incidents can potentially change system objectives so that impor-

tant though temporary goals may emerge as a result. In such situations, while it may

be impractical to change the entire system to respond to such a transient goal, using

a CSIR framework would still allow an appropriate SIR to be employed. For example,

giving higher priority to an ambulance would be the most important goal after a traffic

accident. However, once the accident has been appropriately responded to, the system

can return to normal operation where all cars are scheduled with equal priority. A

CSIR framework would allow such an incident to be addressed using an appropriate

SIR.

6.1.2 Strategies for Incident Response

A Strategy for Incident Response (SIR) is the sequence of activities undertaken in response to

an incident in a control system. While the particular set of undertaken activities depends on
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specific incidents, the activities can still be categorized based on the underlying strategy. For

instance, in a Detect-Investigate-Respond (DIR) strategy, the following types of activities

are involved:

• Detection activities: These are used to monitor the plant state for symptoms of inci-

dents. Since these are continuously performed in the system, they usually have very

low impact and overhead. Typical detection activities include monitoring data flows to

detect outliers, and operating special sensors to detect incidents. For instance, activ-

ities such as the detection of road obstructions and accidents directly through special

sensors, or indirectly through traffic congestion, belong in this category.

• Investigation activities: On detection of incidents, further investigative activities are

initiated. These typically involve an initial response, followed by further analysis of

the symptoms to suitably classify the incident and determine appropriate recovery

procedures. These are higher impact activities that might place the affected part of

the system into a safety response mode. For instance, when a road gets congested, the

blocked cars have to be moved out of the road, and the road has to be temporarily

removed from the traffic grid. Concurrently, the cause of the congestion, which could

be a road block, an obstruction, or an accident, should also be investigated so that

appropriate recovery activities can be initiated.

• Recovery activities: Once an incident has been suitably classified, appropriate recovery

activities can then be employed to bring the system back to normal operation. These

are potentially very high impact activities that could affect a larger part of the system.

For instance, once the cause of traffic congestion in a road has been identified, recovery

involves routing appropriate emergency response vehicles with high priority in the

system. Also, when the situation has been addressed suitably, normal scheduling of

traffic is resumed, and the repaired road is eventually added back to the traffic grid.
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In some cases, classification of incidents may not require further investigation, and a

Detect-Respond (DR) strategy may be sufficient. Although many other strategies could

also be deployed in a CSIR framework, in this chapter, we focus mainly on DR and DIR

strategies.

6.1.3 Etherware mechanisms

The Etherware programming model described in Section 3.2 enables the design of fairly

complex safety mechanisms. In particular, the following primitives provide specific support

for the CSIR framework:

• MulticastStream: MulticastStreams are efficient data distribution mechanisms. For in-

stance, the vision based feedback in the traffic control testbed is communicated through

a MulticastStream as shown in Figure 5.1. Detection mechanisms in a DIR strategy

can also be supported quite efficiently through such a feedback MulticastStream. In

particular, detection components can be easily added or removed at runtime without

the involvement of, or impact to, other operational components in the system.

• Filter: Filters intercept messages in MessageStreams. Hence, detection mechanisms

can be implemented as message Filters as well. In particular, they can be added or

removed dynamically in an operational system. Also, since Filters actually intercept

all messages before they reach the destination, recovery activities that involve turning

off, modulating, or even injecting messages into MessageStreams can be implemented

as Filter components. In fact, this functionality is the basis of the CSIR framework

support in Etherware as it allows flexible and extensible management of SIRs.

As we describe later in the chapter, these primitives have been extensively used in the

safety and security mechanisms in the traffic control testbed.
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Figure 6.1: Federated software architecture for the traffic control testbed

6.2 Security in control

A centralized control system is relatively easy to secure as all software is executed on a single

computer. The security considerations regarding access control can usually be addressed

using standard techniques [81], and the desired security mechanisms can be directly enforced

on the corresponding computer. On the other hand, networked control systems can have

much more complex interactions, particularly between distributed control loops, and hence,

standard security techniques may not be directly applicable. In this section, we present the

principle of safety preserving security trade-offs for networked control systems.

6.2.1 A dichotomy of control

Networked control systems are usually composed of many interacting sub-systems, and the

overall system goals can be decomposed into corresponding sub-goals. In particular, such a

hierarchy of goals usually imposes different considerations at different layers of the hierar-

chy. For instance, consider the federated architecture for the traffic control testbed shown

in Figure 6.1. In this configuration, each car has a Local Supervisor that supervises the
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Controller based on individual goals of the car. However, such distributed operation does

not address the global goal of gridlock free operation. Instead, this is addressed by a Global

Supervisor that preempts the Local Supervisor when necessary. This modified architecture

clearly brings out the different considerations at different layers in a control hierarchy.

The part-whole relationship between a networked control system and its sub-systems

illustrated in Figure 6.1 usually leads to the following dichotomy of control:

• Discretionary control: Lower level controllers exert discretionary control over their

corresponding sub-systems. In Figure 6.1, the Local Supervisor operates the car based

on individual goals.

• Mandatory control: Higher level controllers exert mandatory control over the sub-

systems that they supervise. In Figure 6.1, the Global Supervisor overrides Local

Supervisors to avoid gridlocks in the testbed.

This architecture is much more scalable than that in Figure 5.1 since Local Supervisors

can efficiently operate in a distributed fashion, while the Global Supervisor can still address

gridlocks in the system when necessary.

6.2.2 Safety preserving security overrides

The dichotomy of control illustrated in Figure 6.1 is particularly significant for security con-

siderations. During normal operation, most of the sub-systems are operated under discre-

tionary control for efficiency, and the local components have regular permissions. However,

when a security breach occurs, the local permissions need to be reduced, and the system

needs to be operated under mandatory control so that the failure can be addressed much

more effectively.

This characterization is well represented in regular city traffic. During normal operation,

drivers operate their respective cars to accomplish individual goals, and all drivers have
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Figure 6.2: Ordering of Filters in a MessageStream

equal permissions at roads and intersections. However, when a security breach occurs due to

a rogue car driver, mandatory control is exerted by police cars so that they can effectively

bring the situation under control. In particular, during such override, regular cars have

reduced permissions and must yield to police cars.

Control systems typically have many low-level fail-safes to provide safety guarantees

in the system. Some of these guarantees could be critical to system safety, and hence, the

corresponding safety mechanisms must not be preempted by security overrides. For instance,

in the scenario discussed above, drivers must still ensure that they yield safely and do not

cause accidents. Similarly, even though police cars have higher permissions for a road, they

must still wait for other cars to clear out so that they can drive without accidents as well.

This important observation is stated in the following principle.

Principle 6.2.1 The principle of safety preserving security overrides states that higher level

security overrides must preserve lower level safety features as far as possible.

In the remainder, we establish the importance of this principle through a detailed case-

study in the testbed.

6.2.3 Etherware mechanisms

The goals of security are usually addressed by prevention, detection, and recovery activi-

ties [81]. In networked control systems, detection and recovery mechanisms are typically

expressible as SIRs. Hence, the Etherware mechanisms described in Section 6.1.3 are appli-
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cable to these mechanisms as well. On the other hand, prevention measures are typically

part of standard system design and must be considered on an application specific basis.

There is, however, an interesting Etherware feature that can be directly used in applying

the principle of safety preserving security overrides. There can be multiple message Filters

for an entity in Etherware, and such Filters always have a well defined order. For instance,

of the two Filters shown in Figure 6.2, Filter 2 has a higher priority than Filter 1 because

all messages forwarded by Filter 1 are in turn intercepted by Filter 2. As the figure demon-

strates, this ordering between Filters can be used to implement safety preserving security

overrides in a natural fashion.

In general, security overrides are usually safety preserving if they do not preempt the

control exerted by safety mechanisms over system actuators.

6.3 Safety in the testbed

Collision avoidance is the main safety issue that we address in this section. The objective is

to ensure that cars do not collide while accomplishing individual goals. Although the city

traffic Supervisor in Figure 5.1 generates collision free trajectories for cars, some collisions

still occur as Controllers cannot always accurately follow their given trajectories. Also,

obstacles such as stationary cars are not taken into account by the Supervisor and may

cause collisions as well. Further, in other scenarios such as trajectory tracking, Supervisors

may not even provide collision free trajectories. Consequently, there is a need for a simple

and uniform collision avoidance sub-system to ensure system safety in the testbed.

6.3.1 Architecture

The collision avoidance sub-system was developed in collaboration with Hans-Joerg Schuetz

[82]. The software architecture for this sub-system is shown in Figure 6.3. The main compo-

nents of this sub-system are the CollisionAvoidanceFilter (CA Filter) and the CollisionAvoid-
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Figure 6.3: Software architecture for collision avoidance in the testbed

anceSupervisor (CA Supervisor). The CA Supervisor is a centralized entity that monitors

all cars in the testbed, while there is a CA Filter for each operational car.

The collision avoidance sub-system is activated by adding a CA Filter as a Filter to the

control MessageStream from the Controller to the Actuator of each car. Subsequently, the

CA Filter intercepts all controls sent by the Controller, and forwards only those controls to

the Actuator that ensure collision-free operation of the car. In particular, if a sequence of

controls would cause the car to collide with another car, then the CA Filter sends fail-safe

stop controls instead. Also, the pre-clearance computations in the CA Filter are based on fu-

ture car position estimates generated by the Controller as part of the control MessageStream.

The main idea in the above approach to collision avoidance is to ensure that cars move

only in pre-cleared areas. Since these areas are guaranteed to be non-intersecting, the cars do

not collide as long as they are within their respective pre-cleared areas. The pre-clearance of

cars is regulated by the CA Supervisor, and individual CA Filters must request pre-clearance

from it. Since the CA Supervisor maintains the set of all assigned pre-cleared areas, it

can ensure that subsequent pre-clearance assignments cause no collisions. Also, the CA

Supervisor tracks obstacles such as stationary cars that can be monitored by the vision sub-

system, and ensures that pre-clearance assignments do not intersect these obstacles either.
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Finally, CA Filters request sequences of pre-cleared areas so that they do not have to contact

the CA Supervisor on every control update. This improves overall system performance and

scalability.

6.3.2 Algorithms

We now describe the main algorithms implemented in the collision avoidance sub-system

in Figure 6.3. This description will also inform our subsequent analysis to establish safety

guarantees provided by this sub-system.

CA Supervisor algorithm:

1. Connect to the vision feedback MulticastStream to get feedback about the testbed.

2. Wait for updates from the VisionServer and connection requests from CA Filters.

(a) When an update from the VisionServer arrives, update the set of areas occupied

by obstacles in the testbed.

(b) When a CA Filter connects, open a MessageStream to send responses to pre-

clearance requests.

(c) When a request for a sequence of pre-clearance arrives from a CA Filter:

i. Remove the pre-cleared areas previously assigned to the associated car from

the set of pre-cleared areas.

ii. Find the maximum sub-sequence that does not intersect with assigned pre-

cleared areas or perceived obstacles.

iii. Add the maximum sub-sequence to the set of assigned pre-cleared areas.

iv. Send a pre-clearance response to the CA Filter approving the computed sub-

sequence of pre-cleared areas.

CA Filter algorithm:
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1. Connect to the CA Supervisor and create a MessageStream for sending pre-clearance

requests. If a CA Supervisor is not found, then disable collision avoidance for the car.

2. Create a Filter to intercept control messages from the Controller to the Actuator.

3. Wait for intercepted control messages and responses from the CA Supervisor.

(a) When an intercepted control message arrives:

i. If there is pre-clearance for a sufficiently long sub-sequence of controls, then

send the cleared controls to the Actuator.

ii. If there isn’t sufficient pre-clearance for these controls, then request for addi-

tional pre-clearance from the CA Supervisor, and send a stop control to the

Actuator.

(b) When a pre-clearance response arrives from the CA Supervisor, send any pending

cleared controls to the Actuator.

There are a two important protocol considerations in the operation of a CA Filter. First,

the CA Filter sends a pre-clearance request to the CA Supervisor only after it has received

a pre-clearance response for a previous request. This ensures that both the CA Filter and

the CA Supervisor have a consistent view of the pre-clearance for the associated car.

Second, due to possible failure of the CA Supervisor, or packet losses over the network, a

pre-clearance request may not always result in a response. In such a situation, a CA Filter

gets into a deadlock as it awaits a response from the CA Supervisor, which in turn is waiting

for a subsequent pre-clearance request from the CA Filter. This is addressed by having a

time-out at the CA Filter, so that if there is no response for a pre-clearance request for

a given interval of time, then the CA Filter assumes that the request was lost, and sends

another request if necessary. Also, if a sufficient number of consecutive requests do not elicit

response, then the CA Filter assumes that the CA Supervisor is down, and disables collision

avoidance for the car.
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6.3.3 Analysis

We now prove that there are no collisions under the collision avoidance sub-system of Figure

6.3. In the following analysis, we assume that the car position estimates provided by the

Controller in the control MessageStream have bounded error according to Theorem 5.4.1,

and that this is accounted for in the pre-clearance computations of the CA Filter.

Lemma 6.3.1 If the CA Supervisor is operational, then the pre-cleared areas assigned to

different cars do not intersect.

Proof The CA Supervisor is the only component in the system that can assign pre-cleared

areas. Also, the CA Supervisor assigns a pre-cleared area to a car only if it does not inter-

sect with any pre-cleared area previously assigned to other cars in the testbed. Hence, the

pre-cleared areas assigned to different cars do not intersect. �

Lemma 6.3.2 If the CA Filter of a car is operational and not preempted, and the CA

Supervisor is operational, then the corresponding car moves only within its set of pre-cleared

areas.

Proof Firstly, the set of pre-cleared areas stored in a CA Filter is always a subset of

the pre-cleared areas assigned to its car by the CA Supervisor. This follows from the fact

that the CA Filter has at most one pre-clearance request awaiting response from the CA

Supervisor, and the fact that the CA Filter sets its pre-cleared areas only after it receives a

response from the CA Supervisor.

Secondly, since the CA Filter is not preempted by another Filter in the control Mes-

sageStream from the Controller to the Actuator, the controls that are finally executed by

the Actuator are exactly the controls approved by the CA Filter.

Finally, the CA Filter only approves controls that operate the car within the set of pre-

cleared areas for the car. Since the collision avoidance sub-system is active when the CA
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Supervisor is operational, it follows that the corresponding car moves only within its set of

pre-cleared areas assigned by the CA Supervisor. �

Theorem 6.3.3 If the CA Filter of all cars are operational and not preempted, the cen-

tral CA Supervisor is operational, and all obstacles in the track are stationary and can be

monitored by the vision system, then there are no collisions between cars or obstacles in the

testbed under the collision avoidance sub-system.

Proof The pre-cleared areas assigned to different cars do not intersect with each other by

Lemma 6.3.1. Also, since the obstacles are observable, the CA Supervisor ensures that the

pre-cleared areas assigned to a car do not intersect with these as well. Further, since the

obstacles are stationary and accounted for during pre-clearance assignment, there cannot

be any obstacle in any pre-cleared area for any car in the testbed. Finally, since cars move

only within their respective pre-cleared areas by Lemma 6.3.2, they do not collide with other

cars or obstacles in the testbed. Consequently, it follows that there are no collisions in the

testbed under the collision avoidance sub-system. �

6.4 Security case-study

In this section, we present a detailed case-study to validate the principle of safety preserving

security overrides in the traffic control testbed. In particular, the collision avoidance sub-

system described in Section 6.3 serves as the low-level safety mechanism for the case-study.

6.4.1 Scenario

For the case-study, we consider three kinds of cars: regular cars, rogue cars, and police cars.

All these cars operate in a city traffic scenario with well-defined traffic rules. The regular
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cars and police cars are operated by Controllers and Actuators, while rogue cars are operated

manually. The regular cars drive along the traffic grid based on traffic rules, and visit various

points on the grid based on individual goals. The rogue cars are driven arbitrarily, while the

police cars pursue the rogue cars following traffic rules as well.

The security scenario studied is as follows. Initially, there are no rogue cars in the

traffic grid. The regular cars are driven according to individual goals, while the police cars

are parked in strategic locations. A single rogue car is then introduced into the traffic

constituting a security breach. As a security response, the police cars must then pursue the

rogue car as closely as possible while still following traffic rules. Meanwhile, the regular cars

continue driving based on their individual goals.

The two main objectives for the scenario are:

• Safety objective: The safety objective is to ensure collision-free operation of cars.

• Security objective: The security objective is to ensure that police cars pursue the rogue

car as closely as possible.

6.4.2 Architecture

The software architecture for the security case-study is shown in Figure 6.4. This incor-

porates the collision avoidance safety sub-system of Figure 6.3, along with the federated

supervisory control of Figure 6.1. In particular, the security override of local supervision

preserves the safety mechanisms of the collision avoidance sub-system.

The Local Supervisors exert discretionary control, while the Global Supervisor enforces

mandatory control with security overrides. The Local Supervisors for the regular cars plan

routes for their respective cars, based on the discrete bin traffic grid model described in

Section 2.2. Similarly, the Local Supervisors for the police cars plan routes for pursuing the

rogue car, based on the same model. On the other hand, the Global Supervisor implements

both these functionalities, i.e., routing regular cars to individual destinations, and supervis-
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Figure 6.4: Software architecture for the security case-study

ing police cars to pursue the rogue car. In addition, the Global Supervisor also schedules

collision-free trajectories based on the scheduling algorithms described in Section 2.2. Fi-

nally, the Global Supervisor overrides Local Supervisors using the security override Filter

shown in Figure 6.4.

6.4.3 Experiments

We consider four different experiments in the traffic control testbed, based on the scenario

presented in Section 6.4.1. These experiments correspond to the following configurations:

1. No collision avoidance or security override: This corresponds to local discretionary

control of cars without low-level safety.

2. Security override without collision avoidance: This corresponds to global mandatory

control of cars, also without low-level safety.

3. Collision avoidance without security override: This corresponds to local discretionary

control with low-level safety.
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Figure 6.5: Experiment 1: No collision avoidance or security override
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Figure 6.6: Experiment 2: Security override without collision avoidance
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Figure 6.7: Experiment 3: Collision avoidance without security override
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Figure 6.8: Experiment 4: Security override with collision avoidance
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4. Security override with collision avoidance: This corresponds to global mandatory con-

trol with low-level safety as well.

Among the above experiments, we are particularly interested in the second and fourth

experiments, since the former corresponds to security override that overrides safety as well,

while in the latter, the security override is safety preserving. Also, in all the four experiments,

we have two police cars that pursue a single rogue car, and two regular cars that follow pre-

specified goals. The videos for all four experiments can be viewed at our testbed website [83].

Table 6.1: Safety measure for the four scenarios
Collision Avoidance Security Override Time to first collision (seconds)

No No 2
No Yes 10
Yes No No collisions
Yes Yes No collisions

Table 6.2: Security measure for the four scenarios
Collision

Avoidance
Security
Override

Minimum of police cars’ distance to rogue car
Mean distance (mm) Std. deviation (mm)

No No 2182.7 1195.5
No Yes 925.6 833.5
Yes No 913.0 785.0
Yes Yes 766.1 578.2

In Table 6.1, we note the safety performance of the system for all the experiments. In

particular, our safety measure is the time to the first collision in each experiment. Similarly,

we also tabulate the security performance in Table 6.2, where the security measure is the

minimum distance between the rogue car and any of the police cars. In addition, we plot

the graphs for the distance between the rogue and each police car in corresponding figures.

For the first experiment, the distance between the police cars and the rogue car is shown

in Figure 6.5. As the plots illustrate, the police cars are not very successful in following the

rogue car. This is primarily due to the frequent collisions that occur as the cars operate
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without coordination or collision avoidance. In particular, the first collision occurs only 2s

into the experiment as we note in Table 6.1.

The situation is drastically improved in the second experiment when the security override

enforces global supervision. The police cars now have higher priority in the system, and their

improved performance is shown in Figure 6.6. However, while global supervision enforces

collision free car schedules, there still are some collisions due to the slower response times of

the supervisor. In fact, the first collision occurs about 8s into the experiment as Table 6.1

shows.

The safety in the system is further improved by the collision avoidance mechanism in the

third experiment, where there are no collisions as shown in Table 6.1. In fact, as illustrated

in Figure 6.6 and Table 6.2, the overall security performance is even better than in the second

experiment even though there is no security override. However, police cars can be preempted

by regular cars as demonstrated by the degraded performance of the second police car. More

importantly, the lack of global supervision can lead to gridlocks1 in the system and severely

affect security performance.

However, the best performance, in terms of both safety and security, was during the

fourth experiment, where the security override was enforced while preserving low-level safety.

There were no collisions as shown in Table 6.1, and the cars were able to pursue the rogue

car more effectively than in the other three experiments, as shown in Figure 6.8 and Tables

6.2. The global supervisory control ensured that the police cars had a higher priority than

the regular cars. The overall safety was improved due to the collision avoidance mechanism,

and in particular, the absence of collisions also contributed to the better performance of the

police cars.

These experiments demonstrate the importance of preserving low-level safety mechanisms

while enforcing high-level security overrides in control systems.

1Interestingly, at the end of the third experiment, there was a gridlock involving the two regular cars at
a major intersection. This can be seen in the corresponding video at the testbed website [83].
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Chapter 7

PROOF OF SYSTEM-WIDE
SAFETY AND LIVENESS

The main result we prove in this chapter is that, given a road network with single-lane

straight roads of sufficient length and width, angles of lane intersections, a set of cars with

specified steering radii and bounded speed, real-time guarantees for renewal feedback about

cars, and initial positions of the cars, the cars can be driven to their destinations without

collisions (safety guarantee) or gridlocks (liveness guarantee), while staying within the con-

fines of corresponding lanes (tracking guarantee). This result establishes properties of an

overall system involving the convergence of control with communication and computation,

and can serve as a possible prototype of such proofs for other networked control systems.

We begin with an overview of the main result. For the analysis, we consider road networks

with straight line road segments and angled intersections as shown in Figure 7.1. Let L be

the minimum length of the straight line segments, γ the maximum angle of intersection

between any two lane segments, and W the minimum width of lanes. Suppose also that the

cars are equipped with four steering controls: two causing anti-clockwise trajectories of radii

R and R, and the other two causing clockwise trajectories of radii R and R. In particular, let

R < R as shown in Figure 7.2. Denote by s the maximum speed of a car. Finally, suppose

we have a real-time guarantee1 which ensures that the maximum time interval between

successive observations and controls for any car is at most T time units as shown in Figure

7.3. So, if we define

α :=
sT

R

1We will later show real-time scheduling algorithms that guarantee such schedulability
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Figure 7.3: Real-time guarantee ti+1 − ti ≤ T for car control

and β = cos−1(2 cos α − 1), then the real-time guarantee implies that a car moves a distance

of at most D = sT = Rα, before it is next observed and controlled.

Given the above characteristics of individual sub-systems, we show that a set of cars

can be driven to their destinations in the road network without collisions or gridlocks, while

staying within the confines of corresponding lanes, if

L ≥ 2γRR

R − R

W ≥ R(2 − cos β(2 cosα − cos γ))

α ≤ π/3

7.1 Scheduling renewal tasks

The evolution of state prediction error characterized in Theorem 5.4.1 shows that, with

accurate feedback, the error in car trajectory can be bounded if the maximum time interval

between any two consecutive feedback updates can be also bounded. In other words, an

accurate feedback update essentially resets the error in the car position estimate to zero,

and acts as a “renewal point” for the state prediction process. Hence, the real-time guarantee

of interest is to ensure that the maximum time interval between any two consecutive feedback

updates is bounded. In this section, we formalize this requirement as the renewal task model,

and present scheduling policies for renewal task sets.
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7.1.1 Renewal task model

A task is a sequence of jobs that execute on, or are computed by, a specified resource. In

this chapter, we only consider renewal tasks, which are defined as follows:

Definition 7.1.1 In a renewal task, each job has a fixed computation time C, a relative

deadline D, and a new job is released immediately after a previous job is completed. A

renewal task is characterized by its task density ρ = C/D.

In this section, we consider the problem of scheduling a set of n renewal tasks S =

{σ1, σ2, . . . , σn}, on a common resource, starting at time t = 0. Each task σi ∈ S is char-

acterized by its task density ρi = Ci/Di, where Ci ∈ Z+ is the fixed computation time and

Di ∈ Z+ is the relative deadline of each job of σi. In the remainder, we assume that ρi > 0

for all tasks σi ∈ S.

7.1.2 Prior work

Renewal tasks are interesting from a real-time scheduling point of view because they cannot

be properly scheduled by standard non-idling policies such as Earliest Deadline First (EDF)

[84] [7]. We illustrate this with a simple example. Consider a renewal task set S = {σ1, σ2}
with ρ1 = 1/2 and ρ2 = 2/4, by which we mean C2 = 2 and D2 = 4. This task set satisfies

the EDF schedulability criterion ρ1 + ρ2 ≤ 1. The schedule generated by EDF for the task

set S is shown in Figure 7.4.

Since EDF basically schedules the job with the earliest deadline at any given time t, the

first job of task σ1 is scheduled at time t = 0 as it has the earliest deadline. Similarly, the

second job of σ1 is scheduled at time t = 1. At time t = 2, there are two choices since

the corresponding jobs for both tasks σ1 and σ2 have the same deadline. However, choosing

σ1 at t = 2 leads to a deadline miss for σ2 at time t = 4 as shown in Figure 7.4(a), while

choosing σ2 at t = 2 leads to a deadline miss for σ1 at time t = 4 as shown in Figure 7.4(b).

Consequently, renewal task sets cannot be scheduled by EDF in general.
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Deadline missed

0 1 2 3 4

0 1 2 3 4

ρ1 = 1/2

ρ2 = 2/4

(a) Task σ1 chosen at time t = 2

NOTE: Denotes task renewal
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Deadline missed

ρ1 = 1/2
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(b) Task σ2 chosen at time t = 2

Figure 7.4: Renewal task set not schedulable under EDF
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NOTE: Denotes task renewal
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Figure 7.5: Renewal task set partial schedule under PSP

An elegant policy for scheduling renewal task sets has been presented by Han, Lin, and

Hou in [85]. The main idea is to map this scheduling problem into a pin-wheel scheduling

problem and apply well known pin-wheel scheduling algorithms such as Sa, Sx, Sbc, Sby,

and Sxy [86], [87]. However, the schedulability condition is
∑

i σi ≤ 1 only if the Di’s are all

multiples of some Dj, and
∑

i σi ≤ n(21/n − 1) in the general case. In contrast, the policies

presented in this section can all schedule any renewal task set that satisfies
∑

i σi ≤ 1.

7.1.3 A non-resource-sharing policy

All the policies presented in Section 7.1.2 are non-resource-sharing policies since only one

task consumes the resource at a given time. We now consider the Proportional Scheduling

Policy (PSP), which is a non-resource-sharing policy defined as follows.

Definition 7.1.2 Proportional Scheduling Policy (PSP) schedules tasks periodically so that

in each successive interval of unit length, each task gets a time-share that is at least as large

as its task density.

We illustrate PSP using the same task set S = {σ1, σ2} considered in Section 7.1.2,

with ρ1 = 1/2 and ρ2 = 2/4. A partial schedule for this task set under PSP is shown in

Figure 7.5. In this schedule, each successive unit time interval is divided into two equal sub-

intervals, so that σ1 is scheduled during the first sub-interval, and σ2 is scheduled during the
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NOTE: Denotes task renewal

ρi = Ci/Di

Di

t∆

ti ti + Di

Figure 7.6: Partial schedule under PSP for task σi with renewal at tm

second sub-interval. We can easily extend this partial schedule to verify that all deadlines

are satisfied.

We now characterize the schedulability condition under which renewal task sets are

schedulable2 under PSP in the following theorem.

Theorem 7.1.3 A renewal task set S = {σ1, σ2, . . . , σn} is schedulable under PSP if and

only if the task densities satisfy
n∑

i=1

ρi ≤ 1.

where Ci, Di ∈ Z+ for all σi ∈ S.

Proof If
∑

i ρi > 1, then the task set is clearly not schedulable as the demands exceed

capacity. So, this condition is clearly necessary.

Suppose a task set S = {σ1, σ2, . . . , σn} satisfies
∑

i ρi ≤ 1. Consider a task σi ∈ S, and

suppose that it has a renewal at time ti. The partial schedule for the next job of σi is shown

in Figure 7.6. In particular, the deadline of this job is (ti +Di), and it needs at least Ci time

units of the resource for completion.

Now, in each successive unit time interval within Ti = (ti, ti + Di), the task σi is sched-

uled for at least ρi time units under PSP. Also, as shown in Figure 7.6, σi is scheduled

2A task set is said to be schedulable by a policy if it can be scheduled by the policy so that no deadlines
are missed.
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for t∆ time units immediately after its renewal at time ti, and for (ρi − t∆) time units im-

mediately before (ti + Di). Hence, in the interval Ti, the task σi is scheduled for at least

t∆ + (Di − 1)ρi + (ρi − t∆) = Di ∗ ρi = Ci time units. Consequently, the next job of σi

completes by its deadline. Finally, since we arbitrarily chose a job and a task, the same

argument applies to all jobs in the system. �

7.1.4 Resource-sharing policies

We now consider resource sharing policies for scheduling renewal task sets where more than

one task can share the resource at a given time. We begin with some additional definitions

for renewal tasks.

Definitions

Consider a set of renewal tasks S = {σ1, σ2, . . . , σn}. For a renewal task σi ∈ S, since a

new job is released immediately after a previous job is completed, a job completion is also

called a task renewal. For a given time instant t ≥ 0, ζi(t) represents the time of the next

task renewal of σi after time t. In particular, we always have ζi(t) > t for all σi ∈ S and

time instants t ≥ 0. Also, subsequent task renewals are represented as ζ2
i (t) = ζi(ζi(t)),

ζ3
i (t) = ζi(ζi(ζi(t))), etc. However, we define ζ0

i (t) = t for convenience.

Further, ζ(t) is the next renewal of any task in S after time t ≥ 0, i.e.,

ζ(t) = min
σi∈S

ζi(t).

Similarly, ζ̂(t) is the last renewal of any task in S before time3 t > 0, i.e.,

ζ̂(t) = max{ζ i(0) ≤ t | i ∈ Z+}.
3ζ̂i(0) = 0 for all i ∈ Z+.
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Finally, a system renewal occurs when all tasks have a renewal at the same time. For

a given time instant t ≥ 0, Z(t) represents the next system renewal of the task set S after

t, and Ẑ(t) represents the previous system renewal before t. As before, subsequent system

renewals are represented as Z2(t) = Z(Z(t)), Z3(t) = Z(Z(Z(t))), etc.

Admissible scheduling policies

A scheduling policy allocates the common resource among currently executing jobs of the

task set S = {σ1, σ2, . . . , σn}. More formally, given a time interval T , a scheduling policy

allocates τi(T ) ∈ R+ time units of the resource to each task σi ∈ S during the interval T .

Also, τ0(T ) ∈ R+ represents the idle time of the resource during T which is not allocated to

any task in S. For convenience, define τi(t) = τi([0, t]) for i = 0, . . . , n.

Since not all possible scheduling policies are reasonable, an admissible scheduling policy

is defined as follows.

Definition 7.1.4 An admissible scheduling policy is an allocation (τ0(t), τ1(t), . . . , τn(t)) for

t ≥ 0 such that τi(t) are continuous and non-decreasing functions of time t for i = 0, . . . , n,

and
n∑

i=0

τi(t) = t.

Proportional Share Scheduling Policy

We now define a resource sharing version of the Proportional Scheduling Policy (PSP) pre-

sented in Section 7.1.3.

Definition 7.1.5 The Proportional Share Scheduling Policy (PSSP) allocates the resource

proportionally to all tasks in a task set S = {σ1, σ2, . . . , σn}, i.e., for any task σi ∈ S, we

have

τi(T ) = |T | ∗ ρi∑n
j=1 ρj

.
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PSSP is clearly an admissible scheduling policy. The schedulability criterion for renewal

task sets under PSSP is also easily obtained as follows.

Theorem 7.1.6 A renewal task set S = {σ1, σ2, . . . , σn} is schedulable under PSSP if and

only if the task densities satisfy
n∑

i=1

ρi ≤ 1.

Proof If
∑

i ρi > 1, then the task set is clearly not schedulable as the demands exceed

capacity. So, this condition is clearly necessary.

Suppose a task set S = {σ1, σ2, . . . , σn} with
∑

i ρi ≤ 1 is not schedulable under PSP.

Since task renewals are countable, we can consider the first time tm at which a deadline is

missed in a PSP schedule for this task set. Let σm ∈ S be the corresponding task that missed

its deadline at tm. Now, the last task renewal of σm before tm occurred at time (tm − Dm).

However, in the time interval Tm = (tm − Dm, tm), we have

τm(Tm) = |Tm| ∗ ρm∑n
j=1 ρj

≥ |Tm| ∗ ρm = Cm

under PSSP since
∑

i ρi ≤ 1, ρm = Cm/Dm, and |Tm| = Dm. Hence, σm cannot miss a

deadline at tm, which is a contradiction. �

Highest Scaled critical-ratio First policy

We now exhibit schedulability of renewal tasks through another interesting class of resource

sharing admissible scheduling policies.

We begin with some additional definitions for renewal task sets. Consider a set of renewal

tasks S = {σ1, σ2, . . . , σn}. For a renewal task σi ∈ S, and a given time instant t ≥ 0, ηi(t)

is the number of jobs completed for task σi until time t, i.e.,

ηi(t) := max{n ∈ Z+ | ζn
i (0) ≤ t}.
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A renewal task always has exactly one unfinished job that needs to be scheduled. Hence,

define di(t) as the deadline of the current job of task σi at time t ≥ 0. The remaining

computation time ci(t) of the current job of task σi is then given by

ci(t) := (ηi(t) + 1)Ci − τi(t), (7.1)

which leads to the following definition of a critical ratio.

Definition 7.1.7 Critical ratio κi(t) of a task σi ∈ S at time t ≥ 0 is defined as

κi(t) :=
ci(t)

di(t)

Instead of using critical ratios directly, we break jobs virtually into “sub-jobs” so that

the corresponding sub-jobs of all tasks have the same deadlines. Consequently, we render

the corresponding critical ratios all have the same denominator at any given time t > 0.

Define d̄(t) to be the next deadline among the jobs in the system at time t > 0, i.e.,

d̄(t) := min
σi∈S

{di(t)}, (7.2)

and the remaining computation time c̄i(t) of the “sub-job” of task σi ∈ S as

c̄i(t) = κi(ζ̂(t))d̄(ζ̂(t)) − τi([ζ̂(t), t]), (7.3)

where τi([ζ̂(t), t]) is the amount of work done on the current job of task σi in the interval

[ζ̂(t), t]. Now we define what we mean by scaled critical ratios.

Definition 7.1.8 The scaled critical ratio κ̄i(t) of a task σi ∈ S at time t ≥ 0 is defined as

κ̄i(t) :=
c̄i(t)

d̄(t)
.
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Definition 7.1.9 The scaled system critical ratio κ̄(t) is the maximum of the scaled critical

ratios of all tasks in S at time t ≥ 0, i.e.,

κ̄(t) := max{κ̄i(t) | σi ∈ S}.

Definition 7.1.10 Scaled critical task set Sκ̄(t) is the set of tasks whose critical ratio is

equal to the scaled system critical ratio at time t ≥ 0, i.e.,

Sκ̄(t) = {σi ∈ S | κ̄i(t) = κ̄(t)}.

Also, for a time interval T , we have

Sκ̄(T ) =
⋃
t∈T

Sκ̄(t).

Finally, the class of Highest Scaled critical-ratio First policies is defined as follows.

Definition 7.1.11 Highest Scaled critical-ratio First (HSF) is the class of admissible schedul-

ing policies that enforce the condition

∫ ∞

0

I(κ̄i(t) < κ̄(t))dτi(t) = 0, (7.4)

for all tasks σi ∈ S, where I(·) is the indicator function.

Equation 7.4 basically ensures that a task σi ∈ S is actively processed only when κ̄i(t) =

κ̄(t). In the following development, we refer to the class of HSF policies collectively as HSF

for convenience.

Clearly, HSF is a non-idling policy as it always schedules tasks with the highest critical

ratio. In addition, we also have the following properties for critical functions under HSF.

Proposition 7.1.12 The following properties hold for a renewal task set S = {σ1, . . . , σn}
scheduled by HSF:
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1. c̄i(t), d̄(t), κ̄i(t), κ̄(t), ci(t), di(t), and κi(t) are right continuous for i = 1, . . . , n and

t ≥ 0.

2. c̄i(t), d̄(t), κ̄i(t), κ̄(t), ci(t), di(t), and κi(t) are continuous in the interval Tζ(t) =

(ζ̂(t), ζ(t)) for i = 1, . . . , n and t ≥ 0.

Proof

1. Since HSF is an admissible scheduling policy, τi(t) are continuous for i = 0, . . . , n

and t ≥ 0. Consequently, c̄i(t) are right continuous by eq (7.3). Also, di(t) are

right continuous as they increase linearly with time t except for jumps at renewals of

corresponding σi. Hence, d̄(t) is right continuous as it is equal to the smallest of the

di(t), and jumps only when the corresponding task σi has a renewal. By definition, it

follows that κ̄i(t) are also right continuous. Also, since κ̄(t) is the maximum of finitely

many right continuous functions, it is also right continuous. Similarly, since τi(t) are

continuous for i = 0, . . . , n and t ≥ 0, ci(t) are right continuous by eq (7.1). Hence, it

follows that κi(t) are right continuous functions as well.

2. As noted above, τi(t) are continuous for i = 0, . . . , n and t ≥ 0 under HSF. Also, there

are no job completions during the interval Tζ(t) = (ζ̂(t), ζ(t)) for any task in S. Hence,

c̄i(t) are continuous in Tζ(t) by eq (7.3). Similarly, di(t) and d̄(t) are also continuous in

Tζ(t). Consequently, κ̄i(t) are continuous in the interval Tζ(t) as well. Also, since κ̄(t)

is the maximum of finitely many continuous functions, it is also continuous in Tζ(t).

The functions ci(t) and κi(t) are continuous in the interval Tζ due to the same reason.

�

Since the functions κ̄i(t) and κ̄(t) are continuous in the interval Tζ(t) = (ζ̂(t), ζ(t)) for

a given time instant t > 0, it follows that there is a sub-interval T ⊆ (t, ζ(t)) during which

the scaled critical task set is constant, i.e., Sκ̄(T ) = Sκ̄(t). Hence, the following interval is

well-defined.
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Definition 7.1.13 For a given time instant t > 0, the job-constancy interval Tκ̄(t) is defined

to be the maximal interval starting at t during which the scaled critical task set is constant,

i.e., Sκ̄(Tκ̄(t)) = Sκ̄(t).

We now characterize the evolution of κ̄(t) in the interval (t, ζ(t)).

Lemma 7.1.14 For a renewal task set S = {σ1, . . . , σn} scheduled by HSF, if for some

t0 ≥ 0 we have ∑
σi∈Sκ̄(t0)

κ̄i(t0) ≤ 1 − ε,

then for any interval T = (t0, t) ⊆ Tκ̄(t0), we have

κ̄(t) ≤ κ̄(t0) − ε|T |
m(d̄(t0) − |T |)) ,

where m = |Sκ̄(t0)|.

Proof Suppose there is a time interval Tf = (t0, tf) ⊆ Tκ̄(t0) such that

κ̄(tf ) > κ̄(t0) − ε|Tf |
m(d̄(t0) − |Tf |))

.

Since tf is in the job-constancy interval of t, we have

κ̄i(t) > κ̄i(t0) − ε|Tf |
m(d̄(t0) − |Tf |))

for all σi ∈ Sκ̄(t0). By definition of κ̄i(t), this is equivalent to

c̄i(t0) − τi(Tf)

d̄(t0) − |Tf |
>

c̄i(t0)

d̄(t0)
− ε|Tf |

m(d̄(t0) − |Tf |))
,

which holds if and only if

c̄i(t0)

d̄(t0)
>

τi(Tf)

|Tf | − ε

m
.
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Summing the above inequality for all σi ∈ Sκ̄(t0), we have

∑
σi∈Sκ̄(t0)

c̄i(t0)

d̄i(t0)
>

∑
σi∈Sκ̄(t0)

τi(Tf )

|Tf | −
∑

σi∈Sκ̄(t0)

ε

m
.

Since HSF is an admissible policy, and Tf ⊆ Tκ̄(t0), we have
∑

σi∈Sκ̄(t0) τi(Tf ) = Tf .

Hence, the above inequality simplifies to

∑
σi∈Sκ̄(t0)

κ̄i(t0) > 1 − ε,

which is a contradiction. �

Theorem 7.1.15 For a renewal task set S = {σ1, . . . , σn} scheduled by HSF, if for some

t0 ≥ 0 we have ∑
σi∈S

κ̄i(t0) ≤ 1

then ζ(t0) =
∑

σi∈S c̄i(t0).

Proof Suppose Sκ̄(t0) � S and let σj ∈ S \ Sκ̄(t0) be a non-critical task at t0. By Lemma

7.1.14, the scaled critical ratio κ̄(t) decreases in the job-constancy interval Tκ̄(t0), and κ̄j(t)

increases in the same interval. Hence, there is a first time instant tj at which σj ∈ Sκ̄(t)

joins the scaled critical task set and is scheduled by HSF. Clearly (tj − t0) < d̄(t0), otherwise

the sub-jobs of the tasks in Sκ̄(t0) would complete, and we would have κ̄(t′) = 0 for some

t′ < d̄(t0), which is impossible.

We will now show that ∑
σi∈S

κ̄i(tj) ≤ 1. (7.5)
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By Lemma 7.1.14, the above inequality holds if we have

∑
σi∈Sκ̄(t0)

(
κ̄i(t0) − ε|Tj |

m(d̄(t0) − |Tj|)
)

+
∑

σi /∈Sκ̄(t0)

κ̄i(tj) ≤ 1

where m = |Sκ̄(t0)|, Tj = (t0, tj), and ε = 1 − ∑
σi∈Sκ̄(t0) κ̄(t0). This can be simplified to get

mκ̄(t0) − ε|Tj|
d̄(t0) − |Tj| +

∑
σi /∈Sκ̄(t0) c̄j(t0)

d̄(t0) − |Tj | ≤ 1.

By rearranging terms, and noting that κ̄i(t0) = c̄i(t0)/d̄(t0), we can rewrite the above

inequality as

|Tj |(1 − ε + mκ̄(t0)) ≤ d̄(t0)(1 −
∑

σi /∈Sκ̄(t0)

κ̄j(t0) − mκ̄(t0))

But this inequality holds since 0 < |Tj| < d̄(t0) and
∑

σi /∈Sκ̄(t0) κ̄i(t0) ≤ ε. Hence, the

inequality (7.5) holds as well.

Since the number of tasks in S is finite, we can repeat the same argument to find a time

t with (t − t0) < d̄(t0) such that Sκ̄(t) = S. Hence, all the tasks share the resource in the

job-constancy interval Tκ̄(t), at the end of which the corresponding sub-jobs are completed.

Since HSF is non-idling, this occurs at time ζ(t0) =
∑

σi∈S c̄i(t0). �

We now characterize the schedulability condition for renewal task sets under HSF.

Lemma 7.1.16 For a renewal task set S = {σ1, . . . , σn} scheduled by HSF, if
∑n

i=1 ρi ≤ 1

and κ̄i(0) ≤ ρi for all σi ∈ S, then κ̄i(ζ
k(0)) ≤ ρi for all tasks σi ∈ S and k = 0, 1, 2, . . ..

Proof We prove this by induction on k = 0, 1, 2, . . .. The induction basis for ζ0(0) = 0

is trivial. For the induction step, suppose the result holds for some k, and for convenience

define tk = ζk(0) and tk+1 = ζk+1(0). Again, a task σi ∈ S with di(tk) = d̄(tk) has a

renewal at tk+1 by Theorem 7.1.15, and hence κ̄i(tk+1) = κi(tk+1) = ρi by (7.3). However,

if di(tk) > d̄(tk) then τi([tk, tk+1]) = c̄i(tk), and since tk+1 ≤ d̄(tk) from Theorem 7.1.15, by
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(7.3) we have

κ̄i(tk+1) = κi(tk+1) =
ci(tk) − c̄i(tk)

di(tk) − tk+1
≤ ci(tk) − c̄i(tk)

di(tk) − d̄(0)
,

which can be simplified as

κ̄i(tk+1) ≤ ci(tk) − (ci(tk)/di(tk))d̄(0)

di(tk) − d̄(0)
=

ci(tk)

di(tk)
= κi(tk) ≤ ρi.

�

Theorem 7.1.17 For a renewal task set S = {σ1, . . . , σn}, if
∑n

i=1 ρi ≤ 1 and κ̄i(0) ≤ ρi

for all σi ∈ S, then the task set is schedulable under HSF.

Proof We prove this by induction on task renewals ζk(0) for k = 0, 1, 2, . . .. For the

induction basis, by Theorem 7.1.15, the jobs of tasks σi ∈ S with di(0) = d̄(0) are completed

at ζ(0) by their deadlines. All other tasks have di(0) > d̄(0), and hence no deadlines are

missed until ζ(0).

For the induction step, suppose no deadlines are missed until ζk(0), and for convenience

define tk = ζk(0) and tk+1 = ζk+1(0). By Proposition 7.1.16, we have
∑n

i=1 κ̄i(0) ≤ 1. Hence,

by Theorem 7.1.15 the jobs of tasks σi ∈ S with di(tk) = d̄(ti) are completed at tk+1 by their

deadlines. As before, all other tasks have di(tk) > d̄(tk), and hence no deadlines are missed

until tk+1. �

As a corollary of this theorem, it follows that any admissible policy that provides a

computation time of at least

τi(T
k
ζ (0)) =

ρi|T k
ζ (0)|∑
j ρj

for each task σi ∈ S, and each interval T k
ζ (0) = (ζk(0), ζk+1(0)) with k ∈ Z+, will meet all

deadlines.
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Figure 7.7: Control Loop Model

7.2 Controllability of a single car

The renewal task model bounds the maximum separation between any two consecutive

completions of jobs in a task, and the scheduling policies presented in Section 7.1 demonstrate

that this model can be implemented in practice. In this section, we use this guarantee to

formulate and analyze the lower level control loop in the traffic control testbed design of

Figure 5.1. In particular, we prove that a car can be controlled so that it stays within a road

lane with a given width.

7.2.1 Car Model

The control loop model that we use for our analysis is shown in Figure 7.7. The feedback

channel from the Sensor to the Controller is scheduled according to the renewal task model.

On the other hand, the Controller and the Actuator are collocated, and there is negligible

delay between a Controller issuing a control, and the Actuator effecting it in the car. But for

the renewal guarantee, this model is a slightly simplified version of the current configuration

in the testbed described in Section 2.2.

We model a car itself as an oriented point in a lane, and define the state of a car as the

pair (d, θ), where d is the absolute distance of the car from the center of the lane, and θ is

the angle of the car to the median of the lane. In practice, this point would represent the
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center of the car. Also, the direction of traversal of the lane is assumed to be from left to

right in what follows.

We assume that a car has a single non-zero speed s, and four steering controls: two in

anti-clockwise direction, and two in the clockwise direction. The two anti-clockwise controls

move the car in anti-clockwise circles of radii R and R with R < R. Similarly, the two

clockwise controls move the car in clockwise circles of radii R and R. Based on the renewal

task model for sensory feedback, we also assume that the car can move a distance of at most

Rα before it is observed again. Since the car moves at a constant speed s, this corresponds

to a deadline of Rα/s in the renewal task model. Finally, a control is sent immediately after

the car has been observed; equivalently, the car can move a distance of at most Rα before

the next control is sent.

7.2.2 Controllability in a straight road

We begin by analyzing the controllability of a car along a straight road. Specifically, we

will try to formulate a control strategy so that a car can be indefinitely maintained within

a straight lane of a given width using the above control loop model. Our strategy will be

to find a subset SC of the car state space, so that if the car is in SC when a control is sent,

then it can be indefinitely maintained within SC . For brevity, we will call this set SC , which

can be held invariant through control, a controllable subset.

In the following analysis, we only allow steering controls that move the car in circles of

radius R. Suppose the car is initially in state (0, 0), i.e. it is positioned at the center of the

lane, and oriented along the direction of the road, which is assumed to be from left to right

as noted before. If the car is given the clockwise control, then it moves in a clockwise circle

of radius R and tangential to the center of the lane as shown in Figure 7.8. When we get

to send the next control, the car may have moved a distance of up to Rα along its circle.

Suppose the car does indeed move a distance of Rα before we send the next control. Since

we next see the car to be below the lane, we issue an anti-clockwise control instead. As
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Figure 7.8: Controllable subset characterization

shown in Figure 7.8, the car will now move in an anticlockwise circle of radius R tangential

to the previous circle. However, the car will still move away from the center of the lane for

sometime, before it recovers. Consequently, the lane must be wide enough to account for

this maneuver.

From Figure 7.8, we can also see that if the car is below the center of the lane initially,

then it can be made to stay within this lane using the anti-clockwise control as long as its

distance and orientation is bounded by the second circle in the figure. This subset is further

illustrated in Figure 7.9.

One important constraint we want to ensure is that the car is never moving backwards,

i.e., θ ≤ π/2 always. This implies that the maximum permissible angle β ≤ π/2 in Figure

7.9. But, from Figure 7.9, we also have R(1− cos β) = 2R(1− cos α), which implies cos β =
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Controllable subset
α

β

R

Figure 7.9: Controllable subset and maximum value of α, β

2 cos α − 1, and β ≤ π/2 in turn implies cosα ≥ 1/2, i.e.,

α ≤ π

3
. (7.6)

In the following theorem, we prove that the subset illustrated in Figure 7.9 is actually a

controllable subset for the car.

Theorem 7.2.1 For an infinitely long road of width 2W , where W = R(1− cos β(2 cosα−
1)), α ≤ π/3, and β = cos−1 (2 cosα − 1), the set

SC = {(d, θ) | d + R(1 − cos θ) ≤ W} (7.7)

is a controllable subset of the car. That is, if the state of the car is initially within the subset

SC, then the car can be controlled to stay indefinitely within the lane of width 2W .

Proof We prove this by showing that if the initial car state is in the subset SC = {(d, θ) |
d+R(1− cos θ) ≤ W}, then there exists a control which ensures that the car trajectory will

remain in SC until the next control can be sent.
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Figure 7.10: Possible trajectory for Case I

We need only consider initial car positions in the lower half of the lane, since a symmet-

rical argument applies to the upper half as well. We have two cases for possible initial car

distance d in the lower half of the lane: on the solid curve segment in Figure 7.11(a), and

on the solid curve segment in Figure 7.12(a). In either case, for a given distance d from the

center of the lane, the initial car orientation θ satisfies d + R(1 − cos θ) ≤ W .

We consider each of these cases in detail.

CASE I

Suppose the initial car position is on the solid curve segment in Figure 7.11(a) so that

distance d and angle θ satisfy d + R(1 − cos θ) ≤ W . It is easy to see that, under the

anti-clockwise control, the subsequent trajectory of the car will be contained in the shaded

region in Figure 7.11(b). Clearly, at all points on all these trajectories, the car state will

satisfy d + R(1 − cos θ) ≤ W . To see this, suppose the initial position (d, θ) satisfies d +

R(1 − cos θ) ≤ W . Then, after moving through an angle 0 ≤ γ ≤ α, the new coordinates
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Figure 7.11: Initial states and trajectories for Case I
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are d′ = d + R(cos (θ − γ) − cos θ) and θ′ = θ − γ as shown in Figure 7.10. Now,

d′ + R(1 − cos θ′) = d + R(cos (θ − γ) − cos θ) + R(1 − cos (θ − γ))

= d + R(1 − cos θ)

≤ W

as required.

CASE II

Suppose the initial car position is on the solid curve segment in Figure 7.12(a) so that the

distance d and the orientation θ satisfy d+R(1−cos θ) ≤ W . In this case, the anti-clockwise

control may not always ensure that car-states in the subsequent trajectory of the car will

satisfy d + R(1 − cos θ) ≤ W .

For a given distance d in Figure 7.12(a), we seek an angle θ∗ such that car states will

satisfy d + R(1 − cos θ) ≤ W in the subsequent car trajectory up to the next renewal for

both anti-clockwise and clockwise controls. That is, such an initial (d, θ∗) is an indifference

state, so that both anti-clockwise and clockwise controls will maintain feasibility up until the

next renewal. If we can find such an indifference angle θ∗, then for initial angles θ < θ∗, the

anti-clockwise control ensures a valid subsequent trajectory, while for initial angles θ > θ∗,

the clockwise control ensures the same.

Suppose the initial car position is (d, θ) as shown in Figure 7.12(a). If the anti-clockwise

control is used, then, in the worst case, the car can at most reach the state (d1, θ1) shown in

Figure 7.12(b) with4 d1 = R(cos θ−cos θ1)−d and θ1 = α+θ. Since we require (d1, θ1) ∈ SC ,

we need

R(1 + cos θ − 2 cos (α + θ)) − d ≤ W, (7.8)

to ensure that feasibility is maintained until the next renewal.

4Note that d1 ≥ 0 by convention since it is the absolute distance from the median.
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Figure 7.12: Initial states and trajectories for Case II
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Similarly, if the clockwise control is used, then, in the worst case, the car can at most

reach the state (d2, θ2) with d2 = R(cos θ − cos θ2) + d and θ2 = α − θ, as shown in Figure

7.12(b). Since we also require (d2, θ2) ∈ SC , we need

R(1 + cos θ − 2 cos (α − θ)) + d ≤ W, (7.9)

to ensure that feasibility is maintained until the next renewal.

Suppose the left-hand side (LHS) expressions of both (7.8) and (7.9) are equal for some

θ∗. We can then equate the two expressions to get

sin θ∗ =
d

2R sin α
. (7.10)

Since the θ∗ in (7.10) is such that the LHS expressions of (7.8) and (7.9) are equal, the

initial state (d, θ∗) will satisfy both these inequalities if and only if the sum of these LHS

expressions is bounded by 2W , i.e.,

(R(1 + cos θ∗ − 2 cos (α + θ∗)) − d) + (R(1 + cos θ∗ − 2 cos (α − θ∗)) + d) ≤ 2W

This inequality can be simplified to get

(1 + cos θ∗ − 2 cos θ∗ cos α) ≤ W

R
.

Since W = R(1 − cos β(2 cosα − 1)), the above inequality is equivalent to

cos θ∗(2 cosα − 1) ≥ cos β(2 cosα − 1). (7.11)

Since α ≤ π/3, the above inequality will hold if θ∗ ≤ β.

Recall that θ∗ is such that the LHS expressions of (7.8) and (7.9) are equal. Now, for

θ = 0, the LHS of (7.8) becomes R(2 − 2 cosα) − d, which is less than R(2 − 2 cos α) + d,
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the corresponding value of the LHS of (7.9). Hence, for θ = β, if the LHS of (7.8) is greater

than that of (7.9), then the two expressions will be equal by the intermediate value theorem

for some 0 ≤ θ∗ ≤ β. So, for θ = β, we need to show that

R(1 + cos β − 2 cos (α + β)) − d ≥ R(1 + cos β − 2 cos (α − β)) + d,

which is equivalent to

cos (β − α) − cos (β + α) ≥ d

R
.

However, from Figure 7.12(a), we see that the maximum value of d = R(cos (β − α) −
cos β). Hence, the above inequality will hold if

cos β ≥ cos (β + α),

which is true since (β + α) ≤ π, and cos θ is a decreasing function in the interval [0, π].

Consequently, for a given initial distance d in the subset specified in Figure 7.12(a), there

indeed exists an orientation θ∗ given by (7.10), such that for the initial position (d, θ∗), both

anti-clockwise and clockwise controls will maintain feasibility until the next renewal. Hence,

if the initial angle θ < θ∗, then the anti-clockwise control will ensure a valid trajectory, and

if θ ≥ θ∗, then the clockwise control will do the same. �

7.2.3 Controllability in a road network

In Section 7.2.2, we have proved that a car can be driven within a straight lane indefinitely,

using feedback with renewal task guarantees. In a road network, however, roads have finite

lengths, and turns need to be made at intersections. In this section, we show that, given

sufficiently wide roads, a car can also be driven along such a road network. In the follow-

ing, we use the same car model presented in Section 7.2.1, while taking advantage of the
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availability of the second set of steering controls with the larger turning radius R > R.

The main problem in navigating turns is that a car has to move from one road to another

at their intersection. In particular, the car state (d, θ) satisfying d − R(1 − cos θ) ≤ W on

the first road, may not necessarily satisfy this condition in the second road. Hence, the

car must be controlled so that its state is brought back, within a bounded distance, into

the controllable subset corresponding to the second road. If this can be accomplished,

then the car can be controlled to stay withing the roads in a road network as well. The

following theorem shows that, under certain constraints on initial position, a car can indeed

be controlled to get it back into the controllable subset within a bounded distance.

Theorem 7.2.2 If the initial state (d, θ) of a car satisfies d ≤ W and θ ≤ π/2, then the

car can be controlled to a state (d1, θ1) that satisfies d1 + R(1 − cos θ1) ≤ W with W =

R(1− cos β(2 cosα− 1)), α ≤ π/3, and β = cos−1 (2 cosα − 1), within a distance of at most

L =
2γRR

R − R
, (7.12)

where γ satisfies d + R(1 − cos(θ − γ)) ≤ W .

Proof In the following, we only consider initial car positions in the lower half of the lane,

since a symmetrical argument applies to the upper half as well.

Suppose the car is initially in a state (d, θ) with d ≤ W , but with d + R(1− cos θ) > W .

Since d ≤ W , there is an angle γ such that d + R(1 − cos(θ − γ)) ≤ W . For instance, the

situation when d = W is illustrated in Figure 7.13. The key observation is that the car

can still be driven within an appropriately displaced lane of width 2W by the same control

strategy used in the proof of Theorem 7.2.1. So, the problem now is to find a sequence of

controls that can “shift” this lane so that the “excess” angle offset γ is “negated”.

A control strategy that can be used to negate γ is shown in Figure 7.14. At each point,

the car is controlled as if it is being driven in an appropriately displaced lane, illustrated in

Figure 7.13, using the same control strategy as in the proof of Theorem 7.2.1. When the
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Figure 7.13: Driving the car in a displaced lane

anti-clockwise control is to be applied, we use the control with steering radius R as before.

However, when the clockwise control is to be enforced, we use the control with steering radius

R instead.

As shown in Figure 7.14, the control with the larger steering radius R ensures that the

angle θ at the next control point will be lesser than the θ that it would have been, had we

used the control with steering radius R instead. This is effectively an “improvement” of

(θ − θ) towards negating γ. From Figure 7.14, we also see that (θ − θ) = (θ′ − θ′) and

θ′ =
R ∗ θ′

R
,

and hence the improvement achieved is

θ − θ = θ′
(

R − R

R

)
. (7.13)

Such an improvement is achieved each time we use a clockwise control. Hence, the car

state will be brought back into the controllable subset when θ−θ = γ for clockwise controls.

During this time, the car travels a distance of R ∗ θ′. Also, we use the clockwise control

half the time, since the original control strategy maintains the car within a displaced lane
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Figure 7.14: Control strategy for recovery from a bad initial condition
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Figure 7.15: Controllable subset in a single lane

of fixed width by Theorem 7.2.1. Hence, the maximum distance that the car travels by the

time we have θ − θ = γ is L = 2R ∗ θ′, and by (7.13), this is given by

L =
2γRR

R − R
.

It may be noted, however, that the car may recover quicker than the worst case described

above, since it also moves the closer to the center of the lane as d < d by Figure 7.14. �

We now consider how a car can be controlled at the intersection of two roads. This

situation is illustrated in Figure 7.15. In this figure, Region 1 is the area such that, if the

car is seen there at a renewal time, and the appropriate control corresponding to Road 1

is applied, then the car may move beyond the lower edge of Road 2 before it is seen next.

Region 2 is the area in which the car is seen one iteration before it is seen in Region 1. In

the following lemma, we show that a car can indeed be controlled at such an intersection as

well.

Lemma 7.2.3 If two roads intersect at an angle γ ∈ [0, π/2] (cf. Figure 7.15), and each
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road is at least 2(W +R(1− cos γ)) units wide with W = R(1− cos β(2 cosα−1)), α ≤ π/3,

and β = cos−1 (2 cos α − 1), then a car starting at a position (d, θ) with d+R(1−cos θ) ≤ W

on the first road, can be controlled so that it will satisfy this condition on the second road,

within a distance of

L =
2γRR

R − R
.

Proof The basic idea in the control strategy is that when the car crosses the boundary

between Regions 1 and 2 in Figure 7.15, we assume that the car is in Road 2 and send

appropriate controls. When the car enters Region 1, we can have one of the following cases:

1. The car can be in the controllable subset d + R(1 − cos θ) ≤ W of Road 2 as well. In

this case, we are done since feasibility with respect to the Road 2 can thereafter be

maintained by Theorem 7.2.1.

2. The car can be outside the controllable subset, but still satisfy d ≤ W and d + R(1 −
cos θ) ≤ d + R(1 − cos (θ + γ)). In this case, the car can be brought back to the

controllable subset in Road 2 by Theorem 7.2.2. In particular, since the maximum

angle is γ when the car is a distance d = W , the car can be maintained within a road

of width 2(W + R(1 − cos γ)) by the control strategy in Theorem 7.2.2.

3. The car can be outside the controllable subset with d > W or d + R(1 − cos θ) >

d + R(1 − cos (θ + γ)).

We now address the third case. There are two possible ways the car could end up in state

3: below the center of the second lane, or above it. Since the car is seen before it goes off

the lower edge of the second lane, if the car is below the center of the second lane, then we

will have d < W . In addition, we can use the anti-clockwise steering in Region 2 to ensure

that d+R(1− cos θ) ≤ d+R(1− cos (θ + γ)) as well. On the other hand, if the car is above

the center of the second lane, then we can again use the anti-clockwise steering in Region 2
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to ensure that the car ends up in cases 1 or 2. �

We can now prove that a car can be driven in a city road network.

Theorem 7.2.4 In a road network with single-lane straight roads of length at least

L =
2γRR

R − R
.

and lane-width at least 2(W + R(1 − cos γ)) with W = R(1 − cos β(2 cosα − 1)), α ≤ π/3,

and β = cos −1(2 cosα − 1), a car can be driven so that it stays within the corresponding

lanes.

Proof Since the roads in the network are straight, by Theorem 7.2.1, a car can be driven

within a lane on such a road. Also, if we make the car normally drive in a sufficiently narrow

sub-lane within each lane, then at intersections, a car can be properly controlled from a lane

on an incoming road to a lane on the outgoing road by Lemma 7.2.3. Hence, a car can be

driven so that it stays within specified lanes in the road network. �

7.3 System-wide safety and liveness guarantees

In this section, we use results from previous sections to prove system-wide safety and liveness

guarantees in the traffic control testbed.

The Supervisor is the higher level control component that regulates the behavior of all

the cars in the testbed as shown in Figure 5.1. In particular, the Supervisor for city traffic

control also ensures that cars are scheduled so that there are no conflicts or gridlocks [28].

As described in Section 2.2, the basic approach is to map the road network into a discrete

graph. A road is modeled as a path of bins, and the edges between bins show how cars

can be moved between these bins. On the other hand, an intersection is modeled using the
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(a) Intersection in a road network (b) Sub-graph modeling an intersection

Figure 7.16: Modeling intersections in road network discretization

pattern shown in Figure 7.16. In Figure 7.16(b), we see that there exist pairs of edges along

which cars cannot be simultaneously without collisions. This is modeled by the concept of

edge conflicts, whereby, cars cannot be simultaneously moved along conflicting edges.

Cars are initially assigned to respective bins in the road network graph. The traffic

scheduling problem is then modeled as computing schedules for moving cars along edges so

that there are no conflicts or gridlocks. As noted above, conflicts are eliminated by defining

appropriate edge conflicts. On the other hand, gridlocks basically consist of an occupied

cycle in graph, i.e., a cycle of bins in the graph occupied by cars such that each car needs

to move to the next bin in the cycle.

Now we invoke the guaranteed property of the traffic scheduling algorithm from [28]:

Theorem 7.3.1 If the directed graph G modeling a road network is such that each bin has

either in-degree 1 or out-degree 1, the system has no occupied cycle initially, and cars exit the

system after reaching their destinations, then the supervisory algorithm schedules the system

so that all cars reach their destinations in finite time.
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Proof The main idea of the supervisory algorithm is to move cars along edges so that

there are no conflicts, and no occupied cycles are formed. It can also be shown that, if there

are no occupied cycles, and each bin in the road network graph has either in-degree 1 or

out-degree 1, then it is always possible to move a car so that no occupied cycles are formed

consequently. Since cars have finite routes to their destinations, it then follows that all cars

reach their destinations in finite time. The detailed proof is presented in [28]. �

The next theorem shows that the discrete model requirement of at most one car in a bin

at any given time, can indeed be enforced in continuous time.

Theorem 7.3.2 In a road network satisfying the model of Theorem 7.3.1, cars can indeed

be scheduled so that there is at most one car in a bin at any given time.

Proof The scheduling algorithm in Theorem 7.3.1 ensures that there are at most two cars

in a bin at a given time. This occurs when the next car enters a bin while the previous car

has not completely left it. However, we can ensure that at most one car is in a bin at a given

time by introducing a “virtual” car in front of each real car in the system. Specifically, the

virtual car has the same route as the corresponding real car, and ensures that the bin in

front of each real car is empty. �

We now prove main result in this chapter assuming the car model of Section 7.2.1.

Theorem 7.3.3 In a road network with single-lane straight roads of length at least

L =
2γRR

R − R
.

and lane-width at least 2(W + R(1 − cos γ)) with W = R(1 − cos β(2 cosα − 1)), α ≤ π/3,

and β = cos−1 (2 cos α − 1), a set of cars can be driven along pre-specified routes without

collisions (safety guarantee) or gridlocks (liveness guarantee).
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Proof Since the roads have single lanes and are sufficiently long and wide, by Theorem

7.2.4, a single car can be driven so that it stays within the corresponding lane. Also, since

the network only has single lane roads, the corresponding road network graph satisfies the

constraints of Theorem 7.3.1 as shown in Figure 7.16. Further, by Theorem 7.3.2, the cars

can be scheduled so that there is at most one car in a bin at any given time, so that there

are no collisions. Consequently, multiple cars can be operated so that there are no conflicts

or gridlocks. �
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Chapter 8

CONCLUSIONS

We now summarize our main contributions in this thesis, and conclude with a vision of

general purpose control for the future.

In this thesis, we have made the case that a key to the proliferation of networked control

systems lies in solving the problem of software management in these systems. We have argued

that, unlike earlier analog and digital control systems, the technological and theoretical

aspects of design of these systems are not very well understood, and in particular, the

complexities in these systems are mainly in the development and management of control

software, besides the fundamental theoretical issues in decentralized control. Our thesis

is that a well-designed middleware framework is a central ingredient in addressing these

challenges.

Thus motivated, we have presented a middleware framework for networked control sys-

tems. Our efforts have been focused on a traffic control testbed, which we have used as a

prototype to study networked control systems. Specifically, we have used an exploratory

implementation of the testbed to understand the requirements of such systems in general,

and motivate the design of Etherware, our middleware for networked control.

We have presented Etherware both from a middleware designer’s perspective as well as

an application developer’s perspective. We have described the programming model, archi-

tecture, and mechanisms of Etherware, and described how to develop applications using

them. In particular, we have described the Etherware based design and implementation of

our traffic control testbed, and illustrated the design of distributed control loops through a

detailed case study. This is one of the key contributions of this thesis.
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Next, we have built on this to study the importance of safety and security issues in

networked control systems. In particular, we have considered a system-wide perspective

to safety, whereby exceptional incidents such as security breaches can be addressed by ap-

propriate Strategies for Incident Response (SIR). In addition, we have also presented an

Etherware based Control System Incident Response (CSIR) framework for incorporating

SIRs into operational systems. Further, we have advocated and illustrated the principle of

safety preserving security trade-offs, which states that high-level security overrides such as

mandatory supervision, must not disable low-level safety features such as collision avoidance

in traffic systems.

We have addressed the issue of how to establish system-wide guarantees. We have done

this by proving system-wide safety and liveness guarantees in the testbed, based on various

sub-system level guarantees. Specifically, we have proved that under a renewal task model

based control model for cars, the traffic control testbed can be operated without car collisions

or gridlocks. We have also presented accompanying scheduling policies for renewal task

models as part of this analysis. This type of analysis can potentially serve as an example

for other networked control systems of the future.

8.1 Vision for the future

We have presented a middleware framework that supports the development of manageable

and reusable software for networked control systems. While our primary motivation has

been the proliferation of networked control, our contributions, it is hoped, enable more than

the systematic design of distributed control loops that characterize these systems. Our

framework provides a basis for general purpose control.

By general purpose control, we mean the notion of using generic components as building

blocks for control applications. These components could be standardized sensors, actuators,

and controllers that incorporate both hardware and software capabilities, so that they can be
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seamlessly assembled or integrated into control loops dynamically. For instance, a building-

wide distributed temperature control system could automatically detect and integrate new

sensors and air-conditioning units, while still maintaining proper control of temperatures

inside the building. The controllers of an automated car could add a new sensor device, such

as a GPS unit, and exploit the additional sensor feedback available. Such cars could dynam-

ically integrate into an autonomous traffic system and use advisories for traffic conditions.

The possibilities are immense.

Our middleware framework provides a basis for this vision by supporting the necessary

interoperability for independently developed control software. Our framework can be used

to develop libraries of generic control software, which can then be used as high-level design

primitives for implementing new control systems. In particular, such software can be bundled

together with corresponding control components to form the building blocks for operational

control systems. This lays the foundations for general purpose control, where users can

essentially synthesize new working applications from such components.
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